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  “Central dogma” was presented by Dr. Francis Crick 60 years ago. The information 
of nucleotide sequences on DNAs is transcribed into RNAs by RNA polymerases. We 

learned the mechanisms of how transcription determines function of proteins and 
behaviour of cells and even how it brings appearances of organisms.

This book is intended for scientists and medical researchers especially who are 
interested in the relationships between transcription and human diseases. This volume 
consists of an introductory chapter and 14 chapters, divided into 4 parts. Each chapter 

is written by experts in the basic scientific field. A collection of articles presented by 
active and laboratory-based investigators provides recent advances and progresses in 

the field of transcriptional regulation in mammalian cells.
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Preface

We have learned that transcription is the most fundamental biological event both in prokary‐
otic and eukaryotic cells. It plays an essential role in converting information of genomic DNAs
into various functions of proteins. Depending on various circumstances, such that in the
course of development of mammalian cells, it should be precisely controlled to produce re‐
quired amounts of ribonucleic acids or RNAs. Recent studies revealed that dysregulation of
transcription or gene expression frequently occurs in specific human diseases, including can‐
cer. Therefore, understanding the mechanism of transcription and gene expression in eukary‐
otic cells from the aspect of basic biochemistry and molecular biology should give us key
insights into the development of novel therapies for transcription-dysregulated diseases.

In Section 1, the most primary and essential concept of transcription from recent findings is
discussed. In Chapter 1, recent integrative understanding in the mammalian transcription
system is reviewed. Chapters 2 and 3 show recent studies in cellular and viral cis- and trans-
elements, respectively, in detail. And we should remember that mathematical analysis of the
transcription networking is important, and it is reviewed in Chapter 4.

In Section 2, molecular mechanisms of RNA degradation and functions of ncRNAs are re‐
viewed. We will find Chapter 5 important advising us to pay attention not only to synthesis
but also to degradation of RNA molecules. Chapters 6 and 7 make us to realize that ncRNAs
are not merely junk but key regulators for cell behaviour. We could expect novel therapies
with nucleotide-derivative drugs in the near future.

In Section 3, transcriptional control in differentiation of cells that function in the immune
system is reviewed. In Chapter 8, regarding the development of B cells, transcriptional con‐
trol on class switch recombination is reviewed with recent findings. Regulation of T-cell de‐
velopment and differentiation by epigenetic control system are thoroughly explained in
Chapters 9 and 10.

In Section 4, focusing on the molecular mechanisms that control cell behaviour, including
proliferation and migration, the relationships between transcription and cancer generation
are discussed. Chapter 11 describes that phosphorylation of homeobox protein regulates
proliferation and migration of cells. Cell adhesion will send signals to control transcription,
and the details are discussed in Chapter 12. The functions of well-known NF-kB and SOX
proteins in the regulation of cancer generation are thoroughly commented with recent find‐
ings in Chapters 13 and 14, respectively.

The “central dogma” can be metaphorically said here as a kind of ancient war. Then, this
book volume (1) could be a voyage. Visiting various islands (subjects and topics), we meet a
lot of scientists who are the experts studying mechanisms of transcription and gene expres‐
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sion in mammalian cells. The authors show us current progresses in the field of basic biolog‐
ical studies by excellent articles. But how could we reach the goal? Is it safe? Is goddess still
patiently waiting for us to arrive? We would be just anticipating that these questions are
answered in Volume 2.

Fumiaki Uchiumi, PhD
Professor, Department of Gene Regulation

Tokyo University of Science
Japan
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1. Introduction: the RNA world

We have already learned how the genetic codes or biological information are transcribed into 
mRNAs, and then how they are translated into amino acid sequences of various polypeptides. 
This is widely known as “Central Dogma”, the most fundamental and important concept 
in molecular biology. In the translation process, polypeptides are synthesized by ribosomes 
with a template mRNA. Thus, in this context, we tend to take it for granted that the main func-
tion of RNAs is just transporting genomic information from nuclei to cytoplasm. However, if 
we regard a ribosome as a polypeptide-synthesizing protein-RNA complex, which contains 
all major RNAs, mRNA, rRNA, and tRNA, we will realize that the RNAs have biologically 
important roles as enzymatic machinery to synthesize proteins. RNAs are not only required 
for the translation system, but also for splicing/processing of RNAs and telomere elonga-
tion, contained in the protein-RNA complexes, snRNPs, and TERC subunit of the telomerase, 
respectively. Moreover, recent studies revealed that non-coding RNAs (ncRNAs, siRNAs, or 
miRNAs) regulate transcription and translation.

Because, as described, RNAs have both information and function, it is suggested that they 
might have been the most fundamental and primary molecules from the beginning of chemi-
cal evolution before living organisms emerged on earth. Even in the DNA replication process, 
RNAs are required as primers for the leading strand synthesis. Recent study in initiation 
site sequencing (ini-seq) revealed that the human DNA replication origins very frequently 
overlap with transcription start sites (TSSs) and G-quadruplex (G4) motifs [1]. In other words, 
a number of biologically essential events or reactions are dependent on the synthesis of the 
RNA molecules. Thus, it has been proposed that an origin of life has come from an “RNA 

© 2018 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.
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World” [2], which might have given a chance to develop the most biologically essential reac-
tions for life, including replication, transcription, and translation.

Based on the concept that RNAs are the most essential molecules for living things, in this book 
project, it is worth to focus on topics discussing on how transcription is regulated and how it 
becomes if it is dysregulated.

2. Transcriptional controlling system in eukaryotic cells

It is already known that three types of RNA polymerases participate in the synthesis of differ-
ent types of RNAs. The RNA polymerase (RNA pol) I and III catalyzes production of rRNAs, 
tRNAs, and snRNAs. Although they are essentially important enzymes to generate functional 
RNAs, much of the interest have been directed to RNA pol II, which catalyzes both protein-
encoding and non-coding gene transcription. Up to present, molecular mechanisms of how 
each protein-encoding gene is expressed have been well studied. Most of the textbooks in 
molecular biology describe in detail how general transcription factors, including TBP, TFIIB, 
TFIID, TFIIE, TFIIF, and TFIIH, co-operatively work to recruit RNA pol II appropriately onto 
the TSSs [3]. Recently, structure of the eukaryotic RNA pol II complex, containing elongation 
factors, Spt4/5, Elf1, and TFIIS, has been revealed [4]. The entire transcription reaction system 
from initiation to termination on DNA template will be elucidated in the near future.

In eukaryotic cells, epigenetic regulation or chromatin modification affect gene expres-
sion. After unwinding the chromosomes, each gene will be correctly transcribed from TSS 
in the core promoter region. The promoter activity is regulated by enhancer or proximal 
promoter regions, where various transcription factors (TFs) access to bind. These TFs usu-
ally recognize specific DNA sequences or cis-elements, and the enhancement of transcrip-
tional activity is dependent on the combinations of TFs, their binding sites, or distances 
from TSS. Thanks to the completion of human genome project, and with a development 
of Next Generation Sequencing (NGS) and especially Chromatin Immune Precipitation 
sequencing (ChIP-seq) technique [5], we can now refer TF-binding sequences and TSSs 
of most of the genes by a number of online programs, including NCBI, JASPAR, and 
DBTSS databases [6–8]. Promoters and enhancers, which might be digital landmarks on 
genomes for TFs, can determine transcription-initiation frequency. After transcription is 
completed, RNAs should be appropriately processed and modified. These processes are 
regulated by RNA binding helicases and ncRNAs [9]. It should not be ignored that RNAs 
are degraded in RNA exome complexes [10]. The degradation is required for the quality 
control of RNAs and gene expression. Then, mRNAs are incorporated in mRNPs that 
are to be exported from nuclei to cytoplasm with a help of export-component proteins, 
including TREX [11]. Thus, matured mRNA molecules are made through a complicated 
multistep process, though it would be advantageous for cells to fine tune gene expression 
system overall. If unpredictable and undesired expression of some specific genes hap-
pened, it may lead to dysfunctions in mitochondria, immune response, and DNA-repair/
epigenetic controlling systems. If it were deleterious for organisms, it may cause diseases, 
including cancer.

Gene Expression and Regulation in Mammalian Cells - Transcription From General Aspects4

3. Non-coding RNAs (ncRNAs)

Not all of the information on the genomes encodes protein. It is estimated that most (about 
95%) of the genomes consist of non-coding regions. Recent transcriptome analyses, including 
Cap-Analysis Gene Expression (CAGE), revealed that large amount of ncRNAs are contained 
in total transcripts [12]. Because ncRNAs do not encode proteins, they have long been thought 
as “junks” in the genome. However, recent studies discovered that some of them are not 
junks, rather “jewels” in nuclei having essential roles in controlling cell growth, development, 
and function. The ncRNAs are classified into two groups as short ncRNAs (miRNAs, piwiR-
NAs, and snRNAs) and long ncRNAs (lncRNAs), consisting of over 200 ribonucleotides in the 
molecule. The more analytical methods in sequencing RNA molecules developed, the more 
lncRNAs were identified with increasing in number, which are estimated over 35,000 at pres-
ent. The lncRNAs are transcribed by RNA pol II, and their TSSs are frequently (65%) found 
at bidirectional promoter regions [13]. In mouse embryonic cells, transcribed lncRNAs recruit 
TFs and splicing factors to activate neighboring or bi-directional partner gene expression [14]. 
Therefore, lncRNAs may give accurate platforms or TSSs for bi-directional partner genes. 
Recent study with genome editing system identified lncRNA loci regulate genes neighbor-
hood [15]. In addition, it was revealed that specific lncRNAs are contained in nuclear bodies, 
including nuclear speckle (MALAT1), paraspeckle (NEAT1), and polycomb body (TUG1) [16], 
suggesting that lncRNAs affect chromosomal integrity. More importantly, the lncRNAs have 
certain effects on epigenetic gene regulation systems [17]. The famous example is that X inac-
tive specific transcript (Xist) silences X chromosome genes, interacting with transcriptional 
suppressor proteins [18]. Not only Xist, but also other lncRNAs, such as HOTAIR, LUNAR1, 
and MALAT1 are required as scaffolds for DNA methylation/demethylation factors, chro-
mosome looping factors, and splicing factors, respectively [17]. Additionally, enhancer RNA 
(eRNA), which is transcribed at active enhancer, can function as a scaffold for histone aceth-
yltransferase CBP to modulate gene expression [19].

4. Epigenetic control of gene expression

Gene expression pattern could be altered by epigenetic regulation [20]. The epigenetic con-
trol, which mainly regulates expression of sets of genes, is driven by DNA methylation, 
histone modifications, chromatin remodeling, and ncRNAs [20, 21]. A lot of factors that 
are involved in the epigenetic controlling system have been identified and characterized. 
Methyl groups could be transferred to both DNAs and histone proteins by enzymatic reac-
tions. DNA methylation plays pivotal roles in the regulation of nuclear events, including 
gene expression [22]. Especially, when silencing of DNA repair genes occurred, it may boost 
mutation rate, and it will be resulted in the genome instability. Therefore, DNA methyla-
tion is regarded as one of the essential biomarkers in cancer [23]. The reaction is catalyzed 
by at least three independent DNA methyltransferases (DNMTs): DNMT1, DNMT3A, and 
DNMT3B [24], using S-adenosyl-l-methyonine (AdoMet) as a methyl group donor [25]. 
The ten-eleven translocation (TET) family proteins, including TET1, TET2, and TET3, are 
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regulated by RNA binding helicases and ncRNAs [9]. It should not be ignored that RNAs 
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epigenetic controlling systems. If it were deleterious for organisms, it may cause diseases, 
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3. Non-coding RNAs (ncRNAs)

Not all of the information on the genomes encodes protein. It is estimated that most (about 
95%) of the genomes consist of non-coding regions. Recent transcriptome analyses, including 
Cap-Analysis Gene Expression (CAGE), revealed that large amount of ncRNAs are contained 
in total transcripts [12]. Because ncRNAs do not encode proteins, they have long been thought 
as “junks” in the genome. However, recent studies discovered that some of them are not 
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and function. The ncRNAs are classified into two groups as short ncRNAs (miRNAs, piwiR-
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at bidirectional promoter regions [13]. In mouse embryonic cells, transcribed lncRNAs recruit 
TFs and splicing factors to activate neighboring or bi-directional partner gene expression [14]. 
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including nuclear speckle (MALAT1), paraspeckle (NEAT1), and polycomb body (TUG1) [16], 
suggesting that lncRNAs affect chromosomal integrity. More importantly, the lncRNAs have 
certain effects on epigenetic gene regulation systems [17]. The famous example is that X inac-
tive specific transcript (Xist) silences X chromosome genes, interacting with transcriptional 
suppressor proteins [18]. Not only Xist, but also other lncRNAs, such as HOTAIR, LUNAR1, 
and MALAT1 are required as scaffolds for DNA methylation/demethylation factors, chro-
mosome looping factors, and splicing factors, respectively [17]. Additionally, enhancer RNA 
(eRNA), which is transcribed at active enhancer, can function as a scaffold for histone aceth-
yltransferase CBP to modulate gene expression [19].

4. Epigenetic control of gene expression

Gene expression pattern could be altered by epigenetic regulation [20]. The epigenetic con-
trol, which mainly regulates expression of sets of genes, is driven by DNA methylation, 
histone modifications, chromatin remodeling, and ncRNAs [20, 21]. A lot of factors that 
are involved in the epigenetic controlling system have been identified and characterized. 
Methyl groups could be transferred to both DNAs and histone proteins by enzymatic reac-
tions. DNA methylation plays pivotal roles in the regulation of nuclear events, including 
gene expression [22]. Especially, when silencing of DNA repair genes occurred, it may boost 
mutation rate, and it will be resulted in the genome instability. Therefore, DNA methyla-
tion is regarded as one of the essential biomarkers in cancer [23]. The reaction is catalyzed 
by at least three independent DNA methyltransferases (DNMTs): DNMT1, DNMT3A, and 
DNMT3B [24], using S-adenosyl-l-methyonine (AdoMet) as a methyl group donor [25]. 
The ten-eleven translocation (TET) family proteins, including TET1, TET2, and TET3, are 
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the 5-methylcytosine hydroxylases that remove methyl group from an oxidized form of the 
cytosine (5mC), 5-hydroxymethylcytosine (5hmC), and other forms [20, 22]. Recent study 
revealed that intragenic DNA methylation assists fidelity in genome transcription initiation 
[26]. NRF protein preferentially accesses to unmethylated genomic regions, indicating that 
DNA methylation status restricts binding of methylation sensitive TFs onto their recognition 
sequences [27]. A methylation sensitive SELEX analysis indicated that transcription factor 
ETS protein binding was inhibited by mCpG, but homeobox proteins, such as POU and 
NFAT, preferentially bind to the methylation introduced site [28]. The results suggest that 
DNA recognition mechanism of several TFs that mainly act in the development of organisms 
is dependent on the methylation of DNA.

Histone proteins could be modified by attachment of various molecules, including methyl-, 
acetyl-, hydroxyl-, SUMOyl-, and poly ADP(ribosyl)-groups [20, 29]. In addition, they are 
acylated on the Lys residues to regulate transcription of genes that encode metabolic-response 
factors [30]. These modifications are recognized by different proteins, such as bromodomain-
containing proteins [31], double PHD finger domain proteins [30, 32], YEATS domain pro-
teins [30], WD40 proteins [33], and Ankyrin-repeat proteins [34].

As described above, epigenetic regulation is tightly linked with genome stability, and it is 
affected by modifying group molecules or metabolites, including acetyl-CoA, AdoMet, and 
NAD+ [35]. These observations suggest that aging is not only determined by genetic infor-
mation, but also by environmental stresses, including nutrient conditions [36]. Interestingly, 
recent study indicated that lactate dehydrogenase LDHA promotes IFN-γ expression through 
an epigenetic mechanism [37]. The results suggest that LDHA-mediated aerobic glycolysis 
could enforce mitochondria to generate more acetyl-CoA that is to be utilized for histone 
modification. Poly(ADP-ribosyl)ation is a protein modification reaction that is catalyzed by 
PARP enzymes using NAD+ as a substrate. The poly(ADP-ribosyl)ation occurs on histones, 
non-histone proteins, DNA-repair factors [38], and TFs to regulate gene expression [39, 40]. In 
summary, nutrients or food intake may have some roles in regulating transcription because 
they can induce epigenetic changes [41].

5. Transcription disorders and human diseases

The great progresses in the whole genome sequencing (WGS) techniques enabled us to study 
subtle differences in genomic sequences between cancer and normal cells [42]. Somatic muta-
tions on driver genes in various cancers have been identified [43] and the statistical data 
will be applied on diagnosis or even on the prediction of cancer risks and incidences [44]. 
Very recently, it was proposed that analysis of WGS data from circulating tumor cells could 
be applied for personalized therapy for malignant cancer [45]. Importantly, mutations in 
5′-upstream region of the human TERT gene are frequently identified in melanoma [46, 47]. 
It should be noted that in certain cancers, especially in melanomas, the rate of somatic muta-
tions is highly increased at active TF-binding sites, where they interfere accession of nucleo-
tide excision repair (NER) machinery [48, 49]. Thus, cancer-related mutations are not only 
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present in the protein-coding regions, but also in the gene expression regulatory regions, 
including promoters and enhancers in the genomes.

Various diseases may be caused by dysregulations in transcription. For example, Yes-associated 
protein (YAP) and TAZ proteins, which activate inflammatory gene expression, are involved 
in the atherosclerosis [50]. In several neurological and neuromuscular disorders, including 
Huntington disease, muscular dystrophy, and amyotrophic lateral sclerosis (ALS), accumula-
tion of repeat containing RNAs in aberrant foci in nucleus have been observed [51]. Moreover, 
shRNA screening system in vitro showed that transcription elongation factors, including JMJD6, 
help cells to survive in the microenvironment of glioblastoma [52]. The result suggests that 
the transcription elongation machinery could be an effective therapeutic target. It was recently 
reported that ENL protein, which possesses acetyl lysine recognizing YEATS domain [30], acts 
as an activator of leukemia-diving factor encoding gene expression [53, 54]. Therefore, target-
ing the ENL protein could be an effective therapeutic strategy against aggressive leukemia. 
Currently, candidate drugs that target HDAC [55–57] and DNMTs [56, 57] are under clinical 
tests and expected to contribute to the development of novel cancer therapeutics. Epigenetic 
alterations on genomic DNAs is not only associated with cancer generation, but also with neu-
rologic diseases [58], autoinflammatory diseases [59], and metabolic diseases, including type II 
diabetes [60]. Toward establishment of new therapies for these diseases, epigenetic modulators 
will be the right targets for effective treatment with lowered side effects [61]. We should remem-
ber drug resistance of cancer could be caused by compounds that induce epigenetic reprogram-
ming, and thereby alter transcriptional state, which is regulated by SOX proteins, Jun/AP1, and 
GGAA-recognizing factors [62]. Therefore, secondly effects of drugs on transcription system 
should be examined. In summary, next generation therapeutics may have to put gene expres-
sion systems under control.

6. Future prospects

Overall, most of the cellular responses to signals and stresses from the environment, includ-
ing DNA damage, nutrient condition, viral infections, and some specific drugs, could affect 
transcription or gene expression profile. Presently, it has been shown that introduction of 
several TFs (OKSM factors or Yamanaka factors) into somatic cells can reprogram and convert 
them with pluripotency [63, 64]. Very recently, it was experimentally shown that iPS cell-
derived dopaminergic neurons could be applied for the treatment of Parkinson’s disease [65]. 
These experimentally supported evidences suggest that introduction of certain combination 
of TFs into cancer cells might enforce them to reprogram transcription profile so that they 
could stop proliferation but acquire DNA repair with more accuracy.

Clinical application of gene therapy [66] with appropriate set of expression vectors to induce 
DNA repair or mitochondrial function associated genes will soon be established. Not only 
vectors, which deliver TF-encoding genes into cell nuclei, but also nucleic acids, including 
siRNAs, lncRNAs, or RNA aptamers, should be also improved for the strategy. In addition, 
genome editing on the promoter or enhancer regions of some target genes of patient derived 
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NFAT, preferentially bind to the methylation introduced site [28]. The results suggest that 
DNA recognition mechanism of several TFs that mainly act in the development of organisms 
is dependent on the methylation of DNA.

Histone proteins could be modified by attachment of various molecules, including methyl-, 
acetyl-, hydroxyl-, SUMOyl-, and poly ADP(ribosyl)-groups [20, 29]. In addition, they are 
acylated on the Lys residues to regulate transcription of genes that encode metabolic-response 
factors [30]. These modifications are recognized by different proteins, such as bromodomain-
containing proteins [31], double PHD finger domain proteins [30, 32], YEATS domain pro-
teins [30], WD40 proteins [33], and Ankyrin-repeat proteins [34].

As described above, epigenetic regulation is tightly linked with genome stability, and it is 
affected by modifying group molecules or metabolites, including acetyl-CoA, AdoMet, and 
NAD+ [35]. These observations suggest that aging is not only determined by genetic infor-
mation, but also by environmental stresses, including nutrient conditions [36]. Interestingly, 
recent study indicated that lactate dehydrogenase LDHA promotes IFN-γ expression through 
an epigenetic mechanism [37]. The results suggest that LDHA-mediated aerobic glycolysis 
could enforce mitochondria to generate more acetyl-CoA that is to be utilized for histone 
modification. Poly(ADP-ribosyl)ation is a protein modification reaction that is catalyzed by 
PARP enzymes using NAD+ as a substrate. The poly(ADP-ribosyl)ation occurs on histones, 
non-histone proteins, DNA-repair factors [38], and TFs to regulate gene expression [39, 40]. In 
summary, nutrients or food intake may have some roles in regulating transcription because 
they can induce epigenetic changes [41].

5. Transcription disorders and human diseases

The great progresses in the whole genome sequencing (WGS) techniques enabled us to study 
subtle differences in genomic sequences between cancer and normal cells [42]. Somatic muta-
tions on driver genes in various cancers have been identified [43] and the statistical data 
will be applied on diagnosis or even on the prediction of cancer risks and incidences [44]. 
Very recently, it was proposed that analysis of WGS data from circulating tumor cells could 
be applied for personalized therapy for malignant cancer [45]. Importantly, mutations in 
5′-upstream region of the human TERT gene are frequently identified in melanoma [46, 47]. 
It should be noted that in certain cancers, especially in melanomas, the rate of somatic muta-
tions is highly increased at active TF-binding sites, where they interfere accession of nucleo-
tide excision repair (NER) machinery [48, 49]. Thus, cancer-related mutations are not only 
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present in the protein-coding regions, but also in the gene expression regulatory regions, 
including promoters and enhancers in the genomes.

Various diseases may be caused by dysregulations in transcription. For example, Yes-associated 
protein (YAP) and TAZ proteins, which activate inflammatory gene expression, are involved 
in the atherosclerosis [50]. In several neurological and neuromuscular disorders, including 
Huntington disease, muscular dystrophy, and amyotrophic lateral sclerosis (ALS), accumula-
tion of repeat containing RNAs in aberrant foci in nucleus have been observed [51]. Moreover, 
shRNA screening system in vitro showed that transcription elongation factors, including JMJD6, 
help cells to survive in the microenvironment of glioblastoma [52]. The result suggests that 
the transcription elongation machinery could be an effective therapeutic target. It was recently 
reported that ENL protein, which possesses acetyl lysine recognizing YEATS domain [30], acts 
as an activator of leukemia-diving factor encoding gene expression [53, 54]. Therefore, target-
ing the ENL protein could be an effective therapeutic strategy against aggressive leukemia. 
Currently, candidate drugs that target HDAC [55–57] and DNMTs [56, 57] are under clinical 
tests and expected to contribute to the development of novel cancer therapeutics. Epigenetic 
alterations on genomic DNAs is not only associated with cancer generation, but also with neu-
rologic diseases [58], autoinflammatory diseases [59], and metabolic diseases, including type II 
diabetes [60]. Toward establishment of new therapies for these diseases, epigenetic modulators 
will be the right targets for effective treatment with lowered side effects [61]. We should remem-
ber drug resistance of cancer could be caused by compounds that induce epigenetic reprogram-
ming, and thereby alter transcriptional state, which is regulated by SOX proteins, Jun/AP1, and 
GGAA-recognizing factors [62]. Therefore, secondly effects of drugs on transcription system 
should be examined. In summary, next generation therapeutics may have to put gene expres-
sion systems under control.

6. Future prospects

Overall, most of the cellular responses to signals and stresses from the environment, includ-
ing DNA damage, nutrient condition, viral infections, and some specific drugs, could affect 
transcription or gene expression profile. Presently, it has been shown that introduction of 
several TFs (OKSM factors or Yamanaka factors) into somatic cells can reprogram and convert 
them with pluripotency [63, 64]. Very recently, it was experimentally shown that iPS cell-
derived dopaminergic neurons could be applied for the treatment of Parkinson’s disease [65]. 
These experimentally supported evidences suggest that introduction of certain combination 
of TFs into cancer cells might enforce them to reprogram transcription profile so that they 
could stop proliferation but acquire DNA repair with more accuracy.

Clinical application of gene therapy [66] with appropriate set of expression vectors to induce 
DNA repair or mitochondrial function associated genes will soon be established. Not only 
vectors, which deliver TF-encoding genes into cell nuclei, but also nucleic acids, including 
siRNAs, lncRNAs, or RNA aptamers, should be also improved for the strategy. In addition, 
genome editing on the promoter or enhancer regions of some target genes of patient derived 

Introductory Chapter: Current Studies in Transcriptional Control System; Toward the…
http://dx.doi.org/10.5772/intechopen.71701

7



cells will be an effective approach to treat specific diseases. For example, it was recently 
reported that genome editing to delete α-globin enhancer reduces its excessed expression in 
primary human hematopoietic stem cells, strongly suggesting the clinical use of the technique 
could be applied as a potential therapy for β-thalassemia [67]. Therefore, genome editing on 
transcription regulatory elements will be an alternative novel gene therapy for leukemia and 
cancer, in accordance with a progress in gene delivery system. In the near future, the continu-
ing studies in the transcription controlling systems will successfully contribute to establish 
novel therapeutics for various human intractable diseases, including cancer, immunological 
diseases, and neuro-degenerating diseases.
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Abstract

Regulation of mammalian gene expression has been an ever growing subject in the field
of Biology and the biomedical science research. In the last several decades, extensive
amount of research together with the implementation of the latest technologies revealed
that the whole process is regulated at the multiple stages with a series of interconnected
complex biochemical and molecular pathways. Unearthing this complexity in one hand
helps us in understanding the concerted effort put by the respective cellular machinery
to regulate the whole process, and on the other hand, it provides a new insight about the
development of several diseases where gene expressions play a pivotal role. Discussions
here focus on the involvement of transcription factors or cofactors and the linkage of the
transcription network with the signal transduction pathways. Besides proteins as a
regulator, the role of the nucleic acids such as miRNA, chromosomal conformation and
the modification of DNA bases or core histone proteins, in gene expression has also been
explored. The purpose of this chapter is to provide the big picture of the diverse regula-
tory network and the phenomenal complexity of the regulation of gene expression.

Keywords: transcription factor, gene expression, structure-function relation

1. Introduction

Over the past few decades, extensive amounts of research have been carried out to understand
the regulation of mammalian gene expression. Studies were originally started with bacterio-
phage, yeast and other lower order eukaryotes, and the acquired knowledge was later impli-
cated to understand the mammalian systems, including the human cells. Several milestone
discoveries in early days helped scientists to draw the very basic picture of gene expression,
which includes lysogenic to lytic phase transition of the bacteriophage lambda (λ), inducible
gene regulation in bacteria (lac operon system) and the sequential gene expression during
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early development of Drosophila embryo. All those studies clearly demonstrated that gene
expression is an outcome of a concerted participation, triggered by intracellular or extracellular
stimuli, of several intracellular protein factors and cofactors. At the same time, it was assumed
that the scenario will be more complicated for the higher order eukaryotes simply due to
presence of multistep regulatory processes with the involvement of more factors and cofactors.
Until recently, a substantial amount of studies clearly depicted that the regulation of mamma-
lian gene expression is more complicated than we thought ever before. This complex regula-
tory process comprises of a sequential or simultaneous involvement of at least four major steps
and those are as follows:

A. transcriptional

B. posttranscriptional

C. epigenetic

D. translational

Due to the lack of space, rather than going in to the intricate details, a broad overview of each
step would be provided taking the example of a few very well-studied systems.

Transcriptional control: Studies on transcriptional regulation are perhaps the most investi-
gated segment in understanding the complexity of mammalian gene expression. Before going
into the detail, discussion about the regulatory mechanisms, we should have a very clear idea
about the process of transcription. Broadly, it is a process where the enzyme RNA polymerase
(RNA Pol) decodes the genetic information, in the form of RNA that stored in the chromo-
somal DNA. The transcription machinery produces five types of RNAs, which includes mes-
senger RNA (mRNA) contributes between 1 and 2% of the total transcripts, ribosomal RNA
(rRNA) that covers more than 80% of the total transcripts, transfer RNA (tRNA, required for
translation), the recently discovered micro RNA (miRNA) and small interfering RNA (siRNA).
Among the several subtypes of RNA produced at any time, only mRNA translates into pro-
teins. All different types of RNA molecules, synthesized by 50 to 30 movement of polymerases,
are not produced by a single type of enzyme. For example, mRNA is transcribed by RNA PolII,
whereas rRNA is produced by RNA PolI, and obviously, the regulation of transcription to
synthesize each subtypes of RNA is significantly diverse and complicated. Our discussion here
is mostly focused on the regulation of RNA PolII driven transcription, which has been inves-
tigated most rigorously.

Almost 24% of the human genes contain an evolutionary conserve DNA sequence element
(50TATAAA30) in the core promoter or a variant of it called as TATA box or also known as
Goldberg-Hogness box located 25–35 bp upstream of the transcription start site. The advan-
tage of this AT rich sequence is that it facilitates the unwinding of the promoter DNA upon
binding of the specific protein TBP (TATA binding protein) which is part of the TFIID complex.
This huge multiprotein TFIID complex is specifically playing a very important role because it
is associated with CDK7, �8, or �9 which are required for the phosphorylation of the C-
terminal domain (CTD) of RNA PolII. TFIIA, which is another core factor, stabilizes the
TFIID-DNA complex. Once the binding is stabilized, then RNA-PolII recognized the protein
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complex and recruited to make the PIC (pre-initiation complex). Among the other core factors,
TFIIH plays a very important role in the transcription initiation because this multifunctional
protein comprises of DNA-dependent ATPase, helicase and protein kinase activities [1].

Recent bioinformatics studies on human genome indicated that about 80% of the genes are
transcribed from the promoter where TATA box does not exist. Such TATA-less genes are
characterized by the presence of multiple promoters and transcription start sites and generate
several transcripts. However, the question that remains unanswered here was how the tran-
scription starts in this class of promoter? Or, is there any other role of TBP here? Earlier studies
[2] indicated that the transcription factor TFIID and TBP were also involved in the initiation of
transcription. The involvement of TFIID is conceivable because the associated CDK’s are
required for the CTD phosphorylation of RNA PolII but the function of TBP was not clear.
Recent studies [3] on unicellular eukaryote showed that the DNA binding domain of TBP was
not required for the transcription, which implied that TBP does other essential functions which
could be a subject of further studies.

Transcriptions in mammalian cells are regulated at multiple stages and several protein factors
and cofactors are involved at each stage. In general, a transcriptionally active gene is controlled
by a stretch of DNA sequence mostly situated at the upstream of the transcription start site
(�500 bp to �1000 bp) defined as promoters which is a docking site of several proteins termed
as transcription factors (TF). Mammalian cells synthesize around 3000 transcription factors [4],
and each one harbors a specific DNA sequence binding motif.

Transcription factors (TF) are the fundamental regulators of eukaryotic transcription. There-
fore, to understand the complexity of transcription, we should have a very clear idea about
correlation between the structural diversities and the functional activities of these proteins. TFs
can be subdivided into two major categories based on the mechanisms by which they control
the gene expression. TFIIA, TFIIB, TFIID, TFIIE, TFIIF and TFIIH are known as basal transcrip-
tion factors because they are required to form a complex with RNA PolII, known as the PIC,
for the transcription of the majority of the mammalian genes irrespective of the nature of cells
or tissue types [5].The PIC is a huge multiprotein complex with multiple functions that include
binding of the DNA sequence at the transcription start site, recruitment of RNA PolII, creating
the bubble by changing the helical structure of the DNA so the polymerase can move after
phosphorylation of the CTD.

Ubiquitous TFs are a class of DNA proteins bind to the promoter proximal region of a vast range
of mammalian genes after recognizing a unique and conserved DNA sequence. Transcription
factors such as Sp1 binds to the 50-GGGCGG-30 and AP1 binds to the 50-TGA(G/C)TCA-30 across
the species. In general, ubiquitous transcription factors such as AP1 and SP1 are engaged in two
major functions. One is the DNA binding and other is the recruitment of associated factors to
initiate the transcription and in this context, structure-function relation plays a very important
role. In case of TF, DNA binding introduces an inevitable change in the three-dimensional struc-
ture of the protein, which makes it interactive to the other cofactor proteins. This altered structure
promotes to make a functionally active multiprotein complex that is essential in establishing the
link with the extra and intracellular signal transduction pathways and at the same time, passing
this signal effectively to the transactivation domain for transcription initiation.
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early development of Drosophila embryo. All those studies clearly demonstrated that gene
expression is an outcome of a concerted participation, triggered by intracellular or extracellular
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presence of multistep regulatory processes with the involvement of more factors and cofactors.
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tory process comprises of a sequential or simultaneous involvement of at least four major steps
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A. transcriptional

B. posttranscriptional
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D. translational

Due to the lack of space, rather than going in to the intricate details, a broad overview of each
step would be provided taking the example of a few very well-studied systems.
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Among the several subtypes of RNA produced at any time, only mRNA translates into pro-
teins. All different types of RNA molecules, synthesized by 50 to 30 movement of polymerases,
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whereas rRNA is produced by RNA PolI, and obviously, the regulation of transcription to
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tigated most rigorously.

Almost 24% of the human genes contain an evolutionary conserve DNA sequence element
(50TATAAA30) in the core promoter or a variant of it called as TATA box or also known as
Goldberg-Hogness box located 25–35 bp upstream of the transcription start site. The advan-
tage of this AT rich sequence is that it facilitates the unwinding of the promoter DNA upon
binding of the specific protein TBP (TATA binding protein) which is part of the TFIID complex.
This huge multiprotein TFIID complex is specifically playing a very important role because it
is associated with CDK7, �8, or �9 which are required for the phosphorylation of the C-
terminal domain (CTD) of RNA PolII. TFIIA, which is another core factor, stabilizes the
TFIID-DNA complex. Once the binding is stabilized, then RNA-PolII recognized the protein
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complex and recruited to make the PIC (pre-initiation complex). Among the other core factors,
TFIIH plays a very important role in the transcription initiation because this multifunctional
protein comprises of DNA-dependent ATPase, helicase and protein kinase activities [1].

Recent bioinformatics studies on human genome indicated that about 80% of the genes are
transcribed from the promoter where TATA box does not exist. Such TATA-less genes are
characterized by the presence of multiple promoters and transcription start sites and generate
several transcripts. However, the question that remains unanswered here was how the tran-
scription starts in this class of promoter? Or, is there any other role of TBP here? Earlier studies
[2] indicated that the transcription factor TFIID and TBP were also involved in the initiation of
transcription. The involvement of TFIID is conceivable because the associated CDK’s are
required for the CTD phosphorylation of RNA PolII but the function of TBP was not clear.
Recent studies [3] on unicellular eukaryote showed that the DNA binding domain of TBP was
not required for the transcription, which implied that TBP does other essential functions which
could be a subject of further studies.

Transcriptions in mammalian cells are regulated at multiple stages and several protein factors
and cofactors are involved at each stage. In general, a transcriptionally active gene is controlled
by a stretch of DNA sequence mostly situated at the upstream of the transcription start site
(�500 bp to �1000 bp) defined as promoters which is a docking site of several proteins termed
as transcription factors (TF). Mammalian cells synthesize around 3000 transcription factors [4],
and each one harbors a specific DNA sequence binding motif.

Transcription factors (TF) are the fundamental regulators of eukaryotic transcription. There-
fore, to understand the complexity of transcription, we should have a very clear idea about
correlation between the structural diversities and the functional activities of these proteins. TFs
can be subdivided into two major categories based on the mechanisms by which they control
the gene expression. TFIIA, TFIIB, TFIID, TFIIE, TFIIF and TFIIH are known as basal transcrip-
tion factors because they are required to form a complex with RNA PolII, known as the PIC,
for the transcription of the majority of the mammalian genes irrespective of the nature of cells
or tissue types [5].The PIC is a huge multiprotein complex with multiple functions that include
binding of the DNA sequence at the transcription start site, recruitment of RNA PolII, creating
the bubble by changing the helical structure of the DNA so the polymerase can move after
phosphorylation of the CTD.

Ubiquitous TFs are a class of DNA proteins bind to the promoter proximal region of a vast range
of mammalian genes after recognizing a unique and conserved DNA sequence. Transcription
factors such as Sp1 binds to the 50-GGGCGG-30 and AP1 binds to the 50-TGA(G/C)TCA-30 across
the species. In general, ubiquitous transcription factors such as AP1 and SP1 are engaged in two
major functions. One is the DNA binding and other is the recruitment of associated factors to
initiate the transcription and in this context, structure-function relation plays a very important
role. In case of TF, DNA binding introduces an inevitable change in the three-dimensional struc-
ture of the protein, which makes it interactive to the other cofactor proteins. This altered structure
promotes to make a functionally active multiprotein complex that is essential in establishing the
link with the extra and intracellular signal transduction pathways and at the same time, passing
this signal effectively to the transactivation domain for transcription initiation.
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Structurally, TFs can be subdivided into four major categories such as (1) helix-turn-helix
proteins, (2) zinc finger proteins, (3) leucine zipper proteins and (4) helix-loop-helix proteins.
Significant amount of studies were conducted to understand the impact of the three-
dimensional structure with the functional activity of the protein. Each structural motif contrib-
utes to the (A) binding of the protein to the DNA, (B) homo- or heterodimer formation and (C)
subsequent transactivation. To understand the structure-function relationship, we could fur-
ther discuss citing examples of zinc finger proteins.

Mammalian cells produce about 1000 different types of zinc finger proteins and a significant
part of them work as a transcription factor. The very well-studied Sp1 protein contains three
zinc finger domains at the C-terminal end of the protein, which are responsible for the DNA
binding activity of this protein. To make a higher order multiprotein complex, SP1 interacts
with a variety of proteins which is often mediated by the zinc finger domains. For example,
SP1 interacts with the CyclinD1 and the retinoblastoma protein pRB to regulate the transcrip-
tion of the human keratin4 gene in squamous epithelium cells [6]. Our studies with zinc finger
transcription factor HiNF-P very clearly demonstrated that the zinc finger domains are respon-
sible for the DNA binding as a well as for the interaction with negative cell cycle regulator
protein p57/kip2 (the zinc finger domains third and fourth domain from the N-terminal end of
HiNF-P are required, (Figure 1). Our studies demonstrated that the HiNF-P-p57/Kip2 interac-
tion is required for the downregulation of H4 gene transcription and the HiNF-P-NPAT/220
association, which is discussed further, not mediated through Zn finger domain, is required for
the transcription activation [7].

Transcription factors that belong to the class of helix-turn-helix proteins, leucine zipper proteins
and helix-loop-helix proteins are evolutionary conserve group of proteins and are responsible for
the expression of the genes associated with cellular differentiation, lineage commitments and

Figure 1. Zn-finger domain of HiNF-P is responsible for the interaction with p57. Zn fingers are marked as vertical gray
rectangles. N-terminal deletion mutants of HiNF-P were co-expressed with p57 to perform co-immunoprecipitation
experiments. Numbers of amino acids present in each deletion mutant are mentioned at the end of the c-terminal domain.
Interaction with p57 of each deletion mutants is mentioned in a separate table at the right-hand side of the figure with +ve
(interacting) or –ve (noninteracting).
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organogenesis. The conserve helical structure contributes to the binding of the major groove of
the DNA and the dimerization. In addition to form homodimer, they also form heterodimer and
often found that this heterodimer is the functionally active transcription promoting complex. For
example, the leucine zipper transcription factor c-Fos cannot bind the DNA unless it forms a
heterodimer with another leucine zipper protein c-Jun and interestingly, this heterodimer forma-
tion enhances the binding efficiency around 30-fold.

Therefore, it can be concluded that the mammalian gene expression is primarily regulated by
the general and a set of ubiquitous transcription factors. However, the next level of regulation
begins with the binding of a set of gene selective transcription factor to the promoter proximal
region. Most of the cases, these gene-selective transcription factors are connected to the extra-
or intracellular signal transduction pathways, which act as master regulator to switch ON or
OFF the gene expression. This fact can be illustrated further by taking a very well-studied cell
cycle regulated transcription of human histone H4 gene.

Transcription of H4 gene upregulates several fold at the onset of S-phase of the mammalian cell
cycle in order to package the newly synthesized DNA. The one part of the proximal promoter,
close to the transcription start site (Site-II) of the H4 gene contains the binding site of three
major gene specific transcription factorHiNF-M/IFR-2, HiNF-D/CDPcut andHiNF-P (Figure 2).
HiNF-M/IRF2 is a downstream target of master transcription factor E2F, which also regulates
the expression of cell cycle check point controlling cyclins and CDKs. On the other hand, HiNF-
P binds with its cofactor NPAT/p220, which is a direct subject of CyclinE/CDK2 that controls
the G1/S transition, whereas HiFND/CDPcut is a multimeric protein with homeodomain pro-
tein CDPcut participates in DNA binding. Ectopic expression of HiNF-P and HiNF-M activates
the H4 gene transcription but HiNF-D/CDPcut downregulates the transcriptional activity,
which is an indication that transcription can be positively or negatively regulated depending
upon the relative abundance of these factors at this region of the promoter.

