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Preface

A heterostructure is a sandwich of two dissimilar semiconductors (or other materials) with
different bandgaps and lattice constants. The junction between two different materials is
known as heterojunction. Nanostructures are structures that range between 1 nm and 100
nm in at least one dimension. In the case of semiconductor nanostructures, the carriers can
be confined in one, two, or all three dimensions, and the structures are known as quantum
wells, quantum wires, and quantum dots, respectively. The aforementioned structures, as
well as many others, are of interest for various electronic and optoelectronic device applica‐
tions such as diodes, lasers, spintronic devices, and dissipationless transistors for quantum
computers, among others. Molecular beam epitaxy (MBE), metalorganic chemical vapor
deposition (MOCVD), and some other micro-fabrication techniques are used to create high-
quality heterostructures. Computational methods such as numerical integration and partial
differential schemes have been mainly used to describe, among others, the carrier confine‐
ment, as well as the relaxation and dephasing rates.

A collection of research topics related to heterojunctions and nanostructures is presented in
the current book. The first part of the book includes chapters related to topological insula‐
tors. A few presented topics are, among others, the topological phases of matter, the band
topology of insulators and also of Weyl semimetals, transport properties of 3D topological
insulator quantum wires and the influence of disorder, transport properties of quasi-1D
(and 2D) topological surface states, quantum coherence, and the topological insulator thin-
film Hall bar device. The second part of the book includes chapters related to the nanostruc‐
ture devices for light emission. Topics such as semiconductor quantum nanowire laser
diodes, solutions of Schrodinger equation in nanostructures, numerical methods, light-to-
electricity conversion devices, photoexcited carrier transportation process in quantum wells
and quantum dots, growth mode and characterization of heterostructure of large lattice mis‐
match, and photoionization cross section are included in the second section, among others.

As an editor of this book, I would like to thank all the authors for their contribution, their
high-research standards, and their constructive feedback. Lastly, I would like to express my
thanks and gratitude to the InTech team for their support during the preparation of this book.

Dr. Vasilios N. Stavrou
Hellenic Naval Academy

Piraeus, Greece
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Abstract

We provide a systematic analysis of the boundary condition for the edge state, which is a
ubiquitous feature in topological phases of matter. We show how to characterize the
boundary condition, and how the edge state spectrum depends on it, with several exam-
ples, including 2d topological insulator and 3d Weyl semimetal. We also demonstrate the
edge-of-edge state localized at the intersection of boundaries.

Keywords: topological insulator, Weyl semimetal, boundary condition, lattice fermion

1. Introduction

Study of topological phases of matter has been a hot topic in condensed-matter physics for
recent years [1]. An importance of topological aspects of materials themselves was already
noticed around the discovery of quantum Hall effect (QHE) in early 1980s. QHE is universally
observed in a two-dimensional system, but it requires a strong magnetic field, which breaks
time-reversal symmetry. A breakthrough after 20 years was the discovery of quantum spin
Hall effect (QSHE), which actually demonstrates that a topological phase is possible even
without breaking time-reversal symmetry. This opens a new window of the research on
topological insulators (TIs) and topological superconductors (TSCs).

A universal feature of topological phases is the bulk/edge correspondence [2]: once the bulk
wave function has a topologically nontrivial configuration; there exists a gapless edge state

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons

Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,

distribution, and eproduction in any medium, provided the original work is properly cited.
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Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.
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localized at the boundary. Such an edge state is topologically protected, and thus is robust
against any perturbations as long as respecting symmetry of the system. In practice, the edge
state plays a significant role in detection of topological phases since it can be directly observed
in experiments using angle-resolved photo-emission spectroscopy (ARPES). Therefore the
boundary condition dependence of the edge state is expected to provide experimentally useful
predictions.

In this article, we provide a systematic analysis of the boundary condition of topological
material surfaces, including TIs and also Weyl semimetals (WSMs) [3, 4].1 In Section 2, we
discuss some preliminaries on the band topology of TI and WSM. We explain how one can
obtain topological invariants from the band spectrum. In Section 3, we provide a systematic
study of the boundary condition. We show how to obtain and characterize the boundary
condition for a given Lagrangian or Hamiltonian. Then we apply this analysis to the edge state
of 2d TI and 3d WSM both in the continuum effective model and the discretized lattice model.
In Section 4, we extend the analysis to the situation with two boundaries in different directions.
We demonstrate the existence of the edge state localized at the intersection of surfaces, that we
call the edge-of-edge state.

2. Preliminaries: bulk, edge, and topology

In this section, we provide several preliminary aspects of topological materials. In particular,
we show simple models, effectively describing the bulk of topological system, and discuss the
role of topology thereof.

2.1. Bulk system

We start with a simple two-band Hamiltonian in two dimensions,

H2d ¼ �iσ1
∂
∂x1

� iσ2
∂
∂x2

þmσ3 (1)

where Pauli matrices are defined σ1 ¼
0 1
1 0

� �
, σ2 ¼

0 �i
i 0

� �
, σ3 ¼

1 0
0 �1

� �
. This is a

simple effective model for 2d Integer QHE, classified into the 2d class A system according to
the 10-fold way classification of TIs and TSCs [8, 9]. In order to investigate the band structure

of this system, we consider the Bloch wave function Ψp! x!
� �

¼ eip
!�x!ψp! x!

� �
, and the

corresponding Hamiltonian acting on ψp! x!
� �

, simply denoted by ψ below, is given by

1
See also related works [5–7] for the boundary condition analysis of topological materials.
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H2d p!
� �

¼ p1σ1 þ p2σ2 þmσ3 ¼
m Δ∗ p!

� �

Δ p!
� �

�m

0
B@

1
CA: (2)

We obtain two eigenvalues e� p!
� �

¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p!
���
���
2
þm2

r
. The eigenstate, parametrized by a complex

number ξ∈C, is accordingly obtained as

ψ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ξj j2

q 1
ξ

� �
with ξ ¼

Δ p!
� �

eþm
¼ e�m

Δ p!
� �∗ : (3)

We remark that the parameter ξ becomes singular ξ ! ∞ at p!¼ 0. At this point, we have to

reparametrize the eigenstate with ξ�1 instead of ξ. This means that ξ is not a global, but just a
local coordinate, and the eigenstate is given by an element of CP1 in this model.

Since this system is gapped, we can neglect the transition between lower and upper bands as
long as we consider the adiabatic process. Under such a process, we can consider the Berry
connection and curvature defined from the gapped eigenstate2

A ¼ ψ† idð Þψ ¼ �Im
ξ∗dξ

1þ ξj j2 , F ¼ dA ¼ i
dξ∗dξ

1þ ξj j2
� �2 (4)

where we use the differential form notation in the momentum space, d ¼ ∂=∂pi
� �

dpi, namely

the Berry connection is one-form A ¼ A1dp1 þ A2dp2, and the curvature is two-form

F ¼ F12dp1dp2. Under the momentum-dependent transformation, ξ ! eiϕ p!ð Þξ (not an overall

phase rotation of the eigenstate ψ), the connection behaves asA ! A� dϕ= 1þ ξj j2
� �

. This is a

U(1) gauge transformation, which is local in momentum space, and the curvature is invariant
under this transformation by itself. This U(1) structure is directly related to the S1 fibration of
CP1 ¼ S3=S1, and interpreted as a consequence of the particle number conservation of each
eigenstate which holds under the adiabatic process.

An important point is that we can construct the topological invariant from the Berry connec-
tion and curvature (4). For the 2d system, it is given as an integral of the curvature over the
momentum space,

ν2d ¼ 1
2π

ð
dp1dp2F12 ¼

1
2
sgn mð Þ (5)

which is called the TKNN number, which computes the Hall conductivity of the system [11].
We remark that it is invariant under the continuous deformation of the mass parameter, so that

2
See a textbook on this topic, e.g., [10] for more details.
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it would be a topological invariant, but with a discontinuous point at m ¼ 0, which is the
gapless (sign changing) point m ¼ 0. Typically the topological number takes an integer value,
but ν2d does not. The reason why we obtain a half integer value is that we take a specific slice
of the mass parameter in the total parameter space of the three-parameter Hamiltonian (2).

To explain this let us consider the 3d system as follows,

H3d p!
� �

¼ p1σ1 þ p2σ2 þ p3σ3 ¼
p3 Δ∗ pð Þ

Δ pð Þ �p3

� �
(6)

which is known as an effective Hamiltonian of the WSM. This Hamiltonian is simply obtained
from the 2d system (2) by replacing the mass parameter with another momentum p3. We apply
essentially the same analysis to this 3d system as 2d, and we obtain the genuine topological
invariant:

ν3d ¼ 1
4π

ð

S2
d S

! � B!¼ 1
2π

ð
dp1dp2F12 p3>0 � 1

2π

ð
dp1dp2F12

����
����
p3<0

¼ 1 (7)

where the “magnetic field” is defined as Bi ¼ 1
2 e

ijkFjk, namely B
!¼∇

! � A
!
. This means that the

gapless point (also called the Weyl point) plays a role as the magnetic monopole in the
momentum space. As shown in Figure 1, the 2d invariant ν2d is related to the 3d invariant
through taking a constant p3, identified with the mass m, which covers either upper or lower
half of the monopole fluxes. This explains why the 2d invariant can be a half-integer, although
the 3d invariant takes an integer value. We remark that, in this case, one cannot consider well-
defined Berry phase, since the current 3d system is gapless in which the adiabatic process does
not make sense. However, the topological invariant still plays a role to discuss stability of the
Weyl point: Since a system having a nontrivial topological number, say ν3d 6¼ 0, cannot be

Figure 1. Monopole at Weyl point in the momentum space. The monopole charge is an integer-valued topological
invariant ν3d. The 2d invariant ν2d is obtained at a constant p3 ! mð Þ plane, which covers either upper or lower half of
the fluxes, so that ν2d is given by a half of ν3d.

Heterojunctions and Nanostructures6

continuously deformed to a trivial system ν3d ¼ 0 by definition. This explains the topological
stability of the WSM. If we want to obtain a topologically trivial situation, we need pair-
annihilation of the Weyl points having opposite topological invariants: ν3d ¼ þ1ð Þ þ �1ð Þ ¼ 0.
See Figure 2.

2.2. Edge state

So far, we have discussed the bulk system, and the material boundary is not yet considered.
Let us show a simple argument to incorporate the boundary of the system. If we have a
material which has nontrivial topology, the vacuum, outside of the material, should be topo-
logically trivial. Otherwise they cannot be topologically distinguished. As explained above, in
order to obtain the topology change in the 2d system, we need the mass parameter whose sign
is flipped at the boundary. For this purpose we impose a simple spatial dependence on the
mass parameter asm x1ð Þ ¼ ϑx1 with a positive slope ϑ > 0, giving rise to the sign flip at x1 ¼ 0,
so that the boundary is the plane x1 ¼ 0 [12]. Then the Hamiltonian takes a form of

ℋ2d x1; p2
� � ¼ m x1ð Þσ1 � iσ2

∂
∂x1

þ p2σ3 ¼
p2

ffiffiffiffiffiffi
2ϑ

p ba†ffiffiffiffiffiffi
2ϑ

p ba �p2

 !
(8)

where we exchange Pauli matrices compared with the previous one to simplify the expres-
sion. Since x1-dependence remains in this system, we do not consider the momentum basis in
x1-direction, while the momentum in x2-direction is now denoted by p2. The off-diagonal

element is given by an operator ba ¼ ϑx1 þ ∂=∂x1ð Þð Þ= ffiffiffiffiffiffi
2ϑ
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, obeying

the commutation relation ba;ba†
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¼ 1, so that it is interpreted as a creation/annihilation

operator. Then the energy spectrum is given by en p2
� � ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p22 þ 2ϑn

p
for n ≥ 1 (gapped),

while the zero mode dispersion is given by e0 p2
� � ¼ p2 (gapless), which is the chiral edge

state of the 2d class A system. See Figure 3 for numerical plot of the spectrum. In general, we
obtain the zero mode localized on the topological material boundary from the mass term

Figure 2. The topological invariant distinguishes topologically different situations. The green and red spheres show the
monopole with topological charge ν3d ¼ þ1 and ν3d ¼ �1, respectively. We need pair annihilation to eliminate the mono-
poles.
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! � A
!
. This means that the

gapless point (also called the Weyl point) plays a role as the magnetic monopole in the
momentum space. As shown in Figure 1, the 2d invariant ν2d is related to the 3d invariant
through taking a constant p3, identified with the mass m, which covers either upper or lower
half of the monopole fluxes. This explains why the 2d invariant can be a half-integer, although
the 3d invariant takes an integer value. We remark that, in this case, one cannot consider well-
defined Berry phase, since the current 3d system is gapless in which the adiabatic process does
not make sense. However, the topological invariant still plays a role to discuss stability of the
Weyl point: Since a system having a nontrivial topological number, say ν3d 6¼ 0, cannot be
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with a spatial profile, which is known as the domain-wall fermion. See, for example, [13] for
more details.

2.3. Lattice system

Since the electron lives on a lattice in the material, studying the lattice model is important to
understand the actual behavior of the electron. Let us introduce the Hamiltonian describing
the electron on a lattice

Hlat
2d ¼ � i

2
σ1 ∇1 � ∇†

1

� �� i
2
σ2 ∇2 � ∇†

2

� �þ σ3 mþ 2� 1
2

∇1 þ ∇†
1

� �� 1
2

∇2 þ ∇†
2

� �� �
(9)

where we define the difference operator ∇1,2ψn! ¼ ψn!þ e
!
1,2

� ψn! with the unit vector e
!

1,2 in n1

and n2-direction. Then the corresponding Bloch Hamiltonian is given by

Hlat
2d p!
� �

¼ σ1 sin p1 þ σ2 sin p2 þ σ3 mþ 2� cos p1 � cos p2
� �

: (10)

Periodicity p1,2 � p1,2 þ 2π reflects the lattice structure: The momentum is restricted

to the Brillouin zone p1,2 ∈ 0; 2π½ �. The spectrum is given by e p!
� �

¼

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin p1
� �2 þ sin p2

� �2 þ mþ 2� cos p1 � cos p2
� �2q

, which has four gapless points p!¼ 0; 0ð Þ
at m ¼ 0, p!¼ π; 0ð Þ and 0;πð Þ at m ¼ �2, p!¼ π;πð Þ at m ¼ �4. Expanding the momentum

around p!¼ 0; 0ð Þ, one can see the effective Hamiltonian (2) is obtained. If expanding the

momentum around p!¼ π; 0ð Þ instead, we similarly obtain the Hamiltonian (2), but we have
to replace p1 ! �p1.

Figure 3. The dispersion relation of the edge state with ϑ ¼ 1. We find a gapless chiral mode specific to the 2d class A TI.
The gapped spectra are interpreted as bulk contributions.
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Let us see the topological structure of the lattice model. Applying the same procedure to the
Hamiltonian (10), we obtain the topological invariant as follows [14]:

ν2d ¼ 1
2π

ð

BZ
dp1dp2F12 ¼

0 m > 0 or m < �4ð Þ
�1 �2 < m < 0ð Þ
þ1 �4 < m < �2ð Þ

8><
>:

(11)

where the momentum integral is taken over the Brillouin zone. In contrast to the continuum
effective model, we have integer valued topological invariants in this case. This is essentially
related to the anomaly of (2 + 1)-dimensional Dirac system, known as the parity anomaly.
However, it is also known that the lattice regularization naively gives rise to an anomaly-free
system: The gapless points have to appear as a pair, so that each anomalous contribution is
canceled with each other [15, 16]. Actually the present model (10) has four gapless points in the
parameter space: p1; p2;m

� � ¼ 0; 0; 0ð Þ, π; 0;�2ð Þ, 0;π;�2ð Þ, π;π;�4ð Þ. Each gapless point
plays basically the same role as that discussed in the continuum model with the monopole
charge þ1 or �1. Thus we immediately obtain ν2d ¼ 1

2 þ1� 2þð 1Þ ¼ 0 for m > 0,
1
2 �1� 2þ 1ð Þ ¼ 1 for �2 < m < 0, 12 �1þ 2þ 1ð Þ ¼ 1 for �4 < m < �2, and 1

2 �1þ 2� 1ð Þ ¼ 0
for m < �4. See Figure 4.

We can similarly consider a lattice model for 3d WSM system. We consider the Hamiltonian
defined on a 3d lattice

Hlat
3d ¼ 1

2
σ1 ∇1 þ ∇†

1 � ∇2 � ∇†
2 þ 2c

� �� i
2
σ2 ∇2 � ∇†

2

� �� i
2
σ3 ∇3 � ∇†

3

� �
: (12)

The corresponding Bloch Hamiltonian is given by

Hlat
3d p!
� �

¼ σ1 cos p1 � cos p2 þ c
� �þ σ2 sin p2 þ σ3 sin p3, (13)

Figure 4. The mass dependence of the 2d topological invariant ν2d for the lattice model (10). Topology change occurs at
the gapless points m ¼ �4, � 2, 0. Change of the invariant corresponds to the monopole charge þ1, � 2, þ 1 associated
with each gapless point.
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and the spectrum yields e p!
� �

¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos p1 � cos p2 þ c
� �2 þ sin p2

� �2 þ sin p3
� �2q

. The param-

eter c tunes the gapless Weyl points as follows

p1; p2; p3
� � ¼

cos �1 1� cð Þ; 0; 0� �
& cos �1 1þ cð Þ; 0;π� �

0 < c < 2ð Þ
cos �1 �1� cð Þ;π; 0� �

& cos �1 1þ cð Þ;π;π� � �2 < c < 0ð Þ
n=a jcj > 2ð Þ

8><
>:

(14)

The band spectrum is shown in Figure 5 at p3 ¼ 0 and c ¼ 1. We can see two Weyl points at
p1; p2
� � ¼ �π=2; 0ð Þ. We will study the boundary condition of this model in Section 3.3.

2.4. Higher-dimensional system

So far we have considered a simple system in two and three dimensions. We can even discuss
such a topological structure in the momentum space of more involved systems. In this section
we discuss a higher-dimensional generalization of the system discussed above. Dimensional
reduction of this system gives rise to several interesting situations in 2d and 3d.

We consider a four-band model defined in four spatial dimensions, which is a natural higher-
dimensional generalization of (2),

H4d pð Þ ¼ p � γþmγ5 ¼
m Δ pð Þ†

Δ pð Þ �m

 !
with Δ pð Þ ¼ p � σ ¼ p4 þ ip3 p2 þ ip1

�p2 þ ip1 p4 � ip3

� �
(15)

where we use the gamma matrices defined as γk ¼
0 �iσk
σk 0

� �
for k ¼ 1; 2; 3, γ4 ¼

0 1

1 0

� �
,

Figure 5. The energy spectrum of the lattice WSM model (13) with p3 ¼ 0 and c ¼ 1. There exist two gapless Weyl points
at p1; p2
� � ¼ �π=2; 0ð Þ. The parameter c characterizes the distance between the Weyl points.

Heterojunctions and Nanostructures10

γ5 ¼
1 0
0 �1

� �
, and the off-diagonal element is given by Δ pð Þ ¼ p � σ∈H with σ ¼ i σ!;1

� �
.

We remark that this Hamiltonian is a 4� 4 matrix, such that each element shows a 2� 2

matrix. The spectrum is simply obtained as e pð Þ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pj j2 þm2

q
, and each state is doubly

degenerated. We have a similar eigenvector to (3) as follows,

ψ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ξj j2

q 1

ξ

� �
with ξ ¼ Δ

εþm
¼ ε�m

Δ† ∈H: (16)

Currently each component shows a 2� 2 matrix, which takes a value in quaternion H, so that
the eigenvector is a 2� 4 matrix due to the degeneracy, namely ψ ¼ ψ1 ψ2

� �
, where each ψ1,2

is a four vector. For a degenerated system, we can define non-Abelian analog of the Berry
connection Aab ¼ ψ†

a idð Þψb for a, b ¼ 1, 2. In this case, we obtain an SU(2) valued Berry connec-

tion, which is a consequence of S3 fibration of HP1 ¼ S7=S3. The topological invariant for the
4d system is given by the four-dimensional momentum integral of the second Chern class,
which is known as the instanton number,

ν4d ¼ � 1
8π2

ð
TrF ∧F ¼ 1

2
sign mð Þ: (17)

Actually the instanton configuration obtained here, by solving a matrix equation, is closely
related to the ADHM construction. See [12] for more details. We again obtain a half-integer
topological invariant. The reason is totally parallel with the previous case. To obtain an integer
valued topological invariant, we consider the 5d uplift, the 5d WSM, obtained by replacing the
mass with another momentum m ! p5,

H5d pð Þ ¼ p � γþ p5γ5, (18)

and thus the integral over the 5d momentum space, instead of 4d, gives rise to

ν5d ¼ � 1
8π2

ð

S4
TrF ∧F ¼ 1, (19)

which implies the SU(2) monopole, called the Wu-Yang monopole, at the origin in the momen-
tum space. Then the 4d momentum integral performed to obtain the 4d invariant ν4d is
equivalent to the hemisphere integral of S4, which provides a half of the 5d invariant.

3. Boundary condition analysis

3.1. Operator formalism

In order to discuss the boundary condition, we start with a first order Hermitian differential
operator [3, 4, 17, 18]
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bD ¼ �iσ
∂
∂x

: (20)

Now we put a Pauli matrix σ, but we can consider a generic Hermitian matrix. Considering the
inner product in a finite size system defined on the interval x∈ xL; xR½ �, we obtain

ϕ
���bDψ

D E
¼
ðxR
xL

dxϕ xð Þ† �iσ
∂
∂x

ψ xð Þ
� �

¼ ϕ xð Þ† �iσð Þψ xð Þ
���
xR

xL
þ
ðxR
xL

dx �iσ
∂
∂x

ϕ xð Þ
� �†

ψ xð Þ

¼ ϕ xð Þ† �iσð Þψ xð Þ
���
xR

xL
þ bDϕ

���ψ
D E

:

(21)

The Hermitian condition ϕ
���bDψ

D E
¼ bD

���ϕψ
D E

implies that the surface term should vanish

ϕ xð Þ†σψ xð Þ
���
xR

xL
¼ ϕ xRð Þ†σψ xRð Þ � ϕ xLð Þ†σψ xLð Þ ¼ 0, (22)

which gives rise to two possibilities:

1. Periodic boundary condition: ϕ xRð Þ ¼ ϕ xLð Þ and ψ xRð Þ ¼ ψ xLð Þ

2. Open boundary condition: ϕ xRð Þ†σψ xRð Þ ¼ 0 and ϕ xLð Þ†σψ xLð Þ ¼ 0

In particular, the open boundary condition 2 has the following solution

Pψ xL,R ¼ Pϕ
�� ��

xL,R
¼ 0 where P ¼ 1�M

2
(23)

with the matrix M satisfying M†σþ σM ¼ 0, since ψ ¼ Mψ, ϕ ¼ Mϕ at the boundary, then

ϕ†σψ ¼ ϕ†σMψ ¼ �ϕ†M†σψ ¼ �ϕ†σψ ) ϕ†σψ ¼ 0: (24)

In general we can apply different matrices ML,R for xL and xR, but here we assume ML,R ¼ M
for simplicity, namely the same boundary condition for xL,R. We remark that the condition (23)
is specific to the operator choice (20). We have to derive the corresponding boundary condition
case by case. We will show a generic formulation of the boundary condition using the Lagrang-
ian formalism in Section 3.2.

3.1.1. Lattice system

Let us apply the similar argument to the lattice system defined on a one-dimensional interval
n∈ 1;…;Nf g. We introduce an analogous difference operator to (20) as

bDlat ¼ �iσ∇ (25)

where ∇ψn ¼ ψnþ1 � ψn and ∇†ψn ¼ ψn�1 � ψn. In this case, the inner product ϕ
���bDlatψ

D E
is

given by
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XN
n¼1

ϕ†
n �iσ∇ψn

� � ¼
XN
n¼1

iσ∇†ϕn

� �†
ψn þ ϕ†

0 iσð Þψ1 � ϕ†
N iσð ÞψNþ1 (26)

where ϕ0 and ψNþ1 are considered as auxiliary fields. The self-conjugacy condition ϕ
���bDlatψ

D E
¼

bDlatϕ
���ψ

D E
requires that the surface term should vanish:

ϕ†
0σψ1 � ϕ†

NσψNþ1 ¼ 0: (27)

The periodic boundary condition ϕnþN ¼ ϕn, ψnþN ¼ ψn is a simple solution to this. The other
possibility is that each term independently vanishes, corresponding to the open boundary
condition. This means that the lattice system is similarly considered as the continuum system,
and the open boundary condition is imposed by (23). We remark that for the lattice system the
surface term (27) is not given by the on-site term, but involving a hopping to the next site. This
suggests that we have to take care of the locality and continuum limit of the system.

3.1.2. Example

Let us consider an example with σ ¼ σ3. Then the matrixM should be a linear combination of σ1,2.
Since the operator P has a zero eigenvalue, the determinant should vanish detP ¼ 0, which leads to

M ¼ σ1 cosθþ σ2 sinθ ¼ 0 e�iθ

eiθ 0

 !
, (28)

obeying M† ¼ M and M2 ¼ 1 with two eigenvalues �1. It is also expressed as M ¼ σ1eiθσ3

¼ σ2ei θ�π
2ð Þσ3 . Thus the operator P ¼ P†

� �
turns out to be a projection operator P2 ¼ P having

eigenvalues 1, 0 with the corresponding eigenvectors

P
1

�eiθ

� �
¼ 1

�eiθ

� �
and P

1
eiθ

� �
¼ 0: (29)

We remark σ3P ¼ �Pσ3, σ3�P ¼ Pσ3 where �P ¼ 1� P obeying �PP ¼ P�P ¼ 0. Thus we obtain a
one-parameter family of the solution to the boundary condition (23),

ψ
���
xL,R

∝
1
eiθ

� �
: (30)

Since �Pψ ¼ ψ, the current in x3-direction vanishes at the boundary, J3 ¼ ψ†σ3ψ ¼ ψ†�Pσ3
�Pψ ¼ ψ†σ3P�Pψ ¼ 0. In other words, the open boundary condition is interpreted as a vanishing
condition for the normal component of the current as expected.

3.2. Lagrangian formalism

We explain how to derive a proper boundary condition for a given system with the Lagrangian
formalism. The integral over the spacetime M of the Lagrangian defines the action
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S ¼
ð

M
L ϕ; ∂ϕ
� �

: (31)

If the system has a continuous local symmetry, the action may be invariant under the infinites-
imal deviation of the field ϕ ! ϕþ e xð Þφ3:

0 ¼ δS

¼
ð

M

∂ℒ
∂ϕ

� ∂μ
∂ℒ

∂ ∂μϕ
� �

 ! !
e xð Þφ�

ð

M
e xð Þ∂μ ∂ℒ

∂ ∂μϕ
� �φ

 !
þ
ð

M
∂μ

∂ℒ

∂ ∂μϕ
� � e xð Þφ

 !
:

(32)

The first term vanishes due to the Euler-Lagrange equation of motion for the bulk, ∂ℒ
∂ϕ � ∂μ

∂ℒ
∂ ∂μϕð Þ
� �

¼ 0. The vanishing condition for the second term implies the current Jμ ¼ ∂ℒ
∂ ∂μϕð Þφ,

satisfying the conservation law ∂μJμ ¼ 0, a.k.a. the Nöther current. The third term is a surface
contribution which plays a role in the system with the boundary. The invariance of the action is
thus rephrased as

0 ¼
ð

∂M
e xð Þn � J (33)

where n is the normal vector defined as
Ð
M∂μVμ ¼ Ð∂Mn � V with an arbitrary vector field Vμ

and the boundary of the manifold denoted by ∂M. This ends up with the condition such that
the normal component of the current should vanish at the boundary

n � J
���
∂M

¼ 0: (34)

This seems physically reasonable and consistent with the previous argument in Section 3.1.2
because at the boundary there is no ingoing and outgoing current.

Furthermore, this zero current condition can be modified by taking into account the additional
surface contribution to the action

SB ¼
ð

∂M
LB ϕ
� �

(35)

where we assume the boundary d.o.f. is not dynamical (not including the derivative ∂ϕ). Then
the condition (34) becomes

n � J þ ∂LB

∂ϕ
φ

� �

∂M

¼ 0: (36)

This characterizes the boundary condition. In the following, we consider several examples to
see how the boundary condition plays a role in the topological materials.

3
This is an assumption. In general, the action itself is not invariant under the deviation.
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3.3. 3d Weyl semimetal

3.3.1. Continuum system

Let us apply the argument discussed above to the WSM system. We consider the effective
Hamiltonian (6) with a slight modification

ℋ3d p!; x3
� �

¼ p1σ1 þ p2σ2 � iσ3
∂
∂x3

: (37)

We put a boundary only at x3 ¼ 0 for simplicity, so that the system is defined on a positive

domain x3 > 0. In this case, since the current operator is defined as J
!¼ ψ† σ! ψ, the boundary

condition, corresponding to the zero current condition (36), that we impose is4

ψ†σ3ψ
���
x3¼0

¼ 0: (38)

The eigenstate satisfying the condition (38) is parameterized by a single phase factor

ψ p!; x3
� �

¼
ffiffiffiffiffiffiffiffiffiffiffiffi
α p!
� �r

e�α p!ð Þx3 1
eiθ

� �
(39)

which is normalized as
Ð ∞
0 dx3ψ†ψ ¼ 1, and the normalizability requires α p!

� �
> 0. This

eigenstate is localized on the boundary x3 ¼ 0 and exponentially decay into the bulk x3 > 0

due to the factor e�α p!ð Þx3 , where the parameter α p!
� �

plays a role as the inverse penetration

length. In this case, the exponential factor e�α p!ð Þx3 is responsible for the x3-direction depen-
dence, instead of the plane wave factor eip3x3 used for the bulk analysis. In other words, the
current analysis of the edge state uses Laplace basis instead of Fourier basis. Therefore, under
the replacement p3 ! iα, we can apply almost the same analysis.

Then the spectrum and the inverse penetration length of the edge state are obtained from the
eigenvalue equation, given as follows

e p!
� �

¼ p1 cosθþ p2 sinθ, α p!
� �

¼ �p1 sinθþ p2 cosθ: (40)

Actually it is written using an SO(2) transformation with the relation e2 þ α2 ¼ p!
���
���
2
,

e

α

� �
¼ cosθ sinθ

� sinθ cosθ

� �
p1
p2

� �
: (41)

We show the spectrum of the edge state depending on the boundary condition with the bulk
spectrum in Figure 6. We remark that the edge state cannot be defined in the whole

4
This is of course equivalent to the boundary condition discussed in Section 3.1.2.
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momentum space due to the normalizability condition α p!
� �

> 0. Such a bounded spectrum

associated with the WSM edge state is called the Fermi arc, and the boundary condition
parameter, a relative phase factor, parameterizes the direction of the arc. Accordingly the
current similarly behaves as J1; J2; J3ð Þ∝ cosθ; sinθ; 0ð Þ.

3.3.2. Lattice system

Let us apply a similar analysis to the lattice model for 3d WSM. We consider the lattice model
(13) with a boundary at n3 ¼ 1, defined on the positive n3 region, n3 ≥ 1,

ℋlat
3d p!; n3
� �

¼
0 Δ p!

� �∗

Δ p!
� �

0

0
B@

1
CA� i

2
σ3 ∇3 � ∇†

3

� �
(42)

with a complex parameter

Δ p!
� �

¼ cos p1 � cos p2 þ cþ i sin p2, (43)

which is analogous to the model in the continuum Δ p!
� �

� p1 � ip2. We keep an explicit n3-

dependence of the system to deal with the boundary condition. According to the discussion in
Sections 3.1.1 and 3.1.2, we consider the edge state consistent with the boundary condition as

ψ p!; n3
� �

¼ β p!
� �n3�1 1

eiθ

� �
(44)

where β p!
� �

is a real parameter, corresponding to the penetration depth, and the normalizability

requires ∣β p!
� �

∣ < 1. In particular, we consider the situation 0 < β p!
� �

< 1 for the moment: The

negative β p!
� �

solution is interpreted as a doubling counterpart of the positive one. The eigen-

value equation ℋlat
3d p!; n3
� �

ψ p!; n3
� �

¼ e p!
� �

ψ p!; n3
� �

leads to

Figure 6. The boundary condition dependence of the edge state spectrum for θ ¼ 0,π=4,π=2, 3π=4,π with the bulk
spectrum. The parameter θ plays a role as a rotation angle in the momentum space.
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Dψ p!; n3
� �

¼ 0 with D ¼
i~α p!
� �

� e p!
� �

Δ p!
� �∗

Δ p!
� �

�i~α p!
� �

� e p!
� �

0
B@

1
CA (45)

where we define ~α p!
� �

¼ β p!ð Þ�1�β p!ð Þ
2 . Since we consider the situation 0 < β p!

