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Preface

Two of the main phenomena occurring in condensed matter systems are superfluidity and
superconductivity. The two phenomena can be considered as two faces of the same coin.
Indeed, superfluidity is the property of a fluid with zero viscosity and no losses of fluid ki‐
netic energy, while superconductivity occurs as the property of a conductor having zero
electrical resistance and exhibiting the total expulsion of a magnetic field. Below a critical
temperature, viscosity in a superfluid and resistance in a superconductor drop to zero. In
the former case, there is the appearance of a superfluid phase, while in the latter case, a su‐
perconducting phase arises.

Since the first discovery of superfluidity in the two isotopes of helium, helium-3 and heli‐
um-4, and the observation of superconductivity, many efforts have been done to understand
the underlying physics characterizing these two remarkable phenomena. A step forward for
the comprehension of superfluidity on a microscopic level has been the connection between
superfluid helium-4 and a boson particle and between superfluid helium-3 and a fermion
particle with the pairing between two helium-3 atoms occurring at low temperatures and
leading to the superfluid phase below the critical temperature. The pairing mechanism rep‐
resents the analogous of the electron Cooper pairs that are at the basis of the microscopic
theory of superconductivity for superconductors of the first kind and allows a superfluid
behavior below a critical temperature with zero resistance. The discovery of superconduc‐
tors of the second kind exhibiting a higher critical temperature and two critical values for
the external magnetic field has been an important advancement in the field of superconduc‐
tivity. Finally, for both phenomena, one of the most important implications is the formation
of vortex configurations that are linked to their topological properties.

I would like to thank all the authors for their efforts in writing the chapters included in this
book. Each of them contains the recent advances in the topics of superfluidity and supercon‐
ductivity both from the theoretical and experimental points of view catching the attention
not only of specialists but also of nonspecialists working in the field of condensed matter
physics. Special thanks go to the Publishing Process Manager, Mr. Julian Virag, for his kind
help and for his precious and devoted assistance during all the production steps. I would
also like to acknowledge the National Institute of Advanced Mathematics (INdAM) and the
National Group for the Mathematical Physics (GNFM) in Rome for their kind support of‐
fered to me during this project.

Prof. Roberto Zivieri
INdAM and GNFM, Rome

Department of Mathematical and Computer Sciences
Physical Sciences and Earth Sciences

Messina University, Messina, Italy
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1. Generalities on superfluidity and superconductivity

This book deals with the recent advancements in two topical subjects of condensed matter 
physics, superfluidity, and superconductivity. In principle, the two phenomena are very simi-
lar because they occur as a function of temperature and in the presence of the vanishing of a 
physical quantity marking a phase transition below a critical temperature. A superfluid is a fluid 
having zero viscosity while a superconductor is a conductor with zero resistance. Superfluidity 
occurs in liquid helium and in ultracold atomic gases while superconductivity is typical of ele-
ments like niobium and lead, of some niobium alloys, or compounds like yttrium barium and 
copper oxide and compounds containing iron. Regarding the latter, since the first discoveries, 
the interplay between superconductivity and magnetism has also been investigated finding 
that the magnetic state of superconductors can be described as ideal diamagnetism. The behav-
iour toward the external magnetic field allows to distinguish between first- and second-type 
superconductors. Instead, the critical temperature in correspondence of which superconductiv-
ity arises allows to distinguish between low- and high-critical temperature superconductors. 
After their initial discovery, superfluidity was explained as a quantum mechanical phenom-
enon, while superconductivity was described first according to a phenomenological and classi-
cal theory and only in a second moment in terms of a microscopic quantum mechanical theory.

2. Topological properties of superfluids and superconductors

Recently, there has been a growing interest in both fields for the important implications of the 
two phenomena in terms of their topological properties. In particular, if stirred, superfluids form 
cellular vortices that rotate indefinitely. On the other hand, also multiply-connected supercon-
ductors form vortices giving rise to flux quantization that can be just like the quantization of 

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.
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circulation in multiply-connected superfluids. Quantized vortex structures are characterized by 
a singularity in the center and the vortex core is quantified by means of vorticity, a topological 
charge otherwise called winding number characterizing the strength of a vortex and identifying 
superfluid and superconducting vortices as topological defects. This description is an important 
step forward in both fields because the study of the topological properties is crucial to fully under-
stand the underlying physics in the systems exhibiting either superconductivity or superfluidity.

3. Contents and organization of the book

In the next six chapters of the book, some of the recent novelties in the two fields of superconductiv-
ity and superfluidity are reviewed both from a theoretical and an experimental point of view. The 
book is organized into two sections: (1) the first section contains three chapters dealing with the  
recent developed theoretical models and measurements carried out in superconductors and (2) 
the last three chapters contained in the second section report on the theoretical advancement 
together with the most sophisticated experimental techniques in superfluidity. In more detail, 
Chapter 2 reviews the main properties of the intermediate state in type-I superconductors and the 
main theoretical models to interpret it. Chapter 3 reports the recent experiments on some emerg-
ing superconductors, the bismuth chalcogenides, and the BiS2-based layered superconductors 
with special regard to the correlation between crystal structure and superconductivity. Chapter 
4 reports on the effect of isovalent substitutions and heat treatments on some physical proper-
ties of high-critical temperature superconductors by means of advanced experimental techniques. 
Chapter 5 presents an advanced theory in the field of superfluids on the Kelvin wave and knot 
dynamics on three-dimensional deformed knot-crystal and its relation with deformed space-time. 
Chapter 6 outlines an effective field theory applied to study vortices and solitons in superfluid 
Fermi gases. Chapter 7 describes an experimental technique that is able to produce hydrogen-free 
liquid helium and illustrates how to solve the flow impedance blocking issue.

Acknowledgements
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into the condensed matter physics scientific community.
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Abstract

In this chapter, we present the details of the derivation of an effective field theory (EFT) for a
Fermi gas of neutral dilute atoms and apply it to study the structure of both vortices and
solitons in superfluid Fermi gases throughout the BEC-BCS crossover. One of the merits of
the effective field theory is that, for both applications, it can provide some form of analytical
results. For one-dimensional solitons, the entire structure can be determined analytically,
allowing for an easy analysis of soliton properties and dynamics across the BEC-BCS
interaction domain. For vortices on the other hand, a variational model has to be proposed.
The variational parameter can be determined analytically using the EFT, allowing to also
study the vortex structure (variationally) throughout the BEC-BCS crossover.

Keywords: fermionic superfluids, superfluidity, effective field theory, solitons, vortices

1. Introduction

When cooling down a dilute cloud of fermionic atoms to ultralow temperatures, particles of
different spin type can form Cooper pairs and condense into a superfluid state. The properties
and features of these superfluid Fermi gases have been the subject of a considerable amount of
theoretical and experimental research [1, 2]. The opportunity to investigate a whole continuum
of inter-particle interaction regimes and the possibility to create a population imbalance result
in an even richer physics than that of superfluid Bose gases. In this chapter, we present an
effective field theory (EFT) suitable for the description of ultracold Fermi gases across the BEC-
BCS interaction regime in a wide range of temperatures. The merits of this formalism mainly
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lie in the fact that it is computationally much less requiring than the Bogoliubov-de Gennes
method, and that, in some cases, it can provide exact analytical solutions for the problem at
hand. In Section 2, we give a short overview of the path integral theory that forms the basis for
the EFT. In Section 3, we study the associated mean field theory for the description of homo-
geneous superfluids. In Section 4, we go beyond the mean-field approximation and describe
the framework of the EFT. Sections 5 and 6 are dedicated to the application of the EFT to two
important topological excitations: dark solitons and vortices.

2. Path integral theory and bosonification

The effective field theory for fermionic superfluids presented in this chapter is based on the
path integral formalism of quantum field theory. The advantage of this formalism lies in the
fact that the operators are replaced by fields, which can yield a more intuitive interpretation for
the physics of the system. Moreover, the fact that there are no operators make working with
functions of the quantum fields a lot easier.

In this section, the path integral description for ultracold Fermi gases will be briefly intro-
duced. Using the Hubbard-Stratonovich identity, the fermionic degrees of freedom can be
integrated out, resulting in an effective bosonic action. This effective bosonic action is the
object of interest of this chapter and will lie at the basis of the effective field theory. An
extended discussion of this section and the mean-field theory of the next section are given in
an earlier publication [3]. Comprehensive introductions to the path integral method include [4]
(Quantum Field Theory with Path Integrals), [5, 6] (The “classical” Path Integral), and [7]
(General review book on the Path Integrals and most of its applications).

2.1. A brief introduction to the path integral formalism

The partition function of a system described by the quantum field action functional S ϕ x; tð Þ;ϕ�
x; tð Þ� can be expressed as a path integral [7]:

Z ¼
ð
Dϕx,τDϕx,τexp �SE ϕx,τ;ϕx,τ

h i� �
: (1)

Here, Dϕx,τ represents a sum over all possible space-time configurations of the field ϕ x; τð Þ,
and τ ¼ it indicates imaginary times running from τ ¼ 0 to τ ¼ ħβ with β ¼ 1= kBTð Þ. The
Euclidian action SE β

� �
of the system is found from the real-time action functional S tb; tað Þ

through the substitution

t ! �iτ ) S tb; tað Þ ! iSE β
� �

: (2)

For systems with an Euclidean action which is at most quadratic in the fields, the path integral
(1) can be calculated analytically. In particular, two distinct cases can be considered:

Bosonic path integral: The path integral sums over a bosonic (scalar, complex valued) field
Ψ x; τð Þ:

Superfluids and Superconductors8

ZB ¼
ð
DΨDΨexp �

ð
dτ
ð
dx
ð
dτ0
ð
dx

0
Ψ x; τð ÞA x; τ; x

0
; τ0

� �
Ψ x

0
; τ0

� �h i� �
¼ 1

det Að Þ , (3)

For the case of a quadratic bosonic path integral, the integration over the complex field Ψ
reduces to a convolution of Gaussian integrals, which reduces to the inverse of the determinant
of the matrix A containing the coefficients of the quadratic form.

Fermionic path integral: The path integral sums over a fermionic (Grassmann, complex
valued) field ψ x; τð Þ:

ZF ¼
ð
Dψ

ð
Dψexp �

ð
dτ
ð
dx
ð
dτ0
ð
dx

0
ψ x; τð ÞA x; τ; x

0
; τ0

� �
ψ x

0
; τ0

� �h i� �
¼ det Að Þ, (4)

In the case of spin-dependent fermionic fields, the matrix A becomes slightly more complex
since the spinor fields have multiple components1 to account for the spin degree of freedom.
The spinors ψ are described by anti-commuting Grassmann numbers [4, 8], thus satisfying
ψ2 ¼ 0. For the quadratic case, the fermionic path integral simply returns the determinant of
the matrix A.

Using the trace-log formula, these results can also be rewritten as:

ZB ¼ exp �Tr ln Að Þ½ �ð Þ, (5)

ZF ¼ exp þTr ln Að Þ½ �ð Þ: (6)

Partition functions with quadratic action functionals form the basis of the path integral formal-
ism. The usual approach for solving path integrals with higher order action functionals is to
reduce them to the quadratic forms given above by the means of transformations and/or
approximations.

In this chapter, the system of interest is an ultracold Fermi gas in which fermionic particles of
opposite pseudo-spin interact via an s-wave contact potential. The Euclidian action functional
for this system is given by

SE ¼
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(7)

where σ∈ ↑; ↓f g denotes the spin components of the fermionic spinor fields, the chemical
potentials μσ fix the amount of particles of each spin population, and g is the renormalized
interaction strength [9, 10], linking the interaction potential to the s-wave scattering length as:

1
The matrix A can be thought of as an infinite matrix composed of either 2� 2 or 4� 4 matrices, depending on whether
the spin-dependence of the fermionic field is considered in the theory.
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1
g
¼ m

4πℏ2as
�
ð

dk

2πð Þ3
m

ℏ2k2
: (8)

For the remainder of the chapter, the units

ℏ ¼ kB ¼ kF ¼ 2m ¼ 1 (9)

will be used, meaning that we work in the natural units of kF, EF, ωF ¼ EF=ℏ, and TF ¼ EF=kB.
Consequentially, the partition function of the ultracold Fermi gas can be written down as

Z ¼ Ð
DψσDψσexp �

ðβ

0

dτ
ð
dx

X
σ∈ ↑;↓f g

ψσ x; τð Þ ∂
∂τ

� ∇2
x � μσ

� �
ψσðx; τÞ

0
@

2
64

þgψ↑ x; τð Þψ↓ðx; τÞψ↓ðx; τÞψ↑ðx; τÞ
!#

,

(10)

where the label σ was explicitly added to the integration measure to show that the path
integration is performed also over both spin components of the spinor ψ. As noted above, only
quadratic path integrals can be solved analytically, meaning that an additional trick is needed2

to calculate the above partition sum (10). In the present treatment, this trick will be the
Hubbard-Stratonovich transformation.

2.2. Bosonification: the Hubbard-Stratonovich transformation

Using the Hubbard-Stratonovich identity [11–14],

exp �g
ð
d3xgψ↑ψ↓ψ↓ψ↑

� �
¼
ð
DΨDΨexp

ð
d3x

Ψj j2
g

þ ψ↑ψ↓Ψþ ψ↓ψ↑Ψ

" # !
, (11)

it is possible to rewrite the action in a form that is quadratic in the fermionic fields ψ and ψ,
allowing for the fermionic degrees of freedom to be integrated out. The price of this transfor-
mation is the introduction of a new (auxiliary) bosonic field Ψ r; τð Þ, which can be interpreted
as the field of the Cooper pairs that will form the superfluid state. Diagramatically, the
Hubbard-Stratonovich identity removes the four-point vertex (quartic interaction term) and
replaces it with two three-point vertices (quadratic terms), as illustrated in Figure 1. It is
important to note that, although the Hubbard-Stratonovich transformation is an exact identity,
further calculations will require approximations for which the choice of collective field (or
“channel”) becomes important. Whereas the bosonic pair field is suitable for the superfluid
state, it will fail when one tries to use it to take into account interactions in the normal state.
It should therefore be pointed out that alternatives exist, notably Kleinert’s variational

2
Of course, it is always possible, given sufficient computational resources and time, to calculate the partition sum
numerically.

Superfluids and Superconductors10

perturbation theory, in which a classical collective field rather than a quantum collective field is
used. This allows for the simultaneous treatment of multiple collective fields [15], for example,
the pair field and the density field. For our present purposes, however, it is sufficient to restrict
ourselves to the superfluid state and describe it with a single collective field.

After applying the Hubbard-Stratonovich identity (11) to expression (10), the partition func-
tion becomes

Z ¼ Ð
DψσDψσ

Ð
DΨDΨexp �

ðβ

0

dτ
ð
dx

X
σ∈ ↑;↓f g

ψσ x; τð Þ ∂
∂τ

� ∇2
x � μσ

� �
ψσðx; τÞ

0
@

2
64

� Ψ x; τð Þj j2
g

� ψ↑ x; τð Þψ↓ðx; τÞΨðx; τÞ � ψ↓ðx; τÞψ↑ðx; τÞΨðx; τÞ
!#

(12)

2.3. The resulting bosonic path integral

Since the path integral over the fermionic fields ψ and ψ is now quadratic, it can be performed
analytically using formula (4), resulting in the effective bosonic path integral [3]

Z ¼
ð
DΨDΨexp � �

ðβ

0

ð
dx

Ψ x; τð Þj j2
g

� Tr ln �G�1� �� �
0
B@

1
CA

2
64

3
75, (13)

where the components of the inverse Green’s function matrix �G�1 are given by

�G�1 x; τð Þ ¼
∂
∂τ

� ∇2
x � μ↑ �Ψ x; τð Þ

�Ψ x; τð Þ ∂
∂τ

þ ∇2
x þ μ↓

0
BB@

1
CCA (14)

Since �G�1 depends on the bosonic field Ψ x; τð Þ, the action in the exponent is not quadratic,
and hence, the remaining bosonic path integral can still not be solved analytically. In order to
obtain a workable solution, two different approximations will be considered. First, a mean
field approximation (using a constant value forΨ) will be discussed in Section 3. Subsequently,

Figure 1. A diagrammatic representation of the different terms in the Hubbard-Stratonovich identity (11).

An Effective Field Description for Fermionic Superfluids
http://dx.doi.org/10.5772/intechopen.73058

11



1
g
¼ m

4πℏ2as
�
ð

dk

2πð Þ3
m

ℏ2k2
: (8)

For the remainder of the chapter, the units

ℏ ¼ kB ¼ kF ¼ 2m ¼ 1 (9)

will be used, meaning that we work in the natural units of kF, EF, ωF ¼ EF=ℏ, and TF ¼ EF=kB.
Consequentially, the partition function of the ultracold Fermi gas can be written down as

Z ¼ Ð
DψσDψσexp �

ðβ

0

dτ
ð
dx

X
σ∈ ↑;↓f g

ψσ x; τð Þ ∂
∂τ

� ∇2
x � μσ

� �
ψσðx; τÞ

0
@

2
64

þgψ↑ x; τð Þψ↓ðx; τÞψ↓ðx; τÞψ↑ðx; τÞ
!#

,

(10)

where the label σ was explicitly added to the integration measure to show that the path
integration is performed also over both spin components of the spinor ψ. As noted above, only
quadratic path integrals can be solved analytically, meaning that an additional trick is needed2

to calculate the above partition sum (10). In the present treatment, this trick will be the
Hubbard-Stratonovich transformation.

2.2. Bosonification: the Hubbard-Stratonovich transformation

Using the Hubbard-Stratonovich identity [11–14],

exp �g
ð
d3xgψ↑ψ↓ψ↓ψ↑

� �
¼
ð
DΨDΨexp

ð
d3x

Ψj j2
g

þ ψ↑ψ↓Ψþ ψ↓ψ↑Ψ

" # !
, (11)

it is possible to rewrite the action in a form that is quadratic in the fermionic fields ψ and ψ,
allowing for the fermionic degrees of freedom to be integrated out. The price of this transfor-
mation is the introduction of a new (auxiliary) bosonic field Ψ r; τð Þ, which can be interpreted
as the field of the Cooper pairs that will form the superfluid state. Diagramatically, the
Hubbard-Stratonovich identity removes the four-point vertex (quartic interaction term) and
replaces it with two three-point vertices (quadratic terms), as illustrated in Figure 1. It is
important to note that, although the Hubbard-Stratonovich transformation is an exact identity,
further calculations will require approximations for which the choice of collective field (or
“channel”) becomes important. Whereas the bosonic pair field is suitable for the superfluid
state, it will fail when one tries to use it to take into account interactions in the normal state.
It should therefore be pointed out that alternatives exist, notably Kleinert’s variational

2
Of course, it is always possible, given sufficient computational resources and time, to calculate the partition sum
numerically.

Superfluids and Superconductors10

perturbation theory, in which a classical collective field rather than a quantum collective field is
used. This allows for the simultaneous treatment of multiple collective fields [15], for example,
the pair field and the density field. For our present purposes, however, it is sufficient to restrict
ourselves to the superfluid state and describe it with a single collective field.

After applying the Hubbard-Stratonovich identity (11) to expression (10), the partition func-
tion becomes

Z ¼ Ð
DψσDψσ

Ð
DΨDΨexp �

ðβ

0

dτ
ð
dx

X
σ∈ ↑;↓f g

ψσ x; τð Þ ∂
∂τ

� ∇2
x � μσ

� �
ψσðx; τÞ

0
@

2
64

� Ψ x; τð Þj j2
g

� ψ↑ x; τð Þψ↓ðx; τÞΨðx; τÞ � ψ↓ðx; τÞψ↑ðx; τÞΨðx; τÞ
!#

(12)

2.3. The resulting bosonic path integral

Since the path integral over the fermionic fields ψ and ψ is now quadratic, it can be performed
analytically using formula (4), resulting in the effective bosonic path integral [3]

Z ¼
ð
DΨDΨexp � �

ðβ

0

ð
dx

Ψ x; τð Þj j2
g

� Tr ln �G�1� �� �
0
B@

1
CA

2
64

3
75, (13)

where the components of the inverse Green’s function matrix �G�1 are given by

�G�1 x; τð Þ ¼
∂
∂τ

� ∇2
x � μ↑ �Ψ x; τð Þ

�Ψ x; τð Þ ∂
∂τ

þ ∇2
x þ μ↓

0
BB@

1
CCA (14)

Since �G�1 depends on the bosonic field Ψ x; τð Þ, the action in the exponent is not quadratic,
and hence, the remaining bosonic path integral can still not be solved analytically. In order to
obtain a workable solution, two different approximations will be considered. First, a mean
field approximation (using a constant value forΨ) will be discussed in Section 3. Subsequently,

Figure 1. A diagrammatic representation of the different terms in the Hubbard-Stratonovich identity (11).

An Effective Field Description for Fermionic Superfluids
http://dx.doi.org/10.5772/intechopen.73058

11



this mean field theory will form the basis for a finite temperature effective field theory, which
also takes into account slow fluctuations of the pair field Ψ x; τð Þ. This theory will be presented
in Section 4.

3. The mean field theory

At first sight, the introduction of the auxiliary bosonic fields Ψ x; τð Þ and Ψ x; τð Þ through the
Hubbard-Stratonovich transformation seems to have been of little use; while the transforma-
tion enables us to perform the path integrals over the fermionic fields, we end up with path
integrals for Ψ x; τð Þ and Ψ x; τð Þ that still cannot be calculated exactly. The advantage of
switching to the bosonic pair fields, however, lies in the fact that they allow us to make a
physically plausible approximation based on our knowledge of the system. If we want to
investigate the superfluid state, we can assume that the most important contribution to the
path integral will come from the configuration in which all the bosonic pairs are condensed
into the lowest energy state of the system and form a homogeneous superfluid. This assump-
tion is most easily expressed in momentum-frequency representation q;mf g:

Ψ q;mð Þ ! ffiffiffiffiffiffi
βV

p
δ qð Þδm,0 � Δ, (15)

Ψ q;mð Þ ! ffiffiffiffiffiffi
βV

p
δ qð Þδm,0 � Δ∗, (16)

where m characterizes the bosonic Matsubara frequencies ~ωm ¼ 2mπ=β, and V represents the
volume of the system. This approximation, which is called the saddle-point approximation for
the bosonic path integral, comes down to assuming that the pair field Ψ x; τð Þ takes on a
constant value Δ. By applying this approximation to the bosonic path integral in expression
(12) (i.e., after performing the Hubbard-Stratonovich transformation but before performing the
Grassmann integration over the fermionic fields), the resulting fermionic path integral can be
solved analytically using formula (4) to find the saddle-point expression for the partition
function:

Zsp ¼ exp
Δj j2
g

�
X
k, n

ln iωn � Ek þ ζð Þ �iωn � Ek � ζð Þ½ �
( )

: (17)

where ωn are the fermionic Matsubara frequencies ωn ¼ 2nþ 1ð Þπ=β. We have also introduced

the single-particle excitation energy Ek ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2k þ Δ2

q
with ξk ¼ k2 � μ, and we have defined the

average chemical potential μ and the imbalance chemical potential ζ as

μ ¼ μ↑ þ μ↓

2
and ζ ¼ μ↑ � μ↓

2
: (18)

The parameter ζ determines the population imbalance between the two spin populations. For
ζ ¼ 0, the numbers of particles of each spin type are equal, while for non-zero values of ζ, there

Superfluids and Superconductors12

will be more spin-up than spin-down particles or vice versa. The saddle-point partition func-
tion can now be rewritten in terms of the saddle-point thermodynamic potential per unit
volume Ωsp as

Zsp ¼ exp �βVΩsp
� �

: (19)

After performing the Matsubara summation over n [3] and replacing the sum over k by a
continuous integral in expression (17), we finally find for Ωsp:

Ωsp ¼ � Δj j2
8πkFas

�
ð

dk

2πð Þ3
1
β

2cosh βEk
� �þ 2cosh βζ

� �� �� ξk �
Δj j2
2k2

( )
(20)

The saddle-point value Δsp for the pair field is found through the requirement that Δsp

minimizes Ωsp, which yields the gap equation:

∂Ωsp

∂Δ

����
T,μ,ζ

¼ 0 (21)

This is illustrated in Figure 2, which shows the thermodynamic potentialΩsp as a function of Δ
for several values of the imbalance chemical potential ζ. The superfluid state exists when Ωsp

reaches its minimum at a nonzero value of Δ. As ζ is increased, the normal state at Δ ¼ 0
develops and becomes the global minimum above a critical imbalance level. This transition
from the superfluid to the normal state under influence of increasing population imbalance is
known as the Clogston phase transition [16].

When working with a fixed number of particles, the chemical potential μ and the imbalance
chemical potential ζ have to be related to the fermion density nsp and density difference δnsp
(between the two spin populations) through the number equations

Figure 2. The thermodynamic potential Ωsp in function of Δ for several values of the imbalance chemical potential ζ, at
temperature T=TF ¼ 0:01 and chemical potential μ ¼ 1:3EF. The evolution of the normal state at Δ ¼ 0 as ζ increases
illustrates the Clogston phase transition.
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nsp ¼ �∂Ωsp

∂μ

����
T,ζ,Δ

(22)

δnsp ¼ �∂Ωsp

∂ζ

����
T,μ,Δ

(23)

Since in our units kF ¼ 1, the particle density nsp is fixed by nsp ¼ 1= 3π2
� �

. Given the input
parameters β, ζ, and as, the values Δ and μ can then be found from the coupled set of Eqs. (21)
and (22), while (23) fixes δnsp as a function of ζ. Solutions for Δsp and μ across the BEC-BCS
crossover are shown in Figure 3a and b.

4. The effective field theory

While the saddle-point approximation is a suitable model for the qualitative description
of homogeneous Fermi superfluids, it does not account for the effects of fluctuations of
the order parameter, nor does it include any excitations other than the single-particle
Bogoliubov excitations. To study the properties and dynamics of non-homogeneous sys-
tems, one needs to go beyond the limitations of a mean field theory. In this section, we
formulate an effective field theory (EFT) for the pair field Ψ r; tð Þ that can describe
nonhomogeneous Fermi superfluids in the BEC-BCS crossover at finite temperatures. To
this end, we return to the path integral expression (13) for the partition function, which
was obtained after performing the Hubbard-Stratonovich transformation and integrating
out the fermionic degrees of freedom. Since the exponent of this partition function only
depends on the fields Ψ r; tð Þ and Ψ r; tð Þ, we can define an effective bosonic action for the
pair field given by
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where �G�1
0 describes free fermionic fields, while F describes the pairing of the fermions.

Using this decomposition, we can write the effective bosonic action functional (24) as
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While, in general, this infinite sum over all powers of the pair field cannot be calculated
analytically, there exist many possible approximations that lead to various theoretical treat-
ments of the ultracold Fermi gas. For example, the mean field saddle-point approximation
from the previous section can be retrieved by simply setting
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in (26) and calculating the whole sum over p. In the Ginzburg-Landau (GL) treatment for
ultracold Fermi gases, the action is approximated by assuming small fluctuations of the pair
field Ψ x; τð Þ around the normal state Ψ ¼ 0. This assumption comes down to keeping only
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with F0 ! 0. The result is an effective field treatment which is valid close to the critical
temperature Tc of the superfluid phase transition. Inspired by the GL formalism, we will now
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present a beyond saddle-point EFT that is capable of describing Fermi superfluids in the BEC-
BCS crossover at finite temperatures. This theory is based on the assumption that the pair field
Ψ x; τð Þ exhibits slow variations in space and time around a constant bulk value. Since this is a
weaker condition than the GL assumption of small variations, it is ultimately expected to lead
to a larger applicability domain. The assumption of slow fluctuations is implemented through
a gradient expansion of the pair field around its saddle-point value, similar to (28) but with
F0 ! Fsp. Subsequently, we consider the full infinite sum in (26):

X∞
p¼1

1
p
Tr G0Fð Þp½ � ¼

X∞
p¼1

1
p
Tr G0FG0F…G0F|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

p factors

2
64

3
75: (29)

In every term of this sum, we replace (at most) two occurrences of F x; τð Þ by its gradient
expansion and substitute all remaining factors F x; τð Þ by Fsp. Afterward, the entire sum over p
can be calculated analytically. The result of this calculation, the details of which can be found in
[17], is an explicit expression for the Euclidian action functional that governs the dynamics of
the pair field Ψ x; τð Þ of a three-dimensional (3D) superfluid Fermi gas:

SEFT ¼
ðβ
0
dτ
ð
dx

D
2

Ψ
∂Ψ
∂τ

� ∂Ψ
∂τ

Ψ

� �
þΩs þ C
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∇xΨ � ∇xΨ
� �� E

2m
∇x Ψj j2
� �2�

þQ
∂Ψ
∂τ

∂Ψ
∂τ

� R
∂ Ψj j2
∂τ

 !2
3
5: (30)

The EFT coefficients Ωs, C, D, E, Q and R are given by

Ωs ¼ � 1
8πkFas

Δj j2 �
ð

dk

2πð Þ3
1
β
ln 2cosh βEk

� �þ 2cosh βζ
� �� �� ξk �

Δj j2
2k2

( )
(31)
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dk

2πð Þ3
k2

3m
f 2 β;Ek; ζ
� �

(32)
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dk
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� �� f 1 β;Ek; ζ
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(33)

E ¼ 2
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dk
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k2

3m
ξ2k f 4 β;Ek; ζ

� �
(34)

Q ¼ 1

2 Ψj j2
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dk

2πð Þ3 f 1 β;Ek; ζ
� �� E2

k þ ξ2k
� �

f 2 β;Ek; ζ
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(35)

R ¼ 1

2 Ψj j2
ð

dk

2πð Þ3
f 1 β;Ek; ζ
� �þ E2

k � 3ξ2k
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f 2 β;Ek; ζ
� �

3 Ψj j2
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k

� �
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f 3 β;Ek; ζ
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#
, (36)
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where the functions f p β; ε; ζ
� �

are recursively defined as

f 1 β; e; ζ
� � ¼ 1

2e
sinh βe

� �

cosh βe
� �þ cosh βζ

� � (37)

f pþ1 β; e; ζ
� � ¼ � 1

2pe

∂f p β; e; ζ
� �

∂E
(38)

In general, each of these EFT coefficients depends on the modulus squared of the order parameter

Ψ x; τð Þj j2. In practice, however, we will assume that the coefficients associated with the second
order derivatives of the pair field can be kept constant and equal to their bulk value, since
retaining their full space-time dependence would strictly speaking lead us beyond the second-
order approximation of the gradient expansion. This means that in expressions (32), (34), (35), and

(36) for the coefficients C, E, Q, and R, we set Ψ x; τð Þj j2 ¼ Ψ∞j j2 and Ek ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2k þ Ψ∞j j2

q
, where

Ψ∞j j2 is the saddle-point value of the pair field for a uniform system. For the coefficientsΩs andD

on the other hand, the full space-time dependence of Ψ x; τð Þj j2 is preserved.
The effective action functional (30) forms the basis of our EFT description of superfluid Fermi
gases. The validity and limitations of the formalism are largely determined by the main
assumption that the order parameter varies slowly in space and time, which corresponds to
the condition that the pair field should vary over a spatial region much larger than the Cooper
pair correlation length. A detailed study of the limitations imposed by this condition was
carried out in [18]. In the following chapters, we will demonstrate some of the ways in which
the EFT can be employed by applying it to the description of two important topological
excitations of the superfluid: dark solitons and vortices.

5. Application 1: Soliton dynamics

In this section, we will use the EFT that was developed in Section 4 to study the properties of
dark solitons in Fermi superfluids.

5.1. What is a dark soliton?

Solitons are nonlinear solitary waves that maintain their shape while propagating through a
medium at a constant velocity. They are found as the solution of nonlinear wave equations and
emerge in a wide variety of physical systems, including optical fibers, classical fluids, and
plasmas. More recently, they have also become a subject of interest in superfluid quantum
gases [19–23]. In these systems, solitons appear most often in the form of dark solitons, which
are characterized by a localized density dip in the uniform background and a jump in the
phase profile of the order parameter. The magnitude of this density dip and phase jump are
intrinsically connected to the velocity vs with which the soliton propagates through the super-
fluid, as illustrated in Figure 4. The higher the soliton velocity, the smaller the phase jump and
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medium at a constant velocity. They are found as the solution of nonlinear wave equations and
emerge in a wide variety of physical systems, including optical fibers, classical fluids, and
plasmas. More recently, they have also become a subject of interest in superfluid quantum
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are characterized by a localized density dip in the uniform background and a jump in the
phase profile of the order parameter. The magnitude of this density dip and phase jump are
intrinsically connected to the velocity vs with which the soliton propagates through the super-
fluid, as illustrated in Figure 4. The higher the soliton velocity, the smaller the phase jump and
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soliton depth become. Above a certain critical velocity vc, the phase jump and density dip will
disappear completely and a dark soliton solution no longer exists.

5.2. Solution for a one-dimensional dark soliton

For the case of a dark soliton in a one-dimensional (1D) Fermi superfluid with a uniform
background, the EFT provides an exact analytical solution for the pair field [24]. To describe
the dynamics of the system, it is necessary to move from the imaginary-time action functional
(30) to the real-time one, using the formal replacements.

τ ! it (39)

SEFT β
� �! �iSEFT tb; tað Þ: (40)

From the relation between the real-time action functional and the Lagrangian density L,

SEFT tb; tað Þ ¼
ðtb
ta
dt
ð
dxL, (41)

we subsequently find the following expression for L:

L ¼ i
D
2

Ψ
∂Ψ
∂t

� ∂Ψ
∂t

Ψ

� �
�Ωs � C

2m
∇xΨ � ∇xΨ
� �þ E

2m
∇x Ψj j2
� �2

þQ
∂Ψ
∂t

∂Ψ
∂t

� R
∂ Ψj j2
∂t

 !2

,

(42)

where the Hamiltonian density H is defined as

Figure 4. Example of the density profile (upper row) and phase profile (lower row) of a dark soliton for different soliton
velocities vs relative to the critical velocity vc.
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H ¼ Ωs þ C
2m

∇xΨ � ∇xΨ
� �� E

2m
∇x Ψj j2
� �2

þQ
∂Ψ
∂t

∂Ψ
∂t

� R
∂ Ψj j2
∂t

 !2

: (43)

As mentioned above, a dark soliton in a superfluid is mainly characterized by a jump in the
phase profile and a dip in the amplitude profile of the order parameter. Therefore, it is
convenient to write the pair field Ψ x; tð Þ as

Ψ x; tð Þ ¼ ∣Ψ x; tð Þ∣eiθ x;tð Þ: (44)

Moreover, since a soliton is a localized perturbation, we write the modulus as a product of the
constant background value ∣Ψ∞∣ and a relative amplitude a x; tð Þ that modifies the background
value at the position of the soliton:

∣Ψ x; tð Þ∣ ¼ ∣Ψ∞∣a x; tð Þ: (45)

Substituting this form for the pair field in the field Lagrangian (42), we find

L ¼� κ að Þa2 ∂θ
∂t

� Ωs að Þ �Ωs a∞ð Þ½ � � 1
2
ρqp að Þ ∇xað Þ2 � 1

2
ρsf að Þ ∇xθð Þ2

þ Q� 4R Ψ∞j j2 a2
� �

Ψ∞j j2 ∂a
∂t

� �2

þQ Ψ∞j j2 a2 ∂θ
∂t

� �2

,
(46)

with

κ að Þ ¼ D að Þ Ψ∞j j2, (47)

ρqp að Þ ¼ C� 4E Ψ∞j j2 a2
m

Ψ∞j j2, (48)

ρsf að Þ ¼ C
m

Ψ∞j j2 a2: (49)

Here, we added Ωs a∞ð Þ to the original Lagrangian to obtain a regularized Lagrangian density
in which energy values are considered with respect to the energy of the uniform system. The
superfluid density ρsf determines how much the pair condensate resists gradients in its phase
field, while the quantum pressure ρqp is a consequence of the fact that the condensate also

resists gradients in the pair density. We will further limit ourselves to a 1D problem in which
the soliton propagates with constant speed vs in the x-direction on a uniform background. This
assumption can be implemented through the condition that the space-time dependence of the
pair field satisfies the relation f x; tð Þ ¼ f x� vstð Þ. We then perform a change of variables
x0 ¼ x� vst and t0 ¼ t, corresponding to a transformation to the frame of reference that moves
along with the soliton and has its origin at the soliton center. It follows that

f x� vstð Þ ¼ f x0ð Þ, ∂
∂x

¼ ∂
∂x0

,
∂
∂t

¼ ∂
∂t0

� vs
∂
∂x0

: (50)

If we further drop the primes, the Lagrangian density (46) in the soliton frame of reference can
be written as
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soliton depth become. Above a certain critical velocity vc, the phase jump and density dip will
disappear completely and a dark soliton solution no longer exists.

5.2. Solution for a one-dimensional dark soliton

For the case of a dark soliton in a one-dimensional (1D) Fermi superfluid with a uniform
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where the Hamiltonian density H is defined as

Figure 4. Example of the density profile (upper row) and phase profile (lower row) of a dark soliton for different soliton
velocities vs relative to the critical velocity vc.
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constant background value ∣Ψ∞∣ and a relative amplitude a x; tð Þ that modifies the background
value at the position of the soliton:

∣Ψ x; tð Þ∣ ¼ ∣Ψ∞∣a x; tð Þ: (45)

Substituting this form for the pair field in the field Lagrangian (42), we find

L ¼� κ að Þa2 ∂θ
∂t

� Ωs að Þ �Ωs a∞ð Þ½ � � 1
2
ρqp að Þ ∇xað Þ2 � 1

2
ρsf að Þ ∇xθð Þ2

þ Q� 4R Ψ∞j j2 a2
� �

Ψ∞j j2 ∂a
∂t

� �2

þQ Ψ∞j j2 a2 ∂θ
∂t

� �2

,
(46)

with

κ að Þ ¼ D að Þ Ψ∞j j2, (47)

ρqp að Þ ¼ C� 4E Ψ∞j j2 a2
m

Ψ∞j j2, (48)

ρsf að Þ ¼ C
m

Ψ∞j j2 a2: (49)

Here, we added Ωs a∞ð Þ to the original Lagrangian to obtain a regularized Lagrangian density
in which energy values are considered with respect to the energy of the uniform system. The
superfluid density ρsf determines how much the pair condensate resists gradients in its phase
field, while the quantum pressure ρqp is a consequence of the fact that the condensate also

resists gradients in the pair density. We will further limit ourselves to a 1D problem in which
the soliton propagates with constant speed vs in the x-direction on a uniform background. This
assumption can be implemented through the condition that the space-time dependence of the
pair field satisfies the relation f x; tð Þ ¼ f x� vstð Þ. We then perform a change of variables
x0 ¼ x� vst and t0 ¼ t, corresponding to a transformation to the frame of reference that moves
along with the soliton and has its origin at the soliton center. It follows that

f x� vstð Þ ¼ f x0ð Þ, ∂
∂x

¼ ∂
∂x0

,
∂
∂t

¼ ∂
∂t0

� vs
∂
∂x0

: (50)

If we further drop the primes, the Lagrangian density (46) in the soliton frame of reference can
be written as
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L ¼ κ að Þa2vs ∂θ∂x � Ωs að Þ �Ωs a∞ð Þ½ � � 1
2
~ρqp að Þ ∂a

∂x

� �2

� 1
2
~ρsf að Þ ∂θ

∂x

� �2

: (51)

with the modified superfluid density and quantum pressure

~ρqp að Þ ¼ C� 4E Ψ∞j j2 a2
m

Ψ∞j j2 � 2 Q� 4R Ψ∞j j2 a2
� �

Ψ∞j j2v2s , (52)

~ρsf að Þ ¼ C
m

Ψ∞j j2 a2 � 2Q Ψ∞j j2 a2v2s : (53)

From the above expression for L a;θð Þ, we can now find the equations of motion for the relative
amplitude field a xð Þ and the phase field θ xð Þ:

∂
∂t

∂L
∂ ∂tað Þ
� �

þ ∂
∂x

∂L
∂ ∂xað Þ
� �

¼ ∂L
∂a

, (54)

∂
∂t

∂L
∂ ∂tθð Þ
� �

þ ∂
∂x

∂L
∂ ∂xθð Þ
� �

¼ ∂L
∂θ

: (55)

Starting with the equation for the phase field, we easily find:

∂
∂x

κ að Þa2vs � ~ρsf að Þ ∂θ
∂x

� �
¼ 0 (56)

⇔
∂θ
∂x

¼ κ að Þa2vs þ α
~ρsf að Þ : (57)

The integration constant α can be determined through the boundary condition for a dark soliton:

∂θ
∂x

! 0 for x ! �∞: (58)

which yields α ¼ �vsκ∞ with κ∞ ¼ κ a∞ð Þ and thus

∂θ
∂x

¼ vs
~ρsf að Þ κ að Þa2 � κ∞

� �
: (59)

If we set θ �∞ð Þ ¼ 0, the phase profile of the superfluid is given by

θ xð Þ ¼ vs

ðx
�∞

κ a x0ð Þð Þa2 x0ð Þ � κ∞
~ρsf a x0ð Þð Þ dx0: (60)

Next, we derive the equation of motion for a xð Þ:
∂
∂x

�~ρqp að Þ ∂a
∂x

� �
¼ ∂

∂a
κ að Þa2� �

vs
∂θ
∂x

� ∂Ωs

∂a
� 1
2

∂~ρqp

∂a
∂a
∂x

� �2

� 1
2
∂~ρsf

∂a
∂θ
∂x

� �2

: (61)

Inserting the solution for the derivative of the phase field (59) and defining
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X að Þ ¼ Ωs að Þ �Ωs a∞ð Þ, (62)

Y að Þ ¼ κ að Þa2 � κ∞
� �2

2~ρsf að Þ , (63)

we find

1
2

∂~ρqp

∂a
∂a
∂x

� �2

þ ~ρqp að Þ ∂
2a

∂x2
¼ ∂

∂a
X að Þ � v2sY að Þ� �

: (64)

While the above equation does not allow for a straightforward solution for a as a function of
the position x, it can be solved for x as a function of a instead. Using the boundary conditions
for a dark soliton

∂a
∂x

����
x!�∞

¼ 0 and a xð Þjx!�∞ ¼ 1, (65)

we find that (64) can be integrated, yielding:

1
2
~ρqp að Þ ∂a

∂x

� �2

¼ X að Þ � v2sY að Þ, (66)

⇔
∂x
∂a

� �2

¼ 1
2

~ρqp að Þ
X að Þ � v2sY að Þ , (67)

⇔ x ¼ � 1ffiffiffi
2

p
ða
a0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~ρqp a0ð Þ

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X a0ð Þ � v2sY a0ð Þp da0: (68)

Here, a0 ¼ a x ¼ 0ð Þ is the relative amplitude at the center of the soliton, which is found as the
solution of

X a0ð Þ � v2s Y a0ð Þ ¼ 0: (69)

For given values of the interaction parameter kFasð Þ�1, the temperature T=TF, the imbalance
chemical potential ζ, and the soliton velocity vs, formulae (60) and (68) allow us to calculate the
complete pair field profile of the dark soliton. For example, the soliton density and phase
profiles in Figure 4 were calculated using the above expressions.

