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Preface

Metrology is the science of measurement. It covers all the practical and theoretical topics
based on measurement, regardless of accuracy level and application area. Measurement
processes, measurement methods and procedures, instrumentation, calibration, determina‐
tion of measurement systems, verification, measurement accuracy, measurement precision,
measurement error, data acquisition, evaluation of measurement results, the formation of
statistical evaluations and quality determinations are the main subjects of metrology. Met‐
rology is crucial for many sciences and technological developments as well. Since metrology
helps to improve many other sciences, the book reflects in general metrology and some spe‐
cial metrological approaches at different fields such as radiation and frequency measure‐
ments in detail. This book also focuses on technical testing and control applications in the
industry and intends the fundamentals of metrology concerning the related standards and
systems of units. In addition, the book considers the calibration of measurement instruments
and measurement uncertainties as the basic requirements of the related quality standards.
Thanks go to all metrology scientists working for closer results to the reals.

Anil Akdogan
Yildiz Technical University

Department of Mechanical Engineering
Istanbul, Turkey
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1. Introduction

Metrology, the science of measurement, is crucial for manufacturing technologies. Since man-
ufacturing has made huge leaps depending on the improvements in metrology, the book 
reflects recent developments in metrology in detail. This book focuses on dimensional and 
geometric measurements as well as technical testing and quality control applications in 
industry. It also intends the fundamentals of metrology concerning the related standards and 
systems of units. In addition, the book considers the calibration of measurement instruments 
and measurement uncertainties as the basic requirements of the related quality standards. 
Furthermore, it mentions the trends in micro and nanometrology and microscopic examina-
tions. Topics covered in this book are of course not limited to them. The readers can find 
chapters about Metrology in a wide frame.

Physical properties such as length, weight, and temperature are determined by comparison 
with known quantities. In addition, measurement techniques are available in all engineer-
ing disciplines and allow for the creation and operation of all other scientific branches. In 
particular, measurement techniques are required at all levels of laboratory works. In fact, 
we practically measure many things: the weight of our body, the volume of our fuel oil, the 
temperature of the house, the noise at the factory, the distance between two points, etc. In 
addition to having an important place in our daily life, the measurement technique is the basis 
of almost all science branches such as Physics, Chemistry, and Biology. Measurement tech-
niques are used to solve technical problems at all science branches. Theoretical hypotheses are 
supported by proving correctness by means of measurement technique by making necessary 
experiments and observations.

Metrology is the science of measurement. It covers all the practical and theoretical topics based 
on measurement, regardless of accuracy level and application area [1]. Measurement pro-
cesses, measurement methods and procedures, instrumentation, calibration, determination of 

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



Chapter 1

Introductory Chapter: Metrology

Anil Akdogan

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.75541

Provisional chapter

DOI: 10.5772/intechopen.75541

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons  
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,  
distribution, and reproduction in any medium, provided the original work is properly cited. 

Introductory Chapter: Metrology

Anil Akdogan

Additional information is available at the end of the chapter

1. Introduction

Metrology, the science of measurement, is crucial for manufacturing technologies. Since man-
ufacturing has made huge leaps depending on the improvements in metrology, the book 
reflects recent developments in metrology in detail. This book focuses on dimensional and 
geometric measurements as well as technical testing and quality control applications in 
industry. It also intends the fundamentals of metrology concerning the related standards and 
systems of units. In addition, the book considers the calibration of measurement instruments 
and measurement uncertainties as the basic requirements of the related quality standards. 
Furthermore, it mentions the trends in micro and nanometrology and microscopic examina-
tions. Topics covered in this book are of course not limited to them. The readers can find 
chapters about Metrology in a wide frame.

Physical properties such as length, weight, and temperature are determined by comparison 
with known quantities. In addition, measurement techniques are available in all engineer-
ing disciplines and allow for the creation and operation of all other scientific branches. In 
particular, measurement techniques are required at all levels of laboratory works. In fact, 
we practically measure many things: the weight of our body, the volume of our fuel oil, the 
temperature of the house, the noise at the factory, the distance between two points, etc. In 
addition to having an important place in our daily life, the measurement technique is the basis 
of almost all science branches such as Physics, Chemistry, and Biology. Measurement tech-
niques are used to solve technical problems at all science branches. Theoretical hypotheses are 
supported by proving correctness by means of measurement technique by making necessary 
experiments and observations.

Metrology is the science of measurement. It covers all the practical and theoretical topics based 
on measurement, regardless of accuracy level and application area [1]. Measurement pro-
cesses, measurement methods and procedures, instrumentation, calibration, determination of 

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



measurement systems, verification, measurement accuracy, measurement precision, measure-
ment error, data acquisition, evaluation of measurement results, the formation of statistical 
evaluations, and quality determinations are the main subjects of metrology.

The recognition that a measurement made by an industrial device is recognized worldwide and 
is the same as any other measurement made possible by achieving the highest precision basic 
measurement standard with a measurement reference chain. By fulfilling this, it is ensured that 
all the measurements carried out are accepted nationally and/or internationally. As a result, the 
calibration and verification processes have gained a great deal of importance. Calibration is a 
process of establishing a link between the values indicated by a measuring instrument or mea-
suring system under certain conditions and the values   obtained by a measuring instrument 
and corresponding values   of corresponding measured values. With calibration, the measure-
ment of a less precise measuring instrument or standard is carried out using an accepted stan-
dard of accuracy [2]. National metrology institutes are operating at the highest level, linked to 
the system by reference chain. These institutions are also linked to the Bureau International des 
Poids et Measure (BIPM) in central Paris in order to ensure that the measurements are inter-
nationally recognizable in a hierarchical structure. In the process of industrialization which 
started with serial production, it has become very important to establish a whole by combining 
the parts produced in different places, initiate specialization forms in the subsidiary industry 
and production, and make the measurements internationally recognizable.

The reliability of measuring instruments has increased at the same rate as the widespread use 
of microelectronics. Nowadays, measurement techniques are required to meet demands for 
faster, more accurate, and more flexible measurements. The documentation of measurement 
results is equally important. The development of precise manufacturing technology brings 
the need for more precise measuring technology. The developments in technology, especially 
in the field of measuring technology, have been the main reason for the increasing demands 
on the accuracy of the measurement. As micro and nanotechnologies have been used, it has 
become inevitable to develop devices and instruments that enable the measurement opera-
tions to be carried out at these accuracies.

New dimensions and research opportunities have been born in many scientific fields such as 
being in the electronics or molecular biology with nanotechnology. All of these disciplines are 
doing nanoscience studies on their own terms, and the opportunity to share all these different 
windows and share tools and techniques that develop independently is attractive to all sci-
ences today. The placement of the atoms in the prescribed positions with the aid of nanotech-
nology is realized in this technology. Today the word “Nano” indicates a technique related to 
length measurements of very small objects in metrology, microtechnology, semiconductors, 
and nanotechnology fields. In nanometrology, the measurement size is typically specified as 
a nanometer. All applied methods are based on microscope technique with nano-position 
systems and position measurements at high accuracy. For instance, in mechanical engineer-
ing, nanotechnology and nanometrology are the necessary technologies to make a crystal 
perfect. The ability to precisely control the alignment of imprints and errors with respect to 
each other and the ability to integrate perfectly inorganic and organic nanostructures will 
lead to the emergence of a whole new generation of advanced composites. The improve-
ments in technology intended to use the term picotechnology is a combination of picometer 
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and  technology, parallel the term nanotechnology. Basic speckle metrology and autonomic 
computing resources are of course the most realistic uses of picotechnology. The ability to 
examine and manipulate resources at this level is quite useful. Of course, it is not difficult to 
imagine the tangible advantages of this type of technology.

2. Standardization in metrology

Standards are considered as measurement references. The basic standards about metrology are 
the basis of the traceability which is defined as a measurement whereby the result can be related 
to a reference through an unbroken chain of calibrations. Using internationally standardized 
systems of units, Vocabulary of Metrology (VIM), Guide to the International Uncertainty 
Measurements (GUM), or Internationally Standardized Measurement Management Systems 
[3] helps to improve the reliability of the results.

2.1. Unit of measurement

The most important condition of each measuring process and the manufacturing technique is 
the presence of units which are exactly defined according to the required quantities, and these 
units must be determined in accordance with internationally established rules. Measurement 
is a process that uses numbers to describe a physical quantity done to be able to compare 
them to each other. The results can be explained by a “unit of measurement,” which is a defi-
nite magnitude of a quantity. The SI, The International System of Units, is the modern form 
of the metric system, and the most widely used system of measurement is made up of 7 base 
units that define the 22 derived units with special names and symbols. Base units provide the 
reference used to define all the measurement units of the system, while the derived units are 
products of base units and are used as measures of derived quantities. Derived units are the 
units obtained by algebraic operations from basic and auxiliary units. Certain derived units 
have special names and symbols like acceleration, meter per second squared, m s−2.

2.2. Uncertainty of measurement

The uncertainty of a measurement is a predicament that characterizes the range of values, 
including the true value of the measure. Measurement uncertainty is an important topic for all 
measurement fields. All measurements have error. The error of a measurement is unknow-
able because one cannot know the error without knowing the true value of the quantity 
being measured. The Evaluation of Measurement Data: Guide to the Expression of Uncertainty 
in Measurement (GUM) provides general rules for evaluating and expressing uncertainty in 
measurement. The uncertainty of measurement generally includes many components. Some 
of these components can be estimated on the basis of the statistical distribution of series 
measurement results and can be characterized by empirical standard deviations. The esti-
mates of the other components are based solely on the main information or experiences. 
The uncertainty of measurements should be evaluated and reported according to the related 
international standards.
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2.3. Calibration

The purpose of calibration is to determine and document how much of the equipment is 
in error with the actual value. The correct value is obtained by considering the amount of 
error in the result. Calibration is the process of determining the relationship between the 
value read in a gauge and the gauge size. Calibration and control of measuring, inspection, 
and control equipments ensure the appropriateness of measurements made during manufac-
turing. The continuity of this safety is ensured by the regular and identifiable calibration of 
the equipment in question. Calibration is performed by comparison with a measurement of 
normality known to the measurement magnitude. To sum up, calibration is explained in the 
related standard: under specified conditions, the series of operations in which the relationship 
between the values indicated by a measuring instrument or device and the values indicated 
by a material measurement or reference material is established [3]. In order to supply trace-
ability in measurements, calibration hierarchy in Figure 1 should be followed up carefully.

3. Data evaluation

Metrology and inspection together serve as the control function of the quality of conformance. 
Inspection helps to evaluate the degree of conformance or nonconformance to specifications, 
provides for reporting of deficiencies early in the production process, and helps to assure that 
desired quality requirements have been met. The field of knowledge concerned with measure-
ment. Metrology includes all aspects of both theoretical and practical with reference to measure-
ments, whatever their level of accuracy, and in whatever fields of science or technology they occur. 
Since quality performance decisions are based on inspection and measurement, undesirable con-
sequences may result if these tasks are not performed properly. Not only incorrect measurements 
lead to wrong decisions, which can have serious consequences, but also improper data evaluations 
can cause undesirable consequences. Since Statistical Process Control is the utilization of statisti-

Figure 1. Hierarchy of calibration/traceability pyramid.
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cal tools and methods to acquisite and to analyze data in order to monitor process capabilities, it 
is widely used in data evaluation. Quality control charts and the other statistical tools are used to 
analyze processes enabling appropriate actions to achieve improved or stabilized processes. They 
help to ensure that the process operates efficiently and allow organizations to understand variation 
in their processes, differentiating common causes from special or assignable causes of variation.

4. Conclusions

Metrology is a crucial science including its standards, systems of units, instruments, cali-
bration procedures, uncertainties, inspection, and quality control topics in many industries 
such as automotive, aerospace, mechanical engineering, surface engineering, etc. and in many 
sciences like natural and applied sciences in different sizes like micro and nanometrology 
serving for sustainable improvements. Like being in today, there will always be valuable 
researches in the field of metrology, with the help of technological developments to support 
the scientific researches in the future. Care taken in the reliability of measurements and their 
traceability will always be crucial. Metrology is such useful for humanity if it is conducted 
according to its rules and international standards.
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This chapter presents and explains the most used methodologies for the evaluation of
measurement uncertainty in metrology with practical examples. The main topics are basic
concepts and importance, existing documentation, the harmonized methodology of the
Guide to the Expression of Uncertainty in Measurement, types of uncertainty, modeling of
measurement systems, use of alternative methods (including the GUM supplement 1
Monte Carlo numerical method), evaluation of uncertainty for calibration curves, corre-
lated uncertainties, uncertainties arising from the calibration of instruments, and the main
proposals for the new revised GUM. The chapter also discusses the GUM as a tool for the
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1. Introduction

Measurement uncertainty is a quantitative indication of the quality of measurement results,
without which they could not be compared between themselves, with specified reference
values or to a standard. Uncertainty evaluation is essential to guarantee the metrological
traceability of measurement results and to ensure that they are accurate and reliable. In
addition, measurement uncertainty must be considered whenever a decision has to be taken
based on measurement results, such as in accept/reject or pass/fail processes.

Considering the context of globalization of markets, it is necessary to adopt a universal
procedure for evaluating uncertainty of measurements, in view of the need for comparability
of results between nations and for mutual recognition in metrology. As an example, laborato-
ries accredited under the ISO/IEC 17025:2017 standard [1] need to demonstrate their technical

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons

Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,

distribution, and eproduction in any medium, provided the original work is properly cited.

DOI: 10.5772/intechopen.74873

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



Chapter 2

Methods for Evaluation of Measurement Uncertainty

Jailton Carreteiro Damasceno and Paulo R.G. Couto

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.74873

Provisional chapter

Methods for Evaluation of Measurement Uncertainty

Jailton Carreteiro Damasceno and Paulo R.G. Couto

Additional information is available at the end of the chapter

Abstract

This chapter presents and explains the most used methodologies for the evaluation of
measurement uncertainty in metrology with practical examples. The main topics are basic
concepts and importance, existing documentation, the harmonized methodology of the
Guide to the Expression of Uncertainty in Measurement, types of uncertainty, modeling of
measurement systems, use of alternative methods (including the GUM supplement 1
Monte Carlo numerical method), evaluation of uncertainty for calibration curves, corre-
lated uncertainties, uncertainties arising from the calibration of instruments, and the main
proposals for the new revised GUM. The chapter also discusses the GUM as a tool for the
technical management of measurement processes.

Keywords: metrology, measurement, uncertainty, GUM, Monte Carlo

1. Introduction

Measurement uncertainty is a quantitative indication of the quality of measurement results,
without which they could not be compared between themselves, with specified reference
values or to a standard. Uncertainty evaluation is essential to guarantee the metrological
traceability of measurement results and to ensure that they are accurate and reliable. In
addition, measurement uncertainty must be considered whenever a decision has to be taken
based on measurement results, such as in accept/reject or pass/fail processes.

Considering the context of globalization of markets, it is necessary to adopt a universal
procedure for evaluating uncertainty of measurements, in view of the need for comparability
of results between nations and for mutual recognition in metrology. As an example, laborato-
ries accredited under the ISO/IEC 17025:2017 standard [1] need to demonstrate their technical

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons

Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,

distribution, and eproduction in any medium, provided the original work is properly cited.

DOI: 10.5772/intechopen.74873

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



competence and the ability to properly operate their management systems, and so they are
required to evaluate the uncertainty for their measurement results.

In addition, the use of uncertainty evaluation methods as a tool for technical management of
measurement processes is extremely important to reduce, for example, the large number of
losses that occurs in the industry, which can be highly significant in relation to the gross
domestic product (GDP) of some countries. One of the probable causes of the waste can be
attributed to instruments whose accuracy is inadequate to the tolerance of a certain measure-
ment process.

In this chapter, detailed steps for uncertainty evaluation are given.

2. Main references for uncertainty evaluation

In order to harmonize the uncertainty evaluation process for every laboratory, the Bureau
International des Poids et Mesures (BIPM) published in 1980 the Recommendation INC-1 [2] on
how to express uncertainty in measurement. This document was further developed and orig-
inated the “Guide to the Expression of Uncertainty in Measurement”—GUM in 1993, which
was revised in 1995 and lastly in 2008. This document provides complete guidance and
references on how to treat common situations on metrology and how to deal with uncertainties
in metrology. Currently, it is published by International Organization for Standardization
(ISO) as the ISO/IEC Guide 98-3 “Uncertainty of measurement—Part 3: Guide to the expres-
sion of uncertainty in measurement” (GUM), and by the Joint Committee for Guides in
Metrology (JCGM) as the JCGM 100:2008 guide [3]. The JCGM was established by BIPM to
maintain and further develop the GUM. They are in fact currently producing a series of
documents and supplements to accompany the GUM, four of which are already published
[4–7].

Evaluation of uncertainty, as presented by the JCGM 100:2008, is based on the law of propaga-
tion of uncertainties (LPU). This methodology has been successfully applied for several years
worldwide for a range of different measurement systems and is currently the most used
procedure for uncertainty evaluation in metrology. However, since its twentieth anniversary
in 2013, JCGM decided to revise it again [8–10]. In this new revision, uncertainty terms and
concepts [11] will be aligned with the current International Vocabulary of Metrology (VIM)
[12] and with the new GUM supplements [5, 6]. Aspects such as a new Bayesian approach, the
redefinition of coverage intervals and the elimination of the Welch-Satterthwaite formula to
evaluate the effective degrees of freedom will be covered [9]. In late 2014, a first draft of the
newly revised version of the GUM was circulated among National Metrology Institutes.
Remarkable changes were made that could affect the way laboratories deal with the measure-
ment uncertainty results. This revision is still being discussed, and some information about it
has also been released elsewhere [10].

In the field of analytical chemistry, there is also another document worth mentioning that is the
“Quantifying Uncertainty in Analytical Measurement” guide [13], produced by a joint
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EURACHEM/CITAC Measurement Uncertainty Working Group. This document was first
published in 1995 and further revised in 2000 [14]. This last edition had a widespread imple-
mentation and is among the most highly cited publications in chemical metrology area [14].
Recently, a new revised edition was published in 2012 with improved content and added
information on developments in uncertainty evaluation [14]. This document basically presents
the uncertainty evaluation process following the suggestions of the GUM, but also contains
several examples in the analytical chemistry area.

3. Using the GUM approach on uncertainty evaluation

The following main steps summarize the methodology presented by the GUM.

3.1. Definition of the measurand and of input quantities

It must be clear to the analyst which quantity will be the final object of the measurement in
question. This quantity is known as the measurand. In addition, it is important to identify all
the variables that directly or indirectly influence the measurand. These variables are known as
the input quantities. As an example, Eq. (1) shows a measurand y as a function of three
different input quantities: x1, x2, and x3:

y ¼ f x1; x2; x3ð Þ (1)

3.2. Modeling the measurement process

In this step, the measurement procedure should be modeled in order to have a functional
relationship expressing the measurand as a result of all the input quantities. The measurand y
in Eq. (1) could be modeled, for example, as in Eq. (2)

y ¼ x1x2
x23

(2)

The modeling step is critical for the uncertainty evaluation process as it defines how the input
quantities impact the measurand. The better the model is defined, the better its representation
of reality will be, including all the sources that impact the measurand on the uncertainty
evaluation. The modeling process can be easily visualized by using a cause-effect diagram
(Figure 1).

Example: To illustrate these steps, let us consider a measurement model for a torque test.
Torque is a quantity that represents the tendency of a force to rotate an object about an axis. It
can be mathematically expressed as the product of a force and the lever-arm distance. In
metrology, a practical way to measure it is by loading a known mass to the end of a horizontal
arm while keeping the other end fixed (Figure 2).

Note: This example is also presented, with a few adaptations, in other publications by the same
authors [15].
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A simple model that describes this experiment can be expressed as follows:

T ¼ mgL (3)

where T is the torque (N.m), m is the mass of the applied load (kg), g is the local gravity
acceleration (m/s2), and L is the total length of the arm (m). Thus, m, g, and L are the input
quantities for this model. This example will be further discussed in the subsections ahead.

3.3. Evaluating the uncertainties of the input quantities

This step is also of great importance. Here, uncertainties for all the input quantities are
individually evaluated. The GUM classifies uncertainty sources as being of two main types:
Type A, which usually originates from some statistical analysis, such as the standard deviation
obtained in a repeatability study; and Type B, which is determined from any other source of
information, such as a calibration certificate or deduced from personal experience.

Type A uncertainties from repeatability studies are evaluated by the GUM as the standard
deviation of the mean obtained from the repeated measurements. For example, if a set of n
indications xi about a quantity x are available, the uncertainty ux due to repeatability of the
measurements can be expressed by s xð Þ as follows in Eq. (4):

Figure 1. A cause-effect diagram representing the model from Eq. (2).

Figure 2. A conceptual illustration of the experimental setup for a measurement of torque (T), where F is the applied
force, m is the mass of the load, g is the local gravity acceleration, and L is the length of the arm.
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ux ¼ s xð Þ ¼ s xið Þffiffiffi
n

p (4)

where x is the mean value of the repeated measurements, s xið Þ is its standard deviation, and
s xð Þ is the standard deviation of the mean. As such, the statistical distribution associated with
this input source is considered to be normal or Gaussian.

Note: This evaluation is not consistentwith theGUMsupplement 1 [5], where repeated indications
are treated as Student’s t-distributions to account for the lack of degrees of freedom or a low
number of indications. In this way, the new proposal for the draft GUM is to consider repeated
indications as t-distributions, just like in supplement 1. Therefore, its uncertainty would be evalu-
ated as in Eq. (5). This equation takes the degrees of freedom for the indications (n� 1) into account,
raising the uncertainty for a low number of indications. This correction would then be in accor-
dance with the approach suggested by the other GUM supplements for this type of uncertainty

ux ¼ n� 1
n� 3

� �1=2 s xið Þffiffiffi
n

p (5)

It is important to note that the evaluation of uncertainties of Type B input sources must be
based on careful analysis of observations or in an accurate scientific judgment, using all
available information about the measurement procedure. This uncertainty type is generally
used when repeated experiments would not be possible, not available, or would be too costly
or time-consuming. In this case, the GUM also suggests the use of two more types of statistical
distributions: the uniform and the triangular distributions.

The uniform distribution should be used when only a range of values are available, that is, an
interval with the minimum and maximum values, and no detailed information about the
probability of values within this interval is available. The standard uncertainty associated with
such an interval is given by Eq. (6):

ux ¼ b� affiffiffiffiffi
12

p (6)

where b is the maximum and a is the minimum values for the range. For example, if the only
information about the room temperature of a laboratory is known to be 20� 2ð Þ�C, then
b� a ¼ 22� 18 ¼ 4�C and the standard uncertainty associated with the room temperature

would be evaluated as uθ ¼ 4=
ffiffiffiffiffi
12

p �C ¼ 1:15�C.

The triangular distribution can be used when there is a strong evidence that the most probable
value lies in the middle of a given interval, but still without knowing exactly how this
probability behave within the interval. In chemistry, for example, the uncertainty associated
with the volume of a measuring flask could be evaluated by a triangular distribution. The
standard uncertainty for a triangular distribution is given by Eq. (7):

ux ¼ affiffiffi
6

p (7)

where a is the semi-interval for the total range of the triangular distribution.
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Another common Type B source of uncertainty is due to calibration certificates, related to a
standard or to a calibrated instrument. In this case, the standard uncertainty to be used is
normally obtained by dividing the expanded uncertainty U by the coverage factor k, both
provided by the calibration certificate (Eq. (8))

ux ¼ U
k

(8)

Several good examples on how to treat some of the most common uncertainty sources can be
found on the GUM [3], the EURACHEM/CITAC guide [13], and elsewhere [16].

Example: Returning to the example of torque measurement and considering the model defined
in Eq. (3), the following sources of uncertainty are considered:

Mass (m). The mass m was repeatedly measured 10 times in a calibrated balance. The average
mass was 35.7653 kg, with a standard deviation of 0.3 g. This source of uncertainty is purely
statistical and is classified as being of Type A according to the GUM. The standard uncertainty
(umR ) that applies in this case is obtained by Eq. (4), that is, umR ¼ 0:3 g=

ffiffiffiffiffi
10

p ¼ 9:49� 10�5 kg.

In addition, the balance used for the measurement has a certificate stating an expanded
uncertainty for this range of mass of Um = 0.1 g, with a coverage factor k = 2 and a coverage
probability of 95%. The uncertainty of the mass due to the calibration of the balance constitutes
another source of uncertainty involving the same input quantity (mass). In this case, the
standard uncertainty (umC ) is calculated by using Eq. (8), that is, umC ¼ Um=k ¼ 0:1 g=2 ¼
0:00005 kg.

Local gravity acceleration (g). The value for the local gravity acceleration is stated in a
certificate of measurement as 9.80665 m/s2, as well as its expanded uncertainty of Ug =
0.00002 m/s2, for k = 2 and p = 95%. Again, Eq. (8) is used to calculate the standard uncertainty
(ug), that is, ug ¼ Ug=k ¼ 0:00002 m=s2

� �
=2 ¼ 0:00001 m/s2.

Length of the arm (L). Let us suppose that in this hypothetical case, the arm used in the
experiment has no certificate of calibration, indicating its length value and uncertainty, and that
the onlymeasuring method available for the arm’s length is by the use of a ruler with a minimum
division of 1 mm. The use of the ruler leads then to a measurement value of 2000.0 mm for the
length of the arm. However, in this situation, very poor information about the measurement
uncertainty of the arm’s length is available. As the minimum division of the ruler is 1 mm, one
can assume that the reading can be donewith amaximumaccuracy of up to 0.5mm,which can be
thought as an interval of �0.5 mm as limits for the measurement. As no information of probabil-
itieswithin this interval is available, the assumption of a uniformdistribution is the best option, on
which there is equal probability for the values within the whole interval. Thus, Eq. (6) is used to

determine the standard uncertainty (uL), that is, uL ¼ 2000:5� 1999:5ð Þmm=
ffiffiffiffiffi
12

p ¼ 0:000289 m.

In practice, one can imagine several more sources of uncertainty for this experiment, like, for
example, the thermal dilatation of the arm as the room temperature changes. However, the
objective here is not to exhaust all the possibilities, but instead to provide basic notions of how
to implement the methodology of the GUM on a simple model.

Metrology14

3.4. Propagation of uncertainties

3.4.1. The law of propagation of uncertainties

The GUM uncertainty approach is based on the law of propagation of uncertainties (LPU).
This methodology encompasses a set of approximations to simplify the calculations and is
valid for a range of simplistic models.

According to the LPU, the propagation of uncertainties is accomplished by expanding the
measurand model in a Taylor series and simplifying the expression by considering only the
first-order terms. This approximation is viable as uncertainties are very small numbers com-
pared with the values of their corresponding quantities. In this way, the treatment of a model
where the measurand y is expressed as a function of N variables x1,…, xN (Eq. (9)) leads to the
general expression for the propagation of uncertainties shown in Eq. (10)

y ¼ f x1;…; xNð Þ (9)

u2y ¼
XN

i¼1

∂y
∂xi

� �2

u2xi þ 2
XN�1

i¼1

XN

j¼iþ1

∂y
∂xi

� �
∂y
∂xj

� �
COV xi; xj

� �
(10)

where uy is the combined standard uncertainty for the measurand y and uxi is the uncertainty
for the ith input quantity. The second term of Eq. (10) is due to the correlation between the
input quantities. If there is no supposed correlation between them, Eq. (10) can be further
simplified as

u2y ¼
XN

i¼1

∂y
∂xi

� �2

u2xi (11)

The partial derivatives of Eq. (11) are known as sensitivity coefficients and describe how the
output estimate y varies with changes in the values of the input estimates x1, x2,…, xN. It also
converts the units of the inputs to the unit of the measurand.

Another important observation regarding the sensitivity coefficient occurs when the mathe-
matical model that defines the measurand does not contemplate a given quantity, known
as influence quantity. In this case, the determination of the sensitivity coefficient of the
measurand in relation to the input quantity must be done experimentally. For example, bio-
diesel is susceptible to oxidation when exposed to air, and this oxidation process affects fuel
quality. The oxidation time is determined by measuring the conductivity of an oil sample when
inflated with air at a given flow rate. There are a number of influence quantities that impact the
oxidation time of biodiesel such as temperature, air flow, conductivity, sample mass, and so on.
In this case, the sensitivity coefficients for oxidation time with respect to each of these influence
quantities are determined from an interpolation function obtained with experimental data. For
example, Figure 3 presents the table and its resulting graph, which shows the model of the
function that relates the oxidation time to the temperature of a biofuel sample (case study of
the authors).
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probability of 95%. The uncertainty of the mass due to the calibration of the balance constitutes
another source of uncertainty involving the same input quantity (mass). In this case, the
standard uncertainty (umC ) is calculated by using Eq. (8), that is, umC ¼ Um=k ¼ 0:1 g=2 ¼
0:00005 kg.

Local gravity acceleration (g). The value for the local gravity acceleration is stated in a
certificate of measurement as 9.80665 m/s2, as well as its expanded uncertainty of Ug =
0.00002 m/s2, for k = 2 and p = 95%. Again, Eq. (8) is used to calculate the standard uncertainty
(ug), that is, ug ¼ Ug=k ¼ 0:00002 m=s2

� �
=2 ¼ 0:00001 m/s2.

Length of the arm (L). Let us suppose that in this hypothetical case, the arm used in the
experiment has no certificate of calibration, indicating its length value and uncertainty, and that
the onlymeasuring method available for the arm’s length is by the use of a ruler with a minimum
division of 1 mm. The use of the ruler leads then to a measurement value of 2000.0 mm for the
length of the arm. However, in this situation, very poor information about the measurement
uncertainty of the arm’s length is available. As the minimum division of the ruler is 1 mm, one
can assume that the reading can be donewith amaximumaccuracy of up to 0.5mm,which can be
thought as an interval of �0.5 mm as limits for the measurement. As no information of probabil-
itieswithin this interval is available, the assumption of a uniformdistribution is the best option, on
which there is equal probability for the values within the whole interval. Thus, Eq. (6) is used to

determine the standard uncertainty (uL), that is, uL ¼ 2000:5� 1999:5ð Þmm=
ffiffiffiffiffi
12

p ¼ 0:000289 m.

In practice, one can imagine several more sources of uncertainty for this experiment, like, for
example, the thermal dilatation of the arm as the room temperature changes. However, the
objective here is not to exhaust all the possibilities, but instead to provide basic notions of how
to implement the methodology of the GUM on a simple model.
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3.4. Propagation of uncertainties

3.4.1. The law of propagation of uncertainties

The GUM uncertainty approach is based on the law of propagation of uncertainties (LPU).
This methodology encompasses a set of approximations to simplify the calculations and is
valid for a range of simplistic models.