� �
< 1, it turns

out ~α p!
� �

> 0. The solution is then obtained as

e p!
� �

¼ cosθReΔ p!
� �

þ sinθImΔ p!
� �

(46)

~α p!
� �

¼ � sinθReΔ p!
� �

þ cosθImΔ p!
� �

(47)

which has an analogous expression as (41) using SO(2) rotation

e

~α

� �
¼ cosθ sinθ

� sinθ cosθ

� �
ReΔ
ImΔ

� �
: (48)

At this moment, it is obvious that the spectrum of the current lattice model is parallel with the
continuum model under the correspondence p1; p2;α

� �$ ReΔ; ImΔ; ~αð Þ.
We show the spectrum of the edge state in Figure 7, in particular, its boundary condition
dependence. Figure 8 shows constant energy slices of the spectrum. We can see the so-called
Fermi arc, which connects two bulk Weyl points. As discussed for the continuum model, the
boundary condition parameter plays a role as a rotation angle in the momentum space.

3.4. 2d topological insulator

3.4.1. Continuum system

The 2d class A TI is given by the dimensional reduction of the 3d WSM. Replacing p2 ! m in
the Hamiltonian (37), we obtain

Figure 7. The boundary condition dependence of the edge state spectrum e p!
� �

for θ ¼ π4,π=3, 5π=3, 2π (green), in

addition to the bulk spectrum (orange and blue), the parameter c is taken to be c ¼ 1.
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3.4. 2d topological insulator

3.4.1. Continuum system
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Figure 7. The boundary condition dependence of the edge state spectrum e p!
� �

for θ ¼ π4,π=3, 5π=3, 2π (green), in

addition to the bulk spectrum (orange and blue), the parameter c is taken to be c ¼ 1.

Analysis of Topological Material Surfaces
http://dx.doi.org/10.5772/intechopen.74934

17



ℋ2d p1; x3
� � ¼ p1σ1 þmσ2 � iσ3

∂
∂x3

: (49)

After this dimensional reduction, we can apply totally the same analysis to this model
discussed in Section 3.3: we consider the localized edge state satisfying the boundary condition

Figure 8. The Fermi arc at (a) zero energy ε p!
� �

¼ 0 and (b) finite energy E p!
� �

= 0.3 with θ ¼ π=5, 3π=5,π, 7π=5, 9π=5.

The red dot and shaded region show the bulk contribution. The last panels show Fermi arcs with various values of the
parameter θ.
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ψ p1; x3
� � ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
α p1
� �q

e�α p1ð Þx3 1
eiθ

� �
(50)

where the inverse penetration depth α p1
� �

has to be positive due to the normalizability. Then
we obtain the solution

e p1
� � ¼ p1 cosθþm sinθ, α p1

� � ¼ �p1 sinθþm cosθ: (51)

Figure 9 shows the boundary condition dependence of the edge state spectrum. Replacement
p2 ! m corresponds to take a section at p2 ¼ m, and the 3d Fermi arc is reduced to the 2d chiral
edge mode.

3.4.2. Lattice system

Similarly, we consider the dimensional reduction of the lattice Hamiltonian of 3d WSM (13). In
this case, we have two options,

p1 ! m1 : H 1ð Þ
2d ¼ σ1 cosm1 � cos p2 þ c

� �þ σ2 sin p2 þ σ3 sin p3 (52)

p2 ! m2 : H 2ð Þ
2d ¼ σ1 cos p1 � cosm2 þ c

� �þ σ2 sinm2 þ σ3 sin p3 (53)

and the corresponding spectra are given as follows:

e1 p2; p3
� � ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosm1 � cos p2 þ c
� �2 þ sin p2

� �2 þ sin p3
� �2q

(54)

e2 p1; p3
� � ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos p1 � cosm2 þ c
� �2 þ sinm2ð Þ2 þ sin p3

� �2q
(55)

Figure 9. The boundary condition dependence of the edge state for the 2d system. The dimensional reduction corre-
sponds to taking a section at p2 ¼ m. The horizontal axis in the bottom panel shows the momentum p1.
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We can follow the analysis discussed in Section 3.3.2 for the current system. Figure 10 shows
the boundary condition dependence of the edge state spectrum. These behaviors are consistent
with the continuum model in the vicinity of the would-be gapless points. Such a dependence
of the boundary condition has been recently predicted to be observed in monolayer silicene/
germanene/stanene nanoribbons [19]. We remark that we obtain the edge state with positive
and negative chiralities from the reduction p1 ! m1, which is equivalent to topologically trivial
state. Actually the edge state is almost embedded, and indistinguishable with the bulk spec-
trum, in particular, for θ ¼ 5π=7, 9π=7. On the other hand, we obtain a single chiral edge state
from the reduction p2 ! m2, indicating topologically nontrivial state. We can see an edge state
spectrum survives for the whole region of the parameter θ.

Figure 10. The boundary condition dependence of the 2d lattice system (52) and (53) with c ¼ 1. (a)–(f) and (a0)–(f0 ) show
the spectra obtained from the reduction p1 ! m1 ¼ π=2þ 0:5 and p2 ! m2 ¼ 0:2. The horizontal axes are the momenta p2
and p1, respectively. The blue region is the bulk, and the orange line is the edge state spectrum.
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4. Edge-of-edge state

So far we have examined situations with a single boundary with the boundary condition. In
general we can impose another boundary in the different direction, and a different boundary
condition. In this section we consider a generic situation involving two boundaries with two
different conditions. Then an intersection of two boundary plays a role of “edge-of-edge” and
we study the corresponding edge-of-edge state localized on such an intersecting boundaries
[4]. See also related works [20–24].

4.1. 5d Weyl semimetal

As discussed in Section 3.1, the boundary condition is characterized by the projection (23), so that
the degrees of freedom of the boundary state should be a half of the original one. This implies
that, if we impose two boundary conditions, we will have a quarter of the original d.o.f.
Therefore, to obtain physical degrees of freedom at the edge-of-edge, we have to start with a
four-component system or more. For this purpose, we start with the 5d WSM system discussed
in Section 2.4 by introducing boundaries at x4 ¼ 0 and x5 ¼ 0. The boundary condition, namely
the zero current condition (34), is now given by

ψ†γ4ψ
���
x4¼0

¼ 0 ψ†γ5ψ
���
x5¼0

¼ 0, (56)

since the current operator is given by Jμ ¼ ψ†γμψ. These conditions are rephrased as

P4ψ
���
x4¼0

¼ 0 P5ψ
���
x5¼0

¼ 0 with P4,5 ¼ 1�M4,5

2
(57)

where the matrix M4,5 obeys M†
aγa þ γaMa ¼ 0 for a ¼ 4, 5. Explicitly we have

M5 ¼ 0 U†
5

U5 0

 !
, M4 ¼ � 1

2
U4 þU†

4 U4 �U†
4

�U4 þU†
4 �U4 �U†

4

 !
, (58)

where U4,5 are elements of U(2). A solution to these conditions localized at the boundary is
given by

ψ p1;2;3;5; x4
� �

¼ e�α4 pð Þx4 1�U4

1þU4

� �
χ p1;2;3;4
� �

, ψ p1;2;3;4; x5
� �

¼ e�α5 pð Þx5 1

U5

� �
ξ p1;2;3;4
� �

:

(59)

In particular, the edge state localized at x5 ¼ 0 is apparently similar to the 3d case (39), just
replacing the phase factor eiθ ∈ U(1) withU5 ∈ U(2). The eigenvalue equationH5dψ ¼ Eψ leads

to e25 þ α2
5 ¼ p!

���
���
2
þ p24 and also
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iα5 � e5ð Þ þ p4 � i σ! � p!
� �

U5

h i
ξ ¼ 0: (60)

Decomposing U5 ¼ eiθ5V5 with eiθ5 ∈ U(1) and V5 ∈ SU 2ð Þ, we consider the SU(2) transforma-

tion p4 � i σ! � p!
� �

V5 ¼ p04 � i σ! �p!0. Then we have

α5 sinθ5 � e5 cosθ5 þ p04
� �

ξ ¼ 0, (61)

α5 cosθ5 þ e5 sinθ5� σ! �p!0� �
ξ ¼ 0: (62)

Diagonalizing σ! �p!0, which is equivalent to the 3d Hamiltonian (6), as σ! �p!0
� �

ξ� ¼

�
ffiffiffiffiffiffiffiffiffiffi
p!0
���
���
2

r
ξ�, we obtain the spectrum and the inverse penetration depth as follows:

e5 pð Þ ¼ p04 cosθ5 �
ffiffiffiffiffiffiffiffiffiffi
p!
0���
���
2

r
sinθ5, α5 pð Þ ¼ �p04 sinθ5 �

ffiffiffiffiffiffiffiffiffiffi
p!
0���
���
2

r
cosθ5, (63)

which is written using an SO(2) transformation as before,

e5

α5

� �
¼ cosθ5 sinθ5

� sinθ5 cosθ5

� � p04

�
ffiffiffiffiffiffiffiffiffiffi
p!
0���
���
2

r
0
B@

1
CA: (64)

We can solve the boundary condition and obtain the spectrum for the boundary at x4 ¼ 0 in a
similar way.

Let us then consider a compatible boundary condition for the localized edge-of-edge state

P4ψ
���
x4,5¼0

¼ P5ψ
���
x4,5¼0

¼ 0: (65)

A solution to this condition is given by

ψ p1;2;3; x4; x5
� �

¼ e�α4 pð Þx4�α5 pð Þx5 1�U4

1þU4

� �
χ pð Þ (66)

with U5 1�U4ð Þ � 1þU4ð Þ½ �χ pð Þ ¼ 0, which is covariant under U(2) transformation
U4;U5;χð Þ ! WU4W†;WU5W†;Wχ

� �
with W ∈U 2ð Þ. To have a nontrivial solution, they

should obey U5 1�U4ð Þ � 1þU4ð Þ½ � ¼ 0. For example, a simple choice is U4;U5ð Þ ¼ σ3; σ2ð Þ,
and the corresponding solution is χT ¼ 1 ið Þ. Then we obtain the spectrum of the edge-of-edge
state e pð Þ ¼ �p1, α4 pð Þ ¼ p3, α5 pð Þ ¼ p2.

4.2. 3d chiral topological insulator

We discuss dimensional reduction of the edge-of-edge state in the 5d WSM to a more realistic
3d system. Replacing p4; p5

� �! m; 0ð Þ as shown in Figure 11, then we obtain the 3d chiral
(class AIII) TI

Heterojunctions and Nanostructures22

HAIII
3d p!
� �

¼p! � γ! þmγ4, (67)

where the gamma matrices are chosen as γ!¼ τ2 ⊗ σ!, γ4 ¼ τ1 ⊗1, γ5 ¼ τ3 ⊗1, and Pauli
matrices σ0s and τ0s act on the spin space ↑; ↓ð Þ and the sublattice space A;Bð Þ, respectively. This
Hamiltonian has a chiral symmetry with respect to the sublattice structure HAIII

3d ;γ5

� � ¼ 0. We
can apply a similar analysis as before. The edge-of-edge state is in this case given by

ψ p1; x2; x3
� � ¼ e�α2 p1ð Þx2�α3 p1ð Þx3 1þ iσ3U3

iσ3 1� iσ3U3ð Þ

� �
ξ p1
� �

(68)

with the compatibility condition

det 1þU†
2 iσ2ð Þ þ iσ3U3 �U† iσ1ð ÞU3 þ iσ1 � iσ2U3 �U†

2 iσ3ð Þ �U†
2U3

� � ¼ 0 (69)

where U2,3 ∈ U(2) parameterize the boundary condition. We consider the following choice
satisfying the compatibility condition U2 ¼ σ2 cosϕþ i sinϕ, U3 ¼ i cosϕ� σ3 sinϕ. Then we
obtain the spectra of the edge state localized at x2 ¼ 0 and x3, and the edge-of-edge state
localized at their intersection

e2 p1; p3
� � ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p21 þ p23 þ m cosϕ

� �2q
, (70)

e3 p1; p2
� � ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p21 þ p22 þ m sinϕ

� �2q
, (71)

eeoe p1
� � ¼ �p1: (72)

Here both edge states are gapped, while only the edge-of-edge state is gapless. This is a
suitable situation for experimental detection of the edge-of-edge state because we have to
distinguish it from the spectra of the edge states at x2 ¼ 0 and x3 ¼ 0. The reason why we
obtain the gapped edge states seems that the symmetry protecting the edge state is weakly
broken due to the boundary condition, which is analogous to the TI/ferromagnet junction, etc.
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Figure 11. Dimensional reduction from 5d WSM to 3d chiral TI. There exists the edge-of-edge state localized at the
boundary intersection, propagating in x1-direction.
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Abstract

The next generation of electronic devices based on 3D topological insulators will be 
developed from advanced functional nanostructures and heterostructures. Toward this 
goal, single-crystalline nanowires offer interesting opportunities for new developments 
due to the strong quantum confinement of spin-helical surface Dirac fermions and to the 
possibility to realize core-shell lateral nanostructures adapted to the control of the elec-
tro-chemical potential at the interface with a topological insulator. Here, we review the 
specific transport properties of 3D topological insulator quantum wires and the influence 
of disorder. Having a large energy quantization, weakly-coupled Dirac surface modes 
are prone to quasi-ballistic transport, with some analogies to carbon nanotubes but with 
spin-textured quantum states weakly coupled by non-magnetic disorder. Due to a small 
interaction with their environment, these surface modes are good candidates to realize 
novel quantum spintronic devices, spanning from ballistic spin conductors to localized 
spin filters. A specific topological mode also holds promises to control chiral edge states 
and Majorana bound states in truly 1D quantum wires, being tunable with a magnetic 
field or an electrical gate. Challenges toward these goals are briefly discussed, as well as 
the need for novel functional heterostructures.

Keywords: 3D topological insulators, nanostructures, quantum confinement, Dirac 
fermions, spin transport, disorder, core-shell heterostructures

1. Introduction

The topology of electronic band structures in crystals can have profound consequences at their 
interfaces with materials having a trivial topology, resulting in novel electronic states in reduced 
dimension [1, 2]. A striking example is the realization of gapless metallic states with a Dirac band 
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structure at the interface between two insulators, if one is a topological insulator (TI). For a 2D 
crystal, these are dissipationless 1D spin-helical edge states, an electronic phase known as the 
quantum spin Hall state [3–5]. For a 3D crystal, the metallic phase develops as 2D surface/inter-
face states [6, 7] with a spin-helical band structure that limits their scattering by non-magnetic 
disorder [8]. This novel type of insulators was discovered in materials having a strong spin-orbit 
coupling (broken rotational symmetry) and a Hamiltonian invariant by time-reversal symmetry 
(TRS), belonging to the so-called ℤ2 topological class [7, 9]. The spin-orbit interaction can lead to 
a band inversion that gives rise to novel quasi-particles having a Dirac-like band structure with 
spin-momentum locking, at the interface with a trivial insulator (i.e., with non-inverted bands) 
where the energy gap must close (see Figure 1a). A remarkable property is that such metallic 
states always exist (no gap), even in the presence of perturbations, as long as the main symme-
tries are preserved. Thus, regardless the strength of a non-magnetic disorder, the condition for 
strong (Anderson) localization is never fulfilled. Still, an electronic gap (an important property 
for the operation of classical electronic devices) can be created, for instance by using a perturba-
tion breaking TRS or by coupling topological states at opposite interfaces. The non-trivial nature 
of such gapped topological states further gives rise to novel exotic phases with a lower dimen-
sion (Majorana bound states [10] and quantum anomalous Hall state [11]) of particular interest 
for the quantum manipulation of coherent states weakly coupled to their environment.

The importance of topological insulators also comes from that they represent a promising 
alternative to conventional semi-conducting hetero-structures with, in principle, a reduced 
complexity on the materials’ side and an increased stability of their electronic phases (over 
a large range of physical parameters: temperature, magnetic field, chemical potential, and 
disorder/inhomogeneities). The most striking example came with the discovery of the quan-
tum spin Hall edge states in a 2D topological insulator, first evidenced with HgCdTe quan-
tum wells [12]. This novel electronic phase shares some similarities with the magnetic-field 
induced integer quantum Hall state in high-mobility low-density 2D electron gases (2DEGs) 
of massive quasi-particles but was predicted in zero field [3, 4, 13] (no magnetic-field induced 

Figure 1. (a) Evolution of the band gap between a trivial insulator and a 3D topological insulator (with an inverted bulk 
band structure). At the interface, the gap closes and metallic states with a linear dispersion form. (b) These interface/
surface states are 2D spin-helical Dirac fermions, with opposite spin helicity for opposite surfaces (the simplest case of a 
single Dirac cone in the center of the Brillouin zone is sketched).
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orbital effect). Another important discovery was that of 3D topological insulators [14–16],  
which realize a 2D electron gas of massless Dirac fermions (different from those in graphene 
due to their helical spin texture) at the surfaces/interfaces of a single crystalline film (Figure 1b),  
whereas the creation of a charge-accumulation 2D gas of massive quasi-particles in conven-
tional semiconductors often requires a more complex stacking of epitaxial layers of materials 
with different energy gaps and electronic-band offsets. In practice, the control of surface elec-
tronic states in a 3D topological insulator also requires that of band bending at interfaces (due 
to charge transfer from the environment) and a significant limitation to investigate topological 
surface-state transport came from that most materials are not true bulk insulators. Still, an 
important difference with massive quasi-particles in semiconductors, or Dirac fermions in gra-
phene, is the reduced scattering rate by disorder due to the spin-helical texture of surface Dirac 
fermions [8, 17]. This favors the quasi-ballistic transport of such quasi-particles, even if they 
directly coexist with a large density of scattering centers, and it gives a new possibility to study 
such a transport regime [18] that is otherwise only accessible for massive quasi-particles in 
rather high-mobility AlGaAs 2DEGs (for which the 2DEG is spatially separated from Coulomb 
scatterers). Besides, the spin-momentum locking property of the Dirac cone favors the efficient 
spin-charge conversion in spintronic devices [19–25], still with some potential for improve-
ment due to the enhanced transport length [17], if interface scattering could be further reduced.

Contrary to the case of 2D TIs, with only rare examples found to date, a number of 3D TI 
materials were discovered, both by theory and experiments, often using ab initio calculations 
or electron spectroscopy techniques to directly unveil the Dirac band structure of topologi-
cal surface states (TSS). This offered an important playground to investigate [26, 27], but it is 
also a source of confusion due to the diversity of these materials and the complexity of some 
of them. In particular, their study by charge transport measurements proved to be difficult 
because many materials identified as topological insulators are also semiconductors with a 
rather small gap, often with a large finite bulk conductivity due to disorder (electrical doping) 
and a strong electronic polarizability [28]. The search for large-gap 3D topological insulators 
remains challenging. Indeed, beyond the need for specific symmetries of the crystal structure, 
it is fundamental to search for materials with a band inversion. With conventional semicon-
ductors, this inversion is usually induced by a strong intrinsic spin-orbit coupling. This is 
typical for materials with large-Z elements, which also have a rather small bulk energy gap 
induced by Coulomb interactions. This combination is therefore favorable to realize a band 
inversion, and since it results from opposite contributions, most Z2 topological insulators tend 
to have a rather small gap that barely exceeds 300 meV in most cases. Natural point defects, 
such as vacancies (which are thermodynamically stable and therefore always exist in crystals), 
can be massively present (small activation energy) and they often act as donors or accep-
tors, thus easily leading to metallic-like bulk properties typical of degenerate semiconductors 
(sometimes approaching the dirty-metal limit). Among these semiconductors, Bi-based chal-
cogenides play an important role for that the continuous tuning of their chemical composi-
tion, between different stoichiometric compounds, can change a trivial insulator (no band 
inversion) into a topological insulator (band inversion), with a varying bulk gap and a relative 
change of the topological Dirac degeneracy point with respect to the bulk band structure 
[29]. Binary 3D topological insulators, such as Bi2Se3 and Bi2Te3, usually have a large residual 
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orbital effect). Another important discovery was that of 3D topological insulators [14–16],  
which realize a 2D electron gas of massless Dirac fermions (different from those in graphene 
due to their helical spin texture) at the surfaces/interfaces of a single crystalline film (Figure 1b),  
whereas the creation of a charge-accumulation 2D gas of massive quasi-particles in conven-
tional semiconductors often requires a more complex stacking of epitaxial layers of materials 
with different energy gaps and electronic-band offsets. In practice, the control of surface elec-
tronic states in a 3D topological insulator also requires that of band bending at interfaces (due 
to charge transfer from the environment) and a significant limitation to investigate topological 
surface-state transport came from that most materials are not true bulk insulators. Still, an 
important difference with massive quasi-particles in semiconductors, or Dirac fermions in gra-
phene, is the reduced scattering rate by disorder due to the spin-helical texture of surface Dirac 
fermions [8, 17]. This favors the quasi-ballistic transport of such quasi-particles, even if they 
directly coexist with a large density of scattering centers, and it gives a new possibility to study 
such a transport regime [18] that is otherwise only accessible for massive quasi-particles in 
rather high-mobility AlGaAs 2DEGs (for which the 2DEG is spatially separated from Coulomb 
scatterers). Besides, the spin-momentum locking property of the Dirac cone favors the efficient 
spin-charge conversion in spintronic devices [19–25], still with some potential for improve-
ment due to the enhanced transport length [17], if interface scattering could be further reduced.

Contrary to the case of 2D TIs, with only rare examples found to date, a number of 3D TI 
materials were discovered, both by theory and experiments, often using ab initio calculations 
or electron spectroscopy techniques to directly unveil the Dirac band structure of topologi-
cal surface states (TSS). This offered an important playground to investigate [26, 27], but it is 
also a source of confusion due to the diversity of these materials and the complexity of some 
of them. In particular, their study by charge transport measurements proved to be difficult 
because many materials identified as topological insulators are also semiconductors with a 
rather small gap, often with a large finite bulk conductivity due to disorder (electrical doping) 
and a strong electronic polarizability [28]. The search for large-gap 3D topological insulators 
remains challenging. Indeed, beyond the need for specific symmetries of the crystal structure, 
it is fundamental to search for materials with a band inversion. With conventional semicon-
ductors, this inversion is usually induced by a strong intrinsic spin-orbit coupling. This is 
typical for materials with large-Z elements, which also have a rather small bulk energy gap 
induced by Coulomb interactions. This combination is therefore favorable to realize a band 
inversion, and since it results from opposite contributions, most Z2 topological insulators tend 
to have a rather small gap that barely exceeds 300 meV in most cases. Natural point defects, 
such as vacancies (which are thermodynamically stable and therefore always exist in crystals), 
can be massively present (small activation energy) and they often act as donors or accep-
tors, thus easily leading to metallic-like bulk properties typical of degenerate semiconductors 
(sometimes approaching the dirty-metal limit). Among these semiconductors, Bi-based chal-
cogenides play an important role for that the continuous tuning of their chemical composi-
tion, between different stoichiometric compounds, can change a trivial insulator (no band 
inversion) into a topological insulator (band inversion), with a varying bulk gap and a relative 
change of the topological Dirac degeneracy point with respect to the bulk band structure 
[29]. Binary 3D topological insulators, such as Bi2Se3 and Bi2Te3, usually have a large residual 

Spin-Helical Dirac Fermions in 3D Topological Insulator Quantum Wires
http://dx.doi.org/10.5772/intechopen.76152

29



bulk conductivity (despite a very small bulk-carrier mobility), so that the total conductance of 
wide and/or thick nanostructures is dominated by bulk transport. This contribution is slightly 
reduced in Bi2Te3, but only high-energy surface quasi-particles can be studied because the 
Dirac point lies deep into the valence band, whereas the Fermi level is pinned near or above 
the top of the valence band. In Bi2Se3, the Dirac point lies within the bulk band gap, but the 
Fermi level is high above the bottom of the conduction band (due to too many Se vacancies), 
so that it can only be modified over a small energy range by an electrical gate (efficient elec-
trostatic screening), unless the nanostructure is ultra thin. Ternary compounds gave the most 
advanced results to optimize the surface-to-bulk ratio to the conductance and this approach 
was successfully used to investigate surface-state transport in the quantum Hall regime at 
low magnetic fields (close to the Dirac point) [30]. It remains, however, difficult to prepare 
nanostructures (thin films, nanoribbons, and nanowires) of ternary or even quaternary mate-
rials with optimized compositions [31]. Novel heterostructures, such as core-shell nanowires, 
could thus be important to develop functional devices based on 3D topological insulators, not 
only to achieve dominant surface transport and use the spin-momentum locking property of 
2D topological surface states, but also to realize novel low-dimensional quantum devices at 
the sub-micron scale despite disorder, due to anisotropic scattering, which are different from 
“conventional” mesoscopic conductors with either massive quasi-particles in semiconductors 
or Dirac fermions in graphene (both with quantum transport properties controlled by large-
angle scattering).

Unique properties of spin-helical Dirac fermions in disordered 3D topological insulators also 
arise from their strong quantum confinement in narrow nanowires (quantum wires). The Dirac 
nature results in a large energy quantization, as compared to the confinement energy of mas-
sive quasi-particles, which further reduces their scattering by disorder and favors the quasi-
ballistic transport of quasi-1D surface modes [18]. Thus, their quantized band structure gives 
some specific signatures of topological surface-state transport, unveiled by quantum corrections 
to the conductance [18, 32, 33], which can be easily distinguished from bulk transport (even for 
highly-degenerate semiconductors, such as Bi2Se3 and Bi2Te3). Their spin texture also contribute 
to reduce their coupling to the environment, so that decoherence due to electronic interactions is 
also further reduced. All in all, 3D topological insulator quantum wires offer new possibilities to 
investigate mesoscopic transport in the quasi-ballistic regime over a large range of parameters 
(dimensionality, aspect ratio, and disorder strength), whereas it can hardly be investigated oth-
erwise. Rare studies based on high-mobility AlGaAs 2DEGs were limited to the near-clean limit 
[34, 35], with little possibilities to modify some important physical parameters, such as disorder 
or the kinetic energy, over a broad range. Disordered semiconducting or metallic nanowires 
are always diffusive conductors. Disordered semiconducting or metallic nanowires are always 
diffusive conductors. Most similar systems are actually carbon nanotubes, which are clean sys-
tems with ballistic-transport properties and very large confinement energies. Disordered 3D TI 
quantum wires represent an intermediate situation that corresponds to quasi-ballistic transport 
(due to anisotropic scattering rather than to a weak disorder) and their quantized surface states 
can be manipulated with rather small magnetic fields, due to larger diameters than for carbon 
nanotubes. As a consequence, the specific properties of quantized surface Dirac modes can be 
revealed by the study of different quantum corrections to the conductance (Aharonov-Bohm 
oscillations and non-universal conductance fluctuations), with good statistical information 
obtained from magneto-transport measurements below 15 T [18].

Heterojunctions and Nanostructures30

2. Transport properties of 2D topological surface states

To understand the physics of 3DTI quantum wires, it is first necessary to take a closer look 
at the scattering of 2D spin-helical Dirac fermions by a non-magnetic disorder. In this case, 
backscattering is not suppressed since it remains possible by successive small-angle scattering 
events, over a scale given by the transport length, ltr. However, the spin texture favors forward 
scattering, so that the transport length of topological surface state is largely enhanced with 
respect to the disorder correlation length. As a consequence, the condition for ballistic trans-
port can already be realized in nanostructures with dimensions smaller than a micron, and 
quantum devices with a simple geometry can be built from individual nanowires.

2.1. Nanostructures of 3D topological insulators for surface-transport studies

Due to their residual bulk doping, the study of surface-state transport in disordered 3D topologi-
cal insulators is not straightforward. Considering the case of a highly-degenerate semiconductor, 
such as Bi2Se3, with a bulk carrier density as high as 5·1019 cm−3 (which roughly corresponds to 
about 1% of Se vacancies, acting as double donors), the cross over thickness tc for which the surface 
conductance becomes comparable to the bulk conductance is roughly given by tc = 2(nsμs)/(nbμb). 
For a strong disorder typical for Bi2Se3, common to both surface and bulk states, the mobility of 
topological surface states is about one order of magnitude larger than that of bulk states (enhance-
ment due to the anisotropic scattering of spin-helical Dirac fermions) [17]. Taking band bending 
into account [36], typical values for the surface and bulk carrier densities are ns = 5·1012 cm−2 and 
nb = 5·1019 cm−3. This gives a value tc = 20 nm. Based on a realistic approximation (ignoring details 
of band bending due to a very short Thomas-Fermi screening length λTF ≲ 3 nm), this lower bound 
for tc (which is likely be larger for smaller bulk carrier densities) clearly shows that the control of 
topological surface-state transport in disordered 3D TIs requires the use of thin nanostructures. 
These were successfully grown by different bottom-up methods, each technique having both 
advantages and disadvantages. Ultra-thin layers of high quality can be prepared by molecular 
beam epitaxy and are well adapted to tune the interface band structure by electrical fields, but 
films thicker than 20 nm tend to grow 3D and have more defects. High-quality single-crystalline 
nanostructures with large aspect ratios can be grown by catalyst-assisted molecular-beam epitaxy 
or chemical vapor deposition, as well as by catalyst-free vapor transport, but ultra-thin structures 
are seldom. Very narrow quantum wires can also be prepared by electrodeposition in nanomem-
branes, presently with some intrinsic limitations related to small diameter fluctuations in ultimate 
nanomembranes that give quantum confinement inhomogeneities. In all cases, individual nano-
structures stable in air can be randomly grown on or transferred onto SiOx/Si substrates, appropri-
ate to create an electric field at the interface by applying a backgate voltage.

In our work, we mostly investigated the charge transport properties of single-crystalline atomic-
flat Bi2Se3 and Bi2Te3 nanostructures grown by catalyst-free vapor transport (Figure 2a), with fac-
eted shapes of different aspect ratios (nanoplatelets, nanoribbons, nanowires; Figure 2b) [37]. 
As explained below, this allowed us to study the physics of spin-helical Dirac fermions in 2D 
or in 1D, that is, without or with quantum confinement, respectively. Despite strong disor-
der, it was shown that momentum scattering is reduced in all cases, due to the spin texture 
(2D surface states) and quantum confinement (1D surface modes). This has important conse-
quences for both spin transport and quantum coherent transport, as discussed in detail below.

Spin-Helical Dirac Fermions in 3D Topological Insulator Quantum Wires
http://dx.doi.org/10.5772/intechopen.76152

31



bulk conductivity (despite a very small bulk-carrier mobility), so that the total conductance of 
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or Dirac fermions in graphene (both with quantum transport properties controlled by large-
angle scattering).

Unique properties of spin-helical Dirac fermions in disordered 3D topological insulators also 
arise from their strong quantum confinement in narrow nanowires (quantum wires). The Dirac 
nature results in a large energy quantization, as compared to the confinement energy of mas-
sive quasi-particles, which further reduces their scattering by disorder and favors the quasi-
ballistic transport of quasi-1D surface modes [18]. Thus, their quantized band structure gives 
some specific signatures of topological surface-state transport, unveiled by quantum corrections 
to the conductance [18, 32, 33], which can be easily distinguished from bulk transport (even for 
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nanotubes. As a consequence, the specific properties of quantized surface Dirac modes can be 
revealed by the study of different quantum corrections to the conductance (Aharonov-Bohm 
oscillations and non-universal conductance fluctuations), with good statistical information 
obtained from magneto-transport measurements below 15 T [18].
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for tc (which is likely be larger for smaller bulk carrier densities) clearly shows that the control of 
topological surface-state transport in disordered 3D TIs requires the use of thin nanostructures. 
These were successfully grown by different bottom-up methods, each technique having both 
advantages and disadvantages. Ultra-thin layers of high quality can be prepared by molecular 
beam epitaxy and are well adapted to tune the interface band structure by electrical fields, but 
films thicker than 20 nm tend to grow 3D and have more defects. High-quality single-crystalline 
nanostructures with large aspect ratios can be grown by catalyst-assisted molecular-beam epitaxy 
or chemical vapor deposition, as well as by catalyst-free vapor transport, but ultra-thin structures 
are seldom. Very narrow quantum wires can also be prepared by electrodeposition in nanomem-
branes, presently with some intrinsic limitations related to small diameter fluctuations in ultimate 
nanomembranes that give quantum confinement inhomogeneities. In all cases, individual nano-
structures stable in air can be randomly grown on or transferred onto SiOx/Si substrates, appropri-
ate to create an electric field at the interface by applying a backgate voltage.

