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Preface

Matrices have applications in a huge number of scientific fields. In physics, they are used to
study physical phenomena, such as the motion of rigid bodies. In computer graphics, they are
used to manipulate 3D models and project them onto a 2D screen. In probability theory and
statistics, stochastic matrices are used to describe sets of probabilities. Matrices calculus may
be used in economics to describe systems of economic relationships. A main part of numerical
analysis focuses on the development of efficient algorithms for matrix computations, a subject
that is centuries old and is today an expanding area of research. Matrix decomposition meth‐
ods simplify computations, both theoretically and practically. Algorithms that are tailored to
particular matrix structures, such as sparse matrices and near-diagonal matrices, expedite
computations in the finite element method and other computations. Infinite matrices are
present in planetary theory and atomic theory. They are the matrices representing the deriva‐
tive operators, which act on the Taylor series of a function. This new book reviews current
research, including applications of matrices and spaces, as well as other characteristics.

The book is divided into two sections. The first section (Chapters 1 and 2) discusses the ap‐
plication of matrices that has become an area of academic research and of great importance
in many scientific fields. In Chapter 1, within the framework of the theory of row/column
determinants, the determinantal representations (analogs of Cramer’s rule) of a partial solu‐
tion to the system of two-sided quaternion matrix equations, A1XB1=C1, A2XB2=C2 are ana‐
lyzed. It also gives Cramer’s rules for its special cases with one-sided equations and
considers the two systems with the first equation A1X=C1 and XB1=C1, respectively, and with
an unchanging second equation. Cramer’s rules for special cases when two equations are
one sided, to wit, the system of equations A1X=C1, XB2=C2 and the system of the equations
A1X=C1, A2X=C2, are studied as well. Chapter 2 introduces and studies a matrix that has the
exponential function as one of its eigenvectors and realizes that this matrix represents finite
difference derivation of vectors on a partition. This matrix leads to new expressions for finite
difference derivatives, which are exact for the exponential function. A number of properties
of this matrix, induced derivatives, and its inverse are also found. In addition, the expres‐
sion for the derivative of a product, a ratio, and the inverse of vectors plus the equivalent of
the summation by parts theorem of continuous functions are also described. This matrix
could be of interest to discrete quantum mechanics theory.

The second section (Chapters 3 to 5) comprises three chapters discussing spaces and linear
systems. In Chapter 3, mixing problems are considered since they always lead to linear ODE
systems, and the corresponding associated matrices have different structures that deserve to
be studied in depth. This structure depends on whether there is recirculation of fluids and if
the system is open or closed, among other characteristics such as the number of tanks and
their internal connections. Several statements regarding matrix eigenvalues are analyzed for
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different structures and also some questions and conjectures are posed. Finally, qualitative
remarks about differential equation system solutions and their stability or asymptotical sta‐
bility are included. In Chapter 4, special compound ´ magic squares are considered and a -
dimensional subspace of the nullspace of the ´ squares is determined. All vectors in the
subspaces possess the property that the sum of all entries of each vector equals zero. In
Chapter 5, a new type of regular matrix generated by Fibonacci numbers is introduced and
we shall investigate its various topological properties. The concept of mathematical regulari‐
ty in terms of Fibonacci numbers and phyllotaxy have been discussed.
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Equations and of Its Special Cases
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Abstract

Within the framework of the theory of row-column determinants previously introduced
by the author, we get determinantal representations (analogs of Cramer’s rule) of a partial
solution to the system of two-sided quaternion matrix equations A1XB1=C1, A2XB2=C2.
We also give Cramer’s rules for its special cases when the first equation be one-sided.
Namely, we consider the two systems with the first equation A1X=C1 and XB1=C1, respec-
tively, and with an unchanging second equation. Cramer’s rules for special cases when
two equations are one-sided, namely the system of the equationsA1X=C1, XB2=C2, and the
system of the equations A1X=C1, A2X=C2 are studied as well. Since the Moore-Penrose
inverse is a necessary tool to solve matrix equations, we use its determinantal representa-
tions previously obtained by the author in terms of row-column determinants as well.

Keywords: Moore-Penrose inverse, quaternion matrix, Cramer rule, system matrix
equations
2000 AMS subject classifications: 15A15, 16 W10

1. Introduction

The study of matrix equations and systems of matrix equations is an active research topic in
matrix theory and its applications. The system of classical two-sided matrix equations

A1XB1 ¼ C1,
A2XB2 ¼ C2:

�
(1)

over the complex field, a principle domain, and the quaternion skew field has been studied by
many authors (see, e.g. [1–7]). Mitra [1] gives necessary and sufficient conditions of the system
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(1) over the complex field and the expression for its general solution. Navarra et al. [6] derived
a new necessary and sufficient condition for the existence and a new representation of (1) over
the complex field and used the results to give a simple representation. Wang [7] considers the
system (1) over the quaternion skew field and gets its solvability conditions and a representa-
tion of a general solution.

Throughout the chapter, we denote the real number field by R, the set of all m� n matrices
over the quaternion algebra

H ¼ a0 þ a1iþ a2jþ a3k j i2 ¼ j2 ¼ k2 ¼ �1; a0; a1; a2; a3 ∈R
� �

by Hm�n and by Hm�n
r , and the set of matrices over H with a rank r. For A∈Hn�m, the symbols

A* stands for the conjugate transpose (Hermitian adjoint) matrix of A. The matrix
A ¼ aij

� �
∈Hn�n is Hermitian if A*=A.

Generalized inverses are useful tools used to solve matrix equations. The definitions of the
Moore-Penrose inverse matrix have been extended to quaternion matrices as follows. The
Moore-Penrose inverse of A∈Hm�n, denoted by A†, is the unique matrix X∈Hn�m satisfying
1ð ÞAXA ¼ A, 2ð ÞXAX ¼ X, 3ð Þ AXð Þ∗ ¼ AX, and 4ð Þ XAð Þ∗ ¼ XA.

The determinantal representation of the usual inverse is the matrix with the cofactors in the
entries which suggests a direct method of finding of inverse and makes it applicable through
Cramer’s rule to systems of linear equations. The same is desirable for the generalized
inverses. But there is not so unambiguous even for complex or real generalized inverses.
Therefore, there are various determinantal representations of generalized inverses because of
looking for their more applicable explicit expressions (see, e.g. [8]). Through the noncommu-
tativity of the quaternion algebra, difficulties arise already in determining the quaternion
determinant (see, e.g. [9–16]).

The understanding of the problem for determinantal representation of an inverse matrix as
well as generalized inverses only now begins to be decided due to the theory of column-row
determinants introduced in [17, 18]. Within the framework of the theory of column-row
determinants, determinantal representations of various kinds of generalized inverses and
(generalized inverses) solutions of quaternion matrix equations have been derived by the
author (see, e.g. [19–25]) and by other reseachers (see, e.g. [26–29]).

The main goals of the chapter are deriving determinantal representations (analogs of the
classical Cramer rule) of general solutions of the system (1) and its simpler cases over the
quaternion skew field.

The chapter is organized as follows. In Section 2, we start with preliminaries introducing of
row-column determinants and determinantal representations of the Moore-Penrose and
Cramer’s rule of the quaternion matrix equations, AXB=C. Determinantal representations of a
partial solution (an analog of Cramer’s rule) of the system (1) are derived in Section 3. In
Section 4, we give Cramer’s rules to special cases of (1) with 1 and 2 one-sided equations.
Finally, the conclusion is drawn in Section 5.

Matrix Theory-Applications and Theorems4

2. Preliminaries

For A ¼ aij
� �

∈M n;Hð Þ, we define n row determinants and n column determinants as follows.
Suppose Sn is the symmetric group on the set In ¼ 1;…; nf g.

Definition 2.1. The ith row determinant of A∈Hn�m is defined for all i ¼ 1,…, n by putting

rdetiA ¼
X
σ∈Sn

�1ð Þn�r aiik1 aik1 ik1þ1…aik1þl1 i

� �
… aikr ikrþ1…aikrþlr ikr

� �
,

σ ¼ i ik1 ik1þ1…ik1þl1ð Þ ik2 ik2þ1…ik2þl2ð Þ… ikr ikrþ1…ikrþlrð Þ,

with conditions ik2 < ik3 < … < ikr and ikt < iktþs for all t ¼ 2,…, r and all s ¼ 1,…, lt.

Definition 2.2. The jth column determinant of A∈Hn�m is defined for all j ¼ 1,…, n by putting

cdetjA ¼
X
τ∈ Sn

�1ð Þn�r ajkr jkrþlr
…ajkrþ1 ikr

� �
… aj jk1þl1

…ajk1þ1jk1
ajk1 j

� �
,

τ ¼ jkrþlr…jkrþ1jkr

� �
… jk2þl2…jk2þ1jk2

� �
jk1þl1…jk1þ1jk1 j
� �

,

with conditions, jk2 < jk3 < … < jkr and jkt < jktþs for t ¼ 2,…, r and s ¼ 1,…, lt.

Since rdet1A ¼ ⋯ ¼ rdetnA ¼ cdet1A ¼ ⋯ ¼ cdetnA∈R for Hermitian A∈Hn�n, then we can
define the determinant of a Hermitian matrix A by putting, detA≔rdetiA ¼ cdetiA, for all
i ¼ 1,…, n. The determinant of a Hermitian matrix has properties similar to a usual determi-
nant. They are completely explored in [17, 18] by its row and column determinants. In partic-
ular, within the framework of the theory of the column-row determinants, the determinantal
representations of the inverse matrix over H by analogs of the classical adjoint matrix and
Cramer’s rule for quaternionic systems of linear equations have been derived. Further, we
consider the determinantal representations of the Moore-Penrose inverse.

We shall use the following notations. Let α≔ α1;…;αkf g⊆ 1;…;mf g and β≔ β1;…; βk
� �

⊆
1;…; nf g be subsets of the order 1 ≤ k ≤min m; nf g. Aα

β denotes the submatrix of A∈Hn�m

determined by the rows indexed by α and the columns indexed by β. Then, Aα
α denotes the

principal submatrix determined by the rows and columns indexed by α. If A∈Hn�n is
Hermitian, then Aj jαα is the corresponding principal minor of det A. For 1 ≤ k ≤n, the collection
of strictly increasing sequences of k integers chosen from 1;…; nf g is denoted by
Lk,n≔ α : α ¼ α1;…;αkð Þ; 1 ≤α1 ≤… ≤αk ≤ nf g. For fixed i∈α and j∈ β, let Ir,m if g≔ α : α∈f
Lr,m; i∈αg, Jr,n jf g≔ β : β∈Lr,n; j∈ β

� �
.

Let a:j be the jth column and ai: be the ith row ofA. SupposeA:j bð Þ denotes the matrix obtained
from A by replacing its jth column with the column b, then Ai: bð Þ denotes the matrix obtained
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define the determinant of a Hermitian matrix A by putting, detA≔rdetiA ¼ cdetiA, for all
i ¼ 1,…, n. The determinant of a Hermitian matrix has properties similar to a usual determi-
nant. They are completely explored in [17, 18] by its row and column determinants. In partic-
ular, within the framework of the theory of the column-row determinants, the determinantal
representations of the inverse matrix over H by analogs of the classical adjoint matrix and
Cramer’s rule for quaternionic systems of linear equations have been derived. Further, we
consider the determinantal representations of the Moore-Penrose inverse.

We shall use the following notations. Let α≔ α1;…;αkf g⊆ 1;…;mf g and β≔ β1;…; βk
� �

⊆
1;…; nf g be subsets of the order 1 ≤ k ≤min m; nf g. Aα

β denotes the submatrix of A∈Hn�m

determined by the rows indexed by α and the columns indexed by β. Then, Aα
α denotes the

principal submatrix determined by the rows and columns indexed by α. If A∈Hn�n is
Hermitian, then Aj jαα is the corresponding principal minor of det A. For 1 ≤ k ≤n, the collection
of strictly increasing sequences of k integers chosen from 1;…; nf g is denoted by
Lk,n≔ α : α ¼ α1;…;αkð Þ; 1 ≤α1 ≤… ≤αk ≤ nf g. For fixed i∈α and j∈ β, let Ir,m if g≔ α : α∈f
Lr,m; i∈αg, Jr,n jf g≔ β : β∈Lr,n; j∈ β

� �
.

Let a:j be the jth column and ai: be the ith row ofA. SupposeA:j bð Þ denotes the matrix obtained
from A by replacing its jth column with the column b, then Ai: bð Þ denotes the matrix obtained
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fromA by replacing its ith row with the row b. a∗:j and a∗i: denote the jth column and the ith row

of A*, respectively.

The following theorem gives determinantal representations of the Moore-Penrose inverse over
the quaternion skew field H.

Theorem 2.1. [19] If A∈Hm�n
r , then the Moore-Penrose inverse A† ¼ a†ij

� �
∈Hn�m possesses the

following determinantal representations:

a†ij ¼
P

β∈ Jr,n if g cdeti A∗Að Þ:i a∗:j
� �� �β

βP
β∈ Jr,n A∗Aj jββ

, (2)

or

a†ij ¼
P

α∈ Ir,m jf g rdetj AA∗ð Þj: a∗i:
� �� �α

αP
α∈ Ir,m AA∗j jαα

: (3)

Remark 2.1. Note that for an arbitrary full-rank matrix, A∈Hm�n
r , a column-vector d:j, and a row-

vector di: with appropriate sizes, respectively, we put

cdeti A∗Að Þ:i d:j
� �� � ¼

X
β∈ Jn,n if g

cdeti A∗Að Þ:i d:j
� �� �β

β, det A
∗Að Þ ¼

X
β∈ Jn,n

A∗Aj jββ when r ¼ n,

rdetj AA∗ð Þj: di:ð Þ
� �

¼
X

α∈ Im,m jf g
rdetj AA∗ð Þj: di:ð Þ

� �α
α
, det AA∗ð Þ ¼

X
α∈ Im,m

AA∗j jαα when r ¼ m:

Furthermore, PA ¼ A†A, QA ¼ AA†, LA ¼ I�A†A, and RA≔I�AA† stand for some orthogo-
nal projectors induced from A.

Theorem 2.2. [30] Let A∈Hm�n, B∈Hr�s, and C∈Hm�s be known and X∈Hn�r be unknown.
Then, the matrix equation

AXB ¼ C (4)

is consistent if and only if AA†CBB† ¼ C. In this case, its general solution can be expressed as

X ¼ A†CB† þ LAVþWRB, (5)

where V and W are arbitrary matrices over H with appropriate dimensions.

The partial solution, X0 ¼ A†CB†, of (4) possesses the following determinantal representations.

Matrix Theory-Applications and Theorems6

Theorem 2.3. [20] Let A∈Hm�n
r1 and B∈Hr�s

r2 . Then, X0 ¼ x0ij
� �

∈Hn�r has determinantal repre-
sentations,

xij ¼
P

β∈ Jr1,n if g cdeti A∗Að Þ:i dB
:j

� �� �β
βP

β∈ Jr1,n
A∗Aj jββ

P
α∈ Ir2, r

BB∗j jαα
,

or

xij ¼
P

α∈ Ir2, r jf g rdetj BB∗ð Þj: dA
i:

� �� �α
αP

β∈ Jr1,n
A∗Aj jββ

P
α∈ Ir2, r

BB∗j jαα
,

where

dB
:j ¼

X
α∈ Ir2, r jf g

rdetj BB∗ð Þj: ~ck:ð Þ
� �α

α

2
4

3
5∈Hn�1, k ¼ 1,…, n,

dA
i: ¼

X
β∈ Jr1,n if g

cdeti A∗Að Þ:i ~C :l
� �� �β

β

2
4

3
5∈H1�r, l ¼ 1,…, r,

are the column vector and the row vector, respectively. ~ci: and ~c:j are the ith row and the jth column of
~C ¼ A∗CB∗.

3. Determinantal representations of a partial solution to the system (1)

Lemma 3.1. [7] Let A1 ∈Hm�n, B1 ∈Hr�s, C1 ∈Hm�s, A2 ∈Hk�n, B2 ∈Hr�p, and C2 ∈Hk�p be
given and X∈Hn�r is to be determined. Put H ¼ A2LA1 , N ¼ RB1B2, T ¼ RHA2, and F ¼ B2LN.
Then, the system (1) is consistent if and only if

AiA†
i CiB†

i Bi ¼ Ci, i ¼ 1, 2; (6)

T A†
2XB

†
2 �A†

1C1B†
1

� �
F ¼ 0: (7)

In that case, the general solution of (1) can be expressed as the following,

X ¼ A†
1C1B†

1 þ LA1H
†A2LT A†

2C2B†
2 �A†

1C1B†
1

� �
B2B†

2 þ T†T A†
2C2B†

2 �A†
1C1B†

1

� �
B2N†RB1

þLA1 Z�H†HZB2B†
2

� �� LA1H
†A2LTWNB†

2 þ W� T†TWNN†
� �� RB1 ,

(8)

where Z and W are the arbitrary matrices over H with compatible dimensions.
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fromA by replacing its ith row with the row b. a∗:j and a∗i: denote the jth column and the ith row

of A*, respectively.

The following theorem gives determinantal representations of the Moore-Penrose inverse over
the quaternion skew field H.

Theorem 2.1. [19] If A∈Hm�n
r , then the Moore-Penrose inverse A† ¼ a†ij

� �
∈Hn�m possesses the

following determinantal representations:

a†ij ¼
P

β∈ Jr,n if g cdeti A∗Að Þ:i a∗:j
� �� �β

βP
β∈ Jr,n A∗Aj jββ

, (2)

or

a†ij ¼
P

α∈ Ir,m jf g rdetj AA∗ð Þj: a∗i:
� �� �α

αP
α∈ Ir,m AA∗j jαα

: (3)

Remark 2.1. Note that for an arbitrary full-rank matrix, A∈Hm�n
r , a column-vector d:j, and a row-

vector di: with appropriate sizes, respectively, we put

cdeti A∗Að Þ:i d:j
� �� � ¼

X
β∈ Jn,n if g

cdeti A∗Að Þ:i d:j
� �� �β

β, det A
∗Að Þ ¼

X
β∈ Jn,n

A∗Aj jββ when r ¼ n,

rdetj AA∗ð Þj: di:ð Þ
� �

¼
X

α∈ Im,m jf g
rdetj AA∗ð Þj: di:ð Þ

� �α
α
, det AA∗ð Þ ¼

X
α∈ Im,m

AA∗j jαα when r ¼ m:

Furthermore, PA ¼ A†A, QA ¼ AA†, LA ¼ I�A†A, and RA≔I�AA† stand for some orthogo-
nal projectors induced from A.

Theorem 2.2. [30] Let A∈Hm�n, B∈Hr�s, and C∈Hm�s be known and X∈Hn�r be unknown.
Then, the matrix equation

AXB ¼ C (4)

is consistent if and only if AA†CBB† ¼ C. In this case, its general solution can be expressed as

X ¼ A†CB† þ LAVþWRB, (5)

where V and W are arbitrary matrices over H with appropriate dimensions.

The partial solution, X0 ¼ A†CB†, of (4) possesses the following determinantal representations.
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Theorem 2.3. [20] Let A∈Hm�n
r1 and B∈Hr�s

r2 . Then, X0 ¼ x0ij
� �

∈Hn�r has determinantal repre-
sentations,

xij ¼
P

β∈ Jr1,n if g cdeti A∗Að Þ:i dB
:j

� �� �β
βP

β∈ Jr1,n
A∗Aj jββ

P
α∈ Ir2, r

BB∗j jαα
,

or

xij ¼
P

α∈ Ir2, r jf g rdetj BB∗ð Þj: dA
i:

� �� �α
αP

β∈ Jr1,n
A∗Aj jββ

P
α∈ Ir2, r

BB∗j jαα
,

where

dB
:j ¼

X
α∈ Ir2, r jf g

rdetj BB∗ð Þj: ~ck:ð Þ
� �α

α

2
4

3
5∈Hn�1, k ¼ 1,…, n,

dA
i: ¼

X
β∈ Jr1,n if g

cdeti A∗Að Þ:i ~C :l
� �� �β

β

2
4

3
5∈H1�r, l ¼ 1,…, r,

are the column vector and the row vector, respectively. ~ci: and ~c:j are the ith row and the jth column of
~C ¼ A∗CB∗.

3. Determinantal representations of a partial solution to the system (1)

Lemma 3.1. [7] Let A1 ∈Hm�n, B1 ∈Hr�s, C1 ∈Hm�s, A2 ∈Hk�n, B2 ∈Hr�p, and C2 ∈Hk�p be
given and X∈Hn�r is to be determined. Put H ¼ A2LA1 , N ¼ RB1B2, T ¼ RHA2, and F ¼ B2LN.
Then, the system (1) is consistent if and only if

AiA†
i CiB†

i Bi ¼ Ci, i ¼ 1, 2; (6)

T A†
2XB

†
2 �A†

1C1B†
1

� �
F ¼ 0: (7)

In that case, the general solution of (1) can be expressed as the following,

X ¼ A†
1C1B†

1 þ LA1H
†A2LT A†

2C2B†
2 �A†

1C1B†
1

� �
B2B†

2 þ T†T A†
2C2B†

2 �A†
1C1B†

1

� �
B2N†RB1

þLA1 Z�H†HZB2B†
2

� �� LA1H
†A2LTWNB†

2 þ W� T†TWNN†
� �� RB1 ,

(8)

where Z and W are the arbitrary matrices over H with compatible dimensions.
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Some simplification of (8) can be derived due to the quaternionic analog of the following
proposition.

Lemma 3.2. [32] If A∈Hn�n is Hermitian and idempotent, then the following equation holds for any
matrix B∈Hm�n,

A BAð Þ† ¼ BAð Þ†: (9)

It is evident that if A∈Hn�n is Hermitian and idempotent, then the following equation is true
as well,

ABð Þ†A ¼ ABð Þ†: (10)

Since LA1 , RB1 , and RH are projectors, then using (9) and (10), we have, respectively,

LA1H
† ¼ LA1 A2LA1ð Þ† ¼ A2LA1ð Þ† ¼ H†,

N†RB1 ¼ RB1B2ð Þ†RB1 ¼ RB1B2ð Þ† ¼ N†,

T†T ¼ RHA2ð Þ†RHA2 ¼ RHA2ð Þ†A2 ¼ T†A2,
LT ¼ I� T†T ¼ I� T†A2:

(11)

Using (11) and (6), we obtain the following expression of (8),

X ¼ A†
1C1B†

1 þH†A2 I� T†A2
� �

A†
2C2B†

2 �A†
1C1B†

1

� �
B2B†

2

þT†A2 A†
2C2B†

2 �A†
1C1B†

1

� �
B2N† þ LA1 Z�H†HZB2B†

2

� ��H†A2LTWNB†
2

þ W� T†TWNN†
� �

RB1 ¼ A†
1C1B†

1 þH†C2B†
2 þH† A2T† � I

� �
A2A†

1C1B†
1QB2

�H†A2T†C2B†
2 þ T†C2N† � T†A2A†

1C1B†
1B2N† þ LA1 Z�H†HZB2B†

2

� �

�H†A2LTWNB†
2 þ W� T†TWNN†

� �
RB1 :

(12)

By putting Z1 ¼ W1 ¼ 0 in (12), the partial solution of (8) can be derived,

X0 ¼ A†
1C1B†

1 þH†C2B†
2 þ T†C2N† þH†A2T†A2A†

1C1B†
1QB2

�H†A2A†
1C1B†

1QB2
�H†A2T†C2B†

2 � T†A2A†
1C1B†

1B2N†:
(13)

Further we give determinantal representations of (13). Let A1 ¼ a 1ð Þ
ij

� �
∈Hm�n

r1 , B1 ¼ b 1ð Þ
ij

� �

∈Hr�s
r2 , A2 ¼ a 2ð Þ

ij

� �
∈Hk�n

r3 , B2 ¼ b 2ð Þ
ij

� �
∈Hr�p

r4 , C1 ¼ c 1ð Þ
ij

� �
∈Hm�s, and C2 ¼ c 2ð Þ

ij

� �
∈Hk�p,

and there exist A†
1 ¼ a 1ð Þ,†

ij

� �
∈Hn�m, B†

2 ¼ b 2ð Þ,†
ij

� �
∈Hp�r,H† ¼ h†ij

� �
∈Hn�k,N† ¼ n†ij

� �
∈Hp�r,

and T† ¼ t†ij
� �

∈Hn�k. Let rank H ¼ min rank A2; rank LA1f g ¼ r5, rank N ¼ min rank B2;f
rank RB1g ¼ r6, and rank T ¼ min rank A2; rank RHf g ¼ r7. Consider each term of (13) sepa-
rately.

Matrix Theory-Applications and Theorems8

(i) By Theorem 2.3 for the first term, x01ij , of (13), we have

x01ij ¼
P

β∈ Jr1,n if g cdeti A∗
1A1

� �
:i dB1

:j

� �� �β
βP

β∈ Jr1,n
A∗

1A1
�� ��β

β

P
α∈ Ir2 ,p

B1B∗
1

�� ��α
α

, (14)

or

x01ij ¼
P

α∈ Ir2 ,q jf g rdetj B1B∗
1

� �
j: dA1

i:

� �� �α
αP

β∈ Jr1,p
A∗

1A1
�� ��β

β

P
α∈ Ir2, q

B1B∗
1

�� ��α
α

, (15)

where

dB1
:j ¼

X
α∈ Ir2 ,p jf g

rdetj B1B∗
1

� �
j: ~c 1ð Þ

q:

� �� �α
α

2
4

3
5∈Hn�1, q ¼ 1,…, n,

dA1
i: ¼

X
β∈ Jr1,n if g

cdeti A∗
1A1

� �
:i ~c 1ð Þ

:l

� �� �β
β

2
4

3
5∈H1�r, l ¼ 1,…, r,

are the column vector and the row vector, respectively. ~c 1ð Þ
q: and ~c 1ð Þ

:l are the qth row and the lth

column of ~C1 ¼ A∗
1C1B∗

1.

(ii) Similarly, for the second term of (13), we have

x02ij ¼
P

β∈ Jr5,n if g cdeti H∗Hð Þ:i dB2
:j

� �� �β
βP

β∈ Jr5,n
H∗Hj jββ

P
α∈ Ir4, r

B2B∗
2

�� ��α
α

, (16)

or

x02ij ¼
P

α∈ Ir4, r jf g rdetj B2B∗
2

� �
j: d

H
i:

� �� �α
αP

β∈ Jr5,n
H∗Hj jββ

P
α∈ Ir4, r

B2B∗
2

�� ��α
α

, (17)

where

dB2
:j ¼

X
α∈ Ir4, r jf g

rdetj B2B∗
2

� �
j: ~c 2ð Þ

q:

� �� �α
α

2
4

3
5∈Hn�1, q ¼ 1,…, n,

dH
i: ¼

X
β∈ Jr5 ,n if g

cdeti H∗Hð Þ:i ~c 2ð Þ
:l

� �� �β
β

2
4

3
5∈H1�r, l ¼ 1,…, r,

Cramer’s Rules for the System of Two-Sided Matrix Equations and of Its Special Cases
http://dx.doi.org/10.5772/intechopen.74105

9



Some simplification of (8) can be derived due to the quaternionic analog of the following
proposition.

Lemma 3.2. [32] If A∈Hn�n is Hermitian and idempotent, then the following equation holds for any
matrix B∈Hm�n,

A BAð Þ† ¼ BAð Þ†: (9)

It is evident that if A∈Hn�n is Hermitian and idempotent, then the following equation is true
as well,

ABð Þ†A ¼ ABð Þ†: (10)

Since LA1 , RB1 , and RH are projectors, then using (9) and (10), we have, respectively,

LA1H
† ¼ LA1 A2LA1ð Þ† ¼ A2LA1ð Þ† ¼ H†,

N†RB1 ¼ RB1B2ð Þ†RB1 ¼ RB1B2ð Þ† ¼ N†,

T†T ¼ RHA2ð Þ†RHA2 ¼ RHA2ð Þ†A2 ¼ T†A2,
LT ¼ I� T†T ¼ I� T†A2:

(11)

Using (11) and (6), we obtain the following expression of (8),

X ¼ A†
1C1B†

1 þH†A2 I� T†A2
� �

A†
2C2B†

2 �A†
1C1B†

1

� �
B2B†

2

þT†A2 A†
2C2B†

2 �A†
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1

� �
B2N† þ LA1 Z�H†HZB2B†

2

� ��H†A2LTWNB†
2

þ W� T†TWNN†
� �

RB1 ¼ A†
1C1B†

1 þH†C2B†
2 þH† A2T† � I

� �
A2A†

1C1B†
1QB2

�H†A2T†C2B†
2 þ T†C2N† � T†A2A†

1C1B†
1B2N† þ LA1 Z�H†HZB2B†

2

� �

�H†A2LTWNB†
2 þ W� T†TWNN†

� �
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(12)

By putting Z1 ¼ W1 ¼ 0 in (12), the partial solution of (8) can be derived,

X0 ¼ A†
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(13)
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� �
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� �
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� �
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� �
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� �
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� �

∈Hn�k. Let rank H ¼ min rank A2; rank LA1f g ¼ r5, rank N ¼ min rank B2;f
rank RB1g ¼ r6, and rank T ¼ min rank A2; rank RHf g ¼ r7. Consider each term of (13) sepa-
rately.

Matrix Theory-Applications and Theorems8

(i) By Theorem 2.3 for the first term, x01ij , of (13), we have

x01ij ¼
P

β∈ Jr1,n if g cdeti A∗
1A1
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:i dB1
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� �� �β
βP

β∈ Jr1,n
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1A1
�� ��β

β
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1
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α

, (14)

or
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P
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1
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αP
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, (15)
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dB1
:j ¼

X
α∈ Ir2 ,p jf g
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1

� �
j: ~c 1ð Þ

q:

� �� �α
α
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4
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5∈Hn�1, q ¼ 1,…, n,

dA1
i: ¼

X
β∈ Jr1,n if g

cdeti A∗
1A1

� �
:i ~c 1ð Þ

:l

� �� �β
β

2
4

3
5∈H1�r, l ¼ 1,…, r,

are the column vector and the row vector, respectively. ~c 1ð Þ
q: and ~c 1ð Þ

:l are the qth row and the lth

column of ~C1 ¼ A∗
1C1B∗

1.