According to the LPU, the propagation of uncertainties is accomplished by expanding the
measurand model in a Taylor series and simplifying the expression by considering only the
first-order terms. This approximation is viable as uncertainties are very small numbers com-
pared with the values of their corresponding quantities. In this way, the treatment of a model
where the measurand y is expressed as a function of N variables x1,…, xN (Eq. (9)) leads to the
general expression for the propagation of uncertainties shown in Eq. (10)

y ¼ f x1;…; xNð Þ (9)

u2y ¼
XN

i¼1

∂y
∂xi

� �2

u2xi þ 2
XN�1

i¼1

XN

j¼iþ1

∂y
∂xi

� �
∂y
∂xj

� �
COV xi; xj

� �
(10)

where uy is the combined standard uncertainty for the measurand y and uxi is the uncertainty
for the ith input quantity. The second term of Eq. (10) is due to the correlation between the
input quantities. If there is no supposed correlation between them, Eq. (10) can be further
simplified as

u2y ¼
XN

i¼1

∂y
∂xi

� �2

u2xi (11)

The partial derivatives of Eq. (11) are known as sensitivity coefficients and describe how the
output estimate y varies with changes in the values of the input estimates x1, x2,…, xN. It also
converts the units of the inputs to the unit of the measurand.

Another important observation regarding the sensitivity coefficient occurs when the mathe-
matical model that defines the measurand does not contemplate a given quantity, known
as influence quantity. In this case, the determination of the sensitivity coefficient of the
measurand in relation to the input quantity must be done experimentally. For example, bio-
diesel is susceptible to oxidation when exposed to air, and this oxidation process affects fuel
quality. The oxidation time is determined by measuring the conductivity of an oil sample when
inflated with air at a given flow rate. There are a number of influence quantities that impact the
oxidation time of biodiesel such as temperature, air flow, conductivity, sample mass, and so on.
In this case, the sensitivity coefficients for oxidation time with respect to each of these influence
quantities are determined from an interpolation function obtained with experimental data. For
example, Figure 3 presents the table and its resulting graph, which shows the model of the
function that relates the oxidation time to the temperature of a biofuel sample (case study of
the authors).
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Example: On returning to the torque measurement example, assuming that all the input
quantities are independent, the combined standard uncertainty for the torque is calculated by
using the LPU (Eq. (11)). The final expression is then

uT ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∂T
∂m

� �2

u2mR
þ ∂T

∂m

� �2

u2mC
þ ∂T

∂g

� �2

u2g þ
∂T
∂L

� �2

u2L

s
¼ 0:096 N m (12)

It is important to note that the terms (not squared) of Eq. (12), that is, each sensitivity coeffi-
cient multiplied by its corresponding uncertainty, are known as uncertainty components.
These components can be compared to each other as they are in the same units of the
measurand. Figure 4 shows the comparison between the uncertainty components for the
torque measurement model.

As can be noted, the dominant uncertainty component is due to the uncertainty associated with
the measurement of the arm length, which was taken as the resolution of the non-calibrated

Figure 3. A table and a graph representing the variation of the oxidation time of a biofuel sample as a function of
temperature.

Figure 4. Uncertainty component balance for the input quantities in the torque measurement model.
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ruler used in the measurement. This analysis shows to the analyst that, to reduce the final
uncertainty and improve the measurement system, a calibrated ruler, with a better uncertainty,
should be used. This represents the importance of the GUM as a management tool to the
measurement process.

3.4.2. The Kragten method

The Kragten method is an approximation that facilitates the calculation of the combined
uncertainty using finite differences in place of the derivatives [13]. This approximation is valid
when the uncertainties of the inputs are relatively small compared to the respective values of
the input quantities, generating discrepancies in the final result in relation to the LPU that
occur in decimals that can be ignored.

Assuming a measurand y, which is calculated from the input quantities x1, x2 and x3 according
to the mathematical model of Eq. (2), the uncertainties ux1 , ux2 and ux3 for the input quantities
are evaluated normally, according to methodologies already explained previously. From there,
the calculations of the measurand are performed individually for each input magnitude (yx1 ,
yx2 and yx3 ) so that each time their respective values are added with their uncertainties, as
shown in Eqs. (13)–(15)

yx1 ¼
x1 þ ux1ð Þx2

x23
(13)

yx2 ¼
x1 x2 þ ux2ð Þ

x23
(14)

yx3 ¼
x1x2

x3 þ ux3ð Þ2 (15)

The value of the measurand y varies for yxi due to the addition of the uncertainty uxi to the

value of its respective input quantity. Thus, the uncertainty component of each input source in

the unit of the measurand y is defined by the difference yxi � y
���

���, according to Eqs. (16)–(18)

uy x1ð Þ ¼ yx1 � y
���

��� (16)

uy x2ð Þ ¼ yx2 � y
���

��� (17)

uy x3ð Þ ¼ yx3 � y
���

��� (18)

Thus, the combined standard uncertainty of y is finally evaluated as

uy ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

i¼1
u2y xið Þ

r
(19)

or by Eq. (20), if there are correlated uncertainties

Methods for Evaluation of Measurement Uncertainty
http://dx.doi.org/10.5772/intechopen.74873

17



Example: On returning to the torque measurement example, assuming that all the input
quantities are independent, the combined standard uncertainty for the torque is calculated by
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It is important to note that the terms (not squared) of Eq. (12), that is, each sensitivity coeffi-
cient multiplied by its corresponding uncertainty, are known as uncertainty components.
These components can be compared to each other as they are in the same units of the
measurand. Figure 4 shows the comparison between the uncertainty components for the
torque measurement model.

As can be noted, the dominant uncertainty component is due to the uncertainty associated with
the measurement of the arm length, which was taken as the resolution of the non-calibrated

Figure 3. A table and a graph representing the variation of the oxidation time of a biofuel sample as a function of
temperature.

Figure 4. Uncertainty component balance for the input quantities in the torque measurement model.

Metrology16

ruler used in the measurement. This analysis shows to the analyst that, to reduce the final
uncertainty and improve the measurement system, a calibrated ruler, with a better uncertainty,
should be used. This represents the importance of the GUM as a management tool to the
measurement process.

3.4.2. The Kragten method

The Kragten method is an approximation that facilitates the calculation of the combined
uncertainty using finite differences in place of the derivatives [13]. This approximation is valid
when the uncertainties of the inputs are relatively small compared to the respective values of
the input quantities, generating discrepancies in the final result in relation to the LPU that
occur in decimals that can be ignored.

Assuming a measurand y, which is calculated from the input quantities x1, x2 and x3 according
to the mathematical model of Eq. (2), the uncertainties ux1 , ux2 and ux3 for the input quantities
are evaluated normally, according to methodologies already explained previously. From there,
the calculations of the measurand are performed individually for each input magnitude (yx1 ,
yx2 and yx3 ) so that each time their respective values are added with their uncertainties, as
shown in Eqs. (13)–(15)

yx1 ¼
x1 þ ux1ð Þx2

x23
(13)

yx2 ¼
x1 x2 þ ux2ð Þ

x23
(14)

yx3 ¼
x1x2

x3 þ ux3ð Þ2 (15)

The value of the measurand y varies for yxi due to the addition of the uncertainty uxi to the

value of its respective input quantity. Thus, the uncertainty component of each input source in

the unit of the measurand y is defined by the difference yxi � y
���

���, according to Eqs. (16)–(18)

uy x1ð Þ ¼ yx1 � y
���

��� (16)

uy x2ð Þ ¼ yx2 � y
���

��� (17)

uy x3ð Þ ¼ yx3 � y
���

��� (18)

Thus, the combined standard uncertainty of y is finally evaluated as

uy ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

i¼1
u2y xið Þ

r
(19)

or by Eq. (20), if there are correlated uncertainties
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uy ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

i¼1
u2y xið Þ þ 2

XN�1

i¼1

XN

j¼iþ1
uy xið Þuy xj

� �
r xi; xj
� �r

(20)

where r xi; xj
� �

is the correlation coefficient between xi and xj.

3.5. Evaluation of the expanded uncertainty

The result provided by Eqs. (10) and (11) corresponds to an interval that contains only one standard
deviation (or approx. 68.2%of themeasurements for a normaldistribution). In order tohave abetter
coverage probability for the result, the GUM approach expands this interval by assuming that the
measurand follows the behavior of a Student’s t-distribution. An effective degrees of freedom veff
for the t-distribution can be obtained by using theWelch-Satterthwaite formula (Eq. (21))

νeff ¼
u4y

PN
i¼1

∂y
∂xi

� �4

u4xi
νxi

(21)

where νxi is the degrees of freedom for the ith input quantity.

The effective degrees of freedom is used to obtain a coverage factor k that depends also of a
chosen coverage probability p, which is often 95%. The expanded uncertainty Uy is then
evaluated by multiplying the combined standard uncertainty by the coverage factor k that
finally expands it to a coverage interval delimited by a t-distribution with a coverage probabil-
ity p (Eq. (22))

Uy ¼ kuy (22)

Note: The draft for the new GUM proposal suggests that the final coverage interval cannot be
reliably determined if only an expectation y and a standard deviation uy are known, mainly if
the final distribution deviates significantly from a normal or a t-distribution. Thus, they
propose distribution-free coverage intervals in the form of y�Up, with Up ¼ kpuy: (a) if no
information is known about the final distribution, then a coverage interval for the measurand

Y for coverage probability of at least p is determined using kp ¼ 1= 1� pð Þ1=2. If p ¼ 0:95, a
coverage interval of y� 4:47uy is evaluated. (b) If it is known that the distribution is unimodal

and symmetric about y, then kp ¼ 2= 3 1� pð Þ1=2
h i

and the coverage interval y� 2:98uy would

correspond to a coverage probability of at least p ¼ 0:95.

Example: The effective degrees of freedom for the torque measurement example is calculated
using Eq. (21). As the number of degrees of freedom for Type B uncertainties is considered
infinite, only Type A uncertainties are accounted. In this case,

νeff ¼ u4T
∂T
∂mR

� �4

u4mR

νmR

¼ 6:5� 107 (23)
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Using t-distribution tables, the coverage factor for this value of υeff and p = 95% is k = 1.96.
Therefore, the expanded uncertainty is calculated as U ¼ kuT ¼ 1:96� 0:096 ¼ 0:2 N m, and
the measurement result is expressed as 668.0 � 0.2 N m. The GUM recommends that the final
uncertainty should be expressed with one or at most two significant digits.

4. Calibration curve and correlated uncertainties

One of the most valuable tools for the metrologist is the calibration curve. It is widely used in
measurement systems on which one cannot directly obtain the property value to be measured
of an object. Instead, a response from the system is measured. In this way, a calibration curve is
used to correlate the response from the system with well-known property values, usually
calibration standards (see Figure 5).

With a calibration curve in hands, the property value for a new unknown sample can be
directly determined by using the equation for the fitted curve, which is usually adjusted by a
linear regression. However, the calibration curve contains errors due to the lack of fit for the
experimental data, causing an uncertainty source to arise. Thus, when evaluating the uncer-
tainty for a predicted property value of xo corresponding to a new observation yo (for a new
unknown sample, for example), the LPU with correlation terms is applied on the linear
regression model in the form of Eq. (24). Eq. (25) represents the model for a predicted value yo
corresponding to a new observed value xo, in the case of the inverse process

x0 ¼
yo � a

b
(24)

yo ¼ aþ bx0 (25)

where a and b are, respectively, the intercept and the slope parameters of the linear regression.

Figure 5. An example of a linear calibration curve for atomic absorption spectroscopy: the absorption signals (instrument
responses) are plotted against the concentrations for a specific analyte.
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� �
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u4y
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using Eq. (21). As the number of degrees of freedom for Type B uncertainties is considered
infinite, only Type A uncertainties are accounted. In this case,
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Using t-distribution tables, the coverage factor for this value of υeff and p = 95% is k = 1.96.
Therefore, the expanded uncertainty is calculated as U ¼ kuT ¼ 1:96� 0:096 ¼ 0:2 N m, and
the measurement result is expressed as 668.0 � 0.2 N m. The GUM recommends that the final
uncertainty should be expressed with one or at most two significant digits.

4. Calibration curve and correlated uncertainties

One of the most valuable tools for the metrologist is the calibration curve. It is widely used in
measurement systems on which one cannot directly obtain the property value to be measured
of an object. Instead, a response from the system is measured. In this way, a calibration curve is
used to correlate the response from the system with well-known property values, usually
calibration standards (see Figure 5).

With a calibration curve in hands, the property value for a new unknown sample can be
directly determined by using the equation for the fitted curve, which is usually adjusted by a
linear regression. However, the calibration curve contains errors due to the lack of fit for the
experimental data, causing an uncertainty source to arise. Thus, when evaluating the uncer-
tainty for a predicted property value of xo corresponding to a new observation yo (for a new
unknown sample, for example), the LPU with correlation terms is applied on the linear
regression model in the form of Eq. (24). Eq. (25) represents the model for a predicted value yo
corresponding to a new observed value xo, in the case of the inverse process
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where a and b are, respectively, the intercept and the slope parameters of the linear regression.

Figure 5. An example of a linear calibration curve for atomic absorption spectroscopy: the absorption signals (instrument
responses) are plotted against the concentrations for a specific analyte.
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The application of the LPU with the correlation term to Eqs. (24) and (25) leads to Eqs. (26) and
(27), respectively, for both cases:

uxo ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∂xo
∂yo

� �2

u2yo þ
∂xo
∂a

� �2

u2a þ
∂xo
∂b

� �2

u2b þ 2
∂xo
∂a

� �
∂xo
∂b

� �
uaubra, b

s
(26)

uyo ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∂yo
∂xo

� �2

u2xo þ
∂yo
∂a

� �2

u2a þ
∂yo
∂b

� �2

u2b þ 2
∂yo
∂a

� �
∂yo
∂b

� �
uaubra, b

s
(27)

For Eq. (26), uxo is the combined uncertainty for the predicted value xo and uyo is the uncer-
tainty for the new observed response yo. For Eq. (27), uyo is the combined uncertainty for the
predicted value yo and uxo is the uncertainty for the new observed response xo. In both cases, ua
and ub are, respectively, the uncertainties for the intercept and the slope, and ra,b is the
correlation coefficient between a and b. These last equations can also be found in the ISO/TS
28037 [17], concerning the use of straight-line calibration functions.

The uncertainties for a and b can be obtained by Eqs. (28) and (29), respectively, while the
correlation coefficient ra, b is given by Eq. (30)

ua ¼ Se

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
x2i

n
P

x2i �
P

xið Þ2
s

(28)

ub ¼ Se

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n

n
P

x2i �
P

xið Þ2
s

(29)

ra, b ¼ �
P

xiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n
P

x2i
q (30)

where n is the number of points used to construct the curve, xi are the values for the indepen-
dent variable of the linear equation for each yi, and S2e is the residual variance of the fitted
curve, obtained by Eq. (31)

S2e ¼
P

yi � byi
� �2
n� 2

(31)

where byi are the interpolated values in the fitted curve for each xi, that is, byi ¼ aþ bxi.

Example: This time, let us consider that the calibration certificate of a thermometer presents
the results shown in Table 1.

For the data shown in Table 1, the calibration curve of the thermometer is expressed by
byo ¼ 1:1484þ 0:9578xo. For a temperature value indicated by the thermometer of xo = 22�C,
applying the equation of the calibration curve yields a reference value of byo = 22.22�C.
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Using Eqs. (28)–(31), it is possible to calculate the values of Table 2 that shows the statistical
data for the thermometer calibration curve.

Considering that there is no uncertainty for the observed point xo = 22�C, that is, uxo = 0, the
uncertainty of yo arising from the interpolation process of the point xo = 22�C can then be
calculated by applying Eq. (27) and the data from Table 2, resulting in the following:

uyo ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12∙0:19432 þ 222∙0:00842 þ 2∙1∙22∙0:1943∙0:0084∙ �0:995ð Þ

q
¼ 0:021�C.

Another frequently used expression for the standard uncertainty of the predicted value uxo is
given by Eq. (32) [13, 18]:

uxo ¼
Se
b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
m
þ 1
n
þ yo � y

� �2
b2

P
xi � xð Þ2

vuut (32)

where Se is the residual standard deviation of the fitted line,m is the number of observations of
yo, n is the number of points composing the calibration curve, and yo is the average value
obtained from the observations of yo. In this expression, the uncertainty component due to the
observations of yo is evaluated by [19]

uyo ¼
Seffiffiffiffi
m

p (33)

However, Hibbert [19] suggests that if the standard deviation of the indications is known from
consistent data, uyo can be better evaluated by

Indication (xi) (�C) Reference value (yi) (�C)

20 20.3

21 21.3

22 22.2

23 23.1

24 24.2

25 25.1

27 27.0

Table 1. Values of the calibration certificate of a thermometer.

Data Value Unit

S2e 0.0024 �C2

ua 0.1943 �C

ub 0.0084

ra, b �0.995

Table 2. Statistical data for the calibration curve of a thermometer.
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The application of the LPU with the correlation term to Eqs. (24) and (25) leads to Eqs. (26) and
(27), respectively, for both cases:
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For Eq. (26), uxo is the combined uncertainty for the predicted value xo and uyo is the uncer-
tainty for the new observed response yo. For Eq. (27), uyo is the combined uncertainty for the
predicted value yo and uxo is the uncertainty for the new observed response xo. In both cases, ua
and ub are, respectively, the uncertainties for the intercept and the slope, and ra,b is the
correlation coefficient between a and b. These last equations can also be found in the ISO/TS
28037 [17], concerning the use of straight-line calibration functions.

The uncertainties for a and b can be obtained by Eqs. (28) and (29), respectively, while the
correlation coefficient ra, b is given by Eq. (30)
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where n is the number of points used to construct the curve, xi are the values for the indepen-
dent variable of the linear equation for each yi, and S2e is the residual variance of the fitted
curve, obtained by Eq. (31)

S2e ¼
P

yi � byi
� �2
n� 2

(31)

where byi are the interpolated values in the fitted curve for each xi, that is, byi ¼ aþ bxi.

Example: This time, let us consider that the calibration certificate of a thermometer presents
the results shown in Table 1.

For the data shown in Table 1, the calibration curve of the thermometer is expressed by
byo ¼ 1:1484þ 0:9578xo. For a temperature value indicated by the thermometer of xo = 22�C,
applying the equation of the calibration curve yields a reference value of byo = 22.22�C.
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Using Eqs. (28)–(31), it is possible to calculate the values of Table 2 that shows the statistical
data for the thermometer calibration curve.

Considering that there is no uncertainty for the observed point xo = 22�C, that is, uxo = 0, the
uncertainty of yo arising from the interpolation process of the point xo = 22�C can then be
calculated by applying Eq. (27) and the data from Table 2, resulting in the following:

uyo ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12∙0:19432 þ 222∙0:00842 þ 2∙1∙22∙0:1943∙0:0084∙ �0:995ð Þ

q
¼ 0:021�C.

Another frequently used expression for the standard uncertainty of the predicted value uxo is
given by Eq. (32) [13, 18]:

uxo ¼
Se
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where Se is the residual standard deviation of the fitted line,m is the number of observations of
yo, n is the number of points composing the calibration curve, and yo is the average value
obtained from the observations of yo. In this expression, the uncertainty component due to the
observations of yo is evaluated by [19]

uyo ¼
Seffiffiffiffi
m

p (33)

However, Hibbert [19] suggests that if the standard deviation of the indications is known from
consistent data, uyo can be better evaluated by

Indication (xi) (�C) Reference value (yi) (�C)

20 20.3

21 21.3

22 22.2

23 23.1

24 24.2

25 25.1

27 27.0

Table 1. Values of the calibration certificate of a thermometer.

Data Value Unit

S2e 0.0024 �C2

ua 0.1943 �C

ub 0.0084

ra, b �0.995

Table 2. Statistical data for the calibration curve of a thermometer.
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uyo ¼
Syoffiffiffiffi
m

p (34)

where Syo is the standard deviation of the observations of yo, and Eq. (32) is then expressed as
Eq. (35) [18, 19]:
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5. Assessment of uncertainty in instrument calibration

The methodology presented in the GUM can also be used to evaluate the uncertainty in the
calibration of a measuring instrument. Following the steps of the GUM, the measurand for the
model used in the calibration must be defined by the quantity that evaluates the systematic
error of an instrument over its entire measurement range. Thus, Eq. (36) can be generally used
for the evaluation of uncertainty in a calibration process:

e ¼ Vind � Vref (36)

where e is the systematic error of the instrument for a fixed range, Vind is the value indicated by
the instrument, and Vref is the reference value corresponding to the indicated value.

From Eq. (36), a basic cause-and-effect diagram can be assembled for the calibration uncer-
tainty assessment of an instrument, as shown in Figure 6.

The sources of uncertainty in this case involve the repeatability of indicated values, the resolu-
tion of the instrument in calibration, and the certificate of calibration of the reference values.
Thus, an evaluation of the uncertainty about the systematic error should be done for each
nominal value of the instrument in calibration. The combined standard uncertainties uei for
each calibrated nominal value are obtained by applying the LPU, as shown in Eq. (37)

Figure 6. A general cause-and-effect diagram for the calibration of an instrument.
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uei ¼
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(37)

where uVindRes
, uVindRep

, and uVref are, respectively, standard uncertainties due to resolution of the

instrument, repeatability of indication values, and certificate of calibration of the reference.
These standard uncertainties are obtained as described in Section 3.

The final calibration result can then be presented according to Table 3. In addition, correction
values or systematic errors can also be reported.

6. Monte Carlo simulation applied to metrology

This section presents the limitations of the GUM and shows an alternative methodology based
on the propagation of distributions that overcome those limitations. For further details, please
refer to the authors’ publication that addresses the use of the Monte Carlo methodology
applied to uncertainty in measurement [15] or to the JCGM 101:2008 guide [5]. Also, in the
field of analytical chemistry, the latest version of EURACHEM/CITAC guide (2012) was
updated with procedures to use Monte Carlo simulations [13].

6.1. Limitations of the GUM approach

As mentioned earlier, the approach to evaluate measurement uncertainties using the LPU as
presented by the GUM is based on some approximations that are not valid for every measure-
ment model [5, 20–22]. These approximations comprise (1) the linearization of the measure-
ment model made by the truncation of the Taylor series, (2) the use of a t-distribution as the
distribution for the measurand, and (3) the calculation of an effective degrees of freedom for
the measurement model based on the Welch-Satterthwaite formula, which is still an unsolved
problem [23]. Moreover, the GUM approach usually presents deviated results when one or
more of the input uncertainties are relatively much larger than others, or when they have the
same order of magnitude than its quantity.

The limitations and approximations of the LPU are overcome when using a methodology that
relies on the propagation of distributions. This methodology carries more information than the
simple propagation of uncertainties and generally provides results closer to reality. It is

Range Indicated value Reference value Expanded uncertainty Coverage factor

Range 1 Vind1 Vref1 U1 k1

Range 2 Vind2 Vref2 U2 k2

… … … … …

Range N VindN VrefN UN kN

Table 3. A typical format for the result of calibration of an instrument.
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ment model made by the truncation of the Taylor series, (2) the use of a t-distribution as the
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relies on the propagation of distributions. This methodology carries more information than the
simple propagation of uncertainties and generally provides results closer to reality. It is

Range Indicated value Reference value Expanded uncertainty Coverage factor

Range 1 Vind1 Vref1 U1 k1

Range 2 Vind2 Vref2 U2 k2

… … … … …

Range N VindN VrefN UN kN

Table 3. A typical format for the result of calibration of an instrument.

Methods for Evaluation of Measurement Uncertainty
http://dx.doi.org/10.5772/intechopen.74873

23



described in detail by the JCGM 101:2008 guide (Evaluation of measurement data—Supple-
ment 1 to the “Guide to the expression of uncertainty in measurement”—propagation of
distributions using a Monte Carlo method) [5], providing basic guidelines for using Monte
Carlo numerical simulations for the propagation of distributions in metrology. This method
provides reliable results for a wider range of measurement models as compared to the GUM
approach and is presented as a fast and robust alternative method for cases where the GUM
approach does not present good results.

6.2. Running Monte Carlo simulations

The propagation of distributions as presented by the JCGM 101:2008 involves the convolution
of the probability distributions for the input sources of uncertainty through the measurement
model to generate a distribution for the output (the measurand). In this process, no informa-
tion is lost due to approximations, and the result is much more consistent with reality.

The main steps of this methodology are similar to those presented in the GUM. The measurand
must be defined as a function of the input quantities through a model. Then, for each input, a
probability density function (PDF) must be assigned. In this step, the concept of maximum
entropy used in the Bayesian statistics should be used to assign a PDF that does not contain
more information than that which is known by the analyst. A number of Monte Carlo trials are
then chosen and the simulation can be set to run.

Results are expressed in terms of the average value for the output PDF, its standard deviation,
and the end points that cover a chosen probability p.

Example: Returning once more to the torque measurement example, one can consider the
following PDFs for the input sources:

Mass (m). For repeated indications, the JCGM 101:2008 suggests the use of a scaled and shifted
t-distribution. Thus, the distribution should use 35.7653 kg as its average, a scale value of
s=

ffiffiffi
n

p ¼ 0:3 g=
ffiffiffiffiffi
10

p ¼ 9:49� 10�5 kg, and n� 1 ¼ 9 degrees of freedom.

For the calibration component, the supplement 1 recommends the use of a normal distribution
if the number of degrees of freedom is not available. In this case, the mass value of 35.7653 kg is
taken as the mean and a standard deviation of Um=k ¼ 0:1 g=2 ¼ 0:00005 kg should be used.
However, to facilitate the calculation of the final mean value of the measurand, the mean
should be shifted to zero, since both values for the mass sources will be added together.

Local gravity acceleration (g). This case is similar to the case of the balance certificate,
for which we have values of expanded uncertainty and coverage factor without information
on the number of effective degrees of freedom. Thus, a normal distribution with a mean
of 9.80665 m/s2 and a standard deviation of Ug=k ¼ 0:00002 m=s2ð Þ=2 ¼ 0:00001 m/s2 are
assumed.

Length of the arm (L). In this case, as poor information about the interval is available
(�0.5 mm), an uniform distribution is assumed with a minimum value of 1999.5 mm and a
maximum value of 2000.5 mm.
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Table 4 resumes the input information for the simulation, which was executed for
M ¼ 200; 000 trials, generating the output distribution shown in Figure 7.

Table 5 summarizes the statistical data of the output distribution, including the upper and
lower limits of a probabilistically symmetric range for a 95% coverage probability.

Uncertainty source Type PDF PDF parameters

Mass (repeatability) A t-distribution Mean: 35.7653 kg; scale: 9.49 x 10�5 kg; degrees of freedom: 9

Mass (certificate) B Normal Mean: 0 kg; standard deviation: 0.00005 kg

Local gravity B Normal Mean: 9.80665 m/s2; standard deviation: 0.00001 m/s2

Arm length B Uniform Minimum: 1999.5 mm; maximum: 2000.5 mm

Table 4. A summary of sources of uncertainty and their associated distributions for the measurement of torque.

Statistical data Value (N m)

Mean 667.970

Standard deviation 0.096

Lower limit for p = 95% 667.812

Upper limit for p = 95% 668.129

Table 5. A summary of the statistical data for the output distribution for the measurement of torque.

Figure 7. Output distribution resulting from the Monte Carlo simulation for the evaluation of uncertainty of measure-
ment of torque.
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7. Conclusions

Measurement uncertainty and metrological traceability are interdependent concepts. The eval-
uation of uncertainties of measurement results is essential to ensure that they are reliable and
comparable. Moreover, the process that involves the modeling of measurement systems and
evaluation of their uncertainties is of great importance for the metrologist as it constitutes a
tool for the management of the measurement laboratory, since it can indicate exactly where to
invest to get better, more qualified results.

The GUM and the application of the LPU continue to be the most used and widespread
methodology for bottom-up uncertainty evaluation in metrology. It is adopted worldwide
and provides a strong base for comparability of measurement results between laboratories.
On the other hand, a new version for the GUM is currently under revision. This version should
be aligned with its supplements in a more harmonized way, incorporating concepts from
Bayesian statistics and resolving some inconsistencies. As a consequence, if the mentioned
distribution-free coverage intervals are maintained, results for the expanded uncertainty will
be greatly overestimated compared to the current version of the GUM.

In this way, the best alternative for a more realistic and lean uncertainty assessment would be
through a numerical simulation using the Monte Carlo method, which should lead to a smaller
and more reliable uncertainty result.
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In this way, the best alternative for a more realistic and lean uncertainty assessment would be
through a numerical simulation using the Monte Carlo method, which should lead to a smaller
and more reliable uncertainty result.
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Abstract

The approach to the improving the accuracy of the impedance parameter measurements
is described. This approach is based on the well-known variations of the influence of
the disturbing factors on the results of measurement. Using these variations, measure-
ment circuit provides the additional number of measurements, equal to the number of
the disturbing factors. System of equations describes these results of measurements. The
solution of this system eliminates the influence of the appropriate uncertainty sources
on the results of measurement and gets the true result of the measured value. In
addition, the solution of this system also gets the values of the uncertainty components
in every measurement and possibility to monitor the properties of the measurement
circuit. Examples of the realization of this method for improving the accuracy of the
impedance parameter measurements in different bridges are given.

Keywords: impedance, variation calibration, uncertainty, measurement, algorithm,
comparison, quadrature, standard, digital synthesis, frequency range, transfer’s function

1. Introduction

History of the electricity science is the history of the development, in sufficient part, of the new
methods of measurements. These methods are described perfectly well, for example, in [1].
Widely used replacing and substitution methods entered in all handbooks [2]. Bridge methods
are described in many monographs [3, 4]. Monographs [5, 6] describe different methods of
bridges’ accurate balance. Many methods of uncertainty correction are described in [7, 8]. All
these methods have their widely discussed advantages and disadvantages. There exists no
method that could decide all problems, which appears in measuring practice. This chapter
describes the method of the variational calibration [9] in the impedance measurements. This
method is based on the sequential variation of the influence of the disturbing factors on the
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results of measurement. System of equations describes these results. Solution of this system
eliminates influences of the disturbing factors and gets the accurate results of measurement.
This method significantly simplifies the accurate devices, reducing their weight, dimension
and cost, but increases the time of measurement.

2. The variational calibration

2.1. Theoretical basis of the variational calibration

Every measuring circuit (MC) has the input value, which has to be measured and generates
measured output value. In an ideal case, the results of measurement depend on the input value
and the transfer function k of the MC only.

Formula (1) describes the result of measurement of ideal MC:

Zx ¼ kZ0 (1)

Formula (2) describes the standard uncertainty δid of such measurement:

δid ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ20 þ δ2s

q
(2)

Here δ0 and δs are the uncertainties, of the standard Z0 and the uncertainty, caused by the
sensitivity of the MC.