In our work, we mostly investigated the charge transport properties of single-crystalline atomic-
flat Bi2Se3 and Bi2Te3 nanostructures grown by catalyst-free vapor transport (Figure 2a), with fac-
eted shapes of different aspect ratios (nanoplatelets, nanoribbons, nanowires; Figure 2b) [37]. 
As explained below, this allowed us to study the physics of spin-helical Dirac fermions in 2D 
or in 1D, that is, without or with quantum confinement, respectively. Despite strong disor-
der, it was shown that momentum scattering is reduced in all cases, due to the spin texture 
(2D surface states) and quantum confinement (1D surface modes). This has important conse-
quences for both spin transport and quantum coherent transport, as discussed in detail below.

Spin-Helical Dirac Fermions in 3D Topological Insulator Quantum Wires
http://dx.doi.org/10.5772/intechopen.76152

31



2.2. Band bending and interface charge transfers

The electrical properties of 2D topological surface states can be investigated by quantum magneto-
transport G(B) studies and transconductance G(Vg) measurements at low temperatures, which 
give access to all microscopic parameters (carrier density, mobility, and effective mass) for all car-
riers (topological interface states, topological surface states, and bulk states). A careful analysis of 
Shubnikov-de Haas oscillations due to the energy quantization of Landau levels in high magnetic 
fields gave detailed insights into the electronic band profiles in the thickness of wide Bi2Se3 nano-
structures (nanoplatelets and nanoribbons) [36]. Important results are summarized as follows:

1. Due to the large residual bulk density and the pinning of the Fermi energy in the conduc-
tion or valence band of materials with a large dielectric constant, the bulk contribution to 
the conductance is never negligible.

2. Besides, it usually controls the upward band bending at interfaces of the topological insu-
lator (charge transfer of bulk carriers to empty gapless topological surface states).

3. Downward band bending can, however, exist if a massive charge transfer from another or-
igin is also present (surface/interface disorder, surface adsorbents, and electrostatic gate). 
Such a situation is more likely to happen for materials with a small bulk carrier density.

4. If the surface/interface density is very large (typically for ns > 1013 cm−2), a Rashba charge-
accumulation 2DEG of massive quasi-particles coexist with Dirac topological states.

For usual as-grown Bi2Se3 nanostructures exposed to air, a typical band profile is defined from 
the contribution of three electronic populations (bulk carriers and two topological states with 

Figure 2. (a) Growth of Bi2Se3 nanostructures on p++-Si/SiO2 substrates by vapor transport in a closed quartz ampoule. 
The sublimation of Bi2Se3 crystals generates a flow of molecular species (BiSe and Se2) toward the lower temperature 
area, where the recombine to form single crystalline nanostructures in the plane of the substrate. (b) Nanostructures 
with different aspect ratios (thin platelets, wide nanoribbons, and narrow nanowires) are distributed randomly onto 
amorphous SiO2. After [37].
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different Fermi energies), and the bulk carrier density is large enough to control charge transfer 
at interfaces and to induce upward band bending. Due to efficient Coulomb  screening, an elec-
trostatic gate is solely influencing the population of a single topological interface nearby, so that 
an independent tuning of both topological states is only achieved in dual-gate devices [38]. In a 
backgate geometry, the applied voltage is modifying the band bending at the bottom interface 
only, which results in the tuning of the electro-chemical potential of the interface topological 
states but not of the surface topological states since, in most cases, the electrical field is totally 
screened by bulk carriers nearby the bottom interface [17]. In all cases, the backgate-voltage 
dependence of the conductance nevertheless remains an efficient way to probe the interface 
topological states and study their properties by transport measurements. A striking example is 
shown in Figure 3, for a rather thick Bi2Se3 nanoribbon patterned in a Hall-bar geometry, with 
a low-enough bulk-carrier density to favor downward band bending at interfaces [36]. For a 
large interface carrier density, massless Dirac fermions coexist with a Rashba-type massive 2D 
electron gas. In this case, the back-gate voltage is changing the carrier concentration of different 
electronic states located at the bottom interface (shift of some peaks in the Fourier transform of 
Shubnikov de Haas oscillations, Figure 3b). The related band profile shown in Figure 3c is in 
very good quantitative agreement with a triangular potential at this interface.

2.3. Anisotropic scattering and charge transport length (=spin diffusion length)

Further important information on the scattering of spin-helical Dirac fermions by a non-mag-
netic disorder can be obtained from transconductance G(V_G) measurements [17]. It is indeed 
important to distinguish between two different scattering times and, accordingly, between 
two different length scales (Figure 4a):

1. The quantum lifetime of quasi-particles can be inferred from Shubnikov-de Hass measure-
ments. It is associated with the mean-free path le between two successive scattering centers 
(thus to the microscopic disorder correlation length) and this momentum scattering time 
relates to the quantum mobility.

2. The transport time of carriers corresponds to the timescale for momentum backscatter-
ing, over a length called the transport length Ltr, related to the transport mobility, which 
determines the classical conductance. Whereas direct backscattering is forbidden by spin-
momentum locking (giving dissipationless states in a 2D TI), it is allowed by multiple scat-
tering processes in a disordered 3D TI, resulting in a finite transport length.

Using a thin Bi2Se3 nanoribbon (Figure 4b), the backgate voltage allowed us to modify the upward 
band bending, induced by a rather large bulk carrier density, at the bottom interface (“lower sur-
face state”, LSS). All microscopic transport parameters could be inferred from quantum magneto-
transport (Figure 4c) and trans-conductance (Figure 4d) measurements [17]. Contrary to bulk 
carriers, for which le ~ Ltr is given by the disorder correlation length ξ (isotropic scattering due to a 
short-range disorder potential), the transport length of both upper and lower topological surface 
states was found to be much larger than the mean-free path, despite a limitation at about 200 nm 
probably due to the finite coupling with bulk carriers [larger values are expected for decoupled 
topological states and/or in materials with a larger disorder correlation length, such as Bi2Te3].
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2.2. Band bending and interface charge transfers

The electrical properties of 2D topological surface states can be investigated by quantum magneto-
transport G(B) studies and transconductance G(Vg) measurements at low temperatures, which 
give access to all microscopic parameters (carrier density, mobility, and effective mass) for all car-
riers (topological interface states, topological surface states, and bulk states). A careful analysis of 
Shubnikov-de Haas oscillations due to the energy quantization of Landau levels in high magnetic 
fields gave detailed insights into the electronic band profiles in the thickness of wide Bi2Se3 nano-
structures (nanoplatelets and nanoribbons) [36]. Important results are summarized as follows:

1. Due to the large residual bulk density and the pinning of the Fermi energy in the conduc-
tion or valence band of materials with a large dielectric constant, the bulk contribution to 
the conductance is never negligible.

2. Besides, it usually controls the upward band bending at interfaces of the topological insu-
lator (charge transfer of bulk carriers to empty gapless topological surface states).

3. Downward band bending can, however, exist if a massive charge transfer from another or-
igin is also present (surface/interface disorder, surface adsorbents, and electrostatic gate). 
Such a situation is more likely to happen for materials with a small bulk carrier density.

4. If the surface/interface density is very large (typically for ns > 1013 cm−2), a Rashba charge-
accumulation 2DEG of massive quasi-particles coexist with Dirac topological states.

For usual as-grown Bi2Se3 nanostructures exposed to air, a typical band profile is defined from 
the contribution of three electronic populations (bulk carriers and two topological states with 

Figure 2. (a) Growth of Bi2Se3 nanostructures on p++-Si/SiO2 substrates by vapor transport in a closed quartz ampoule. 
The sublimation of Bi2Se3 crystals generates a flow of molecular species (BiSe and Se2) toward the lower temperature 
area, where the recombine to form single crystalline nanostructures in the plane of the substrate. (b) Nanostructures 
with different aspect ratios (thin platelets, wide nanoribbons, and narrow nanowires) are distributed randomly onto 
amorphous SiO2. After [37].
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different Fermi energies), and the bulk carrier density is large enough to control charge transfer 
at interfaces and to induce upward band bending. Due to efficient Coulomb  screening, an elec-
trostatic gate is solely influencing the population of a single topological interface nearby, so that 
an independent tuning of both topological states is only achieved in dual-gate devices [38]. In a 
backgate geometry, the applied voltage is modifying the band bending at the bottom interface 
only, which results in the tuning of the electro-chemical potential of the interface topological 
states but not of the surface topological states since, in most cases, the electrical field is totally 
screened by bulk carriers nearby the bottom interface [17]. In all cases, the backgate-voltage 
dependence of the conductance nevertheless remains an efficient way to probe the interface 
topological states and study their properties by transport measurements. A striking example is 
shown in Figure 3, for a rather thick Bi2Se3 nanoribbon patterned in a Hall-bar geometry, with 
a low-enough bulk-carrier density to favor downward band bending at interfaces [36]. For a 
large interface carrier density, massless Dirac fermions coexist with a Rashba-type massive 2D 
electron gas. In this case, the back-gate voltage is changing the carrier concentration of different 
electronic states located at the bottom interface (shift of some peaks in the Fourier transform of 
Shubnikov de Haas oscillations, Figure 3b). The related band profile shown in Figure 3c is in 
very good quantitative agreement with a triangular potential at this interface.

2.3. Anisotropic scattering and charge transport length (=spin diffusion length)

Further important information on the scattering of spin-helical Dirac fermions by a non-mag-
netic disorder can be obtained from transconductance G(V_G) measurements [17]. It is indeed 
important to distinguish between two different scattering times and, accordingly, between 
two different length scales (Figure 4a):

1. The quantum lifetime of quasi-particles can be inferred from Shubnikov-de Hass measure-
ments. It is associated with the mean-free path le between two successive scattering centers 
(thus to the microscopic disorder correlation length) and this momentum scattering time 
relates to the quantum mobility.

2. The transport time of carriers corresponds to the timescale for momentum backscatter-
ing, over a length called the transport length Ltr, related to the transport mobility, which 
determines the classical conductance. Whereas direct backscattering is forbidden by spin-
momentum locking (giving dissipationless states in a 2D TI), it is allowed by multiple scat-
tering processes in a disordered 3D TI, resulting in a finite transport length.

Using a thin Bi2Se3 nanoribbon (Figure 4b), the backgate voltage allowed us to modify the upward 
band bending, induced by a rather large bulk carrier density, at the bottom interface (“lower sur-
face state”, LSS). All microscopic transport parameters could be inferred from quantum magneto-
transport (Figure 4c) and trans-conductance (Figure 4d) measurements [17]. Contrary to bulk 
carriers, for which le ~ Ltr is given by the disorder correlation length ξ (isotropic scattering due to a 
short-range disorder potential), the transport length of both upper and lower topological surface 
states was found to be much larger than the mean-free path, despite a limitation at about 200 nm 
probably due to the finite coupling with bulk carriers [larger values are expected for decoupled 
topological states and/or in materials with a larger disorder correlation length, such as Bi2Te3].
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The average number of scattering centers involved in a backscattering process is directly 
related to the ratio Ltr/le, and it can give some important information on the nature of both the 
scattering potential and the quasi-particles. Importantly, we revealed the long-range nature 
of disorder for spin-helical surface Dirac fermions, due to efficient electrostatic screening and 

Figure 4. (a) Anisotropic scattering by disorder. The backscattering transport length Ltr can be much longer than the 
mean-free path le; (b) scanning electron microscope image of a thin Bi2Se3 nanoribbon with traversing ohmic contacts; 
(c) longitudinal magneto-conductance for two different backgate voltages. Inset: Shubnikov-de Haas quantum 
oscillations; (d) backgate voltage dependence of the conductance and linear fit from which the transport length of the 
lower surface states (bottom interface) is inferred. After [17].

Figure 3. (a) Scanning-electron microscope image of a Hall-bar patterned Bi2Se3 thick nanoribbons, (b) fast-Fourier 
transform of the longitudinal magneto-resistance for two different back-gate voltages, and (c) evolution of the electronic 
band profile from the top surface to the bottom interface, typical for a low bulk-carrier density (downward band bending) 
and a large interface carrier density (coexistence of topological states with a Rashba 2DEG). After [36].
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spin-momentum locking, which results in strongly anisotropic scattering, as observed by 
local probe microscopy. This means that forward scattering is favored for such quasi-particles 
and that the transport length is strongly enhanced (Ltr >> le), as predicted by theory [8] and 
confirmed by trans-conductance measurements [17]. Such a situation never happens in other 
materials within which charge carriers directly coexist with disorder (including Dirac fermi-
ons in graphene), where the scattering of quasi-particles by any kind of disorder is isotropic 
(that is, Ltr ~ le). Only high-mobility AlGaAs 2DEGs can realize such a situation of anisotropic 
scattering. In this case, however, this is due to the spatial separation of free carriers and local-
ized ionized donors, and it is not possible to vary the degree of disorder over a wide range, 
so that there is little room to investigate quasi-ballistic transport (in other words, the transi-
tion from ballistic to diffusive transport is rather abrupt and happens already when a small 
amount of impurities are introduced in the system). This is not the case for spin-helical Dirac 
fermions, and this property is at the origin of their unique transport properties, particularly in 
nanostructures, with an extended range of parameters to study quasi-ballistic transport, and 
therefore the ballistic-to-diffusive crossover in mesoscopic conductors.

This enhanced transport length for topological surface states is also important for spin trans-
port studies, as it gives a lower limit for the size of functional spintronic devices making use 
of the spin-momentum locking property. Indeed, due to the strong spin-orbit coupling, there 
is a direct correspondence between the momentum-backscattering transport length and the 
spin relaxation length. With wide Bi2Se3 nanostructures, this scale is rather short (~200 nm), 
[17] so that, for instance, lateral spin valves could only be realized in the short-junction limit. 
This also shows that the true potential for the spin-to-charge conversion in highly-disordered 
Bi2Se3 could still give an improvement in the conversion efficiency by two orders of magni-
tude with respect to state-of-the-art records, with an inverse Edelstein length lIEE determined 
by the intrinsic transport length of the 3D topological insulator, whereas it presently remains 
limited by the spin/momentum relaxation below metallic ohmic contacts (with lIEE ~ 2 nm).

2.4. Dimensionalities of transport

The enhancement of the transport length for topological surface states also has two funda-
mental consequences for the quantum transport properties of 3D TI nanostructures and the 
dimensionality of surface charge transport:

1. The phase coherence length of TSS is also enhanced in the same ratio for diffusive 2D sur-
face states in nanoplatelets or wide nanoribbons, so that mesoscopic transport can be stud-
ied in rather wide and long conductors (well beyond the micron size), despite relatively 
strong disorder. Since Lϕ >> Ltr (Lϕ being determined by inelastic scattering), quantum cor-
rections to the conductance due to diffusive phase-coherent transport can thus be revealed 
by magneto-transport measurements with magnetic fields as small as 100 mT.

2. The condition for ballistic transport in the transverse motion of surface carriers along the pe-
rimeter is more restrictive (Lp < 2 Ltr), but it can be fulfilled for rather long (Lp ~ 500 nm), and 
therefore with nanostructures having a large cross section (S ~ 0.2 μm2). Contrary to the case of 
carbon nanotubes, magnetic flux-dependent periodic phenomena in these quantum wires (such 
as the Aharonov-Bohm interference) can therefore be studied in rather small fields, below 1 T.
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The average number of scattering centers involved in a backscattering process is directly 
related to the ratio Ltr/le, and it can give some important information on the nature of both the 
scattering potential and the quasi-particles. Importantly, we revealed the long-range nature 
of disorder for spin-helical surface Dirac fermions, due to efficient electrostatic screening and 
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mean-free path le; (b) scanning electron microscope image of a thin Bi2Se3 nanoribbon with traversing ohmic contacts; 
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Figure 3. (a) Scanning-electron microscope image of a Hall-bar patterned Bi2Se3 thick nanoribbons, (b) fast-Fourier 
transform of the longitudinal magneto-resistance for two different back-gate voltages, and (c) evolution of the electronic 
band profile from the top surface to the bottom interface, typical for a low bulk-carrier density (downward band bending) 
and a large interface carrier density (coexistence of topological states with a Rashba 2DEG). After [36].
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spin-momentum locking, which results in strongly anisotropic scattering, as observed by 
local probe microscopy. This means that forward scattering is favored for such quasi-particles 
and that the transport length is strongly enhanced (Ltr >> le), as predicted by theory [8] and 
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materials within which charge carriers directly coexist with disorder (including Dirac fermi-
ons in graphene), where the scattering of quasi-particles by any kind of disorder is isotropic 
(that is, Ltr ~ le). Only high-mobility AlGaAs 2DEGs can realize such a situation of anisotropic 
scattering. In this case, however, this is due to the spatial separation of free carriers and local-
ized ionized donors, and it is not possible to vary the degree of disorder over a wide range, 
so that there is little room to investigate quasi-ballistic transport (in other words, the transi-
tion from ballistic to diffusive transport is rather abrupt and happens already when a small 
amount of impurities are introduced in the system). This is not the case for spin-helical Dirac 
fermions, and this property is at the origin of their unique transport properties, particularly in 
nanostructures, with an extended range of parameters to study quasi-ballistic transport, and 
therefore the ballistic-to-diffusive crossover in mesoscopic conductors.

This enhanced transport length for topological surface states is also important for spin trans-
port studies, as it gives a lower limit for the size of functional spintronic devices making use 
of the spin-momentum locking property. Indeed, due to the strong spin-orbit coupling, there 
is a direct correspondence between the momentum-backscattering transport length and the 
spin relaxation length. With wide Bi2Se3 nanostructures, this scale is rather short (~200 nm), 
[17] so that, for instance, lateral spin valves could only be realized in the short-junction limit. 
This also shows that the true potential for the spin-to-charge conversion in highly-disordered 
Bi2Se3 could still give an improvement in the conversion efficiency by two orders of magni-
tude with respect to state-of-the-art records, with an inverse Edelstein length lIEE determined 
by the intrinsic transport length of the 3D topological insulator, whereas it presently remains 
limited by the spin/momentum relaxation below metallic ohmic contacts (with lIEE ~ 2 nm).

2.4. Dimensionalities of transport

The enhancement of the transport length for topological surface states also has two funda-
mental consequences for the quantum transport properties of 3D TI nanostructures and the 
dimensionality of surface charge transport:

1. The phase coherence length of TSS is also enhanced in the same ratio for diffusive 2D sur-
face states in nanoplatelets or wide nanoribbons, so that mesoscopic transport can be stud-
ied in rather wide and long conductors (well beyond the micron size), despite relatively 
strong disorder. Since Lϕ >> Ltr (Lϕ being determined by inelastic scattering), quantum cor-
rections to the conductance due to diffusive phase-coherent transport can thus be revealed 
by magneto-transport measurements with magnetic fields as small as 100 mT.

2. The condition for ballistic transport in the transverse motion of surface carriers along the pe-
rimeter is more restrictive (Lp < 2 Ltr), but it can be fulfilled for rather long (Lp ~ 500 nm), and 
therefore with nanostructures having a large cross section (S ~ 0.2 μm2). Contrary to the case of 
carbon nanotubes, magnetic flux-dependent periodic phenomena in these quantum wires (such 
as the Aharonov-Bohm interference) can therefore be studied in rather small fields, below 1 T.
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In the case of highly-disordered Bi2Se3 nanostructures (le ~ 30 nm), large values of Ltr (>200 nm) 
[17] and of Lφ (>2 μm) [39] were found. This implies that the dimensionality of surface-state 
transport is reduced in narrow nanostructures (mostly nanowires) and that their band struc-
ture is modified due to quantum confinement (which even further reduces the scattering by 
disorder). It thus becomes important to distinguish between three different situations for the 
dimensionality of charge transport:

1. No quantum confinement [Ltr is shorter than every dimensions]. Surface-state transport is 
diffusive and quasi-particles are 2D spin-helical Dirac fermions with a continuous spin-
helical Dirac-cone band structure.

2. Transverse quantum confinement [the perimeter Lp becomes shorter than 2 Ltr]. Surface-
transport is quasi-ballistic if the distance between contacts is longer than Ltr and ballistic 
otherwise. The length L remains much larger than Ltr, so that surface modes are quasi-1D 
channels in such long nanowires (becoming truly 1D only when they close).

3. Full quantum confinement [all dimensions are shorter than Ltr]. Spin-helical Dirac fermi-
ons are then fully localized in a short nanowire, which becomes a 0D quantum dot.

We remark that the dimensionality of quantum coherent transport is another quantity deter-
mined by comparing the dimensions of a mesoscopic conductor to the phase coherent length Lφ. 
Since Lφ is longer than Ltr, nanoribbons with a width W, such as Ltr < W < Lφ, have 2D spin-helical 
surface Dirac fermions but quantum coherent transport is 1D (which modifies the self-averaging 
of quantum interference in long conductors, for which the length L is longer than Lφ).

3. Transport properties of quasi-1D topological surface states

Signatures of the quasi-ballistic transport of topological surface states in 3D TI quantum wires 
can be revealed by the study of quantum corrections to the conductance. In a bulky nanostruc-
ture, spin-helical Dirac fermions propagate on the surface in a hollow-type electrical geometry, 
in analogy to carbon nanotubes (ballistic transport) or to the Sharvin-Sharvin metallic tubes (dif-
fusive transport). Phase-coherent transport in the transverse direction (along the perimeter of the 
nanowire) thus gives rise to periodic Aharonov-Bohm oscillations in the longitudinal magneto-
conductance, determined by a well-defined cross section S = LP

2/(4\ϕ), and their observation in 
wide Bi2Te3 nanoribbons gave the first robust evidence of surface states by transport measure-
ments [40]. Their topological nature was then confirmed by a study of decoherence at very low 
temperatures in narrow (quantum) nanowires [39], which revealed the unusual weak coupling 
to the environment and the ballistic motion in the transverse direction. Later, phase-coherent 
transport in the longitudinal direction was investigated in a study of conductance fluctuations 
[18], which revealed the subtle influence of disorder in the quasi-ballistic regime, leading to a 
non-universal behavior of quantum interference. A detailed understanding of the propagation 
of spin-helical 1D surface modes showed that both the spin texture of Dirac fermions and their 
quantum confinement are responsible for the weak scattering by disorder [41], thus leading to 
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the weak coupling between quantum states, a necessary condition for their manipulation by 
radio-frequency fields, as well as for the study of specific properties related to a single topolog-
ically-protected low-energy mode, such as 1D chiral edge states or Majorana bound states [42].

3.1. Quantum confinement: 1D Dirac spectrum

In quantum wires (Lp < 2 Ltr), the surface-state band structure is modified by periodic boundary 
conditions imposed in the transverse direction of the nanostructure, leading to the quantization 
of the transverse momentum k⊥ (Figure 5b). This situation is equivalent to the energy quantiza-
tion of quasi-particles confined into a quantum well with infinitely-high potential barriers, and 
for Dirac fermions, the transverse energy becomes quantized with a constant energy-level spac-
ing Δ = hvF 1/Lp between successive transverse modes. Due to the winding of the wave function 
along the perimeter (curvature) and to the spin-momentum locking of helical Dirac fermions, 
an additional Π Berry phase suppresses the topological protection of all energy modes in zero 
magnetic field (pairs of gapped states). However, if a magnetic field is applied along the nanow-
ire axis, the Aharonov-Bohm flux modifies the periodic boundary condition (which gives an 
overall shift of transverse quantization planes, thus tuning the energy spectrum). Importantly, 
this flux dependence can restore the topological protection periodically when the Aharonov-

Figure 5. (a) Scanning electron microscope image of a narrow Bi2Se3 nanowire, with a perimeter Lp = 300 nm. Dashed 
lines separate different facets. Inset: schematics of the cross section and coherent winding of topological surface states; (b) 
transverse-impulse quantization planes intersecting the spin-helical Dirac cone. By applying a magnetic flux, all planes 
are continuously shifted in the k⊥ direction; (c) resulting band structures for two different values of the magnetic flux ϕ. 
For ϕ = 0, quantum confinement gives pairs of modes with a finite energy gap Δ. For ϕ = 1/2ϕ0, a single topological mode 
with linear dispersion appears (quantization plane intersecting the Dirac point); (d) energy broadening Γ of the quantized 
transverse energy due to disorder [for 3DTI quantum wires, Γ is smaller than Δ, even for relatively strong disorder].
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ture, spin-helical Dirac fermions propagate on the surface in a hollow-type electrical geometry, 
in analogy to carbon nanotubes (ballistic transport) or to the Sharvin-Sharvin metallic tubes (dif-
fusive transport). Phase-coherent transport in the transverse direction (along the perimeter of the 
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conductance, determined by a well-defined cross section S = LP

2/(4\ϕ), and their observation in 
wide Bi2Te3 nanoribbons gave the first robust evidence of surface states by transport measure-
ments [40]. Their topological nature was then confirmed by a study of decoherence at very low 
temperatures in narrow (quantum) nanowires [39], which revealed the unusual weak coupling 
to the environment and the ballistic motion in the transverse direction. Later, phase-coherent 
transport in the longitudinal direction was investigated in a study of conductance fluctuations 
[18], which revealed the subtle influence of disorder in the quasi-ballistic regime, leading to a 
non-universal behavior of quantum interference. A detailed understanding of the propagation 
of spin-helical 1D surface modes showed that both the spin texture of Dirac fermions and their 
quantum confinement are responsible for the weak scattering by disorder [41], thus leading to 
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the weak coupling between quantum states, a necessary condition for their manipulation by 
radio-frequency fields, as well as for the study of specific properties related to a single topolog-
ically-protected low-energy mode, such as 1D chiral edge states or Majorana bound states [42].

3.1. Quantum confinement: 1D Dirac spectrum

In quantum wires (Lp < 2 Ltr), the surface-state band structure is modified by periodic boundary 
conditions imposed in the transverse direction of the nanostructure, leading to the quantization 
of the transverse momentum k⊥ (Figure 5b). This situation is equivalent to the energy quantiza-
tion of quasi-particles confined into a quantum well with infinitely-high potential barriers, and 
for Dirac fermions, the transverse energy becomes quantized with a constant energy-level spac-
ing Δ = hvF 1/Lp between successive transverse modes. Due to the winding of the wave function 
along the perimeter (curvature) and to the spin-momentum locking of helical Dirac fermions, 
an additional Π Berry phase suppresses the topological protection of all energy modes in zero 
magnetic field (pairs of gapped states). However, if a magnetic field is applied along the nanow-
ire axis, the Aharonov-Bohm flux modifies the periodic boundary condition (which gives an 
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this flux dependence can restore the topological protection periodically when the Aharonov-

Figure 5. (a) Scanning electron microscope image of a narrow Bi2Se3 nanowire, with a perimeter Lp = 300 nm. Dashed 
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transverse-impulse quantization planes intersecting the spin-helical Dirac cone. By applying a magnetic flux, all planes 
are continuously shifted in the k⊥ direction; (c) resulting band structures for two different values of the magnetic flux ϕ. 
For ϕ = 0, quantum confinement gives pairs of modes with a finite energy gap Δ. For ϕ = 1/2ϕ0, a single topological mode 
with linear dispersion appears (quantization plane intersecting the Dirac point); (d) energy broadening Γ of the quantized 
transverse energy due to disorder [for 3DTI quantum wires, Γ is smaller than Δ, even for relatively strong disorder].
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Bohm phase compensates the curvature-induced Berry phase, giving rise to a single gapless and 
linear mode with perfect transmission (Figure 5c), independent of disorder [43].

In recent years, a couple of interesting studies suggested the influence of such a topological 
mode on quantum transport properties, particularly the Aharonov-Bohm (AB) oscillations 
[32, 33, 44]. These results raised some important questions since it was not possible to give a 
quantitative interpretation of the physical phenomena observed (Aharonov-Bohm oscillations 
and non-universal conductance fluctuations) solely based on the contribution of this perfectly 
transmitted mode to the conductance. In particular, the amplitude of these quantum correc-
tions to the conductance was always found much smaller than the conductance quantum G0. 
It thus remained unclear whether these properties were a signature of a topological transition 
or were rather induced by all spin-textured modes, including dominant contributions from 
high-energy quasi-1D modes. Actually, the quantum magneto-conductance is mostly due to a 
limited number of modes, those partially-opened modes with a quantized transverse energy 
close to the Fermi energy. Since most studies were conducted in the large-N limit (EF >> Δ), the 
relative contribution of the topological surface mode is therefore rather small. A full quantita-
tive understanding required to describe the energy dependence of the transmissions for all 
surface modes, considering both disorder and interfaces with metallic contacts (see Section 
3.4 for details). In particular, the scattering of surface modes by disorder results in the energy 
broadening Γ of quantized modes (Figure 5d). We evidenced that the quasi-ballistic regime is 
closely related to the condition Γ << Δ, which is satisfied over an unusual broad parameters 
range (disorder strength, energy) in 3D topological insulator nanostructures [41].

3.2. Quantum coherence I: Aharonov-Bohm oscillations

The quantum coherent transport of topological surface states in the transverse direction of a 
3D TI nanostructure results in conductance oscillations when a longitudinal magnetic induction 
B// is applied (hence a magnetic flux ϕ = B//*Sel, where Sel is the effective electrical cross section 
of metallic surface states). This is due to the flux-periodic evolution of the Aharonov-Bohm 
quantum interference giving successive conductance maxima (constructive interference) and 
minima (destructive interference). Because the phase coherence length can be as large as a 
couple of micrometers (at very low temperatures), two different situations must be consid-
ered for coherent transport in the transverse motion of surface states:

1. When Lϕ ~ Lp/2, clear periodic oscillations of the conductance are directly visible in the 
longitudinal magneto-conductance G(B//). In this case (wide nanoribbons), only the fun-
damental-harmonic Aharonov-Bohm interference modifies the conductance, a behavior 
which already reveals that the phase averaging due to disorder is not efficient, despite a 
high point-defect density in most 3DTI materials.

2. When Lϕ >> Lp, that is, either at very low temperatures or for short-perimeter nanow-
ires (quantum wires), the periodic AB behavior is usually hidden in complex G(B//) traces. 
This is due to the multiple-harmonic contributions to the transverse quantum interference 
(related to the multiple winding of coherent trajectories along the perimeter), and to the 
influence of disorder (phase shifts). The periodic behavior can, however, be revealed by a 
Fourier transform analysis.
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3.2.1. Case of wide nanoribbons (long-perimeter limit, with Lϕ ~ Lp/2)

For wide nanoribbons, periodic Aharonov-Bohm oscillations are directly visible in G(B//) traces, 
with a rather small amplitude typical for the large-N limit in a mesoscopic conductor, where N 
is the number of populated transverse modes, with N = EF/2Δ, since Δ = hvF/Lp is smaller than 
E_F). As seen in Figure 6 for a wide Bi2Te3 nanoribbon (EF ~ 120 meV; Lp = 940 nm; Δ = 2 meV), 
the Aharonov-Bohm period, δBAB = 150 mT, directly relates to the electrical cross section of the 
nanostructure, with a value being slightly smaller than that given by its physical dimensions 
(the topological surface states being “burried” below a thin native oxide layer, typically 5 nm 
thick). The fast-Fourier transform of the G(B//) trace thus gives a single peak at the AB frequency.

According to theory, the overall phase shift of this sine evolution due to the AB quantum 
interference depends on both the degree of disorder and the energy of Dirac quasi-particles 
[43]. In most cases, the Fermi energy is very large and AB oscillations are phase locked with a 
conductance maximum in zero magnetic field, as found in many experiments and confirmed 
by theory. Yet, theory predicts the opposite situation (conductance minimum for a zero mag-
netic flux) when the chemical potential is near the Dirac point. The overall energy dependence 
of this phase shift can be quantitatively obtained from models taking explicitly disorder into 
account, and it allowed us to reveal an oscillatory behavior that is directly related to quantum 
confinement (see Section 3.4).