(ii) Similarly, for the second term of (13), we have

x02ij ¼
P

β∈ Jr5,n if g cdeti H∗Hð Þ:i dB2
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� �� �β
βP
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α∈ Ir4, r

B2B∗
2

�� ��α
α

, (16)

or
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P

α∈ Ir4, r jf g rdetj B2B∗
2

� �
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H
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� �� �α
αP

β∈ Jr5,n
H∗Hj jββ

P
α∈ Ir4, r

B2B∗
2

�� ��α
α

, (17)

where

dB2
:j ¼

X
α∈ Ir4, r jf g

rdetj B2B∗
2

� �
j: ~c 2ð Þ

q:

� �� �α
α

2
4

3
5∈Hn�1, q ¼ 1,…, n,

dH
i: ¼

X
β∈ Jr5 ,n if g

cdeti H∗Hð Þ:i ~c 2ð Þ
:l

� �� �β
β

2
4

3
5∈H1�r, l ¼ 1,…, r,
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are the column vector and the row vector, respectively. ~c 2ð Þ
q: and ~c 2ð Þ

:l are the qth row and the lth

column of ~C2 ¼ H∗C2B∗
2. Note that H∗H ¼ A2LA1ð Þ∗A2LA1 ¼ LA1A

∗
2A2LA1 :

(iii) The third term of (13) can be obtained by Theorem 2.3 as well. Then

x03ij ¼
P

β∈ Jr7,n if g cdeti T∗Tð Þ:i dN
:j

� �� �β
βP

β∈ Jr7 ,n
T∗Tj jββ

P
α∈ Ir6, r

NN∗j jαα
, (18)

or

x03ij ¼
P

α∈ Ir6, r jf g rdetj NN∗ð Þj: dT
i:

� �� �α
αP

β∈ Jr7 ,n
T∗Tj jββ

P
α∈ Ir6, r

NN∗j jαα
, (19)

where

dN
:j ¼

X
α∈ Ir6, r ff g

rdetj NN∗ð Þj: bc 2ð Þ
q:

� �� �α
α

2
4

3
5∈Hn�1, q ¼ 1,…, n,

dT
i: ¼

X
β∈ Jr7 ,n if g

cdeti T∗Tð Þ:i bc 2ð Þ
:l

� �� �β
β

2
4

3
5∈H1�r, l ¼ 1,…, r,

are the column vector and the row vector, respectively. bc 2ð Þ
q: is the qth row and bc 2ð Þ

:l is the lth

column of bC2 ¼ T∗C2N∗. The following expression gives some simplify in computing. Since

T∗T ¼ RHA2ð Þ∗ ¼ A∗
2R

∗
HRHA2 ¼ A∗

2RHA2 and RH ¼ I�HH† ¼ I�A2LA1 A2LA1ð Þ† ¼ I�A2

A2LA1ð Þ†, then T∗T ¼ A∗
2 I�A2 A2LA1ð Þ†
� �

A2.

(iv) Using (3) for determinantal representations of H† and T† in the fourth term of (13), we
obtain

x04ij ¼
Pn

q¼1
Pn

z¼1
Pr

f¼1
P

β∈ Jr5 ,n if g cdeti H∗Hð Þ:i a 2;Hð Þ
:q

� �� �β
β

P
β∈ Jr7 ,n qf g cdetq T∗Tð Þ:q a 2;Tð Þ

:z

� �� �β
β
x01zf qfj

P
β∈ Jr5,n

H∗Hj jββ
P

β∈ Jr7,n
T∗Tj jββ

,

(20)

where a 2;Hð Þ
:i and a 2;Tð Þ

:i are the ith columns of the matrices H*A2 and T*A2, respectively; qfj is the
(fj)th element of QB2

with the determinantal representation,
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qfj ¼
P

α∈ Ir4, r jf g rdetj B2B∗
2

� �
j:

€b
2ð Þ
f :

� �� �α
αP

α∈ Ir4 , r
B2B∗

2

�� ��α
α

,

and €b 2ð Þ
f : is the fth row of B2B∗

2. Note that H∗A2 ¼ LA1A
∗
2A2 and T∗A2 ¼ A∗

2RHA2 ¼ A∗
2

I�A2 A2LA1ð Þ†
� �

A2.

(v) Similar to the previous case,

x05ij ¼
Pn

q¼1
Pr

f¼1
P

β∈ Jr5,n if g cdeti H∗Hð Þ:i a 2;Hð Þ
:q

� �� �β
β
x01qf qfj

P
β∈ Jr5,n

H∗Hj jββ
, (21)

(vi) Consider the sixth term by analogy to the fourth term. So,

x06ij ¼
Pn

q¼1
P

β∈ Jr5 ,n if g cdeti H∗Hð Þ:i a 2;Hð Þ
:q

� �� �β
β
φqj

P
β∈ Jr5 ,n

H∗Hj jββ
P

β∈ Jr7 ,n
T∗Tj jββ

P
α∈ Ir4, r

B2B∗
2

�� ��α
α

, (22)

where

φqj ¼
X

β∈ Jr7,n if g
cdetq T∗Tð Þ:q ψB2

:j

� �� �β
β
, (23)

or

φqj ¼
X

α∈ Ir4, r jf g
rdetj B2B∗

2

� �
j: ψT

q:

� �� �α
α
, (24)

and

ψB2
:j ¼

X
α∈ Ir4, r ff g

rdetj B2B∗
2

� �
j: �c 2ð Þ

q:

� �� �α
α

2
4

3
5∈H1�n, q ¼ 1,…, n,

ψT
q: ¼

X
β∈ Jr7 ,n qf g

cdetq T∗Tð Þ:q �c 2ð Þ
:l

� �� �β
β

2
4

3
5∈Hr�1, l ¼ 1,…, r,
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are the column vector and the row vector, respectively. �cq: 2ð Þ and �c:l 2ð Þ are the qth row and the

lth column of �C2 ¼ T∗C2B∗
2 for all i ¼ 1,…, n and j ¼ 1,…, p.

(vii) Using (3) for determinantal representations of and T† and (2) forN† in the seventh term of
(13), we obtain

x07ij ¼
Pn

q¼1
Pr

f¼1
P

β∈ Jr7,n if g cdeti T∗Tð Þ:i a 2;Tð Þ
:q

� �� �β
β
x01qf
P

α∈ Ir6, r jf g rdetj NN∗ð Þj: b 2;Nð Þ
f :

� �� �α
αP

β∈ Jr7 ,n
T∗Tj jββ

P
α∈ Ir6, r

NN∗j jαα
,

(25)

where a 2;Tð Þ
:q and b 2;Nð Þ

f : are the qth column of T*A2 and the fth row of B2N∗ ¼ B2B∗
2RB1 , respec-

tively.

Hence, we prove the following theorem.

Theorem 3.1. Let A1 ∈Hm�n
r1 , B1 ∈Hr�s

r2 , A2 ∈Hk�n
r3 , B2 ∈Hr�p

r4 , rankH ¼ rank A2LA1ð Þ ¼ r5,
rankN ¼ RB1B2ð Þ ¼ r6, and rankT ¼ RHA2ð Þ ¼ r7. Then, for the partial solution (13),

X0 ¼ x0ij
� �

∈Hn�r, of the system (1), we have,

x0ij ¼
X
δ

x0δij , (26)

where the term x01ij has the determinantal representations (14) and (15), x02ij —(16) and (17),

x03ij —(18) and (19), x04ij —(20), x05ij —(21), x06ij —(23) and (24), and x07ij —(25).

4. Cramer’s rules for special cases of (1)

In this section, we consider special cases of (1) when one or two equations are one-sided. Let in
Eq.(1), the matrix B1 is vanished. Then, we have the system

A1X ¼ C1,
A2XB2 ¼ C2:

�
(27)

The following lemma is extended to matrices with quaternion entries.

Lemma 4.1. [7] Let A1 ∈Hm�n, C1 ∈Hm�r, A2 ∈Hk�n, B2 ∈Hr�p, and C2 ∈Hk�p be given and
X∈Hn�r is to be determined. Put H ¼ A2LA1 . Then, the following statements are equivalent:

Matrix Theory-Applications and Theorems12

i. System (27) is consistent.

ii. RA1C1 ¼ 0, RH C2 �A2A†
1C1B2

� � ¼ 0, C2LB2 ¼ 0.

iii. rank A1 C1½ � ¼ rank A1½ �, rank C2

B2

� �
¼ rank B2½ �, rank A1 C1B2

A2 C2

� �
¼ rank

A1

A2

� �
.

In this case, the general solution of (27) can be expressed as

X ¼ A†
1C1 þ LA1H

† C2 �A2A†
1C1B2

� �
B†
2 þ LA1LHZ1 þ LA1W1RB2 , (28)

where Z1 and W1 are the arbitrary matrices over H with appropriate sizes.

Since by (9), LA1H
† ¼ LA1 A2LA1ð Þ† ¼ A2LA1ð Þ† ¼ H†, then we have some simplification of (28),

X ¼ A†
1C1 þH†C2B†

2 �H†A2A†
1C1B2B†

2 þ LA1LHZ1 þ LA1W1RB2 :

By putting Z1=W1=0, there is the following partial solution of (27),

X0 ¼ A†
1C1 þH†C2B†

2 �H†A2A†
1C1B2B†

2: (29)

Theorem 4.1. Let A1 ¼ a 1ð Þ
ij

� �
∈Hm�n

r1 , A2 ¼ a 2ð Þ
ij

� �
∈Hk�n

r2 , B2 ¼ b 2ð Þ
ij

� �
∈Hr�p

r3 ,

C1 ¼ c 1ð Þ
ij

� �
∈Hm�r, and C2 ¼ c 2ð Þ

ij

� �
∈Hk�p, and there exist A†

1 ¼ a 1ð Þ,†
ij

� �
∈Hn�m,

B†
2 ¼ b 2ð Þ,†

ij

� �
∈Hp�r, and H† ¼ h†ij

� �
∈Hn�k. Let rankH ¼ min rankA2; rankLA1f g ¼ r4. Denote

A∗
1C1≕bC1 ¼ bc 1ð Þ

ij

� �
∈Hn�r, H∗C2B∗

2≕bC2 ¼ bc 2ð Þ
ij

� �
∈Hn�r, H∗A2A∗

1≕bA2 ¼ ba 2ð Þ
ij

� �
∈Hn�m, and

C1QB2
≕bQ ¼ bqij

� �
∈Hm�p. Then, the partial solution (29), X0 ¼ x0ij

� �
∈Hn�r, possesses the following

determinantal representations,

x0ij ¼
P

β∈ Jr1,n if gcdeti A∗
1A1

� �
:i bc 1ð Þ

:j

� �� �β
βP

β∈ Jr1,n
A∗

1A1
�� ��β

β

þ
d λð Þ
ijP

β∈ Jr4,n
H∗Hj jββ

P
α∈ Ir3, r

B2B∗
2

�� ��α
α

�
Pm

l¼1 g
μð Þ

il

P
α∈ Ir3, r jf grdetj B2B∗

2

� �
j: bq l:ð Þ

� �α
αP

β∈ Jr4,n
H∗Hj jββ

P
α∈ Ir1,m

A1A∗
1

�� ��α
α

P
α∈ Ir3 , r

B2B∗
2

�� ��α
α

for all λ ¼ 1, 2 and μ ¼ 1, 2. Here

d 1ð Þ
ij ≔

X
α∈ Ir3 , r jf g

rdetj B2B∗
2

� �
j: v 1ð Þ

i:

� �� �α
α
, g 1ð Þ

il ≔
X

α∈ Ir1,m lf g
rdetl A1A∗

1

� �
l: u 1ð Þ

i:

� �� �α
α
,

and the row-vectors v 1ð Þ
i: ¼ v 1ð Þ

i1 ;…; v 1ð Þ
ir

� �
and u 1ð Þ

i: ¼ u 1ð Þ
i1 ;…; u 1ð Þ

im

� �
such that
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il ≔
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� �
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v 1ð Þ
it ≔

X
β∈ Jr4,n if g

cdeti H∗Hð Þ:i bc 2ð Þ
:t

� �� �β
β
, u 1ð Þ

iz ≔
X

β∈ Jr4 ,n if g
cdeti H∗Hð Þ:i ba 2ð Þ

:z

� �� �β
β
:

In another case,

d 2ð Þ
ij ≔

X
β∈ Jr4 ,n if g

cdeti H∗Hð Þ:i v 2ð Þ
:j

� �� �β
β
, g 2ð Þ

il ≔
X

β∈ Jr4 ,n if g
cdeti H∗Hð Þ:i u 2ð Þ

:l

� �� �β
β
:

and the column-vectors v 2ð Þ
:j ¼ v 2ð Þ

1j ;…; v 2ð Þ
nj

� �
and u 2ð Þ

:l ¼ u 2ð Þ
1l ;…; u 2ð Þ

nl

� �
such that

v 2ð Þ
qj ≔

X
α∈ Ir3 , r jf g

rdetj B2B∗
2

� �
j: bc 2ð Þ

q:

� �� �α
α
, u 2ð Þ

ql ≔
X

α∈ Ir1 ,m lf g
rdetl A1A∗

1

� �
l: a 2ð Þ

q:

� �� �α
α

Proof. The proof is similar to the proof of Theorem 3.1.

Let in Eq.(1), the matrix A1 is vanished. Then, we have the system,

XB1 ¼ C1,
A2XB2 ¼ C2:

�
(30)

The following lemma is extended to matrices with quaternion entries as well.

Lemma 4.2. [7] Let B1 ∈Hr�s, C1 ∈Hn�s, A2 ∈Hk�n, B2 ∈Hr�p, and C2 ∈Hk�p be given and
X∈Hn�r is to be determined. Put N ¼ RB1B2. Then, the following statements are equivalent:

i. System (30) is consistent.

ii. RA2C2 ¼ 0, C2 �A2C1B†
1B2

� �
LN ¼ 0, C2LB2 ¼ 0.

iii. rank A2 C2½ � ¼ rank A2½ �, rank C1

B1

� �
¼ rank B1½ �, rank C2 A2C1

B2 B1

� �
¼ rank B2 B1½ �.

In this case, the general solution of (30) can be expressed as

X ¼ C1B†
1 þA†

2 C2 �A2C1B†
1B2

� �
N†RB1 þ LA2W2RB1 þ Z2RNRB1 , (31)

where Z2 and W2 are the arbitrary matrices over H with appropriate sizes.

Since by (10), N†RB1 ¼ RB1B2ð Þ†RB1 ¼ N†, then some simplification of (31) can be derived,

X ¼ C1B†
1 þA†

2C2N† �A2C1B†
1B2N† þ LA2W2RB1 þ Z2RNRB1 :

By putting Z2=W2=0, there is the following partial solution of (30),

X0 ¼ C1B†
1 þA†

2C2N† �A†
2A2C1B†

1B2N†: (32)

The following theorem on determinantal representations of (29) can be proven similar to the
proof of Theorem 3.1 as well.
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Theorem 4.2. Let B1 ¼ b 1ð Þ
ij

� �
∈Hr�s

r1 , A2 ¼ a 2ð Þ
ij

� �
∈Hk�n

r2 , B2 ¼ b 2ð Þ
ij

� �
∈Hr�p

r3 , C1 ¼
c 1ð Þ
ij

� �
∈Hn�s, and C2 ¼ c 2ð Þ

ij

� �
∈Hk�p, and there exist B†

1 ¼ b 1ð Þ,†
ij

� �
∈Hs�r, A†

2 ¼ a 2ð Þ,†
ij

� �
∈Hn�k,

N† ¼ n†ij
� �

∈Hp�r. Let rankN ¼ min rankB2; rankRB1f g ¼ r4. Denote C1B∗
1≕~C1 ¼ ~c 1ð Þ

ij

� �
∈Hn�r,

A∗
2C2N∗≕~C2 ¼ ~c 2ð Þ

ij

� �
∈Hn�r, B∗

1B2N∗≕~B2 ¼ ~b
2ð Þ
ij

� �
∈Hs�r, and PA2C1≕~P ¼ ~pij

� �
∈Hn�s. Then,

the partial solution (32), X0 ¼ x0ij
� �

∈Hn�r, possesses the following determinantal representations,

x0ij ¼
P

α∈ Ir1, r jf grdetj B1B∗
1

� �
j: ~c 1ð Þ

i:

� �� �α
αP

α∈ Ir1 , r
B1B∗

1

�� ��α
α

þ
d λð Þ
ijP

β∈ Jr2,n
A∗

2A2
�� ��β

β

P
α∈ Ir4 , r

NN∗j jαα

�
Ps

z¼1
P

β∈ Jr2,n if gcdeti A∗
2A2

� �
:i ~p:z

� �� �β
β
g

μð Þ
zj

P
β∈ Jr2,n

A∗
2A2

�� ��β
β

P
β∈ Jr1 , s

B∗
1B1

�� ��β
β

P
α∈ Ir4, r

NN∗j jαα

for all λ ¼ 1, 2 and μ ¼ 1, 2. Here

d 1ð Þ
ij ≔

X
α∈ Ir3, r jf g

rdetj NN∗ð Þj: φ 1ð Þ
i:

� �� �α
α
, g 1ð Þ

il ≔
X

α∈ Ir4, r jf g
rdetj NN∗ð Þj: ψz:

� �� �α
α
,

and the row-vectors φ 1ð Þ
i: ¼ φ 1ð Þ

i1 ;…;φ 1ð Þ
ir

� �
and ψ 1ð Þ

i: ¼ ψ 1ð Þ
z1 ;…;ψ 1ð Þ

zr

� �
such that

φ 1ð Þ
it ¼

X
β∈ Jr2,n if g

cdeti A∗
2A2

� �
:i c 2ð Þ

:t

� �� �β
β
, ψ 1ð Þ

zv ¼
X

β∈ Jr1,n zf g
cdetz B∗

1B1
� �

:i b 2ð Þ
:v

� �� �β
β
:

In another case,

d 2ð Þ
ij ≔

X
β∈ Jr2,n if g

cdeti A∗
2A2

� �
:i φ 2ð Þ

:j

� �� �β
β
, g 2ð Þ

zj ≔
X

β∈ Jr1 ,n zf g
cdetz B∗

1B1
� �

:z ψ 2ð Þ
:j

� �� �β
β
,

and the column-vectors φ 2ð Þ
:j ¼ φ 2ð Þ

1j ;…;φ 2ð Þ
nj

� �
and ψ 2ð Þ

:j ¼ ψ 2ð Þ
1j ;…;ψ 2ð Þ

sj

� �
such that

φ 2ð Þ
qj ¼

X
α∈ Ir4, r jf g

rdetj NN∗ð Þj: c 2ð Þ
q:

� �� �α
α
, ψ 2ð Þ

uj ≔
X

α∈ Ir4, r jf g
rdetj NN∗ð Þj: b 2ð Þ

u:

� �� �α
α
:

Now, suppose that the both equations of (1) are one-sided. Let in Eq.(1), the matrices B1 and A2

are vanished. Then, we have the system

A1X ¼ C1,
XB2 ¼ C2:

�
(33)

The following lemma is extended to matrices with quaternion entries.
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v 1ð Þ
it ≔

X
β∈ Jr4,n if g

cdeti H∗Hð Þ:i bc 2ð Þ
:t

� �� �β
β
, u 1ð Þ

iz ≔
X

β∈ Jr4 ,n if g
cdeti H∗Hð Þ:i ba 2ð Þ

:z

� �� �β
β
:

In another case,

d 2ð Þ
ij ≔

X
β∈ Jr4 ,n if g

cdeti H∗Hð Þ:i v 2ð Þ
:j

� �� �β
β
, g 2ð Þ

il ≔
X

β∈ Jr4 ,n if g
cdeti H∗Hð Þ:i u 2ð Þ

:l

� �� �β
β
:

and the column-vectors v 2ð Þ
:j ¼ v 2ð Þ

1j ;…; v 2ð Þ
nj

� �
and u 2ð Þ

:l ¼ u 2ð Þ
1l ;…; u 2ð Þ

nl

� �
such that

v 2ð Þ
qj ≔

X
α∈ Ir3 , r jf g

rdetj B2B∗
2

� �
j: bc 2ð Þ

q:

� �� �α
α
, u 2ð Þ

ql ≔
X

α∈ Ir1 ,m lf g
rdetl A1A∗

1

� �
l: a 2ð Þ

q:

� �� �α
α

Proof. The proof is similar to the proof of Theorem 3.1.

Let in Eq.(1), the matrix A1 is vanished. Then, we have the system,

XB1 ¼ C1,
A2XB2 ¼ C2:

�
(30)

The following lemma is extended to matrices with quaternion entries as well.

Lemma 4.2. [7] Let B1 ∈Hr�s, C1 ∈Hn�s, A2 ∈Hk�n, B2 ∈Hr�p, and C2 ∈Hk�p be given and
X∈Hn�r is to be determined. Put N ¼ RB1B2. Then, the following statements are equivalent:

i. System (30) is consistent.

ii. RA2C2 ¼ 0, C2 �A2C1B†
1B2

� �
LN ¼ 0, C2LB2 ¼ 0.

iii. rank A2 C2½ � ¼ rank A2½ �, rank C1

B1

� �
¼ rank B1½ �, rank C2 A2C1

B2 B1

� �
¼ rank B2 B1½ �.

In this case, the general solution of (30) can be expressed as

X ¼ C1B†
1 þA†

2 C2 �A2C1B†
1B2

� �
N†RB1 þ LA2W2RB1 þ Z2RNRB1 , (31)

where Z2 and W2 are the arbitrary matrices over H with appropriate sizes.

Since by (10), N†RB1 ¼ RB1B2ð Þ†RB1 ¼ N†, then some simplification of (31) can be derived,

X ¼ C1B†
1 þA†

2C2N† �A2C1B†
1B2N† þ LA2W2RB1 þ Z2RNRB1 :

By putting Z2=W2=0, there is the following partial solution of (30),

X0 ¼ C1B†
1 þA†

2C2N† �A†
2A2C1B†

1B2N†: (32)

The following theorem on determinantal representations of (29) can be proven similar to the
proof of Theorem 3.1 as well.
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Theorem 4.2. Let B1 ¼ b 1ð Þ
ij

� �
∈Hr�s

r1 , A2 ¼ a 2ð Þ
ij

� �
∈Hk�n

r2 , B2 ¼ b 2ð Þ
ij

� �
∈Hr�p

r3 , C1 ¼
c 1ð Þ
ij

� �
∈Hn�s, and C2 ¼ c 2ð Þ

ij

� �
∈Hk�p, and there exist B†

1 ¼ b 1ð Þ,†
ij

� �
∈Hs�r, A†

2 ¼ a 2ð Þ,†
ij

� �
∈Hn�k,

N† ¼ n†ij
� �

∈Hp�r. Let rankN ¼ min rankB2; rankRB1f g ¼ r4. Denote C1B∗
1≕~C1 ¼ ~c 1ð Þ

ij

� �
∈Hn�r,

A∗
2C2N∗≕~C2 ¼ ~c 2ð Þ

ij

� �
∈Hn�r, B∗

1B2N∗≕~B2 ¼ ~b
2ð Þ
ij

� �
∈Hs�r, and PA2C1≕~P ¼ ~pij

� �
∈Hn�s. Then,

the partial solution (32), X0 ¼ x0ij
� �

∈Hn�r, possesses the following determinantal representations,

x0ij ¼
P

α∈ Ir1, r jf grdetj B1B∗
1

� �
j: ~c 1ð Þ

i:

� �� �α
αP

α∈ Ir1 , r
B1B∗

1

�� ��α
α

þ
d λð Þ
ijP

β∈ Jr2,n
A∗

2A2
�� ��β

β

P
α∈ Ir4 , r

NN∗j jαα

�
Ps

z¼1
P

β∈ Jr2,n if gcdeti A∗
2A2

� �
:i ~p:z

� �� �β
β
g

μð Þ
zj

P
β∈ Jr2,n

A∗
2A2

�� ��β
β

P
β∈ Jr1 , s

B∗
1B1

�� ��β
β

P
α∈ Ir4, r

NN∗j jαα

for all λ ¼ 1, 2 and μ ¼ 1, 2. Here

d 1ð Þ
ij ≔

X
α∈ Ir3, r jf g

rdetj NN∗ð Þj: φ 1ð Þ
i:

� �� �α
α
, g 1ð Þ

il ≔
X

α∈ Ir4, r jf g
rdetj NN∗ð Þj: ψz:

� �� �α
α
,

and the row-vectors φ 1ð Þ
i: ¼ φ 1ð Þ

i1 ;…;φ 1ð Þ
ir

� �
and ψ 1ð Þ

i: ¼ ψ 1ð Þ
z1 ;…;ψ 1ð Þ

zr

� �
such that

φ 1ð Þ
it ¼

X
β∈ Jr2,n if g

cdeti A∗
2A2

� �
:i c 2ð Þ

:t

� �� �β
β
, ψ 1ð Þ

zv ¼
X

β∈ Jr1,n zf g
cdetz B∗

1B1
� �

:i b 2ð Þ
:v

� �� �β
β
:

In another case,

d 2ð Þ
ij ≔

X
β∈ Jr2,n if g

cdeti A∗
2A2

� �
:i φ 2ð Þ

:j

� �� �β
β
, g 2ð Þ

zj ≔
X

β∈ Jr1 ,n zf g
cdetz B∗

1B1
� �

:z ψ 2ð Þ
:j

� �� �β
β
,

and the column-vectors φ 2ð Þ
:j ¼ φ 2ð Þ

1j ;…;φ 2ð Þ
nj

� �
and ψ 2ð Þ

:j ¼ ψ 2ð Þ
1j ;…;ψ 2ð Þ

sj

� �
such that

φ 2ð Þ
qj ¼

X
α∈ Ir4, r jf g

rdetj NN∗ð Þj: c 2ð Þ
q:

� �� �α
α
, ψ 2ð Þ

uj ≔
X

α∈ Ir4, r jf g
rdetj NN∗ð Þj: b 2ð Þ

u:

� �� �α
α
:

Now, suppose that the both equations of (1) are one-sided. Let in Eq.(1), the matrices B1 and A2

are vanished. Then, we have the system

A1X ¼ C1,
XB2 ¼ C2:

�
(33)

The following lemma is extended to matrices with quaternion entries.
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Lemma 4.3. [31] Let A1 ∈Hm�n, B2 ∈Hr�p, C1 ∈Hm�r, and C2 ∈Hn�p be given and X∈Hn�r is to
be determined. Then, the system (33) is consistent if and only if RA1C1 ¼ 0, C2LB2 ¼ 0, and
A1C2=C1B2. Under these conditions, the general solution to (33) can be established as

X ¼ A†
1C1 þ LA1C2B†

2 þ LA1URB2 , (34)

where U is a free matrix over H with a suitable shape.

Due to the consistence conditions, Eq. (34) can be expressed as follows:

X ¼ C2B†
2 þA†

1 C1 �A1C2B†
2

� �þ LA1URB2

¼ C2B†
2 þA†

1 C1 � C1B2B†
2

� �þ LA1URB2 ¼ C2B†
2 þA†

1C1RB2 þ LA1URB2 ,

Consequently, the partial solution X0 to (33) is given by

X0 ¼ A†
1C1 þ LA1C2B†

2, (35)

or

X0 ¼ C2B†
2 þA†

1C1RB2 : (36)

Due to the expression (35), the following theorem can be proven similar to the proof of
Theorem 3.1.

Theorem 4.3. Let A1 ¼ a 1ð Þ
ij

� �
∈Hm�n

r1 , B2 ¼ b 2ð Þ
ij

� �
∈Hr�p

r2 , C1 ¼ c 1ð Þ
ij

� �
∈Hm�r, and C2 ¼ c 2ð Þ

ij

� �

∈Hn�r, and there exist A†
1 ¼ a 1ð Þ,†

ij

� �
∈Hn�m, B†

2 ¼ b 2ð Þ,†
ij

� �
∈Hp�r, and LA1 ¼ I�A†

1A1≕ lij
� �

∈Hn�n. Denote A∗
1C1≕bC1 ¼ bc 1ð Þ

ij

� �
∈Hn�r and LA1C2B∗

2≕bC2 ¼ bc 2ð Þ
ij

� �
∈Hn�r. Then, the partial

solution (35), X0 ¼ x0ij
� �

∈Hn�s, possesses the following determinantal representation,

x0ij ¼
P

β∈ Jr1,n if g cdeti A∗
1A1

� �
:i bc

1ð Þ
:j

� �� �β
βP

β∈ Jr1,n
A∗

1A1
�� ��β

β

þ
P

α∈ Ir2, r jf g rdetj B2B∗
2

� �
j: bc 2ð Þ

i:

� �� �α
αP

α∈ Ir2, r
B2B∗

2

�� ��α
α

, (37)

where bc 1ð Þ
:j is the jth column of bC1 and bc 2ð Þ

i: is the ith row of bC2.

Remark 4.1. In accordance to the expression (36), we obtain the same representations, but with the

denotations, C2B∗
2≕bC2 ¼ bc 2ð Þ

ij

� �
∈Hn�r and A∗

1C1RB2≕bC1 ¼ bc 2ð Þ
ij

� �
∈Hn�r.
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Let in Eq.(1), the matrices B1 and B2 are vanished. Then, we have the system

A1X ¼ C1,
A2X ¼ C2:

�
(38)

Lemma 4.4. [7] Suppose that A1 ∈Hm�n, C1 ∈Hm�r, A2 ∈Hk�n, and C2 ∈Hk�r are known and
X∈Hn�r is unknown, H ¼ A2LA1 , T ¼ RHA2. Then, the system (38) is consistent if and only if

AiA†
i Ci ¼ Ci, for all i ¼ 1, 2 and T A†

2C2 �A†
1C1

� � ¼ 0. Under these conditions, the general solution
to (38) can be established as

X ¼ A†
1C1 þ LA1H

†A2 A†
2C2 �A†

1C1
� �þ LA1LHY, (39)

where Y is an arbitrary matrix over H with an appropriate size.

Using (10) and the consistency conditions, we simplify (39) accordingly, X0 ¼ A†
1C1þ

H†C2 �H†A2A†
1C1 þ LA1LHY: Consequently, the following partial solution of (39) will be

considered

X0 ¼ A†
1C1 þH†C2 �H†A2A†

1C1: (40)

In the following theorem, we give the determinantal representations of (40).

Theorem 4.4. Let A1 ¼ a 1ð Þ
ij

� �
∈Hm�n

r1 , A2 ¼ a 2ð Þ
ij

� �
∈Hk�n

r2 , C1 ¼ c 1ð Þ
ij

� �
∈Hm�r, C2 ¼ c 2ð Þ

ij

� �
∈

Hk�r, and there exist A†
1 ¼ a 1ð Þ,†

ij

� �
∈Hn�m, H†

2 ¼ h†ij
� �

∈Hn�s. Let rankH ¼ min rankA2; rankf
LA1g ¼ r3. Denote A∗

1C1≕bC1 ¼ bc 1ð Þ
ij

� �
∈Hn�r, H∗C2≕bC2 ¼ bc 2ð Þ

ij

� �
∈Hn�r, and H∗A2≕bA2 ¼

ba 2ð Þ
ij

� �
∈Hn�n. Then, X0 ¼ x0ij

� �
∈Hn�r possesses the following determinantal representation,

x0ij ¼
P

β∈ Jr1,n if gcdeti A∗
1A1

� �
:i bc 1ð Þ

:j

� �� �β
βP

β∈ Jr1,n
A∗

1A1
�� ��β

β

þ
P

β∈ Jr3,n if gcdeti H∗Hð Þ:i bc 2ð Þ
:j

� �� �β
βP

β∈ Jr3,n
H∗Hj jββ

�
Xn

l¼1

P
β∈ Jr3 ,n if gcdeti H∗Hð Þ:i ba 2ð Þ

:l

� �� �β
βP

β∈ Jr3,n
H∗Hj jββ

�
P

β∈ Jr1,n lf gcdetl A∗
1A1

� �
:l bc 1ð Þ

:j

� �� �β
βP

β∈ Jr1 ,n
A∗

1A1
�� ��β

β

,

(41)

where bc 1ð Þ
:j , bc 2ð Þ

:j , and ba 2ð Þ
:j are the jth columns of the matrices bC1, bC2, and bA2, respectively.