In the real MC, the results of measurement Ζx0 also depend on the complex of the disturbing
factors z1…zi…zj as well (for simplicity of the description, these factors on the Figure 1 are
shown being out of MC). These factors create proper complex of the uncertainties of measure-
ments δ1…δi …δj and shift the appropriate result Zx0 of measurement from its ideal value Zx.

Figure 1. Real measuring circuit.
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The much more complicated mathematic model (3) of the real MC now describes the results of
measurement:

Zx0 ¼ γ Zx; δ1…δi…δj; δ0; δs
� �

(3)

Usually the model (3) is well known from preliminary investigations of the MC.

In the simplest case, every disturbing factor z1::zi::zj creates appropriate uncertainty compo-
nents δ1…δi…δj. In more complicated cases, some disturbing factors z1…zi can influence
some complex Zi…Ziþm of the results of measurement. But we know functions δi ¼
f i z1…zi…znð Þ and do not know just the constant coefficients, which enters into these depen-
dences.

Formula (4) describes the standard uncertainty δr of the measurement of the real MC:

δr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ20 þ Σj

1δ
2
i þ δ2s

q
(4)

To eliminate the influence of the uncertainties δ1…δi…δj on the results of measurement, the
variation method was developed (VM) [9]. Figure 2 illustrates this method. Here, MC contains
n additional variators V1…Vj. Last ones influence the uncertainty sources z1…zj and change
the uncertainty δ1…δj. It creates the output of the proper results of MC measurement Zx1…Zxj.

Variators cannot change the uncertainties δ0 and δs. These uncertainties are supposed to be
known or equal to zero during the VM calibration.

VM consists of the following steps:

1. First, MC measures initial value Zx0 of the input value Zx.

2. Then, MC consequently varies the influence of the disturbing factor zi on the well-known
value αi.

Figure 2. Variational measuring circuit.
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Variations could be provided in any order. To simplify the system of equations, it is prefer-
able to perform variations sequentially and to switch ON the variation αi when all other
variations are switched OFF.

Variations could have any law. To simplify the system of equation, it is preferable to
provide the multiplicative variation (when we multiply the appropriate uncertainty com-
ponent δi on well-known ratio αi (δiv = αiδi)) or additive variation (when we add the
appropriate well-known uncertainty Δv to the uncertainty component Δim (Δiv = Δim + Δv)).

3. After every variation, MC measures the results of the measurement Zx1…Zxi…Zxj.

4. The system of Eqs. (5) describes these measurements:

Zx0 ¼ γ Zx; δ1…δi…δj; δ0; δs
� �

Zx1 ¼ γ Zx; δ1;α1…δi…δj; δ0; δs
� �

Zxj ¼ γ Zx; δ1…δi…δj; aj; δ0; δs
� � (5)

The system (5) contains j + 1 unknown quantities: Zx and uncertainties of measurement
δ1…δj, and j + 1 results of measurement Zx0…Zxj. Solution (6) of this system gets the true
value of the results of measurement Zx and the values of the uncertainties δ1…δj of the
measurement:

Zx ¼ r0 Ζx0 � Zxj
� �

; α1 � αj
� �

; δ0; δs
� �

δ1 ¼ r1 Ζx0 � Zxj
� �

; α1 � αj
� �

; δ0; δs
� �

δj ¼ rj Ζx0 � Zxj
� �

; α1 � αj
� �

; δ0; δs
� � (6)

Periodical variation calibration lets us to observe the behavior of every disturbing factor, to
determine their stability, to monitor measuring circuit and to ensure precision of the period of
the variational calibration.

Let the uncertainty caused by the finite sensitivity of the i-measurement be δsi and the uncer-
tainty of the variation αi be δαi. In this case, formula (7) describes the resulting standard
uncertainty δc of the measurement with variation calibration:

δc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ20 þ Σj

0 δ2i δα
2
i þ δ2si

� �q
(7)

Eq. (7) shows that the VM sharply decreases influence of the uncertainty components δi on the
common uncertainty of measurement (on the 1/δαi times).

Let us suppose uncertainty source zi creates uncertainty δi = 10
�3 and we need to decrease it to

the value 10�6. It means that we have to provide appropriate variation with uncertainty better
than 10�3 only. It is a very important result of the VM. This effect is restricted only by the
stability of the uncertainties δ1…δj during the time of measurement.

Let us suppose that time of every measurement is ti. It means that the common time tc of
measurement increases to the value:
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tc ¼ Σj
0ti (8)

Let us suppose that δαi = 0 and δ0 = 0. In this case, formula (9) describes the standard uncertainty
of measurement caused by sensitivity of measurements only:

δc ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
Σj
0 δ

2
si

q
: (9)

Formulas (8) and (9) show that the variation method has two disadvantages:

• Variation method needs n + 1 measurement instead one only. It sufficiently increases the
time of measurement.

• Variation method increases the contribution of measurement sensitivity δsi in the common
uncertainty of measurement.

We can overcome these two disadvantages of the variation method in different ways. Here, we
shortly describe time and space clustering of the thesaurus of the uncertainty sources.

2.1.1. Time clustering

Usually, different uncertainty sources have different typical speeds of drift. We can divide the
thesaurus of j uncertainty sources into clusters, which have congruous time of drift. Figure 3
illustrates this approach. In Figure 3, thesaurus of the j uncertainty components is divided into
three clusters T1, T2 and T3 (j = m + n + k).

The first cluster (T1) joins m of the most stable uncertainty sources. It could be instability of the
internal standards or arms ratios in transformer bridges, and so on. MC provides their calibra-
tion very seldom, for example, one time per year. For this calibration, MC performs sequential

Figure 3. Variation calibration with time clustering.
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variation of all sources of uncertainty and providesm + n + k + 1measurements. The system (5)
of equations describes the results of these measurements. Solution (6) of this system gets us
values of the m uncertainties of the first cluster.

The second cluster (T2) joins the n less stable sources of the uncertainty. It could be the
temperature dependences of the operational amplifiers parameters, and so on. Calibration
of these sources is provided more frequently, for example, one time per hour. During this
calibration, we suppose that them uncertainties of the first clusters are stable. Values of these
uncertainties enter in the system (5) as constants. To find values of the n uncertainties of the
second cluster, MC varies sequentially the uncertainty sources n + k, provides proper mea-
surements and solves the system (5). It needs n + k + 1 measurements.

The third cluster (T3) joins the k uncertainty sources which change most quickly. This cluster
mostly includes the sources, which directly depends on the parameters of the object to be
measured. This calibration is aimed to find the true results of measurement and values of the
last k uncertainties. During this calibration, we suppose that uncertainties of the first and
second clusters are stable. Their appropriate values are entered in system (5) as constants.
Calibration now consists of sequential variation of the k uncertainties of third cluster and
appropriate measurements. Solution of the system (5) gets us the true results of measurement
Zx and last k uncertainties. This calibration needs k + 1 measurements only.

Let us suppose that any measurement needs time ti. Formula (10) describes the weighted
average tc of the measurement with variation calibration:

tc ¼ Σk
1ti 1þ nþ k

mþ nþ k
Tk

Tm
þ k
mþ nþ k

Tk

Tm

� �
(10)

where Σk
1ti is the time of the k cluster calibration and measurement, Tn=Tm is the ratio of the

periods of the second Tn and first Tm clusters calibrations and Tk=Tm is the ratio of the periods
of the third Tk and first Tm cluster calibrations.

Formula (10) shows that the time of measurement decreases only slightly during the time of
calibration of the third cluster. It means sufficient diminution of the time of measurement.

2.1.2. Space clustering

Sometimes, we do not need to separately study every component of the measurement uncer-
tainty. In this case, we use space clustering. During the space clustering, MC is represented as a
complex of the n quadripoles and standards to be compared. Figure 4 shows such decompo-
sition of the measurement circuit.

In Figure 4, K1 … Kn are the quadripoles of the MC and the V1…Vn are the variators used to
vary the transfer coefficient of the proper quadripole.

The following formula describes the decomposed MC:

Zx0 ¼ f Zx;K1;ΔK1…Ki;ΔKi…Kn;ΔKnð Þ (11)
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where Zx and Zx0 are the MC input and output values, respectively, ΔΚ1… ΔΚi… ΔΚn are the
uncertainties of the quadripole transfer coefficients K1…Ki…Kn.

The following formula expresses the dependence of the measurement uncertainty δr on the
components of the decomposed MC:

δr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ20 þ δ2s þ Σn

1ΔK
2
i

q
(12)

where δs is the uncertainty caused by the finite MC sensitivity.

Let us provide n well-known variations ν1…νi…νn of the quadripole transfer coefficients
K1…Ki…Kn. MC provides the new measurements Zx0…Zxi…Zxn of the unknown value Zx after
every variation. The system of Eq. (13) describes these measurements:

Zx0 ¼ f Zx;K1;ΔK1…Ki;ΔKi…Kn;ΔKnð Þ
Zx1 ¼ f Zx;K1;ΔK1; v1…Ki;ΔKi;…Kn;ΔKnð Þ
Zxn ¼ f Zx;K1;ΔK1…Ki;ΔKi…Kn;ΔKn; vnð Þ

(13)

Solution of the system (13) of equations gets accurate results of measurement together with all
uncertainties of the quadripoles.

Formulas (8) and (9) describe the uncertainty and time of measurement when using the space
clustering as well. However, the number of measurements in case of space clustering is much
less. Error accumulation and common time of measurement are much less as well.

We can decompose the measuring circuit in different ways. Optimal decomposition depends
on the structure of the measuring circuit. Here, it is impossible to analyze all these possibilities.
In most cases, we are forced to use time and space clustering together.

Figure 4. Variation correction with space clustering.
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temperature dependences of the operational amplifiers parameters, and so on. Calibration
of these sources is provided more frequently, for example, one time per hour. During this
calibration, we suppose that them uncertainties of the first clusters are stable. Values of these
uncertainties enter in the system (5) as constants. To find values of the n uncertainties of the
second cluster, MC varies sequentially the uncertainty sources n + k, provides proper mea-
surements and solves the system (5). It needs n + k + 1 measurements.

The third cluster (T3) joins the k uncertainty sources which change most quickly. This cluster
mostly includes the sources, which directly depends on the parameters of the object to be
measured. This calibration is aimed to find the true results of measurement and values of the
last k uncertainties. During this calibration, we suppose that uncertainties of the first and
second clusters are stable. Their appropriate values are entered in system (5) as constants.
Calibration now consists of sequential variation of the k uncertainties of third cluster and
appropriate measurements. Solution of the system (5) gets us the true results of measurement
Zx and last k uncertainties. This calibration needs k + 1 measurements only.

Let us suppose that any measurement needs time ti. Formula (10) describes the weighted
average tc of the measurement with variation calibration:

tc ¼ Σk
1ti 1þ nþ k

mþ nþ k
Tk

Tm
þ k
mþ nþ k

Tk

Tm

� �
(10)

where Σk
1ti is the time of the k cluster calibration and measurement, Tn=Tm is the ratio of the

periods of the second Tn and first Tm clusters calibrations and Tk=Tm is the ratio of the periods
of the third Tk and first Tm cluster calibrations.

Formula (10) shows that the time of measurement decreases only slightly during the time of
calibration of the third cluster. It means sufficient diminution of the time of measurement.

2.1.2. Space clustering

Sometimes, we do not need to separately study every component of the measurement uncer-
tainty. In this case, we use space clustering. During the space clustering, MC is represented as a
complex of the n quadripoles and standards to be compared. Figure 4 shows such decompo-
sition of the measurement circuit.

In Figure 4, K1 … Kn are the quadripoles of the MC and the V1…Vn are the variators used to
vary the transfer coefficient of the proper quadripole.

The following formula describes the decomposed MC:

Zx0 ¼ f Zx;K1;ΔK1…Ki;ΔKi…Kn;ΔKnð Þ (11)
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where Zx and Zx0 are the MC input and output values, respectively, ΔΚ1… ΔΚi… ΔΚn are the
uncertainties of the quadripole transfer coefficients K1…Ki…Kn.

The following formula expresses the dependence of the measurement uncertainty δr on the
components of the decomposed MC:

δr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ20 þ δ2s þ Σn

1ΔK
2
i

q
(12)

where δs is the uncertainty caused by the finite MC sensitivity.

Let us provide n well-known variations ν1…νi…νn of the quadripole transfer coefficients
K1…Ki…Kn. MC provides the new measurements Zx0…Zxi…Zxn of the unknown value Zx after
every variation. The system of Eq. (13) describes these measurements:

Zx0 ¼ f Zx;K1;ΔK1…Ki;ΔKi…Kn;ΔKnð Þ
Zx1 ¼ f Zx;K1;ΔK1; v1…Ki;ΔKi;…Kn;ΔKnð Þ
Zxn ¼ f Zx;K1;ΔK1…Ki;ΔKi…Kn;ΔKn; vnð Þ

(13)

Solution of the system (13) of equations gets accurate results of measurement together with all
uncertainties of the quadripoles.

Formulas (8) and (9) describe the uncertainty and time of measurement when using the space
clustering as well. However, the number of measurements in case of space clustering is much
less. Error accumulation and common time of measurement are much less as well.

We can decompose the measuring circuit in different ways. Optimal decomposition depends
on the structure of the measuring circuit. Here, it is impossible to analyze all these possibilities.
In most cases, we are forced to use time and space clustering together.

Figure 4. Variation correction with space clustering.
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It should be noted that variation method was used earlier in some measurements (e.g., elimination of
the uncertainty caused by self-heating of the resistive thermometer in temperature measurements).
Here, we consider generalization and dissemination of this method in different areas, first in imped-
ance measurements.

2.2. Experimental developments of the VM

VM was used in several developments. It is too complicated to analyze all these possible
applications. Here, we consider only some applications of this method in very important cases
of widely used digibridges and in accurate transformer bridges.

2.2.1. Application of the VM in digibridges

Development of the integral operational amplifiers and microprocessors resulted in the new
class of measuring devices—digibridges [10–12]. Nowadays, digibridges cover most part of
the specific market of the impedance meters. Now many companies manufacture digibridges
(HP, Agilent, TeGam, IetLab, Wine Kerr, etc).

2.2.1.1. Operation and analysis

A usual digibridge consists of two serially coupled impedances Zx and Z0 (see Figure 5) These
impedances are connected between outputs of the generator G and the protecting amplifier A.
Negative input of this amplifier is connected to the common point of the impedances Zx and
Z0. Amplifier A creates in this point the potential, close to zero (virtual ground). The same
current Ix flows through both impedances Zx and Z0 and creates voltages Ux and U0. Differ-
ential vector voltmeter DVV, through switcher S0, measures these voltages and transfers the

Figure 5. Structure of the digibridge with variational calibration.
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results of measurement to microcontroller μC. μC controls the operation of the ΜC, processes
results of the voltages measurements and calculates the ratio of two impedances Zx and Z0.

Display D shows results of measurements.

The amplifier A protects measuring circuit and decreases the influence of the parasitic admit-
tance Yc between the amplifier inputs on the results of measurement.

In case if gain K is infinite, Eq. (14) describes the process of measurement:

Zx=Z0 ¼ Ux=U0 (14)

Let gain K be finite. In this case, admittance Yc between the amplifier inputs cause one
of the biggest sources of the measurement uncertainty. This uncertainty (δΖ) strongly limits
the measurements of the high impedances on high frequencies. δΖ is described by the
equation:

δΖ ¼ YcZ0= 1þ Kð Þ (15)

If K » 1, we can write:

δZ ffi YcZ0=K (16)

Here, the values Yc and K are the disturbing factors. The quotient of the Yc and K can be
considered as the sole source of the uncertainty. Let us provide the multiplicative variation of
the gain K of the amplifier A. To vary K on ratio α1, the divider Dv with transfer coefficient 1 or
α1 (Figure 5) is used. After this variation, MC measures the additional voltage U0v.

The system of three equations describes the measurements of the voltages Ux, Uo and Uov.

Ux ¼ IxZx; U0 1� YcZ0=Kð Þ ¼ IxZ0; U0 1� YcZ0=Kð Þ ¼ IxZ0 (17)

Solution of this system gets the following formula (18):

Zx=Z0 ¼ Ux 1� δU � α1= 1� α1ð Þ½ �=U0 (18)

where δU ¼ 1�U0=U0v

Analysis of the formula (18) shows that the uncertainty of the variation calibration has minimal
if α1=0.5. Then:

Zx=Z0 ¼ Ux 1� δUð Þ=U0 (19)

Formula (19) shows that the ratio Zx/Z0 does not depend on the quotient of the Yc and K.

But here increases component of the uncertainty, caused by the increased number of mea-
surements. VV measures quadrature components a and b of three voltages: Ux, Uo and U0v.
Let us suppose that effective input noise of the VV in all these measurement has the same
value Δ and the results of measurement are not correlated. In this case, the following
formulas are justified:
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results of measurement to microcontroller μC. μC controls the operation of the ΜC, processes
results of the voltages measurements and calculates the ratio of two impedances Zx and Z0.
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equation:

δΖ ¼ YcZ0= 1þ Kð Þ (15)

If K » 1, we can write:
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Here, the values Yc and K are the disturbing factors. The quotient of the Yc and K can be
considered as the sole source of the uncertainty. Let us provide the multiplicative variation of
the gain K of the amplifier A. To vary K on ratio α1, the divider Dv with transfer coefficient 1 or
α1 (Figure 5) is used. After this variation, MC measures the additional voltage U0v.

The system of three equations describes the measurements of the voltages Ux, Uo and Uov.
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Solution of this system gets the following formula (18):

Zx=Z0 ¼ Ux 1� δU � α1= 1� α1ð Þ½ �=U0 (18)

where δU ¼ 1�U0=U0v

Analysis of the formula (18) shows that the uncertainty of the variation calibration has minimal
if α1=0.5. Then:

Zx=Z0 ¼ Ux 1� δUð Þ=U0 (19)

Formula (19) shows that the ratio Zx/Z0 does not depend on the quotient of the Yc and K.

But here increases component of the uncertainty, caused by the increased number of mea-
surements. VV measures quadrature components a and b of three voltages: Ux, Uo and U0v.
Let us suppose that effective input noise of the VV in all these measurement has the same
value Δ and the results of measurement are not correlated. In this case, the following
formulas are justified:
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Ux ¼ ax þ Δð Þ þ j bx þ Δð Þ;U0 ¼ a0 þ Δð Þ þ j b0 þ Δð Þ;U0v ¼ a0v þ Δð Þ þ j bx þ Δð Þ (20)

Let us substitute formula (20) in (14) and (19). It gets the following formulas for two cases:

Without variational calibration:

δm ≈
ffiffiffi
2

p
δn and Δa ≈

ffiffiffi
2

p
δn (21)

With variational calibration:

δm ≈
ffiffiffi
5

p
δn and Δa ≈

ffiffiffi
2

p
δn (22)

where δm and Δa are the multiplicative and additive uncertainties caused by the relative noise
δn of the VV.

Formulas (21) and (22) show that the additive uncertainty Δa caused by the relative noise
(δn ¼ Δ=U0) in both cases is the same. But these formulas also show that due to the variational
calibration, the multiplicative random uncertainty δm increases 1.6 times.

Calculation of the uncertainty by the formula (16) has the truncation error δt caused by
inequality K » 1 δt ¼ Z0Yc=Kð Þ. This error sharply increases when K on high frequencies is
low, so that calibration practically does not work when K! 1. If amplifier gain K is so low, we
cannot consider value Yc/K as the sole source of the uncertainty. As a result, we have to provide
two separate variations: multiplicative variation of the gain K and additive variation of the
admittance Yc (using variational admittance Yv and switcher Sv). DVV measures sequentially

voltages Ux,U0 and U
0
0, U

00
0 after multiplicative variation of the gain K and additive variation of

the admittance Yc.

System of three equations describes these four measurements:

Ux=U0 ¼ Zx=Z0 1þ YcZ0= 1þ Kð Þ½ �
Ux=U0 ¼ Zx=Z0 1þ YcZ0= 1þ α1Kð Þ½ �
Ux=U0 ¼ Zx=Z0 1þ Yc þ Yνð ÞZ0= 1þ Kð Þ½ �

(23)

Solution of the system (23) gets following two equations:

YcZ0 ¼ A
0 � 1

� �
α1K þ 1ð Þ K þ 1ð Þ=K 1� α1ð Þ

aK2 þ bK þ c ¼ 0
(24)

here: a ¼ ½ð1þ α1Þ � α1ðA0 � 1Þ�ðA00 � 1Þ, b ¼ ðYvZo þ A
0 ÞA00 � A

0
, c ¼ ðA0 � 1ÞðA00 � 1Þ,

A0 ¼ U
0
0=U0, A

00 ¼ U
0
0=U0

Solution of the Eqs. (24) and substitution of these results in (15) gets the accurate results of
measurement which absolutely does not depend on the values Yc and K.
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The described approach could be used for the accurate calibration of any amplifier with positive or negative
gain, followers, gyrators, and so on. It could be used for calibration of any control system as well.

3. Experimental results

The earlier described approach was used in digibridge MNS1200. This digibridge was devel-
oped for Siberian Institute of Metrology (Novosibirsk), to be used in working inductance
standard. Its short specification is as follows.

MNS1200 operates in frequency range of DC to 1 MHz.

Frequency set discreteness 2 � 10�5.

Capacitance range of measurement (F) 10�17–105.

Resistance range of measurement (R) 10�6–1014.

Inductance range of measurement (H) 10�12–1010.

Dissipation factor tgδ (tgφ) 10�6–1.0.

Main uncertainty (ppm) 10.

Sensitivity (ppm) 0.5

Inner standard instability (24 hours, ppm) � 2.

Weight (kg) 4

MNS1200 appearance is shown in Figure 6.

Instability of the MNS1200 inner standard can achieve 10�4 in a long period of time. To get
maximal accuracy, MNS1200 can be calibrated by arbitrary R,L,C outer standard. In this case,

Figure 6. Digibridge MNS1200.
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uncertainty of measurement depends on short-time stability of inner standards. Results of the
24-hour 1 Ohm standard measurements are shown in Figure 7.

3.1. Application of the VM in transformer bridge

Accurate comparison and unit dissemination of the impedance parameters are provided using
many different, very complicated manual bridges with numerous different standards. The
main world-renowned laboratories (BIPM, NIST, NML, NPL, PTB, VNIIM, etc.) in developed
countries have their own primary standards, based on the calculable capacitor [13, 14] and the
appropriate transformer bridges [15, 16], on the quantum hall resistance [17] and the appro-
priate bridges [18, 19] and very accurate quadrature transformer bridges for comparison of
different impedance parameters [20, 21], that have original constructions. All these bridges
contain complicated set of devices and have long and intricate handle balancing processes. In
addition, these bridges and standards are of different kinds and are located in various labora-
tories. The process of calibration and traceability is, therefore, complicated and very expensive.
Uncertainty of the measurement of these bridges achieves 10�8–10�9. It makes them an excel-
lent instrument for fundamental investigations.

For practical needs of the metrologic calibration, it is enough to provide measurements with
uncertainty about 10�6. In this case, the equipment have to be universal, to compare arbitrary
standards, to have low cost and weight and to be transportable. The complex of bridges
described later satisfies these demands. Complex consists of autotransformer and quadrature
bridges. Both of them are based on the variational calibration. Autotransformer bridge pro-
vides unit transfers in the whole range of the impedance of the C,L,R standards. Quadrature
bridge provides cross transfers of the units. Last bridge is described in [22, 23].

This chapter describes the part of the results of this project, covering the development of the
transformer bridge-comparators which transfer units of the resistance, inductance, capacitance

Figure 7. Results of the 24-hour 1 Ohm standard measurements.
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and dissipation factor in a whole range of measurements and reciprocal transfer of any units.
Balance and calibration of these bridges are based on the variational method.

3.1.1. Autotransformer bridge: description and analysis

Early autotransformer bridges were described in [24, 25]. These bridges have been widely used
up to now [15, 16]. To eliminate the influence of the cable impedance (yoke) on the results of
measurement, double autotransformer bridges are used [3, 5]. The wide-range double auto-
transformer bridge contains two inductive dividers, simultaneously controlled for bridge
balance. For accurate measurements, these inductive dividers usually are of a two-stage design
at least. Every stage of these inductive dividers [26] consists of a lot of turns and appropriate
complicate switchers. They have to have multidigit capacity (up to seven or eight digits). This
quite complicates the bridge.

Development of the variational bridge has to solve two problems:

• to eliminate the Yoke (Zn) influence on the results of measurement without using the
double autotransformer bridge;

• to decrease sharply the number of the autotransformer divider decades without loss in the
accuracy of measurement.

The simplified measuring circuit of the automatic variational bridge (PICS) [27], which solves
these problems, is shown in Figure 8.

The bridge consists of the supply unit (the generator G connected to the voltage transformer
TV), the main autotransformer AT and the variationally balanced 90� phase shifter [28], which
is calibrated through calibration circuit CC. The vector voltmeter VV (through the preamplifier
PA and switchers S1 and S2) measures the bridge (U1, U2) and the calibration circuit CC (Uc)

Figure 8. Circuit diagram of the autotransformer bridge.
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unbalances the signals. The differential voltage follower 1:1 compensates the voltage drop Un

on the cable impedance Zn. The microcontroller μC transfers the results of the VVmeasurements
to the personal computer PC and controls the bridge balance and calibration of the phase shifter
90�. The autotransformer AT Carries on its core windings m2, m1c and m1k. These windings are
used to balance the bridge by the main (m1c) and secondary (m1k) parameters. The standards to
be compared Z1 and Z2 are connected serially by the cable (yoke) and by their high potential
ports, to voltage transformer TVand to the windings m1c and m2 of the autotransformer AT.

The output of the 90� phase shifter is connected in series with the winding m1c to create the
balance winding m1 ¼ m1c þ jm1k.

The drop of the voltage Un acts on the impedance Zn of the cable which connects Z1 and Z2.
This voltage is applied to the input of the differential voltage follower 1:1.

The two-channel VV has two digital synchronous demodulators, proper LF digital filters and
Σ-Δ ADC. It simultaneously measures two orthogonal components of the bridge unbalance
signals. This voltmeter has high selectivity (equivalent Q-factor is higher than 105). Its integral
nonlinearity is better than 10�4 and relative sensitivity is better than 10�5. The VV is calibrated
automatically and periodically by variational algorithm, described in [29].

On the low impedance ranges, the drop Un of the voltage on the cable impedance increases. This
increases the uncertainty of the bridge unbalancemeasurement. To decrease this effect, the voltage
follower 1:1 is used. This follower places thenameddropof thevoltage between lowpotential pins
of the windings m1 and m2. It decreases the effective cable impedance from Zn to the equivalent
value Zne = Znδ, where δ is the uncertainty of the transfer coefficient of the voltage follower.

To decrease the number of the decades of the autotransformer divider and eliminate the
influence of the Zn on the results of measurement, the bridge operates in a non-fully balance
mode and use twice variational balance [27].

In compliance with developed variational algorithm, VV measures sequentially the bridge
unbalance signals U1 and U2. After that, μC varies the turns of the winding m1 on Δmv and
VV measures the variational signal U2v.

The system of Eqs. (30) describes these three measurements:

U0 Z1=Zcð Þ �U0 1� Zn 1þ δð Þ=Zc½ �m1= m1 þm2ð Þ �U1 ¼ 0
�U0 1� Zn 1þ δð Þ=Ζc½ �m2= m1 þm2ð Þ þU0Z2=Zc þU2 ¼ 0
�U0 1� Zn 1þ δð Þ=Ζc½ �m2= m1 þm2 þ Δmvð Þ þU0Z2=Zc þU2v ¼ 0

(25)

where Zc = Z1 + Z2 + Zn, and δ is the uncertainty of the voltage follower 1:1, U0 is the supply
voltage.

The formula (26) gives the solution of the system (25):

δZ ¼ � δv
2
m1 þm2

m2
Cþm1 �m2

m1 þm2
D

� �
= 1þ CþDð Þδv½ � (26)

where
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C ¼ U2 þU1ð Þ= U2v �U2ð Þ; D ¼ U2 �U1ð Þ= U2v �U2ð Þ; δv ¼ δm= 1þ δmð Þ; δm ¼ Δmv= m1 þm2ð Þ

μC uses the results of the calculation of the bridge unbalance δZc by described algorithm in
two stages:

• in the first stage, μC makes quick, automatic balance of the bridge on the four high-order
decades (balance stage);

• in the second stage, μC increases the sensitivity of the voltmeter VV on 104 and
decreases the value of the variation Δmv of the m1 turns in the same ratio. Then, μC
repeats the measurements by described algorithm. Results of these measurements and
calculations by formula (26) determine the balance point coordinates and find the
impedance ratio:

Z1

Z2
¼ m1

m2
� δZ (27)

The final result is given in 8.5 digits.

The bridge balance and data processing by described variational algorithm reduce the number
of the autotransformer dividers to only one and sharply (twice) reduce the number of the digits
of this divider.

The 90� phase shifter and the calibration circuit CC do not contain accurate internal standards
of capacitance or resistance. To get good accuracy, we use the special phase shifter calibration
procedure based on the variational method. Simplified structure of this phase shifter is shown
in Figure 9.

Phase shifter consists of serially connected inverter I and proper phase shifter PS. Firstly,
calibrating circuit (resistors R1 and R2) and switchers S1 and S2 are used to calibrate inverter
I. Secondly, calibrating circuit (resistor R1 and capacitor C1) and switchers S3 and S4 are used
to calibrate the phase shifter PS. Vector voltmeter VV, through switcher S5 measures unbal-
ance signals of the first or second calibration circuits and translates the results of measure-
ments to microcontroller μC. Finally, one controls all calibration procedure and calculates PS
real transfer coefficient.

Calibration procedure consists of two stages.

Figure 9. Structure of the phase shifter.
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4. Calibration of the inverter I

To calibrate the inverter, the VV measures three signals of the calibration circuit R1–R2:

• The initial output signal of the calibration circuit Ui1;

• The signal Ui2 after the variation of the inverter transfer coefficient on the value δiv;

• The signal Ui3 after the inversion of the connection of the calibration circuit between the
input and output of the inverter I by the switchers S1 and S2.

Complex of these signals is described by proper system of equations. Solution of this system
(formula 38) gets the accurate deviation δi of the inverter transfer coefficient from its nominal
value “1.”

δi ¼ δia 1þ δkiað Þ (28)

where.

δia ≈
δiv
2

Ui3þUi1
Ui2�Ui1

; δkia ≈ δiv
2

Ui3�Ui1
Ui2�Ui1

; δia and δkia are the approximate values of the transfer coefficients

of the inverter I and calibration circuit R1-R2.