5.3. Dark solitons in imbalanced Fermi gases

The dark soliton solution derived in the previous section has been employed in the description
of various soliton phenomena in superfluid Fermi gases. For instance, adding a small two-
dimensional perturbation to the exact 1D solution allows for a description of the snake insta-
bility mechanism [25], which makes the soliton decay into vortices if the radial width of
the system is too large [23, 26]. We have also studied collisions between dark solitons by
numerically evolving two counter-propagating 1D solitons in time [27]. As an example of an
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∂x

� �
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∂x
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Inserting the solution for the derivative of the phase field (59) and defining
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While the above equation does not allow for a straightforward solution for a as a function of
the position x, it can be solved for x as a function of a instead. Using the boundary conditions
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Here, a0 ¼ a x ¼ 0ð Þ is the relative amplitude at the center of the soliton, which is found as the
solution of

X a0ð Þ � v2s Y a0ð Þ ¼ 0: (69)

For given values of the interaction parameter kFasð Þ�1, the temperature T=TF, the imbalance
chemical potential ζ, and the soliton velocity vs, formulae (60) and (68) allow us to calculate the
complete pair field profile of the dark soliton. For example, the soliton density and phase
profiles in Figure 4 were calculated using the above expressions.

5.3. Dark solitons in imbalanced Fermi gases

The dark soliton solution derived in the previous section has been employed in the description
of various soliton phenomena in superfluid Fermi gases. For instance, adding a small two-
dimensional perturbation to the exact 1D solution allows for a description of the snake insta-
bility mechanism [25], which makes the soliton decay into vortices if the radial width of
the system is too large [23, 26]. We have also studied collisions between dark solitons by
numerically evolving two counter-propagating 1D solitons in time [27]. As an example of an
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application, we will give a short description of the influence of spin-imbalance on dark solitons,
a topic that was studied in detail in [18].

In ultracold Fermi gases, the amount of atoms in each spin population can be tuned experimen-
tally, allowing for the possibility of having unequal amounts of spin-up and spin-down particles
[28, 29]. In that case, when particles of different spin type pair up and form a superfluid state, an
excess of unpaired particles will remain in the normal state, which in turn can have interesting
effects on other phenomena in the system, including dark solitons. In the context of the EFT, we
control the population imbalance by setting the value of the imbalance chemical potential ζ,
defined in (18). Figure 5a and b shows respectively the fermion particle density n xð Þ and spin-
population density difference δn xð Þ (both with respect to the bulk density n∞) along a stationary

dark soliton for kFasð Þ�1 ¼ 0 (unitarity), T ¼ 0:1TF, and for different values of ζ. The density and
density difference profiles are calculated using formulas (22) and (23) in a mean-field local
density approximation. From the left figure, we observe that as we raise the imbalance chemical
potential, the fermion density at the soliton center increases and the soliton broadens. However,
we also know that, for a stationary dark soliton, the pair density at the center is always zero (as
shown in the upper left panel of Figure 4), which means that the particles filling up the soliton
are unpaired particles. This is confirmed by the right figure, which shows that the density
difference between spin-up and spin-down particles in the soliton center increases with ζ. The
same effects are observed across the whole BEC-BCS crossover.

As the imbalance between the spin components in the Fermi gas increases, so does the amount
of unpaired particles that cannot participate in the superfluid state of pairs. While some of
these normal state particles can coexist with the pair condensate as a thermal gas, it is energet-
ically favorable for the remaining excess to be spatially separated from the superfluid. In this
context, the soliton dip is a very suitable location to accommodate the excess particles and
consequently fills up with an increasing amount of unpaired particles as the imbalance gets
higher. Also, the broadening of the soliton with increasing imbalance might be a way of

Figure 5. Fermion density (left figure) and density difference (right figure) profiles of a dark soliton for kFaSð Þ�1 ¼ 0 at
temperature T=TF ¼ 0:1, for different values of the imbalance chemical potential ζ. The densities are given with respect to
the bulk density n∞.
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providing the system with more space to store the excess component. The fact that a dark
soliton in an imbalanced superfluid Fermi gas has to drag along additional particles changes
its effective mass, which in turn influences its general dynamical properties [18]. Moreover,
since a soliton plane provides more space to accommodate the excess component than a vortex
core, the presence of spin imbalance has been found to stabilize dark solitons with respect to
the snake instability [25].

6. Application 2: the vortex structure

As a second application, the time-independent version of the theory is considered in order to
derive the stable vortex structure. For the description of the vortex, the quantum velocity field
v will be used, defined as:

v ¼ ℏ
m
∇xθ, (70)

where θ is the phase field from the hydrodynamical description (44). In the time-independent
case, the action (30) reduces to the free energy (times the inverse temperature), which is given by:

F ¼
ð
drF a;∇xa; xð Þ with F a;∇xa; xð Þ ¼ X að Þ þ 1

8
ρsf að Þv2 xð Þ þ 1

2
ρqp að Þ ∇xaj j2: (71)

The free energy was written in a more compact3 form using the hydrodynamical description
(48), (49), (62) and (70). As an application of the effective field theory, the general structure of a
superfluid vortex will be numerically determined and compared with the commonly used
variational hyperbolic tangent. A more detailed description on vortices in superfluids and
their behavior can be found in [30].

6.1. What is a vortex?

Both in the classical and the quantum sense, a vortex is defined as a line in the fluid around
which there is a circulating flow. In order to quantify this rotation around an axis, the circula-
tion κ is defined as:

κ ¼ ∮ γv rð Þ � ds, (72)

where γ is a closed contour and v the superfluid velocity field (70). A distinct feature of super-
fluids4 is that the circulation κ is only allowed to take on values which are integer multiples of the
circulation quantum h=m. In superfluids, circulation is always carried by quantized vortices.

This quantization of the circulation can be derived using the definition of the velocity field (70).
Upon substitution, the circulation (72) can be written as:

3
Where again the free energy at infinity was subtracted to obtain a well behaved free energy.

4
In the case of a superconductor, the quantized value is given by the magnetic flux.
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The free energy was written in a more compact3 form using the hydrodynamical description
(48), (49), (62) and (70). As an application of the effective field theory, the general structure of a
superfluid vortex will be numerically determined and compared with the commonly used
variational hyperbolic tangent. A more detailed description on vortices in superfluids and
their behavior can be found in [30].
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Both in the classical and the quantum sense, a vortex is defined as a line in the fluid around
which there is a circulating flow. In order to quantify this rotation around an axis, the circula-
tion κ is defined as:
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where γ is a closed contour and v the superfluid velocity field (70). A distinct feature of super-
fluids4 is that the circulation κ is only allowed to take on values which are integer multiples of the
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Where again the free energy at infinity was subtracted to obtain a well behaved free energy.
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In the case of a superconductor, the quantized value is given by the magnetic flux.
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κ ¼ ℏ
m
∮ γ∇xθ � ds ¼ n

h
m

with n∈ℤ, (73)

where the gradient theorem was used together with the fact that the phase field θ is a periodic
function (period 2π).

As the bulk superfluid itself is irrotational, any loop with nonzero circulation must encircle a
node in the superfluid order parameter. As a consequence, the superfluid pair density must go
to zero along the entire vortex line, resulting in a vortex “core” region with a radius compara-
ble to the healing length. Important to note is that vortices of a single circulation quantum are
energetically more favorable than multiply quantized vortices in a homogeneous condensate
(which is the type of condensate that will be considered in this chapter) [9]. For the remainder
of this application, only singly quantized vortices will thus be studied.

6.2. About the structure of a quantum vortex

The most natural coordinate system to describe vortices are the polar coordinates x ¼ r;ϕ
� �

.
The origin of the polar coordinates will be chosen in the center of the vortex (at the point where
the superfluid density reaches zero). In order to derive the vortex structure, a set of boundary
conditions is required. In the radial direction, the boundary conditions are then given by5:

a r ! 0ð Þ ¼ 0 and a r ! ∞ð Þ ¼ 1, (74)

meaning that the superfluid density relaxes to the bulk value away from the vortex.

We factorize the amplitude function in a radial and an angular part6:

a r;ϕ
� � ¼ f rð ÞΦ ϕ

� �
: (75)

Since the structure is periodic, the general solution for Φ ϕ
� �

is thus given by:

Φ ϕ
� � ¼

X∞
n¼�∞

aneinϕ, (76)

leading to a basis of angular modes for the vortex structure. In order to find the lowest energy
state, one usually restricts the problem to one of the many possible modes:

Φ ϕ
� � ¼ einϕ with n∈ℤ, (77)

which results in the velocity field and circulation (using (70) and (72)) for a single mode given by:

5
Note that the condition at r ! ∞ could be replaced by ∂rar!∞ ¼ 0. This could however lead to numerical difficulties in the
center of the vortex.
6
This product decomposition is not generally valid in all coordinate systems [31].
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v rð Þ ¼ n
ℏ
mr

eϕ ) κ ¼ n
h
m
, (78)

where the velocity field diverges in the point where the superfluid vanishes. It was noted before
that for our case, themost energetic vortex states are those with the least circulation quanta. Since
the object of interest is the vortex structure with a minimal free energy, the value of n will be
restricted to n ¼ �1. The state with n ¼ 1 is known as the “vortex,”where the state with n ¼ �1
is known as the “anti-vortex.” This means that the vortex velocity field is given by7:

v rð Þ ¼ � ℏ
mr

eϕ, (79)

where the “+” sign is for vortices and the “-” sign for anti-vortices.

Currently, there is no analytical solution available for the full vortex structure f rð Þ. Calculations
including vortices are therefore either done numerically (for the exact structure) or variation-
ally. One way to numerically find the minimal structure is by writing down the equations of
motion (the Euler-Lagrange equations for the free energy (71)), which is analogous to what
was done for the soliton in the previous section. Directly solving the equations of motion,
however, is a numerical challenge due to the divergence of the velocity field in the center of the
vortex. A second numerical method is briefly discussed further on. The disadvantage of the
full numerical approach is that it takes time. As an alternative, it is possible to work with a
variational model. By working with a variational model, it is possible to retain a fair amount of
accuracy while gaining several orders of magnitude in computational speed. The usage of
variational models is discussed in the next subsection. A disadvantage of using variational
models is however that a certain structure is proposed, meaning the variational guess can be
wrong in certain situations. When using variational models, one should consequently always
check the validity of the model and the range of application.

6.3. A variational model for the vortex core

In order to speed up the vortex calculations, a variational model can be used to describe the
vortex structure. First of all, the variational model should meet the required boundary condi-
tions (74). Second, the variational model should contain the necessary information to describe
the vortex physics. For example, in liquid helium, the vortex core sizes are of the order of
nanometers [33], meaning that the vortex core structure will not play a prominent role in the
vortex physics; in this case, a simple hollow cylinder is already a good variational model for
the vortex core. For vortices in ultracold gases on the other hand, the vortex core size is of the
order of micrometers [34], meaning that its structure becomes important8; a simple cylindric
hole will no longer capture the entire vortex physics. In order to provide a more detailed
description, different variational models are available [9, 30].

7
Note that this velocity field is the same as the elementary vortex flow known in classical hydrodynamics [32].

8
The condensate size to vortex core size is typically in the range 10–50.
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κ ¼ ℏ
m
∮ γ∇xθ � ds ¼ n

h
m

with n∈ℤ, (73)
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a r;ϕ
� � ¼ f rð ÞΦ ϕ

� �
: (75)
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� �
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Φ ϕ
� � ¼

X∞
n¼�∞

aneinϕ, (76)
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5
Note that the condition at r ! ∞ could be replaced by ∂rar!∞ ¼ 0. This could however lead to numerical difficulties in the
center of the vortex.
6
This product decomposition is not generally valid in all coordinate systems [31].
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v rð Þ ¼ n
ℏ
mr

eϕ ) κ ¼ n
h
m
, (78)
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order of micrometers [34], meaning that its structure becomes important8; a simple cylindric
hole will no longer capture the entire vortex physics. In order to provide a more detailed
description, different variational models are available [9, 30].
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Note that this velocity field is the same as the elementary vortex flow known in classical hydrodynamics [32].
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The variational model that will be discussed here is the hyperbolic tangent model:

f rð Þ ¼ tanh
rffiffiffi
2

p
ξ

� �
, (80)

where the quantity ξ is defined as the healing length. The hyperbolic tangent (80) is the exact
solution of the Gross-Pitaevskii equation in 1D for a condensate with a hard wall boundary
[9, 35]. Since the variational model describes the healing from a hole in the condensate, it is
expected that this model will also sufficiently describe the vortex physics. The merit of the
presented effective field theory in Section 4 is that an analytical solution can be derived for
the vortex healing length ξ; this will be done in the remainder of this subsection. Using the
definitions (71), the free energy of the variational vortex structure is given by:

F ¼
ð∞

0

rdr X að Þ þ A
2r2

tanh2 rffiffiffi
2

p
ξ

� �
þ
ρqp tanh rffiffi

2
p

ξ

� �� �

4ξ2cosh 4 rffiffi
2

p
ξ

� �
2
4

3
5, (81)

where the value of the constant A is defined as:

A ¼ 2C Δ∞j j2: (82)

The second term in the integrand of (81) causes a divergence, since

lim
R!∞

A
2

ðR

0

1
r
tanh2 rffiffiffi

2
p

ξ

� �
dr∝ log Rð Þ (83)

diverges logarithmically with increasing radius of the integration domain. The physical reason
is clear: the velocity profile of a vortex decays as 1=r, so that the kinetic energy of the superflow
will grow as the logarithm of the container size. However, the derivative with respect to ξ of
this kinetic energy of the superflow does not diverge. This can be seen by first switching to a
dimensionless variable x ¼ r=ξ:

F ¼ ξ2
ð∞

0

xX að Þdxþ A
2
lim
R!∞

ðR=ξ

0

tanh2 xffiffiffi
2

p
� �

dx
x

0
B@

1
CAþ

ð∞

0

ρqp tanh x=
ffiffiffi
2

p� �� �

4cosh 4 x=
ffiffiffi
2

p� � dx: (84)

The last term no longer contains a dependency on ξ, so its derivative with respect to ξ
vanishes. We obtain

dF
dξ

¼ 2ξ
ð∞

0

xX að Þdxþ A
2
lim
R!∞

d
dξ

ðR=ξ

0

tanh2 xffiffiffi
2

p
� �

dx
x

2
64

3
75 (85)

The remaining derivative now acts on the boundary of the integration domain. Applying
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d
dξ

ðR=ξ

0

g xð Þdx ¼ lim
Δξ!0

1
Δξ

ðR= ξþΔξð Þ

0

g xð Þdx�
ðR=ξ

0

g xð Þdx

0
B@

1
CA

¼ lim
Δξ!0

1
Δξ

R
ξþ Δξ

� R
ξ

� �
g

R
ξ

� �
¼ � R

ξ2
g

R
ξ

� � (86)

to (85) we get

dF
dξ

¼ 2ξ
ð∞

0

xX að Þdx� A
2ξ

lim
R!∞

tanh2 Rffiffiffi
2

p
ξ

� �� �
, (87)

so that

dF
dξ

¼ 0⇔ 2ξ
ð∞

0

xX að Þdx ¼ A
2ξ

: (88)

With A ¼ 2C Δ∞j j2 as above, and

B ¼
ð∞

0

xX að Þdx (89)

we find a closed form result

ξ ¼ 1
2

ffiffiffiffi
A
B

r
: (90)

The formula for the healing length (90) can also be plotted, this is done in Figure 6. In both
limits, the healing length shows to be in a good agreement with the exact limits.

6.4. Comparison to the exact (numerical) solution

In order to check the validity of the variational model (80) (and thus the results it produces) is,
the variational structure should be compared with the exact vortex structure. This exact vortex
structure is easily obtained by a direct minimization of the free energy functional (71). As
mentioned before, the direct minimization of the free energy is more suitable for the calcula-
tion of the vortex structures; the reason why this method is preferential lies in the fact that the
velocity field diverges for r ! 0. The divergence of the velocity field in the origin will be
strongly pronounced when solving the equations of motion. While in the case of a direct
minimization, the same divergence will have less impact on the solution.

The numerical method that was used in order to determine the exact vortex structure for a
given set of parameters β; as; ζ

� �
is discussed in full detail in [38]. In a nutshell, this method
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The formula for the healing length (90) can also be plotted, this is done in Figure 6. In both
limits, the healing length shows to be in a good agreement with the exact limits.

6.4. Comparison to the exact (numerical) solution

In order to check the validity of the variational model (80) (and thus the results it produces) is,
the variational structure should be compared with the exact vortex structure. This exact vortex
structure is easily obtained by a direct minimization of the free energy functional (71). As
mentioned before, the direct minimization of the free energy is more suitable for the calcula-
tion of the vortex structures; the reason why this method is preferential lies in the fact that the
velocity field diverges for r ! 0. The divergence of the velocity field in the origin will be
strongly pronounced when solving the equations of motion. While in the case of a direct
minimization, the same divergence will have less impact on the solution.

The numerical method that was used in order to determine the exact vortex structure for a
given set of parameters β; as; ζ
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is discussed in full detail in [38]. In a nutshell, this method
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comes down to making a discretized version of the vortex structure: f 1; f 2;…; f N
� �

, where
f 1 ¼ 0 and f N ¼ 1 due to the boundary conditions. During the minimization procedure, a
program runs through the list of points f njn∈ 2; 3;…;N � 1f g� �

, where it suggests a (random)
new value; if the new value results in a lower energy, it is accepted as the new value of the
vortex structure. The minimization program continues to run until a certain tolerance is
reached and the structure is not changing any more.

Once the exact structure is obtained, it can be analyzed and compared to the variational vortex
structure. As an example, we can look at the relative difference in the free energy throughout
the BEC-BCS crossover for different temperatures and polarizations. From the plots shown in
Figure 7, it can be seen that the difference in free energy is around the order of 1%; this seems

Figure 6. The vortex variational healing length (90) throughout the BEC-BCS crossover for the case β ¼ 100 and ζ ¼ 0.
The dotted lines yield the exact solutions in the deep BEC [36] and BCS [37] limits. This plot made using the same data as
in [38].

Figure 7. The relative energy difference between the exact and variational solutions throughout the BEC-BCS crossover
for different values of the temperature β and polarization ζ. These results were also shown and discussed in [38].
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to suggest that the variational guess is a good guess.9 Moreover, the results in Figure 7 allow to
provide an error bar on energy calculations using the variational structure. This error bar on
the energy is useful for example when making phase diagrams including vortex structures. In
order to be sure whether the variational model is indeed a good description of the vortex hole,
other parameters were also tested and discussed in [38]. The conclusion from the numerical
analysis was that the variational model is indeed a good fit for describing the vortex structure.

7. Concluding section

In this chapter, an effective field theory for the description of dilute fermionic superfluids was
derived. The main advantages of an effective field theory are the gain in computational speed
and the fact that it allows analytic solutions for dark solitons and the variational healing length
of the vortex structure. Both the gain in computational speed and the availability of an analytic
starting point contribute to the possibility to study several soliton/vortex phenomena through-
out the entire BEC-BCS crossover at finite temperatures β for a given polarization ζ within a
reasonable computational time span.

On the subject of soliton dynamics, we specifically looked at 1D dark solitons, for which an exact
analytical solution was derived. Using this solution, the effect of spin-imbalance on the soliton
properties was studied, revealing that the unpaired particles of the excess component mainly
reside inside the soliton core. Additionally, the EFT has also been employed in the study of the
snake instability of dark solitons [25] and the dynamics of dark soliton collisions [27] in imbal-
anced superfluid Fermi gases.

For vortices, the structure of a vortex was studied, for which unfortunately no analytical
solution is available at the moment. Using a variational model, an analytical solution for the
vortex healing length was derived. The variational model was compared with the exact solu-
tion. From this analysis, the variational model was found to be a good fit for the exact vortex
structure. Other EFT research on vortices includes the behavior of vortices in multiband
systems [39] and the study of the “vortex charge” [40].
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Abstract

In this paper, the Kelvin wave and knot dynamics are studied on three dimensional
smoothly deformed entangled vortex-membranes in five dimensional space. Owing to
the existence of local Lorentz invariance and diffeomorphism invariance, in continuum
limit gravity becomes an emergent phenomenon on 3 + 1 dimensional zero-lattice (a lattice
of projected zeroes): on the one hand, the deformed zero-lattice can be denoted by curved
space-time for knots; on the other hand, the knots as topological defect of 3 + 1 dimensional
zero-lattice indicates matter may curve space-time. This work would help researchers to
understand the mystery in gravity.

Keywords: vortex-membrane, knot, gravity

1. Introduction

A vortex (point-vortex, vortex-line, vortex-membrane) consists of the rotating motion of fluid
around a common centerline. It is defined by the vorticity in the fluid, which measures the rate
of local fluid rotation. In three dimensional (3D) superfluid (SF), the quantization of the
vorticity manifests itself in the quantized circulation ∮v � dl ¼ h

m where h is Planck constant
and m is atom mass of SF. Vortex-lines can twist around its equilibrium position (common
centerline) forming a transverse and circularly polarized wave (Kelvin wave) [1, 2]. Because
Kelvin waves are relevant to Kolmogorov-like turbulence [3, 4], a variety of approaches have
been used to study this phenomenon. For two vortex-lines, owing to the interaction, the
leapfrogging motion has been predicted in classical fluids from the works of Helmholtz and
Kelvin [5–10]. Another interesting issue is entanglement between two vortex-lines. In mathe-
matics, vortex-line-entanglement can be characterized by knots with different linking
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numbers. The study of knotted vortex-lines and their dynamics has attracted scientists from
diverse settings, including classical fluid dynamics and superfluid dynamics [11, 12].

In the paper [13], the Kelvin wave and knot dynamics in high dimensional vortex-membranes
were studied, including the leapfrogging motion and the entanglement between two vortex-
membranes. A new theory—knot physics is developed to characterize the entanglement evolu-
tion of 3D leapfrogging vortex-membranes in five-dimensional (5D) inviscid incompressible
fluid [13, 14]. According to knot physics, it is the 3D quantum Dirac model that describes the
knot dynamics of leapfrogging vortex-membranes (we have called it knot-crystal, that is really
plane Kelvin-waves with fixed wave-length). The knot physics may give a complete interpre-
tation on quantum mechanics.

In this paper, we will study the Kelvin wave and knot dynamics on 3D deformed knot-crystal,
particularly the topological interplay between knots and the lattice of projected zeroes (we call
it zero-lattice). Owing to the existence of local Lorentz invariance and diffeomorphism invari-
ance, the gravitational interaction emerges: on the one hand, the deformed zero-lattice can be
denoted by curved space-time; on the other hand, the knots deform the zero-lattice that
indicates matter may curve space-time (see below discussion).

The paper is organized as below. In Section 2, we introduce the concept of “zero-lattice” from
projecting a knot-crystal. In addition, to characterize the entangled vortex-membranes, we intro-
duce geometric space and winding space. In Section 3, we derive the massive Dirac model in the
vortex-representation of knot states on geometric space and that on winding space. In Section 4,
we consider the deformed knot-crystal as a background and map the problem onto Dirac
fermions on a curved space-time. In Section 5, the gravity in knot physics emerges as a topolog-
ical interplay between zero-lattice and knots and the knot dynamics on deformed knot-crystal is
described by Einstein’s general relativity. Finally, the conclusions are drawn in Section 6.

2. Knot-crystal and the corresponding zero-lattice

2.1. Knot-crystal

Knot-crystal is a system of two periodically entangled vortex-membranes that is described by a

special pure state of Kelvin waves with fixed wave length Zknot–crystal x!; t
� �

[13, 14]. In emergent

quantum mechanics, we consider knot-crystal as a ground state for excited knot states, i.e.,

Zknot–crystal x!; t
� �

¼
zA x!; t
� �

zB x!; t
� �

0
B@

1
CA! vacuumj i: (1)

On the one hand, a knot is a piece of knot-crystal and becomes a topological excitation on it; on
the other hand, a knot-crystal can be regarded as a composite system with multi-knot, each of
which is described by same tensor state.
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Because a knot-crystal is a plane Kelvin wave with fixed wave vector k0, we can use the tensor
representation to characterize knot-crystals [13],

~ΓI
knot–crystal ¼ n!

I
σσ

I
� �

⊗ n!ττþ 1
!
τ0

� �
(2)

where 1
!¼ 1 0

0 1

� �
and σI , τI are 2� 2 Pauli matrices for helical and vortex degrees of freedom,

respectively. For example, a particular knot-crystal is called SOC knot-crystal Zknot–crystal x!
� �

[13],

of which the tensor state is given by

σX ⊗ 1
!i ¼ n!

X
σ ¼ 1; 0; 0ð Þ, σY ⊗ 1

!i ¼ n!
Y
σ ¼ 0; 1; 0ð Þ, σZ ⊗ 1

!i ¼ n!
Z
σ ¼ 0; 0; 1ð Þ:

DDD
(3)

For the SOC knot-crystal, along x-direction, the plane Kelvin wave becomes z xð Þ ¼ ffiffiffi
2

p
r0

cos k0 � xð Þ; along y-direction, the plane Kelvin wave becomes z yð Þ ¼ 1ffiffi
2

p r0 eik�y þ ie�ik�y� �
; along

z-direction, the plane Kelvin wave becomes z zð Þ ¼ r0eik�z.

For a knot-crystal, another important property is generalized spatial translation symmetry that

is defined by the translation operation T ΔxI
� � ¼ ei�

bkI0�ΔxI
� �

�~Γ I
knot�crystal

Z xI ; t
� �! T ΔxI

� �
Z xi; t
� �

¼ ei�
bkI0 �Δxi
� �

�~Γ I
knot�crystalZ xi; t

� �
:

(4)

Here bkI is �i d
dxI

I ¼ x; y; zð Þ. For example, for the knot states on 3D SOC knot-crystal, the

translation operation along xI-direction becomes

T ΔxI
� � ¼ e

i bkI �ΔxI
� �

� σI ⊗ 1
!Þ:

�
(5)

2.2. Winding space and geometric space

For a knot-crystal, we can study it properties on a 3D space (x, y, z). In the following part, we
call the space of (x, y, z) geometric space. According to the generalized spatial translation sym-
metry, each spatial point (x, y, z) in geometric space corresponds to a point denoted by three
winding angles Φx xð Þ;Φy yð Þ;Φz zð Þ� �

where ΦxI xI
� �

is the winding angle along xI-direction. As
a result, we may use the winding angles along different directions to denote a given point

Φ
!

x!
� �

¼ Φx xð Þ;Φy yð Þ;Φz zð Þ� �
. We call the space of winding angles Φx xð Þ;Φy yð Þ;Φz zð Þ� �

wind-

ing space. See the illustration in Figure 1(d).

For a 1D leapfrogging knot-crystal that describes two entangled vortex-lines with leapfrogging
motion, the function is given by
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Z x!; t
� �

¼ r0

cos
ω∗t
2

� �

�i sin
ω∗t
2

� �

0
BBB@

1
CCCAei

π
axe�iω0tþiω∗t=2, (6)

where ω∗ is angular frequency of leapfrogging motion. For the 1D σz-knot-crystal, the coordi-
nate on winding space is Φ xð Þ ¼ π

a x. Another example is 3D SOC knot-crystal [10], of which
the function is given by

ZKC x!; t
� �

¼
zKC,A x!; t

� �

zKC,B x!; t
� �

0
BB@

1
CCA ¼ r0

cos
ω∗t
2

� �

�i sin
ω∗t
2

� �

0
BBBB@

1
CCCCA
e�iω0tþiω∗t=2

�
ffiffiffi
2

p
r0 cos Φx xð Þð Þ � 1ffiffiffi

2
p r0 eiΦy yð Þ þ ie�iΦy yð Þ

� �� �
eiΦz zð Þ,

(7)

where the coordinates on winding space are Φx xð Þ ¼ π
a x, Φy yð Þ ¼ π

a y, Φz zð Þ ¼ π
a z, respectively.

In addition, there exists generalized spatial translation symmetry on winding space. On wind-
ing space, the translation operation T ΔΦI� �

becomes

T ΔΦI� � ¼ ei�
P

i
ΔΦI �~Γ I

knot�crystal (8)

where ΔΦI denotes the distance on winding space.

Figure 1. (a) An illustration of a 1D knot-crystal; (b) the relationship between winding angle Φ and coordinate position x.
The red dots consist of a 1D zero-lattice in geometric space and the blue dots consist of a zero-lattice in winding space; (c)
an illustration of a 3D uniform zero-lattice in geometric space; and (d) an illustration of a 3D uniform zero-lattice in
winding space.
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2.3. Zero-lattice

Before introduce zero-lattice, we firstly review the projection between two entangled vortex-

membranes zA=B x!; t
� �

¼ ξA=B x!; t
� �

þ iηA=B x!; t
� �

along a given direction θ in 5D space by

bPθ

ξA=B x!; t
� �

ηA=B x!; t
� �

0
B@

1
CA ¼

ξA=B,θ x!; t
� �

ηA=B,θ x!; t
� �h i

0

0
B@

1
CA (9)

where ξA=B,θ x!; t
� �

¼ ξA=B x!; t
� �

cosθþ ηA=B x!; t
� �

sinθ is variable and ηA=B,θ x!; t
� �h i

0
¼ ξA=B

x!; t
� �

sinθ� ηA=B x!; t
� �

cosθ is constant. So the projected vortex-membrane is described by

the function ξA=B,θ x!; t
� �

. For two projected vortex-membranes described by ξA,θ x!; t
� �

and

ξB,θ x!; t
� �

, a zero is solution of the equation

bP θ zA x!; t
� �h i

� ξA,θ x!; t
� �

¼ bPθ zB x!; t
� �h i

� ξB,θ x!; t
� �

: (10)

After projection, the knot-crystal becomes a zero lattice. For example, a 1D leapfrogging knot-
crystal is described by

ZKC x!; t
� �

¼ r0

cos
ω∗t
2

� �

�i sin
ω∗t
2

� �

0
BBB@

1
CCCAei

π
axe�iω0tþiω∗t=2: (11)

According to the knot-equation bPθ zKC,A xð Þ½ � ¼ bPθ zKC,B xð Þ½ �, we have

x0 ¼ a � Xþ a
π
ω0t (12)

where θ ¼ � π
2 and x0 is the position of zero. As a result, we have a periodic distribution of

zeroes (knots).

For a 3D leapfrogging SOC knot-crystal described by ZKC x!; t
� �

¼
zKC,A x!; t

� �

zKC,B x!; t
� �

0
B@

1
CA, we have

similar situation—the solution of zeroes does not change when the tensor order changes, i.e.,

σ⊗ 1
!i ¼ n!σ ¼ 0; 0; 1ð Þ ! n!σ ¼ nx; ny; nx

� �D
with n!σ

���
��� ¼ 1 [13]. We call the periodic distribu-

tion of zeroes to be zero-lattice. See the illustration of a 1D zero-lattice in Figure 1(b) and 3D
zero-lattice in Figure 1(c).

Along a given direction e
!
, after shifting the distance a, the phase angle of vortex-membranes in

knot-crystal changes π, i.e.,
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where ω∗ is angular frequency of leapfrogging motion. For the 1D σz-knot-crystal, the coordi-
nate on winding space is Φ xð Þ ¼ π
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where the coordinates on winding space are Φx xð Þ ¼ π
a x, Φy yð Þ ¼ π
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a z, respectively.
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T ΔΦI� � ¼ ei�
P

i
ΔΦI �~Γ I

knot�crystal (8)

where ΔΦI denotes the distance on winding space.

Figure 1. (a) An illustration of a 1D knot-crystal; (b) the relationship between winding angle Φ and coordinate position x.
The red dots consist of a 1D zero-lattice in geometric space and the blue dots consist of a zero-lattice in winding space; (c)
an illustration of a 3D uniform zero-lattice in geometric space; and (d) an illustration of a 3D uniform zero-lattice in
winding space.
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Φ
!

x!; t
� �

!Φ
!

x! þa� e!; t
� �

¼ Φ
!

x!; t
� �

þ π: (13)

Thus, on the winding space, we have a corresponding “zero-lattice” of discrete lattice sites
described by the three integer numbers

X
!¼ X;Y;Zð Þ ¼ 1

π
Φ
! � 1

π
Φ
!

mod π: (14)

See the illustration of a 1D zero-lattice in Figure 1(b) and 3D zero-lattice in Figure 1(d).

3. Dirac model for knot on zero-lattice

3.1. Dirac model on geometric space

3.1.1. Dirac model in sublattice-representation on geometric space

It was known that in emergent quantum mechanics, a 3D SOC knot-crystal becomes multi-
knot system, of which the effective theory becomes a Dirac model in quantum field theory. In
emergent quantum mechanics, the Hamiltonian for a 3D SOC knot-crystal has two terms—the
kinetic term from global winding and the mass term from leapfrogging motion. Based on a
representation of projected state, a 3D SOC knot-crystal is reduced into a “two-sublattice”
model with discrete spatial translation symmetry, of which the knot states are described by
Lj i and Rj i (or the Wannier states c†L, i vacuumj i and c†R, j vacuumj i). We call it the Dirac model in

sublattice-representation.

In sublattice-representation on geometric space, the equation of motion of knots is determined
by the Schrödinger equation with the Hamiltonian

Hknot ¼
Ð

ψ† bHknotψ
� �

d3x,

bHknot ¼ �ceffΓ
! � p!knot þmknotc2effΓ

5,
(15)

where ψ† t; x!
� �

is an four-component fermion field as ψ† t; x!
� �

¼ ψ†
↑L t; x!
� �

ψ†
↑R t; x!
� ��

ψ†
↓L t; x!
� �

ψ†
↓R t; x!
� �

Þ. Here, L, R label two chiral-degrees of freedom that denote the two

possible sub-lattices, ↑, ↓ label two spin degrees of freedom that denote the two possible
winding directions. We have

Γ5 ¼1
!
⊗ ιx, (16)

and

Γ1 ¼ σx ⊗ ιy,

Γ2 ¼ σy ⊗ ιy,

Γ3 ¼ σz ⊗ ιy:

(17)
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p!knot ¼ ℏknot k
!
is the momentum operator. mknotc2eff ¼ 2ℏknotω∗ plays role of the mass of knots

and ceff ¼ a�J
ℏknot

¼ 2aω0 play the role of light speed where a is a fixed length that denotes the half

pitch of the windings on the knot-crystal.

In addition, the low energy effective Lagrangian of knots on 3D SOC knot-crystal is obtained
as

L3D ¼ ψ iγμb∂μ �mknot

� �
ψ (18)

where ψ ¼ ψ†γ0, γμ are the reduced Gamma matrices,

γ1 ¼ γ0Γ1,γ2 ¼ γ0Γ2,γ3 ¼ γ0Γ3, (19)

and

γ0 ¼ Γ5,γ5 ¼ iγ0γ1γ2γ3: (20)

3.1.2. Dirac model in vortex-representation on geometric space

In this paper, we derive the effective Dirac model for a knot-crystal based on a representation
of vortex degrees of freedom. We call it vortex-representation.

In Ref. [13], it was known that a knot has four degrees of freedom, two spin degrees of freedom
↑ or ↓ from the helicity degrees of freedom, the other two vortex degrees of freedom from the
vortex degrees of freedom that characterize the vortex-membranes, A or B. The basis to define
the microscopic structure of a knot is given by ↑;Aj i, ↑;Bj i, ↓;Aj i, ↓;Bj i.
We define operator of knot states by the region of the phase angle of a knot: for the case of

ϕ0mod 2πð Þ∈ �π; 0ð �, we have c† 0j i; for the case of ϕ0mod 2πð Þ∈ 0;πð �, we have c† 0j i� �†. As
shown in Figure 2, we label the knots by Wannier state i;A; ↑j i, iþ 1;A; ↑j i∗, iþ 2;A; ↑j i,
iþ 3;A; ↑j i∗….

To characterize the energy cost from global winding, we use an effective Hamiltonian to
describe the coupling between two-knot states along xI-direction on 3D SOC knot-crystal

Jc†A=BiT
I
A=B,A=BcA=B, iþeI (21)

with the annihilation operator of knots at the site i, cA=B, i ¼
cA=B,↑, i

cA=B,↓, i

 !
. J is the coupling

constant between two nearest-neighbor knots. According to the generalized translation sym-
metry, the transfer matrices TI

A=B,A=B along xI-direction are defined by

TI
A,A ¼ TI

B,B ¼ e
ia bk I

�σI
� �

(22)

Topological Interplay between Knots and Entangled Vortex-Membranes
http://dx.doi.org/10.5772/intechopen.72809

39



Φ
!

x!; t
� �

!Φ
!

x! þa� e!; t
� �

¼ Φ
!

x!; t
� �

þ π: (13)
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described by the three integer numbers
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Φ
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π
Φ
!

mod π: (14)
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(15)
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and
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In this paper, we derive the effective Dirac model for a knot-crystal based on a representation
of vortex degrees of freedom. We call it vortex-representation.