The other part of the proximal promoter located further from the transcription start site (site-I) is
the binding location for the ubiquitous transcription factors such as AP1 and SP1. Further studies

Figure 2. Human H4 gene promoter and the transcription factor binding sites. H4 gene is regulated at the G1/S cell cycle
check point by a series of basic and the gene elective transcription factors binding over span of 1.0 kb DNA sequence. The
Site-II DNA sequence is considered as the cell cycle element because it is the binding site of the cell cycle regulatory
transcription factors as mentioned in the text.
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tion is required for the downregulation of H4 gene transcription and the HiNF-P-NPAT/220
association, which is discussed further, not mediated through Zn finger domain, is required for
the transcription activation [7].

Transcription factors that belong to the class of helix-turn-helix proteins, leucine zipper proteins
and helix-loop-helix proteins are evolutionary conserve group of proteins and are responsible for
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organogenesis. The conserve helical structure contributes to the binding of the major groove of
the DNA and the dimerization. In addition to form homodimer, they also form heterodimer and
often found that this heterodimer is the functionally active transcription promoting complex. For
example, the leucine zipper transcription factor c-Fos cannot bind the DNA unless it forms a
heterodimer with another leucine zipper protein c-Jun and interestingly, this heterodimer forma-
tion enhances the binding efficiency around 30-fold.

Therefore, it can be concluded that the mammalian gene expression is primarily regulated by
the general and a set of ubiquitous transcription factors. However, the next level of regulation
begins with the binding of a set of gene selective transcription factor to the promoter proximal
region. Most of the cases, these gene-selective transcription factors are connected to the extra-
or intracellular signal transduction pathways, which act as master regulator to switch ON or
OFF the gene expression. This fact can be illustrated further by taking a very well-studied cell
cycle regulated transcription of human histone H4 gene.

Transcription of H4 gene upregulates several fold at the onset of S-phase of the mammalian cell
cycle in order to package the newly synthesized DNA. The one part of the proximal promoter,
close to the transcription start site (Site-II) of the H4 gene contains the binding site of three
major gene specific transcription factorHiNF-M/IFR-2, HiNF-D/CDPcut andHiNF-P (Figure 2).
HiNF-M/IRF2 is a downstream target of master transcription factor E2F, which also regulates
the expression of cell cycle check point controlling cyclins and CDKs. On the other hand, HiNF-
P binds with its cofactor NPAT/p220, which is a direct subject of CyclinE/CDK2 that controls
the G1/S transition, whereas HiFND/CDPcut is a multimeric protein with homeodomain pro-
tein CDPcut participates in DNA binding. Ectopic expression of HiNF-P and HiNF-M activates
the H4 gene transcription but HiNF-D/CDPcut downregulates the transcriptional activity,
which is an indication that transcription can be positively or negatively regulated depending
upon the relative abundance of these factors at this region of the promoter.

The other part of the proximal promoter located further from the transcription start site (site-I) is
the binding location for the ubiquitous transcription factors such as AP1 and SP1. Further studies

Figure 2. Human H4 gene promoter and the transcription factor binding sites. H4 gene is regulated at the G1/S cell cycle
check point by a series of basic and the gene elective transcription factors binding over span of 1.0 kb DNA sequence. The
Site-II DNA sequence is considered as the cell cycle element because it is the binding site of the cell cycle regulatory
transcription factors as mentioned in the text.
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provided clear evidence that the binding of the gene-specific transcription factors at site-II was
conditional. A complete loss of HiNF-M/IFR-2, HiNF-D/CDPcut and HiNF-P binding was
noticed when cells switch over to differentiation where the H4 gene transcription is shut down
completely, but the bindings of AP1, SP1 were observed to be unaffected under this condition.
Now the question is how histone H4 gene transcription is connected to the cell cycle check point?
Growth factor-dependent signal activated CyclinE/CDK2 complex phosphorylates many essen-
tial proteins including NPAT/p220. Upon phosphorylation, NPAT/p220 binds to HiNF-P and
makes the functionally active complex, which binds to the HiNF-P binding element at site-II and
activates the transcription. At the late S phase, the CyclinE/CDK2 complex becomes inactivated,
which in turn fails to phosphorylate the NPAT/p220-HiNF-P complex (Figure 3). Therefore, the
H4 gene transcription model reveals, in a very simple way, how growth factor-dependent signal
transduction pathway controls the gene expression. In order to keep our discussion very focused,

Figure 3. Regulation of human h4 gene transcription at the G1/S transition occurs through transcription complex
formation. At the onset of G1/S transition, in association with other cognate Site-II specific binding factor, CyclinE/CDK2
mediated activation of NPAT-HiNF-P complex by phosphorylation is a prime driver of the transcription. At the end of S
phase, the complex is functionally inhibited due to the inactivation of the CyclinE/CDK2 complex by the cellular kinase
inhibitor p57/kip2.
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the involvement of other cognate factors in other sites of this promoter is excluded. However,
several important questions are yet to be answered regarding this H4 gene transcription regula-
tion and perhaps one of them is how all three site-II specific factors act in a coordinate fashion to
regulate the transcription [8–12].

So far our discussion focused on the effect of promoter and the associated factors or cofactors
in the regulation of transcription. Recent studies revealed that besides the promoter, DNA
sequence element located several megabases up or downstream of the transcription start
site, termed as enhancers, also play a very important role in the regulation. The effect of
enhancer on gene expression was revealed long time ago when researchers were trying to
understand the massive transcription upregulation of the β-globin gene. However, the
mechanism through which the enhancer controls the gene expression was very elusive. The
most obvious question was how these cis-acting elements, located so far form the coding
region, could control the transcription of a specific gene? The hypothesis that was put
forward to explain the regulatory role of enhancers pointed towards the three-dimensional
chromatin looping. Mammalian genome has been considered as a series topologically asso-
ciated domain (TAD) comprises several megabases of DNA connected through intergenic
sequence. Genome-wide Chromosomal Conformation Capture (3C) experiments, a recently
developed method to estimate the looping in chromosome, indicated that proteins such as
CTCF and cohesion are responsible for the TAD formation. Within a TAD, though promoter
and enhancer are separated by megabases but due to the loop formation mediated by CTCF
and cohesion, the enhancer comes closer to the promoter [13, 14].

The contribution of chromosome folding, which brings the enhancer in the close proximity to
the promoter were very well demonstrated in one of the recent studies on transcriptional
regulation of mouse c-MYB gene. This gene encodes a transcription factor that activates
several downstream genes to support cell proliferation. However, at the onset of differenti-
ation, the transcription of this gene is turned OFF completely. Interestingly, transcription of
c-MYB is attenuated at the first intron where a CTCF binding exist, and the enhancer
elements are located 36 kilobase (kb), 68, 81 and 108 kb upstream of the transcription start
site. When cells are actively proliferating, the three-dimensional conformation of chromo-
some is changed to make an active transcriptional hub where all those enhancer elements are
brought in close proximity of the conserved CTCF binding site located within the intron. On
the other hand, during differentiation, the 3D structure of the chromosome is perturbed
which in turn destabilizes the formation of active transcriptional hub and downregulates
the transcription up to several folds (Figure 4).

Posttranscriptional regulation: In order to understand the posttranscriptional regulation, we
should have a much updated vision about the movement of RNA Pol through the gene bodies,
which is an integral part of the transcription and was a subject discussion for a long period of
time. Crystallographic studies of RNA PolII provide very important information about the
structural aspects of transcription. Several recent high resolution crystallographic studies in this
field indicated that two major transcription bubble fork forms at the upstream and the down-
stream of the DNA associated with the polymerase. The transcription bubble is a small amount
of unwound double stranded DNA (11 bp), which is exposed to polymerase to synthesize the
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the involvement of other cognate factors in other sites of this promoter is excluded. However,
several important questions are yet to be answered regarding this H4 gene transcription regula-
tion and perhaps one of them is how all three site-II specific factors act in a coordinate fashion to
regulate the transcription [8–12].

So far our discussion focused on the effect of promoter and the associated factors or cofactors
in the regulation of transcription. Recent studies revealed that besides the promoter, DNA
sequence element located several megabases up or downstream of the transcription start
site, termed as enhancers, also play a very important role in the regulation. The effect of
enhancer on gene expression was revealed long time ago when researchers were trying to
understand the massive transcription upregulation of the β-globin gene. However, the
mechanism through which the enhancer controls the gene expression was very elusive. The
most obvious question was how these cis-acting elements, located so far form the coding
region, could control the transcription of a specific gene? The hypothesis that was put
forward to explain the regulatory role of enhancers pointed towards the three-dimensional
chromatin looping. Mammalian genome has been considered as a series topologically asso-
ciated domain (TAD) comprises several megabases of DNA connected through intergenic
sequence. Genome-wide Chromosomal Conformation Capture (3C) experiments, a recently
developed method to estimate the looping in chromosome, indicated that proteins such as
CTCF and cohesion are responsible for the TAD formation. Within a TAD, though promoter
and enhancer are separated by megabases but due to the loop formation mediated by CTCF
and cohesion, the enhancer comes closer to the promoter [13, 14].

The contribution of chromosome folding, which brings the enhancer in the close proximity to
the promoter were very well demonstrated in one of the recent studies on transcriptional
regulation of mouse c-MYB gene. This gene encodes a transcription factor that activates
several downstream genes to support cell proliferation. However, at the onset of differenti-
ation, the transcription of this gene is turned OFF completely. Interestingly, transcription of
c-MYB is attenuated at the first intron where a CTCF binding exist, and the enhancer
elements are located 36 kilobase (kb), 68, 81 and 108 kb upstream of the transcription start
site. When cells are actively proliferating, the three-dimensional conformation of chromo-
some is changed to make an active transcriptional hub where all those enhancer elements are
brought in close proximity of the conserved CTCF binding site located within the intron. On
the other hand, during differentiation, the 3D structure of the chromosome is perturbed
which in turn destabilizes the formation of active transcriptional hub and downregulates
the transcription up to several folds (Figure 4).

Posttranscriptional regulation: In order to understand the posttranscriptional regulation, we
should have a much updated vision about the movement of RNA Pol through the gene bodies,
which is an integral part of the transcription and was a subject discussion for a long period of
time. Crystallographic studies of RNA PolII provide very important information about the
structural aspects of transcription. Several recent high resolution crystallographic studies in this
field indicated that two major transcription bubble fork forms at the upstream and the down-
stream of the DNA associated with the polymerase. The transcription bubble is a small amount
of unwound double stranded DNA (11 bp), which is exposed to polymerase to synthesize the
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nascent RNA. The upstream fork forms a more open conformation and participates in DNA
annealing and the synthesis of RNA transcripts; on the other hand, the downstream fork forms
a rigid or closed domain with the non-template strand. This synchronized shift of open to close
conformation allows the polymerase to translocate through the gene bodies [15].

Mammalian RNA Pol is a multi-subunit protein and the C-terminal domain (CTD), which is
the biggest subunit of this protein, has several heptapeptide repeats (YSPTSPS). Phosphoryla-
tion of amino acid at the Serine-2 (Ser-2), Ser-5 and Ser-7 is very crucial for polymerase to start
the transcription and several cofactors such as TFIIH (responsible for ser-5 phosphorylation)
and cyclin-dependent kinase-7 (CDK7) or CDK9 (responsible for Ser-2 phosphorylation) medi-
ate those phosphorylations.

Genome-wide chromatin immunoprecipitation (ChIP) experiments using antibodies against
phospho-RNA PolII, followed by massive parallel sequencing, opened a new window about
our understanding in transcriptional regulation particularly focusing on the movement and
the distribution of RNA polymerase throughout the gene bodies. Several such studies indi-
cated about 70% of the actively transcribing mammalian gene, the peak of the RNA PolII
binding is located at the transcription start site and the availability of the polymerase along
the gene body tapers off as we move along to the 30 direction. Transcription starts after Ser-5
residues are phosphorylated predominantly by the cofactor TFIIH, whereas Ser-2 phosphory-
lation is insignificant [16]. For the remaining 30% of the gene, the major peak is located several
bases downstream of the putative transcription start site indicating the polymerase stalls,
though it initiated the transcription at the start site. In the presence of appropriate signal, the
transcription complex recruits the P-TEFb complex, which is a heterodimer of CyclinT1 and
CDK9. When RNA polII is stalled, it is associated with two major protein complexes those
are DRB sensitivity inducing factor (DSIF) and negative elongation factor (NELF). Upon

Figure 4. Enhancer-dependent regulation of mouse c-MYB gene. Transcription is upregulated several folds during
proliferation when enhancer elements, located several kilobases away, fold to make an active transcription hub mediated
through CTCF binding at the intronic region. During differentiation, loss of CTCF binding unfolds the structure and
downregulates the transcription.
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recruitment of P-TEFb complex, the CDK9 phosphorylates the CTD of RNA PolII and the
NELF and DSIF. The phospho-NELF is dissociated and DSIF continues with the polymerase
and the process continues until the signal dies away. The function of P-TEFb complex is also
regulated by 7SK snRNP-a small nuclear ribonucleoprotein associated with a core noncoding
RNA bound with RNA binding protein HXIM (HXIM1 and 2). P-TEFb complexed with 7SK
snRNP and HXIM1 are considered to functionally inactive and mammalian bromodomain
protein Brd4 and human immunodeficiency virus Tat protein can replace the 7SK snRNP and
make the functionally active P-TEFb complex [17, 18].

Discoveries of this pausing mediated regulation raised a few fundamental questions about the
regulatory process. (A) Why nature devised this kind of additional regulatory system and (B)
what are those genes that belong to this category?

Depending upon the nature of expression, mammalian genes can be classified into two cate-
gories. The genes that belong to the constitutive active class are expressing themselves in a
continuous fashion. Most of the genes, that encode proteins to carry out biochemical and the
metabolic pathways, transcribe almost continuously. However, cells possess another class of
genes which are expressed under certain conditions. Expressions of those genes are restricted
because abandoned expression may cause abnormalities in the biochemical or molecular
pathways that control the natural activities of mammalian cells. This phenomenon was first
noticed in the expression of the Drosophila heat-shock gene expression where the proteins are
expressed under the exposure of a particular stress condition such as low or high temperature,
UV exposure and starvation or under hypoxia (less oxygen tension). Detailed study
underpinned that the polymerase synthesizes 25–30 nucleotide (nt) short RNA before it pauses
and stays there at least 10 min before it moves. However, during heat shock condition, the
RNA polII stays only less than ~4 s. In mammalian cells, most of the developmentally and
immediate response genes are regulated following this mechanism. Now, how these immedi-
ate response genes in the mammalian system are regulated by this complex mechanism can be
discussed further by taking an example of a well-studied system [19].

The human oncogenic transcription factor c-MYB (a counter part of the mouse gene described
earlier) is responsible for the development of certain types of breast cancer and leukemia.
Overexpression of this protein promotes uncontrolled cell proliferation by activating a bunch
of genes that drive the proliferation. In human breast epithelial cells, the transcription of this
gene is absolutely regulated by the hormone estrogen. In the absence of estrogen, the tran-
scription is paused at the 1.7 kb downstream of the transcription start site and generates a
short transcript with a stretch of poly adenylated (poly A) tail and in the presence of estrogen
the polymerase resumes the transcription beyond the pausing site (Figure 5). The analysis of
DNA sequence indicated that the nascent RNA generated under this condition has the poten-
tial to form a secondary hair pin structure, which is considered as a docking site of the P-TEFb
complex. Estrogen receptors (ESR1) are a group of nuclear proteins that have ligand (estro-
gen)-binding domain as well as DNA binding and transactivation domain. Genome-wide
ESR1 binding studies and our independent investigations identified a solo ESR1-binding
domain close to the upstream of the transcription pausing site. Our in depth studies to
understand the underlying mechanism of ESR1-mediated overcoming of the pausing revealed
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that the ESR1 makes a tripartite complex with CyclinT1 and CDK9 and thus recruited the P-
TEFb complex at the docking site. This recruited CDK9 phosphorylates the Ser-2 residue of the
CTD of PolII and drives the transcription (Figure 6). Understanding the transcription regula-
tion of oncogenic proteins also has significance in the field of cancer drug discovery. For
example, the CDK9, which is playing such a pivotal role in the transcription of c-MYB, is a
targetable molecule to develop a novel anticancer drug, and several such CDK9 inhibitors are
currently under clinical trials to test their efficacies [20–22].

Epigenetic regulation: By definition, epigenetic modification is an inheritable process of regu-
lation of gene expression without changing the DNA base pairs. The modifications take place

Figure 5. Estrogen-dependent transcription of c-MYB in breast cancer cells. A schematic diagram of human c-MYB gene
showing exons and introns and the pausing site (SL-dT, Upper Panel). Nuclear run-on experiment showed that the
transcription continues beyond the pausing site in the presence of estrogen in MCF7 cells but not in MDA-MB-231 cells,
which do not express MYB (lower panel). Probes used in this hybridization were marked as P1, P2, P3, P4 and P5, and
time of estrogen treatment was mentioned as T0 (control) and T12 (12 h).
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by enzyme-mediated inclusion or removal of the methyl groups in the nucleotides of the
double stranded DNA or modifications of histone proteins by, for example, acetylation or
deacetylation. Changes in the DNA bases or modification of the core histone proteins allow a
particular portion of the chromatin accessible for the transcription complex or the repressor
proteins to control the gene expression. Enzymes, those are responsible for the modification of
DNA or histone proteins have been considered recently in a subject of in depth research in the
context of their function and drug development in several diseases. Attempts are underway to
develop novel therapeutics against diseases like cancer where the abnormal gene expression,
caused by epigenetic modifications, contributes to the uncontrolled cell proliferation.

As discussed earlier, the epigenetic modifications can be subdivided into two different catego-
ries such as DNA modification and histone proteins modification. Traditionally, DNA modifi-
cations such as methylation happens when the enzyme DNA methyltransferases transfers the
methyl group of a donor such as S-adenosylmethionine to a cytosine base and in most of the
cases, it happens at the CpG (where the cytosine is connected to the guanosine by phosphate
bonding) dinucleotide residues. Most of the CpGmethylation in mammalian genome occurs at
the outside of a stretch of elevated C- and G-rich region of the DNA called as CpG island and
in case of human genome, this stretch is around 1 kb long and overlaps with the promoter

Figure 6. Estrogen-dependent transcription of c-MYB in breast cancer cells. In the absence of estrogen, the transcription is
attenuated at the pausing site (upper panel). ERα forms a complex with CyclinT1 and CDK9 and in the presence of ligand;
it binds DNA close to the pausing site, and the transcription resumes with subsequent phosphorylation of the CTD of the
RNA PolII.
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region of the 60–70% of the gene. Therefore, CpG methylation in the genome acts as a land-
mark for the transcription complex to locate site of the chromosomes ready for transcription.
DNA methylation at the promoter site contributes significantly in the gene expression as it can
be understood that this modification acts like a ‘mask’, which attenuates the access of the
transcription factors. However, it was also very well demonstrated that this methylation is a
dynamic and a completely reversible process, which further emphasizes the fact that gene
expression can be controlled by manipulating the methylation of the promoter sequence. It
was also observed that DNAmethylation is abandoned in lots of genes which are permanently
silent; on the other hand, significant DNA methylations were observed in several actively
transcribing genes [23, 24]. Therefore, further research is needed to understand the significance
of DNA methylation in mammalian gene expression.

DNA methylation and its relation to the gene expression have been found to be strongly
correlated with the development of diseases such as cancer. A large scale meta-analysis of
the methylation profiles of target genes, which includes oncogenes and tumor suppressor
proteins in several cancer tissues such as breast, colon and lung indicated that the promoter
methylation patterns are significantly different in those tissues in comparison to their normal
counter parts. The above statement can be illustrated further by using the very well-studied
WNT-β-catenin pathway which is one of the most frequently dysregulated in renal cancer.
The proto-oncogene β-catenin, which is the downstream target of WNT pathway, activates
the expression of several proteins that promotes tumorigenesis such as proto-oncogene c-
MYC and CyclinD1. Expressions of several key regulators that negatively regulate the WNT-
β-catenin pathway are controlled by the promoter methylation, which eventually drives to
the uncontrolled synthesis of β-catenin and the activation of the downstream target genes.
For example, in case of renal carcinoma, expression of several WNT-inhibitor factors (WIF1,
at least four, Dickkopf (DKK1 or 2) and IGFBP1 (insulin-like growth factor binding protein 1)
are downregulated by promoter methylation [25]. In their studies, Moarii et al. [26] showed a
significant amount of modification of the promoter methylation in the cancer tissues
targeting to the transcription factor. Expression of several genes that are reported to be
associated with the cell cycle (p16INK4a, p15INK4b, p14ARF), DNA repair (hMLH1,
MGMT), apoptosis (DAPK), tumor suppression (p53) are downregulated or modified due
to promoter methylation. For example, in case of p53, in vitro promoter methylation studies
indicated that the DNA methylations can downregulate more than 90% of the mRNA
expression. A further support of these data came along when the analysis of p53 expression
in correlation to the promoter methylation was studied in vivo in patient samples. Several
such studies indicated that the aberrant DNA hypermethylation of the p53promoter strongly
correlates with the attenuated expression of this gene in a significant portion of the primary
hepatocellular carcinoma, breast cancer, acute lymphoblastic leukemia (ALL) and chronic
lymphocytic leukemia (CLL) patients. An increased expression of DNA methyltransferase
(DNMT) activities have been noticed in several cancer cells which encouraged scientist to
proposed the hypothesis that this enhanced activities hypermethylate the promoter of the
tumor suppressor genes such as p53, which eventually promotes tumor development [27];
and therefore, a promising approach would be to develop an inhibitor against DNMTs to
upregulate the expression of the tumor suppressor genes. Two of such inhibitors, azacytidine
and decitabine, have been considered as the most successful drugs though their applications
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are restricted due to the toxic side effect. However, this outcome encouraged researchers to
develop new drugs with less toxic side effects, and currently few of them are under clinical
trials with promising results [28].

Posttranslational modification of histone proteins is one of the very well-studied epigenetic mod-
ifications. The mammalian chromosomes are compacted into the nucleus by forming the primary
and several higher order structures by the building block nucleosomes. Each nucleosome com-
prises a histone octamer (four core histones H2A, H2B, H3, and H4 in duplicates) surrounded by
146 base pair ofDNAwhere the amino terminal (N-terminal) part of histone protein protrudes out
of the histone-DNA assembly. The N-terminal modification of the core histone proteins is very
commonand thosemodifications are acetylation, phosphorylation,methylation, sumoylation and
ubiquitination.All thosemodifications areunique in a sense because eachone of them introduces a
specific change in the secondary and higher order structure of the chromatins which in turn
contributes to the gene expression. For example, histone acetylation occurs at the lysine residue
by the enzyme histone acetyl transferases (HATs) and it is associated with the transcription
activation. However, the histone deacetylases (HDACs) remove the acetyl group and thereby
suppresses the transcription. Dynamic regulation of acetylation and deacetylations of chromo-
somes have shown to play a very important role in the regulation of gene expression and propa-
gation of disease.Acetylation of histone byHATshas been shown toopen the chromatin structure,
which allows the transcription factor to access that region. Research in last more than one decade
established a strong connection between HATs and HDACs with diseases such as cancer. Exten-
sive research in this field revealed that the malfunction of enzymes related to these activities can
cause aberrant cell proliferation and differentiation. Recent studies established a very strong
correlation between histone acetylation and deacetylation with the development of several types
of cancer such as in hematopoietic malignancies and observed that HAT or HDACs are the
common target of mutagenesis. Due to their significant role in disease development, HAT and
HDACs are considered as important targets of drug development. One of the HDAC inhibitors
suberoylanilide hydroxamic acid (SAHA, marketed by Merck as Zolinza) has been shown to be
remarkably effective in the treatment of cutaneous T-cell lymphoma (CTCL). Another HDAC
inhibitor, Panobinostat (marketed byNovartis) has been approved to treatmultiplemyeloma and
currently under clinical trials to develop as a drug to treat ovarian and certain types of blood
cancer. Similarly,modification of histones bymethylation also contributes to the transcription. The
methylation marks on chromosomes are recognized by the transcription factor or cofactors to
locate the region of the chromosome ready for transcription. The amount of methylation also
contributes to the activation and the repressionofgenes. For example,monomethylationofhistone
H3 lysine-4 form the N-terminal end (H3K4) is associated with both activation and repression,
whereas trimethylatedH3K4 is only associatedwith the repression (Figure 7).

Translational regulation: So far, we have discussed the regulation of mammalian gene expres-
sion where proteins such as enzymes or transcription factors play the key role in turning/
switching ON or OFF the gene expression. In the beginning of early 1990s, researchers discov-
ered a short stretch of non-coding RNA, known as miRNA, highly conserved across the species,
regulates gene expression at the level of translation. Since then, list of miRNAs has been piling
up each year and currently more than 2000 miRNAs were reported with their functional associ-
ation in gene expression, cell proliferation and differentiation. The analysis of human genome
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sequence indicated that genes encode miRNA are located either in the intergenic (between two
genes) or in the intragenic (located within the gene) region. The intergenic miRNA are tran-
scribed by the independent promoter, whereas intragenic one is transcribed by the same gene-
specific promoter. Both miRNAs are synthesized in the form of pre-miRNA that are several
kilobases long and later are processed in the nucleus and in cytoplasm to generate a short hair
pin, functionally active form.

Extensive studies in the last decade or more have generated a significant amount of evidence
describing the mechanism of action of those miRNAs. Nevertheless, it is a subject of ongoing

Figure 7. Methylation of histone is a mark of transcriptional activity. Transcription can still be active under
monomethylated condition (black stars) of core histone protein but completely or permanently shuts down when histones
are trimethylated.

Figure 8. A model of miRNA-mediated regulation of gene expression. Several base pair long pre-miRNA is processed to
short duplex miRNA. The sense strand forms a complex with RNA binding protein Argonaut. The RNA strand hybrid-
izes with the 30UTR of the target gene and the complex blocks the movement of the ribosomes.
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study to understand how miRNAs are controlling gene expression. The posttranscriptional
regulation is perhaps one of the most established mechanisms for the miRNA mediated
control of gene expression. Several observations suggest that miRNA form a complex with
the protein Argonaut, which is a highly conserved RNA binding protein. The specificity of
the base pairing between miRNA-mRNA follows the Watson-Crick law where the 50 proxi-
mal end of the miRNA forms a 2–8 bp of double-stranded RNA with the 30 untranslated
region (30UTR) of the target mRNA. This miRNA-mRNA hybridization initiates several
processes simultaneously to inhibit the gene expression. For example, the secondary struc-
ture form due to the hybridization causes premature termination and slowed elongation of
translation, and at the same time, it stimulates the ribosomal drop off. The miRNA-protein
complex recruits several factors and co-factors including the endonucleases to degrade the
template RNA. On the other hand, Argonaut competes with the 50mRNA CAP binding
protein and elongation factor to prevent transcription initiation. Besides downregulating
the gene expression, miRNA mediated upregulation has also been reported (Figure 8).
However, the mechanism by which the activation occurs is not clear, but it has been pro-
posed that the miRNA-protein complex perhaps inactivates the other miRNA that
downregulates the gene expression. Understanding of the function of miRNAs and the
complexity of their function was further revealed by the fact that a single miRNA has been
shown to be acting like an activator or a repressor. The miR-145 upregulates the expression
of the gene myocardin, which encodes a transcription factor that requires muscle cell differ-
entiation. However, the expression of the Rho-associated coiled-coil contain ing protein
kinase 1(ROCK1) is downregulated by the same miRNA-145 during osteosarcoma [29].

2. Conclusion

The complexity of the mammalian gene expression is more than what has ever been previously
conceived due to the continuous accumulation of information over the period of last several
decades. Researchers are trying to understand the molecular basis of every step associated
with this process by utilizing cutting edge technologies and thus generating an enormous
amount of data, which will take perhaps several decades to validate. The author’s effort here
is to provide a broad overview of the regulation of gene expression in the mammalian cells. It
is hoped that this content will motivate readers to put their efforts to explore further the
phenomenal complexity underlying the entire process and translate that knowledge in devel-
oping new therapeutics.
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Figure 7. Methylation of histone is a mark of transcriptional activity. Transcription can still be active under
monomethylated condition (black stars) of core histone protein but completely or permanently shuts down when histones
are trimethylated.

Figure 8. A model of miRNA-mediated regulation of gene expression. Several base pair long pre-miRNA is processed to
short duplex miRNA. The sense strand forms a complex with RNA binding protein Argonaut. The RNA strand hybrid-
izes with the 30UTR of the target gene and the complex blocks the movement of the ribosomes.
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Abstract

Cis-acting regulatory sequence elements are sequences contained in the 30 and 50

untranslated region, introns, or coding regions of precursor RNAs and mature mRNAs
that are selectively recognized by a complementary set of one or more trans-acting
factors to regulate posttranscriptional gene expression. This chapter focuses on mam-
malian cis-acting regulatory elements that had been recently discovered in different
regions: pre-processed and mature. The chapter begins with an overview of two large
networks of mRNAs that contain conserved AU-rich elements (AREs) or GU-rich ele-
ments (GREs), and their role in mammalian cell physiology. Other, less conserved, cis-
acting elements and their functional role in different steps of RNA maturation and
metabolism will be discussed. The molecular characteristics of pathological cis-acting
sequences that rose from gene mutations or transcriptional aberrations are briefly
outlined, with the proposed approach to restore normal gene expression. Concise
models of the function of posttranscriptional regulatory networks within different cellu-
lar compartments conclude this chapter.

Keywords: cis-elements, posttranscriptional gene regulation, mRNA splicing,
translation, mRNA stability, decay, AU-rich elements (AREs) or GU-rich elements
(GREs)

1. Introduction

The control of gene expression is fundamental to mammalian cell life. Although much of this
control occurs at the level of transcription, posttranscriptional control is both prevalent and
momentous [1]. Work over the past quarter century has resulted in the identification of
unifying concepts in posttranscriptional regulation. One unifying concept states that posttran-
scriptional regulation is mediated by two major molecular components: cis-acting regulatory
sequence elements and trans-acting factors. Cis-acting regulatory sequence elements are sub-
sequences contained in the 50 untranslated region (UTR), 30 UTR, introns, and coding regions
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of precursor RNA and mature mRNA that are selectively recognized by a complementary set of
one or more trans-acting factors to regulate posttranscriptional gene expression. The lists of
conserved cis-elements have been expanding over the past decade, but the mechanisms of the
precise assembly of RNA-binding complexes in an orchestrated temporal and spatial manner
have not been comprehensively described. Conserved sequences within pre-mRNAs play a
major role in determining the mRNA’s configuration, stability, and ultimately the posttransla-
tional fate of protein products. Mammalian pre-mRNAs contain almost as much conserved
sequence as that ascribed to transcriptional regulatory elements, and many of these cis-elements
can be attributed to known molecular functions, as described in the following paragraphs.

Trans-acting factors include RNA-binding proteins (RNA-BPs) and microRNAs (miRNAs),
which are able to influence the fate of mRNA by controlling processes such as translation and
mRNA degradation (reviewed in Refs. [2–5]). The combinatorial interplay between RNA-BPs,
various miRNAs, and a given mRNA allows for the transcript-specific regulation critical to
many cellular decisions during cell division, cell quiescence, or cell senescence [6]. RNA-BP
classification is growing and becoming more defined as more structural data become available.
Significant progress has been made in defining RNA-binding domains, such as an RNA
recognition motif (RRM), zinc fingers, double-stranded RNA-binding domains, K homology
domains, pumilio homology domains, and others, that were recently reviewed in [7, 8].

In the pre-genomic era, very few cis-acting RNA sequences had been discovered, for example,
AU-rich elements (AREs) in the 30 UTR of cytokine mRNAs [9]. Advances in genomic method-
ologies escalated the discoveries and functional identifications of cis-acting sequences.
Microarray-based studies that evaluated mRNA stability and translation on a genome-wide
basis have provided valuable information about the role of posttranscriptional regulation of a
wide variety of transcripts that have an important physiological function [10–12]. Genome-
wide measurements of mRNA decay and bioinformatic sequence motif discovery methods
were used to identify the GU-rich element (GRE) as a highly conserved sequence that was
enriched in the 30 UTR and other regions of mRNA transcripts [13]. Various experimental
approaches have been developed to understand the functional importance of cis-acting
sequence interactions and the network of transcripts that they regulate. One of the most widely
used techniques involves immunopurification of specific RNA-binding proteins from cellular
extracts followed by a high-throughput analysis of the co-purified RNA species [14]. The
coupling of this technique to powerful bioinformatic analysis has led researchers to under-
stand the binding specificity of cis-acting elements [15]. The advent of new technology such as
next generation sequencing (NGS) and chemical cross-linking procedures has allowed for fine-
scale mapping of cis-binding motifs as well as for the refinement of RNA-binding protein-
binding sites. A variety of methods have been developed to identify the in vivo target RNAs
of a given RNA-BP, including microarray (Chip) or high-throughput sequencing (Seq) of
RNA isolated by RNA-BP immunoprecipitation (RIP-Chip, RIP-Seq, and RIPiT-Seq), photo-
activatable ribonucleoside-enhanced cross-linking and immunoprecipitation (RIP-CLIP),
individual-nucleotide resolution cross-linking and immunoprecipitation (iCLIP), or UV cross-
linking and immunoprecipitation (HiTS-CLIP) [16–20]. These methodologies involve RNA
immunoprecipitation techniques with RNA-BP, followed by the NGS analysis of associated
mRNA or microRNA transcripts and genome-wide identification of cis-elements within RNA
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target transcripts. More novel techniques such as sequence-specificity landscapes (SEQRS),
HiTS-Kin/HiTS-EQ, and digestion optimized (DO)RIP-Seq focus on the identification of multi-
ple trans-acting factors [7, 21, 22]. These techniques allow for the evaluation of the specificity of
cellular RNA-BP/RNA-binding patterns from cell lysates under different conditions and might
aid in the interpretation of a multiprotein complex formation and RNA-BP competition for
RNA substrate. Identified RNA-binding complexes can then be isolated and interrogated
in vitro using structural and cell-based reporter assays.

This chapter focuses on mammalian cis-acting regulatory elements that have been recently
discovered in different regions of mRNA: preprocessed and mature. First, we summarize
recent observations of two large networks of mRNAs that contain conserved AREs or GREs
in their pre-mRNA splicing sites, polyadenylation sites, and 30/50 UTRs. We outline the known
roles for ARE and GRE in regulation of mRNA stability or translation and their role in
mammalian cell physiology, with a particular emphasis on their role in the dynamic response
toward environmental and developmental signals. Second, we describe advances in the iden-
tification of other conserved cis-acting elements and their functional role in different steps of
RNAmaturation and metabolism. We briefly outline the molecular characteristics of patholog-
ical cis-acting sequences raised from gene mutation or transcriptional aberration and overview
novel approaches to restore normal gene expression. We conclude with an overview of a
concise predictive model of the function of posttranscriptional regulatory networks within
different cellular compartments.

2. AU-rich element (ARE)

It was noted over a quarter of a century ago that mRNAs exhibit substantial variations in
turnover rate upon exposure to different cell stimuli [23–25]. Of the prominent discoveries in
the mammalian cis-acting elements field, the AU-rich element was the most notable as it was
the most robust determinant of mRNA instability in cytokines and early response genes [26].
Insight into the biological significance and physiological function of ARE as a coordinate
regulator of posttranscriptional network was revealed through the experimental identification
of ELAVL1 (HuR) and ZNF36 (TTP) proteins [27–29]. The structure of AREs is defined as a
repeating pentamer (AUUUA) with 1 or 2 A to U substitutions [9]. Bioinformatic searches
throughout the human transcriptome have provided computational estimation of sequence
characteristics and nucleotide lengths of ARE sequences required for mRNA to be unstable [30,
31]. The number of pentamers has an additive effect on mRNA decay and deadenylation
processes. AREs are classified into five clusters depending on their sequence content and
position of A or U. Cluster I AREs contain up to five copies of AUUUA motifs with a nearby
U-rich region and cause synchronous RNA deadenylation [32]. Cluster II AREs are composed
of at least two overlapping copies of the AUUUA with an adjacent (U/A) nonamer region and
cause asynchronous deadenylation. Clusters III through V AREs were identified to contain
more U-rich regions and were rather ‘poorly structured’ (Table 1), with an inconsistent
deadenylation pattern. This classification system has proved to be helpful in understanding
the observed behavior and function of ARE-containing transcripts [25].
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of precursor RNA and mature mRNA that are selectively recognized by a complementary set of
one or more trans-acting factors to regulate posttranscriptional gene expression. The lists of
conserved cis-elements have been expanding over the past decade, but the mechanisms of the
precise assembly of RNA-binding complexes in an orchestrated temporal and spatial manner
have not been comprehensively described. Conserved sequences within pre-mRNAs play a
major role in determining the mRNA’s configuration, stability, and ultimately the posttransla-
tional fate of protein products. Mammalian pre-mRNAs contain almost as much conserved
sequence as that ascribed to transcriptional regulatory elements, and many of these cis-elements
can be attributed to known molecular functions, as described in the following paragraphs.

Trans-acting factors include RNA-binding proteins (RNA-BPs) and microRNAs (miRNAs),
which are able to influence the fate of mRNA by controlling processes such as translation and
mRNA degradation (reviewed in Refs. [2–5]). The combinatorial interplay between RNA-BPs,
various miRNAs, and a given mRNA allows for the transcript-specific regulation critical to
many cellular decisions during cell division, cell quiescence, or cell senescence [6]. RNA-BP
classification is growing and becoming more defined as more structural data become available.
Significant progress has been made in defining RNA-binding domains, such as an RNA
recognition motif (RRM), zinc fingers, double-stranded RNA-binding domains, K homology
domains, pumilio homology domains, and others, that were recently reviewed in [7, 8].

In the pre-genomic era, very few cis-acting RNA sequences had been discovered, for example,
AU-rich elements (AREs) in the 30 UTR of cytokine mRNAs [9]. Advances in genomic method-
ologies escalated the discoveries and functional identifications of cis-acting sequences.
Microarray-based studies that evaluated mRNA stability and translation on a genome-wide
basis have provided valuable information about the role of posttranscriptional regulation of a
wide variety of transcripts that have an important physiological function [10–12]. Genome-
wide measurements of mRNA decay and bioinformatic sequence motif discovery methods
were used to identify the GU-rich element (GRE) as a highly conserved sequence that was
enriched in the 30 UTR and other regions of mRNA transcripts [13]. Various experimental
approaches have been developed to understand the functional importance of cis-acting
sequence interactions and the network of transcripts that they regulate. One of the most widely
used techniques involves immunopurification of specific RNA-binding proteins from cellular
extracts followed by a high-throughput analysis of the co-purified RNA species [14]. The
coupling of this technique to powerful bioinformatic analysis has led researchers to under-
stand the binding specificity of cis-acting elements [15]. The advent of new technology such as
next generation sequencing (NGS) and chemical cross-linking procedures has allowed for fine-
scale mapping of cis-binding motifs as well as for the refinement of RNA-binding protein-
binding sites. A variety of methods have been developed to identify the in vivo target RNAs
of a given RNA-BP, including microarray (Chip) or high-throughput sequencing (Seq) of
RNA isolated by RNA-BP immunoprecipitation (RIP-Chip, RIP-Seq, and RIPiT-Seq), photo-
activatable ribonucleoside-enhanced cross-linking and immunoprecipitation (RIP-CLIP),
individual-nucleotide resolution cross-linking and immunoprecipitation (iCLIP), or UV cross-
linking and immunoprecipitation (HiTS-CLIP) [16–20]. These methodologies involve RNA
immunoprecipitation techniques with RNA-BP, followed by the NGS analysis of associated
mRNA or microRNA transcripts and genome-wide identification of cis-elements within RNA
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target transcripts. More novel techniques such as sequence-specificity landscapes (SEQRS),
HiTS-Kin/HiTS-EQ, and digestion optimized (DO)RIP-Seq focus on the identification of multi-
ple trans-acting factors [7, 21, 22]. These techniques allow for the evaluation of the specificity of
cellular RNA-BP/RNA-binding patterns from cell lysates under different conditions and might
aid in the interpretation of a multiprotein complex formation and RNA-BP competition for
RNA substrate. Identified RNA-binding complexes can then be isolated and interrogated
in vitro using structural and cell-based reporter assays.

This chapter focuses on mammalian cis-acting regulatory elements that have been recently
discovered in different regions of mRNA: preprocessed and mature. First, we summarize
recent observations of two large networks of mRNAs that contain conserved AREs or GREs
in their pre-mRNA splicing sites, polyadenylation sites, and 30/50 UTRs. We outline the known
roles for ARE and GRE in regulation of mRNA stability or translation and their role in
mammalian cell physiology, with a particular emphasis on their role in the dynamic response
toward environmental and developmental signals. Second, we describe advances in the iden-
tification of other conserved cis-acting elements and their functional role in different steps of
RNAmaturation and metabolism. We briefly outline the molecular characteristics of patholog-
ical cis-acting sequences raised from gene mutation or transcriptional aberration and overview
novel approaches to restore normal gene expression. We conclude with an overview of a
concise predictive model of the function of posttranscriptional regulatory networks within
different cellular compartments.