5. Calibration of the phase shifter PS

To calibrate the phase shifter PS, the VV measures three signals of the calibration circuit R3-C1:

• The initial output signal Up1 of the calibration circuit, when calibration circuit is connected
between input and output of the phase shifter;

• The signal Up2 after the variation of the phase shifter PS transfer coefficient in the value δpv;

• The signal Up3 after the inversion of the calibration circuit and connection of this circuit
between the inputof the inverter I andoutput of thephase shifter PS by the switchers S1 andS2.

Complex of these signals is described by proper system of equations. Solution of this system
(formula (29)) gets the accurate deviation δp of the phase shifter PS transfer coefficient from its
nominal value “j”:

δp ¼ δpa 1þ δkpa
� �

(29)

where:

δpa ≈
δpv
2

jUp3 þUp1

Up2 �Up1
� δi

2
1

1þ δi
and

δkpa ≈
δpv
2

jUp3 �Up1

Up2 �Up1
� δi

2
1

1þ δi

δpa and δpka are the approximate values of the transfer coefficients of the inverter PS and calibra-
tion circuit, respectively.
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After the calibration procedure, we know the real value of the phase shifter transfer coefficient
with an uncertainty better than 1–3 ppm. μCmakes this calibration procedure automatically at
least every hour.

Figure 10. Some results of experimental investigations.
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After the calibration procedure, we know the real value of the phase shifter transfer coefficient
with an uncertainty better than 1–3 ppm. μCmakes this calibration procedure automatically at
least every hour.
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5.1. Experimental results

All results of the theoretical investigations shown earlier were used to develop the comparator
PICS.

PICS very short specification is given as follows.

Short PICS Specification.

PICS operates on frequencies 1.00 and 1.59 kHz.

Frequency set discreteness 5 � 10�5.

Capacitance range of measurement (F) 10�19–10�3.

Resistance range of measurement (R) 10�7–108.

Inductance range of measurement (H) 10�12–103.

Dissipation factor tgδ (tgφ) 10�6–1.0.

Main uncertainty (ppm) 1.0.

Sensitivity (ppm) 0.02–0.05

Weight (kg) 5

PICS was tested in USA (NIST) and Russia (VNIIM), in Germany (PTB) and Poland (GUM), in
Ukraine (Ukrmetrteststandard) and Byalorussia (Center of metrology).

Some results of these tests are shown in Figure 10.

Appearance of the PICS, together with intermediary thermostated standards, is shown in
Figure 11.

Figure 11. Appearance of the PICS.

Metrology46

6. Conclusion

Variational calibration sharply increases the accuracy of measurement. In case of variation
correction, for precision measurements, we can use simple and cheap measuring circuits with
rather high uncertainty. Variational calibration diminishes the uncertainty of such circuits on
thousands or even more times. It does not need too accurate variational standards. Time and
space clustering in significant measure overcomes disadvantages of this calibration—increas-
ing the time of measurement. Experimental investigations of the comparator PICS have shown
that uncertainty of measurement on main ranges is lower than 10�6 and sensitivity is better
than 10�7–10�8. Variational calibration also decreases the weight and cost of the accurate
equipment.
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Abstract

A new approach is described and discussed to the determination of the Newtonian grav-
itational constant G, which is based on the very powerful measurement of the frequency 
difference between two similar oscillators. The rate of change of time delay between the 
two is equal to their relative frequency difference, and small variations of either one can 
then be detected via delay monitoring with resolution limited only by time resolution 
and frequency stability of the two oscillators. The latter should be highly sensitive to 
gravitational field, to measure G, which triggers the choice of simple pendulums as field 
detectors. Since the relative effect on frequency readily obtainable in the lab by well-
controlled variations of the gravitational field is on the order of 10−7, stabilities on the 
order of 10−12 are needed of the relative frequency difference if measurement of the fifth 
decimal digit of G is the target of the experiment. It is argued that such high stability is 
possible with a pendulum properly designed for being locally isochronous and showing 
an adequately high Q factor. The latter is projected to reach possibly 107 or more with 
the discussed design.

Keywords: Newtonian constant, simple pendulum, pendulum frequency stability,  
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Several different approaches have been followed in the realization of experiments aimed at its 
determination. A short summary can be found in the introduction of [1], where the experiment 
illustrated in this chapter was proposed, and for a deeper insight, a well-done recent compre-
hensive review [2] can be used for reference and comparison. It makes metrological sense to 
devise different experiments for the purpose, so that the set of possible systematic errors be not 
the same for all and the risk of undetected coherent biases among various G determinations 
be minimized. While refurbished and modernized versions of the original Cavendish torsion 
balance are still the most commonly adopted sensing device and at least one of them has dem-
onstrated extremely high accuracy [3], experiments based on other configurations have also 
been developed, and a few of them have yielded some of the best results to date. The latter 
include a measurement based on a beam balance [4] and one based on a pair of simple pen-
dulums used in the static mode [5]. Both achieved accuracy in the low 10−5 region. These three 
determinations of G agree within their stated uncertainty and are the most influential in the 
2014 CODATA value, which, however, was attributed higher uncertainty due to the excessive 
disagreement of other results. A coordinate effort is being led by the recently established work-
ing group WG13 of UIAP, stimulated by a NIST initiative, aimed at improving the status of G 
metrology. The experiments coordinated in this effort are mainly based on the torsion balance 
approach because of its favorable S/N ratio, hoping to put to fruition the enormous amount of 
information on systematics affecting it, with the target of improving accuracy by possibly an 
order of magnitude. However, other approaches are also encouraged, and experiments based 
differently are monitored or even supported. The free-fall gravimeter [6–8] still appears very 
promising due to its unique absence of difficult-to-evaluate systematics, but results are still 
hard to come by, mainly due to the inherently low S/N ratio of these experiments. The experi-
ment presented in this chapter is supported by NIST through its Precision Measurements Grant 
Program and is based on the adoption of a pair of simple pendulums as a detection device. The 
target is the determination of G with an accuracy of 10−5. The concept of the experiment has 
evolved from a pilot experiment carried on at Politecnico di Torino from 1998 to 2005, which 
used a single pendulum in vacuum and yielded preliminary results at 3% accuracy level [9–11].

2. The dynamic dual simple-pendulum approach

The experiment illustrated here is based on a high-resolution technique, well known in fre-
quency metrology [12], to measure very accurately small frequency differences between two 
almost synchronous sources. In fact, such small differences ∆v produce a variable time delay 
between the two waveforms, which add up to a full cycle in a time interval 1/∆v. The rate of 
change of the time delay yields directly the relative frequency difference.

Simple pendulums appear attractive for a G measurement based on this approach, because 
their small oscillation resonance frequency is directly proportional to the square root of the 
Earth’s gravitational acceleration g, as is well known, which makes them particularly sensi-
tive to a gravitational field variation induced in a controlled way by a displacement of field 
masses. We will call y the relative frequency change produced in this way. Resolution in this 
measurement is limited only by time delay resolution and differential frequency stability of 
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the two sources. For example, if time resolution is 1 ns, a 1000 s run allows to determine the 
relative frequency difference to 10−12, provided its stability is adequate. This means that the 
two frequencies can wander around in parallel by more than that but their difference should 
not. This is important in considering the use of pendulum oscillators, because the gravity 
acceleration g is not constant in time due to a variety of causes, and so will be their frequency, 
which will then show instabilities not much below the 10−7 level [13]. Nevertheless, since such 
instabilities affect in a similar way all pendulum oscillators, particularly if they are in the same 
location, it can be expected to be quite possible that the differential instability of two equal 
pendulums oscillating not far from each other may be adequate for the projected resolution of 
the experiment under discussion.

In Figure 1, a sketch is shown of the expected evolution of time delay as the active field 
mass distribution is shifted back and forth between a geometrical configuration in which it 
increases the frequency of one pendulum and another antisymmetric one in which it increases 
the frequency of the other one. Suppose one pendulum is slightly slower than the other one 
(it always will be the case as two exactly equal lengths are very unlikely and even undesirable 
to avoid coupling). As time goes by, this slower oscillator will show increasing time delay 
with respect to the other, as indicated in Figure 1 by the broken trend line. Now, when its fre-
quency is increased by the field masses, it will get closer to that of the faster one, and its time 
delay rate of change (DROC) will decrease. The opposite will happen when the field masses 
increase the frequency of the other pendulum. The relevant information in this measurement 
is the difference between DROCs in the two configurations.

If vs0 and vf0 are the undisturbed frequencies of slow and fast pendulums (vf0 − vs0 = ∆v0 > 0), 
their difference will be modified by field masses as in Eq. (1) below, when the latter are next 
to the slow pendulum, and as in Eq. (2) when they are next to the fast one.

  (1)

  (2)

The DROC measurement is performed by measuring the time delay accumulated in n periods 
of the slow pendulum and dividing it by nTs, as illustrated in Figure 2.

Therefore, it turns out that the relationship between measured DROC and actual frequencies 
of the two oscillators is.

Figure 1. Time delay slope changes as field masses are moved back and forth between the two pendulums with repetition 
period TR.
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the two sources. For example, if time resolution is 1 ns, a 1000 s run allows to determine the 
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and the difference between DROCs in the two configurations is then given by.

  (4)

In Eq. (4), the concept was introduced that relative frequency variations induced on pendu-
lums by the field masses are proportional to the Newtonian constant G through a proportion-
ality factor K. The analysis needed to identify the value of K is sketched in the next section. 
The value of G can be obtained by inverting Eq. (4) and is.

  (5)

Clearly, K must be known with relative uncertainty smaller than the 10−5 target G accuracy of 
this experiment. In fact, this may well be the ultimate accuracy limit of this approach.

As for measurement resolution, it is also shown in the next section that the relative effect on 
pendulum frequency obtainable by a geometrical change in mass distribution around the bob 
can be on the order of 10−7. It appears therefore clear that a target differential frequency stabil-
ity of at least 10−12 should be looked for in designing the two oscillators. Other than that, the 
requirements for time interval measurement resolution are instead benign, both because the 
S/N ratio of pendulum signals is expected to be quite good (more on this in the following) and 
because the DROC type A uncertainty can be expected to improve as the averaging time to the 
power 3/2, much faster than the typical power ½ of averaging on white noise [1]. The intuitive 
explanation for this is in the fact that a linear regression on the scatterplot of delay data versus 
time will in fact yield a statistical uncertainty improving as the square root of the number of 
measurements (which is proportional to time), but then the result is divided by elapsed time 
to get the DROC, which produces the power 3/2 improvement law.

3. Field mass configuration

For the calculation of the gravitational effect on frequency, the relative extra acceleration aM 
given to the bob by the system of field masses is the relevant parameter. In fact, for small 

Figure 2. Measurement scheme of the DROC (time delay rate of change).
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oscillations of the bob along x, its angular frequency is given by the square root of (ag + aM)/x, 
with ag = gx/L. The relative frequency change y induced by field masses will then be (aM/ag)/2.  
A peculiarity of the experiment discussed here, with field masses centered on both sides of 
the bob, is that both ag and aM vanish at rest position, but their ratio does not, as both are 
linear in x for small displacements. This fact gives this scheme a great advantage over other 
approaches, because it maximizes the effect exactly where field masses are closest to sensors. 
For example, this is not the case for free-fall experiments, which see the effect vanish along 
with aM where the sensing object spends most of its time, at the apogee of its parabolic flight.

An analysis of the arrangement under discussion, with two equal masses symmetrically cen-
tered on either side of the bob rest position, yields for the effect on pendulum frequency.

  (6)

where L is the pendulum length, R and a are radius and half distance of field masses between 
centers, RE is the Earth’s radius, and shown densities are those of the Earth and field masses. 
Γ(0) is the value at x = 0 of a geometrical shape factor which is discussed below. It is interesting 
to point out in Eq. (6) that only the density of field masses is relevant for the size of the effect 
and not their total mass, other than in the fact that, for a given gap between them, the ratio 
R/a depends slightly on mass size. Also interesting is to notice that, other than hidden in the 
size of the gap that must host it, the test mass (which is the bob) does not appear in Eq. (6). 
This is because neither gravitational acceleration in play, from the Earth or from field masses, 
depends in any way on the mass of the bob.

The shift of Eq. (6) is expected for small oscillations. However, neither acceleration is 
strictly linear, which yields the well-known non-isochronism of the simple pendulum 
plus, relevant for this experiment, a nontrivial tie with the extra gravitational pull. So, 
while it is easy to find frequency and shift for small oscillations, as the relative extra 
acceleration can then be considered constant over the swing, nontrivial calculations are 
necessary for wider swings.

The field masses adopted for the experiment are cylinders of heavy metal positioned, for the 
“near” configuration, at either side of the bob as shown in Figure 3a. The metal could be plati-
num or, more cheaply, tungsten, but copper is chosen for budget reasons in the preliminary 
phases. The reason for adopting a cylindrical shape lies in the much higher uniformity of the 
additional recalling acceleration provided by this shape to a bob displaced from the rest point, 
with respect to the case of a spherical field mass shape. In Figure 3b a plot is given of such 
additional acceleration (relative to ag) versus bob displacement in a 1 m pendulum, calculated 
for two tungsten field masses 85 mm in diameter and 117 mm long, spaced by an 8 mm gap 
to host a 5 mm spherical bob in between.

The resulting fractional frequency increase ynear can be calculated with a suitable integration, 
which is quite straightforward for oscillation amplitudes not exceeding the uniformity region. 
The expression of Γ(x) used in Figure 3b, written with η = w/a and ξ = x/a, is.

  (7)
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It should be pointed out here that shape factor of the cylindrical field masses was chosen in this 
calculation to optimize the uniformity of the effect, as shown in Figure 3b. The absolute dimen-
sion of the masses, instead, was designed to best fit the chosen geometry of the vacuum chamber, 
whose relevant part of the realization is shown in Figure 4. The chamber is realized with commer-
cial 10 inch ConFlat flanges for the vertical body assembly, which will host both pendulums. Two 
thin steel tubes were welded across it to provide tunnels for the passage of the movable field mass 
system. These tubes are 100 mm in diameter and cannot therefore host cylinders greater than say 
90 mm in diameter, together with their cradle which will be necessary for their management.

While the expression of Eq. (7) is valid for one pendulum in the “near” configuration, the 
effect on the other pendulum of field masses in that position must also be studied because it 

Figure 4. Detail of the lower chamber of the UHV vacuum system, showing the two thin steel tubes that allow 
management of field masses without feedthroughs by keeping them outside the vacuum vessel.

Figure 3. (a) Sketch of the near arrangement of two cylindrical field masses and (b) variations along x, elongation of 
the bob from rest position, of the recall acceleration aM produced by the two field masses divided by the relevant g 
component ag.
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gives raise to the relative frequency change yfar of the “far” configuration which appears in Eq. 
(4). As a matter of fact, this effect is not so small, given the fact that the two pendulums are 
contained in the same vacuum vessel of Figure 4.

In order to facilitate this calculation, while increasing the signal by a factor of two, the idea 
was conceived to design the field mass system as a periodic structure. In fact, it can easily be 
shown that increasing w, the length of the field mass cylinders, would cause a signal reduc-
tion which would take the signal to vanish if the length is taken to infinity. This happens 
because such a structure would produce no field gradient in the longitudinal direction. Only 
a modulation along x of the mass density can produce a field gradient. The periodic structure 
which is planned, with a density switch between ρM and zero (or the lower density of another 
material) for every length of 2 w, will produce a periodic field gradient along x which van-
ishes at the center of all regions of uniform density. A pendulum centered at such vanishing 
gradient points will experience an increased frequency when positioned in correspondence 
with the higher density material and a symmetrically decreased frequency when positioned 
in correspondence with the lower density one.

By placing the two pendulums inside the vacuum vessel at a distance 2 w from each other, 
within a periodic field mass system so conceived, as shown in Figure 5, the measured DROC 
will be doubled because while one pendulum is pulled up, the other one is pulled down. The 
opposite will then happen after the whole field mass system is displaced by 2 w to invert the 
centering of the two pendulums.

In practice, an infinite length of the field mass system cannot obviously be deployed, and the 
structure must be truncated at some point. In Figure 6, a calculation is shown of the expected 
relative gravitational extra acceleration in the case of a nine-mass-long truncated periodic 
structure. The material of field masses was assumed to be tungsten, dimensions were the 
same of Figure 3, and the density of air in between masses was neglected.

Details of acceleration uniformity around the rest point are given in Figure 7 for both posi-
tions of the two pendulums, at the center of the middle field masses (upper curve) and at the 
center of the first air gap at their right (lower curve). It can be noticed that the latter is asym-
metric. This is because the truncated periodic structure is asymmetric with respect to that 
point, with five masses on one side and only four on the other one. However, the effect on 
frequency of such asymmetry is expected to vanish to first order, as long as the rest point of 
the pendulum is correctly centered. In any case, centering of the pendulums will be important 
for accuracy as much as uniformity of the extra acceleration. Nevertheless, it can be noticed 
that a subtraction of the slanting baseline in the lower curve will make it appear very similar 

Figure 5. Scheme of the periodic field mass principle. Rest positions of the two bobs are shown (black dots). The circle 
in the middle represents the outline of the lower vacuum chamber through whose tunnels, shown in Figure 4, the field 
mass systems go.
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It should be pointed out here that shape factor of the cylindrical field masses was chosen in this 
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gives raise to the relative frequency change yfar of the “far” configuration which appears in Eq. 
(4). As a matter of fact, this effect is not so small, given the fact that the two pendulums are 
contained in the same vacuum vessel of Figure 4.

In order to facilitate this calculation, while increasing the signal by a factor of two, the idea 
was conceived to design the field mass system as a periodic structure. In fact, it can easily be 
shown that increasing w, the length of the field mass cylinders, would cause a signal reduc-
tion which would take the signal to vanish if the length is taken to infinity. This happens 
because such a structure would produce no field gradient in the longitudinal direction. Only 
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Figure 5. Scheme of the periodic field mass principle. Rest positions of the two bobs are shown (black dots). The circle 
in the middle represents the outline of the lower vacuum chamber through whose tunnels, shown in Figure 4, the field 
mass systems go.
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to the upper curve for what concerns uniformity. Since both remain within +/− 10−5 up to 7 mm 
either side of the center, integration of the extra gravitational effect will be straightforward for 
peak pendulum oscillation amplitudes up to 7 mm if the target accuracy is at the 10−5 level.

In any case, all geometrical characteristics of the field mass system affect the proportionality con-
stant K of Eq. (4), including the uniformity of their mass density and their stability in operational 
environmental conditions (like temperature expansion or deformation under mechanical stress). 
Adequate care must then be taken in design, realization, and handling of the field mass system.

To be truthful, in this respect, the experiment presented here is no different from any other 
experiment that was or will be tried to measure G. Revisiting the geometry of the field mass 
system for accuracy optimization will then be necessary after the concept is proven, which 

Figure 6. Calculated relative extra acceleration for a pendulum positioned at x from the center of a periodic field mass 
structure truncated to nine masses.

Figure 7. Relative uniformity of the extra acceleration for a pendulum positioned at the center of the middle masses 
(upper display) and one positioned at the center of the first gap (lower display), as a function of x, distance from the 
center of a nine-mass-long periodic structure. Uniformity was optimized here by trimming η = w/a.
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is the real target of the present work. Such an operation will most likely belong to a national 
metrology institute and not to a university. What this effort wants to prove is that no real 
obstacle exists in this approach on the way to an accuracy of 10−5, other than problems that 
may come from accuracy and stability of the field mass system.

More benign is the requirement on positioning of the bob’s trajectory with respect to active 
masses. In fact, it turns out that both in the horizontal and vertical direction, the extra accel-
eration features an extreme versus trajectory positioning, as shown in Figures 8 and 9, respec-
tively: a minimum in the center for the lateral direction and a maximum a little above masses’ 
gravity centers for the vertical.

The vertical displacement of the maximum is due to the extra vertical pull down that field 
masses exert if they are moved lower than the bob, which adds to Earth’s gravity and hence 
to recall force, until they get too far down to be relevant. Such maximum is (a2 + w2)/3 L above 
the masses’ gravity centers, which turns out to be almost 3 mm for the assumed masses. The 

Figure 8. Relative variation of extra pull for lateral displacement of the bob’s trajectory from the symmetry plane 
between field masses.

Figure 9. Relative variation of the relevant effect for vertical displacements of the bob’s trajectory from the plane of mass 
centers.
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relative shift is below 7∙10−4, which must be evaluated only to 1% for an accuracy contribution 
well below 10−5, and the vertical positioning tolerance is 0.2 mm either side of the maximum, 
just like that of transverse horizontal positioning.

4. Pendulum design and optimization

The pendulums to be used in the experiment should be designed with the double target in 
mind of maximizing both accuracy and differential stability.

For accuracy, they should be “ideal,” meaning that in their behavior they should not differ from 
the description that can be made with a mathematical model, supported by an adequate experi-
mental characterization, in a way that can make G measurements uncertain by more than the 
desired accuracy. To this aim, all non-idealities affecting differential measurements between 
the two configurations of the field mass system should be considered. The main problem in this 
respect seems to be the uncertainty in the position of the center of mass of the pendulum given 
by the nonvanishing mass of the suspension relative to the bob. This shifts high the effective 
center of mass in a different way for the attraction of the Earth and that of the field mass system.

For differential frequency stability, which should exceed 10−12 for a full repetition period TR, 
three main characteristics should be optimized in design and realization. They are:

1. Environmental sensitivity, especially versus temperature

2. Amplitude-to-frequency conversion, which induces frequency variations if the oscillation 
amplitude is not constant

3. Quality factor Q of the resonator, which is relevant in two ways: to obtain a long time con-
stant in case of free decay operation [1] and to maximize stability with a given S/N ratio in 
case of sustained oscillations

Stability against environmental changes may be particularly critical for temperature, if not 
addressed, because at least a few ppm per Kelvin must be assumed for the linear expansion 
coefficient of the suspension, unless some kind of compensation is made. This is a quite com-
mon practice in pendulum clocks, but the demand in this application is severe. Even in the 
case of a successful compensation by a factor of ten of a low-expansion suspension material 
(e.g., tungsten, with its 4.3 ppm/K), the requirement would still be for a temperature differ-
ential between the two pendulums of the order of a few K for the necessary 10−12 differential 
frequency stability. It is true that the two pendulums are contained in the same vacuum vessel, 
which can be temperature stabilized, but an excellent thermalization scheme must certainly be 
devised for the purpose. It is assumed here that gold plating of the inner surface of the vacuum 
vessel or if necessary cylindrical gold-plated mirrors focusing the two suspensions [14] onto 
each other are the best bet to this aim, but a detailed discussion of the problem is out of the 
scope of this paper. What instead can be done at the pendulum design phase is implementa-
tion of a temperature compensation scheme. To this aim, tungsten is used for the suspension of 
the bob, and aluminum is deployed in an expansion compensation structure as shown below.
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Amplitude-to-frequency (or period) conversion is a well-known problem of pendulum clocks, 
because period-to-period instability of the kick turns into frequency instability through such 
connection, and famous in this perspective is the solution proposed by Christiaan Huygens 
in his 1657 patent of making an initial ribbon section of the suspension wrap on cycloidal 
profiles each side as it swings back and forth. However, neither Salomon Coster (who built 
the first such device, still shown in Boerhaave Museum in Leiden) nor anyone later appeared 
to be able to take full advantage of Huygens’ idea, presumably because realizing a faithfully 
cycloidal profile is very difficult, as its curvature diverges in the cusp, where the shape is 
most important for small oscillations, which is where pendulum clocks are operated for wear 
minimization and consequent long-term stability.

In the model chosen for this experiment, pictured in Figure 10a with the bob in between field 
masses, the pendulum suspensions are made of tungsten wires hanging between two cylin-
ders on which they wrap and unwrap. The wires are two for each pendulum, converging on 
the bob, for removal of the degeneracy of the two orthogonal modes, and the wire section 
above the cylinders is dimensioned for temperature compensation in a scheme that includes 
an aluminum structure to fix the length of the upper part of the wires.

Cylinders are technologically very easy to fabricate, contrary to the cycloidal case, and very 
good ones are common in modern machines, which makes them easy to obtain and cheap. In 
this work, dowel pins and specifically wrist pins are employed. The latter are very well recti-
fied and have a hard surface because they must bear high forces with little friction in connect-
ing pistons to rods in ICE power trains. As for amplitude-to-frequency conversion, deploying 
circular profiles does not realize a completely isochronous pendulum like Huygens showed 
true for a cycloidal profile; nevertheless, they produce a period vs. amplitude curve which 
shows a minimum at a certain amplitude value which is related to the diameter D of the cyl-
inders. For that magic amplitude, the pendulum is then locally isochronous, and operation 
exactly at that amplitude shows no amplitude-to-frequency conversion. This means that the 
effect on frequency of amplitude variations vanishes if the amplitude is set correctly and that 
it depends quadratically on the amplitude error from that magic value in a way that makes it 
possible to achieve the necessary stability.

Figure 10. (a) Picture of the pendulum configuration chosen for this work, with the bob hanging between field masses, 
and (b) period versus amplitude curve of such pendulum compared to the one of a mathematical pendulum. Length is 
about 250 mm and D is 22 mm. The experimental points are superimposed on the measured section of the curve.
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The period versus amplitude curve is compared to that of a mathematical pendulum in 
Figure 10b. The shape is still parabolic, but the vertex is moved from the vanishing ampli-
tude point to an amplitude which can be chosen and adapted to the desired pendulum 
energy by suitably designing D, as shown in [15]. Period measurements, compared to the 
theory in Figure 10b, were taken on a 0.25-m-long pendulum with cylinders of 22 mm in 
diameter.

In fact, since at the apex of the parabola the two curves of Figure 10b show the same curva-
ture, their local description is well known to be

  (8)

which means that amplitude deviations Δθ from the minimum period spot must not exceed 4 
μ rad to keep the first term at the 10−12 level. On the other hand, a period-to-period amplitude 
reduction is unavoidable due to energy loss and is related to it by

  (9)

which means that the minimum pendulum quality factor Qm necessary to keep the amplitude 
from decreasing more than the acceptable limit Δθ in one period is

  (10)

For example, if θmin = 0.075 rad, as in the case of Figure 10b, the quality factor must be greater 
than about 104 to keep the period (and the frequency) within 10−12 for one period, and a Q of 
107 will keep the desired frequency stability for less than an hour at most. Luckily, because 
it’s only the differential frequency stability that must be very stable, this requirement applies 
only to the difference of the two pendulum quality factors, provided they are both oscillating 
at the sweet amplitude spot. If it can be assumed that both quality factors are the same within 
say 10%, a Q of 107 would be enough to guarantee that the desired differential stability is kept 
for a full working day. This would be a long enough time for two full cycles of the repetition 
rate of the experiment if the system of field masses is kept in one position for a couple of hours 
and then moved to the other position for another couple of hours. Such is the situation for an 
experiment based on a pair of pendulums operated in free decay mode, and it could possibly 
be improved more if the two quality factors are within 1% of each other, in which case the 
experiment could go on for almost a week. Modeling out the effect may also be possible to 
some extent, as silently assumed in [1], and might further increase the useful duration of the 
experiment between periodic operations of amplitude reset, but this gets more complicated.

Alternatively, at the light of the experimented difficulty in obtaining consistently the extremely 
high Q values which are needed for the discussed reasons if the free decay mode must be 
adopted, a sustained oscillation approach can be tried for the two pendulums. In this per-
spective, a synchronous forcing term must be applied to the pendulum, designed to exactly 
recover the energy lost by friction. The best for stability and most efficient way of doing this 
would be a sine-wave force F applied in phase with the velocity u of the bob. This approach 
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avoids pulse timing and duration problems often encountered in the past by pendulum clock 
makers. The amplitude of such forcing term can be regulated in closed loop, by an auto-
matic gain control (AGC) arrangement, to exactly compensate the dissipated power Pd at the 
desired swing amplitude. This requires the average delivered mechanical power < Fu > to be

  (11)

Since the energy e stored in the pendulum swing is proportional to the amplitude squared 
and u is linear with amplitude, it appears that the desired force is proportional to amplitude, 
as it might be intuitively expected. However, this is true only if Q is constant with amplitude, 
which turns out not to be the case for the adopted pendulum design. An analysis of what were 
felt to be the two main dissipation mechanisms for this structure was given in [1] and showed 
that in both cases the Q limitation is proportional to some power κ of the amplitude. In detail, 
periodic stretching of the wires under varying tension and their bending as they wrap and 
unwrap on the cylinders produce Q limitations which are inversely proportional to the square 
of the amplitude for the former (Qs ∝ θ−2, where s stands for stretching) and proportional to the 
amplitude’s three-halves power for the latter (Qb ∝ θ3/2, where b stands for bending). Within 
that simplified theory, cyclic length variations of wires were overlooked, and only stretching 
under varying tension and bending on the cylinders were analyzed for small oscillations. 
Expressions obtained for the corresponding Q limitations (Qs and Qb, respectively) were

  (12)

  (13)

which shows that κs = −2 and κb = 3/2. Here ε0 is the static strain imposed on wires by the 
weight of the bob, φ is the wires’ diameter, and Qf is the intrinsic Q of the wire material. The 
total Q of the pendulum can then be obtained as

  (14)

and features a maximum Q value at an angular swing amplitude θmax which can both be cal-
culated from Eqs. (12) through (14).

An example of such a Q dependence on amplitude is given in Figure 11a as calculated from 
Eq. (14) for a pendulum which could be suitable for the G experiment (L = 1 m and D = 4 mm), 
built with 4 μm Tungsten wires and a spherical 4.5 mm tungsten bob. The resulting peak 
force that is necessary to keep the bob swinging at the given amplitude according to Eq. (11) 
is shown in Figure 11b, where the strange effect appears that, in the branch before the mini-
mum, weaker forcing terms are needed to maintain greater amplitudes.

A comprehensive campaign to confirm the theory in all conditions has not been completed 
yet as this book is going in press. In particular, Q values in excess of several millions were 
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not observed yet in the limited range of configurations that were staged, which suggests that 
there may be other dissipation mechanisms worth studying, but it seems unlikely that a more 
complete analysis may not confirm the general shape of these curves. In fact, experimental 
results obtained by analyzing free decay ringdown amplitude data clearly show that such Q 
maximum exists. Further experiments are in progress, as well as the analysis of such addi-
tional dissipative phenomena as belt friction, squeeze film energy loss [16], and more trivially 
dissipation in the structure holding the experimental arrangement.

What must be underlined here is that, due to the Q behavior shown in Figure 11, Eq. (11) 
points to a criticality for AGC stability, because amplitude stabilization cannot be reached 
if increasing the amplitude requires a reduction of the forcing term. The derivative of the 
required force with respect to amplitude must be positive for AGC stability, which imposes 
the selection of a swing amplitude in a region where the dominant dissipation mechanism is 
such that κ < 1. If κ > 1 the AGC will be unstable, and if κ = 1 it will not be effective because the 
necessary force does not depend on amplitude. Conversely, given a desired swing amplitude, 
as dictated, for example, by the range of acceptable field uniformity of Figure 7, the design of 
pendulum suspensions should observe the specification of placing the desired amplitude in a 
range where AGC stability is guaranteed.