In Ref. [13], it was known that a knot has four degrees of freedom, two spin degrees of freedom
↑ or ↓ from the helicity degrees of freedom, the other two vortex degrees of freedom from the
vortex degrees of freedom that characterize the vortex-membranes, A or B. The basis to define
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We define operator of knot states by the region of the phase angle of a knot: for the case of
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shown in Figure 2, we label the knots by Wannier state i;A; ↑j i, iþ 1;A; ↑j i∗, iþ 2;A; ↑j i,
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To characterize the energy cost from global winding, we use an effective Hamiltonian to
describe the coupling between two-knot states along xI-direction on 3D SOC knot-crystal

Jc†A=BiT
I
A=B,A=BcA=B, iþeI (21)

with the annihilation operator of knots at the site i, cA=B, i ¼
cA=B,↑, i

cA=B,↓, i

 !
. J is the coupling

constant between two nearest-neighbor knots. According to the generalized translation sym-
metry, the transfer matrices TI

A=B,A=B along xI-direction are defined by

TI
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B,B ¼ e
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�σI
� �

(22)
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and

TI
A,B ¼ TI

B,A ¼ 0: (23)

After considering the spin rotation symmetry and the symmetry of vortex-membrane-A and
vortex-membrane-B, the effective Hamiltonian from global winding energy can be described
by a familiar formulation

Hcoupling ¼ bHcoupling,B þ bHcoupling,A (24)

where

bHcoupling,A ¼ J
X
i, I

c†A, ie
ia bk I

�σI
� �

cA, iþeI þ h:c: (25)

and

bHcoupling,B ¼ J
X
i, I

c†B, ie
ia bk I

�σI
� �

cB, iþeI þ h:c: (26)

We then use path-integral formulation to characterize the effective Hamiltonian for a knot-
crystal as

ð
Dψ† t; x!

� �
Dψ tð ÞeiS=ℏ (27)

where S ¼ Ð Ldt and L ¼ i
P

i ψ
†
i ∂tψi �Hcoupling. To describe the knot states on 3D knot-

crystal, we have introduced a four-component fermion field to be

Figure 2. An illustration of knot states in vortex-representation: A and B denote two 1D vortex-lines. Here B* denotes
conjugate representation of vortex-line-B. The curves with blue dots denote knots on the knot-crystal—the curves with

blue dot above the line are denoted by c†i 0j i and the curves with blue dot below the line are denoted by c†i 0j i� �†.

Superfluids and Superconductors40

ψ xð Þ ¼

ψA,↑ t; x!
� �

ψB,↑ t; x!
� �

ψA,↓ t; x!
� �

ψB,↓ t; x!
� �

0
BBBBBBBB@

1
CCCCCCCCA

(28)

where A,B label vortex degrees of freedom and ↑, ↓ label two spin degrees of freedom that

denote the two possible winding directions along a given direction e
!
.

In continuum limit, we have

Hcoupling ¼ bH coupling,B þ bHcoupling,A

¼ 2aJ
X
k

ψ†
A, k σx cos kx þ σy cos ky þ σz cos kz
� �

ψA, k

þ2aJ
X
k

ψ†
B, k σx cos kx þ σy cos ky þ σz cos kz
� �

ψB, k (29)

where the dispersion of knots is

EA=B, k ≃ ceff k
! � k

!
0

� �
� σ!

h i
, (30)

where k
!
0 ¼ π

2 ;
π
2 ;

π
2

� �
and ceff ¼ 2aJ is the velocity. In the following part we ignore k

!
0.

Next, we consider the mass term from leapfrogging motion, of which the angular frequency
ω∗. For leapfrogging motion obtained by [10], the function of the two entangled vortex-
membranes at a given point in geometric space is simplified by

zA x!¼ 0; t
� �

zB x!¼ 0; t
� �

0
B@

1
CA ¼ r0

2
1þ eiω

∗t

1� eiω
∗t

 !
: (31)

At t ¼ 0, we have
zA x!; t
� �

zB x!; t
� �

0
B@

1
CA ¼ 1

0

� �
; at t ¼ π

ω∗, we have
zA x!; t
� �

zB x!; t
� �

0
B@

1
CA ¼ 0

1

� �
. The leap-

frogging knot-crystal leads to periodic varied knot states, i.e., at t ¼ 0 we have a knot on
vortex-membrane-A that is denoted by σ;Aj i; at t ¼ π

ω∗ we have a knot on vortex-membrane-B
denoted by σ;Bj i. As a result, the leapfrogging motion becomes a global winding along time
direction, t;Aj i, tþ π

ω∗ ;B
�� �

, tþ 2π
ω∗ ;A

�� �
, tþ 3π

ω∗ ;B
�� �

, … See the illustration of vortex-
representation of knot states for knot-crystal in Figure 2(c). After a time period t ¼ π

ω∗, a knot
state ϕAmod 2πð Þ∈ �π; 0ð � turns into a knot state ϕB mod 2πð Þ∈ �π; 0ð �. Thus, we use the
following formulation to characterize the leapfrogging process,
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ψ†
Aψ

†
B: (32)

After considering the energy from the leapfrogging process, a corresponding term is given by

2ℏknotω∗ψ†
Aψ

†
B þ h:c: (33)

From the global rotating motion denoted e�iω0t, the winding states also change periodically.
Because the contribution from global rotating motion e�iω0t is always canceled by shifting the
chemical potential, we do not consider its effect.

From above equation, in the limit k
!���
���! 0 we derive low energy effective Hamiltonian as

H3D ≃ 2aJ
X
k

ψ†
A, k σ! � k!
� �

ψA, k

þ2aJ
X
k

ψ†
B, k σ! � k!
� �

ψB, k

þ2ℏknotω∗P
k,σψ

†
A,σ, kψ

†
B,σ, k

(34)

¼ ceff
Ð
Ψ† T z ⊗ σ! �bk

� �h i
Ψd3x

þmknotc2eff
Ð
Ψ† τx ⊗ 1

!ÞΨd3x:
� (35)

where

Ψ xð Þ ¼

ψA,↑ t; x!
� �

ψ∗
B,↑ t; x!
� �

ψA,↓ t; x!
� �

ψ∗
B,↓ t; x!
� �

0
BBBBBBBB@

1
CCCCCCCCA
: (36)

We then re-write the effective Hamiltonian to be

H3D ¼
ð

Ψ† bH3DΨ
� �

d3x (37)

and

bH3D ¼ ceff Γ
! �p!knot þmknotc2effΓ

5 (38)

where

Γ5 ¼ τx ⊗ 1,Γ1 ¼ τz ⊗ σx,
!

(39)

Γ2 ¼ τz ⊗ σy,Γ3 ¼ τz ⊗ σz:
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p!¼ ℏknot k
!
is the momentum operator. Ψ† ¼ ψ∗

A,↑;ψB,↑;ψ
∗
A,↓;ψB,↓

� �
is the annihilation opera-

tor of four-component fermions. mknotc2eff ¼ 2ℏknotω∗ plays role of the mass of knots and

ceff ¼ 2a�J
ℏknot

play the role of light speed where a is a fixed length that denotes the half pitch of

the windings on the knot-crystal. In the following parts, we set ℏknot ¼ 1 and ceff ¼ 1.

Due to Lorentz invariance (see below discussion), the geometric space becomes geometric

space-time, i.e., x; y; zð Þ ! x; y; z; tð Þ. Here, we may consider Γ
!

and Γ5 to be entanglement
matrices along spatial and tempo direction in winding space-time, respectively. A complete set

of entanglement matrices Γ
!
;Γ5

� �
is called entanglement pattern. The coordinate transformation

along x/y/z/t-direction is characterize by eiΓ
!�bk � x! and eiΓ

5 �bω t, respectively. Now, the knot
becomes topological defect of 3 + 1D entanglement—a knot is not only anti-phase changing

along arbitrary spatial direction e
!

but also becomes anti-phase changing along tempo
direction (along tempo direction, a knot switches a knot state A=Bj i to another knot state
B=Aj i).
Finally, the low energy effective Lagrangian of 3D SOC knot-crystal is obtained as

L3D ¼ iΨ†∂tΨ�H3D

¼ Ψ iγμb∂μ �mknot

� �
Ψ

(40)

where Ψ ¼ Ψ†γ0, γμ are the reduced Gamma matrices,

γ1 ¼ γ0Γ1,γ2 ¼ γ0Γ2,γ3 ¼ γ0Γ3, (41)

and

γ0 ¼ Γ5 ¼ τx ⊗ 1,γ5 ¼ iγ0γ1γ2γ3:
!

(42)

In addition, we point out that there exists intrinsic relationship between the knot states of
sublattice-representation and the knot states of vortex-representation

Aj i
Bj i

� �
¼ U

Lj i
Rj i

� �
(43)

where U ¼ exp iπ
0 �i
i 0

� �� �
. From the sublattice-representation of knot states, the knot-crystal

becomes an object with staggered R/L zeroes along x/y/z spatial directions and time direction;
From the vortex-representation of knot states, the knot-crystal becomes an object with global
winding along x/y/z spatial directions and time direction. See the illustration of knot states of
vortex-representation on a knot-crystal in Figure 2.
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We then re-write the effective Hamiltonian to be

H3D ¼
ð

Ψ† bH3DΨ
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d3x (37)

and

bH3D ¼ ceff Γ
! �p!knot þmknotc2effΓ

5 (38)

where

Γ5 ¼ τx ⊗ 1,Γ1 ¼ τz ⊗ σx,
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(39)

Γ2 ¼ τz ⊗ σy,Γ3 ¼ τz ⊗ σz:
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p!¼ ℏknot k
!
is the momentum operator. Ψ† ¼ ψ∗

A,↑;ψB,↑;ψ
∗
A,↓;ψB,↓

� �
is the annihilation opera-

tor of four-component fermions. mknotc2eff ¼ 2ℏknotω∗ plays role of the mass of knots and

ceff ¼ 2a�J
ℏknot

play the role of light speed where a is a fixed length that denotes the half pitch of

the windings on the knot-crystal. In the following parts, we set ℏknot ¼ 1 and ceff ¼ 1.

Due to Lorentz invariance (see below discussion), the geometric space becomes geometric

space-time, i.e., x; y; zð Þ ! x; y; z; tð Þ. Here, we may consider Γ
!

and Γ5 to be entanglement
matrices along spatial and tempo direction in winding space-time, respectively. A complete set

of entanglement matrices Γ
!
;Γ5

� �
is called entanglement pattern. The coordinate transformation

along x/y/z/t-direction is characterize by eiΓ
!�bk � x! and eiΓ

5 �bω t, respectively. Now, the knot
becomes topological defect of 3 + 1D entanglement—a knot is not only anti-phase changing

along arbitrary spatial direction e
!

but also becomes anti-phase changing along tempo
direction (along tempo direction, a knot switches a knot state A=Bj i to another knot state
B=Aj i).
Finally, the low energy effective Lagrangian of 3D SOC knot-crystal is obtained as

L3D ¼ iΨ†∂tΨ�H3D

¼ Ψ iγμb∂μ �mknot

� �
Ψ

(40)

where Ψ ¼ Ψ†γ0, γμ are the reduced Gamma matrices,

γ1 ¼ γ0Γ1,γ2 ¼ γ0Γ2,γ3 ¼ γ0Γ3, (41)

and

γ0 ¼ Γ5 ¼ τx ⊗ 1,γ5 ¼ iγ0γ1γ2γ3:
!

(42)

In addition, we point out that there exists intrinsic relationship between the knot states of
sublattice-representation and the knot states of vortex-representation

Aj i
Bj i

� �
¼ U

Lj i
Rj i

� �
(43)

where U ¼ exp iπ
0 �i
i 0

� �� �
. From the sublattice-representation of knot states, the knot-crystal

becomes an object with staggered R/L zeroes along x/y/z spatial directions and time direction;
From the vortex-representation of knot states, the knot-crystal becomes an object with global
winding along x/y/z spatial directions and time direction. See the illustration of knot states of
vortex-representation on a knot-crystal in Figure 2.
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3.1.3. Emergent Lorentz-invariance

We discuss the emergent Lorentz-invariance for knot states on a knot-crystal.

Since the Fermi-velocity ceff only depends on the microscopic parameter J and a, we may regard
ceff to be “light-velocity” and the invariance of light-velocity becomes an fundamental principle
for the knot physics. The Lagrangian for massive Dirac fermions indicates emergent SO(3,1)
Lorentz-invariance. The SO(3,1) Lorentz transformations SLor is defined by

SLorγμS�1
Lor ¼ γ0μ (44)

(μ ¼ 0; 1; 2; 3) and

SLorγ5S�1
Lor ¼ γ5: (45)

For a knot state with a global velocity v!, due to SO(3,1) Lorentz-invariance, we can do Lorentz

boosting on x!; t
� �

by considering the velocity of a knot,

t ! t0 ¼ t� x! � v!ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v!

2
q ,

x!! x!
0 ¼ x! � v! �tffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� v!
2

q : (46)

We can do non-uniform Lorentz transformation SLor x!; t
� �

on knot states Ψ x!; t
� �

. The inertial

reference-frame for quantum states of the knot is defined under Lorentz boost, i.e.,

Ψ x!; t
� �

! Ψ0 x!
0
; t0

� �
¼ SLor �Ψ x!

0
; t0

� �
: (47)

For a particle-like knot, a uniform wave-function of knot states ψ tð Þ is

ψ tð Þ ¼ 1ffiffiffiffi
V

p e�i2ω∗t: (48)

Under Lorentz transformation with small velocity v!
���
���, this wave-function ψ tð Þ is transformed

into

ψ tð Þ ¼ 1ffiffiffiffi
V

p e�i2ω∗t

! ψ0 ¼ 1ffiffiffiffi
V

p e�i2ω∗t0

≃
1ffiffiffiffi
V

p e�i2ω∗texp �i Eknott� p!knot� x
!� �� �

(49)

Superfluids and Superconductors44

where Eknot ≃
p!
2
knot

2mknot
, p!knot ≃ω v! and mknotc2 ¼ 2ω∗. As a result, we derive a new distribution of

knot-pieces by doing Lorentz transformation, that are described by the plane-wave wave-

function 1ffiffiffi
V

p e�i2ω∗texp �i Eknott� p!knot� x
!� �� �

. The new wave-function 1ffiffiffi
V

p exp �i Eknottðð �p!knot�
x!ÞÞ comes from the Lorentz boosting SLor.

Noninertial system can be obtained by considering non-uniformly velocities, i.e., v!! Δ v! x!; t
� �

.

According to the linear dispersion for knots, we can do local Lorentz transformation on x!; t
� �

i.e.,

t ! t0 x!; t
� �

¼ t� x! �Δ v!ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Δ v!

� �2r ,

x!! x!
0
x!; t
� �

¼ x! �Δ v! �tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Δ v!

� �2r :

(50)

We can also do non-uniform Lorentz transformation SLor x!; t
� �

on knot states Ψ x!; t
� �

, i.e.,

Ψ x!; t
� �

! Ψ0 x!
0
x!; t
� �

; t0 x!; t
� �� �

¼ SLor x!; t
� �

�Ψ x!; t
� � (51)

where the new wave-functions of all quantum states change following the non-uniform

Lorentz transformation SLor x!; t
� �

. It is obvious that there exists intrinsic relationship between

noninertial system and curved space-time.

3.2. Dirac model on winding space

In this part, we show the effective Dirac model of knot states on winding space.

The coordinate measurement of zero-lattice on winding space is the winding angles, Φ
!
. Along

a given direction e
!
, after shifting the distance a, the winding angle changes π. The position is

determined by two kinds of values: X
!
are integer numbers

X
!¼ X;Y;Zð Þ ¼ 1

π
Φ
! � 1

π
Φ
!

modπ (52)

and ϕ
!
denote internal winding angles

ϕ
!¼ ϕx;ϕy;ϕz

� �
¼Φ

!
modπ (53)

with ϕx,ϕy,ϕz ∈ 0;πð �.
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where Eknot ≃
p!
2
knot

2mknot
, p!knot ≃ω v! and mknotc2 ¼ 2ω∗. As a result, we derive a new distribution of

knot-pieces by doing Lorentz transformation, that are described by the plane-wave wave-

function 1ffiffiffi
V

p e�i2ω∗texp �i Eknott� p!knot� x
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. The new wave-function 1ffiffiffi
V

p exp �i Eknottðð �p!knot�
x!ÞÞ comes from the Lorentz boosting SLor.

Noninertial system can be obtained by considering non-uniformly velocities, i.e., v!! Δ v! x!; t
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.

According to the linear dispersion for knots, we can do local Lorentz transformation on x!; t
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i.e.,
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0
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where the new wave-functions of all quantum states change following the non-uniform

Lorentz transformation SLor x!; t
� �

. It is obvious that there exists intrinsic relationship between

noninertial system and curved space-time.

3.2. Dirac model on winding space

In this part, we show the effective Dirac model of knot states on winding space.

The coordinate measurement of zero-lattice on winding space is the winding angles, Φ
!
. Along

a given direction e
!
, after shifting the distance a, the winding angle changes π. The position is

determined by two kinds of values: X
!
are integer numbers

X
!¼ X;Y;Zð Þ ¼ 1

π
Φ
! � 1

π
Φ
!

modπ (52)

and ϕ
!
denote internal winding angles

ϕ
!¼ ϕx;ϕy;ϕz

� �
¼Φ
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modπ (53)

with ϕx,ϕy,ϕz ∈ 0;πð �.
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Therefore, on winding space, the effective Hamiltonian turns into

bH 3D ¼Γ
! �p!knot þmknotΓ

5 ¼Γ
! �p!X,knotþ Γ

! �p!ϕ,knot þmknotΓ
5 (54)

where p!X ¼ 1
a i

d
dX
! and p!ϕ ¼ 1

a i
d
dϕ
!. Because of ϕj ∈ 0;πð �, quantum number of p!ϕ is angular

momentum L
!
ϕ and the energy spectra are 1

a L
!

ϕ

���
���. If we focus on the low energy physics E≪ 1

a

(or L
!

ϕ ¼ 0), we may get the low energy effective Hamiltonian as

bH3D ≃ Γ
! �p!X,knot þmknotΓ

5: (55)

We introduce 3 + 1D winding space-time by defining four coordinates on winding space,

Φ ¼ Φ
!
;Φt

� �
where Φt is phase changing under time evolution. For a fixed entanglement

pattern Γ
!
; Γ5

� �
, the coordinate transformation along x/y/z/t-direction on winding space-time

is given by eiΓ
!�bΦ and eiΓ

5�bΦ
t , respectively.

For low energy physics, the position in 3 + 1D winding space-time is 3 + 1D zero-lattice of

winding space-time labeled by four integer numbers, X ¼ X
!
;X0

� �
where

X
!¼ 1

π
Φ
! � 1

π
Φ
!

modπ,

X0 ¼ 1
π
Φt � 1

π
Φtmodπ:

(56)

The lattice constant of the winding space-time is always π that will never be changed. As a result,
the winding space-time becomes an effective quantized space-time. Because of xμ ¼ a � Xμ, the
effective action on 3 + 1D winding space-time becomes

S3D ≃ að Þ4
X

X,Y,Z,X0

L3D (57)

where

L3D ¼ Ψ i
1
a

γμð Þb∂μ �mknot

� �
Ψ: (58)

4. Deformed zero-lattice as curved space-time

In this section, we discuss the knot dynamics on smoothly deformed knot-crystal (or deformed
zero-lattice). We point out that to characterize the entanglement evolution, the corresponding
Biot-Savart mechanics for a knot on smoothly deformed zero-lattice is mapped to that in
quantum mechanics on a curved space-time.

Superfluids and Superconductors46

4.1. Entanglement transformation

Firstly, based on a uniform 3D knot-crystal (uniform entangled vortex-membranes), we intro-
duce the concept of “entanglement transformation (ET)”.

Under global entanglement transformation, we have

Ψ x!; t
� �

! Ψ0 x!; t
� �

¼ bUET x!; t
� �

�Ψ x!; t
� �

(59)

where

bUET x!; t
� �

¼ eiδΦ
!�Γ! � eiδΦt�Γ5 : (60)

Here, δ Φ
!
and δΦt are constant winding angles along spatial Φ

!
-direction and that along tempo

direction on geometric space-time, respectively. The dispersion of the excitation changes under
global entanglement transformation.

In general, we may define (local) entanglement transformation, i.e.,

bUET x!; t
� �

¼ eiδΦ
!

x!:tð Þ�Γ! � eiδΦt x!:tð Þ�Γ5 (61)

where δ Φ
!

x!; t
� �

and δΦt x!; t
� �

are not constant. We call a system with smoothly varied-

(δ Φ
!

x!; t
� �

, δΦt x!; t
� �

) deformed knot-crystal and its projected zero-lattice deformed (3 + 1D)

zero-lattice.

4.2. Geometric description for deformed zero-lattice: curved space-time

For knots on a deformed zero-lattice, there exists an intrinsic correspondence between an

entanglement transformation bUET x!; t
� �

and a local coordinate transformation that becomes a

fundamental principle for emergent gravity theory in knot physics.

For zero-lattice, bUET x!; t
� �

changes the winding degrees of freedom that is denoted by the local

coordination transformation, i.e.,

Φ
!

x!; t
� �

) Φ
!0

x!; t
� �

¼Φ
!

x!; t
� �

þ δ Φ
!

x!; t
� �

,

Φt x!; t
� �

) Φ0
t x!; t
� �

¼ Φt x!; t
� �

þ δΦt x!; t
� �

:

(62)

These equations also imply a curved space-time: the lattice constants of the 3 + 1D zero-lattice
(the size of a lattice constant with 2π angle changing) are not fixed to be 2a, i.e.,

2a ! 2aeff x!; t
� �

(63)
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Therefore, on winding space, the effective Hamiltonian turns into
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5 (54)

where p!X ¼ 1
a i

d
dX
! and p!ϕ ¼ 1

a i
d
dϕ
!. Because of ϕj ∈ 0;πð �, quantum number of p!ϕ is angular

momentum L
!
ϕ and the energy spectra are 1

a L
!

ϕ

���
���. If we focus on the low energy physics E≪ 1

a

(or L
!

ϕ ¼ 0), we may get the low energy effective Hamiltonian as

bH3D ≃ Γ
! �p!X,knot þmknotΓ

5: (55)

We introduce 3 + 1D winding space-time by defining four coordinates on winding space,

Φ ¼ Φ
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� �
where Φt is phase changing under time evolution. For a fixed entanglement

pattern Γ
!
; Γ5

� �
, the coordinate transformation along x/y/z/t-direction on winding space-time

is given by eiΓ
!�bΦ and eiΓ

5�bΦ
t , respectively.

For low energy physics, the position in 3 + 1D winding space-time is 3 + 1D zero-lattice of

winding space-time labeled by four integer numbers, X ¼ X
!
;X0

� �
where

X
!¼ 1

π
Φ
! � 1

π
Φ
!

modπ,

X0 ¼ 1
π
Φt � 1

π
Φtmodπ:

(56)

The lattice constant of the winding space-time is always π that will never be changed. As a result,
the winding space-time becomes an effective quantized space-time. Because of xμ ¼ a � Xμ, the
effective action on 3 + 1D winding space-time becomes

S3D ≃ að Þ4
X

X,Y,Z,X0

L3D (57)

where

L3D ¼ Ψ i
1
a

γμð Þb∂μ �mknot

� �
Ψ: (58)

4. Deformed zero-lattice as curved space-time

In this section, we discuss the knot dynamics on smoothly deformed knot-crystal (or deformed
zero-lattice). We point out that to characterize the entanglement evolution, the corresponding
Biot-Savart mechanics for a knot on smoothly deformed zero-lattice is mapped to that in
quantum mechanics on a curved space-time.
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4.1. Entanglement transformation

Firstly, based on a uniform 3D knot-crystal (uniform entangled vortex-membranes), we intro-
duce the concept of “entanglement transformation (ET)”.

Under global entanglement transformation, we have

Ψ x!; t
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! Ψ0 x!; t
� �

¼ bUET x!; t
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�Ψ x!; t
� �

(59)

where

bUET x!; t
� �

¼ eiδΦ
!�Γ! � eiδΦt�Γ5 : (60)

Here, δ Φ
!
and δΦt are constant winding angles along spatial Φ

!
-direction and that along tempo

direction on geometric space-time, respectively. The dispersion of the excitation changes under
global entanglement transformation.

In general, we may define (local) entanglement transformation, i.e.,

bUET x!; t
� �

¼ eiδΦ
!

x!:tð Þ�Γ! � eiδΦt x!:tð Þ�Γ5 (61)

where δ Φ
!

x!; t
� �

and δΦt x!; t
� �

are not constant. We call a system with smoothly varied-

(δ Φ
!

x!; t
� �

, δΦt x!; t
� �

) deformed knot-crystal and its projected zero-lattice deformed (3 + 1D)

zero-lattice.

4.2. Geometric description for deformed zero-lattice: curved space-time

For knots on a deformed zero-lattice, there exists an intrinsic correspondence between an

entanglement transformation bUET x!; t
� �

and a local coordinate transformation that becomes a

fundamental principle for emergent gravity theory in knot physics.

For zero-lattice, bUET x!; t
� �

changes the winding degrees of freedom that is denoted by the local

coordination transformation, i.e.,

Φ
!

x!; t
� �

) Φ
!0

x!; t
� �

¼Φ
!

x!; t
� �

þ δ Φ
!

x!; t
� �

,

Φt x!; t
� �

) Φ0
t x!; t
� �

¼ Φt x!; t
� �

þ δΦt x!; t
� �

:

(62)

These equations also imply a curved space-time: the lattice constants of the 3 + 1D zero-lattice
(the size of a lattice constant with 2π angle changing) are not fixed to be 2a, i.e.,

2a ! 2aeff x!; t
� �

(63)
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The distance between two nearest-neighbor “lattice sites” on the spatial/tempo coordinate
changes, i.e.,

Δ x!¼ x! þ e
!

x

� �
� x!¼ e

!
x,

Δx!
0 ¼ x!

0 þ e
!0

x

� �
� x!

0 ¼ e
!0

x x!; t
� � (64)

and

Δt ¼ tþ e0ð Þ � t ¼ e0,

Δt0 ¼ t0 þ e00
� �� t0 ¼ e00 x!; t

� � (65)

where ea a ¼ 0; 1; 2; 3ð Þ and e0a x!; t
� �

are the unit-vectors of the original frame and the deformed

frame, respectively. See the illustration of a 1 + 1D deformed zero-lattice on winding space-
time with a non-uniform distribution of zeroes in Figure 3(d).

However, for deformed zero-lattice, the information of knots in projected space is invariant:

when the lattice-distance of zero-lattice changes a ! aeff x!; t
� �

, the size of the knots corre-

spondingly changes a ! aeff x!; t
� �

. Therefore, due to the invariance of a knot, the deformation

of zero-lattice does not change the formula of the low energy effective model for knots on

Figure 3. (a) An illustration of deformed knot-crystal; (b) an illustration of smoothly deformed relationship between
winding angle Φ and spatial coordinate x. The zero-lattice in winding space is still uniform; while the zero-lattice in
geometric space is deformed; (c) an illustration of a uniform 1 + 1D zero-lattice in geometric space-time; and (d) an
illustration of a deformed 1 + 1D zero-lattice in geometric space-time.

Superfluids and Superconductors48

winding space-time. Because one may smoothly deform the zero-lattice and get the same low
energy effective model for knots onwinding space-time, there exists diffeomorphism invariance, i.e.,

Knot–invariance on winding space–time
) Diffeomorphism invariance:

(66)

Therefore, from the view of mathematics, the physics on winding space-time is never changed! The
invariance of the effective model for knots on winding space-time indicates the diffeomorphism
invariance

Szero�lattice � að Þ4
X

X,Y,Z,X0

Ψ i
1
a
γμb∂

X

μ
�mknot

� �
Ψ: (67)

On the other hand, the condition of very smoothly entanglement transformation guarantees a
(local) Lorentz invariance in long wave-length limit. Under local Lorentz invariance, the knot-
pieces of a given knot are determined by local Lorentz transformations.

According to the local coordinate transformation, the deformed zero-lattice becomes a curved

space-time for the knots. In continuum limit Δk≪ að Þ�1 and Δω≪ω0, the diffeomorphism
invariance and (local) Lorentz invariance emerge together. E. Witten had made a strong claim
about emergent gravity, “whatever we do, we are not going to start with a conventional theory of non-
gravitational fields in Minkowski space-time and generate Einstein gravity as an emergent phenome-
non.” He pointed out that gravity could be emergent only if the notion on the space-time on
which diffeomorphism invariance is simultaneously emergent. For the emergent quantum
gravity in knot physics, diffeomorphism invariance and Lorentz invariance are simultaneously
emergent. In particular, the diffeomorphism invariance comes from information invariance of
knots on winding space-time—when the lattice-distance of zero-lattice changes, the size of the
knots correspondingly changes.

To characterize the deformed 3 + 1D zero-lattice x!
0
x!; t
� �

; t0 x!; t
� �� �

, we introduce a geometric

description. In addition to the existence of a set of vierbein fields ea, the space metric is defined
by ηabe

a
αe

b
β ¼ gαβ where η is the internal space metric tensor. The geometry fields (vierbein fields

ea x!; t
� �

and spin connections ωab x!; t
� �

) are determined by the non-uniform local coordinates

x!
0
x!; t
� �

; t0 x!; t
� �� �

. Furthermore, one needs to introduce spin connections ωab x!; t
� �

and the

Riemann curvature two-form as

Ra
b ¼ dωa

b þ ωa
c ∧ω

c
b

¼ 1
2
Ra
bμνdx

μ ∧ dxν,
(68)

where Ra
bμν � eaαe

β
bR

α
βμν are the components of the usual Riemann tensor projection on the tangent

space. The deformation of the zero-lattice is characterized by
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Figure 3. (a) An illustration of deformed knot-crystal; (b) an illustration of smoothly deformed relationship between
winding angle Φ and spatial coordinate x. The zero-lattice in winding space is still uniform; while the zero-lattice in
geometric space is deformed; (c) an illustration of a uniform 1 + 1D zero-lattice in geometric space-time; and (d) an
illustration of a deformed 1 + 1D zero-lattice in geometric space-time.
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winding space-time. Because one may smoothly deform the zero-lattice and get the same low
energy effective model for knots onwinding space-time, there exists diffeomorphism invariance, i.e.,

Knot–invariance on winding space–time
) Diffeomorphism invariance:

(66)

Therefore, from the view of mathematics, the physics on winding space-time is never changed! The
invariance of the effective model for knots on winding space-time indicates the diffeomorphism
invariance

Szero�lattice � að Þ4
X

X,Y,Z,X0

Ψ i
1
a
γμb∂

X

μ
�mknot

� �
Ψ: (67)

On the other hand, the condition of very smoothly entanglement transformation guarantees a
(local) Lorentz invariance in long wave-length limit. Under local Lorentz invariance, the knot-
pieces of a given knot are determined by local Lorentz transformations.

According to the local coordinate transformation, the deformed zero-lattice becomes a curved

space-time for the knots. In continuum limit Δk≪ að Þ�1 and Δω≪ω0, the diffeomorphism
invariance and (local) Lorentz invariance emerge together. E. Witten had made a strong claim
about emergent gravity, “whatever we do, we are not going to start with a conventional theory of non-
gravitational fields in Minkowski space-time and generate Einstein gravity as an emergent phenome-
non.” He pointed out that gravity could be emergent only if the notion on the space-time on
which diffeomorphism invariance is simultaneously emergent. For the emergent quantum
gravity in knot physics, diffeomorphism invariance and Lorentz invariance are simultaneously
emergent. In particular, the diffeomorphism invariance comes from information invariance of
knots on winding space-time—when the lattice-distance of zero-lattice changes, the size of the
knots correspondingly changes.

To characterize the deformed 3 + 1D zero-lattice x!
0
x!; t
� �

; t0 x!; t
� �� �

, we introduce a geometric

description. In addition to the existence of a set of vierbein fields ea, the space metric is defined
by ηabe
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αe

b
β ¼ gαβ where η is the internal space metric tensor. The geometry fields (vierbein fields

ea x!; t
� �

and spin connections ωab x!; t
� �

) are determined by the non-uniform local coordinates

x!
0
x!; t
� �

; t0 x!; t
� �� �

. Furthermore, one needs to introduce spin connections ωab x!; t
� �

and the

Riemann curvature two-form as

Ra
b ¼ dωa

b þ ωa
c ∧ω

c
b

¼ 1
2
Ra
bμνdx

μ ∧ dxν,
(68)

where Ra
bμν � eaαe

β
bR

α
βμν are the components of the usual Riemann tensor projection on the tangent

space. The deformation of the zero-lattice is characterized by
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Rab ¼ dωab þ ωac ∧ωcb: (69)

So the low energy physics for knots on the deformed zero-lattice turns into that for Dirac
fermions on curved space-time

Scurved�ST ¼
ð ffiffiffiffiffiffiffi�g
p

Ψ eμa γa ib∂μ þ iωμ

� �
�mknot

� �
Ψd4x (70)

where ωμ ¼ ω0i
μ γ

0i=2;ωij
μγij=2

� �
i; j ¼ 1; 2; 3ð Þ and γab ¼ � 1

4 γa; ; γb
� �

a; b ¼ 0; 1; 2; 3ð Þ [15].

This model described by Scurved�ST is invariant under local (non-compact) SO(3,1) Lorentz

transformation S x!; t
� �

¼ eθab x!;tð Þγab as

Ψ x!; t
� �

! Ψ0 x!; t
� �

¼ S x!; t
� �

Ψ x!; t
� �

,

γμ ! γμ x!; t
� �� �0

¼ S x!; t
� �

γμ S x!; t
� �� ��1

,

ωμ ! ω0
μ x!; t
� �

¼ S x!; t
� �

ωμ x!; t
� �

S x!; t
� �� ��1

þS x!; t
� �

∂μ S x!; t
� �� ��1

:

(71)

γ5 is invariant under local SO(3,1) Lorentz symmetry as

γ5 ! γ5� �0 ¼ S x!; t
� �

γ5 S x!; t
� �� ��1

¼ γ5:

(72)

In general, an SO(3,1) Lorentz transformation S x!; t
� �

is a combination of spin rotation trans-

formation bR x!; t
� �

¼ bRspin x!; t
� �

� bRspace x!; t
� �

and Lorentz boosting SLor x!; t
� �

.

In physics, under a Lorentz transformation, a distribution of knot-pieces changes into another
distribution of knot-pieces. For this reason, the velocity ceff and the total number of zeroes
Nknot are invariant,

ceff ! c0eff � ceff (73)

and

Nknot ! N0
knot � Nknot: (74)

4.3. Gauge description for deformed zero-lattice

4.3.1. Deformed entanglement matrices and deformed entanglement pattern

The deformation of the zero-lattice leads to deformation of entanglement pattern, i.e.,
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Γ
!
;Γ5

� �
! Γ

!0
xð Þ; Γ5� �0

xð Þ
� �

(75)

where

Γ
!0

xð Þ ¼ bUET xð Þ Γ! bUET xð Þ�1, Γ5
� �0

xð Þ ¼ bUET x!; t
� �

Γ5 bUET xð Þ�1: (76)

x denotes the space-time position of a site of zero-lattice, x!; t
� �

. Each entanglement matrix

becomes a unit SO(4) vector-field on each lattice site. The deformed zero-lattice induced by

local entanglement transformation bUET xð Þ is characterized by four SO(4) vector-fields (four

entanglement matrices) Γ
!0

xð Þ; Γ5� �0
xð Þ

� �
. See the illustration of a 2D deformed zero-lattice in

Figure 4(d), in which the arrows denote deformed entanglement matrix Γ5
� �0

xð Þ.

4.3.2. Gauge description for deformed tempo entanglement matrix

Firstly, we study the unit SO(4) vector-field of deformed tempo entanglement matrix Γ5
� �0

xð Þ.
To characterize Γ5� �0

xð Þ, the reduced Gamma matrices γμ is defined as

Figure 4. (a) An illustration of the effect of an extra knot on a 1D knot-crystal along spatial direction; (b) an illustration of
the effect of an extra knot on a 1D knot-crystal along tempo direction. Here A∗/B∗ denotes conjugate representation of
vortex-line-A/B; (c) the entanglement pattern for a uniform knot-crystal. The arrows denote the directions of entangle-
ment matrices; and (d) the entanglement pattern for a knot-crystal with an extra knot at center. The purple spot denotes
the knot. The red arrows that denote local tangential entanglement matrices have vortex-like configuration on 2D
projected space.
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Rab ¼ dωab þ ωac ∧ωcb: (69)
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�mknot

� �
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μ γ
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μγij=2

� �
i; j ¼ 1; 2; 3ð Þ and γab ¼ � 1
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a; b ¼ 0; 1; 2; 3ð Þ [15].
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� �

γμ S x!; t
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� �
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� �

ωμ x!; t
� �
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� �� ��1

þS x!; t
� �

∂μ S x!; t
� �� ��1

:
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formation bR x!; t
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¼ bRspin x!; t
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� bRspace x!; t
� �

and Lorentz boosting SLor x!; t
� �

.

In physics, under a Lorentz transformation, a distribution of knot-pieces changes into another
distribution of knot-pieces. For this reason, the velocity ceff and the total number of zeroes
Nknot are invariant,

ceff ! c0eff � ceff (73)

and

Nknot ! N0
knot � Nknot: (74)

4.3. Gauge description for deformed zero-lattice

4.3.1. Deformed entanglement matrices and deformed entanglement pattern

The deformation of the zero-lattice leads to deformation of entanglement pattern, i.e.,
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where
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xð Þ ¼ bUET xð Þ Γ! bUET xð Þ�1, Γ5
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xð Þ ¼ bUET x!; t
� �

Γ5 bUET xð Þ�1: (76)

x denotes the space-time position of a site of zero-lattice, x!; t
� �

. Each entanglement matrix

becomes a unit SO(4) vector-field on each lattice site. The deformed zero-lattice induced by

local entanglement transformation bUET xð Þ is characterized by four SO(4) vector-fields (four

entanglement matrices) Γ
!0

xð Þ; Γ5� �0
xð Þ

� �
. See the illustration of a 2D deformed zero-lattice in

Figure 4(d), in which the arrows denote deformed entanglement matrix Γ5
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xð Þ.

4.3.2. Gauge description for deformed tempo entanglement matrix

Firstly, we study the unit SO(4) vector-field of deformed tempo entanglement matrix Γ5
� �0

xð Þ.
To characterize Γ5� �0

xð Þ, the reduced Gamma matrices γμ is defined as

Figure 4. (a) An illustration of the effect of an extra knot on a 1D knot-crystal along spatial direction; (b) an illustration of
the effect of an extra knot on a 1D knot-crystal along tempo direction. Here A∗/B∗ denotes conjugate representation of
vortex-line-A/B; (c) the entanglement pattern for a uniform knot-crystal. The arrows denote the directions of entangle-
ment matrices; and (d) the entanglement pattern for a knot-crystal with an extra knot at center. The purple spot denotes
the knot. The red arrows that denote local tangential entanglement matrices have vortex-like configuration on 2D
projected space.
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γ1 ¼ γ0Γ1,γ2 ¼ γ0Γ2,γ3 ¼ γ0Γ3, (77)

and

γ0 ¼ Γ5 ¼ τx ⊗ 1,γ5 ¼ iγ0γ1γ2γ3:
!

(78)

Under this definition (γ0 ¼ Γ5), the effect of deformed zero-lattice from spatial entanglement

transformation eiΓ
1�ΔΦx, eiΓ

2 �ΔΦy , eiΓ
3�ΔΦz can be studied due to

Γ5 ! Γ5� �0
xð Þ ¼ bUx=y=z

ET x!; t
� �

Γ5 bUx=y=z
ET xð Þ�1 6¼ Γ5: (79)

However, the effect of deformed zero-lattice from tempo entanglement transformation eiδΦt �Γ5

cannot be well defined due to

Γ5 ! Γ5� �0
xð Þ ¼ bUt

ET x!; t
� �

Γ5 bUt
ET xð Þ�1 ¼ Γ5: (80)

We introduce an SO(4) transformation bU x!; t
� �

that is a combination of spin rotation transfor-

mation bR xð Þ and spatial entanglement transformation (entanglement transformation along x/y/

z-direction) bUx=y=z
ET xð Þ ¼ eiδΦ

!
xð Þ�Γ!, i.e.,

bU xð Þ ¼ bR xð Þ⊕ bUx=y=z
ET xð Þ: (81)

Here, ⊕ denotes operation combination. Under a non-uniform SO(4) transformation bU xð Þ, we
have

γ0 ! bU xð Þγ0 bU xð Þ
� ��1

¼ γ0 xð Þ� �0 ¼
X

a
γana xð Þ (82)

where n ¼ n1; n2; n3ϕ0
0

� � ¼ n!;ϕ0
0

� �
is a unit SO(4) vector-field. For the deformed zero-lattice,

according to γ0 xð Þ� �0 6¼ γ0, the entanglement matrix Γ5 ¼ γ0 along tempo direction is varied,

Γ5 ! Γ5� �0
xð Þ 6¼ Γ5.