Proof. The proof is similar to the proof of Theorem 3.1.
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Lemma 4.3. [31] Let A1 ∈Hm�n, B2 ∈Hr�p, C1 ∈Hm�r, and C2 ∈Hn�p be given and X∈Hn�r is to
be determined. Then, the system (33) is consistent if and only if RA1C1 ¼ 0, C2LB2 ¼ 0, and
A1C2=C1B2. Under these conditions, the general solution to (33) can be established as

X ¼ A†
1C1 þ LA1C2B†

2 þ LA1URB2 , (34)

where U is a free matrix over H with a suitable shape.

Due to the consistence conditions, Eq. (34) can be expressed as follows:

X ¼ C2B†
2 þA†

1 C1 �A1C2B†
2

� �þ LA1URB2

¼ C2B†
2 þA†

1 C1 � C1B2B†
2

� �þ LA1URB2 ¼ C2B†
2 þA†

1C1RB2 þ LA1URB2 ,

Consequently, the partial solution X0 to (33) is given by

X0 ¼ A†
1C1 þ LA1C2B†

2, (35)

or

X0 ¼ C2B†
2 þA†

1C1RB2 : (36)

Due to the expression (35), the following theorem can be proven similar to the proof of
Theorem 3.1.

Theorem 4.3. Let A1 ¼ a 1ð Þ
ij

� �
∈Hm�n

r1 , B2 ¼ b 2ð Þ
ij

� �
∈Hr�p

r2 , C1 ¼ c 1ð Þ
ij

� �
∈Hm�r, and C2 ¼ c 2ð Þ

ij

� �

∈Hn�r, and there exist A†
1 ¼ a 1ð Þ,†

ij

� �
∈Hn�m, B†

2 ¼ b 2ð Þ,†
ij

� �
∈Hp�r, and LA1 ¼ I�A†

1A1≕ lij
� �

∈Hn�n. Denote A∗
1C1≕bC1 ¼ bc 1ð Þ

ij

� �
∈Hn�r and LA1C2B∗

2≕bC2 ¼ bc 2ð Þ
ij

� �
∈Hn�r. Then, the partial

solution (35), X0 ¼ x0ij
� �

∈Hn�s, possesses the following determinantal representation,

x0ij ¼
P

β∈ Jr1,n if g cdeti A∗
1A1

� �
:i bc

1ð Þ
:j

� �� �β
βP

β∈ Jr1,n
A∗

1A1
�� ��β

β

þ
P

α∈ Ir2, r jf g rdetj B2B∗
2

� �
j: bc 2ð Þ

i:

� �� �α
αP

α∈ Ir2, r
B2B∗

2

�� ��α
α

, (37)

where bc 1ð Þ
:j is the jth column of bC1 and bc 2ð Þ

i: is the ith row of bC2.

Remark 4.1. In accordance to the expression (36), we obtain the same representations, but with the

denotations, C2B∗
2≕bC2 ¼ bc 2ð Þ

ij

� �
∈Hn�r and A∗

1C1RB2≕bC1 ¼ bc 2ð Þ
ij

� �
∈Hn�r.
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Let in Eq.(1), the matrices B1 and B2 are vanished. Then, we have the system

A1X ¼ C1,
A2X ¼ C2:

�
(38)

Lemma 4.4. [7] Suppose that A1 ∈Hm�n, C1 ∈Hm�r, A2 ∈Hk�n, and C2 ∈Hk�r are known and
X∈Hn�r is unknown, H ¼ A2LA1 , T ¼ RHA2. Then, the system (38) is consistent if and only if

AiA†
i Ci ¼ Ci, for all i ¼ 1, 2 and T A†

2C2 �A†
1C1

� � ¼ 0. Under these conditions, the general solution
to (38) can be established as

X ¼ A†
1C1 þ LA1H

†A2 A†
2C2 �A†

1C1
� �þ LA1LHY, (39)

where Y is an arbitrary matrix over H with an appropriate size.

Using (10) and the consistency conditions, we simplify (39) accordingly, X0 ¼ A†
1C1þ

H†C2 �H†A2A†
1C1 þ LA1LHY: Consequently, the following partial solution of (39) will be

considered

X0 ¼ A†
1C1 þH†C2 �H†A2A†

1C1: (40)

In the following theorem, we give the determinantal representations of (40).

Theorem 4.4. Let A1 ¼ a 1ð Þ
ij

� �
∈Hm�n

r1 , A2 ¼ a 2ð Þ
ij

� �
∈Hk�n

r2 , C1 ¼ c 1ð Þ
ij

� �
∈Hm�r, C2 ¼ c 2ð Þ

ij

� �
∈

Hk�r, and there exist A†
1 ¼ a 1ð Þ,†

ij

� �
∈Hn�m, H†

2 ¼ h†ij
� �

∈Hn�s. Let rankH ¼ min rankA2; rankf
LA1g ¼ r3. Denote A∗

1C1≕bC1 ¼ bc 1ð Þ
ij

� �
∈Hn�r, H∗C2≕bC2 ¼ bc 2ð Þ

ij

� �
∈Hn�r, and H∗A2≕bA2 ¼

ba 2ð Þ
ij

� �
∈Hn�n. Then, X0 ¼ x0ij

� �
∈Hn�r possesses the following determinantal representation,

x0ij ¼
P

β∈ Jr1,n if gcdeti A∗
1A1

� �
:i bc 1ð Þ

:j

� �� �β
βP

β∈ Jr1,n
A∗

1A1
�� ��β

β

þ
P

β∈ Jr3,n if gcdeti H∗Hð Þ:i bc 2ð Þ
:j

� �� �β
βP

β∈ Jr3,n
H∗Hj jββ

�
Xn

l¼1

P
β∈ Jr3 ,n if gcdeti H∗Hð Þ:i ba 2ð Þ

:l

� �� �β
βP

β∈ Jr3,n
H∗Hj jββ

�
P

β∈ Jr1,n lf gcdetl A∗
1A1

� �
:l bc 1ð Þ

:j

� �� �β
βP

β∈ Jr1 ,n
A∗

1A1
�� ��β

β

,

(41)

where bc 1ð Þ
:j , bc 2ð Þ

:j , and ba 2ð Þ
:j are the jth columns of the matrices bC1, bC2, and bA2, respectively.

Proof. The proof is similar to the proof of Theorem 3.1.
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5. Conclusion

Within the framework of the theory of row-column determinants previously introduced by the
author, we get determinantal representations (analogs of Cramer’s rule) of partial solutions to
the system of two-sided quaternion matrix equations A1XB1=C1, A2XB2=C2, and its special
cases with 1 and 2 one-sided matrix equations. We use previously obtained by the author
determinantal representations of the Moore-Penrose inverse. Note to give determinantal rep-
resentations for all above matrix systems over the complex field, it is obviously needed to
substitute all row and column determinants by usual determinants.
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Abstract

We introduce and study amatrixwhich has the exponential function as one of its eigenvectors.
We realize that this matrix represents a set of finite differences derivation of vectors on a
partition. Thismatrix leads to newexpressions for finite differences derivativeswhich are exact
for the exponential function. We find some properties of this matrix, the induced derivatives
and of its inverse. We provide an expression for the derivative of a product, of a ratio, of the
inverse of vectors, and we also find the equivalent of the summation by parts theorem of
continuous functions. Thismatrix could be of interest to discrete quantummechanics theory.

Keywords: exact finite differences derivative, exact derivatives on partitions, exponential
function on a partition, discrete quantum mechanics

1. Introduction

We are interested on matrices which are a local, as well as a global, exact discrete representa-
tion of operations on functions of continuous variable, so that there is congruency between the
continuous and the discrete operations and properties of functions. Usual finite difference
methods [1–4] become exact only in the limit of zero separation between the points of the
mesh. Here, we are interested in having exact representations of operations and functions for
finite separation between mesh points.

The difference between our method and the usual finite differences method is the quantity that
appears in the denominator of the definition of derivative. The appropriate choice of that
denominator makes possible that the finite differences expressions for the derivative gives the
exact results for the exponential function. We concentrate on the derivative operation, and we
define a matrix which represents the exact finite difference derivation on a local and a global
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scale. The inverse of this matrix is just the integration operation. These are interesting subjects
by itself, but they are also of interest in the quantum physics realm [5–7].

In this chapter, we will consider only the case of the derivative and the integration of the expo-
nential function.

2. A matrix with the exponential function as an eigenvector

Here, we consider the N �N antisymmetric, tridiagonal matrix

DN≔

�e�vΔ

2χ v;Δð Þ
1

2χ v;Δð Þ 0 … 0 0 0

�1
2χ v;Δð Þ 0

1
2χ v;Δð Þ … 0 0 0

0
�1

2χ v;Δð Þ 0 … 0 0 0

⋮

0 0 0 … 0
1

2χ v;Δð Þ 0

0 0 0 …
�1

2χ v;Δð Þ 0
1

2χ v;Δð Þ

0 0 0 … 0
�1

2χ v;Δð Þ
evΔ

2χ v;Δð Þ

0
BBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCA

, (1)

where v∈ℂ—it can be pure real or pure imaginary—, Δ∈ℝþ, and χ v;Δð Þ≔sinh vΔð Þ=v
≈Δþ v2Δ3=6þO Δ5� �

. This function χ v;Δð Þ is well defined for v ¼ 0, with value χ 0;Δð Þ ¼ Δ.
This matrix is interesting because, as we will see below, it represents a derivation on a partition.
A rescaled matrix DN is defined as

DN≔

�1=z 1 0 … 0 0 0
�1 0 1 … 0 0 0
0 �1 0 … 0 0 0
⋮
0 0 0 … 0 1 0
0 0 0 … �1 0 1
0 0 0 … 0 �1 z

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

, (2)

where z ¼ evΔ, and

DN≔
DN

2χ v;Δð Þ : (3)

We are mainly interested in finding the eigenvalues and the corresponding eigenvectors of
these matrices.

Matrix Theory-Applications and Theorems22

We start our study with a result about the determinant of DN � λIN ,

∣DN � λIN∣ ¼ ∣DN þ αIN∣

¼

α� 1=z 1 0 0 … 0 0 0

�1 α 1 0 … 0 0 0

0 �1 α 1 … 0 0 0

0 0 �1 α … 0 0 0

⋮

0 0 0 … α 1 0 0

0 0 0 … �1 α 1 0

0 0 0 … 0 �1 α 1

0 0 0 … 0 0 �1 αþ z

��������������������������

��������������������������

¼ α� 1
z

� �
AN�1 αð Þ þAN�2 αð Þ,

(4)

where λ ¼ �α,

Aj αð Þ≔

α 1 0 … 0 0 0

�1 α 1 … 0 0 0

0 �1 α … 0 0 0

⋮

0 0 … α 1 0 0

0 0 … �1 α 1 0

0 0 … 0 �1 α 1

0 0 … 0 0 �1 αþ z

�����������������������

�����������������������
¼ αþ zð ÞBj�1 αð Þ þ Bj�2 αð Þ,

(5)

and

Bj αð Þ ¼

α 1 0 … 0 0
�1 α 1 … 0 0
0 �1 α … 0 0
⋮
0 0 … α 1 0
0 0 … �1 α 1
0 0 … 0 �1 α

�����������������

�����������������

: (6)

Strikingly, we recognize the determinant Bj αð Þ as the Fibonacci polynomial of index jþ 1
[10, 11], i.e., Bj αð Þ=Fjþ1 αð Þ. Fibonacci polynomials are defined as
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≈Δþ v2Δ3=6þO Δ5� �

. This function χ v;Δð Þ is well defined for v ¼ 0, with value χ 0;Δð Þ ¼ Δ.
This matrix is interesting because, as we will see below, it represents a derivation on a partition.
A rescaled matrix DN is defined as

DN≔

�1=z 1 0 … 0 0 0
�1 0 1 … 0 0 0
0 �1 0 … 0 0 0
⋮
0 0 0 … 0 1 0
0 0 0 … �1 0 1
0 0 0 … 0 �1 z

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

, (2)

where z ¼ evΔ, and

DN≔
DN

2χ v;Δð Þ : (3)

We are mainly interested in finding the eigenvalues and the corresponding eigenvectors of
these matrices.
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We start our study with a result about the determinant of DN � λIN ,

∣DN � λIN∣ ¼ ∣DN þ αIN∣

¼

α� 1=z 1 0 0 … 0 0 0

�1 α 1 0 … 0 0 0

0 �1 α 1 … 0 0 0

0 0 �1 α … 0 0 0

⋮

0 0 0 … α 1 0 0

0 0 0 … �1 α 1 0

0 0 0 … 0 �1 α 1

0 0 0 … 0 0 �1 αþ z

��������������������������

��������������������������

¼ α� 1
z

� �
AN�1 αð Þ þAN�2 αð Þ,

(4)

where λ ¼ �α,

Aj αð Þ≔

α 1 0 … 0 0 0

�1 α 1 … 0 0 0

0 �1 α … 0 0 0

⋮

0 0 … α 1 0 0

0 0 … �1 α 1 0

0 0 … 0 �1 α 1

0 0 … 0 0 �1 αþ z

�����������������������

�����������������������
¼ αþ zð ÞBj�1 αð Þ þ Bj�2 αð Þ,

(5)

and

Bj αð Þ ¼

α 1 0 … 0 0
�1 α 1 … 0 0
0 �1 α … 0 0
⋮
0 0 … α 1 0
0 0 … �1 α 1
0 0 … 0 �1 α

�����������������

�����������������

: (6)

Strikingly, we recognize the determinant Bj αð Þ as the Fibonacci polynomial of index jþ 1
[10, 11], i.e., Bj αð Þ=Fjþ1 αð Þ. Fibonacci polynomials are defined as

Matrices Which are Discrete Versions of Linear Operations
http://dx.doi.org/10.5772/intechopen.74356

23



F0 xð Þ ¼ 0, F1 xð Þ ¼ 1, Fj xð Þ ¼ xFj�1 xð Þ þ Fj�2 xð Þ, j ≥ 2: (7)

Since we have that Bj αð Þ=Fjþ1 αð Þ, and the recursion relationship for Fibonacci polynomials, we
also have that

Aj αð Þ ¼ αþ zð ÞFj αð Þ þ Fj�1 αð Þ ¼ zFj αð Þ þ Fjþ1 αð Þ, (8)

and then

∣DN þ αIN ∣

¼ α� 1
z

� �
zFN�1 αð Þ þ FN αð Þ½ � þ zFN�2 αð Þ þ FN�1 αð Þ

¼ z αFN�1 αð Þ þ FN�2 αð Þ½ � þ α� 1
z

� �
FN αð Þ

¼ αþ z� 1
z

� �
FN αð Þ:

(9)

Then, the eigenvalues of the derivative matrix DN are λ1 ¼ z� 1=z ¼ evΔ � e�vΔ ¼ 2sinh vΔð Þ
and λm ¼ �αm, where αm is the m-th root of the N-th Fibonacci polynomial, which is a
polynomial of degree N � 1 [10, 11].

The system of simultaneous equations for the eigenvector eTm ¼ em,1 em,2;…; eNð Þ corresponding
to λm, can be put in a form similar to the recursion relationship for the Fibonacci polynomials,
i.e.,

em,2 ¼ λmem,1 þ em,1
z

, (10)

em, jþ1 ¼ λmem, j þ em, j�1, 1 < j < N, (11)

zem,N ¼ λmem,N þ em,N�1: (12)

This set of recursion relationships can be written as the matrix equation

em, j
em, jþ1

� �
¼ 0 1

1 λm

� �
em, j�1

em, j

� �
, j ¼ 1,…, N, (13)

where em,0 ¼ em,1=z and em,Nþ1 ¼ zem,N. Thus

em, j
em, jþ1

� �
¼ 0 1

1 λm

� �j em,0
em,1

� �
, j ¼ 1,…, N, (14)

but

0 1
1 λm

� �j

¼ Fj�1 λmð Þ Fj λmð Þ
Fj λmð Þ Fjþ1 λmð Þ

� �
, (15)

Matrix Theory-Applications and Theorems24

and then,

em, j
em, jþ1

� �
¼ Fj�1 λmð Þ Fj λmð Þ

Fj λmð Þ Fjþ1 λmð Þ
� �

em,0
em,1

� �
, j ¼ 1,…, N: (16)

i.e., the j-th component of the m-th eigenvector is

em, j ¼ Fj λmð Þ þ Fj�1 λmð Þ
z

� �
em,1 for j ¼ 1, 2,…, N: (17)

For the case of the eigenvalue λ1 ¼ z� 1=z, we can rewrite Eq. (17) by noticing that if we let
x ¼ w� w�1 (w∈ℂ), then Fn xð Þ þ Fn�1 xð Þ=w ¼ wn�1 for n ¼ 1, 2,…. This can be proved by
induction method as follows. For n ¼ 1, it is immediately verified. First, suppose that the
equality holds for n ≤ k. Next, we compute the right-hand side of the equality for kþ 1. Substitut-
ing Fk�1 ¼ w wk�1 � Fk

� �
in the expression for kþ 1, and using the properties of the Fibonacci

polynomials, we obtain

Fkþ1 xð Þ þ Fk xð Þ
w

¼ xFk xð Þ þ Fk�1 xð Þ þ Fk xð Þ
w

¼ xFk xð Þ þ wk � wFk xð Þ þ Fk xð Þ
w

¼ wk:

(18)

Therefore, according to Eqs. (17) and (18), the eigenvector for the eigenvalue λ1 ¼ 2sinh vΔð Þ
takes the form e1 ¼ c 1; z;…; zN�1

� �T , where c is a normalization constant. We can take advan-
tage of the normalization constant and write

e1 ¼ c evq1 ; ; evq2 ;…; ; evqNð ÞT, (19)

with eigenvalue λ1 ¼ v (in original scaling, i.e., the eigenvalue of the matrix DN), q1 is an
arbitrary constant, and qj ¼ q1 þ j� 1ð ÞΔ. This means that the exponential function is an

eigenvector of the derivative matrix which is a global representation of the derivative on the
partition q1; q2;…; qN

� �
. Recall that the exponential function is an eigenfunction of the deriva-

tive of functions of continuous variable.

The remain of the eigenvectors have eigenvalues equal to the negative of the roots of the N-th
Fibonacci polynomial λm ¼ �xm, m ¼ 1, 2,…, N � 1, and have the form

em ¼ c

1
F2 λmð Þ þ e�vΔ

F3 λmð Þ þ e�vΔF2 λmð Þ
⋮
FN�1 λmð Þ þ e�vΔFN�2 λmð Þ
e�vΔFN�1 λmð Þ

0
BBBBBBBB@

1
CCCCCCCCA

(20)
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F0 xð Þ ¼ 0, F1 xð Þ ¼ 1, Fj xð Þ ¼ xFj�1 xð Þ þ Fj�2 xð Þ, j ≥ 2: (7)

Since we have that Bj αð Þ=Fjþ1 αð Þ, and the recursion relationship for Fibonacci polynomials, we
also have that

Aj αð Þ ¼ αþ zð ÞFj αð Þ þ Fj�1 αð Þ ¼ zFj αð Þ þ Fjþ1 αð Þ, (8)

and then

∣DN þ αIN ∣

¼ α� 1
z

� �
zFN�1 αð Þ þ FN αð Þ½ � þ zFN�2 αð Þ þ FN�1 αð Þ

¼ z αFN�1 αð Þ þ FN�2 αð Þ½ � þ α� 1
z

� �
FN αð Þ

¼ αþ z� 1
z

� �
FN αð Þ:

(9)

Then, the eigenvalues of the derivative matrix DN are λ1 ¼ z� 1=z ¼ evΔ � e�vΔ ¼ 2sinh vΔð Þ
and λm ¼ �αm, where αm is the m-th root of the N-th Fibonacci polynomial, which is a
polynomial of degree N � 1 [10, 11].

The system of simultaneous equations for the eigenvector eTm ¼ em,1 em,2;…; eNð Þ corresponding
to λm, can be put in a form similar to the recursion relationship for the Fibonacci polynomials,
i.e.,

em,2 ¼ λmem,1 þ em,1
z

, (10)

em, jþ1 ¼ λmem, j þ em, j�1, 1 < j < N, (11)

zem,N ¼ λmem,N þ em,N�1: (12)

This set of recursion relationships can be written as the matrix equation

em, j
em, jþ1

� �
¼ 0 1

1 λm

� �
em, j�1

em, j

� �
, j ¼ 1,…, N, (13)

where em,0 ¼ em,1=z and em,Nþ1 ¼ zem,N. Thus

em, j
em, jþ1

� �
¼ 0 1

1 λm

� �j em,0
em,1

� �
, j ¼ 1,…, N, (14)

but

0 1
1 λm

� �j

¼ Fj�1 λmð Þ Fj λmð Þ
Fj λmð Þ Fjþ1 λmð Þ

� �
, (15)
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and then,

em, j
em, jþ1

� �
¼ Fj�1 λmð Þ Fj λmð Þ

Fj λmð Þ Fjþ1 λmð Þ
� �

em,0
em,1

� �
, j ¼ 1,…, N: (16)

i.e., the j-th component of the m-th eigenvector is

em, j ¼ Fj λmð Þ þ Fj�1 λmð Þ
z

� �
em,1 for j ¼ 1, 2,…, N: (17)

For the case of the eigenvalue λ1 ¼ z� 1=z, we can rewrite Eq. (17) by noticing that if we let
x ¼ w� w�1 (w∈ℂ), then Fn xð Þ þ Fn�1 xð Þ=w ¼ wn�1 for n ¼ 1, 2,…. This can be proved by
induction method as follows. For n ¼ 1, it is immediately verified. First, suppose that the
equality holds for n ≤ k. Next, we compute the right-hand side of the equality for kþ 1. Substitut-
ing Fk�1 ¼ w wk�1 � Fk

� �
in the expression for kþ 1, and using the properties of the Fibonacci

polynomials, we obtain

Fkþ1 xð Þ þ Fk xð Þ
w

¼ xFk xð Þ þ Fk�1 xð Þ þ Fk xð Þ
w

¼ xFk xð Þ þ wk � wFk xð Þ þ Fk xð Þ
w

¼ wk:

(18)

Therefore, according to Eqs. (17) and (18), the eigenvector for the eigenvalue λ1 ¼ 2sinh vΔð Þ
takes the form e1 ¼ c 1; z;…; zN�1

� �T , where c is a normalization constant. We can take advan-
tage of the normalization constant and write

e1 ¼ c evq1 ; ; evq2 ;…; ; evqNð ÞT, (19)

with eigenvalue λ1 ¼ v (in original scaling, i.e., the eigenvalue of the matrix DN), q1 is an
arbitrary constant, and qj ¼ q1 þ j� 1ð ÞΔ. This means that the exponential function is an

eigenvector of the derivative matrix which is a global representation of the derivative on the
partition q1; q2;…; qN

� �
. Recall that the exponential function is an eigenfunction of the deriva-

tive of functions of continuous variable.

The remain of the eigenvectors have eigenvalues equal to the negative of the roots of the N-th
Fibonacci polynomial λm ¼ �xm, m ¼ 1, 2,…, N � 1, and have the form

em ¼ c

1
F2 λmð Þ þ e�vΔ

F3 λmð Þ þ e�vΔF2 λmð Þ
⋮
FN�1 λmð Þ þ e�vΔFN�2 λmð Þ
e�vΔFN�1 λmð Þ

0
BBBBBBBB@

1
CCCCCCCCA

(20)
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The vector that we will be interested on is the one which is the exponential function (19) with
eigenvalue v.

3. The matrix DN represents a derivation

Let us consider a partition, P Nð Þ≔ qi
� �N

1 , qi ∈ℝ, of N equally spaced points qi of the interval
a; b½ �∈ℝ, a < b, with the same separation Δ ¼ b� að Þ= N � 1ð Þ between them.

The rows of the result of the multiplication of the derivative matrix DN and a vector

g≔ g1; g2;…; gn
� �T are

DNgð Þj ¼
gjþ1 � gj�1

2χ v;Δð Þ , j ¼ 1, 2,…, N, (21)

where g0≔e�vΔg1 and gNþ1≔evΔgN . We recognize these expressions as the second order deriv-
atives of the function g xð Þ at the mesh points, but instead of dividing by twice the separation Δ
between the mesh points, there is the function χ v;Δð Þ in the denominator. This function makes
it possible that the exponential function be an eigenvector of the matrix DN .

The values g0 ¼ e�vΔg1 and gNþ1 ¼ evΔgN extend the original interval a; b½ � to a� Δ; bþ Δ½ � so
that we have well defined the second order derivatives at all the points of the initial partition,
including the edges of the interval. When g xð Þ is the exponential function, we have g0 ¼ ev x1�Δð Þ

and gNþ1 ¼ ev xNþΔð Þ, i.e., they are the values of the exponential function evaluated at the points
of the extension.

Thus, we define finite differences derivatives for any function g xð Þ defined on the partition as

Dgð Þ1 ¼
g2 � e�vΔg1
2χ v;Δð Þ , (22)

Dgð Þj ¼
gjþ1 � gj�1

2χ v;Δð Þ , (23)

Dgð ÞN ¼ evΔgN � gN�1

2χ v;Δð Þ , (24)

to be used on the first, central, and last points of the partition.

The determinant of the derivative matrix is not always zero, and in fact, it is [see Eqs. (4) and (9)]

∣DN ∣ ¼ 2sinh vΔð ÞFN 0ð Þ: (25)

But, since F2jþ1 ¼ 1, and F2j ¼ 0, then
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∣D2j∣ ¼ 0, ∣D2jþ1∣ ¼ 2sinh vΔð Þ: (26)

Hence, only the matrices with an odd dimension have an inverse.

Next, we will derive some properties of these finite differences derivatives.

3.1. The derivative of a product of vectors

There are two equivalent expressions for the finite differences derivative of a product of
vectors defined on the partition. A set of such expressions is

Dghð Þ1 ¼
g2h2 � e�vΔg1h1

2χ v;Δð Þ

¼ g2h2 � e�vΔg1h2
2χ v;Δð Þ þ g1

e�vΔh2 � h2 þ h2 � e�vΔh1
2χ v;Δð Þ

¼ h2 Dgð Þ1 þ g1 Dhð Þ1 þ g1h2
e�vΔ � 1
2χ v;Δð Þ

¼ h2 Dgð Þ1 þ g1 Dhð Þ1 þ g1h2 � v
2
þ v2

4
ΔþO Δ3� �� �

,

(27)

Dghð Þj ¼ hjþ1 Dgð Þj þ gj�1 Dhð Þj, (28)

Dghð ÞN ¼ hN Dgð ÞN þ gN�1 Dhð ÞN þ 1� evΔ

2χ v;Δð Þ gN�1hN

≈ hN Dgð ÞN þ gN�1 Dhð ÞN þ gN�1hN � v
2
� v2

4
ΔþO Δ3� �� �

:

(29)

A second set of equalities is

Dghð Þ1 ¼ g2 Dhð Þ1 þ h1 Dgð Þ1 þ g2h1
e�vΔ � 1
2χ v;Δð Þ

¼ g2 Dhð Þ1 þ h1 Dgð Þ1 þ g2h1 � v
2
þ v2

4
ΔþO Δ3� �� �

,

(30)

Dghð Þj ¼ gjþ1 Dhð Þj þ hj�1 Dgð Þj, (31)

Dghð ÞN ¼ gN Dhð ÞN þ hN�1 Dgð ÞN þ gNhN�1
1� evΔ

2χ v;Δð Þ

≈ gN Dhð ÞN þ hN�1 Dgð ÞN þ gNhN�1 � v
2
� v2

4
ΔþO Δ3� �� �

,

(32)
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The vector that we will be interested on is the one which is the exponential function (19) with
eigenvalue v.

3. The matrix DN represents a derivation

Let us consider a partition, P Nð Þ≔ qi
� �N

1 , qi ∈ℝ, of N equally spaced points qi of the interval
a; b½ �∈ℝ, a < b, with the same separation Δ ¼ b� að Þ= N � 1ð Þ between them.

The rows of the result of the multiplication of the derivative matrix DN and a vector

g≔ g1; g2;…; gn
� �T are

DNgð Þj ¼
gjþ1 � gj�1

2χ v;Δð Þ , j ¼ 1, 2,…, N, (21)

where g0≔e�vΔg1 and gNþ1≔evΔgN . We recognize these expressions as the second order deriv-
atives of the function g xð Þ at the mesh points, but instead of dividing by twice the separation Δ
between the mesh points, there is the function χ v;Δð Þ in the denominator. This function makes
it possible that the exponential function be an eigenvector of the matrix DN .

The values g0 ¼ e�vΔg1 and gNþ1 ¼ evΔgN extend the original interval a; b½ � to a� Δ; bþ Δ½ � so
that we have well defined the second order derivatives at all the points of the initial partition,
including the edges of the interval. When g xð Þ is the exponential function, we have g0 ¼ ev x1�Δð Þ

and gNþ1 ¼ ev xNþΔð Þ, i.e., they are the values of the exponential function evaluated at the points
of the extension.

Thus, we define finite differences derivatives for any function g xð Þ defined on the partition as

Dgð Þ1 ¼
g2 � e�vΔg1
2χ v;Δð Þ , (22)

Dgð Þj ¼
gjþ1 � gj�1

2χ v;Δð Þ , (23)

Dgð ÞN ¼ evΔgN � gN�1

2χ v;Δð Þ , (24)

to be used on the first, central, and last points of the partition.

The determinant of the derivative matrix is not always zero, and in fact, it is [see Eqs. (4) and (9)]

∣DN ∣ ¼ 2sinh vΔð ÞFN 0ð Þ: (25)

But, since F2jþ1 ¼ 1, and F2j ¼ 0, then
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∣D2j∣ ¼ 0, ∣D2jþ1∣ ¼ 2sinh vΔð Þ: (26)

Hence, only the matrices with an odd dimension have an inverse.

Next, we will derive some properties of these finite differences derivatives.