The best choice in this respect appears to be a design which positions the θmax at the desired 
oscillation amplitude, which is what was tried in the simulation of Figure 11, where the ampli-
tude of maximum Q was made to correspond at 10 mm with a bob peak excursion which can 
be judged desirable from the calculated effect uniformity shown in Figure 7. However, it must 
be pointed out here that this design problem is still open because also the minimum of the 
period, as illustrated in Figure 8, must be placed by design at the same oscillation amplitude, 
which implies a tight restriction on the acceptable values of D, the diameter of suspension 

Figure 11. (a) Q as a function of angular oscillation amplitude and (b) peak force value of the sinusoidal forcing term 
necessary to maintain the corresponding amplitude, calculated for a pendulum with 4-mm-diameter suspending 
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cylinders. These values are much smaller than the one adopted in the simulation of Figure 11  
to force the position of the Q maximum. Clearly, full confirmation of the Q theory must be 
carried out before the pendulum design can be finalized.

Another detail which is obviously relevant to this effect is the material of the suspension 
wires, because both Qf and ε0 in Eqs. (12) and (13) are material dependent, as well as the 
diameter φ of the wires, in its own way. Unfortunately, mechanical characterization of fibers 
is less than complete in the open literature, particularly for what concerns mechanical losses 
summarized by Qf. Therefore, tests were carried out in the laboratory with a purposely built 
apparatus [17] on promising candidates, mainly aiming at characterization of mechanical 
losses, creep, and linearity [18]. Para-aramid, SiC, basaltic, and carbon fibers were analyzed 
[19], as well as steel and tungsten metal wires. Glass and fused quartz are still waiting in line. 
No doubt, a final decision on this important item must be integrated with the whole design 
of the pendulum, as both analyzed loss mechanisms depend on ε0, and hence on φ, while the 
bending loss, in particular, depends also explicitly on φ.

Three more very important items must be considered in the design of the pendulum because 
they have an impact on the operation of the device, if not on its effectiveness in detecting the 
gravitational field modulation. They are the mode map of the pendulum, the oscillation detec-
tion system, and the excitation mechanism in case of forced oscillations’ operation mode.

The first one may affect obtainable Q values and introduce fastidious coherent noise in the 
detection signal. In fact, if undesired oscillation modes get excited, albeit weakly, they can 
easily increase the effective total damping by sucking energy into dissipative mechanisms 
which do not belong to the main pendulum mode, lowering its Q as a consequence, and on the 
other hand, they force detection data processing to face spurious coherent signals which may 
reduce S/N ratio and ultimately affect resolution. Getting rid of spurious signals is impossible 
by the Nyquist theorem because of aliasing if the sampling frequency is not at least double the 
highest undesired mode frequency, which forces the handling of a massive amount of data in 
a full sine-wave detection system. The most difficult undesired modes to deal with, however, 
are the ones that are closest in frequency to the pendulum mode [20], because they are the 
ones that are most easily excited. In particular, the transverse mode, whose degeneracy with 
the pendulum mode is removed by the double-wire suspension structure, remains close to it 
in frequency if the angle between wires is not too big.

Other modes that should be focused on are the double pendulum mode and the similar 
balance wheel mode, which are more separated in frequency but are easily excited as 
soon as some imperfection appears in the suspension structure or in the excitation sys-
tem, if present.

Given the boundary conditions emerging from the panorama spelled out here, care must be 
taken in designing and realizing excitation and detection systems for the two pendulums, 
to minimize the risk of getting undesired modes excited and affecting in this way damping 
and measurement resolution. Both optical and electromagnetic methods have been analyzed 
for both. All tested methods have their own advantages and problems, but all can serve the 
purpose if well implemented.
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5. Attitude control

One final problem must be addressed here to give a complete picture of the complexity of 
this apparently very simple experiment: the attitude of the whole apparatus with respect to 
the vertical direction, as defined by the Earth’s local gravity vector, can affect the operation of 
pendulums and must therefore be guaranteed to be adequately accurate and stable in time, if 
necessary by active attitude control. Two different problems must be addressed in this respect 
as both the absolute tilt and its stability are relevant, in different ways.

The absolute verticality is important because the two cylinders must be guaranteed to be 
horizontal for the symmetry of the swing, which in turn guarantees the positioning of the 
minimum period in amplitude space (the curve of Figure 10 was calculated for the case of two 
cylinders at the same level). Because the pendulums are two, this issue is complicated by the 
need to have both pairs of suspension cylinders aligned on the same horizontal plane.

The attitude stability is particularly critical in the case of low sampling-rate detection, like 
simple flyby time stamping at half periods, because of the heavy aliasing of seismic angular 
noise [1] that it produces. In Figure 12, a series of background seismic power spectrums is 
reported, as collected in different locations of the global seismographic network [21]. A peak 
at about 0.2 Hz appears in all of them, which is produced by low damping surface Rayleigh 
waves excited by ocean waves hammering the shores, extended with reduced intensity at 
higher frequencies. Because of their low frequency, it is very difficult to filter out such seismic 
angular noise contributions.

Work done to attack this problem includes passive and active attitude control [22, 23]. However, 
passive filtering was quickly understood to be inadequate for the purpose, not only because of 
its awkwardness at such low frequencies but also because of the need for stiffness of the struc-
ture holding pendulums to prevent detrimental effects of recoil from pendulums on attitude  
stability and damping itself. Active stabilization was then decided to be necessary, and work 

Figure 12. Background seismic power spectrums, as collected in different locations of the global seismographic network. 
High noise at periods above 1s (i.e. Fourier frequencies below 1 Hz) is caused by far travelling Rayleigh surface-waves 
excited by ocean waves.
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was done to realize for the purpose a high-sensitivity tiltmeter [24] with sub-nanoradian res-
olution and special half-pole actuators based on thermoelectric devices [25]. The problem of 
substantial angular stability improvement by active control is not trivial because a tiltmeter 
with the necessary sensitivity was never seen with resonance-limited bandwidth above, say, 
10 Hz, which provides not much more than a decade range in the Fourier frequency domain for 
open-loop gain increase from the zero-dB level of the loop bandwidth allowed by a typical 45° 
phase margin to the desired open-loop gain at the seismic peak sub-Hertz frequency. The half-
pole actuator was developed for this reason, so that a loop-gain roll-off of 30 dB/dec could be 
achieved without resorting to a digital control, allowing in this way a guaranteed-stability servo 
operation with low-frequency open-loop gain in excess of 40 dB.

Nevertheless, the seismic angular noise problem is expected to be much more benign in case 
of acquisition of the whole sine-wave swing signal at a conveniently high sampling rate. For 
this reason, and because acquisition of the full sine wave is necessary anyway for oscillation 
support, unless the free ringdown approach is adopted, the choice was made to develop a 
suitable detection method for this purpose. The latter can be electromagnetic, based on the 
generation of an e.m.f. in a wire swinging through a magnetic field together with the suspend-
ers of the bob, or optical, based on a linear position-sensitive detector deployed to translate 
the bob’s position in an electrical signal.

The first approach has the advantage of measuring the bob’s velocity, with which the forcing 
term should be in phase, and is therefore to be preferred for phase accuracy of the oscillation 
loop but implies the risk of introducing in the experiment undesired electromagnetic forces 
which could be greater than the weak gravitational force that must be measured.

The second approach, on the contrary, is less risky of introducing undesired forces but 
requires the generation of a sine-wave signal in quadrature with the detected position for the 
implementation of the forcing term. This must be performed very accurately to obtain oscilla-
tions at exactly the resonance frequency because any error from quadrature would introduce 
a frequency shift, which in turn may build an error on G if it’s not adequately common moded 
between the two pendulums.

Similar considerations hold for the forcing sine wave, which can be realized with just a 
current-carrying wire attached to the suspenders in a voice coil type of device in the first 
approach and if Q is high enough could be implemented by radiation pressure in the second.

6. Accuracy budget

A tentative accuracy budget for the experiment described here is given in [1]. Because of the 
highly efficient time and frequency metrology approach, only geometrical uncertainties are 
expected to be relevant at the level of 10−5, provided the necessary differential stability of 
10−12 can be achieved. This is clearly a big “if,” as discussed above, because it assumes that 
seismic and mode leakage problems are adequately solved. However, it can be in principle 
obtained if the limitation is electronic noise. It must be noted here for completeness that the 
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best pendulum clocks ever realized [13] were probably not differentially stable better than 
10−9 at the target 104 s averaging time, which means that 60 dB improvement is necessary. 
Although this is granted on paper by projected S/N and Q, actually achieving it is still a big 
challenge. On the positive side, it is worth pointing out here that energy-induced amplitude 
changes [11] do not affect frequency if operation is kept at the minimum period isochronous 
point and that an approach to oscillation support aimed at overcoming pulse stability prob-
lems by moving to a sine-wave excitation system similar to that employed in high-stability 
quartz oscillators will remove one of the worst contributions to instability.

This said, it can be seen in Table 1 that most geometrical contributions to uncertainty impose 
quite loose requirements at the target accuracy level of 10−5, with the sole exception of size and 
positioning of field masses, which must be guaranteed at high accuracy. While other contri-
butions enjoy relaxed specifications granted by parabolic minima which are specific of this 
configuration, the latter do not and must comply with specs which are similar to any other big 
G experiment. However, the expectation that accuracy on G may be limited by control on this 
single geometry contribution ushers the possibility of doing even better than 10−5 if resources 
were to become available to improve the accuracy of field masses. A summary of such uncer-
tainties is reported in Table 1, as listed in Ref. [1], where the reader can find more details and 
a deeper discussion on accuracy.

7. Conclusions

A new experiment was presented for the determination of the Newtonian constant. It is based 
on a time and frequency metrology approach consisting in the measurement of the small 
frequency difference between two freely oscillating pendulums via their time delay rate of 
change. A system of dense field masses is moved back and forth between the two, alternately 
increasing one frequency and reducing the other and vice versa. The increase in resolution by 
averaging is fast in this case because the limiting noise is white delay noise, which yields σy(τ) 

Effect Relative bias Uncertainty Conditions

Shift at bob’s vertical position 6.7∙10−4 <10−6 < 50 μm uncertainty in a, w

Bob’s vertical position 0 2∙10−6 0.2 mm full tolerance

Bob’s lateral position 0 1.7∙10−6 0.2 mm full tolerance

Non-isochronism −1.8∙10−5 < 10−7 Operation at minimum period

Spacing between twin masses 0 6∙10−6 0.4 μm gap uncertainty

Field masses’ dimensions 0 6∙10−6 1 μm uncertainty

Field masses’ density 0 5∙10−6

Table 1. Accuracy budget projection based on 1-m-long 4 μm tungsten fibres, 6-mm-diameter suspension cylindrical 
profiles, a swing amplitude of 0.01 rad, and a 5 mm tungsten bob. The position of field masses’ gravity center is assumed 
known with <300 nm uncertainty.
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proportional to τ−3/2. This fact is unique among experiments for the determination of G and 
offsets the poor signal size problem allowing to focus the design on accuracy rather than S/N 
ratio. It remains to be shown that differential stability in the 10−12 region can be obtained with 
consistency for two similar pendulums of the design which has been sketched here. This seems 
to be a long shot when considering the absolute stability achieved by the best Shortt clock [13], 
because it requires an improvement of more than three orders of magnitude with respect to it, 
at the target few hours (TR) averaging time. However, it is not unreasonable to think that two 
adequately similar pendulums can be realized, and if they are within 100 mm of each other, 
it can be expected that g uniformity may be adequately stable in time to support the assump-
tion. A description of the apparatus and a discussion of pendulum design optimization for 
this experiment were offered in detail, pointing out problems and possible solutions. Work is 
in progress on the preparation of the experiment, considering both a free decay solution and 
pendulum operation with active support of oscillations and amplitude control. It is expected 
that an accuracy of 10−5 may be obtained for G with the proposed approach, limited only by 
the accuracy of field masses’ size and positioning, and that it may be possible in a metrology 
laboratory to reduce limiting geometrical uncertainties enough to push it into the 10−6 range.

Acknowledgements

The author wishes to thank for encouragement and discussions Robert Drullinger, Stephan 
Schlamminger, and Bill Phillips of NIST and Valter Giaretto, Mario Lavella, and Lamberto 
Rondoni of the Politecnico di Torino. Special thanks go to Luca Maffioli for his master’s thesis 
on the pendulum analysis and to Meccanica Mori of Parma for the TIG welding of the thin 
steel tubes to the experimental chamber. The author also wishes to acknowledge the support 
of the US Department of Commerce and NIST through the Precision Measurements Grant 
Program, Award ID number 70NANB15H348.

Author details

Andrea De Marchi

Address all correspondence to: andrea.demarchi@polito.it

Department of Electronics and Telecommunications, Politecnico di Torino, Torino, Italy

References

[1] De Marchi A. A frequency metrology approach to Newtonian constant G determination 
using a pair of extremely high Q simple pendulums in free decay. Journal of Physics: 
Conference Series. 2016. DOI: 10.1088/1742-6596/723/012046

Measuring ‘Big G’, the Newtonian Constant, with a Frequency Metrology Approach
http://dx.doi.org/10.5772/intechopen.75635

71



best pendulum clocks ever realized [13] were probably not differentially stable better than 
10−9 at the target 104 s averaging time, which means that 60 dB improvement is necessary. 
Although this is granted on paper by projected S/N and Q, actually achieving it is still a big 
challenge. On the positive side, it is worth pointing out here that energy-induced amplitude 
changes [11] do not affect frequency if operation is kept at the minimum period isochronous 
point and that an approach to oscillation support aimed at overcoming pulse stability prob-
lems by moving to a sine-wave excitation system similar to that employed in high-stability 
quartz oscillators will remove one of the worst contributions to instability.

This said, it can be seen in Table 1 that most geometrical contributions to uncertainty impose 
quite loose requirements at the target accuracy level of 10−5, with the sole exception of size and 
positioning of field masses, which must be guaranteed at high accuracy. While other contri-
butions enjoy relaxed specifications granted by parabolic minima which are specific of this 
configuration, the latter do not and must comply with specs which are similar to any other big 
G experiment. However, the expectation that accuracy on G may be limited by control on this 
single geometry contribution ushers the possibility of doing even better than 10−5 if resources 
were to become available to improve the accuracy of field masses. A summary of such uncer-
tainties is reported in Table 1, as listed in Ref. [1], where the reader can find more details and 
a deeper discussion on accuracy.

7. Conclusions

A new experiment was presented for the determination of the Newtonian constant. It is based 
on a time and frequency metrology approach consisting in the measurement of the small 
frequency difference between two freely oscillating pendulums via their time delay rate of 
change. A system of dense field masses is moved back and forth between the two, alternately 
increasing one frequency and reducing the other and vice versa. The increase in resolution by 
averaging is fast in this case because the limiting noise is white delay noise, which yields σy(τ) 

Effect Relative bias Uncertainty Conditions

Shift at bob’s vertical position 6.7∙10−4 <10−6 < 50 μm uncertainty in a, w

Bob’s vertical position 0 2∙10−6 0.2 mm full tolerance

Bob’s lateral position 0 1.7∙10−6 0.2 mm full tolerance

Non-isochronism −1.8∙10−5 < 10−7 Operation at minimum period

Spacing between twin masses 0 6∙10−6 0.4 μm gap uncertainty

Field masses’ dimensions 0 6∙10−6 1 μm uncertainty

Field masses’ density 0 5∙10−6

Table 1. Accuracy budget projection based on 1-m-long 4 μm tungsten fibres, 6-mm-diameter suspension cylindrical 
profiles, a swing amplitude of 0.01 rad, and a 5 mm tungsten bob. The position of field masses’ gravity center is assumed 
known with <300 nm uncertainty.

Metrology70

proportional to τ−3/2. This fact is unique among experiments for the determination of G and 
offsets the poor signal size problem allowing to focus the design on accuracy rather than S/N 
ratio. It remains to be shown that differential stability in the 10−12 region can be obtained with 
consistency for two similar pendulums of the design which has been sketched here. This seems 
to be a long shot when considering the absolute stability achieved by the best Shortt clock [13], 
because it requires an improvement of more than three orders of magnitude with respect to it, 
at the target few hours (TR) averaging time. However, it is not unreasonable to think that two 
adequately similar pendulums can be realized, and if they are within 100 mm of each other, 
it can be expected that g uniformity may be adequately stable in time to support the assump-
tion. A description of the apparatus and a discussion of pendulum design optimization for 
this experiment were offered in detail, pointing out problems and possible solutions. Work is 
in progress on the preparation of the experiment, considering both a free decay solution and 
pendulum operation with active support of oscillations and amplitude control. It is expected 
that an accuracy of 10−5 may be obtained for G with the proposed approach, limited only by 
the accuracy of field masses’ size and positioning, and that it may be possible in a metrology 
laboratory to reduce limiting geometrical uncertainties enough to push it into the 10−6 range.

Acknowledgements

The author wishes to thank for encouragement and discussions Robert Drullinger, Stephan 
Schlamminger, and Bill Phillips of NIST and Valter Giaretto, Mario Lavella, and Lamberto 
Rondoni of the Politecnico di Torino. Special thanks go to Luca Maffioli for his master’s thesis 
on the pendulum analysis and to Meccanica Mori of Parma for the TIG welding of the thin 
steel tubes to the experimental chamber. The author also wishes to acknowledge the support 
of the US Department of Commerce and NIST through the Precision Measurements Grant 
Program, Award ID number 70NANB15H348.

Author details

Andrea De Marchi

Address all correspondence to: andrea.demarchi@polito.it

Department of Electronics and Telecommunications, Politecnico di Torino, Torino, Italy

References

[1] De Marchi A. A frequency metrology approach to Newtonian constant G determination 
using a pair of extremely high Q simple pendulums in free decay. Journal of Physics: 
Conference Series. 2016. DOI: 10.1088/1742-6596/723/012046

Measuring ‘Big G’, the Newtonian Constant, with a Frequency Metrology Approach
http://dx.doi.org/10.5772/intechopen.75635

71



[2] Rothleitner C, Schlamminger S. Measurements of the Newtonian constant of gravitation, 
G. Review of Scientific Instruments; 88(11):111101. DOI: 10.1063/1.4994619

[3] Quinn T, Speake C, Richman S, Davis R, Picard A. A new determination of G using two 
methods. Physical Review Letters. 2001;87:111101

[4] Schlamminger S, Holzschuh E, Kundig W, Nolting F, Pixley RE, Schurr J, Straumann 
U. Measurement of Newton’s gravitational constant. Physical Review D. 2006;74:082001

[5] Parks HV, Faller JE. Simple pendulum determination of the gravitational constant. 
Physical Review Letters. 2010;105:110801

[6] Schwarz JP, Robertson DS, Niebauer TM, Faller JE. A free-fall determination of the 
Newtonian constant of gravity. Science. 1998;282:2230

[7] Fixler JB, Foster GT, McGuirk JM, Kasevich MA. Atom interferometer measurement of 
the Newtonian constant of gravity. Science. 2007;315:74

[8] Lamporesi G, Bertoldi A, Cacciapuoti L, Prevedelli M, Tino GM. Determination of the 
Newtonian gravitational constant using atom interferometry. Physical Review Letters. 
2008;100:050801

[9] De Marchi A, Ortolano M, Berutto M, Periale F. Simple pendulum experiment for the 
determination of the gravitational constant G: Progress report. In: Proceedings of 6th 
Symposium on Frequency Standards and Metrology; September 10-14, 2001; Fife. 2002. 
p. 538

[10] Berutto M, Ortolano M, Mura A, Periale F, De Marchi A. Toward the determination of 
G with a simple pendulum. IEEE Transactions on Instrumentation and Measurement. 
2007;56:249. DOI: 10.1109/TIM.2007.890785

[11] Berutto M, Ortolano M, De Marchi A. The period of a free-swinging pendulum in adia-
batic and non-adiabatic gravitational potential variations. Metrologia. 2009;46:119

[12] Sullivan D, Allan D, Howe D, Walls FL. Characterization of Clocks and Oscillators. NIST 
Technical Note. Obtainable from NIST, US Department of Commerce. Vol. 1337. 1990

[13] Van Baak T. A Dream Pendulum Clock. 2009. leapsecond.com

[14] Giaretto V. Private Communication. 2008

[15] Maffioli L. Mathematical modelization and experimental validation of a simple pendu-
lum for the measurement of the Newtonian constant G [Master Thesis]. Politecnico di 
Torino; 2013

[16] Schlamminger S, Hagedorn CA, Gundlach JH. Indirect evidence for Lévy walks in 
squeeze film damping. Physical Review D. 2010;81:123008

[17] Ceravolo R, De Marchi A, Pinotti E, Surace C, Zanotti Fragonara L. A new testing 
machine for the dynamic characterization of high strength low damping fiber materials. 
In: Experimental Mechanics. Vol. 57. New York: Springer LLC; 2016. p. 10. ISSN: 0014-
4851. DOI: 10.1007/s11340-016-0208-4

Metrology72

[18] Zanotti Fragonara L, Pinotti E, Ceravolo R, Surace C, De Marchi A. Non-linearity detec-
tion and dynamic characterisation of aramid and silicon carbide fibres. International 
Journal of Lifecycle Performance Engineering. 2016;2:15. Interscience Publishers. ISSN: 
2043-8656. DOI: 10.1504/IJLCPE.2016.082708

[19] Ceravolo R, De Marchi A, Pinotti E, Surace C, Zanotti Fragonara L. Measurement of weak 
non-linear response of Kevlar® fibre damaged by UV exposure. Composite Structures. 
Elsevier; 2017. p. 12. ISSN: 0263-8223. DOI: 10.1016/j.compstruct.2017.10.056

[20] Ortolano M: Misura della costante gravitazionale con pendolo in vuoto [PhD thesis]. 
Politecnico di Torino; 2001

[21] Berger J, Davis P, Ekstroem G. Ambient earth noise: A survey of the global seismo-
graphic network. Journal of Geophysical Research. 2004;109. DOI: B11307

[22] Berutto M. Isolamento da trumore meccanico di una piattafoma [PhD thesis] Politecnico 
di Torino; 2004

[23] Mura A. Measurement of the Newtonian gravitational constant with dynamic pendu-
lum [PhD thesis]. Politecnico di Torino; 2009

[24] Berutto M, Ortolano M, Periale F, De Marchi A. Realization and metrological character-
ization of a compact high-resolution pendulum tiltmeter. IEEE Sensors Journal. 2005; 
5(1):26-31

[25] De Marchi A, Giaretto V. The elusive half-pole in the frequency domain transfer function 
of Peltier thermoelectric devices. Review of Scientific Instruments. 2011;82:034901. DOI: 
10.1063/1.3558696

Measuring ‘Big G’, the Newtonian Constant, with a Frequency Metrology Approach
http://dx.doi.org/10.5772/intechopen.75635

73



[2] Rothleitner C, Schlamminger S. Measurements of the Newtonian constant of gravitation, 
G. Review of Scientific Instruments; 88(11):111101. DOI: 10.1063/1.4994619

[3] Quinn T, Speake C, Richman S, Davis R, Picard A. A new determination of G using two 
methods. Physical Review Letters. 2001;87:111101

[4] Schlamminger S, Holzschuh E, Kundig W, Nolting F, Pixley RE, Schurr J, Straumann 
U. Measurement of Newton’s gravitational constant. Physical Review D. 2006;74:082001

[5] Parks HV, Faller JE. Simple pendulum determination of the gravitational constant. 
Physical Review Letters. 2010;105:110801

[6] Schwarz JP, Robertson DS, Niebauer TM, Faller JE. A free-fall determination of the 
Newtonian constant of gravity. Science. 1998;282:2230

[7] Fixler JB, Foster GT, McGuirk JM, Kasevich MA. Atom interferometer measurement of 
the Newtonian constant of gravity. Science. 2007;315:74

[8] Lamporesi G, Bertoldi A, Cacciapuoti L, Prevedelli M, Tino GM. Determination of the 
Newtonian gravitational constant using atom interferometry. Physical Review Letters. 
2008;100:050801

[9] De Marchi A, Ortolano M, Berutto M, Periale F. Simple pendulum experiment for the 
determination of the gravitational constant G: Progress report. In: Proceedings of 6th 
Symposium on Frequency Standards and Metrology; September 10-14, 2001; Fife. 2002. 
p. 538

[10] Berutto M, Ortolano M, Mura A, Periale F, De Marchi A. Toward the determination of 
G with a simple pendulum. IEEE Transactions on Instrumentation and Measurement. 
2007;56:249. DOI: 10.1109/TIM.2007.890785

[11] Berutto M, Ortolano M, De Marchi A. The period of a free-swinging pendulum in adia-
batic and non-adiabatic gravitational potential variations. Metrologia. 2009;46:119

[12] Sullivan D, Allan D, Howe D, Walls FL. Characterization of Clocks and Oscillators. NIST 
Technical Note. Obtainable from NIST, US Department of Commerce. Vol. 1337. 1990

[13] Van Baak T. A Dream Pendulum Clock. 2009. leapsecond.com

[14] Giaretto V. Private Communication. 2008

[15] Maffioli L. Mathematical modelization and experimental validation of a simple pendu-
lum for the measurement of the Newtonian constant G [Master Thesis]. Politecnico di 
Torino; 2013

[16] Schlamminger S, Hagedorn CA, Gundlach JH. Indirect evidence for Lévy walks in 
squeeze film damping. Physical Review D. 2010;81:123008

[17] Ceravolo R, De Marchi A, Pinotti E, Surace C, Zanotti Fragonara L. A new testing 
machine for the dynamic characterization of high strength low damping fiber materials. 
In: Experimental Mechanics. Vol. 57. New York: Springer LLC; 2016. p. 10. ISSN: 0014-
4851. DOI: 10.1007/s11340-016-0208-4

Metrology72

[18] Zanotti Fragonara L, Pinotti E, Ceravolo R, Surace C, De Marchi A. Non-linearity detec-
tion and dynamic characterisation of aramid and silicon carbide fibres. International 
Journal of Lifecycle Performance Engineering. 2016;2:15. Interscience Publishers. ISSN: 
2043-8656. DOI: 10.1504/IJLCPE.2016.082708

[19] Ceravolo R, De Marchi A, Pinotti E, Surace C, Zanotti Fragonara L. Measurement of weak 
non-linear response of Kevlar® fibre damaged by UV exposure. Composite Structures. 
Elsevier; 2017. p. 12. ISSN: 0263-8223. DOI: 10.1016/j.compstruct.2017.10.056

[20] Ortolano M: Misura della costante gravitazionale con pendolo in vuoto [PhD thesis]. 
Politecnico di Torino; 2001

[21] Berger J, Davis P, Ekstroem G. Ambient earth noise: A survey of the global seismo-
graphic network. Journal of Geophysical Research. 2004;109. DOI: B11307

[22] Berutto M. Isolamento da trumore meccanico di una piattafoma [PhD thesis] Politecnico 
di Torino; 2004

[23] Mura A. Measurement of the Newtonian gravitational constant with dynamic pendu-
lum [PhD thesis]. Politecnico di Torino; 2009

[24] Berutto M, Ortolano M, Periale F, De Marchi A. Realization and metrological character-
ization of a compact high-resolution pendulum tiltmeter. IEEE Sensors Journal. 2005; 
5(1):26-31

[25] De Marchi A, Giaretto V. The elusive half-pole in the frequency domain transfer function 
of Peltier thermoelectric devices. Review of Scientific Instruments. 2011;82:034901. DOI: 
10.1063/1.3558696

Measuring ‘Big G’, the Newtonian Constant, with a Frequency Metrology Approach
http://dx.doi.org/10.5772/intechopen.75635

73



Chapter 5

Optical Radiation Metrology and Uncertainty

Manal A. Haridy and Affia Aslam

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.75205

Provisional chapter

DOI: 10.5772/intechopen.75205

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons  
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,  
distribution, and reproduction in any medium, provided the original work is properly cited. 

Optical Radiation Metrology and Uncertainty

Manal A. Haridy and Affia Aslam

Additional information is available at the end of the chapter

Abstract

Metrology is the science of measurement. The chapter contains introductory mate-
rial, terminology and units used in the optical radiation metrology. Optical radiation 
metrology provides an applied understanding of essential optical measurement con-
cepts, techniques and procedures. In this chapter, we focus on electromagnetic radia-
tion with wavelengths from approximately 100 to 2500 nm. We describe the principles 
used to measure photometry and radiometry quantities such as total flux, intensity, 
illuminance, luminance, radiance, exitance and irradiance. Measurement results should 
be expressed in terms of estimated value and an associated uncertainty, we provide 
an explanation to how to estimate and build the uncertainty budget of measurements. 
Metrology is based on measurements and comparisons. The unit is a unique name we 
assign to the measures of that quantity. Base standards must be both accessible and 
invariable. The metrological traceability chain is the sequence of measurement stan-
dards and calibrations that were used to relate the measurement result to the reference. 
The uncertainty budgets for photometric and radiometric quantities are represented in 
this chapter.
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radiations with wavelengths from approximately 100 to 2500 nm. We describe the prin-
ciples used to measure photometry and radiometry quantities such as total flux, intensity, 
illuminance, luminance, radiance, exitance and irradiance. Measurement results should be 
expressed in terms of estimated value and an associated uncertainty, we provide an expla-
nation how to estimate and build the uncertainty budget of measurements. Metrology is 
based on measurements and comparisons. We measure each quantity in its own units, by 
comparison with a standard. The unit is a unique name we assign to the measures of that 
quantity. Base standards must be both accessible and invariable. The metrological trace-
ability chain is the sequence of measurement standards and calibrations that were used to 
relate the measurement result to the reference.

Optical radiations bathe the world in which we live [1]. Very early in our history, it was 
observed that light can be produced by different means depending upon the daily rotation 
of the earth. New ways of using light were discovered to effect changes upon many of the 
materials we found in the world around us. In this chapter, we discuss some of the procedures 
and equipment necessary to obtain accurate measurements of the amount of optical radiation 
that will act on our activities. The principal purpose of the science of photometry is to evalu-
ate visible radiation or light, so the results match as closely as possible with a normal human 
observer exposed to that radiation. In order to achieve this aim, one must take into account 
the light stimulus, the radiation entering the eye and the characteristics of the visual organ 
that produce the relevant sensation of light [2]. Light is essential for vision, the world is only 
visible when light reflected or emitted by objects reaches our eye. Light is a kind of energy 
and is portion of a broad range of the electromagnetic spectrum. The visible light spectrum 
is a little part of this spectrum, between 380 and 760 nm (see Figure 1). The total light energy 
emitted from a source or falling on a surface can be measured. This total energy can cover a 
part of the visible spectrum, including ultraviolet and infrared energy. The branch of science 
in which we study light measurement is known as photometry and a subset of the broader 
field is radiometry.