In general, the SO(4) transformation is defined by bU xð Þ ¼ eΦab xð Þγab
γab ¼ � 1

4 γa;γb
� �� �

. Under
the SO(4) transformation, we have

γμ ! γμ xð Þð Þ0 ¼ bU xð Þγμ bU xð Þ
� ��1

,

Aμ ! A0
μ x!; t
� �

¼ bU x!; t
� �

Aμ xð Þ bU xð Þ
� ��1

þbU xð Þ∂μ bU xð Þ
� ��1

:

(83)

In particular, γ5 is invariant under the SO(4) transformation as
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γ5 ! γ5� �0 ¼ bU xð Þγ5 bU xð Þ
� ��1

¼ γ5: (84)

The correspondence between index of γa and index of space-time xa is

γ1 ⇔ x,γ2 ⇔ y,
γ3 ⇔ z,γ0 ⇔ t:

(85)

We denote this correspondence to be

1; 2; 3; 0ð ÞET ⇔ 1; 2; 3; 0ð ÞST (86)

where 1; 2; 3; 0ð ÞET denotes the index order of γa and 1; 2; 3; 0ð ÞST denotes the index order of
space-time xa.

As a result, we can introduce an auxiliary gauge field Aab
μ xð Þ and use a gauge description to

characterize the deformation of the zero-lattice. The auxiliary gauge field Aab
μ xð Þ is written into

two parts [15]: SO(3) parts

Aij xð Þ ¼ tr γij bU xð Þ
� �

d bU xð Þ
� ��1

� �
(87)

and SO(4)/SO(3) parts

Ai0 xð Þ ¼ tr γi0 bU xð Þ
� �

d bU xð Þ
� ��1

Þ

¼ γ0d γi xð Þ� �0 ¼ �γid γ0 xð Þ� �0
:

(88)

The total field strength F ij xð Þ of i, j ¼ 1; 2; 3 components can be divided into two parts

F ij xð Þ ¼ Fij þ Ai0 ∧Aj0: (89)

According to pure gauge condition, we have Maurer-Cartan equation,

F ij xð Þ ¼ Fij þ Ai0 ∧Aj0 � 0 (90)

or

Fij ¼ dAij þ Aik ∧Akj

� �Ai0 ∧Aj0:
(91)

Finally, we emphasize the equivalence between γ0i and Γi, i.e., γ0i ⇔Γi.

4.3.3. Gauge description for deformed spatial entanglement matrix

Next, we study the unit SO(4) vector-field of deformed spatial entanglement matrix Γi
� �0

xð Þ. To
characterize Γi� �0

xð Þ, the reduced Gamma matrices γμ is defined as
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γ1 ¼ γ0Γ1,γ2 ¼ γ0Γ2,γ3 ¼ γ0Γ3, (77)

and

γ0 ¼ Γ5 ¼ τx ⊗ 1,γ5 ¼ iγ0γ1γ2γ3:
!

(78)

Under this definition (γ0 ¼ Γ5), the effect of deformed zero-lattice from spatial entanglement

transformation eiΓ
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have
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¼ γ0 xð Þ� �0 ¼
X

a
γana xð Þ (82)

where n ¼ n1; n2; n3ϕ0
0

� � ¼ n!;ϕ0
0

� �
is a unit SO(4) vector-field. For the deformed zero-lattice,

according to γ0 xð Þ� �0 6¼ γ0, the entanglement matrix Γ5 ¼ γ0 along tempo direction is varied,

Γ5 ! Γ5� �0
xð Þ 6¼ Γ5.

In general, the SO(4) transformation is defined by bU xð Þ ¼ eΦab xð Þγab
γab ¼ � 1

4 γa;γb
� �� �

. Under
the SO(4) transformation, we have

γμ ! γμ xð Þð Þ0 ¼ bU xð Þγμ bU xð Þ
� ��1

,

Aμ ! A0
μ x!; t
� �

¼ bU x!; t
� �

Aμ xð Þ bU xð Þ
� ��1

þbU xð Þ∂μ bU xð Þ
� ��1

:

(83)

In particular, γ5 is invariant under the SO(4) transformation as
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γ5 ! γ5� �0 ¼ bU xð Þγ5 bU xð Þ
� ��1

¼ γ5: (84)

The correspondence between index of γa and index of space-time xa is

γ1 ⇔ x,γ2 ⇔ y,
γ3 ⇔ z,γ0 ⇔ t:

(85)

We denote this correspondence to be

1; 2; 3; 0ð ÞET ⇔ 1; 2; 3; 0ð ÞST (86)

where 1; 2; 3; 0ð ÞET denotes the index order of γa and 1; 2; 3; 0ð ÞST denotes the index order of
space-time xa.

As a result, we can introduce an auxiliary gauge field Aab
μ xð Þ and use a gauge description to

characterize the deformation of the zero-lattice. The auxiliary gauge field Aab
μ xð Þ is written into

two parts [15]: SO(3) parts

Aij xð Þ ¼ tr γij bU xð Þ
� �

d bU xð Þ
� ��1

� �
(87)

and SO(4)/SO(3) parts

Ai0 xð Þ ¼ tr γi0 bU xð Þ
� �

d bU xð Þ
� ��1

Þ

¼ γ0d γi xð Þ� �0 ¼ �γid γ0 xð Þ� �0
:

(88)

The total field strength F ij xð Þ of i, j ¼ 1; 2; 3 components can be divided into two parts

F ij xð Þ ¼ Fij þ Ai0 ∧Aj0: (89)

According to pure gauge condition, we have Maurer-Cartan equation,

F ij xð Þ ¼ Fij þ Ai0 ∧Aj0 � 0 (90)

or

Fij ¼ dAij þ Aik ∧Akj

� �Ai0 ∧Aj0:
(91)

Finally, we emphasize the equivalence between γ0i and Γi, i.e., γ0i ⇔Γi.

4.3.3. Gauge description for deformed spatial entanglement matrix

Next, we study the unit SO(4) vector-field of deformed spatial entanglement matrix Γi
� �0

xð Þ. To
characterize Γi� �0

xð Þ, the reduced Gamma matrices γμ is defined as
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γ1 ¼ γ0Γj,γ2 ¼ γ0Γk,γ3 ¼ γ0Γ5, (92)

and

γ0 ¼ Γi ¼ τz ⊗ σi,
γ5 ¼ iγ0γ1γ2γ3:

(93)

Here, Γi, Γj, and Γk are three orthotropic spatial entanglement matrices. Under this definition
(γ0 ¼ Γi), the effect of deformed zero-lattice from partial spatial/tempo entanglement transfor-

mation eiΓ
j�ΔΦj , eiΓ

k�ΔΦk , eiΓ
5�ΔΦt can be studied due to

Γi ! Γi� �0
xð Þ ¼ bUxj=xk=t

ET x!; t
� �

Γi bUxj=xk=t
ET xð Þ�1 6¼ Γi: (94)

However, the effect of deformed zero-lattice from spatial entanglement transformation eiδΦt �Γ5

cannot be well defined due to

Γi ! Γi� �0
xð Þ ¼ bUxi

ET x!; t
� �

Γi bUxi
ET xð Þ�1 ¼ Γi: (95)

We use similar approach to introduce the gauge description. We can also define the reduced
Gamma matrices ~γμ as

~γ1 ¼ ~γ0Γ2, ~γ2 ¼ ~γ0Γ3, ~γ3 ¼ ~γ0Γ5, (96)

and

~γ0 ¼ Γi ¼ τz ⊗ σx,
~γ5 ¼ i~γ0~γ1~γ2~γ3:

(97)

The correspondence between index of ~γa and index of space-time xa is

~γ1 ⇔ y, ~γ2 ⇔ z,
~γ3 ⇔ t, ~γ0 ⇔ x:

(98)

We denote this correspondence to be

1; 2; 3; 0ð ÞET ⇔ 2; 3; 0; 1ð ÞST: (99)

Now, the SO(4) transformation ~U x!; t
� �

¼ eΦab x!;tð Þ~γab
~γab ¼ � 1

4 ~γa; ; ~γb
� �� �

is not a combination

of spin rotation symmetry and entanglement transformation along x/y/z-direction. However,

for the case of a or b to be 0, ~U x!; t
� �

¼ eΦa0 x!;tð Þ~γa0
denotes the entanglement transformation

along y/z/t-direction. The unit SO(4) vector-field on each lattice site becomes
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~U xð Þ~γ0 ~U xð ÞÞ�1 ¼ ~γ0 xð Þ� �0 ¼
X

a
~γa~na xð Þ

�
(100)

where ~n ¼ ~n1; ; ~n2; ; ~n3; ~ϕ
0
0

� �
is a unit vector-field. The auxiliary gauge field ~Aab xð Þ are defined

by

~Aab xð Þ ¼ tr ~γij ~U xð ÞÞd ~U xð ÞÞ�1
� �

:
��

(101)

According to pure gauge condition, we also have the following Maurer-Cartan equation,

~Fij ¼ d~Aij þ ~Aik ∧ ~Akj � �~Ai0 ∧ ~Aj0: (102)

Finally, we emphasize the equivalence between ~γ0i and Γa, i.e., ~γ01 ⇔ Γ2, ~γ02 ⇔Γ3, ~γ03 ⇔Γ5.

4.3.4. Hidden SO(4) invariant for gauge description

In addition, there exists a hidden global SO(4) invariant for entanglement matrices along

different directions in 3 + 1D (winding) space-time Γ
!
; Γ5

� �
! Γ

!0

; Γ5� �0� �
. To show the hidden

SO(4) invariant, we define the reduced Gamma matrices ~γμ as

~γ1 ¼ ~γ0Γ2, ~γ2 ¼ ~γ0Γ3, ~γ3 ¼ ~γ0Γ5,

~γ0 ¼ αΓ1 þ βΓ2 þ γΓ3 þ δΓ5,

~γ5 ¼ i~γ0~γ1~γ2~γ3

(103)

with α2 þ β2 þ γ2 þ δ2 ¼ 1. Here, α, β, γ, δ are constant.

Under this description, we can study the entanglement deformation along orthotropic spatial/
tempo directions to x0 ¼ αxþ βyþ γzþ δt.

4.4. Relationship between geometric description and gauge description for deformed
zero-lattice

Due to the generalized spatial translation symmetry there exists an intrinsic relationship
between gauge description for entanglement deformation between two vortex-membranes
and geometric description for global coordinate transformation of the same deformed zero-
lattice.

On the one hand, to characterize the changes of the positions of zeroes, we must consider a

curved space-time by using geometric description, x ¼ x!; t
� �

! x0 ¼ x!
0
; t0

� �
. On the other

hand, we need to consider a varied vector-field
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denotes the entanglement transformation
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~U xð Þ~γ0 ~U xð ÞÞ�1 ¼ ~γ0 xð Þ� �0 ¼
X

a
~γa~na xð Þ

�
(100)
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0

� �
is a unit vector-field. The auxiliary gauge field ~Aab xð Þ are defined

by
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��

(101)

According to pure gauge condition, we also have the following Maurer-Cartan equation,
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4.3.4. Hidden SO(4) invariant for gauge description

In addition, there exists a hidden global SO(4) invariant for entanglement matrices along
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! Γ
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. To show the hidden
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~γ1 ¼ ~γ0Γ2, ~γ2 ¼ ~γ0Γ3, ~γ3 ¼ ~γ0Γ5,

~γ0 ¼ αΓ1 þ βΓ2 þ γΓ3 þ δΓ5,

~γ5 ¼ i~γ0~γ1~γ2~γ3

(103)

with α2 þ β2 þ γ2 þ δ2 ¼ 1. Here, α, β, γ, δ are constant.

Under this description, we can study the entanglement deformation along orthotropic spatial/
tempo directions to x0 ¼ αxþ βyþ γzþ δt.

4.4. Relationship between geometric description and gauge description for deformed
zero-lattice

Due to the generalized spatial translation symmetry there exists an intrinsic relationship
between gauge description for entanglement deformation between two vortex-membranes
and geometric description for global coordinate transformation of the same deformed zero-
lattice.

On the one hand, to characterize the changes of the positions of zeroes, we must consider a

curved space-time by using geometric description, x ¼ x!; t
� �

! x0 ¼ x!
0
; t0

� �
. On the other

hand, we need to consider a varied vector-field
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γ0 xð Þ� �0 ¼ bU xð Þγ0 bU xð Þ
� ��1

¼
X

a
γana xð Þ (104)

by using gauge description. There exists intrinsic relationship between the geometry fields

ea xð Þ a ¼ 1; 2; 3; 0ð Þ and the auxiliary gauge fields Aa0 xð Þ.
For a non-uniform zero-lattice, we have

Φ
!

x!; t
� �

) Φ
!0

x!; t
� �

¼Φ
!

x!; t
� �

þ δ Φ
!

x!; t
� �

,

Φt x!; t
� �

) Φ0
t x!; t
� �

¼ Φt x!; t
� �

þ δΦt x!; t
� �

:

(105)

On deformed zero-lattice, the “lattice distances” become dynamic vector fields. We define the
vierbein fields ea xð Þ that are supposed to transform homogeneously under the local symmetry,
and to behave as ordinary vectors under local entanglement transformation along xa-direction,

ea xð Þ ¼ dxa xð Þ ¼ a
π
dΦa xð Þ: (106)

For the smoothly deformed vector-fields ni xð Þ≪ 1, within the representation of Γ5 ¼ γ0 we
have

dΦi xð Þ
2π

¼ ni xð Þ ¼ tr γ0dγi xð Þ� �

¼ Ai0 xð Þ, i ¼ 1; 2; 3:

(107)

Thus, the relationship between ei xð Þ and Ai0 xð Þ is obtained as

ei xð Þ � 2að ÞAi0 xð Þ: (108)

According to this relationship, the changing of entanglement of the vortex-membranes curves
the 3D space.

On the other hand, within the representation of Γi ¼ ~γ0 we have

dΦa xð Þ
2π

¼ ~na xð Þ ¼ tr ~γ0d~γa xð Þ� �

¼ ~Ai0 xð Þ, i ¼ j, k, 0,
(109)

and

e0 xð Þ ¼ dt xð Þ ¼ a
π
dΦt xð Þ ¼ 2að Þ~A30 xð Þ: (110)

According to this relationship, the changing of entanglement of the vortex-membranes curves
the 4D space-time.
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In addition, we point out that for different representation of reduced Gamma matrix, there

exists intrinsic relationships between the gauge fields A xð Þ and ~A xð Þ. After considering these
relationships, we have a complete description of the deformed zero-lattice on the geometric
space-time,

5. Emergent gravity

Gravity is a natural phenomenon by which all objects attract one another including galaxies,
stars, human-being and even elementary particles. Hundreds of years ago, Newton discovered
the inverse-square law of universal gravitation, F ¼ GMm

r2 where G is the Newton constant, r is
the distance, and M and m are the masses for two objects. One hundred years ago, the
establishment of general relativity by Einstein is a milestone to learn the underlying physics
of gravity that provides a unified description of gravity as a geometric property of space-time.
From Einstein’s equations Rμν � 1

2Rgμν ¼ 8πGTμν, the gravitational force is really an effect of

curved space-time. Here Rμν is the 2nd rank Ricci tensor, R is the curvature scalar, gμν is the

metric tensor, and Tμν is the energy-momentum tensor of matter.

In this section, we point out that there exists emergent gravity for knots on zero-lattice.

5.1. Knots as topological defects

5.1.1. Knot as SO(4)/SO(3) topological defect in 3 + 1D space-time

A knot corresponds to an elementary object of a knot-crystal; a knot-crystal can be regarded as
composite system of multi-knot. For example, for 1D knot, people divide the knot-crystal into
N identical pieces, each of which is just a knot.

From point view of information, each knot corresponds to a zero between two vortex-
membranes along the given direction. For a knot, there must exist a zero point, at which
ξA xð Þ is equal to ξB xð Þ. The position of the zero is determined by a local solution of the zero-
equation, Fθ xð Þ ¼ 0 or ξA,θ xð Þ ¼ ξB,θ xð Þ.
From point view of geometry, a knot (an anti-knot) removes (or adds) a projected zero of zero-
lattice that corresponds to removes (or adds) half of “lattice unit” on the zero-lattice according to

Δxi ¼ �aeff x!; t
� �

≃ � a: (111)

As a result, a knot looks like a special type of edge dislocation on 3 + 1D zero-lattice. The zero-
lattice is deformed and becomes mismatch with an additional knot.

From point view of entanglement, a knot becomes topological defect of 3 + 1D winding space-

time: along x-direction, knot is anti-phase changing denoted by eiΓ
1�ΔΦx, ΔΦx ¼ π; along

y-direction, knot is anti-phase changing denoted by eiΓ
2 �ΔΦy, ΔΦy ¼ π; along z-direction, knot
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X

a
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2Rgμν ¼ 8πGTμν, the gravitational force is really an effect of

curved space-time. Here Rμν is the 2nd rank Ricci tensor, R is the curvature scalar, gμν is the

metric tensor, and Tμν is the energy-momentum tensor of matter.

In this section, we point out that there exists emergent gravity for knots on zero-lattice.
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5.1.1. Knot as SO(4)/SO(3) topological defect in 3 + 1D space-time

A knot corresponds to an elementary object of a knot-crystal; a knot-crystal can be regarded as
composite system of multi-knot. For example, for 1D knot, people divide the knot-crystal into
N identical pieces, each of which is just a knot.

From point view of information, each knot corresponds to a zero between two vortex-
membranes along the given direction. For a knot, there must exist a zero point, at which
ξA xð Þ is equal to ξB xð Þ. The position of the zero is determined by a local solution of the zero-
equation, Fθ xð Þ ¼ 0 or ξA,θ xð Þ ¼ ξB,θ xð Þ.
From point view of geometry, a knot (an anti-knot) removes (or adds) a projected zero of zero-
lattice that corresponds to removes (or adds) half of “lattice unit” on the zero-lattice according to

Δxi ¼ �aeff x!; t
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≃ � a: (111)

As a result, a knot looks like a special type of edge dislocation on 3 + 1D zero-lattice. The zero-
lattice is deformed and becomes mismatch with an additional knot.

From point view of entanglement, a knot becomes topological defect of 3 + 1D winding space-

time: along x-direction, knot is anti-phase changing denoted by eiΓ
1�ΔΦx, ΔΦx ¼ π; along

y-direction, knot is anti-phase changing denoted by eiΓ
2 �ΔΦy, ΔΦy ¼ π; along z-direction, knot
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is anti-phase changing denoted by eiΓ
3�ΔΦz, ΔΦz ¼ π; along t-direction, knot is anti-phase

changing denoted by eiΓ
5�ΔΦt, ΔΦt ¼ π. Figure 4(a) and (b) shows an illustration a 1D knot.

In mathematics, to generate a knot at x0; y0; z0; t0
� �

, we do global topological operation on the
knot-crystal, i.e.,

eiΓ
1 �ΔΦx xð Þ 0j i (112)

with ΔΦx ¼ 0, x < x0 and ΔΦx ¼ π, x ≥ x0;

eiΓ
2�ΔΦy xð Þ 0j i (113)

with ΔΦy ¼ 0, y < y0 and ΔΦy ¼ π, y ≥ y0;

eiΓ
3�ΔΦz xð Þ 0j i (114)

with ΔΦz ¼ 0, z < z0 and ΔΦz ¼ π, z ≥ x0;

eiΓ
5�ΔΦt xð Þ 0j i (115)

with ΔΦt ¼ 0, t < t0 and ΔΦt ¼ π, t ≥ t0. As a result, due to the rotation symmetry in 3 + 1D
space-time, a knot becomes SO(4)/SO(3) topological defect. Along arbitrary direction, the local
entanglement matrices around a knot at center are switched on the tangential sub-space-time.

5.1.2. Knot as SO(3)/SO(2) magnetic monopole in 3D space

To characterize the topological property of a knot on the 3 + 1D zero-lattice, we use gauge
description. We firstly study the tempo entanglement deformation and define Γ5 ¼ γ0. Under
this gauge description, we can only study the effect of a knot on three spatial zero-lattice.

When there exists a knot, the periodic boundary condition of knot states along arbitrary
direction is changed into anti-periodic boundary condition,

ΔΦx ¼ π,ΔΦy ¼ π,ΔΦz ¼ π: (116)

Consequently, along given direction (for example x-direction), the local entanglement matrices

on the tangential sub-space are switched by eiΓ
1�ΔΦx ΔΦx ¼ πð Þ. Along x-direction, in the limit

of x ! �∞, we have the local entanglement matrices on the tangential sub-space as Γ2 and Γ3;
in the limit of x ! ∞, we have the local entanglement matrices on the tangential sub-space as

eiΓ
1 �ΔΦx Γ2� �

e�iΓ1�ΔΦx ¼ �Γ2 and eiΓ
1�ΔΦx Γ3� �

e�iΓ1�ΔΦx ¼ �Γ3.

Because we have similar result along xi-direction for the system with an extra knot, the system
has generalized spatial rotation symmetry. Due to the generalized spatial rotation symmetry,
when moving around the knot, the local tangential entanglement matrices (we may use indices
j, k to denote the sub space) must rotate synchronously. See the red arrows that denote local
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tangential entanglement matrices in Figure 4(c) and (d). In Figure 4(d), local tangential entan-
glement matrices induced by an extra (unified) knot shows vortex-like topological configura-
tion in projected 2D space (for example, x-y plane). As a result, local tangential entanglement
matrices induced by an extra knot can be exactly mapped onto that of an orientable sphere
with fixed chirality.

To characterize the topological property of 3 + 1D zero-lattice with an extra (unified) knot, we
apply gauge description and write down the following constraint

∭ rFdV ¼ 1
4π

ðð
ejkeijkF

jk
jk � dSi (117)

where

Fij ¼ dAij þ Aik ∧Akj

� �Ai0 ∧Aj0
(118)

and rF ¼ ffiffiffiffiffiffiffi�gp
ψ†ψ. The upper indices of Fjkjk label the local entanglement matrices on the

tangential sub-space and the lower indices of Fjkjk denote the spatial direction. The non-zero

Gaussian integrate 1
4π

ÐÐ
ejkeijkF

jk
jk � dSi just indicates the local entanglement matrices on the

tangential sub-space Ai0 ∧Aj0 to be the local frame of an orientable sphere with fixed chirality.

As a result, the entanglement pattern with an extra 3D knot is topologically deformed and the
3D knot becomes SO(3)/SO(2) magnetic monopole. From the point view of gauge description, a
knot traps a “magnetic charge” of the auxiliary gauge field, i.e.,

NF ¼
ð ffiffiffiffiffiffiffi�g
p

Ψ†Ψd3x ¼ qm (119)

where qm ¼ 1
4π

ÐÐ
ejkeijkF

jk
jk � dSi is the “magnetic” charge of auxiliary gauge field Ajk. For single

knot NF ¼ 1, the “magnetic” charge is qm ¼ 1.

5.1.3. Knot as SO(3)/SO(2) magnetic monopole in 2 + 1D space-time

Next, we study the spatial entanglement deformation and define Γi ¼ ~γ0. Under this gauge
description, we can only study the effect of a knot on 2D spatial zero-lattice and 1D tempo
zero-lattice.

In the 2 + 1D space-time, a knot also leads to π-phase changing,

ΔΦi ¼ π,ΔΦj ¼ π,ΔΦt ¼ π: (120)

Due to the spatial-tempo rotation symmetry, the knot also becomes SO(3)/SO(2) magnetic

monopole and traps a “magnetic charge” of the auxiliary gauge field ~Ajk, i.e.,
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is anti-phase changing denoted by eiΓ
3�ΔΦz, ΔΦz ¼ π; along t-direction, knot is anti-phase
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� �
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1 �ΔΦx xð Þ 0j i (112)

with ΔΦx ¼ 0, x < x0 and ΔΦx ¼ π, x ≥ x0;

eiΓ
2�ΔΦy xð Þ 0j i (113)

with ΔΦy ¼ 0, y < y0 and ΔΦy ¼ π, y ≥ y0;

eiΓ
3�ΔΦz xð Þ 0j i (114)
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eiΓ
5�ΔΦt xð Þ 0j i (115)
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eiΓ
1 �ΔΦx Γ2� �

e�iΓ1�ΔΦx ¼ �Γ2 and eiΓ
1�ΔΦx Γ3� �

e�iΓ1�ΔΦx ¼ �Γ3.
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tangential entanglement matrices in Figure 4(c) and (d). In Figure 4(d), local tangential entan-
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∭ rFdV ¼ 1
4π

ðð
ejkeijkF

jk
jk � dSi (117)
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Fij ¼ dAij þ Aik ∧Akj

� �Ai0 ∧Aj0
(118)

and rF ¼ ffiffiffiffiffiffiffi�gp
ψ†ψ. The upper indices of Fjkjk label the local entanglement matrices on the
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4π

ÐÐ
ejkeijkF

jk
jk � dSi just indicates the local entanglement matrices on the
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5.1.3. Knot as SO(3)/SO(2) magnetic monopole in 2 + 1D space-time

Next, we study the spatial entanglement deformation and define Γi ¼ ~γ0. Under this gauge
description, we can only study the effect of a knot on 2D spatial zero-lattice and 1D tempo
zero-lattice.

In the 2 + 1D space-time, a knot also leads to π-phase changing,

ΔΦi ¼ π,ΔΦj ¼ π,ΔΦt ¼ π: (120)

Due to the spatial-tempo rotation symmetry, the knot also becomes SO(3)/SO(2) magnetic
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NF ¼
ð ffiffiffiffiffiffiffi�g
p

Ψ†Ψd3x ¼ ~qm (121)

where ~qm is the “magnetic” charge of auxiliary gauge field ~Aij. Remember that the correspon-
dence between index of ~γi and index of space-time xi is ~γ1 ⇔ y, ~γ2 ⇔ z, ~γ3 ⇔ t.

To characterize the induced magnetic charge, we write down another constraint

∭ rFdV ¼ 1
4π

ðð
eijeijk~F

ij
jk � dSi (122)

where

~Fij ¼ d~Aij þ ~Aij ∧ ~Aij

� �~Ai0 ∧ ~Aj0:
(123)

The upper indices of ~Fij ¼ d~Fij þ ~Fik ∧ ~Fkj denote the local entanglement matrices on the tangen-

tial sub-space-time and the lower indices of ~Fij
jk denote the spatial direction. Therefore, according

to above equation, the 2 + 1D zero-lattice is globally deformed by an extra knot.

In general, due to the hidden SO(4) invariant, for other gauge descriptions ~γ0 ¼ αΓ1 þ βΓ2 þ γΓ3

þδΓ5, a knot also play the role of SO(3)/SO(2) magnetic monopole and traps a “magnetic charge”
of the corresponding auxiliary gauge field.

5.2. Einstein-Hilbert action as topological mutual BF term for knots

It is known that for a given gauge description, a knot is an SO(3)/SO(2) magnetic monopole
and traps a “magnetic charge” of the corresponding auxiliary gauge field. For a complete basis

of entanglement pattern, we must use four orthotropic SO(4) rotors Γ1
� �0

xð Þ; Γ2� �0
xð Þ; Γ3� �0

xð Þ;
�

Γ5ð Þ0 xð ÞÞ and four different gauge descriptions to characterize the deformation of a knot (an SO(4)/
SO(3) topological defect) on a 3 + 1D zero-lattice.

Firstly, we use Lagrangian approach to characterize the deformation of a knot (an SO(3)/SO(2)
topological defect) on a 3D spatial zero-lattice, NF ¼ qm. The topological constraint in Eq. (117)
can be re-written into

i
4
tr
ffiffiffiffiffiffiffi�g

p
Ψγi γ0i=2

� �
Ψ ¼ ejkeijk

1
4π
bDiF

jk
jk (124)

or

i
4
tr
ffiffiffiffiffiffiffi�g

p
Ψϖ0i

0 γ
i γ0i=2
� �

Ψ ¼ ie0ijke0ijkϖ0i
0

1
4π
bDiF

jk
jk (125)

where bDi ¼ ib∂i þ iωi is covariant derivative in 3 + 1D space-time. ϖ0i is a field that plays the
role of Lagrangian multiplier. The upper index i of ϖ0i denotes the local radial entanglement

Superfluids and Superconductors60

matrix around a knot, along which the entanglement matrix does not change. Thus, we use
the dual field ϖ0i to enforce the topological constraint in Eq. (117). That is, to denote the
upper index of Fjk that is the local tangential entanglement matrices, we set antisymmetric
property of upper index of ϖ0i and that of Fjk. Because ϖ0i and ω0i have the same SO(3,1)
generator γ0i=2

� �
, due to SO(3,1) Lorentz invariance we can do Lorentz transformation and

absorb the dual field ϖ0i into ω0i, i.e., ω0i ! ω0i
� �0 ¼ ω0i þ ϖ0i. As a result, the dual field ϖ0i is

replaced by ω0i.

In the path-integral formulation, to enforce such topological constraint, we may add a topo-
logical mutual BF term SMBF in the action that is

SMBF1 ¼ � 1
4π

ð
e0ijk e0νλκR0i

0νF
jk
λκd

4x

¼ � 1
4π

ð
e0ijk R0i ∧ Fjk

(126)

where

R0i ¼ dω0i þ ω0j ∧ωji: (127)

From Fjk � �Aj0 ∧Ak0 and ei ∧ ej ¼ 2að Þ2Aj0 ∧Ak0. The induced topological mutual BF term
SMBF1 is linear in the conventional strength in R0i and Fjk. This term is becomes

SMBF1 ¼ 1

4π 2að Þ2
ð
e0ijkR0i ∧ ej ∧ ek: (128)

Next, we use Lagrangian approach to characterize the deformation of a knot (an SO(3)/SO(2)
topological defect) on 2 + 1D space-time, NF ¼ ~qm. Using the similar approach, we derive
another topological mutual BF term SMBF2 in the action that is

SMBF2 ¼ � 1
4π

ð
e0ijk e0νλκ ~R 0i

0ν
~Fjk
λκd

4x ¼ � 1
4π

ð
e0ijk ~R0i ∧ ~Fjk (129)

where ~R0i ¼ d~ω0i þ ~ω0j ∧ ~ω ji. From ~Fk0 � �~Akj ∧ ~Aj0 and ~ei ∧~ej ¼ 2að Þ2 ~Aj0 ∧ ~Ak0, this term
becomes

SMBF2 ¼ 1

4π 2að Þ2
ð
eijk0 ~R0i ∧~ej ∧~ek: (130)

The upper index of ~R0i denotes entanglement transformation along given direction in winding
space-time. We unify the index order of space-time into 1; 2; 3; 0ð ÞST and reorganize the upper

index. The topological mutual BF term becomes 1
4π 2að Þ2

Ð
eijk0Rij ∧ ek ∧ e0. In Ref. [16–19], a topo-

logical description of Einstein-Hilbert action is proposed by S. W. MacDowell and F. Mansouri.
The topological mutual BF term proposed in this paper is quite different from the MacDowell-
Mansouri action.
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p
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The upper indices of ~Fij ¼ d~Fij þ ~Fik ∧ ~Fkj denote the local entanglement matrices on the tangen-

tial sub-space-time and the lower indices of ~Fij
jk denote the spatial direction. Therefore, according

to above equation, the 2 + 1D zero-lattice is globally deformed by an extra knot.

In general, due to the hidden SO(4) invariant, for other gauge descriptions ~γ0 ¼ αΓ1 þ βΓ2 þ γΓ3

þδΓ5, a knot also play the role of SO(3)/SO(2) magnetic monopole and traps a “magnetic charge”
of the corresponding auxiliary gauge field.
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and traps a “magnetic charge” of the corresponding auxiliary gauge field. For a complete basis
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�

Γ5ð Þ0 xð ÞÞ and four different gauge descriptions to characterize the deformation of a knot (an SO(4)/
SO(3) topological defect) on a 3 + 1D zero-lattice.

Firstly, we use Lagrangian approach to characterize the deformation of a knot (an SO(3)/SO(2)
topological defect) on a 3D spatial zero-lattice, NF ¼ qm. The topological constraint in Eq. (117)
can be re-written into

i
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tr
ffiffiffiffiffiffiffi�g
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Ψγi γ0i=2
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Ψ ¼ ejkeijk

1
4π
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jk
jk (124)

or
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ffiffiffiffiffiffiffi�g
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4π
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where bDi ¼ ib∂i þ iωi is covariant derivative in 3 + 1D space-time. ϖ0i is a field that plays the
role of Lagrangian multiplier. The upper index i of ϖ0i denotes the local radial entanglement
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matrix around a knot, along which the entanglement matrix does not change. Thus, we use
the dual field ϖ0i to enforce the topological constraint in Eq. (117). That is, to denote the
upper index of Fjk that is the local tangential entanglement matrices, we set antisymmetric
property of upper index of ϖ0i and that of Fjk. Because ϖ0i and ω0i have the same SO(3,1)
generator γ0i=2

� �
, due to SO(3,1) Lorentz invariance we can do Lorentz transformation and

absorb the dual field ϖ0i into ω0i, i.e., ω0i ! ω0i
� �0 ¼ ω0i þ ϖ0i. As a result, the dual field ϖ0i is

replaced by ω0i.

In the path-integral formulation, to enforce such topological constraint, we may add a topo-
logical mutual BF term SMBF in the action that is

SMBF1 ¼ � 1
4π

ð
e0ijk e0νλκR0i

0νF
jk
λκd

4x

¼ � 1
4π

ð
e0ijk R0i ∧ Fjk

(126)

where

R0i ¼ dω0i þ ω0j ∧ωji: (127)

From Fjk � �Aj0 ∧Ak0 and ei ∧ ej ¼ 2að Þ2Aj0 ∧Ak0. The induced topological mutual BF term
SMBF1 is linear in the conventional strength in R0i and Fjk. This term is becomes

SMBF1 ¼ 1

4π 2að Þ2
ð
e0ijkR0i ∧ ej ∧ ek: (128)

Next, we use Lagrangian approach to characterize the deformation of a knot (an SO(3)/SO(2)
topological defect) on 2 + 1D space-time, NF ¼ ~qm. Using the similar approach, we derive
another topological mutual BF term SMBF2 in the action that is
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ð
e0ijk e0νλκ ~R 0i

0ν
~Fjk
λκd

4x ¼ � 1
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ð
e0ijk ~R0i ∧ ~Fjk (129)

where ~R0i ¼ d~ω0i þ ~ω0j ∧ ~ω ji. From ~Fk0 � �~Akj ∧ ~Aj0 and ~ei ∧~ej ¼ 2að Þ2 ~Aj0 ∧ ~Ak0, this term
becomes

SMBF2 ¼ 1

4π 2að Þ2
ð
eijk0 ~R0i ∧~ej ∧~ek: (130)

The upper index of ~R0i denotes entanglement transformation along given direction in winding
space-time. We unify the index order of space-time into 1; 2; 3; 0ð ÞST and reorganize the upper

index. The topological mutual BF term becomes 1
4π 2að Þ2

Ð
eijk0Rij ∧ ek ∧ e0. In Ref. [16–19], a topo-

logical description of Einstein-Hilbert action is proposed by S. W. MacDowell and F. Mansouri.
The topological mutual BF term proposed in this paper is quite different from the MacDowell-
Mansouri action.
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According to the diffeomorphism invariance of winding space-time, there exists symmetry
between the entanglement transformation along different directions. Therefore, with the help
of a complete set of definition of reduced Gamma matrices γμ, there exist other topological
mutual BF terms SMBF, i. For the total topological mutual BF term SMBF ¼Pi SMBF, i that char-
acterizes the deformation of a knot (an SO(4)/SO(3) topological defect) on a 3 + 1D zero-lattice,
the upper index of the topological mutual BF term Rij ∧ ek ∧ el must be symmetric, i.e.,
i, j, k, l ¼ 1; 2; 3; 0.

By considering the SO(3,1) Lorentz invariance, the topological mutual BF term SMBF turns into
the Einstein-Hilbert action SEH as

SMBF ¼ SEH ¼ 1

16π að Þ2
ð
eijklRij ∧ ek ∧ el

¼ 1
16πG

ð ffiffiffiffiffiffiffi�g
p

Rd4x
(131)

where G is the induced Newton constant which is G ¼ a2. The role of the Planck length is
played by lp ¼ a, that is the “lattice” constant on the 3 + 1D zero-lattice.

Finally, from above discussion, we derived an effective theory of knots on deformed zero-
lattice in continuum limit as

S ¼ Szero�lattice þ SEH

¼
ð ffiffiffiffiffiffiffiffiffiffiffiffiffi

�g xð Þ
q

Ψ eμa γa bDμ �mknot

� �
Ψd4x:

þ 1
16πG

ð ffiffiffiffiffiffiffi�g
p

Rd4x

(132)

where bDμ ¼ ib∂μ þ iωμ. The variation of the action S via the metric δgμν gives the Einstein’s

equations

Rμν � 1
2
Rgμν ¼ 8πGTμν: (133)

As a result, in continuum limit a knot-crystal becomes a space-time background like smooth
manifold with emergent Lorentz invariance, of which the effective gravity theory turns into
topological field theory.

For emergent gravity in knot physics, an important property is topological interplay between
zero-lattice and knots. From the Einstein-Hilbert action, we found that the key property is
duality between Riemann curvature Rij and strength of auxiliary gauge field Fkl: the deformation
of entanglement pattern leads to the deformation of space-time.

In addition, there exist a natural energy cutoff ℏω0 and a natural length cutoff a. In high energy
limit (Δω � ω0) or in short range limit (Δx � a), without well-defined 3 + 1D zero-lattice, there
does not exist emergent gravity at all.
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6. Discussion and conclusion

In this paper, we pointed out that owing to the existence of local Lorentz invariance and
diffeomorphism invariance there exists emergent gravity for knots on 3 + 1D zero-lattice. In
knot physics, the emergent gravity theory is really a topological theory of entanglement
deformation. For emergent gravity theory in knot physics, a topological interplay between
3 + 1D zero-lattice and the knots appears: on the one hand, the deformation of the 3 + 1D zero-
lattice leads to the changes of knot-motions that can be denoted by curved space-time; on the
other hand, the knots trapping topological defects deform the 3 + 1D zero-lattice that indicates
matter may curve space-time. The Einstein-Hilbert action SEH becomes a topological mutual
BF term SMBF that exactly reproduces the low energy physics of the general relativity. In
Table 1, we emphasize the relationship between modern physics and knot physics.

In addition, this work would help researchers to understand the mystery in gravity. In modern
physics, matter and space-time are two different fundamental objects and matter may move in
(flat or curved) space-time. In knot physics, the most important physics idea for gravity is the
unification of matter and space-time, i.e.,

Matter knotsð Þ⇔ Space–time zero–latticeð Þ: (134)

One can see that matter (knots) and space-time (zero-lattice) together with motion of matter
are unified into a simple phenomenon—entangled vortex-membranes and matter (knots)
curves space-time (3 + 1D zero-lattice) via a topological way.

In the end of the paper, we address the possible physical realization of a 1D knot-crystal based
on quantized vortex-lines in 4He superfluid. Because the emergent gravity in knot physics is
topological interplay between zero-lattice and knots, there is no Einstein gravity on a 1D knot-
crystal based on entangled vortex-lines in 4He superfluid. However, the curved space-time
could be simulated.

Firstly, we consider two straight vortex-lines in 4He superfluid between opposite points on the
system. Then, we rotate one vortex line around another by a rotating velocity ω0. Now, the

Modern physics Knot physics

Matter Knot: a topological defect of 3 + 1 D zero-lattice

Motion Changing of the distribution of knot-pieces

Mass Angular frequency for leapfrogging motion

Inertial reference system A knot under Lorentz boosting

Coordinate translation Entanglement transformation

Space-time 3 + 1D zero-lattice of projected entangled vortex-membranes

Curved space-time Deformed 3 + 1D zero-lattice

Gravity Topological interplay between 3 + 1D zero-lattice and knots

Table 1. The relationship between modern physics and knot physics.

Topological Interplay between Knots and Entangled Vortex-Membranes
http://dx.doi.org/10.5772/intechopen.72809

63



According to the diffeomorphism invariance of winding space-time, there exists symmetry
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of entanglement pattern leads to the deformation of space-time.
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BF term SMBF that exactly reproduces the low energy physics of the general relativity. In
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In addition, this work would help researchers to understand the mystery in gravity. In modern
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winding vortex-line becomes a helical one described by r0eik0�x�iω0tþiϕ0 with ω0 ≃ κ
4π ln

1
k0a0

� �
k20.