2. AU-rich element (ARE)

It was noted over a quarter of a century ago that mRNAs exhibit substantial variations in
turnover rate upon exposure to different cell stimuli [23–25]. Of the prominent discoveries in
the mammalian cis-acting elements field, the AU-rich element was the most notable as it was
the most robust determinant of mRNA instability in cytokines and early response genes [26].
Insight into the biological significance and physiological function of ARE as a coordinate
regulator of posttranscriptional network was revealed through the experimental identification
of ELAVL1 (HuR) and ZNF36 (TTP) proteins [27–29]. The structure of AREs is defined as a
repeating pentamer (AUUUA) with 1 or 2 A to U substitutions [9]. Bioinformatic searches
throughout the human transcriptome have provided computational estimation of sequence
characteristics and nucleotide lengths of ARE sequences required for mRNA to be unstable [30,
31]. The number of pentamers has an additive effect on mRNA decay and deadenylation
processes. AREs are classified into five clusters depending on their sequence content and
position of A or U. Cluster I AREs contain up to five copies of AUUUA motifs with a nearby
U-rich region and cause synchronous RNA deadenylation [32]. Cluster II AREs are composed
of at least two overlapping copies of the AUUUA with an adjacent (U/A) nonamer region and
cause asynchronous deadenylation. Clusters III through V AREs were identified to contain
more U-rich regions and were rather ‘poorly structured’ (Table 1), with an inconsistent
deadenylation pattern. This classification system has proved to be helpful in understanding
the observed behavior and function of ARE-containing transcripts [25].
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Genome-wide analyses of mRNA transcript half-lives showed that many labile transcripts con-
tain conserved ARE sequence elements in their 30 UTRs [21]. Overall, 30 UTR-ARE-containing
transcripts represent approximately 5% of the transcriptome [33]. Human mRNAs encoding
cytokines and members of the NFkB cascade are particularly enriched for AREs (Table 1). AREs
play decisive roles in regulating the effects of cytokines on inflammatory responses since muta-
tion of the ARE in cytokines such as TNF-alpha, IFNG, or IRF5 [34] resulted in profound
autoimmune-like inflammatory syndrome [35, 36]. In general, transcripts containing functional
AREs have short half-lives, although they can be rapidly stabilized in different cell types or
stimulation conditions through complex posttranscriptional mechanisms involving trans-acting
factors [10, 37]. Numerous trans-binding factors interact with AREs (e.g., ELAVLs, ZFP36, KSRP,
TIA1, TIAL1, HRNPC1, and others, which are described in other chapters of this book) and
determine the outcomes for harboring ARE transcripts. The majority of these proteins shuttle
between the cytoplasm and the nucleus, where they can affect RNA splicing and 30-end
processing, in addition to altering the rate of decay in the cytoplasm [38]. In this respect, it is
interesting to note that AREs are also found in intronic regions of pre-mRNAs [39–42]. This
observation leads to the speculation that trans-acting factors could bind ARE in the nucleus and
fulfill a function that is different from their cytoplasmic one. Furthermore, a considerable overlap
in the binding sites for ARE-BP with other cis-elements, such as GU-rich and poly-U sequences,
warrants further investigation since the formation of secondary RNA structure might involve all
of the above and subsequently rule the coordinate behavior of RNA-BPs in different cellular
compartments or under different cellular stimuli [43–45].

3. GU-rich element (GRE)

GU-rich elements (GREs) are recognized as essential regulators of mRNA splicing, stability,
and translation in mammalian cells [11, 46]. GU-rich containing RNAs represent approxi-
mately 8% of transcripts of the human transcriptome [47]. Genome-wide analyses of mRNA
decay rates allowed for discovery of non-ARE-containing cohorts of mRNAs that exhibited
rapid turnover. Computational de novo motif search identified conserved sequence elements in
their 30 UTRs in a form of a consensus U(GUUUG)n sequences [13] or GU repeats [48]. These
elements were first tested in vivo in reporter systems and conferred instability onto reporter
mRNAs. A well-utilized rabbit beta-globin reporter system identified GREs as sequences that
regulate the decay of exogenously expressed GRE-containing reporter transcripts within cells
[13]. Further verification of GRE-mediated mRNA decay came from the observation that
siRNA-mediated knockdown of protein CELF1 led to the stabilization of GRE-containing
beta-globin reporter transcripts as well as endogenous GRE-containing transcripts [49–51].
These studies also showed that both GU-rich sequences and GU repeats are also enriched in
unstable mRNAs, though a number of GUUUG pentamers in the GRE do not seem to correlate
with the mRNA decay rate. GREs were subsequently tested for RNA-binding specificities to
CELF1 and CELF2 proteins in systemic evolution of ligands exponential enrichment, yeast
three-hybrid system selection methods, and surface plasmon resonance quantitative binding
assays, revealing that the CELF family preferentially bind to 15–22 nucleotide GU-rich RNA
sequences [52–54]. Several studies reported that other proteins bind to very short UG repeats
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Genome-wide analyses of mRNA transcript half-lives showed that many labile transcripts con-
tain conserved ARE sequence elements in their 30 UTRs [21]. Overall, 30 UTR-ARE-containing
transcripts represent approximately 5% of the transcriptome [33]. Human mRNAs encoding
cytokines and members of the NFkB cascade are particularly enriched for AREs (Table 1). AREs
play decisive roles in regulating the effects of cytokines on inflammatory responses since muta-
tion of the ARE in cytokines such as TNF-alpha, IFNG, or IRF5 [34] resulted in profound
autoimmune-like inflammatory syndrome [35, 36]. In general, transcripts containing functional
AREs have short half-lives, although they can be rapidly stabilized in different cell types or
stimulation conditions through complex posttranscriptional mechanisms involving trans-acting
factors [10, 37]. Numerous trans-binding factors interact with AREs (e.g., ELAVLs, ZFP36, KSRP,
TIA1, TIAL1, HRNPC1, and others, which are described in other chapters of this book) and
determine the outcomes for harboring ARE transcripts. The majority of these proteins shuttle
between the cytoplasm and the nucleus, where they can affect RNA splicing and 30-end
processing, in addition to altering the rate of decay in the cytoplasm [38]. In this respect, it is
interesting to note that AREs are also found in intronic regions of pre-mRNAs [39–42]. This
observation leads to the speculation that trans-acting factors could bind ARE in the nucleus and
fulfill a function that is different from their cytoplasmic one. Furthermore, a considerable overlap
in the binding sites for ARE-BP with other cis-elements, such as GU-rich and poly-U sequences,
warrants further investigation since the formation of secondary RNA structure might involve all
of the above and subsequently rule the coordinate behavior of RNA-BPs in different cellular
compartments or under different cellular stimuli [43–45].

3. GU-rich element (GRE)

GU-rich elements (GREs) are recognized as essential regulators of mRNA splicing, stability,
and translation in mammalian cells [11, 46]. GU-rich containing RNAs represent approxi-
mately 8% of transcripts of the human transcriptome [47]. Genome-wide analyses of mRNA
decay rates allowed for discovery of non-ARE-containing cohorts of mRNAs that exhibited
rapid turnover. Computational de novo motif search identified conserved sequence elements in
their 30 UTRs in a form of a consensus U(GUUUG)n sequences [13] or GU repeats [48]. These
elements were first tested in vivo in reporter systems and conferred instability onto reporter
mRNAs. A well-utilized rabbit beta-globin reporter system identified GREs as sequences that
regulate the decay of exogenously expressed GRE-containing reporter transcripts within cells
[13]. Further verification of GRE-mediated mRNA decay came from the observation that
siRNA-mediated knockdown of protein CELF1 led to the stabilization of GRE-containing
beta-globin reporter transcripts as well as endogenous GRE-containing transcripts [49–51].
These studies also showed that both GU-rich sequences and GU repeats are also enriched in
unstable mRNAs, though a number of GUUUG pentamers in the GRE do not seem to correlate
with the mRNA decay rate. GREs were subsequently tested for RNA-binding specificities to
CELF1 and CELF2 proteins in systemic evolution of ligands exponential enrichment, yeast
three-hybrid system selection methods, and surface plasmon resonance quantitative binding
assays, revealing that the CELF family preferentially bind to 15–22 nucleotide GU-rich RNA
sequences [52–54]. Several studies reported that other proteins bind to very short UG repeats
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with higher affinity, but dropped once the repeats became longer than 15 nucleotides (e.g.,
TARDBP, FUS) [55, 56]. Binding to dispersed GRE pentanucleotides (mostly by RRM-
containing proteins) have also been reported, although unified functional consequences of it
are just beginning to emerge (refer to a comprehensive review in Ref. [57]).

Using whole genome microarrays and high-throughput NGS methodologies, GRE targets
have been identified in a number of mammalian cells, for example, resting and activated
human T cells, mouse brain cells, and myoblasts or human malignant cell lines [48, 58–61].
The majority of studies extensively characterized GREs as binding sites located predominantly
in 30 UTRs and caused mRNA decay (or stabilization) depending upon the cellular and
environmental context [62]. These UG-rich sequences serve as binding sites for the family of
CELF and ELAVL proteins. Interestingly, these two families of RNA-binding proteins share
over 80% of sequence conservation within RNA recognition motifs but cause opposite out-
comes: the CELF family binding to GRE leads to mRNA degradation, but the ELAVL family
function as mRNA stabilizers [63]. In addition, several studies reported that UGU repeat
sequences were enriched in introns, with the same frequency as AREs [64, 65]. The authors
found significant enrichment of short UG-rich motifs in intronic regions flanking exons,
supporting a role for GRE in alternative splicing [66, 67], which activate or repress the splicing
of pre-mRNA targets through a competitive binding by MBNL and CELF proteins. This is not
surprising, as an estimated 90% of human genes produce alternatively spliced mRNA tran-
scripts [68, 69]. Alignment of the genomic regions adjacent to canonical and alternative
polyadenylation sites identified UUCUG and UGUU as conserved cis-elements, which are
essential for mRNA maturation and polyadenylation site utilization [70–73].

Thus, ARE and GRE can regulate pre-mRNA splicing, translation, and/or mRNA deadeny-
lation or decay depending on the repertoire of proteins they interact with in different intracel-
lular settings. The classification of AREs and GREs has been described in multiple manuscripts
[74–77], and an overview is shown in Table 1. Single nucleotide polymorphism studies in
humans demonstrated that SNPs in ARE and GRE sites are associated with higher risk of
human diseases that involve adaptive immune response; mutations in these conserved cis-
acting elements resulted in changes in RNA stability and binding preferences for RNA-BPs
(reviewed in ref. [44, 63, 78, 79]). The opposing effects of RNA-BP on mRNA turnover may
have important implications for the role of posttranscriptional regulation in proliferative
diseases such as cancer. Most existing data suggest that the unbalanced expression and func-
tion of ARE-BPs appears to drive neoplastic growth and proliferation and contribute to cancer
pathogenesis [44, 80]. A definitive causal connection, that is clinically relevant to human
pathology, has not yet been demonstrated.

4. Poly(A) tail and polyadenylation sequences

The addition and removal of the poly(A) tail are the rate-limiting steps of maturation and
degradation processes that the majority of mammalian mRNAs undergo [81–83]. Two tightly
coupled reactions – cleavage and polyadenylation – involve a large number of protein compo-
nents. Alternative polyadenylation of RNA is a posttranscriptional modification that plays an
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important role in gene expression, as it produces mRNAs that share the same coding region,
but differ in their 30 UTRs. This process is highly tissue specific and results in the generation of
alternative mRNA isoforms with different stability rates and translational efficiency and even
subcellular localization [84–86]. In mammals, the poly(A) cleavage/polyadenylation site is
composed of three sets of consensus cis-elements: the highly conserved AAUAAA hexamer
and less conserved U/GU-rich and UGUA elements. A bioinformatics analysis showed that an
overwhelming majority of mammalian mRNAs harbor a conserved AAUAAA or a close
canonical variant, AUUAAA, sequences [87, 88]. Flanking sequences are very important for
the poly(A) site to function [89]. For example, two downstream U/GU-rich regions are both
necessary for binding of the specific cleavage polyadenylation complex [90, 91]. A number of
trans-binding factors regulate poly(A) site utilization and the efficiency of pre-mRNA
processing in the nucleus, including five large families of CPSF, HNRNP, CF, MBNL, and
CSTF proteins as well as snoRNAs [92–95]. These families have opposing effects on
polyadenylation site utilization in nascent RNAs, determining the final pool of mature mRNA
isoforms and subsequent choreography and activity of trans-binding factors in the cytoplasm
(reviewed in [96, 97]). Immediately after cleavage, poly(A) polymerases (PAPs) promote
lengthening of the poly(A) tail, completing the mRNA maturation process [98, 99]. Genome-
wide polyadenylation site (PAS) analysis in mammalian cells identified a great diversity of
PAS utilization in different tissues and organs [73, 100]. Mutations can cause the loss of the
canonical adenylation signal and subsequent switch to alternative PAS utilization [101].

Another conserved regulatory cis-element is the cytoplasmic polyadenylation element (CPE).
Many mammalian RNAs contain a CPE, a UUUUA/U sequence, located in the 30 UTR. The
CPE serves as a binding site for cytoplasmic polyadenylation element-binding (CPEBs) pro-
teins 1–4 [102]. The most obtrusive differences in the CPE usage have been described under
conditions of stress [103].

The nuclear poly(A)-binding proteins (PABPs) act as poly(A) keepers during the mRNA
processing through first binding to newly added (A)12 nucleotides and allowing the poly(A)
tail to grow up to 250 nucleotides before the mRNA is exported into the cytoplasm [104, 105].
In the cytoplasm, the poly(A) tail acts as a cis-regulatory element and mediates mRNA trans-
lation. Recently developed methodologies make it affordable to count differentially
polyadenylated mRNAs and assess the length of the poly(A) tail [106–108]. In somatic cells,
mRNA deadenylation can lead to the degradation or stabilization of translationally silent
transcripts; however, the importance of the poly(A) tail length in these processes is currently
under scrutiny as there is an evidence that the translation is regulated independently of their
poly(A) tail length in the somatic cell cycle [109]. As for embryonic developmental processes,
translationally repressed mRNAs can be reactivated by cytoplasmic poly(A) tail elongation at
the precise time when their encoded proteins are needed to be translated [108, 110].

5. Other intermediate cis-elements

A number of ARE-like transcripts have been identified in several mammalian systems to
regulate important posttranscriptional networks of gene expression.
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with higher affinity, but dropped once the repeats became longer than 15 nucleotides (e.g.,
TARDBP, FUS) [55, 56]. Binding to dispersed GRE pentanucleotides (mostly by RRM-
containing proteins) have also been reported, although unified functional consequences of it
are just beginning to emerge (refer to a comprehensive review in Ref. [57]).

Using whole genome microarrays and high-throughput NGS methodologies, GRE targets
have been identified in a number of mammalian cells, for example, resting and activated
human T cells, mouse brain cells, and myoblasts or human malignant cell lines [48, 58–61].
The majority of studies extensively characterized GREs as binding sites located predominantly
in 30 UTRs and caused mRNA decay (or stabilization) depending upon the cellular and
environmental context [62]. These UG-rich sequences serve as binding sites for the family of
CELF and ELAVL proteins. Interestingly, these two families of RNA-binding proteins share
over 80% of sequence conservation within RNA recognition motifs but cause opposite out-
comes: the CELF family binding to GRE leads to mRNA degradation, but the ELAVL family
function as mRNA stabilizers [63]. In addition, several studies reported that UGU repeat
sequences were enriched in introns, with the same frequency as AREs [64, 65]. The authors
found significant enrichment of short UG-rich motifs in intronic regions flanking exons,
supporting a role for GRE in alternative splicing [66, 67], which activate or repress the splicing
of pre-mRNA targets through a competitive binding by MBNL and CELF proteins. This is not
surprising, as an estimated 90% of human genes produce alternatively spliced mRNA tran-
scripts [68, 69]. Alignment of the genomic regions adjacent to canonical and alternative
polyadenylation sites identified UUCUG and UGUU as conserved cis-elements, which are
essential for mRNA maturation and polyadenylation site utilization [70–73].

Thus, ARE and GRE can regulate pre-mRNA splicing, translation, and/or mRNA deadeny-
lation or decay depending on the repertoire of proteins they interact with in different intracel-
lular settings. The classification of AREs and GREs has been described in multiple manuscripts
[74–77], and an overview is shown in Table 1. Single nucleotide polymorphism studies in
humans demonstrated that SNPs in ARE and GRE sites are associated with higher risk of
human diseases that involve adaptive immune response; mutations in these conserved cis-
acting elements resulted in changes in RNA stability and binding preferences for RNA-BPs
(reviewed in ref. [44, 63, 78, 79]). The opposing effects of RNA-BP on mRNA turnover may
have important implications for the role of posttranscriptional regulation in proliferative
diseases such as cancer. Most existing data suggest that the unbalanced expression and func-
tion of ARE-BPs appears to drive neoplastic growth and proliferation and contribute to cancer
pathogenesis [44, 80]. A definitive causal connection, that is clinically relevant to human
pathology, has not yet been demonstrated.

4. Poly(A) tail and polyadenylation sequences

The addition and removal of the poly(A) tail are the rate-limiting steps of maturation and
degradation processes that the majority of mammalian mRNAs undergo [81–83]. Two tightly
coupled reactions – cleavage and polyadenylation – involve a large number of protein compo-
nents. Alternative polyadenylation of RNA is a posttranscriptional modification that plays an
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important role in gene expression, as it produces mRNAs that share the same coding region,
but differ in their 30 UTRs. This process is highly tissue specific and results in the generation of
alternative mRNA isoforms with different stability rates and translational efficiency and even
subcellular localization [84–86]. In mammals, the poly(A) cleavage/polyadenylation site is
composed of three sets of consensus cis-elements: the highly conserved AAUAAA hexamer
and less conserved U/GU-rich and UGUA elements. A bioinformatics analysis showed that an
overwhelming majority of mammalian mRNAs harbor a conserved AAUAAA or a close
canonical variant, AUUAAA, sequences [87, 88]. Flanking sequences are very important for
the poly(A) site to function [89]. For example, two downstream U/GU-rich regions are both
necessary for binding of the specific cleavage polyadenylation complex [90, 91]. A number of
trans-binding factors regulate poly(A) site utilization and the efficiency of pre-mRNA
processing in the nucleus, including five large families of CPSF, HNRNP, CF, MBNL, and
CSTF proteins as well as snoRNAs [92–95]. These families have opposing effects on
polyadenylation site utilization in nascent RNAs, determining the final pool of mature mRNA
isoforms and subsequent choreography and activity of trans-binding factors in the cytoplasm
(reviewed in [96, 97]). Immediately after cleavage, poly(A) polymerases (PAPs) promote
lengthening of the poly(A) tail, completing the mRNA maturation process [98, 99]. Genome-
wide polyadenylation site (PAS) analysis in mammalian cells identified a great diversity of
PAS utilization in different tissues and organs [73, 100]. Mutations can cause the loss of the
canonical adenylation signal and subsequent switch to alternative PAS utilization [101].

Another conserved regulatory cis-element is the cytoplasmic polyadenylation element (CPE).
Many mammalian RNAs contain a CPE, a UUUUA/U sequence, located in the 30 UTR. The
CPE serves as a binding site for cytoplasmic polyadenylation element-binding (CPEBs) pro-
teins 1–4 [102]. The most obtrusive differences in the CPE usage have been described under
conditions of stress [103].

The nuclear poly(A)-binding proteins (PABPs) act as poly(A) keepers during the mRNA
processing through first binding to newly added (A)12 nucleotides and allowing the poly(A)
tail to grow up to 250 nucleotides before the mRNA is exported into the cytoplasm [104, 105].
In the cytoplasm, the poly(A) tail acts as a cis-regulatory element and mediates mRNA trans-
lation. Recently developed methodologies make it affordable to count differentially
polyadenylated mRNAs and assess the length of the poly(A) tail [106–108]. In somatic cells,
mRNA deadenylation can lead to the degradation or stabilization of translationally silent
transcripts; however, the importance of the poly(A) tail length in these processes is currently
under scrutiny as there is an evidence that the translation is regulated independently of their
poly(A) tail length in the somatic cell cycle [109]. As for embryonic developmental processes,
translationally repressed mRNAs can be reactivated by cytoplasmic poly(A) tail elongation at
the precise time when their encoded proteins are needed to be translated [108, 110].

5. Other intermediate cis-elements

A number of ARE-like transcripts have been identified in several mammalian systems to
regulate important posttranscriptional networks of gene expression.
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Poly (U) sequences are the third most conserved cis-element after ARE and GRE, which have
been recently found within sequence composition at cross-link nucleotides site using the CLIP
assay [111]. Frequencies of poly(U) are most highly enriched for UUUUU pentanucleotides.
The HNRNPC and HNRNPD (AUF1) can recognize and bind to U sequences in pre-mRNAs,
mature mRNAs, and non-coding RNAs and influence target transcript diversity in the nucleus
through pre-mRNA splicing and the stability in the cytoplasm [41]. It is interesting to note that
clusters V of ARE and GRE elements (see Table 1) include hundreds of mRNAs harboring U-
pentanucleotides in the 30 UTR, suggesting that CELF and ELAVL families can also bind to
poly(U) tracts under certain conditions, perhaps with lower affinity [112].

Uridylation is an independent biochemical process that is facilitated by uridylation enzymes
such as ZCCHC11 and ZCCHC6. In mammalian cells, uridylation readily occurs on deadeny-
lated mRNAs through the recognition of short poly(A) tails (<25 nt). Protein PABPC1 antago-
nizes uridylation of polyadenylated mRNAs, contributing to changes in mRNA half-lives
[113]. MicroRNA can also induce uridylation of its targets; however, selectivity of mRNA
uridylation has not been decisively demonstrated. The development of novel methods, such
as TAIL-Seq, allows for genome-wide discovery of alternative mRNA tailing processes such as
uridylation and guanylation at downstream sites of shortened poly(A) tails [114]. Dynamic
control of mRNA tailing is implicated in turnover and translational control and is fundamental
for early embryonic development [115].

GC-rich sequences were also found to be conserved in coding and non-coding regions of
mammalian mRNAs. Classified as GC-rich elements (GCREs), these were identified in NCL
(nucleolin), PCBP1 and UPF protein-binding complexes [116]. GCREs regulate mRNA stabil-
ity, decay, and translational efficiency [117]. Several lines of evidence establish primary func-
tion for GCRE as regulators of mRNA transcription [118].

The CU-rich element (CURE) is a target for several RNA- or DNA-binding proteins, for
example, PCBP1 [119] and PTBP1 [120, 121] and regulates gene expression via a broad, but
poorly defined spectrum of posttranslational mechanisms.

Oligonucleotides (T/C)nGGG/G from four separate strands can be folded into stacked tertiary
structures known as G-quadruplexes, forming polymorphic loops of three G-quartet layers
with four G-tracts [122–124]. Folded G-structures (Gs)2–7 are found in 30 and 50 UTRs, but are
very rare in coding and intergenic regions, and could influence all aspects of RNA metabolism
[125, 126]. Studies have shown that 30 UTR G-quadruplexes can bind more than two dozen
proteins that interact with the Gs structure and serve as regulators of transcription, splicing,
processing, localization, and stability and have been recently discussed in excellent reviews
[127, 128]. Moreover, bioinformatics and computational scans have shown the prevalence of
intermolecular DNA–RNA G-quadruplexes and (Gs)4 pairing with miRNA in mammalian
cells [129, 130]. These observations imply almost endless possibilities of intermolecular inter-
actions, which undoubtedly would have significant impact on our understanding of transcrip-
tional and posttranscriptional gene expression and regulation in mammalian cells.

Internal ribosome entry sites (IRESs) are heterogeneous cis-acting regulatory elements located
primarily in 50 untranslated regions of mammalian mRNAs. IRESs facilitate alternative mRNA
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translation, skipping the need for the m7GpppN cap structure and many translation initiation
trans-acting factors in the recognition process of the translation initiation codon (e.g., AUG) by
ribosomal subunits [131]. Since the length of IRES can be several hundred nucleotides long, it
was difficult to identify IRES’ structural elements that are important for the common second-
ary structures or functions [132, 133]. In depth sequence scans through the human
transcriptome identified a variety of poly-U, poly-A, and CU-rich k-mers that seem to be
important determinants of the IRES activity [134]. These k-mers represent binding sites for
IRES trans-acting factors and are located at positions less than 150 nt upstream of the AUG
start-codon [135]. Translation initiation mediated by IRES is commonly presented as a cell
survival mechanism in response to stress; however, the significance of this process and impli-
cations to human diseases are unknown due to lack of solid in vitro experimental results that
would unambiguously demonstrate the effect in vivo [136].

Pumilio response element (PRE) is another cis-element that is well defined in nonmammalian
systems. A consensus 50- UGUANAUAwas derived from gel shift, RIP, PAR-CLIP, and crystal
structure approaches [137]. It is present in almost 3000 mammalian mRNAs and serves as a
cis-element for the PUM family of proteins [138, 139]. PUMs exert two modes of mRNA transla-
tional repression: deadenylation-mediated repression and a deadenylation-independent mecha-
nism [140].

Another novel 30 UTR motif (UAAC/GUUAU) is also prevalent (7% of mammalian 30 UTRs
contain one or more copies) and has strong species conservation [141]. This motif is a binding
target for HNRNP A2/B1 and A1 and is involved in mRNA deadenylation. A fundamental role
of UAAC/GUUAU and similar elements as regulators of the mammalian mRNA translational
activation or repression is yet to be demonstrated [142].

6. Short multivalent regulatory motifs

Mapping mammalian pre-mRNA positional enrichment of short intronic splicing regulatory
elements (ISREs) is another example of the identification of cis-acting elements that are most
important for pre-mRNA splicing. De novo searches for multivalent RNA motifs identified a
number of conserved tetra- to hexamers that mediate the position-specific combinatorial bind-
ing by RNA-binding proteins [143, 144]. The position of short motifs can predict the tissue-
specific RNA isoform abundance and can serve as an intronic splicing enhancer or silencer
during embryonic development and in adult organisms [145]. Since the consensus sequence
elements of splice sites are very short (e.g., 50-UUAGGU, AAGGAC, AAGAAC, CCUCUG,
GCUGCG, CUGCUG-30), the mechanism by which the spliceosome distinguishes them as
authentic splice sites remains a long-standing question. One of the explanations provided in
[146, 147] suggests that these sequences form specific secondary structures that increase bind-
ing affinities to RNA-binding motifs across many RNA-BPs. The strong association of ISREs
with differences in splicing patterns, but poor evolutionary conservation, suggests the role for
these motifs to act as cis-acting splice codes that allow for the progressive divergence of
alternative splicing in vertebrates [148].
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Poly (U) sequences are the third most conserved cis-element after ARE and GRE, which have
been recently found within sequence composition at cross-link nucleotides site using the CLIP
assay [111]. Frequencies of poly(U) are most highly enriched for UUUUU pentanucleotides.
The HNRNPC and HNRNPD (AUF1) can recognize and bind to U sequences in pre-mRNAs,
mature mRNAs, and non-coding RNAs and influence target transcript diversity in the nucleus
through pre-mRNA splicing and the stability in the cytoplasm [41]. It is interesting to note that
clusters V of ARE and GRE elements (see Table 1) include hundreds of mRNAs harboring U-
pentanucleotides in the 30 UTR, suggesting that CELF and ELAVL families can also bind to
poly(U) tracts under certain conditions, perhaps with lower affinity [112].

Uridylation is an independent biochemical process that is facilitated by uridylation enzymes
such as ZCCHC11 and ZCCHC6. In mammalian cells, uridylation readily occurs on deadeny-
lated mRNAs through the recognition of short poly(A) tails (<25 nt). Protein PABPC1 antago-
nizes uridylation of polyadenylated mRNAs, contributing to changes in mRNA half-lives
[113]. MicroRNA can also induce uridylation of its targets; however, selectivity of mRNA
uridylation has not been decisively demonstrated. The development of novel methods, such
as TAIL-Seq, allows for genome-wide discovery of alternative mRNA tailing processes such as
uridylation and guanylation at downstream sites of shortened poly(A) tails [114]. Dynamic
control of mRNA tailing is implicated in turnover and translational control and is fundamental
for early embryonic development [115].

GC-rich sequences were also found to be conserved in coding and non-coding regions of
mammalian mRNAs. Classified as GC-rich elements (GCREs), these were identified in NCL
(nucleolin), PCBP1 and UPF protein-binding complexes [116]. GCREs regulate mRNA stabil-
ity, decay, and translational efficiency [117]. Several lines of evidence establish primary func-
tion for GCRE as regulators of mRNA transcription [118].

The CU-rich element (CURE) is a target for several RNA- or DNA-binding proteins, for
example, PCBP1 [119] and PTBP1 [120, 121] and regulates gene expression via a broad, but
poorly defined spectrum of posttranslational mechanisms.

Oligonucleotides (T/C)nGGG/G from four separate strands can be folded into stacked tertiary
structures known as G-quadruplexes, forming polymorphic loops of three G-quartet layers
with four G-tracts [122–124]. Folded G-structures (Gs)2–7 are found in 30 and 50 UTRs, but are
very rare in coding and intergenic regions, and could influence all aspects of RNA metabolism
[125, 126]. Studies have shown that 30 UTR G-quadruplexes can bind more than two dozen
proteins that interact with the Gs structure and serve as regulators of transcription, splicing,
processing, localization, and stability and have been recently discussed in excellent reviews
[127, 128]. Moreover, bioinformatics and computational scans have shown the prevalence of
intermolecular DNA–RNA G-quadruplexes and (Gs)4 pairing with miRNA in mammalian
cells [129, 130]. These observations imply almost endless possibilities of intermolecular inter-
actions, which undoubtedly would have significant impact on our understanding of transcrip-
tional and posttranscriptional gene expression and regulation in mammalian cells.

Internal ribosome entry sites (IRESs) are heterogeneous cis-acting regulatory elements located
primarily in 50 untranslated regions of mammalian mRNAs. IRESs facilitate alternative mRNA
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translation, skipping the need for the m7GpppN cap structure and many translation initiation
trans-acting factors in the recognition process of the translation initiation codon (e.g., AUG) by
ribosomal subunits [131]. Since the length of IRES can be several hundred nucleotides long, it
was difficult to identify IRES’ structural elements that are important for the common second-
ary structures or functions [132, 133]. In depth sequence scans through the human
transcriptome identified a variety of poly-U, poly-A, and CU-rich k-mers that seem to be
important determinants of the IRES activity [134]. These k-mers represent binding sites for
IRES trans-acting factors and are located at positions less than 150 nt upstream of the AUG
start-codon [135]. Translation initiation mediated by IRES is commonly presented as a cell
survival mechanism in response to stress; however, the significance of this process and impli-
cations to human diseases are unknown due to lack of solid in vitro experimental results that
would unambiguously demonstrate the effect in vivo [136].

Pumilio response element (PRE) is another cis-element that is well defined in nonmammalian
systems. A consensus 50- UGUANAUAwas derived from gel shift, RIP, PAR-CLIP, and crystal
structure approaches [137]. It is present in almost 3000 mammalian mRNAs and serves as a
cis-element for the PUM family of proteins [138, 139]. PUMs exert two modes of mRNA transla-
tional repression: deadenylation-mediated repression and a deadenylation-independent mecha-
nism [140].

Another novel 30 UTR motif (UAAC/GUUAU) is also prevalent (7% of mammalian 30 UTRs
contain one or more copies) and has strong species conservation [141]. This motif is a binding
target for HNRNP A2/B1 and A1 and is involved in mRNA deadenylation. A fundamental role
of UAAC/GUUAU and similar elements as regulators of the mammalian mRNA translational
activation or repression is yet to be demonstrated [142].

6. Short multivalent regulatory motifs

Mapping mammalian pre-mRNA positional enrichment of short intronic splicing regulatory
elements (ISREs) is another example of the identification of cis-acting elements that are most
important for pre-mRNA splicing. De novo searches for multivalent RNA motifs identified a
number of conserved tetra- to hexamers that mediate the position-specific combinatorial bind-
ing by RNA-binding proteins [143, 144]. The position of short motifs can predict the tissue-
specific RNA isoform abundance and can serve as an intronic splicing enhancer or silencer
during embryonic development and in adult organisms [145]. Since the consensus sequence
elements of splice sites are very short (e.g., 50-UUAGGU, AAGGAC, AAGAAC, CCUCUG,
GCUGCG, CUGCUG-30), the mechanism by which the spliceosome distinguishes them as
authentic splice sites remains a long-standing question. One of the explanations provided in
[146, 147] suggests that these sequences form specific secondary structures that increase bind-
ing affinities to RNA-binding motifs across many RNA-BPs. The strong association of ISREs
with differences in splicing patterns, but poor evolutionary conservation, suggests the role for
these motifs to act as cis-acting splice codes that allow for the progressive divergence of
alternative splicing in vertebrates [148].
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7. MicroRNAs (miRNAs)

MicroRNAs are conserved regulatory sequences that pervasively act, in trans, toward mRNA.
miRNA-binding sites are important regulators of mRNA half-life and activity. The majority of
miRNAs influence mRNA life span through biochemical interactions with mRNA and/or
RNA-BPs [149]. This could be achieved through direct competition for a shared binding site
or through remodeling of the mRNA structure to favor (or impede) miRNA association nearby
[150]. In support of this, a recent bioinformatics analysis determined that UUUGUUU motifs,
which bear an uncanny resemblance to GRE-binding sites, are enriched in the adjacent to
many miRNA-binding sites, and their presence tends to augment miRNA activity [151]. On
the other hand, any miRNA that contains a UGUKUGU or UAUKUAU seed sequences (K
represents G or U) could in theory bind and occlude GRE-BP- or ARE-BP-binding motifs,
which prevent any interaction with cis-elements within mRNA. For example, the mir-122
interaction with CELF1 has been demonstrated, proposing that CELF1 can play a role in the
degradation of GRE-containing miRNAs [152]. It has been computed that the proximity of
RNA-BP-binding sites and residues pairing to miRNA can quantitatively predict mRNA cis-
element performance for several intensely studied RNA-BPs and miRNAs [153–155]. Although
mechanistic details of interplay between cis-acting elements, RNA-BPs, and miRNAs are
understudied, they perhaps should be a high priority, given recent observations that miRNA
expression and/or processing are affected in many human diseases and disorders [156–158].
Significant progress has been made by bioinformaticians and biologists to better understand
system biology of the RNA life cycle; several useful metadata hubs were created, which
incorporate existing experimental data and computational approaches [159, 160]. The compre-
hensive list of available software and websites has been recently reviewed in Ref. [161]. How-
ever, we are still far from having a comprehensive understanding of mechanisms of RNA
biogenesis and its relevance in physiological and pathological conditions.

8. Pathological cis-elements

The human genome contains a large number of short repetitive sequences that are prone to
higher than average mutation rates and transcriptional errors [162], which can engender a
tandem repeat expansion in cis-acting elements of 30 or 50 UTR, introns, or coding regions, and
cause a large variety of inherited human diseases. For example, endogenous nucleotide repeat
expansions are implicated in many human autosomal dominant diseases and have emerged as
new groups of repeat expansion disorder associated with tri- or pentanucleotide repeat expan-
sion pathogenesis. Pathological repeats can elicit toxicity that is triggered by toxic RNA or
abnormally translated protein dipeptide or homopolymeric peptides [163]. Disorders as such
include, but are not limited to the following conditions:

• Spinocerebellar ataxia (SCAs types 1–37) is the largest and the most diverse group of
inherited neurological diseases in which neurological dysfunction is driven by defects
known as ataxias. Several mutations in tandem repeat expansions were discovered,
including coding (CAG)n mutations in SCA1, 2, 3, 6, 7, and 17 genes; non-coding (CTG)n

Gene Expression and Regulation in Mammalian Cells - Transcription From General Aspects44

in SCA8 [164]; non-coding (CAG)n in SCA12; (ATTCT)n – in SCA10; (TGGAA)n – in
SCA31; and (GGCCTG) – in SCA36 (please see OMIM.org for details).

• Myotonic dystrophies (DM), where (DM1) is associated with >300 CUG, repeats in the
DMPK mRNA; and (DM2) – with >CCUG repeats in ZF9 mRNA [165].

• Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia are associated with
GGGGCC/CCCCGG repeat expansion in the non-coding region of the C9orf72 (C9ALS/
FTD) gene [166].

• Huntington’s disease is caused by CAG expansion repeats in the HTT gene [167];

• Fragile X syndrome (FXS) arises when the FMR1 gene reach <230 CGG repeats.

• Fragile X-associated tremor/ataxia syndrome (FXTAS) is associated with CGG/CCG
repeat expansion in the fragile X gene, FMR1 [168].

Molecular pathogenesis of endogenous nucleotide repeat expansion diseases is complicated and
pertained to the presence of repeat-associated non-AUG translation (RAN), where translation of
mutant polypeptides is initiated without an AUG-initiation codon or it is driven by the open
reading frame shifts due to expanded three-base-pair repeats during skipped mispairing in the
course of DNA synthesis (reviewed in [169, 170]). Although the posttranscriptional modification
state of these transcripts (e.g., mRNA capping and polyadenylation) is unknown, two transla-
tional pathways are described: (1) ATG-initiated translation produces multiple polypeptides if
there are multiple ORFs within the transcript. (2) RAN translation of the expanded repeat can
produce up to six distinct RAN polypeptides: poly-Gln, poly-Ala, and poly-Ser RAN proteins
(from CTG/CAG repeats); and poly-Leu, poly-Ala and poly-Cys polypeptides from the CAG/
CUG repeat mRNA. Repeats located in antisense transcripts of above listed genes are also
substrates for RAN translation, further expanding the number of pathological dipeptides or
homopolymeric RAN proteins produced during disease pathogenesis.

An interesting common aspect of these pathologies is that they are caused by mutated cis-
elements and are often produced through bidirectional transcription. Resultant toxic RNA
causes intracellular stress and sequestration of RNA-BPs toward expanded sequence repeats
[171], which changes the biochemistry of posttranscriptional regulatory networks in affected
tissues. The abovementioned diseases represent an incomplete list of a growing number of
disorders that can potentially have similar therapeutic opportunities. The recently developed
‘base editor’ CRISPR-Cas9 methodology has demonstrated a high power of nucleotide-level
precision editing, making this approach suitable for repeat excision as genetic therapies for the
above listed conditions [172] and may also correct many other RNA pathologies, for example,
those driven by nonsense-mediated mRNA decay [173].

9. Models for the effects of cis-acting elements

mRNA molecules move through different cellular compartments within messenger ribonu-
cleoprotein (mRNP) complexes in dynamic association with RNA-binding proteins that bind
to conserved cis-elements shared by subsets of transcripts [174]. The association of specific
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7. MicroRNAs (miRNAs)
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Gene Expression and Regulation in Mammalian Cells - Transcription From General Aspects44
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mutant polypeptides is initiated without an AUG-initiation codon or it is driven by the open
reading frame shifts due to expanded three-base-pair repeats during skipped mispairing in the
course of DNA synthesis (reviewed in [169, 170]). Although the posttranscriptional modification
state of these transcripts (e.g., mRNA capping and polyadenylation) is unknown, two transla-
tional pathways are described: (1) ATG-initiated translation produces multiple polypeptides if
there are multiple ORFs within the transcript. (2) RAN translation of the expanded repeat can
produce up to six distinct RAN polypeptides: poly-Gln, poly-Ala, and poly-Ser RAN proteins
(from CTG/CAG repeats); and poly-Leu, poly-Ala and poly-Cys polypeptides from the CAG/
CUG repeat mRNA. Repeats located in antisense transcripts of above listed genes are also
substrates for RAN translation, further expanding the number of pathological dipeptides or
homopolymeric RAN proteins produced during disease pathogenesis.

An interesting common aspect of these pathologies is that they are caused by mutated cis-
elements and are often produced through bidirectional transcription. Resultant toxic RNA
causes intracellular stress and sequestration of RNA-BPs toward expanded sequence repeats
[171], which changes the biochemistry of posttranscriptional regulatory networks in affected
tissues. The abovementioned diseases represent an incomplete list of a growing number of
disorders that can potentially have similar therapeutic opportunities. The recently developed
‘base editor’ CRISPR-Cas9 methodology has demonstrated a high power of nucleotide-level
precision editing, making this approach suitable for repeat excision as genetic therapies for the
above listed conditions [172] and may also correct many other RNA pathologies, for example,
those driven by nonsense-mediated mRNA decay [173].

9. Models for the effects of cis-acting elements

mRNA molecules move through different cellular compartments within messenger ribonu-
cleoprotein (mRNP) complexes in dynamic association with RNA-binding proteins that bind
to conserved cis-elements shared by subsets of transcripts [174]. The association of specific
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trans-binding factors with conserved regulatory cis-elements shared by subsets of mRNAs
coordinates the fate of these bound transcripts through posttranscriptional processes such as
splicing, intracellular localization, translation, storage, or mRNA decay [175, 176]. Not surpris-
ingly, very few transcripts have only one type of regulatory element. Focusing on individual
scenarios, we built a concise predictive model of higher-order complexes that can be formed
simultaneously within different cellular compartments, starting in from the nucleus and mov-
ing into the cytoplasm.

A. Regulation of splicing by cis-elements (Figure 1A):

The cis-elements within precursor RNA are catalyzed by different components of the
spliceosome during constitutive splicing events [177]. Binding by RNA-BP to short intronic
splicing regulatory elements (ISREs) regulates exon inclusion or exon skipping during stage-
specific constitutive splicing transitions, in a position-dependent manner [67]. These pro-
cesses are orchestrated by biochemical recognition and binding on a competitive basis by a
family of U proteins that compose the spliceosome.

RNA-BPs also bind to multivalent intronic sequences in precursor mRNA and regulate the
alternative splicing (e.g., exon skipping, alternative splice site retention, or intron reten-
tion). Alternatively-spliced transcripts may contain different 30 or 50 UTRs that can be
subject to differential translational regulation of mature transcripts. An important regula-
tors of alternative splicing efficiency are PTBP, SR, RBM, and HNRNP families of proteins
and snRNAs. The use of alternative exons leads to the production of transcripts with
different open reading frames (ORFs) and diversifies the repertoire of encoded proteins,
giving rise to protein isoforms with alternative N- and C- termini.