Figure 1. Electromagnetic radiation spectrum [3].
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2. Optical radiation quantities

To understand the measurement of several basic optical radiation quantities used to determine 
absolute amounts of optical radiation, it is useful to study the two aspects of quantitative optical 
radiation measurements: the geometrical optical radiation that we wish to measure and the spec-
tral components of this special geometrical compound of radiation [1]. Our discussion concen-
trates on electromagnetic radiation with wavelengths from approximately 100 to 2500 nm, which 
is an extension from the visible wavelength range, which is approximately from 380 to 760 nm.

2.1. Solid angle (ω)

A solid angle (ω) is defined by the surface area of a sphere subtended by the lines and by the 
radius of that sphere, as shown in Figure 2. The dimensionless unit of solid angle is the stera-
dian, with 4π steradians in a full sphere [4].

2.2. Radiometry

Radiometry is the science of electromagnetic (EM) radiation measurement. The spectrum cov-
ered by the science of radiometry is the range from 100 to 2500 nm.

2.2.1. Radiant flux (Φe)

Radiant flux is defined as power emitted, transmitted or received in the form of radiation as 
shown in Figure 3 [4]. The International System of Units (SI unit) of radiant flux is Watt.

2.2.2. Radiant intensity (Ie)

Quotient of the radiant flux (dΦe) leaving the source and propagated in the element of solid 
angle ( d𝜔𝜔 ) containing the given direction divided by the element of solid angle. The SI unit for 
radiant intensity is Watt/steradian (Watt/sr) as shown in Figure 4 [4].

Figure 2. Solid angle [5].
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   I  e   =   
d  Φ  e   ____ d𝜔𝜔    (1)

2.2.3. Radiance (Le)

Quotient of the radiant flux (  Φ  
e
   ) leaving, arriving at or passing through an element of surface 

at this point and propagated in directions defined by an elementary cone containing [7]:

   L  e   =   
 d   2   Φ  e   ____________  dω ⋅  dA .   cos ε    (2)

where is the angle between the normal of the surface element and the direction of propaga-
tion under question. The SI unit for radiance is Watt/square meter steradian (Watt/m2 sr), as 
shown in Figure 5.

2.2.4. Irradiance (Ee)

Flux per unit area passing through a plane from all directions in one hemisphere [7].

Figure 3. Radiant flux [6].

Figure 4. Radiant intensity [6].

Metrology78

   
 E  e   =   ∫ 

2π
  
 
    L  e  (ε, ϕ )   cos  ε dω (ε, ϕ )

    
=   ∫ 

ϕ=0
  

2π
      ∫ 
ε=0

  
2π

      L  e  (ε, ϕ )   cos  ε  sin  ε dε dϕ   ω  0    
   (3)

  ω  
0
   = 1 sr unit of solid angle.

where the angles ε and ϕ are as shown in Figure 6.

The amount of incident radiant flux per unit area of a plane surface in Watt/square meter 
(Watt/m2), as shown in Figure 7.

2.2.5. Exitance (M) [4]

It is the radiant flux emitted by a surface per unit area. The SI unit of radiant exitance is the 
amount of radiant flux per unit area leaving a plane surface in W/m2, as shown in Figure 8.

2.3. Photometry

Photometry has a unique position in the science of physics. It is influenced by vision science 
and is a branch of optical radiometry. The science of photometry has been developed to 
quantify light and its properties accurately [9, 10]. The human eye reacts to electromagnetic 

Figure 5. Radiance.

Figure 6. Illustrating the definition of the irradiance produced on a plane by  a distributed source [7].
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radiation only in a certain part of the spectrum, that is, to a limited range of wavelengths 
or frequencies. The radiation of sufficient power within a wavelength range of approxi-
mately 380–830 nm only can stimulate the eye, and it is called light. Light enters the human 
eye through the cornea, a tough transparent membrane on the front of the eye as shown in 
Figure 9. It is refracted by the cornea and lens to form an image on the retina at the back of 
the eye. The sensitivity of the human eye to radiation is not the same for each of the wave-
lengths. This subjective nature of the visual system sets photometric quantities apart from 
purely physical quantities.

2.3.1. Photopic and scotopic vision

The human eye adapts to the changes in brightness and color conditions, but a lux meter 
does not. [12]. CIE measured the light-adapted eyes of a sizeable sample group and compiled 
the data into the CIE standard luminosity function. During the daytime, the cones of the eye 
are the primary receptors and the response is called photopic vision, . During the nighttime, 
the rods become the primary receptors, and the eye’s response changes to scotopic vision,. 
Relative spectral sensitivity here means the ratio of the perceived optical stimulus to the 

Figure 7. Irradiance [8].

Figure 8. Exitance [8].
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incident radiant power as a function of wavelength, normalized to unity at the maximum of 
the function [13] (see Figure 10). Special optical filters are used to give photometers nearly 
the same response as the average eye.

The photometric quantities are related to the corresponding radiometric quantities by the CIE 
standard luminosity function. We can think of the luminosity function as the transfer function 
of a filter which approximates the behaviors of the average human eye as shown in Figure 11.

2.3.2. Luminous flux (  Φ  
v
   )

Quantity derived from radiant flux (  Φ  
e
   ) by evaluating the radiation according to its action 

upon the CIE standard photometric observer, as shown in Figure 12 [4]. The unit is lumen 
(lm) = 683 × W (Watt) × V(λ).

Figure 9. Human eye structure [11].

Figure 10. The photopic vision V(λ) and the scotopic vision V’(λ) functions [14].
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the function [13] (see Figure 10). Special optical filters are used to give photometers nearly 
the same response as the average eye.

The photometric quantities are related to the corresponding radiometric quantities by the CIE 
standard luminosity function. We can think of the luminosity function as the transfer function 
of a filter which approximates the behaviors of the average human eye as shown in Figure 11.

2.3.2. Luminous flux (  Φ  
v
   )

Quantity derived from radiant flux (  Φ  
e
   ) by evaluating the radiation according to its action 

upon the CIE standard photometric observer, as shown in Figure 12 [4]. The unit is lumen 
(lm) = 683 × W (Watt) × V(λ).

Figure 9. Human eye structure [11].

Figure 10. The photopic vision V(λ) and the scotopic vision V’(λ) functions [14].
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2.3.3. Luminous intensity (  I  
v
   )

Quotient of the luminous flux (  Φ  
v
   ) leaving the source and propagated in the element of solid 

angle  dω  containing the given direction divided by the element of solid angle, as shown in 
Figure 12 [4]. The unit is candela (cd).

   I  v   =   
d  Φ  v   ____ d𝜔𝜔    (4)

2.3.4. Illuminance (  E  
v
   )

Quotient of the luminous flux Φ v incident on  asurface divided by the area dA of that element, 
as shown in Figure 12 [4]. The unit is lux (lx) and is equal to lumen per square meter (lm/m2).

   E  v   =   
d  Φ  v   ____ dA    (5)

Figure 11. Relationship between radiometric units and photometric units.

Figure 12. Luminous flux, luminous intensity, illuminance, and luminance [15].
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2.3.5. Luminance (  L  
v
   )

Quantity defined by the formula [4]:

   L  v   =   
d  Φ  v   ___________ dA . cos θ .  dω    (6)

where  d  Φ  
v
    is the luminous flux transmitted by an elementary beam passing through the given 

point and propagating in the solid angle  d𝜔𝜔  containing the given direction,  dA  is the area of a 
section of that beam containing the given point, B is the angle between the normal to that sec-
tion and the direction of the beam. The unit is candelas per square meter (cd/m2).

3. Traceability and the accreditation of the laboratories

The traceability to the SI unit through a National Metrology Institute (NMI) is defined as the 
property of the result of measurement or the value of a standard whereby, it can be related 
to stated references, usually national or international standards, through an unbroken chain 
of comparisons all having stated uncertainties [16], as shown in Figure 13. Traceability only 
exists when metrological evidence is collected to document the traceability chain and quan-
tify its associated measurement uncertainties. In most cases, the ultimate reference for a mea-
surement result is the SI definition of the appropriate unit and the stated reference is usually 
a national laboratory that maintains a realization of the unit. This is a practical way of stating 
traceability and reflects the usual chain of measurement comparisons.

Figure 13. The traceability chain [17].
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Generally, goods and services are produced by a process that operates under a quality sys-
tem. Nowadays, people are more conscious about quality more than before. In modern 
economy, calibration and testing activities play important roles in assuring the quality of 
goods, services and purchasing decisions. Currently, quality system registration seems to be 
a popular method of providing assurance of product quality, but it has become quite clear 
that, for testing and calibration activities, this is not good enough. The internationally recog-
nized standard for the accreditation of laboratories is ISO 17025: General Requirements for 
the Competence of Testing and Calibration Laboratories [18]. Accreditation is verification that 
a laboratory has executed a featured system appropriate for its operations. It is verification of 
measurement uncertainty claims and of traceability to the International System of Units (SI). 
Accreditation facilitates trade and commerce by eradicating technical barriers to trade. The 
accreditation of calibration laboratories is particularly important through its impact on inter-
national commerce. A final benefit is that an accredited laboratory has been found to perform 
better in interlaboratory comparisons than unaccredited laboratories, providing additional 
assurance to users of accredited services [19].

4. Evaluating and expressing uncertainty

Accurate measurements and associated uncertainty propagation are the backbone of science 
and industry [20]. Measurements have been the cornerstone of the quantitative sciences since 
antiquity. However, concepts, terms, units and methods for expressing measurement results 
[21] and their uncertainties are still contested despite extensive and successful attempts at 
international consensus resulting in the International Vocabulary of Metrology (VIM) and 
Guide to the Expression of Uncertainty in Measurement (GUM) more than a decade ago [22–26]. 
The philosophy of measurement also continues to be a dynamic field of enquiry [27–30] rekin-
dled since the early 2000s [31–34] when the Bureau International des Poids et Mesures (BIPM) 
began to engage in chemical measurements in addition to physical measurements.

The concept of uncertainty as a quantifiable attribute is relatively new in the history of measure-
ment, although error and error analysis have long been a part of the practice of measurement 
science or metrology. It is now widely recognized that, when all of the known or suspected 
components of error have been evaluated and the appropriate corrections have been applied, 
there still remains an uncertainty about the correctness of the stated result, that is, a doubt 
about how well the result of the measurement represents the value of the quantity being mea-
sured. The uncertainty of the result of the measurement reflects the lack of exact knowledge of 
the value of the measurand. The result of a measurement after correction for recognized sys-
tematic effects is still only an estimate of the value of the measurand because of the uncertainty 
arising from random effects and from imperfect correction of the result for systematic effects.

The ideal method for evaluating and expressing the uncertainty of the result of a measurement 
should be applicable to all kinds of measurements and to all types of input data used in mea-
surements. Also, the actual quantity used to express uncertainty should be directly derivable 
from the components that contribute to it. A measurement is a set of operations having the 
object of governing values of a particular quantity called the measurand. In general, the result 
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of a measurement is only an estimate of the value of the measurand and thus is complete only 
when accompanied by a statement of the uncertainty of that estimate [35]. In general, a mea-
surement has imperfections that give rise to an error in the measurement result. Traditionally, 
an error is viewed as having a random component and a systematic component. Random error 
presumably arises from unpredictable variations of influence quantities. It is not possible to 
compensate for the random error of a measurement, but increasing the number of observa-
tions can usually reduce it. A systematic error arises from a recognized effect of an influence 
quantity on a measurement; it can be quantified and a correction can be applied to compensate 
for the effect. According to GUM [35], it is assumed that the result of a measurement has been 
corrected for all recognized significant systematic effects and that every effort has been made 
to identify such effect. Uncertainty components are grouped into two categories based on their 
method of evaluation “A” and “B.” Both types are based on probability distributions, and the 
uncertainty resulting from either type is quantified by variances or standard deviations. Type 
A standard uncertainty is calculated from series of repeated observations and is the square 
root of the statistically estimated variance (i.e., the estimated standard deviation). Type B stan-
dard uncertainty is also the square root of an estimated variance, but rather than being evalu-
ated by repeated measurement, it is obtained from an assumed probability density function 
based on the degree of belief that an event will occur. This degree of belief is usually based 
on a pool of comparatively reliable information such as previous measurement data, experi-
ence, manufacturer’s specifications, calibration certificates, and so on. Once all the uncertainty 
components, either Type A or Type B, have been estimated, they are used to calculate the com-
bined standard uncertainty, which equals the square root of the combined variance obtained 
from all variance and covariance components using what is termed as the law of propagation 
of uncertainty. When reporting expanded uncertainty instead of combined standard uncer-
tainty, the multiplying factor k should be stated as well as the approximate level of confidence 
associated with the interval covered by the expanded uncertainty.

The Joint Committee for Guides in Metrology (JCGM) provides authoritative guidance docu-
ments to address measurement needs and is currently developing an expanded Guide to 
the Expression of Uncertainty in Measurement (GUM) that will provide measurement uncer-
tainty propagation methods for a range of applications. Therefore, a comprehensive set of 
new worked examples to support modern industrial and research practices and to promote 
the consistent evaluation of measurement uncertainties are needed for this document [36].

4.1. Type A evaluation

In the simplest case (and fortunately the most usual one) of Type A evaluation, the input 
quantity Xi is treated as a random variable and is reasonably well approximated by the normal 
distribution [10]. The best estimate of the expected value of the random variable is denoted by 
xi and is obtained from the arithmetic mean of a series of n independent observations obtained 
under the same conditions of measurement:

  
(7)
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The individual observations   x  i,k      differ in values because of random variations in the influence 
quantities or random effects. The experimental variance of the observations, which estimates 
the variance of the probability distribution of Xi, is given by:

  (8)

This estimate of variance and its positive square root,  S( x  i,k   )  termed as the experimental stan-
dard deviation, characterize the variability of the observed values   x  i,k   .

According to statistical theory, the best estimate for the variance of the mean xi is given by:

  (9)

The Type A standard uncertainty for that component is then defined as the positive square 
root of this last quantity:

  (10)

The number of observations n should be large enough to ensure that xi provides a reliable 
estimate of the expectation for Xi and that   u   2 ( x  i   )  provides a reliable estimate of the variance of 
the expectation for Xi. The number of degrees of freedom, defined as   v  i   = n − 1  should always 
be given when Type A evaluations of uncertainty components are documented.

4.2. Type B evaluation

With Type B evaluation, an estimate xi of an input quantity Xi has not been obtained from 
repeated observations and the associated standard uncertainty is evaluated by scientific  
judgment based on all of the available information on the possible variability of Xi [10]. This 
information may include previous measurement data, experience, manufacturer’s specifica-
tions, calibration certificates, and so on. Type B evaluation calls for insight based on experi-
ence and general knowledge; it is, however, as reliable as Type A evaluation.

4.3. The typical uncertainty budget for measurements

4.3.1. The components of a typical uncertainty budget for luminous intensity calibrations 
(detector-based method) [9]

The following are the descriptions of the abovementioned uncertainty budget items [9] (Table 1):

• Calibration of reference photometers: The uncertainty of reference photometer is stated 
in the calibration report issued by the national laboratory or the calibration laboratory that 
conducted the calibration.
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• Long-term drift of the reference photometers between recalibrations: Estimated maxi-
mum drift of the reference photometer between calibrations.

• Photometer temperature variation: If the photometer has no temperature controller or 
temperature sensor, and the laboratory temperature is kept within

• Distance scale of the bench (0.5 mm in 3 m)

• Alignment of the lamp distance (1 mm in 3 m)

• Spectral mismatch correction

• Lamp-current regulation (0.01%)

• Lamp-current measurement uncertainty (0.01%)

• Stray light

• Random noise (lamp drift, etc.)

• Repeatability of the test lamp (including alignment)

4.3.2. The typical uncertainty budget for total luminous flux measurements

The components of a typical uncertainty budget for total luminous flux measurements are 
shown in Table 2 [9].

Uncertainty factor Type Relative standard uncertainty (%)

Calibration of reference photometers B

Long-term drift of the reference photometers between recalibrations B

Photometer temperature variation A

Distance scale of the bench (0.5 mm in 3 m) B

Alignment of the lamp distance (1 mm in 3 m) A

Spectral mismatch correction B

Lamp-current regulation (0.01%) A

Lamp-current measurement uncertainty (0.01%) B

Stray light B

Random noise (lamp drift, etc.) A

Repeatability of the test lamp (including alignment) A

Relative combined standard uncertainty

Relative expanded uncertainty (k = 2)

Table 1. Typical uncertainty budget for luminous intensity calibrations (detector-based method).
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The following are the descriptions of the abovementioned uncertainty budget items:

• Calibration of luminous-flux standard lamps: The uncertainty of the luminous-flux stan-
dard lamps is stated in the calibration report issued by the national laboratory or the cali-
bration laboratory that performed the calibration. This uncertainty normally includes the 
repeatability of the lamp.

• Aging of standard lamps: This uncertainty is calculated from the aging rate of the standard 
lamps and their calibration intervals. For example, if the aging rate is 0.02% per hour and 
the lamp is recalibrated every 50 h of its burning time, the uncertainty due to aging of the 
lamp is estimated to be 1.0%.

• Self-absorption correction: Uncertainty of the determination of the correction factor.

• Spectral mismatch correction: Uncertainty of the determination of the spectral mismatch 
correction factor u(SCF) which can be determined regarding Eq. (11) and according to ref-
erence [29] by the following Equation [10, 37]:

  (11)

where

is the relative spectral output of the test source;

 is the relative spectral output of the standard source;

 is the relative spectral responsivity of the photometer; and.

 is the spectral luminous efficiency function that defines a photometric measurement.

  (12)

Uncertainty factor Type Relative standard uncertainty (%)

Calibration of primary standard lamps B

Aging of standard lamps B

Self-absorption correction A

Spectral mismatch correction B

Repeatability of test lamps A

Spatial nonuniformity of the sphere response B

Lamp electrical control A

Relative combined standard uncertainty

Relative expanded uncertainty (k = 2)

Table 2. Typical uncertainty budget for luminous intensity calibration (source-based method) [9].
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• Repeatability of test lamps: Calculated as the standard deviation of the all measurements 
for each lamp.

• Spatial nonuniformity of the sphere response: This uncertainty is associated with differ-
ences of the angular intensity distribution of the test lamps and the standard lamp.

• Lamp electrical control [10]: The uncertainty of less than 0.01% in the calibration of voltme-
ter and standard resistor used for measuring and setting the electrical operating conditions 
of the lamps may result in 0.08% uncertainty in the lamp output.

5. Conclusion

In this chapter, we concentrate on the measurement of absolute amounts of optical radia-
tion, which requires careful definition for the photometric and radiometric quantities such as 
total flux, intensity, illuminance, luminance, radiance, exitance and irradiance. Also, it was 
necessary to distinguish between the difference of the exitance and irradiance quantities in 
the physical meaning. The metrological traceability chain is the sequence of measurement 
standards and calibrations that were used to relate the measurement result to the reference. 
To produce accurate, reproducible and international acceptable results, the measurement of 
absolute amounts of optical radiation needs careful and detailed consideration of a broad 
range of physical concepts. A measurement has imperfections that give rise to an error in the 
measurement result. Therefore, measurement results should be expressed in terms of esti-
mated value and an associated uncertainty. Actually, an error is viewed as having a random 
component and a systematic component. Random error presumably arises from unpredict-
able variations of influence quantities and is not possible to compensate for the random error 
of a measurement, but increasing the number of observations can usually reduce it. We pro-
vide an explanation to how to estimate and build the uncertainty budget of measurements for 
the most important quantities. The components of a typical uncertainty budgets for luminous 
intensity calibrations (detector-based method) and total luminous flux measurements are rep-
resented and explained in detail in this chapter.

Abbreviations

ω solid angle

ω0 Steradian unit of solid angle

EM electromagnetic radiation

SI unit International system of units

Le radiance

  Φ  
e
    radiant flux

  I  
e
    radiant Intensity
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• Repeatability of test lamps: Calculated as the standard deviation of the all measurements 
for each lamp.
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the physical meaning. The metrological traceability chain is the sequence of measurement 
standards and calibrations that were used to relate the measurement result to the reference. 
To produce accurate, reproducible and international acceptable results, the measurement of 
absolute amounts of optical radiation needs careful and detailed consideration of a broad 
range of physical concepts. A measurement has imperfections that give rise to an error in the 
measurement result. Therefore, measurement results should be expressed in terms of esti-
mated value and an associated uncertainty. Actually, an error is viewed as having a random 
component and a systematic component. Random error presumably arises from unpredict-
able variations of influence quantities and is not possible to compensate for the random error 
of a measurement, but increasing the number of observations can usually reduce it. We pro-
vide an explanation to how to estimate and build the uncertainty budget of measurements for 
the most important quantities. The components of a typical uncertainty budgets for luminous 
intensity calibrations (detector-based method) and total luminous flux measurements are rep-
resented and explained in detail in this chapter.

Abbreviations

ω solid angle

ω0 Steradian unit of solid angle

EM electromagnetic radiation

SI unit International system of units

Le radiance

  Φ  
e
    radiant flux

  I  
e
    radiant Intensity

Optical Radiation Metrology and Uncertainty
http://dx.doi.org/10.5772/intechopen.75205

89



Ee irradiance

ε the angle between the normal of the surface element and the direction of 
propagation

Ee irradiance

M exitance

CIE Commission Internationale del’Eclairage

V(λ) photopic vision (CIE Standard Luminosity Function)

V’(λ) scotopic vision

  Φ  
v
    luminous flux

  I  
v
    luminous intensity

  E  
v
    illuminance

Lv luminance

Author details

Manal A. Haridy1,2* and Affia Aslam2

*Address all correspondence to: manal_haridi@yahoo.com

1 Physics Department, Photometry and Radiometry Division, National Institute of 
Standards (NIS), Giza, Egypt

2 College of Science, University of Hail (UOH), Hail, Kingdom of Saudi Arabia (KSA)

References

[1] Gaertner AA. In: Cocco L, editor. Optical Radiation Measure ment, Modern Metrology 
Concerns. Croatia: InTech; 2012 Available from: http://www.intechopen.com/books/
modern-metrologyconcerns/optical-radiation-measurements. ISBN: 978-953-51-0584-8

[2] CIE. The Basis of Physical Photometry. 3rd Edition, PUBLICATION No 18.2 (TC-I .2) 
ISBN: 92-9034-01 8-5 ed. Vienna, Austria: Commission Internationale deL’Eclairage; 1983

[3] https://www.slideshare.net/OSRAMLEDlight/osram-os-led Fundamentals radiometry 
photometry v281111

[4] CIE: 1987, International Lighting Vocabulary”, Publication No 17.4, Commission 
Internationale deL’Eclairage, Vienna, Austria.

Metrology90

[5] https://spie.org/publications/fg11_p02_solid_angle?SSO=1

[6] http://www.writeopinions.com

[7] CIE: 1982, Methods of Characterizing The Performance of Radiometers and Photometers, 
Publication No: 53. ISBN: 92-9034-053-3, Commission Internationale deL’Eclairage, 
Vienna, Austria

[8] https://www.slideshare.net/naresh29/l3-emr

[9] DeCusatis C, editor. Handbook of Applied Photometry. Woodbury, New York: American 
Institute of Physics; 1997

[10] Haridy MA. The Realization of Luminous Flux Scale and its Application in Preparing 
Calibrated and Tested Lamps, Doctoral Thesis, College of Women. NIS Egypt and NRC 
Canada: Ein Shams University; 2008

[11] http://www.meritnation.com/ask-answer/question/explain-structure-of-human-eye/
human-eye-and-colourful-world/6729689

[12] CIE: 1983, The Basics of Physical Photometry, Publication No. 18.2, Commission 
Internationale deL’Eclairage, Vienna, Austria

[13] Köhler R. Handbook of Applied Photometry, Photometric and Radiometric Quantities. 
Woodbury, New York: American Institute of Physics; 1997

[14] http://www.chemistryviews.org/details/ezine/7897011/The_Future_of_Lighting.html

[15] http://rsagencies.co.za/lumens-for-the-laymen/:

[16] Traceability, NORAMET Document No. 7 (1997-04-23)

[17] http://www.accl-calibration.com/acclnews/19-Traceability-Chart/

[18] ISO/IEC 17025-1999 (International Standards Organization). General requirements for 
the competence of testing and calibration laboratory

[19] Canadian Association of Environmental Analytical Laboratories, Laboratory 
Accreditation – Proof of Performance, 1997 CAEAL Study

[20] EMPIR Call 2017, Industry, Fundamental, Normative and Research Potential. Advancing 
measurement uncertainty - comprehensive examples for key international standards. 
SRT-n02, Version: 1.0

[21] Marciano JB. Whatever Happened to the Metric System? How America Kept its Feet. 1st 
ed. New York: Bloomsbury; 2014

[22] JCGM. Evaluation of measurement data — Guide to the expression of uncertainty in 
measurement. Paris: Joint Committee for Guides in Metrology; 2008. JCGM 100:2008, 
GUM 1995 with minor corrections. Available at: http://www. bipm.org/utils/common/
documents/jcgm/JCGM_100_2008_E.pdf. [Accessed February 15, 2016]

Optical Radiation Metrology and Uncertainty
http://dx.doi.org/10.5772/intechopen.75205

91



Ee irradiance

ε the angle between the normal of the surface element and the direction of 
propagation

Ee irradiance

M exitance

CIE Commission Internationale del’Eclairage

V(λ) photopic vision (CIE Standard Luminosity Function)

V’(λ) scotopic vision

  Φ  
v
    luminous flux

  I  
v
    luminous intensity

  E  
v
    illuminance

Lv luminance

Author details

Manal A. Haridy1,2* and Affia Aslam2

*Address all correspondence to: manal_haridi@yahoo.com

1 Physics Department, Photometry and Radiometry Division, National Institute of 
Standards (NIS), Giza, Egypt

2 College of Science, University of Hail (UOH), Hail, Kingdom of Saudi Arabia (KSA)

References

[1] Gaertner AA. In: Cocco L, editor. Optical Radiation Measure ment, Modern Metrology 
Concerns. Croatia: InTech; 2012 Available from: http://www.intechopen.com/books/
modern-metrologyconcerns/optical-radiation-measurements. ISBN: 978-953-51-0584-8

[2] CIE. The Basis of Physical Photometry. 3rd Edition, PUBLICATION No 18.2 (TC-I .2) 
ISBN: 92-9034-01 8-5 ed. Vienna, Austria: Commission Internationale deL’Eclairage; 1983

[3] https://www.slideshare.net/OSRAMLEDlight/osram-os-led Fundamentals radiometry 
photometry v281111

[4] CIE: 1987, International Lighting Vocabulary”, Publication No 17.4, Commission 
Internationale deL’Eclairage, Vienna, Austria.

Metrology90

[5] https://spie.org/publications/fg11_p02_solid_angle?SSO=1

[6] http://www.writeopinions.com

[7] CIE: 1982, Methods of Characterizing The Performance of Radiometers and Photometers, 
Publication No: 53. ISBN: 92-9034-053-3, Commission Internationale deL’Eclairage, 
Vienna, Austria

[8] https://www.slideshare.net/naresh29/l3-emr

[9] DeCusatis C, editor. Handbook of Applied Photometry. Woodbury, New York: American 
Institute of Physics; 1997

[10] Haridy MA. The Realization of Luminous Flux Scale and its Application in Preparing 
Calibrated and Tested Lamps, Doctoral Thesis, College of Women. NIS Egypt and NRC 
Canada: Ein Shams University; 2008

[11] http://www.meritnation.com/ask-answer/question/explain-structure-of-human-eye/
human-eye-and-colourful-world/6729689

[12] CIE: 1983, The Basics of Physical Photometry, Publication No. 18.2, Commission 
Internationale deL’Eclairage, Vienna, Austria

[13] Köhler R. Handbook of Applied Photometry, Photometric and Radiometric Quantities. 
Woodbury, New York: American Institute of Physics; 1997

[14] http://www.chemistryviews.org/details/ezine/7897011/The_Future_of_Lighting.html

[15] http://rsagencies.co.za/lumens-for-the-laymen/:

[16] Traceability, NORAMET Document No. 7 (1997-04-23)

[17] http://www.accl-calibration.com/acclnews/19-Traceability-Chart/

[18] ISO/IEC 17025-1999 (International Standards Organization). General requirements for 
the competence of testing and calibration laboratory

[19] Canadian Association of Environmental Analytical Laboratories, Laboratory 
Accreditation – Proof of Performance, 1997 CAEAL Study

[20] EMPIR Call 2017, Industry, Fundamental, Normative and Research Potential. Advancing 
measurement uncertainty - comprehensive examples for key international standards. 
SRT-n02, Version: 1.0

[21] Marciano JB. Whatever Happened to the Metric System? How America Kept its Feet. 1st 
ed. New York: Bloomsbury; 2014

[22] JCGM. Evaluation of measurement data — Guide to the expression of uncertainty in 
measurement. Paris: Joint Committee for Guides in Metrology; 2008. JCGM 100:2008, 
GUM 1995 with minor corrections. Available at: http://www. bipm.org/utils/common/
documents/jcgm/JCGM_100_2008_E.pdf. [Accessed February 15, 2016]

Optical Radiation Metrology and Uncertainty
http://dx.doi.org/10.5772/intechopen.75205

91



[23] Dybkaer R. ISO terminological analysis of the VIM3 concepts ‘quantity’ and ‘kind-of-
quantity’. Metrologia. 2010;47:127-134

[24] JCGM. International vocabulary of metrology—Basic and general concepts and associ-
ated terms (VIM 3). 3rd edition. 2012. Available at: http://www.bipm.org/ utils/common/
documents/jcgm/JCGM_200_2008.pdf. [Accessed February 15, 2016]

[25] Zender R. Whims on VIM. Journal of International Federation of Clinical Chemistry. 
1992;4:115-116

[26] Page CH, Vigoureux PE. The International Bureau of Weights and Measures 1875-1975. 
Paris: National Bureau of Standards; 1975. Vol NBS Special Publication 420

[27] Tal E. Measurement in Science. In: Zalta EN, editor. Stanford Encyclopedia of 
Philosophy; 2015. Available at: http://plato.stanford.edu/entries/measurementscience/# 
Bib. [Accessed February 16, 2016]

[28] Boumans M, Hon G, Petersen AC. Error and Uncertainty in Scientific Practice. London: 
Pickering &Chatto; 2014

[29] Mari L, Giordani A. Modeling measurement: Error and uncertainty. In: Boumans M, Hon 
G, Petersen A, editors. Error and Uncertainty in Scientific Practice. London: Pickering 
&Chatto; 2014. pp. 79-96

[30] Giordani A, Mari L. Measurement, models, and uncertainty. IEEE Transactions on 
Instrumentation and Measurement. 2012;61(8):2144-2152

[31] Psillos S. Scientific Realism: How Science Tracks Truth. London: Routledge; 1999

[32] Giere RN. Explaining Science: A Cognitive Approach. Chicago: University of Chicago 
Press; 1988

[33] Giere RN. Cognitive Models of Science. Minneapolis: University of Minnesota Press; 
1992

[34] Giere RN. Scientific Perspectivism. Chicago: University of Chicago Press; 2006

[35] Guide to the Expression of Uncertainty in Measurement, First Edition, International 
Organization for Standardization (ISO), 1995

[36] EMPIR Call 2017 – Industry, Fundamental, Normative and Research Potential, SRT-n02, 
Version: 1.0

[37] Haridy MA. Uncertainty estimation of spectral mismatch correction factor for incan-
descent lamps. International Journal of Current Research and Academic Review. 
2015;3(7):262-273

Metrology92

Chapter 6

A New Statistical Tool Focused on Metrological Tasks

Eugene Charnukha

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.74872

Provisional chapter

DOI: 10.5772/intechopen.74872

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons  
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,  
distribution, and reproduction in any medium, provided the original work is properly cited. 