As a result, a knot-crystal is realized. For 4He superfluid, κ ¼ h=m is the discreteness of the
circulation owing to its quantum nature [2]. h is Planck constant and m is atom mass of SF. So
κ ¼ h=m is about 10�3 cm2/s. The length of the half pitch of the windings a ¼ π

k0
is set to be 10�5

cm, and the distance between two vortex lines r0 is set to be 10�6 cm. We then estimate the

effective light speed ceff that is defined by ceff ¼ κk0
2π ln 1

k0a0
� 1

2

� �
(a0 denotes the vortex filament

radius which is much smaller than any other characteristic size in the system). The effective
light speed ceff is about 4 m/s. A non-uniform winding length leads to an effective curved
1 + 1D space-time.

However, at finite temperature, there exist mutual friction and phonon radiation for Kelvin
waves on quantized vortex-lines in 4He superfluid. After considering these dissipation effects,
the Kelvin waves are subject to Kolmogorov-like turbulence (even in quantum fluid [3, 4]).
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Abstract

Liquid helium is the coldest fluid that exists in nature. By virtue of this fact, any unwanted 
substance present in liquid helium, that is, any impurity, will be “frozen” and will be in 
solid form. In practice, these solid impurities can be easily eliminated to obtain “opti-
cally clean” liquid. However, even “optically clean” filtered liquid helium may contain a 
non-negligible quantity of molecular hydrogen. These minute traces of molecular hydro-
gen are the causes of a known problem worldwide: the blockage of capillary tubes in 
helium evaporation cryostats. This problem seriously affects a wide range of cryogenic 
equipment used in low-temperature physics research at a considerable operational cost 
increase. In this chapter, we propose an underlying mechanism for this effect and pro-
vide a definitive solution by means of production of hydrogen-free liquid helium, that is, 
not only “optically clean” liquid helium but completely “clean” liquid helium. Moreover, 
basic superfluidity research studies could benefit from the availability of “clean” liquid 
helium.

Keywords: helium liquefaction, helium cryogenics, small-scale helium liquefiers, 
hydrogen contamination, impedance blockage, helium purification

1. Introduction

It is well known that the performance of continuously operating 4He evaporation cryostats 
is often degraded as a result of the blocking of fine capillary tubes used as flow impedances 
to achieve temperatures below 4.2 K. This effect has been generally attributed to nitrogen 
or air impurities entering the capillary tubes from the main bath. However, even the most 
thorough laboratory best practices adopted to maintain the helium bath clean and prevent 
impurities from entering the capillary tubes fail. The blocking problem often recurs with no 
apparent cause.

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.
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Many low-temperature research laboratories around the world have experienced this nui-
sance at a considerable financial cost because helium is boiled off when the equipment has to 
be warmed up to room temperature in order to unblock the capillary tube and thus, recover 
the low-temperature operation performance.

This chapter summarizes the work performed during the last 3 years to obtain “Clean” liquid 
helium and to solve the flow impedance blocking issue definitely. On the other hand, the 
availability of clean liquid helium opens the door for the preparation of finite H2 concentra-
tions in superfluid 4He. These 4He-H2 liquid mixtures with known H2 concentrations will be 
the key to experimentally study very interesting phenomena like the possible existence of a 
supercooled stable liquid phase of molecular hydrogen that could exhibit superfluidity [1].

After a detailed description of low-temperature production in 4He evaporation cryostats 
(Section 2), we describe the underlying physical mechanism responsible for the blockages 
(Section 3). This is based upon the freezing of molecular H2 traces present in the liquid helium 
bath. Solid H2 is accumulated at the impedance low-pressure side and, after some time, it 
produces a total impedance blockage.

Section 4 shows that the presence of H2 traces in helium is unavoidable due to its occurrence 
in the natural gas wells where this fossil gas is harvested, forcing helium gas suppliers to 
specify a lower bound for impurity levels at about 100 ppb even in high-grade helium.

Finally, Section 5 describes a (small-scale) helium recovery plant capable of producing gas and 
liquid helium with ultra-high purity (H2 molecular concentration yH2 < 10−14) named by us as 
“Clean helium.” Apart from other possible applications in which extreme pure rare gases may 
be needed, “Clean helium” reliably avoids the low-temperature flow impedance blocking issue.

Details, other than those given here, can be found in Gabal’s Ph.D. thesis [2].

2. Low-temperature production in 4He evaporation cryostats

The simplest way to reduce the temperature in a liquid helium bath is by pumping on it fol-
lowing the liquid–vapor coexistence curve of the 4He phase diagram. However, this method 
is very uneconomical since about 40% of the liquid must be evaporated to cool the remaining 
liquid from, for example, 4.2 to 1.3 K, due to the large change of its specific heat in this tem-
perature range [3]. In practice, it is more efficient to leave the main bath at 4.2 K and 100 kPa 
(1 bar) and to cool only a small fraction of the fluid in a separate container to reach the lower 
temperature using a 4He evaporation cryostat design [4, 5]. Other advantages are the smaller 
vacuum required to achieve the lowest temperature and the absence of interruptions in the 
operation of the refrigerator: having the main bath at atmospheric pressure, the liquid helium 
refills can be done easily while the 4He main bath is pumped through the impedance.

Figure 1 shows a simple diagram of a continuously operating 4He evaporation cryostat. In 
such a refrigerator, a small fraction of the liquid from the main 4.2 K bath flows through a suit-
able flow impedance into a small vessel of several cubic centimeters often referred to as the 
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“pot” located inside the cryostat [3]. The vacuum space allows to thermally isolate the small 
cold vessel from the main 4.2 K bath.

Thanks to the pumping action, the liquid from the main bath at atmospheric pressure, PATM, is 
isenthalpically expanded through the impedance and reaches the pot at a lower temperature. 
Almost half of the heat of evaporation is used to cool the liquid, and thus, the other half can 
be used to cool the experiment.

In general, the impedance Z is given in terms of the flow through the capillary   V   ̇   and the pres-
sure drop across it, ΔP, (typically from 100 kPa to 100 Pa) by:

   V   ̇  =   ΔP ____  (𝜂𝜂Z)     (1)

where η is the viscosity of the liquid helium. Impedances in the range of 1010–1011 cm−3 are 
typically used in most cryogenic applications. Cooling power of the order of 5 mW or more 
is easily achievable at the impedance outlet once we consider the heat of evaporation of 4He 
(≈ 83 J/mol) and a typical flow rate of   V   ̇  =10−4 mol/s = 0.13 sL/mn that can be obtained with a 
mid-sized mechanical pump. In practice, the impedance is usually built with an appropriate 
length of fine CuNi capillary tube, usually with a short length of wire inside it to increase the 
impedance value.

Figure 1. Schematic drawing of continuously operating 4He refrigerator.

“Clean” Liquid Helium
http://dx.doi.org/10.5772/intechopen.74907

69



Many low-temperature research laboratories around the world have experienced this nui-
sance at a considerable financial cost because helium is boiled off when the equipment has to 
be warmed up to room temperature in order to unblock the capillary tube and thus, recover 
the low-temperature operation performance.

This chapter summarizes the work performed during the last 3 years to obtain “Clean” liquid 
helium and to solve the flow impedance blocking issue definitely. On the other hand, the 
availability of clean liquid helium opens the door for the preparation of finite H2 concentra-
tions in superfluid 4He. These 4He-H2 liquid mixtures with known H2 concentrations will be 
the key to experimentally study very interesting phenomena like the possible existence of a 
supercooled stable liquid phase of molecular hydrogen that could exhibit superfluidity [1].

After a detailed description of low-temperature production in 4He evaporation cryostats 
(Section 2), we describe the underlying physical mechanism responsible for the blockages 
(Section 3). This is based upon the freezing of molecular H2 traces present in the liquid helium 
bath. Solid H2 is accumulated at the impedance low-pressure side and, after some time, it 
produces a total impedance blockage.

Section 4 shows that the presence of H2 traces in helium is unavoidable due to its occurrence 
in the natural gas wells where this fossil gas is harvested, forcing helium gas suppliers to 
specify a lower bound for impurity levels at about 100 ppb even in high-grade helium.

Finally, Section 5 describes a (small-scale) helium recovery plant capable of producing gas and 
liquid helium with ultra-high purity (H2 molecular concentration yH2 < 10−14) named by us as 
“Clean helium.” Apart from other possible applications in which extreme pure rare gases may 
be needed, “Clean helium” reliably avoids the low-temperature flow impedance blocking issue.

Details, other than those given here, can be found in Gabal’s Ph.D. thesis [2].

2. Low-temperature production in 4He evaporation cryostats

The simplest way to reduce the temperature in a liquid helium bath is by pumping on it fol-
lowing the liquid–vapor coexistence curve of the 4He phase diagram. However, this method 
is very uneconomical since about 40% of the liquid must be evaporated to cool the remaining 
liquid from, for example, 4.2 to 1.3 K, due to the large change of its specific heat in this tem-
perature range [3]. In practice, it is more efficient to leave the main bath at 4.2 K and 100 kPa 
(1 bar) and to cool only a small fraction of the fluid in a separate container to reach the lower 
temperature using a 4He evaporation cryostat design [4, 5]. Other advantages are the smaller 
vacuum required to achieve the lowest temperature and the absence of interruptions in the 
operation of the refrigerator: having the main bath at atmospheric pressure, the liquid helium 
refills can be done easily while the 4He main bath is pumped through the impedance.

Figure 1 shows a simple diagram of a continuously operating 4He evaporation cryostat. In 
such a refrigerator, a small fraction of the liquid from the main 4.2 K bath flows through a suit-
able flow impedance into a small vessel of several cubic centimeters often referred to as the 

Superfluids and Superconductors68

“pot” located inside the cryostat [3]. The vacuum space allows to thermally isolate the small 
cold vessel from the main 4.2 K bath.

Thanks to the pumping action, the liquid from the main bath at atmospheric pressure, PATM, is 
isenthalpically expanded through the impedance and reaches the pot at a lower temperature. 
Almost half of the heat of evaporation is used to cool the liquid, and thus, the other half can 
be used to cool the experiment.

In general, the impedance Z is given in terms of the flow through the capillary   V   ̇   and the pres-
sure drop across it, ΔP, (typically from 100 kPa to 100 Pa) by:

   V   ̇  =   ΔP ____  (𝜂𝜂Z)     (1)

where η is the viscosity of the liquid helium. Impedances in the range of 1010–1011 cm−3 are 
typically used in most cryogenic applications. Cooling power of the order of 5 mW or more 
is easily achievable at the impedance outlet once we consider the heat of evaporation of 4He 
(≈ 83 J/mol) and a typical flow rate of   V   ̇  =10−4 mol/s = 0.13 sL/mn that can be obtained with a 
mid-sized mechanical pump. In practice, the impedance is usually built with an appropriate 
length of fine CuNi capillary tube, usually with a short length of wire inside it to increase the 
impedance value.

Figure 1. Schematic drawing of continuously operating 4He refrigerator.

“Clean” Liquid Helium
http://dx.doi.org/10.5772/intechopen.74907

69



If the impedance value (Z) is too large, there will be insufficient refrigeration and no liquid will 
accumulate in the evaporation vessel. If the impedance is too small, more liquid than required 
will flow, with the level rising higher at the vessel. This will not prevent the device from work-
ing but will result in higher helium consumption and a higher minimum temperature [5].

Historically, the appearance of a blockage in the capillary has been attributed to nitrogen or 
air impurities, for example, from [3]: “During cooldown the refrigerator should be connected to a 
volume with pressurized very pure 4He gas in order to prevent N2 or air from entering and blocking the 
fill capillary. Sometimes problems arise because impurities in the main liquid helium bath (e.g. frozen 
air) block the fine capillary used for the impedance. One therefore has to put a filter in front of the capil-
lary and keep the main 4He clean.”

During an initial cooldown of a cryostat, if the liquid helium transfer is not carefully carried 
out (e.g., forgetting to purge the Dewar with helium gas prior to transferring liquid helium), 
any residual air inside the cryostat can enter, freeze and block the impedance during the pre-
cool process. But, if the system has been cooled very carefully with high-purity liquid helium, 
and, the correct flow through the impedance has been verified, there is only a substance capa-
ble to pass through the filter and to block the impedance. This is molecular hydrogen, as we 
demonstrate in the following section.

Other authors [4] recommended the impedance construction: “Problems with plugged capillar-
ies sometimes occurred when the impedance was increased using a fine wire, hence, longer capillaries 
without wires are favored. The filters, which were necessary to prevent plugging of the impedance by 
frozen air or other particulate matter, were disks of sintered copper felt compression fitted at both ends 
of the capillary.”.

As we see, the impedance geometry can affect the time necessary to produce the solid that 
blocks the impedance, but if the helium bath contains molecular hydrogen traces, sooner or 
later, the problem will occur.

3. Flow impedance blocking issue

3.1. Liquid helium purity

With a boiling point of 4.2 K at 100 KPa, liquid helium is the coldest fluid that exists in nature. 
Below its critical temperature (Tc = 5.2 K), any unwanted substance present in the liquid 
phase, that is, any impurity, will be in solid form, resulting in mist, snow, suspensions or 
particulates [6]. The vapor pressure of these solid impurities will be, in general, negligibly 
small (<<10−9 Pa), except for the case of the hydrogen isotopes and their molecular combina-
tions [7] for which this is of the order of 10−2 Pa and 10−5 Pa, at 5.2 and 4.2 K, respectively. The 
solid impurities are usually charged and can be easily eliminated by electrostatic precipita-
tion using Petryanov filters to obtain “optically clean” liquid, as demonstrated by Abrikosova 
and Shal’nikov [7]. But, even “optically clean” filtered liquid helium may contain a relevant 
quantity of non-solid hydrogen, that is, molecular hydrogen traces.
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The He-H2 gas mixture has attracted much interest in the scientific community because it is 
the simplest system for the study of intermolecular potentials [8–10]. The interaction poten-
tial of hydrogen and helium has been extensively studied by Silvera [11]. The Lennard-Jones 
wells for the weakly interacting He-He, He-H2 and H2-H2 pairs are 10.8, 13.34 and 34.3 K, 
respectively. According to this study, H2 molecules may have a bound state with He atoms, 
reside in liquid He surface states and penetrate the liquid helium. Thus, in addition to the 
possible presence of hydrogen molecules in the helium vapor, due to the non-negligible vapor 
pressure of solid hydrogen at 4.2 K, there may also exist a non-negligible amount of these 
hydrogen molecules “dissolved” in the liquid He phase.

In general, liquid helium in research laboratories is either delivered by a distributor of spe-
cialty gases or produced by liquefaction of both commercial grade and recovered gas. Liquid 
helium is subsequently stored and transferred to the application’s cryostat requiring cryo-
genic cooling at atmospheric pressure and temperatures around 4.2 K. Since the triple point 
of H2 is at 13.84 K and 7.04 kPa, the equilibrium vapor pressure of solid H2 at those tempera-
tures (≈ 4.2 K) is very small, of the order of ≈ 10−5 Pa. Therefore, if there is enough H2 in the He 
gas being liquefied to produce a partial pressure higher than the equilibrium vapor pressure 
at 4.2 K, the H2 molecules will directly nucleate into solid clusters. At atmospheric pressure 
(105 Pa), those solid clusters will be in equilibrium with a H2 molar fraction in the vapor phase 
of the order 10−10 (yH2 = (10−5 Pa/105 Pa) = 10−10).

Even though there are no experimental reports about solubility of H2 in liquid helium, theo-
retical calculations from classical solubility theory [12] indicate that the limiting solubility of 
solid hydrogen in liquid helium at 4.2 K would yield to molar fractions in the liquid phase,   x  

 H  
2
  
   ,  

of the order of ≈10−10, that is, the same order of magnitude than the H2 molar fraction in the 
vapor phase,   y  

 H  
2
  
   .

Furthermore, the solid hydrogen vapor pressure and the theoretical limiting solubility of 
solid hydrogen in liquid helium decrease exponentially with temperature, both becoming 
very small (≈10−9 Pa and ≈10−14, respectively) below 3 K. Thus, the maximum concentration of 
H2 molecules present in liquid helium will be determined by the exact temperature and pres-
sure conditions of the helium bath. For this chapter, the H2 molar fractions in the vapor,   y  

 H  
2
  
   , 

and in the liquid,   x  
 H  

2
  
   , below 3 K, both being of the order of ≈10−14, will be considered negligible. 

Furthermore, at temperatures near or below 1 K, hydrogen may be regarded as being totally 
insoluble in He [12].

Thus, unless H2 impurities are completely eliminated prior to He liquefaction, that is, its molar 
fraction is reduced from its typical values in the range   y  

 H  
2
  
    = 10−6–10−5 down to ≈ 10−14, the liquid 

He, as produced, will have traces of H2, up to a maximum concentration level determined by 
the temperature (e.g.,   x  

 H  
2
  
    ≈10−10 at 4.2 K). If the temperature of liquid helium is further reduced, 

as it is the case in small capillary impedances, for attaining very low temperatures, T < 3 K, the 
excess H2 will condense and accumulate at the impedance low-pressure side and, after some 
time, it will produce a total impedance blockage.

Many applications requiring liquid helium cooling are not sensitive to contaminants of 
any kind and consequently, do not require special provisions for helium cleanness and 
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The He-H2 gas mixture has attracted much interest in the scientific community because it is 
the simplest system for the study of intermolecular potentials [8–10]. The interaction poten-
tial of hydrogen and helium has been extensively studied by Silvera [11]. The Lennard-Jones 
wells for the weakly interacting He-He, He-H2 and H2-H2 pairs are 10.8, 13.34 and 34.3 K, 
respectively. According to this study, H2 molecules may have a bound state with He atoms, 
reside in liquid He surface states and penetrate the liquid helium. Thus, in addition to the 
possible presence of hydrogen molecules in the helium vapor, due to the non-negligible vapor 
pressure of solid hydrogen at 4.2 K, there may also exist a non-negligible amount of these 
hydrogen molecules “dissolved” in the liquid He phase.

In general, liquid helium in research laboratories is either delivered by a distributor of spe-
cialty gases or produced by liquefaction of both commercial grade and recovered gas. Liquid 
helium is subsequently stored and transferred to the application’s cryostat requiring cryo-
genic cooling at atmospheric pressure and temperatures around 4.2 K. Since the triple point 
of H2 is at 13.84 K and 7.04 kPa, the equilibrium vapor pressure of solid H2 at those tempera-
tures (≈ 4.2 K) is very small, of the order of ≈ 10−5 Pa. Therefore, if there is enough H2 in the He 
gas being liquefied to produce a partial pressure higher than the equilibrium vapor pressure 
at 4.2 K, the H2 molecules will directly nucleate into solid clusters. At atmospheric pressure 
(105 Pa), those solid clusters will be in equilibrium with a H2 molar fraction in the vapor phase 
of the order 10−10 (yH2 = (10−5 Pa/105 Pa) = 10−10).

Even though there are no experimental reports about solubility of H2 in liquid helium, theo-
retical calculations from classical solubility theory [12] indicate that the limiting solubility of 
solid hydrogen in liquid helium at 4.2 K would yield to molar fractions in the liquid phase,   x  
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2
  
   ,  

of the order of ≈10−10, that is, the same order of magnitude than the H2 molar fraction in the 
vapor phase,   y  

 H  
2
  
   .

Furthermore, the solid hydrogen vapor pressure and the theoretical limiting solubility of 
solid hydrogen in liquid helium decrease exponentially with temperature, both becoming 
very small (≈10−9 Pa and ≈10−14, respectively) below 3 K. Thus, the maximum concentration of 
H2 molecules present in liquid helium will be determined by the exact temperature and pres-
sure conditions of the helium bath. For this chapter, the H2 molar fractions in the vapor,   y  
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   , 

and in the liquid,   x  
 H  

2
  
   , below 3 K, both being of the order of ≈10−14, will be considered negligible. 

Furthermore, at temperatures near or below 1 K, hydrogen may be regarded as being totally 
insoluble in He [12].

Thus, unless H2 impurities are completely eliminated prior to He liquefaction, that is, its molar 
fraction is reduced from its typical values in the range   y  

 H  
2
  
    = 10−6–10−5 down to ≈ 10−14, the liquid 

He, as produced, will have traces of H2, up to a maximum concentration level determined by 
the temperature (e.g.,   x  

 H  
2
  
    ≈10−10 at 4.2 K). If the temperature of liquid helium is further reduced, 

as it is the case in small capillary impedances, for attaining very low temperatures, T < 3 K, the 
excess H2 will condense and accumulate at the impedance low-pressure side and, after some 
time, it will produce a total impedance blockage.

Many applications requiring liquid helium cooling are not sensitive to contaminants of 
any kind and consequently, do not require special provisions for helium cleanness and 
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precautions to avoid contamination during liquid helium refills. On the other hand, there 
are a considerable number of low-temperature applications that require achieving tem-
peratures below 4 K [5], which are very sensitive to impurities present in the liquid and, 
therefore, those applications need extreme pure liquid helium for proper operation [13].

3.2. The impedance blocking problem

The impedance-blocking problem arises when liquid helium, containing traces of H2, is trans-
ferred to a cryostat in which the liquid is pumped through a very small capillary or imped-
ance tube, to produce temperatures below 4.2 K using evaporation cooling.

To reduce any impedance blocking, a widespread and generally accepted “low-temperature 
best practice” is to stop any solid impurity at strategic locations along the helium supply chain 
with submicron metal-sintered filters. The first opportunity to stop solid impurities in a typi-
cal laboratory workflow is while transferring helium from a storage Dewar to the application 
cryostat for the first time, i.e. during initial cooldown. To this end, many laboratories incorpo-
rate a metal filter at the outlet “tip” of the helium transfer line so that the solid impurities are 
trapped in the line and not transferred into the application cryostat. Once the helium transfer 
is complete, the line is warmed up, the impurities are flushed away and the tip is ultrasonically 
cleaned. If any impurities should make it past the first filter, and, furthermore, to filter any 
other solid impurities already present in the application apparatus, a second “best practice” 
employed by cryostat designers is to incorporate a similar type of filter at the inlet of the imped-
ance tube at the cold end of the apparatus cryostat.

It is important to appreciate, however, that mechanical filtering of this type is limited in its effec-
tiveness and cannot selectively discriminate and separate H2 molecules from their helium car-
rier flow (a two-phase liquid and vapor helium flow), neither during liquid transfer nor during 
pumping. This is because despite the relatively high binding energies reported for hydrogen 
with the surface of some solids [14, 15], which involve potentials of the order of several hun-
dred K, the specific surface area per unit volume of the metal-sintered filters commonly used in 
this application is below 0.5 m2/g. This is about three-to-four orders of magnitude smaller than 
the area per unit volume exhibited by state-of-the-art solid H2 storage devices. Moreover, the 
porous size of media grade selected (0.5 microns) is also more than three orders of magnitude 
larger than the H2 molecular radius. Based on these considerations, the contribution of H2 phys-
ical sorption on the walls of the mechanical filter is estimated to be very small and, furthermore, 
limited by the very small vapor pressure of solid hydrogen at the temperature of liquid He.

Thus, in light of these considerations, we postulate that despite the adoption of these simple 
“best practices,” H2 molecules will inevitably first enter the application cryostat during helium 
refills and then, the impedance fine capillary tubes during continuous operation below 4.2 K. As 
a result, part of the H2 molecules, carried by the helium flow, will freeze (or precipitate) inside 
the capillary. This is a consequence of the reduction in temperature and total pressure of helium, 
which is accompanied by a sizable reduction in solid hydrogen vapor pressure and in the hydro-
gen limited solubility in liquid helium. So that, sooner or later, depending on the specific dimen-
sions and helium flow rate pumped through the capillary, a blockage will appear. When this 
occurs, the whole set up has to be warmed up, at least up to about 14 K (hydrogen melting point) 
but more often to room temperature, with a dramatic loss of time and liquid helium.
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Figure 2 illustrates molecular H2, present in the liquid helium bath, flowing through a sub-
micron-sized metallic-sintered filter (e.g., 500 nm as average pore size) placed to stop solid 
impurities entering the fine capillary impedance tube. When the temperature in the capil-
lary is reduced below 3 K by evaporation cooling, the H2 vapor pressure, as well as the 
limiting solubility of H2 in helium, becomes negligibly small (  x  

 H  
2
  
    <10−14). Therefore, all the 

H2 present in the liquid helium heterogeneously nucleates along the walls of the imped-
ance tube. A similar mechanism in a completely different working fluid and temperature 
range, for the freezing of water molecule impurities in nitrogen gas, has been proposed 
to explain blocking in micromachined Joule-Thomson coolers operating approximately at 
100 K [16, 17].

As an example, a typical two-phase He flow of only 1 sL/min, having   x  
 H  

2
  
    =0.35 ppb (3.5∙ 

10−10) of H2 molecules [i.e., corresponding to the vapor pressure of solid hydrogen in liq-
uid helium under typical laboratory conditions (4.2 K and 100 kPa)], pumped through a 
cylindrical tube impedance of 66-μm effective diameter [e.g., the low temperature imped-
ance of a Quantum Design, Physical Properties Measurement System (PPMS)] [18], may 
produce a solid hydrogen cylinder block of 66-μm diameter that, in about 24 h, will have 
132 μm of height. The exact time for the blocking to occur will depend on the exact solid 
hydrogen distribution in the impedance. Instead, several years would be necessary to pro-
duce the same effect when pumping helium with a lower concentration of H2 molecules 
similar to the vapor pressure of solid hydrogen at 3 K,   x  

 H  
2
  
    =0.0075 ppt (7.5∙10−15). This is 

the reason why we consider the vapor pressure of solid hydrogen at 3 K negligibly small 
regarding impedance blockage.

Figure 2. Schematic description of low-temperature impedance blockage by molecular H2 present in liquid He.
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larger than the H2 molecular radius. Based on these considerations, the contribution of H2 phys-
ical sorption on the walls of the mechanical filter is estimated to be very small and, furthermore, 
limited by the very small vapor pressure of solid hydrogen at the temperature of liquid He.
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refills and then, the impedance fine capillary tubes during continuous operation below 4.2 K. As 
a result, part of the H2 molecules, carried by the helium flow, will freeze (or precipitate) inside 
the capillary. This is a consequence of the reduction in temperature and total pressure of helium, 
which is accompanied by a sizable reduction in solid hydrogen vapor pressure and in the hydro-
gen limited solubility in liquid helium. So that, sooner or later, depending on the specific dimen-
sions and helium flow rate pumped through the capillary, a blockage will appear. When this 
occurs, the whole set up has to be warmed up, at least up to about 14 K (hydrogen melting point) 
but more often to room temperature, with a dramatic loss of time and liquid helium.
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micron-sized metallic-sintered filter (e.g., 500 nm as average pore size) placed to stop solid 
impurities entering the fine capillary impedance tube. When the temperature in the capil-
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limiting solubility of H2 in helium, becomes negligibly small (  x  
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ance tube. A similar mechanism in a completely different working fluid and temperature 
range, for the freezing of water molecule impurities in nitrogen gas, has been proposed 
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ance of a Quantum Design, Physical Properties Measurement System (PPMS)] [18], may 
produce a solid hydrogen cylinder block of 66-μm diameter that, in about 24 h, will have 
132 μm of height. The exact time for the blocking to occur will depend on the exact solid 
hydrogen distribution in the impedance. Instead, several years would be necessary to pro-
duce the same effect when pumping helium with a lower concentration of H2 molecules 
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3.3. Pumping two-phase liquid: vapor helium through a capillary impedance tube

When two-phase liquid–vapor He is pumped from a bath at 4.2 K and 100 kPa (105 Pa), 
through a capillary impedance tube, the He stream cools down through its P–T vapor–liquid 
equilibrium saturation line,   π  

 H  
2
  
   (T)  . Thus, if there is enough hydrogen to form solid clusters, the 

saturation molar fraction of molecular H2 in the vapor phase will be the starting concentra-
tion,     y  

 H  
2
  
   (T) |   

eq
   . This can be calculated from cryocondensation theory (see Section 5.1), in this case, 

the vapor pressure saturation line of hydrogen,   π  
 H  

2
  
   (T)  :

     y   H  2  
   (T) |   

eq
   =   

 π   H  2  
   (T) 
 _____  π  He   (T)   , T ≤ 4.2K  (2)

On the other hand, at the very low concentration levels under discussion, solid hydrogen may 
dissolve in the liquid [12]. In that case, the molar fraction of solid H2 dissolved in the liquid 
phase,   x  

 H  
2
  
   (T)  , may be estimated from classical solubility theory.

Figure 3 shows the saturation molar fraction of H2 in the vapor phase,     y  
 H  

2
  
   (T) |   

eq
   , calculated using 

expression [Eq. (2)] in the interval 3–4.2 K (solid line). Similarly, the molar fraction of H2 obtained 
from its theoretical limiting solubility in the liquid phase,     x  

 H  
2
  
   (T) |   

eq
   , obtained from expression (1) in 

the work of Jewel and McClintock [12] (dashed line), is also shown. Both are very similar.

Thus, a well-defined lower limit for H2 concentration as a function of temperature in helium 
vapor phase is obtained from the vapor pressure of solid hydrogen. Since solid hydrogen can 
be considered as a volatile solute (i.e., the solute vapor pressure is not negligible) for T > 3 K, 
there is a well-defined minimum solubility in the liquid phase for each temperature. This 
minimum solubility is also obtained from the vapor pressure. Furthermore, to know whether 
the actual value of the solubility of H2 in the liquid phase is higher than the minimum value is 
not relevant because this already justifies the experimentally observed blockage times. In fact, 
if it is higher, it will just reduce the blockage time of the impedance.

Figure 3. Low-temperature H2 saturation molar fraction in helium, obtained from the limiting solubility of H2 in He 
(dashed line,     x   H2     

   (T) |   
eq
    [12]), and, from the H2 equilibrium-saturation vapor pressure (solid line,     y   H2     

   (T) |   eq    [19]), as a 
function of T in the range 3–4.2 K, at πHe(T).
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Thus, when the pumped helium stream expands and cools down inside the capillary imped-
ance, from 4.2 to 3 K, the H2 molar fraction in the two-phase liquid–vapor helium flowing 
through the impedance decreases by four orders of magnitude (from ≈ 10−10 to ≈ 10−14), and, 
consequently, the excess H2 freezes or precipitates and blocks the capillary.

4. Sources of hydrogen in helium

Helium is a nonrenewable and scarce resource on Earth. It is formed by natural radioactive 
decay from some thorium and uranium minerals. Today, commercial helium is predomi-
nantly extracted from natural gas sources. Alternative sources of helium production have 
been investigated over the years such as the ability of extracting helium from non-hydrocarbon 
sources. In 2016, scientists from the United Kingdom reported the discovery of a large helium 
reserve, 54 BCN (1.53 × 1012 sL, i.e., 2.7 × 105 Tm) in Tanzania, trapped in ancient rocks and not 
intermixed with natural gas [20]. Additionally, the possibilities of helium extraction from the 
atmosphere [21] or from CO2 stream [22] are being studied. Despite these future opportuni-
ties, helium is still a nonrenewable resource that must be used responsibly by mankind. This 
implies recycling helium when it is possible.

The present commercial helium production is extracted from a few natural gas fields around 
the world (located in Canada, the USA, Algeria, Poland, Qatar, China, Russia, Australia and 
Indonesia). These sources have a considerable amount of helium-rich gas (around 1%) to 
make extraction economically feasible.

Let us consider the Linde Group helium extraction facility in Darwin, Australia [23]. In this 
facility, the raw feed gas flow is 20,730 Nm3/h with up to 3 mol% helium. The purification 
process of the feed gas consists of partial condensation of nitrogen in two stages, cryogenic 
adsorption and finally, catalytic oxidation of hydrogen followed by a dryer system.

After the purification, the refined helium is liquefied using a Bryton process and stored for 
further distribution. The raw gas has 0.1 mol% of hydrogen (1000 ppm), and the final pro-
cessed 99.999% helium has up to 1 ppm.

Therefore, molecular H2 is naturally present in helium gas as obtained from natural gas sources 
[24], and, in general, different methods are used to eliminate it, prior to large-scale helium liq-
uefaction, for worldwide distribution [23, 25]. However, despite the effort to eliminate it com-
pletely, very precise analytical methods indicate that even ultra-high pure commercial grade 
He gas, 99.9999% pure, thus, containing less than 1000 ppb in volume of total impurities, may 
contain up to 500 ppb in volume of H2 (i.e., a hydrogen molar fraction   y  

 H  
2
  
    = 5 ∙ 10−7 in He gas) 

[21, 26–28].

If the purified helium gas has a molar fraction of   y  
 H  

2
  
    =500 ppb (5 ∙ 10−7), after the liquefaction 

of this gas, the liquid helium will contain solid hydrogen in equilibrium with a molar fraction 
of H2 molecules given by   x  

 H  
2
  
    =0.35 ppb (3.5 ∙ 10−10) (i.e., corresponding to the vapor pressure of 

solid hydrogen in liquid helium under typical laboratory conditions [4.2 K and 100 kPa)], and, 
as we have seen in the previous section, this small amount of hydrogen may produce block-
ages in thin impedances in only a few hours.
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3.3. Pumping two-phase liquid: vapor helium through a capillary impedance tube
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Thus, a well-defined lower limit for H2 concentration as a function of temperature in helium 
vapor phase is obtained from the vapor pressure of solid hydrogen. Since solid hydrogen can 
be considered as a volatile solute (i.e., the solute vapor pressure is not negligible) for T > 3 K, 
there is a well-defined minimum solubility in the liquid phase for each temperature. This 
minimum solubility is also obtained from the vapor pressure. Furthermore, to know whether 
the actual value of the solubility of H2 in the liquid phase is higher than the minimum value is 
not relevant because this already justifies the experimentally observed blockage times. In fact, 
if it is higher, it will just reduce the blockage time of the impedance.

Figure 3. Low-temperature H2 saturation molar fraction in helium, obtained from the limiting solubility of H2 in He 
(dashed line,     x   H2     
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    [12]), and, from the H2 equilibrium-saturation vapor pressure (solid line,     y   H2     

   (T) |   eq    [19]), as a 
function of T in the range 3–4.2 K, at πHe(T).
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Thus, when the pumped helium stream expands and cools down inside the capillary imped-
ance, from 4.2 to 3 K, the H2 molar fraction in the two-phase liquid–vapor helium flowing 
through the impedance decreases by four orders of magnitude (from ≈ 10−10 to ≈ 10−14), and, 
consequently, the excess H2 freezes or precipitates and blocks the capillary.

4. Sources of hydrogen in helium

Helium is a nonrenewable and scarce resource on Earth. It is formed by natural radioactive 
decay from some thorium and uranium minerals. Today, commercial helium is predomi-
nantly extracted from natural gas sources. Alternative sources of helium production have 
been investigated over the years such as the ability of extracting helium from non-hydrocarbon 
sources. In 2016, scientists from the United Kingdom reported the discovery of a large helium 
reserve, 54 BCN (1.53 × 1012 sL, i.e., 2.7 × 105 Tm) in Tanzania, trapped in ancient rocks and not 
intermixed with natural gas [20]. Additionally, the possibilities of helium extraction from the 
atmosphere [21] or from CO2 stream [22] are being studied. Despite these future opportuni-
ties, helium is still a nonrenewable resource that must be used responsibly by mankind. This 
implies recycling helium when it is possible.

The present commercial helium production is extracted from a few natural gas fields around 
the world (located in Canada, the USA, Algeria, Poland, Qatar, China, Russia, Australia and 
Indonesia). These sources have a considerable amount of helium-rich gas (around 1%) to 
make extraction economically feasible.

Let us consider the Linde Group helium extraction facility in Darwin, Australia [23]. In this 
facility, the raw feed gas flow is 20,730 Nm3/h with up to 3 mol% helium. The purification 
process of the feed gas consists of partial condensation of nitrogen in two stages, cryogenic 
adsorption and finally, catalytic oxidation of hydrogen followed by a dryer system.

After the purification, the refined helium is liquefied using a Bryton process and stored for 
further distribution. The raw gas has 0.1 mol% of hydrogen (1000 ppm), and the final pro-
cessed 99.999% helium has up to 1 ppm.

Therefore, molecular H2 is naturally present in helium gas as obtained from natural gas sources 
[24], and, in general, different methods are used to eliminate it, prior to large-scale helium liq-
uefaction, for worldwide distribution [23, 25]. However, despite the effort to eliminate it com-
pletely, very precise analytical methods indicate that even ultra-high pure commercial grade 
He gas, 99.9999% pure, thus, containing less than 1000 ppb in volume of total impurities, may 
contain up to 500 ppb in volume of H2 (i.e., a hydrogen molar fraction   y  

 H  
2
  
    = 5 ∙ 10−7 in He gas) 

[21, 26–28].

If the purified helium gas has a molar fraction of   y  
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    =500 ppb (5 ∙ 10−7), after the liquefaction 

of this gas, the liquid helium will contain solid hydrogen in equilibrium with a molar fraction 
of H2 molecules given by   x  
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    =0.35 ppb (3.5 ∙ 10−10) (i.e., corresponding to the vapor pressure of 

solid hydrogen in liquid helium under typical laboratory conditions [4.2 K and 100 kPa)], and, 
as we have seen in the previous section, this small amount of hydrogen may produce block-
ages in thin impedances in only a few hours.
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Apart from natural gas sources, there are other possibilities to introduce small amounts of 
hydrogen in the helium recovery system. These include oil degradation in high-pressure com-
pressors or pumps, outgassing of metallic pipes or diffusion of naturally present atmospheric 
H2 [29] through plastic pipes and gas bags [30]. Thus, the presence of traces of H2 in laboratory 
Helium Recovery Plants: Large Scale (LS-HRP) or Small Scale (SS-HRP), up to the ppm range 
(  y  

 H  
2
  
    =10−6), seems to be unavoidable.

5. Clean helium recovery plant

Up to this point, we have described the impedance blocking problem, and we have shown 
how a small amount of H2 (  y  

 H  
2
      <10−10) is enough to produce the blocking of fine capillary tubes 

used to achieve temperatures below 4.2 K in helium-pumped cryostats. We have seen that 
hydrogen is naturally present in raw helium sources. Therefore, the production of hydrogen-
free “Clean” helium is necessary to reliably operate cryostats with small impedances for long 
periods without interruptions. In the following paragraphs, we present a helium recovery 
plant capable of producing “Clean” helium.

We propose a helium purification and liquefaction system layout using small-scale helium 
liquefiers based on closed-cycle refrigerators (cryocoolers). The commercial Advanced tech-
nology liquefiers (ATLs) [31, 32] have a liquefaction rate of 30 L/Day with a performance of 
0.16 (L/h)/kW, close to the performance of industrial size Collins liquefiers (0.5–1.2 (L/h)/kW) 
[33]. This technology adapts the liquefaction rate to the consumption, it is modular and scal-
able and it covers needs of consumption from a few liters per day up to liquefaction rates of 
the Collins industrial technology >240 L/Day.

The purification stage of the “Clean helium” recovery plant proposed is based on a combina-
tion of two purification techniques:

• the cryocondensation, performed with an advanced technology purifier (ATP) [34], for the 
elimination of all the impurities present in the recovered helium, except hydrogen and

• the chemisorption of hydrogen by a non-evaporable getter alloy.

5.1. Cryocondensation by advanced technology purifier

Purification by cryocondensation [35] is a method to separate undesired components (impu-
rities) from a given mixture, by freezing them. The effectiveness of this method depends on 
the working temperature of the purifier; it must be low enough to ensure that the vapor pres-
sure of the impurities is negligible. The cryocondensation method can provide high levels 
of purification at low temperatures, even at high-input gas flows and without the need of 
consumable items.

For this first stage, we use the advanced technology purifiers (ATPs) [34]. These purifiers 
are equipped with a 10 K class cryocooler (Sumitomo CH-208R) as the refrigerator element. 
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The gas input flows into the Dewar neck at room temperature, and it is cooled in direct con-
tact with the cold head and the output heat exchanger while it descends through the neck 
down to the Dewar bottom.

When the gas reaches the condensation temperature for the component “j” (see Figure 4), at 
some point, near the cold head first stage, the component “j” will start to solidify by impinge-
ment on the metallic cold surfaces of the cold head cylinder and heat exchanger walls. Below 
the cold head, the gas temperature decreases further, and the molar fraction in the vapor 
phase of the component “j” will decrease rapidly with T, as πj (T):

   y  j   (T)  =   
 π  j   (T) 

 ____  p  T    , T ≤  T  j    (3)

When a region of temperature of ≈15 K is reached, the helium can be considered pure from 
all impurities except for hydrogen and neon. At this point, the gas passes through a mechani-
cal filter with a passage in the micron range, which will avoid the possible dragging of solid 
particle impurities toward the output.