B. Regulation of adenylation by cis-acting elements (Figure 1B):

Alternative polyadenylation (APA) occurs in a tandem manner with splicing. Many splic-
ing factors are also 30-end processing factors within the mRNA 30-end cleavage and
polyadenylation (CPA) complexes. The recognition of cis-elements upstream of canonical
or alternative PAS serves as a docking site for specific RNA-binding proteins (e.g., CPSF,
CF, CSTFs, HNRNPs, MBNL, and CPEB), which in turn recruit canonical poly(A) poly-
merases (PAPOL). The CPA complex requires stabilization by a downstream GU/GC-rich
sequence element (DSE) and its interaction with the CPSF-processing factors. The
upstream sequence element (USE) is U-rich and serves an auxiliary role, binding to CF
and PAPOL, and also stabilizes the cleavage complex.

The cleavage and polyadenylation specific factor (CPSF) binds weaker noncanonical
polyadenylation (AUUAAA) signals and cuts at the proximal polyadenylation site (PAS).
The utilization of distal canonical PAS results in the processing of the full mature tran-
script. Cleavage at the proximal PAS leads to shortening of the 30 untranslated region and
loss of regulatory sequences within the 30 UTR (e.g., ARE or GRE or miRNA-binding
sites). MBNL can mask the region upstream of weak noncanonical PA signals, blocking
the binding of cleavage factor I (CF).

The CPEB1 protein binds the cytoplasmic polyadenylation element (CPE, consensus
sequence 50-UUUUUAU -30) located upstream of non-canonical PA signals within the
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The utilization of distal canonical PAS results in the processing of the full mature tran-
script. Cleavage at the proximal PAS leads to shortening of the 30 untranslated region and
loss of regulatory sequences within the 30 UTR (e.g., ARE or GRE or miRNA-binding
sites). MBNL can mask the region upstream of weak noncanonical PA signals, blocking
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mRNA and shuttles it into the cytoplasm. The cytoplasmic CPEB1-CPE complex recruits
poly(A) polymerase (PAP), which promotes the lengthening of the poly(A) tail and
increases translation efficiency. The greater the distance between CPE and poly(A) tails of
transcripts, the weaker the rate of adenylation.

C. Regulation of translation by cis-acting elements (Figure 1C):

Most eukaryotic mRNAs are translated by the cap-dependent mechanism, which requires
recognition of the cap structure (m7GpppN) at the 50 end by early initiation factor com-
plexes (eIFs). EIFs recruit ribosomal subunits and initiator Met-tRNA and scan along the

Figure 1. Predictive scenarios of cis-element effects and trans-binding factors behavior on mRNA splicing, adenylation,
translation, and decay. Blunt arrows indicate direct suppression; arrows represent activation. These figures are made by
using the ingenuity pathway analysis software based upon the observations from previous studies or suggested regula-
tory mechanisms. A. Consensus multivalent sequences represent the intronic splice sites that are recognized by a family of
small nuclear ribonucleoproteins (U snRNPs). These regulatory cis-elements can be divided into two types: (1) intronic
regions which almost always begin with the dinucleotide GU and end with AG; and (2) intronic regions which have either
AU and AC termini or GU and AG termini. Introns are also rich with pyrimidine nucleotides that cumulatively compose a
pyrimidine binding tract, which also have a unique poly(A) branch point sequence upstream. Of the other four types of
cis-acting elements: two are located within exons (exonic splicing enhancers, ESEs, and exonic splicing silencers, ESSs), and
two are located within introns (intronic splicing enhancers, ISEs, and intronic splicing silencers, ISSs). The key trans-acting
splicing factors are shown: SR, serine/arginine-rich (SR) proteins; U1 small nuclear ribonucleoproteins (U1 snRNPs);
HNRNPs, heterogeneous nuclear ribonucleoproteins; PTB, polypyrimidine tract binding protein. B. Adenylation of pre-
mRNA is triggered by cis-regulatory sequences named poly(A) signals: AAUAAA or/and AUUAAA; the U/GU-rich and
UGUA elements. By direct analogy to splicing, canonical adenylation is regulated by RNA-BPs or snRNAs. CF, cleavage
factor; CSTF, cleavage stimulation factor; CPSF, cleavage polyadenylation specificity factor; MBNL, muscle blind like
protein; PAP, poly(A) polymerase; PABP, poly(A) binding protein; CPEB, cytoplasmic polyadenylation element binding
protein; miRNA BS, miRNA binding sites; S RNA-BP, stabilizing RNA-binding protein; D RNA-BP, destabilizing RNA-
binding protein; CPA, cleavage polyadenylation assembly; CPE, cytoplasmic polyadenylation element. C. Cis-mediated
regulation of canonical and alternative translation includes sequences in all parts of mRNA. In canonical translation, the
initiation factors (RNA-BPs) bind the 50 m7GpppN cap, and then linearly scan through the 50 UTR until reaching an AUG
start codon. For simplicity, the components of the translation machinery are shown as eIF2 and eIFs (eukaryotic early
translation initiation factors). PABP, poly(A) binding protein; IRES, internal ribosomal entry site; P, phosphorylation of
RNA-BP. D. Schematic illustration of the cytoplasmic mRNA decay complex formation. The details for this scenario are
provided in the text. S RNA-BP, stabilizing RNA-binding proteins; D RNA-BP, destabilizing RNA-binding proteins; PABP,
poly(A)-binding protein; eIF2 and eIFs, eukaryotic early translation initiation factors. E. Scenarios for miRNA mediated
mRNA translational repression or decay pathways. The details for this scenario are provided in the text. RISC, RNA-
induced silencing complex; P, phosphorylation of RNA-BP.
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50 UTR of the mRNA to reach the start codon (an AUG triplet). During the scanning, the
secondary RNA structure unwinds in an ATP-dependent manner. The 50 UTR is rich in
GC-content and is prone to folding into secondary structures, which may hinder ribo-
somal assembly [178]. Hairpin loops as secondary structure regulatory elements were
described only for a handful of mRNAs, and their role in genome-wide translation is not
known. A combination of new ribo-sequencing with fluorescent visualization might shed
light on the role of hairpin loops in translation in the near future [179–182]. Other internal
50 UTR cis-element structures are AREs and GREs. Their effects on translation are medi-
ated by a combination of RNA-BPs. They are often found to be part of hairpin loops.
Visualizing a folded hairpin structure in vivo is not possible at current resolution limits.

The translation initiation via internal ribosomal entry site (IRES) occurs in a cap-
independent manner. Mammalian IRES facilitates bypassing of the eIF4E-m7GpppN cap
interaction and recruitment of the small and large ribosomal subunits and tRNA to the
transcript, initiating translation at the canonical AUG start codon.

G-quadruplexes within/near IRES may potentiate alternative translation. However, G4
structures in 30 or 50 UTRs and an open reading frame mainly repress cap-dependent
translation (reviewed in Ref. [183]).

The poly(A) tail also plays a role in translation as an mRNA stabilizer and a facilitator of
mRNA circularization, which promotes translation. De-adenylation processes tend to
slowdown the translation rate and eventually lead to mRNA degradation.

D. Regulation of mRNA stabilization or decay by cis-acting elements (Figure 1D):

In mammalian cells, mRNA stabilization or decay is regulated by cis-elements in the 30

UTR. Numerous known RNA-BPs serve as trans-binding factors for ARE/GRE and other
elements to facilitate transcript deadenylation and subsequent decay by exonucleases.
There are also a number of RNA-BPs with the opposite function, which stabilize and
promote mRNA translation. Posttranslational alteration of RNA-BPs (particularly within
RNA-binding domains) can lead them to dissociate from RNA-binding complexes, and be
replaced by other competitors, thereby contributing to mRNA de/stabilization [76]. A fine-
tuned balance must be reached in cells for proper function at the organismal level.

E. Interplay between mRNA, miRNA and RNA-BPs (Figure 1E):

The estimates on how different miRNA and mRNA are loaded into the RNA-BP-bound
RISC (RNA-induced silencing complex) were derived from CLIP assays results [184–186].
Several scenarios are possible to extract from these: If both miRNA and RNA-BP are
bound to the 30 UTR of mRNA, they will be sufficiently close to each other and the
complex can be identified by CLIP. They would work cooperatively to promote the
assembly of decay machinery. Independent binding by a competitor RNA-BP might
disrupt this complex. The strength of miRNA-mRNA canonical and noncanonical bond
formation can be computed to project possible biochemical outcomes [187–189].

The mRNA 30 UTR length and secondary structure formation can greatly influence both
miRNA and RNA-BP-binding efficiency; it can also disrupt or assuage the assembly of
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RNA-BP complexes by providing high affinity or multioccupancy binding sites. The out-
comes of this scenario could be anywhere from marginal translational repression to
accelerated mRNA degradation.

Cis-acting sequences within miRNAs that resemble cis-elements (ARE or GRE) have
perfect complementarity to RNA-BP’s RNA-recognition motifs (RRMs). They can, in
theory, occlude RRM-binding sites, acting as alternative inhibitors of RNA-BP activity.
This could potentiate (or hinder) translational repression and mRNA degradation of
target mRNA, depending on which RNA-BP was affected.

10. Conclusions and perspectives

Examples given in this chapter suggest that mRNA regulation is important in multiple aspects
of mammalian biology; however, it is largely unknown how the combinatorial regulation is
achieved at the biological complexity of the organisms. Transcriptome-wide mapping of cis-
elements and trans-binding sites demonstrates huge regulatory potentials for non-coding parts
of mRNA. The more details we learn about cross-talk, molecular assembly, and compartmen-
talization of RNA-protein complexes, the more unifying principles we may find. Understand-
ing of the factors and elements involved in the regulation of a particular gene expression in a
single cell [190] is of paramount importance when designing molecular therapies or when
attempting to modulate the expression of a target gene. Thus, scientists and geneticists have
exciting opportunities ahead in the field of therapeutic genome editing.
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50 UTR of the mRNA to reach the start codon (an AUG triplet). During the scanning, the
secondary RNA structure unwinds in an ATP-dependent manner. The 50 UTR is rich in
GC-content and is prone to folding into secondary structures, which may hinder ribo-
somal assembly [178]. Hairpin loops as secondary structure regulatory elements were
described only for a handful of mRNAs, and their role in genome-wide translation is not
known. A combination of new ribo-sequencing with fluorescent visualization might shed
light on the role of hairpin loops in translation in the near future [179–182]. Other internal
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ated by a combination of RNA-BPs. They are often found to be part of hairpin loops.
Visualizing a folded hairpin structure in vivo is not possible at current resolution limits.
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independent manner. Mammalian IRES facilitates bypassing of the eIF4E-m7GpppN cap
interaction and recruitment of the small and large ribosomal subunits and tRNA to the
transcript, initiating translation at the canonical AUG start codon.

G-quadruplexes within/near IRES may potentiate alternative translation. However, G4
structures in 30 or 50 UTRs and an open reading frame mainly repress cap-dependent
translation (reviewed in Ref. [183]).

The poly(A) tail also plays a role in translation as an mRNA stabilizer and a facilitator of
mRNA circularization, which promotes translation. De-adenylation processes tend to
slowdown the translation rate and eventually lead to mRNA degradation.

D. Regulation of mRNA stabilization or decay by cis-acting elements (Figure 1D):
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UTR. Numerous known RNA-BPs serve as trans-binding factors for ARE/GRE and other
elements to facilitate transcript deadenylation and subsequent decay by exonucleases.
There are also a number of RNA-BPs with the opposite function, which stabilize and
promote mRNA translation. Posttranslational alteration of RNA-BPs (particularly within
RNA-binding domains) can lead them to dissociate from RNA-binding complexes, and be
replaced by other competitors, thereby contributing to mRNA de/stabilization [76]. A fine-
tuned balance must be reached in cells for proper function at the organismal level.

E. Interplay between mRNA, miRNA and RNA-BPs (Figure 1E):

The estimates on how different miRNA and mRNA are loaded into the RNA-BP-bound
RISC (RNA-induced silencing complex) were derived from CLIP assays results [184–186].
Several scenarios are possible to extract from these: If both miRNA and RNA-BP are
bound to the 30 UTR of mRNA, they will be sufficiently close to each other and the
complex can be identified by CLIP. They would work cooperatively to promote the
assembly of decay machinery. Independent binding by a competitor RNA-BP might
disrupt this complex. The strength of miRNA-mRNA canonical and noncanonical bond
formation can be computed to project possible biochemical outcomes [187–189].

The mRNA 30 UTR length and secondary structure formation can greatly influence both
miRNA and RNA-BP-binding efficiency; it can also disrupt or assuage the assembly of
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RNA-BP complexes by providing high affinity or multioccupancy binding sites. The out-
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perfect complementarity to RNA-BP’s RNA-recognition motifs (RRMs). They can, in
theory, occlude RRM-binding sites, acting as alternative inhibitors of RNA-BP activity.
This could potentiate (or hinder) translational repression and mRNA degradation of
target mRNA, depending on which RNA-BP was affected.

10. Conclusions and perspectives

Examples given in this chapter suggest that mRNA regulation is important in multiple aspects
of mammalian biology; however, it is largely unknown how the combinatorial regulation is
achieved at the biological complexity of the organisms. Transcriptome-wide mapping of cis-
elements and trans-binding sites demonstrates huge regulatory potentials for non-coding parts
of mRNA. The more details we learn about cross-talk, molecular assembly, and compartmen-
talization of RNA-protein complexes, the more unifying principles we may find. Understand-
ing of the factors and elements involved in the regulation of a particular gene expression in a
single cell [190] is of paramount importance when designing molecular therapies or when
attempting to modulate the expression of a target gene. Thus, scientists and geneticists have
exciting opportunities ahead in the field of therapeutic genome editing.
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Abstract

Endogenous viral elements (EVEs) are the heritable sequences present in eukaryotic 
genomes that have originated from viral nucleotide sequences. EVEs are subdivided 
into two groups, according to the presence or absence of long terminal repeats (LTRs). 
EVEs with LTRs are called endogenous retroviruses (ERVs), and they account for 
approximately 8% of the human genome. EVEs without LTRs seem to be related to 
non-reverse-transcribing RNA and DNA viruses, and recent studies have revealed that 
numerous vertebrate genomes contain these non-LTR EVEs. Such EVEs are proposed 
to play essential roles in gene expression. EVEs can regulate gene expression as cis-reg-
ulatory DNA and RNA elements. EVE-derived non-coding RNAs and/or proteins can 
also influence cell transcriptomes in trans. To maintain cell integrity, cells epigenetically 
silence the expression of most EVEs, making these elements generally biochemically 
inert. These epigenetic alterations around the EVE loci can also affect host transcrip-
tomes. Here, we highlight the current knowledge available on the regulatory activities 
of ERVs and non-retroviral EVEs, especially the EVEs derived from bornaviruses, which 
are known as endogenous bornavirus-like elements (EBLs). Better knowledge of this 
area will improve our understanding of gene regulation and also the co-evolution of 
viruses and their hosts.

Keywords: endogenous viral sequences, retroviruses, bornavirus, long terminal repeats, 
co-evolution, genome

1. Introduction

Various viruses appear to have left heritable sequences originated from viral nucleotide 
sequences, called endogenous viral elements (EVEs), in eukaryotic genomes. EVEs are 
distinguished by the presence or absence of long terminal repeats (LTRs). EVEs with LTRs 
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are called endogenous retroviruses (ERVs). The LTRs contain cis-regulatory sequences 
and RNA polymerase II (Pol II) promoters [1]. ERVs are formed by the integration of 
ancient retroviruses into the host genome during infection, and they account for around 
8% of the human genome contents. Some ERV-derived genes that have been co-opted 
by the host play essential roles in biological processes, such as placentation in humans  
[2, 3]. On the other hand, recent studies have revealed that numerous vertebrate genomes 
also contain non-LTR EVEs, EVEs that have no LTRs [4–6]. Among these non-LTR EVEs, 
the bornavirus-derived EVEs (endogenous bornavirus-like elements (EBLs)), which have 
been relatively well studied, have provided clues about the biological significance of non-
LTR EVEs in mammals [4, 7–11]. EBLs are the DNA sequences in vertebrate genomes (i.e., 
primates, rodents, and afrotherians) that are formed by the long interspersed nuclear 
element-1 (LINE-1)-mediated integration of viral sequences of an ancient non-retroviral 
RNA virus, bornavirus [4]. LINE-1, a host retrotransposon, encodes two proteins, ORF1p 
and ORF2p, which form LINE-1 ribonucleoprotein (RNP) together with LINE-1 RNA  
[12, 13]. ORF2p is known as endonuclease and reverse transcriptase in the LINE-1 ret-
rotransposition, which is also used for retrotransposition of viral mRNAs of non-retro-
viral RNA viruses, thereby producing non-LTR EVEs. EBLs derived from the N, M, G, 
and L genes of bornaviruses, which are designated as EBLN, EBLM, EBLG, and EBLL, 
respectively, have been reported so far [14]. Although EBLs do not contain any cognate 
promoter sequences derived from bornavirus sequences, some EBLs are thought to influ-
ence gene expression.

EVEs use various mechanisms to regulate gene expression. First, genomic EVEs can regu-
late gene expression as cis-regulatory DNA elements. Second, EVEs produce non-coding 
RNAs and/or proteins that influence nearby genes and/or the global transcriptome in trans. 
Third, alterations in the epigenetic environment around the EVEs can also affect the tran-
scriptome. In this review, we provide a brief overview of the regulatory activities (e.g., pro-
moter activity and epigenetic regulation) of ERVs and EBLs in the context of gene expression  
regulation.

2. The influence of ERVs on gene expression

The exogenous retroviral genome contains the following genes: gag, which encodes the gene 
encoding retroviral structural proteins, pol, which encodes reverse transcriptase, protease, 
ribonuclease and integrase, and env, which encodes the envelope protein. The retrovirus viral 
genome also contains a primer-binding site (pbs) and the packaging signal (Ψ), both of which 
are important to the viral life cycle (Figure 1A). The reverse transcriptase encoded in the pol 
gene synthesizes viral DNA (proviral DNA) from the viral RNA, and the proviral DNA is 
then inserted into the host’s genome which, when inherited in germ-line cells, become ERVs 
(Figure 1B). ERVs have been co-opted with the host and play essential roles in gene expres-
sion (Figure 2).
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2.1. Gene regulation by ERVs as regulatory DNAs

The LTRs of human ERVs (HERVs) have strong Pol II regulatory sequences [15, 16] and contain 
abundant transcription factor binding sites that function as promoters for HERV expression [17]. 
Although the full-length HERV is considered to have two LTRs, up to 85% of HERVs have under-
gone recombinatorial deletion [18], making most HERV loci solo LTRs. Solo LTRs can still serve 
as promoters in both the sense and antisense orientations and influence gene expression [19, 20]. 

Figure 1. Summary of ERV and EBL structures and their biogenesis. (A) Structure of the retrovirus genome and 
ERV. LTR, the long terminal repeat; gag, the group-specific antigen gene; pol, the polymerase gene; env, the envelope 
gene; pbs, the primer-binding site; and Ψ, the packaging signal. (B) Mechanism of ERV biogenesis. Retrovirus reverse 
transcribes its RNA into a linear double-stranded DNA. The viral DNA is integrated into the host genome to form a 
provirus. (C) Structure of the bornavirus genome and EBLs. (D) Mechanism of LINE-1 retrotransposition and LINE-1-
mediated EBL biogenesis. LINE-1 encodes two proteins, ORF1p and ORF2p. ORF2p encodes endonuclease and reverse 
transcriptase enzymes for the reverse transcription of LINE-1 RNA and genomic integration of its cDNA. ORF2p 
occasionally reverse transcribes other mRNAs in trans. EBLs seem to be generated from bornavirus mRNA in this 
manner.
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For example, IL2RB and NOS3 are genes whose expression in the placenta is solely related to 
the presence of LTR promoters [19]. Stem cell-specific LTR-derived promoters, such as mouse 
ERVK and human ERV1, control the expression of nuclear transcripts [21], whose expression 
is associated with maintenance of pluripotency. MER39 (an ERV1 class member) constitutes 
the promoter for human endometrial Prl [22]. MER41, another HERV, works as a cis-regulatory 
sequence of AIM2 (a non-self DNA sensor), thereby regulating inflammatory responses [23]. The 
ERV-9 LTR is located near the 5′ end of the locus control region, around 40–70 kb upstream of 
the human fetal γ- and adult β-globin genes. LTR deletion was found to drastically suppress the 
β-globin gene and reactivate the γ-globin gene through a competitive mechanism involving globin 
gene switching [24]. Some lineage-specific ERVs, such as LTR19B and MER41, have dispersed 
numerous IFN-inducible enhancers in human genomes, thereby shaping the evolution of the 
transcriptional network underlying the interferon (IFN) response [23]. The expression of very 
long intergenic RNAs (vlincRNAs), which also control pluripotency, is driven by HERV LTR 
[25], suggesting a role for HERV LTRs in regulating the expression of not only protein-coding 
genes but also long non-coding RNAs (lncRNAs) [26].

Figure 2. Influence of ERVs on gene expression. (1) ERVs function as cis or distal regulatory sequences. (2) ERV proteins 
may regulate the expression of host gene in trans. (3) ERV RNAs can work as lncRNAs to regulate the expression of the 
host genes. (4) ERV proteins may inhibit viral replication. (5) Epigenetic modifications that silence ERV expression can 
influence the expression of neighboring genes. The ochre circle (Me) indicates a central suppressive modification, DNA 
methylation, on the ERV locus.
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2.2. Gene regulation by ERV proteins

The expression products of HERVs can also affect the physiological functioning and devel-
opment of the host’s tissues. For example, HERV-W (ERVWE1), HERV-FRD, and ERV-3 are 
three HERVs whose intact env genes are expressed as proteins in the human placenta [27–30]. 
HERV proteins play important roles in the proper formation of the placenta and are involved 
in the suppression of fetal tissue rejection [27, 31, 32]. The transmembrane envelope proteins 
of HERV-K, which modulate the expression of numerous cytokines, provide an example of 
gene expression regulation by a HERV protein [33]. HERVs may also be linked to a strategy 
used for inhibiting exogenous virus replication. For example, Friend virus susceptibility 1 (Fv1), 
a mouse gene that originated from the gag gene of an ancient retrovirus, is known to restrict 
murine leukemia virus (MLV) at a stage after entry but before integration and formation of the 
provirus, thereby inhibiting viral replication [34, 35].

2.3. Gene regulation by HERV-driven lncRNAs

lincRNA-RoR is a large intergenic non-coding RNA driven by HERV-H [36]. lincRNA-RoR 
modulates reprograming and is indeed expressed at much higher levels in the embryonic 
stem cell line, H1-hESC, and human-induced pluripotent stem cells than in any other tissue or 
cell line [36, 37]. Knockdown of lincRNA-RoR affects the expression of other stem cell factors 
such as KLF4, SOX2, and NANOG [38, 39], resulting in an exit from the pluripotent state [37]. 
Together with vlincRNAs [25], HERV-driven lncRNAs can influence the transcriptome of the 
genes involved in pluripotency.

2.4. Gene regulation by epigenetic modification of ERVs

In addition to the abovementioned roles, LTRs are important sites for epigenetic modifica-
tions that restrict HERV in the human genome. DNA methylation, which is carried out by 
DNA methyltransferases, histone methylation, and histone deacetylation are the major host 
mechanisms used for gene silencing [40, 41]. Indeed, HERVs are heavily methylated in normal 
tissues [42]. By contrast, histone deacetylation alone is not sufficient to repress HERV expres-
sion. Rather, histone deacetylation in combination with other epigenetic modifications, par-
ticularly DNA methylation, is required for sufficient silencing of HERVs [43]. Furthermore, 
histone demethylation, which is carried out by lysine-specific histone demethylases (KDMs), 
also silences HERV expression [44, 45]. All these epigenetic alterations to ERV loci can affect 
the expression of nearby genes. For example, MuERV-L/MERVL, a mouse ERV, is repressed 
by a KDM1A-mediated epigenetic modification [45]. Some zygotic genome activation (ZGA) 
genes use an LTR of MERVL as a promoter or contain an MERVL element within 5 kb of their 
transcriptional start sites [45]. These ERV-linked ZGA genes become de-repressed in KDM1A 
mutant cells, which coincide with an expanded cell fate potential [45]. Thus, KDM1A recruit-
ment to the MERVL LTRs seems to alter the chromatin structure around the loci, which in 
turn suppresses the expression of ERV-linked ZGA genes during early mammalian embry-
onic development.
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2.2. Gene regulation by ERV proteins
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2.5. Possible links between ERVs and human diseases

The recent studies on ERVs have revealed possible interactions between ERVs and their 
hosts with the potential to contribute to the development of diseases such as cancer and 
neurologic diseases. For example, the HERV expression is upregulated in various types of 
cancers [46–48]. Many HERV LTR regions, such as LTR10 and MER61, have a near-perfect 
p53 DNA binding site [49]. The tumor suppressor protein p53 is a sequence-specific tran-
scription factor, which regulates genes of diverse biological pathways [50]. Thus, ERVs may 
regulate carcinogenesis via the p53 pathway. CSF1R gene, an oncogene, is activated by a 
demethylated MaLR LTR [51]. LTR-driven CSF1R is expressed aberrantly in anaplastic large 
cell lymphoma [51], suggesting that ERV LTRs may also directly contribute to tumor growth 
via activation of oncogenes. HERVs have also involved in neurological and psychiatric dis-
eases. For example, the expression levels of HERV-H are significantly higher in patients 
with attention deficit hyperactivity disorder (ADHD) compared with healthy controls [52]. 
Furthermore, the HERV-W env mRNA expression is selectively upregulated in brain tissue 
from patients with multiple sclerosis compared with controls [53]. Although links between 
the upregulation of ERVs and these diseases are reported, the contribution of upregulated 
ERVs to the disease development is still unclear and further studies are clearly required for 
demonstrating it.

3. The influence of nonretroviral EVEs on gene expression

EBLs are the only nonretroviral RNA virus-derived EVEs found in the human genome. EBLs 
seem to be generated from bornavirus mRNA in a LINE1-dependent manner (Figure 1C 
and D). Thus, they are a unique form of a processed pseudogene, which is derived from 
the sequences of an exogenous virus but not endogenous sequences, and they evidence the 
mechanism of retrotransposon-mediated RNA-to-DNA information flow from the virus to 
the host [4]. In the human genome, seven EBLNs (hsEBLN-1 to hsEBLN-7) and one EBLG 
have been identified to date [4–6]. All seven hsEBLNs are expressed as RNAs in at least one 
tissue, suggesting the possibility of a biological function for these EBLs [9].

3.1. Gene regulation by EBLN RNAs

hsEBLN-1 is one of the most studied EBLs in the human genome. Because no natural selection 
of hsEBLN-1 and its orthologues is detected [54], hsEBLN-1 is thought to function as a DNA 
element or non-coding RNA, or even to have lost its function (Figure 3). He et al. reported 
that 1067 and 2004 genes are up- and downregulated, respectively, after knockdown of hsE-
BLN-1 RNA in human oligodendroglia cells [55]. The top 10 most upregulated genes were 
PI3, RND3, BLZF1, SOD2, EPGN, SBSN, INSIG1, OSMR, CREB3L2, and MSMO1, and the 
top 10 most downregulated genes were KRTAP2–4, FLRT2, DIDO1, FAT4, ESCO2, ZNF804A, 
SUV420H1, ZC3H4, YAE1D1, and NCOA5. Gene ontology revealed that hsEBLN-1 may regu-
late the expression of genes related to the cell cycle, the mitogen-activated protein kinase 
pathway, p53 signaling, and apoptosis [55].
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Unlike ERVs, EBLs are thought not to be transposable themselves. Nevertheless, the hsE-
BLN-1 locus is silenced by several epigenetic blocks, dominantly histone deacetylation 
and DNA methylation, similar to the case of human immunodeficiency virus (HIV) provi-
rus silencing [9, 56, 57]. This contrasts with the silencing mechanism of ERVs because, as 
described above, DNA methylation but not histone deacetylation plays a major role [58]. 
Thus, the silencing mechanisms for the hsEBLN-1 locus might be more similar to those of 
exogenous retroviruses than to those of ERVs. This epigenetic alteration around hsEBLN 
integration may affect the epigenetic status of its neighboring loci and, consequently, the 
expression of nearby genes. Histone deacetylase (HDAC) inhibitor treatment did not affect 
transcription of the COMMD3 gene in mouse and rat cells, which have no EBLN sequence 
at the locus syntenic to the hsEBLN-1 locus, whereas the treatment led to decreased tran-
scription of COMMD3 orthologues in human and monkey cells, which have the EBLN 
sequence at the locus. COMMD3 belongs to the copper metabolism gene MURR1 domain-
containing (COMMD) family. COMMD proteins have a structurally conserved COMM 
domain, and they are all able to interact with different NF-κB subunits [59]. Because one 
of the central roles of NF-κB is induction of proinflammatory mediators like cytokines, 

Figure 3. Influence of EBLs on gene expression. (1) An EBL-derived lncRNA regulates the expression of a neighboring 
gene. piRNAs derived from EBLs may have the potential to provide antiviral responses against bornaviruses. (2) An 
EBL protein inhibits bornavirus transcription. Likewise, some EBL proteins may possibly regulate host gene expression. 
(3) Alteration of the epigenetic environment to restrain the EBL expression may influence the expression of neighboring 
genes. The ochre broken line circle (Ac) indicates deacetylation of the EBL locus.
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chemokines, and adhesion molecules, EBLN-1 may regulate immune responses indirectly 
through the COMMD3-NF-κB pathway [59, 60]. Moreover, suppression of the hsEBLN-1 
RNA induced by HDAC inhibitor treatment using siRNA against hsEBLN-1 RNA elimi-
nated the HDAC inhibitor-induced downregulation of COMMD3 gene expression. Thus, 
hsEBLN-1 RNA may function as a lncRNA that scaffolds transcriptional repressors of the 
COMMD3 gene around the locus, thereby downregulating its expression.

Several EBLN-derived small RNAs in mouse and rat are annotated as PIWI-interacting RNAs 
(piRNAs) in the GenBank database [61]. piRNAs are 25–33 nucleotides in length, are found 
in diverse organisms such as flies, fish, and mammals [62], and protect germ-line cells from 
transposons [62]. piRNA clusters are transcribed as long single-stranded precursor RNAs 
derived from the piRNA clusters in the host genome, which are further processed into small 
mature piRNAs. Mature piRNAs guide Argonaute proteins, such as PIWI and MIWI proteins, 
to complementary target sequences. Argonaute proteins cleave the target RNAs, suppress-
ing their expression. piRNAs are also known to epigenetically silence the target gene loci. 
All piRNAs derived from EBLNs are antisense relative to the proposed ancient bornaviral 
nucleoprotein mRNA [61]. These observations offer a possible role for the EBLN-derived 
piRNA-like RNAs in interfering with bornavirus mRNAs [61].

3.2. Gene regulation by EBLN proteins

Among the human EBLNs, hsEBLN-1 and hsEBLN-2 have maintained long open read-
ing frames with the potential to code for proteins of 366 and 225 amino acids, respectively. 
Indeed, some studies have reported that hsEBLN-1 proteins were detected in particular cell 
lines [63]. Moreover, Kobayashi et al. reported that EBLNs encode functional proteins in 
afrotherians [10]. Therefore, it is still possible that EBLN proteins regulate gene expression 
in trans. Furthermore, EBLNs may potentially inhibit the replication of related exogenous 
viruses, similarly to certain ERVs. EBLN from the thirteen-lined ground squirrel (Ictidomys 
tridecemlineatus) genome, named itEBLN, is associated with bornavirus RNPs and inhibits 
bornavirus polymerase activity [7].

4. Conclusions

The researches on gene regulation by EVEs have provided us with important knowledge 
about the evolution of regulatory sequences in the genome [5, 64]. Although integrated viral 
sequences are usually eliminated from the host genome, some eventually reach fixation and 
form EVEs. Such EVEs are not merely genetic parasites; rather, they introduce useful genetic 
novelties to the genome. In this article, we briefly reviewed two types of EVEs, ERVs and 
the non-LTR EVEs, EBLs. ERVs provide novel regulatory sequences and sites for epigenetic 
regulation. Transcripts derived from ERVs can also function as lncRNAs or protein-coding 
mRNAs, which may regulate gene expression. In particular, ERV-related transcripts are 
often associated with pluripotency. EBLs might also function as regulatory DNA elements 
such as promoters and enhancers. They are transcribed in one tissue at least, suggesting that 
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EBL transcripts may function as lncRNAs or protein-coding mRNAs. Consistently, we have 
shown the evidence for the roles of EBL transcripts as lncRNA molecules in gene expression. 
In particular, several EBLs are associated with antiviral responses against related viruses. 
Additionally, both ERVs and EBLs regulate not only host gene expression, but related viral 
gene expression also. Further extensive studies on EVEs will augment our understanding of 
their biological significance in gene expression and their involvement in the co-evolution of 
viruses and mammals.
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Abstract

Data-driven models of signalling networks are becoming increasingly important in systems 
biology in order to reflect the dynamic patterns of signalling activities in a context-specific 
manner. State-of-the-art approaches for categorising and detecting signalling cross-talks may 
not be suitable for such models since they rely on static topologies of cell signalling networks 
and prior biological knowledge. In this chapter, we review state-of-the-art approaches that 
categorise all possible cross-talks in signalling networks and propose a novel categorisation 
specific to data-driven network models. Considering such models as undirected networks, 
we propose two categories of signalling cross-talks between any two given signalling path-
ways. In a Type-I cross-talk, a signalling link {gi,gj} connects two signalling pathways, where 
gi and gj are signalling nodes that belong to two distinct pathways. In a Type-II cross-talk, 
two signalling links {gi,gj} and {gj,gk} meet at the intersection of two signalling pathways at a 
shared signalling node gj. We compared our categorisation approach with others and found 
that all the types of cross-talks defined by those approaches can be mapped to Type-I and 
Type-II cross-talks when underlying signalling activities are considered as non-causal rela-
tionships. Next, we provided a simple but intuitive algorithm called XDaMoSiN (cross-talks 
in data-driven models of signalling networks) to detect both Type-I and Type-II cross-talks 
between any two given signalling pathways in a data-driven network model. By detecting 
cross-talks in such network models, our approach can be used to analyse and decipher latent 
mechanisms of various cell phenotypes, such as cancer or acquired drug resistance, that may 
evolve due to the highly adaptable and dynamic nature of signal transduction networks.

Keywords: signalling cross-talks, data-driven models, signalling network, cancer 
signalling, signal re-wiring, acquired drug resistance

1. Introduction

A signal transduction network is a collection of all cell signalling pathways where each path-
way is a series of biochemical events, transmitting input signals from receptor proteins to 
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cross-talks in such network models, our approach can be used to analyse and decipher latent 
mechanisms of various cell phenotypes, such as cancer or acquired drug resistance, that may 
evolve due to the highly adaptable and dynamic nature of signal transduction networks.
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1. Introduction

A signal transduction network is a collection of all cell signalling pathways where each path-
way is a series of biochemical events, transmitting input signals from receptor proteins to 
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intracellular target proteins (e.g., transcription factors). The outcomes mediated by signalling 
pathways include various cellular activities such as cell growth, proliferation, differentiation, 
migration, adhesion, and apoptosis [1, 2]. Interactions among distinct signalling pathways are 
called signalling cross-talks and may also play vital roles in mediating or modulating cellular 
activities [3] under different disease-related cell conditions such as cancer and acquired drug 
resistance.

Models of signal transduction networks often take a qualitative approach that relies on 
prior biological knowledge obtained from experimental findings in various cell lines [4, 5]. 
However, the pattern of cell signalling activities is not static and can vary in different cell 
lines [4, 5]. Moreover, different cell lines for which the underlying network architectures of 
signalling activities are conserved may yield different responses even in similar experimen-
tal settings [5]. In the same cell, different ligands can produce different signalling connec-
tions [5, 6]. Moreover, different drugs and different treatment conditions may also induce 
different signalling dependencies and thus create a dynamic re-wiring in the signalling net-
work topology [6–8]. Therefore, understanding a signalling network topology demands a 
data-driven modelling approach in order to reflect its context-specific nature in a particular 
cell type, and a particular experimental configuration. Here, data-driven models of signal-
ling networks are models in which network edges are inferred solely based on signalling 
data [4] using machine learning approaches such as least square regression [9], Bayesian 
networks [10–12], and time-lag correlation [13]. In contrast, static models of signalling net-
works are based on canonical signalling mechanisms obtained from the literature [4]. Recent 
advancements in high-throughput data generation techniques facilitate the quantification 
of signalling responses, thereby producing large volumes of data measuring protein abun-
dances and activities [4].

Detecting signalling cross-talks using data-driven models of signalling networks is an impor-
tant task in systems biology since such cross-talks may reveal novel mechanistic details 
underlying perturbed cellular conditions. Receptor tyrosine kinase (RTK) heterodimerisation 
is one of the forms of signalling cross-talks (also known as receptor function cross-talks) [14], 
which has been reported to be involved in the processes of tumourigenesis and develop-
ing acquired drug resistance in many cancers [6]. Usually, epidermal growth factor receptor 
(EGFR) strongly activates extracellular signal-regulated kinase (ERK) signalling, but it is also 
a weak activator of the phosphatidylinositol 3-kinase (PI3K) signalling pathway. Interestingly, 
when EGFR cross-talks with human epidermal growth factor receptor 2 (HER2) through het-
erodimerisation, it activates both signalling pathways significantly [15], thereby contributing 
tumourigenesis by stimulating proliferation and preventing cell death [6]. In another exam-
ple, the RTK expression of AXL was found to be a mechanism of acquired resistance to EGFR 
inhibitors [16], and AXL is found to be transactivated by EGFR through heterodimerisation 
(cross-talk) [6].

In this chapter, we review existing approaches that have been used in the literature to catego-
rise cross-talks in signalling networks. However, all these methods are limited in application 
to static models of signalling networks and cannot be used to categorise cross-talks when the 
types of signalling activities (e.g., reaction, catalysis, or inhibition) are not known. We therefore 
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introduce a novel cross-talk categorisation for a single cell model to resolve such issues. We also 
compare our categorisation with the existing approaches. Finally, we present an algorithm to 
computationally detect all signalling cross-talks that are included in our proposed categorisa-
tion. Natarajan et al. [17] reported that a global analysis of both known and novel cross-talks 
can reveal system-level insights into context-dependent signalling: many ligand stimuli con-
verge on a relatively small number of signalling molecules to produce unique responses. Thus, 
we hypothesise that our approach will be useful to elucidate similar novel system-level aspects 
of signalling networks derived from context-specific signalling data through the identification 
of cross-talks.

1.1. Existing methods for categorising cross-talks

Only a few studies have attempted to categorise types or modes of cross-talks between two 
signalling pathways [6, 14, 18]. In reviewing signalling cross-talks between transforming 
growth factor-β/bone morphogenic protein (TGF-β/BMP) and other signalling pathways, Guo 
and Wang [18] distinguished three different modes of signalling cross-talks. According to that 
study, two pathways: pathway1 and pathway2 cross-talk when (1) some component of pathway1 
physically interacts with some component of pathway2 (Mode-A), (2) some component of path-
way2 plays a role as an enzymatic or transcriptional target of some component of pathway2 
(Mode-B), or (3) signals from pathway1 modulate or compete for a key modulator or mediator 
protein that is shared between pathway1 and pathway2 (Mode-C).

Donaldson and Calder [14] proposed five types of signalling cross-talk between any two sig-
nalling pathways: pathway1 and pathway2. They are as follows:

• Signal-flow cross-talk: an alternative reaction that enhances the signalling in pathway1 by 
producing, or catalysing, or inhibiting the production of a protein mediated by the signal-
ling of pathway2. For example, there exists signal-flow cross-talk between mitogen-activated 
protein kinase (MAPK) and integrin signalling pathways [19], where the increased rate of 
activation of some key protein in the integrin pathway is mediated by signalling through 
the MAPK pathway.

• Receptor function cross-talk: an alternative reaction to activate/inhibit the receptor of path-
way1 by some enzyme of pathway2 without the need of a ligand (a protein that activates a 
receptor protein). For example, oestrogen receptor may become activated without the need 
of oestrogen ligand by other signalling pathways [20].

• Gene expression cross-talk: a component (typically, a protein) of pathway1 inhibits or mod-
ifies the transcription or protein production of genes in pathway2. For example, transcrip-
tion factor glucocorticoid receptor (GR) of hormone signalling pathways translocates to 
the nucleus and inhibits the transcriptional activities of the transcription factor nuclear 
factor-κB (NF-κB) that is activated in response to inflammatory stimuli and environmental 
stressors [21].

• Substrate availability cross-talk: pathway1 and pathway2 share a protein (or a set of proteins) 
and both of the pathways compete for the activation of that shared protein(s). For example, 
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tumourigenesis by stimulating proliferation and preventing cell death [6]. In another exam-
ple, the RTK expression of AXL was found to be a mechanism of acquired resistance to EGFR 
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physically interacts with some component of pathway2 (Mode-A), (2) some component of path-
way2 plays a role as an enzymatic or transcriptional target of some component of pathway2 
(Mode-B), or (3) signals from pathway1 modulate or compete for a key modulator or mediator 
protein that is shared between pathway1 and pathway2 (Mode-C).

Donaldson and Calder [14] proposed five types of signalling cross-talk between any two sig-
nalling pathways: pathway1 and pathway2. They are as follows:

• Signal-flow cross-talk: an alternative reaction that enhances the signalling in pathway1 by 
producing, or catalysing, or inhibiting the production of a protein mediated by the signal-
ling of pathway2. For example, there exists signal-flow cross-talk between mitogen-activated 
protein kinase (MAPK) and integrin signalling pathways [19], where the increased rate of 
activation of some key protein in the integrin pathway is mediated by signalling through 
the MAPK pathway.

• Receptor function cross-talk: an alternative reaction to activate/inhibit the receptor of path-
way1 by some enzyme of pathway2 without the need of a ligand (a protein that activates a 
receptor protein). For example, oestrogen receptor may become activated without the need 
of oestrogen ligand by other signalling pathways [20].