A New Statistical Tool Focused on Metrological Tasks

Eugene Charnukha

Additional information is available at the end of the chapter

Abstract

A set of mathematical tools based on the principle of probability of origin are presented 
and intended to directly account for all a priori and experimental information. The prin-
ciple of determining the probability of data origin, relatively the model of the experiment 
for evaluating the result of this experiment, is proposed. The application of this principle 
and its properties are described using the example of the trivial model of the direct exper-
iment. Estimates of the result of the experiment are compared for various algorithms, 
including normative ones, and for various types of experiments.

Keywords: stochastic models of metrology, uncertainty, probability metrics, range 
measure, calibration experiment, repeated, multiple, work measurements, a priori 
information

1. Introduction

The key point of the text is the principle of the probability of the origin of the data. We believe 
that it is useful before exposition of this principle and its consequences spell out some general 
speculations about the situation in metrology. Metrology as a technology needs a simple, 
well-established and understandable procedure for implementing its tasks. Metrology as a 
business tries to canonize and protect its methods from strangers. These peculiars prevent the 
use of new mathematical tools. Metrology in a narrow sense begins with the creation of the 
standard, continues by the construction of a calibration hierarchy, and ends with the calibra-
tion of the working instrument of measurement. Metrology in a broad sense is a component of 
the experiment everywhere where its main tools are used, namely, traceability to the standard 
and an estimation of uncertainty.
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Uncertainty is estimated using statistical tools. The peculiarity of statistical instruments appli-
cable in metrology is the essential role of a priori information in their work. The best way to 
obtain a priori information is a specially performed calibration experiment. In an ideal met-
rological experiment, the values of all model parameters are known and controlled except for 
one single parameter whose value is estimated.

Statistics without a priori information cannot be used as the metrological tool. But the origin 
of the a priori information can be different. For example, certain object does not in any way 
depend on the will of the observer, and, consequently, a calibration experiment is impossible. 
But it is possible to collect a lot of different data about this object and similar ones. Data can 
only be used to classify them and to monitor the evolution of the object. On the other hand, 
if we reformulate the accumulated database as a priori information for identifying an object 
class from new data, then this is already a metrological formulation of the problem. The esti-
mation of the absolute value characterizing the object is difficult because there is no direct 
traceability to the standard. But recognizing an object and estimating the magnitude of rela-
tive changes from a small amount of data can be formulated as a metrological task.

Usually, the data of the working experiment on the subject of observation are not numerous, 
but there is a priori information obtained in the calibration experiment. It is assumed that by 
the time of the working experiment this information is still relevant. Comparing the data and 
the model, we can estimate the observed state of the object.

An effective method—to compare the model used and the available data—is to estimate the 
probability that the data is generated by a source corresponding to the model. This prob-
ability is interpreted, in particular, as an estimate of the reliability of a particular value of the 
investigated quantity, described in the a priori model as an adjustable parameter. In other 
words, as an argument for the criterion to choose, one of the many variants of the measure-
ment model provides a description of the object under study.

In this text, an analysis of the features of traditional statistical tools [1] and some new tools to 
replace them is proposed. The dignity of new tools (in particular the rank measure) is signifi-
cantly a better universality, but its disadvantage is a large computing expenses.

The rank measure was first proposed and intuitively grounded in [2]. In paper [3], it was for-
mally justified. Some aspects of its application were discussed in Ref. [4]. Paper [5] describes 
the main tools and their applications for the method of converting the densities (MCD). In 
paper [6] the application of a rank measure to the type of experiment rarely used by metrology 
but widespread in technical disciplines is discussed. This is a simple interpretation of dynamic 
experiment. Its main features are as follows: enough data is collected, and a minimum number 
of observable factors are required to evaluate the values of many parameters of the model.

2. Models

Habitual models of the measurement experiment are constructed from the principal  f  and sto-
chastic  η  components, formally  M  (f, η) .  The principal component is a mathematical description 
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of the physical principle of the experiment. Usually, this is an arithmetic formula, but some-
times the algorithm decides equation or even numerical simulation.

The stochastic component is a description of the random (or considered to be) influence on 
the result of the experiment. Often, this description consists of a system of equivalent noise 
sources with some specified characteristics.

The components of the model are formalized as headings of procedures whose variables are 
divided into two parts—the variable values of which must be determined quite accurately by 
the time of the working experiment, and the variable  X  whose values are estimated from the 
data  D  is obtained as a result of the experiment   (M, D)  → X , where both the experimental data 
and the evaluated variables can be either simple or complex data structures.

The main purpose of the model is to formulate a prediction. For metrological tasks, we set 
the value of the controlled parameters of the model, and from it we obtain a data structure 
modeling experimental data. Two modeling methods that can be compared with the defini-
tions of probability have been distributed. The Monte Carlo method (MCM) is comparable 
to a countable probability, and the method of converting the densities (MCD) is comparable 
with the axiomatic probability.

In metrological statistics the most widespread one is the simple additive noise model (addi-
tive random error model)   d  

i
   = x +  η  

i
   , where   d  

i
    is the observed process;  x  is the value under mea-

surement (measurand) (is constant throughout the experiment); and   η  
i
    is a random impurity, 

at each time of measurement  i  having a different value. It is the simplest model of a direct 
measurement experiment. It is also called the trivial model.

It is important that it is a priori known about a random component. It is usually assumed that 
only the form of distribution of probability of the source of chance is known. It is necessary 
to estimate the value of the constant component (as a shift parameter of a known distribu-
tion) over a small number of data affected by a random error with zero shift (for simplicity 
of interpretation) but with a scattering magnitude of unknown magnitude. It is also assumed 
that the time between measurements is so large that the data sampling elements are statisti-
cally independent.

3. Normative identification of the trivial model

3.1. Sectorial formula

A trivial model with an unknown scattering parameter in accordance with mathematical sta-
tistics and normative documents of metrology is identified according to the formula (we call 
it the sectoral formula)    ̄  x   = s (D)  ± kS (D)  , where    ̄  x    is the estimate of the value of the measured 
quantity in the form of a confidence interval,  D  is experimental data,  s (D)   is the statistics used 
to estimate the value of the shift parameter of the distribution given by the model,  S (D)   is the 
statistics applied to estimate the scattering parameter and  k  is the coverage coefficient, which 
in general depends on the distribution law (both model and real) of the source of randomness, 
the number of repetitions of the experiment, both statistics, confidence and correction factors.
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tion) over a small number of data affected by a random error with zero shift (for simplicity 
of interpretation) but with a scattering magnitude of unknown magnitude. It is also assumed 
that the time between measurements is so large that the data sampling elements are statisti-
cally independent.

3. Normative identification of the trivial model

3.1. Sectorial formula

A trivial model with an unknown scattering parameter in accordance with mathematical sta-
tistics and normative documents of metrology is identified according to the formula (we call 
it the sectoral formula)    ̄  x   = s (D)  ± kS (D)  , where    ̄  x    is the estimate of the value of the measured 
quantity in the form of a confidence interval,  D  is experimental data,  s (D)   is the statistics used 
to estimate the value of the shift parameter of the distribution given by the model,  S (D)   is the 
statistics applied to estimate the scattering parameter and  k  is the coverage coefficient, which 
in general depends on the distribution law (both model and real) of the source of randomness, 
the number of repetitions of the experiment, both statistics, confidence and correction factors.
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The property of the formula is illustrated in Figure 1. In this figure, by MCM the cloud of possible 
results of a multiple experiment is calculated and is delineated by means of a formula. The for-
mula is linear, therefore divides the cloud of estimates into two regions by oblique boundaries.

The change in the coefficient of coverage will lead to a shift in the boundaries of the blue and 
red sectors, and a corresponding change in the confidence probability is due to a change in the 
ratio of the shares of estimates within and outside the confidence interval.

The advantage of the formula is that whatever the dispersion of the source of chance, you will 
still get your 95% of correct estimates. This is illustrated by the superposition of clouds with 
different dispersions.

The disadvantage is the strong dependence of the error probability on the standard deviation. 
If by will of chance the data is close, then the probability of error is large, greater than the con-
fidence probability. If the data is very scattered, then the confidence interval is too wide, with 
that the actual probability of making a mistake is negligible. The confidence interval is located 
at the level value of statistics from the border blue/red to the border red/blue. But in the sta-
tistical limit, the confidence probability will be met. Intuitively, it is believed that, namely, the 
extreme values of the cloud of estimates are discarded, but in reality, it is not so. The paradox 
is that the probability of error is more there when the data seem better and vice versa.

The illustration is given for normal distribution and normative statistics. For other distributions 
and for other statistics, the scattering clouds of the results are different, sometimes quite bizarre. 
Coefficient of coverage should also have its own value different from Student; however, it is 

Figure 1. Clouds of scattering of results of estimates. The number of tests is 106, the multiplicity of the experiment is 
5, the source of chance has the normal distribution with μ = 1 and σ = 1 and 2 (the notations in the figure by different 
transparency) and the color markings for the confidence probability of 0.95 are blue (erroneous estimates) and red 
(correct  μ ∈   ̄  r   ). Statistics are used (the arithmetic mean and the standard deviation) and the coverage coefficient is the 
Student’s coefficient, now depending only on the number of repetitions and the confidence level.
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quite simple to calculate. Here are just several simple illustrations. Let us replace the normal 
distribution to a very important uniform distribution. First, we apply to it normative statistics 
[Figure 2 (left and central)] and then more suitable statistics of extrema  s =   1 __ 2   (max  (D)  + min  (D) )   
and  S =   1 __ 2   (max  (D)  − min  (D) )   [Figure 2 (right)].

Without going into numerical details, we give a few qualitative remarks on the illustra-
tions given. Although the scale of both the distributions and clouds of assessments is com-
parable, coverage coefficients are distinctly different. It can be judged from the tilt of the 
colored borders.

Clouds differ not only in form but also in size. The most compact cloud gives set of a nor-
mal distribution with of normative statisticians [Figure 2 (left)] because this combination is 
optimal. The combination of a uniform distribution and normative statistics (central) is not 
optimal; hence, the cloud is scattered more. This loss of efficiency is not catastrophic, so this 
combination is used in practice. Normative statistics provide acceptable estimates for many 
finite distributions and many distributions with light tails, but there are such distributions 
where the efficiency is too small, for example, distributions with heavy tails. The combina-
tion of uniform distribution and statistics of extrema (right figure), although not optimally 
but somewhat more efficient than in the previous example. But in practice this combination 
is not used because the sectoral formula of the cloud cross section leads to an unacceptably 
overestimation of the confidence interval value. The reason is that the maximum cloud den-
sity of this example is at the vertex, when, as in the previous examples, the maximum density 
is closer to the centres of the clouds. An effective algorithm for estimating the distribution of 
the scattering parameter could help, but because of the variability of the distribution form, 
mathematical statistic could not offer such an algorithm.

De facto, the distribution form and both statistics are used as a single set. The situation can 
be interpreted in two ways. On the one hand, having the form of distribution, we can choose 
or synthesize statistics more or less effectively. On the other hand, selecting statistics from 
a certain set of tools, we actually choose a class of distribution forms for which the statistics 
are still effective. However, neither the value of efficiency nor the form of distribution can be 
precisely determined.

Figure 2. Clouds of scattering of results of estimates. For normal  N (x, μ = 1, σ = 1)   (left) and uniform  U (x, min = − 1, max = 3)   
(central and right) distributions. The number of tests is 106, the multiplicity of the experiment is 5 and the color markings 
for the confidence probability of 0.95.
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3.2. Corrections coefficients

The normative tool has yet a problem that we call a mysterious amendment to deviation. 
Deviation is recommended to be used not in a pure form, but with a correction coefficient 
(the so-called standard deviation). It is explained that this amendment allegedly eliminated 
deviation from the dispersion of the normal random source. But very few noticed that this is 
not quite true.

Firstly, the distribution of deviation is asymmetric, its form changes, and is especially strongly 
at small amounts of repeated experiments. And only to an infinite number of experiments it 
approximates to normality and, accordingly, to symmetry.

Secondly, because of the nonsymmetric form of deviation distribution, it is not entirely clear 
in which its characteristic should be adjusted. It is customary to correct the mode, but with the 
same success, it is possible to correct a centre of gravity or some kind of composite criterion 
composed of the moments of this distribution.

Thirdly, even for the mode, the recommended corrections only partially eliminate the prob-
lem. The reason lies in the desire to describe the correction factor by a simple formula. While 
its magnitude is simply calculated, the result does not fit into any of the proposed theoretical 
constructions (Figure 3). The reason is the complex and contradictory changes in the form and 
position of the cloud of estimates as the number of repeated experiments is changing.

The idea of the correction is that, a priori knowing its magnitude, we correct the estimate made 
by the statistics that measures the scattering parameter so that in the statistical limit the esti-
mate coincides with the value of the dispersion. The question arises: what for? The quality of 
the estimate of the measured quantity is determined by the sectoral formula, and the coefficient 

Figure 3. Estimates of the scattering parameter and the effect of corrections as a function of the number of repetitions of 
the experiment. The source of randomness is the normal distribution with μ = 2 and σ = 0.5. The statistics for estimating 
the scattering parameter is the deviation. MCM is used for obtaining data by two 107 tests. Each point is the result of an 
independent experiment. Legend on the figure field:  is estimate without correction,  with correction factor   √ 

____
   n ___ n − 1      

(standard deviation),  with correction   √ 
____

   n − 2 ___ n − 3      and  with correction   √ 
____

   n − 1 ___ n − 3     .
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of coverage of which is calculated even more easily than the correction. A reasonable way is to 
abandon the amendments and the coefficients of coverage numerically computed, but this will 
no longer be the coefficients of the Student.

The sectoral formula is useful, but the rank measure copes with similar tasks of metrology 
better.

4. The principle of measuring of probabilities of origin

The principle says that the important instrument of metrological research should allow to 
estimate the probability of obtaining a certain sample of data from the selected model.

According to the principle—using the model and experimental data—the joint probability 
distribution for all values of each of the estimated variables is calculated. Each point of this 
distribution is interpreted as the probability that the data is obtained in accordance with the 
model and, moreover, with specific values of its parameters. Evaluation of the result of the 
experiment is given as   X ̂   ≔  { (x, p) }    (the value of each of the estimated variables, the correspond-
ing probability of this value). Of course, differences in the parameters of the model lead to 
different probabilities for a particular value of the evaluated value; the same can be said if the 
model is the same and the experimental data are different.

The task of constructing the estimation algorithm is solved in the general form of both MCM 
and CDM. The results are comparable, although the algorithms are different. To solve this, we 
need a consistency of the numerical model and also a metric for the data structures that model 
the results of the experiment.

Formally, this sequence of operations must be performed:   x ̄     dis   ⎯ →   {x}  →  {M (x) }  →  { Pr| x}  →  { μ (Pr , D) | x}  → u (x)  .  
The range of possible values of the estimated parameter   x ¯    must be broken one way or another 
into a set of possible values   {x}  . Using the model for each possible value, a prediction of the 
possible data values   {Pr}   (it also is a set) should be obtained. Each prediction is compared with 
the experimental data by means of the metric μ. The results of the comparison are collected in 
the uncertainty function  u (x)  . And, only after this based on the uncertainty function, simplified 
formal estimates are performed.

The numerical consistency of the model is understood as the ability of the model (if all the 
adjustable variables are given) in a numerical experiment to generate model data indistin-
guishable (quite similar) from the data obtained in the experiment.

The metric should evaluate the magnitude of the difference between the same type of data 
in both experimental and simulation origin. The metric is constructed based on the modeling 
method and also on features of the application where it is used.

When using MCM, the ‘natural’ metric consists of counting the (approximate) matches of the data 
set to be checked and the extensive database generated for the given parameter values. In order 
to estimate the probability to the value of the parameter being evaluated, the model is launched 
many times (at example N), at this value of the parameter  x , and the  fraction of coincidences  
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with the experimental data is counted in this series of numerical experiments, formally 
   {M (x)  → Pr = = D}   N     count   ⎯ →   C ; sequence metric is  μ ≝    C __ N  | x . Repeating a series of experiments 
for other values of the same parameter, we obtain the required estimate, which looks like a density 
of probability distribution. If it is required to evaluate number of the factors more than have been 
considered, then they are evaluated by the same algorithm by performing similar operations.

When using MCD, the estimation algorithm solves the deconvolution problem in the general for-
mulation  M (u (x) )  → Pr = = D → u (x)  . The model parameters are specified as densities for both 
the stochastic component and the parameters to be evaluated (as objective function  u (x)  ). The 
prediction of the model will be obtained as a certain n-dimensional density describing the pos-
sible values of the data. It is required to choose both the dimensions and the form of the density 
of the evaluated parameters so that the metric points out the maximum similarity of the experimental 
data and the prediction of the model. The natural metric in this approach is the magnitude of the 
overlap of the prediction density and the actual experimental data, namely,  μ ≝  ∫  ±∞   Pr  (x, D (x) ) dx  
in general and in a case of point data as  μ ≝ Pr  (D)  .

Obviously, the solution in general form, without taking into account the structure of the 
model and data, is very labour-consuming by both methods. But for simple models and data, 
the situation is so simplified that it leads to simple algorithms.

5. Rank measure

The concept of a rank measure was proposed years ago and analyzed from both the intuitive 
and the formal points of view. Here, we propose an approach which can be regarded as justi-
fication as rationale in constructive style.

Statement. For a trivial metrological model, if the source of randomness is described only by 
its distribution, and the data elements are statistically independent, the implementation of the 
‘principle of measuring the probability of origin’ leads to a simple ‘rank measure’.

Proof. From the assumption of data independence, the value of the metric is independent of 
the permutation of the data elements in the data sample used to identify the trivial model.

In fact, suppose that for two data samples of the same length, all elements are the same. 
Should the metric distinguish them? It is obvious enough that it is not necessary to distin-
guish and there is no possibility to do this.

Now, in each sample, one element by element of a different but identical value and in the 
same position is replaced. As before, the samples are indistinguishable.

Now, in one of the data samples, we change the positions of any two elements. If the data 
elements are equal, then the samples are indistinguishable. If the data elements are different, 
then the samples can be distinguished, but should this be done?

If the data is independent, then any position of each element is equally probable. Thus, the 
probability of origin is unchanged. The metric must be such that a simple permutation of data 
elements within one of the samples does not change the value of the metric. Consequently, 
neither the number nor the step of internal permutations on the value of the metric is affected.

Metrology100

This creates an equivalence class for data samples formally different as records of the data 
acquisition process, but within the class, those samples are indistinguishable by the metric. 
Data sample after simple sorting in ascending order (rank statistics) is a natural representa-
tive of each of these classes and can be used instead.

Each of the data sample elements    d  k  | k = 1…n  in its ordered sample has its own order 
density of distribution   p   k ⁄ n    (x)  =   n ! __________  (k − 1)  ! (n − k)  !   P   (x)    k−1    (1 − P (x) )    n−k  p (x)   different from the dis-
tributions in each of elements in other positions, where  p (x)   and  P (x)   are the probability dis-
tribution density and the cumulative distribution function of a model random source, 
respectively.

The probability of the origin of the value of each data element   d  
k
    is calculated from the corre-

sponding order distribution density as   p  
 k ⁄ n 
   ( d  

k
  )  . The probability associated with the entire sample 

of data    { d  
k
  }   

n
    is naturally calculated as the multiplication of the origin probabilities of each of 

the elements of data  m (  { d  k  }   
n
  )  =  ∏ k=1  n     p   k ⁄ n    (d)   because the event of obtaining a sample of data is 

considered single. We call this result the ‘rank measure’. End of proof.

An important feature of the algorithm for identifying a trivial statistical model with the 
assumptions made is that there is no need to explicitly define the metric. You can imme-
diately go to the estimation of the demanded probability of origin by comparing the pre-
diction of the model in the form of the densities of the distributions of each of the data 
elements and the sorted experimental data. The formula of a rank measure can be dissected 
to three factors:

  m (  {d}   n  , μ, σ)  =  ( ∏ k=1  
n      n ! __________   (k − 1)  ! (n − k)  !  )  ×  ( ∏ k=1  

n    (P   ( d  k  , μ, σ)    k−1    (1 − P ( d  k  , μ, σ) )    n−k ) )  ( ∏ k=1  
n    p ( d  k  , μ, σ) )   

Their interpretation is obvious: the latter is the formula of the likelihood method, the second is 
the correction to the likelihood method and the first is the normalizing factor. For this reason, 
the rank measure can be considered as a corrected likelihood method.

The rank measure is the simplest solution of the identification problem for the simplest model 
that can be obtained within the framework of calculating the probability of origin. The reason 
is in the availability of an analytical formula for calculating the model’s prediction. For more 
complex models, there is no such formula. At least we need to compute the prediction of the 
model numerically. Studies were conducted and it was revealed that for two important par-
ticular models’ explicit formulation of a metric is not required too. It is multifactor expansion 
of the trivial model and model where the parameters of the dynamic deterministic function 
are identified against the background of noise.

6. Using rank measure in metrology

In this section we give examples of the application of a rank measure in some basic types of 
experiments. Let us compare the results obtained by algorithms using a rank measure and 
the results of normative algorithms. In this section, several varieties of direct measurement 
experiment and one generalization are considered.
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The concept of a rank measure was proposed years ago and analyzed from both the intuitive 
and the formal points of view. Here, we propose an approach which can be regarded as justi-
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In fact, suppose that for two data samples of the same length, all elements are the same. 
Should the metric distinguish them? It is obvious enough that it is not necessary to distin-
guish and there is no possibility to do this.

Now, in each sample, one element by element of a different but identical value and in the 
same position is replaced. As before, the samples are indistinguishable.

Now, in one of the data samples, we change the positions of any two elements. If the data 
elements are equal, then the samples are indistinguishable. If the data elements are different, 
then the samples can be distinguished, but should this be done?

If the data is independent, then any position of each element is equally probable. Thus, the 
probability of origin is unchanged. The metric must be such that a simple permutation of data 
elements within one of the samples does not change the value of the metric. Consequently, 
neither the number nor the step of internal permutations on the value of the metric is affected.
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This creates an equivalence class for data samples formally different as records of the data 
acquisition process, but within the class, those samples are indistinguishable by the metric. 
Data sample after simple sorting in ascending order (rank statistics) is a natural representa-
tive of each of these classes and can be used instead.

Each of the data sample elements    d  k  | k = 1…n  in its ordered sample has its own order 
density of distribution   p   k ⁄ n    (x)  =   n ! __________  (k − 1)  ! (n − k)  !   P   (x)    k−1    (1 − P (x) )    n−k  p (x)   different from the dis-
tributions in each of elements in other positions, where  p (x)   and  P (x)   are the probability dis-
tribution density and the cumulative distribution function of a model random source, 
respectively.

The probability of the origin of the value of each data element   d  
k
    is calculated from the corre-

sponding order distribution density as   p  
 k ⁄ n 
   ( d  

k
  )  . The probability associated with the entire sample 

of data    { d  
k
  }   

n
    is naturally calculated as the multiplication of the origin probabilities of each of 

the elements of data  m (  { d  k  }   
n
  )  =  ∏ k=1  n     p   k ⁄ n    (d)   because the event of obtaining a sample of data is 

considered single. We call this result the ‘rank measure’. End of proof.

An important feature of the algorithm for identifying a trivial statistical model with the 
assumptions made is that there is no need to explicitly define the metric. You can imme-
diately go to the estimation of the demanded probability of origin by comparing the pre-
diction of the model in the form of the densities of the distributions of each of the data 
elements and the sorted experimental data. The formula of a rank measure can be dissected 
to three factors:

  m (  {d}   n  , μ, σ)  =  ( ∏ k=1  
n      n ! __________   (k − 1)  ! (n − k)  !  )  ×  ( ∏ k=1  

n    (P   ( d  k  , μ, σ)    k−1    (1 − P ( d  k  , μ, σ) )    n−k ) )  ( ∏ k=1  
n    p ( d  k  , μ, σ) )   

Their interpretation is obvious: the latter is the formula of the likelihood method, the second is 
the correction to the likelihood method and the first is the normalizing factor. For this reason, 
the rank measure can be considered as a corrected likelihood method.

The rank measure is the simplest solution of the identification problem for the simplest model 
that can be obtained within the framework of calculating the probability of origin. The reason 
is in the availability of an analytical formula for calculating the model’s prediction. For more 
complex models, there is no such formula. At least we need to compute the prediction of the 
model numerically. Studies were conducted and it was revealed that for two important par-
ticular models’ explicit formulation of a metric is not required too. It is multifactor expansion 
of the trivial model and model where the parameters of the dynamic deterministic function 
are identified against the background of noise.

6. Using rank measure in metrology

In this section we give examples of the application of a rank measure in some basic types of 
experiments. Let us compare the results obtained by algorithms using a rank measure and 
the results of normative algorithms. In this section, several varieties of direct measurement 
experiment and one generalization are considered.
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Figure 4. The structure of the calibration data in graphical form (left) and the correction function (right) as the regression 
of these data  p (x)  =  f ̂   (d)  .

6.1. Calibration experiment

Calibration experiment is main type of experiments in metrology. There is no means of mea-
surement which one way or another would not undergo calibration. The purpose of the cali-
bration experiment is to compare the measuring instrument with the standard, collect the 
data and describe a correction function that will be used as a priori information in the work-
ing measurement experiment.

In the calibration experiment, the values of the standard and the readings of the measuring 
instrument are juxtaposed. In this case, the measuring means is used to estimate the value 
of the standard used. The results are collected and form a data structure, for example, as in 
Figure 4 (left).

The correction function is constructed as a regression at the calibration data. The obvious 
representation is the density stretched over the whole measurement range and accumulating 
all the calibration information [Figure 4 (right)]. The more calibration data and the more care-
fully the regression, the more reliable the results. The replacement of the abscissa axis from 
the value of the reference value to the unknown means that the probability of the value of the 
standard corresponding to the experimental data is estimated.

The quantity and quality of the information collected in the calibration experiment and the 
information stored in the correction function largely determine the capabilities of the work-
ing measurement experiment. Although modern regulatory documents allow the use of a 
correction function in this form, for example, IEEE 1451, historically, the systematic error is 
eliminated separately, and the uncertainty of the measurement tool is described as an interval 
approximation of the density function in the form of a two-term formula or its simplifications.

6.2. Single experiment

The correction function is used in a working experiment to fully evaluate the result of the 
experiment. If the data comes in the form of a point estimate (number), then the corrected 
measurement result is calculated as cross section of correction function, which is interpreted 
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as the distribution density of the possible values of the measured value. That is, the systematic 
error is eliminated, and an estimate of the uncertainty of the values of the measurand is given 
(Figure 5).

On the other hand, the data may already contain a description of the uncertainty, for example, 
in the form of a probability density  g (d)  . In this case, the joint probability density distribution 
of the data and the estimate is calculated  p (d, x)  = g (d)  ∙  ( f ̂   (d)  = x)  . Note that this is a joint 
distribution and does not refer to independent distributions because of the large correlation 
(Figure 6). The projection of this joint density will lead to a final evaluation of the measure-
ment result  p (x)  =  ∫  ±∞   (g (d)  ∙  f ̂   (d) ) dd . Thus, a complete and natural synthesis of the available 
a priori and a posteriori information about this measurement experiment was made without 
any assumptions and approximate calculations.

6.3. Multiple experiment

Measuring the same physical quantity repeatedly, in principle, we get the opportunity to deal 
with errors and thereby improve the accuracy of the evaluation of the result. The problem of nor-
mative statistical tools is that it was far from always possible to use data efficiently, and sometimes 
efficiency was reduced to zero. From this point of view, since the rank measure uses the form of 
a specific distribution, it will always be optimal in efficiency with respect to this distribution.

6.3.1. The scattering parameter is unknown and is estimated from experimental data

The greatest effect of using the rank measure as statistics for estimating the distribution 
parameters is observed in a multiple experiment with unknown scattering. According to 
the principle of probability of origin, the probability of obtaining experimental data from a 

Figure 5. The transition from point experimental data   d   ̇   to a full evaluation of the experimental result, taking into 
account a priori information about the property of the measuring instrument  p (x)  =  f ̂   ( d   ̇ )  .
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Figure 4. The structure of the calibration data in graphical form (left) and the correction function (right) as the regression 
of these data  p (x)  =  f ̂   (d)  .

6.1. Calibration experiment

Calibration experiment is main type of experiments in metrology. There is no means of mea-
surement which one way or another would not undergo calibration. The purpose of the cali-
bration experiment is to compare the measuring instrument with the standard, collect the 
data and describe a correction function that will be used as a priori information in the work-
ing measurement experiment.

In the calibration experiment, the values of the standard and the readings of the measuring 
instrument are juxtaposed. In this case, the measuring means is used to estimate the value 
of the standard used. The results are collected and form a data structure, for example, as in 
Figure 4 (left).

The correction function is constructed as a regression at the calibration data. The obvious 
representation is the density stretched over the whole measurement range and accumulating 
all the calibration information [Figure 4 (right)]. The more calibration data and the more care-
fully the regression, the more reliable the results. The replacement of the abscissa axis from 
the value of the reference value to the unknown means that the probability of the value of the 
standard corresponding to the experimental data is estimated.

The quantity and quality of the information collected in the calibration experiment and the 
information stored in the correction function largely determine the capabilities of the work-
ing measurement experiment. Although modern regulatory documents allow the use of a 
correction function in this form, for example, IEEE 1451, historically, the systematic error is 
eliminated separately, and the uncertainty of the measurement tool is described as an interval 
approximation of the density function in the form of a two-term formula or its simplifications.