For lower temperatures (longer Lφ) or for narrower nanoribbons, roughly when Lφ ~ Lp, addi-
tional Altshuler-Aronov-Spivak (AAS) oscillations develop in addition. These correspond to 
quantum interference related to the complete winding of coherent paths along the perimeter, 
with time-reversed coherent loops so that this contribution is never damped by disorder, 
which is the usual situation found in (diffusive) mesoscopic conductors.

3.2.2. Case of narrow (quantum) nanowires (short-perimeter limit, Lp < 2 Ltr << Lφ)

For narrow nanostructures, the conductance modulation due to both AB and AAS interferences 
results from a complex mixing of high-order harmonics (multiple windings of coherent loops), 

Figure 6. (a) Scanning electron microscope image of a Bi2Te3 nanowire with a rather large perimeter Lp = 940 nm (width 
w = 400 nm, height h = 70 nm) and ohmic CrAu contacts; (b) Aharonov-Bohm periodic oscillations (fundamental 
harmonics), with a period δB_AB that directly relates to the nanowire’s cross section. After [18].
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Bohm phase compensates the curvature-induced Berry phase, giving rise to a single gapless and 
linear mode with perfect transmission (Figure 5c), independent of disorder [43].

In recent years, a couple of interesting studies suggested the influence of such a topological 
mode on quantum transport properties, particularly the Aharonov-Bohm (AB) oscillations 
[32, 33, 44]. These results raised some important questions since it was not possible to give a 
quantitative interpretation of the physical phenomena observed (Aharonov-Bohm oscillations 
and non-universal conductance fluctuations) solely based on the contribution of this perfectly 
transmitted mode to the conductance. In particular, the amplitude of these quantum correc-
tions to the conductance was always found much smaller than the conductance quantum G0. 
It thus remained unclear whether these properties were a signature of a topological transition 
or were rather induced by all spin-textured modes, including dominant contributions from 
high-energy quasi-1D modes. Actually, the quantum magneto-conductance is mostly due to a 
limited number of modes, those partially-opened modes with a quantized transverse energy 
close to the Fermi energy. Since most studies were conducted in the large-N limit (EF >> Δ), the 
relative contribution of the topological surface mode is therefore rather small. A full quantita-
tive understanding required to describe the energy dependence of the transmissions for all 
surface modes, considering both disorder and interfaces with metallic contacts (see Section 
3.4 for details). In particular, the scattering of surface modes by disorder results in the energy 
broadening Γ of quantized modes (Figure 5d). We evidenced that the quasi-ballistic regime is 
closely related to the condition Γ << Δ, which is satisfied over an unusual broad parameters 
range (disorder strength, energy) in 3D topological insulator nanostructures [41].

3.2. Quantum coherence I: Aharonov-Bohm oscillations

The quantum coherent transport of topological surface states in the transverse direction of a 
3D TI nanostructure results in conductance oscillations when a longitudinal magnetic induction 
B// is applied (hence a magnetic flux ϕ = B//*Sel, where Sel is the effective electrical cross section 
of metallic surface states). This is due to the flux-periodic evolution of the Aharonov-Bohm 
quantum interference giving successive conductance maxima (constructive interference) and 
minima (destructive interference). Because the phase coherence length can be as large as a 
couple of micrometers (at very low temperatures), two different situations must be consid-
ered for coherent transport in the transverse motion of surface states:

1. When Lϕ ~ Lp/2, clear periodic oscillations of the conductance are directly visible in the 
longitudinal magneto-conductance G(B//). In this case (wide nanoribbons), only the fun-
damental-harmonic Aharonov-Bohm interference modifies the conductance, a behavior 
which already reveals that the phase averaging due to disorder is not efficient, despite a 
high point-defect density in most 3DTI materials.

2. When Lϕ >> Lp, that is, either at very low temperatures or for short-perimeter nanow-
ires (quantum wires), the periodic AB behavior is usually hidden in complex G(B//) traces. 
This is due to the multiple-harmonic contributions to the transverse quantum interference 
(related to the multiple winding of coherent trajectories along the perimeter), and to the 
influence of disorder (phase shifts). The periodic behavior can, however, be revealed by a 
Fourier transform analysis.
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3.2.1. Case of wide nanoribbons (long-perimeter limit, with Lϕ ~ Lp/2)
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the Aharonov-Bohm period, δBAB = 150 mT, directly relates to the electrical cross section of the 
nanostructure, with a value being slightly smaller than that given by its physical dimensions 
(the topological surface states being “burried” below a thin native oxide layer, typically 5 nm 
thick). The fast-Fourier transform of the G(B//) trace thus gives a single peak at the AB frequency.

According to theory, the overall phase shift of this sine evolution due to the AB quantum 
interference depends on both the degree of disorder and the energy of Dirac quasi-particles 
[43]. In most cases, the Fermi energy is very large and AB oscillations are phase locked with a 
conductance maximum in zero magnetic field, as found in many experiments and confirmed 
by theory. Yet, theory predicts the opposite situation (conductance minimum for a zero mag-
netic flux) when the chemical potential is near the Dirac point. The overall energy dependence 
of this phase shift can be quantitatively obtained from models taking explicitly disorder into 
account, and it allowed us to reveal an oscillatory behavior that is directly related to quantum 
confinement (see Section 3.4).

For lower temperatures (longer Lφ) or for narrower nanoribbons, roughly when Lφ ~ Lp, addi-
tional Altshuler-Aronov-Spivak (AAS) oscillations develop in addition. These correspond to 
quantum interference related to the complete winding of coherent paths along the perimeter, 
with time-reversed coherent loops so that this contribution is never damped by disorder, 
which is the usual situation found in (diffusive) mesoscopic conductors.

3.2.2. Case of narrow (quantum) nanowires (short-perimeter limit, Lp < 2 Ltr << Lφ)

For narrow nanostructures, the conductance modulation due to both AB and AAS interferences 
results from a complex mixing of high-order harmonics (multiple windings of coherent loops), 

Figure 6. (a) Scanning electron microscope image of a Bi2Te3 nanowire with a rather large perimeter Lp = 940 nm (width 
w = 400 nm, height h = 70 nm) and ohmic CrAu contacts; (b) Aharonov-Bohm periodic oscillations (fundamental 
harmonics), with a period δB_AB that directly relates to the nanowire’s cross section. After [18].
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with  harmonic-dependent phase shifts induced by disorder and varying relative amplitudes 
due to quasi-ballistic transport. The periodic-flux dependence of the longitudinal magneto-con-
ductance is therefore hardly visible in most G(B//) traces, though it can still be when low-order 
harmonics remain dominant (as shown in Figure 7b). Since this periodic behavior is specific to 
topological surface states (with a flux-periodic energy spectrum), it can always be unveiled by 
a careful fast-Fourier transform analysis, provided that enough oscillations are measured (that 
is, when the field range largely exceeds the fundamental AB period). For a micron-long Bi2Se3 
quantum wire with perimeter Lp = 280 nm, up to six harmonics were clearly resolved at very low 
temperature, as seen in Figure 7c) [39].

For short wires (L ~ Lφ
BS), we also remark that a complication comes further from that aperi-

odic conductance fluctuations due to bulk carriers coexist with surface periodic AB oscilla-
tions [although Lφ

BS < Lφ
SS, the self-averaging of coherent bulk transport is reduced at very low 

temperatures due to their charge transport dimensionality d = 3 and to longer Lφ
BS values]. 

Besides, because G(B//) curves are measured over a finite field range, the FFT of bulk aperi-
odic conductance fluctuations often results in a non-monotonous background, possibly giv-
ing “peaks” but with no relation to a periodic behavior, contrary to that of G(B//) changes due 
to the AB interference.

The ballistic nature of the transverse motion in such quantum wires results in an unusual 
temperature dependence of the phase coherence length Lφ

SS, with a 1/T behavior observed for 
all harmonics. This is the signature of both ballistic transport (Lφ = vFτφ) and a decoherence 
time τφ ~ 1/T limited by a weak coupling to fluctuations of the environment [39]. All other 
scenarios based on decoherence limited by either the Nyquist noise or the thermal noise give 
a very different power-law dependence.

An extra signature of the quasi-ballistic regime is also found when considering the relative 
amplitude of AB harmonics. Contrary to the case of a diffusive mesoscopic conductors, their 
amplitudes are not increasingly small for higher orders n and they cannot be described by an 
exponential damping behavior related to the ratio Lφ/Ln, where Ln = n*Lp [39]. This is due to 
disorder and to both geometric and contact effects, which all influence details of the quantum 
interference for different quantum coherent paths, in the quasi-ballistic regime [41]. In gen-
eral, it thus remains difficult to investigate details of the AB oscillations in this regime, due 
to the complex mixing of all harmonics in the presence of disorder, which varies for different 
configurations of the microscopic disorder (as obtained by thermal cycling at room tempera-
ture of a given mesoscopic conductor).

Figure 7. (a) Scanning electron microscope image of a narrow Bi2Se3 nanowire with a rather short perimeter Lp = 280 nm 
and ohmic Al contacts; (b) Aharonov-Bohm periodic oscillations, with the first two harmonics directly visible in the 
G(B//) trace; (c) fast-Fourier transform revealing higher-order harmonics, up to n = 6 at very low temperature. After [39].
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3.3. Quantum coherence II: non-universal conductance fluctuations

More information about the weak scattering of quantized surface modes by a non-magnetic dis-
order can be obtained by studying the (static) conductance fluctuations due to the longitudinal 
motion of surface carriers in a highly-disordered 3DTI quantum wire. Contrary to the case of 
a diffusive mesoscopic conductor, their statistical properties such as the conductance variance 
are not universal and they can vary when the quantized Dirac band structure is modified by an 
Aharonov-Bohm flux [18]. Using a 3D vector magnet, we could vary independently the longitu-
dinal field (tuning of the energy spectrum; transverse motion) and the transverse magnetic field 
(probing the aperiodic conductance fluctuations due to disorder; longitudinal motion). This pro-
vides the complete mapping of quantum interference, as seen in Figure 8a). It was shown that the 
absolute amplitude of the conductance variance varG = δGrms

2 = <G-<G>>2 has a periodic modu-
lation with the magnetic flux (Figure 8b), a property specific to surface transport (well-defined 
cross section). This behavior is well captured by numerical calculations (Figure 8c and d), which 
also reproduce the correct amplitude of this modulation mod(varG). We evidenced that non-
universal conductance fluctuations are the signature of the weak coupling between transverse 
quantized modes induced by disorder, and we inferred the amplitude of the disorder broadening 
Γ from the temperature dependence of the modulation mod(VarG), in rather good agreement 

Figure 8. (a) Quantum corrections to the conductance of a Bi2Se3 quantum wire mapped over a large range of longitudinal 
magnetic fields (magnetic flux) and transverse magnetic fields, at very low temperature; (b) flux-dependence of the 
conductance variance revealing a non-universal behavior and a periodic evolution, a signature of the quasi-ballistic 
transport of Dirac surface modes; (c and d) numerical calculations of the energy (c) and flux (d) dependences of the 
conductance variance in a disordered 3DTI quantum wire, showing periodic evolutions due to quantum confinement of 
all transverse modes. After [18].
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with  harmonic-dependent phase shifts induced by disorder and varying relative amplitudes 
due to quasi-ballistic transport. The periodic-flux dependence of the longitudinal magneto-con-
ductance is therefore hardly visible in most G(B//) traces, though it can still be when low-order 
harmonics remain dominant (as shown in Figure 7b). Since this periodic behavior is specific to 
topological surface states (with a flux-periodic energy spectrum), it can always be unveiled by 
a careful fast-Fourier transform analysis, provided that enough oscillations are measured (that 
is, when the field range largely exceeds the fundamental AB period). For a micron-long Bi2Se3 
quantum wire with perimeter Lp = 280 nm, up to six harmonics were clearly resolved at very low 
temperature, as seen in Figure 7c) [39].

For short wires (L ~ Lφ
BS), we also remark that a complication comes further from that aperi-

odic conductance fluctuations due to bulk carriers coexist with surface periodic AB oscilla-
tions [although Lφ

BS < Lφ
SS, the self-averaging of coherent bulk transport is reduced at very low 

temperatures due to their charge transport dimensionality d = 3 and to longer Lφ
BS values]. 

Besides, because G(B//) curves are measured over a finite field range, the FFT of bulk aperi-
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ing “peaks” but with no relation to a periodic behavior, contrary to that of G(B//) changes due 
to the AB interference.

The ballistic nature of the transverse motion in such quantum wires results in an unusual 
temperature dependence of the phase coherence length Lφ

SS, with a 1/T behavior observed for 
all harmonics. This is the signature of both ballistic transport (Lφ = vFτφ) and a decoherence 
time τφ ~ 1/T limited by a weak coupling to fluctuations of the environment [39]. All other 
scenarios based on decoherence limited by either the Nyquist noise or the thermal noise give 
a very different power-law dependence.

An extra signature of the quasi-ballistic regime is also found when considering the relative 
amplitude of AB harmonics. Contrary to the case of a diffusive mesoscopic conductors, their 
amplitudes are not increasingly small for higher orders n and they cannot be described by an 
exponential damping behavior related to the ratio Lφ/Ln, where Ln = n*Lp [39]. This is due to 
disorder and to both geometric and contact effects, which all influence details of the quantum 
interference for different quantum coherent paths, in the quasi-ballistic regime [41]. In gen-
eral, it thus remains difficult to investigate details of the AB oscillations in this regime, due 
to the complex mixing of all harmonics in the presence of disorder, which varies for different 
configurations of the microscopic disorder (as obtained by thermal cycling at room tempera-
ture of a given mesoscopic conductor).

Figure 7. (a) Scanning electron microscope image of a narrow Bi2Se3 nanowire with a rather short perimeter Lp = 280 nm 
and ohmic Al contacts; (b) Aharonov-Bohm periodic oscillations, with the first two harmonics directly visible in the 
G(B//) trace; (c) fast-Fourier transform revealing higher-order harmonics, up to n = 6 at very low temperature. After [39].
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3.3. Quantum coherence II: non-universal conductance fluctuations

More information about the weak scattering of quantized surface modes by a non-magnetic dis-
order can be obtained by studying the (static) conductance fluctuations due to the longitudinal 
motion of surface carriers in a highly-disordered 3DTI quantum wire. Contrary to the case of 
a diffusive mesoscopic conductor, their statistical properties such as the conductance variance 
are not universal and they can vary when the quantized Dirac band structure is modified by an 
Aharonov-Bohm flux [18]. Using a 3D vector magnet, we could vary independently the longitu-
dinal field (tuning of the energy spectrum; transverse motion) and the transverse magnetic field 
(probing the aperiodic conductance fluctuations due to disorder; longitudinal motion). This pro-
vides the complete mapping of quantum interference, as seen in Figure 8a). It was shown that the 
absolute amplitude of the conductance variance varG = δGrms

2 = <G-<G>>2 has a periodic modu-
lation with the magnetic flux (Figure 8b), a property specific to surface transport (well-defined 
cross section). This behavior is well captured by numerical calculations (Figure 8c and d), which 
also reproduce the correct amplitude of this modulation mod(varG). We evidenced that non-
universal conductance fluctuations are the signature of the weak coupling between transverse 
quantized modes induced by disorder, and we inferred the amplitude of the disorder broadening 
Γ from the temperature dependence of the modulation mod(VarG), in rather good agreement 

Figure 8. (a) Quantum corrections to the conductance of a Bi2Se3 quantum wire mapped over a large range of longitudinal 
magnetic fields (magnetic flux) and transverse magnetic fields, at very low temperature; (b) flux-dependence of the 
conductance variance revealing a non-universal behavior and a periodic evolution, a signature of the quasi-ballistic 
transport of Dirac surface modes; (c and d) numerical calculations of the energy (c) and flux (d) dependences of the 
conductance variance in a disordered 3DTI quantum wire, showing periodic evolutions due to quantum confinement of 
all transverse modes. After [18].
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with numerical calculations [18]. Because Γ << Δ, quasi-ballistic transport is a common property 
to all populated surface modes, each of them giving a significant contribution to the conductance 
(close to G0) as compared to that of the perfect transmission case (G0). Besides, the sharp evolution 
of varG with the energy of successive transverse modes (Figure 8c) suggested that only a limited 
number of partially-opened modes (nearby EF) contribute to the conductance fluctuations, due to 
a rapid energy dependence of the transmission for all channels.

3.4. Quasi-ballistic transport: disorder and transmissions

To evidence that this interpretation is actually very general to all quantum corrections to the 
conductance in 3DTI quantum wires, it is important to calculate the energy dependence of 
the transmissions for all modes, taking disorder into account but also interfaces with metallic 
contacts. This was done in a comparative study of numerical calculations with an analytical 
model that captures the main property common to all quasi-1D spin-helical surface modes, 
that is, the suppression of scattering due to quantum confinement [41]. The set of transmis-
sions Ti represents the mesoscopic code of a coherent conductor, from which all important 
quantities can be calculated [45], the simplest one being the total conductance G = ∑TiG0. 
Importantly, the transmissions were found to nearly reach unity for all modes when their 
longitudinal kinetic energy exceeds Δ (Figure 9). The same (rapid) evolution was found even 
for high-energy modes, though over a slightly broader energy window, thus explaining why 
quasi-ballistic transport properties exist for many modes over a broad energy range. This 
also shows that diffusive longitudinal transport is realized only for conductor lengths that 
largely exceed the transport length. Contrary to the case of 2D quasi-particles with isotropic 
scattering for which the transition from the ballistic to the diffusive regime is rather abrupt 
(le < L < Ltr, with Ltr ≤ 2 le), the quasi-ballistic regime in 3DTI quantum wires exists over a wider 
parameter range (Ltr/2 < L < α Ltr, with Ltr >> le and α is related to the aspect ratio L/Lp). This 
unusual behavior, related to the enhanced transport length, is due to both the spin texture of 
Dirac modes (anisotropic scattering) and to their large confinement energy in quantum wires, 
both favoring the weak scattering of quantized modes by disorder.

3.4.1. Scattering by disorder and contacts

Considering the scattering by disorder as due to a random potential of energy barriers 
(Gaussian disorder, with a correlation length ξ, see Figure 10a), it is possible to give an ana-
lytical description of the transmissions of high-energy modes propagating between two 
transparent ohmic contacts, for different degrees of disorder from the clean limit (ballistic, 
Fabry-Pérot) to the dirty limit (diffusive) [41]. In the quasi-ballistic regime, we found that 
the conductance is determined by the interfaces with metallic contacts (similarly to a clean 
conductor) and not by details of the microscopic disorder in the quantum wire. Due to the 
quantum confinement of Dirac fermions with evenly-spaced energy levels, the energy depen-
dence of the conductance can oscillate at low energies (whereas its has a linear dependence at 
high energy, as for the 2D limit) and the average transmission per mode only depends on the 
nature of the contacts. For an intermediate disorder strength g, Fabry-Pérot interferences are 
suppressed by efficient phase averaging, and inter-mode scattering results in an oscillatory 
energy dependence of the transmission, due to the increased density of states at the onset of a 
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nearby mode and because disorder broadening remains smaller than the energy level spacing. 
This can be directly seen in the energy dependence of the transmission of a high-energy mode 
in a Bi2Se3 quantum wire (using a realistic value of ξ), as shown in Figure 10b). For very large 
values of g, Γ exceeds Δ and charge transport becomes diffusive.

Figure 9. Energy dependence of the surface-mode transmissions in disordered 3D topological insulator quantum wires, 
for three values of the disorder strength g=0.02 (a), g=0.2 (b), and g=1 (c). After [41].

Figure 10. (a) Quantized band structure of surface modes for a magnetic flux ϕ = 1/2ϕ0 and inter-mode scattering 
induced by a random disorder potential δV; (b) energy dependence of the transmission of the m = 9 quantized mode for 
ϕ = 0, showing resonances due to disorder-induced inter-mode mixing, with an energy broadening Γ. After [41].
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lytical description of the transmissions of high-energy modes propagating between two 
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quantum confinement of Dirac fermions with evenly-spaced energy levels, the energy depen-
dence of the conductance can oscillate at low energies (whereas its has a linear dependence at 
high energy, as for the 2D limit) and the average transmission per mode only depends on the 
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suppressed by efficient phase averaging, and inter-mode scattering results in an oscillatory 
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nearby mode and because disorder broadening remains smaller than the energy level spacing. 
This can be directly seen in the energy dependence of the transmission of a high-energy mode 
in a Bi2Se3 quantum wire (using a realistic value of ξ), as shown in Figure 10b). For very large 
values of g, Γ exceeds Δ and charge transport becomes diffusive.

Figure 9. Energy dependence of the surface-mode transmissions in disordered 3D topological insulator quantum wires, 
for three values of the disorder strength g=0.02 (a), g=0.2 (b), and g=1 (c). After [41].

Figure 10. (a) Quantized band structure of surface modes for a magnetic flux ϕ = 1/2ϕ0 and inter-mode scattering 
induced by a random disorder potential δV; (b) energy dependence of the transmission of the m = 9 quantized mode for 
ϕ = 0, showing resonances due to disorder-induced inter-mode mixing, with an energy broadening Γ. After [41].
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To understand why the quasi-ballistic regime exists over a broad range of parameters, it is 
important to consider the energy dependence of the transport length [see [41] for details], as 
shown in Figure 11 for different g values. Contrary to the case of massive quasi-particles, Ltr 
does not vanish at low energy for Dirac fermions in 1D. Instead, it diverges and a similar behav-
ior occurs at high energy, due to the anisotropy of scattering. As a consequence, the transport 
length has a minimum value that depends on the strength of disorder. For a given disorder cor-
relation length ξ, this minimum value is obtained for kξ ≈ 1 and the values of Ltr

min can be much 
larger than the transverse dimensions of the nanostructure for all energies, for a broad range of 
g values, so that the condition for quasi-ballistic transport is always fulfilled for such highly-dis-
ordered 3D topological insulator quantum wires. Good agreement was found between this sim-
plified analytical model and numerical calculations, for that details of the microscopic disorder 
do not affect the conductance in this regime, which is mostly determined by metallic contacts.

3.4.2. Quantitative derivation of the Aharonov-Bohm amplitude

Based on the transmissions calculated for different values of the magnetic flux (correspond-
ing to different quantized energy spectra), it is possible to calculate the energy dependence of 
Aharonov-Bohm oscillations. As seen in Figure 11, their amplitude decreases with the energy 
of surface modes and a good quantitative agreement with experiments are found at high 
energies. The oscillatory behavior reported in experiments is also well reproduced, as well 
as energy-periodic phase shifts [33] which are actually due to the quantized band structure 
(Figure 12) [41].

Figure 11. Energy dependence of the transport length l in a quantum wire with a perimeter W = Lp and a transverse energy 
quantization Δ is calculated for three different strengths of the disorder potential. Red dotted lines show asymptotic 
behaviors related to the divergence of l = Ltr at low or high energies, due to the density of states or to the anisotropy of 
scattering, respectively. In all cases, the transport of all surface modes is ballistic or quasi-ballistic. After [41].
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3.4.3. Perfectly-transmitted topological mode

To evidence the influence of the topological mode on the conductance, it is therefore neces-
sary to set the mesoscopic conductor in specific conditions:

1. In long wires, the transmission of all modes but the topological one should be reduced. 
However, the spin texture of surface Dirac states prevents the strong localization of 

Figure 12. (a) Energy dependence of the Aharonov-Bohm amplitude, rapidly decreasing from the conductance quantum 
G0 (contribution of the topological mode only) to a fraction of G0 (contribution of higher-energy transverse modes); (b) flux 
dependence of the conductance for different energies, from 0 to 4.5 Δ (successive thin lines correspond to an energy change 
0.05 Δ and thick lines to multiple values of 1/2 Δ). Phase shifts are due to the quantized energy spectrum of surface modes. 
The influence of the topological mode is seen only for very low energies. After [41].
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 high-energy modes, so that this is not a good strategy for highly-doped quantum wires (as 
this is the case for Bi2Se3 nanostructures).

2. In the small-N limit (less than about 4–5 modes populated), the relative influence of the 
topological mode on the quantum magneto-conductance will be larger, also in short wires. 
This condition is rather restrictive and requires either to bring the electro-chemical poten-
tial close to the Dirac point or to achieve very large values of Δ.

With the goal to investigate the physics of 3D TI quantum wires close to the Dirac point, 
best results could be obtained in long and ultra-narrow nanostructures [46, 47], since low-
energy modes other than the topological mode have a reduced transmission due to disorder 
(minimum of the backscattering length, so that Ltr << L and G<<G0). Furthermore, since the 
transport of surface modes is quasi-ballistic, it will become important to optimize/control the 
coupling between metallic contacts and the transverse wave function of a given mode. In par-
ticular, the amplitude of probability can have an azimuthal angle dependence, which varies 
from one mode to another, so that quantum transport properties will ultimately depend on 
the exact geometry of the mesoscopic conductor. Also, the low-energy spectrum can be modi-
fied by a large transverse magnetic field. For a rectangular cross section (Figure 13), a striking 
property is related to the evolution of the topological mode from a helical state to a chiral edge 
state, when a moderate transverse magnetic field is applied [42]. The specific orbital response 
of such 3DTI quantum wires correponds to an intermediate situation between the quantum 
spin Hall in a 2D TI and the Quantum Hall effect in 2DEGs.

The control of low-energy quantum states in 3DTI nanostructures would offer novel oppor-
tunities for their quantum manipulation as well as for spin filtering, tuning the quantum 
states with an electric or a magnetic field. When coupled to metallic electrodes with gapped 
excitations, the topological mode generates novel quantum states with an intrinsic topologi-
cal protection, such as Majorana bound states or spin-polarized edge states in the quantum 

Figure 13. Energy spectrum of a 3DTI quantum wire with a rectangular cross section (h = 40 nm; w = 160 nm) for η = 
ϕ/ϕ0 = 0 (left) and η = ϕ/ϕ0 = ½ (center; right), low-energy band structure in the presence of a large transverse magnetic 
induction B⊥ = 2 T, showing the emergence of chiral edge states without dispersion over a wide range of impulse, 
independent of η. After [42].
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anomalous Hall regime. These could be important for quantum dynamics studies, with 
 limited decoherence. Non-topological low-energy modes are also interesting for their energy 
tuning, by a gate voltage or a magnetic flux, which is associated with a continuous change 
of their spin state between nearly-orthogonal states. Besides, these can be either 1D extended 
states (long quantum wires) or 0D localized states (short quantum wires, that is, for L < Ltr).

4. Conclusion and perspectives

The weak coupling of surface states in 3D topological insulator quantum wires, due to both 
their spin texture and the quantum confinement of Dirac fermions, gives unique opportuni-
ties to control novel quantum states in mesoscopic conductors, despite non-magnetic disor-
der. Yet, it remains difficult to control a small number of transverse quantized states close to 
the Dirac degeneracy point, mostly due to intrinsic limitations in conventional 3DTIs materi-
als. Whereas the Bi2Se3 family offers many advantages (tunable band structure in solid solu-
tions of ternary compounds and high-quality single-crystalline nanostructures), it remains 
difficult to achieve surface transport only, and, most important, to control low-energy surface 
quasi-particles (large residual bulk doping or interface charge transfer, due to disorder).

Therefore, the next generation of electronic devices based on 3D topological insulators will 
necessarily be developed from advanced functional nanostructures and heterostructures. One 
of the most important challenge will be the full control of interface band bending, with a 
high-enough interface quality so as to optimize the coupling between metallic contacts and 
spin-helical surface Dirac fermions. For instance, this is particularly true for spin transport 
experiments, which require to minimize the momentum/spin relaxation below the contacts in 
order to make use of the intrinsic potential of electronic states with spin-momentum locking.

Toward this goal, new growth and nanofabrication methods need to be envisioned, in combi-
nation with those already used to prepare high-quality single-crystalline nanostructures (vapor 
transport, vapor-liquid-solid epitaxy, and chemical-vapor deposition). Novel techniques, such 
as the in-situ stencil lithography of metallic contacts combined the growth of ultra-thin films 
by molecular beam epitaxy, already gave some promising results, for instance to realize highly-
transparent superconducting contacts and investigate topological superconductivity [48]. Also, 
atomic layer epitaxy holds promises to realize core-shell lateral nanostructures adapted to the 
control of the electro-chemical potential at the interface with a topological insulator [49–51].
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Abstract

In this research work, without using any resist and lithography techniques, we report 
clean, surface protected and high quality Topological Insulator (TI) thin film Hall Bar 
device of millimeter size long. In the magnetotransport measurements, the pronounced 
effect of weak antilocalization (WAL) behavior has been observed at low temperatures 
over the range T = 4–10 K and in the low field regions and the WAL cusp disappears as 
we go from 10 K onwards to higher temperatures, also we find that the high-field mage-
netoresistance (MR) is linear in field. With respect to magnetic field (B), the MR behavior 
seems to be symmetric. We also analyze the thickness dependent weak antilocalization 
(WAL) behavior, which has been observed in Topological Insulator Bi2Te3 thin film Hall 
Bar device. For varying thickness, our systematic magnetotransport measurements 
reveal WAL signals obtain in thicker films whereas below the critical thickness of ~4 nm, a 
sudden diminishment of the surface transport has been observed by suppression of WAL 
behavior. The analyzed and pronounced behavior of this effect is also greatly dependent 
on the temperatures, where the WAL cusps are observed in the low-field regions and at 
low temperatures.

Keywords: topological insulator, Bi2Te3, weak antilocalization, linear magnetoresistance

1. Introduction

In the recent years because of unique feature of topologically protected surface states which 
have strong spin-orbit coupling the three-dimensional (3D) topological insulators (TIs) like 
Bi2Se3, Bi2Te3 and their counterpart alloys have attracted tremendous and intense research 
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attention [1–4]. The surface states which has been observed, are believed to be protected 
against time-reversal-symmetry, owing to the fact that, electrons in the surface state behave 
as dirac electrons as in case of 3D TI [5], which can be applied to spintronics devices [6], quan-
tum computing [7] and it is necessary to investigate TI from the transport point of view in 
order to address the electronic properties of Dirac electrons. In terms of weak antilocalization 
(WAL) effect in thin films [8, 9], nanoribbons [10] and 3D TI crystals [11, 12], several research 
groups have already analyzed this transport behavior, by making small scale devices using 
conventional lithography techniques, but no paper has yet reported to observe this magneto-
transport behavior in Bi2Te3 thin film Hall Bar device without using lithography techniques. 
Also in terms of potential applications in magnetic sensors and magnetic random access 
memory [13], materials exhibiting linear magnetoresistance (LMR) are found to be promising 
candidates. The linear MR behavior in Bi2Se3 [14, 15] and Bi2Te3 [16, 17] has been revealed in 
recent literatures and these TIs provide an ideal platform to study the origin of LMR because 
of the unique surface states that are naturally zero band gaps with linear dispersion.

It is necessary to grow a high quality TI thin film, in order to observe this magnetotransport 
behavior in topological insulator Bi2Te3. Molecular beam epitaxy (MBE) in this respect has 
demonstrated and found to be suitable in producing samples with carrier mobilities higher 
than the bulk crystals with precise control on the growth rate, out of modern thin film growth 
techniques. In order to realize layer by layer growth and obtaining the right stoichiometry 
[18] this technology is very important. Here, with respect to weak antilocalization (WAL) 
and magnetoresistance (MR), we report on the magnetotransport measurement. After fabri-
cation, the thin film Hall Bar device is subjected to Physical Property Measurement System 
(PPMS), where the magnetic field is applied perpendicular to the plane of Hall Bar device. 
At programmed temperatures, by sweeping the magnetic field between −9 T and + 9 T, the 
Longitudinal Resistance is measured.