3.1. The derivative of a product of vectors

There are two equivalent expressions for the finite differences derivative of a product of
vectors defined on the partition. A set of such expressions is

Dghð Þ1 ¼
g2h2 � e�vΔg1h1

2χ v;Δð Þ

¼ g2h2 � e�vΔg1h2
2χ v;Δð Þ þ g1

e�vΔh2 � h2 þ h2 � e�vΔh1
2χ v;Δð Þ

¼ h2 Dgð Þ1 þ g1 Dhð Þ1 þ g1h2
e�vΔ � 1
2χ v;Δð Þ

¼ h2 Dgð Þ1 þ g1 Dhð Þ1 þ g1h2 � v
2
þ v2

4
ΔþO Δ3� �� �

,

(27)

Dghð Þj ¼ hjþ1 Dgð Þj þ gj�1 Dhð Þj, (28)

Dghð ÞN ¼ hN Dgð ÞN þ gN�1 Dhð ÞN þ 1� evΔ

2χ v;Δð Þ gN�1hN

≈ hN Dgð ÞN þ gN�1 Dhð ÞN þ gN�1hN � v
2
� v2

4
ΔþO Δ3� �� �

:

(29)

A second set of equalities is

Dghð Þ1 ¼ g2 Dhð Þ1 þ h1 Dgð Þ1 þ g2h1
e�vΔ � 1
2χ v;Δð Þ

¼ g2 Dhð Þ1 þ h1 Dgð Þ1 þ g2h1 � v
2
þ v2

4
ΔþO Δ3� �� �

,

(30)

Dghð Þj ¼ gjþ1 Dhð Þj þ hj�1 Dgð Þj, (31)

Dghð ÞN ¼ gN Dhð ÞN þ hN�1 Dgð ÞN þ gNhN�1
1� evΔ

2χ v;Δð Þ

≈ gN Dhð ÞN þ hN�1 Dgð ÞN þ gNhN�1 � v
2
� v2

4
ΔþO Δ3� �� �

,

(32)
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3.2. Summation by parts

The sum of Eqs. (28) or (31), with weights 2χ v;Δð Þ, results in
Xm

j¼n

2χ v;Δð Þhjþ1 Dgð Þj þ
Xm

j¼n

2χ v;Δð Þgj�1 Dhð Þj

¼
Xm

j¼n

2χ v;Δð Þ Dghð Þj

¼ gmþ1hmþ1 þ gmhm � gnhn � gn�1hn�1,

(33)

or

Xm

j¼n

2χ v;Δð Þgjþ1 Dhð Þj þ
Xm

j¼n

2χ v;Δð Þhj�1 Dgð Þj

¼ gmþ1hmþ1 þ gmhm � gnhn � gn�1hn�1:

(34)

This is the discrete version of the integration by parts theorem for continuous variable func-
tions, a very useful result.

3.3. Second derivatives

Expressions for higher order derivatives are obtained through the powers of DN . For instance,
for the first two points, the second derivative is

D2g
� �

1 ¼
e�2vΔ � 1
� �

g1 � e�vΔg2 þ g3
4χ2 v;Δð Þ ¼ Dgð Þ2 � e�vΔ Dgð Þ1

2χ v;Δð Þ , (35)

D2g
� �

2 ¼
e�vΔg1 � 2g2 þ g4

4χ2 v;Δð Þ ¼ Dgð Þ3 � Dgð Þ1
2χ v;Δð Þ , (36)

For inner points we get

D2g
� �

j ¼
gj�2 � 2gj þ gjþ2

4χ2 v;Δð Þ ¼
Dgð Þjþ1 � Dgð Þj�1

2χ v;Δð Þ , 3 ≤ j ≤N � 3, (37)

and for the last two points of the mesh, we find

D2g
� �

N�1 ¼
gN�3 � 2gN�1 þ evΔgN

4χ2 v;Δð Þ ¼ Dgð ÞN � Dgð ÞN�2

2χ v;Δð Þ , (38)

D2g
� �

N ¼ gN�2 � evΔgN�1 þ e2vΔ � 1
� �

gN
4χ2 v;Δð Þ

¼ evΔ Dgð ÞN � Dgð ÞN�1

χ2 v; 2Δð Þ :

(39)
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These derivatives also have the exponential function as one of their eigenvectors, and we can
generate expressions for higher derivatives with higher powers of the derivative matrix.

3.4. The derivative of the inverse of functions

It is possible to give an expression for the derivative of h�1 qð Þ, including the edge points. For
the first point, we have

D
1
h

� �

1
¼ 1

2χ v;Δð Þ
1
h2

� e�vΔ

h1

� �

¼ 1
2χ v;Δð Þ � h2 � h1

h1h2
þ 1� e�vΔ

h1

� �

¼ � Dhð Þ1
h1h2

þ 1� e�vΔ

2χ v;Δð Þ
1
h1

þ 1
h2

� �
:

(40)

For central and last points, we find that

D
1
h

� �

j
¼ � Dhð Þj

hj�1hjþ1
, (41)

D
1
h

� �

N
¼ � Dhð ÞN

hN�1hN
þ evΔ � 1
2χ v;Δð Þ

1
hN�1

þ 1
hN

� �
: (42)

The derivatives for the first and last points coincide with the derivative for central points when
Δ ¼ 0.

3.5. The derivative of the ratio of functions

Now, we take advantage of the derivative for the inverse of a function and the derivative of a
product of functions and obtain what the derivative of a ratio of functions is

D
g
h

� �
1
¼ 1

h2
Dgð Þ1 þ g1 D

1
h

� �

1
þ g1
h2

e�vΔ � 1
2χ v;Δð Þ

¼ 1
h2

Dgð Þ1 þ g1 � Dhð Þ1
h1h2

þ 1
2χ v;Δð Þ

1
h1

þ 1� e�vΔ

h2

� �� �
þ g1
h2

e�vΔ � 1
2χ v;Δð Þ

¼ 1
h2

Dgð Þ1 �
g1
h1h2

Dhð Þ1 þ
g1
h1

1� e�vΔ

2χ v;Δð Þ ,

(43)

D
g
h

� �
j
¼

Dgð Þj
hj�1

� gjþ1

Dhð Þj
hjþ1hj�1

, (44)

D
g
h

� �
N
¼ 1

hN
Dgð ÞN � gN�1

hN�1hN
Dhð ÞN þ gN�1

hN�1

evΔ � 1
2χ v;Δð Þ , (45)
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3.2. Summation by parts

The sum of Eqs. (28) or (31), with weights 2χ v;Δð Þ, results in
Xm

j¼n

2χ v;Δð Þhjþ1 Dgð Þj þ
Xm

j¼n

2χ v;Δð Þgj�1 Dhð Þj

¼
Xm

j¼n

2χ v;Δð Þ Dghð Þj

¼ gmþ1hmþ1 þ gmhm � gnhn � gn�1hn�1,

(33)

or

Xm

j¼n

2χ v;Δð Þgjþ1 Dhð Þj þ
Xm

j¼n

2χ v;Δð Þhj�1 Dgð Þj

¼ gmþ1hmþ1 þ gmhm � gnhn � gn�1hn�1:

(34)

This is the discrete version of the integration by parts theorem for continuous variable func-
tions, a very useful result.

3.3. Second derivatives

Expressions for higher order derivatives are obtained through the powers of DN . For instance,
for the first two points, the second derivative is

D2g
� �

1 ¼
e�2vΔ � 1
� �

g1 � e�vΔg2 þ g3
4χ2 v;Δð Þ ¼ Dgð Þ2 � e�vΔ Dgð Þ1

2χ v;Δð Þ , (35)

D2g
� �

2 ¼
e�vΔg1 � 2g2 þ g4

4χ2 v;Δð Þ ¼ Dgð Þ3 � Dgð Þ1
2χ v;Δð Þ , (36)

For inner points we get

D2g
� �

j ¼
gj�2 � 2gj þ gjþ2

4χ2 v;Δð Þ ¼
Dgð Þjþ1 � Dgð Þj�1

2χ v;Δð Þ , 3 ≤ j ≤N � 3, (37)

and for the last two points of the mesh, we find

D2g
� �

N�1 ¼
gN�3 � 2gN�1 þ evΔgN

4χ2 v;Δð Þ ¼ Dgð ÞN � Dgð ÞN�2

2χ v;Δð Þ , (38)

D2g
� �

N ¼ gN�2 � evΔgN�1 þ e2vΔ � 1
� �

gN
4χ2 v;Δð Þ

¼ evΔ Dgð ÞN � Dgð ÞN�1

χ2 v; 2Δð Þ :

(39)
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These derivatives also have the exponential function as one of their eigenvectors, and we can
generate expressions for higher derivatives with higher powers of the derivative matrix.

3.4. The derivative of the inverse of functions

It is possible to give an expression for the derivative of h�1 qð Þ, including the edge points. For
the first point, we have

D
1
h

� �

1
¼ 1

2χ v;Δð Þ
1
h2

� e�vΔ

h1

� �

¼ 1
2χ v;Δð Þ � h2 � h1

h1h2
þ 1� e�vΔ

h1

� �

¼ � Dhð Þ1
h1h2

þ 1� e�vΔ

2χ v;Δð Þ
1
h1

þ 1
h2

� �
:

(40)
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1
h

� �

j
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D
1
h

� �

N
¼ � Dhð ÞN
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1
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þ 1
hN

� �
: (42)

The derivatives for the first and last points coincide with the derivative for central points when
Δ ¼ 0.
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Now, we take advantage of the derivative for the inverse of a function and the derivative of a
product of functions and obtain what the derivative of a ratio of functions is
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h2
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1
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� �

1
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h2

Dgð Þ1 þ g1 � Dhð Þ1
h1h2

þ 1
2χ v;Δð Þ

1
h1

þ 1� e�vΔ

h2

� �� �
þ g1
h2

e�vΔ � 1
2χ v;Δð Þ
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h2

Dgð Þ1 �
g1
h1h2

Dhð Þ1 þ
g1
h1

1� e�vΔ

2χ v;Δð Þ ,

(43)

D
g
h

� �
j
¼

Dgð Þj
hj�1

� gjþ1

Dhð Þj
hjþ1hj�1

, (44)

D
g
h

� �
N
¼ 1

hN
Dgð ÞN � gN�1

hN�1hN
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hN�1

evΔ � 1
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expressions which are very similar to the continuous variable results. Again, these expressions
coincide in the limit Δ ! 0, and they reduce to the corresponding expressions for continuous
variables.

3.6. The local inverse operation of the derivative

The inverse operation to the finite differences derivative, at a given point, is the summation
with weights 2χ v;Δð Þ

Xm

j¼n

2χ v;Δð Þ Dgð Þj ¼
Xm

j¼n

gjþ1 � gj�1

� �
¼ gmþ1 þ gm � gn � gn�1: (46)

This equality is the equivalent to the usual result for continuous functions,
Ð x
a dy dg yð Þ=dyð Þ

¼ g xð Þ � g að Þ. Note that the inverse at the local level is a bit different from the expressions
obtained by means of the inverse matrix S (see below) of the derivative matrix D. When
dealing with matrices there are no boundary terms to worry about.

3.7. An eigenfunction of the summation operation

Because the exponential function is an eigenfunction of the finite differences derivative and
according to Eq. (46), we can say that

Xm

j¼n

2χ v;Δð Þvevqj ¼
Xm

j¼n

2χ v;Δð Þ Devqð Þj ¼
Xm

j¼n

evqjþ1 � evqj�1ð Þ

¼ evqmþ1 þ evqm � evqn � evqn�1 ,

(47)

in agreement with the corresponding continuous variable equality
Ð x
a dxvevx ¼ evx � eva. How-

ever, here, we have to deal with two values at each boundary.

3.8. The chain rule

The chain rule also has a finite differences version. That version is

Dg h qð Þð Þð Þj ¼
g h qjþ1

� �� �
� g h qj�1

� �� �

2χ v;Δð Þ

¼
g h qjþ1

� �� �
� g h qj�1

� �� �

2χ v; h qjþ1

� �
� h qj
� �� �

2χ v; h qjþ1

� �
� h qj
� �� �

2χ v;Δð Þ

¼ Dg hð Þð Þj
χ v; h qjþ1

� �
� h qj
� �� �

χ v;Δð Þ

(48)

where
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Dg hð Þð Þj≔
g h qjþ1

� �� �
� g h qj�1

� �� �

2χ v; h qjþ1

� �
� h qj
� �� � (49)

is a finite differences derivative of g hð Þ with respect to h, and the second factor approaches the
derivative of h qð Þ with respect to q

χ v; h qjþ1

� �
� h qj
� �� �

χ v;Δð Þ ≈
h qjþ1

� �
� h qj
� �

þO Δh2
� �

ΔþO Δ2� � : (50)

Thus, we will recover the usual chain rule for continuous variable functions in the limit Δ ! 0.

4. The commutator between coordinate and derivative

Let us determine the commutator, from a local point of view first, between the coordinate—the
points of the partition P Nð Þ—and the finite differences derivative. We begin with the deriva-
tive of q,

Dqð Þj ¼
qjþ1 � qj�1

2χ v;Δð Þ ¼ Δ
χ v;Δð Þ ≈ 1�

v2

6
Δ2: (51)

Hence, the finite differences derivative of the product qg qð Þ is

Dqgð Þj ¼ qjþ1 Dgð Þj þ gj�1 Dqð Þj ¼ qjþ1 Dgð Þj þ gj�1
Δ

χ v;Δð Þ , (52)

i.e.,

Dcqgð Þj � qjþ1 Dcgð Þj ¼ gj�1
Δ

χ v;Δð Þ : (53)

This is the finite differences version of the commutator between the coordinate q and the finite
differences derivative D. This equality will become the identity operator in the small Δ limit, as
expected. An equivalent expression is

Dqgð Þj � qj�1 Dgð Þj ¼ gjþ1
Δ

χ v;Δð Þ : (54)

This is the finite differences version of the commutator between coordinate and derivative;
the right hand side of this equality becomes gj in the small Δ limit, i.e., it becomes the identity

operator.
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coincide in the limit Δ ! 0, and they reduce to the corresponding expressions for continuous
variables.

3.6. The local inverse operation of the derivative
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(47)

in agreement with the corresponding continuous variable equality
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a dxvevx ¼ evx � eva. How-

ever, here, we have to deal with two values at each boundary.

3.8. The chain rule

The chain rule also has a finite differences version. That version is
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g h qjþ1
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� �
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� �� �
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� �
� h qj
� �� �

2χ v;Δð Þ

¼ Dg hð Þð Þj
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� �
� h qj
� �� �
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where
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� h qj
� �� � (49)
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χ v;Δð Þ ≈
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� �

ΔþO Δ2� � : (50)

Thus, we will recover the usual chain rule for continuous variable functions in the limit Δ ! 0.

4. The commutator between coordinate and derivative

Let us determine the commutator, from a local point of view first, between the coordinate—the
points of the partition P Nð Þ—and the finite differences derivative. We begin with the deriva-
tive of q,

Dqð Þj ¼
qjþ1 � qj�1

2χ v;Δð Þ ¼ Δ
χ v;Δð Þ ≈ 1�

v2

6
Δ2: (51)

Hence, the finite differences derivative of the product qg qð Þ is

Dqgð Þj ¼ qjþ1 Dgð Þj þ gj�1 Dqð Þj ¼ qjþ1 Dgð Þj þ gj�1
Δ

χ v;Δð Þ , (52)

i.e.,

Dcqgð Þj � qjþ1 Dcgð Þj ¼ gj�1
Δ

χ v;Δð Þ : (53)

This is the finite differences version of the commutator between the coordinate q and the finite
differences derivative D. This equality will become the identity operator in the small Δ limit, as
expected. An equivalent expression is

Dqgð Þj � qj�1 Dgð Þj ¼ gjþ1
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This is the finite differences version of the commutator between coordinate and derivative;
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operator.
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4.1. The commutator between the derivative and coordinate matrices

The commutator between the partition and the finite differences derivative can also be calcu-
lated from a global point of view using the corresponding matrices. Let the diagonal matrix
[QN] which will represent the coordinate partition

QN≔diag q1; q2;…; qN
� �

: (55)

Then, the commutator between the derivative matrix and the coordinate matrix is

DN;QN½ � ¼ Δ
2χ v;Δð Þ

0 1 0 0 … 0 0 0

1 0 1 0 … 0 0 0

0 1 0 1 … 0 0 0

⋮

0 0 0 0 … 0 1 0

0 0 0 0 … 1 0 1

0 0 0 0 … 0 1 0

0
BBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCA

: (56)

This is a kind of nearest neighbors’ average operator, inside the interval. The small Δ limit is
just

DN,QN½ � ≈ I, (57)

where I is the identity matrix, with the first and last elements replace with 1/2. Thus, coordi-
nate and derivative matrices are finite differences conjugate of each other.

5. An integration matrix

Since the determinant of the derivative matrixDN is not always zero, we expect that there exist
an inverse of it. At a local level, the inverse of the finite differences derivation is the summation
as was found in Eq. (46). In this section, we determine the inverse of the derivative matrix, and
we find that it is a global finite difference integration operation.

Once we know the eigenvalues and eigenvectors of the derivative matrix DN, it turns out that
we also know the eigenvectors and eigenvalues of the inverse matrix, when it exists. In fact, the
equality DNem ¼ λmem, with λm 6¼ 0, imply that

D�1
N em ¼ λ�1

m em: (58)

The inverse matrix SN ¼ D�1
N is
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SN ¼ 1
z� 1

z

1 �z 1 �z 1 … �z 1
z �1 1=z �1 1=z … �1 1=z
1 �1=z 1 �z 1 … �z 1
z �1 z �1 1=z … �1 1=z
⋮
1 �1=z 1 �1=z 1 … �z 1
z �1 z �1 z … �1 1=z
1 �1=z 1 �1=z 1 … �1=z 1
z �1 z �1 z … �1 1=z
1 �1=z 1 �1=z 1 … �1=z 1

0
BBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCA

, (59)

Its determinant is

∣SN∣ ¼ sinhN�1 vΔð Þ: (60)

This matrix represents an integration on the partition, with an exact value when it is
applied to the exponential function evq on the partition. When applied to an arbitrary vector

g ¼ g1; g2;…; gN
� �T , we obtain formulas for the finite differences integration, including the

edge points

SNgð Þ1 ¼
1

z� 1=z
g1 þ

XM

i¼1

g2iþ1 � zg2i
� �

" #
, (61)

SNgð Þ2j ¼
1

z� 1=z
zg1 þ

Xj�1

k¼1

zg2kþ1 � g2k
� �þ

XM

k¼j

g2kþ1

z
� g2k

� �2
4

3
5, (62)

SNgð Þ2jþ1 ¼
1

z� 1=z
g1 þ

Xj

k¼1

g2kþ1 �
g2k
z

� �
þ
XM

k¼jþ1

g2kþ1 � zg2k
� �

2
4

3
5, (63)

SNgð ÞN ¼ 1
z� 1=z

g1 þ
XM

i¼1

g2iþ1 �
g2i
z

� �" #
, (64)

where N ¼ 2Mþ 1. These are new formulas for discrete integration for the exponential func-
tion on a partition of equally separated points with the characteristic that it is exact for the
exponential function evq.

6. Transformation between coordinate and derivative representations

Since one of the eigenvalues of the derivative matrix is a continuous variable, we can talk of
conjugate functions with a continuous argument v. The relationship between discrete vectors
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Its determinant is
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This matrix represents an integration on the partition, with an exact value when it is
applied to the exponential function evq on the partition. When applied to an arbitrary vector
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where N ¼ 2Mþ 1. These are new formulas for discrete integration for the exponential func-
tion on a partition of equally separated points with the characteristic that it is exact for the
exponential function evq.

6. Transformation between coordinate and derivative representations

Since one of the eigenvalues of the derivative matrix is a continuous variable, we can talk of
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on a partition qi
� �

and functions with a continuous argument v makes use of continuous and
discrete Fourier type of transformations, a wavelet [12]. If we have a function h of continuous
argument v, a conjugate vector on the partition qi

� �
is defined through the type of continuous

Fourier transform F as

Fhð Þ qj
� �

≔
1

L
ffiffiffiffiffiffi
2Δ

p
ðL=2
�L=2

e�iqjvh vð Þdv, (65)

and vice-versa, a continuous variable function is defined with the help of a discrete type of
Fourier transform F as

Fgð Þ vð Þ≔ Lffiffiffiffiffiffi
2Δ

p
XN�1

j¼�Nþ1

2χ v;Δð Þeiqjvgj: (66)

Assuming that the involved integrals converge absolutely, we can say that

F Fgð Þ qj
� �

≔
1

L
ffiffiffiffiffiffi
2Δ

p
ðL=2
�L=2

e�iqjv
Lffiffiffiffiffiffi
2Δ

p
XN�1

k¼�Nþ1

2χ v;Δð Þeiqkvgkdv

¼ 1
Δ

XN�1

k¼�Nþ1

gk

ðL=2
�L=2

ei qk�qjð Þvsinh vΔð Þ dv
v

¼
XN�1

k¼�Nþ1

gkK qk � qj; L;Δ
� �

:

(67)

where

K qk � qj; L;Δ
� �

≔
1
Δ

ðL=2
�L=2

ei qk�qjð Þvsinh vΔð Þ dv
v

¼ 1
2Δ

shi
L
2

i qk � qj
� �

þ Δ
� �� �

þ ishi
L
2

qk � qj � iΔ
� �� �

�2ishi
L
2

qk � qj þ iΔ
� �� ��

:

� (68)

The function K qk � qj; L;Δ
� �

is an approximation to the Kronecker delta function δk, j. The

function shi is the hyperbolic sine integral shi zð Þ ¼ Ð z0 dt sinh tð Þ=t. A plot of it is shown in
Figure 1.
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The ratio of sin functions, in this expression, is an approximation to a series of Dirac delta
functions located at v� uð ÞΔ ¼ kπ, k∈ℕ. Thus, the operations F and F are finite differences
inverse of each other.

6.1. The discrete Fourier transform of the finite differences derivative of a vector

Next, based on Eq. (28), we find that
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Figure 1. A plot of the kernel function K x; a; bð Þwith a ¼ 1 and b ¼ :1. This function is an approximation to the Kronecker
delta δx,0.
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i.e.,

FN Dgð Þð Þ vð Þ ¼ iv FNþ1gð Þ vð Þ

þ e�ivΔ e�iqjvgj
N
j¼�Nþ2 þ

ffiffiffi
2

p

L
e�iqjvgj

����
����
N�1

j¼�Nþ1

" #
(73)

Therefore, the discrete Fourier transform of the derivative of a vector g is iv times the discrete
Fourier transform of g, plus boundary terms.

The Fourier transform of the derivative of a continuous function of variable v is easily found if
we consider the equality

d
dv

e�iqjv ¼ �iqje
�iqjv: (74)

The integration of this equality with appropriate weights gives

�iqj

ðL=2
�L=2

dve�iqjvh vð Þ ¼ �
ðL=2
�L=2

dve�iqjv
dh vð Þ
dv

þ e�iqjvh vð Þ
�����
L=2

v¼�L=2

, (75)

i.e.,

Fh0ð Þj ¼ iqj Fhð Þj þ
1

L
ffiffiffi
2

p e�iqjvh vð Þ
����
L=2

v¼�L=2
: (76)

Hence, as is usual, the Fourier transform of the derivative of a function h vð Þ of continuous
variable v is equal to iqj times the Fourier transform of the function, plus boundary terms.

7. Conclusion

We proceed with a brief discussion of the relationship between the derivative matrix DN and
an important concept in quantum mechanics; the concept of self-adjoint operators [8, 9]. In
particular, we focus on the momentum operator, whose continuous coordinate representation
(operation) is given by �id=dq, i.e., a derivative times �i, in the case of infinite-dimensional
Hilbert space.

In the finite-dimensional complex vectorial space (where each vector define a sequence gi
� �N

i¼1

of complex numbers such that
P

i gi
�� ��2 < ∞). A transformation A is usually called Hermitian,

when its entries ai, j are such that ai, j ¼ a∗j, i (
∗ denote the complex conjugate). Our matrix DN is

related to an approximation of the derivative (see Section 3) which uses second order finite
differences. Therefore, we can ask if the matrix �iDN is also Hermitian.
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Let PN ¼ �iDN and v ¼ ix be the eigenvalue of DN, where x∈ℝ is a free parameter, the
corresponding eigenvalue of �iDN is indeed the real value x; which is one of the properties of
a Hermitian matrix, as is also the case of infinite-dimensional space (for the Hilbert space on a
finite interval, these values are discrete, and for the Hilbert space on the real line, these values
conform the continuous spectrum, instead of discrete eigenvalues). Other characteristic of
�iDN is that the eigenvector corresponding to x is the same exponential function which is the
eigenfunction of �id=dx (see Section 2).

Furthermore, let P†
N denote the adjoint of PN . Thus, if we restrict our attention to the off-

diagonal entries PNð Þi, j ¼ �i DNð Þi, j, it is fulfilled that P†
N

� �
i, j ¼ �idj, i

� �∗ ¼ �idi, j ¼ PNð Þi, j
(noticing that, with v ¼ ix then χ x;Δð Þ ¼ sin x;Δð Þ=x∈ℝ). Even more, if we do not care about
the two entries di, i for i ¼ 1, N, we will have a Hermitian matrix. Finally, as it was seen in
Section 4, we can say that PN can be considered as a suitable approximation to the conjugate
matrix to the coordinate matrix.

In conclusion, we have introduced a matrix with the properties that a Hermitian matrix should
comply with, except for two of its entries. Besides, our partition provides congruency between
discrete, continuous, and matrix treatments of the exponential function and of its properties.
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Abstract

In this chapter, mixing problems are considered since they always lead to linear ordinary
differential equation (ODE) systems, and the corresponding associated matrices have
different structures that deserve to be studied deeply. This structure depends on whether
or not there is recirculation of fluids and if the system is open or closed, among other
characteristics such as the number of tanks and their internal connections. Several state-
ments about the matrix eigenvalues are analyzed for different structures, and also some
questions and conjectures are posed. Finally, qualitative remarks about the differential
equation system solutions and their stability or asymptotical stability are included.

Keywords: eigenvalues, Gershgorin circle theorem, mixing problems, linear ODE
systems, associated matrices

1. Introduction

Mixing problems (MPs), also known as “compartment analysis” [1], in chemistry involve
creating a mixture of two or more substances and then determining some quantity (usually
concentration) of the resulting mixture. For instance, a typical mixing problem deals with the
amount of salt in a mixing tank. Salt and water enter to the tank at a certain rate, they are
mixed with what is already in the tank, and the mixture leaves at a certain rate. This process is
modeled by an ordinary differential equation (ODE), as Groestch affirms: “The direct problem
for one-compartment mixing models is treated in almost all elementary differential equations
texts” [2].

Instead of only one tank, there is a group, as it was stated by Groestch: “The multicom-
partment model is more challenging and requires the use of techniques of linear algebra” [2].
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In particular, the ODE system-associated matrix deserves to be studied since it determines the
qualitative behavior of the solutions.

In several previous papers and book chapters [3–6], MPs were studied from different points of
view. In the first paper [3], a particular MP with three compartments was proposed, and after
applying Laplace transform, this example was connected with important concepts in reactor
design, like the transference function. 2 years later, another work [4] analyzed more general
MPs in order to obtain characterization results independent of the internal geometry of the
tank system. In the third paper [5], the educative potential of MPs was studied, focusing on
inverse modeling problems. Finally, in a recent book chapter [6], results for MPs with and
without recirculation of fluids were analyzed, and other general results were obtained.

In all these works, a given MP is modeled through an ODE linear system, in which qualitative
properties (like stability and asymptotic stability) depend on the eigenvalues and eigenvectors
of the associated matrices, so-called MP-matrix.

Taking into account previous results about MP-matrices, and the new ones presented here, two
main conjectures can be proposed:

• All the solutions of a given MP are stable.

• If the MP corresponds to an open system, then the solutions are asymptotically stable.

In order to investigate if these conjectures—among others, introduced in the following sections
—are true or not, MP-matrices (i.e., square matrices associated to the ODE linear system that
models a given MP) should be deeply analyzed.

2. Nomenclature

In this section we introduce a specific terminology useful to allow understanding of the terms
properly.

In order to analyze MPs and MP-matrices, we begin by studying a problem already considered
in a previous book chapter [6], which involves a tank with five compartments, shown in
Figure 1.

In this scheme, C0 is the initial concentration (e.g., salt concentration in water at the entrance of
the tank system), Ci is the concentration in the ith compartment (i = 1,…,5), and Φ0 6¼ 0 is the
incoming and also outgoing flux.

For instance, if Φ1k is the flux that goes from the left (first) to the kth compartment (being k = 2,
3, 4) and V1 is the volume of the first container, then a mass balance gives the following ODE:

ð1Þ

The ODEs associated with the central compartments (i = 2, 3, 4) are simpler, since in each case,
there is only one incoming flux Φ1k (being k = 2, 3, 4) and a unique outgoing flux Φk5 (being
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k = 2, 3, 4). Once again, if Vk is the volume of the kth container, these equations can be written
as.

V2
dC2

dt
¼ Φ12C1 � Φ25C2, V3

dC3

dt
¼ Φ13C1 � Φ35C3, V4

dC4

dt
¼ Φ14C1 � Φ45C4 (2)

Finally, for the right (fifth) container, we have:

ð3Þ

If all these equations are put together, the following ODE system is obtained:

V1
dC1

dt
¼ Φ0C0 � Φ12 þ Φ13 þ Φ14ð ÞC1

V2
dC2

dt
¼ Φ12C1 � Φ25C2

V3
dC3

dt
¼ Φ13C1 � Φ35C3

V4
dC4

dt
¼ Φ14C1 � Φ45C4

V5
dC5

dt
¼ Φ25C2 þ Φ35C3 þ Φ45C4 � Φ0C5

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

(4)

After some algebraic manipulations, the corresponding mathematical model can be written as

, where.

C ¼

C1

C2

C3

C4

C5

0
BBBBBB@

1
CCCCCCA

and B ¼

Φ0=V1

0
0
0
0

0
BBBBBB@

1
CCCCCCA

(5)

Figure 1. A tank with five internal compartments.
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• All the solutions of a given MP are stable.

• If the MP corresponds to an open system, then the solutions are asymptotically stable.

In order to investigate if these conjectures—among others, introduced in the following sections
—are true or not, MP-matrices (i.e., square matrices associated to the ODE linear system that
models a given MP) should be deeply analyzed.

2. Nomenclature

In this section we introduce a specific terminology useful to allow understanding of the terms
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In order to analyze MPs and MP-matrices, we begin by studying a problem already considered
in a previous book chapter [6], which involves a tank with five compartments, shown in
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In this scheme, C0 is the initial concentration (e.g., salt concentration in water at the entrance of
the tank system), Ci is the concentration in the ith compartment (i = 1,…,5), and Φ0 6¼ 0 is the
incoming and also outgoing flux.

For instance, if Φ1k is the flux that goes from the left (first) to the kth compartment (being k = 2,
3, 4) and V1 is the volume of the first container, then a mass balance gives the following ODE:

ð1Þ

The ODEs associated with the central compartments (i = 2, 3, 4) are simpler, since in each case,
there is only one incoming flux Φ1k (being k = 2, 3, 4) and a unique outgoing flux Φk5 (being
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k = 2, 3, 4). Once again, if Vk is the volume of the kth container, these equations can be written
as.

V2
dC2

dt
¼ Φ12C1 � Φ25C2, V3

dC3

dt
¼ Φ13C1 � Φ35C3, V4

dC4

dt
¼ Φ14C1 � Φ45C4 (2)

Finally, for the right (fifth) container, we have:

ð3Þ

If all these equations are put together, the following ODE system is obtained:

V1
dC1

dt
¼ Φ0C0 � Φ12 þ Φ13 þ Φ14ð ÞC1

V2
dC2

dt
¼ Φ12C1 � Φ25C2

V3
dC3

dt
¼ Φ13C1 � Φ35C3

V4
dC4

dt
¼ Φ14C1 � Φ45C4

V5
dC5

dt
¼ Φ25C2 þ Φ35C3 þ Φ45C4 � Φ0C5

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

(4)

After some algebraic manipulations, the corresponding mathematical model can be written as

, where.