After the filter, to be energy efficient, the clean and cold helium is forced to exchange the 
enthalpy from 15 to 300 K with the warm and dirty helium that enters the purifier. To do that, 
the helium output path consists of a heat exchanger in the form of a thin-walled stainless-steel 
tube coiled with the form of a solenoid around the cold head.

Thanks to the heat exchange, the cold outgoing gas cools the warm incoming gas, and there-
fore, the required power of the cold head is minimized. So, the system can manage high flows. 
In addition, the coldhead excess power during purification will counteract the growing inef-
ficiencies caused by the solid impurities’ coating around the cold surfaces.

Figure 4. Partial pressures πj(T) and molar fractions   yj  
 

   (T)   of H2, Ne, N2 and O2 in a gas mixture at 240 kPa [19]. The arrow 
lines indicate examples of impurities cooldown paths [e.g., initial impurities concentration in the mixture: H2 (1 ppm), 
Ne (0.1 ppm), O2 (100 ppm) and (N2 1000 ppm)]. Starting from the high temperature side, the molar fraction of each 
impurity is constant until its vapor pressure line is reached, after which it decreases exponentially. Black dashed lines 
indicate the working point of the purifier filter, at 240 kPa and 15 K.
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This system can purify gas flows up to 30 sL/min with 10,000 ppm of impurities. The output 
flow quality is about six orders of magnitude better for the main contaminants (i.e., air in the 
case of recovered helium).

The purifier can operate without interruptions during, at least, 1 month, and can purify more 
than 1 million sL of recovered helium (with a typical average impurity volume concentration 
of 300 ppms in total). The regeneration procedure is totally automated and it takes 7 h. Thus, 
the operational down-time ratio is only 1.25%.

Once the main contaminants have been removed, the second purification stage needs only 
to eliminate the remaining hydrogen via chemisorption by the non-evaporable getter (NEG) 
material.

5.2. Chemisorption by non-evaporable getter materials

Getters are solid materials, usually metallic alloys, which can chemisorb gas molecules in 
its surface; they can be considered as chemical pumps. They are widely used for a variety of 
applications such as vacuum systems, electronic devices, sensors and MEMS, energy devices, 
gas purification, and so on. [36]

For a proper absorption of gas molecules, the surface of the getter material must be clean. The 
surface cleaning process, also called getter activation, is done in two different ways, depend-
ing on the type of getter:

• For evaporable getters, the active surface is obtained by sublimation under vacuum of a 
fresh metallic film.

• For non-evaporable getters (NEGs), the active surface is produced by thermal diffusion of 
the surface contaminants into the bulk of the NEG material itself. After air exposure, the 
main contaminant is oxygen present in the passivating oxide layer.

For gas purification systems, NEGs are generally used, and from now on, we focus on them.

NEGs are typically based on zirconium alloys. Examples of these alloys are Zr(84%)-Al(16%) 
and Zr(70%)-V(24.6%)-Fe(5,4%). Zirconium-based systems are very reactive for a wide vari-
ety of gas molecules such as H2, H2O, O2, N2, CO, CO2, and so on.

For active gases such as N2, O2, CO, CO2, and so on, the reactions proceed by dissociative 
chemisorption followed by a reaction to form oxides, carbides or nitrides [37]. If the concen-
tration of these gases is high, the getter surface is quickly passivated. To maintain active state 
of the getter surface, the material can be maintained at high temperature (e.g., 400°C), thus 
avoiding the formation of a passivation layer. In this way, the surface contaminants diffuse 
into the bulk of the NEG material.

Hydrogen sorption is governed by a different reaction. Hydrogen easily diffuses into a get-
ter because it dissociates on the getter surface into atomic hydrogen. The hydrogen atoms 
easily slip into the atomic lattice of the metal grains [37]. As Rameshan explains, hydrogen 
in the interior of a NEG forms a solid solution that exhibits an equilibrium pressure, which 
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depends on the concentration of the hydrogen and the temperature of the material. Sieverts’ 
law describes this relationship:

  log P = A + 2 log Q − B / T  (4)

where P is the H2 equilibrium pressure in torr, Q is the H2 concentration in the NEG alloy 
in torr∙L/g, T is the temperature of the getter in K and A and B are constants for different 
NEG alloys (e.g., A = 4.8, B = 6116 for Zr(70%)-V(24.6%)-Fe(5,4%), commercialized under 
the name St707 [38]). When the hydrogen concentration exceeds 20 torr∙L/g, a phenomenon 
called “hydrogen embrittlement” occurs due to the change of the lattice parameters [37]. With 
enough time under these conditions, the getter alloy becomes a fine powder that can cause 
problems in the getter application.

An NEG material working at ambient temperature is an ideal candidate for the elimination 
of the remaining molecular hydrogen in helium that has been purified by cryosorption in the 
ATP. Figure 5 shows that the hydrogen concentration in helium after passing through the 
getter will be better than grade  14 (  y  

 H  
2
  
    <<10−14), that is, several orders of magnitude lower than 

at 400°C. Even more, the hydrogen capacity of the getter is higher, and the sorption speed is 
still reasonably high [38].

5.3. Clean helium recovery plant configuration

Our “Clean helium” (extreme pure helium free of molecular H2) low-pressure (P < Pc) SS-HRP 
concept is depicted in Figure 6. The plant is initially fed with commercial grade 5 (99.999% 
pure) helium gas that may contain up to a H2 molar fraction of 10−6 [25]. The gas is further 
purified by cryocondensation by one or more cryo-refrigerator-based purifiers (ATPs), each 
with a total effective volume to store solid impurities of several liters and a maximum purifi-
cation flow rate of around 30 sL/min at 20 K.

Figure 5. Hydrogen molar fraction,   y  
 H  

2
  
   , calculated from equilibrium isotherms of the St 707 getter alloy obtained from 

Sievert’s law.   y   H  2  
    increases accordingly when the material captures hydrogen molecules until it reaches the embrittlement 

area.
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The purification temperature in the coldest zone of the ATP Dewar will be in the range 
between 10 and 30 K, and this does not guarantee a negligible vapor pressure of solid H2 nor a 
negligible solubility in liquid He. Thus, the purified gas will contain H2 molecules that need to 
be eliminated before liquefaction. A solution tested in our plant consists of the chemisorption 
of the remaining H2 molecules in the ATP output gas by a getter material at room temperature 
(Figure 6). The non-evaporable getter (NEG) materials used in this study are:

• thermally activated media-based [Zr(70%)-V(24.6%)-Fe(5.4%)] St707 [38] and

• Ni(31%)-NiO(32%)-SiO2(24%)-MgO(13%)-based oxides working at room temperature.

This solution is extremely efficient since there are no helium losses at all. On the other hand, 
in this configuration, the St707 getter only traps hydrogen, and it does in a reversible way. 
Therefore, once it is near saturation, typically, every two years, it can be regenerated by heat-
ing it up to a specific H2 desorption temperature (typically >500°C).

The H2-free He from the double purification stage (cryocondensation + chemisorption) is then 
fed a parallel network of advanced technology liquefiers (ATLs) [31] that produce H2-free 
ultra-pure liquid helium (named by us as “Clean Helium”). The instruments are always filled 
with ATL “Clean Liquid Helium.” Obviously, commercial liquid helium should never be 
transferred to hydrogen-sensitive instruments because the absence of H2 is not guaranteed. In 
this small-scale HP-HRP, helium boil-off from the cryogenic instruments is collected in a gas 

Figure 6. Schematic configuration of a small-scale “Clean Helium” recovery plant (free of hydrogen). Gas bag, 
compressor and recovery helium bottles are not completely free of H2 (orange). The commercial He bottles are the main 
source of contamination (red). The bypass is closed when the ATP operation temperature is T > 3 K.
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bag and compressed in the recovery bottles at 2 × 104 kPa (200 bar). A H2O dryer, plumbed in 
the series after the compressor, not shown in the scheme of Figure 6, should always be used.

When a pressure drop develops between the input and the output of one of the ATPs, due to 
the accumulation of solid impurities (H2, N2, O2), an ATP regeneration process is automati-
cally initiated. The input and the output gas ports of the given ATP are closed, so that this 
ATP is now isolated and the entire ATP Dewar volume is heated up to around 130 K so that 
all the low-vapor pressure impurities, collected in solid form, for example, H2, N2 and O2, 
are sublimated and released to the atmosphere through a vent valve. Before restarting a new 
purification cycle, the ATP cools down again to the temperature of normal operation at 10 K.

Nevertheless, as we have seen in Section 5.2, some getter materials are capable of eliminating 
other impurities besides hydrogen; the chemical reactions are competitive. Therefore, if the 
input gas contains other impurities (e.g., some ppms of O2, N2, H2O, etc.), the getter duration 
until the saturation is reduced significantly.

In the first version of the “Clean Helium” plant, we used a getter placed after the commercial 
pure helium (99.999%, less than yj < 10−5 in total) bottles (Figure 7). With this configuration, we 
were able to produce hydrogen-free liquid helium in 3 months. From that moment, imped-
ance blockages start to appear due to the saturation of the NEG produced by the presence of 
different impurities (N2, O2, CO, CO2, etc).

The purified helium at the ATP output, with a working temperature < 20 K, has a negligible 
concentration of molecular content (  y  

j
    < 10−14) of all impurity constituents (i.e., N2, O2, H2O, 

Figure 7. Schematic configuration of a first-generation small-scale helium recovery plant . The commercial He bottles are 
the main source of H2 contamination (red), and it is purified with a heated getter before helium enters in the recovery plant.
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The purification temperature in the coldest zone of the ATP Dewar will be in the range 
between 10 and 30 K, and this does not guarantee a negligible vapor pressure of solid H2 nor a 
negligible solubility in liquid He. Thus, the purified gas will contain H2 molecules that need to 
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bag and compressed in the recovery bottles at 2 × 104 kPa (200 bar). A H2O dryer, plumbed in 
the series after the compressor, not shown in the scheme of Figure 6, should always be used.

When a pressure drop develops between the input and the output of one of the ATPs, due to 
the accumulation of solid impurities (H2, N2, O2), an ATP regeneration process is automati-
cally initiated. The input and the output gas ports of the given ATP are closed, so that this 
ATP is now isolated and the entire ATP Dewar volume is heated up to around 130 K so that 
all the low-vapor pressure impurities, collected in solid form, for example, H2, N2 and O2, 
are sublimated and released to the atmosphere through a vent valve. Before restarting a new 
purification cycle, the ATP cools down again to the temperature of normal operation at 10 K.

Nevertheless, as we have seen in Section 5.2, some getter materials are capable of eliminating 
other impurities besides hydrogen; the chemical reactions are competitive. Therefore, if the 
input gas contains other impurities (e.g., some ppms of O2, N2, H2O, etc.), the getter duration 
until the saturation is reduced significantly.

In the first version of the “Clean Helium” plant, we used a getter placed after the commercial 
pure helium (99.999%, less than yj < 10−5 in total) bottles (Figure 7). With this configuration, we 
were able to produce hydrogen-free liquid helium in 3 months. From that moment, imped-
ance blockages start to appear due to the saturation of the NEG produced by the presence of 
different impurities (N2, O2, CO, CO2, etc).

The purified helium at the ATP output, with a working temperature < 20 K, has a negligible 
concentration of molecular content (  y  
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    < 10−14) of all impurity constituents (i.e., N2, O2, H2O, 

Figure 7. Schematic configuration of a first-generation small-scale helium recovery plant . The commercial He bottles are 
the main source of H2 contamination (red), and it is purified with a heated getter before helium enters in the recovery plant.
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CO2, etc.) except for the neon and hydrogen case (see Figure 4). The neon is not a problematic 
substance for the impedance clogging issue, since at liquid helium temperature (4.2 K at Patm), 
the vapor pressure is negligible; besides, if there exists a molecular concentration at higher 
temperatures, it is not affected by the getter material because it is a noble gas like helium. 
Therefore, the best place to put the hydrogen grabber is at the ATP output (Figure 6), when 
the helium is extremely pure. In fact   y  

j
    < 10−14 for all the substances except for the H2; thus, the 

unique function of the getter is to capture H2. In this way, the process is optimized and the life 
of the getter material extends.

The “Clean helium” gas produced by the Clean Helium Recovery Plant (Figure 6) is ultimately 
liquefied in a commercial ATL and transferred directly or by intermediate transport Dewars 
into the application instruments. The evaporated gas from non-H2 sensitive instruments, that 
could be initially filled with commercial non-“Clean” liquid (e.g., NMRs, MEGs, high field 
magnet cryostats, etc.), and can have a hydrogen quantity equal or below that corresponding 
to the vapor pressure of the hydrogen at 4.2 K and 100 kPa (i.e.,   y  

 H  
2
  
    = 3.5 ∙ 10−10), is also collected 

in the gas bag, compressed and injected again in the ATPs for purification and complete elimi-
nation of the H2 impurities.

The validity of the “Clean helium” plant concept is demonstrated by the fact that impedance 
blockages have been completely eliminated for more than 3 years, when the plant configura-
tion was implemented in the Cryogenic Liquids Service at the University of Zaragoza [39]. 
Furthermore, the efficiency of the double purification method presented in this chapter was ver-
ified by extra-sensitive H2 detection techniques presented in [2], for both gas and liquid phases.

6. Conclusions

We have proposed a plausible mechanism for explaining the capillary blocking issue that 
occurs in many laboratories using helium evaporation cryostats. The unavoidable presence of 
traces of molecular hydrogen is at the heart of the problem. Molecular hydrogen condenses 
in the low-pressure side of the fine capillary tubes when helium is pumped to obtain tem-
peratures below 4.2 K. Finally, we have found a solution to produce hydrogen-free liquid 
helium in two steps: (1) cryocondensation of the air components and (2) chemical adsorption 
of hydrogen molecular traces that are not solidified in step (1). We have already demonstrated 
the validity of this solution for more than 3 years.
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Abstract

Intermediate state in type-I superconductors is one of the oldest challenges of supercon-
ductivity put forward by Gorter and Casimir, Pearls, F. London, and Landau back in the
1930s. In this chapter, we review the main properties of this state and principal theoretical
approaches to interpret them. Recent experimental and theoretical achievements in this
field are discussed in more details.

Keywords: type-I superconductors, intermediate state, thermodynamic properties,
magnetization

1. Introduction

Intermediate state (IS) is defined as a thermodynamically equilibrium state in which a type-I
superconductor is split for domains of superconducting (S) and normal (N) phases [1–3]. For
completeness of description, we begin with a brief overview of properties of the Meissner state,
which will be necessary for discussion of the IS properties.

1.1. Meissner state in cylindrical specimens

Consider a specimen of a type-I superconductor at temperature T < Tc in a free space (vac-
uum) subjected to a uniform magnetic field H < Hcr Tð Þ, where Tc is critical temperature at
zero field and Hcr Tð Þ is critical field of the S/N transition at given T. (We use notation Hcr

instead of commonly used Hc because the latter is reserved for thermodynamic critical field,
which can be different from Hcr). Assume that the specimen is a long cylinder with a circular
base of radius R≫λ (λ is the penetration depth) and H is parallel to the cylinder as shown in
Figure 1a. A demagnetizing factor η [2, 4] of such a specimen is zero, which means that outside
it B ¼ Hi ¼ H (we use CGS units) all the way down to the sample surface.
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Here B is magnetic induction or magnetic flux density [5] or merely B-field [6]. B is an average
microscopic magnetic field available for measurements [2]. Hi is magnetic field strength, also
referred as magnetic and magnetizing force [4], Maxwell field [7], thermodynamic field [8],
magnetic field [5], H-field [6], and others. And H is applied field set by a magnet power supply
(for simplicity we will ignore a small contribution of Earth magnetism); it is the field away
from the specimen or the field which would be in a space occupied by the specimen if the latter
is absent. Away from the specimen, Hi is identical to H, but it can be not so near and inside the
specimen. Everywhere outside the specimen, B ¼ Hi because magnetic permeability of the free
space, as well as permeability of the N phase in superconductors, μ � B=Hi is unity by
definition.

Our cylindrical specimen is in the Meissner state, implying that inside it B ¼ 0 and Hi ¼ H due
to continuity of the tangential component of this field [9]. A jump of induction at the specimen
surface ΔB ¼ H means that there is a surface current I, in which linear density g � I=l ¼
ΔBc=4π ¼ cH=4π, where l is length of the specimen and c is speed of light. This surface current
is regarded as a screening current protecting the specimen interior from the external field.
Taking into account direction of g (¼ n�Hc=4π, where n is the unit vector normal to the
surface and directed outward), we arrive at a well-familiar formula for the specimen magnetic
moment M:

M ¼ �gl
A
c
¼ cH

4π
l

� �
A
c
¼ � H

4π
V, (1)

where A and V are the base area and volume of the specimen, respectively.

The same result follows from definition of the field strength:

Figure 1. Cross-sectional view of specimens (shown in gray) with demagnetizing factor η ¼ 0 (a), η ¼ 1=2 (b), and η ¼ 1
(c) in a weak magnetic field H. In (a) and (b) the specimen (a cylinder) is in the Meissner state; in (c) the specimen (an
infinite slab) is in the intermediate state starting from any H exceeding zero.
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Hi � B� 4πm, (2)

where m is magnetization, which in superconductors is a macroscopic average of the magnetic
moment per unit volume m ¼ M=V and, as it was mentioned above, Hi ¼ H due to geometry
of our specimen.

Thermodynamics of our and any other singly connected superconductor can be described

using total free energy ~FM T;V;Hð Þ, which differential d~FM T;V;Hð Þ is [2].

d~FM ¼ �SVdT �M � dH, (3)

where S is entropy per unit volume and a small variation of V due to changing magnetic field
is neglected.

Integrating Eq. (3) at constant temperature, we arrive at another well-known and very impor-
tant formula for the total free energy of the singly connected superconductors in magnetic field
[1, 2]:

~FM
� �

sH ¼ ~FM
� �

s0 �
ðH
0
M � dH ¼ ~FM
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H2
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8π
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0
M � dH, (4)

where ~FM
� �

s0 is the total free energy of the S state in zero field, ~FM
� �

n is the total free energy of

the N state, and H2
c=8π

� �
V is the condensation energy, where Hc is thermodynamic critical

field. Note that, since M in the N state is zero (because μ of the N phase is unity), the total free

energy for this state does not depend on the field. This means that ~FM
� �

n ¼ Fn0 and
~FM
� �

s0 ¼ Fs0, where Fn0 and Fs0 are Helmholtz free energies F T;V;Bð Þ in the normal and
superconducting states at zero field, respectively.

Importance of Eq. (4) is associated, firstly, with the fact that neither ~FM
� �

n nor the condensation

energy H2
c=8π

� �
V depends on the specimen shape, and therefore Eq. (4) is valid for singly

connected specimens of any shape. Secondly, Eq. (4) explicitly shows that the extra total free
energy (above the free energy of the ground state ~FM

� �
s0) is the specimen magnetic energy

EM ¼ � ÐH0 M � dH, representing energy of interaction of the external field H with the specimen
magnetic moment M induced by this field. More specifically, EM is kinetic energy of electrons
(Cooper pares) carrying the induced currents [1]. And thirdly, Eq. (4) shows that the source of
EM is condensation energy. Finiteness of the later makes transition to the N state a mandatory
property of any superconductor [2]. At the S/N transition, the magnetic energy of any speci-
men equals to its condensation energy, or area under M Hð Þ curve plotted as 4πM=VHc vs.
H=Hc, when M is aligned to H, is 1/2.

This as-called rule of 1/2 (or in general case Eq. (4)), represents the energy balance or the first
law of thermodynamics for singly connected superconductors at constant temperature; com-
pliance with this rule/equation is a necessary condition for discussion of equilibrium proper-
ties of superconductors [1].
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Figure 1. Cross-sectional view of specimens (shown in gray) with demagnetizing factor η ¼ 0 (a), η ¼ 1=2 (b), and η ¼ 1
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Hi � B� 4πm, (2)
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Using Eq. (1) for M of our cylindrical sample, we rewrite Eq. (4) as

~FM Hð Þ ¼ Fn �H2
c

8π
V þH2

8π
V: (5)

Now a question arises; up to what fields Eq. (1) is valid? Vast majority of superconductors are
of type II, for which Eq. (1) holds up to a low critical field Hc1 < Hcr and Hcr ¼ Hc2, which is an
upper critical field. However there is a relatively small group of mostly pure elementary
materials, for which Eq. (1) (or the Meissner condition B ¼ 0) holds in the entire field range of
the superconducting state, i.e., up to Hcr. Those are type-I superconductors. An example of
M Hð Þ dependences for a typical type-I superconductor with η ¼ 0 is shown in Figure 2.

S/N transition takes place when free energies of the S and N states are equal, i.e., ~FM Hcrð Þ ¼
~FM
� �

n. For our type-I cylindrical sample, as seen from Eq. (5), this implies that Hcr ¼ Hc and
therefore the S/N transition in specimens with η ¼ 0 must be discontinuous, i.e., thermody-
namic phase transition of the first order, in full agreement with experimental results, e.g., with
those shown in Figure 2.

1.2. Intermediate state

Now, we turn our cylinder perpendicular to the applied field. In a weak field, the specimen is
in the Meissner state (inside it B ¼ 0), but the pattern of field lines looks now as shown in
Figure 1b. The external field near the specimen is tangential to its surface, which follows from
always valid conditions of continuity of the normal component of B and of tangential component

Figure 2. Experimental data for magnetic moment of a pure indium film 2.79 μm thick measured in parallel applied field
H at indicated temperatures. Errors up and down indicate that the measurements were conducted at increasing and
decreasing field, respectively.
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of Hi [2, 4]. Indeed, our cylindrical specimen in perpendicular field in the Meissner state
represents a uniformly magnetized (B ¼ const ¼ 0) prolate ellipsoid with η = 1/2 [2, 4]. Inside
of any uniform ellipsoid, Hi is also uniform, and when H is parallel to an axis of ellipsoid with
respect to which the demagnetizing factor is η, the fields Hi, B, and H are connected with each
other as.1

1� ηð ÞHi þ ηB ¼ H: (6)

Hence, the field Hi inside our specimen in the Meissner state is H= 1� ηð Þ, and therefore Hi on
the external side of the specimen surface (the external field) is

Hi ¼ Hsinθ= 1� ηð Þ, (7)

where θ is the angle between the normal and the applied field H.

Therefore near the “poles” of our specimen the field is zero, whereas near “equator” it is twice
as big as the applied field. This implies that the external field near “equator” reaches the
critical value Hc at H ¼ Hc 1� ηð Þ ¼ Hc=2. When H is increased beyond this value, the field
must enter the specimen destroying superconductivity. However, contrarily to the previous
(parallel) case, superconductivity cannot be destroyed completely because there is still plenty
of condensation energy left in the specimen.

Indeed, the specimen magnetic moment M � B�Hið ÞV=4π ¼ �HV=4π 1� ηð Þ ¼ �HV=2π;
therefore magnetic energy EM at H ¼ Hc=2 is

EM ¼ �
ð0:5Hc

0
M � dH ¼ VH2

c

16π
<

VH2
c

8π
: (8)

Hence, as seen from Eq. (4), ~FM < ~FM
� �

n, and therefore the specimen must remain
superconducting.

At the first sight, one might expect that at H > Hc 1� ηð Þ, the field will gradually enter the
specimen, thus destroying superconductivity over the field range from Hc 1� ηð Þ to Hc. The
superconducting cylinder in such case would stay resistanceless with gradually changing
volume of the S core as shown in Figure 3. However, this scenario is problematic because as
soon as the field enters the specimen, the density of the field lines near the “equator” decreases
and hence the field inside the convex blue region in Figure 3 becomes smaller than Hc. Then
this region should go back to the S state.2 This means that when H > Hc 1� ηð Þ, the ellipsoidal
specimen splits into S and N regions, as it was suggested for the first time by Gorter and
Casimir [10].

1
Derivation of Eq. (6) can be found in [2]; Maxwell using it in [4] refers to Poisson.

2
Historically impossibility of configuration like that shown in Figure 3 was explained basing on a paradigm of instability
of the N phase against transforming to the S phase at Hi < Hc (see, e.g. [8]). However, this (the N phase at Hi < H) does
take place in specimens in the IS, but only at Hi in the upper part of the IS field range. At the lower edge of this range (at
H ¼ 1� ηð ÞHc) B in the first N domain and therefore Hi throughout the specimen is always Hc.
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of Hi [2, 4]. Indeed, our cylindrical specimen in perpendicular field in the Meissner state
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respect to which the demagnetizing factor is η, the fields Hi, B, and H are connected with each
other as.1

1� ηð ÞHi þ ηB ¼ H: (6)

Hence, the field Hi inside our specimen in the Meissner state is H= 1� ηð Þ, and therefore Hi on
the external side of the specimen surface (the external field) is

Hi ¼ Hsinθ= 1� ηð Þ, (7)

where θ is the angle between the normal and the applied field H.

Therefore near the “poles” of our specimen the field is zero, whereas near “equator” it is twice
as big as the applied field. This implies that the external field near “equator” reaches the
critical value Hc at H ¼ Hc 1� ηð Þ ¼ Hc=2. When H is increased beyond this value, the field
must enter the specimen destroying superconductivity. However, contrarily to the previous
(parallel) case, superconductivity cannot be destroyed completely because there is still plenty
of condensation energy left in the specimen.

Indeed, the specimen magnetic moment M � B�Hið ÞV=4π ¼ �HV=4π 1� ηð Þ ¼ �HV=2π;
therefore magnetic energy EM at H ¼ Hc=2 is

EM ¼ �
ð0:5Hc

0
M � dH ¼ VH2

c

16π
<

VH2
c

8π
: (8)

Hence, as seen from Eq. (4), ~FM < ~FM
� �

n, and therefore the specimen must remain
superconducting.

At the first sight, one might expect that at H > Hc 1� ηð Þ, the field will gradually enter the
specimen, thus destroying superconductivity over the field range from Hc 1� ηð Þ to Hc. The
superconducting cylinder in such case would stay resistanceless with gradually changing
volume of the S core as shown in Figure 3. However, this scenario is problematic because as
soon as the field enters the specimen, the density of the field lines near the “equator” decreases
and hence the field inside the convex blue region in Figure 3 becomes smaller than Hc. Then
this region should go back to the S state.2 This means that when H > Hc 1� ηð Þ, the ellipsoidal
specimen splits into S and N regions, as it was suggested for the first time by Gorter and
Casimir [10].

1
Derivation of Eq. (6) can be found in [2]; Maxwell using it in [4] refers to Poisson.

2
Historically impossibility of configuration like that shown in Figure 3 was explained basing on a paradigm of instability
of the N phase against transforming to the S phase at Hi < Hc (see, e.g. [8]). However, this (the N phase at Hi < H) does
take place in specimens in the IS, but only at Hi in the upper part of the IS field range. At the lower edge of this range (at
H ¼ 1� ηð ÞHc) B in the first N domain and therefore Hi throughout the specimen is always Hc.

Intermediate State in Type-I Superconductors
http://dx.doi.org/10.5772/intechopen.75742

93



After Peierls [11] this inhomogeneous state in type-I superconductors is named the intermediate
state. Properties of the IS were (and in some extent still are) one of the longest-standing chal-
lenges of physics of superconductivity. Below we will expose the main theoretical ideas and key
experimental achievements addressing these properties. Comprehensive reviews of the experi-
mental and theoretical works on the IS published before 1970 are available in [1, 12, 13]; for
references to more recent publications, we recommend papers by Brandt and Das [14] and Clem
et al. [15].

2. Model of Peierls and London

The first successful theoretical model of the IS magnetic properties was developed in 1936
independently by Peierls [11] and London [16]. In this model properties of ellipsoidal samples
are considered in an averaged limit, in which the nonuniform induction B is replaced by
average B. This allowed to use Eq. (6) with demagnetizing factor η calculated for uniform
ellipsoid. However Eq. (6) has two unknowns, B and Hi, both of which are needed to calculate
the specimen magnetic moment. Basing on a paradigm that the N phase is unstable atHi < Hc,
Peierls and London postulated that inside the specimen in the IS (i.e., at 1� ηð ÞHc < H < Hc),

Hi ¼ Hc: (9)

Eqs. (2), (6), and (9) constitute a complete system of equations. Solving it one finds B, Hi, andM:

H ≤Hc 1� ηð Þ
B ¼ 0
Hi ¼ H= 1� ηð Þ
M ¼ HV=4π 1� ηð Þ

8><
>:

(10)

Hc 1� ηð Þ ≤H ≤Hc

B ¼ H �Hc 1� ηð Þð Þ=η
Hi ¼ Hc

M ¼ V H �Hcð Þ=4πη
:

8><
>:

(11)

Figure 3. Cross section of the cylindrical sample in case if superconducting phase (S, colored in gray) is gradually
replaced by the normal (N, colored in blue) phase filled by the field.
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Graphs of these functions for B and M are shown in Figure 4 in reduced coordinates. It is
important that area under the graphs for 4πM Hð Þ=VHc vs. H=Hc is the same 1/2. Therefore this
model meets the necessary thermodynamic condition of Eq. (4). The PL model fits well exper-
imental data obtained for thick specimens, i.e., when the field inhomogeneities near the
surfaces through which the flux enters and leaves the specimen are negligible. Overall, the PL
model represents a global description of the IS in zero-order approximation [8]. Similar model
for the mixed state in type-II superconductors is available in [17]. For type-I superconductors
this new model converts to the model of Peierls and London.

3. Landau laminar models

Magnetic flux structure of the IS was for the first time considered by Landau [18] for an infinite
parallel-plane plate (slab) in perpendicular field, i.e., for the sample-field configuration shown
in Figure 1c. In such a specimen the surface current (and hence the Meissner state) is absent
because B ¼ H, and therefore g ¼ H � B

� �
c=4π ¼ 0 at any H from zero to Hcr. Due to that the

IS starts at H right above zero, no matter how small is this field. Magnetic moment of this
specimen (Landau considered thick plate) is M Hð Þ ¼ �Hc þHð ÞV=4π; graphs for B and M are
shown by the green lines in Figure 4a and b.

Assuming that (i) the plate is split for regularly structured S and N laminae and (ii) the
boundary of a cross section of the S laminae is the line of induction B with magnitude Hc at
the S/N interface, Landau calculated shape of rounded corners of the S laminae near the
sample surface. Landau’s scenario for cross section of the S-lamina near the surface is shown
in Figure 5a. To meet the second assumption, Landau splits a central field line for two branches
(oba and ocd in Figure 5a) making a sharp (90�) turn at the splitting point (o). Hence, in this
scenario the field fills all space outside the specimen, as it is supposed to be the case in
magnetostatics. On the other hand, splitting the field line challenges the magnetostatics rules
[4], and the sharp turn of the line may cost the system too much energy [2, 19].

Figure 4. Peierls and London model. Average magnetic induction (a) and magnetic moment (b) for specimens with
demagnetizing factor η ¼ 1 (infinite slab in perpendicular field, green line), η ¼ 1=2 (long cylinder in perpendicular field,
blue line) and η ¼ 0 (long cylinder in parallel field, red line). NS designates the normal state (black line).
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parallel-plane plate (slab) in perpendicular field, i.e., for the sample-field configuration shown
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The rounded corners and the field inhomogeneity near the surface yield an excess energy of
the system favoring to a fine laminar structure (directly proportional to a period D of the one-
dimensional laminar lattice). On the other hand, there is an excess energy associated with the
surface tension at the S/N interface in the bulk, which favors to a coarse structure (reversely
proportional to D). Optimizing sum of these two energy contributions in the specimen free
energy, Landau calculated the period:

D2 ¼ δd
f L hð Þ , (12)

where δ is a wall-energy parameter characterizing the S/N surface tension and associated with
the coherence length [2, 3] and f L hð Þ is the Landau spacing function determined by the shape of
the corners and the near-surface field inhomogeneity and h ¼ H=Hc. f L hð Þ was calculated
numerically in [21], and an analytical form of this function was obtained in [22] (see also [2]).

Soon thereafter Landau abandoned this model, admitting that the proposed flux structure
does not correspond to a minimum of the free energy [23]. So, he suggested another so-called

Figure 5. Cross-sectional views of the S and N laminae and of the field distribution (in A, C, and D) near the surface(s) of
a type-I plane-parallel slab in perpendicular magnetic field. (A) Landau [18], (B) Landau [19], (C) Tinkham [3], (D)
Abrikosov [7], and (E) Marchenko [20]. Letters s and n designate superconducting and normal phases, respectively; v
designates the free space. In (C) v also designates a void in the static field outside the sample. See text for other notations.
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branching model [19, 23] (see also [1, 8]), in which N laminae near the surface split for many
thin branches as shown in Figure 5B, so that the flux emerges from the sample uniformly over
the whole surface. However, this branching model was disproved by Meshkovskii and
Shalnikov when they for the first time directly measured flux structure of the IS [24].

4. Other versions of near-surface properties

One of the important consequences of the Landau models is demonstration of significance of
the near-surface field distribution and domain shape (FDDS) for forming and stabilizing the
flux structure of the IS. On that reason it is worth to briefly overview other available scenarios
for FDDS.

There are two simplified modifications of the original (non-branching) Landau’s version of
FDDS.

Tinkham [3] proposed that the dominant contribution in the surface-related properties comes
from field inhomogeneities outside the sample extending over a “healing length” Lh as shown

in Figure 5C. Lh ¼ D�1
n þD�1

s

� ��1
, where Dn and Ds are the widths of the normal and

superconducting laminae, respectively. Correspondingly, Tinkham neglects the roundness of
the laminae corners (b and c in Figure 5A). This version meets the limiting cases—D ! 0 when
either Ds ! 0 or Dn ! 0—and is consistent with images of the IS flux structure (see, e.g., [13,
24, 25]). Tinkham’s FDDS works surprisingly well for the IS [25, 26]; it was also successfully
validated for the mixed state in type-II superconductors [27]. Note that all of these are in spite
of apparent contradiction of the Tinkham’s scenario with basics of magnetostatics, since it
allows for existence of voids in the static magnetic field near the sample (e.g., in a region
designated by v in Figure 5C).

Abrikosov [7] proposed another simplified version of Landau’s FDDS. He assumed that major
role is played by the round corners and therefore neglected the field inhomogeneity outside the
specimen. However, the latter means that the field near the surface is uniform, and therefore this
scenario is inconsistent with images of the IS flux structure. Abrikosov’s version of FDDS is
shown in Figure 5D, where size of the corners c is the same as Lh in the Tinkham’s scenario.

An interesting result for a possible domain shapes was obtained by Marchenko [20]. Like
Landau [18], Marchenko used conformal mapping to calculate the domain shape in infinite slab
but in a tilted field. He found that in a strongly tilted field width of the S-domains can increase as
shown in Figure 5E. We note that in such case, the field lines should leave the N domains
converging instead of diverging as in Figure 5A–D, because bending of the lines over sharp
corners (marked a in Figure 5E) would take enormous energy [2]. Therefore this scenario also
allows for existence of the voids in the field outside the specimen; and moreover, it may lead to
appearance of a maximum in the field magnitude in the free space above the N laminae.

To conclude this section on theoretically predicted scenarios for the near-surface properties of
the IS, we note that neither of them is consistent simultaneously with the classical magneto-
statics and with experimental images of the flux structure. So far no experimental results on
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Figure 5. Cross-sectional views of the S and N laminae and of the field distribution (in A, C, and D) near the surface(s) of
a type-I plane-parallel slab in perpendicular magnetic field. (A) Landau [18], (B) Landau [19], (C) Tinkham [3], (D)
Abrikosov [7], and (E) Marchenko [20]. Letters s and n designate superconducting and normal phases, respectively; v
designates the free space. In (C) v also designates a void in the static field outside the sample. See text for other notations.
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branching model [19, 23] (see also [1, 8]), in which N laminae near the surface split for many
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FDDS in the IS have been reported. Hence measurements of these properties are open and
important (see, e.g., Landau’s papers [18, 19, 23]) problem of fundamental superconductivity3.

5. Key experiments

Although we began this chapter from theoretical models, a real story of the IS has started from
experiment. Measuring electrical resistance R of tin wires, De Haas with collaborators revealed
a strong dependence of R Hð Þ on direction of the applied field H: instead of a sharp S/N
transition at a threshold field (Hc) in the parallel field, R returns to its full value gradually at
the field range from about Hc=2 to Hc when the field is perpendicular [29, 30]. Later it was
shown that reproducible R Hð Þ in the perpendicular field is liner [28]; one of the graphs for
R Hð Þ from [28] is reproduced in Figure 6. The linear R Hð Þ is consistent with the Peierls-London
model; however, it was revealed that transition from the Meissner state to the IS takes place at
HI , which is somewhat greater than 1� ηð ÞHc ¼0.5Hc.

The first observation of the IS magnetic structure was achieved by Meshkovsky and Shalnikov,
who mapped the field in a gap between two tin hemispheres with radius 2 cm using a resistive
probe made of a tiny bismuth wire [24]. Originally this experiment was designed to verify the

Figure 6. Relative resistance of a high-purity tin cylindrical wire of 0.4 mm in diameter and 5 cm in length at temperature
1.666 K (a) in increasing and in decreasing transverse field and (b) in increasing longitudinal field. After Andrew [28].

3
First results of direct measurements of FDDS were recently presented in V. Kozhevnikov, A. Suter, T. Prokscha, C. Van
Haesendonck arXiv:1802.08299v1 [cond-mat.supr-con] (2018).
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Landau branching model, according to which the field near the surface is uniform and the flux
structure can be observed only in a narrow gap inside the specimen provided the gap width is
less than some critical value estimated by Landau [19]. It turned out that there is no critical gap
and the field is inhomogeneous both inside (in the gap) and outside the specimen. These
results unambiguously turned down the branching model. Typical images and diagrams for
the field distribution obtained by Meshkovsky and Shalnikov are available in [1].

Further progress in imaging the IS structure was reached using Bitter or powder technique and
magneto-optics [13]. It was established that the flux pattern in flat plates in perpendicular field
consists of irregular corrugated laminae transforming into N (S) fractional laminae and tubes
near the low (high) end of the IS field range. A numerous variety of different flux patterns were
reported when samples are in nonequilibrium state [12].

A detailed study of the IS flux pattern was conducted by Faber with tin and high-purity
aluminum parallel-plane plate specimens [31]. It was found that at high reduced temperature
( ≈ 0:9Tc) in a broad field range, the structure is pass-independent (i.e., reproducible at increas-
ing at decreasing fields) and consists of corrugated laminae. Therefore Faber concluded that
the laminar flux structure is equilibrium structure of the IS. Typical images of the pass-
independent flux pattern in perpendicular field from the Faber’s work are shown in Figure 7.

A breakthrough in forming regular and controllable IS flux structure was achieved by Sharvin [32].
Applying the field tilted with respect to a single-crystal Sn specimen, Sharvin obtained a regular
linear laminar structure as shown in Figure 8. Measuring period of the structure and using
Landau’s formula, Eq. (12), corrected to account the field inclination, Sharvin calculated the
wall-energy parameter δ. Similar experiments and calculations Sharvin performed for In [32].

The aforementioned difference between the critical field HI observed in resistive measure-
ments and theoretically expected value for this field 1� ηð ÞHc was investigated by Desirant
and Shoenberg in a detailed study of magnetization of long cylindrical specimens of different
radii in transverse field [33]. Apart from confirmation of the resistive results, Desirant and

Figure 7. Typical images of pass-independent flux structures of the IS obtained with aluminum parallel-plane plate
specimen in perpendicular field at temperature 0.92Tc and the field 0.38Hc (a) and 0.53Hc (b). Dark areas are
superconducting. After Faber [31].
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wall-energy parameter δ. Similar experiments and calculations Sharvin performed for In [32].
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Shoenberg revealed that the critical field of the IS/NS transition Hcr is appreciably smaller than
the thermodynamic critical field Hc measured in parallel field. It was also found that the
differences ΔHI ¼ HI � 1� ηð ÞHc and ΔHcr ¼ Hc �Hcr depend on the specimen radius: the
smaller the radius, the greater the differences. One of magnetization curves reported in [34] is
reproduced in Figure 9.

Figure 8. Photograph of the IS flux structures taken with a single-crystal tin disc-shaped specimen (∅ 50 � 2 mm2) in the
field tilted for 15� with respect to the specimen at temperature 0.58Tc and field 0.95Hc. Light areas are normal. After
Sharvin [32].