• Gene expression cross-talk: a component (typically, a protein) of pathway1 inhibits or mod-
ifies the transcription or protein production of genes in pathway2. For example, transcrip-
tion factor glucocorticoid receptor (GR) of hormone signalling pathways translocates to 
the nucleus and inhibits the transcriptional activities of the transcription factor nuclear 
factor-κB (NF-κB) that is activated in response to inflammatory stimuli and environmental 
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two MAPK pathways in the yeast S. cerevisiae that share mitogen-activated protein kinase ki-
nase kinase (MAPKKK) protein STE11 (Sterility gene 11) and possess homologous mitogen-
activated protein kinase kinase (MAPKK) and MAPK proteins compete for the activation of 
the MAPK cascade [22].

• Intracellular communication cross-talk: the gene products of pathway1 act as ligands for 
the receptor of pathway2. For example, TGF-β and Wnt (Wingless-related integration site) 
signalling regulate the production of ligands of one another [18].

Donaldson and Calder [14] also reviewed some computational models that deal with cross-
talks between specific pathways including MAPK pathway, AKT pathways, and protein 
kinase C (PKC) pathways. These models [22–24] use ordinary differential equations (ODEs) 
where the notion of the cross-talk was a part of the system of equations without any explicit 
way of detecting or categorising them [14].

Kolch et al. [6] described three types of cross-talks such as heterodimerisation between signal-
ling proteins, node sharing, and competition for nodes. Signalling protein heterodimerisation 
is a biochemical process where a protein complex is formed by two different macromolecules, 
and RTK heterodimerisation is a common example of this type of cross-talk [6]. For exam-
ple, EGFR heterodimerisation with ErbB2 (erythroblastic leukaemia viral oncogene B2 also 
known as HER2) or ErbB3 (erythroblastic leukaemia viral oncogene B3) (also known as HER3, 
human epidermal growth factor receptor 3) activates both ERK and PI3K signalling pathways 
[15] and thereby mediates proliferation and cell survival signals in tumourigenesis [6]. In 
another example, the transactivation of AXL (an RTK) is caused by EGFR heterodimerisation, 
and the expression of AXL was found to be a mechanism of resistance to EGFR inhibitors [16].

An example of node (i.e. protein) sharing cross-talk is the scaffolding protein (a protein that 
binds with multiple members of a signalling pathway) GRB2-associated binding partner 
(GAB), which is shared by two signalling pathways: EGFR and insulin receptor (IR) path-
ways [25]. Lastly, an example of cross-talk in the form of competition for nodes (i.e. proteins) 
was recently identified, consisting of a switch-like coordination between proliferation and 
apoptotic signalling through rapidly accelerated fibrosarcoma (RAF)-ERK signalling and 
mammalian STE20-like protein kinase (MST2) signalling [26]. In mammalian cells, rapidly 
accelerated fibrosarcoma1 (RAF1) inhibits MST2-induced apoptosis (promotes proliferation) 
[27], whereas Ras association domain-containing protein 1A (RASSF1A) activates MST2 (pro-
motes apoptosis) [28]. Romano et al. [26] showed that this signalling coordination is switch-
like, since MST2 binds mutually exclusively with its inhibitor RAF1 and activator RASSF1A 
by changing its binding affinities from low to high.

Identifying the above cross-talk categories requires prior biological knowledge of the nature of 
signalling links. An essentially static model of signal transduction networks is thus assumed. 
However, in data-driven models of signalling networks, connectivity among signalling nodes 
may differ from cell to cell [6]. In order to reveal novel signalling dynamics in cell-specific, 
ligand-specific, or treatment-specific contextual data, we define a novel cross-talk categorisa-
tion in the following section.
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2. Methods

2.1. Proposed cross-talk categorisation in data-driven networks

2.1.1. Approaches for inferring data-driven signalling networks

Although our main focus in this chapter is to propose a cross-talk categorisation, here we 
briefly mention some approaches that fit data-driven models of signalling networks to 
quantitative signalling datasets. Some high-throughput proteomics techniques that quan-
titatively measure phosphorylation activities of phosphoproteins (signalling proteins) 
include mass spectrometry, flow-cytometry, ribonucleic acid interference (RNAi) screen-
ing, and reverse-phase protein array (RPPA) [13, 29]. Apart from proteomics data, some 
approaches use gene expression measurements of phosphoproteins as a proxy for protein 
expression (i.e. protein activity) [30–32] in order to fit data-driven models of signalling 
networks. However, inference methods include modelling both causal [9–12, 29, 33] and 
non-causal (simple correlations) relationships [13, 34] among phosphoproteins. To iden-
tify causal relationships in a signalling network topology, various approaches have been 
applied such as least square regression [9], various models on Bayesian networks [10–12] 
and dynamic Bayesian networks [29], and maximum entropy [33]. Correlation-based 
approaches include measuring the simple Pearson correlation [34] and time-lag correla-
tion [13]. The rationale behind applying such simple correlation-based approaches to infer 
signalling network structure is that individual signals may co-vary with respect to one 
another [4]. Figure 1 presents a schematic diagram of a possible framework that can use 
our proposed novel cross-talk categorisation algorithm to find cross-talks in data-driven 
models of signalling networks.

2.1.2. Proposed cross-talk categorisation

In order to generalise our cross-talk categorisation for both causal and non-causal network 
models, we consider a signalling network as an undirected network. Let G(V,E) be an undi-
rected graph that represents an entire signalling network containing a set of signalling 
pathways, where V is a set of n signalling components (typically proteins or protein com-
plexes, denoted gi, for i = 1, 2, …, n) and E is a set of unordered pairs of signalling components 
of the form {gi,gj} representing signalling links inferred from data. We propose two types 
of signalling cross-talks between any two signalling pathways, denoted pathway1 and path-
way2, which is shown in Figure 2. Here, a pathway is defined merely as a list of signalling 
components, usually obtained from databases such as KEGG [35], WikiPathways [36], and 
Reactome [37].

2.1.2.1. Type-I cross-talk

{gi,gj} ∈ E is a Type-I cross-talk between pathway1 and pathway2 if (gi ∈ pathway1 ∧ gj ∈ pathway2) 
∧ (gi ∉ pathway2 ∧ gj ∉ pathway1).
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human epidermal growth factor receptor 3) activates both ERK and PI3K signalling pathways 
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[27], whereas Ras association domain-containing protein 1A (RASSF1A) activates MST2 (pro-
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like, since MST2 binds mutually exclusively with its inhibitor RAF1 and activator RASSF1A 
by changing its binding affinities from low to high.

Identifying the above cross-talk categories requires prior biological knowledge of the nature of 
signalling links. An essentially static model of signal transduction networks is thus assumed. 
However, in data-driven models of signalling networks, connectivity among signalling nodes 
may differ from cell to cell [6]. In order to reveal novel signalling dynamics in cell-specific, 
ligand-specific, or treatment-specific contextual data, we define a novel cross-talk categorisa-
tion in the following section.

Gene Expression and Regulation in Mammalian Cells - Transcription From General Aspects84

2. Methods

2.1. Proposed cross-talk categorisation in data-driven networks

2.1.1. Approaches for inferring data-driven signalling networks

Although our main focus in this chapter is to propose a cross-talk categorisation, here we 
briefly mention some approaches that fit data-driven models of signalling networks to 
quantitative signalling datasets. Some high-throughput proteomics techniques that quan-
titatively measure phosphorylation activities of phosphoproteins (signalling proteins) 
include mass spectrometry, flow-cytometry, ribonucleic acid interference (RNAi) screen-
ing, and reverse-phase protein array (RPPA) [13, 29]. Apart from proteomics data, some 
approaches use gene expression measurements of phosphoproteins as a proxy for protein 
expression (i.e. protein activity) [30–32] in order to fit data-driven models of signalling 
networks. However, inference methods include modelling both causal [9–12, 29, 33] and 
non-causal (simple correlations) relationships [13, 34] among phosphoproteins. To iden-
tify causal relationships in a signalling network topology, various approaches have been 
applied such as least square regression [9], various models on Bayesian networks [10–12] 
and dynamic Bayesian networks [29], and maximum entropy [33]. Correlation-based 
approaches include measuring the simple Pearson correlation [34] and time-lag correla-
tion [13]. The rationale behind applying such simple correlation-based approaches to infer 
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another [4]. Figure 1 presents a schematic diagram of a possible framework that can use 
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models, we consider a signalling network as an undirected network. Let G(V,E) be an undi-
rected graph that represents an entire signalling network containing a set of signalling 
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of the form {gi,gj} representing signalling links inferred from data. We propose two types 
of signalling cross-talks between any two signalling pathways, denoted pathway1 and path-
way2, which is shown in Figure 2. Here, a pathway is defined merely as a list of signalling 
components, usually obtained from databases such as KEGG [35], WikiPathways [36], and 
Reactome [37].

2.1.2.1. Type-I cross-talk

{gi,gj} ∈ E is a Type-I cross-talk between pathway1 and pathway2 if (gi ∈ pathway1 ∧ gj ∈ pathway2) 
∧ (gi ∉ pathway2 ∧ gj ∉ pathway1).

Cross-Talk Categorisations in Data-Driven Models of Signalling Networks: A System-Level View
http://dx.doi.org/10.5772/intechopen.72408

85



2.1.2.2. Type-II cross-talk

{gi,gj} ∈ E ∧ {gj,gk} ∈ E is a Type-II cross-talk between pathway1 and pathway2 if (gi ∈ pathway1 ∧ gj 
∈ pathway1) ∧ (gj ∈ pathway2 ∧ gk ∈ pathway2).

2.2. An algorithm for detecting proposed cross-talks

In Figure 3, we present a simple but intuitive algorithm for identifying Type-I and Type-II 
cross-talks in data-driven signalling network models. We refer to our algorithm as XDaMoSiN 
(cross-talk in data-driven models of signalling network). Note that our approach considers 
data-driven models of signalling networks as undirected networks in order to generalise our 
categorisation for both causal and non-causal network models. The only assumption we make 

Figure 1. A schematic diagram of a possible framework that can use our algorithm to find cross-talks in data-driven 
model of signalling networks. This algorithm takes two inputs: (a) an undirected graph, G(V,E) and (b) a pathway 
database. Approaches to generate data-driven models of signalling networks (details are skipped in this chapter) can 
use various types of data including gene and protein expression data.

Figure 2. Proposed categorisations of signalling cross-talks, Type-I (A) and Type-II (B). Here, each of the pathways is a 
collection of signalling nodes (typically proteins or protein complexes). A Type-I cross-talk is a signalling link {gi,gj} that 
connects two signalling pathways where neither of the two pathways contains both signalling nodes, gi and gj. A Type-II 
signalling cross-talk is a pair of signalling links {gi,gj} and {gj,gk} residing at the intersection of two signalling pathways 
with a shared node gj.
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here is that pathway annotations of signalling pathways are known from pathway databases 
such as KEGG [35], Reactome [37], and WikiPathways [36]. In these annotations, a pathway 
is defined as a list of signalling nodes. Note that the signalling links among these nodes are 
modelled using data-driven relationships. Therefore, a data-driven model of a signalling net-
work is defined as where V is a list of n signalling nodes and E is a list of signalling links {gi,gj} 
inferred from data. This algorithm takes two inputs: G (the network) and PathwayDB (a path-
way database) and produces two outputs: Type_I_crosstalk and Type_II_crosstalk, which are 
two lists containing all Type-I and Type-II cross-talks (Figure 3). Here, we consider PathwayDB 
as a list, where each element in that list is also a list, containing signalling nodes in a particular 
pathway, and is indexed by the corresponding pathway ID (typically, the pathway name).

In the first part of the algorithm, we find all the Type-I cross-talks among all the pathways 
in PathwayDB. At first, we initialise the list Type_I_crosstalk, which collects all such Type-I 

Figure 3. The pseudocode for XDaMoSiN algorithm.
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here is that pathway annotations of signalling pathways are known from pathway databases 
such as KEGG [35], Reactome [37], and WikiPathways [36]. In these annotations, a pathway 
is defined as a list of signalling nodes. Note that the signalling links among these nodes are 
modelled using data-driven relationships. Therefore, a data-driven model of a signalling net-
work is defined as where V is a list of n signalling nodes and E is a list of signalling links {gi,gj} 
inferred from data. This algorithm takes two inputs: G (the network) and PathwayDB (a path-
way database) and produces two outputs: Type_I_crosstalk and Type_II_crosstalk, which are 
two lists containing all Type-I and Type-II cross-talks (Figure 3). Here, we consider PathwayDB 
as a list, where each element in that list is also a list, containing signalling nodes in a particular 
pathway, and is indexed by the corresponding pathway ID (typically, the pathway name).

In the first part of the algorithm, we find all the Type-I cross-talks among all the pathways 
in PathwayDB. At first, we initialise the list Type_I_crosstalk, which collects all such Type-I 

Figure 3. The pseudocode for XDaMoSiN algorithm.
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cross-talks. Then we check each signalling link {gi,gj} ∈ E to determine whether it plays a role 
as Type-I cross-talk. Here, we loop through all pathways and save pathway IDs that contain 
gi or gj, individually. For this purpose, we maintain two intermediate lists, called Listi and 
Listj, respectively. If Listi contains some pathway IDs that are not in Listj, and vice versa, then 
we identify {gi,gj} as a Type-I cross-talk. Note, we assume here that an intermediate function 
called FindList(PathwayDB, pathway_id) exists, which constructs a list of signalling nodes in a 
particular pathway with ID: pathway_id in the PathwayDB.

In the second part of the algorithm, we find all Type-II cross-talks. First, we examine each sig-
nalling node gj individually, to determine whether it is shared by more than one pathway and 
has incident signalling link(s) (from E) in those pathways. For this purpose, for each signal-
ling node gj, we construct an intermediate list, called Lj. This list collects ordered pairs of infor-
mation: (1) each incident signalling node gi in {gi,gj} ∈ E that is contained in a pathway labelled 
pathway_id and (2) the pathway_id itself. Next, for any combination of pairs in the list Lj, such 
as (pathway_id_1,gi) and (pathway_id_2,gk), if pathway_id_1 and pathway_id_2 are different, then 
we define {gi,gj} ∧ {gj,gk} as a Type-II cross-talk between pathway_id_1 and pathway_id_2.

3. Results

3.1. Type-I and Type-II cross-talks include cross-talks from other state-of-the-art 
categorisations

We compare the cross-talk categorisation approaches, including our proposed methods, in 
Figure 4. This comparison reveals an interesting aspect of these categorisations: cross-talks 
between any two pathways can be identified when their corresponding causal relationships are ignored, 
that is, considering the signalling network as an undirected network only. At the same time, 
we note that our approach can include all types of cross-talks defined by other categorisation.

Type-I cross-talks can represent signal-flow cross-talks, receptor function cross-talks, and gene-
expression cross-talks from Donaldson and Calder [14], Mode-A and Mode-B cross-talks from 
Guo and Wang [18], and cross-talk of signalling protein heterodimerisation from Kolch 
et al. [6]. In a cross-talking pair {gi,gj} in each of these categories, one signalling component gi 
belongs to one pathway and gj belongs to another pathway, or vice versa, but mutually exclu-
sively (Figure 4). Again, Type-II cross-talks represent the cross-talk types of substrate availabil-
ity and intracellular communications from Donaldson and Calder [14], Mode-C cross-talks from 
Guo and Wang [18], and signalling node sharing and competition for nodes from Kolch et al. [6], 
since in all of these categories, there exists a shared component between pathway1 and pathway2 
for which the other components of those individual pathways compete for modification or 
activation of that shared component (Figure 4).

Moreover, Donaldson and Calder [14] reported that their categorisation comprehensively cov-
ered all possible types of signalling cross-talks in a single cell model. Since Type-I and Type-II 
cross-talks include all cross-talks from Donaldson and Calder [Figure 4], we claim that our cat-
egorisation is also comprehensive. Moreover, Donaldson and Calder made a claim that their 
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approach can be useful for detecting cross-talks in data-driven models of signalling networks. 
However, we note that their proposed algorithm (see the appendix of [14]) was based on quali-
tative logic only, and is not explicit how that could be used for dealing with network models 
derived from high-throughput quantitative signalling data such as mass spectometry and RPPA 
data. Moreover, since they used modular architecture of signal propagation (receptor func-
tion, three-stage cascade, and gene expression [14]) in detecting all signalling cross-talks, their 
approach is not suitable for models derived from gene expression data only. There are some 
studies [30–32] that attempted to infer signalling network topology using gene expression as a 
proxy for signalling protein activities, since gene expression data are usually cheaper to generate 
and are possible to produce in large scale [32].

4. Discussion and conclusion

The data-driven modelling of signalling networks and the detection of cross-talks in those 
models provide effective ways to elucidate novel mechanisms of perturbed signalling activi-
ties in various disease conditions such as cancer and drug resistance. In this chapter, we 
reviewed some state-of-the-art approaches that categorise signalling cross-talks and identi-
fied a limitation of their applicability to data-driven models, since they rely on a static topol-
ogy of signalling networks. Here, we propose a novel cross-talk categorisation (Type-I and 
Type-II) that can not only be applicable to data-driven models but also generalises all types 
of cross-talks defined by other approaches. We also presented a simple but intuitive algo-
rithm for detecting Type-I and Type-II cross-talks between any two signalling pathways. 

Figure 4. Comparative categorisations of signalling cross-talks. Here, {gi, gj, gk} ∈ V$, V and E are the set of signalling 
components and signalling links, respectively.
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Listj, respectively. If Listi contains some pathway IDs that are not in Listj, and vice versa, then 
we identify {gi,gj} as a Type-I cross-talk. Note, we assume here that an intermediate function 
called FindList(PathwayDB, pathway_id) exists, which constructs a list of signalling nodes in a 
particular pathway with ID: pathway_id in the PathwayDB.
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nalling node gj individually, to determine whether it is shared by more than one pathway and 
has incident signalling link(s) (from E) in those pathways. For this purpose, for each signal-
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mation: (1) each incident signalling node gi in {gi,gj} ∈ E that is contained in a pathway labelled 
pathway_id and (2) the pathway_id itself. Next, for any combination of pairs in the list Lj, such 
as (pathway_id_1,gi) and (pathway_id_2,gk), if pathway_id_1 and pathway_id_2 are different, then 
we define {gi,gj} ∧ {gj,gk} as a Type-II cross-talk between pathway_id_1 and pathway_id_2.

3. Results

3.1. Type-I and Type-II cross-talks include cross-talks from other state-of-the-art 
categorisations

We compare the cross-talk categorisation approaches, including our proposed methods, in 
Figure 4. This comparison reveals an interesting aspect of these categorisations: cross-talks 
between any two pathways can be identified when their corresponding causal relationships are ignored, 
that is, considering the signalling network as an undirected network only. At the same time, 
we note that our approach can include all types of cross-talks defined by other categorisation.

Type-I cross-talks can represent signal-flow cross-talks, receptor function cross-talks, and gene-
expression cross-talks from Donaldson and Calder [14], Mode-A and Mode-B cross-talks from 
Guo and Wang [18], and cross-talk of signalling protein heterodimerisation from Kolch 
et al. [6]. In a cross-talking pair {gi,gj} in each of these categories, one signalling component gi 
belongs to one pathway and gj belongs to another pathway, or vice versa, but mutually exclu-
sively (Figure 4). Again, Type-II cross-talks represent the cross-talk types of substrate availabil-
ity and intracellular communications from Donaldson and Calder [14], Mode-C cross-talks from 
Guo and Wang [18], and signalling node sharing and competition for nodes from Kolch et al. [6], 
since in all of these categories, there exists a shared component between pathway1 and pathway2 
for which the other components of those individual pathways compete for modification or 
activation of that shared component (Figure 4).

Moreover, Donaldson and Calder [14] reported that their categorisation comprehensively cov-
ered all possible types of signalling cross-talks in a single cell model. Since Type-I and Type-II 
cross-talks include all cross-talks from Donaldson and Calder [Figure 4], we claim that our cat-
egorisation is also comprehensive. Moreover, Donaldson and Calder made a claim that their 
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approach can be useful for detecting cross-talks in data-driven models of signalling networks. 
However, we note that their proposed algorithm (see the appendix of [14]) was based on quali-
tative logic only, and is not explicit how that could be used for dealing with network models 
derived from high-throughput quantitative signalling data such as mass spectometry and RPPA 
data. Moreover, since they used modular architecture of signal propagation (receptor func-
tion, three-stage cascade, and gene expression [14]) in detecting all signalling cross-talks, their 
approach is not suitable for models derived from gene expression data only. There are some 
studies [30–32] that attempted to infer signalling network topology using gene expression as a 
proxy for signalling protein activities, since gene expression data are usually cheaper to generate 
and are possible to produce in large scale [32].

4. Discussion and conclusion

The data-driven modelling of signalling networks and the detection of cross-talks in those 
models provide effective ways to elucidate novel mechanisms of perturbed signalling activi-
ties in various disease conditions such as cancer and drug resistance. In this chapter, we 
reviewed some state-of-the-art approaches that categorise signalling cross-talks and identi-
fied a limitation of their applicability to data-driven models, since they rely on a static topol-
ogy of signalling networks. Here, we propose a novel cross-talk categorisation (Type-I and 
Type-II) that can not only be applicable to data-driven models but also generalises all types 
of cross-talks defined by other approaches. We also presented a simple but intuitive algo-
rithm for detecting Type-I and Type-II cross-talks between any two signalling pathways. 

Figure 4. Comparative categorisations of signalling cross-talks. Here, {gi, gj, gk} ∈ V$, V and E are the set of signalling 
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In combination with other computational and statistical methodologies, our approach is 
useful in systems biology to generate novel but biologically plausible hypotheses in a data-
dependent manner.

The notion of cross-talking is inherently present in biological systems, which might involve 
interactions between/among signalling and regulatory pathway activities. Yamaguchi et al. 
[38] reported that in acquired resistance, RTK-mediated signalling pathways cross-talk with 
downstream effector pathways via altering the activities of effector proteins including tran-
scription factors and enzymes and thus causes the dysregulation in the expression of multiple 
target gene, specially involved in growth and cell survival processes. Therefore, in addition 
to the signalling cross-talks, it is also important to efficiently find cross-talks between/among 
signalling and regulatory pathways as well. Although this chapter primarily focuses on the 
signalling cross-talks only, our definition of data-driven models biological systems as undi-
rected graphs and the categorisations of Type-I and Type-II cross-talks can be generalised. 
Thus, our proposed algorithm will be able to identify cross-talks among any set of pathways 
including cell signalling and regulatory pathways.
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dependent manner.
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interactions between/among signalling and regulatory pathway activities. Yamaguchi et al. 
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signalling and regulatory pathways as well. Although this chapter primarily focuses on the 
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Abstract

Amount of mRNA depends on the both the rates of mRNA transcription in the nucleus 
and mRNA degradation in the cytoplasm. Although each of the processes was studied 
independently, recent studies demonstrated the interplay between transcription and 
mRNA degradation in various cellular processes, such as cell-cycle, cellular differentia-
tion, and stress responses. In this review, we discuss the benefit of the interplay in the gene 
expressions and the mechanisms how these two processes are coupled. We also review 
recent genome-wide methods to measure the rates of transcription and degradation.

Keywords: RNA degradation, transcription factor, RNA binding proteins, 
synthegradase, RNA buffering, mRNA imprinting, NGS

1. Introduction

Gene expression involves multiple processes such as the transcription, translation, and deg-
radation of messenger RNAs (mRNAs). Each of these processes was studied independently. 
In the nucleus, RNA polymerase II (RNAPII) and various transcription factors are recruited 
to the promoter of protein-coding genes to initiate transcription [1, 2]. Nascent mRNA is co-
transcriptionally capped at 5′-end [3, 4], spliced [5], and matured at the 3′-end [6] (Figure 1). 
During these post-transcriptional modifications, every transcript is associated with various 
RNA-binding proteins (RBPs), forming large ribonucleoprotein complexes (mRNPs). This 
mRNP assembly process is subject to quality control by nuclear surveillance mechanisms [7, 8].  
After the quality control, mRNPs are transported to cytoplasm.

In the cytoplasm, the translationally inactive mRNPs would accumulate in P bodies or stress 
granules where mRNPs are degraded [9, 10] (Figure 2). Degradation of the cytoplasmic 
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Figure 1. Scheme of co-transcriptional mRNA processing. An m7G cap (a circle) is added co-transcriptionally to the 5′end 
of the nascent RNA. During the elongation, introns are removed by splicing machinery. Cleavage and polyadenylation 
are mediated after the transcription to form mature transcripts.

Figure 2. The 5′ → 3′ degradation pathway exonuclease-mediated decay begins with shortening of Pan2/Pan3 or CCR4-
not complexes. After the decapping of 5′cap structure (a circle), the body of mRNA is degraded with 5′-to-3′polarity 
by XRN1.
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mRNA is initiated by shortening of the poly(A) tail, which is called deadenylation. In yeast, 
this deadenylation is catalyzed either by Ccr4p/Pop2p/Not complex or by the Pan2p/Pan3p 
complex [11, 12]. After the deadenylation, the 5′-cap structure was removed by the concerted 
action of the decapping complex, Dcp1p/Dcp2p, which is stimulated by Pat1p, the Lsm1-7p, 
and Dhh1p [13, 14]. The decapping reaction exposes the 5′-monophosphate of the terminal 
residue, promoting the 5′ → 3′ degradation pathway by the major cytoplasmic exoribonucle-
ase Xrn1p [15] (Table 1).

The life of mRNA seems to be straightforward. However, recent studies have shown evidence 
of the interplay between transcription and degradation: transcription rate is regulated by 
decay factor; degradation rate is regulated by transcription factor and even by some promot-
ers. This complex network enables cells to shape appropriate gene expression profiles during 
cell cycle processes, cellular differentiation, stress and immune responses [16–18].

2. Biological processes coupling transcription and decay

The functional connection between the transcription and degradation of mRNA shapes the 
characteristic patterns of gene expression. In this section, we introduce several examples of 
the coordination between transcription and degradation in various biological processes.

To respond to environmental cues, cells must switch their steady level of gene expression 
in a rapid and transient mode. This sharp rise of mRNAs can be efficiently achieved if the 

Names in yeast Human homologs Function

Ccr4p hCCR4 Carbon catabolite repressor 4. Catalytic subunits of the complex

Pop2p CNOT7/CNOT8 Also known as Caf1 (Ccr4 associated factor 1). Related to RNase D 
family

Not CNOT1 Negative on TATA. A large scaffolding protein

Pan2p PAN2 PolyA nuclease2. Contains a nuclease domain of the RNase D

Pan3p PAN3 PolyA nuclease3. Co-factor of Pan2

Dcp1p DCP1A/DCP1B Decapping protein1, Co-activator

Dcp2p DCP2 Decapping protein2. Catalytically active decapping enzyme

Pat1p PAT1A/PAT1B Recruit Lsm1-7 to P-bodies to trigger decapping

Lsm1-7p LSM 1-7 Seven Sm-like proteins. Deadenylation-dependent mRNA decapping 
factors

Dhh1p RCX/p54 DEAD box helicase. ATP-dependent RNA helicase in mRNA 
decapping

Xrn1p XRN1/XRN2 Major 5′-3′ Exoribonuclease1, requiring 5′ monophosphate

Table 1. Yeast RNA degradation factors and its human homologs.
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stabilization of transcripts enhances their transcription rates. An example for such functional 
coupling is observed in osmotic stress in S. cerevisiae. With mild osmotic stress (0.4 M NaCl), 
121 mRNAs belonging to the functional groups “stress response” and “trehalose produc-
tion” increase both transcription rates and stability [19]. The study of oxidative stress (0.5 mM 
H2O2) in fission yeast revealed a major role of transcriptional up-regulation in the stress, but 
also showed the first minutes after stress induction as a critical time for mRNA degradation to 
support the control rapid gene regulation by transcription [20]. In contrast to oxidative stress, 
a moderate heat shock induced a global trend for mRNA stabilization, whereas transcrip-
tion rate contributed only a transient increase immediately upon stress [21]. The difference 
observed in these studies suggested the interplay between transcription and degradation is 
carefully regulated in the cells. Indeed, Shalem et al. demonstrated that alternative modes of 
such interplay determine the kinetics of the transcriptome in response to stress. They subjected 
yeast to two stresses; oxidative stress and DNA damage. In oxidative stress, many genes show 
fast response followed by relaxation, resulting in a quick and transient response, whereas in 
the DNA damage experiment, the response is slow and long enduring. Measurement of the 
genome-wide decay profile showed condition-specific changes in decay rates. In the transient 
response, most induced genes were destabilized, exhibiting counteraction between transcrip-
tion and degradation. This interplay profile can reconcile a high steady-state level with short 
response time among induced genes. In contrast, slow repression response was achieved by 
destabilization of the transcripts [22].

As abnormal gene expression is deleterious to living cells, it is critical to maintain steady 
levels of mRNA; hence, mRNA levels are said to be “buffered”. When genome-wide tran-
scription was attenuated by mutating RNAPII of S. cerevisiae, the cells maintain a steady 
level of the transcripts by decreasing their decay rates [23]. This study also revealed that 
buffering of mRNA levels required the RNA exonuclease Xrn1. Conversely, impairing 
mRNA degradation by deleting deadenylase subunits of the Ccr4-Not complex caused the 
decrease in both degradation and synthesis rates [24]. This mutual feedback maintains the 
steady levels of mRNAs and establishes a cellular mRNA surveillance network. It is mys-
terious that the synthesis-decay feedback exists despite the separation of mRNA synthe-
sis and degradation into nuclear and cytoplasmic compartments. One possible model was 
proposed by Haimovich et al. [25]. They showed that the components related to mRNA 
degradations shuttle between cytoplasm and the nucleus, in a manner dependent on proper 
mRNA degradation. In the nucleus, they associated with chromatin and regulated tran-
scription rate.

Cross talk between mRNA synthesis and decay can also be gene specific. In budding yeast, 
stability of core histone mRNAs is temporally co-regulated with their transcription during 
the cell cycle. Entry into S phase showed rapid increase in their transcription, followed by 
a prompt decrease in their abundance right after exiting the S phase [26–28]. Similar to his-
tone mRNAs, there should be numerous genes of which expression levels are regulated in a 
cell-cycle-dependent manner. By using DNA microarrays, Spellman et al. found that about 
800 genes are cell cycle regulated, which correspond to 10% of all protein-coding genes in 
yeast genome [29]. The mechanism for how cells coordinate the characteristic and integrated 
expression pattern during cell-cycle is not fully understood.

Gene Expression and Regulation in Mammalian Cells - Transcription From General Aspects100

Interestingly, a functional coupling between the transcription and degradation was exploited 
by herpes virus [30]. Gamma-herpesviruses encode a cytoplasmic endonuclease, SOX, which 
cleaves cellular mRNAs. These cleaved fragments are subsequently degraded by the cellular 
exonuclease Xrn1. This accelerated decay triggered the repression of RNAPII transcription 
rate. The findings suggest that mammalian cells can sense broad alternation in RNA degra-
dation. It is not the initial cleavages by SOX that are detected, but rather the increased activ-
ity of cellular Xrn1 that generates a transcriptional response. Furthermore, the viral mRNAs 
escaped the degradation induced transcriptional repression, and this escape requires Xrn1. 
The opposing roles for Xrn1 in the host and viral transcriptional response may indicate that 
herpesviruses have evolved to benefit from this intrinsic feedback mechanism.

3. Mechanism underlying coupling transcription and decay

The mechanism underlying transcription in the nucleus affects mRNA decay in the cytoplasm 
and vice versa is intensively studied in S. cerevisiae. The regulation of mRNA decay medi-
ated by the transcription is categorized into cis-acting elements and trans-activating factors. 
Cis-acting elements directly regulate the mRNA decay by interacting with RNA binding pro-
teins and/or decay factors [31, 32]. trans-activating factors are recruited onto the mRNA dur-
ing its transcription. This interaction is maintained in cytoplasm, regulating the stability of 
the mRNA. In contrast, there are only a few examples for regulation of the transcription by 
mRNA decay, and this is still under intense investigation.

3.1. cis-acting elements

mRNA contains 5′ untranslated region (UTR) and 3′UTR outside the coding region. These two 
UTR regulate the fate of mRNAs. Here we discuss how the transcription of 3′UTR regulates 
its length, and thus causes the modification of mRNA stability.

3.1.1. 3′UTR

The turnover of an mRNA is mostly regulated by cis-acting elements located in the 3′UTR 
[33], such as AU-rich elements (AREs) [34, 35], GU-rich elements [36], PUF response ele-
ments [37], miRNA binding sites [38, 39], and the poly(A) tail [40]. In principle, the length 
of 3′UTR affect the stability of mRNA because longer 3′UTR would contain more cis-act-
ing elements compared with short 3′UTR (Figure 3). Eukaryotic cells control the length 
of 3′UTR with alternative polyadenylation [41, 42]. Genome-wide polyadenylation maps 
were established by several RNA-seq studies. Direct RNA sequencing (DRS) technology 
provided a comprehensive view of global polyadenylation events in human and yeast, 
and estimated that 72% of yeast genes and more than half of human genes show alterna-
tive polyadenylation patterns [43]. Moreover, 3′ region extraction and deep sequencing 
(3′READS) was used to comprehensively map polyadenylation sites in the mouse genome 
[44]. 3′READS revealed that about 80% of mRNA and 66% of long noncoding RNA undergo 
alternative polyadenylation. Importantly, 3′READS found a global trend of up-regulation 

Interplay between Transcription and RNA Degradation
http://dx.doi.org/10.5772/intechopen.71862

101



stabilization of transcripts enhances their transcription rates. An example for such functional 
coupling is observed in osmotic stress in S. cerevisiae. With mild osmotic stress (0.4 M NaCl), 
121 mRNAs belonging to the functional groups “stress response” and “trehalose produc-
tion” increase both transcription rates and stability [19]. The study of oxidative stress (0.5 mM 
H2O2) in fission yeast revealed a major role of transcriptional up-regulation in the stress, but 
also showed the first minutes after stress induction as a critical time for mRNA degradation to 
support the control rapid gene regulation by transcription [20]. In contrast to oxidative stress, 
a moderate heat shock induced a global trend for mRNA stabilization, whereas transcrip-
tion rate contributed only a transient increase immediately upon stress [21]. The difference 
observed in these studies suggested the interplay between transcription and degradation is 
carefully regulated in the cells. Indeed, Shalem et al. demonstrated that alternative modes of 
such interplay determine the kinetics of the transcriptome in response to stress. They subjected 
yeast to two stresses; oxidative stress and DNA damage. In oxidative stress, many genes show 
fast response followed by relaxation, resulting in a quick and transient response, whereas in 
the DNA damage experiment, the response is slow and long enduring. Measurement of the 
genome-wide decay profile showed condition-specific changes in decay rates. In the transient 
response, most induced genes were destabilized, exhibiting counteraction between transcrip-
tion and degradation. This interplay profile can reconcile a high steady-state level with short 
response time among induced genes. In contrast, slow repression response was achieved by 
destabilization of the transcripts [22].

As abnormal gene expression is deleterious to living cells, it is critical to maintain steady 
levels of mRNA; hence, mRNA levels are said to be “buffered”. When genome-wide tran-
scription was attenuated by mutating RNAPII of S. cerevisiae, the cells maintain a steady 
level of the transcripts by decreasing their decay rates [23]. This study also revealed that 
buffering of mRNA levels required the RNA exonuclease Xrn1. Conversely, impairing 
mRNA degradation by deleting deadenylase subunits of the Ccr4-Not complex caused the 
decrease in both degradation and synthesis rates [24]. This mutual feedback maintains the 
steady levels of mRNAs and establishes a cellular mRNA surveillance network. It is mys-
terious that the synthesis-decay feedback exists despite the separation of mRNA synthe-
sis and degradation into nuclear and cytoplasmic compartments. One possible model was 
proposed by Haimovich et al. [25]. They showed that the components related to mRNA 
degradations shuttle between cytoplasm and the nucleus, in a manner dependent on proper 
mRNA degradation. In the nucleus, they associated with chromatin and regulated tran-
scription rate.

Cross talk between mRNA synthesis and decay can also be gene specific. In budding yeast, 
stability of core histone mRNAs is temporally co-regulated with their transcription during 
the cell cycle. Entry into S phase showed rapid increase in their transcription, followed by 
a prompt decrease in their abundance right after exiting the S phase [26–28]. Similar to his-
tone mRNAs, there should be numerous genes of which expression levels are regulated in a 
cell-cycle-dependent manner. By using DNA microarrays, Spellman et al. found that about 
800 genes are cell cycle regulated, which correspond to 10% of all protein-coding genes in 
yeast genome [29]. The mechanism for how cells coordinate the characteristic and integrated 
expression pattern during cell-cycle is not fully understood.

Gene Expression and Regulation in Mammalian Cells - Transcription From General Aspects100

Interestingly, a functional coupling between the transcription and degradation was exploited 
by herpes virus [30]. Gamma-herpesviruses encode a cytoplasmic endonuclease, SOX, which 
cleaves cellular mRNAs. These cleaved fragments are subsequently degraded by the cellular 
exonuclease Xrn1. This accelerated decay triggered the repression of RNAPII transcription 
rate. The findings suggest that mammalian cells can sense broad alternation in RNA degra-
dation. It is not the initial cleavages by SOX that are detected, but rather the increased activ-
ity of cellular Xrn1 that generates a transcriptional response. Furthermore, the viral mRNAs 
escaped the degradation induced transcriptional repression, and this escape requires Xrn1. 
The opposing roles for Xrn1 in the host and viral transcriptional response may indicate that 
herpesviruses have evolved to benefit from this intrinsic feedback mechanism.

3. Mechanism underlying coupling transcription and decay

The mechanism underlying transcription in the nucleus affects mRNA decay in the cytoplasm 
and vice versa is intensively studied in S. cerevisiae. The regulation of mRNA decay medi-
ated by the transcription is categorized into cis-acting elements and trans-activating factors. 
Cis-acting elements directly regulate the mRNA decay by interacting with RNA binding pro-
teins and/or decay factors [31, 32]. trans-activating factors are recruited onto the mRNA dur-
ing its transcription. This interaction is maintained in cytoplasm, regulating the stability of 
the mRNA. In contrast, there are only a few examples for regulation of the transcription by 
mRNA decay, and this is still under intense investigation.

3.1. cis-acting elements

mRNA contains 5′ untranslated region (UTR) and 3′UTR outside the coding region. These two 
UTR regulate the fate of mRNAs. Here we discuss how the transcription of 3′UTR regulates 
its length, and thus causes the modification of mRNA stability.

3.1.1. 3′UTR

The turnover of an mRNA is mostly regulated by cis-acting elements located in the 3′UTR 
[33], such as AU-rich elements (AREs) [34, 35], GU-rich elements [36], PUF response ele-
ments [37], miRNA binding sites [38, 39], and the poly(A) tail [40]. In principle, the length 
of 3′UTR affect the stability of mRNA because longer 3′UTR would contain more cis-act-
ing elements compared with short 3′UTR (Figure 3). Eukaryotic cells control the length 
of 3′UTR with alternative polyadenylation [41, 42]. Genome-wide polyadenylation maps 
were established by several RNA-seq studies. Direct RNA sequencing (DRS) technology 
provided a comprehensive view of global polyadenylation events in human and yeast, 
and estimated that 72% of yeast genes and more than half of human genes show alterna-
tive polyadenylation patterns [43]. Moreover, 3′ region extraction and deep sequencing 
(3′READS) was used to comprehensively map polyadenylation sites in the mouse genome 
[44]. 3′READS revealed that about 80% of mRNA and 66% of long noncoding RNA undergo 
alternative polyadenylation. Importantly, 3′READS found a global trend of up-regulation 

Interplay between Transcription and RNA Degradation
http://dx.doi.org/10.5772/intechopen.71862

101



of isoforms using  promoter-distal  polyadenylation sites in development and differentia-
tion, suggesting that the RNA degradation pathway will be reconstructed globally through 
the development. These two studies, however, lack quantitative analysis of mRNA stability 
and 3′UTR length modification by alternative polyadenylation. Geisberg et al. developed 
a method to measure mRNA half-lives of mRNA isoform in yeast [45]. Based on clusters 
of isoforms with different half-lives, they identified hundreds of sequences responsible 
for mRNA stabilization. Specifically, the poly(U) sequence was found to be the stabilizing 
element.

3.1.2. Promoter regulates mRNA stability

Surprisingly, several reports showed that promoter regions also affect mRNA degradation 
after the mRNA leaves the nucleus. The first report of promoter-regulated mRNA stabil-
ity was published in 1993. This study showed that swapping of the β-globin promoter in 
HeLa cells to that of the Herpes simplex virus 1 thymidine kinase (HSV1-TK) stabilizes a 
nonsense mutation in the mRNA, while this effect was not observed with the replacement 
for the CMV promoter [46]. A problem in this study was that the authors cannot rule out 
the possibility that different amounts of mature β-globin mRNAs may be caused by the dif-
ferent efficiencies of the splicing. This problem can be avoided by targeting genes without 
introns.

Figure 3. Alternative polyadenylation affects 3′UTR lengths. Longer UTRs allow more RBPs to associate with the mRNA 
(indicated by arrowhead and ellipse, respectively). The RBPs regulate the mRNA stability by recruiting decay factor.
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In 2011, two studies in the S. cerevisiae demonstrated clearly that promoters and associated 
cis-acting elements coordinate their transcription and decay (Figure 4). A conventional yeast 
promoter consists of a core element and an upstream activating sequence (UAS). Promoter 
swapping of native UAS of the RPL30 gene with that of the ACT1 gene increased the sta-
bility of RPL30 mRNA significantly [47]. A cis-element, comprising two Rap1p-binding 
sites, and Rap1p itself are necessary and sufficient to induce stabilization of the transcript. 
Moreover, Rap1p stimulates both synthesis and decay of endogenous transcripts. Thus, this 
study proposed that interaction of Rap1p with the target promoter affects the composition 
of mRNP, resulting in modification of the mRNA degradation rate. Considering that Rap1p 
has an effect in coupling transcription with mRNA decay, this study also introduced a con-
cept called “synthegradase”. They also estimated at least 150 yeast genes would be regulated 
by synthegradases during optimal proliferation conditions. Notably, this number is likely to 
increase with different environmental conditions.