2. Experimental

Using Molecular Beam Epitaxy (MBE), the thin films of Bi2Te3 were grown on 7 × 7 mm 
dimension Al2O3 (0001) substrate. Prior to the deposition, the base pressure was maintained 
at ~ 8 × 10−10 mbar. To evaporate Bi (99%) and Te (99.9%) sources, the standard Knudsen 
diffusion cells were used and the Te and Bi were heated to 205 and 630°C respectively. At 
last at Te/Bi flux ratio of ~10 with a growth rate of 8 Å per minute the Bi2Te3 Thin films were 
prepared at a substrate temperature of 230°C. By defining the pattern, using standard litho-
graphic techniques like electron-beam lithography or photolithography, numerous methods 
in the recent literatures [19–22] were reported in making thin film hall bar geometry but in 
our work, without using any resists and lithography techniques, we applied a clean method 
of making a topological insulator thin film hall bar device. In our device fabrication, we 
employed two physical masks, for the same sample holder. One for using in reactive ion 
etching (RIE), called etching mask and other for depositing metal electrodes, called metal 
mask. For defining the dimension of the thin film hall Bar, the etching mask served the pur-
pose and the metal mask served the purpose of depositing the metal electrodes. After the 
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thin film sample synthesized from the MBE, with the help of RIE the thin film hall Bar was 
made, using the etching mask placed over the sample on the sample holder. With the aid of 
CF4 gas for 30 s, the etching was done for getting the required Hall Bar structure. Finally, on 
the same sample holder, Au (40 nm)/Cr (40 nm) metal ohmic contacts were made with the 
help of thermal evaporation, using the metal mask over the thin film Hall Bar sample. With 
dimension of 2 mm long and 1.5 mm wide we obtained our fabricated Topological Insulator 
Bi2Te3 thin film Hall Bar device. The Figure 1a shows the Schematic diagram of the device 
fabrication with image of Bi2Te3 topological insulator thin film hall bar device and the 7 × 
7 mm dimension of the thin film hall bar device in Figure 1b and c, respectively.

3. Characterizations

Using AFM in a tapping mode, the topography of thin films was evaluated and by scanning a 
scratch deliberately made on as-grown thin films, the thickness was reliably determined. With 
the help of Siemens D-500 X-ray Diffractometer (XRD) further structural analyses were also 
carried out. In Figure 2b and c representative topographic AFM images of Bi2Te3 thin films 
are shown respectively, suggesting a layer-by-layer growth mode, revealing the ultra-smooth 

Figure 1. Methodology of fabrication of topological insulator Bi2Te3 thin film hall bar device.
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surfaces with large area terraces. In Figure 2b, the dashed line drawn, reveals 10 nm thickness 
film and Figure 2c illustrates 10 nm thin film, by the formation of 4–5 stacked layer compris-
ing of domains of triangular terraces. This suggests a favorable growth dynamics accounting 
for the high crystalline quality of Topological Insulator thin film on Al2O3 substrate with the 
absence of spirals on the terraces together with the shape of the terrace. The XRD experi-
ments were further conducted to investigate the crystalline quality and orientations. With 
the diffraction peak from Al2O3 substrate, Figure 2d displays (003) family diffraction peak 
from Bi2Te3 thin film. The result of the Angle Resolved Photo Emission Spectroscopy (ARPES), 
implying strong surface states is shown in Figure 2a.

4. Results and discussion

4.1. Magnetotransport measurement

In our observation and study, we confirm the weak antilocalization (WAL) effect and the origin 
of this research phenomenon is investigated. If we consider, interaction between time-reversal 
pair of electronic waves, then there is a constructive interference of this two phase-coherent 

Figure 2. Characterization evidences of topological insulator Bi2Te3 thin film.
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electronic waves propagating in opposite directions along the same closed path, in the absence 
of spin-orbit interaction, which gives rise to Weak-Localization (WL) effect. This effect gives 
results in increase of resistance or decrease of conductance. But the constructive interference is 
broken as a result of a phase difference between the two electronic waves, when the magnetic 
field is applied perpendicular to the plane of the system. By increasing the magnetic field, the 
increase of resistance can gradually be removed and consequently negative magnetoresistiv-
ity occurs. It finally gives rise to increase of the resistance or reduction in the conductance 
around zero magnetic field as the resistance correction influenced by this localization. In the 
presence of the spin-orbit interaction, there is a significant enhancement in the resistance, 
which is known as weak antilocalization effect [23, 24]. As far as the quality of the grown thin 
film is concerned, it has significant impact on the studies of transport properties of charge 
carriers and the weak antilocalization (WAL) behavior is an evaluation and indication for 
such improvement in the quality of the thin film, which manifests both the Dirac nature of the 
surface states in the bulk of Topological Insulators [8, 25] and strong spin-orbit interaction. If 
we Compare the 2D electron system, the 2D surface state of the three-dimensional topological 
insulator is different [26] as an odd number of Dirac points are considered to be encircled by 
Fermi arc [27, 28]. If we evaluate the topological insulator, its surface remains metallic and 
cannot be localized by disorder [29]. By Hikami et al. [30], the surface state of the topological 
insulator is well described. The Figure 3a shows the results of the magnetotransport measure-
ment for the temperature ranges from T = 4 to 100 K and fields up to 9 T. The pronounced 
effect of WAL cusps are marked at low temperature between 4 and 10 K and in the low field 
regions as shown in the Figure 3a. Also we observe the enhancement of peak and the dip 
structure behaviors in the magnetoresistance, which is quite remarkable with decreasing tem-
peratures. We have defined the normalized magnetoresistance (MR) as a function of magnetic 
field as MR = [[R (B) − R (0)]/R (0)] × 100%., where R (B) and R (0) are the resistances at field 
B and at zero field, respectively. The WAL cusps disappear, as the temperature is increased 
from 10 K onwards. We observe the WAL characteristic behaviors in the temperature ranges 
from 4 to 10 K as shown in the Figure 3a, and disappearance of WAL cusp from 10 K onwards. 
The MR curves seems to be quadratic like B dependence at low fields between 2 and 6 T and at 
higher fields from 6 T onwards, the MR follows linear like behavior and does not saturate. The 
quadratic growth here can be well explained and analyzed by semi-classical model, where the 
magnetic field drifts the conduction electrons and these conduction electrons are deflected by 
the Lorentz force. At T = 4 K, the thickness dependent WAL behavior is shown in the Figure 3b 
showing the WAL cusps for 10, 20, 50 nm thickness film, where as there is no observable WAL 
effect in ultra-thin films like 4 and 2 nm and the magnetoresistance (MR) curve attains to be 
flat w.r.t. magnetic field (B). The Fermi level is not in the gap but crosses the Surface State, as 
the film is thinned enough. Hence, the observed drastic suppression of the surface transport 
is likely due to an enhanced scattering of the carriers. The phase breaking length (Lϕ), which 
is of temperature dependence is extracted from the Hikami-Larkin-Nagaoka (HLN) model 
fit [30] for 10 nm thickness film is shown in the Figure 3c, which reveals the relatively large 
phase coherent length of 155.8 nm at 4 K, by fitting to the HLN model. The Figure 3d shows 
the Conductance change with respect to low magnetic field region with the HLN model fit for 
10 nm thickness film.
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electronic waves propagating in opposite directions along the same closed path, in the absence 
of spin-orbit interaction, which gives rise to Weak-Localization (WL) effect. This effect gives 
results in increase of resistance or decrease of conductance. But the constructive interference is 
broken as a result of a phase difference between the two electronic waves, when the magnetic 
field is applied perpendicular to the plane of the system. By increasing the magnetic field, the 
increase of resistance can gradually be removed and consequently negative magnetoresistiv-
ity occurs. It finally gives rise to increase of the resistance or reduction in the conductance 
around zero magnetic field as the resistance correction influenced by this localization. In the 
presence of the spin-orbit interaction, there is a significant enhancement in the resistance, 
which is known as weak antilocalization effect [23, 24]. As far as the quality of the grown thin 
film is concerned, it has significant impact on the studies of transport properties of charge 
carriers and the weak antilocalization (WAL) behavior is an evaluation and indication for 
such improvement in the quality of the thin film, which manifests both the Dirac nature of the 
surface states in the bulk of Topological Insulators [8, 25] and strong spin-orbit interaction. If 
we Compare the 2D electron system, the 2D surface state of the three-dimensional topological 
insulator is different [26] as an odd number of Dirac points are considered to be encircled by 
Fermi arc [27, 28]. If we evaluate the topological insulator, its surface remains metallic and 
cannot be localized by disorder [29]. By Hikami et al. [30], the surface state of the topological 
insulator is well described. The Figure 3a shows the results of the magnetotransport measure-
ment for the temperature ranges from T = 4 to 100 K and fields up to 9 T. The pronounced 
effect of WAL cusps are marked at low temperature between 4 and 10 K and in the low field 
regions as shown in the Figure 3a. Also we observe the enhancement of peak and the dip 
structure behaviors in the magnetoresistance, which is quite remarkable with decreasing tem-
peratures. We have defined the normalized magnetoresistance (MR) as a function of magnetic 
field as MR = [[R (B) − R (0)]/R (0)] × 100%., where R (B) and R (0) are the resistances at field 
B and at zero field, respectively. The WAL cusps disappear, as the temperature is increased 
from 10 K onwards. We observe the WAL characteristic behaviors in the temperature ranges 
from 4 to 10 K as shown in the Figure 3a, and disappearance of WAL cusp from 10 K onwards. 
The MR curves seems to be quadratic like B dependence at low fields between 2 and 6 T and at 
higher fields from 6 T onwards, the MR follows linear like behavior and does not saturate. The 
quadratic growth here can be well explained and analyzed by semi-classical model, where the 
magnetic field drifts the conduction electrons and these conduction electrons are deflected by 
the Lorentz force. At T = 4 K, the thickness dependent WAL behavior is shown in the Figure 3b 
showing the WAL cusps for 10, 20, 50 nm thickness film, where as there is no observable WAL 
effect in ultra-thin films like 4 and 2 nm and the magnetoresistance (MR) curve attains to be 
flat w.r.t. magnetic field (B). The Fermi level is not in the gap but crosses the Surface State, as 
the film is thinned enough. Hence, the observed drastic suppression of the surface transport 
is likely due to an enhanced scattering of the carriers. The phase breaking length (Lϕ), which 
is of temperature dependence is extracted from the Hikami-Larkin-Nagaoka (HLN) model 
fit [30] for 10 nm thickness film is shown in the Figure 3c, which reveals the relatively large 
phase coherent length of 155.8 nm at 4 K, by fitting to the HLN model. The Figure 3d shows 
the Conductance change with respect to low magnetic field region with the HLN model fit for 
10 nm thickness film.
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4.2. Linear magnetoresistance (LMR)

We have observed linear magnetoresistance (LMR) behavior as shown in the Figure 4 in 
our magnetotransport measurement study and it is found that the observed behavior is 
found to be seen in higher fields in the ranges from 6 to 9 T. In this linear region, there is 
a little variation in the slope of dMR/dB with respect to temperatures. We have observed 
these linear and non-saturating magnetoresistance features in the temperature ranges 
from 2 to 20 K. Previous literatures show the same trends and results where the high field 
LMR was found in single crystal of YPdBi Heusler topological insulator [31] and in Bi2Se3 
nanoribbons [15]. The topological surface states are manifested by these results. The Linear 
MR at strong magnetic field is expected to occur in the quantum limit in the linear energy 
spectrum, in which all the electrons populated into single Landau level as per the theory, 
proposed by Abrikosov [32, 33]. This is governed and satisfied by the inequality relation 
(h/2π) × Wc > Ef , where (h/2π) × Wc is the cyclotron energy and Ef is the Fermi energy. So 
the weak temperature dependence is predicted by quantum LMR theory. However, recent 
literature shows that linear magnetoresistance (LMR) appears to occur in smaller magnetic 
field, where several Landau levels are populated by electrons [34]. There are some other 
research literatures, where it is analyzed that LMR at the high field as a consequence of 
closing of band gap under certain pressure. This profound alteration of band structure is 

Figure 3. Results of Bi2Te3 thin films hall bar device with respect to magnetotransport.
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found in silver rich or silver deficient chalcogenides [35] by the application of hydrostatic 
pressure. Hence, the gap less linear energy spectrum, which is suggested by this, such as 
the surface states of topological insulators is required for the observation of Linear MR in 
high fields. As there exists a bulk band gap for the bulk state, in this analysis, the possible 
bulk contribution in the quantum LMR is excluded. To the previous literature on topologi-
cal insulator B2Te3 nano-sheets [17], our results in linear MR are quite similar. As shown in 
the Figure 4, in our study we report ≅ 3.2% MR value for temperatures ranging from 2 to 
20 K. This characteristic feature of Linear MR (LMR), which has been found to be propor-
tional to the magnetic field (B), is suitable for application in high magnetic field sensors.

4.3. Temperature-dependent electrical resistance measurement

For observing the temperature dependent resistance, we did the electrical measurements in 
our study. The longitudinal resistance (R) at zero magnetic field as a function of temperature 
is shown in the Figure 5. From the figure it is evident that, there is a decrease in the resistance 
in the temperature range from 300 to 240 K. The reason, we can consider with the bulk band 
gap. With the recent report on the ARPES measurements analysis of Bi2Se3 thin film grown 
on SiC (0001) by MBE [36], where there is a progressive and systematic increase in the bulk 
band gap with reducing film thickness, it implies the quantum confinement of the film along 
the growth direction perpendicular to the substrate. As in our case, the grown film is thin 
enough, so the result is quite practical and evident at higher temperatures. The longitudinal 
resistance decreases as the temperature decreases from 240 to 4 K, resembling the metallic 
like behavior as observed in most of the topological Insulators [37]. Such trend of decrease 
with temperatures can be analyzed and explained by power law increase of mobility with 
temperatures and alleviated phonon scattering. The resistance attains to be constant value 

Figure 4. LMR of Bi2Te3 thin film hall bar device at high fields.
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in the temperature range between 4 and 2 K. The reason, where the transport is primarily 
governed by combination of surface states and impurity band conduction is considered to be 
bulk carrier’s freeze out effect. To the previous literature on Bi2Se3 grown on Si substrate [38], 
this temperature dependent result is quite similar. The Current-Voltage curves at different 
temperature, indicating ohmic contacts over the whole range of temperatures is shown in the 
insert in the Figure 5.

5. Conclusion

In the summary, in our fabricated topological insulator Bi2Te3 thin film Hall Bar device, we 
report the observation of weak antilocalization (WAL) behavior and linear magnetoresistance 
(LMR). The WAL characteristics is found to be in the low temperature and in the low magnetic 
field region and the LMR is considered to be accompanied with gapless energy spectrum of 
surface Dirac fermions and is believed to be quantum origin. A dip near 0 T magnetic fields 
is observed in the magnetoresistance (MR) characteristics of Bi2Te3 thin film hall Bar device. 
The originated dip is from the WAL effect and is found to be at low temperatures. By fitting to 
the HLN model for 10 nm thin film, we also derive relatively large phase breaking length of 
155.8 nm at 4 K. This dependence on the thickness of the thin film has a pronounced behavior, 
i.e., below a certain critical thickness there is no observable WAL behavior. In our study and 
analysis, we observe disappearance of WAL in <5 nm thickness film. The reason is the film of 
topological insulator is so thinned that it leads to an opening of the gap at the Dirac point and 
results in a degenerate, massive Dirac dispersion, which leads to the diminishment of surface 
transport, by the observing flatness in the magnetoresistance curve.

Figure 5. Temperature-dependent electrical resistance measurement result of Bi2Te3 hall bar device.
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surface Dirac fermions and is believed to be quantum origin. A dip near 0 T magnetic fields 
is observed in the magnetoresistance (MR) characteristics of Bi2Te3 thin film hall Bar device. 
The originated dip is from the WAL effect and is found to be at low temperatures. By fitting to 
the HLN model for 10 nm thin film, we also derive relatively large phase breaking length of 
155.8 nm at 4 K. This dependence on the thickness of the thin film has a pronounced behavior, 
i.e., below a certain critical thickness there is no observable WAL behavior. In our study and 
analysis, we observe disappearance of WAL in <5 nm thickness film. The reason is the film of 
topological insulator is so thinned that it leads to an opening of the gap at the Dirac point and 
results in a degenerate, massive Dirac dispersion, which leads to the diminishment of surface 
transport, by the observing flatness in the magnetoresistance curve.

Figure 5. Temperature-dependent electrical resistance measurement result of Bi2Te3 hall bar device.
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Abstract

The Si/6H-SiC heterostructure of large lattice mismatch follows domain epitaxy mode,
which release most of the lattice-mismatch strain, and the coherent Si epilayers can be
grown on 6H-SiC. An interfacial misfit dislocation array is present at the interface that
determines the domain’s size. In this chapter, transmission electron microscopy (TEM)
and high resolution X-ray diffraction (HRXRD) were employed to reveal in-plane orienta-
tion, interface structure and growth mode of the Si/SiC heterostructure. Based on the
characterizations, residual lattice mismatch and edge misfit dislocation density at the
hetero-interface can be precisely controlled. And these characterization methods are appli-
cable for the heterostructures of large-lattice mismatch, except for the heterostructures
with different crystal symmetry on the film and the substrate.

Keywords: large lattice mismatch, domain matching mode, SiC-based heterostructure,
in-plane orientation, Interface micro-structure

1. Introduction

With advantageous material properties such as a wide bandgap and high thermal conductiv-
ity, silicon carbide (SiC) has attracted much attention for its wide applications in the photoelec-
tric devices of high temperature and high power [1–5]. However, due to the wide bandgap,
SiC-based photoelectric devices can be only driven by ultraviolet (UV) light, which essentially
limits the application of visible and infrared light detection. Si/SiC heterostructure is suggested
to make SiC-based devices to be light-activated by non-UV light, in which Si is used as a non-
UV light absorption layer [6, 7]. In our previous work, it was found that the Si films on SiC
substrates always have a polycrystalline structure with multiple orientations, while the prefer-
ential growth of the Si films with different orientations can be obtained at different growth
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temperature [8–12]. The interface-structure of the heterostructure determines some important
parameters such as the preferential orientation [13, 14], the interface state density [15–17] and
the carrier mobility, which have significant impact on the heterostructure device performance.
By observation of the Si/SiC interface-structure with different growth temperatures, the
growth mode of the Si/SiC heterostructure can be revealed, and the accurate control of
the growth orientation may be achieved. At present, the studies of the SiC-based Si/SiC
heterostructure just focused on the electrical performance of the heterostructures in SiC SBD
[18] and SiC MOSFET [19, 20], the growth mode and interface-structure of the Si/SiC
heterostructure is rarely reported.

2. Growth mode, interface micro-structure and in-plane orientation of the
Si/SiC heterostructure

2.1. Growth mode of the heterostructures of large lattice-mismatch

The crystal structure of Si and 6H-SiC is face-centered cubic (FCC) and hexagonal close-packed
(HCP) with in-plane lattice constants of aSi = 5.430 Å and aSiC = 3.081 Å, respectively. The lattice
mismatch of the Si(111)/6H-SiC(0001) is as large as 19.8%, which is given by

εx ¼ εy ¼ ɑsic 0001ð Þ � ɑSi 111ð Þ
� �

=ɑSi 111ð Þ (1)

where ɑsic(0001) and ɑSi(111) are the lattice constants of the SiC(0001) and Si(111) crystalline
planes, respectively. If the lattice mismatch of the heterostructure is sufficiently low, the
mismatch strain can be released by interfacial atomic relaxation of the heterostructure, and
the strained-layer heterostructure with no interfacial misfit dislocations (MD) will be attained.
However, the Si/SiC heterostructure has a large lattice mismatch, the epitaxial growth is still
followed except that domain matching (DM) mode [21] in order to reduce the mismatch, and
therefore an interfacial MD array is present at the interface that determines the domain’s size
[22–26]. A schematic illustration of mechanisms for accommodation of lattice mismatch strain
in large-mismatch systems with domain epitaxial growth is shown in Figure 1. And this
matching mode is applicable for the heterostructures with similar crystal symmetry on the
film and the substrate. In the Si/6H-SiC system, domains consisting ofm lattice constants of the
Si film match with n of the SiC substrate. During domain matching system, the domain size
nɑsic of the SiC substrate does not match perfectly with mɑSi of the Si film and thus a residual
domain mismatch strain is present in the film in the x direction, given by

εx ¼ mɑsic x � nɑSi xð Þ=nɑSi x (2)

Similarly, the residual strain

εy ¼ pɑsic y � qɑSi y
� �

=qɑSi y (3)

where p and q are integers, is present in the y direction. The lattice-mismatch of the Si/6H-SiC
heterostructure calculated with the DM mode are very small, the coherent Si epilayer can be
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grown on 6H-SiC. This type of edge misfit dislocation is also observed in other heterostructure
of large lattice-mismatch, such as TiN/Si [23], ZnO/α-Al2O3 [23], Sc2O3/GaN [24], GaAs/Si [25]
and InxGa1-xN/GaN [26].

2.2. Interface micro-structure of the Si/SiC heterostructure

The low magnification cross-sectional transmission electron microscopy (TEM) bright-field
image of the Si thin film grown on 6H-SiC(0001) at 900�C is shown in Figure 2(a). In this
image, the lower part belongs to the 6H-SiC substrate, while the upper part represents the Si
thin film. The Si film with a thickness of about 0.55 μm shows irregular heterogeneous
diffraction contrast, which suggests the existence of some structural defects such as stacking
faults (SF) and twins in the film, as labeled in Figure 2(a). The selected area electron diffraction
(SAED) patterns of the Si/6H-SiC heterostructure corresponding to Si[-110]SiC[-12-10] zone
axes are shown in Figure 2(b). It is confirmed that the Si film has epitaxial connection with the
6H-SiC substrate and the orientation relationship of Si/6H-SiC heterostructure is (111)[1-10]Si//
(0001)[1-210]6H-SiC. Alignment of the diffraction spots indicates that FFC-on-HCP epitaxial
orientation, i.e., (111)Si//(0001)6H-SiC is maintained at a growth temperature of 900�C. It should
be pointed out that the extinction diffraction spots of (10-10)SiC and (10-16)SiC can be observed
in the SAED patterns because of the multiple diffraction. A superposition of two FCC <110>
zone diffraction patterns, which are symmetrical to each other with respect to the (111) mirror
plane, indicating that the lamellar structure observed in the film consists of alternate stacks of
twins, as shown in Figure 2(b). Furthermore, the faint diffused streaks along the <111> orien-
tation indicate that there exist a large number of SFs. And this agrees with the results of the
diffraction contrast study.

Figure 3(a) shows a high-resolution TEM image of the Si/6H-SiC interface, exhibiting interfaces
of Si(111)/6H-SiC(0001) without any indication of interfacial reactions, however, it is not
crystallographic sharp, which reflects the roughness of the Si layer’s surface and the poor

Figure 1. Schematic illustration of mechanisms for accommodation of lattice mismatch strain in large mismatch systems
with DM mode.
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crystallographic match between interatomic distances in close-packed layers of between Si
(111) and SiC (0001) planes (in-plane constants 3.84 Å for Si and 3.08 Å for 6H-SiC). Moreover,
typical structural defects such as SFs and twins are clearly observed in the Si film, which are
labeled in Figure 3(a). Figure 3(b) is the magnified image of the region b in Figure 3(a), which
further confirms the epitaxial relation of the Si/6H-SiC heterostructure. Fourier-filtering tech-
nique is applied to remove the non-periodic information such as background signal and the
structural defects in the Si film. The Fourier-filtered high-resolution TEM images of the Si thin
film, the 6H-SiC substrate and the Si/6H-SiC interface are shown in Figure 3(c)–3(e), respec-
tively. It is clearly observed that the SiC substrate with the HCP stacking sequence as ABCACB
has a crystal plane spacing of 2.57 Å, while the Si film with the FCC stacking as ABC has a
crystal plane spacing of 3.21 Å. Calculated from the crystal plane spacing, lattice mismatch of
the Si(111)/6H-SiC(0001) heterostructure is about 19.8%, which is in accordance with the
calculation results based on the fast-Fourier transform (FFT) pattern. Nevertheless, the (0001)
lattice planes of SiC and (111) lattice planes of Si are well aligned, and the Si film grows
epitaxially but with MDs (indicated by the arrows) at the interface between the Si film and
the 6H-SiC substrate, which can be easily identified by extra lattice fringes in the 6H-SiC. The
Si epitaxial growth follows the DM mode, every five 6H-SiC(1-210) planes match with four Si
(1-10) planes along the interface, as shown in Figure 3(e). Moreover, the invariant crystal plane
spacings of the Si film and the 6H-SiC substrate at the Si/6H-SiC interface demonstrate that the
interfacial MD array accommodates most of the lattice mismatch strain and makes the lattice
coincident at the Si/6H-SiC interface.

Based on the results shown above, the in-plane orientation of the (111)Si//(0001)6H-SiC

heterostructure is schematically shown in Figure 4(a). Both of the 6H-SiC(0001) and Si(111)
lattice planes have the same triangular lattice in two-dimensions (2D). And the Si(111) layers
epitaxially grow on 6H-SiC(0001) without rotation of the 2D triangular lattice. However, the
in-plane lattice constant of the Si(111) (3.84 Å) is larger than that of the 6H-SiC(0001) (3.08 Å),
as shown in Figure 4(b). The FCC-on-HCP epitaxial relationship with a four-to-five mode of
Si-to-SiC is clearly observed. The residual mismatch calculated by the DMmode is only 0.26%,
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which is much smaller than the mismatch of 19.8% calculated by the conventional lattice
matching (LM) mode. Because the 2D triangular lattice of the Si(111) film has no rotation
during epitaxial growth on 6H-SiC(0001), the domain mismatch strain εx in the x direction
and εy in the y direction are the same as 0.26%.

XRD data, shown elsewhere [9], indicates that the Si phase with [110] orientation appears
when the temperature increases higher than 1000�C, which is confirmed by the TEM charac-
terizations. Figure 5(a) is a low magnification cross-sectional TEM image of the Si/6H-
SiC(0001) heterostructure grown at 1050�C. The Si/SiC heterostructure haves a sharp interface
and consist of columnar grains. SAED patterns at the Si/6H-SiC interface corresponding to
Si[-110]SiC[1-210] zone axes in Figure 5(b) clearly show the FCC-on-HCP orientation relation-
ship of (110)[001]Si//(0001)[10-10]6H-SiC, confirming the epitaxial growth of the Si films with [110]
orientation. The high-resolution TEM image of the Si(110)/SiC(0001) heterostructure is shown
in Figure 6(a). The Si/SiC interface is crystallographic sharp without any indication of the
interfacial reaction products. Figure 6(b) is the Fourier-filtered HRTEM image, which confirms
the epitaxial connection of the Si/6H-SiC heterostructure. Calculated from the crystal plane

Figure 3. A HRTEM image of the Si/6H-SiC heterojunction grown at 900�C (a), a magnified image (b), and the Fourier-
filtered HRTEM images (c)–(e).
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tively. It is clearly observed that the SiC substrate with the HCP stacking sequence as ABCACB
has a crystal plane spacing of 2.57 Å, while the Si film with the FCC stacking as ABC has a
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calculation results based on the fast-Fourier transform (FFT) pattern. Nevertheless, the (0001)
lattice planes of SiC and (111) lattice planes of Si are well aligned, and the Si film grows
epitaxially but with MDs (indicated by the arrows) at the interface between the Si film and
the 6H-SiC substrate, which can be easily identified by extra lattice fringes in the 6H-SiC. The
Si epitaxial growth follows the DM mode, every five 6H-SiC(1-210) planes match with four Si
(1-10) planes along the interface, as shown in Figure 3(e). Moreover, the invariant crystal plane
spacings of the Si film and the 6H-SiC substrate at the Si/6H-SiC interface demonstrate that the
interfacial MD array accommodates most of the lattice mismatch strain and makes the lattice
coincident at the Si/6H-SiC interface.

Based on the results shown above, the in-plane orientation of the (111)Si//(0001)6H-SiC

heterostructure is schematically shown in Figure 4(a). Both of the 6H-SiC(0001) and Si(111)
lattice planes have the same triangular lattice in two-dimensions (2D). And the Si(111) layers
epitaxially grow on 6H-SiC(0001) without rotation of the 2D triangular lattice. However, the
in-plane lattice constant of the Si(111) (3.84 Å) is larger than that of the 6H-SiC(0001) (3.08 Å),
as shown in Figure 4(b). The FCC-on-HCP epitaxial relationship with a four-to-five mode of
Si-to-SiC is clearly observed. The residual mismatch calculated by the DMmode is only 0.26%,

Figure 2. Cross-sectional low magnification TEM image and the SAED patterns of Si films grown on 6H-SiC (0001) at
900�C. (a) TEM image, (b) SAED patterns corresponding to Si[-110]SiC[-12-10] zone axes.

Heterojunctions and Nanostructures70
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Figure 4. Schematic diagrams of the of Si(111)/6H-SiC(0001) heterojunction. (a) In-plane orientation, (b) atomic structure
at the hetero-interface. The insets show the atomic structures of the Si(111) and 6H-SiC(0001) planes.

Figure 5. Low magnification cross-sectional TEM image and the SAED patterns of Si films grown on 6H-SiC(0001) at
1050�C. (a) TEM image, (b) SAED patterns of the Si/SiC interface corresponding to Si[-110]SiC[1-210] zone axes.
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spacings and the FFT patterns, lattice mismatch of the Si(110)/6H-SiC(0001) heterostructure is
1.84%. The interfacial MD array can also be observed by extra lattice fringes in the 6H-SiC.
Every two 6H-SiC(10-10) planes match with one Si(001) planes along the interface, as shown in
Figure 6(b). Compared with the Si(111)/6H-SiC(0001) heterostructure with a residual
mismatch of 0.26%, the Si(110)/6H-SiC(0001) heterostructure has higher residual mismatch of
1.84% along Si[001]SiC[10-10] orientation. If the Si-to-SiC matching mode is not 1:2 but a long-
period structure of 53:54, the lattice mismatch can decrease to �0.55%. Of course the long-
period matching is very difficult to be confirmed by experimental observations; however, the
trend of this large-period matching can be observed in Figure 6(b). The atomic position of Si in
region 1 is slightly different from that of Si in region 2, as shown in the insets. It is suggested
that the Si-to-SiC matching at the interface is merely approximate 1:2.

Figure 6. A HRTEM image of the Si/6H-SiC heterojunction grown at 1050�C (a), the Fourier-filtered HRTEM images (b).
The insets are the magnified images of region 1 and 2, which show the atomic position of the Si/6H-SiC interface. The
atomic positions of Si are slightly different in two regions. It suggests that the Si-to-SiC matching mode at the interface is
long-periodic and is merely approximate 1:2.
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Figure 7(a) shows a HRTEM image of the Si(110)/6H-SiC(0001) interface. Because the observa-
tion orientation is SiC[-1010], the 6H stacking sequence as ABCACB of 6H-SiC is not observed.
The SAED patterns at the Si/6H-SiC interface corresponding to Si[00-1]SiC[-1010] zone axes are
shown in Figure 7(b). SAED patterns at the Si/6H-SiC interface clearly show the FCC-on-HCP
orientation relationship of (110)[-110]Si//(0001)[1-210]6H-SiC, confirming the epitaxial growth of
the Si films with [110] growth orientation. Figure 7(c) shows the Fourier-filtered image of region
1, which further confirms the epitaxial connection of the Si(110)/6H-SiC(0001) heterostructure.
The crystal plane spacing at the Si/6H-SiC interface also has no significant change. The Si
epitaxial growth follows the DM mode, every five 6H-SiC(1-210) planes match with four
Si(-110) planes along the interface, as shown in Figure 7(d). According to the extra SiC lattice
planes at the hetero-interface, Burgers vectors of the MDs can be determined uniquely. The
MDs are of the pure edge type with a Burgers vector of 1� 210h iSiC=3 parallel to the interface,
which are labeled in Figure 7(d).