Figure 9. Magnetization curve (m ¼ M=V) of cylindrical mercury specimen with radius 23 μm in transverse field at
temperature 2.12 K measured at increasing (⊙) and decreasing (þ) fields. Hc is thermodynamic critical field measured in
parallel field. Solid line based on landau branching model [19] with wall-energy parameter adjusted for best fit. After
Desirant and Shoenberg [34].
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The differences of ΔHI and ΔHcr are usually interpreted as a price paid by the specimen for the
extra energy needed to create the S/N interfaces in assumption that ΔHI and ΔHcr are small [3, 8].
We note that this explanation is not full because significant part of the extra free energy is
associated with the field inhomogeneity near the specimen surface. On the other hand, the
observed extension of the Meissner state (up to HI > 1� ηð ÞHc) means that 4πM=V at HI is
greater than Hc, the value following from the PL model. This “excess magnetic moment” is
consistent with the rule of 1/2, and it is indeed seen in Figure 9 and in other data reported by
Desirant and Shoenberg. However this feature can hardly be attributed to the S/N surface tension.

Egorov et al. [35] measured induction B in the bulk of N domains of a high-purity single-
crystal tin slab (18 � 12 � 0.56 mm3) in perpendicular field using μSR spectroscopy. Reported
results are shown in Figure 10. Ht in this graph corresponds to Hcr in our notations. The
tubular phase mentioned in the caption most probably corresponds to the filament state
discussed in [36].

Results of Egorov et al. show that B in N domains is Hc at low applied field and decreases with
increasing field down to Hcr at the IS/N transition. But induction B in N domains equals to the
field strength Hi. Therefore the original postulate used in the PL and Landau models (Hi ¼ Hc)
is correct for the low reduced fields, but it can be not so at higher fields.

Recently the IS problem was revisited by Kozhevnikov et al. [25, 26] via magneto-optics and
measurements of electrical resistivity and magnetization in high-purity indium films of different
thickness in the fields of different orientations. An immediate motivation for this research was
discrepancy in values of the coherence length for Sn and In following from Sharvin’s results for
the IS structure [32, 33] and those obtained from the measured magnetic field profile in the

Figure 10. Induction in N domains of the Sn single-crystal plate at temperature 0.08 K measured at increasing (circles,
solid line) and decreasing (triangles, dashed line) applied field. For decreasing field the N state is field supercooled down
to Hscl. At increasing field the laminar structure transforms to one with tubular S regions at Ht. After Egorov et al. [35].
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Meissner state [37]. In Figure 11 we reproduce typical magneto-optical images obtained for a
2.5-μm-thick film. The most unexpected result revealed with this specimen is that in perpendic-
ular field the critical field Hcr ≈ 0:4Hc at T ! 0. A typical magnetization curve obtained with
another (3.86-μm-thick) film is shown in Figure 12. Hcr for this specimen at 2.5 K is 0.65Hc and

Figure 11. Magneto-optical images taken with 2.5-μm-thick in film at 2.5 K. [H∥, H⊥ in Oe]: (a) [0, 1], (b) [60, 8], (c) [100, 6],
(d) [110, 3], and (e) [115, 1.3]. Superconducting regions are black. After Kozhevnikov et al. [25].

Figure 12. Magnetization curve of 3.86-μm-thick indium film measured in perpendicular field at 2.5 K. Green (orange)
circles represent the data measured at increasing (decreasing) field. Shadowed area represents the specimen condensation
energy (1/2 in the reduced coordinates of this graph). Hc was determined from magnetization curve in parallel field, and
the specimen volume was determined from the slope of that curve. After Kozhevnikov et al. [25].
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4πM(0)/V = 1.6Hc. All data were well reproducible, and the area under magnetization curves
plotted in reduced coordinate is close to 1/2, meaning that the obtained experimental results
reflect the equilibrium properties of the IS. However these results conflict with available theo-
retical models. A new model, consistently addressing outcomes of this work and explaining
earlier revealed “anomalies,” is presented in [25, 26]. We discuss it in the following section.

6. Laminar model for flat slab in tilted field

The simplest of experientially observed equilibrium domain structures of the IS is one-
dimensional laminar lattice in slab-like specimens placed in a tilted field. Therefore such a
specimen/field configuration is the most convenient for modeling. A laminar model for tilted field
(LMTF) was developed in [25, 26]. Schematics of the specimen in the LMFT is shown in Figure 13.

Setting of the model is:

(I) Specimen is in the free space (vacuum).

(II) Specimen thickness d≫λ. This means that negative surface tension of S/V (V stands for
vacuum) interfaces due to nonzero H∥ is neglected.

(III) Longitudinal sizes of the specimen (along x and y axes) are much greater than thickness
d, i.e., the slab is considered infinite. This means that flux of the perpendicular compo-
nent of the applied field H⊥ is conserved, and therefore H⊥ ¼ B⊥ ¼ B⊥rn, where B⊥ is
average perpendicular component of the induction over the specimen, B⊥ is perpendic-
ular component of the induction in N domains (considered uniform), and rn is volume
fraction of the N phase: rn ¼ Dn=D ¼ Vn=V withDn and Vn designating the width of the
N laminae and a total volume of the N phase, respectively.

(IV) B∥ ¼ Hið Þ∥ ¼ H∥ due to the absence of the demagnetizing field along y-axis or along the
parallel component of the applied field H∥.

(V) Tinkham’s version of the FDDS (see Figure 5C) is adopted due to its simplicity and
consistency with the experimental images.

We start from construction of a thermodynamic potential ~F T;V;Hið Þ, which is the Legendre
transform of the Helmholtz free energy F T;V;Bð Þ to the variables T;V;Hið Þ. It is often referred
to as the Gibbs free energy4:

~F ¼ F� B �Hi

4π
V ¼ F� B∥Hi∥

4π
V � B⊥Hi⊥

4π
V ¼ F� B∥Hi∥

4π
V ¼ F�H2

∥

4π
V, (13)

where F T;V;Bð Þ is Helmoltz free energy. The term B �Hi=4πð ÞV reflects work done by the
magnet power supply to keep the set field H when the flux in the system changes [2]. In our
case the flux of the perpendicular component is fixed, and therefore the term B⊥Hi⊥=4πð ÞV

4
It should be remembered that canonical Gibbs free energy is function of pressure, but not volume, as in this case.
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It should be remembered that canonical Gibbs free energy is function of pressure, but not volume, as in this case.
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drops out. On that reason in pure perpendicular field, ~F ¼ F [2, 3, 8]. On the other hand,
Hi∥ ¼ H∥, due to the specimen geometry (see setting (iv) above).

To transform ~F T;V;Hið Þ to the total free energy ~F T;V;Hð ÞM, we need to add terms associated
with energy of interaction of the applied field H with the specimen. In pure parallel case, this
term is þ H2=8π

� �
V [2]. In pure perpendicular case, it is � H2=8π

� �
V (see appendix in [26] and/

or [2]). Therefore in our case the total free energy of the specimen is

~FM ¼ ~F þ H2
∥

8π
�H2

⊥
8π

" #
V: (14)

Now, summing:

a. Free energy at zero field V f n0 �H2
c 1� rnð Þ=8π� ��, where f n0 ¼ Fn0=V is free energy density

of the N state in zero field.

b. Energy of the field B in the N domains Vrn B2
⊥ þ B2

∥

� �
=8π.

c. Energy of the S/N interfaces 2VH2
cδ=8πD.

d. Excess energy of the field over the healing length 2VLh rnB
2
⊥ �H2

⊥
� �

=8πd, and plugging all

in Eq. (14), one obtains for ~f M ¼ ~FM=V:

Figure 13. Cross-sectional view of the specimen/field configuration in the laminar model for tilted field. H∥ and H⊥ are
parallel and perpendicular components of the applied field, respectively. Domains are rectangular parallelepipeds
extended along H∥ (y-axis). The healing length Lh is the characteristic distance over which the disturbed field relaxes to
the uniformly distributed state. In N domains the parallel component of the induction B∥ ¼ H∥, while the perpendicular
component B⊥ ¼ H⊥=rn , where rn ¼ Dn=D ¼ Vn=V is volume fraction of the N phase and Vn is the total volume of the N
phase. After Kozhevnikov et al. [26].
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~f M ¼ f n0 � 1� rnð ÞH
2
c

8π
þ H2

⊥
8πrn

� rn
H2

∥

8π
þ 2

H2
c

8π
δ
D
þ 2

H2
⊥

8π
D
d

1� rnð Þ2 þH2
∥

8π
�H2

⊥
8π

: (15)

Then, minimizing ~f M with respect to D, one finds equilibrium period of the structure

D2 ¼ dδ

r2n 1� rnð Þ2
H2

c

B2
⊥
¼ dδ

1� rnð Þ2
H2

c

H2
⊥
: (16)

After plugging this optimal D into Eq. (15), the latter takes form:

~f M ¼ f n0 �
H2

c

8π
1� rnð Þ 1� h2∥ �

h2⊥
rn

� 4h⊥

ffiffiffi
δ
d

r" #
, (17)

where h⊥ and h∥ are reduced components of the applied field H⊥=Hc and H∥=Hc, respectively.
Important to note that with the optimal D the terms related to the S/N interfaces and to the
field inhomogeneity near the surface are equal. This means that “responsibility” for deviation
of the properties of real specimens from those in the PL model is equally shared between these
two contributions in the specimen free energy.

Minimizing ~f M with respect to rn, one finds equilibrium volume fraction of the N component:

r2n ¼ h2⊥= 1� 4h⊥
ffiffiffiffiffiffiffiffi
δ=d

p
� h2∥

� �
: (18)

At the IS/N transition rn=1, hence

hcr⊥ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 δ=dð Þ þ 1� h2∥

q
� 2

ffiffiffiffiffiffiffiffi
δ=d

p
: (19)

And magnitude of the reduced induction b ¼ B=Hc in the N domains is

b2 ¼ b2⊥ þ b2∥ ¼ h2⊥=r
2
n þ h2∥ ¼ 1� 4h⊥

ffiffiffiffiffiffiffiffi
δ=d

p
: (20)

Before calculating the magnetic moment, we transform Eq. (17) substituting rn from Eq. (18) and

using b⊥ from Eq. (20): b2⊥ ¼ 1� 4h⊥
ffiffiffiffiffiffiffiffi
δ=d

p � h2∥. Then Eq. (17) becomes very compact:

~f M ¼ f n0 �
H2

c

8π
b⊥ � h⊥ð Þ2 ¼ f n0 �

B2
⊥

8π
1� rnð Þ2: (21)

Now one can calculate the specimen magnetic moment from the definitive relationship
Eq. (3):

M � �∇H ~FM
� � ¼ � ∂~FM

∂H∥
yþ ∂~FM

∂H⊥
z

 !
, (22)

where y and z are unit vectors along the y and z axes, respectively.
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drops out. On that reason in pure perpendicular field, ~F ¼ F [2, 3, 8]. On the other hand,
Hi∥ ¼ H∥, due to the specimen geometry (see setting (iv) above).

To transform ~F T;V;Hið Þ to the total free energy ~F T;V;Hð ÞM, we need to add terms associated
with energy of interaction of the applied field H with the specimen. In pure parallel case, this
term is þ H2=8π
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V [2]. In pure perpendicular case, it is � H2=8π
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V (see appendix in [26] and/

or [2]). Therefore in our case the total free energy of the specimen is
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Now, summing:
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c 1� rnð Þ=8π� ��, where f n0 ¼ Fn0=V is free energy density

of the N state in zero field.

b. Energy of the field B in the N domains Vrn B2
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∥

� �
=8π.

c. Energy of the S/N interfaces 2VH2
cδ=8πD.

d. Excess energy of the field over the healing length 2VLh rnB
2
⊥ �H2

⊥
� �

=8πd, and plugging all

in Eq. (14), one obtains for ~f M ¼ ~FM=V:

Figure 13. Cross-sectional view of the specimen/field configuration in the laminar model for tilted field. H∥ and H⊥ are
parallel and perpendicular components of the applied field, respectively. Domains are rectangular parallelepipeds
extended along H∥ (y-axis). The healing length Lh is the characteristic distance over which the disturbed field relaxes to
the uniformly distributed state. In N domains the parallel component of the induction B∥ ¼ H∥, while the perpendicular
component B⊥ ¼ H⊥=rn , where rn ¼ Dn=D ¼ Vn=V is volume fraction of the N phase and Vn is the total volume of the N
phase. After Kozhevnikov et al. [26].
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where h⊥ and h∥ are reduced components of the applied field H⊥=Hc and H∥=Hc, respectively.
Important to note that with the optimal D the terms related to the S/N interfaces and to the
field inhomogeneity near the surface are equal. This means that “responsibility” for deviation
of the properties of real specimens from those in the PL model is equally shared between these
two contributions in the specimen free energy.

Minimizing ~f M with respect to rn, one finds equilibrium volume fraction of the N component:

r2n ¼ h2⊥= 1� 4h⊥
ffiffiffiffiffiffiffiffi
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p
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q
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ffiffiffiffiffiffiffiffi
δ=d

p
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And magnitude of the reduced induction b ¼ B=Hc in the N domains is

b2 ¼ b2⊥ þ b2∥ ¼ h2⊥=r
2
n þ h2∥ ¼ 1� 4h⊥

ffiffiffiffiffiffiffiffi
δ=d

p
: (20)

Before calculating the magnetic moment, we transform Eq. (17) substituting rn from Eq. (18) and

using b⊥ from Eq. (20): b2⊥ ¼ 1� 4h⊥
ffiffiffiffiffiffiffiffi
δ=d

p � h2∥. Then Eq. (17) becomes very compact:

~f M ¼ f n0 �
H2

c

8π
b⊥ � h⊥ð Þ2 ¼ f n0 �

B2
⊥

8π
1� rnð Þ2: (21)

Now one can calculate the specimen magnetic moment from the definitive relationship
Eq. (3):

M � �∇H ~FM
� � ¼ � ∂~FM

∂H∥
yþ ∂~FM

∂H⊥
z

 !
, (22)

where y and z are unit vectors along the y and z axes, respectively.
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The first term in Eq. (22) is

∂~FM

∂H∥
¼ V

Hc
� ∂
~f M
∂h∥

¼ V
Hc

�H
2
c

8π
2 b⊥ � h⊥ð Þ ∂b⊥

∂h∥
: (23)

Since ∂b⊥=∂h∥ ¼ h∥=b⊥ (see Eq. (20)), the final form of the parallel component of the specimen
magnetic moment is

�M∥ ¼ ∂~FM

∂H∥
¼ V

Hc

H2
c

8π
2 b⊥ � h⊥ð Þ h∥

b⊥
¼ VHc

4π
1� h⊥

b⊥

� �
h∥ ¼ V

4π
1� rnð ÞH∥: (24)

And the perpendicular component of the moment is

�M⊥ ¼ ∂~FM

∂H⊥
¼ V

Hc

∂~f M
∂h⊥

¼ � V
Hc

2H2
c

8π
b⊥ � h⊥ð Þ ∂b⊥

∂h⊥
� 1

� �
¼ V

4π
1� rnð Þ 1� ∂B⊥

∂H⊥

� �
B⊥: (25)

All obtained formulas are analyzed in detail in [25, 26], where it is shown that the model
correctly describes experimental data. In particular, the coherence length calculated from
measured D using Eq. (16) agrees well with that obtained from the magnetic field profile
measured in [36]. Here we confine our discussion by limiting cases.

In parallel field (H⊥ ¼ 0) the model (Eq. (18)) yields rn = 0, meaning that the specimen is in the

Meissner state where the N phase is absent. Then ~f M (Eq. (17)) converts to Eq. (5):

~f M ¼ f n �
H2

c

8π
1� h2
� � ¼ f n �

H2
c

8π
þH2

8π
, (26)

and M ¼ M∥ (Eq. (24)) converts to Eq. (1):

M∥ ¼ M ¼ � V
4π

H: (27)

In perpendicular field (H∥ ¼ 0) one can see that hcr ¼ hcr⊥ð Þ decreases with decreasing thickness d
(Eq. (19)) in accord with the experimental data [25, 26, 33], and the induction B ¼ b �Hcð Þ in N
domains equals toHc atH ¼ HI ¼ 0 and decreases with increasing H (Eq. (20)), as it was found
experimentally in [34]. For magnetization 4πM=V at H ! 0, when rn ¼ 0, the model (Eq. (25))
yields

4πM 0ð Þ
V

¼ V
4π

1� ∂B⊥

∂H⊥

� �
Hc: (28)

Since B decreases with increasing H, ∂B⊥=∂H⊥ð Þ < 0, and therefore the expression in parenthe-
ses is greater than unity. This makes 4πM 0ð Þ=V greater than Hc, thus explaining appearance of
the excess magnetization at HI as it is seen, e.g., in Figures 9 and 12.

The infinite slab in perpendicular field represents ellipsoid with η = 1. If the slab is thick (i.e.,
d≫ δ), the LMTF model converts to the PL model for specimens with unity demagnetization.
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Specifically, in the thick slabs rn ¼ H=Hc (Eq. (18)), and therefore (a) B ¼ h=rnð ÞHc ¼ Hc and
Hi ¼ B=μ ¼ Hc, and (b) 4πM=V ¼ �Hc þH, meaning that 4πM 0ð Þ=V ¼ �Hc and Hcr ¼ Hc,
exactly as it takes place in the PL model (Figure 4b). The third condition of Eq. (11) B ¼ H
follows from the law of the flux conservation always valid for infinite slabs. Thus the LMTF
model explains why the PL model works the best for thick specimens: because in such case
combined contributions due to near-surface field inhomogeneity and due to the S/N interfaces
(both are characterized by the ratio δ=d) are negligible compared to the bulk terms in Eqs. (15)
and (17).

Now, when we are convinced in correctness of the formulas for magnetization (see more in
[25, 26]), we can rewrite Eq. (17) in its canonical form coinciding with the mandatory form
for the total free energy Eq. (4):

~FM ¼ ~FM H ¼ 0ð Þ �
ðH
0
M � dH ¼ Fs0 �

ðH
0
M � dH ¼ Fn0 �H2

c

8π
V �

ðH
0
M � dH (29)

where the components of M are given by Eqs. (24 and 25).

7. Concluding remarks

More than three decades starting from the 1930s, the problem of the IS was in the main focus of
experimental and theoretical researches on superconductivity. This resulted in significant pro-
gress reached in understanding properties of the IS as well as properties of superconducting state
as a whole. Excellent reviews of these researches are available in [1, 12]. However some puzzles
in the IS properties remained open until their possible explanations emerged in studies of recent
years. In this chapter we mostly focused at results of these studies.

In particular, we discussed a recently developed phenomenological model of the IS composed
for infinite slabs in arbitrary tilted magnetic field. Naturally, this model is not and cannot be
free of disadvantages. One of them can be associated with the use of an oversimplified
Tinkham approximation for the field distribution and domain shape near the surface through
which the flux enters and leaves the specimen. We believe that modern experimental capabil-
ities associated, e.g., with muon spectroscopy and noninvasive scanning magnetic microscopy,
can help to resolve this important and very interesting issue, which we discussed in the Section
IV. The new model discussed in Section VI is restricted by the slab-like specimens. Its extension
to all ellipsoidal shapes covered in the model of Peierls and London is another possible avenue
of research on the IS.

Finally, it is important to remind that the IS is one of two inhomogeneous superconducting
states. The second state is the mixed state in type-II superconductors, taking place in vast
majority of superconducting materials, including those used in practical applications. There-
fore understanding of properties of the IS can help to understand properties of the mixed state.
As an example, the field distribution and shape of the normal domains (vortices in type-II
materials) near the specimen surface should be similar in both these inhomogeneous states.
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The first term in Eq. (22) is
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And the perpendicular component of the moment is
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years. In this chapter we mostly focused at results of these studies.
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Tinkham approximation for the field distribution and domain shape near the surface through
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can help to resolve this important and very interesting issue, which we discussed in the Section
IV. The new model discussed in Section VI is restricted by the slab-like specimens. Its extension
to all ellipsoidal shapes covered in the model of Peierls and London is another possible avenue
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Abstract

In this chapter, we review the recent experimental work in emerging superconductors, 
i.e., bismuth chalcogenides, including the newly discovered BiS(e)2-based layered super-
conductors and some topological superconductor candidates. Their crystal structure and 
various physical properties are reviewed in detail, with the correlation between struc-
ture and superconductivity as the main clue throughout this chapter. Bi2OS2 is the sim-
plest structure in Bi─O─S compounds and probably the parent compound of this series. 
Superconductivity emerges when carriers are introduced by intercalation or chemical 
substitution. The superconducting layer is extended to BiSe2 layer in LaO1−xFxBiSe2, which 
has an improved superconductivity. Moreover, the topological insulator Bi2Se3 can be 
turned into superconductors by intercalating metal atoms into van der Waals space, e.g., 
SrxBi2Se3, a potential topological superconductor, whose quantum oscillations reveal a 
possible topological surface state. The intermediate external pressure can efficiently sup-
press superconductivity, which reemerges when pressure is further increased, while Tc 
is nearly invariant in high-pressure region, indicating an unconventional pairing state.

Keywords: bismuth chalcogenides, BiS(e)2-based superconductors, crystal structure, 
intercalation, topological superconductors, high pressure

1. Introduction

Superconductivity was first discovered in the resistivity measurement of mercury by 
Kamerlingh Onnes in 1911. Its resistance abruptly vanishes at 4.1 K. Zero resistance means 
no energy loss in electric transport, which could greatly solve the energy crisis in the future. 
Since then, superconductivity has been a long-lasting hot topic in condensed matter physics. 
Exploring room temperature superconductors is one of the ultimate dreams.
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However, so far, only two kinds of unconventional superconducting systems have exceeded 
the Macmillan limit at ambient pressure, i.e., the cuprate and iron-based superconductors. 
In general, the correlation of structure and typical properties is always a useful guideline for 
effectively searching for special functional materials. In fact, the structure of both cuprate 
and iron-based superconductors can be characterized as a sandwiched “hamburger” model. 
It consists of superconducting layers (CuO2 plane, Fe2M2 (M = As, P, S, Se, and Te) layer) and 
spacer layers, which stack alternatively along the c-axis [1, 2]. Superconductivity occurs when 
the charged carriers are generated by the defects or substitution in superconducting layers or 
more commonly provided by the space layers; namely, a new superconducting layer prob-
ably means a new superconducting system. The spacer layer can be easily tuned by doping, 
substitution, intercalation, and pressure, which could affect superconductivity [3]. Therefore, 
materials with layered structure have been regarded as the most promising playground for 
exploring new high-Tc superconductors.

In 2010, superconductivity arising from the topological insulator Bi2Se3 by Cu intercalation 
was first reported [4]. It has drawn much attention since CuxBi2Se3 is proposed as a topologi-
cal superconductor candidate, as evidenced by the zero-bias conductance peak and quantum 
oscillation experiment [5, 6]. Very recently, superconductivity with topological states was 
also reported in its isostructural compounds, SrxBi2Se3 and NbxBi2Se3 [7, 8]. In 2012, an exotic 
superconductivity was discovered in a new layered structure Bi4O4S3 with zero-resistance 
superconducting temperature at about 4.5 K [9]. Soon, another new BiS2-based supercon-
ductor LaO0.5F0.5BiS2 was reported, whose structure is more definite and the zero-resistance 
superconducting temperature is about 8 K for the samples annealed under high pressure 
[10]. As its structure is very similar to the iron-based superconductor LaOFeAs, this system 
has been intensively researched, and lots of isostructural superconductors have been syn-
thesized, including ReO1−xFxBiS2 (Re: Ce, Pr, Nd, Yb), Sr1−xRexFBiS2 (Re: La, Ce), EuBiS2F, and 
Eu3Bi3S4F4 [11–15]. These researches are focused on tuning the spacer layers. The attempts to 
explore new superconducting layers only succeed in LaOxFxBiSe2 and Sr0.5La0.5FBiSe2 [16–18]. 
So far, the superconducting layer of this system has been extended to BiCh2 (Ch: S, Se). In this 
chapter, the crystal structure and superconducting properties of Bi─O─S superconductors, 
LaO1−xFxBiSe2 single crystals, and SrxBi2Se3 single crystals are briefly reviewed.

2. Crystal structure and superconducting properties

2.1. Bi─O─S superconductors

The element composition of Bi4O4S3 is the same as Bi4O4(SO4)xBi2S4 (x = 0.5), and its parent 
Bi6O8S5 is an oxide insulator composed of alternatively stacked BiS2 and Bi2O2 + SO4 + Bi2O2 
layers along the c-axis. It has a tetragonal structure with I4/mmm space group and its sche-
matic crystal structure is shown in Figure 1(c). Band calculations demonstrate that the half 
vacancy of SO4 layer generates electron carriers into BiS2 layer. The normal state of Bi4O4S3 is 
metallic and the superconductivity mainly originates from the Bi 6px and 6py orbitals in BiS2 
layers. Therefore, the BiS2 layer is called the superconducting layer in this family.

Superfluids and Superconductors112

However, the chemical composition studies show that it probably contains two new Bi─O─S 
phases, i.e., Bi2OS2 and Bi3O2S3. Their schematic structures can be seen in Figure 1(a) and (b). 
Bi2OS2 is an insulating phase and its content is less than 10%. Bi3O2S3 is the main phase and 
likely accounts for the 4.5 K superconductivity in Bi4O4S3. And the superconductivity can 
be suppressed by the amount of Bi2OS2-like stacking faults [19]. Once the quality of Bi3O2S3 
sample is improved, the superconducting volume fraction will be enhanced with its zero-
resistance superconducting temperature increased up to 4.9 K [20].

The crystal structure of Bi3O2S3 is similar to Bi4O4S3 with the same I4/mmm space group, 
a = 3.9674 Å and b = 41.2825 Å. The electron carriers are believed to be generated from S2

2− lay-
ers replacing the vacancy of SO4

2− layers in Bi4O4S3. The chemical composition of Bi2OS2 can 
also be expressed as BiOBiS2. Then we can see it is isostructural with LaOBiS2 with P4/nmm 
space group, a = b = 3.9744 Å and c = 13.7497 Å. BiOBiS2 has the simplest structure and com-
position, then it is probably the parent compound of this BiS2-based family. Besides, super-
conductivity is likely to be induced by introducing carriers into spacer layer. In fact, F-doped 
Bi2OS2 has been reported to exhibit bulk superconductivity below 5 K [21, 22].

Figure 2 shows the powder XRD patterns of Bi3O2S3, BiO1−xFxBiS2, and Bi2OS2 samples. We 
can see that samples of Bi─O─S compounds tend to contain impurities such as Bi2O3, Bi, and 
Bi2S3, because their synthesis temperature is relatively low (520°C for Bi4O4S3 and Bi3O2S3, and 
400°C for Bi2(O,F)S2) [9, 19–21]. Besides, these samples can only be synthesized in a narrow 
temperature region. Another difficulty in detecting their actual composition and structure is 
that several strong diffraction peaks in the powder XRD patterns are very close to each other. 

Figure 1. Crystal structures of (a) Bi2OS2, (b) Bi3O2S3, and (c) Bi4O4S3 [21].
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Hence, bulk superconductivity is very important in this system. Up to now, high-quality sam-
ples, especially single crystals, are still needed to investigate the relationship of structure and 
properties, in view of the multiple competing low-energy crystal structures in this system.

The physical properties of Bi─O─S superconductors are introduced, taking Bi3O2S3 and 
F-doped Bi2OS2 for instance [20, 21]. Figure 3(a) shows the temperature dependence of resis-
tivity and magnetoresistivity under different applied magnetic fields for Bi3O2S3. Its normal 
state is metallic-like and a sharp drop in resistivity appears at 5.8 K and quickly down to zero 
at 4.9 K. The upper critical field is estimated from resistivity versus temperature curves under 
different applied magnetic fields perpendicular to the sample surface, as seen in the insets 
of Figure 3(a). According to the Werthamer-Helfand-Hohenberg (WHH) formula, the upper 
critical field μ0Hc2(0) is evaluated to be about 4.84 T.

The shielding volume fraction is about 100%, revealing bulk superconductivity, as seen in 
Figure 3(b). The divergence in temperature dependence of magnetic susceptibility and the 
M-H curves characterize Bi3O2S3 as a type-II superconductor. The Hall effect shows a remark-
able nonlinear magnetic field dependence of transverse resistivity, which means it is likely a 
multiband superconductor [23]. However, the Hall resistivity at different temperatures is all 
negative, indicating that the dominant charge carriers are electron-type. The evaluated charge 
carrier density is about 1.5 × 1019 cm−3. It is much lower than those of cuprate and iron-based 
superconductors, implying a low superfluid density. Chemical substitution effects seem to 
increase the charge carrier density, but ultimately inhibit the superconductivity [24–26].

A clear specific heat anomaly appears around the superconducting transition temperature, as 
seen in Figure 3(d), confirming the bulk superconductivity in Bi3O2S3. The electronic specific  

Figure 2. Powder XRD patterns of Bi3O2S3, Bi2OS2, and Bi2O1−xFxS2 polycrystalline samples. The special characters (*, #) 
represent the impurity phases.
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heat coefficient γ and phonon specific heat coefficient β for the normal state under 9 T are 
obtained as 1.65 mJ/(mol K2) and 2.6 mJ/(mol K4), respectively, using linear fitting of C/T 
versus T2. As the phononic contribution to the heat capacity is generally independent of the 
external magnetic field, the electronic specific heat of superconducting state can be expressed 
by the equation

   C  e   (T)  = C (T, H = 0)  − C (T, H = 9T)  + γT.  (1)

The estimated value of ΔCe/γTc is comparable to the BCS weak-coupling limit 1.43.

Undoped Bi2OS2 was predicted to be an insulating oxide by the band structure calcula-
tions. However, we can see it is almost metallic from 300 K to 30 K, and a weak semicon-
ductor behavior emerges below 30 K, which may be originating from the impurities. The 
F-doping can significantly decrease the normal state resistivity and increase the shielding 
volume fraction, as shown in Figure 4. The best doping ratio is about 0.24. From the tem-
perature dependence of magnetic susceptibility, the best doped sample has a bulk type-II-like  

Figure 3. (a) Temperature dependence of resistivity for Bi3O2S3. The lower inset shows the curves of resistivity versus 
temperature under different applied magnetic fields and the upper inset shows the field dependence of Tc

onset and Tc
zero. 

(b) Temperature dependence of magnetic susceptibility for Bi3O2S3 and the insets show the magnetic field dependence 
of magnetic susceptibility at 2 K. (c) Hall resistivity versus magnetic field at different temperatures. (d) Curves of C/T 
versus T2 in superconducting state (0 T) and normal state (9 T). The upper inset shows the data of normal state at 
low temperature region. The lower inset shows the temperature dependence of calculated electron specific heat in 
superconducting state [20].
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(b) Temperature dependence of magnetic susceptibility for Bi3O2S3 and the insets show the magnetic field dependence 
of magnetic susceptibility at 2 K. (c) Hall resistivity versus magnetic field at different temperatures. (d) Curves of C/T 
versus T2 in superconducting state (0 T) and normal state (9 T). The upper inset shows the data of normal state at 
low temperature region. The lower inset shows the temperature dependence of calculated electron specific heat in 
superconducting state [20].
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superconductivity. When doping content exceeds 0.27, superconductivity disappears and the 
resistivity increases quickly. Besides, the quality of samples (x > 0.27) synthesized by conven-
tional solid state reaction method begins to deteriorate with increasing doping content [21]. 
In fact, the Bi2(O,F)S2 samples synthesized by topotactic fluorination using XeF2 also contain 
bismuth impurity [22]. It is difficult to get pure samples because the optimal synthesis tem-
perature is only around 400°C.

2.2. Re(O,F)BiCh2 (Ch: S, Se) superconductors

Re(O,F)BiS2 (Re: La, Ce, Pr, Nd, Yb) superconductors have been intensively studied since 
the report of LaO0.5F0.5BiS2. Their structure is more definite and similar to “1111” phase of 
iron-based superconductors. Single crystals of this structure have been successfully syn-
thesized [27]. Structure tuning is mainly concentrated on the spacer layers rather than the 
superconducting layer. And only the electron-doping into the insulating parent can induce 
superconductivity [28]. Here, we introduce the crystal structure and various physical prop-
erties of LaO1−xFxBiSe2 single crystals, which also firstly extend the superconducting layer 
to BiSe2 layer.

The powder XRD pattern and crystal structure of LaO0.59F0.41BiSe2 superconducting single 
crystal are presented in Figure 5. No impurity phase is found and each peak is indexed. 
It has a P4/nmm tetragonal lattice with the refined lattice constants a = b = 4.1377 Å and 
c = 14.1566 Å, which are larger than those of LaO0.5F0.5BiS2 for the larger ionic radius of Se2−. 
Figure 6 shows a comparison of the temperature dependence of resistivity for La(O,F)BiS2 
and La(O,F)BiSe2 samples. LaOBiS2 can be described as an insulator while LaOBiSe2 is metal-
lic. For LaO0.5F0.5BiS2, it exhibits a semiconducting behavior before the superconducting tran-
sition begins. The transport property of LaO0.5F0.5BiSe2 is similar to Bi3O2S3 but with a lower 
residual resistivity. Other isostructural compounds such as LaO0.5F0.5BiTe2 and LaO0.5F0.5SbS2 
are also reported, but no superconductivity can be observed down to 1.7 K [16].

Figure 4. (a) Temperature dependence of resistivity for BiO1−xFxBiS2. The inset shows the variation of Tc with different 
F-doping content. (b) Temperature dependence of magnetic susceptibility for BiO1−xFxBiS2 under ZFC process. The inset 
presents the FC and ZFC data for x = 0.24 sample [21].
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Fluorine doping effect on the superconductivity of LaO1−xFxBiSe2 single crystals is shown 
in Figure 7(a) and (b). F-doping can significantly decrease the resistivity of normal state 
and increase the superconducting transition temperature and shielding volume fraction. 
Unfortunately, the flux method can only grow single crystals with the largest F content of 
about 0.5. For example, the sample with F-doping amount of 0.52 was grown by a nominal 
component of 0.9. The magnetic susceptibility measurement shows LaO1−xFxBiSe2 has a bulk 
superconductivity and belongs to the type-II superconductors. Upper critical magnetic field 
can be evaluated from the resistivity versus temperature under various magnetic fields. As 
seen in Figure 7(c) and (d), the upper critical fields at zero temperature are estimated to be 
29 T and 1 T for H∥ab and H⊥ab, respectively, which indicate large anisotropy.

Figure 5. (a) Powder XRD pattern (black circles) with the Rietveld refinement (red curve) and Miller indices for 
LaO0.59F0.41BiSe2. The inset table summarizes the structural parameters. (b) Crystal structure of LaO0.59F0.41BiSe2. The 
rectangle indicates the unit cell [17].

Figure 6. A comparison of the temperature dependence of resistivity between (a) La(O,F)BiS2 and (b) La(O,F)BiSe2.
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superconductivity. When doping content exceeds 0.27, superconductivity disappears and the 
resistivity increases quickly. Besides, the quality of samples (x > 0.27) synthesized by conven-
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the report of LaO0.5F0.5BiS2. Their structure is more definite and similar to “1111” phase of 
iron-based superconductors. Single crystals of this structure have been successfully syn-
thesized [27]. Structure tuning is mainly concentrated on the spacer layers rather than the 
superconducting layer. And only the electron-doping into the insulating parent can induce 
superconductivity [28]. Here, we introduce the crystal structure and various physical prop-
erties of LaO1−xFxBiSe2 single crystals, which also firstly extend the superconducting layer 
to BiSe2 layer.
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c = 14.1566 Å, which are larger than those of LaO0.5F0.5BiS2 for the larger ionic radius of Se2−. 
Figure 6 shows a comparison of the temperature dependence of resistivity for La(O,F)BiS2 
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are also reported, but no superconductivity can be observed down to 1.7 K [16].
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F-doping content. (b) Temperature dependence of magnetic susceptibility for BiO1−xFxBiS2 under ZFC process. The inset 
presents the FC and ZFC data for x = 0.24 sample [21].
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Fluorine doping effect on the superconductivity of LaO1−xFxBiSe2 single crystals is shown 
in Figure 7(a) and (b). F-doping can significantly decrease the resistivity of normal state 
and increase the superconducting transition temperature and shielding volume fraction. 
Unfortunately, the flux method can only grow single crystals with the largest F content of 
about 0.5. For example, the sample with F-doping amount of 0.52 was grown by a nominal 
component of 0.9. The magnetic susceptibility measurement shows LaO1−xFxBiSe2 has a bulk 
superconductivity and belongs to the type-II superconductors. Upper critical magnetic field 
can be evaluated from the resistivity versus temperature under various magnetic fields. As 
seen in Figure 7(c) and (d), the upper critical fields at zero temperature are estimated to be 
29 T and 1 T for H∥ab and H⊥ab, respectively, which indicate large anisotropy.

Figure 5. (a) Powder XRD pattern (black circles) with the Rietveld refinement (red curve) and Miller indices for 
LaO0.59F0.41BiSe2. The inset table summarizes the structural parameters. (b) Crystal structure of LaO0.59F0.41BiSe2. The 
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The anisotropy parameter γs of the LaO1−xFxBiSe2 superconducting single crystal is investi-
gated by measuring the angular dependence of resistivity under various magnetic fields at 
3 K (see Figure 8). Note that the angle θ describes the deviation of magnetic field with respect 
to the ab-plane of single crystal. Only the data with magnetic field below 1 T are selected for 
the reduced magnetic field, because the HC2(0) for H⊥ab is about 1 T. The reduced magnetic 
field is calculated by the equation

   H  red   = H  √ 
_______________

   sin   2  θ +  γ  s  −2   cos   2  θ  .  (2)

According to the Ginzburg-Landau theory [29], the curves of resistivity versus reduced mag-
netic field under different magnetic fields should merge into one. The resultant anisotropy 
parameter at 3 K is about 30 (see Figure 8(b)), which is close to the result of upper critical field 
within the ab-plane.

Considering that the Tc of LaO0.5F0.5BiS2 is increased from 2.7 K to 10.6 K under a hydrostatic pres-
sure of 1.68 GPa [30], the highest Tc among the BiS2-based superconductors, higher Tc, above 10.6 K  

Figure 7. Superconducting properties of LaO1−xFxBiSe2 single crystals with different F-doping contents. (a) Temperature 
dependence of resistivity and an enlarged view near the superconducting transition temperature for all samples. (b) 
ZFC and FC magnetic susceptibility versus temperature with magnetic field applied parallel to ab-plane for all samples. 
(c) and (d) Resistivity versus temperature with magnetic field applied perpendicular to and parallel to ab-plane, 
respectively, for the x = 0.52 sample [17].
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is expected for LaO0.5F0.5BiSe2 under external pressure since its zero-resistance temperature 
is about 3.5 K. However, we find that its superconductivity and shielding volume fraction 
decrease unexpectedly with increasing pressure below 1 GPa hydrostatic pressure, as seen 
in Figure 9(a). Another experiment with higher pressure shows that a new superconducting 
phase emerges at about 1.2 GPa and Tc reaches about 6.5 K at 2.17 GPa [31]. Accompanied 
by this crossover, the normal state is switched from that with a low temperature resistivity 
upturning to a metallic one. Accordingly, the normal state resistivity also shows a nonmono-
tonic change with the external pressure. These facts suggest that the BiSe2-based system is 
very different from the BiS2-based system.

2.3. MxBi2Ch2 (Ch: Se, Te) superconductors

Topological insulator has linearly dispersive band structures and its topological surface state 
exhibits metallic properties while the bulk state is insulating. If its spin-momentum locking effect 
combines with superconductivity, Majorana fermion may exist, which is useful for quantum  
computing. At first, the topological superconductors were mostly focused on the proximity-induced 

Figure 8. Anisotropy of LaO1−xFxBiSe2 superconducting single crystal. (a) Angular dependence of resistivity taken under 
magnetic fields from 0.1 T to 6 T at 3 K for LaO0.48F0.52BiSe1.93 single crystal. (b) Scaling of the resistivity vs. the reduced 
magnetic field Hred [17].