A second example is the study about cell cycle-regulated decay in yeast cells using single 
molecule fluorescence in situ hybridization (FISH) [48]. Promoter swapping of SWI5 and CLB2 
genes with ACT1 made their stability close to ACT1. This study also showed that the mitotic 
exit network protein Dbf2p accounts for the coordinated decay of the transcripts. Chromatin 
immunoprecipitation and RNA immunoprecipitation of Dbf2p showed that Dbf2p interacts 
with both the transcript promoter and mRNA, suggesting that this protein is recruited to 
the promoter and then subsequently stalled on the mRNA. As Dbf2 can interact with the 
Ccr4-Not complex [49], this promoter-regulated decay may manifest through the regulation 
of deadenylation.

Figure 4. Promoter-regulating degradation. Transcription factor such as Rpb1 or Dbf2 (a circle on the promoter) binds 
to transcripts. After the export into the cytoplasm, the transcription factors in cytoplasm recruit decay factor to promote 
RNA degradation.
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of isoforms using  promoter-distal  polyadenylation sites in development and differentia-
tion, suggesting that the RNA degradation pathway will be reconstructed globally through 
the development. These two studies, however, lack quantitative analysis of mRNA stability 
and 3′UTR length modification by alternative polyadenylation. Geisberg et al. developed 
a method to measure mRNA half-lives of mRNA isoform in yeast [45]. Based on clusters 
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the possibility that different amounts of mature β-globin mRNAs may be caused by the dif-
ferent efficiencies of the splicing. This problem can be avoided by targeting genes without 
introns.

Figure 3. Alternative polyadenylation affects 3′UTR lengths. Longer UTRs allow more RBPs to associate with the mRNA 
(indicated by arrowhead and ellipse, respectively). The RBPs regulate the mRNA stability by recruiting decay factor.
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Although these two works are focused on specific genes, Dori-Bachash et al. extended to 
the genome-wide scale [50]. They demonstrated that swapping UAS between two yeast spe-
cies affected both transcription and degradation. Adjacent yeast genes sharing a common 
promoter displayed similar mRNA decay rates, which also indicated that promoters couple 
transcription and degradation. Notably, similar coordination between transcription and deg-
radation were found in mouse and human models. Because the diverse genes and regulatory 
elements were associated with promoter-regulated coordination, this phenomenon could be 
generated by genome-wide mechanisms of gene regulation.

3.2. trans-acting proteins

trans-acting proteins are recruited onto the mRNA during transcription, and affect post-
transcriptional regulation after mRNA is exported to nucleoplasm. This process is termed 
“mRNA imprinting”, which confers classical genetic information flexibility [51]. This mRNA 
imprinting lasts throughout the mRNA lifetime and is required for proper post-transcrip-
tional regulation. Here, we focus how mRNA imprinting regulates the degradation rate.

3.2.1. Rpb4 and Rpb7

To date, the best characterized trans-acting proteins are two subunits of the core RNAPII, 
Rpb4p and Rpb7p. Rpb4p and Rpb7p associate with the core polymerase as a heterodimer. 
Two studies provided evidence that the nascent pre-mRNA emerging from the active site 
of RNAPII interacts with Rpb7p [52, 53]. Moreover, Rpb4/7p shuttle between the nucleus 
and the cytoplasm [54], suggesting that this heterodimer influences mRNA physiology in 
the cytoplasm. These facts suggest that Rpb4/7p would be imprinted on the mRNA. Several 
pieces of experimental results revealed that Rpb4/7p promotes the mRNA decay [55, 56]: 
both Rpb4p and Rpb7p affected the deadenylation step; both Rpb4p and Rpb7p interact with 
the mRNA decapping components of the Pat1p-Lsm1-7p complex; and Rpb4p and Rpb7p 
localized to cytoplasmic P-bodies where mRNA is degraded. In this manner, Rpb4/7p would 
link the activity of the basal transcription apparatus with that of the mRNA degradation 
machinery [57].

3.2.2. Snf1

Snf1p is the yeast ortholog of human AMP-activated protein kinase (AMPK) involved in 
diverse stress environments [58–60]. Recent studies also revealed that Snf1p is related to post-
transcriptional regulation. Culturing yeast in glucose-containing growth medium represses 
Snf1-dependent transcription of target genes and promotes mRNA degradation of the cor-
responding mRNAs, which is called glucose-induced decay of mRNA [61, 62]. In low glucose 
concentrations, Snf1 activates the transcription of glucose-induced genes required for energy 
metabolism. In contrast, when glucose concentration is high, termination of transcription 
and activation of the degradation of the glucose-induced transcripts occur, resulting in rapid 
reduction of mRNA levels. Braun et al. fused nonglucose-responsive genes MAP2 and IDP2 
to the ADH2 promoter. This promoter swapping caused a significant destabilization of these 
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mRNAs, indicating that the ADH2 promoter alone is responsible for glucose-induced mRNA 
decay [63]. To understand the molecular mechanism of Snf1-dependent decay, quantitative 
mass spectrometry was used to identify proteins phosphorylated in a Snf1-dependent man-
ner [64]. This phosphoproteomic analysis identified 210 Snf1-dependent phosphopeptides 
in 145 proteins. Notably, mRNA decay factors, such as Eap1p, Ccr4p, Dhh1p, and Xrn1p 
were the targets of Snf1p-dependent phosphorylation. As expected, mutation of three Snf1-
dependent phosphorylation sites in Xrn1 reduced glucose-induced mRNA decay. Therefore, 
Snf1p-dependent transcription and decay of glucose-specific mRNAs could be activated by 
triggering the cytoplasmic decay factors.

3.3. mRNA decay factors modulating transcription

Currently, two mRNA decay factors are proposed to regulate the transcription: Ccr4p/Pop2p/
Not complex (deadenylase) and Xrn1p (exoribonuclease). Ccr4p/Pop2p/Not complex is dead-
enylase, catalyzing the initial deadenylation step of polyadenylated mRNAs prior to their 
decapping. Historically, Ccr4p, the major catalytic subunit, was initially discovered as an 
activator of transcription [65, 66], rather than deadenylase [67]. Other studies showed that 
Not proteins repress the transcription of TATA-less promoter [68, 69]. Furthermore, the Ccr4/
Not complex was involved in transcription elongation by interacting with RNAPII [25, 70]. 
Although numerous studies indicate the bifunctional aspect of Ccr4p/Pop2p/Not complex 
in posttranscriptional regulation, no study, to our knowledge, has focused on the cross-talk 
between mRNA synthesis and degradation. To reveal the whole picture of the complex, fur-
ther investigations are necessary.

Xrn1 targets cytoplasmic RNA substrates marked by a decapped 5′ monophosphate for fur-
ther 5′-to’3′ degradation [71–73]. In 2013, two studies revealed the functional role of Xrn1p in 
the crosstalk between transcription and degradation. Haimovich et al. performed serial exper-
iments that suggest the direct role of Xrn1 in transcription [25]. First, Xrn1p shuttled between 
the cytoplasm and the nucleus in a manner dependent on mRNA degradation. Second, GRO-
seq data demonstrated that the densities of active Pol II are affected by deleting Xrn1p or by 
mutating its active site. A similar result was also confirmed by single-cell FISH. Third, the 
whole-genome-binding feature of Xrn1p showed that Xrn1p binds to promoters of genes of 
which transcription is highly affected by Xrn1p disruption, suggesting that promoter bind-
ing is a transcriptional function. Fourth, inhibition of Xrn1p accumulated transcriptionally 
incompetent Pol II at the nascent mRNAs. This result suggested that Xrn1p functions in tran-
scription elongation. Therefore, the researchers concluded that Xrn1 is an essential factor for 
mRNA synthesis-degradation coupling, and referred to Xrn1p as “synthegradosome.” The 
report published by Sun et al. showed that depletion of Xrn1p caused a global activation 
of mRNA transcription monitored by comparative dynamic transcriptome analysis (cDTA) 
[23]. They also searched for nuclear factors, which repress mRNA transcription by Xrn1, and 
identified transcription repressor Nrg1 as the downstream of Xrn1. Increase in mRNA degra-
dation rates are compensated by an increase in mRNA transcription, suggesting that overall 
mRNA levels are “buffered”. This study showed that Xrn1p was required for the RNA buff-
ering. As summarized above, the two studies reached different conclusions regarding the 
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both Rpb4p and Rpb7p affected the deadenylation step; both Rpb4p and Rpb7p interact with 
the mRNA decapping components of the Pat1p-Lsm1-7p complex; and Rpb4p and Rpb7p 
localized to cytoplasmic P-bodies where mRNA is degraded. In this manner, Rpb4/7p would 
link the activity of the basal transcription apparatus with that of the mRNA degradation 
machinery [57].
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Snf1p is the yeast ortholog of human AMP-activated protein kinase (AMPK) involved in 
diverse stress environments [58–60]. Recent studies also revealed that Snf1p is related to post-
transcriptional regulation. Culturing yeast in glucose-containing growth medium represses 
Snf1-dependent transcription of target genes and promotes mRNA degradation of the cor-
responding mRNAs, which is called glucose-induced decay of mRNA [61, 62]. In low glucose 
concentrations, Snf1 activates the transcription of glucose-induced genes required for energy 
metabolism. In contrast, when glucose concentration is high, termination of transcription 
and activation of the degradation of the glucose-induced transcripts occur, resulting in rapid 
reduction of mRNA levels. Braun et al. fused nonglucose-responsive genes MAP2 and IDP2 
to the ADH2 promoter. This promoter swapping caused a significant destabilization of these 
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were the targets of Snf1p-dependent phosphorylation. As expected, mutation of three Snf1-
dependent phosphorylation sites in Xrn1 reduced glucose-induced mRNA decay. Therefore, 
Snf1p-dependent transcription and decay of glucose-specific mRNAs could be activated by 
triggering the cytoplasmic decay factors.

3.3. mRNA decay factors modulating transcription

Currently, two mRNA decay factors are proposed to regulate the transcription: Ccr4p/Pop2p/
Not complex (deadenylase) and Xrn1p (exoribonuclease). Ccr4p/Pop2p/Not complex is dead-
enylase, catalyzing the initial deadenylation step of polyadenylated mRNAs prior to their 
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Although numerous studies indicate the bifunctional aspect of Ccr4p/Pop2p/Not complex 
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between mRNA synthesis and degradation. To reveal the whole picture of the complex, fur-
ther investigations are necessary.

Xrn1 targets cytoplasmic RNA substrates marked by a decapped 5′ monophosphate for fur-
ther 5′-to’3′ degradation [71–73]. In 2013, two studies revealed the functional role of Xrn1p in 
the crosstalk between transcription and degradation. Haimovich et al. performed serial exper-
iments that suggest the direct role of Xrn1 in transcription [25]. First, Xrn1p shuttled between 
the cytoplasm and the nucleus in a manner dependent on mRNA degradation. Second, GRO-
seq data demonstrated that the densities of active Pol II are affected by deleting Xrn1p or by 
mutating its active site. A similar result was also confirmed by single-cell FISH. Third, the 
whole-genome-binding feature of Xrn1p showed that Xrn1p binds to promoters of genes of 
which transcription is highly affected by Xrn1p disruption, suggesting that promoter bind-
ing is a transcriptional function. Fourth, inhibition of Xrn1p accumulated transcriptionally 
incompetent Pol II at the nascent mRNAs. This result suggested that Xrn1p functions in tran-
scription elongation. Therefore, the researchers concluded that Xrn1 is an essential factor for 
mRNA synthesis-degradation coupling, and referred to Xrn1p as “synthegradosome.” The 
report published by Sun et al. showed that depletion of Xrn1p caused a global activation 
of mRNA transcription monitored by comparative dynamic transcriptome analysis (cDTA) 
[23]. They also searched for nuclear factors, which repress mRNA transcription by Xrn1, and 
identified transcription repressor Nrg1 as the downstream of Xrn1. Increase in mRNA degra-
dation rates are compensated by an increase in mRNA transcription, suggesting that overall 
mRNA levels are “buffered”. This study showed that Xrn1p was required for the RNA buff-
ering. As summarized above, the two studies reached different conclusions regarding the 
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consequences of deleting or inactivating Xrn1p. From these results, we may conclude that 
Xrn1p is related to coupling mRNA synthesis and degradation; however, the mechanism of 
this interplay is still unresolved.

4. Direct measurements for transcription and degradation rates at the 
genome-wide level

The difficulty in studying the interplay between transcription and degradation is in measur-
ing the kinetics of the processes, especially at the genome-wide level. Recent advances in 
RNA-seq technologies enable us to determine the rate of transcription and/or degradation.

4.1. BRIC-seq

RNA stabilities are measured by the decrease in RNA after inhibiting transcription [74–76]. 
However, transcription affects degradation rates, as discussed previously, which obscure 
the native half-lives of transcripts. Tani et al. developed an inhibitor-free method termed 5′ 
Bromo-uridine (BrU) Immunoprecipitation Chase-deep sequencing analysis (BRIC-seq) [77, 
78]. BRIC-seq applies BrU for metabolic labeling of endogenous transcripts. After removing 
BrU from the medium, total RNAs are then isolated from the cells at sequential time points. 
BrUs-labeled RNAs are purified through immunopurification by using BrU antibody. The 
half-life of each transcript is calculated from the decreasing amount of BrU-RNA measured 
by RNA-seq (Figure 5).

4.2. GRO-seq, PRO-seq, NET-seq

Global Run-On sequencing (GRO-seq) was developed to measure transcription rate. GRO-
seq maps the genome-wide positions, amounts and orientation of transcriptionally engaged 
RNAP [79, 80]. In GRO-seq, transcription is inhibited in living cells, and then reinitiated in 
isolated nuclei under conditions that allow labeling of nascent transcripts (nuclear run-on) 
with BrU. Capturing nascent transcripts from active RNAP provides a direct synthesis rate of 
the transcription. Similar to GRO-seq, precision nuclear run-on sequencing (PRO-seq) maps 
the location of active RNAP at base pair resolution [81]. PRO-seq uses biotin-labeled NTP 
(biotin-NTP) during the nuclear run-on procedure. Addition of only one of the four biotin 
NTPs restricts RNAP to incorporating a single or a few identical bases, resulting in sequence 
reads that have the same 3′ end base within each library. Native elongating transcript sequenc-
ing (NET-seq) can also obtain a nascent transcription profile with single-nucleotide resolution 
[82–84]. In NET-seq, nascent RNA was detected in the active site of RNAP by immunoprecipi-
tation of FLAG-tagged RNAP.

4.3. 4sU-seq and TT-seq

Here we would like to introduce two methods that can determine the kinetics of both 
transcription and degradation. These two technologies will advance the study of the 
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interplay between transcription and degradation. Rabani et al. combined pulse labeling 
of mRNA with 4sU and computational modeling to estimate RNA transcription and deg-
radation rates [85]. Newly transcribed RNA (4sU-labeled RNA) contains nascent RNA 
transcribed during the labeling pulse. When the labeling time is sufficiently short, the 
4sU-labeled RNA is still in the nucleus, reflecting the average transcription rate. A com-
putational model separates the RNA levels into transcription and degradation, and thus 
estimates the degradation rates from the experimental results of total RNA level and 
transcription rate.

The disadvantage of 4sU-seq is that it fails to map transcripts uniformly, because only a short 
3′ region of nascent transcripts is labeled with 4sU, and long pre-existing 5′ regions dominate 
the RNA-seq data. To overcome this 5′ bias, transient transcriptome sequencing (TT-seq) frag-
ments the 4sU-RNA before isolation. This fragmentation permits the immunoprecipitation 
of only newly transcribed 4sU-RNA fragments. Notably, TT-seq monitors RNA synthesis, 
whereas GRO-seq, PRO-seq, and NET-seq detect RNAs attached to RNAPs. Furthermore, 
TT-seq can determine transcription termination sites because TT-seq detected transient RNA 
downstream of the polyadenylation site.

Figure 5. Overview of the BRIC-seq protocol.
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the RNA-seq data. To overcome this 5′ bias, transient transcriptome sequencing (TT-seq) frag-
ments the 4sU-RNA before isolation. This fragmentation permits the immunoprecipitation 
of only newly transcribed 4sU-RNA fragments. Notably, TT-seq monitors RNA synthesis, 
whereas GRO-seq, PRO-seq, and NET-seq detect RNAs attached to RNAPs. Furthermore, 
TT-seq can determine transcription termination sites because TT-seq detected transient RNA 
downstream of the polyadenylation site.

Figure 5. Overview of the BRIC-seq protocol.

Interplay between Transcription and RNA Degradation
http://dx.doi.org/10.5772/intechopen.71862

107



5. Conclusion

The balance between mRNA transcription and decay determines the mRNA levels, which is 
a key aspect in the gene regulation. The study of interplay between transcription and decay is 
only the beginning. Our knowledge is still limited to the specific signaling pathway in yeast. 
As described in chapter 4, genome-wide analysis of transcription and decay will provide a 
comprehensive view of the interplay. Moreover, it will be critically important to verify the 
coupling of transcription and decay in mammalian system because mammalian cells contain 
numerous RBPs with defined roles in mRNA decay. It would be interesting to determine 
whether any of these RBPs also regulate transcription. It is a well-known fact that aberrant 
regulation of gene expression causes serious diseases. Therefore, studying the interplay 
between transcription and decay in mammalian cells will be beneficial for understanding 
diseases with defects in RNA expression levels.
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5. Conclusion

The balance between mRNA transcription and decay determines the mRNA levels, which is 
a key aspect in the gene regulation. The study of interplay between transcription and decay is 
only the beginning. Our knowledge is still limited to the specific signaling pathway in yeast. 
As described in chapter 4, genome-wide analysis of transcription and decay will provide a 
comprehensive view of the interplay. Moreover, it will be critically important to verify the 
coupling of transcription and decay in mammalian system because mammalian cells contain 
numerous RBPs with defined roles in mRNA decay. It would be interesting to determine 
whether any of these RBPs also regulate transcription. It is a well-known fact that aberrant 
regulation of gene expression causes serious diseases. Therefore, studying the interplay 
between transcription and decay in mammalian cells will be beneficial for understanding 
diseases with defects in RNA expression levels.
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Abstract

Approximately 80% of the human genome contains functional DNA, including protein 
coding genes, non-protein coding regulatory DNA elements and non-coding RNAs 
(ncRNAs). An altered transcriptional signature is not only a cause, but also a conse-
quence of the characteristics known as the hallmarks of cancer, such as sustained pro-
liferation, replicative immortality, evasion of growth suppression and apoptotic signals, 
angiogenesis, invasion, metastasis, evasion of immune destruction and metabolic re-wir-
ing. Post-transcriptional events play a major role in determining this signature, which 
is evidenced by the fact that alternative RNA splicing takes place in more than half of 
the human genes, and, among protein coding genes, more than 60% contain at least one 
conserved miRNA-binding site. In this chapter, we will discuss the involvement of post-
transcriptional events, such as RNA processing, the action of non-coding RNAs and RNA 
decay in cancer development, and how their machinery may be used in cancer diagnosis 
and treatment.
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suppression and apoptotic signals, angiogenesis, invasion, metastasis, evasion of immune 
destruction and metabolic re-wiring [1]. These characteristics represent a great challenge 
to cancer treatment being both a cause and a consequence of an abnormal gene expression 
profile. Efforts to understand the consequences of these different expression profiles and the 
mechanisms underlying them contribute to clarify cancer biology and, consequently, to pre-
dict response to and optimization of therapeutic approaches [2–4].

There are several layers of gene expression modulation including epigenetics, transcriptional 
modulation, RNA expression control, translational regulation and post-translational modifi-
cations. All these mechanisms work in an orchestrated manner leading to specific expression 
signatures and phenotypes. In this chapter, we focus on RNA expression control mechanisms, 
which take place after RNA polymerase recognition of the gene promoter and start of RNA 
synthesis, discussing their implications to malignant transformation and cancer progression.

2. mRNA processing

RNA processing takes place after the start of transcription, resulting in a mature mRNA 
which is able to fulfill its function. This process comprises: 5′-Cap addition, splicing and 
poly(A) addition. RNA splicing is a process in which portions of the pre-RNA, denomi-
nated introns, are excised and the remaining portions (exons) are bound to form the mature 
RNA. Both cis and trans elements act to recognize exon/intron boundaries and/or to orches-
trate the splicing machinery, the spliceosome, a complex of five small nuclear ribonucleopro-
tein particles (snRNP) and 100–200 non-snRNP proteins which catalyze the splicing reaction 
[5–7]. Recognition of the intron/exon boundaries is context-dependent; as a result, a single 
gene can originate several mature RNAs and, therefore, several proteins with independent or 
even opposite functions. This alternative splicing (AS) occurs by recognition of the alternative 
donor or acceptor splice sites, exon inclusion or exclusion, intron incorporation or combina-
tory mechanisms as mutually exclusive exons and so on. AS stands out as a major source 
for transcripts and proteins variability, occurring in approximately 59% of human genes [8] 
and almost 95% of the multi-exon genes [9]. Splicing factor genes are commonly mutated in 
different types of cancer and several splice variants have already been implicated in cancer 
development [10].

The splicing profile of a certain tissue changes dramatically when compared with malig-
nant cells with their normal counterparts [11–13]. This difference may result from mutations 
or single-nucleotide polymorphisms (SNPs) on acceptor, donor splice sites, enhancing or 
silencing sequences which lead to alterations in the exon/intron boundary recognition; or 
due to deregulated expression or change of function mutation in a trans regulator (reviewed 
in [14, 15]). Serine-rich protein (SRP) and heterologous nuclear ribonuclear particle (hnRNP) 
are two protein families which are classically involved in splicing modulation by interacting 
with intronic or exonic enhancer or silencer sequences [16, 17]. The SRSF1 member of the 
SRP family is one of the most well characterized splice factor, being described as up-regu-
lated in lung [18] and breast cancers [19, 20]. In the breast cancer model, SRSF1 association to 
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a sequence near to a donor splice site usually promotes exon inclusion, while its association 
in the vicinities of an acceptor splice site leads to exon skipping or inclusion [20]. Important 
cancer-related gene transcripts, such as Casp9 [21], CD44 [22] and VEGF [23], are among 
SRSF1 known targets.

Cell survival outcome is a perfect example of the influence of AS in basic cellular mechanisms, 
with alternative isoforms of several apoptotic-related gene transcripts displaying opposite 
roles, when compared to their canonical variant, shifting the cell status from apoptosis-
prone to the survival state (reviewed in [24]). Upon an apoptotic stimulus, cytochrome C is 
released from the mitochondria and forms a complex with Apaf-1. The N-terminal portion 
of Apaf-1 interacts with the N-terminal pro-domain of pro-caspase-9, leading to Caspase-9 
activation, which, in turn, activates the Caspase-3 and -7 effector proteases (reviewed in [25]). 
Caspase-9, a key player in this process, has an alternative-splicing variant in which exclu-
sion of the exon cassette 3, 4, 5 and 6 leads to a protein isoform which lacks part of its large 
subunit. This Caspase-9b isoform retains the domain which interacts with Apaf-1, but lacks 
the Caspase-9 catalytic site, thus acting like a dominant negative and inhibiting the apoptotic 
pathway [26, 27]. The ratio between these two isoforms modulates the propensity of the cells 
to respond to death stimuli, altering their chemo-sensitivity and, potentially, the treatment’s 
outcome. Interestingly, while Akt mediates exclusion of the exon cassette via phosphoryla-
tion of the RNA splicing factor SRp30a [28]; in this case, SRSF1 interacts with an intronic 
enhancer site at intron 6 favoring the exon cassette inclusion, which renders the cells more 
sensitive to chemotherapeutic agents as the combined therapy with daunorubicin and erlo-
tinib [21]. Taking into account that SRSF1 is upregulated in non-small cell lung cancer cells, 
this case exemplifies the complexity of splicing as an expression regulator and how it can be 
explored to optimize therapy efficacy.

Another great source of transcripts variability is alternative polyadenylation (APA), since 
approximately 30% of human mRNAs display alternative polyadenylation sites [29]. 
Polyadenylation occurs in almost every mammalian transcript, a process in which an endo-
nucleolytic cleavage is catalyzed by polyadenylation machinery proteins, immediately fol-
lowed by polyadenylation (200–300 nucleotides, on average, in humans) of the 3′-end by 
poly(A) polymerases (reviewed in [30]). The resulting alternative transcripts will have differ-
ent sizes, depending on the localization of the alternative poly(A) site, originating alternative 
3′-untranslated regions (3′-UTR). Also, more rarely, when polyadenylation occurs inside the 
open reading frame region, it may originate truncated forms of the translated protein [31]. 
The 3′-UTR is extremely important to transcripts stability, localization and regulation by trans 
elements (such as miRNAs and RNA binding proteins), topics to be further discussed in this 
chapter and which have great implications for cancer development.

A shift in the polyadenylation global pattern occurs in tumor cells, with the proximal poly(A) 
sites being favored, when compared to their normal counterparts [29]. Also, highly prolif-
erative murine T lymphocytes favor shorter 3′-UTRs, which is also observed in colorectal 
cancer, but only for certain groups of genes, including those involved in cell cycle, nucleic 
acid-binding and processing factors. It has been proposed that such shortening would 
restrict miRNA modulation over the transcripts, increasing their expression [32, 33]. Such 
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restrict miRNA modulation over the transcripts, increasing their expression [32, 33]. Such 
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a mechanism is observed upon treatment of ER+ breast cancer cells with the proliferation 
stimulant 17β-estradiol. This treatment leads to APA of the CD6 transcript, which is essential 
for the start of DNA replication, originating a shorter 3′-UTR. The generated CD6 variant is 
resistant to repression dependent on its 3′-UTR and is more efficiently translated, correlating 
with a higher rate of BrdU incorporation by the cells [34].

Curiously, mammalian RNAs can also be post-transcriptionally modified through a process 
called RNA editing. Well-known cases are the RNA editing enzymes adenosine and cytidine 
deaminases, which catalyze the conversion of adenine into inosine and of cytosine into ura-
cil, respectively [35]. Adenosine deaminases acting on RNA (ADAR) enzymes act on double-
stranded RNA regions, usually the secondary structure of a single mRNA molecule. Through 
a hydrolytic deamination at C6, ADAR enzymes catalyze adenine conversion into inosine, 
which pairs with cytosine. Cytidine deaminases are much more specific and different mem-
bers of the APOBEC3 family are transcriptionally regulated by p53 [36]. Altered RNA editing 
signatures were found in different types of tumors, such as glioblastoma [37], breast [38] and 
gastric cancers [39, 40]. If located at a coding region, these editing events may cause a missense 
mutation. One example is ADAR-1 editing of the Antizyme Inhibitor 1 (AZIN1), which leads to 
a serine-to-glycine substitution at residue 367 [41]. AZIN1 is an inactive homolog of ornithine 
decarboxylase (ODC) that competitively binds to antizymes [42]. ADAR-1 editing increases 
AZIN1 affinity to antizyme, leading to a decrease in ODC antizyme-mediated degradation and 
promoting polyamines biosynthesis, with consequent cell proliferation and a more aggressive 
behavior in hepatocellular carcinoma cells [41]. Although editing on consensus splicing sites 
are rare, ADAR enzymes alter the global splicing pattern of the cell by editing splicing regula-
tory cis elements and, possibly, indirectly, by altering the activity of trans elements [43, 44].

The interaction of transcripts with long non-coding RNAs (lncRNAs) and microRNAs are 
important post-transcriptional regulatory mechanisms which will be further addressed in this 
chapter. RNA edition adds a layer of complexity to this apparatus. It is estimated that over 
70% of potential editing sites within long non-coding RNAs may lead to changes in their 
secondary structure, a feature which is crucial for its target recognition [45]. If the editing 
takes place in a precursor miRNA, it can lead to alterations in its biosynthesis and target rec-
ognition, increasing their range of action [46–48]. Alterations in the mRNA 3′-UTR may alter 
its recognition by a specific miRNA or lncRNA [37, 40, 47]. Furthermore, RNA editing may 
also modulate RNA expression by regulating RNA decay. This is exemplified by the ADAR-1 
interaction with the RNA binding protein HuR, which promotes HuR binding to the target 
transcript, increasing its stability [49].

3. miRNAs

Several RNA-based mechanisms evolved in eukaryotes to modulate gene expression or sup-
press invading material. In animals, the small non-coding RNAs (18–30 nucleotides) are sub-
divided into three major classes, namely microRNA (miRNA), small interfering RNA (siRNA) 
and PIWI-interacting RNA (piRNA). The main purpose of piRNAs are suggested to be silenc-
ing of transposable elements in germline cells [45], siRNAs and miRNAs seem to have evolved 
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from an antiviral defense system into an ubiquitous gene expression modulation mechanism 
[46, 47]. Originally identified in Caenorhabditis elegans [48], miRNAs are the dominating class 
of small RNAs in most somatic tissues, being highly conserved and repressing the expression 
of target genes by inhibiting mRNAs translation and/or stability [49, 50]. The latest update of 
the human miRNA database lists 2588 mature miRNAs, processed out of 1881 precursors [51]. 
miRNA genes are originally transcribed by RNA polymerase II (Pol II) as a long (typically 
over 1 kb) primary transcript (pri-miRNA) bearing hairpins, in which miRNA sequences are 
embedded [52]. Hairpins are cropped by the Drosha nuclear RNase III liberating the stem-
loop shaped ~65 nucleotide long precursor miRNA (pre-miRNA) [53]. Upon exporting to the 
cytoplasm through Exportin 5 (EXP5), pre-miRNAs are cleaved by DICER near the terminal 
loop, liberating a small RNA duplex [54]. This duplex is subsequently loaded onto RNA-
induced silencing complex (RISC), RNP effector complexes containing Argonaut (AGO) pro-
teins. Finally, unwinding of the RNA duplex allows the final single-stranded miRNA to act 
as a guide for the effector complex [55]. Specific targeting is accomplished by base pairing 
between mRNA and miRNA, as miRNAs usually guide RISC to 3′UTR regions in target pro-
tein-coding transcripts [56], recruiting proteins that lead to target RNA degradation, deade-
nylation or decay [53]. However, miRNAs may also interact with 5′UTR and coding sequence 
(CDS) regions, culminating in a range of effects, from translational activation to repression.

More than 60% of human protein-coding genes contain at least one conserved miRNA-binding 
site [57], encompassing every major cellular functional pathway. Therefore, miRNAs biogenesis 
needs to be under tight temporal and spatial control, and their deregulation is evidently associ-
ated with a wide range of human diseases, including cancer [58]. The first instance of the direct 
involvement of a miRNA in cancer was uncovered in 2002. A critical region at chromosome 
13q14, frequently deleted in chronic lymphocytic leukemia (CLL), was shown to harbor miRNA 
genes miR-15a and miR-16-1. About 70% of CLL cases have null or reduced expression of these 
miRNAs, which normally control apoptosis by targeting BCL-2 [59, 60]. The following years 
revealed a remarkable number of additional examples, establishing the association of miRNAs 
and cancer to be the norm, rather than the exception. Currently, hundreds of human miRNAs are 
associated to the onset and progression of several malignancies, including lymphomas, colorec-
tal carcinoma, breast cancer, lung cancer, thyroid cancer and hepatocellular carcinomas [61].

Several miRNAs may be differentially expressed in cancer patients, when compared to nor-
mal samples, acting either as oncogenes or tumor suppressors [62] (Table 1). Most often, miR-
NAs are detected as tumor suppressors, with reduced expression in tumors when compared 
to normal tissues [63, 64]. These miRNAs have commonly been shown to negatively regulate 
protein-coding oncogenes. Thus, HER2 and HER3, two oncogenes which are significantly cor-
related with decreased disease-specific survival in breast cancer patients [65], are suppressed 
by miR-125a or miR-125b [66]. Additionally, the let-7 family of miRNAs targets several genes 
associated with cell cycle and cell division, including the RAS oncogene [67]. Inhibition of epi-
dermal growth factor receptor by miR-128b in non-small cell lung cancer (NSCLC) [68] and 
miR-7 in glioma [69] are additional pertinent examples of miRNAs acting as tumor suppres-
sors. However, several miRNAs have also been found to be overexpressed in cancer, being 
classified as oncomiRs, often repressing known tumor suppressors. Thus, overexpression of 
miR-155 and miR-21 is sufficient to induce lymphomagenesis in mice [70, 71].
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for the start of DNA replication, originating a shorter 3′-UTR. The generated CD6 variant is 
resistant to repression dependent on its 3′-UTR and is more efficiently translated, correlating 
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a hydrolytic deamination at C6, ADAR enzymes catalyze adenine conversion into inosine, 
which pairs with cytosine. Cytidine deaminases are much more specific and different mem-
bers of the APOBEC3 family are transcriptionally regulated by p53 [36]. Altered RNA editing 
signatures were found in different types of tumors, such as glioblastoma [37], breast [38] and 
gastric cancers [39, 40]. If located at a coding region, these editing events may cause a missense 
mutation. One example is ADAR-1 editing of the Antizyme Inhibitor 1 (AZIN1), which leads to 
a serine-to-glycine substitution at residue 367 [41]. AZIN1 is an inactive homolog of ornithine 
decarboxylase (ODC) that competitively binds to antizymes [42]. ADAR-1 editing increases 
AZIN1 affinity to antizyme, leading to a decrease in ODC antizyme-mediated degradation and 
promoting polyamines biosynthesis, with consequent cell proliferation and a more aggressive 
behavior in hepatocellular carcinoma cells [41]. Although editing on consensus splicing sites 
are rare, ADAR enzymes alter the global splicing pattern of the cell by editing splicing regula-
tory cis elements and, possibly, indirectly, by altering the activity of trans elements [43, 44].
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70% of potential editing sites within long non-coding RNAs may lead to changes in their 
secondary structure, a feature which is crucial for its target recognition [45]. If the editing 
takes place in a precursor miRNA, it can lead to alterations in its biosynthesis and target rec-
ognition, increasing their range of action [46–48]. Alterations in the mRNA 3′-UTR may alter 
its recognition by a specific miRNA or lncRNA [37, 40, 47]. Furthermore, RNA editing may 
also modulate RNA expression by regulating RNA decay. This is exemplified by the ADAR-1 
interaction with the RNA binding protein HuR, which promotes HuR binding to the target 
transcript, increasing its stability [49].

3. miRNAs

Several RNA-based mechanisms evolved in eukaryotes to modulate gene expression or sup-
press invading material. In animals, the small non-coding RNAs (18–30 nucleotides) are sub-
divided into three major classes, namely microRNA (miRNA), small interfering RNA (siRNA) 
and PIWI-interacting RNA (piRNA). The main purpose of piRNAs are suggested to be silenc-
ing of transposable elements in germline cells [45], siRNAs and miRNAs seem to have evolved 
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from an antiviral defense system into an ubiquitous gene expression modulation mechanism 
[46, 47]. Originally identified in Caenorhabditis elegans [48], miRNAs are the dominating class 
of small RNAs in most somatic tissues, being highly conserved and repressing the expression 
of target genes by inhibiting mRNAs translation and/or stability [49, 50]. The latest update of 
the human miRNA database lists 2588 mature miRNAs, processed out of 1881 precursors [51]. 
miRNA genes are originally transcribed by RNA polymerase II (Pol II) as a long (typically 
over 1 kb) primary transcript (pri-miRNA) bearing hairpins, in which miRNA sequences are 
embedded [52]. Hairpins are cropped by the Drosha nuclear RNase III liberating the stem-
loop shaped ~65 nucleotide long precursor miRNA (pre-miRNA) [53]. Upon exporting to the 
cytoplasm through Exportin 5 (EXP5), pre-miRNAs are cleaved by DICER near the terminal 
loop, liberating a small RNA duplex [54]. This duplex is subsequently loaded onto RNA-
induced silencing complex (RISC), RNP effector complexes containing Argonaut (AGO) pro-
teins. Finally, unwinding of the RNA duplex allows the final single-stranded miRNA to act 
as a guide for the effector complex [55]. Specific targeting is accomplished by base pairing 
between mRNA and miRNA, as miRNAs usually guide RISC to 3′UTR regions in target pro-
tein-coding transcripts [56], recruiting proteins that lead to target RNA degradation, deade-
nylation or decay [53]. However, miRNAs may also interact with 5′UTR and coding sequence 
(CDS) regions, culminating in a range of effects, from translational activation to repression.

More than 60% of human protein-coding genes contain at least one conserved miRNA-binding 
site [57], encompassing every major cellular functional pathway. Therefore, miRNAs biogenesis 
needs to be under tight temporal and spatial control, and their deregulation is evidently associ-
ated with a wide range of human diseases, including cancer [58]. The first instance of the direct 
involvement of a miRNA in cancer was uncovered in 2002. A critical region at chromosome 
13q14, frequently deleted in chronic lymphocytic leukemia (CLL), was shown to harbor miRNA 
genes miR-15a and miR-16-1. About 70% of CLL cases have null or reduced expression of these 
miRNAs, which normally control apoptosis by targeting BCL-2 [59, 60]. The following years 
revealed a remarkable number of additional examples, establishing the association of miRNAs 
and cancer to be the norm, rather than the exception. Currently, hundreds of human miRNAs are 
associated to the onset and progression of several malignancies, including lymphomas, colorec-
tal carcinoma, breast cancer, lung cancer, thyroid cancer and hepatocellular carcinomas [61].

Several miRNAs may be differentially expressed in cancer patients, when compared to nor-
mal samples, acting either as oncogenes or tumor suppressors [62] (Table 1). Most often, miR-
NAs are detected as tumor suppressors, with reduced expression in tumors when compared 
to normal tissues [63, 64]. These miRNAs have commonly been shown to negatively regulate 
protein-coding oncogenes. Thus, HER2 and HER3, two oncogenes which are significantly cor-
related with decreased disease-specific survival in breast cancer patients [65], are suppressed 
by miR-125a or miR-125b [66]. Additionally, the let-7 family of miRNAs targets several genes 
associated with cell cycle and cell division, including the RAS oncogene [67]. Inhibition of epi-
dermal growth factor receptor by miR-128b in non-small cell lung cancer (NSCLC) [68] and 
miR-7 in glioma [69] are additional pertinent examples of miRNAs acting as tumor suppres-
sors. However, several miRNAs have also been found to be overexpressed in cancer, being 
classified as oncomiRs, often repressing known tumor suppressors. Thus, overexpression of 
miR-155 and miR-21 is sufficient to induce lymphomagenesis in mice [70, 71].
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Mapping efforts have revealed that many miRNAs are located in fragile regions of the 
genome, which are deleted, amplified or translocated in cancer, directly altering miRNAs 
genes expression, hence leading to aberrant expression of downstream target mRNAs [59]. 
In addition to genomic alterations, miRNA expression is also modulated by tumor suppres-
sor or oncogenic factors, which function as transcriptional activators or repressors to control 
pre-miRNA transcription. One of the first examples of this interaction is the transcriptional 
upregulation of the miR-17/92 cluster by the c-myc oncogene product, counterbalancing the 
apoptotic activity of E2F1 and allowing c-Myc mediated-proliferation [72]. Likewise, p53 
stimulates transcription of the miR-34 family, inducing apoptosis and senescence. Loss of 
p53 function induces downregulation of the miR-34 family in a very high percentage of 
ovarian cancer patients with a p53 mutation [73]. The expression of miRNA genes may also 
be indirectly modulated. Aberrant epigenetic changes, such as DNA hypermethylation of 
tumor suppressor genes, extensive genomic DNA hypomethylation and alteration of histone 
modification patterns, are a well-known feature of cancer cells. In fact, epigenetic modifica-
tions represent another common mechanism related to the alteration of miRNA expression 
in cancer. Tumor-suppressing miRNAs are usually found to be hypermethylated in cancer, 

miRNA Cancer phenotype Target mRNA Cancer association References

miR-15a Tumor suppressor BCL2 Chronic lymphocytic leukemia [59, 60]

miR-16-1 Tumor suppressor BCL2 Chronic lymphocytic leukemia [59, 60]

miR-125a Tumor suppressor HER2/HER3 Breast cancer [66]

miR-125b Tumor suppressor HER2/HER3 Breast cancer [66]

let-7 Tumor suppressor RAS Lung tumor [67]

miR128-b Tumor suppressor EGFR Non-small lung cancer [68]

miR128-b Tumor suppressor EGFR Acute lymphoblastic leukemia [77]

miR-7 Tumor suppressor EGFR Glioma [69]

miR-155 Oncogenic BIC Lymphoma [70, 71]

miR-21 Oncogenic NA Lymphoma [70, 71]

miR-127 Tumor suppressor BCL6 Prostate cancer [75, 76]

miR-372/373 Oncogenic RAS, p53 Testicular germ cell tumor [170]

miR-17 Tumor suppressor c-MYC Large B-cell lymphoma [72, 171]

miR-34 Tumor suppressor P53 Ovarian cancer [73]

miR-210 Tumor suppressor DIMT1 Multiple myeloma [172]

miR-10b Tumor suppressor TIAM1 Gastric cancer [173]

miR-126 Tumor suppressor ADAM9 Breast cancer [174]

miR-335 Tumor suppressor BRCA1 Breast cancer [175]

Table 1. List of miRNAs involved in cancer and their respective mRNA targets.
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which, in turn, allows overexpression of their oncogenic targets [74]. Thus, epigenetic repres-
sion of the tumor-suppressor miR-127 in primary prostate cancer [75] and bladder tumor 
causes upregulation of its target transcripts, including that of the proto-oncogene BCL6 [76]. 
A cancer-driving alteration may arise early in the biogenesis of miRNAs, during transcrip-
tion of the pri-miRNA. For example, a point mutation in miR-128b gene blocks processing 
of pri-miR-128b and reduces the levels of mature miR-128b, thus leading to glucocorticoid 
resistance in acute lymphoblastic leukemia (ALL) [77]. Another mechanism which can lead 
to an aberrant expression of miRNAs and, thus, to cancer, is the altered expression and/or 
function of the enzymes involved in the biogenesis of microRNAs, such as DROSHA and 
DICER. Aberrant expression of these proteins affects the biogenesis of all miRNAs in the 
cell, influencing the regulation of a multitude of genes. Thus, the first heterozygous germline 
mutations in DICER1 were identified as causing pleuropulmonary blastoma (PPB), a rare 
pediatric lung tumor that arises during fetal lung development [78]. Likewise, decreased 
expression of DROSHA and DICER has been found in 39% of ovarian cancer patients [79]. 
miRNA biogenesis may also be modulated during nuclear translocation by exportin 5 (XPO5). 
XPO5 mutations in some tumors generate pre-miRNA accumulation in the nucleus, reducing 
miRNA maturation and availability in the cytoplasm [80]. miRNA processing is orchestrated 
by a large number of proteins assisting the basic machinery. Several of these modulatory 
proteins, such as DDX5 and DDX17, were shown to be either directly mutated or to serve as 
targets for oncoproteins or tumor suppressors, modulating miRNA biogenesis [81].