C ¼

C1

C2

C3

C4

C5

0
BBBBBB@

1
CCCCCCA

and B ¼

Φ0=V1

0
0
0
0

0
BBBBBB@

1
CCCCCCA

(5)

Figure 1. A tank with five internal compartments.
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The system-associated matrix (MP-matrix) is

A ¼

� Φ12 þ Φ13 þ Φ14ð Þ=V1 0 0 0 0

Φ12=V2 �Φ25=V2 0 0 0

Φ13=V3 0 �Φ35=V3 0 0

Φ14=V4 0 0 �Φ45=V4 0

0 Φ25=V5 Φ35=V5 Φ45=V5 �Φ0=V5

0
BBBBBBBBB@

1
CCCCCCCCCA

(6)

Hereafter, we will call MP-matrix to any ODE system-associated matrix related to a given MP,
like matrix A of Eq. (6).

In the previous example, the MP-matrix obviously depends on the numbers given to the
different containers. In that example it was possible to enumerate the compartments such that
the flux always goes from the ith compartment to the jth one, where . For instance, a
possible enumeration for this purpose is the one illustrated in Figure 1.

In general, if in a given MP it is possible to enumerate the containers such that the flux always
goes from the ith compartment to the jth one, with , then the MP will be considered as a
mixing problem without recirculation (MP-WR).

Now, let us analyze a different problem, where a couple of tanks are linked by all possible
connections between them, including recirculation from the second tank back to the first one,
as in Figure 2. This problem represents an interesting variation of an MP analyzed by Zill [7] in
his textbook, where the main difference is that this new MP has no incoming and/or outgoing
flux, i.e., it is a closed system.

If in a givenMP we have that
P

Φi ¼ 0, being Φi all the system incoming fluxes, and
P

Φk ¼ 0,
being Φk all the system outgoing fluxes, then it will be named MP closed system (MP-CS).
Otherwise, it will be an open system (MP-OS).

Taking into account the abovementioned nomenclature, the example considered in Figure 2
corresponds to an MP-CS, while the MP analyzed in Zill’s textbook [7] is an MP-OS, and both
are systems with recirculation.

Figure 2. Two tanks with recirculation and no incoming or outgoing fluxes.
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Finally, it is important to observe that in both examples (Figures 1 and 2), we have
P

Φi ¼
P

Φk,
being Φi all the system incoming fluxes and Φk the corresponding outgoing fluxes. This equation
must be satisfied, since the compartments are neither filled up nor emptied with time, at least for
the typical MPs’ real-life most interesting situations.

In that case all the compartment volumes remain constant, and so if in an MP the following
equation

P
Φi ¼

P
Φk (being Φi all the system incoming fluxes and Φk the corresponding

outgoing fluxes) is satisfied, it will refer to a mixing problem with constant volumes (MP-CV).

Taking into account all these terms, several previous results can be reformulated, as shown in
the next section.

3. Previous results revisited

In order to give some general results, it is convenient to consider two different situations: MP
without recirculation and MP with recirculation.

Considering again the example in Figure 1, it is possible to enumerate the compartments, such
that the flux always goes from the ith container to the jth one, being i < j, shown in brackets.

Analyzing the system (Eq. (4)), it is easy to observe that for the jth container, the ODE right

hand side is a linear combination of a subset of , and this result can be

extended straightforward. In fact, in a previous book chapter [6], it was proved that if in a
given MP the compartments can be enumerated such that there is no recirculation (i.e., if
there is no flux from compartment to compartment ), then the ODE corresponding to the jth
compartment will be of the form:

ð7Þ

being and

As a consequence, under the previous conditions, the corresponding ODE system has an
associated upper matrix.

Revisiting the ODE system (Eq. (4)), corresponding to Figure 1, it can be rewritten as

dC1

dt
¼ Φ0

V1
C0 � Φ12 þ Φ13 þ Φ14ð Þ

V1
C1

dC2

dt
¼ Φ12

V2
C1 � Φ25

V2
C2

dC3

dt
¼ Φ13

V3
C1 � Φ35

V3
C3

dC4

dt
¼ Φ14

V4
C1 � Φ45

V4
C4

dC5

dt
¼ Φ25

V5
C2 þ Φ35

V5
C3 þ Φ45

V5
C4 � Φ0

V5
C5

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

(8)
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The system-associated matrix (MP-matrix) is
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Hereafter, we will call MP-matrix to any ODE system-associated matrix related to a given MP,
like matrix A of Eq. (6).

In the previous example, the MP-matrix obviously depends on the numbers given to the
different containers. In that example it was possible to enumerate the compartments such that
the flux always goes from the ith compartment to the jth one, where . For instance, a
possible enumeration for this purpose is the one illustrated in Figure 1.

In general, if in a given MP it is possible to enumerate the containers such that the flux always
goes from the ith compartment to the jth one, with , then the MP will be considered as a
mixing problem without recirculation (MP-WR).
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If in a givenMP we have that
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being Φk all the system outgoing fluxes, then it will be named MP closed system (MP-CS).
Otherwise, it will be an open system (MP-OS).
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Finally, it is important to observe that in both examples (Figures 1 and 2), we have
P

Φi ¼
P

Φk,
being Φi all the system incoming fluxes and Φk the corresponding outgoing fluxes. This equation
must be satisfied, since the compartments are neither filled up nor emptied with time, at least for
the typical MPs’ real-life most interesting situations.

In that case all the compartment volumes remain constant, and so if in an MP the following
equation

P
Φi ¼

P
Φk (being Φi all the system incoming fluxes and Φk the corresponding

outgoing fluxes) is satisfied, it will refer to a mixing problem with constant volumes (MP-CV).

Taking into account all these terms, several previous results can be reformulated, as shown in
the next section.

3. Previous results revisited

In order to give some general results, it is convenient to consider two different situations: MP
without recirculation and MP with recirculation.

Considering again the example in Figure 1, it is possible to enumerate the compartments, such
that the flux always goes from the ith container to the jth one, being i < j, shown in brackets.

Analyzing the system (Eq. (4)), it is easy to observe that for the jth container, the ODE right

hand side is a linear combination of a subset of , and this result can be

extended straightforward. In fact, in a previous book chapter [6], it was proved that if in a
given MP the compartments can be enumerated such that there is no recirculation (i.e., if
there is no flux from compartment to compartment ), then the ODE corresponding to the jth
compartment will be of the form:

ð7Þ

being and

As a consequence, under the previous conditions, the corresponding ODE system has an
associated upper matrix.

Revisiting the ODE system (Eq. (4)), corresponding to Figure 1, it can be rewritten as

dC1

dt
¼ Φ0

V1
C0 � Φ12 þ Φ13 þ Φ14ð Þ

V1
C1

dC2

dt
¼ Φ12

V2
C1 � Φ25

V2
C2

dC3

dt
¼ Φ13

V3
C1 � Φ35

V3
C3

dC4

dt
¼ Φ14

V4
C1 � Φ45

V4
C4

dC5

dt
¼ Φ25

V5
C2 þ Φ35

V5
C3 þ Φ45

V5
C4 � Φ0

V5
C5

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

(8)
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It follows that for the jth compartment, the coefficient corresponding to can be written as

, where represents the sum of outgoing fluxes. This situation can be easily

generalized, since concentration only appears in the right hand side of the corresponding

ODE when a certain flux is leaving the tank. Combining this result with the previous one—
about the upper matrix—it is easy to observe that the ODE system has only negative eigen-

values of the form , for all

However, not all of these results can be extended to MPs with recirculation as will be analyzed
in the following subsection.

In previous works [4, 5], a “black box” system was analyzed (see Figure 3), in order to obtain a
necessary condition to be satisfied by any MP-matrix with any number of compartments and
unknown internal geometry. In Figure 3 and represent flux and concentration at the

input, and is also the output flux (since tanks neither fill up nor empty with time), and is
the final concentration. In this system there are compartments inside the black box with
volumes and concentrations , and recirculation fluxes may exist or not.

If all volumes remain constant, by performing a mass balance, it can be proved that.

ð9Þ

Then, Eq. (9) is obtained without any consideration of the internal geometry of the tank system
and can be easily verified in the previous example (see Figure 1). In fact, by adding the
equations of the ODE system (Eq. (4)), it follows straightforward that the condition given in
Eq. (9) is satisfied. The same conclusion can be drawn from other possible examples,
corresponding to open or closed MPs, with or without recirculation. For instance, in the case
schematized in Figure 2, the ODE system can be written as follows:

Figure 3. A “black box” tank system.
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dC1

dt
¼ �Φ12

V1
C1 þ Φ21

V1
C2

dC2

dt
¼ Φ12

V2
C1 � Φ21

V2
C2

8>><
>>:

(10)

Operating with these equations, it can be proved that V1
dC1
dt þ V2

dC2
dt ¼ 0, which satisfies con-

dition Eq. (9) since is zero.

The previous result can be generalized as follows: in a given MP—with or without
recirculation—with input and output concentrations and , respectively, and being the
incoming and outgoing flux, then, independently of the internal geometry, the condition given

by Eq. (9) is satisfied.

An analogous conditionmay be used to know if a given matrix may or may not be anMP-matrix.
For this purpose, let us consider theMP-matrix , associated to the ODE system given by Eq. (10):

A ¼
�Φ12

V1

Φ21

V1

Φ12

V2
�Φ21

V2

0
BB@

1
CCA (11)

It is easy to observe that

V1 V2ð Þ
�Φ12

V1

Φ21

V1

Φ12

V2
�Φ21

V2

0
BB@

1
CCA ¼ 0 0ð Þ (12)

This equation can be written as VTA ¼ 0, being V the volumes’ vector.

If there exists an incoming (and outgoing) flux , the last result will change. For instance,
if we compute VTA, being V ¼ V1 V2 V3 V4 V5ð Þ the volumes’ vector and A the MP-
matrix corresponding to Figure 1, the result will be

VTA ¼ 0 0 0 0 �Φ0ð Þ (13)

It can be noted that Eq. (12) and Eq. (13) are particular cases of the following result: in a given
MP—with or without recirculation—with an incoming and outgoing flux , the condi-

tion VTA ¼ 0 ⋯ 0 �Φ0ð Þ is satisfied, being V ¼ V1 V2 ⋯ Vnð Þ the volumes’ vector
and A the MP-matrix.

Then, independently of the internal geometry of the system, the following condition is satisfied:

VTA ¼ 0 ⋯ 0 �Φ0ð Þ (14)
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It follows that for the jth compartment, the coefficient corresponding to can be written as

, where represents the sum of outgoing fluxes. This situation can be easily

generalized, since concentration only appears in the right hand side of the corresponding

ODE when a certain flux is leaving the tank. Combining this result with the previous one—
about the upper matrix—it is easy to observe that the ODE system has only negative eigen-

values of the form , for all

However, not all of these results can be extended to MPs with recirculation as will be analyzed
in the following subsection.

In previous works [4, 5], a “black box” system was analyzed (see Figure 3), in order to obtain a
necessary condition to be satisfied by any MP-matrix with any number of compartments and
unknown internal geometry. In Figure 3 and represent flux and concentration at the

input, and is also the output flux (since tanks neither fill up nor empty with time), and is
the final concentration. In this system there are compartments inside the black box with
volumes and concentrations , and recirculation fluxes may exist or not.

If all volumes remain constant, by performing a mass balance, it can be proved that.

ð9Þ

Then, Eq. (9) is obtained without any consideration of the internal geometry of the tank system
and can be easily verified in the previous example (see Figure 1). In fact, by adding the
equations of the ODE system (Eq. (4)), it follows straightforward that the condition given in
Eq. (9) is satisfied. The same conclusion can be drawn from other possible examples,
corresponding to open or closed MPs, with or without recirculation. For instance, in the case
schematized in Figure 2, the ODE system can be written as follows:

Figure 3. A “black box” tank system.
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dC1

dt
¼ �Φ12

V1
C1 þ Φ21

V1
C2

dC2

dt
¼ Φ12

V2
C1 � Φ21

V2
C2

8>><
>>:

(10)

Operating with these equations, it can be proved that V1
dC1
dt þ V2

dC2
dt ¼ 0, which satisfies con-

dition Eq. (9) since is zero.

The previous result can be generalized as follows: in a given MP—with or without
recirculation—with input and output concentrations and , respectively, and being the
incoming and outgoing flux, then, independently of the internal geometry, the condition given

by Eq. (9) is satisfied.

An analogous conditionmay be used to know if a given matrix may or may not be anMP-matrix.
For this purpose, let us consider theMP-matrix , associated to the ODE system given by Eq. (10):

A ¼
�Φ12

V1

Φ21

V1

Φ12

V2
�Φ21

V2

0
BB@

1
CCA (11)

It is easy to observe that

V1 V2ð Þ
�Φ12

V1

Φ21

V1

Φ12

V2
�Φ21

V2

0
BB@

1
CCA ¼ 0 0ð Þ (12)

This equation can be written as VTA ¼ 0, being V the volumes’ vector.

If there exists an incoming (and outgoing) flux , the last result will change. For instance,
if we compute VTA, being V ¼ V1 V2 V3 V4 V5ð Þ the volumes’ vector and A the MP-
matrix corresponding to Figure 1, the result will be

VTA ¼ 0 0 0 0 �Φ0ð Þ (13)

It can be noted that Eq. (12) and Eq. (13) are particular cases of the following result: in a given
MP—with or without recirculation—with an incoming and outgoing flux , the condi-

tion VTA ¼ 0 ⋯ 0 �Φ0ð Þ is satisfied, being V ¼ V1 V2 ⋯ Vnð Þ the volumes’ vector
and A the MP-matrix.

Then, independently of the internal geometry of the system, the following condition is satisfied:

VTA ¼ 0 ⋯ 0 �Φ0ð Þ (14)
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Now, let us consider again the MP-matrix , corresponding to the system of Figure 2:

A ¼
�Φ12

V1

Φ21

V1

Φ12

V2
�Φ21

V2

0
BB@

1
CCA (15)

If is slightly changed only in its first entry, we have the following matrix:

Aε ¼
�Φ12

V1
þ ε

Φ21

V1

Φ12

V2
�Φ21

V2

0
BB@

1
CCA (16)

It is easy to observe that this new matrix will not satisfy the condition given by Eq. (14).
Moreover, there is no MP associated to this matrix , since this condition must be satisfied
independently of the internal geometry of the system.

As a first consequence, not every square matrix is an MP-matrix. A second observation is that if
a given MP-matrix is slightly changed, the result is not necessarily a new MP-matrix.

Furthermore, if volumes and fluxes are multiplied by a scale factor, then the MP-matrix
Eq. (11) remains unchanged, and so, a scale factor in geometry, not in concentrations, produces
exactly the same mathematical model.

After interpreting the previous results, we note that when working with MP-matrices, exis-
tence, uniqueness, and stability questions for the inverse-modeling problem have negative
answers.

The same situation can be observed in many other inverse problems [2], and it is not an
exclusive property of compartment analysis.

4. Some considerations about terminology

We start this section explaining three simple and intuitive terms.

Firstly, we will consider that an input tank is a tank with one or more incoming fluxes. Secondly,
a tank with one or more outgoing fluxes will be called output tank. Finally, we will say that an
internal tank is a tank without incoming and/or outgoing fluxes to or from outside the system.

Taking into account the previous nomenclature, if Φki ∀k ¼ 1, 2,⋯, m represent all the ith tank
incoming fluxes, then

P
Φki 6¼ 0 for an input tank, and in the same way, if Φjk ∀k ¼ 1, 2,⋯, m

represent all the jth tank outgoing fluxes, then
P

Φjk 6¼ 0 for an output tank.

Input and output tanks are not mutually exclusive. For instance, in Figure 4, the first tank is an
input tank, and at same time, it is an output tank, since it has an incoming flux Φ0 from outside
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the system and it also has an outgoing flux Φ0 that leaves the tank system. It should be noted
that in Figure 4, the second tank is an internal one.

Another interesting example was proposed by Boelkins et al. [8]. The authors considered a
three-tank system connected such that each tank contains an independent inflow that drops
salt solution to it, each individual tank has a separated outflow, and each one is connected to
the rest of them with inflow and outflow pipes. In this case, all tanks are input and output
ones, and there is no internal tank.

It is important to mention that those types of tanks or compartments play different roles in the
ODE-associated system and also—as a consequence—in the corresponding MP-matrix. In
order to show this fact, let us examine a three-tank system with all the possible connections
among them, as in Figure 5.

As a first remark, Figure 5 system has recirculation—unless Φ21 ¼ Φ32 ¼ Φ31 ¼ 0, which rep-
resents a trivial case—and consequently, an associated upper MP-matrix will not be expected
for this problem.

In the mass balance for the first tank—which is an input one—a term Φ0C0 must be considered.
In the same way, in the mass balance of the third tank—which is an output one—a term Φ0C3

will appear. These two terms will not be part of the second equation of the ODE system, which
can be formulated as follows:

ð17Þ

Figure 4. A tank system with recirculation and with incoming and outgoing fluxes.
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Now, let us consider again the MP-matrix , corresponding to the system of Figure 2:

A ¼
�Φ12

V1

Φ21

V1

Φ12

V2
�Φ21

V2

0
BB@

1
CCA (15)

If is slightly changed only in its first entry, we have the following matrix:
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1
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After interpreting the previous results, we note that when working with MP-matrices, exis-
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answers.

The same situation can be observed in many other inverse problems [2], and it is not an
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We start this section explaining three simple and intuitive terms.
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a tank with one or more outgoing fluxes will be called output tank. Finally, we will say that an
internal tank is a tank without incoming and/or outgoing fluxes to or from outside the system.

Taking into account the previous nomenclature, if Φki ∀k ¼ 1, 2,⋯, m represent all the ith tank
incoming fluxes, then
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Φki 6¼ 0 for an input tank, and in the same way, if Φjk ∀k ¼ 1, 2,⋯, m

represent all the jth tank outgoing fluxes, then
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Φjk 6¼ 0 for an output tank.

Input and output tanks are not mutually exclusive. For instance, in Figure 4, the first tank is an
input tank, and at same time, it is an output tank, since it has an incoming flux Φ0 from outside
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the system and it also has an outgoing flux Φ0 that leaves the tank system. It should be noted
that in Figure 4, the second tank is an internal one.

Another interesting example was proposed by Boelkins et al. [8]. The authors considered a
three-tank system connected such that each tank contains an independent inflow that drops
salt solution to it, each individual tank has a separated outflow, and each one is connected to
the rest of them with inflow and outflow pipes. In this case, all tanks are input and output
ones, and there is no internal tank.

It is important to mention that those types of tanks or compartments play different roles in the
ODE-associated system and also—as a consequence—in the corresponding MP-matrix. In
order to show this fact, let us examine a three-tank system with all the possible connections
among them, as in Figure 5.

As a first remark, Figure 5 system has recirculation—unless Φ21 ¼ Φ32 ¼ Φ31 ¼ 0, which rep-
resents a trivial case—and consequently, an associated upper MP-matrix will not be expected
for this problem.

In the mass balance for the first tank—which is an input one—a term Φ0C0 must be considered.
In the same way, in the mass balance of the third tank—which is an output one—a term Φ0C3

will appear. These two terms will not be part of the second equation of the ODE system, which
can be formulated as follows:

ð17Þ

Figure 4. A tank system with recirculation and with incoming and outgoing fluxes.
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Once again, the ODE system can be written as , where the MP-matrix is:

ð18Þ

In the previous ODE system, the independent vector is:

ð19Þ

It is easy to observe that the outgoing flux Φ0 only appears in the last entry of the MP-matrix
and the incoming flux Φ0 only is involved in the first entry of vector B. These facts—particularly
the first one—are relevant when applying the Gershgorin circle theorem, which will be exposed
in the next section.

5. The Gershgorin circle theorem

The Gershgorin circle theorem first version was published by S. A. Gershgorin in 1931 [9]. This
theorem may be used to bind the spectrum of a complex matrix, and its statement is the
following:

Figure 5. Three tanks with all the possible connections.

Matrix Theory-Applications and Theorems50

Theorem (Gershgorin)

If is an matrix, with entries being , and is the sum of

the non-diagonal entry modules in the th row, then every eigenvalue of lies within at least

one of the closed disks , called Gershgorin disks.

This theorem was widely used in previous book chapters [6, 10, 11] in order to obtain new
results about matrices corresponding to chemical problems.

Here, the main purpose is to apply this theorem to MP-matrices as a method to bind their
eigenvalues, depending on the characteristics of the MP ODE system, and, even more, the
compartment considered.

For instance, if we consider the MP corresponding to Figure 5, the first ODE of Eq. (17) can be

expressed as dC1
dt ¼ Φ0

V1
C0 þ Φ21

V1
C2 þ Φ31

V1
C3 � Φ12þΦ13ð Þ

V1
C1

This equation—which obviously corresponds to an input tank—gives the first row of the MP-

matrix (Eq. (18)) that can be written as � Φ12 þ Φ13ð Þ
V1

Φ21

V1

Φ31

V1

� �
.

The Gershgorin disk corresponding to this row is centered at a11 ¼ � Φ12þΦ13ð Þ
V1

< 0 with radius

R1 ¼ Φ21þΦ31
V1

.

Now, if a flux balance is performed in this input tank, we have this equation:
Φ0 þ Φ21 þ Φ31 ¼ Φ12 þ Φ13, and then Φ21 þ Φ31 < Φ12 þ Φ13 (at least if we consider the
nontrivial case Φ0 > 0). As a consequence of this fact, a11j j > R1, and the Gershgorin disk will
look like the one schematized in Figure 6.

Now, if the second ODE of Eq. (17) is considered, this equation can be written as
dC2
dt ¼ Φ12

V2
C1 þ Φ32

V2
C3 � Φ21þΦ23ð Þ

V2
C2.

This internal tank equation corresponds to the second row of the MP-matrix (Eq. (18)):
Φ12

V2
� Φ21 þ Φ23ð Þ

V2

Φ32

V2

� �
.

Figure 6. The Gershgorin disk corresponding to an input tank.
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Once again, the ODE system can be written as , where the MP-matrix is:

ð18Þ

In the previous ODE system, the independent vector is:

ð19Þ

It is easy to observe that the outgoing flux Φ0 only appears in the last entry of the MP-matrix
and the incoming flux Φ0 only is involved in the first entry of vector B. These facts—particularly
the first one—are relevant when applying the Gershgorin circle theorem, which will be exposed
in the next section.

5. The Gershgorin circle theorem

The Gershgorin circle theorem first version was published by S. A. Gershgorin in 1931 [9]. This
theorem may be used to bind the spectrum of a complex matrix, and its statement is the
following:

Figure 5. Three tanks with all the possible connections.
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Theorem (Gershgorin)

If is an matrix, with entries being , and is the sum of

the non-diagonal entry modules in the th row, then every eigenvalue of lies within at least

one of the closed disks , called Gershgorin disks.

This theorem was widely used in previous book chapters [6, 10, 11] in order to obtain new
results about matrices corresponding to chemical problems.

Here, the main purpose is to apply this theorem to MP-matrices as a method to bind their
eigenvalues, depending on the characteristics of the MP ODE system, and, even more, the
compartment considered.

For instance, if we consider the MP corresponding to Figure 5, the first ODE of Eq. (17) can be

expressed as dC1
dt ¼ Φ0

V1
C0 þ Φ21

V1
C2 þ Φ31

V1
C3 � Φ12þΦ13ð Þ

V1
C1

This equation—which obviously corresponds to an input tank—gives the first row of the MP-

matrix (Eq. (18)) that can be written as � Φ12 þ Φ13ð Þ
V1

Φ21

V1

Φ31

V1

� �
.

The Gershgorin disk corresponding to this row is centered at a11 ¼ � Φ12þΦ13ð Þ
V1

< 0 with radius

R1 ¼ Φ21þΦ31
V1

.

Now, if a flux balance is performed in this input tank, we have this equation:
Φ0 þ Φ21 þ Φ31 ¼ Φ12 þ Φ13, and then Φ21 þ Φ31 < Φ12 þ Φ13 (at least if we consider the
nontrivial case Φ0 > 0). As a consequence of this fact, a11j j > R1, and the Gershgorin disk will
look like the one schematized in Figure 6.

Now, if the second ODE of Eq. (17) is considered, this equation can be written as
dC2
dt ¼ Φ12

V2
C1 þ Φ32

V2
C3 � Φ21þΦ23ð Þ

V2
C2.

This internal tank equation corresponds to the second row of the MP-matrix (Eq. (18)):
Φ12

V2
� Φ21 þ Φ23ð Þ

V2

Φ32

V2

� �
.

Figure 6. The Gershgorin disk corresponding to an input tank.
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The Gershgorin disk corresponding to this row is centered at a22 ¼ � Φ21þΦ23ð Þ
V2

< 0 with radius

R2 ¼ Φ12þΦ32
V2

.

Now, if a flux balance is performed in this internal tank, we have this equation: Φ12 þ Φ32

¼ Φ21 þ Φ23, and then a22j j ¼ R2, and the corresponding Gershgorin disk will look like the one
schematized in Figure 7.

Finally, if the third ODE of Eq. (17) is considered, this equation can be written as
dC3
dt ¼ Φ13

V3
C1 þ Φ23

V3
C2 � Φ31þΦ32þΦ0ð Þ

V3
C3.

This output tank equation corresponds to the third row of the MP-matrix Eq. (18):
Φ13

V3

Φ23

V3
� Φ31 þ Φ32 þ Φ0ð Þ

V3

� �
.

The Gershgorin disk corresponding to this row is centered at the point a33 ¼ � Φ31þΦ32þΦ0ð Þ
V3

< 0

with radius R3 ¼ Φ13þΦ23
V3

.

The flux balance in this case gives Φ13 þ Φ23 ¼ Φ31 þ Φ32 þ Φ0, and then a33j j ¼ R3, and the
corresponding Gershgorin disk will look like as the one schematized in Figure 7.

Taking into account all these results, the Gershgorin circles for the MP of Figure 5 are shown in
Figure 8.

Figure 7. The Gershgorin disk corresponding to an internal tank.

Figure 8. Gershgorin circles for a three-tank system with recirculation.
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Since every eigenvalue lies within at least one of the Gershgorin disks, it follows that

In the following section, these results—among others—will be generalized.

6. The general form of MP-matrices and new results

As stated in Section 3, if there is no recirculation, then the ODE system has only negative

eigenvalues of the form , for all Then, in this case all the

corresponding ODE system solutions will be asymptotically stable.

In a previous work [6], it was proved that in an open MP, with three or less compartments, with
or without recirculation, all the corresponding ODE system solutions are asymptotically stable.

It is important to analyze if this result can be generalized or not, when closed systems and/or
tanks with more than three compartments are considered. For this purpose, we will start with
the following theorem.

Theorem 1

In an open system, if the ith tank is an input one, then the diagonal entry of the ith row is aii < 0

and aiij j > Ri being the sum of the non-diagonal entry modules of that row.

Proof

If Φai,Φbi,⋯,Φni are the incoming fluxes from other tanks of the system, ΦiA,ΦiB,⋯,ΦiJ are the

outgoing fluxes, and Φ1
0,Φ

2
0,⋯,Φs

0 are the incoming fluxes from outside the system, then the
corresponding ODE can be written as

Vi
dCi

dt
¼ ΦaiCa þ…þ ΦniCn � ΦiA þ…þ ΦiJ

� �
Ci þ Φ1

0C0 þ…þ Φs
0Cs (20)

This equation gives.

dCi

dt
¼ Φai

Vi
Ca þ…þ Φni

Vi
Cn �

P
Φij

Vi
Ci þ

P
Φp

0

Vi
Cp (21)

Eq. (20) implies that the ith row of the MP-matrix has entries: Φki
Vi

for k 6¼ i , �
P

Φij

Vi
for k ¼ i, andP

Φp
0

Vi
Cp is part of the independent term.

A flux balance gives
P

Φki þ
P

Φp
0 ¼

P
Φij, which implies

P
Φki <

P
Φij, and then:

aii ¼ �
P

Φij

Vi
< 0 and also Ri ¼

P
Φki

Vi
<

P
Φij

Vi
¼ aiij j, which proves the theorem.
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The Gershgorin disk corresponding to this row is centered at a22 ¼ � Φ21þΦ23ð Þ
V2

< 0 with radius

R2 ¼ Φ12þΦ32
V2

.

Now, if a flux balance is performed in this internal tank, we have this equation: Φ12 þ Φ32

¼ Φ21 þ Φ23, and then a22j j ¼ R2, and the corresponding Gershgorin disk will look like the one
schematized in Figure 7.

Finally, if the third ODE of Eq. (17) is considered, this equation can be written as
dC3
dt ¼ Φ13

V3
C1 þ Φ23

V3
C2 � Φ31þΦ32þΦ0ð Þ

V3
C3.

This output tank equation corresponds to the third row of the MP-matrix Eq. (18):
Φ13

V3

Φ23

V3
� Φ31 þ Φ32 þ Φ0ð Þ

V3

� �
.

The Gershgorin disk corresponding to this row is centered at the point a33 ¼ � Φ31þΦ32þΦ0ð Þ
V3

< 0

with radius R3 ¼ Φ13þΦ23
V3

.

The flux balance in this case gives Φ13 þ Φ23 ¼ Φ31 þ Φ32 þ Φ0, and then a33j j ¼ R3, and the
corresponding Gershgorin disk will look like as the one schematized in Figure 7.

Taking into account all these results, the Gershgorin circles for the MP of Figure 5 are shown in
Figure 8.

Figure 7. The Gershgorin disk corresponding to an internal tank.

Figure 8. Gershgorin circles for a three-tank system with recirculation.
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Since every eigenvalue lies within at least one of the Gershgorin disks, it follows that

In the following section, these results—among others—will be generalized.

6. The general form of MP-matrices and new results

As stated in Section 3, if there is no recirculation, then the ODE system has only negative

eigenvalues of the form , for all Then, in this case all the

corresponding ODE system solutions will be asymptotically stable.

In a previous work [6], it was proved that in an open MP, with three or less compartments, with
or without recirculation, all the corresponding ODE system solutions are asymptotically stable.

It is important to analyze if this result can be generalized or not, when closed systems and/or
tanks with more than three compartments are considered. For this purpose, we will start with
the following theorem.

Theorem 1

In an open system, if the ith tank is an input one, then the diagonal entry of the ith row is aii < 0

and aiij j > Ri being the sum of the non-diagonal entry modules of that row.

Proof

If Φai,Φbi,⋯,Φni are the incoming fluxes from other tanks of the system, ΦiA,ΦiB,⋯,ΦiJ are the

outgoing fluxes, and Φ1
0,Φ

2
0,⋯,Φs

0 are the incoming fluxes from outside the system, then the
corresponding ODE can be written as

Vi
dCi

dt
¼ ΦaiCa þ…þ ΦniCn � ΦiA þ…þ ΦiJ

� �
Ci þ Φ1

0C0 þ…þ Φs
0Cs (20)

This equation gives.

dCi

dt
¼ Φai

Vi
Ca þ…þ Φni

Vi
Cn �

P
Φij

Vi
Ci þ

P
Φp

0

Vi
Cp (21)

Eq. (20) implies that the ith row of the MP-matrix has entries: Φki
Vi

for k 6¼ i , �
P

Φij

Vi
for k ¼ i, andP

Φp
0

Vi
Cp is part of the independent term.