Figure 7. HRTEM images and the SAED patterns of Si(110)/6H-SiC(0001) interface. HRTEM image of the Si(110)/6H-
SiC(0001) interface (a), SAED patterns (b), the Fourier-filtered HRTEM images of region 1 (c) and region 2 (d). The SAED
patterns at the Si/6H-SiC interface corresponding to Si[00-1]SiC[-1010] zone axes.
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Base on the HRTEM observations and SAED analysis, the lattice-structure model of the Si
(110)/6H-SiC(0001) heterostructure is constructed and schematically shown in Figure 8. It is
known that the Si(110) plane has a rectangular 2D lattice with different in-plane constants of
5.43 Å and 3.84 Å along the vertical orientations Si[001] and Si[-110], which is different from
the 2D triangular lattice of the 6H-SiC(0001). However, the triangular lattice of 6H-SiC(0001)
can be transformed to rectangular 2D lattice by missing partial Si-C atoms, which has in-plane
constants of 5.33 Å and 3.08 Å along SiC[10-10] and SiC[1-210] respectively, as shown in
Figure 8(a). Along Si[001]SiC[10-10] orientations, the heterostructure has a lattice mismatch of
1.84%with in-plane constants 5.43 Å for Si and 5.33 Å for 6H-SiC. The residual lattice mismatch
strain can be released by interfacial atomic relaxation of the Si/6H-SiC heterostructure and the
strained-layer with no MDs will be attained. However, the 2D rectangular lattice of
6H-SiC(0001) is converted from the triangular lattice by missing every other Si-C atoms along
[10-10] orientation. Therefore, MDs are still present at the Si(110)/6H-SiC(0001) interface and
1:2 mode of Si-to-SiC is observed. Along the vertical orientations Si[-110]SiC[1-210], the Si
(110)/6H-SiC(0001) heterostructure has in-plane constants 3.84 Å for Si and 3.08 Å for 6H-SiC,
and the interface with a four-to-five mode of Si-to-SiC is shown in Figure 8(c), which is
identical with the Si(111)/6H-SiC(0001) heterostructure.

Figure 8. Schematic diagrams of the of Si(110)/SiC(0001) heterojunction. In-plane orientation (a), atomic structure at the
interface along Si[001]SiC[10-10] (b) and Si[-110]SiC[1-210] (c). The insets show the atomic structures of the Si(110) and
6H-SiC(0001) planes.
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Figure 7(a) shows a HRTEM image of the Si(110)/6H-SiC(0001) interface. Because the observa-
tion orientation is SiC[-1010], the 6H stacking sequence as ABCACB of 6H-SiC is not observed.
The SAED patterns at the Si/6H-SiC interface corresponding to Si[00-1]SiC[-1010] zone axes are
shown in Figure 7(b). SAED patterns at the Si/6H-SiC interface clearly show the FCC-on-HCP
orientation relationship of (110)[-110]Si//(0001)[1-210]6H-SiC, confirming the epitaxial growth of
the Si films with [110] growth orientation. Figure 7(c) shows the Fourier-filtered image of region
1, which further confirms the epitaxial connection of the Si(110)/6H-SiC(0001) heterostructure.
The crystal plane spacing at the Si/6H-SiC interface also has no significant change. The Si
epitaxial growth follows the DM mode, every five 6H-SiC(1-210) planes match with four
Si(-110) planes along the interface, as shown in Figure 7(d). According to the extra SiC lattice
planes at the hetero-interface, Burgers vectors of the MDs can be determined uniquely. The
MDs are of the pure edge type with a Burgers vector of 1� 210h iSiC=3 parallel to the interface,
which are labeled in Figure 7(d).
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SiC(0001) interface (a), SAED patterns (b), the Fourier-filtered HRTEM images of region 1 (c) and region 2 (d). The SAED
patterns at the Si/6H-SiC interface corresponding to Si[00-1]SiC[-1010] zone axes.
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Base on the HRTEM observations and SAED analysis, the lattice-structure model of the Si
(110)/6H-SiC(0001) heterostructure is constructed and schematically shown in Figure 8. It is
known that the Si(110) plane has a rectangular 2D lattice with different in-plane constants of
5.43 Å and 3.84 Å along the vertical orientations Si[001] and Si[-110], which is different from
the 2D triangular lattice of the 6H-SiC(0001). However, the triangular lattice of 6H-SiC(0001)
can be transformed to rectangular 2D lattice by missing partial Si-C atoms, which has in-plane
constants of 5.33 Å and 3.08 Å along SiC[10-10] and SiC[1-210] respectively, as shown in
Figure 8(a). Along Si[001]SiC[10-10] orientations, the heterostructure has a lattice mismatch of
1.84%with in-plane constants 5.43 Å for Si and 5.33 Å for 6H-SiC. The residual lattice mismatch
strain can be released by interfacial atomic relaxation of the Si/6H-SiC heterostructure and the
strained-layer with no MDs will be attained. However, the 2D rectangular lattice of
6H-SiC(0001) is converted from the triangular lattice by missing every other Si-C atoms along
[10-10] orientation. Therefore, MDs are still present at the Si(110)/6H-SiC(0001) interface and
1:2 mode of Si-to-SiC is observed. Along the vertical orientations Si[-110]SiC[1-210], the Si
(110)/6H-SiC(0001) heterostructure has in-plane constants 3.84 Å for Si and 3.08 Å for 6H-SiC,
and the interface with a four-to-five mode of Si-to-SiC is shown in Figure 8(c), which is
identical with the Si(111)/6H-SiC(0001) heterostructure.
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Because of the large lattice mismatch strain, the conventional LM epitaxy is not expected. The
lattice mismatch between 6H-SiC and Si is totally accommodated by MDs rather than by
uniform elastic strains, the DM mode is observed.

2.3. In-plane orientation of the Si/SiC heterostructure

Figure 9 shows the XRD θ-2θ scans for Si/SiC(0001) heterostructures prepared at 900�C and
1050�C, respectively. It is shown that the Si film is [111] oriented when the Si layer is deposited
at the lower temperatures of 900�C, as the growth temperature increase to 1050�C, the Si layer
is mainly [110] oriented, which agrees with the SAED characterizations.

The in-plane orientation at the hetero-interface was carefully examined using X-ray phi(φ)
scan. For investigating the [11-2] orientation in Si(111) plane, the out-of-plane orientation
[110] must be confirmed, as demonstrated in Figure 10. Figure 11(a) shows XRD 360� φ scans
of the Si(110) (χ = 35.27�) reflections of Si(111)/6H-SiC(0001) heterostructure grown at 900�C.
Moreover, for investigating [10-10] orientation in 6H-SiC(0001) plane, the φ scans from the 6H-
SiC(10-11) (χ = 80�) reflections are also characterized. Narrow and intense peaks with six-fold
symmetry are observed. On the basis of the Si(110) and 6H-SiC(10-11) reflections shown in
Figure 11(a), it can be concluded that a FCC-on-HCP parallel epitaxy is achieved at 900�C and
the in-plane orientation relationship is (111)[1-10]Si//(0001)[1-210]6H-SiC. The in-plane orienta-
tion of the Si(110)/6H-SiC(0001) heterostructure grown at 1050�C is also characterized, as
shown in Figure 11(b). For investigating the [001] orientation in Si(110) plane, the out-of-plane
orientation [111] is confirmed firstly. The six-fold symmetry is also observed. It is confirmed
that the in-plane orientation relationship is (110)[001]Si//(0001)[10-10]6H-SiC.

By means of the in-plane orientation characterizations, the 3D Si/SiC(0001) hetero-interface
structures with different orientations are confirmed and schematically shown in Figure 12. The
Si(111) layers grow epitaxially on 6H-SiC(0001) with an in-plane orientation relationship of Si
[11-2]//SiC[10-10], as shown in Figure 12(a). As mentioned above, the Si(111)/SiC(0001)
heterostructure follows DM mode, the epitaxial growth is described by 4 (111) interatomic
distances of Si matching with 5 (0001) interatomic distances of 6H-SiC, which releases most of
the lattice-mismatch strain. The 4:5 matching generates edge-MD array at the Si/6H-SiC inter-
face [13], and the MD density can be calculated as 4.87 � 1013 cm�2 according to the model

Figure 9. X-ray θ-2θ scans for Si/SiC(0001) heterostructures with the Si layer grown at (a) 900�C and (b) 1050�C.
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shown in Figure 12(a), which is much smaller than the theoretical value (4.34 � 1014 cm�2).
However, the domain size nɑsic of the SiC substrate (n = 5) does not match perfectly with mɑSi
of the Si film (m = 4), and thus a residual domain mismatch strain ε, given by Eq. (2) is present
in the film. The residual mismatch strain ε of the Si(111)/6H-SiC(0001) heterostructure calcu-
lated with the DMmode is 0.26%, which is much smaller than conventional LM mode (19.8%).
The Si(110) layers epitaxial grow on 6H-SiC(0001) with an in-plane orientation of Si[-110]//SiC
[1-210], and the crystal structure model is schematically shown in Figure 12(b). Along orienta-
tions Si[-110]SiC[1-210], the Si(110)/6H-SiC(0001) heterostructure has in-plane constants 3.84 Å
for Si and 3.08 Å for 6H-SiC, and the interface with a four-to-five mode of Si-to-SiC is identical
with the Si(111)/6H-SiC(0001) heterostructure. Along the vertical Si[001]SiC[10-10] orienta-
tions, the distinct 1:2 matching is observed and thus MDs are still present at the Si(110)/6H-
SiC(0001) interface. The MD density increases to 1.217 � 1014 cm�2 correspondingly, which is
still smaller than the theoretical value (2.57 � 1014 cm�2). The heterostructure has a residual
mismatch strain ε of 1.84% with in-plane constants 5.43 Å for Si and 5.33 Å for 6H-SiC
(Table 1).

Figure 10. XRD φ scans schematic diagrams of the Si(111)/6H-SiC(0001) and Si(110)/6H-SiC(0001) heterostructures. For
investigating the in-plane orientations, at least one out-of-plane orientation needs to be confirmed firstly.

Figure 11. XRD φ scans of the Si/6H-SiC heterostructures, (a) Si(110) (χ = 35.27�) reflections of Si(111)/6H-SiC(0001)
heterostructure grown at 900�C, (b) Si(111) (χ = 35.27�) reflections of Si(110)/6H-SiC(0001) heterostructure grown at
1050�C. The φ scans from the 6H-SiC(10-11) (χ = 80�) reflections is also shown as reference at the bottom.
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Because of the large lattice mismatch strain, the conventional LM epitaxy is not expected. The
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distances of Si matching with 5 (0001) interatomic distances of 6H-SiC, which releases most of
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shown in Figure 12(a), which is much smaller than the theoretical value (4.34 � 1014 cm�2).
However, the domain size nɑsic of the SiC substrate (n = 5) does not match perfectly with mɑSi
of the Si film (m = 4), and thus a residual domain mismatch strain ε, given by Eq. (2) is present
in the film. The residual mismatch strain ε of the Si(111)/6H-SiC(0001) heterostructure calcu-
lated with the DMmode is 0.26%, which is much smaller than conventional LM mode (19.8%).
The Si(110) layers epitaxial grow on 6H-SiC(0001) with an in-plane orientation of Si[-110]//SiC
[1-210], and the crystal structure model is schematically shown in Figure 12(b). Along orienta-
tions Si[-110]SiC[1-210], the Si(110)/6H-SiC(0001) heterostructure has in-plane constants 3.84 Å
for Si and 3.08 Å for 6H-SiC, and the interface with a four-to-five mode of Si-to-SiC is identical
with the Si(111)/6H-SiC(0001) heterostructure. Along the vertical Si[001]SiC[10-10] orienta-
tions, the distinct 1:2 matching is observed and thus MDs are still present at the Si(110)/6H-
SiC(0001) interface. The MD density increases to 1.217 � 1014 cm�2 correspondingly, which is
still smaller than the theoretical value (2.57 � 1014 cm�2). The heterostructure has a residual
mismatch strain ε of 1.84% with in-plane constants 5.43 Å for Si and 5.33 Å for 6H-SiC
(Table 1).

Figure 10. XRD φ scans schematic diagrams of the Si(111)/6H-SiC(0001) and Si(110)/6H-SiC(0001) heterostructures. For
investigating the in-plane orientations, at least one out-of-plane orientation needs to be confirmed firstly.

Figure 11. XRD φ scans of the Si/6H-SiC heterostructures, (a) Si(110) (χ = 35.27�) reflections of Si(111)/6H-SiC(0001)
heterostructure grown at 900�C, (b) Si(111) (χ = 35.27�) reflections of Si(110)/6H-SiC(0001) heterostructure grown at
1050�C. The φ scans from the 6H-SiC(10-11) (χ = 80�) reflections is also shown as reference at the bottom.
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3. Conclusions

In this chapter, Si/SiC heterostructures with different orientations were prepared on 6H-
SiC(0001) by LPCVD. The heterostructure of large lattice-mismatch grows by DM mode,

Figure 12. Schematic diagrams of the Si/6H-SiC(0001) heterojunction. Si/6H-SiC heterostructure with the [111] preferen-
tial orientation (a), Si/6H-SiC heterostructure with the [110] preferential orientation (b). As the preferential orientations are
[111] and [110], the in-plane orientations are Si[01-1]//SiC[11-20] and Si[001]//SiC[10-10], respectively.
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The lattice-mismatch of the Si/6H-SiC heterostructure calculated with the domain matching model.

Table 1. Basic semiconductor properties of the Si/6H-SiC interface.
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which releases most of the lattice-mismatch strain, and the coherent Si epilayers can be grown
on 6H-SiC. Si(111)/6H-SiC(0001) heterostructure obtained at 900�C has an in-plane orientation
relationship of (111)[1-10]Si//(0001)[1-210]6H-SiC. The Si(111)/6H-SiC(0001) interface has the 4:5
Si-to-SiC matching mode with a residual lattice-mismatch of 0.26% along both the Si[11-2] and
Si[1-10] orientations. As the growth temperature increases to 1050�C, the preferential orienta-
tion of the Si film transitions to [110]. SAED patterns show that the in-plane orientation
relationship is (110)[001]Si//(0001)[10-10]6H-SiC. Along Si[-110] orientation, the Si-to-SiC match-
ing is still 4:5; along the vertical orientation Si[001], the matching mode is approximate 1:2 and
the residual mismatch is 1.84% correspondingly. The atom quantity in one DM period
decreases with increasing residual mismatch and vice versa. The Si film epitaxially grows but
with MDs at the Si/6H-SiC interface. The MD density of the Si(111)/6H-SiC(0001) and Si(110)/
6H-SiC(0001) obtained by experimental observations is as low as 0.487 and 1.217 � 1014 cm�2,
respectively, which is much smaller than the theoretical value.
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Abstract

The chapter illustrates how simple quantum mechanics can sometimes provide quite
precise description of nanophysics phenomena. From this perspective, both exact and
approximate solutions for the bound-state energy of an electron in a square well are
exposed. These results are used to improve the calculation of quantum size effects (QSEs)
in ultrathin metallic films, obtained by several authors with simpler models of quantum
wells. We show that, for a small (less than 5) number of monolayers, the differences
between the predictions of these simpler models, and our approach, are important.
Methods to improve the accuracy in the evaluation of various quantum size effects are
shortly discussed. Using quantum mechanical-electromagnetic analogies, our results can
be used in the study of light propagation in dielectric wave guides.

Keywords: ultrathin metallic films, quantum wells, finite square well, quantum size
effects, heterojunctions

1. Introduction

If the dimension of a physical system is reduced, on one or several directions, up to the
nanometric range, electron confinement generates states specific to quantum wells, quantum
dots, or to other nanostructures, studied by new branches of science, nanophysics and nano-
technology, extremely interesting from both applicative and fundamental perspectives. A
fascinating aspect of nanophysics is that it can be sometimes understood using elementary,
one-particle quantummechanics; for instance, many phenomena specific to quantum wells can
be treated using the simple model of a particle in a rectangular potential.

A class of physical systems which can be studied in the frame of this model is a particular
kind of quantum wells—the ultrathin metallic films. In the last decades, they were object for
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active investigation, mainly due to the quantum size effects (QSEs), like the oscillatory
behavior of the film stability [1], of the lattice deformation [2], of the work function [3], etc.,
in dependence of the number of atomic monolayers. The QSEs, predicted in the pioneering
papers of Sandomirskii [4] and Schulte [5], are important for both practical and theoretical
reasons. The ultrathin metallic films have a special relevance for ferromagnetic materials, as
they are responsible for the giant magnetoresistivity of the Fe/Cr antiferromagnetic lattice
[6]. Also, the possibility of obtaining ultrathin metallic films, having a specific number of
monolayers, allows the experimentalist to tune the work function, controlling the chemistry
of the metallic surface [3]. All these effects can be satisfactorily explained with a quite simple
physics, whose basic ingredient is the different quantization imposed to electrons moving on
longitudinal and transversal directions. Namely, the electrons moving parallel to the surface
of the metallic film are quantized by cyclic conditions; the result is that the wave vectors are
quasi-continuous. The electrons moving perpendicular to the film are considered as confined
in a rectangular well, so they are quantized according to the theory of quantum wells; the
result is that the spectrum is discrete.

How simple can the model of the well be, in order to provide a quantitative understanding of
the physics of ultrathin metallic films? In spite of its simplicity, even the model of the infinite
rectangular well gives sometimes good results, for instance, for the calculation of lattice
deformation [2] or of Fermi energy [7]. These successes can be explained by the fact that, if
the number of monolayers is not very small, n≳25ð Þ, the deep levels play a dominant role, and
the difference between the corresponding levels (i.e., having the same quantum number) of the
finite and of the infinite well is negligible. However, for a small number of monolayers n≲ 5ð Þ,
this approximation does not work anymore. This is why it is important to obtain the exact
value of the energy levels in the finite well or at least a precise approximation.

In this chapter, we shall present exact or approximate analytic results for the energy levels of
a finite square well and show how they can improve the simple theoretical models which
give a quantitative understanding of the behavior of ultrathin metallic films, especially the
QSEs. Its structure is the following: in the second section, we shall discuss the quantum
problem of the finite square well, mainly in order to put the eigenvalue equations in an
appropriate form. The next one is a short review of the various attempts of solving these
transcendental eigenvalue equations. The fourth section describes a simple algebraic approx-
imation of the solution of the eigenvalue equations—the parabolic approximation—men-
tioning also similar but more precise approaches. In the next one, we put the eigenvalue
equations in differential form and obtain the exact solution as a series expansion. The sixth
section is devoted to the applications in the quantum statistical physics of the ultrathin
metallic films of the analytic results obtained for the bound-state energy in a finite square
well. By analyzing the predictions of the three models frequently used in the physics of
ultrathin metallic films (infinite, semi-infinite, and finite square well) for the Fermi wave
vector, we show the key role played by the finitude of the well, in the evaluation of QSEs. In
the last section, we describe how our results can improve the current theory of this class of
metallic films.
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2. The bound states of a particle in a finite rectangular well

Until the mid-1980 of the previous century, the finite rectangular well was just an elementary
problem of quantummechanics, with applications in finding the energy levels of the quasi-free
electrons on long molecules [8] or of the Ramsauer-Townsend effect [9]. The progress of solid-
state physics, which finally led to the fabrication of quantum wells [10], quantum dots, or
ultrathin metallic films [11, 12] and to the observation of QSEs associated with them,
transformed these simple systems from problems of elementary quantum mechanics into
theoretical models of devices of great practical interest.

We shall study now the movement of a particle in a finite rectangular well. There are, in
principle, two ways of defining the potential of the well, choosing the origin of the energy
E ¼ 0ð Þ at the top or at the bottom of the well. In the first case, the advantage is that the energy
of the bound states (“inside the well”) is negative, as usual in quantum mechanics; in the
second one, that is, in the limit of a very deep well, the energy level tends to the energy of the
corresponding level of the infinite well. Even elementary, this distinction might be useful, in
order to avoid confusions. We shall examine in detail the first case, so we shall consider a
potential having the form (Figure 1):

V xð Þ ¼ �U � θ a
2
� xj j

� �
(1)

where θ is the Heaviside function. The second case is shortly mentioned later on (Eqs. (24) and
(25)). The Schroedinger equation for a particle of mass m moving in the potential (1) is

� ℏ2

2m
d2

dx2
þ V xð Þ � E

� �
ψ xð Þ ¼ 0 (2)

x

V x

U

a a

Figure 1. The square well potential (Eq. (1)).
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As the potential is invariant at spatial inversion, V xð Þ ¼ V �xð Þ, the solutions have well-
defined parity. Let us put

E ¼ �ℏ2ϰ2

2m
, U ¼ ℏ2k20

2m
; k2 ¼ k20 � ϰ2 (3)

where the quantities k, k0,ϰ have the dimension of wave vectors. With these notations, the
Schroedinger equation for the particle inside the well takes the form:

d2

dx2
þ k2

� �
ψ xð Þ ¼ 0, xj j < a

2
(4)

For the particle outside the well, it is

d2

dx2
� ϰ2

� �
ψ xð Þ ¼ 0, xj j > a

2
(5)

The even solutions are

uþ xð Þ ¼ Aþ cos kx, 0⩽ x⩽ a=2

uþ xð Þ ¼ Aþ cos ka eϰ a�xð Þ, x > a=2 (6)

uþ �xð Þ ¼ uþ xð Þ

and the odd ones are

u� xð Þ ¼ A� sin kx, 0⩽ x⩽ a=2

u� xð Þ ¼ A� sin ka eϰ a�xð Þ, x > a=2 (7)

u� �xð Þ ¼ u� xð Þ

The continuity of the derivative in x ¼ a=2 gives, for even states

tan
ka
2
¼ ϰ

k
(8)

and for odd states

cot
ka
2
¼ �ϰ

k
(9)

Defining the dimensionless parameter

P ¼ k0a=2 ¼
ffiffiffiffiffiffiffiffiffiffi
2mU

p a
2ℏ

¼ 1
p

(10)
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sometimes called potential strength, which actually characterizes both the particle mð Þ and the
well a;Uð Þ, Eqs. (8) and (9) become

tan
ka
2
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20a2 � k2a2

q

ka
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2 � k2 a=2ð Þ2

q

ka=2
, even states (11)

cot
ka
2
¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20a2 � k2a2

q

ka
¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2 � k2 a=2ð Þ2

q

ka=2
, odd states (12)

Also, the energy is

E ¼ �U 1� ka
2P

� �2
" #

==13 (13)

Using well-known trigonometric identities, Eqs. (11) and (12) take the form:

cos ka
2

ka
2

¼ � 1
P

even statesð Þ; sin ka
2

ka
2

¼ � 1
P

odd statesð Þ (14)

The sign must be chosen in agreement with Eqs. (11) and (12), so to satisfy the conditions
tan ka

2 > 0 for even states and < 0 for odd states, as we shall indicate explicitly in the forthcom-
ing paragraphs.

In other words, to solve the eigenvalue, Eq. (14) means to find the functions ζ pð Þ, ξ pð Þ,
satisfying the equations:

sin ζ pð Þ
ζ pð Þ ¼ �p,

cos ξ pð Þ
ξ pð Þ ¼ �p, p ¼ 1

P
(15)

This is, of course, a difficult task. If we write Eq. (15) in a slightly different form

sin x
x

¼ y xð Þ, cos x
x

¼ y xð Þ (16)

to solve Eq. (15)means to invert the function y xð Þ defined byEq. (16), i.e., to obtain the function x yð Þ:
Clearly, x in Eq. (16)—and in the rest of the chapter—has nothing to do with the space coordi-
nate x, as initially used in Eqs. (1)–(7).

The functions ζ pð Þ, ξ pð Þ correspond to the intersections of the plots of the functions sin x=x,
cos x=x with the line y ¼ �p, which satisfy the sign rule mentioned, after Eq. (14). The number
of solutions depends on the value of p: If there is at least one solution ξ pð Þ for any p, the
solution ζ pð Þ exists only for p < 1: In Figure 2, the functions sin x=x, cos x=x and the line
y ¼ �p, for p ¼ 0:1, are plotted. The x�coordinate of the intersections corresponds to the
functions ζ pð Þ, ξ pð Þ, as we shall explain later on.
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We shall write in a more explicit form Eq. (15), taking into account both the sign of the tan
function (or of the cot function, which is, evidently, the same thing), as already mentioned, and
the intervals of monotony of the functions sin x=x, cos x=x [13]. The extremum points of the
function cos x=x are given by the roots rcn of the equation:

tan x ¼ � 1
x

(17)

where rcn is the root closest to n� 1ð Þπ: The eigenvalue equations for the even states are

x∈ 0;
π
2

� �
:

cos x
x

¼ p; x � ξ1 pð Þ (18)

x∈ rc2;
3π
2

� �
:

cos x
x

¼ �p; x � ξ2 pð Þ (19)

x∈ rc3;
5π
2

� �
:

cos x
x

¼ p; x � ξ3 pð Þ (20)

and so on.

Similarly, the extremum points of the function sin x=x are the roots rsn of the equation:

tan x ¼ x (21)

where rsn is the root closest to n� 1
2

� �
π: The eigenvalue equations for the odd states are

x

y

Figure 2. The x� coordinate of the intersection points between the functions sin x=x (solid) and cos x=x (dashed) with the
lines y xð Þ ¼ p (dots) and y xð Þ ¼ �p (dash-dots), marked with a point, corresponds to the functions ζ1 pð Þ, ζ2 pð Þ, respec-
tively, ξ1 pð Þ, ξ2 pð Þ, for p ¼ 0:1:

Heterojunctions and Nanostructures88

x∈ rs,2; 2πð Þ : sin x
x

¼ �p; x � ζ2 pð Þ (22)

x∈ rs,3; 3πð Þ : sin x
x

¼ p; x � ζ3 pð Þ (23)

and so on. Each of Eqs. (18)–(20) and (22)–(23) has a unique solution, ξ1 pð Þ, ξ2 pð Þ, ξ3 pð Þ,
respectively, ζ2 pð Þ, ζ3 pð Þ: On the aforementioned intervals, the functions cos x=x, sin x=x are
monotonic and have an inverse. The inverse functions are ξ1 pð Þ, ξ2 pð Þ, ξ3 pð Þ, respectively,
ζ2 pð Þ, ζ3 pð Þ: The function ζ1 pð Þ satisfies the equation:

x∈ 0;πð Þ : sin x
x

¼ p; x � ζ1 pð Þ (24)

According to Eq. (13), the energy eigenvalues are

En ¼ �U þU
kna
2P

� �2

(25)

If the particle moves not in potential V xð Þ given by (1), but in a potential

V 1ð Þ xð Þ ¼ V xð Þ þU (26)

then the energy levels will be given by

E 1ð Þ
n ¼ U

kna
2P

� �2

(27)

According to the parity of n, kna=2 corresponds to the functions ξ and ζ, for instance, k1a=2 ¼
ξ1 pð Þ, k2a=2 ¼ ζ1 pð Þ, etc.
As already mentioned, the advantage of using the potential (1) is that the energy of a particle
“inside the well,” so in a bound state, is negative, corresponding to the most usual convention
of quantummechanics. However, the form (26) of the potential has the advantage that its levels
approach, in the limit of a very deep well, the levels of the infinite well. Indeed, for n ! ∞, so
for very deep wells, the quantization condition for the wave vector becomes kna≃ nπ, so

kn ≃
nπ
a

(28)

and Eq. (27) gives the expression of the wave vector corresponding to the n�th state in an
infinite well:

E ∞ð Þ
n ¼ π2ℏ2

2ma2
n2 (29)
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3. Solving the eigenvalue equation of the finite well: a historical
perspective

The eigenvalue equations for the wave vectors (18)–(20) and (22)–(24) are transcendental
equations, and their solutions cannot be written as a finite combination of elementary func-
tions. More than this, till now, they cannot be expressed neither in terms of the special
functions of the mathematical physics. There are a large number of papers devoted to this
subject, in the last 60 years.

The first one, due to Pitkanen [14], writes the eigenvalue Eqs. (8) and (9) in the simpler form (18)–
(20) and (22)–(24), providing an interesting visualization of the solutions. The second one, due to
Cantrell [15] (who does not cite [14], producing a delay in the circulation of this paper), also
proposes the replacement of Eqs. (8) and (9) with (18)–(20) and (22)–(24)—in fact, a repetition of
Pitkanen’s contribution—and notices that the eigenvalue equation for odd states is also the
eigenvalue equation for a particle moving in a semi-infinite well, i.e., in a potential given by

U x < 0ð Þ ¼ ∞, U 0 < x < að Þ ¼ �U0, U x > að Þ ¼ 0 (30)

Graphical solutions are proposed by Guest [16], who made visible the similarities between the
bound-state energies in a finite well and the modes of a metallic wave guide ([17]; fig. (8.14));
actually, both the electrodynamic and quantum mechanical problems are equivalent forms of
the same Sturm-Liouville problem [18]. Aronstein and Stroud [19] wrote the eigenvalue equa-
tion as

ka
2
þ arcsin

ka=2
P

¼ nπ
2

(31)

This elegant form had been already given in the first edition of Landau’s textbook of
quantum mechanics, in the late 1940s of the twentieth century (for the English version of
a more recent edition, see [20]) but remained unknown to Western physicists—a minor
but significant consequence of the poor circulation of scientific information during the
Cold War.

A completely different approach was proposed by Siewert [21], who obtained an exact solu-
tion in an integral form; unfortunately, it is very complicated and of limited practical use.
Recently, Siewert’s solutions were discussed in the context of generalized Lambert functions
[22], a subject under intense investigation.

Among the papers which provide approximate analytical solutions of the eigenvalue
Eqs. (18)–(20) and (22)–(24), the most popular one, authored by Barker et al. [23], is essentially
a low-order algebraic approximation of sin x, cos x. Another interesting contribution is that of
Garrett [24], who introduced an intuitive physical concept, the characteristic depth δ of a finite
well, for a bound electron with energy E:
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δ ¼ ℏ

2m V0 � Eð Þð Þ1=2
=32 (32)

as the magnitude of the domain outside the well, where the wave function can penetrate
significantly, decreasing however exponentially. This concept is similar to the concept of
skin depth in electromagnetism [17] or to the concept of viscous penetration depth in fluids
[25], § 24.

In the context of various approximations, it is worth to mention the “algebraization” of
trigonometric functions, proposed by de Alcantara Bonfim and Griffiths [26], which trans-
forms the transcendental equations for the eigenvalues of the finite well in approximate,
tractable, algebraic equations. For instance, we can use the approximations:

tan x≃
0:45x
1� 2x

π

; cos x≃
1� 2x=πð Þ2
1þ cx2ð Þs , 0⩽ x⩽ π

2
(33)

where the pair of constants can be chosen as

s ¼ 1=2, c ¼ 0:212 or s ¼ 1, c ¼ 0:101 (34)

4. The parabolic approximation

To solve the eigenvalue equations, or—more generally—Eq. (16), with y≷0, means, as already
mentioned, to obtain the inverse of the function y xð Þ defined by (16), i.e., to obtain the function
x yð Þ: Geometrically, the inverse of the function y xð Þ, plotted as a curve whose generic point is
x; yð Þ, is its symmetric with respect of the first bisectrix. A generic point of the inverse function
has the coordinates y; xð Þ:
Clearly, only the monotonic functions can be inverted; for instance, in our case, the function
sin x=xmust be replaced with its restriction on their intervals of monotony, and this restriction
will be actually inverted. We shall consider rsn ≃ n� 1

2

� �
π and approximate the bump of the

function sin x=x on the interval 2nπ; 2nþ 1ð Þπð Þ with a segment of parabola. It is easy to see
that the ascendant part of this parabola is given by the equation:

y ¼ 4
2nþ 1

2

� �
π3

π2

4
� x� 2nþ 1

2

� �
π

� �2( )
, (35)

2nπ < x < 2nþ 1
2

� �
π
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Solving this equation for y

x ¼ 2nþ 1
2

� �
π�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π2

4
� y
4

2nþ 1
2

� �
π3

s
(36)

and making the change x $ y, we get for the root ζ2n [27]:

ζ parð Þ
2n xð Þ ¼ 2nþ 1

2

� �
π�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π2

4
� x
4

2nþ 1
2

� �
π3

s
, (37)

0 < x <
1

2nþ 1
2

� �
π

Following exactly the same steps, similar expressions can be obtained for ζ2n x < 0ð Þ and for all
the functions ζq, ξq their parabolic approximations can be obtained. A special case is ζ1 :

ζ parð Þ
2n xð Þ ¼ π

ffiffiffiffiffiffiffiffiffiffiffi
1� x

p
(38)

The method cannot be applied, evidently, for ξ1, as the function to be inverted has no bump.

The explicit expressions of the parabolic approximation for the functions ξn n > 1ð Þ and ζn,
obtained in [27] are simple, but cumbersome, and will not be given here.

It is possible to improve the parabolic approximation in two ways:

(1) To express the numerical coefficients in formulas similar to Eq. (36) using analytic approx-
imations for the roots of the equations tan x ¼ x and tan x ¼ �1=x: Actually, these transcen-
dental equations can be transformed in approximate, tractable, algebraic equations, using the
algebraic approximations of the tan function, proposed by de Alcantara Bonfim and Griffiths
[26] and generalized by other authors [28]. This approach is sometimes called “improved
parabolic approximation.”