The functional outcomes of miRNAs deregulation coincide with the hallmarks of malignant 
cells, namely: (1) self-sufficiency in growth signals (let-7 family), (2) insensitivity to anti-growth 
signals (miR-17-92 cluster), (3) apoptosis evasion (miR-34a), (4) limitless replicative potential 
(miR-372/373 cluster), (5) angiogenesis (miR-210) and (6) invasion and metastases (miR-10b). 
miRNAs have also been shown to regulate the generation of cancer stem cells (CSCs) [82, 83] 
and epithelial-mesenchymal transition (EMT), paramount for the metastatic process [84]. Thus, 
as breast cancer cells metastasize, expression of miR-126 and miR-335 is lost. Overexpressing 
these miRNAs in cancer cells decreases lung and bone metastasis in vivo [85].

The high number of human miRNAs, regulating a wide range of cancer-related processes, 
renders these small non-coding RNAs an ideal profiling tool. miRNA expression profiles 
can distinguish not only between normal and cancerous tissue, but also help to discrimi-
nate different subtypes of a particular cancer, or even specific oncogenic abnormalities [86], 
increasing the accuracy of tumor classification. These expression profiles were able to classify 
tumors according to their tissue of origin with accuracy higher than 90%. miRNAs regulation 
of cancer progression also allows these molecules to serve as efficient predictors of prognosis, 
tumor metastasis and therapy selection. Specific miRNA signatures have recently been shown 
to correlate to metastatic breast and colon tumors, arising as potent biomarkers to predict 
metastatic outcome. miRNA profiles may also be applied to select for more personalized and 
efficient therapies and to adjust the therapeutic scheme during treatment to achieve a bet-
ter outcome. Noteworthy, in ovarian cancer, miRNA signatures are able to predict chemo-
resistant tumors, while a polymorphism (SNP34091), which creates a new binding site for 
miR-191, was suggested as a modulator of tumor chemosensitivity [75].
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Mapping efforts have revealed that many miRNAs are located in fragile regions of the 
genome, which are deleted, amplified or translocated in cancer, directly altering miRNAs 
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In addition to genomic alterations, miRNA expression is also modulated by tumor suppres-
sor or oncogenic factors, which function as transcriptional activators or repressors to control 
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upregulation of the miR-17/92 cluster by the c-myc oncogene product, counterbalancing the 
apoptotic activity of E2F1 and allowing c-Myc mediated-proliferation [72]. Likewise, p53 
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causes upregulation of its target transcripts, including that of the proto-oncogene BCL6 [76]. 
A cancer-driving alteration may arise early in the biogenesis of miRNAs, during transcrip-
tion of the pri-miRNA. For example, a point mutation in miR-128b gene blocks processing 
of pri-miR-128b and reduces the levels of mature miR-128b, thus leading to glucocorticoid 
resistance in acute lymphoblastic leukemia (ALL) [77]. Another mechanism which can lead 
to an aberrant expression of miRNAs and, thus, to cancer, is the altered expression and/or 
function of the enzymes involved in the biogenesis of microRNAs, such as DROSHA and 
DICER. Aberrant expression of these proteins affects the biogenesis of all miRNAs in the 
cell, influencing the regulation of a multitude of genes. Thus, the first heterozygous germline 
mutations in DICER1 were identified as causing pleuropulmonary blastoma (PPB), a rare 
pediatric lung tumor that arises during fetal lung development [78]. Likewise, decreased 
expression of DROSHA and DICER has been found in 39% of ovarian cancer patients [79]. 
miRNA biogenesis may also be modulated during nuclear translocation by exportin 5 (XPO5). 
XPO5 mutations in some tumors generate pre-miRNA accumulation in the nucleus, reducing 
miRNA maturation and availability in the cytoplasm [80]. miRNA processing is orchestrated 
by a large number of proteins assisting the basic machinery. Several of these modulatory 
proteins, such as DDX5 and DDX17, were shown to be either directly mutated or to serve as 
targets for oncoproteins or tumor suppressors, modulating miRNA biogenesis [81].

The functional outcomes of miRNAs deregulation coincide with the hallmarks of malignant 
cells, namely: (1) self-sufficiency in growth signals (let-7 family), (2) insensitivity to anti-growth 
signals (miR-17-92 cluster), (3) apoptosis evasion (miR-34a), (4) limitless replicative potential 
(miR-372/373 cluster), (5) angiogenesis (miR-210) and (6) invasion and metastases (miR-10b). 
miRNAs have also been shown to regulate the generation of cancer stem cells (CSCs) [82, 83] 
and epithelial-mesenchymal transition (EMT), paramount for the metastatic process [84]. Thus, 
as breast cancer cells metastasize, expression of miR-126 and miR-335 is lost. Overexpressing 
these miRNAs in cancer cells decreases lung and bone metastasis in vivo [85].

The high number of human miRNAs, regulating a wide range of cancer-related processes, 
renders these small non-coding RNAs an ideal profiling tool. miRNA expression profiles 
can distinguish not only between normal and cancerous tissue, but also help to discrimi-
nate different subtypes of a particular cancer, or even specific oncogenic abnormalities [86], 
increasing the accuracy of tumor classification. These expression profiles were able to classify 
tumors according to their tissue of origin with accuracy higher than 90%. miRNAs regulation 
of cancer progression also allows these molecules to serve as efficient predictors of prognosis, 
tumor metastasis and therapy selection. Specific miRNA signatures have recently been shown 
to correlate to metastatic breast and colon tumors, arising as potent biomarkers to predict 
metastatic outcome. miRNA profiles may also be applied to select for more personalized and 
efficient therapies and to adjust the therapeutic scheme during treatment to achieve a bet-
ter outcome. Noteworthy, in ovarian cancer, miRNA signatures are able to predict chemo-
resistant tumors, while a polymorphism (SNP34091), which creates a new binding site for 
miR-191, was suggested as a modulator of tumor chemosensitivity [75].
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miRNAs are highly stable molecules present in body fluids including plasma, blood, serum, 
urine, saliva and milk, being potential cancer biomarkers which may be found in different 
phases of the tumoral process [87, 88]. Although understanding of how miRNAs are selec-
tively released from cells and how circulating miRNAs are related to disease remains largely 
unclear, circulating miRNAs may serve as novel diagnostic and prognostic biomarkers for 
human diseases, including cancer [89].

4. Long non-coding RNAs

Recent studies based on the Encyclopedia of DNA elements (ENCODE) project indicate that 
more than 80% of the human genome contains functional DNA that includes protein coding 
genes, non-protein coding regulatory DNA elements and non-coding RNAs (ncRNAs) [90]. 
Non-coding RNAs is a class of genetic regulators, containing short (<200 nucleotides) and long 
(>200 nucleotides) transcripts with novel abilities to be used as biomarkers due to their role in 
disease development and their implications for genomic organization [91, 92]. Short ncRNAs 
include ribosomal RNAs (rRNAs), transfer RNAs (tRNAs), small nuclear RNAs (snRNAs) 
and small nucleolar RNAs (snoRNAs). Regulatory long non-coding RNAs (lncRNAs) have 
been found in a large variety of organisms, ranging from yeasts to mammals, including mice 
and humans [93]. lncRNAs have emerged as a fundamental molecular class whose members 
play critical roles in genome regulation and in tissue development and maintenance [92]. 
Based on their positions relative to the protein coding genes in the genome, lncRNAs can be 
classified into natural antisense transcripts (NATs), long intronic ncRNAs and long intergenic 
ncRNAs (lincRNAs) [93].

Recent transcriptional profiling of multiple human tissues, including both normal and tumor 
samples, has led to the assumption that misregulation of lncRNAs could disrupt these delicate 
processes and lead to tumorigenesis [94–97]. These studies have validated the tissue-specific 
expression of lncRNAs in normal tissues, and have identified large sets of lncRNAs which are 
aberrantly expressed in either a specific cancer or multiple types of cancer, suggesting these 
RNAs act as master regulators of gene expression [98, 99]. Differential expression of lncRNAs 
is increasingly recognized as a hallmark feature in cancer [100]. lncRNAs are a novel class of 
mRNA-like transcripts, which contribute to cancer development and progression, accelerat-
ing cancer cells proliferation, apoptosis, invasion and metastasis [101] (Table 2).

General mechanisms of lncRNA function implicated in cancer progression are associ-
ated with a wide-repertoire of biological processes. Among the main biological pathways, 
lncRNAs may be involved in epigenetic silencing, splicing regulation, translational control, 
regulation of apoptosis and cell cycle control [102]. Like protein-coding genes, lncRNAs can 
function as oncogenes or tumor suppressors. Many lncRNAs shuttle between the nucleus and 
the cytoplasm, suggesting that they may have dual functions, while others are restricted to 
the nucleus [103]. In the nucleus, lncRNAs are often part of the nuclear architecture and, in 
some cases, are critical for maintenance of sub-nuclear structures [104].
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lncRNAs bind to and target chromatin regulators allowing connection between RNA 
and chromatin, acting on the control of gene expression at the transcriptional level [105]. 
Moreover, several lncRNAs mechanistic themes have emerged, both at the transcriptional 
and post-transcriptional levels, such as decoys, scaffolds and guides [106]. Examples of the 
mechanisms of action of some lncRNAs on the control of gene expression and mammalian 
cells regulation are described below.

HOTAIR (Hox transcript antisense intergenic RNA) is expressed from the HOXC locus and 
was the first lncRNA shown to be acting in trans. HOTAIR binds to and targets the PRC2 
complex to the HOXD locus [107], functioning as an RNA scaffold containing two main func-
tional domains. The 5′ domain of HOTAIR binds PRC2, whereas a 3′ domain binds the LSD1/
CoREST/REST H3K4 demethylase complex [108], thus bridging two repressive complexes in 
order to coordinate their functions in gene silencing. Ectopic HOTAIR expression in epithelial 
cancer cells induces genome-wide retargeting of PRC2, leading to widespread changes in 

LncRNA Cancer phenotype Molecular mechanism Cancer association References

HOTAIR Oncogenic, promotes 
metastasis and invasion

Interacts with PRC2 and LSD1 
complex, promotes silencing 
of HOX genes in trans 
epigenetically

Overexpressed in liver, 
breast, lung and pancreatic 
tumors

[109, 176, 
177]

GAS5 Tumor suppressor, 
induces growth arrest 
and sensitizes cells to 
apoptosis

Inhibits and binds 
glucocorticoid receptor (GR) 
from activating target genes

Downregulated in breast 
cancer

[178, 179]

H19 Oncogenic, promotes cell 
proliferation and tumor 
growth

Unknown Breast cancer [180]

MALAT1 Oncogenic, promotes 
cell proliferation and 
metastasis

Related to alternative splicing 
and active transcription, 
regulation of gene expression

Overexpressed in lung, 
breast, pancreatic, colon, 
prostate and hepatocellular 
carcinomas

[117, 181, 
182]

MEG3 Tumor suppressor, 
inhibits cell proliferation 
and induces apoptosis

Enhancing p53’s 
transcriptional activity on 
its target genes. Controls 
expression of gene loci 
through recruitment of PRC2

Downregulated in multiple 
tumor types

[183, 184]

PTENP1 Tumor suppressor; 
Inhibits cell 
proliferation, migration, 
invasion and tumor 
growth

Binds and inhibits miRNAs 
from targeting and repressing 
PTEN

Locus lost in prostate 
cancer, colon cancer and 
melanoma

[185–187]

ZFas1 Tumor suppressor and 
inhibits proliferation

Unknown Breast cancer and 
dysregulated in many 
types of tumors

[128, 188]

Table 2. List of lncRNAs involved in cancer with their proposed functions.
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miRNAs are highly stable molecules present in body fluids including plasma, blood, serum, 
urine, saliva and milk, being potential cancer biomarkers which may be found in different 
phases of the tumoral process [87, 88]. Although understanding of how miRNAs are selec-
tively released from cells and how circulating miRNAs are related to disease remains largely 
unclear, circulating miRNAs may serve as novel diagnostic and prognostic biomarkers for 
human diseases, including cancer [89].

4. Long non-coding RNAs

Recent studies based on the Encyclopedia of DNA elements (ENCODE) project indicate that 
more than 80% of the human genome contains functional DNA that includes protein coding 
genes, non-protein coding regulatory DNA elements and non-coding RNAs (ncRNAs) [90]. 
Non-coding RNAs is a class of genetic regulators, containing short (<200 nucleotides) and long 
(>200 nucleotides) transcripts with novel abilities to be used as biomarkers due to their role in 
disease development and their implications for genomic organization [91, 92]. Short ncRNAs 
include ribosomal RNAs (rRNAs), transfer RNAs (tRNAs), small nuclear RNAs (snRNAs) 
and small nucleolar RNAs (snoRNAs). Regulatory long non-coding RNAs (lncRNAs) have 
been found in a large variety of organisms, ranging from yeasts to mammals, including mice 
and humans [93]. lncRNAs have emerged as a fundamental molecular class whose members 
play critical roles in genome regulation and in tissue development and maintenance [92]. 
Based on their positions relative to the protein coding genes in the genome, lncRNAs can be 
classified into natural antisense transcripts (NATs), long intronic ncRNAs and long intergenic 
ncRNAs (lincRNAs) [93].

Recent transcriptional profiling of multiple human tissues, including both normal and tumor 
samples, has led to the assumption that misregulation of lncRNAs could disrupt these delicate 
processes and lead to tumorigenesis [94–97]. These studies have validated the tissue-specific 
expression of lncRNAs in normal tissues, and have identified large sets of lncRNAs which are 
aberrantly expressed in either a specific cancer or multiple types of cancer, suggesting these 
RNAs act as master regulators of gene expression [98, 99]. Differential expression of lncRNAs 
is increasingly recognized as a hallmark feature in cancer [100]. lncRNAs are a novel class of 
mRNA-like transcripts, which contribute to cancer development and progression, accelerat-
ing cancer cells proliferation, apoptosis, invasion and metastasis [101] (Table 2).

General mechanisms of lncRNA function implicated in cancer progression are associ-
ated with a wide-repertoire of biological processes. Among the main biological pathways, 
lncRNAs may be involved in epigenetic silencing, splicing regulation, translational control, 
regulation of apoptosis and cell cycle control [102]. Like protein-coding genes, lncRNAs can 
function as oncogenes or tumor suppressors. Many lncRNAs shuttle between the nucleus and 
the cytoplasm, suggesting that they may have dual functions, while others are restricted to 
the nucleus [103]. In the nucleus, lncRNAs are often part of the nuclear architecture and, in 
some cases, are critical for maintenance of sub-nuclear structures [104].
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lncRNAs bind to and target chromatin regulators allowing connection between RNA 
and chromatin, acting on the control of gene expression at the transcriptional level [105]. 
Moreover, several lncRNAs mechanistic themes have emerged, both at the transcriptional 
and post-transcriptional levels, such as decoys, scaffolds and guides [106]. Examples of the 
mechanisms of action of some lncRNAs on the control of gene expression and mammalian 
cells regulation are described below.

HOTAIR (Hox transcript antisense intergenic RNA) is expressed from the HOXC locus and 
was the first lncRNA shown to be acting in trans. HOTAIR binds to and targets the PRC2 
complex to the HOXD locus [107], functioning as an RNA scaffold containing two main func-
tional domains. The 5′ domain of HOTAIR binds PRC2, whereas a 3′ domain binds the LSD1/
CoREST/REST H3K4 demethylase complex [108], thus bridging two repressive complexes in 
order to coordinate their functions in gene silencing. Ectopic HOTAIR expression in epithelial 
cancer cells induces genome-wide retargeting of PRC2, leading to widespread changes in 

LncRNA Cancer phenotype Molecular mechanism Cancer association References

HOTAIR Oncogenic, promotes 
metastasis and invasion

Interacts with PRC2 and LSD1 
complex, promotes silencing 
of HOX genes in trans 
epigenetically

Overexpressed in liver, 
breast, lung and pancreatic 
tumors

[109, 176, 
177]

GAS5 Tumor suppressor, 
induces growth arrest 
and sensitizes cells to 
apoptosis

Inhibits and binds 
glucocorticoid receptor (GR) 
from activating target genes

Downregulated in breast 
cancer

[178, 179]

H19 Oncogenic, promotes cell 
proliferation and tumor 
growth

Unknown Breast cancer [180]

MALAT1 Oncogenic, promotes 
cell proliferation and 
metastasis

Related to alternative splicing 
and active transcription, 
regulation of gene expression

Overexpressed in lung, 
breast, pancreatic, colon, 
prostate and hepatocellular 
carcinomas

[117, 181, 
182]

MEG3 Tumor suppressor, 
inhibits cell proliferation 
and induces apoptosis

Enhancing p53’s 
transcriptional activity on 
its target genes. Controls 
expression of gene loci 
through recruitment of PRC2

Downregulated in multiple 
tumor types

[183, 184]

PTENP1 Tumor suppressor; 
Inhibits cell 
proliferation, migration, 
invasion and tumor 
growth

Binds and inhibits miRNAs 
from targeting and repressing 
PTEN

Locus lost in prostate 
cancer, colon cancer and 
melanoma

[185–187]

ZFas1 Tumor suppressor and 
inhibits proliferation

Unknown Breast cancer and 
dysregulated in many 
types of tumors

[128, 188]

Table 2. List of lncRNAs involved in cancer with their proposed functions.
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repressive (H3K27me3) and active (H3K4me3) chromatin markers, resembling those found in 
embryonic fibroblasts. This results in more invasive and metastatic cells and HOTAIR expres-
sion is predictive of cancer survival [109].

lncRNAs can also participate in global cellular behavior by controlling cell growth. The 
growth-arrest-specific 5 (GAS5) lncRNA sensitizes the cell to apoptosis by regulating the activ-
ity of glucocorticoids in response to nutrient starvation [110]. GAS5 binds to the DNA-binding 
domain (DBD) of the glucocorticoid receptor (GR), where it acts as a decoy, preventing GR 
interaction with cognate glucocorticoid response elements (GRE). Under normal conditions, 
GR target genes are involved in apoptosis suppression, such as cellular inhibitor of apoptosis 
2 (cIAP2) and inhibit the cell-death executioners caspases 3, 7 and 9 [111]. However, upon 
growth arrest, GAS5 activation compromises GR ability to bind to the cIAP2 GRE, reducing 
cIAP2 expression levels, thereby removing its suppressive effect on caspases [110]. GAS5 has 
also been associated with breast cancer because its transcript levels are significantly reduced, 
when compared to unaffected normal breast epithelium [110]. Therefore, GAS5 could act as a 
tumor suppressor if reduced levels of this lncRNA are unable to maintain sufficient caspase 
activity to activate an appropriate apoptotic response in disease-compromised cells.

H19 is an imprinted gene expressed exclusively from the maternal allele, which maintains silenc-
ing of IGF2. H19 is highly expressed in a wide variety of solid tumors. The majority of cancers 
express high levels of H19 when compared to normal tissues. H19 is generally overexpressed in 
stromal cells, rarely in tumor epithelial cells and has been found to be associated with the pres-
ence of estrogen receptor (ER) and progesterone receptor (PR) [112]. Data indicating both onco-
genic and tumor suppressive roles for H19 in different cancers are available [113]. In cancer cell 
lines, H19 RNA expression is directly regulated by E2F1, promoting cell cycle progression [114].

The lncRNA MALAT1 (metastasis associated in lung adenocarcinoma transcript) was iden-
tified in an attempt to characterize transcripts associated with early stage non-small cell 
lung cancer (NSCLC) [115]. Some studies found that MALAT1 regulates alternative splicing 
through its interaction with the serine/arginine-rich (SR) family of nuclear phosphoproteins, 
which are involved in the splicing machinery [116, 117]. Because the SR family of proteins 
affects the alternative splicing patterns of many pre-mRNAs, its activity must be tightly reg-
ulated. Small changes in SR protein concentration or phosphorylation status can upset the 
fragile balance that controls mRNA variability among different cells and tissue types [118]. 
Therefore, the lncRNA MALAT1 has been suggested to serve as a fine-tuning mechanism to 
modulate the activity of SR proteins.

The maternally expressed gene 3 (MEG3) is an imprinted lncRNA located on chromosome 
14q32 is expressed exclusively from the maternal allele. MEG3 has been shown to activate 
p53 and facilitate p53 signaling, including enhancement of p53 binding to target genes [119]. 
Furthermore, MEG3 regulates genes of the TGF-β pathway through formation of RNA-DNA 
triplex structures [120]. MEG3 overexpression in meningioma, hepatocellular carcinoma and 
breast cancer cell lines leads to suppression of cell proliferation [121–123].

The PTEN (phosphatase and tensin homolog) gene encodes a tumor suppressor that functions 
by negatively regulating the AKT/PKB signaling pathway [124, 125]. Mutations of this gene 
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constitute a step into the development of many cancers and it is one of the most commonly 
lost tumor suppressors in human cancer [126]. A highly homologous processed of PTENP1 
(phosphatase and tensin Homolog pseudogene 1) is a pseudogene which is associated with 
the lncRNA class found on chromosome 9, regulating PTEN by both sense and antisense 
RNAs. This long non-coding RNA acts as a decoy for PTEN, targeting microRNAs and exert-
ing a tumor suppressive activity [125, 127].

The lncRNA Zfas1 (Znfx1 antisense 1) is a transcript antisense to the 5′ end of the protein-cod-
ing gene Znfx1, which has functions in epithelial cells and was identified in large-scale stud-
ies aimed at isolating differentially expressed genes during mammary development [128]. 
Zfas1 intronically hosts three C/D box snoRNAs (Snord12, Snord12b and Snord12c) [128] and 
recently has been associated with ribosomes cancer cells [129].

The highly specific lncRNA expression signatures render them as attractive markers for accu-
rate disease diagnosis and patients prognosis. In addition, advancement of RNA-based thera-
peutics opens new avenues for lncRNAs as new targets for cancer therapy.

5. mRNA decay

mRNA degradation is an important mechanism for post-transcriptional control of gene 
expression, controlling both the quality and the abundance of cellular mRNAs. Deadenylation 
of the mRNA is the default process, often representing a rate-limiting step in cytoplasmic 
mRNA decay, in which the poly(A) tail of the transcript is degraded through recruitment of 
deadenylase complexes [130–132]. In the literature, different deadenylases or poly(A)-spe-
cific ribonucleases have been described, namely PARN (poly(A)-specific ribonuclease), Pan2/
Pan3 (poly(A) nuclease 2/3) complex and CCR4–NOT (carbon catabolite repression 4) com-
plex [131, 133]. The PARN deadenylase is involved in destabilization of different transcripts 
related to cell cycle progression and cell proliferation [133, 134], as well as in degradation of 
oncogenic miRNAs, such as miR-21 [135]. In addition, its expression is altered in different 
tumors, such as gastric tumors [136] and acute leukemias [137].

Different proteins are able to interact with each other and promote the recruitment of dead-
enylases to the mRNA poly(A) tail. Members of BTG/Tob family, associated with anti-prolif-
erative activities [138], are able to associate with both Caf1a and Caf1b (enzymatic subunits 
of the CCR4-NOT complex) [139], and, also, with PABPC1 (cytoplasmic poly(A)-binding 
protein) [139, 140], promoting mRNA poly(A) tail removal and cytoplasmic mRNA decay. 
Expression of the BTG/Tob proteins is classically associated with inhibition of cell cycle pro-
gression [138]. The Tob/Caf1 complex is also involved in the negative regulation of c-myc 
proto-oncogene expression by accelerating deadenylation and decay of its mRNA [141]. 
In addition, BTG2 has been characterized as a p53 transcriptional-target, being an essen-
tial component for suppression of Ras-induced transformation by p53 [142]. In agreement, 
reduced expression of BTG2 and TOB proteins are observed in human samples derived from 
different types of tumor [143–146]. On the other hand, interaction of Tob1 with Caf1a (but 
not with Caf1b) was recently associated with the metastatic phenotype in mouse mammary 
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repressive (H3K27me3) and active (H3K4me3) chromatin markers, resembling those found in 
embryonic fibroblasts. This results in more invasive and metastatic cells and HOTAIR expres-
sion is predictive of cancer survival [109].

lncRNAs can also participate in global cellular behavior by controlling cell growth. The 
growth-arrest-specific 5 (GAS5) lncRNA sensitizes the cell to apoptosis by regulating the activ-
ity of glucocorticoids in response to nutrient starvation [110]. GAS5 binds to the DNA-binding 
domain (DBD) of the glucocorticoid receptor (GR), where it acts as a decoy, preventing GR 
interaction with cognate glucocorticoid response elements (GRE). Under normal conditions, 
GR target genes are involved in apoptosis suppression, such as cellular inhibitor of apoptosis 
2 (cIAP2) and inhibit the cell-death executioners caspases 3, 7 and 9 [111]. However, upon 
growth arrest, GAS5 activation compromises GR ability to bind to the cIAP2 GRE, reducing 
cIAP2 expression levels, thereby removing its suppressive effect on caspases [110]. GAS5 has 
also been associated with breast cancer because its transcript levels are significantly reduced, 
when compared to unaffected normal breast epithelium [110]. Therefore, GAS5 could act as a 
tumor suppressor if reduced levels of this lncRNA are unable to maintain sufficient caspase 
activity to activate an appropriate apoptotic response in disease-compromised cells.

H19 is an imprinted gene expressed exclusively from the maternal allele, which maintains silenc-
ing of IGF2. H19 is highly expressed in a wide variety of solid tumors. The majority of cancers 
express high levels of H19 when compared to normal tissues. H19 is generally overexpressed in 
stromal cells, rarely in tumor epithelial cells and has been found to be associated with the pres-
ence of estrogen receptor (ER) and progesterone receptor (PR) [112]. Data indicating both onco-
genic and tumor suppressive roles for H19 in different cancers are available [113]. In cancer cell 
lines, H19 RNA expression is directly regulated by E2F1, promoting cell cycle progression [114].

The lncRNA MALAT1 (metastasis associated in lung adenocarcinoma transcript) was iden-
tified in an attempt to characterize transcripts associated with early stage non-small cell 
lung cancer (NSCLC) [115]. Some studies found that MALAT1 regulates alternative splicing 
through its interaction with the serine/arginine-rich (SR) family of nuclear phosphoproteins, 
which are involved in the splicing machinery [116, 117]. Because the SR family of proteins 
affects the alternative splicing patterns of many pre-mRNAs, its activity must be tightly reg-
ulated. Small changes in SR protein concentration or phosphorylation status can upset the 
fragile balance that controls mRNA variability among different cells and tissue types [118]. 
Therefore, the lncRNA MALAT1 has been suggested to serve as a fine-tuning mechanism to 
modulate the activity of SR proteins.

The maternally expressed gene 3 (MEG3) is an imprinted lncRNA located on chromosome 
14q32 is expressed exclusively from the maternal allele. MEG3 has been shown to activate 
p53 and facilitate p53 signaling, including enhancement of p53 binding to target genes [119]. 
Furthermore, MEG3 regulates genes of the TGF-β pathway through formation of RNA-DNA 
triplex structures [120]. MEG3 overexpression in meningioma, hepatocellular carcinoma and 
breast cancer cell lines leads to suppression of cell proliferation [121–123].

The PTEN (phosphatase and tensin homolog) gene encodes a tumor suppressor that functions 
by negatively regulating the AKT/PKB signaling pathway [124, 125]. Mutations of this gene 
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constitute a step into the development of many cancers and it is one of the most commonly 
lost tumor suppressors in human cancer [126]. A highly homologous processed of PTENP1 
(phosphatase and tensin Homolog pseudogene 1) is a pseudogene which is associated with 
the lncRNA class found on chromosome 9, regulating PTEN by both sense and antisense 
RNAs. This long non-coding RNA acts as a decoy for PTEN, targeting microRNAs and exert-
ing a tumor suppressive activity [125, 127].

The lncRNA Zfas1 (Znfx1 antisense 1) is a transcript antisense to the 5′ end of the protein-cod-
ing gene Znfx1, which has functions in epithelial cells and was identified in large-scale stud-
ies aimed at isolating differentially expressed genes during mammary development [128]. 
Zfas1 intronically hosts three C/D box snoRNAs (Snord12, Snord12b and Snord12c) [128] and 
recently has been associated with ribosomes cancer cells [129].

The highly specific lncRNA expression signatures render them as attractive markers for accu-
rate disease diagnosis and patients prognosis. In addition, advancement of RNA-based thera-
peutics opens new avenues for lncRNAs as new targets for cancer therapy.

5. mRNA decay

mRNA degradation is an important mechanism for post-transcriptional control of gene 
expression, controlling both the quality and the abundance of cellular mRNAs. Deadenylation 
of the mRNA is the default process, often representing a rate-limiting step in cytoplasmic 
mRNA decay, in which the poly(A) tail of the transcript is degraded through recruitment of 
deadenylase complexes [130–132]. In the literature, different deadenylases or poly(A)-spe-
cific ribonucleases have been described, namely PARN (poly(A)-specific ribonuclease), Pan2/
Pan3 (poly(A) nuclease 2/3) complex and CCR4–NOT (carbon catabolite repression 4) com-
plex [131, 133]. The PARN deadenylase is involved in destabilization of different transcripts 
related to cell cycle progression and cell proliferation [133, 134], as well as in degradation of 
oncogenic miRNAs, such as miR-21 [135]. In addition, its expression is altered in different 
tumors, such as gastric tumors [136] and acute leukemias [137].

Different proteins are able to interact with each other and promote the recruitment of dead-
enylases to the mRNA poly(A) tail. Members of BTG/Tob family, associated with anti-prolif-
erative activities [138], are able to associate with both Caf1a and Caf1b (enzymatic subunits 
of the CCR4-NOT complex) [139], and, also, with PABPC1 (cytoplasmic poly(A)-binding 
protein) [139, 140], promoting mRNA poly(A) tail removal and cytoplasmic mRNA decay. 
Expression of the BTG/Tob proteins is classically associated with inhibition of cell cycle pro-
gression [138]. The Tob/Caf1 complex is also involved in the negative regulation of c-myc 
proto-oncogene expression by accelerating deadenylation and decay of its mRNA [141]. 
In addition, BTG2 has been characterized as a p53 transcriptional-target, being an essen-
tial component for suppression of Ras-induced transformation by p53 [142]. In agreement, 
reduced expression of BTG2 and TOB proteins are observed in human samples derived from 
different types of tumor [143–146]. On the other hand, interaction of Tob1 with Caf1a (but 
not with Caf1b) was recently associated with the metastatic phenotype in mouse mammary 

Post-Transcriptional Control of RNA Expression in Cancer
http://dx.doi.org/10.5772/intechopen.71861

125



carcinoma model and the deadenylase activity of Caf1a was shown to be required for promo-
tion of metastatic disease [147]. Using a human breast cancer model, it has also been shown 
that high expression of either TOB1 or CNOT1 (the scaffold subunit of the CCR4-NOT com-
plex) correlated with poor survival [147] and was associated with poor distant metastasis 
free survival in breast cancer patients [148]. Interestingly, PABPC1 has also been described 
as an oncogenic protein in gastric carcinoma. Zhu and collaborators showed that PABPC1 
is upregulated in gastric carcinoma tissues, predicting poor survival and inhibits apoptosis 
by targeting miR-34c [149]. Following shortening of the poly(A) tail, mRNA can either be 
degraded through the 3′ pathway, by the eukaryotic exosome complex, or, alternatively, by 
removal of the cap by Dcp2 and exonuclease decay through the 5′ pathway, promoted by 
exonuclease Xrn1 [130, 131].

AU-rich elements (ARE) are critical cis-acting elements in the 3′-UTRs of a variety of short-
lived transcripts. Tristetraprolin (TTP) and human antigen R (HuR) are two important RNA-
binding proteins which can bind to AREs in their target mRNAs. TTP promotes deadenylation 
and degradation of target mRNAs, whereas HuR, as already mentioned, is involved in sta-
bilization of target mRNAs. It has been extensively described that TTP expression is signifi-
cantly decreased in different types of tumors [150] and that it is involved in cell cycle control, 
angiogenesis and tumor metastasis [151]. Recently, it has been reported that TTP inhibits the 
epithelial-mesenchymal transition (EMT) of cancer cells through mRNA degradation of the 
EMT inducers, specifically, Twist1 and Snail1, and inhibits cell proliferation through down-
regulation of c-fos, CDC34 and VEGF [152]. Interestingly, TTP appears to bind to AREs and 
interact with proteins involved in mRNA decay, such as the PM-scl75 exosome component, 
Xrn1 5′–3′ exonuclease, CCR4deadenylase and Dcp1 decapping enzyme [153], supporting a 
model in which TTP promotes mRNA decay through the ability to recruit components of the 
cellular mRNA decay machinery to the target mRNAs. In recent publications, high expression 
levels of HuR have been correlated with tumor progression and aggressiveness by affecting 
cell cycle progression, migration, invasion, metastasis and apoptosis in different tumor mod-
els [154–157]. HuR enhances the stability of the human epidermal growth factor receptor 2 
(ERBB2/HER-2) mRNA, modulating the estrogen receptor-alpha-positive (ER+) breast cancer 
cells responsiveness to tamoxifen [158].

In addition, deadenylase complexes could be recruited to the mRNA poly(A) tail through the 
action of miRNAs. GW182 proteins, which participate of the miRNA-induced silencing com-
plex (miRISC), directly interact with PAN3 and NOT1 subunits, leading to recruitment of the 
PAN2-PAN3 and CCR4-CAF1-NOT deadenylase complexes to the 3′-UTR of target mRNAs 
[159]. Also, it has been described that PARN deadenylase binds to the 3′ UTR of p53 mRNA 
through recruitment mediated by miR-125b-loaded miRISC, promoting p53 mRNA decay 
[134]. Interestingly, this effect can be reverted by HuR proteins, which bind to the p53 AREs 
and increase p53 mRNA stability [134].

The deadenylation machinery is also an important target for antitumor agents and anticancer 
therapy. Cantharidin (an inhibitor of protein phosphatase 2A) inhibits the invasive ability of 
pancreatic cancer cells, with concomitant deadenylation-dependent degradation of MMP2 
mRNA [20]. Resveratrol (3,5,4′-trihydroxystilbene), a naturally occurring compound, induces 
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TPP expression in U87MG human glioma cells and leads to the decay of urokinase plasmino-
gen activator (uPA) and urokinase plasminogen activator receptor (uPAR) mRNAs, promot-
ing suppression of cell growth and inducing apoptosis [160].

Additionally, several mature mRNAs surveillance mechanisms guarantee quality and fidelity 
to encode a functional protein in a translation-dependent manner. The nonsense-mediated 
decay (NMD) pathway is the best understood surveillance mechanism; detecting and degrad-
ing transcripts which contain premature termination codons (PTCs), avoiding the expression 
of semi-functional and truncated proteins [161]. The UPF-1 (up-frameshift1) protein, a key 
component of the NMD mechanism, interacts with both Dcp2 and PARP, linking NMD with 
the decapping and deadenylation processes [162]. Low expression levels of UPF-1 protein 
as well as inactivation of UPF-1 function were described in several types of human cancer, 
suggesting that NMD downregulation is related to tumorigenesis. Decreased levels of UPF-1 
were detected in lung adenocarcinoma in comparison to normal tissues, and its downregu-
lation was correlated to poor prognosis and higher histological grade [163]. The pancreatic 
adenosquamous carcinoma (ASC) is an aggressive tumor which is associated with high meta-
static potential and poor prognosis. In these tumors, a mutation that promotes UPF-1 alterna-
tive splicing and results in a non-functional UPF-1 protein, has been observed. Inactivation of 
the NMD pathway promotes selective accumulation of a p53 isoform, which acts in a domi-
nant-negative manner, contributing to tumorigenesis [164].

NMD can also be inhibited by a wide variety of cellular stresses, some of which are associated 
to the tumoral context [165]. In response to stress events, phosphorylation of the alpha-subunit 
of the eukaryotic initiation factor 2 (eIF2α) is able to inhibit NMD. It has been described that 
phospho-eIF2α is necessary for oncogene c-myc-mediated NMD inhibition [106]. Inhibition 
of NMD by cellular stress promotes stabilization of the SLC7A11 mRNA, which encodes a 
subunit of the cystine/glutamate aminoacid transport system, leading to increased intracel-
lular levels of cysteine, accelerating the production of glutathione. SLC7A11 is upregulated 
in hypoxic cells, promotes tumorigenesis and chemotherapy resistance, suggesting that it 
could be an adaptive response that protects tumor cells against oxidative stress [166]. It has 
recently been described that NMD regulates the epithelial-mesenchymal transition (EMT) in 
the lung adenocarcinoma model, by targeting the TGF-β signaling pathway [163]. In addition, 
the NMD mechanism controls the expression of a novel human E-cadherin variant mRNA 
produced by alternative splicing. Overexpression of this alternatively spliced E-cadherin vari-
ant in MCF-7, breast cancer cells was able to induce EMT by promoting higher expression 
levels of Twist, Snail, Zeb1 and Slug, with a concomitant decrease in the wild type E-cadherin 
mRNA levels [167].

Several promising NMD targets mRNAs for cancer therapy have been proposed. The MDM4 
protein, which is undetectable in normal tissues, is frequently upregulated in cancer cells, 
acting by inhibiting the p53 tumor-suppressor function [168]. The abundance of the MDM4 
protein is controlled, at least in part, by alternative splicing mechanisms and the NMD path-
way. In most normal adult tissues, the lack of exon 6 in the Mdm4-spliced variant leads to 
the production of an unstable transcript (Mdm4-S), which contains a PTC and is targeted to 
NMD [168]. On the other hand, the oncogenic splicing-factor SRSF3 supports exon 6 inclusion 
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carcinoma model and the deadenylase activity of Caf1a was shown to be required for promo-
tion of metastatic disease [147]. Using a human breast cancer model, it has also been shown 
that high expression of either TOB1 or CNOT1 (the scaffold subunit of the CCR4-NOT com-
plex) correlated with poor survival [147] and was associated with poor distant metastasis 
free survival in breast cancer patients [148]. Interestingly, PABPC1 has also been described 
as an oncogenic protein in gastric carcinoma. Zhu and collaborators showed that PABPC1 
is upregulated in gastric carcinoma tissues, predicting poor survival and inhibits apoptosis 
by targeting miR-34c [149]. Following shortening of the poly(A) tail, mRNA can either be 
degraded through the 3′ pathway, by the eukaryotic exosome complex, or, alternatively, by 
removal of the cap by Dcp2 and exonuclease decay through the 5′ pathway, promoted by 
exonuclease Xrn1 [130, 131].

AU-rich elements (ARE) are critical cis-acting elements in the 3′-UTRs of a variety of short-
lived transcripts. Tristetraprolin (TTP) and human antigen R (HuR) are two important RNA-
binding proteins which can bind to AREs in their target mRNAs. TTP promotes deadenylation 
and degradation of target mRNAs, whereas HuR, as already mentioned, is involved in sta-
bilization of target mRNAs. It has been extensively described that TTP expression is signifi-
cantly decreased in different types of tumors [150] and that it is involved in cell cycle control, 
angiogenesis and tumor metastasis [151]. Recently, it has been reported that TTP inhibits the 
epithelial-mesenchymal transition (EMT) of cancer cells through mRNA degradation of the 
EMT inducers, specifically, Twist1 and Snail1, and inhibits cell proliferation through down-
regulation of c-fos, CDC34 and VEGF [152]. Interestingly, TTP appears to bind to AREs and 
interact with proteins involved in mRNA decay, such as the PM-scl75 exosome component, 
Xrn1 5′–3′ exonuclease, CCR4deadenylase and Dcp1 decapping enzyme [153], supporting a 
model in which TTP promotes mRNA decay through the ability to recruit components of the 
cellular mRNA decay machinery to the target mRNAs. In recent publications, high expression 
levels of HuR have been correlated with tumor progression and aggressiveness by affecting 
cell cycle progression, migration, invasion, metastasis and apoptosis in different tumor mod-
els [154–157]. HuR enhances the stability of the human epidermal growth factor receptor 2 
(ERBB2/HER-2) mRNA, modulating the estrogen receptor-alpha-positive (ER+) breast cancer 
cells responsiveness to tamoxifen [158].

In addition, deadenylase complexes could be recruited to the mRNA poly(A) tail through the 
action of miRNAs. GW182 proteins, which participate of the miRNA-induced silencing com-
plex (miRISC), directly interact with PAN3 and NOT1 subunits, leading to recruitment of the 
PAN2-PAN3 and CCR4-CAF1-NOT deadenylase complexes to the 3′-UTR of target mRNAs 
[159]. Also, it has been described that PARN deadenylase binds to the 3′ UTR of p53 mRNA 
through recruitment mediated by miR-125b-loaded miRISC, promoting p53 mRNA decay 
[134]. Interestingly, this effect can be reverted by HuR proteins, which bind to the p53 AREs 
and increase p53 mRNA stability [134].