A flux balance gives
P

Φki þ
P

Φp
0 ¼

P
Φij, which implies

P
Φki <

P
Φij, and then:

aii ¼ �
P

Φij

Vi
< 0 and also Ri ¼

P
Φki

Vi
<

P
Φij

Vi
¼ aiij j, which proves the theorem.
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Corollary 1

In an open system, being the ith tank an input one, the Gershgorin circle corresponding to the
ith row looks like the disk in Figure 6.

Corollary 2

If in an open system, all are input tanks, all the eigenvalues satisfy the condition Re λið Þ < 0,
and the ODE solutions are asymptotically stable.

Theorem 2

In an open system, if the ith tank is not an input one, then the diagonal entry of the ith row is

aii < 0 and aiij j ¼ Ri being the sum of the non-diagonal entry modules of that row.

Proof

If Φai,Φbi,⋯,Φni are the incoming fluxes from other tanks (a, b,⋯, n) of the MP system,
ΦiA,ΦiB,⋯,ΦiJ are the outgoing fluxes to other tanks (A, B,⋯, J), and Φ1

i ,Φ
2
i ,⋯,Φs

i are the
fluxes from the ith tank to outside the system, then the corresponding ODE can be written as

Vi
dCi

dt
¼ ΦaiCa þ…þ ΦniCn � ΦiA þ…þ ΦiJ

� �
Ci � Φ1

i Ci �…� Φs
iCi (22)

This equation gives:

dCi

dt
¼ Φai

Vi
Ca þ…þ Φni

Vi
Cn �

P
Φij þ

P
Φp

i

Vi
Ci (23)

Eq. (22) implies that the ith row of the MP-matrix has entries Φki
Vi

for k 6¼ i and �
P

Φijþ
P

Φp
i

Vi
for

k ¼ i, and this equation does not contribute to the independent term.

In this case a flux balance gives the following equation
P

Φki ¼
P

Φij þ
P

Φp
i , then

aii ¼ �
P

Φijþ
P

Φp
i

Vi
< 0, and also Ri ¼

P
Φki

Vi
¼
P

Φijþ
P

Φp
i

Vi
¼ aiij j, and the theorem is proved.

Corollary 3

In an open system, if the ith tank is not an input one, the Gershgorin circle corresponding to the
ith row looks like the disk in Figure 7.

Corollary 4

In an open system, the Gershgorin disks look like those of Figure 8.

As a consequence of the previous results, the following corollary can be stated.

Corollary 5

In an open system with input and non-input tanks, all the eigenvalues satisfy the condition
Re λið Þ ≤ 0.
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Independently of the previous results, it is easy to observe that all the solutions corresponding
to the eigenvalues with Re λið Þ < 0 tend to vanish when t ! þ∞.

For this purpose, when analyzing eigenvalues with Re λið Þ < 0, there are two cases to be
considered: λi ∈ℜ and λi∉ℜ .

In the first case, the corresponding ODE solutions are a linear combination of the functions
exp �λitð Þ; texp �λitð Þ; t2exp �λitð Þ;…; tqexp �λitð Þ� �

, where the number q depends on the
algebraic and geometric multiplicity of λi (i.e., AM λið Þ and GM λið Þ). Taking into account that
λi < 0, it follows that tnexp �λitð Þ !

t!þ∞
0, ∀n ¼ 0, 1,…, q.

In the second case—which really happens, as it will be observed later—we have λi ¼ aþ bi ∉ℜ
(with a < 0, b 6¼ 0). The ODE solutions are a linear combination of exp �atð Þ cos btð Þ; exp �atð Þ�
sin btð Þ;…; tqexp �atð Þ cos btð Þ; tqexp �atð Þ sin btð Þg, where the number q depends on AM λið Þ
and GM λið Þ as in the other case. It is easy to prove that tnexp �atð Þ cos btð Þ !

t!þ∞
0 and

tnexp �atð Þ sin btð Þ !
t!þ∞

0, ∀n ¼ 0, 1,…, q, since a < 0 .

According to the position of the Gershgorin disks for an MP-matrix (see Figure 8), the ODE
solutions corresponding to an eigenvalue λi, with Re λið Þ ¼ 0, can be analyzed.

For this purpose it is important to observe that if an eigenvalue λi satisfies Re λið Þ ¼ 0, then it
must be λi ¼ 0, since the Gershgorin disks look like those in Figure 8.

In this case the ODE solutions are a linear combination of the following functions:
exp �0tð Þ; texp �0tð Þ; t2exp �0tð Þ;…; tqexp �0tð Þ� � ¼ 1; t; t2;…; tq

� �
, where the number

q depends on AM 0ð Þ and GM 0ð Þ. In other words, the corresponding solutions are polynomial,
and so, they will not tend to vanish nor remain bounded when t ! þ∞, unless AM 0ð Þ ¼ MG 0ð Þ,
and the polynomial becomes a constant.

Considering all these results, it is obvious that the stability of the ODE system solutions will
depend exclusively on AM 0ð Þ and GM 0ð Þ.

7. Several questions and a conjecture

In the previous section, some particular cases with λi ¼ 0 and/or λi ¼ aþ bi ∉ℜ (with
a < 0, b 6¼ 0) were considered. A first question to analyze is if there exists an MP that satisfies
any of these conditions. For this purpose, let us consider the closed MP of Figure 9, in which

ODE system can be written as , and the corresponding MP-matrix is

�a 0 a
b �b 0
0 c �c

0
B@

1
CA, being a ¼ Φ

V1
, b ¼ Φ

V2
, and c ¼ Φ

V3
. If Φ and Vi are chosen such that a ¼ 1,
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Corollary 1

In an open system, being the ith tank an input one, the Gershgorin circle corresponding to the
ith row looks like the disk in Figure 6.

Corollary 2

If in an open system, all are input tanks, all the eigenvalues satisfy the condition Re λið Þ < 0,
and the ODE solutions are asymptotically stable.

Theorem 2

In an open system, if the ith tank is not an input one, then the diagonal entry of the ith row is

aii < 0 and aiij j ¼ Ri being the sum of the non-diagonal entry modules of that row.

Proof

If Φai,Φbi,⋯,Φni are the incoming fluxes from other tanks (a, b,⋯, n) of the MP system,
ΦiA,ΦiB,⋯,ΦiJ are the outgoing fluxes to other tanks (A, B,⋯, J), and Φ1

i ,Φ
2
i ,⋯,Φs

i are the
fluxes from the ith tank to outside the system, then the corresponding ODE can be written as

Vi
dCi

dt
¼ ΦaiCa þ…þ ΦniCn � ΦiA þ…þ ΦiJ

� �
Ci � Φ1

i Ci �…� Φs
iCi (22)

This equation gives:

dCi

dt
¼ Φai

Vi
Ca þ…þ Φni

Vi
Cn �

P
Φij þ

P
Φp

i

Vi
Ci (23)

Eq. (22) implies that the ith row of the MP-matrix has entries Φki
Vi

for k 6¼ i and �
P

Φijþ
P

Φp
i

Vi
for

k ¼ i, and this equation does not contribute to the independent term.

In this case a flux balance gives the following equation
P

Φki ¼
P

Φij þ
P

Φp
i , then

aii ¼ �
P

Φijþ
P

Φp
i

Vi
< 0, and also Ri ¼

P
Φki

Vi
¼
P

Φijþ
P

Φp
i

Vi
¼ aiij j, and the theorem is proved.

Corollary 3

In an open system, if the ith tank is not an input one, the Gershgorin circle corresponding to the
ith row looks like the disk in Figure 7.

Corollary 4

In an open system, the Gershgorin disks look like those of Figure 8.

As a consequence of the previous results, the following corollary can be stated.

Corollary 5

In an open system with input and non-input tanks, all the eigenvalues satisfy the condition
Re λið Þ ≤ 0.
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Independently of the previous results, it is easy to observe that all the solutions corresponding
to the eigenvalues with Re λið Þ < 0 tend to vanish when t ! þ∞.

For this purpose, when analyzing eigenvalues with Re λið Þ < 0, there are two cases to be
considered: λi ∈ℜ and λi∉ℜ .

In the first case, the corresponding ODE solutions are a linear combination of the functions
exp �λitð Þ; texp �λitð Þ; t2exp �λitð Þ;…; tqexp �λitð Þ� �

, where the number q depends on the
algebraic and geometric multiplicity of λi (i.e., AM λið Þ and GM λið Þ). Taking into account that
λi < 0, it follows that tnexp �λitð Þ !

t!þ∞
0, ∀n ¼ 0, 1,…, q.

In the second case—which really happens, as it will be observed later—we have λi ¼ aþ bi ∉ℜ
(with a < 0, b 6¼ 0). The ODE solutions are a linear combination of exp �atð Þ cos btð Þ; exp �atð Þ�
sin btð Þ;…; tqexp �atð Þ cos btð Þ; tqexp �atð Þ sin btð Þg, where the number q depends on AM λið Þ
and GM λið Þ as in the other case. It is easy to prove that tnexp �atð Þ cos btð Þ !

t!þ∞
0 and

tnexp �atð Þ sin btð Þ !
t!þ∞

0, ∀n ¼ 0, 1,…, q, since a < 0 .

According to the position of the Gershgorin disks for an MP-matrix (see Figure 8), the ODE
solutions corresponding to an eigenvalue λi, with Re λið Þ ¼ 0, can be analyzed.

For this purpose it is important to observe that if an eigenvalue λi satisfies Re λið Þ ¼ 0, then it
must be λi ¼ 0, since the Gershgorin disks look like those in Figure 8.

In this case the ODE solutions are a linear combination of the following functions:
exp �0tð Þ; texp �0tð Þ; t2exp �0tð Þ;…; tqexp �0tð Þ� � ¼ 1; t; t2;…; tq

� �
, where the number

q depends on AM 0ð Þ and GM 0ð Þ. In other words, the corresponding solutions are polynomial,
and so, they will not tend to vanish nor remain bounded when t ! þ∞, unless AM 0ð Þ ¼ MG 0ð Þ,
and the polynomial becomes a constant.

Considering all these results, it is obvious that the stability of the ODE system solutions will
depend exclusively on AM 0ð Þ and GM 0ð Þ.

7. Several questions and a conjecture

In the previous section, some particular cases with λi ¼ 0 and/or λi ¼ aþ bi ∉ℜ (with
a < 0, b 6¼ 0) were considered. A first question to analyze is if there exists an MP that satisfies
any of these conditions. For this purpose, let us consider the closed MP of Figure 9, in which

ODE system can be written as , and the corresponding MP-matrix is

�a 0 a
b �b 0
0 c �c

0
B@

1
CA, being a ¼ Φ

V1
, b ¼ Φ

V2
, and c ¼ Φ

V3
. If Φ and Vi are chosen such that a ¼ 1,
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b ¼ 2, and c ¼ 3, it is easy to show that the eigenvalues are λ1 ¼ 0 and λ2,3 ¼ �3� i
ffiffiffi
2

p
, which

prove that null and/or complex eigenvalues are possible.

Other questions are not so simple like the previous one. The next two examples propose
challenging problems that deserve to be studied:

Question 1:

Is it possible to find an MP-matrix with an eigenvalue λi ¼ 0 such that AM 0ð Þ > 1?

Question 2:

Is it possible to find an MP-matrix such that AM 0ð Þ > GM 0ð Þ?
Question 3:

Is it possible to find an MP-matrix with complex eigenvalues in an open system?

Finally, it is interesting to observe that all cases analyzed here with λi ¼ 0 correspond to closed
systems. Moreover, in a previous book chapter [6], it was proved that Re λið Þ ≤ 0 , ∀i, in any MP
open system with three tanks or less. Taking into account all these facts, it can be conjectured
that in an open system, all the MP-matrix eigenvalues have negative real part and as a
consequence, all the solutions are asymptotically stable.

8. Conclusions

Mixing problems are interesting sources for applied research in mathematical modeling, ODE,
and linear algebra, and—as it was shown—their behavior depends on how they are connected.
It has been proved that null eigenvalues are not expected in open systems with three or less
components, and is a general conclusion for open MP-matrices that can be
obtained by applying the Gershgorin circle theorem.

As a final remark, all the MP differential equation systems considered in this chapter have
stable or asymptotically stable solutions. Nevertheless, this situation may change depending

Figure 9. Three tanks with all the possible connections.
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on the answers to the questions and the conjecture presented in the last section, giving a
challenging proposal for further research on this topic.
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b ¼ 2, and c ¼ 3, it is easy to show that the eigenvalues are λ1 ¼ 0 and λ2,3 ¼ �3� i
ffiffiffi
2

p
, which

prove that null and/or complex eigenvalues are possible.

Other questions are not so simple like the previous one. The next two examples propose
challenging problems that deserve to be studied:

Question 1:

Is it possible to find an MP-matrix with an eigenvalue λi ¼ 0 such that AM 0ð Þ > 1?

Question 2:

Is it possible to find an MP-matrix such that AM 0ð Þ > GM 0ð Þ?
Question 3:

Is it possible to find an MP-matrix with complex eigenvalues in an open system?

Finally, it is interesting to observe that all cases analyzed here with λi ¼ 0 correspond to closed
systems. Moreover, in a previous book chapter [6], it was proved that Re λið Þ ≤ 0 , ∀i, in any MP
open system with three tanks or less. Taking into account all these facts, it can be conjectured
that in an open system, all the MP-matrix eigenvalues have negative real part and as a
consequence, all the solutions are asymptotically stable.

8. Conclusions

Mixing problems are interesting sources for applied research in mathematical modeling, ODE,
and linear algebra, and—as it was shown—their behavior depends on how they are connected.
It has been proved that null eigenvalues are not expected in open systems with three or less
components, and is a general conclusion for open MP-matrices that can be
obtained by applying the Gershgorin circle theorem.

As a final remark, all the MP differential equation systems considered in this chapter have
stable or asymptotically stable solutions. Nevertheless, this situation may change depending

Figure 9. Three tanks with all the possible connections.
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on the answers to the questions and the conjecture presented in the last section, giving a
challenging proposal for further research on this topic.
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In this chapter, we consider special compound 4n � 4n magic squares. We determine a
2n� 3 dimensional subspace of the nullspace of the 4n � 4n squares. All vectors in the
subspaces possess the property that the sum of all entries of each vector equals zero.
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A semi-magic square is an n � n matrix such that the sum of the entries in each row and
column is the same. The common value is called the magic constant. If, in addition, the sum of
all entries in each left-broken diagonal and each right-broken diagonal is the magic constant,
then we call the matrix a pandiagonal magic square. Rosser and Walker show that a
pandiagonal 4� 4 magic square with magic constant 2s has in general the following structure.
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ς ¼ Aþ E� C;

r ¼ Bþ C� E:

This result was developed by Rosser and Walker. Hendricks proved that the determinant of a
pandiagonal magic square is zero. We note that every antipodal pair of elements add up to
one-half of the magic constant. Al-Amerie considered in his M.Sc thesis some of the results
here. There are three fundamental primitive pandiagonal squares which are 4 � 4. Kraitchik
(see [3, 8]) has shown how to derive all pandiagonal squares from three particular ones.

We define a certain class of 6� 6 magic squares, which has a similar structure to the structure
of a pandiagonal 4� 4 magic square. In this class each antipodal pair will add up to one-third
of the magic constant. Precisely, we have:

Definition 1: A 6� 6 magic square with 3s as a magic constant is called panmagic if

aij þ akl ¼ s, for each i, j, k, l such that i � k mod 3ð Þ and j � l mod 3ð Þ:

The following matrix is a possible form for this kind of squares:

where

M ¼ J þ I þH þ EþDþ C� L� K � 3s
2
,

W ¼ K � I þ F�Dþ A,

P ¼ 3s� E�D� C� B� A

Q ¼ 3s� J � I �H � G� F,

R ¼ L� J þ G� Eþ B,

T ¼ 9s
2
� L� K �H � G� F� C� B� A:

Note that we have the following relations:

MþQþ P ¼ T þH þ C,
Rþ J þ E ¼ Lþ Gþ B,
W þ I þD ¼ K þ Fþ A:

(1)

M R W T L K

Q J I H G F

P E D C B A

s � T s � L s � K s � M s � R s � W

s � H s � G s � F s � Q s � J s � I

s � C s � B s � A s � P s � E s � D
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Using Maple we can show that the 6� 6 panmagic square possesses a nontrivial null space,
which can be written in the following form:

z x1; x2; x3;�x1;�x2;�x3ð Þ0 : z∈R
� �

where

x1 ¼ A�Dð Þ G� Jð Þ B� Eð Þ I � Fð Þ,
x2 ¼ F� Ið Þ Bþ 2Cþ E� 3sð Þ þ 2FD� 2AI þ D� Að Þ Gþ J þ 2H � 3sð Þ,
x3 ¼ B� Eð Þ Fþ I þ 2Hð Þ þ AþDþ 2Cþ 2Bþ 2E� 3sð Þ J � Gð Þ:

Note that the sum of all entries of the vectors is zero. For example:

has as nullspace z 34; 115;�132;�34;�115; 132ð Þt : z∈R
� �

.

Definition 2: A 8� 8 square consisting of 4 pandiagonal magic squares A11, A12, A21, A22 hav-
ing the same magic sum in the form

A11 A12

A21 A22

� �

is called a compound magic square if the following relation holds:

A22 þ A11 ¼ A12 þ A21:

It is easy to check if the last relation guarantees that the square is a magic 8 � 8 square. In the
same manner we can combine four panmagic squares in a magic square.

Definition 3: Let B22, B11, B12, B21 be panmagic squares having the same magic constant.
Assume that B22 þ B11 ¼ B12 þ B21. Then the matrix

B11 B12

B21 B22

� �

is called the compound 12� 12 magic square.

The condition B22 þ B11 ¼ B12 þ B21 ensures that the compound 12� 12 magic square is magic.

�51 39 26 0 9 13

54 �10 �2 �5 4 �5

�5 1 2 3 17 18

12 3 �1 63 �27 �14

17 8 17 �42 22 14

9 �5 �6 17 11 10
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2. Main results

We prove first a simple result for a compound square of 4� 4 squares. We then generalize this
result for an arbitrary number of squares.

Proposition 1: The compound 8� 8 magic square processes a three-dimensional subspace of its
nullspace.

Proof: First we note that the vector

1; 1; 1; 1;�1;�1;�1;�1ð Þ0

is a nonzero vector, which belongs to the nullspace of the square, since the squares have the
same magic constant.

Now, the square A11 (res. A12) has a nonzero vector v11 (res. v12), which belongs to the
nullspace of the square, since A11(res. A12) is a pandiagonal magic square. We look for four
numbers f 11, f 12, f 21, f 22 such that the vector

f 11v11 þ f 12v12

f 21v11 þ f 22v12

 !

belongs to the nullspace of the square. To do this we compute the followingmatrix multiplication:

A11 A12

A21 A22

" #
f 11v11 þ f 12v12

f 21v11 þ f 22v12

 !
¼

A11 f 11v11 þ f 12v12
� �þ A12 f 21v11 þ f 22v12

� �

A21 f 11v11 þ f 12v12
� �þ A22 f 21v11 þ f 22v12

� �
 !

According to the choice of v11 and v12 we obtain the vector g1; g2
� �0 as the result of matrix

multiplication, where:

g1 ¼ A11f 12v12 þ A12f 21v11,
g2 ¼ A21v11f 11 þ A21v12f 12 þ A12v11 þ A21v11ð Þf 21 þ A21v12 � A11v12ð Þf 22:

Note that we used the relation A22 ¼ A12 þ A21 � A11. We can rewrite the vector g1; g2
� �0 in the

form.

0 A11v12 A12v11 0
A21v11 A21v12 A12 þ A21ð Þv11 A21 � A11ð Þv12

� �
f 11

f 12

f 21

f 22

0
BBBBBB@

1
CCCCCCA

(2)

According to Al-Ashhab (see [3]) we can assume that the vectors in the nullspace of the
pandiagonal magic square are
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vij ¼ v∗ij; v
∗∗
ij ;�v∗ij;�v∗∗ij

� �0
, for i ¼ 1, j ¼ 1, 2

Further, we can assume that

Aij ¼

aij bij cij dij
eij f ij gij hij

s� cij s� dij s� aij s� bij
s� gij s� hij s� eij s� f ij

2
66664

3
77775
, i, j ¼ 1, 2

Hence, we can assume that:

Aijvij ¼

aij v∗ij þ bijv∗∗ij � cijv∗ij � dijv∗∗ij

eij v∗ij þ f ijv
∗∗
ij � gijv

∗
ij � hijv∗∗ij

�cij v∗ij � dijv∗∗ij þ aijv∗ij þ bijv∗∗ij

�gij v
∗
ij � hijv∗∗ij þ eijv∗ij þ f ijv

∗∗
ij

0
BBBBB@

1
CCCCCA

¼

aij � cij
� �

v∗ij þ bij � dij
� �

v∗∗ij

eij � gij
� �

v∗ij þ f ij � hij
� �

v∗∗ij

� aij � cij
� �

v∗ij � bij � dij
� �

v∗∗ij

� eij � gij
� �

v∗ij � f ij � hij
� �

v∗∗ij

0
BBBBBB@

1
CCCCCCA

Since the sum of two pandiagonal magic squares is pandiagonal magic, we deduce that four
rows in the matrix in Eq. (2) are redundant. Since we have the relations

a11 þ e11 ¼ c11 þ g11 ) a11 � c11 ¼ � e11 � g11
� �

b11 þ f 11 ¼ d11 þ h11 ) b11 � d11 ¼ � f 11 � h11
� �

the application of elementary row operations on the matrix in Eq. (2) yields to

0 r12 r21 0
q11 q12 r21 þ q11 q12 � r12
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

2
66666666666664

3
77777777777775

where

r12 ¼ a11 � c11ð Þv∗12 þ b11 � d11ð Þv∗∗12
r21 ¼ a12 � c12ð Þv∗11 þ b12 � d12ð Þv∗∗11
q11 ¼ a21 � c21ð Þv∗11 þ b21 � d21ð Þv∗∗11
q12 ¼ a21 � c21ð Þv∗12 þ b21 � d21ð Þv∗∗12

This analysis enables us to conclude the following relations from (2):

Nullspace of Compound Magic Squares
http://dx.doi.org/10.5772/intechopen.74678

63



2. Main results

We prove first a simple result for a compound square of 4� 4 squares. We then generalize this
result for an arbitrary number of squares.

Proposition 1: The compound 8� 8 magic square processes a three-dimensional subspace of its
nullspace.

Proof: First we note that the vector

1; 1; 1; 1;�1;�1;�1;�1ð Þ0

is a nonzero vector, which belongs to the nullspace of the square, since the squares have the
same magic constant.

Now, the square A11 (res. A12) has a nonzero vector v11 (res. v12), which belongs to the
nullspace of the square, since A11(res. A12) is a pandiagonal magic square. We look for four
numbers f 11, f 12, f 21, f 22 such that the vector

f 11v11 þ f 12v12

f 21v11 þ f 22v12

 !

belongs to the nullspace of the square. To do this we compute the followingmatrix multiplication:

A11 A12

A21 A22

" #
f 11v11 þ f 12v12

f 21v11 þ f 22v12

 !
¼

A11 f 11v11 þ f 12v12
� �þ A12 f 21v11 þ f 22v12

� �

A21 f 11v11 þ f 12v12
� �þ A22 f 21v11 þ f 22v12

� �
 !

According to the choice of v11 and v12 we obtain the vector g1; g2
� �0 as the result of matrix

multiplication, where:

g1 ¼ A11f 12v12 þ A12f 21v11,
g2 ¼ A21v11f 11 þ A21v12f 12 þ A12v11 þ A21v11ð Þf 21 þ A21v12 � A11v12ð Þf 22:

Note that we used the relation A22 ¼ A12 þ A21 � A11. We can rewrite the vector g1; g2
� �0 in the

form.

0 A11v12 A12v11 0
A21v11 A21v12 A12 þ A21ð Þv11 A21 � A11ð Þv12

� �
f 11

f 12

f 21

f 22

0
BBBBBB@

1
CCCCCCA

(2)

According to Al-Ashhab (see [3]) we can assume that the vectors in the nullspace of the
pandiagonal magic square are

Matrix Theory-Applications and Theorems62

vij ¼ v∗ij; v
∗∗
ij ;�v∗ij;�v∗∗ij

� �0
, for i ¼ 1, j ¼ 1, 2

Further, we can assume that

Aij ¼

aij bij cij dij
eij f ij gij hij

s� cij s� dij s� aij s� bij
s� gij s� hij s� eij s� f ij

2
66664

3
77775
, i, j ¼ 1, 2

Hence, we can assume that:

Aijvij ¼

aij v∗ij þ bijv∗∗ij � cijv∗ij � dijv∗∗ij

eij v∗ij þ f ijv
∗∗
ij � gijv

∗
ij � hijv∗∗ij

�cij v∗ij � dijv∗∗ij þ aijv∗ij þ bijv∗∗ij

�gij v
∗
ij � hijv∗∗ij þ eijv∗ij þ f ijv

∗∗
ij

0
BBBBB@

1
CCCCCA

¼

aij � cij
� �

v∗ij þ bij � dij
� �

v∗∗ij

eij � gij
� �

v∗ij þ f ij � hij
� �

v∗∗ij

� aij � cij
� �

v∗ij � bij � dij
� �

v∗∗ij

� eij � gij
� �

v∗ij � f ij � hij
� �

v∗∗ij

0
BBBBBB@

1
CCCCCCA

Since the sum of two pandiagonal magic squares is pandiagonal magic, we deduce that four
rows in the matrix in Eq. (2) are redundant. Since we have the relations

a11 þ e11 ¼ c11 þ g11 ) a11 � c11 ¼ � e11 � g11
� �

b11 þ f 11 ¼ d11 þ h11 ) b11 � d11 ¼ � f 11 � h11
� �

the application of elementary row operations on the matrix in Eq. (2) yields to

0 r12 r21 0
q11 q12 r21 þ q11 q12 � r12
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

2
66666666666664

3
77777777777775

where

r12 ¼ a11 � c11ð Þv∗12 þ b11 � d11ð Þv∗∗12
r21 ¼ a12 � c12ð Þv∗11 þ b12 � d12ð Þv∗∗11
q11 ¼ a21 � c21ð Þv∗11 þ b21 � d21ð Þv∗∗11
q12 ¼ a21 � c21ð Þv∗12 þ b21 � d21ð Þv∗∗12

This analysis enables us to conclude the following relations from (2):

Nullspace of Compound Magic Squares
http://dx.doi.org/10.5772/intechopen.74678

63



f 11 ¼ � r12r21 þ q11r12 � q12r21
q11r12

f 21 þ
�q12 þ r12

q11
f 22, f 12 ¼ � r21

r12
f 21:

If we set

f 12 ¼ 0, f 21 ¼ 0, f 22 ¼ q11, f 11 ¼ r12 � q12,

which is consistent with the previous relations, we conclude that the vector

r12 � q12
� �

v11
q11v12

 !

belongs to the nullspace of the square. We can make another choice as follows.

f 22 ¼ 0, f 21 ¼ r12q11, f 12 ¼ �r21q11 , f 11 ¼ r21q12 � r12 r21 þ q11
� �

and we obtain a vector belonging to the nullspace of the square, which is

r21q12 � r12 r21 þ q11
� �� �

v11 � r21q11v12

�r21q11v11

 !

Now, the vectors v12, v11 are linearly independent, since they correspond to different magic
squares. Hence, the last two vectors are linearly independent. Also the vector

1; 1; 1; 1;�1;�1;�1;�1ð Þ0

is linearly independent with the last two vectors, since its first two entries are not the opposite
of the third and fourth entry. ⎕
For example, the following square is a compound 8� 8 magic square.

For this square we can construct as described the following two vectors in its nullspace

0 14 �19 13 10 5 �22 15

�12 6 7 7 �20 13 12 3

23 �9 4 �10 26 �11 �6 �1

�3 �3 16 �2 �8 1 24 �9

�16 25 �17 16 �6 16 �20 18

1 �2 2 7 �7 5 7 3

21 �12 20 �21 24 �14 10 �12

2 �3 3 6 �3 1 11 �1
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� 38
5
;
722
5

;
38
5
;� 722

5
;�170;�544; 170; 544

� �t

� 216006
5

;� 85026
5

;
216006

5
;
85026
5

; 3774;�71706;�3774; 71706
� �t

In fact, its nullity is 3. Thus, these two vectors together with

1; 1; 1; 1;�1;�1;�1;�1ð Þ0

form a basis of its nullspace.

We prove now a similar result to the previous proposition, where we replace the 4� 4 square
with a 6� 6 one.

Proposition 2: The compound 12� 12 magic square possess a three-dimensional subspace of
its nullspace.

Proof: First we note that the vector

1; 1; 1; 1; 1; 1� 1;�1;�1;�1;�1;�1ð Þ0

is a nonzero vector, which belongs to the nullspace of the square, since the squares have the
same magic constant.

We look for scalars v1, v2, v3, v4, v5, v6 such that

a11 b11 c11 d11 e11 f 11 a12 b12 c12 d12 e12 f 12
g11 h11 i11 j11 k11 l11 g12 h12 i12 j12 k12 l12
m11 n11 o11 p11 q11 r11 m12 n12 o12 p12 q12 r12
s� d11 s� e11 s� f 11 s� a11 s� b11 s� c11 s� d12 s� e12 s� f 12 s� a12 s� b12 s� c12
s� j11 s� k11 s� l11 s� g11 s� h11 s� i11s� j12 s� k12 s� l12 s� g12 s� h12 s� i12
s� p11 s� q11 s� r11 s�m11s� n11 s� o11 s� p12 s� q12 s� r12 s�m12s� n12 s� o12
a21 b21 c21 d21 e21 f 21 a22 b22 c22 d22 e22 f 22
g21 h21 i21 j21 k21 l21 g22 h22 i22 j22 k22 l22
m21 n21 o21 p21 q21 r21 m22 n22 o22 p22 q22 r22
s� d21 s� e21 s� f 21 s� a21 s� b11 s� c21 s� d22 s� e22 s� f 22 s� a22 s� b22 s� c22
s� j21 s� k21 s� l21 s� g21 s� h21 s� i21s� j22 s� k22 s� l22 s� g22 s� h22 s� i22
s� p21 s� q21 s� r21 s�m21s� n21 s� o21 s� p22 s� q22 s� r22 s�m22s� n22 s� o22

2
6666666666666666666666664

3
7777777777777777777777775

:

v1
v2
v3
�v1
�v2
�v3
v4
v5
v6
�v4
�v5
�v6

2
666666666666666666666664

3
777777777777777777777775

¼

0
0
0
0
0
0
0
0
0
0
0
0

2
666666666666666666666664

3
777777777777777777777775

We transform this equation into a linear system, in which we eliminate the redundant equa-
tions. The system becomes

a11 � d11ð Þv1 þ b11 � e11ð Þv2 þ c11 � f 11
� �

v3 þ a12 � d12ð Þv4 þ b12 � e12ð Þv5 þ c12 � f 12
� �

v6 ¼ 0
g11 � j11
� �

v1 þ h11 � k11ð Þv2 þ i11 � l11ð Þv3 þ g12 � j12
� �

v4 þ h12 � k12ð Þv5 þ i12 � l12ð Þv6 ¼ 0
m11 � p11
� �

v1 þ n11 � q11
� �

v2 þ o11 � r11ð Þv3 þ m12 � p12
� �

v4 þ n12 � q12
� �

v5 þ o12 � r12ð Þv6 ¼ 0
a21 � d21ð Þv1 þ b21 � e21ð Þv2 þ c21 � f 21

� �
v3 þ a22 � d22ð Þv4 þ b22 � e22ð Þv5 þ c22 � f 22

� �
v6 ¼ 0

g21 � j21
� �

v1 þ h21 � k21ð Þv2 þ i21 � l21ð Þv3 þ g22 � j22
� �

v4 þ h22 � k22ð Þv5 þ i22 � l22ð Þv6 ¼ 0
m21 � p21
� �

v1 þ n21 � q21
� �

v2 þ o21 � r21ð Þv3 þ m22 � p22
� �

v4 þ n22 � q22
� �

v5 þ o22 � r22ð Þv6 ¼ 0
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In fact, its nullity is 3. Thus, these two vectors together with
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form a basis of its nullspace.