(2) To approximate the bumps of the functions sin x=x and cos x=x with a cubic curve (poly-
nomial); this approach is sometimes called cubic approximation. The calculations are elemen-
tary, but cumbersome, and will not be given here [29].

For an algebraic approximation of ζ1, we can use a formula similar to the cos approximation
in Eq. (34), namely,

sin x
x

≃
1� x

π

� �2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 0:2x2

p (39)

proposed in [30].

The finite square well is a good starting point for similar quantum mechanical problems,
i.e., the asymmetric well (when the walls of the well, see Figure 1, have different heights), the
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semi-infinite well (when one of the walls is infinite), or more realistic cases, when the walls are
rounded (see [11, 12]). These potentials can model a semiconductor heterojunction (a thin
semiconductor slice sandwiched between two different, larger semiconductors), a metallic film
deposited on a semiconductor (in vacuum), and so on.

5. The differential form of transcendental equations

We shall indicate now an approach for solving the eigenvalue Eqs. (18)–(20) and (22)–(24)
providing an exact solution, written as a series expansion. We shall first illustrate this method
with the function ζ1 pð Þ:
Taking the derivative with respect to p in both sides of the equation

pζ1 pð Þ ¼ sin ζ1 pð Þ (40)

we get

dζ1 pð Þ
dp

¼ ζ1 pð Þ
cos ζ1 pð Þ � p

(41)

Using Eq. (40) and taking into account that we are in the second quadrant

cos ζ1 pð Þ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� p2ζ1 pð Þ2

q
(42)

we obtain the differential form of the equation for ζ1 pð Þ:
dζ1 pð Þ
dp

¼ � ζ1 pð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� p2ζ1 pð Þ2

q
þ p

, p∈ 0, 1½ �, ζ1 pð Þ∈ π
2
;π

� �
(43)

with the initial condition:

ζ1 0ð Þ ¼ π (44)

Putting

X2n pð Þ ¼ ζn pð Þ, X2n�1 pð Þ ¼ ξn pð Þ, n ¼ 1, 2,…, (45)

replacing p by x and relaxing the restriction p > 0, the equations for the eigenvalues of the
wave vectors can be written in a unitary form:

dXn xð Þ
dx

¼ � Xn xð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2Xn xð Þ2

q
þ x

(46)
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dental equations can be transformed in approximate, tractable, algebraic equations, using the
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(2) To approximate the bumps of the functions sin x=x and cos x=x with a cubic curve (poly-
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with the initial condition:

Xn 0ð Þ ¼ nπ
2

(47)

With Eq. (46), we can obtain the derivatives of any order of Xn xð Þ in an arbitrary point x0 and,
consequently, write down the Taylor series for this function, with arbitrary accuracy. Choosing
x0 ¼ 0, we get the following series expansion for Xn xð Þ :

Xn xð Þ ¼
X∞
m¼0

qm
nπ
2

� �
xm (48)

The parameters qm are polynomials in the variable

nπ
2

� b : (49)

q0 bð Þ ¼ b, q1 bð Þ ¼ �b, q2 bð Þ ¼ b (50)

q3 bð Þ ¼ �b 1þ b2

6

� �
, q4 bð Þ ¼ b 1þ 2b2

3

� �
(51)

q5 bð Þ ¼ �b 1þ 5
3
b2 þ 3

23 � 5 b
4

� �
, q6 bð Þ ¼ b 1þ 2 � 5

3
b2 þ 23

3 � 5 b
4

� �
(52)

and so on. For the explicit expression of qm bð Þ, m < 17, see [13]. The first three terms corre-
spond to the Barker approximation.

Let us also remark that, in spite of the fact that the equivalence of Sturm-Liouville problems
for electromagnetic fields and for wave functions was noticed many years ago, the results
obtained for the finite rectangular well remain unused by the researchers studying wave
propagation in wave guides or in other simple geometries. Reciprocally, the very detailed
solutions of the equations for the normal modes of electromagnetic waves (see, for instance,
the references [90, 92] in [31]) were apparently overlooked by researchers working in quantum
mechanics.

6. Applications to the statistical physics of ultrathin metallic films

With few exceptions, the physics of ultrathin metallic films can be satisfactorily explained
using different types of infinite well for the potential of electrons moving normally to the film
plane. The model of the infinite well can be improved, for instance, by the phase accumulation
theory [11, 12, 32], quite popular among the scientist working in surface physics. The theory
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satisfactorily explains the quantum scale effects (QSEs) appearing in such systems and
predicted theoretically in the pioneering papers of Sandomirskii [4] and Schulte [5].

If, for thin films, such theoretical models can be successfully applied, for ultrathin films, with
only few (typically, less than 5) monolayers, obtained experimentally in the last two decades,
the approximation of the infinite well is inadequate. This is why in such cases we have to use
the exact solutions for the bound-state energy of the finite well or, at least, their analytic
approximations. In order to make clear the differences between the predictions of the two
models—the first one is based on the infinite well, and the second one is based on the finite
well—we shall evaluate some QSE for an ultrathin metallic film for three potentials: infinite,
semi-infinite, and finite wells.

6.1. The infinite well model for the quantum well in an ultrathin metallic film

Let us consider a rectangular metallic films, with edges Lx, Ly, Lz, where Lx, Ly are macroscopic
or mesoscopic and Lz is nanoscopic. If the metallic film is placed between two semi-infinite
dielectrics, we can presume that the conduction electrons move freely in the plane of the film
(defined by the axes Ox,Oy), and in transversal direction Ozð Þ, the potential can be approxi-
mated by an infinite rectangular well. The film has the volume:

V ¼ LxLyLz (53)

and the electron energy is

ℏ2 k
!2

2m
(54)

where we put

k
!¼ kx; ky; kz

� � ¼ 2π
Lx

nx;
2π
Ly

ny;
π
Lz

nz

� �
(55)

nx, ny ¼ �1, � 2, …; nz ¼ 1, 2, … (56)

The differences between the values taken by the integers nx, ny and nz are due to the fact that,
along the directions Ox and Oy, the quantization is obtained imposing cyclic conditions, and
along the direction Oz by “rigid wall” conditions, specific to the infinite well, with impenetra-
ble walls.

For ultrathin films, the discrete spectrum of kz can be easily observed experimentally, and
the conduction electrons constitute a quasi-2D multiband electron gas, characterized by a

quasi-continuum, 2D wave vector k
!

2D ¼ kx; ky
� �

and by a quantized wave vector kz ¼ nz π
Lz
:
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The number nz ¼ q plays the role of an subband index. So, in the 3D reciprocal space, the
spectrum is formed by planes of allowed states (subbands), parallel to the xOy plane, and
separated along the z direction, by segments of length Δkz ¼ π=Lz:

Let us consider a numeric example. For a metallic film with two atomic monolayers, the typical
values are Lz � 0:6 nm, so Δkz � 5 nm�1 and kF ¼ 16 nm�1: Therefore, only three plans cut the
Fermi (hemi-)sphere, or—in other words—only the first subbands are occupied, corresponding
to p ¼ 1; 2; 3: Let us mention that there is no band corresponding to p ¼ 0, as, in this case, the
amplitude of the wave function would be zero.

We shall compute the number of occupied electronic states and the Fermi wave vector of the
ultrathin film. The total number of subbands, which cut the Fermi sphere is Q, defined by

Q ¼ int
kF
Δkz

� �
(57)

where int x½ � is the largest integer smaller than x: In our particular case, discussed in the
previous example, Q ¼ 3, so there are only three distinct subbands, occupied at T ¼ 0: For
films with few monolayers, the subbands are separated by energies of about 1 eV, so we can
consider that T ¼ 0:

As the occupied states belonging to the subband of index q are situated inside circles cut by

the Fermi sphere, of radius kF,q ¼ k2F � qΔkzð Þ2
h i1=2

(these circles are the intersection of the

subband plane with the Fermi sphere), and the area corresponding to one electronic state k in

each subband is 2πð Þ2=LxLy ¼ 2πð Þ2Lz=V, there are

πk2F,q
2πð Þ2Lz=V

¼ V

2πð Þ2Lz
πk2F,q (58)

occupied states in the subband q. The number of electrons N inside the Fermi sphere is
obtained by summing up over the occupied subbands:

N ¼ 2
V

2πð Þ2Lz
π
XQ

q¼1

k2F,q (59)

¼ V
2πLz

Qk2F �
π
Lz

� �2XQ

q¼1

q2

2
4

3
5

where the factor of 2 is due to the electron spin. Putting

Σ1 Qð Þ ¼
XQ

q¼1

q2 ¼ 1
6
Q Qþ 1ð Þ 2Qþ 1ð Þ (60)
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and introducing the number density of electrons n ¼ N=V, we get

k2F
� �

Q ¼ n
2πLz
Q

þ π
Lz

� �2 Σ1 Qð Þ
Q

(61)

giving the dependence of the Fermi wave vector on the thickness Lz, on the number of
subbands Q, and on the electron number density n.

Introducing Eq. (61) in Eq. (57), we get

π
12

Q 4Qþ 1ð Þ Q� 1ð Þ
h i1=3 1

n1=3
⩽ Lz <

π
12

Q 4Qþ 5ð Þ Qþ 1ð Þ
h i1=3 1

n1=3
(62)

The last two equations define the QSEs on the Fermi wave vector; they can be considered as the
starting point of all other similar QSEs of various physical quantities characterizing the
ultrathin film.

Choosing n ¼ 4 � 1022cm�3 ¼ 40 nm�3, we get the expression of the Fermi wave vector for an
electronic gas 1, 2, 3, or 4 subbands:

k2F
� �

1 ¼ 80πLz þ π
Lz

� �2

, Lz < 0:5 nm (63)

k2F
� �

2 ¼ 40πLz þ 5
2

π
Lz

� �2

, 0:5 nm⩽Lz < 0:8 nm (64)

k2F
� �

3 ¼
80π
3

Lz þ 14
3

π
Lz

� �2

, 0:8 nm⩽ Lz < 1:1024 nm (65)

k2F
� �

4 ¼ 20πLz þ 7:5 � π
Lz

� �2

, 1:1024 nm⩽ Lz < 1:4006 nm (66)

where kF is measured in nm�1: The expressions (63)–(66) clearly illustrate the QSE on the Fermi
wave vector.

6.2. The semi-infinite well model for the quantum well in an ultrathin metallic film

As already mentioned (see Eq. (45) and the remark just below Eq. (27)), the relation between
the solutions of the eigenvalue Eq. (46), namely, the functions X, and the wave vector k is

k ! 2
L
X (67)

and the bound states of the semi-infinite well are described by the odd states of a finite well
with the same length. In other words
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k2n ! 2
Lz

ζn pð Þ (68)

It is convenient to define

w ¼ mU
2ℏ2

� �1=2

(69)

So, the inverse strength of the quantum well, similar to Eq. (10), can be defined as

p ¼ 1
wLz

(70)

According to Eq. (68), the wave vector depends on both Lz and U (or w). As U is a material
dependent quantity, related, in principle, to the work function, we shall replace it, for this
numerical example, with the typical value of U ¼ 5 eV; in this case, Eq. (70) gives

p ¼ 1
6:5� Lz

(71)

with Lz in nanometers.

An important difference which occurs at semi-infinite wells, compared to the infinite wells, is
that it keeps a finite number of bound states. Consequently, the energy spectrum of the
electron gas of the metallic film contains a finite number of subbands, in dependence of the
value of p: The well keeps at least one state if

p < 1 ) Lz >
1
6:3

¼ 0:16 nm (72)

and exactly one state ζ1 if

2
3π

¼ 0:21221 < p < 1, or 0:16 nm < Lz < 0:74794 nm (73)

This corresponds, usually, to a film with one or two monolayers. We have two states in the
well, ζ1 and ζ2, if

2
5π

¼ 0:12732 < p < 1, or 0:16 nm < Lz < 1:2467 nm (74)

This corresponds, usually, to a film with up to four monolayers, etc. These conditions are
purely mathematical, i.e., consequences of the specific form of the eigenvalue equations.

Now, we shall impose physical conditions, due to the p� or Lz� dependence of the Fermi wave
vector and of the number of subbands. Taking into account Eq. (67) and using an argument
similar to Eq. (57), we find
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k2F ¼ 2πLz
Q

nþ 1
Q

2
Lz

� �2XQ

q¼1

ζq pð Þ� �2 (75)

Let us presume that the electron gas contains exactly Q subbands, which is equivalent to the
relation:

2
Q� 1=2ð Þπ < p ¼ 1

6:5� Lz
< 1, or 0:16 nm < Lz < 1:2467 nm (76)

or

1
6:5

< Lz <
Q� 1=2ð Þπ

13
(77)

Therefore, instead of Eq. (62), we have

2
Lz

� �2

ζ2Q pð Þ⩽ k2F ¼ 2πLz
Q

nþ 1
Q

2
Lz

� �2XQ

q¼1

ζq pð Þ� �2
==78 (78)

The term corresponding to the r.h.s. of the inequality (62) is missing in this case, as the number
of roots (solutions) is completely determined by the condition imposed to Lz, according to
Eq. (77).

Replacing the electron number density with a typical value n ¼ 40 nm�3 and using Eq. (63), we
get (we took advantage of the fact that, incidentally, the numeric factor is 0:25128≃ 1=4)

ζ2Q pð Þ⩽ 1
4Qp3

þ 1
Q

XQ

q¼1

ζq pð Þ� �2 (79)

This restriction on p, which can be verified using, for instance, the cubic approximation for ζn,
must be considered together with Eqs. (71)–(73).

6.2.1. The finite well model for the quantum well in an ultrathin metallic film

The situation is quite similar to the previous one—the semi-infinite well. However, in this case,
there is at least a solution for each value of p. Eqs. (71)–(73) are replaced by

p > 1 or Lz <
1
6:3

¼ 0:16 nm, (80)

one state, X1 ¼ ξ1;

1
π
¼ 0:31831 < p, or Lz < 0:31831 nm, (81)

Quantum Wells and Ultrathin Metallic Films
http://dx.doi.org/10.5772/intechopen.74150

99



k2n ! 2
Lz

ζn pð Þ (68)

It is convenient to define

w ¼ mU
2ℏ2

� �1=2

(69)

So, the inverse strength of the quantum well, similar to Eq. (10), can be defined as

p ¼ 1
wLz

(70)

According to Eq. (68), the wave vector depends on both Lz and U (or w). As U is a material
dependent quantity, related, in principle, to the work function, we shall replace it, for this
numerical example, with the typical value of U ¼ 5 eV; in this case, Eq. (70) gives

p ¼ 1
6:5� Lz

(71)

with Lz in nanometers.

An important difference which occurs at semi-infinite wells, compared to the infinite wells, is
that it keeps a finite number of bound states. Consequently, the energy spectrum of the
electron gas of the metallic film contains a finite number of subbands, in dependence of the
value of p: The well keeps at least one state if

p < 1 ) Lz >
1
6:3

¼ 0:16 nm (72)

and exactly one state ζ1 if

2
3π

¼ 0:21221 < p < 1, or 0:16 nm < Lz < 0:74794 nm (73)

This corresponds, usually, to a film with one or two monolayers. We have two states in the
well, ζ1 and ζ2, if

2
5π

¼ 0:12732 < p < 1, or 0:16 nm < Lz < 1:2467 nm (74)

This corresponds, usually, to a film with up to four monolayers, etc. These conditions are
purely mathematical, i.e., consequences of the specific form of the eigenvalue equations.

Now, we shall impose physical conditions, due to the p� or Lz� dependence of the Fermi wave
vector and of the number of subbands. Taking into account Eq. (67) and using an argument
similar to Eq. (57), we find

Heterojunctions and Nanostructures98

k2F ¼ 2πLz
Q

nþ 1
Q

2
Lz

� �2XQ

q¼1

ζq pð Þ� �2 (75)

Let us presume that the electron gas contains exactly Q subbands, which is equivalent to the
relation:

2
Q� 1=2ð Þπ < p ¼ 1

6:5� Lz
< 1, or 0:16 nm < Lz < 1:2467 nm (76)

or

1
6:5

< Lz <
Q� 1=2ð Þπ

13
(77)

Therefore, instead of Eq. (62), we have

2
Lz

� �2

ζ2Q pð Þ⩽ k2F ¼ 2πLz
Q

nþ 1
Q

2
Lz

� �2XQ

q¼1

ζq pð Þ� �2
==78 (78)

The term corresponding to the r.h.s. of the inequality (62) is missing in this case, as the number
of roots (solutions) is completely determined by the condition imposed to Lz, according to
Eq. (77).

Replacing the electron number density with a typical value n ¼ 40 nm�3 and using Eq. (63), we
get (we took advantage of the fact that, incidentally, the numeric factor is 0:25128≃ 1=4)

ζ2Q pð Þ⩽ 1
4Qp3

þ 1
Q

XQ

q¼1

ζq pð Þ� �2 (79)

This restriction on p, which can be verified using, for instance, the cubic approximation for ζn,
must be considered together with Eqs. (71)–(73).

6.2.1. The finite well model for the quantum well in an ultrathin metallic film

The situation is quite similar to the previous one—the semi-infinite well. However, in this case,
there is at least a solution for each value of p. Eqs. (71)–(73) are replaced by

p > 1 or Lz <
1
6:3

¼ 0:16 nm, (80)

one state, X1 ¼ ξ1;

1
π
¼ 0:31831 < p, or Lz < 0:31831 nm, (81)

Quantum Wells and Ultrathin Metallic Films
http://dx.doi.org/10.5772/intechopen.74150

99



two states, X1 ¼ ξ1, X2 ¼ ζ1

2
3π

¼ 0:21221 < p < 1, or Lz < 0:74794 nm, (82)

three states, X1 ¼ ξ1, X2 ¼ ζ1, X3 ¼ ξ2

and so on. In Eqs. (76) and (77), the replacement ζq ! Xq must be done. Eq. (74), with ζq ! Xq,
gives the QSE for the Fermi wave vector.

These solutions, or their analytic approximations (for instance, the cubic one), can be used
directly in the models already proposed for the infinite well [33], in order to obtain the electron
density, the surface free energy, the surface dipolar moment, or other similar quantities, in the
more realistic case of a finite rectangular well.

7. Conclusions

This chapter illustrates how solutions of a simple quantum mechanical problem can be used
for the description of certain interesting phenomena of nanophysics. Specifically, we referred
to the exact solutions of the eigenvalue equations for the eigenenergy of the bound states of a
particle in a rectangular well. If the physical problem is elementary, and the wave functions are
simply written in terms of elementary functions, the equations for the eigenvalues of energy
(or of the wave vector) are transcendental—and highly nontrivial. We obtain both exact
solutions (series expansions) of these transcendental equations and approximate ones—with
various degrees of complexity and accuracy. The value of the Fermi wave vector of the
electrons in the metallic film, calculated for the finite well model, differs drastically from those
calculated with the infinite well one.

Our results for the one-electron wave functions of the finite barrier model can be used as Kohn-
Sham state in the self-consistent calculations of surface energy [34], for more accurate calcula-
tions of the stability of the films [1] and of other QSEs [33]. They can be also used as zero-order
approximations for more realistic potentials, e.g., with rounded walls or undulate bottom—in
a Rayleigh-Schroedinger or Dalgarno-Lewis perturbation theory [35].

Using the analogy between the movement of electrons in time-independent potentials and
propagation of electromagnetic waves in dielectrics or metallic wave guides [18], mathemati-
cally, they are identical Sturm-Liouville problems; our results can be extended to several
problems of electromagnetism and optics. This analogy can be easily developed for planar
dielectric waveguides, namely, for “step-index” dielectrics, consisting of a slab of higher
refractive index (core), sandwiched between two half spaces of lower refractive index (clad-
ding). In such a situation, the quantum counterpart of the dielectric guide is a square well. This
issue is discussed in detail by Casey and Panish in the context of heterostructure lasers [36]. It
is easy to notice that the eigenvalue equations for transverse electric and magnetic modes, (2.4–
45, 54, 60, 66) in [36], are essentially identical with our Eqs. (8) and (9).
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Abstract

A theoretical investigation of the effects of the parabolic, shifted parabolic, hill-like, and
cup-like parabolic confining electric potentials on photoionization cross section (PCS) in a
spherical quantum dot is presented. Each of the parabolic potentials is superimposed on
an infinite spherical square quantum well (ISSQW) potential. The parabolic potential
blueshifts the peaks of the PCS, while the shifted parabolic potential causes a redshift. As
the so-called strength of cup-like parabolic potential is increased, the peak of the PCS
becomes redshifted for the s ! p transition, but blueshifted for the p ! d, d ! f (and so
forth) transitions. On the contrary, an increase in the strength of the hill-like parabolic
potential blueshifts peaks of the PCS for s ! p transitions, while it redshifts those of
transitions between higher states.

Keywords: photoionization cross section, confining electric potential, spherical quantum
dot, hydrogenic impurity

1. Introduction

Recent advances in nanofabrication technology have made it possible to fabricate
nanostructures of different sizes and geometries [1–3]. Nanostructures have a wide range of
applications including in nanomedicine [4, 5], optoelectronics [6, 7], energy physics [8–12], and
gas sensing [13]. Now, even with utmost care and employing the most advanced techniques, it
is not possible to fabricate nanostructures which are free of impurities. It may be advanta-
geous, however, to introduce impurities into a nanostructure at the fabrication stage. The
presence of such deliberately introduced impurities can lead to improved performance of
nanodevices, for example, enhancement of electrical conductivity of semiconducting materials
[14]. The impurity may actually be positively charged, in which case an electron may become
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bound to it, thus forming an electron-hole pair. Photoionization is one of the useful probes for
the particular nature of electron-impurity interactions in low-dimensional systems. In the
process of photoionization, upon absorbing sufficiently enough energy from the irradiating
electromagnetic field, the electron can break free from the impurity. In a sense, photoionization
is the classical analog of the binding energy problem. Certainly, the subtlety in photoionization
effects is in the variety of conditions in low-dimensional systems. These conditions include
quantization of the electron’s energy levels as well as the optical properties of the specimen.

In this regard, photoionization studies on nanostructures could offer insight into the electron-
impurity interaction in a wide variety of conditions. These photoionization effects have fueled
significant interest in the processes of photoionization in low-dimensional systems. The effects
of geometry and hydrostatic pressure on photoionization cross section (PCS) have been
reported in concentric double quantum rings [15]. The effect of applied electric field on
photoionization cross section has also been probed in cone-like quantum dots [16]. The role
that impurity position plays in modifying the PCS in a core/shell/shell quantum nanolayer [17]
and a purely spherical quantum has been investigated [18]. Overall, it has been found that
photoionization transitions are independent of the photon polarization for a centered impurity,
while the transitions are dependent on the photon polarization when the impurity is off-
centered. Influences of intense laser field and hydrostatic on PCS in pyramid-shaped quantum
dots have also been reported [19]. There also have been studies of PCS in spherical core/shell
zinc blende quantum structures under hydrostatic pressure and electric field [20].

In this chapter, the effect of geometry of confining electric potential on centered donor-related
PCS in spherical quantum dots is investigated. The electric potentials considered are the
parabolic, shifted parabolic, cup-like, and the hill-like potentials, all of which have a parabolic
dependence on the radial distance of the spherical quantum dot. To start with, the Schrödinger
equation is solved for the electron’s eigenfunctions and energy eigenvalues within the effective
mass approximation. It is emphasized that the treatment of photoionization process given here
is limited only to isotropic media.

2. Theory

The basic problem of photoionization involves an electron deemed to be bound to a donor
charge or indeed a center of positive charge embedded in a semiconductor specimen. An
electron, upon absorbing sufficiently enough energy from the irradiating electromagnetic field,
can be “liberated” from the electrostatic field of the positive charge. Now, in low-dimensional
systems, the energy of an electron is quantized into different energy levels. The process of
photoionization can thus involve intermediate transitions wherein an electron in some initial
state ∣ii absorbs a photon of energy ħω and thereby makes a transition to a final state ∣f i. It is
worth noting that in photoionization calculations, the initial states of the electron are described
by wave functions taking into account the presence of the impurity. The final states, however,
are described by the wave functions in the absence of the impurity. This notion of taking the
initial and final quantum states of the electron, in a sense, is a simulation of calculations of the
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binding energies in classical mechanics. The energies of the corresponding initial and final
states are Ei and Ef , respectively. The system investigated here is a spherical quantum dot
(SQD) of refractive index n and relative dielectric constant ε, which may be a GaAs material
embedded in a Ga1-xAlxAs matrix, with a donor impurity embedded at its center. Now, one of
the physical quantities that are useful in the description of this binding energy-like problem is
called photoionization cross section. This quantity may be regarded as the probability that a
bound electron can be liberated by some appropriate radiation per unit time per unit area,
given by [15–20]

σlm ¼ σoħω
X
f

f j r! ji
D E���

���
2
δ Ef � Ei � ħω
� �

(1)

where f j r! ji
D E���

��� is the interaction integral coupling initial states to final states, αFS is the fine

structure constant and r! is the electron position vector. Finally, the amplitude of the PCS is
given by σo ¼ 4π2αFSnE2

in= 3E2
avε

� �
in which Ein is the effective incident electric field and Eav the

average electric field inside the quantum dot. Evaluation of the matrix elements for an SQD
leads to the selection rules Δl ¼ �1 [21], that is, the allowed transitions are only those for
which the l values of the final and initial states will be unity. In the investigations carried out
here, the evaluations of the PCS are for transitions only between two electron’s energy
subbands. For purposes of computation, therefore, the Dirac delta function in Eq. (1) is
replaced by its Lorentzian equivalent given by

δ Ef � Ei � ħω
� � ¼ ħΓ

Ef � Ei � ħω
� �2 þ ħΓð Þ2

, (2)

where this is the so-called Lorentzian linewidth.

Now, in view of spherical symmetry, the solutions of the Schrödinger wave equation are
sought in the general form Ψ lm r;θ;φð Þ ¼ ClmYlm θ;φð Þχ rð Þ, where Clm the normalization con-
stant, Ylm θ;φð Þ the spherical harmonics of orbital momentum and magnetic quantum numbers
l and m, respectively. The radial part of the total wave function, χ rð Þ, is found to be the
following linear second-order differential equation

1
r2

d
dr

r2
dχ rð Þ
dr

� �
þ 2μ

ħ2
Elm þ kee2

εr
� V rð Þ

� �
� l lþ 1ð Þ

r2

� �
χ rð Þ ¼ 0 (3)

where μ is the effective mass of electron (of charge -e) and ke is the Coulomb constant.

2.1. The electron’s wave functions

The specific forms of the solutions of the differential equation described above depend on the
particular electric confining potential considered. Here, the different radially dependent forms
of the so-called intrinsic electric confinement potential of the spherical quantum dot, in turn,
taken into account in solving Eq. (3) are (shown in Figure 1) (1) simple parabolic, (2) shifted
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parabolic, (3) bi-parabolic (cup-like), and (4) inverse bi-parabolic (hill-like), each superimposed
on an infinite spherical square quantum well (ISSQW).

2.1.1. Parabolic potential

When the parabolic potential (PP), which has the form

V rð Þ ¼ 1
2
μω2

0r
2, r < Rð Þ (4)

and infinity elsewhere, is inserted into the Schrödinger equation (Eq. (2)) in the presence of the
donor impurity, then the second-order differential equation is solvable in terms of the Heun
biconfluent function [22, 23].

χ rð Þ ¼ C1lmeg1 rð ÞrlHeunB 2lþ 1;α; β;γ; g2 rð Þ� �þ C2lmeg1 rð Þr- lþ1ð ÞHeunB - 2lþ 1ð Þ;α; β;γ; g2 rð Þ� �

(5)

with

α ¼ 0, β ¼ � 2Elm

ħω0
,γ ¼ 4kee2

εħ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
� μ
ħω0

r
(6)

and the arguments

Figure 1. The spatial variation of the confining electric potentials across the SQD: simple parabolic potential (PP), shifted
parabolic potential (SPP), cup-like potential (CPP), and the hill-like potential (HPP).
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g1 rð Þ ¼ μω0

2ħ
r2, and g2 rð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2g1 rð Þ

q
: (7)

Eq. (5) is the complete solution of the differential equation given earlier; however, the second
solution diverges at the origin and so C2lm must be taken as zero. The application of the
standard boundary condition of continuity of the wave function at the walls (r ¼ R) of the
SQD leads to the following electron’s energy eigenvalue equation:

HeunB 2lþ 1;α; βE;γ; g2 Rð Þ� � ¼ 0: (8)

The electron’s energy spectrum is derived from numerically solving Eq. (8) for its roots βE
according to

Elm ¼ � βE
2
ħω0: (9)

2.1.2. Shifted parabolic potential

This potential is convex: maximum at the center and decreases parabolically to assume a
minimum value (here taken as zero) at the radius

V rð Þ ¼ 1
2
μω2

o r� Rð Þ2, r < Rð Þ (10)

and infinity elsewhere. The solution to the radial component of the Schrödinger equation
(Eq. (3)) corresponding to this potential is also in terms of the Heun biconfluent function
(Eq. (5)) but with [23]

α ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�μω0R

2

ħ

s
, β ¼ � 2Elm

ħω0
,γ ¼ 4kee2

εħ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
� μ
ħω0

r
(11)

and the arguments

g1 rð Þ ¼ μω0

2ħ
r� 2Rð Þr and g2 rð Þ ¼ �i

ffiffiffiffiffiffiffiffiffi
μω0

ħ

r
r (12)

The energy spectrum is given by the usual boundary conditions at the walls of the SQD as

Elm ¼ � βE
2
ħω0 (13)

where βE is the value of β that satisfies the condition given in Eq. (8).

2.1.3. The bi-parabolic (cup-like) potential

The solution to the Schrödinger equation for the bi-parabolic potential
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χ rð Þ ¼ C1lmeg1 rð ÞrlHeunB 2lþ 1;α; β;γ; g2 rð Þ� �þ C2lmeg1 rð Þr- lþ1ð ÞHeunB - 2lþ 1ð Þ;α; β;γ; g2 rð Þ� �

(5)

with

α ¼ 0, β ¼ � 2Elm

ħω0
,γ ¼ 4kee2

εħ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
� μ
ħω0

r
(6)

and the arguments

Figure 1. The spatial variation of the confining electric potentials across the SQD: simple parabolic potential (PP), shifted
parabolic potential (SPP), cup-like potential (CPP), and the hill-like potential (HPP).

Heterojunctions and Nanostructures108

g1 rð Þ ¼ μω0

2ħ
r2, and g2 rð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2g1 rð Þ

q
: (7)

Eq. (5) is the complete solution of the differential equation given earlier; however, the second
solution diverges at the origin and so C2lm must be taken as zero. The application of the
standard boundary condition of continuity of the wave function at the walls (r ¼ R) of the
SQD leads to the following electron’s energy eigenvalue equation:

HeunB 2lþ 1;α; βE;γ; g2 Rð Þ� � ¼ 0: (8)

The electron’s energy spectrum is derived from numerically solving Eq. (8) for its roots βE
according to

Elm ¼ � βE
2
ħω0: (9)

2.1.2. Shifted parabolic potential

This potential is convex: maximum at the center and decreases parabolically to assume a
minimum value (here taken as zero) at the radius

V rð Þ ¼ 1
2
μω2

o r� Rð Þ2, r < Rð Þ (10)

and infinity elsewhere. The solution to the radial component of the Schrödinger equation
(Eq. (3)) corresponding to this potential is also in terms of the Heun biconfluent function
(Eq. (5)) but with [23]

α ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�μω0R

2

ħ

s
, β ¼ � 2Elm

ħω0
,γ ¼ 4kee2

εħ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
� μ
ħω0

r
(11)

and the arguments

g1 rð Þ ¼ μω0

2ħ
r� 2Rð Þr and g2 rð Þ ¼ �i

ffiffiffiffiffiffiffiffiffi
μω0

ħ

r
r (12)

The energy spectrum is given by the usual boundary conditions at the walls of the SQD as

Elm ¼ � βE
2
ħω0 (13)

where βE is the value of β that satisfies the condition given in Eq. (8).