Figure 9. High-pressure effect on the superconductivity of LaO0.5F0.5BiSe2 single crystal. (a) High-pressure effect on the 
temperature dependence of magnetic susceptibility. (b) and (c) High-pressure effect on the transport properties of two 
single crystal samples of LaO0.5F0.5BiSe2 [31].
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The anisotropy parameter γs of the LaO1−xFxBiSe2 superconducting single crystal is investi-
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sure of 1.68 GPa [30], the highest Tc among the BiS2-based superconductors, higher Tc, above 10.6 K  
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dependence of resistivity and an enlarged view near the superconducting transition temperature for all samples. (b) 
ZFC and FC magnetic susceptibility versus temperature with magnetic field applied parallel to ab-plane for all samples. 
(c) and (d) Resistivity versus temperature with magnetic field applied perpendicular to and parallel to ab-plane, 
respectively, for the x = 0.52 sample [17].

Superfluids and Superconductors118

is expected for LaO0.5F0.5BiSe2 under external pressure since its zero-resistance temperature 
is about 3.5 K. However, we find that its superconductivity and shielding volume fraction 
decrease unexpectedly with increasing pressure below 1 GPa hydrostatic pressure, as seen 
in Figure 9(a). Another experiment with higher pressure shows that a new superconducting 
phase emerges at about 1.2 GPa and Tc reaches about 6.5 K at 2.17 GPa [31]. Accompanied 
by this crossover, the normal state is switched from that with a low temperature resistivity 
upturning to a metallic one. Accordingly, the normal state resistivity also shows a nonmono-
tonic change with the external pressure. These facts suggest that the BiSe2-based system is 
very different from the BiS2-based system.

2.3. MxBi2Ch2 (Ch: Se, Te) superconductors

Topological insulator has linearly dispersive band structures and its topological surface state 
exhibits metallic properties while the bulk state is insulating. If its spin-momentum locking effect 
combines with superconductivity, Majorana fermion may exist, which is useful for quantum  
computing. At first, the topological superconductors were mostly focused on the proximity-induced 

Figure 8. Anisotropy of LaO1−xFxBiSe2 superconducting single crystal. (a) Angular dependence of resistivity taken under 
magnetic fields from 0.1 T to 6 T at 3 K for LaO0.48F0.52BiSe1.93 single crystal. (b) Scaling of the resistivity vs. the reduced 
magnetic field Hred [17].

Figure 9. High-pressure effect on the superconductivity of LaO0.5F0.5BiSe2 single crystal. (a) High-pressure effect on the 
temperature dependence of magnetic susceptibility. (b) and (c) High-pressure effect on the transport properties of two 
single crystal samples of LaO0.5F0.5BiSe2 [31].
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superconductivity. The discovery of CuxBi2Se3 superconductor opens a new gate to topological 
superconductors, i.e., superconductors induced by doping into topological insulators, which are 
expected to be the candidate of three-dimensional topological superconductors. Recently, a series of 
superconductors based on the topological insulators have been reported, such as Cux(PbSe)5(Bi2Se3)6 
[32], SrxBi2Se3 [7], NbxBi2Se3 [8], and TlxBi2Te3 [33]. Here, we put emphasis on the crystal structure and 
physical properties of SrxBi2Se3 single crystals.

The structure of SrxBi2Se3 is similar to that of CuxBi2Se3 and isomorphic to the parent Bi2Se3. Sr 
atoms may act as a bipolar dopant that can be embedded in the van der Waals space or ran-
domly substitute for Bi. The actual Sr doping content of SrxBi2Se3 is very little so that it is hard 
to define its precise position. Nevertheless, the lattice constants of SrxBi2Se3 are a little larger 
than those of Bi2Se3, while the lattice constants of Bi2−xSrxSe3 are smaller. The c-axis lattice 
constant of Bi2−xSrxSe3 decreases slightly with increasing doping content (see Figure 10(b)). In 
addition, all samples grown in Bi2−xSrxSe3 ratio show no signs of superconductivity at 1.8 K, as 
seen in Figure 11(a). Therefore, we could use Figure 10(a) as the schematic structure diagram.

The linear curves of Hall resistivity versus magnetic field indicate that SrxBi2Se3 has only one 
electron-like bulk carrier. The carrier density increases slightly with decreasing temperature. Its 
average is around 2.3 × 1019 cm−3, about 1–2 orders of magnitude lower than CuxBi2Se3. Figure 
11(d) and (e) shows that the Tc of superconducting samples changes little with different Sr con-
tents, but the shielding volume fraction is very different. Only those samples with Sr content 
above 0.06 have a large shielding volume fraction. Moreover, the superconductivity is very 
stable in air, as evidenced by the almost unchanged shielding volume fraction for the sample 
placed in air even for a month. This provides great convenience for experimental research.

The topological surface state of SrxBi2Se3 single crystal has been investigated through Shubnikov-de 
Haas oscillation measurements. Clear oscillations in resistivity and Hall resistivity can be observed 
under high magnetic field at different temperatures, as shown in Figure 12(a) and (c). The oscil-
lation amplitudes become more pronounced for higher magnetic field and lower temperature. 
However, the oscillatory periods measured at different temperatures remain constant, so only 
the data at 0.35 K with the most noticeable oscillations are selected to deduce the Landau level 

Figure 10. Crystal structure of SrxBi2Se3 superconductors. (a) Schematic diagram of SrxBi2Se3 crystal structure. (b) Powder 
XRD patterns of SrxBi2Se3, Bi2Se3, and Bi2−xSrxSe3 [7].
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indices. In fact, the measured resistivity and Hall resistivity actually contain contributions from 
both the surface and bulk conductance when a large parallel bulk conduction channel is present. 
Therefore, the least confusing method is to convert resistivity into conductance to determine the 
Landau index because its components are additive [34]. The following equations are used to cal-
culate conductance

   G  xx   =   
 R  xx   ______  R  xx  2   +  R  xy  2    ,  G  xy   =   

 R  xy   ______  R  xx  2   +  R  xy  2    .  (3)

After removing the nonoscillatory background, the oscillatory components are obtained 
and plotted as a function of 1/B. The frequencies are 146 T for longitudinal conductance 
and 144.8 T for Hall conductance, which are comparable to those of Bi2Se3 but smaller than 
CuxBi2Se3. The integer Landau index n corresponds to the valleys in ΔGxx, while the valleys in 
ΔGxy are assigned to n + 1/4 [see Figure 13(a) and (c)]. The 1/4 shift arises to match the valleys 
in dΔGxy/dB with the valleys in ΔGxx [34]. The obtained intercepts of the linear fittings for n 
versus 1/B are both close to the value for an ideal Dirac system, i.e., −0.5 rather than 0 or 1 (see 
Figure 13(b) and (d)). Thus, it provides transport evidence for the existence of Dirac fermions 
in SrxBi2Se3 superconductor.

Figure 11. Superconducting properties of SrxBi2Se3. (a) Temperature dependence of resistivity for SrxBi2Se3 and Bi2−

xSrxSe3. (b) Hall resistivity versus magnetic field curves measured at different temperatures. (c) Temperature dependence 
of estimated Hall coefficient and charge carrier density. (d) Temperature dependence of susceptibility for samples with 
different Sr contents. (e) Plot of Tc

onset, Tc
zero, and shielding volume fraction as a function of Sr content [7].
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expected to be the candidate of three-dimensional topological superconductors. Recently, a series of 
superconductors based on the topological insulators have been reported, such as Cux(PbSe)5(Bi2Se3)6 
[32], SrxBi2Se3 [7], NbxBi2Se3 [8], and TlxBi2Te3 [33]. Here, we put emphasis on the crystal structure and 
physical properties of SrxBi2Se3 single crystals.

The structure of SrxBi2Se3 is similar to that of CuxBi2Se3 and isomorphic to the parent Bi2Se3. Sr 
atoms may act as a bipolar dopant that can be embedded in the van der Waals space or ran-
domly substitute for Bi. The actual Sr doping content of SrxBi2Se3 is very little so that it is hard 
to define its precise position. Nevertheless, the lattice constants of SrxBi2Se3 are a little larger 
than those of Bi2Se3, while the lattice constants of Bi2−xSrxSe3 are smaller. The c-axis lattice 
constant of Bi2−xSrxSe3 decreases slightly with increasing doping content (see Figure 10(b)). In 
addition, all samples grown in Bi2−xSrxSe3 ratio show no signs of superconductivity at 1.8 K, as 
seen in Figure 11(a). Therefore, we could use Figure 10(a) as the schematic structure diagram.

The linear curves of Hall resistivity versus magnetic field indicate that SrxBi2Se3 has only one 
electron-like bulk carrier. The carrier density increases slightly with decreasing temperature. Its 
average is around 2.3 × 1019 cm−3, about 1–2 orders of magnitude lower than CuxBi2Se3. Figure 
11(d) and (e) shows that the Tc of superconducting samples changes little with different Sr con-
tents, but the shielding volume fraction is very different. Only those samples with Sr content 
above 0.06 have a large shielding volume fraction. Moreover, the superconductivity is very 
stable in air, as evidenced by the almost unchanged shielding volume fraction for the sample 
placed in air even for a month. This provides great convenience for experimental research.

The topological surface state of SrxBi2Se3 single crystal has been investigated through Shubnikov-de 
Haas oscillation measurements. Clear oscillations in resistivity and Hall resistivity can be observed 
under high magnetic field at different temperatures, as shown in Figure 12(a) and (c). The oscil-
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After removing the nonoscillatory background, the oscillatory components are obtained 
and plotted as a function of 1/B. The frequencies are 146 T for longitudinal conductance 
and 144.8 T for Hall conductance, which are comparable to those of Bi2Se3 but smaller than 
CuxBi2Se3. The integer Landau index n corresponds to the valleys in ΔGxx, while the valleys in 
ΔGxy are assigned to n + 1/4 [see Figure 13(a) and (c)]. The 1/4 shift arises to match the valleys 
in dΔGxy/dB with the valleys in ΔGxx [34]. The obtained intercepts of the linear fittings for n 
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The superconductivity of SrxBi2Se3 is very sensitive to external pressure below 1 GPa, as seen in 
Figure 14(a) and (b). With the increasing applied pressure, the Tc and shielding volume fraction 
decrease but the normal state resistivity increases. This depression of superconductivity can be 

Figure 13. (a) and (c) Oscillatory component of the longitudinal and Hall conductivity at 0.35 K plotted against 1/B. (b) 
The Landau index n versus 1/B, where n and n + 1/2 correspond to the valleys and peaks of ΔGxx. (d) n versus 1/B derived 
from (c), where n + 1/4 corresponds to the valleys of ΔGxy [7].

Figure 12. SdH oscillations under high magnetic field for SrxBi2Se3 single crystal. (a) and (c) Magnetic field dependence of 
resistivity and Hall resistivity at different temperatures. (b) and (d) Magnetic field dependence of the fitted longitudinal 
and Hall conductivity at 0.35 K [7].
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attributed to the reduction of charge carrier density, which is apparent from the normal state 
resistivity. However, if the pressure continues to increase, the normal state resistivity begins 
to decrease and a sign of superconducting transition occurs at 6 GPa. Then, the Tc

onset and the 
charge carrier density estimated from the normal state resistivity gradually increase with the 
increasing pressure, and Tc

onset reaches around 8 K when P > 14 GPa. But unfortunately, the Tc
onset 

remains almost constant for the pressure up to 40 GPa, although the normal state resistivity 
keeps decreasing. The reemerging superconductivity is very robust and the Tc

onset still changes 
little under 80 GPa [35]. In fact, the whole process contains three structural phases, i.e., R-3 m, 
C2/m, and I4/mmm, as seen in Figure 14(d). The structural transitions and pressure-invariant Tc 
are very similar to the parent compound Bi2Se3, which needs further investigations.

3. Conclusions

The discovery of superconductivity in layered compound Bi4O4S3 brings in a new BiS2-
based superconducting family, including the Bi─O─S compounds, Re(O,F)BiS2, and MFBiS2 
superconductors. The superconducting layer is extended to BiSe2 layer in LaO1−xFxBiSe2 and 
Sr1−xLaxFBiSe2. The crystal structure and various superconducting properties are reviewed 
for selective systems. Hall effect and specific heat suggest that they are probably multiband  

Figure 14. (a) Temperature dependence of magnetic susceptibility under different pressures. (b) and (c) Temperature 
dependence of resistance under high pressure. (d) The structural phase diagram on pressure for SrxBi2Se3 [35].
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The superconductivity of SrxBi2Se3 is very sensitive to external pressure below 1 GPa, as seen in 
Figure 14(a) and (b). With the increasing applied pressure, the Tc and shielding volume fraction 
decrease but the normal state resistivity increases. This depression of superconductivity can be 

Figure 13. (a) and (c) Oscillatory component of the longitudinal and Hall conductivity at 0.35 K plotted against 1/B. (b) 
The Landau index n versus 1/B, where n and n + 1/2 correspond to the valleys and peaks of ΔGxx. (d) n versus 1/B derived 
from (c), where n + 1/4 corresponds to the valleys of ΔGxy [7].

Figure 12. SdH oscillations under high magnetic field for SrxBi2Se3 single crystal. (a) and (c) Magnetic field dependence of 
resistivity and Hall resistivity at different temperatures. (b) and (d) Magnetic field dependence of the fitted longitudinal 
and Hall conductivity at 0.35 K [7].
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are very similar to the parent compound Bi2Se3, which needs further investigations.

3. Conclusions

The discovery of superconductivity in layered compound Bi4O4S3 brings in a new BiS2-
based superconducting family, including the Bi─O─S compounds, Re(O,F)BiS2, and MFBiS2 
superconductors. The superconducting layer is extended to BiSe2 layer in LaO1−xFxBiSe2 and 
Sr1−xLaxFBiSe2. The crystal structure and various superconducting properties are reviewed 
for selective systems. Hall effect and specific heat suggest that they are probably multiband  

Figure 14. (a) Temperature dependence of magnetic susceptibility under different pressures. (b) and (c) Temperature 
dependence of resistance under high pressure. (d) The structural phase diagram on pressure for SrxBi2Se3 [35].

Emerging Superconductivity and Topological States in Bismuth Chalcogenides
http://dx.doi.org/10.5772/intechopen.73057

123



superconductors and can be described by BCS weak-coupling theory. Moreover, bismuth 
chalcogenide topological insulators can be turned into superconductors by doping, which are 
potential candidates for 3D topological superconductors. For example, the topological surface 
state of SrxBi2Se3 is well supported by SdH oscillations under high magnetic field. The interme-
diate external pressure can efficiently suppress the superconductivity, which reemerges when 
pressure is further increased, while Tc is nearly invariant in high-pressure region, indicating 
an unconventional pairing state.
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superconductors and can be described by BCS weak-coupling theory. Moreover, bismuth 
chalcogenide topological insulators can be turned into superconductors by doping, which are 
potential candidates for 3D topological superconductors. For example, the topological surface 
state of SrxBi2Se3 is well supported by SdH oscillations under high magnetic field. The interme-
diate external pressure can efficiently suppress the superconductivity, which reemerges when 
pressure is further increased, while Tc is nearly invariant in high-pressure region, indicating 
an unconventional pairing state.
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Abstract

We report here the preparation, X-ray diffraction with Rietveld refinement, AC magnetic 
susceptibility (χac = χ′ + iχ″), resistivity, iodometric measurements and effect of heat treat-
ments in (Y1−xSmx)SrBaCu3O6+z. Each sample has undergone two types of heat treatment: 
oxygen annealing [O] and argon annealing followed by oxygen annealing [AO]. For each 
x, the [AO] heat treatment increases the orthorhombicity ε = (b − a)/(b + a) (for 0 ≤ x ≤ 1), Tc 
(for x ≥ 0.4) and reduced the linear resistivity parameters with a diminution of the inter-
action of holes with phonons. At all T < Tc and for any applied field Hdc, we observed an 
enhancement of AC magnetic shielding and the irreversibility line in the samples [AO] for 
x > 0.5, revealing an improvement in the pinning properties. Remarkable correlations were 
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The four distinct crystallographic sites Y, Ba, Cu plane, and Cu chain can be substituted 
with different elements. Single-phase LnBa2Cu3O6+z (Ln = rare earth) can be synthesized with 
Tc = 92 K. All these compounds show an orthorhombically distorted oxygen-deficient triple-
perovskite structure and both the orthorhombic distortion and Tc depend sensitively on the 
oxygen content (6 + z) [3]. Wada et al. [4], Izumi et al. [5] studied the structural and supercon-
ducting properties of La1+xBa2−xCu3Oy (with 0 ≤ x ≤ 0.5). They concluded that in order to have 
Tc maximal, this structure must have an ordered arrangement of La and Ba along c axis with 
an occupation factor of 0 and 1 for the oxygen at (1/2, 0, 0) and (0, 1/2, 0), respectively.

We want to see if an isovalent substitution of Ba+2 by Sr+2 with smaller ionic radius can modify 
the results discussed above when Y+3 is replaced by the rare earth Sm+3 with bigger ionic 
radius. Understanding the effect of the Y and Ba atomic plans on the superconductivity in 
these compounds, we have studied the structural, superconducting and magnetic proper-
ties of (Y1−xSmx)SrBaCu3O6+z. We found that the effect of heat treatments on these properties 
depended on the content of Sm.

2. Experimental techniques

We prepared the polycrystalline samples by solid-state sintering of oxides (Y2O3, Sm2O3, CuO) 
with a purity of 99.999% and carbonates (SrCO3 99.999% pure, BaCO3 with a purity of 99.99%). 
All these chemicals were thoroughly mixed in desired proportions and calcined at 950°C in air 
for 12–18 h. The obtained ceramic was ground, mixed, pelletized and heated in air at 980°C for 
16–24 h. This was repeated twice. For each sample, the circular pellets were subjected to heat 
treatment in oxygen at 450°C for 60–72 h and furnace cooled. This was denoted as sample [O].

X-ray diffraction spectra of the samples were measured with Philips diffractometer fitted with 
a secondary beam graphite monochromator and using Cu Kα (40 kV/20 mA) radiation. The 
angle 2θ was varied from 20° to 120° in steps of 0.025°and the counting time per step was 10 s. 
The XRD spectra were resolved with Rietveld refinement.

A detailed description of the basic arrangement of the experiment of the AC magnetic sus-
ceptibility can be found in [6]. The sample in the form of a slab is placed in the magnetic 
field Hext = Hdc + Hac cos(ωt) with the static component Hdc and the AC component with the 
amplitude Hac and the frequency f = ω/2π. The sample’s magnetic response was detected by 
a pick-up coil surrounding the sample. Superconducting transitions were determined by the 
measure of the real (χ′) and the imaginary (χ″) parts of the AC magnetic susceptibility as a 
function of temperature in Hac = 0.11 Oe and at f = 1500 Hz. Also, χ′ and χ″ were measured in 
0 < Hdc < 150 Oe with applied Hac.

We used the Van Der Pauw method [7] for measuring resistivity ρ(T). The sample was attached 
to a cane in a cryostat with closed helium circuit with a cryogenic pump, a regulator of tem-
perature (1 μA–10 mA) and 1 μV resolution digital voltmeter controlled with a computer. Tc 
was determined by both the measured χ′(T) and ρ(T).

For each x, the same sample [O] was then heated in argon at 850°C for about 12 h, cooled to 
20°C and oxygen was allowed to flow instead of argon and the sample was annealed at 450°C 
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for about 72 h. This sample is denoted as [AO]. XRD, resistivity and AC susceptibility mea-
surements were done on a part of this sample. We measured 6 + z by iodometry technique on 
a part of each sample.

3. Results

3.1. Crystalline structure

The X-ray diffraction spectra of all the samples are shown in Figure 1 [8]. After the [AO] heat 
treatment, the reflections were sharper so the samples were well crystallized. The [AO] heat 
treatment increases the orthorhombic cleaving. For example, the (123) and (213) peaks at 2θ 
≈ 58.5° (and (200) and (006) reflections at 2θ ≈ 47°) which were ill-resolved for the [O] sam-
ples were clearly identified after the [AO] heat treatment, as shown in Figure 1. Some weak 
unidentified impurity peaks (marked by crosses in Figure 1(a) were seen in the [O] samples 
and their amplitudes increase with x. They disappeared after the [AO] treatment shown in 
Figure 1(b). This indicates an improvement of crystallographic quality of the samples [AO].

In Figure 2 we show, respectively, the variation of the parameters a, b, c and the volume V 
of the unit cell obtained with Rietveld refinement [9] as a function of x and heat treatment. 
When x increases, the lattice parameter a (c and the volume V of the unit cell) increased but b 
is constant leading to a decrease of the orthorhombicity (ε = (b − a)/(b + a)) ε [O] in Figure 3. 
The substitution of Y+3 (0.893 Å) by the rare earth Sm+3 (0.965 Å), with a superior ionic radius, 
leads to a linear increase of c and V.

Figure 1. XRD (Cu Kα) patterns of (Y1−xSmx)SrBaCu3O6+z as a function of x. (a) Samples [O] annealed in oxygen at 450°C, 
(b) samples [AO] heated in argon at 850°C followed by annealing in oxygen at 450°C (x = impurity peaks).
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The orthorhombicity depends strongly on the Sm content x. When x increases from 0 to 1, ε 
decreases quickly from 8.24 × 10−3 to 1.5 × 10−3 in the samples [O] in Figure 3. This indicated a 
structural phase transition from orthorhombic to tetragonal. ε decreases slowly from 9.9 × 10−3  
to 5.24 × 10−3 with an orthorhombic symmetry in the samples [AO]. We found also that the 
orthorhombicity depends strongly on the heat treatment [AO]. For each x, the latter increased 
the orthorhombicity (for 0 ≤ x ≤1). The increase was maximum, from 1.5 × 10−3 to 5.24 × 10−3 
for x = 1 in [12].

3.2. Real part of the AC magnetic susceptibility and Tc

The critical temperature Tc of the transition from the superconductor to the normal state 
depends strongly on the effect of [AO] heat treatment as seen in the real part of AC suscepti-
bility χ′(T) in Figure 4. The imaginary part of AC susceptibility χ″(T) in Figure 4 shows a sin-
gle peak Tp. This defined clearly the value of Tc for all the samples. We can see in Figure 5 that 
when x was increased from 0 to 1, Tc[O] decreased from 83 K to 79.3 K. Tc[AO] first decreases 

Figure 2. Variation of the parameters a, b and c of (Y1−xSmx)SrBaCu3O6+z as a function of x and heat treatment in the left. 
The unit cell of (Y1−xSmx)SrBaCu3O6+z in the right.

Figure 3. Variation of the orthorhombicity of (Y1−xSmx)SrBaCu3O6+z as a function of x and heat treatment.
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from 81.7 K (for x = 0) to 81.2 K (for x = 0.2) (like in the samples [O]) and then increases to 85 K 
for SmSrBaCu3O6+z. For each x, the [AO] heat treatment increases Tc for x ≥ 0.4 and decreases 
it for x < 0.4. A maximum of increase in Tc of 6 K was observed in SmSrBaCu3O6+z [AO] [8].

For each x, the [AO] heat treatment increases ε (for 0 ≤ x ≤ 1) in Figure 3 and Tc (for x ≥ 0.4) 
in Figure 5. The [AO] heat treatment makes the coupling of the superconducting grains by 
Josephson junctions took place at higher temperature. This effect is revealed by the net dis-
placement of Tp to higher temperature for x ≥ 0.4.

Figure 4. χ′ and χ″ of (Y1−xSmx)SrBaCu3O6+z as a function of temperature. (a) Heat treatment [O], (b) heat treatment [AO].

Figure 5. Tc and Tp of (Y1−xSmx)SrBaCu3O6+z as a function of x(Sm) following the [O] and [AO] heat treatments.
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Table 1 shows the exact measured values of the structural parameters a, b, c, V and ε of each 
sample as a function of the heat treatment.

3.3. Real part of the AC magnetic susceptibility and the shielding effect

The effect of [AO] heat treatment on Tc was remarkable. The temperature at which the dia-
magnetism sets in is taken as Tc and it was found to be dependent on both x and the heat treat-
ment employed. Since the same sample was used for both heat treatments, one can compare 
the diamagnetic response and note that screening current of the [AO] sample increased con-
siderably compared to that of the [O] sample for each x (see, for example, the case x = 0.8 in 
Figure 6(a)). Table 1 shows the exact measured values of the superconducting parameters Tc, 
Tp, ΔTc and ΔTp of each sample as a function of the heat treatment.

We can see in Figure 7 the shielding effect S which is the amplitude of the real part of the AC 
susceptibility [10–12]. S represents the exclusion of the magnetic flux by the sample in alterna-
tive dynamic mode. S was set arbitrarily equal to 0.89, 0.97 and 1, respectively, for x = 0.5, 0.8, 
and 1, for the sample [AO] at 55 K and for Hdc = 0 Oe.

For each x > 0.5, the [AO] heat treatment increases the shielding effect at all T < Tc and for 
any applied Hdc. For example, in SmSrBaCu3O6+z (x = 1), S[AO] = 2 S[O] at T = 65 K and 
Hdc = 126.5 Oe [13]. When Hdc increases, S[AO] decreases slowly than S[O]. For example, at 
T = 55 K, S[AO] decreases by 10% whereas S[O] decreases by 70%. This indicated an improve-
ment of the quality of the grains and intergranular coupling in the samples [AO].

Figure 6. (a) χ′ and (b) χ″ of (Y0.2Sm0.8)SrBaCu3O6+z as a function of the temperature and heat treatment at four fields Hdc 
(0 < Hdc < 126.5 Oe).
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Table 1 shows the exact measured values of the structural parameters a, b, c, V and ε of each 
sample as a function of the heat treatment.

3.3. Real part of the AC magnetic susceptibility and the shielding effect

The effect of [AO] heat treatment on Tc was remarkable. The temperature at which the dia-
magnetism sets in is taken as Tc and it was found to be dependent on both x and the heat treat-
ment employed. Since the same sample was used for both heat treatments, one can compare 
the diamagnetic response and note that screening current of the [AO] sample increased con-
siderably compared to that of the [O] sample for each x (see, for example, the case x = 0.8 in 
Figure 6(a)). Table 1 shows the exact measured values of the superconducting parameters Tc, 
Tp, ΔTc and ΔTp of each sample as a function of the heat treatment.

We can see in Figure 7 the shielding effect S which is the amplitude of the real part of the AC 
susceptibility [10–12]. S represents the exclusion of the magnetic flux by the sample in alterna-
tive dynamic mode. S was set arbitrarily equal to 0.89, 0.97 and 1, respectively, for x = 0.5, 0.8, 
and 1, for the sample [AO] at 55 K and for Hdc = 0 Oe.

For each x > 0.5, the [AO] heat treatment increases the shielding effect at all T < Tc and for 
any applied Hdc. For example, in SmSrBaCu3O6+z (x = 1), S[AO] = 2 S[O] at T = 65 K and 
Hdc = 126.5 Oe [13]. When Hdc increases, S[AO] decreases slowly than S[O]. For example, at 
T = 55 K, S[AO] decreases by 10% whereas S[O] decreases by 70%. This indicated an improve-
ment of the quality of the grains and intergranular coupling in the samples [AO].

Figure 6. (a) χ′ and (b) χ″ of (Y0.2Sm0.8)SrBaCu3O6+z as a function of the temperature and heat treatment at four fields Hdc 
(0 < Hdc < 126.5 Oe).
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3.4. Imaginary part of the AC magnetic susceptibility and irreversibility line

Looking to the imaginary part of the AC susceptibility χ″, of the sample Y0.2Sm0.8SrBaCu3O6+z 
in Figure 6(b) for example, we can see that the width ΔTp at half maximum of the transition in 
χ″(T) (see Table 1) was smaller in the samples [AO] at all Hdc and the peak Tp shifted less than 
in the sample [O]. Figure 8 shows the field Hdc as a function of t = Tp/Tc with an enhancement 
of the irreversibility line due to argon treatment for x ≥ 0.5 [14]. The data can be analyzed with 
the help of following relation H = K′ (1 − t)n [15]. Straight line plots were obtained when ln(H) 
was plotted against ln(1 – t) in Figure 9. For example, the value of K′ was estimated to be 1677 

Figure 7. Shielding effect S of (Y1−xSmx)SrBaCu3O6+z as a function of the field Hdc and heat treatment at three different 
temperatures (55, 65 and 75 K).

Superfluids and Superconductors136

and 11,741 Oe, respectively, for the samples [O] and [AO] in SmSrBaCu3O6+z (x = 1). K′ may 
be interpreted as the field necessary to reduce the intergranular critical current to zero in the 
limit of Tp = 0 K. We note that the argon treatment considerably increases the value of K′ and 
n, in Table 1 and Figure 10, indicating an improvement in the pinning properties. The dashed 
line indicates the value n = 1.5 for the cuprites given by Miller et al. [15].

3.5. Resistivity

Figure 11 shows that the resistivity ρ(T) of the sample SmSrBaCu3O6+z increases with the tem-
perature. For each temperature, ρ[AO] is superior to ρ[O]. For each x, Tc (ρ = 0) ≈ Tc (χ′) and for 
each heat treatment Tc (χ′) is superior to Tc (ρ = 0) by 2–3 K with Tp (χ″) ≈ Tc (ρ = 0). The linear 
part of ρ(T), in the normal state, follows the relationship ρ = ρ0 + α T, where ρ0 is the resid-
ual resistivity extrapolated to T = 0 K and α is the slope dρ/dT. For example, the sample 
SmBaSrCu3O6+z [O] has α = 1.8 (μΩ cm/K), ρ0 = 242 (μΩ cm) and ρ297 K = 785 (μΩ cm). The 
treatment [AO] reduced considerably these parameters; in particular α[AO] = 0.9 (μΩ cm/K). 
This indicates a reduction of the interaction of carrier charges with phonons.

Figure 8. H as a function of t = Tp/Tc and heat treatment of (Y1−xSmx)SrBaCu3O6+z.
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Figure 9. Ln(H) as a function of ln(1 − t) and heat treatment of (Y1−xSmx)SrBaCu3O6+z.

Figure 10. The field K′ and the exponent n as a function of x and heat treatment of (Y1−xSmx)SrBaCu3O6+z.
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4. Discussions

We saw that the [AO] heat treatment increases the orthorhombic cleaving and eliminated 
some weak unidentified impurity peaks in Figure 1(b). This indicates a good crystallization 
and an improvement of crystallographic quality of the samples [AO].

Our samples were prepared in 1 atm of oxygen. Our iodometry measurements show that the 
total oxygen constant was 6 + z = 6.94 ± 0.04 and do not change after the [AO] heat treatment. 
But for each x, Tc[AO] increased for x ≥ 0.4. So this increase is not due to z but may lie in some 
other factor which governs the superconductivity in these samples.

When x increases from 0 to 1, Tc[O] decreases with ε. Tc[AO] decreases with the orthorhom-
bicity ε until x = 0.2 and afterward it increases from 79 to 85 K in SmSrBaCu3O6+z [AO], as 
shown in Figure 12. When x increases, the parameter b is constant but a (and c) increase 

Figure 11. Resistivity ρ(T) of SmBaSrCu3O6+z as a function of the temperature and heat treatment.

Figure 12. Variation of Tc as a function of the orthorhombicity ε and heat treatments of (Y1−xSmx)SrBaCu3O6+z.
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 indicating an increase of the number of oxygen atoms by chain (NOC) along a axis with a 
decrease of ε (Tc[O]) from orthorhombic toward tetragonal structure in SmSrBaCu3O6+z [O].

For each x, the [AO] treatment increases the orthorhombicity ε (for 0 ≤ x ≤ 1) and Tc (for x ≥ 
0.4). For each x, the parameter a decreases and b increases after the [AO] heat treatment in the 
unit cell of Figure 2. Some oxygen atoms O(4) go to the vacant site O(5) along b axis. So the 
(NOC) and the anionic order in the basal plane increases leading to an increase of psh and Tc 
for x ≥ 0.4 in Figure 15.

For each x ≥ 0.4, the thermal parameter of the apical oxygen O(1) decreased from 2.02 to 
0.27 Å2 in the sample [AO] leading to a decrease of the cationic disorder; of Y (0.893 Å) (or Sm 
(0.965 Å) occupying some Ba (1.42 Å)/Sr (1.12 Å) sites along the c axis. Each sample [O] was 
heated in argon at 850°C. This action removes all the oxygen atoms from the structure and 
increases the atomic diffusion and the Y/Sm-Sr/Ba-Y/Sm order along c axis in the unit cell of 
Figure 2. In fact, the difference of bond valence (B.V.S.): V(Y)-V(Ba) = 0.77 in YBa2Cu3O6.7 and 
1.00 in YBa2Cu3O6.32 indicate that the departure from reduced (6 + z) decreases the disorder of 
Y on the Ba site in YBa2Cu3O6+z [16]. So, the argon heat treatment decreases the disorder of Y/
Sm on the Ba/Sr site. This is justified by the fact that impurity peaks seen in the [O] samples in 
Figure 1(a) disappeared after the [AO] heat treatment in Figure 1(b).

Our results can be explained by the disorder of the oxygen in the basal plane, on the 0(4) and 
0(5) sites along b and a axis, respectively, in Figure 2. This order enhanced the orthorhombic 
symmetry and increased the ratio (b − a)/(b + a). As seen on Figure 13 when x increases, the 
interatomic distance d[Cu(1)─(Sr/Ba)] increases for both heat treatments in agreement with 
the fact that the crystallographic parameter c and the volume of the unit cell increases with 
x. For each x, the [AO] heat treatment decreases this distance for x ≥ 0.5 (and increases it for 
x < 0.5). This decreases the distance d[Cu(1)─O(1)] and enhances the transfer of holes from 
the Cu(1)O chains to the superconducting planes Cu(2)O2 via the apical oxygen O(1) resulting 
in an increase in the hole density psh and Tc for x ≥ 0.4 in Figure 15. Such an increase leads to 

Figure 13. Interatomic distance d[Cu(1)─(Sr/Ba)] as a function of x and heat treatment in (Y1−xSmx)SrBaCu3O6+z.
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optimum superconducting properties and could account for the observed increase in Tc[AO] 
in agreement with the model of transfer of charges. This is justified by the fact that, when 
x increases, the parameter b is constant but a (and c) increase leading to an increase of the 
number of oxygen atoms by chain (NOC) along a axis with a decrease of ε (Tc[O]) from ortho-
rhombic toward tetragonal structure in Figure 12.

When Sm ion occupies Ba (or Sr) site, the same amount of Ba (or Sr) cation is pushed into Y 
site. Sm is a three-valence ion. It increases the positive charge density around Ba (or Sr) site 
and the attractive force with oxygen anion. As a result, oxygen vacancies O(5) along the a-axis 
in the basal plane have higher chance to be filled. On the other hand, Ba+2 (or Sr+2) in Y+3 (or 
Sm+3) site decrease the attractive force with oxygen anion in Cu(2) plane. This increases the 
buckling angle Cu(2)─O(3)─Cu(2) along the a axis. When x increased from 0 to 1, the two 
changes of cation sites increase the parameter a. For each x, the [AO] heat treatment decreases 
the parameter a and increases b as shown in Figure 2. This increases the number of oxygen 
atoms by chain (NOC) along b axis leading to an increase of Tc with a decrease of the ortho-
rhombicity ε for x ≥ 0.2 as seen in Figure 12.

In the normal state, the heat treatment [AO] reduced considerably the linear resistivity parame-
ters indicating a diminution of the interaction of carrier charges with phonons. Tc(χ′) and Tc(ρ = 0)  
were in good agreement.

For each x > 0.5, the [AO] heat treatment improved the shielding effect at all T < Tc and for 
any applied field indicating an enhancement of the quality of the grains and intergranular 
coupling in the samples [AO]. Also for x ≥ 0.5, an enhancement of the irreversibility line was 
noticed in the samples [AO] with an increase of the field K′ showing an improvement in the 
pinning properties. These results are justified by our XRD spectra, with Rietveld refinement, 
that showed an improvement of crystallographic quality of the samples [AO] in Figure 1.

The two arguments (cationic and anionic disorders) are justified here by the four remark-
able correlations observed between Tc(x), the volume of the unit cell V(x) in Figure 14 and 

Figure 14. Correlation between Tc and the volume V of the unit cell as a function of x and heat treatment of (Y1−xSmx)
SrBaCu3O6+z.
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Figure 16. Correlation between δTc = Tc[AO] − Tc[O] and δε = ε[AO] − ε[O] as a function of x and heat treatment of (Y1−xSmx) 
SrBaCu3O6+z.

Figure 17. Correlation between δTc and δK′ as a function of x and heat treatment of (Y1−xSmx)SrBaCu3O6+z.

Figure 15. Correlation between psh and Tc as a function of x and heat treatment of (Y1−xSmx)SrBaCu3O6+z.
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the number psh(x) of holes by Cu(2)─O2 superconducting planes in Figure 15 (deduced from 
the undersaturation zone of the universal relation Tc/Tcmax (psh) [17]), and on the other hand, 
between δTc(x) = Tc[AO] − Tc[O] and δε(x) in Figure 16 and between δTc(x) and δK′(x) in 
Figure 17. So the structural, electrical and superconducting properties are correlated with the 
effect of argon heat treatment.

The increase or decrease in Tc must be related to the ionic size of the rare earth Sm, the varia-
tion of the Cu(1)-apical oxygen distance, hole density, anionic and cationic disorders, etc.

5. Conclusions

These studies indicate the optimization of the superconducting properties of the high-Tc 
superconductors (Y1−xSmx)SrBaCu3O6+z by a simple argon heat treatment. These results are 
a competition between oxygen disorder in basal plane and cationic disorder along c axis. In 
the samples [O], we are in the presence of a cationic disorder of Y/Sm on (Sr/Ba) sites that 
induced an anionic disorder of oxygen’s chains in basal plane. Anionic order dominates in 
the samples [AO] in agreement with the previsions of [4, 5]. In the samples [AO], the remark-
able improvement in the shielding effect (for x > 0.5) and the irreversibility line (for x ≥ 0.5) 
are explained, respectively, by the improvement of the quality of the grains and intergranular 
coupling, and to the improvement of the pinning properties and crystallographic quality of 
these samples. The structural, magnetic and superconducting properties are correlated with 
the effect of argon heat treatment.

These results were explained by the effect of the ionic size of the rare earth, the decrease in 
d[Cu(1)─(Sr/Ba)]; the increase in cationic and chain oxygen ordering; the number of holes 
psh(x) by Cu(2)─O2 superconducting plans and in phase purity for the [AO] samples.
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Figure 16. Correlation between δTc = Tc[AO] − Tc[O] and δε = ε[AO] − ε[O] as a function of x and heat treatment of (Y1−xSmx) 
SrBaCu3O6+z.

Figure 17. Correlation between δTc and δK′ as a function of x and heat treatment of (Y1−xSmx)SrBaCu3O6+z.

Figure 15. Correlation between psh and Tc as a function of x and heat treatment of (Y1−xSmx)SrBaCu3O6+z.
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the number psh(x) of holes by Cu(2)─O2 superconducting planes in Figure 15 (deduced from 
the undersaturation zone of the universal relation Tc/Tcmax (psh) [17]), and on the other hand, 
between δTc(x) = Tc[AO] − Tc[O] and δε(x) in Figure 16 and between δTc(x) and δK′(x) in 
Figure 17. So the structural, electrical and superconducting properties are correlated with the 
effect of argon heat treatment.

The increase or decrease in Tc must be related to the ionic size of the rare earth Sm, the varia-
tion of the Cu(1)-apical oxygen distance, hole density, anionic and cationic disorders, etc.

5. Conclusions

These studies indicate the optimization of the superconducting properties of the high-Tc 
superconductors (Y1−xSmx)SrBaCu3O6+z by a simple argon heat treatment. These results are 
a competition between oxygen disorder in basal plane and cationic disorder along c axis. In 
the samples [O], we are in the presence of a cationic disorder of Y/Sm on (Sr/Ba) sites that 
induced an anionic disorder of oxygen’s chains in basal plane. Anionic order dominates in 
the samples [AO] in agreement with the previsions of [4, 5]. In the samples [AO], the remark-
able improvement in the shielding effect (for x > 0.5) and the irreversibility line (for x ≥ 0.5) 
are explained, respectively, by the improvement of the quality of the grains and intergranular 
coupling, and to the improvement of the pinning properties and crystallographic quality of 
these samples. The structural, magnetic and superconducting properties are correlated with 
the effect of argon heat treatment.

These results were explained by the effect of the ionic size of the rare earth, the decrease in 
d[Cu(1)─(Sr/Ba)]; the increase in cationic and chain oxygen ordering; the number of holes 
psh(x) by Cu(2)─O2 superconducting plans and in phase purity for the [AO] samples.
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