We prove now a similar result to the previous proposition, where we replace the 4� 4 square
with a 6� 6 one.

Proposition 2: The compound 12� 12 magic square possess a three-dimensional subspace of
its nullspace.

Proof: First we note that the vector

1; 1; 1; 1; 1; 1� 1;�1;�1;�1;�1;�1ð Þ0

is a nonzero vector, which belongs to the nullspace of the square, since the squares have the
same magic constant.

We look for scalars v1, v2, v3, v4, v5, v6 such that
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3
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¼

0
0
0
0
0
0
0
0
0
0
0
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3
777777777777777777777775

We transform this equation into a linear system, in which we eliminate the redundant equa-
tions. The system becomes
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� �
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m11 � p11
� �

v1 þ n11 � q11
� �
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� �

v4 þ n12 � q12
� �

v5 þ o12 � r12ð Þv6 ¼ 0
a21 � d21ð Þv1 þ b21 � e21ð Þv2 þ c21 � f 21

� �
v3 þ a22 � d22ð Þv4 þ b22 � e22ð Þv5 þ c22 � f 22

� �
v6 ¼ 0

g21 � j21
� �

v1 þ h21 � k21ð Þv2 þ i21 � l21ð Þv3 þ g22 � j22
� �

v4 þ h22 � k22ð Þv5 þ i22 � l22ð Þv6 ¼ 0
m21 � p21
� �

v1 þ n21 � q21
� �
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� �

v5 þ o22 � r22ð Þv6 ¼ 0
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From the definition of the panmagic square we know that

aij þ gij þmij ¼ dij þ jij þ pij ) aij � dij
� �þ gij � jij

� �
¼ � mij � pij

� �
(3)

bij þ hij þ nij ¼ eij þ kij þ qij ) bij � eij
� �þ hij � eij

� � ¼ � nij � qij
� �

(4)

cij þ lij þ oij ¼ f ij þ lij þ rij ) cij � f ij
� �

þ iij � lij
� � ¼ � oij � rij

� �
(5)

Thus, due to Eqs. (3)–(5), we can reduce the linear system to the following

a11 � d11ð Þv1 þ b11 � e11ð Þv2 þ c11 � f 11
� �

v3 þ a12 � d12ð Þv4 þ b12 � e12ð Þv5 þ c12 � f 12
� �

v6 ¼ 0
g11 � j11
� �

v1 þ h11 � k11ð Þv2 þ i11 � l11ð Þv3 þ g12 � j12
� �

v4 þ h12 � k12ð Þv5 þ i12 � l12ð Þv6 ¼ 0
a21 � d21ð Þv1 þ b21 � e21ð Þv2 þ c21 � f 21

� �
v3 þ a22 � d22ð Þv4 þ b22 � e22ð Þv5 þ c22 � f 22

� �
v6 ¼ 0

g21 � j21
� �

v1 þ h21 � k21ð Þv2 þ i21 � l21ð Þv3 þ g22 � j22
� �

v4 þ h22 � k22ð Þv5 þ i22 � l22ð Þv6 ¼ 0

We can verify using the computer that the coefficient matrix of this system has in general the
rank four. Hence, we deduce that v1, v2, v3, v4 depends on v5 and v6. By letting v5 and v6 take
the values 0 and 1 we obtain two linearly independent vectors in the nullspace. These two
vectors do not possess the property that the first six elements are the opposite of the last six
elements. Hence, they are independent of the vector 1; 1; 1; 1; 1; 1� 1;�1;�1;�1;�1;�1ð Þ0.⎕
Remark: We did not here make use of the relation B22 þ B11 ¼ B12 þ B21. It actually does not
affect the proof.

For example, the following square is a compound 12� 12 magic square.

Using the computer we can verify that its nullity is 3. In other words, the constructed subspace
is the nullspace itself.

�51 39 26 0 9 13 6 17 15 �6 0 4

54 �10 �2 �5 4 �5 20 5 2 0 9 0

�5 1 2 3 17 18 �24 6 7 8 19 20

12 3 �1 63 �27 �14 18 12 8 6 �5 �3

17 8 17 �42 22 14 12 3 12 �8 7 10

9 �5 �6 17 11 10 4 �7 �8 36 6 5

2 53 45 �131 33 34 59 31 34 �137 24 25

�10 0 10 11 12 13 �44 15 14 16 17 18

�89 21 22 23 29 30 �108 26 27 28 31 32

143 �21 �22 10 �41 �33 149 �12 �13 �47 �19 �22

1 0 �1 22 12 2 �4 �5 �6 56 �3 �2

�11 �17 �18 101 �9 �10 �16 �19 �20 120 �14 �15
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We can generalize the previous result for an arbitrary number of squares involved in the
compound square.

Theorem 1: Let Aij be the distinct pandiagonal magic square with magic constant 2s having the
structure:

Aij ¼

aij bij cij dij

eij f ij gij hij

s� cij s� dij s� aij s� bij

s� gij s� hij s� eij s� f ij

2
6666664

3
7777775

such that Aij ¼ A1j þ Ai1 � A11 for i, j ¼ 1,…, n. Assume that a11 þ c12 � c11 � a12ð Þ 6¼ 0. Then,
the following 4n� 4n matrix

A11A12 A13…A1n

A21A22 A23…A2n

A31A32 A33…A3n

⋮ ⋮ ⋮ ⋮ ⋮

An1An2 An3…Ann

2
6666666664

3
7777777775

possesses a 2n� 3 dimensional subspace of its nullspace, which is generated by the vectors

b11-d11-b12 þ d12

� a11 þ c12 � c11 � a12ð Þ
� b11-d11-b12 þ d12ð Þ
a11 þ c12 � c11 � a12ð Þ
� b11-d11-b12 þ d12ð Þ
a11 þ c12 � c11 � a12

b11-d11-b12 þ d12ð Þ
� a11 þ c12 � c11 � a12ð Þ
0½ �
⋮

0½ �

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

and
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From the definition of the panmagic square we know that
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� �þ gij � jij

� �
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� �
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� �
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rank four. Hence, we deduce that v1, v2, v3, v4 depends on v5 and v6. By letting v5 and v6 take
the values 0 and 1 we obtain two linearly independent vectors in the nullspace. These two
vectors do not possess the property that the first six elements are the opposite of the last six
elements. Hence, they are independent of the vector 1; 1; 1; 1; 1; 1� 1;�1;�1;�1;�1;�1ð Þ0.⎕
Remark: We did not here make use of the relation B22 þ B11 ¼ B12 þ B21. It actually does not
affect the proof.

For example, the following square is a compound 12� 12 magic square.

Using the computer we can verify that its nullity is 3. In other words, the constructed subspace
is the nullspace itself.
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such that Aij ¼ A1j þ Ai1 � A11 for i, j ¼ 1,…, n. Assume that a11 þ c12 � c11 � a12ð Þ 6¼ 0. Then,
the following 4n� 4n matrix
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⋮ ⋮ ⋮ ⋮ ⋮

An1An2 An3…Ann
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possesses a 2n� 3 dimensional subspace of its nullspace, which is generated by the vectors
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1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA
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a12 þ c13 � c12 � a13
0
� a12 þ c13 � c12 � a13ð Þ
0
� a11 � c11 þ c13 � a13ð Þ
0
a11 � c11 þ c13 � a13
0
a11 þ c12 � c11 � a12
0
� a11 þ c12 � c11 � a12ð Þ
0
0½ �
⋮
0½ �

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

,

b11 � d11 � b13 þ d13
� a11 þ c12 � c11 � a12ð Þ
� b11 � d11 � b13 þ d13ð Þ
a11 þ c12 � c11 � a12
� b11 � d11 � b13 þ d13ð Þ
0
b11 � d11 � b13 þ d13
0
0
a11 þ c12 � c11 � a12
0
� a11 þ c12 � c11 � a12ð Þ
0½ �
⋮
0½ �

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

, …,

a12 þ c1n � c12 � a1n
0
� a12 þ c1n � c12 � a1nð Þ
0
� a11 � c11 þ c1n � a1nð Þ
0
a11 � c11 þ c1n � a1n
0
0½ �
⋮
0½ �
a11 þ c12 � c11 � a12
0
� a11 þ c12 � c11 � a12ð Þ
0

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

,

b11 � d11 � b1n þ d1n
� a11 þ c12 � c11 � a12ð Þ
� b11 � d11 � b1n þ d1nð Þ
a11 þ c12 � c11 � a12
� b11 � d11 � b1n þ d1nð Þ
0
b11 � d11 � b1n þ d1n
0
0½ �
⋮
0½ �
0
a11 þ c12 � c11 � a12
0
� a11 þ c12 � c11 � a12ð Þ

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

Proof: We will check first that these vectors belong to the nullspace of the matrix. When we
multiply the first vector with the matrix, we obtain a vector having in the first row

a11 � c11ð Þ b11 � d11 � b12 þ d12ð Þ þ b11 � d11ð Þ a11 � c11 � a12 þ c12ð Þ � a12 � c12ð Þ b11 � d11 � b12 þ d12ð Þ�
b12 � d12ð Þ a11 � c11 � a12 þ c12ð Þ
¼ b11 � d11 � b12 þ d12ð Þ a11 � c11ð Þ � a12 � c12ð Þ½ � � a11 � c11 � a12 þ c12ð Þ b11 � d11ð Þ � b12 � d12ð Þ½ �f g ¼ 0

Since we know that

a11 � c11ð Þ ¼ � e11 � g11
� �

, b11 � d11ð Þ ¼ � f 11 � h11
� �

:

we obtain zero in the second row of the vector. Since the third and fourth rows of the squares
are complementary to the first two rows, we deduce that the third and fourth rows of the
vector are also zero. Now, the fifth entry of the vector is

a21 � c21ð Þ b11 � d11 � b12 þ d12ð Þ þ b21 � d21ð Þ a11 � c11 � a12 þ c12ð Þ�
a22 � c22ð Þ b11 � d11 � b12 þ d12ð Þ � b22 � d22ð Þ a11 � c11 � a12 þ c12ð Þ ¼
b11 � d11 � b12 þ d12ð Þ a21 � c21ð Þ � a22 � c22ð Þ½ � � a11 � c11 � a12 þ c12ð Þ b21 � d21ð Þ � b22 � d22ð Þ½ �f g

We use the following relations according to our assumption

a22 ¼ a12 þ a21 � a11, b22 ¼ b12 þ b21 � b11,
c22 ¼ c12 þ c21 � c11, d22 ¼ d12 þ d21 � d11:

and obtain

b11 � d11 � b12 þ d12ð Þ a21 � c21ð Þ � a12 þ a21 � a11 � c12 � c21 þ c11ð Þ½ �
� a11 � c11 � a12 þ c12ð Þ b21 � d21ð Þ � b12 þ b21 � b11 � d12 � d21 þ d11ð Þ½ �f g
¼ b11 � d11 � b12 þ d12ð Þ � a12 � a11 � c12 þ c11ð Þ½ � � a11 � c11 � a12 þ c12ð Þ � b12 � b11 � d12 þ d11ð Þ½ � ¼ 0

We continue checking all rows until we reach the last entry, which is
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an1 � cn1ð Þ b11 � d11 � b12 þ d12ð Þ þ bn1 � dn1ð Þ a11 � c11 � a12 þ c12ð Þ�
an2 � cn2ð Þ b11 � d11 � b12 þ d12ð Þ � bn2 � dn2ð Þ a11 � c11 � a12 þ c12ð Þ ¼
b11 � d11 � b12 þ d12ð Þ an1 � cn1ð Þ � an2 � cn2ð Þ½ � � a11 � c11 � a12 þ c12ð Þ bn1 � dn1ð Þ � bn2 � dn2ð Þ½ �

We use

an2 ¼ a12 þ an1 � a11, bn2 ¼ b12 þ bn1 � b11,
cn2 ¼ c12 þ cn1 � c11, dn2 ¼ d12 þ dn1 � d11:

in order to obtain this value of the entry

b11 � d11 � b12 þ d12ð Þ an1 � cn1ð Þ � a12 þ an1 � a11 � c12 � cn1 þ c11ð Þ½ �
� a11 � c11 � a12 þ c12ð Þ bn1 � dn1ð Þ � b12 þ bn1 � b11 � d12 � dn1 þ d11ð Þ½ �f g
¼ b11 � d11 � b12 þ d12ð Þ � a12 � a11 � c12 þ c11ð Þ½ � � a11 � c11 � a12 þ c12ð Þ � b12 � b11 � d12 þ d11ð Þ½ � ¼ 0

Hence, we finished checking the first vector.

Now, we turn our attention to the second vector. When we multiply the matrix with it, we
obtain in the first entry.

Using the relations

a11 � c11ð Þ ¼ � e11 � g11
� �

b11 � d11ð Þ ¼ � f 11 � h11
� �

we deduce that the second entry is also zero. In a similar manner we can deal with the third
and fourth entries. The fifth entry will be

a21 � c21ð Þ a12 � c12 � a13 þ c13ð Þ � a22 � c22ð Þ a11 � c11 � a13 þ c13ð Þ þ a23 � c23ð Þ a11 � c11 � a12 þ c12ð Þ

We use the relations

a22 ¼ a12 þ a21 � a11, c22 ¼ c12 þ c21 � c11
a23 ¼ a13 þ a21 � a11, c23 ¼ c13 þ c21 � c11

to obtain for the fifth entry.

¼ a21 � c21ð Þ a12 � c12ð Þ � a13 � c13ð Þ½ � � a12 þ a21 � a11 � c12 � c21 þ c11ð Þ a11 � c11ð Þ � a13 � c13ð Þ½ �
þ a13 þ a21 � a11 � c13 � c21 þ c11ð Þ a11 � c11ð Þ � a12 � c12ð Þ½ �
¼ a21 � c21ð Þ a12 � c12ð Þ � a21 � c21ð Þ a13 � c13ð Þ � a21 � c21ð Þ a11 � c11ð Þ þ a21 � c21ð Þ a13 � c13ð Þ
� a12 � c12ð Þ a11 � c11ð Þ þ a12 � c12ð Þ a13 � c13ð Þ þ a11 � c11ð Þ2 þ a11 � c11ð Þ a13 � c13ð Þ þ a13 � c13ð Þ a11 � c11ð Þ
� a13 � c13ð Þ a12 � c12ð Þ þ a21 � c21ð Þ a11 � c11ð Þ � a21 � c21ð Þ a12 � c12ð Þ � a11 � c11ð Þ2 þ a12 � c12ð Þ a11 � c11ð Þ ¼ 0
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a12 þ c13 � c12 � a13
0
� a12 þ c13 � c12 � a13ð Þ
0
� a11 � c11 þ c13 � a13ð Þ
0
a11 � c11 þ c13 � a13
0
a11 þ c12 � c11 � a12
0
� a11 þ c12 � c11 � a12ð Þ
0
0½ �
⋮
0½ �

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

,

b11 � d11 � b13 þ d13
� a11 þ c12 � c11 � a12ð Þ
� b11 � d11 � b13 þ d13ð Þ
a11 þ c12 � c11 � a12
� b11 � d11 � b13 þ d13ð Þ
0
b11 � d11 � b13 þ d13
0
0
a11 þ c12 � c11 � a12
0
� a11 þ c12 � c11 � a12ð Þ
0½ �
⋮
0½ �

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

, …,

a12 þ c1n � c12 � a1n
0
� a12 þ c1n � c12 � a1nð Þ
0
� a11 � c11 þ c1n � a1nð Þ
0
a11 � c11 þ c1n � a1n
0
0½ �
⋮
0½ �
a11 þ c12 � c11 � a12
0
� a11 þ c12 � c11 � a12ð Þ
0

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

,

b11 � d11 � b1n þ d1n
� a11 þ c12 � c11 � a12ð Þ
� b11 � d11 � b1n þ d1nð Þ
a11 þ c12 � c11 � a12
� b11 � d11 � b1n þ d1nð Þ
0
b11 � d11 � b1n þ d1n
0
0½ �
⋮
0½ �
0
a11 þ c12 � c11 � a12
0
� a11 þ c12 � c11 � a12ð Þ

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

Proof: We will check first that these vectors belong to the nullspace of the matrix. When we
multiply the first vector with the matrix, we obtain a vector having in the first row

a11 � c11ð Þ b11 � d11 � b12 þ d12ð Þ þ b11 � d11ð Þ a11 � c11 � a12 þ c12ð Þ � a12 � c12ð Þ b11 � d11 � b12 þ d12ð Þ�
b12 � d12ð Þ a11 � c11 � a12 þ c12ð Þ
¼ b11 � d11 � b12 þ d12ð Þ a11 � c11ð Þ � a12 � c12ð Þ½ � � a11 � c11 � a12 þ c12ð Þ b11 � d11ð Þ � b12 � d12ð Þ½ �f g ¼ 0

Since we know that

a11 � c11ð Þ ¼ � e11 � g11
� �

, b11 � d11ð Þ ¼ � f 11 � h11
� �

:

we obtain zero in the second row of the vector. Since the third and fourth rows of the squares
are complementary to the first two rows, we deduce that the third and fourth rows of the
vector are also zero. Now, the fifth entry of the vector is

a21 � c21ð Þ b11 � d11 � b12 þ d12ð Þ þ b21 � d21ð Þ a11 � c11 � a12 þ c12ð Þ�
a22 � c22ð Þ b11 � d11 � b12 þ d12ð Þ � b22 � d22ð Þ a11 � c11 � a12 þ c12ð Þ ¼
b11 � d11 � b12 þ d12ð Þ a21 � c21ð Þ � a22 � c22ð Þ½ � � a11 � c11 � a12 þ c12ð Þ b21 � d21ð Þ � b22 � d22ð Þ½ �f g

We use the following relations according to our assumption

a22 ¼ a12 þ a21 � a11, b22 ¼ b12 þ b21 � b11,
c22 ¼ c12 þ c21 � c11, d22 ¼ d12 þ d21 � d11:

and obtain

b11 � d11 � b12 þ d12ð Þ a21 � c21ð Þ � a12 þ a21 � a11 � c12 � c21 þ c11ð Þ½ �
� a11 � c11 � a12 þ c12ð Þ b21 � d21ð Þ � b12 þ b21 � b11 � d12 � d21 þ d11ð Þ½ �f g
¼ b11 � d11 � b12 þ d12ð Þ � a12 � a11 � c12 þ c11ð Þ½ � � a11 � c11 � a12 þ c12ð Þ � b12 � b11 � d12 þ d11ð Þ½ � ¼ 0

We continue checking all rows until we reach the last entry, which is
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an1 � cn1ð Þ b11 � d11 � b12 þ d12ð Þ þ bn1 � dn1ð Þ a11 � c11 � a12 þ c12ð Þ�
an2 � cn2ð Þ b11 � d11 � b12 þ d12ð Þ � bn2 � dn2ð Þ a11 � c11 � a12 þ c12ð Þ ¼
b11 � d11 � b12 þ d12ð Þ an1 � cn1ð Þ � an2 � cn2ð Þ½ � � a11 � c11 � a12 þ c12ð Þ bn1 � dn1ð Þ � bn2 � dn2ð Þ½ �

We use

an2 ¼ a12 þ an1 � a11, bn2 ¼ b12 þ bn1 � b11,
cn2 ¼ c12 þ cn1 � c11, dn2 ¼ d12 þ dn1 � d11:

in order to obtain this value of the entry

b11 � d11 � b12 þ d12ð Þ an1 � cn1ð Þ � a12 þ an1 � a11 � c12 � cn1 þ c11ð Þ½ �
� a11 � c11 � a12 þ c12ð Þ bn1 � dn1ð Þ � b12 þ bn1 � b11 � d12 � dn1 þ d11ð Þ½ �f g
¼ b11 � d11 � b12 þ d12ð Þ � a12 � a11 � c12 þ c11ð Þ½ � � a11 � c11 � a12 þ c12ð Þ � b12 � b11 � d12 þ d11ð Þ½ � ¼ 0

Hence, we finished checking the first vector.

Now, we turn our attention to the second vector. When we multiply the matrix with it, we
obtain in the first entry.

Using the relations

a11 � c11ð Þ ¼ � e11 � g11
� �

b11 � d11ð Þ ¼ � f 11 � h11
� �

we deduce that the second entry is also zero. In a similar manner we can deal with the third
and fourth entries. The fifth entry will be

a21 � c21ð Þ a12 � c12 � a13 þ c13ð Þ � a22 � c22ð Þ a11 � c11 � a13 þ c13ð Þ þ a23 � c23ð Þ a11 � c11 � a12 þ c12ð Þ

We use the relations

a22 ¼ a12 þ a21 � a11, c22 ¼ c12 þ c21 � c11
a23 ¼ a13 þ a21 � a11, c23 ¼ c13 þ c21 � c11

to obtain for the fifth entry.

¼ a21 � c21ð Þ a12 � c12ð Þ � a13 � c13ð Þ½ � � a12 þ a21 � a11 � c12 � c21 þ c11ð Þ a11 � c11ð Þ � a13 � c13ð Þ½ �
þ a13 þ a21 � a11 � c13 � c21 þ c11ð Þ a11 � c11ð Þ � a12 � c12ð Þ½ �
¼ a21 � c21ð Þ a12 � c12ð Þ � a21 � c21ð Þ a13 � c13ð Þ � a21 � c21ð Þ a11 � c11ð Þ þ a21 � c21ð Þ a13 � c13ð Þ
� a12 � c12ð Þ a11 � c11ð Þ þ a12 � c12ð Þ a13 � c13ð Þ þ a11 � c11ð Þ2 þ a11 � c11ð Þ a13 � c13ð Þ þ a13 � c13ð Þ a11 � c11ð Þ
� a13 � c13ð Þ a12 � c12ð Þ þ a21 � c21ð Þ a11 � c11ð Þ � a21 � c21ð Þ a12 � c12ð Þ � a11 � c11ð Þ2 þ a12 � c12ð Þ a11 � c11ð Þ ¼ 0
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We continue checking the entries until we reach the last entry, which is

an1 � cn1ð Þ a12 � c12 � a13 þ c13ð Þ � an2 � cn2ð Þ a11 � c11 � a13 þ c13ð Þ þ an3 � cn3ð Þ a11 � c11 � a12 þ c12ð Þ

Using the relations

an2 ¼ a12 þ an1 � a11, cn2 ¼ c12 þ cn1 � c11
an3 ¼ a13 þ an1 � a11, cn3 ¼ c13 þ cn1 � c11

we get

¼ an1 � cn1ð Þ a12 � c12ð Þ � a13 � c13ð Þ½ � � a12 þ an1 � a11 � c12 � cn1 þ c11ð Þ a11 � c11ð Þ � a13 � c13ð Þ½ �
þ a13 þ an1 � a11 � c13 � cn1 þ c11ð Þ a11 � c11ð Þ � a12 � c12ð Þ½ �
¼ an1 � cn1ð Þ a12 � c12ð Þ � an1 � cn1ð Þ a13 � c13ð Þ � an1 � cn1ð Þ a11 � c11ð Þ þ an1 � cn1ð Þ a13 � c13ð Þ
� a12 � c12ð Þ a11 � c11ð Þ þ a12 � c12ð Þ a13 � c13ð Þ þ a11 � c11ð Þ2 þ a11 � c11ð Þ a13 � c13ð Þþ
a13 � c13ð Þ a11 � c11ð Þ � a13 � c13ð Þ a12 � c12ð Þ þ an1 � cn1ð Þ a11 � c11ð Þ � an1 � cn1ð Þ a12 � c12ð Þ�
a11 � c11ð Þ2 þ a12 � c12ð Þ a11 � c11ð Þ ¼ 0

Hence, the second vector belongs to the nullspace of the (4n� 4n)-matrix.

Similarly, we can check that all the other vectors are included in the nullspace of the (4n� 4n)-
matrix. We check the last vector (the (2n� 3)-th vector) belongs to the nullspace of the (4n� 4n)-
matrix. The first entry by matrix multiplication is:

a11 � c11ð Þ b11 � d11 � b1n þ d1nð Þ þ b11 � d11ð Þ a11 � c11 � a12 þ c12ð Þ�
a12 � c12ð Þ b11 � d11 � b1n þ d1nð Þ � b1n � d1nð Þ a11 � c11 � a12 þ c12ð Þ ¼
b11 � d11 � b1n þ d1nð Þ a11 � c11ð Þ � a12 � c12ð Þ½ � � a11 � c11 � a12 þ c12ð Þ b11 � d11ð Þ � b1n � d1nð Þ½ � ¼ 0

As before we deduce also that the second, third, and fourth entries are zero. The fifth entry is

a21 � c21ð Þ b11 � d11 � b1n þ d1nð Þ þ b21 � d21ð Þ a11 � c11 � a12 þ c12ð Þ�
a22 � c22ð Þ b11 � d11 � b1n þ d1nð Þ � b2n � d2nð Þ a11 � c11 � a12 þ c12ð Þ ¼
b11 � d11 � b1n þ d1nð Þ a21 � c21ð Þ � a22 � c22ð Þ½ � � a11 � c11 � a12 þ c12ð Þ b21 � d21ð Þ � b2n � d2nð Þ½ � ¼ b11 � d11 � b1n þ d1nð Þ
a21 � c21ð Þ � a12 þ a21 � a11 � c12 � c21 þ c11ð Þ½ �

We use the relations

a22 ¼ a12 þ a21 � a11
b2n ¼ b1n þ b21 � b11
c22 ¼ c12 þ c21 � c11
d2n ¼ d1n þ d21 � d11

Therefore, this entry is

b11 � d11 � b1n þ d1nð Þ a21 � c21ð Þ � a12 þ a21 � a11 � c12 � c21 þ c11ð Þ½ �
� a11 � c11 � a12 þ c12ð Þ b21 � d21ð Þ � b1n þ b21 � b11 � d1n � d21 þ d11ð Þ½ �f g
¼ b11 � d11 � b1n þ d1nð Þ � a12 � a11 � c12 þ c11ð Þ½ � � f a11 � c11 � a12 þ c12ð Þ � b1n � b11 � d1n þ d11ð Þ½ �g ¼ 0
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When we reach the (2n� 3)th entry, we find that it is

an1 � cn1ð Þ b11 � d11 � b1n þ d1nð Þ þ bn1 � dn1ð Þ a11 � c11 � a12 þ c12ð Þ�
ann � cnnð Þ b11 � d11 � b1n þ d1nð Þ � bnn � dnnð Þ a11 � c11 � a12 þ c12ð Þ ¼
b11 � d11 � b1n þ d1nð Þ an1 � cn1ð Þ � ann � cnnð Þ½ ��
a11 � c11 � a12 þ c12ð Þ bn1 � dn1ð Þ � bnn � dnnð Þ½ �f g

We use the relations

ann ¼ a1n þ an1 � a11
bnn ¼ b1n þ bn1 � b11
cnn ¼ c1n þ cn1 � c11
dnn ¼ d1n þ dn1 � d11

to prove that this entry is

b11 � d11 � b1n þ d1nð Þ an1 � cn1ð Þ � a12 þ an1 � a11 � c12 � cn1 þ c11ð Þ½ �
� a11 � c11 � a12 þ c12ð Þ bn1 � dn1ð Þ � b1n þ bn1 � b11 � d1n � dn1 þ d11ð Þ½ �f g
¼ b11 � d11 � b1n þ d1nð Þ � a12 � a11 � c12 þ c11ð Þ½ � � a11 � c11 � a12 þ c12ð Þ � b1n � b11 � d1n þ d11ð Þ½ � ¼ 0

We prove now that the vectors are linearly independent. Let k1, k2, k3,…, k2n�4, k2n�3 ∈R such
that

k1

b11 � d11 � b12 þ d12

� a11 þ c12 � c11 � a12ð Þ
� b11 � d11 � b12 þ d12ð Þ
a11 þ c12 � c11 � a12ð Þ
� b11 � d11 � b12 þ d12ð Þ
a11 þ c12 � c11 � a12

b11 � d11 � b12 þ d12ð Þ
� a11 þ c12 � c11 � a12ð Þ
0

0

0

0

⋮

0

0

0

0

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

þ k2

a12 þ c13 � c12 � a13

0

� a12 þ c13 � c12 � a13ð Þ
0

� a11 � c11 þ c13 � a13ð Þ
0

a11 � c11 þ c13 � a13

0

a11 þ c12 � c11 � a12

0

� a11 þ c12 � c11 � a12ð Þ
0

⋮

0

0

0

0

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

þ…þ k2n�3

b11 � d11 � b1n þ d1n

� a11 þ c12 � c11 � a12ð Þ
� b11 � d11 � b1n þ d1nð Þ
a11 þ c12 � c11 � a12

� b11 � d11 � b1n þ d1nð Þ
0

b11 � d11 � b1n þ d1n

0

⋮

0

0

0

0

0

a11 þ c12 � c11 � a12

0

� a11 þ c12 � c11 � a12ð Þ

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

¼

0

0

0

0

0

0

0

0

0

0

0

0

⋮

0

0

0

0

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

This leads us to the following vector which is a zero vector.
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We continue checking the entries until we reach the last entry, which is

an1 � cn1ð Þ a12 � c12 � a13 þ c13ð Þ � an2 � cn2ð Þ a11 � c11 � a13 þ c13ð Þ þ an3 � cn3ð Þ a11 � c11 � a12 þ c12ð Þ

Using the relations

an2 ¼ a12 þ an1 � a11, cn2 ¼ c12 þ cn1 � c11
an3 ¼ a13 þ an1 � a11, cn3 ¼ c13 þ cn1 � c11

we get

¼ an1 � cn1ð Þ a12 � c12ð Þ � a13 � c13ð Þ½ � � a12 þ an1 � a11 � c12 � cn1 þ c11ð Þ a11 � c11ð Þ � a13 � c13ð Þ½ �
þ a13 þ an1 � a11 � c13 � cn1 þ c11ð Þ a11 � c11ð Þ � a12 � c12ð Þ½ �
¼ an1 � cn1ð Þ a12 � c12ð Þ � an1 � cn1ð Þ a13 � c13ð Þ � an1 � cn1ð Þ a11 � c11ð Þ þ an1 � cn1ð Þ a13 � c13ð Þ
� a12 � c12ð Þ a11 � c11ð Þ þ a12 � c12ð Þ a13 � c13ð Þ þ a11 � c11ð Þ2 þ a11 � c11ð Þ a13 � c13ð Þþ
a13 � c13ð Þ a11 � c11ð Þ � a13 � c13ð Þ a12 � c12ð Þ þ an1 � cn1ð Þ a11 � c11ð Þ � an1 � cn1ð Þ a12 � c12ð Þ�
a11 � c11ð Þ2 þ a12 � c12ð Þ a11 � c11ð Þ ¼ 0

Hence, the second vector belongs to the nullspace of the (4n� 4n)-matrix.