2.1.3. The bi-parabolic (cup-like) potential

The solution to the Schrödinger equation for the bi-parabolic potential
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V rð Þ ¼ 1
2
μω2

0 r� R=2ð Þ2, (14)

and infinity elsewhere, in the presence of the impurity, is in terms of the Heun biconfluent
function (Eq. (5)) [24] with

α ¼ iR
ffiffiffiffiffiffiffiffiffi
μω0

ħ

r
, β ¼ � 2Elm

ħω0
,γ ¼ � 4ikee2

εħ

ffiffiffiffiffiffiffiffi
μ

ħω0

r
(15)

and the arguments

g1 rð Þ ¼ μω0

2ħ
r � Rð Þr, and g2 rð Þ ¼ �i

ffiffiffiffiffiffiffiffiffi
μω0

ħ

r
r: (16)

Requiring that the electron wave function should vanish at the walls of the SQD avails the
energy spectrum for an electron in an SQD with an intrinsic bi-parabolic potential as

Elm ¼ � βE
2
ħω0 (17)

where βE is the value of β that satisfies the condition stipulated in Eq. (8).

2.1.4. The inverse lateral bi-parabolic (hill-like) potential

The hill-like potential has a concave parabolic increase in the radial distance from the center to
reach maximum at a radial distance half the radius r ¼ R=2ð Þ, after which a concave parabolic
decrease brings it to a minimum at the walls of the SQD r ¼ Rð Þ

V rð Þ ¼ 1
2
μω2

o Rr� r2
� �

, r < Rð Þ (18)

and infinity elsewhere. The radial component of the Schrödinger equation for this potential in
the presence of the impurity is also solvable in terms of the Heun biconfluent function (Eq. (5))
but with [24]

α ¼ R
ffiffiffiffiffiffiffiffiffi
μω0

iħ

r
, β ¼ μω2

0R
2 � 8Elm

� �
4iħω0

,γ ¼ � 4ikee2
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ffiffiffiffiffiffiffiffiffiffi
-μ
iħω0

r
(19)

and the arguments

g1 rð Þ ¼ μω0

2iħ
R-rð Þr and g2 rð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
-iμω0

ħ

r
r: (20)

Application of the boundary conditions at the walls of the SQD avails the energy spectrum as

Elm ¼ 1
8
μω2

0R
2 � iβE

2
ħω0 (21)

with βE being the value of β that satisfies the condition set in Eq. (8).
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3. Results and discussions

The parameters used in these calculations are relevant to GaAs quantum dots: effective elec-
tronic mass μ ¼ 0:067me, me being the free electron mass and ε ¼ 12:5. The impurity linewidth
has been taken such that ħΓ ¼ 0:1 meV [18, 19]. The spatial variation of the confining electric
potentials across the SQD is illustrated in Figure 1, where κ ¼ 2= μω2

0R
2� �� �

. Figure 2 displays
the effects of these potential geometries on the ground-state radial electron wave functions
across an SQD of radius R = 250 Å in the absence of the hydrogenic impurity. The parabolic
potential shifts the electron wave functions toward the center of the SQD, while the shifted
parabolic potential (SPP) shifts the electron wave functions toward the walls of the SQD. As
stated earlier, the cup-like is zero at r ¼ 0:5R but maximum at both the center and at the walls
of the SQD. Thus, this potential tends to “concentrate” the electron’s wave functions of the
excited states to regions near r ¼ 0:5R but diminish the ground-state wave functions near
regions where it is maximum. By contrast, the hill-like potential is maximum at r ¼ 0:5R and
thus has the opposite effect on the respective electron’s wave functions.

Figure 3 depicts the variation of the first-order s ! pð Þ and second-order p ! dð Þ transition
energies as functions of the strengths of the potentials, viz: the parabolic potential (PP), shifted
parabolic potential (SPP), the cup-like potential (CPP), and the hill-like potential (HPP). These
are the differences in the energies of states between which an electron is allowed to make
transitions within the dipole approximation during photoionization. Now, in the absence of
the impurity, the first-order transition energies ΔEsp are always lower than those of second-
order transition ΔEpd, that is, for all values of nano-dot radius. In the presence of the impurity,
however, there is some characteristic radius R0 at which the first-order and the second-order

Figure 2. The effect of the different potentials on the ground-state radial electron wave function for an SQD of radius
R = 250 Å. The potentials, parabolic (PP), shifted parabolic (SPP), cup-like (CPP), and the hill-like (HPP) all have strength
ħω0 ¼ 10 meV. The dashed curve represents ground-state electron wave function in an ISSQW (ħω0 ¼ 0 meV).
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Application of the boundary conditions at the walls of the SQD avails the energy spectrum as
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with βE being the value of β that satisfies the condition set in Eq. (8).
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3. Results and discussions

The parameters used in these calculations are relevant to GaAs quantum dots: effective elec-
tronic mass μ ¼ 0:067me, me being the free electron mass and ε ¼ 12:5. The impurity linewidth
has been taken such that ħΓ ¼ 0:1 meV [18, 19]. The spatial variation of the confining electric
potentials across the SQD is illustrated in Figure 1, where κ ¼ 2= μω2
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2� �� �

. Figure 2 displays
the effects of these potential geometries on the ground-state radial electron wave functions
across an SQD of radius R = 250 Å in the absence of the hydrogenic impurity. The parabolic
potential shifts the electron wave functions toward the center of the SQD, while the shifted
parabolic potential (SPP) shifts the electron wave functions toward the walls of the SQD. As
stated earlier, the cup-like is zero at r ¼ 0:5R but maximum at both the center and at the walls
of the SQD. Thus, this potential tends to “concentrate” the electron’s wave functions of the
excited states to regions near r ¼ 0:5R but diminish the ground-state wave functions near
regions where it is maximum. By contrast, the hill-like potential is maximum at r ¼ 0:5R and
thus has the opposite effect on the respective electron’s wave functions.

Figure 3 depicts the variation of the first-order s ! pð Þ and second-order p ! dð Þ transition
energies as functions of the strengths of the potentials, viz: the parabolic potential (PP), shifted
parabolic potential (SPP), the cup-like potential (CPP), and the hill-like potential (HPP). These
are the differences in the energies of states between which an electron is allowed to make
transitions within the dipole approximation during photoionization. Now, in the absence of
the impurity, the first-order transition energies ΔEsp are always lower than those of second-
order transition ΔEpd, that is, for all values of nano-dot radius. In the presence of the impurity,
however, there is some characteristic radius R0 at which the first-order and the second-order

Figure 2. The effect of the different potentials on the ground-state radial electron wave function for an SQD of radius
R = 250 Å. The potentials, parabolic (PP), shifted parabolic (SPP), cup-like (CPP), and the hill-like (HPP) all have strength
ħω0 ¼ 10 meV. The dashed curve represents ground-state electron wave function in an ISSQW (ħω0 ¼ 0 meV).
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transition energies coincide. For the system investigated here, this radius is in the neighbor-
hood of R0 = 171 Å. For SQDs with radii less (greater) than R0, the second-order transition
energies are more (less) than the first-order transition energies. The parabolic potential and
hill-like potentials reduce the value of this radius as they intensify. On the contrary, increasing
the strengths of the shifted parabolic potential and the cup-like potentials increases R0, sending
it to infinity as it intensifies further. In this case, ΔEsp and ΔEpd would never coincide and
ΔEpd > ΔEsp. The parabolic potential widens the gap between the energies of the initial and
final states, regardless of the order of transition. The increase is more pronounced in transitions
involving the lower states than in transitions involving the higher states. The shifted parabolic
potential decreases transition energies also regardless of the order of transition, and with the
reduction being more pronounced for transitions involving the lower states than in those
involving the higher states. However, the situation is not so straightforward with the cup-like
and the hill-like potentials. The cup-like potential decreases transition energies of only transi-
tions involving the ground (s) state and enhances transition energies involving higher states.
The hill-like potential increases only the transition energies involving the ground state but
decreases transition energies involving higher states.

Figure 4 shows the sum of the s ! p and p ! d normalized photoionization cross sections for
an SQD of radius R = 250 Å, where the dashed curve is for an ISSQW (ħω0 ¼ 0 meV) while the
solid curve corresponds to the parabolic potential of strength ħω0 ¼ 5 meV superimposed on
the ISSQW. Here, as in subsequent figures, the radius of the SQD is greater than R0, thus the
s ! p peak occurs at larger beam energies than the second-order peak. Increasing the strength

Figure 3. The dependence of the first- s ! pð Þ and second p ! dð Þ-order transition energies on the strengths of the
different potentials, viz.: the parabolic potential (PP), shifted parabolic potential (SPP), the cup-like potential (CPP), and
the hill-like potential (HPP), for an SQD of radius R = 250 Å.
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of the parabolic potential blueshifts the peaks of the PCS, simultaneously moving them apart.
This can be beneficial in cases where transitions between different states (e.g., the s ! p and
the p ! d transitions) need to be isolated and distinct, for research or practical purposes.

Figure 4. The sum of the first- and second-order normalized PCSs as functions of beam energy for the ISSQW (dashed
curves) and for an SQD with the parabolic potential of strength ħω0 ¼ 5 meV superimposed on an ISSQW (solid plots),
for a radius R = 250 Å.

Figure 5. The sum of the first- and second-order normalized PCSs as functions of beam energy for the ISSQW (dashed
curves) and for an SQD with the shifted parabolic potential of strength ħω0 ¼ 5 meV superimposed on an ISSQW, for a
radius R = 250 Å.
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transition energies coincide. For the system investigated here, this radius is in the neighbor-
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energies are more (less) than the first-order transition energies. The parabolic potential and
hill-like potentials reduce the value of this radius as they intensify. On the contrary, increasing
the strengths of the shifted parabolic potential and the cup-like potentials increases R0, sending
it to infinity as it intensifies further. In this case, ΔEsp and ΔEpd would never coincide and
ΔEpd > ΔEsp. The parabolic potential widens the gap between the energies of the initial and
final states, regardless of the order of transition. The increase is more pronounced in transitions
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potential decreases transition energies also regardless of the order of transition, and with the
reduction being more pronounced for transitions involving the lower states than in those
involving the higher states. However, the situation is not so straightforward with the cup-like
and the hill-like potentials. The cup-like potential decreases transition energies of only transi-
tions involving the ground (s) state and enhances transition energies involving higher states.
The hill-like potential increases only the transition energies involving the ground state but
decreases transition energies involving higher states.

Figure 4 shows the sum of the s ! p and p ! d normalized photoionization cross sections for
an SQD of radius R = 250 Å, where the dashed curve is for an ISSQW (ħω0 ¼ 0 meV) while the
solid curve corresponds to the parabolic potential of strength ħω0 ¼ 5 meV superimposed on
the ISSQW. Here, as in subsequent figures, the radius of the SQD is greater than R0, thus the
s ! p peak occurs at larger beam energies than the second-order peak. Increasing the strength

Figure 3. The dependence of the first- s ! pð Þ and second p ! dð Þ-order transition energies on the strengths of the
different potentials, viz.: the parabolic potential (PP), shifted parabolic potential (SPP), the cup-like potential (CPP), and
the hill-like potential (HPP), for an SQD of radius R = 250 Å.
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of the parabolic potential blueshifts the peaks of the PCS, simultaneously moving them apart.
This can be beneficial in cases where transitions between different states (e.g., the s ! p and
the p ! d transitions) need to be isolated and distinct, for research or practical purposes.

Figure 4. The sum of the first- and second-order normalized PCSs as functions of beam energy for the ISSQW (dashed
curves) and for an SQD with the parabolic potential of strength ħω0 ¼ 5 meV superimposed on an ISSQW (solid plots),
for a radius R = 250 Å.

Figure 5. The sum of the first- and second-order normalized PCSs as functions of beam energy for the ISSQW (dashed
curves) and for an SQD with the shifted parabolic potential of strength ħω0 ¼ 5 meV superimposed on an ISSQW, for a
radius R = 250 Å.
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Figure 5 depicts the summed normalized PCS for the s ! p and p ! d transitions in an SQD of
radius R = 250 Å. The dashed curve is associated with the ISSQW (ħω0 ¼ 0 meV) while the
solid plot corresponds to PCS for an SQD with a shifted parabolic potential of the so-called
strength such that ħω0 ¼ 5 meV. Overall, the shifted parabolic potential redshifts the resonance
peaks of the PCSs. It is interesting to note, however, that the first-order resonance peak
redshifted to a much greater extent than that of the second order. These results suggest that
the shifted parabolic potential can be utilized to manipulate the first-order and second-order
transitions according to their corresponding photon energy of excitation [23].

Figure 6 illustrates the normalized s ! p and p ! d PCSs as functions of the photon energy for
an SQD of radius R = 250 Å. The dashed curve is for the purely ISSQW (ħω0 ¼ 0 meV) while
the solid plot is for the cup-like potential of strength ħω0 ¼ 5 meV superimposed on the
ISSQW. As can be clearly seen from the figure, the cup-like potential redshifts peaks of the
s ! p PCS while it blueshifts the peaks of the p ! d PCS. This potential also blueshifts peaks of
PCS of transitions involving higher states (d ! f , f ! g and so forth).

Figure 7 depicts the variation of the normalized s ! p and p ! d PCSs with the photon energy
for an SQD of radius R = 250 Å. Here also, the dashed curve represents the purely ISSQW
(ħω0 ¼ 0 meV) while the solid plot is for the hill-like potential of strength ħω0 ¼ 5 meV
superimposed on the ISSQW. Increasing the strength of the hill-like potential blueshifts the
peaks of the s ! p PCS while it redshifts those of the p ! d PCS. Although not shown here, the
hill-like potential also redshifts peaks of the PCS associated with transitions from higher states
(d ! f , f ! g and so forth).

Figure 6. The sum of the first- and second-order normalized PCSs as functions of beam energy for the ISSQW (dashed
curves) and for an SQD with the cup-like potential of strength ħω0 ¼ 5 meV superimposed on an ISSQW, for a radius
R = 250 Å.
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4. Conclusions

The electron’s wave functions in a spherical quantum dot with a centered donor impurity have
been obtained, and these were utilized to evaluate the effects of the geometry of confining
electric potentials on PCS in an SQD. The parabolic potential enhances photoionization transi-
tion energies independent of the initial or the final state, while the shifted parabolic potential
decreases the transition energies, also independent of the order of transition. As a result, the
parabolic potential blueshifts the peaks of the PCS, while the shifted parabolic potential
redshifts the peaks, for all transitions. The cup-like and the hill-like potentials exhibit a selec-
tive enhancement or a reduction of transition energies. The hill-like parabolic potential
enhances the transition energies involving the ground state but dwindles those involving
higher states. A consequence of this effect is that the hill-like parabolic potential blueshifts
peaks of s ! p PCS but redshifts those involving higher states. The situation is the other way
around in the case of the cup-like parabolic potential. The results presented here also suggest
that nano-patterning techniques may offer yet another method of tuning the process of photo-
ionization to resonance, through tailored electric potentials.
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Figure 7. The sum of the first- and second-order normalized PCSs as functions of beam energy for the ISSQW (dashed
curves in both) and for an SQD with the hill-like potential of strength ħω0 ¼ 5 meV superimposed on an ISSQW, for a
radius R = 250 Å.
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4. Conclusions

The electron’s wave functions in a spherical quantum dot with a centered donor impurity have
been obtained, and these were utilized to evaluate the effects of the geometry of confining
electric potentials on PCS in an SQD. The parabolic potential enhances photoionization transi-
tion energies independent of the initial or the final state, while the shifted parabolic potential
decreases the transition energies, also independent of the order of transition. As a result, the
parabolic potential blueshifts the peaks of the PCS, while the shifted parabolic potential
redshifts the peaks, for all transitions. The cup-like and the hill-like potentials exhibit a selec-
tive enhancement or a reduction of transition energies. The hill-like parabolic potential
enhances the transition energies involving the ground state but dwindles those involving
higher states. A consequence of this effect is that the hill-like parabolic potential blueshifts
peaks of s ! p PCS but redshifts those involving higher states. The situation is the other way
around in the case of the cup-like parabolic potential. The results presented here also suggest
that nano-patterning techniques may offer yet another method of tuning the process of photo-
ionization to resonance, through tailored electric potentials.

Conflict of interest

The authors have no conflict of interest to declare.

Figure 7. The sum of the first- and second-order normalized PCSs as functions of beam energy for the ISSQW (dashed
curves in both) and for an SQD with the hill-like potential of strength ħω0 ¼ 5 meV superimposed on an ISSQW, for a
radius R = 250 Å.

Photoionization Cross Section in Low-Dimensional Systems
http://dx.doi.org/10.5772/intechopen.75736

115



Author details

Moletlanyi Tshipa* and Monkami Masale

*Address all correspondence to: tshipam@mopipi.ub.bw

University of Botswana, Gaborone, Botswana

References

[1] Meng L, He X, Gao J, Li J, Wei Y, Yan J. A novel nanofabrication technique of silicon-based
nanostructures. Nanoscale Research Letters. 2016;11:504. DOI: 10.1186/s11671-016-1702-4

[2] Moura I, de Sá A, Abreu AS, Oliveira M, Machado AV. Morphology, optical, and electric
properties of polymer-quantum dots nanocomposites: Effect of polymeric matrix. Journal
of Materials Science. 2016;51:8699-8710. DOI: 10.1007/s10853-016-0129-8

[3] Sadeghimakki B, Zheng Y, Jahed NMS, Sivoththaman S. Synthesis of CIS quantum dots in
low-temperature regime: Effects of precursor composition and temperature ramps. IEEE
Transactions on Nanotechnonlogy. 2017;16(4):659-666. DOI: 10.1109/TNANO.2017.2703162

[4] Chan WCW, Maxwell DJ, Gao X, Bailey RE, Han M, Nie S. Luminescent quantum dots for
multiplexed biological detection and imaging. Current Opinion in Biotechnology. 2002;13:40-46

[5] Bwatanglang IB, Mohammad F, Yusof NA, Abdullah J, Hussein MZ, Alitheen NB, Abu
N. Folic acid targeted Mn:ZnS quantum dots for theranostic applications of cancer cell
imaging and therapy. International Journal of Nanomedicine. 2016;11:413-428. DOI:
10.214/IJN.S90198

[6] Chen J, Liu D, Al-Marri M, Nuuttila L, Lehtivuori H, Zheng K. Photo-stability of CsPbBr3
perovskite quantum dots for optoelectronic application. Science China Materials. 2016;
59(9):719-727. DOI: 10.1007/s40843-016-5123-1

[7] Litvin AP, Martynenko IV, Purcell-Milton F, Baranov AV, Fedorov AV, Gun’ko YK.
Colloidal quantum dots for optoelectronics. Journal of Materials Chemisrty A. 2017;5:
13252-13275. DOI: 10.1039/c7ta02076g

[8] Li X, Rui M, Song J, Sheh Z, Zeng H. Carbon and grapheme quantum dots for optoelec-
tronic and energy devices: A review. Advanced Materials. 2015;25:4929-4947. DOI: 10.1002/
adfm.201501250

[9] Lan X, Voznyy O, Kiani A, de Arquer FPG, Abbas AS, Kim G-H, Liu M, Yang Z, Walters G,
Xu J, Yuan M, Ning Z, Fan F, Kanjanaboos P, Kramer I, Zhitomirsky D, Lee P, Perelgut A,
Hoogland S, Sargent EH. Passivation using molecular halides increases quantum dot solar
cell performance. Advanced Materials. 2016;28:299-304. DOI: 10.1002/adma.201503657

Heterojunctions and Nanostructures116

[10] Xu W-P, Zhang Y-Y, Wang Q, Li Z-J, Nie Y-H. Thermoelectric effects in triple quantum
dots coupled to a normal and a superconducting leads. Physics Letters A. 2016;380:958-
964. DOI: 10.1016/s0014-5793(01)03293-8

[11] Ding W-L, Peng X-L, Sun Z-Z, Li Z-S. Novel bifunctional aromatic linker utilized in CdSe
quantum dots-sensitized solar cells: Boosting the open circuit voltage and electron injec-
tion. Journal of Materials Chemistry A. 2017;5:14319-14330. DOI: 10.1039/c7ta03349d

[12] Cortés N, Rosales L, Chico L, Pacheco M, Orellana PA. Enhancement of thermoelectric
efficiency by quantum interference effects in trilayer silicone flakes. Journal of Physics:
Condensed Matter. 2017;29:015004. DOI: 10.1088/0953-8984/29/1/015004

[13] Yang C, Xiao F, Wang J, Su X. 3D flower- and 2D- sheet-like CuO nanostructures: Micro-
wave assisted synthesis and application in gas sensors. Sensors and Actuators B. 2015;207:
177-185. DOI: 10.1016/j.snb.2014.10.063

[14] Xie W. Binding energy of an off-center hydrogenic donor in a spherical Gaussian quantum
dot. Physica B: Condensed Matter. 2008;403:2828-2831. DOI: 10.1016/j.physb.2008.02.017

[15] Baghramyan HM, Barseghyan MG, Kirakosyan AA, Laroze D, Duque CA. Donor-
impurity related photoionization cross section in GaAs/Ga1-xAlxAs concentric double
quantum rings: Effects of geometry and hydrostatic pressure. Physica B: Condensed
Matter. 2014;449:193-198. DOI: 10.1016/j.physb.2014.05.034

[16] Iqraoun E, Sali A, Rezzouk A, Feddi E, Dujardin F, Mora-Ramos ME, Duque CA. Donor
impurity-related photoionization cross section in GaAs cone-like quantum dots under
applied electric field. Philosophical Magazine. 2017;97(18):1445-1463. DOI: 10.1080/
14786435.2017.1302613

[17] Baghdasaryan DA, Kazaryan EM, Sarkisyan HA. Photoionization and electrostatic mul-
tipoles properties of spherical core/shell/shell quantum nanolayer with off-center impu-
rity. Superlatticess and Microstructures. 2017;104:69-77. DOI: 10.1016/j.spmi.2017.02.017

[18] Ham H, Lee CJ. Photoionization cross section of hydrogenic impurities in spherical quan-
tum dots: Infinite well model. Journal of the Korean Physical Society. 2003;42:S688-S692

[19] Niculescu EC. Impurity-related photoionization cross section in a pyramid-shaped quan-
tum dot: Intense laser field and hydrostatic pressure effects. Physica E: Low-dimensional
Systems and Nanostructures. 2014;63:105-113. DOI: 10.1016/j.physe.2014.05.012

[20] El Ghazi H, Peter AJ. Photoionization cross-section of donor-related in (in,Ga)N/GaN
core/shell under hydrostatic pressure and electric field effects. Superlattices and Micro-
structures. 2017;104:222-231. DOI: 10.1016/j.spmi.2017.02.013

[21] Xie W. Hydrostatic pressure effect on photoionization cross section of a Trion in quantum
dots. Superlattices and Microstructures. 2013;63:10-17. DOI: 10.1016/j.spmi.2013.08.011

[22] Ronveaux A. Heun’s Differential Equations. Oxford: Oxford University Press; 1995

Photoionization Cross Section in Low-Dimensional Systems
http://dx.doi.org/10.5772/intechopen.75736

117



Author details

Moletlanyi Tshipa* and Monkami Masale

*Address all correspondence to: tshipam@mopipi.ub.bw

University of Botswana, Gaborone, Botswana

References

[1] Meng L, He X, Gao J, Li J, Wei Y, Yan J. A novel nanofabrication technique of silicon-based
nanostructures. Nanoscale Research Letters. 2016;11:504. DOI: 10.1186/s11671-016-1702-4

[2] Moura I, de Sá A, Abreu AS, Oliveira M, Machado AV. Morphology, optical, and electric
properties of polymer-quantum dots nanocomposites: Effect of polymeric matrix. Journal
of Materials Science. 2016;51:8699-8710. DOI: 10.1007/s10853-016-0129-8

[3] Sadeghimakki B, Zheng Y, Jahed NMS, Sivoththaman S. Synthesis of CIS quantum dots in
low-temperature regime: Effects of precursor composition and temperature ramps. IEEE
Transactions on Nanotechnonlogy. 2017;16(4):659-666. DOI: 10.1109/TNANO.2017.2703162

[4] Chan WCW, Maxwell DJ, Gao X, Bailey RE, Han M, Nie S. Luminescent quantum dots for
multiplexed biological detection and imaging. Current Opinion in Biotechnology. 2002;13:40-46

[5] Bwatanglang IB, Mohammad F, Yusof NA, Abdullah J, Hussein MZ, Alitheen NB, Abu
N. Folic acid targeted Mn:ZnS quantum dots for theranostic applications of cancer cell
imaging and therapy. International Journal of Nanomedicine. 2016;11:413-428. DOI:
10.214/IJN.S90198

[6] Chen J, Liu D, Al-Marri M, Nuuttila L, Lehtivuori H, Zheng K. Photo-stability of CsPbBr3
perovskite quantum dots for optoelectronic application. Science China Materials. 2016;
59(9):719-727. DOI: 10.1007/s40843-016-5123-1

[7] Litvin AP, Martynenko IV, Purcell-Milton F, Baranov AV, Fedorov AV, Gun’ko YK.
Colloidal quantum dots for optoelectronics. Journal of Materials Chemisrty A. 2017;5:
13252-13275. DOI: 10.1039/c7ta02076g

[8] Li X, Rui M, Song J, Sheh Z, Zeng H. Carbon and grapheme quantum dots for optoelec-
tronic and energy devices: A review. Advanced Materials. 2015;25:4929-4947. DOI: 10.1002/
adfm.201501250

[9] Lan X, Voznyy O, Kiani A, de Arquer FPG, Abbas AS, Kim G-H, Liu M, Yang Z, Walters G,
Xu J, Yuan M, Ning Z, Fan F, Kanjanaboos P, Kramer I, Zhitomirsky D, Lee P, Perelgut A,
Hoogland S, Sargent EH. Passivation using molecular halides increases quantum dot solar
cell performance. Advanced Materials. 2016;28:299-304. DOI: 10.1002/adma.201503657

Heterojunctions and Nanostructures116

[10] Xu W-P, Zhang Y-Y, Wang Q, Li Z-J, Nie Y-H. Thermoelectric effects in triple quantum
dots coupled to a normal and a superconducting leads. Physics Letters A. 2016;380:958-
964. DOI: 10.1016/s0014-5793(01)03293-8

[11] Ding W-L, Peng X-L, Sun Z-Z, Li Z-S. Novel bifunctional aromatic linker utilized in CdSe
quantum dots-sensitized solar cells: Boosting the open circuit voltage and electron injec-
tion. Journal of Materials Chemistry A. 2017;5:14319-14330. DOI: 10.1039/c7ta03349d

[12] Cortés N, Rosales L, Chico L, Pacheco M, Orellana PA. Enhancement of thermoelectric
efficiency by quantum interference effects in trilayer silicone flakes. Journal of Physics:
Condensed Matter. 2017;29:015004. DOI: 10.1088/0953-8984/29/1/015004

[13] Yang C, Xiao F, Wang J, Su X. 3D flower- and 2D- sheet-like CuO nanostructures: Micro-
wave assisted synthesis and application in gas sensors. Sensors and Actuators B. 2015;207:
177-185. DOI: 10.1016/j.snb.2014.10.063

[14] Xie W. Binding energy of an off-center hydrogenic donor in a spherical Gaussian quantum
dot. Physica B: Condensed Matter. 2008;403:2828-2831. DOI: 10.1016/j.physb.2008.02.017

[15] Baghramyan HM, Barseghyan MG, Kirakosyan AA, Laroze D, Duque CA. Donor-
impurity related photoionization cross section in GaAs/Ga1-xAlxAs concentric double
quantum rings: Effects of geometry and hydrostatic pressure. Physica B: Condensed
Matter. 2014;449:193-198. DOI: 10.1016/j.physb.2014.05.034

[16] Iqraoun E, Sali A, Rezzouk A, Feddi E, Dujardin F, Mora-Ramos ME, Duque CA. Donor
impurity-related photoionization cross section in GaAs cone-like quantum dots under
applied electric field. Philosophical Magazine. 2017;97(18):1445-1463. DOI: 10.1080/
14786435.2017.1302613

[17] Baghdasaryan DA, Kazaryan EM, Sarkisyan HA. Photoionization and electrostatic mul-
tipoles properties of spherical core/shell/shell quantum nanolayer with off-center impu-
rity. Superlatticess and Microstructures. 2017;104:69-77. DOI: 10.1016/j.spmi.2017.02.017

[18] Ham H, Lee CJ. Photoionization cross section of hydrogenic impurities in spherical quan-
tum dots: Infinite well model. Journal of the Korean Physical Society. 2003;42:S688-S692

[19] Niculescu EC. Impurity-related photoionization cross section in a pyramid-shaped quan-
tum dot: Intense laser field and hydrostatic pressure effects. Physica E: Low-dimensional
Systems and Nanostructures. 2014;63:105-113. DOI: 10.1016/j.physe.2014.05.012

[20] El Ghazi H, Peter AJ. Photoionization cross-section of donor-related in (in,Ga)N/GaN
core/shell under hydrostatic pressure and electric field effects. Superlattices and Micro-
structures. 2017;104:222-231. DOI: 10.1016/j.spmi.2017.02.013

[21] Xie W. Hydrostatic pressure effect on photoionization cross section of a Trion in quantum
dots. Superlattices and Microstructures. 2013;63:10-17. DOI: 10.1016/j.spmi.2013.08.011

[22] Ronveaux A. Heun’s Differential Equations. Oxford: Oxford University Press; 1995

Photoionization Cross Section in Low-Dimensional Systems
http://dx.doi.org/10.5772/intechopen.75736

117



[23] Tshipa M. Photoionization cross section in a spherical quantum dot: Effects of some
parabolic confining electric potentials. Condensed Matter Physics. 2017;20(2):23703:1-9.
DOI: 10.5488/CMP.20.23703

[24] Tshipa M. The effects of cup-like and hill-like parabolic confining potentials on photoion-
ization cross section of a donor in a spherical quantum dot. The European Physical
Journal B. 2016;89:177. DOI: 10.1140/epjb/e2016-60988-6

Heterojunctions and Nanostructures118



[23] Tshipa M. Photoionization cross section in a spherical quantum dot: Effects of some
parabolic confining electric potentials. Condensed Matter Physics. 2017;20(2):23703:1-9.
DOI: 10.5488/CMP.20.23703

[24] Tshipa M. The effects of cup-like and hill-like parabolic confining potentials on photoion-
ization cross section of a donor in a spherical quantum dot. The European Physical
Journal B. 2016;89:177. DOI: 10.1140/epjb/e2016-60988-6

Heterojunctions and Nanostructures118



Heterojunctions  
and Nanostructures

Edited by Vasilios N. Stavrou

Edited by Vasilios N. Stavrou

The current book entitled Heterojunctions and Nanostructures is divided into two 
sections. In Section 1, the chapters are related to topological insulators where their 
theoretical aspects, their current experiments, and their applications are presented. 

A few presented topics are, among others, the topological phases of matter, band 
topology of insulators and also of Weyl semimetals, transport properties of 3D 
topological insulator quantum wires and the influence of disorder, transport 

properties of quasi-1D (and 2D) topological surface states, quantum coherence, and 
topological insulator thin-film Hall bar device. In Section 2, the chapters are related 

to light devices such as laser diodes and their fabrication techniques. This section 
includes, among others, topics such as semiconductor quantum nanowire laser diodes, 

solutions of Schrodinger equation in nanostructures, numerical methods, light-to-
electricity conversion devices, photoexcited carrier transportation process in quantum 
wells and quantum dots, growth mode and characterization of heterostructure of large 

lattice mismatch, and photoionization cross section.

Published in London, UK 

©  2018 IntechOpen 
©  Elen11 / iStock

ISBN 978-1-78923-468-8

H
eterojunctions and N

anostructures

ISBN 978-1-83881-525-7


	Heterojunctions and Nanostructures
	Contents
	Preface
	Section 1
Topological Insulators
	Chapter 1
Analysis of Topological Material Surfaces
	Chapter 2
Spin-Helical Dirac Fermions in 3D Topological Insulator Quantum Wires
	Chapter 3
Observation of the Weak Antilocalization and Linear Magnetoresistance in Topological Insulator Thin Film Hall Bar Device

	Section 2
Light Devices
	Chapter 4
Growth Mode and Characterization of Si/SiC Heterostructure of Large Lattice-Mismatch
	Chapter 5
Quantum Wells and Ultrathin Metallic Films
	Chapter 6
Photoionization Cross Section in Low-Dimensional Systems