6.2. Single experiment

The correction function is used in a working experiment to fully evaluate the result of the 
experiment. If the data comes in the form of a point estimate (number), then the corrected 
measurement result is calculated as cross section of correction function, which is interpreted 
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as the distribution density of the possible values of the measured value. That is, the systematic 
error is eliminated, and an estimate of the uncertainty of the values of the measurand is given 
(Figure 5).

On the other hand, the data may already contain a description of the uncertainty, for example, 
in the form of a probability density  g (d)  . In this case, the joint probability density distribution 
of the data and the estimate is calculated  p (d, x)  = g (d)  ∙  ( f ̂   (d)  = x)  . Note that this is a joint 
distribution and does not refer to independent distributions because of the large correlation 
(Figure 6). The projection of this joint density will lead to a final evaluation of the measure-
ment result  p (x)  =  ∫  ±∞   (g (d)  ∙  f ̂   (d) ) dd . Thus, a complete and natural synthesis of the available 
a priori and a posteriori information about this measurement experiment was made without 
any assumptions and approximate calculations.

6.3. Multiple experiment

Measuring the same physical quantity repeatedly, in principle, we get the opportunity to deal 
with errors and thereby improve the accuracy of the evaluation of the result. The problem of nor-
mative statistical tools is that it was far from always possible to use data efficiently, and sometimes 
efficiency was reduced to zero. From this point of view, since the rank measure uses the form of 
a specific distribution, it will always be optimal in efficiency with respect to this distribution.

6.3.1. The scattering parameter is unknown and is estimated from experimental data

The greatest effect of using the rank measure as statistics for estimating the distribution 
parameters is observed in a multiple experiment with unknown scattering. According to 
the principle of probability of origin, the probability of obtaining experimental data from a 

Figure 5. The transition from point experimental data   d   ̇   to a full evaluation of the experimental result, taking into 
account a priori information about the property of the measuring instrument  p (x)  =  f ̂   ( d   ̇ )  .
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Figure 7. Uncertainty functions  u (μ, σ)  ∣ N  for the normal distribution (only the form is used) and  u (μ, σ)  ∣ U  for the 
uniform distribution. For a correct comparison, distribution densities are scaled to the law  2σ .

random process model with a known form of the distribution density is estimated, but the 
parameters of the shift μ and scattering σ must be estimated from the experimental data. Note 
that the form of the distribution can be arbitrary, but it shall be a priori known, for example, 
obtained from a calibration experiment. We seek a joint distribution of the values of param-
eters that are estimated  u (μ, σ)  = m (  {d}   n  , μ, σ)  , and the distribution density of error source is 
also described in terms of the values of these parameters  p (x, μ, σ)  .

For example, we estimate the shift parameter from the data for normal and uniform distri-
butions    {d}   n   =  {− 0.125, − 0.044, 0.183, 0.349, 0.404} .  It is convenient to designate the desired 
joint distribution as  u (μ, σ)  ∣ p  with an explicit indication of the distribution form used in 
the model and interpret it as a function of the uncertainty of estimates with respect to the 
distribution used (Figure 7).

Figure 6. The transition from experimental data with uncertainty  g (d)   to a full evaluation of the experimental result  p 
(x)  =  ∫  +∞   p (d, x) dd . In the middle of the figure, an intermediate result is presented  p (d, x)  = g (d)  ∙  f ̂   ( d   ̇ )  .
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The uncertainty functions for different distributions differ in varying degrees by form but 
mainly by the scattering estimate. The distributions used in the example are both symmetric 
for this reason, and the difference in the estimation of the shift parameter is small.

Now, it became possible to move from a joint estimation of parameters to only an estimate 
of the shift parameter (usually interpreted as an estimate of the measured quantity). At this 
stage, it is possible to take into account a priori information about the scattering parameter. 
This information can be different. One of the polar cases is its complete absence; the scattering 
can be any  u (μ)  =  ∫  ±∞   u (μ, σ) d𝜎𝜎  (Figure 8).

If, for joint uncertainty function, the influence of the form of the model distribution is obvious, 
then the integral estimates of only the shift parameter differ insignificantly. Small differences 
can be interpreted as evidence of the prevalent thesis ‘if there is a small number of data the form 
of the distribution is unimportant’. More precisely, when identifying only the shift parameter 
for a small number of data, the form of the distribution has no important significance and does 
not introduce significant errors in addition for a wide class of distributions. However, it is 
possible to construct counterexamples that show that this is not always so, for example, using 
distributions having a significant displacement.

The form of the uncertainty function of the result for a number of reasons has heavier tails 
than the original distribution. Briefly, there are two main reasons. There is still a high prob-
ability of obtaining compact data from the distribution with a large value of the scattering 
parameter, which heavies the tails of the uncertainty function. On the contrary, the probabil-
ity of compact distributions is concentrated in a small space, which leads to a high probability 
density near the vertex of the uncertainty function and sharpens it.

Now, we can write an interval estimate of the measurement result as a quantile of the uncer-
tainty function. For the confidence probability of 0.95 by the normal distribution model, 
result estimation with uncertainty is 0.153 ± 0.869 and by the uniform distribution model is 
0.149 ± 0.94. Uncertainty function has less scattering than the original distribution (at example 
for normal distribution ±1.96 and for uniform ±2.0), which is actually the goal of increasing 
the multiplicity of the experiment. The recording of the result by the form is the same as the 

Figure 8. The uncertainty functions of estimating the shift parameter (left) and their difference (right). The notations on 
the left figure are a red line for the normal distribution and blue for the uniform, respectively. For a correct comparison, 
the uncertainty functions are normalized, which is interpreted as an assumption of the validity of both models 
simultaneously.
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Figure 7. Uncertainty functions  u (μ, σ)  ∣ N  for the normal distribution (only the form is used) and  u (μ, σ)  ∣ U  for the 
uniform distribution. For a correct comparison, distribution densities are scaled to the law  2σ .

random process model with a known form of the distribution density is estimated, but the 
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that the form of the distribution can be arbitrary, but it shall be a priori known, for example, 
obtained from a calibration experiment. We seek a joint distribution of the values of param-
eters that are estimated  u (μ, σ)  = m (  {d}   n  , μ, σ)  , and the distribution density of error source is 
also described in terms of the values of these parameters  p (x, μ, σ)  .

For example, we estimate the shift parameter from the data for normal and uniform distri-
butions    {d}   n   =  {− 0.125, − 0.044, 0.183, 0.349, 0.404} .  It is convenient to designate the desired 
joint distribution as  u (μ, σ)  ∣ p  with an explicit indication of the distribution form used in 
the model and interpret it as a function of the uncertainty of estimates with respect to the 
distribution used (Figure 7).

Figure 6. The transition from experimental data with uncertainty  g (d)   to a full evaluation of the experimental result  p 
(x)  =  ∫  +∞   p (d, x) dd . In the middle of the figure, an intermediate result is presented  p (d, x)  = g (d)  ∙  f ̂   ( d   ̇ )  .
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The uncertainty functions for different distributions differ in varying degrees by form but 
mainly by the scattering estimate. The distributions used in the example are both symmetric 
for this reason, and the difference in the estimation of the shift parameter is small.

Now, it became possible to move from a joint estimation of parameters to only an estimate 
of the shift parameter (usually interpreted as an estimate of the measured quantity). At this 
stage, it is possible to take into account a priori information about the scattering parameter. 
This information can be different. One of the polar cases is its complete absence; the scattering 
can be any  u (μ)  =  ∫  ±∞   u (μ, σ) d𝜎𝜎  (Figure 8).

If, for joint uncertainty function, the influence of the form of the model distribution is obvious, 
then the integral estimates of only the shift parameter differ insignificantly. Small differences 
can be interpreted as evidence of the prevalent thesis ‘if there is a small number of data the form 
of the distribution is unimportant’. More precisely, when identifying only the shift parameter 
for a small number of data, the form of the distribution has no important significance and does 
not introduce significant errors in addition for a wide class of distributions. However, it is 
possible to construct counterexamples that show that this is not always so, for example, using 
distributions having a significant displacement.

The form of the uncertainty function of the result for a number of reasons has heavier tails 
than the original distribution. Briefly, there are two main reasons. There is still a high prob-
ability of obtaining compact data from the distribution with a large value of the scattering 
parameter, which heavies the tails of the uncertainty function. On the contrary, the probabil-
ity of compact distributions is concentrated in a small space, which leads to a high probability 
density near the vertex of the uncertainty function and sharpens it.

Now, we can write an interval estimate of the measurement result as a quantile of the uncer-
tainty function. For the confidence probability of 0.95 by the normal distribution model, 
result estimation with uncertainty is 0.153 ± 0.869 and by the uniform distribution model is 
0.149 ± 0.94. Uncertainty function has less scattering than the original distribution (at example 
for normal distribution ±1.96 and for uniform ±2.0), which is actually the goal of increasing 
the multiplicity of the experiment. The recording of the result by the form is the same as the 
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simultaneously.
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Figure 9. Illustration of the use of a priori information on the scattering parameter in order to convert joint uncertainty 
to uncertainty function of the shift parameter. Legend on the right picture field: The green line is the exact knowledge of 
the scattering parameter  σ = 1.0 ; black line corresponds to the normal distribution  g (σ)  = N (σ, 1,0.2)   (graph on the left); 
blue line corresponds to the interval number    ̄  σ   =  [0.5,1.5]  ; and red line for complete ignorance    ̄  σ   = ±∞ . Legend on the 
Centre picture field: The joint uncertainty distribution with respect to both parameters is the same as in figure 7 on the 
left; the green line is the exact knowledge of the scattering parameter; and blue wideband is the image of the scattering 
parameter interval.

normative one, but in fact it has a more rigorous meaning. Tails of joint distributions (as well 
as clouds of estimates) are cut vertically, but not by the sector as in the normative case.

6.3.2. The scattering parameter is known fully or partially

There are many cases when the scattering parameter is known a priori with greater or lesser 
accuracy. The direct way to take into account information about the value of the scattering 
parameter is to solve the estimation problem for an unknown parameter and only then to use 
a priori information  u (μ, σ)    σ?   ⟶ →   u (μ)  . The algorithm for solving the problem formally depends 
on the form of the representation of this information but at the heart of all algorithms lies an 
integral that somehow projects the joint uncertainty function to the shift parameter uncertainty.

The most often known is the range of possible values of the scattering parameter    ̄  σ   . The solu-
tion reduces to a simple integral  u (μ)  =  ∫    ̄  σ     u (μ, σ) d𝜎𝜎 . Two polar variants are evident. It is com-
plete ignorance    ̄  σ   = ±∞  and exact knowledge    ̄  σ   =  σ   ̇  ± 0  which are solved analogically. The 
case of a known density distribution  g (σ)   of the scattering parameter  u (μ)  =  ∫  ±∞   g (σ) u (μ, σ) d𝜎𝜎  is 
slightly more complicated (Figure 9).

6.3.3. Repetitive experiment

Under favorable conditions, instead of the joint uncertainty function of the parameters, one 
can use the fact that the correction function itself is a distribution. Consequently, one com-
plete correction function can be replaced by a set of ordinal correction functions with the same 
external characteristics. This is done either experimentally in a calibration experiment or ana-
lytically from the formulas of the densities of ordinal distributions for each value of the mea-
sured quantity in the entire measurement range. We obtain a family of correction functions 
passing along and partially overlapping    { f   k ⁄ n    (d) }   

n
   . Each of these functions is used to correct its 

data element from an ordered data sample [Figure 10 (left)]. The uncertainty function with 

Metrology106

respect to the shift parameter is calculated directly as the product of these functions  u (x)  =  
∏ k=1  n     f   k ⁄ n    ( d  k  )  . The formula is interpreted as uncertainty of a repetitive measurement of the same 
physical quantity by an imperfect means of measurement but with a known scattering param-
eter of it stochastic model. It is assumed that new sources of randomness, not accounted for by 
the calibration experiment, are not added. This is what distinguishes the repeated experiment 
from a multiple experiment.

This tool is more refined because it can take into account the change in the form of the distri-
bution of the correction function for different elements from the data set. But it is more vulner-
able because it does not provide for any additional sources of randomness that cannot be the 
taken into account in the calibration experiment.

The situation where the scattering parameter is known sufficiently accurately is not so rare, 
although it is hidden inside the measuring instrument. At best, the user can adjust the ‘accu-
mulation time’. If the accumulation of information is made in digital form, then this is a direct 
analogue to the number of repeated measurements, but in the analogue form, the accumula-
tion is not fundamentally different from the effect of repeated measurements.

6.3.4. The uncertainty of the experimental data is known

The abstraction of point data is very useful from a practical point of view. Its application 
seriously simplifies both calculations and their interpretation, and the results are of quite sat-
isfactory quality. In most cases, it should be used. However, in the strict approach, each data 
element must be assigned to its own individual uncertainty. For many applications, including 
the case of multiple measurement experiments, an adequate form of describing the uncer-
tainty of the experimental data is the probability density of the obtained value  D ≔   { g  k   (δ) }   

n
    

interpreted as the reliability of the point fragment of this estimate. It is because the basis is the 
single experiments in which the initial data are obtained.

Normative documents including GUM solve this problem taking into account uncertainties 
apart, for example, preliminarily dividing the uncertainties into type A and type B and then 

Figure 10. Illustration of the use of the set of ordinal correction functions. On the left is a set of correction functions for 
a triple experiment, and on the right is an example of estimating the value of the measured parameter for data {0.4, 0.41, 
0.44} each of the three ordinal estimations (color lines) and resultant estimation (black line).
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Figure 9. Illustration of the use of a priori information on the scattering parameter in order to convert joint uncertainty 
to uncertainty function of the shift parameter. Legend on the right picture field: The green line is the exact knowledge of 
the scattering parameter  σ = 1.0 ; black line corresponds to the normal distribution  g (σ)  = N (σ, 1,0.2)   (graph on the left); 
blue line corresponds to the interval number    ̄  σ   =  [0.5,1.5]  ; and red line for complete ignorance    ̄  σ   = ±∞ . Legend on the 
Centre picture field: The joint uncertainty distribution with respect to both parameters is the same as in figure 7 on the 
left; the green line is the exact knowledge of the scattering parameter; and blue wideband is the image of the scattering 
parameter interval.

normative one, but in fact it has a more rigorous meaning. Tails of joint distributions (as well 
as clouds of estimates) are cut vertically, but not by the sector as in the normative case.

6.3.2. The scattering parameter is known fully or partially

There are many cases when the scattering parameter is known a priori with greater or lesser 
accuracy. The direct way to take into account information about the value of the scattering 
parameter is to solve the estimation problem for an unknown parameter and only then to use 
a priori information  u (μ, σ)    σ?   ⟶ →   u (μ)  . The algorithm for solving the problem formally depends 
on the form of the representation of this information but at the heart of all algorithms lies an 
integral that somehow projects the joint uncertainty function to the shift parameter uncertainty.

The most often known is the range of possible values of the scattering parameter    ̄  σ   . The solu-
tion reduces to a simple integral  u (μ)  =  ∫    ̄  σ     u (μ, σ) d𝜎𝜎 . Two polar variants are evident. It is com-
plete ignorance    ̄  σ   = ±∞  and exact knowledge    ̄  σ   =  σ   ̇  ± 0  which are solved analogically. The 
case of a known density distribution  g (σ)   of the scattering parameter  u (μ)  =  ∫  ±∞   g (σ) u (μ, σ) d𝜎𝜎  is 
slightly more complicated (Figure 9).

6.3.3. Repetitive experiment

Under favorable conditions, instead of the joint uncertainty function of the parameters, one 
can use the fact that the correction function itself is a distribution. Consequently, one com-
plete correction function can be replaced by a set of ordinal correction functions with the same 
external characteristics. This is done either experimentally in a calibration experiment or ana-
lytically from the formulas of the densities of ordinal distributions for each value of the mea-
sured quantity in the entire measurement range. We obtain a family of correction functions 
passing along and partially overlapping    { f   k ⁄ n    (d) }   

n
   . Each of these functions is used to correct its 

data element from an ordered data sample [Figure 10 (left)]. The uncertainty function with 
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respect to the shift parameter is calculated directly as the product of these functions  u (x)  =  
∏ k=1  n     f   k ⁄ n    ( d  k  )  . The formula is interpreted as uncertainty of a repetitive measurement of the same 
physical quantity by an imperfect means of measurement but with a known scattering param-
eter of it stochastic model. It is assumed that new sources of randomness, not accounted for by 
the calibration experiment, are not added. This is what distinguishes the repeated experiment 
from a multiple experiment.

This tool is more refined because it can take into account the change in the form of the distri-
bution of the correction function for different elements from the data set. But it is more vulner-
able because it does not provide for any additional sources of randomness that cannot be the 
taken into account in the calibration experiment.

The situation where the scattering parameter is known sufficiently accurately is not so rare, 
although it is hidden inside the measuring instrument. At best, the user can adjust the ‘accu-
mulation time’. If the accumulation of information is made in digital form, then this is a direct 
analogue to the number of repeated measurements, but in the analogue form, the accumula-
tion is not fundamentally different from the effect of repeated measurements.

6.3.4. The uncertainty of the experimental data is known

The abstraction of point data is very useful from a practical point of view. Its application 
seriously simplifies both calculations and their interpretation, and the results are of quite sat-
isfactory quality. In most cases, it should be used. However, in the strict approach, each data 
element must be assigned to its own individual uncertainty. For many applications, including 
the case of multiple measurement experiments, an adequate form of describing the uncer-
tainty of the experimental data is the probability density of the obtained value  D ≔   { g  k   (δ) }   

n
    

interpreted as the reliability of the point fragment of this estimate. It is because the basis is the 
single experiments in which the initial data are obtained.

Normative documents including GUM solve this problem taking into account uncertainties 
apart, for example, preliminarily dividing the uncertainties into type A and type B and then 

Figure 10. Illustration of the use of the set of ordinal correction functions. On the left is a set of correction functions for 
a triple experiment, and on the right is an example of estimating the value of the measured parameter for data {0.4, 0.41, 
0.44} each of the three ordinal estimations (color lines) and resultant estimation (black line).
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combining them in a specific way. The method is simple but strictly adequate only for normal 
distribution and simple models. For distributions similar to normal distribution, the deterio-
ration in the result still is quite acceptable.

To strictly take into account the uncertainty of the measuring instrument, it is sufficient to 
slightly upgrade the rank measure to.

 m (D)  =   
n

   ∫  
±∞

   (m (sort (  {δ}   
n
  ) )  ∙  ∏ 

k=1
  n     g  

k   (δ) )   d𝛿𝛿   n     .

The formula is interpreted as an n-fold integral of a rank measure from deviation to point 
data with their joint probability. The complexity of applying the formula is the multiplicity 
of the integral and the need to constantly check the order of the data if the density of the data 
distribution overlaps. When the distribution density of data is reduced to the delta function, 
the upgraded measure reduces to the original measure. The delta function is the model of 
point data. From this point of view, uncertainty function for point data is the most likely, but 
for data deviations it is a less likely alternative.

In a more general case, all sources of uncertainty are taken into account in a natural way when 
calculating the model’s predictions and when a comparison of the prediction and an adequate 
data model is made.

Let us explain this with an example (Figure 11). The data is the same as for Figure 10. We 
will supplement the data with uncertainty ±0.05. The uncertainty is the same for all data ele-
ments, but it can also have an individual value. The law of distribution of uncertainty will 
be assumed to be uniform. The model of the measurement experiment being studied differs 
from the trivial model only in the presence of two sources of randomness. One source has 
a normal distribution law, for example, the error of manufacturing samples from the same 
material whose property is being investigated. Another source has a uniform distribution of, 
for example, uncertainty of a digit measuring instrument.

The work of the algorithm can be interpreted as the creation of a film. Each frame is an esti-
mate of the parameters from a given set of point data    { δ  

k
  }   

n
   . Each frame is similar to the one 

in Figure 11 (left). The difference between frames is a consequence of the differences in the 
data. Data is selected from specified distributions either randomly (MCM) or according to a 

Figure 11. Illustration of identification of a trivial model with two different sources of randomness. The left figure is 
obtained for point data, and the central figure is obtained for data with uncertainty. The right figure shows the uncertainty 
functions of the estimates for the two preceding figures: p, without data uncertainties, and g, with uncertainties.
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regular grid (MCD) (in example used 12 grid knots for each data distribution). Each frame 
corresponds a probability that is calculated by formula   ∏ 

k=1
  n     g  

k
   ( δ  

k
  )  . When all data distributions 

are uniform and equal, then probabilities of frames are equal. At the end of the algorithm, all 
frames (in example 123 = 1728 frames) are summed according to their probability. The result 
is shown in Figure 11 in the centre.

The uncertainty is large compared to the distance between data; hence, the probability of 
accidental coincidence of data is large, which leads to a touch of the uncertainty function of 
the estimates to the abscissa axis [Figure 11 (centre)]. The uncertainty of the data, as it was, 
‘smears out’ the uncertainty function of the estimate. Uncertainty is greater in all respects but 
especially strongly affects the top of the uncertainty function of the estimate of the measured 
parameter and often changes the form of the evaluation function.

This allows us to build a logical chain from the interpretation of data by interpreting possible esti-
mates to the final estimate of the uncertainty of the measurand. For example,  D   

 f  ̂  (d) 
   ⎯ →   {d (x) }    

 {p (x) } 
   ⎯ →   

{u (x) }  →  x ̄   , where D is the initial experimental data given in point form,   f ̂   (d)   is the correction func-
tion obtained from a calibration experiment,   {d (x) }   is the data in the form of densities that have 
adjusted by the calibration experiment,   {p (x) }   is the set of admissible types of distributions in mea-
surement model,   {u (x) }   is the set of densities of estimates measurand and   x ̄    is the final evaluation, 
for example, obtained for the worst case.

6.3.5. Multifactor multiple experiment

The purpose of the multifactorial experiment is to estimate the value of several quantities 
in the form of a joint uncertainty function by factors. The number of factors considered var-
ies easily, so in the examples we confine ourselves to two. And so,  u (ξ, υ)   is estimated by the 
data structure  ΞΥ  for each of the factors. The result of the evaluation and the complexity of 
the algorithm are essentially determined by the relationships within the data structure. The 
simplest solution is obtained when the data for different factors are not related to each other. 
For example, a data structure is simply a list of independent data differing only belonging to 
its factor  ΞΥ ≔ Ξ, Υ . The solution consists of a multiplication of uncertainty functions for each 
of the factors calculated independently  u (ξ, υ)  = u (ξ) u (υ)  . The number of data for each factor can 
be different.

Another solution is obtained if the experimental data are obtained synchronously  ΞΥ ≔   {ξ, υ}   
n
   

|ξ ∈ Ξ, υ ∈ Υ  . If the statistical relationships between the factors do not manifest themselves  r 
(ξ, υ)  = p (ξ)  ∙ g (υ)  , then it is possible to express the densities of order distribution   r  

  k  
ξ
  , k  

υ
  ⁄ n 
   (ξ, υ)  =  p  

  k  
ξ
  ⁄ n 
   (ξ)  ∙  g  

  k  
υ
  ⁄ n 
   (υ)  .

For example, if the multiplicity of experiment is 3, the number of factors is 2,  p (ξ)   is a normal 
distribution and  g (υ)   is the uniform distribution, then the figure of the set of ordinal distribu-
tions will look like in Figure 12.

The rank measure is constructed as follows. The data structure (in the example this is three data 
pairs) is ordered by one of the factors, for example, by  ξ . This predefines the selection of the 
columns of the set of ordinal distributions. The rows are selected in accordance with the order 
of the data for the second factor. As a result, for each experiment of the nine distributions, three 
will be chosen. Using them as a function of the data values, we get three probabilities for each 
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combining them in a specific way. The method is simple but strictly adequate only for normal 
distribution and simple models. For distributions similar to normal distribution, the deterio-
ration in the result still is quite acceptable.
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of the integral and the need to constantly check the order of the data if the density of the data 
distribution overlaps. When the distribution density of data is reduced to the delta function, 
the upgraded measure reduces to the original measure. The delta function is the model of 
point data. From this point of view, uncertainty function for point data is the most likely, but 
for data deviations it is a less likely alternative.

In a more general case, all sources of uncertainty are taken into account in a natural way when 
calculating the model’s predictions and when a comparison of the prediction and an adequate 
data model is made.

Let us explain this with an example (Figure 11). The data is the same as for Figure 10. We 
will supplement the data with uncertainty ±0.05. The uncertainty is the same for all data ele-
ments, but it can also have an individual value. The law of distribution of uncertainty will 
be assumed to be uniform. The model of the measurement experiment being studied differs 
from the trivial model only in the presence of two sources of randomness. One source has 
a normal distribution law, for example, the error of manufacturing samples from the same 
material whose property is being investigated. Another source has a uniform distribution of, 
for example, uncertainty of a digit measuring instrument.

The work of the algorithm can be interpreted as the creation of a film. Each frame is an esti-
mate of the parameters from a given set of point data    { δ  
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in Figure 11 (left). The difference between frames is a consequence of the differences in the 
data. Data is selected from specified distributions either randomly (MCM) or according to a 

Figure 11. Illustration of identification of a trivial model with two different sources of randomness. The left figure is 
obtained for point data, and the central figure is obtained for data with uncertainty. The right figure shows the uncertainty 
functions of the estimates for the two preceding figures: p, without data uncertainties, and g, with uncertainties.
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regular grid (MCD) (in example used 12 grid knots for each data distribution). Each frame 
corresponds a probability that is calculated by formula   ∏ 
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  )  . When all data distributions 

are uniform and equal, then probabilities of frames are equal. At the end of the algorithm, all 
frames (in example 123 = 1728 frames) are summed according to their probability. The result 
is shown in Figure 11 in the centre.

The uncertainty is large compared to the distance between data; hence, the probability of 
accidental coincidence of data is large, which leads to a touch of the uncertainty function of 
the estimates to the abscissa axis [Figure 11 (centre)]. The uncertainty of the data, as it was, 
‘smears out’ the uncertainty function of the estimate. Uncertainty is greater in all respects but 
especially strongly affects the top of the uncertainty function of the estimate of the measured 
parameter and often changes the form of the evaluation function.

This allows us to build a logical chain from the interpretation of data by interpreting possible esti-
mates to the final estimate of the uncertainty of the measurand. For example,  D   

 f  ̂  (d) 
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{u (x) }  →  x ̄   , where D is the initial experimental data given in point form,   f ̂   (d)   is the correction func-
tion obtained from a calibration experiment,   {d (x) }   is the data in the form of densities that have 
adjusted by the calibration experiment,   {p (x) }   is the set of admissible types of distributions in mea-
surement model,   {u (x) }   is the set of densities of estimates measurand and   x ̄    is the final evaluation, 
for example, obtained for the worst case.

6.3.5. Multifactor multiple experiment

The purpose of the multifactorial experiment is to estimate the value of several quantities 
in the form of a joint uncertainty function by factors. The number of factors considered var-
ies easily, so in the examples we confine ourselves to two. And so,  u (ξ, υ)   is estimated by the 
data structure  ΞΥ  for each of the factors. The result of the evaluation and the complexity of 
the algorithm are essentially determined by the relationships within the data structure. The 
simplest solution is obtained when the data for different factors are not related to each other. 
For example, a data structure is simply a list of independent data differing only belonging to 
its factor  ΞΥ ≔ Ξ, Υ . The solution consists of a multiplication of uncertainty functions for each 
of the factors calculated independently  u (ξ, υ)  = u (ξ) u (υ)  . The number of data for each factor can 
be different.

Another solution is obtained if the experimental data are obtained synchronously  ΞΥ ≔   {ξ, υ}   
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For example, if the multiplicity of experiment is 3, the number of factors is 2,  p (ξ)   is a normal 
distribution and  g (υ)   is the uniform distribution, then the figure of the set of ordinal distribu-
tions will look like in Figure 12.

The rank measure is constructed as follows. The data structure (in the example this is three data 
pairs) is ordered by one of the factors, for example, by  ξ . This predefines the selection of the 
columns of the set of ordinal distributions. The rows are selected in accordance with the order 
of the data for the second factor. As a result, for each experiment of the nine distributions, three 
will be chosen. Using them as a function of the data values, we get three probabilities for each 
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Figure 12. Initial joint distribution and set of ordinal joint distributions.

rank. Multiplying them we get the value of a rank measure. You can take advantage of this in 
a working experiment when the data about the same physical quantity comes in completely 
different ways.

For example, let’s use the model whose distribution is shown in Figure 12. The received data 
is   { (− 0.5,0.5) ,  (0.1, − 0.4) ,  (0.5,0.7) }  . Their order is   { (1, 2) ,  (2, 1) ,  (3, 3) }  . The values of probabilities from the 
densities of ordinal distributions are   { (0.578) ,  (0.841) ,  (1.114) }  . Hence the value of a rank measure is 
0.542. Next, it is possible to identify the shear and scattering parameters of the model in the 
usual way.

In the event that the statistical links between the factors are significant, the task is solved 
only numerically. For MCM, this is a direct numerical experiment. MCD is a search for direct 
and inverse transformations of such that make the distribution of the model independent by 
factors.

6.4. Indirect experiment

In order to pass from the model of direct measurement to the model of the indirect measure-
ment experiment, it is necessary to replace the measurand of trivial model by a more complex 
measurement principle model  x = f (ξ, υ)  , where  ξ  and  ν  are the quantities measured from the 
direct measurement experiment. In a simple formulation, the problem of an indirect experi-
ment consists in calculating the uncertainty function of the new measurand  u (x)  , starting from 
the uncertainties obtained from the experimental data  u (ξ)   and  u (υ)  . As a rule, the problem is 
easily solved by both MCM and MCD.
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Although in the natural sciences and in technology one can find very complex principal 
models of the experiment, metrology strives to avoid indirect experiments. This is achieved 
through the creation of new standards and the construction of suitable calibration schemes 
(calibration hierarchy). Even if the measurement tool uses inside the complex indirect model 
but being calibrated in the target units, then it realizes direct experiment. All that metrology 
can afford is the use of an indirect experiment as a temporary means in cases where a direct 
reference to the standard is not yet possible. Of course, one can complicate the formula-
tion of the problem of indirect experiment in different ways, for example, in the analogy 
of Section 6.3.5, complicating the data structure, but it is unlikely that metrologists will be 
interested in this.

7. Conclusion

The tools that metrology now uses have been created by statisticians at the beginning of the 
last century. By the middle of the century, metrology had mastered them. Over the years, 
the goals and circumstances of their creation and some of the properties have been forgot-
ten. This creates some misunderstandings when interpreting the results of their application. 
Attempting to implement the GUM has been useful by simplifying and standardizing their 
application, but the tools themselves remained the same.

As a result of the application of new tools, a direct and obvious chain of information gathering 
and use is built up in the performance of metrology tasks from calibration to the final result.
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Figure 12. Initial joint distribution and set of ordinal joint distributions.
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