Similarly, we can check that all the other vectors are included in the nullspace of the (4n� 4n)-
matrix. We check the last vector (the (2n� 3)-th vector) belongs to the nullspace of the (4n� 4n)-
matrix. The first entry by matrix multiplication is:

a11 � c11ð Þ b11 � d11 � b1n þ d1nð Þ þ b11 � d11ð Þ a11 � c11 � a12 þ c12ð Þ�
a12 � c12ð Þ b11 � d11 � b1n þ d1nð Þ � b1n � d1nð Þ a11 � c11 � a12 þ c12ð Þ ¼
b11 � d11 � b1n þ d1nð Þ a11 � c11ð Þ � a12 � c12ð Þ½ � � a11 � c11 � a12 þ c12ð Þ b11 � d11ð Þ � b1n � d1nð Þ½ � ¼ 0

As before we deduce also that the second, third, and fourth entries are zero. The fifth entry is

a21 � c21ð Þ b11 � d11 � b1n þ d1nð Þ þ b21 � d21ð Þ a11 � c11 � a12 þ c12ð Þ�
a22 � c22ð Þ b11 � d11 � b1n þ d1nð Þ � b2n � d2nð Þ a11 � c11 � a12 þ c12ð Þ ¼
b11 � d11 � b1n þ d1nð Þ a21 � c21ð Þ � a22 � c22ð Þ½ � � a11 � c11 � a12 þ c12ð Þ b21 � d21ð Þ � b2n � d2nð Þ½ � ¼ b11 � d11 � b1n þ d1nð Þ
a21 � c21ð Þ � a12 þ a21 � a11 � c12 � c21 þ c11ð Þ½ �

We use the relations

a22 ¼ a12 þ a21 � a11
b2n ¼ b1n þ b21 � b11
c22 ¼ c12 þ c21 � c11
d2n ¼ d1n þ d21 � d11

Therefore, this entry is

b11 � d11 � b1n þ d1nð Þ a21 � c21ð Þ � a12 þ a21 � a11 � c12 � c21 þ c11ð Þ½ �
� a11 � c11 � a12 þ c12ð Þ b21 � d21ð Þ � b1n þ b21 � b11 � d1n � d21 þ d11ð Þ½ �f g
¼ b11 � d11 � b1n þ d1nð Þ � a12 � a11 � c12 þ c11ð Þ½ � � f a11 � c11 � a12 þ c12ð Þ � b1n � b11 � d1n þ d11ð Þ½ �g ¼ 0
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When we reach the (2n� 3)th entry, we find that it is

an1 � cn1ð Þ b11 � d11 � b1n þ d1nð Þ þ bn1 � dn1ð Þ a11 � c11 � a12 þ c12ð Þ�
ann � cnnð Þ b11 � d11 � b1n þ d1nð Þ � bnn � dnnð Þ a11 � c11 � a12 þ c12ð Þ ¼
b11 � d11 � b1n þ d1nð Þ an1 � cn1ð Þ � ann � cnnð Þ½ ��
a11 � c11 � a12 þ c12ð Þ bn1 � dn1ð Þ � bnn � dnnð Þ½ �f g

We use the relations

ann ¼ a1n þ an1 � a11
bnn ¼ b1n þ bn1 � b11
cnn ¼ c1n þ cn1 � c11
dnn ¼ d1n þ dn1 � d11

to prove that this entry is

b11 � d11 � b1n þ d1nð Þ an1 � cn1ð Þ � a12 þ an1 � a11 � c12 � cn1 þ c11ð Þ½ �
� a11 � c11 � a12 þ c12ð Þ bn1 � dn1ð Þ � b1n þ bn1 � b11 � d1n � dn1 þ d11ð Þ½ �f g
¼ b11 � d11 � b1n þ d1nð Þ � a12 � a11 � c12 þ c11ð Þ½ � � a11 � c11 � a12 þ c12ð Þ � b1n � b11 � d1n þ d11ð Þ½ � ¼ 0

We prove now that the vectors are linearly independent. Let k1, k2, k3,…, k2n�4, k2n�3 ∈R such
that

k1

b11 � d11 � b12 þ d12

� a11 þ c12 � c11 � a12ð Þ
� b11 � d11 � b12 þ d12ð Þ
a11 þ c12 � c11 � a12ð Þ
� b11 � d11 � b12 þ d12ð Þ
a11 þ c12 � c11 � a12

b11 � d11 � b12 þ d12ð Þ
� a11 þ c12 � c11 � a12ð Þ
0

0

0

0

⋮

0

0

0

0

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

þ k2

a12 þ c13 � c12 � a13

0

� a12 þ c13 � c12 � a13ð Þ
0

� a11 � c11 þ c13 � a13ð Þ
0

a11 � c11 þ c13 � a13

0

a11 þ c12 � c11 � a12

0

� a11 þ c12 � c11 � a12ð Þ
0

⋮

0

0

0

0

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

þ…þ k2n�3

b11 � d11 � b1n þ d1n

� a11 þ c12 � c11 � a12ð Þ
� b11 � d11 � b1n þ d1nð Þ
a11 þ c12 � c11 � a12

� b11 � d11 � b1n þ d1nð Þ
0

b11 � d11 � b1n þ d1n

0

⋮

0

0

0

0

0

a11 þ c12 � c11 � a12

0

� a11 þ c12 � c11 � a12ð Þ

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

¼

0

0

0

0

0

0

0

0

0

0

0

0

⋮

0

0

0

0

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

This leads us to the following vector which is a zero vector.
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k1 b11 � d11 � b12 þ d12ð Þ þ k2 a12 þ c13 � c12 � a13ð Þ þ k3 b11 � d11 � b13 þ d13ð Þ þ…þ
k2n�4 a12 þ c1n � c12 � a1nð Þ þ k2n�3 b11 � d11 � b1n þ d1nð Þ
�k1 a11 þ c12 � c11 � a12ð Þ � k3 a11 þ c12 � c11 � a12ð Þ � k2n�3 a11 þ c12 � c11 � a12ð Þ
�k1 b11 � d11 � b12 þ d12ð Þ � k2 a12 þ c13 � c12 � a13ð Þ � k3 b11 � d11 � b13 þ d13ð Þ �…�
k2n�4 a12 þ c1n � c12 � a1nð Þ � k2n�3 b11 � d11 � b14 þ d1nð Þ
k1 a11 þ c12 � c11 � a12ð Þ þ k3 a11 þ c12 � c11 � a12ð Þ þ k2n�3 a11 þ c12 � c11 � a12ð Þ
�k1 b11 � d11 � b12 þ d12ð Þ � k2 a11 � c11 þ c13 � a13ð Þ � k3 b11 � d11 � b13 þ d13ð Þ �…�
k2n�4 a11 � c11 þ c1n � a1nð Þ � k2n�3 b11 � d11 � b1n þ d1nð Þ
k1 a11 þ c12 � c11 � a12ð Þ
k1 b11 � d11 � b12 þ d12ð Þ þ k2 a11 � c11 þ c13 � a13ð Þ þ k3 b11 � d11 � b13 þ d13ð Þ þ…þ
k2n�4 a11 � c11 þ c1n � a1nð Þ þ k2n�3 b11 � d11 � b1n þ d1nð Þ
�k1 a11 þ c12 � c11 � a12ð Þ
k2 a11 þ c12 � c11 � a12ð Þ
k3 a11 þ c12 � c11 � a12ð Þ
�k2 a11 þ c12 � c11 � a12ð Þ
�k3 a11 þ c12 � c11 � a12ð Þ
⋮
k2n�4 a11 þ c12 � c11 � a12ð Þ
k2n�3 a11 þ c12 � c11 � a12ð Þ
�k2n�4 a11 þ c12 � c11 � a12ð Þ
�k2n�3 a11 þ c12 � c11 � a12ð Þ

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

From the (4n� 2)-th row of this vector we obtain the equation

k2n�3 a11 þ c12 � c11 � a12ð Þ ¼ 0

According to our assumptions we must have k2n�3 ¼ 0. Similarly, we obtain k2n�4 ¼ 0 from the
(4n� 3)-th row. We continue checking all the rows up to the tenth row, which looks like this

k3 a11 þ c12 � c11 � a12ð Þ ¼ 0

Hence, we conclude that k3 ¼ 0. From the ninth (res. eighth) row we obtain k2 ¼ 0 (res. k1 ¼ 0).
Since all k1, k2, k3,…, k2n�4, k2n�3 are zero, we are done.⎕
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Abstract

The main purpose of this chapter is to introduce a new type of regular matrix generated
by Fibonacci numbers and we shall investigate its various topological properties. The
concept of mathematical regularity in terms of Fibonacci numbers and phyllotaxy have
been discussed.
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1. Preliminaries, background and notation

In several branches of analysis, for instance, the structural theory of topological vector spaces,
Schauder basis theory, summability theory, and the theory of functions, the study of sequence
spaces occupies a very prominent position. There is an ever-increasing interest in the theory of
sequence spaces that has made remarkable advances in enveloping summability theory via
unified techniques effecting matrix transformations from one sequence space into another.

Thus, we have several important applications of the theory of sequence spaces, and therefore,
we attempt to present a survey on recent developments in sequence spaces and their different
kinds of duals.

In many branches of science and engineering, we deal with different kinds of sequences and
series, and when we deal with these, it is important to check their convergence. The use of
infinite matrices is of great importance, we can bring even the bounded or divergent sequences
and series in the domain of convergence. So we can say that the theory of sequence spaces and
their matrix maps is the bigger scale to measure the convergence property. Summability can be
roughly considered as the study of linear transformations on sequence spaces. The theory
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originated from the attempts of mathematicians to assign limits to divergent sequences. The
classical summability theory deals with the generalization of the convergence of sequences or
series of real or complex numbers. The idea is to assign a limit of some sort to divergent
sequences or series by considering a transform of a sequence or series rather than the original
sequence or series.

The earliest idea of summability theory was perhaps contained in a letter written by Leibnitz to
C. Wolf (1713) in which he attributed the sum 1/2 to the oscillatory series �1 + 1�1 + ….
Frobenius in (1880) introduced the method of summability by arithmetic means, which was
generalized by Cesàro in (1890) as the (C,K) method of summability. Toward the end of the
nineteenth century, study of the general theory of sequences and transformations on them
attracted mathematicians, who were chiefly motivated by problems such as those in summabil-
ity theory, Fourier series, power series and system of equations with infinitely many variables.

Presenting some basic definitions and notations that are involved in the present work, the
author proposes to give a brief resume of the hitherto obtained results against the background
of which the main results studied in the present chapter suggest themselves.

2. Notations and symbols

Here, we state a few conventions which will be used throughout the chapter.

2.1. Symbols N, C, R and A

The symbols are denoted as follows:

N: Set of non-negative integers.

C: Set of complex numbers.

R: Set of real numbers.

A: The infinite matrix ankð Þ, n; k ¼ 1; 2;…ð Þ.

2.2. Summation convention

By
Pβ

α f nð Þ, we mean the sum of all values of f nð Þ for which α ≤n ≤ β. In the case β < α, then we
take this to be zero.

Summations are over 0, 1, 2,…, when there is no indication to the contrary. If xkð Þ ¼ x1; x2;…ð Þ
is a sequence of terms, then, by

P
k xk we mean

P∞
k¼1 xk and we shall sometimes write as

P
xk

incase where no possible confusion arises.

2.3. The spaces ω, l∞, c, c0, lp

A sequence space is a set of scalar sequences (real or complex) which is closed under
coordinate-wise addition and scalar multiplication. In other words, a sequence space is a linear
subspace of the space ω of all complex sequences, that is,
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ω ¼ x ¼ xkð Þ : xk ∈R or Cf g:

The space l∞: The space l∞ of bounded sequences is defined by

x ¼ xkð Þ : sup
k

jxkj < ∞

( )

The spaces c: The spaces c and c0 of convergent and null sequences are given by

x ¼ xkð Þ : lim
k

xk ¼ l; l∈C
� �

The space c0: The space c0 of all sequences converging to 0 is given by

x ¼ xkð Þ : lim
k

xk ¼ 0
� �

The space lp: The space lp of absolutely p-summable sequences is defined by

x ¼ xkð Þ :
X
k

xkj jp < ∞

( )
, 0 < p < ∞ð Þ

The spaces l∞, c, and c0 are Banach spaces with the norm,

∥x∥∞ ¼ sup
k

∣xk∣

The space lp is a Banach space with the norm,

∥x∥p ¼
X
k

xkj jp
 !1

p

, 1 ≤ p < ∞

2.4. Cauchy sequence

A sequence x ¼ xkð Þ is called a Cauchy sequence if and only if ∣xn � xm∣ ! 0 m; n ! ∞ð Þ that is
for any e > 0, there exists N ¼ N Eð Þ such that ∣xn � xm∣ < E for all n,m ≥N. By C, we denote the
space of all Cauchy sequences, that is,

C : x ¼ xkð Þ : jxn � xmj ! 0 as n;m ! ∞f g

2.5. FK-space

A sequence space X is called an FK-space if it is a complete linear metric space with continuous
coordinates pn : X ! C defined by pn xð Þ ¼ xn for all x∈X and every n∈N [1, 2].

2.6. BK-space

A BK-space is a normed FK-space, that is, a BK-space is a Banach space with continuous
coordinates [3–6].
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ity theory, Fourier series, power series and system of equations with infinitely many variables.

Presenting some basic definitions and notations that are involved in the present work, the
author proposes to give a brief resume of the hitherto obtained results against the background
of which the main results studied in the present chapter suggest themselves.

2. Notations and symbols

Here, we state a few conventions which will be used throughout the chapter.

2.1. Symbols N, C, R and A

The symbols are denoted as follows:

N: Set of non-negative integers.

C: Set of complex numbers.

R: Set of real numbers.

A: The infinite matrix ankð Þ, n; k ¼ 1; 2;…ð Þ.

2.2. Summation convention

By
Pβ

α f nð Þ, we mean the sum of all values of f nð Þ for which α ≤n ≤ β. In the case β < α, then we
take this to be zero.

Summations are over 0, 1, 2,…, when there is no indication to the contrary. If xkð Þ ¼ x1; x2;…ð Þ
is a sequence of terms, then, by

P
k xk we mean

P∞
k¼1 xk and we shall sometimes write as

P
xk

incase where no possible confusion arises.

2.3. The spaces ω, l∞, c, c0, lp

A sequence space is a set of scalar sequences (real or complex) which is closed under
coordinate-wise addition and scalar multiplication. In other words, a sequence space is a linear
subspace of the space ω of all complex sequences, that is,
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ω ¼ x ¼ xkð Þ : xk ∈R or Cf g:

The space l∞: The space l∞ of bounded sequences is defined by

x ¼ xkð Þ : sup
k

jxkj < ∞

( )

The spaces c: The spaces c and c0 of convergent and null sequences are given by

x ¼ xkð Þ : lim
k

xk ¼ l; l∈C
� �

The space c0: The space c0 of all sequences converging to 0 is given by

x ¼ xkð Þ : lim
k

xk ¼ 0
� �

The space lp: The space lp of absolutely p-summable sequences is defined by

x ¼ xkð Þ :
X
k

xkj jp < ∞

( )
, 0 < p < ∞ð Þ

The spaces l∞, c, and c0 are Banach spaces with the norm,

∥x∥∞ ¼ sup
k

∣xk∣

The space lp is a Banach space with the norm,

∥x∥p ¼
X
k

xkj jp
 !1

p

, 1 ≤ p < ∞

2.4. Cauchy sequence

A sequence x ¼ xkð Þ is called a Cauchy sequence if and only if ∣xn � xm∣ ! 0 m; n ! ∞ð Þ that is
for any e > 0, there exists N ¼ N Eð Þ such that ∣xn � xm∣ < E for all n,m ≥N. By C, we denote the
space of all Cauchy sequences, that is,

C : x ¼ xkð Þ : jxn � xmj ! 0 as n;m ! ∞f g

2.5. FK-space

A sequence space X is called an FK-space if it is a complete linear metric space with continuous
coordinates pn : X ! C defined by pn xð Þ ¼ xn for all x∈X and every n∈N [1, 2].

2.6. BK-space

A BK-space is a normed FK-space, that is, a BK-space is a Banach space with continuous
coordinates [3–6].
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2.7. Fibonacci numbers

In the 1202 AD, Leonardo Fibonacci wrote in his book Liber Abaci of a simple numerical
sequence that is the foundation for an incredible mathematical relationship behind phi. This
sequence was known as early as the sixth century AD by Indian mathematicians, but it was
Fibonacci who introduced it to the west after his travels throughout the Mediterranean world
and North Africa. He is also known as Leonardo Bonacci, as his name is derived in Italian from
words meaning son of (the) Bonacci.

The Fibonacci numbers have been introduced [7–14]. The Fibonacci numbers are the sequence
of numbers f n

� �
, n∈N defined by recurrence relations

f 0 ¼ 0, f 1 ¼ 1 and f n ¼ f n�1 þ f n�2; n ≥ 2

First derived from the famous rabbit problem of 1228, the Fibonacci numbers were originally
used to represent the number of pairs of rabbits born of one pair in a certain population. Let us
assume that a pair of rabbits is introduced into a certain place in the first month of the year.
This pair of rabbits will produce one pair of offspring every month, and every pair of rabbits
will begin to reproduce exactly 2 months after being born. No rabbit ever dies, and every pair
of rabbits will reproduce perfectly on schedule.
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So, in the first month, we have only the first pair of rabbits. Likewise, in the second month, we
again have only our initial pair of rabbits. However, by the third month, the pair will give birth
to another pair of rabbits, and there will now be two pairs. Continuing on, we find that in
month 4, we will have 3 pairs, then 5 pairs in month 5, then 8, 13, 21, 34, …, etc., continuing in
this manner. It is quite apparent that this sequence directly corresponds with the Fibonacci
sequence introduced above, and indeed, this is the first problem ever associated with the now-
famous numbers.

Fibonacci numbers have many interesting properties and applications in arts, sciences and
architecture. Also, following [7], some basic properties are as follows

Xn

k¼0

f k ¼ f nþ2 � 1; n∈N,

and

Xn

k¼0

f 2k ¼ f n f nþ1; n∈N

Everything in Nature is subordinated to stringent mathematical laws. Prove to be that leaf’s
disposition on plant’s stems also has stringent mathematical regularity and this phenomenon
is called phyllotaxis in botany. An essence of phyllotaxis consists in a spiral disposition of
leaves on plant’s stems of trees, petals in flower baskets, seeds in pine cone and sunflower
head, etc.

This phenomenon, known already to Kepler, was a subject of discussion of many scientists,
including Leonardo da Vinci, Turing, Veil, and so on. In phyllotaxis phenomenon, more com-
plex concepts of symmetry, in particular, a concept of helical symmetry, are used. The phyllo-
taxis phenomenon reveals itself especially brightly in inflorescences and densely packed
botanical structures such as pine cones, pineapples, cacti, heads of sunflower and cauliflower,
and many other objects [11].

On the surfaces of such objects, their bio-organs (seeds on the disks of sunflower heads and
pine cones, etc.) are placed in the form of the left-twisted and right-twisted spirals. For such
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phyllotaxis objects, it is used usually the number ratios of the left-hand and right-hand spirals
observed on the surface of the phyllotaxis objects. Botanists proved that these ratios are equal
to the ratios of the adjacent Fibonacci numbers, that is,

f iþ1

f i
:
2
1
,
3
2
,
5
3
,
8
5
,
13
8
,… ¼ 1þ ffiffiffi

5
p

2

By using hyperbolic Fibonacci functions, he had developed an original geometric theory of
phyllotaxis and explained why Fibonacci spirals arise on the surface of the phyllotaxis objects
namely, pine cones, cacti, pine apple, heads of sunflower, and so on, in process of their
growths. Bodnar’s geometry [15] confirms that these functions are ‘natural’ functions of the
nature, which show their value in the botanic phenomenon of phyllotaxis. This fact allows us
to assert that these functions can be attributed to the class of fundamental mathematical
discoveries of contemporary science because they reflect natural phenomena, in particular,
phyllotaxis phenomenon.

From above discussion, it gave us motivation to see the behavior of the infinite matrices
generated by Fibonacci numbers.

In the present chapter, we have introduced a new type of matrix H ¼ hunk
� �

n, k∈N by using
Fibonacci numbers f n and we call it as H-matrix generated by Fibonacci numbers f n and
introduce some new sequence spaces related to matrix domain of H in the sequence spaces
lp, l∞, c and c0, where 1 ≤ p < ∞.

2.8. The space rq u; pð Þ

Sheikh and Ganie [16] introduced the Riesz sequence space rq u; pð Þ and studied its various
topological properties where u ¼ ukð Þ is a sequence such that uk 6¼ 0 for all k∈N and qk

� �
the

sequence of positive numbers and

Qn ¼
Xn

k¼0

qk,∀n∈N

Then, the matrix Rq
u ¼ rqnk

� �
of the Riesz mean Ru; qn

� �
is given by

rqnk ¼
ukqk
Qn

if 0 ≤ k ≤n,

0, if k > n:

8<
:

The Riesz mean Ru; qn
� �

is regular if and only if Qn ! ∞ as n ! ∞.

3. H-matrix generated by Fibonacci numbers

Let X and Y be two subsets of ω. Let A ¼ ankð Þ be an infinite matrix of real or complex numbers
ank, where n, k∈N. Then, the matrix A defines the A-transformation from X into Y, if for every
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sequence x ¼ xkð Þ∈X the sequence Ax ¼ Axð Þn
� �

, the A-transform of x exists and is in Y
where

Axð Þn ¼
X
k

ankxk:

For simplicity in notation, here and in what follows, the summation without limits runs from 0
to ∞. By X;Yð Þ, we denote the class of all such matrices. A sequence x is said to be A-summable
to l if Ax converges to l which is called as the A-limit of x.

For a sequence space X, the matrix domain XA of an infinite matrix A is defined as

XA ¼ x ¼ xkð Þ∈ω : Ax∈Xf g, (1)

which is a sequence space.

An infinite matrix A ¼ ankð Þ is said to be regular if and only if the following conditions (or
Toplitz conditions) hold [17–19]:

i. lim
n!∞

X∞

k¼0

ank ¼ 1,

ii. lim
n!∞

ank ¼ 0, k ¼ 0; 1; 2;…ð Þ,

iii.
P∞
k¼0

∣ank∣ < M, M > 0; j ¼ 0; 1; 2;…ð Þ:

In the present paper, we introduce H-matrix with H ¼ hunk
� �

n, k∈N as follows:

hunk ¼
ukf k

2

f n f nþ1
if 0 ≤ k ≤n,

0, if k > n:

8><
>:

Thus, for uk ¼ 1 and for all k∈N, we have

H ¼

1 0 0 0 0 ⋯
1=2 1=2 0 0 0 ⋯
1=6 1=6 4=6 0 0 ⋯
1=15 1=15 4=15 9=15 0 ⋯
⋮ ⋮ ⋮ ⋮ ⋱ ⋮

0
BBBBBB@

1
CCCCCCA
:

It is obvious that the matrix H is a triangle, that is, hunn 6¼ 0 and hunk ¼ 0 for k > n and for all
n∈N. Also, since it satisfies the conditions of Toeplitz matrix and hence it is regular matrix.

Note that if we take qk ¼ f 2k , then the matrix H is special case of the matrix Rq
u, where

Qn ¼
Xn

k¼0

f 2k ¼ f n f nþ1,

introduced by Sheikh and Ganie [16].
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The approach of constructing a new sequence space by means of matrix domain of a particular
limitation method has been studied by several authors [17–26].

Throughout the text of the chapter, X denotes any of the spaces l∞, c, c0 and lp 1 ≤ p < ∞ð Þ. Then,
the Fibonacci sequence space X Hð Þ is defined by

X Hð Þ ¼ x ¼ xkð Þ∈ω : y ¼ yk
� �

∈X
� �

,

where the sequence y ¼ yk
� �

is the H-transform of the sequence x ¼ xkð Þ and is given by

yk ¼ Hk xð Þ ¼ 1
f k f kþ1

Xk

i¼0

f 2i uixi for all k∈N: (2)

With the definition of matrix domain given by Eq. (1), we can redefine the space X Hð Þ as the
matrix domain of the triangle H in the space X, that is,

X Hð Þ ¼ XH:

Theorem 1: The space X Hð Þ is a BK-space with the norm given by

kx ¼ jH xð Þk kX ¼ yk kX ¼
P∞

k¼0 yk
�� ��p� �1

p for for X∈ lp
� �

:

sup
k

yk for X∈ l∞; c; c0f g:

8<
: (3)

Proof: Since the matrix H ¼ hunk
� �

is a triangle, that is, hunn 6¼ 0 and hunk ¼ 0 for k > n for all n. We
have the result by Eq. (3) and Theorem 4.3.2 of Wilansky [6] gives the fact that X Hð Þ is a
BK-space.◊
Theorem 2: The space X Hð Þ is isometrically isomorphic to the space X.
Proof: To prove the result, we should show the linear bijection between the spaces X Hð Þ and X.
For that, consider the transformation T from X Hð Þ to X by x ! y ¼ Tx. Then, the linearity of T
follows from Eq. (2). Further, we see that x ¼ 0 whenever Tx ¼ 0 and consequently T is injective.

Moreover, let y ¼ yk
� �

∈X be given and define the sequence x ¼ xkð Þ by

xk ¼
f kþ1

uk f k
yk �

f k�1

uk f k
yk�1; k∈N: (4)

Then, by using (2) and (4), we have for every k∈N that

HðxÞ ¼ 1
f k f kþ1

Xk

i¼0

f 2i uixi

¼ 1
f k f kþ1

Xk

i¼0

f iðf iþ1yi � f i�1yi�1Þ

¼ yk:
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This shows that H xð Þ ¼ y and since y∈X, we conclude that H xð Þ∈X. Thus, we deduce that
x∈X Hð Þ and Tx ¼ y. Hence, T is surjective.

Furthermore, for any x∈X Hð Þ, we have by (3) that

∥T xð Þ∥ ¼ ∥y∥ ¼ ∥H xð Þ∥X ¼ ∥x∥X

which shows that T is norm preserving. Hence, T is isometry. Consequently, the spaces X Hð Þ
and X are isometrically isomorphic. Hence, the proof of the Theorem is complete.◊

Theorem 3: Let f j
n o

be Fibonacci number sequences. Then, we have

sup
i

f 2i
X∞

j¼i

1
f j f jþ1

0
@

1
A < ∞:

Proof: We have,
X∞

k¼n

1
f k

� 1
f kþ1

� �
¼ 1

f n

This gives,

1 ¼ f n
X∞

k¼n

1
f k

� 1
f kþ1

� �

¼ f 2n
1
f n

X∞

k¼n

f kþ1 � f k
f k f kþ1

� �

¼ f 2n
1
f n

X∞

k¼n

f k�1

f k f kþ1

� �

≥ f 2n
f n�1

f n

X∞

k¼n

1
f k f kþ1

� �

and the conclusion follows because f n f n�1 is bounded since it converges to
ffiffi
5

p þ1
2 .◊

Theorem 4: X⊂X Hð Þ holds.
Proof: It is obvious that c0 ⊂ c0 Hð Þ and c⊂ c Hð Þ, since the matrix H is regular matrix. Now, let
x∈ l∞. Then, there is a constant K > 0 such that ∣xj∣ < K

∣uj ∣ for all j∈N. Thus, we have for every

i∈N that

∣Hi xð Þ∣ ≤
1

f i f iþ1

Xi

j¼0

f 2j ∣ujxj∣

≤
K

f i f iþ1

Xi

j¼0

f 2j ¼ K

which shows that H xð Þ∈ l∞. Therefore, we deduce that x∈ l∞ implies x∈ l∞ Hð Þ.
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sup
i

f 2i
X∞

j¼i

1
f j f jþ1

0
@

1
A < ∞:

Proof: We have,
X∞

k¼n

1
f k

� 1
f kþ1

� �
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f n

This gives,

1 ¼ f n
X∞
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1
f k

� 1
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� �
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1
f n

X∞
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� �
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1
f n

X∞
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f k�1

f k f kþ1

� �

≥ f 2n
f n�1

f n

X∞

k¼n

1
f k f kþ1

� �

and the conclusion follows because f n f n�1 is bounded since it converges to
ffiffi
5

p þ1
2 .◊

Theorem 4: X⊂X Hð Þ holds.
Proof: It is obvious that c0 ⊂ c0 Hð Þ and c⊂ c Hð Þ, since the matrix H is regular matrix. Now, let
x∈ l∞. Then, there is a constant K > 0 such that ∣xj∣ < K

∣uj ∣ for all j∈N. Thus, we have for every

i∈N that

∣Hi xð Þ∣ ≤
1

f i f iþ1

Xi

j¼0

f 2j ∣ujxj∣

≤
K

f i f iþ1

Xi

j¼0

f 2j ¼ K

which shows that H xð Þ∈ l∞. Therefore, we deduce that x∈ l∞ implies x∈ l∞ Hð Þ.
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We now consider the case 1 ≤ p < ∞. We only consider the case 1 < p < ∞ and by similar
argument will follow for p ¼ 1. So, let x∈ lp. Then, for every i∈N and by Holder’s inequality,
we have

Hi xð Þj jp ≤
Xi

j¼0

f 2j
f i f iþ1

jujxjj
0
@

1
A

p

≤
Xi

j¼0

f 2j
f i f iþ1

jujxjj
0
@

1
A

p Xi

j¼0

f 2j
f i f iþ1

0
@

1
A

p�1

¼ 1
f i f iþ1

Xi

j¼0

f 2j ujxj
�� ��p:

Hence, we have

X∞

i¼0

Hi xð Þj jp ≤
X∞

i¼0

1
f i f iþ1

Xi

j¼0

f 2j ujxj
�� ��p

¼
X∞

i¼0

xj
�� ��p uj

�� ��pf 2j
X∞

i¼j

1
f i f iþ1

:

Hence, the right-hand side of above inequality can be made arbitrary small, since,

supj f 2j
P∞

i¼j
1

f i f iþ1

� �
< ∞ by Theorem 3 (above) and x∈ lp. This shows that x∈ lp Hð Þ. This com-

pletes the proof of the theorem.◊
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