The deadenylation machinery is also an important target for antitumor agents and anticancer 
therapy. Cantharidin (an inhibitor of protein phosphatase 2A) inhibits the invasive ability of 
pancreatic cancer cells, with concomitant deadenylation-dependent degradation of MMP2 
mRNA [20]. Resveratrol (3,5,4′-trihydroxystilbene), a naturally occurring compound, induces 
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TPP expression in U87MG human glioma cells and leads to the decay of urokinase plasmino-
gen activator (uPA) and urokinase plasminogen activator receptor (uPAR) mRNAs, promot-
ing suppression of cell growth and inducing apoptosis [160].

Additionally, several mature mRNAs surveillance mechanisms guarantee quality and fidelity 
to encode a functional protein in a translation-dependent manner. The nonsense-mediated 
decay (NMD) pathway is the best understood surveillance mechanism; detecting and degrad-
ing transcripts which contain premature termination codons (PTCs), avoiding the expression 
of semi-functional and truncated proteins [161]. The UPF-1 (up-frameshift1) protein, a key 
component of the NMD mechanism, interacts with both Dcp2 and PARP, linking NMD with 
the decapping and deadenylation processes [162]. Low expression levels of UPF-1 protein 
as well as inactivation of UPF-1 function were described in several types of human cancer, 
suggesting that NMD downregulation is related to tumorigenesis. Decreased levels of UPF-1 
were detected in lung adenocarcinoma in comparison to normal tissues, and its downregu-
lation was correlated to poor prognosis and higher histological grade [163]. The pancreatic 
adenosquamous carcinoma (ASC) is an aggressive tumor which is associated with high meta-
static potential and poor prognosis. In these tumors, a mutation that promotes UPF-1 alterna-
tive splicing and results in a non-functional UPF-1 protein, has been observed. Inactivation of 
the NMD pathway promotes selective accumulation of a p53 isoform, which acts in a domi-
nant-negative manner, contributing to tumorigenesis [164].

NMD can also be inhibited by a wide variety of cellular stresses, some of which are associated 
to the tumoral context [165]. In response to stress events, phosphorylation of the alpha-subunit 
of the eukaryotic initiation factor 2 (eIF2α) is able to inhibit NMD. It has been described that 
phospho-eIF2α is necessary for oncogene c-myc-mediated NMD inhibition [106]. Inhibition 
of NMD by cellular stress promotes stabilization of the SLC7A11 mRNA, which encodes a 
subunit of the cystine/glutamate aminoacid transport system, leading to increased intracel-
lular levels of cysteine, accelerating the production of glutathione. SLC7A11 is upregulated 
in hypoxic cells, promotes tumorigenesis and chemotherapy resistance, suggesting that it 
could be an adaptive response that protects tumor cells against oxidative stress [166]. It has 
recently been described that NMD regulates the epithelial-mesenchymal transition (EMT) in 
the lung adenocarcinoma model, by targeting the TGF-β signaling pathway [163]. In addition, 
the NMD mechanism controls the expression of a novel human E-cadherin variant mRNA 
produced by alternative splicing. Overexpression of this alternatively spliced E-cadherin vari-
ant in MCF-7, breast cancer cells was able to induce EMT by promoting higher expression 
levels of Twist, Snail, Zeb1 and Slug, with a concomitant decrease in the wild type E-cadherin 
mRNA levels [167].

Several promising NMD targets mRNAs for cancer therapy have been proposed. The MDM4 
protein, which is undetectable in normal tissues, is frequently upregulated in cancer cells, 
acting by inhibiting the p53 tumor-suppressor function [168]. The abundance of the MDM4 
protein is controlled, at least in part, by alternative splicing mechanisms and the NMD path-
way. In most normal adult tissues, the lack of exon 6 in the Mdm4-spliced variant leads to 
the production of an unstable transcript (Mdm4-S), which contains a PTC and is targeted to 
NMD [168]. On the other hand, the oncogenic splicing-factor SRSF3 supports exon 6 inclusion 
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Figure 1. Schematic representation and key roles of different RNA species in the control of gene expression in mammalian 
cells. This scheme represents a genomic locus and the main molecular mechanisms associated with the control of gene 
expression pattern. Proximal control elements are located close to the promoter, while distal elements (called enhancers) 
may be far away from a gene or even located in an intron. Alternative splicing (AS) generates transcriptome diversity. 
During AS, cis-acting regulatory elements, present in the pre-mRNA sequence, determine which exons are retained and 
which exons are spliced out. For an individual pre-mRNA, several alternative exons show different types of alternative-
splicing patterns. Addition of 5’ Cap and Poly(A) tail are controlled events which are extremely important for the 
stability of the mRNA and its transport from the cytoplasm to the nucleus. Non-coding RNAs (ncRNAs) with regulatory 
functions can act in multiple pathways during the transcription process by controlling specific events which culminate 
in synthesis of different proteins. Long non-coding RNAs (lncRNAs) target protein complexes to specific genomic loci 
affecting transcription patterns (transcriptional interference), leading to chromatin modifications (interplay between 
epigenetic marks, such as DNA methylation and histone acetylation) and DNA polymerase II activity. Advances in 
transcriptomics have resulted in the discovery of large numbers of ncRNAs (miRNAs e lncRNAs), many of which 
display the capacity to regulate gene expression at the levels of transcription (control of AS), post-transcription (mRNA 
editing, mRNA decay and mRNA stability) and translation (translation initiation).

in the Mdm4 mRNA transcript (full-length Mdm4 variant), which is not efficiently degraded 
by NMD. Therapeutic strategies which lead to antisense oligonucleotide-mediated (ASO-
mediated) Mdm4 exon 6 skipping efficiently decreases MDM4 abundance and inhibits tumor 
cell growth in melanoma and diffuse large B cell lymphoma models, as well as increases 
sensitivity to MAPK-targeting therapies [169].

6. Final considerations

Different post-transcriptional mechanisms have been associated with gene expression con-
trol, leading to complex transcriptional signatures in cancer. The mechanisms presented 
in this chapter constitute fine regulators of gene expression which influence multiple and 
highly relevant pathways in cancer development (summarized in Figure 1). Several splicing 
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variants, miRNAs and lncRNAs, have been shown to act as possible oncoRNAs or as tumor 
suppressors. The functional roles of these RNAs are only beginning to be elucidated pro-
viding an uncharted resource for the development of diagnostic methods and novel cancer 
therapies.
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LSD1 Lysine-specific histone demethylase 1

MALAT1 Metastasis associated in lung adenocarcinoma transcript

MAPK mitogen-activated kinase-like protein

MDM4 MDM4, p53 regulator

MEG3 Maternally expressed gene 3

miRISC miRNA-induced silencing complex

miRNA/miR microRNA

MMP2 Matrix metalloproteinase 2

NATs Natural antisense transcripts

ncRNAs Non-coding RNAs

NMD Nonsense-mediated decay

NSCLC Non-small cell lung cancer

ODC Ornithine decarboxylase

p53 Tumor protein p53

PABPC1 Cytoplasmic poly(A)-binding protein

PABPC1 Poly(A) binding protein cytoplasmic 1

Pan2/Pan3 Poly(A) nuclease 2/3 complex

PARN Poly(A)-specific ribonuclease

piRNA PIWI-interacting RNA

Pol II RNA polymerase II

PPB Pleuropulmonary blastoma

PR Progesterone receptor

PRC2 Polycomb repressive complex 2

Pri-miRNA miRNA primary transcript

PTCs Premature termination codons

PTEN Phosphatase and tensin homolog

PTENP1 Phosphatase and tensin homolog pseudogene 1

Ras HRas proto-oncogene, GTPase

Post-Transcriptional Control of RNA Expression in Cancer
http://dx.doi.org/10.5772/intechopen.71861

131



CLL Chronic lymphocytic leukemia

c-Myc Myc proto-oncogene

CNOT1 CCR4-NOT transcription complex subunit 1

CoREST REST corepressor 1

CSCs Cancer stem cells

DBD DNA-binding domain

Dcp1 Decapping protein 1

DDX DEAD-box helixases

DICER Dicer 1, ribonuclease III

DROSHA Drosha ribonuclease III

E2F1 E2F transcription factor 1

eIF2α Eukaryotic initiation factor 2

EMT Epithelial-mesenchymal transition

ENCODE Encyclopedia of DNA elements

ER Estrogen receptor

ER+ Estrogen receptor-alpha-positive

ERBB2/HER Human epidermal growth factor receptor 2

EXP5 Exportin 5

GAS5 Growth-arrest-specific 5

GR Glucocorticoid receptor

GRE Glucocorticoid response elements

H19 H19, imprinted maternally expressed transcript

H3K4 Histone H3 lysine 4

hnRNP Heterologous nuclear ribonuclear particle

HOTAIR Hox transcript antisense intergenic RNA

HOXC Homeobox C cluster

HuR Human antigen R

IGF2 Insulin-like growth factor 2

lincRNAs Long intergenic ncRNAs

Gene Expression and Regulation in Mammalian Cells - Transcription From General Aspects130

lncRNAs long non-coding RNAs

LSD1 Lysine-specific histone demethylase 1

MALAT1 Metastasis associated in lung adenocarcinoma transcript

MAPK mitogen-activated kinase-like protein

MDM4 MDM4, p53 regulator

MEG3 Maternally expressed gene 3

miRISC miRNA-induced silencing complex

miRNA/miR microRNA

MMP2 Matrix metalloproteinase 2

NATs Natural antisense transcripts

ncRNAs Non-coding RNAs

NMD Nonsense-mediated decay

NSCLC Non-small cell lung cancer

ODC Ornithine decarboxylase

p53 Tumor protein p53

PABPC1 Cytoplasmic poly(A)-binding protein

PABPC1 Poly(A) binding protein cytoplasmic 1

Pan2/Pan3 Poly(A) nuclease 2/3 complex

PARN Poly(A)-specific ribonuclease

piRNA PIWI-interacting RNA

Pol II RNA polymerase II

PPB Pleuropulmonary blastoma

PR Progesterone receptor

PRC2 Polycomb repressive complex 2

Pri-miRNA miRNA primary transcript

PTCs Premature termination codons

PTEN Phosphatase and tensin homolog

PTENP1 Phosphatase and tensin homolog pseudogene 1

Ras HRas proto-oncogene, GTPase

Post-Transcriptional Control of RNA Expression in Cancer
http://dx.doi.org/10.5772/intechopen.71861

131



REST RE1-silencing transcription factor

RISC RNA-induced silencing complex

rRNAs Ribosomal RNAs

siRNA Small interfering RNA

SLC7A11 Solute carrier family 7 member 11

Slug Snail family transcriptional repressor 2
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Abstract

RNA interference (RNAi) is a convenient and useful gene suppression technology 
induced by small interfering RNA (siRNA) composed of 21-nucleotide long double-
stranded RNA. The successful application of RNAi for clinical use is expected for a long 
time. Although siRNA drug is categorized into a nucleic acid drug, it has a prominent 
advantage that genetic function can be suppressed by destroying mRNA at the posttran-
scriptional level without wounding genomic DNA. Nevertheless, unfortunately there 
are no siRNA certified as pharmaceuticals passing through clinical trials, since there are 
several problems, such as gene suppression efficiency, stability in blood stream, or other 
undesirable effects. Here, we describe the current status and future prospects for clinical 
application of the siRNA nucleic acid drug.

Keywords: RNA interference, siRNA, off-target effect, thermodynamic property, 
chemical modification

1. Introduction

In recent years, nucleic acid drugs have attracted attention as a next-generation medicine fol-
lowing low molecular weight drugs and antibody drugs. Research and development of these 
drugs for clinical application is advanced in major pharmaceutical companies, bio-ventures, 
or research institutions including universities. Nucleic acid drugs, such as DNA/RNA or their 
modified molecules, act directly on molecules causing diseases and regulate their functions by 
administering chemically synthesized nucleic acid to the body by local administration or sub-
cutaneous injection. Unlike the hitherto known gene therapy, the nucleic acid drugs directly 
act on the target molecules and relieve symptoms of the diseases without manipulating the 
genomes. Although the effects of various nucleic acid drugs, including antisense RNA, small 
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interfering RNA (siRNA), aptamer, or decoy, are investigated in the clinical trials, only five 
examples including four antisense oligos and an aptamer are already approved. However, no 
siRNA drug is certified so far. In this manuscript, we outline the advantages, current status, 
and problems to be solved in the development of nucleic acid drugs, in particular, focusing 
on the development of siRNA drug.

2. RNA interference

RNA interference (RNAi) is a highly regulated, evolutionarily conserved mechanism of post-
transcriptional gene regulation. siRNA, consists of double-stranded RNA with 19 nucleotides 
in length with 2 nucleotides overhangs, is the intermediate utilized in this mechanism [1]. 

Figure 1. Mechanism of RNA interference. siRNA is the approximately 21-nt double-stranded RNA composed of 
the guide strand RNA and the passenger strand RNA. siRNA is incorporated into a protein complex called RISC 
and unwound into single-stranded RNAs. After unwinding, the guide strand is remained on the AGO protein, while 
the passenger strand is degraded. The mRNAs only with partial complementarities with the seed region of siRNA 
guide strand are off-target genes and are repressed by siRNA as a mechanism known to be “off-target effect.” the 
mRNA, which has a complete complementary sequence with the guide strand RNA, is cleaved by “RNAi” as an 
actual target.
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When siRNA is introduced into the cells, it is loaded onto the Argonaute (AGO) protein, 
which is a component of a protein complex called RNA-induced silencing complex (RISC) 
[2, 3]. In the RISC, siRNA is unwound into single-stranded RNAs, and a functional RNA 
strand called the guide strand is remained in the RISC and the opposite passenger strand is 
degraded [4–8]. The activated guide strand RNA-containing RISC binds to the target tran-
script in a sequence-specific manner. The perfectly complementary target transcript is then 
cleaved between the 10th and 11th nucleotide relative to the 5′ end of the guide strand [2]. 
Thus, gene functions of mRNAs which have the complementary nucleotide sequences of the 
guide strand are suppressed (Figure 1) [9]. This elegant, endogenous process has been exten-
sively utilized in functional genomics studies and shows potential as a therapeutic platform 
[10]. However, although the clinical application of siRNA is expected for a long time, it has 
not been put into practical use due to some essential problems. For example, the difficult 
delivery system of siRNA to the target tissues: siRNA is easily degraded by RNA degradation 
enzymes when it is introduced into the blood, and it is extremely difficult to deliver siRNA to 
specific tissues. The other severe problem is off-target effects on messenger RNAs (mRNAs) 
other than the target gene (Figure 1). The siRNA often suppresses unintended mRNAs with 
partial complementarities in nucleotide sequences of the guide strand. The procedures to 
overcome such problems have been really expected. There is a new candidate method that 
has overcome the readily degradable property of RNA by enclosing them in lipid nanopar-
ticles (LNP). Although its clinical trial has reached to phase III, there is no example approved 
as a formal pharmaceutical so far.

3. Advantages for using RNAi technology for nucleic acid medicine

siRNA with complementary nucleotide sequence to the mRNA of target gene can be 
designed conveniently, if the nucleotide sequence of the target gene is known. In addition, 
since siRNA can be chemically synthesized, it is not necessary to undergo complicated man-
ufacturing processes, such as immunization of animals or cell culture like synthesis of anti-
body drugs. Furthermore, due to the complementary binding of siRNA to the target mRNA, 
its specificity has been considered to be very high, and siRNA can target molecules, such as 
mRNAs or other noncoding RNAs at the posttranscriptional level that could not be regulated 
by traditional drugs. These excellent characteristics are reasons to be expected as the future 
medicine.

4. Problems to be solved for application of siRNA to nucleic acid 
medicine

Although clinical trials of siRNA application are performed for a long time, there are no 
authorized siRNA as a clinical drug until now. The current status of the development in RNAi 
technology and the major problems for its clinical application are discussed in the following 
section.
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Figure 2. Sequence design algorithms for siRNAs with high RNAi effects. Three widely used siRNA sequence 
design rules; the Ui-Tei method (A), the Reynolds method (B), and the Amarzguioui method (C). Upper RNA 
strand indicates the passenger strand, and lower strand indicates the guide strand. The number under the guide 
strand indicates the nucleotide position measured from the 5′ end of the guide strand. Detailed algorithms are 
shown in main text.
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4.1. Sequence design of highly functional siRNA

The siRNA design is known to define the RNAi efficiency essentially because its effective-
ness is dependent on the base-pairing between siRNA and target mRNA. Basic studies so 
far revealed that the highly efficient RNAi can be induced by almost all siRNAs with any 
sequences in flies or nematodes, whereas RNAi efficiencies varied greatly depending on the 
sequences of siRNAs in mammals including human [11]. Among nucleic acid medicines, the 
nucleotide sequence of aptamer, which specifically acts on a target molecule successfully, is 
selected by an enormous screening experiment using an artificial nucleic acid library called 
systematic evolution of ligands by the exponential enrichment (SELEX) method. Such screen-
ing requires a great deal of labor and cost. However, the nucleotide sequences of functional 
siRNAs are designed systematically according to a few reliable algorithms, such as the Ui-Tei 
rule [11], Reynolds rule [12], or Amarzguioui rule [13] (Figure 2). The relationship between 
siRNA sequence and RNAi was determined by experimental analyses using 62 targets for 4 
exogenous and 2 endogenous genes in mammalian cells [11], or 180 siRNAs targeting mRNAs 
of 2 genes [12], or by the statistical analysis of 49 siRNAs verified by 34 siRNAs [13]. The algo-
rithm of each strategy for the selection of functional siRNA is as follows:

1. Ui-Tei rule

i. Nucleotide at the 5′ end of the guide strand is A or U.

ii. Nucleotide at the 5′ end of the passenger strand is preferably G or C.

iii. A and U are abundant in the region corresponding to the 5′ terminal one-third of the 
guide strand.

iv. It is better not to include a long GC stretch over the entire region.

2. Reynolds rule

i. The content of G and C is 30–5% over the entire region.

ii. At least three out of five nucleotides at the 3′ end of the passenger strand are prefer-
ably A or U.

iii. Possible inverted repeats that form hairpin structures are absent.

iv. The third nucleotide from the 5′ end of the passenger strand is A.

v. The 10th nucleotide from the 5‘end of the passenger strand is U.

vi. The 13th nucleotide from the 5‘end of the passenger strand is other than G.

vii. The 19th nucleotide from the 5‘end of the passenger strand is preferably A (other than 
G or C).

3. Amarzguioui rule

i. The nucleotide at the 5′ end of the passenger strand is G or C (other than U).

ii. A or U is preferable at the 5′ end of the guide strand.
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iii. The sixth nucleotide from the 5′ end of the passenger strand is A.

iv. The AU content of three nucleotides at the 5′ end of the passenger strand is relatively 
lower than that of the passenger strand.

The siRNAs with high RNAi effects can be conveniently designed using these three siRNA 
design algorithms. The application of these algorithms incorporating each of all criteria is 
shown to improve potent siRNA selection. However, among them, siRNAs designed by the 
Ui-Tei rule can suppress the target genes with the highest probability of 95% or more. About 
15% of all siRNAs complementary for human transcripts satisfy this algorithm, and such 
siRNA can be designed using siDirect 2.0 (Figure 3), which is an open access website [14, 15].

4.2. Avoid the adverse suppression effects on genes other than the target

The siRNA exerts its RNAi effect by binding to the target mRNA via complete complemen-
tarity of nucleotide sequence (Figure 1). However, its suppression effects are often observed 
on the genes, other than the target gene, with nucleotide sequences partially complementary 
to the siRNA. Such phenomenon is known to be “off-target effects,” which is an unintended 
adverse effect of RNAi [16–19]. Especially, the region called “seed” positioned at nucleo-
tides 2–8 from the 5′ terminus of the guide strand contributed to the off-target effects [18, 19] 
(Figure 4), since the seed region loaded on the Argonaute protein in quasi-helical structure 
and stably form base-pairings with the off-target mRNAs. To avoid such adverse effects, it is 
desirable to design siRNAs that do not interact with off-target mRNAs other than the target 
mRNA as much as possible. However, since the off-target effect by siRNA is induced by 
sequence complementarity of only seven nucleotides sequence in the seed region, it is impos-
sible to select siRNA sequence with no seven nucleotides complementarities with off-target 
genes. However, such off-target effect was not always observed. It was revealed that the seed-
dependent off-target effect is induced only when the base-pairing stability between the guide 
strand seed region and the off-target mRNA is strong (Figure 5). It means that the off-target 
effect is avoidable when the stability in the seed-target duplex is weak [19, 20]. The melting 
temperature of RNA–RNA duplex calculated by the nearest-neighbor procedure may be a 
useful parameter for evaluating the RNA–RNA duplex stability (Figure 5).

Thus, the sequence design of siRNA with high specificity for a target gene without off-target 
effect on the untargeted genes comes to be possible. First, such siRNA satisfies the functional 
siRNA selection rules, such as Ui-Tei rules. Second, it is preferable to have a lower thermo-
dynamic stability of base-pairing between the siRNA seed region and the target mRNA. The 
siRNAs simultaneously satisfying these two conditions are considered to show high RNAi 
effect and reduced off-target effect. However, only 3% of siRNAs, satisfying both conditions 
simultaneously, is selectable in human. This is relevant to the fact that it is impossible to select 
any siRNA sequences for about 5000 genes, one quarter of all human genes. Thus, this limita-
tion is inevitable for sequence design of human siRNA [15].

4.3. Reduction of off-target effects using chemical modifications

The off-target effect has been found to depend on the thermodynamic stability of the seed-target 
duplex, and such thermodynamic property is basically determined according to the nucleotide 
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sequence. However, the base-pairing stability can be modified by introducing chemical modi-
fications into siRNA. The chemical modifications, including DNA and unlocked nucleic acid 
(UNA), are known to decrease thermodynamic stabilities. In fact, introduction of DNA mole-
cules into siRNA seed region successfully reduced off-target effects [21, 22], since the DNA-RNA 
duplex in the seed region shows weak base-pairing stability compared to RNA-RNA duplex.

Figure 3. Highly efficient and target-specific siRNA design website: siDirect. (A) the first screen shot. “1” indicates the 
box to enter the accession number of target gene. When click “2,” you can get nucleotide sequence from GenBank. 
However, you can directly paste the nucleotide sequence (<10 kbp) in “3.” for design siRNA, click “4.” (B) the second 
screen “a” indicates the target positions. “B” indicates siRNA target sequences with links to the off-target lists. “C” 
indicates the functional siRNA design algorithms used for selection of the indicated siRNA. “D” shows homology search 
results against mRNAs. Numbers of hits with complete match (0), one mismatch, two mismatches, or three mismatches 
are shown. The number 1 in the 0(+) column usually indicates a complete match against intended target mRNA. “E” 
shows calculated tm to the siRNA seed region. An siRNA with lower seed tm value reduces off-target effects. “F” is a 
graphical view of designed siRNA. Off-target lists can be seen by click each siRNA. “G” indicates tab-delimited siRNA 
list. You can copy and paste the result into excel or text editors, etc. (C) List of off-target candidates for individual 
siRNA. “6” is siRNA information. “7” shows the alignment between each off-target candidate and each siRNA sequence, 
clarifying the mismatch positions. (D) Design strategy of guide and passenger strand RNA oligonucleotides based on 
siDirect result.
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In contract, the thermodynamic stability of RNA duplex with 2′-O-methyl (2′-OMe) or LNA is 
known to increase in the protein-free condition. However, we showed that these modifications 
also reduced the off-target effects [23]. The chemical modification often changes the nucleo-
tide conformation in addition to thermodynamic stability. In RNAi, the guide strand RNA 
is preloaded on the AGO protein via seed region and form duplex with target mRNA. The 
2′-OMe modification in all of the seven nucleotides of siRNA seed region does not disturb the 
preloading on the AGO protein, but the base-pairing formation with complementary RNA 
on the AGO protein is apparently disturbed by steric hindrance. As a result, siRNA with 
2′-OMe in the guide strand seed region shows weak off-target effect without reduction of 
RNAi effect [23]. LNA showed more strong effect in the interaction between siRNA and AGO 
protein or off-target mRNAs. The siRNA modified with LNAs in all of the seven nucleotides 
in the seed region cannot preload on AGO protein and it cannot base-pair with the comple-
mentary RNA. However, siRNA with LNA modifications in three nucleotides among seven 

Figure 4. Quantitative analysis of off-target mRNAs by microarray. (A) all of the expressed mRNAs were divided 
into 15 groups by the region of complementarities with siRNA. (B) Cumulative frequency curve of changes in the 
expression level of each gene group. When curve shifts to the left, the expression levels of these genes are suppressed. 
A gene group having a sequence complementary to the siRNA seed region (positions 2–8) in their 3′ UTRs was 
suppressed.
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can  preload on the AGO protein, but it cannot base-pair with the complementary RNA. Thus, 
siRNA with seven LNA modifications in the seed region has neither RNAi effect nor off-
target effect, but siRNA with three LNA modifications shows weak off-target effect without 
reduction of RNAi effect [23]. Thus, since the chemical modifications can regulate the binding 
capability of siRNA to the target mRNA depending on the thermodynamic and structural 
characteristics, the proper application of chemical modifications may be a useful strategy for 
selection of highly effective and off-target effect-reduced RNAi.

4.4. Increasing stability in blood and efficient transport to the target tissues or cells 
of siRNA

Nucleic acids are degraded by nucleolytic enzymes when they are released into blood. 
Fomivirsen is an oligonucleotide used as an antisense antiviral drug that was applied to the 
treatment of cytomegalovirus retinitis in patients with acquired immunodeficiency syndrome 
(AIDS). Pegaptanib is a pegylated antivascular endothelial growth factor (VEGF) aptamer 
and used as an antiangiogenic medicine for the treatment of neovascular age-related macu-
lar degeneration (AMD). These nucleic acid drugs are treated by local administration into 
vitreous bodies. Mipomersen is the second antisense drug used for the treatment of homozy-
gous familial hypercholesterolemia and is administered through subcutaneous injection. The 
various chemical modifications were introduced into these nucleic acid drugs to increase the 
stability in the blood. Fomivirsen is involved in the first generation of antisense  therapeutics 

Figure 5. Correlation between thermodynamic stability (Tm value) in the seed-target duplex and off-target effect. 
siRNAs with low seed tm values in the seed region show low off-target effects, while siRNAs with high seed tm values 
showed high off-target effects.
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containing phosphorothioate linkages between bases to prevent nuclease digestion. Five 
2′-OMe modifications were introduced into mipomersen to allow the resistance to degrada-
tion by endonucleases and exonucleases maintaining high affinity and specificity to the target 
mRNA. Pegaptanib has both modifications of phosphorothioate and 2′-OMe. Incorporation 
of them greatly improved the aptamer half-life in urine and also improved binding affinity 
for VEGF. Since it has also reported that siRNAs with chemical modifications, such as 2′-OMe 
and 2′-fluoro (2′-F), are resistant to degradation by RNA degrading enzymes [24, 25], it is pos-
sible to use proper chemical modifications for each siRNA to enhance its stability in blood.

Furthermore, since the nucleic acid has anionic charge, the permeability of the cell membrane 
is low. Then, the development of drug delivery system (DDS) to transport nucleic acid drugs 
to target tissues or cells stably using lipid or collagen are also on going. Many trials are per-
formed using lipid nanoparticle (LNP) technology in which pharmacokinetics are indicated to 
be much better than a naked RNAi approach. Several types of nanoparticles, including LNP, 
N-acetylgalactosamine (GalNAc) conjugates and dynamic polyconjugated (DPCs), are used 
clinically. The most successful DDS so far is lipid nanoparticle (LNP) developed by Tekmira. 
LNP, which forms a lipid bilayer membrane similar to the cell membrane, protects siRNA by 
encapsulation and assists the transport of siRNA to the target tissues. Alnylam has developed 
a therapeutic agent (ALN-TTR 02) for familial amyloid polyneuropathy by using this LNP, 
which is currently conducting phase III of clinical trials. In addition, the method for conjugation 
of atelocollagen and siRNA has also been developed. Atelocollagen makes siRNA less suscep-
tible to degradation by RNase enzymes, which results in a long-lasting RNA silencing effect.

4.5. Suppression of excessive immune response induced by introduction of 
exogenous nucleic acid

In general, nucleic acid medicine introduces a large amount of artificially synthesized nucleic 
acids into the body. However, the excessive autoimmune response is often induced by the exog-
enous introduction of nucleic acids. In mammals, it is well-known that the activation of virus 
sensor proteins, like Toll-like receptors (TLRs) [26, 27] and RIG-I-like receptors (RLRs) [28], or 
Protein kinase R (PKR) [29] induces interferon response. Interferon response may upregulate 
the production of inflammatory cytokines and can possibly cause systemic inflammation. It 
has been reported that LNA- or 2′-OMe-modified siRNA suppresses the activation of TLR 7/8 
and does not induce the excessive immune response without reducing RNAi activity [30, 31]. It 
was also reported that induction of interferon response was not observed even when a complex 
of atelocollagen and siRNA was introduced into the cells [32]. By revealing the detailed molec-
ular mechanism of the immune response by introduction of the exogenous nucleic acids, more 
appropriate chemical modifications to avoid such immune response should be developed.

5. Conclusion

RNAi is a field in which its clinical application is strongly expected, but its first wave for clinical 
application failed due to the difficulties in the initial stage. However, due to the improvement 
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of its delivery system and the sequence selection method, the new wave has come in 2012. 
Current clinical trials are applied to targets, including the eye, liver, cancer, blood, gastrointes-
tinal tract, dermis, and others, since it is relatively easy to deliver siRNA to these tissues with 
currently available nanoparticles [33].

Antibody drugs and low molecular weight drugs were widely used so far. They were syn-
thesized through complicated manufacturing processes, so that mass production at low cost 
was impossible. However, the nucleic acid drugs can be artificially synthesized by a simple 
manufacturing process. Then, once a production line is established, it can be synthesized 
inexpensively in large quantities. In addition, for antibody drugs and low molecular weight 
drugs, basic data from scratch are required every time when the target changes, but nucleic 
acid drugs such as siRNA drugs can be designed relatively easily by identifying the nucleo-
tide sequences of target genes. Thus, it is expected that the siRNA is a powerful candidate for 
nucleic acid therapeutics.

Genome editing techniques such as clustered regularly interspaced short palindromic 
repeats (CRISPR)/CRISPR-associated proteins 9 (Cas9) system [34] and transcription activa-
tor-like effector nucleases (TALEN) [35] can directly modify the genomic DNA that causes 
disease. Although it is extremely attractive as a potential drug candidate in the future, there 
are many ethical issues to overcome when the edited genome is transmitted to the next 
generation. On the other hand, siRNA does not introduce the permanent modification in the 
genomic DNA and its action is transient, since siRNA knockdown the target mRNA. Then, 
CRISPR interfering (CRISPRi) system modified from the CRISPR/Cas9 system is developed. 
CRISPRi inhibit the gene expression without cleavage of genomic DNA by introducing 
mutations into DNA cleavage domains in Cas9 [36]. Such system may also promote the 
nucleic acid medicine.
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of atelocollagen and siRNA was introduced into the cells [32]. By revealing the detailed molec-
ular mechanism of the immune response by introduction of the exogenous nucleic acids, more 
appropriate chemical modifications to avoid such immune response should be developed.

5. Conclusion

RNAi is a field in which its clinical application is strongly expected, but its first wave for clinical 
application failed due to the difficulties in the initial stage. However, due to the improvement 

Gene Expression and Regulation in Mammalian Cells - Transcription From General Aspects158

of its delivery system and the sequence selection method, the new wave has come in 2012. 
Current clinical trials are applied to targets, including the eye, liver, cancer, blood, gastrointes-
tinal tract, dermis, and others, since it is relatively easy to deliver siRNA to these tissues with 
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acid drugs such as siRNA drugs can be designed relatively easily by identifying the nucleo-
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Genome editing techniques such as clustered regularly interspaced short palindromic 
repeats (CRISPR)/CRISPR-associated proteins 9 (Cas9) system [34] and transcription activa-
tor-like effector nucleases (TALEN) [35] can directly modify the genomic DNA that causes 
disease. Although it is extremely attractive as a potential drug candidate in the future, there 
are many ethical issues to overcome when the edited genome is transmitted to the next 
generation. On the other hand, siRNA does not introduce the permanent modification in the 
genomic DNA and its action is transient, since siRNA knockdown the target mRNA. Then, 
CRISPR interfering (CRISPRi) system modified from the CRISPR/Cas9 system is developed. 
CRISPRi inhibit the gene expression without cleavage of genomic DNA by introducing 
mutations into DNA cleavage domains in Cas9 [36]. Such system may also promote the 
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Abstract

Human B lymphocytes not only play a critical role in the humoral immunity to generate
antibodies, but also are equally important to cellular immunity as B lymphocytes can
present antigens to T lymphocytes and can release a range of potential immune-regulating
cytokines after stimulations. Human immunoglobulin class switch recombination (CSR) in
activated B cells is an essential process in the humoral immunity and the process is compli-
cated and tightly controlled bymany regulators. The recent genomic and genetic approaches
in CSR identified novel genes that were actively involved in the process. Understanding the
roles of the novel genes in CSR will bring new insights into the mechanisms of the process
and new potential therapeutic targets for immunoglobulin-related disorders such as allergic
asthma and autoimmune diseases.

Keywords: B cells, immunoglobulin class switch recombination, gene expression,
regulation

1. Introduction

Human lymphocytes include T lymphocytes, B lymphocytes and natural killer cells. T lym-
phocytes are majorly responsible for cell-mediated immunity. B lymphocytes (cells) play the
critical roles in the humoral immunity to activate immune system by secreting antibodies. B
lymphocytes are also equally critical to cellular immunity as they can also present antigens to T
lymphocytes and can also release a range of potential immune-regulating cytokines [1, 2].

The “B” from B cells came from the name of the bursa of Fabricius, a lymphoid organ in birds,
where B cells mature. It was first discovered by Chang and Glick [3]. B cells mature in the bone
marrow in mammals. B cells express B cell receptors (BCRs) on their cell membrane and BCRs
allow the cell to bind to a specific antigen and initiate an antibody response. Each B cell carries
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and new potential therapeutic targets for immunoglobulin-related disorders such as allergic
asthma and autoimmune diseases.
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a unique receptor for antigen that is composed of the membrane-band form of its antibody.
After antigen recognition by the membrane-bound receptor, the B cells can proliferate to
increase their numbers and differentiate to secrete their antigen-specific antibodies.

There are three principle classes of B cells in humans according to their ontogeny and anatomic
localization: B1 cells arise from fetal liver precursors and are enriched in mucosal tissues and the
pleural and peritoneal cavities. B2 cells arise from bone marrow–derived precursors and are
enriched in secondary lymphoid organs [4]. Marginal zone (MZ) and follicular (FO) B cells are
differentiated from B2 cells in human spleen and lymph nodes [2]. B cells of each linage have
distinct and overlapping functions in recognizing antigens via T-independent and T-dependent
pathways to produce rapid IgM or long-lasting IgG antibody response [2]. Cytokines play a key
role in the commitment of naïve B cells to B effector 1 (Be-1) and B effector 2 (Be-2) lineage. Be-2
differentiation is dependent on the engagement of IL4α on B cells [5], while Be-1 cell develop-
ment is dependent on the activation of the transcription factor T-bet and the IFNγR on B cells [6].

The process of human B cell development is very complicated and is controlled by many tran-
scription factors [7]. Human B cells are generated in bone marrow from progenitor cells that are
committed to the B cell linages (pro-B cells). Each pro-B cell undergoes independent
rearrangement of diverse variable (V), diversity (D) and joining (J) gene segments of the immuno-
globulin heavy (H)-chain locus [8]. Rearrangement of the H-chain locus creates in each B cell a
variable exon with a unique upstream of the immunoglobulin constant region exons and drives
the expression of H-chain protein and then proliferate and differentiate to commence immuno-
globulin light (L)-chain gene recombination.When a B cell expresses L-chain protein, it pairs with
the previously arranged H chain and is expressed as membrane immunoglobulin on the cell
surface [9]. Human immune system can generate a diversity of specific antibodies in response to
antigen stimulation. This process is of fundamental importance to acquired immunity. The human
constant H-chain genes are on chromosome 14 containing Cμ, Cδ and two repeated clusters each
having two Cγ genes and Cε genes (Cγ3, Cγ1, pseudo-ε, Cα1 and Cγ2, Cγ4, Cε, Cα2).

In this chapter, I will briefly introduce the roles of germinal centers (GCs) and the steps of
immunoglobulin class switch recombination (CSR) in human B cells in GCs. I will discuss the
potential functional roles of the newly identified genes from the results of our experiments for
global transcript profiling in CSR. I will also discuss the future direction of the researches on
CSR in human B cells.

2. Germinal centers and immunoglobulin CSR

Germinal centers (GCs) are the sites within secondary lymphoid organs such as lymph nodes
and the spleen where mature B cells can proliferate, differentiate and mutate their antibody
genes and switch the class of their antibodies (e.g., from IgM to IgE) during a normal immune
response to antigens [10]. In the GCs, naïve B cells can have clonal expansion, somatic
hypermutation, affinity maturation, development of B cell memory and long-life plasma cells
[11–13]. B cell activation is initiated in the follicle in GCs when it encounters specific antigen
[14], and then the B cells are relocated to the periphery of the follicle [15]. The inter-follicular
zone in GCs is the site where B cell and T follicular helper cell differential initiates [16]. They
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develop dynamically after the activation of follicular B cells by T-dependent antigen. B cells in
GCs proliferate and can class-switch the BCR constant region from IgM/IgD to IgG, IgA and
IgE (discussed later). Additionally, the IgV region genes of B cells in GCs can undergo somatic
hypermutation to change the affinity of the encoded BCR for its cognate antigens, allowing
subsequent antigen-driven selection and clonal expansion of high-affinity B cells [17]. Human
B cells in GCs, in vitro–activated naïve B cells, and those with specific and rapid recall
responses to previously encountered antigen express cell-surface CD27. B cells with CD27
expression correlated with greater cell sizes, proliferative capacity, antigen presentation capac-
ity and differentiation into antibody secreting cells [18–20].

In order to generate antibodies, two somatic DNA recombination events of the genetic elements
take place in B cells. Firstly, V(D)J recombination generates the functional variable regions of the
Ig heavy-chain (IgH) and light-chain genes. Initiation of V(D)J recombination requires the
products of recombination activating genes (RAG) 1 and 2 [21, 22]. Lymphoid-specific expres-
sion of RAG 1 and 2 limits V(D)J recombination to B and T lymphocytes. Following activation,
mature B cells can undergo CSR, linking the IgH variable regions with one of the downstream
CH genes, changing the effector function of the antibody [23]. CSR and the other main diversifi-
cation event, somatic hypermutation (SHM), are both dependent on activation-induced cytidine
deaminase (AID), a protein expressed only in activated germinal center B cells [24]. The basic
steps of CSR include creating double-strand DNA breaks (DSBs) for CSR and joining donor and
acceptor S regions. Class switch recombination occurs between switch (S) regions located
upstream of each of the CH regions except Cδ and results in a change from IgM and IgD
expression in naïve B cells to express one of the downstream isotypes such as IgG subclasses,
IgA and IgE. AID plays a critical role in the vertebrate adaptive immune response [24, 25]. It
initiates the conversion of several dC bases to dU bases in each S region, dU bases are then
excised by uracil DNA glycosylase (UNG), and the resulting abasic sites are nicked by apurinic/
apyrimidic endonuclease (APE), creating single strand breaks (SSBs), that can spontaneously
formDSBs if theyare near each other on oppositeDNAstrands.After formation of theDSB in the
donor and acceptor S regions, the S regions are recombined by ubiquitous proteins that perform
nonhomologous end-joining (NHEJ) [26]. VDJ recombination and early B cell development
takes place in the bone morrow. Immature B cells expressing IgM on the surface migrate to
peripheral lymphoid tissue in the spleen, lymph nodes and gut-associated lymphoid tissue.
CSR and SHM happen in the germinal centers of secondary lymphoid tissues but also in
germinal center–like structures in local (nonlymphoid) tissues [27]. CSR is induced by both T
lymphocyte–dependent (TD) antigens and T lymphocyte–independent (TI) antigens. TD anti-
gen stimulation can be mimicked in vitro by culturing B cells in the presence of anti-CD40
antibodies along with specific cytokines. IL-4 and anti-CD40 induce isotype switching to IgG1
and IgE [28]. Chromatin structure also contributes to the regulation of CSR. Ig heavy-chain
constant genes and 3-regulatory regions are in an active chromatin conformation (acetylated
H3 and H4 and lysine 4 trimethylation H3) in unstimulated human B cells, and these modifica-
tions can spread to the S region after cytokine stimulation [29]. AID is exclusively expressed in
the germinal centers [21]. The basic AID-mediated mechanisms of CSR are quite well studied
and defined, but the global regulation of the CSR, accompanying networks of AID and other
well-known regulators, remains relatively unclear.
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3. The global gene regulation of CSR in human B cells

In vitro, IL4 and anti-CD40 signals can mimic signals from T cell in GCs to induce a strong
activation of NF-κB leading human B cells to a proliferative burst and CSR to IgE and IgG [30].
These costimulation signals were applied in the naïve B cells isolated from healthy tonsils and
profiled the transcripts at 6 time points for 12 days (0, 12, 36, 72, 120 and 288 h). More than one
thousand genes were observed to have significantly differentiated expression after IL4 and
anti-CD40 stimulation [31]. The significantly differentiated genes can be formed in 4 cluster
groups including 13 temporal profiles. Each cluster contains many new genes that were not
known to have roles in CSR before.

3.1. Cluster A group

Cluster A group represented the gene expression on (Cluster A1) or off (Cluster A2) in naïve
human B cells after IL4 and anti-CD40 stimulation.

3.1.1. Cluster A1

Cluster A1 was immediately upregulated after IL4 and anti-CD40 cosignal stimulation and the
expressions did not change during the course of 12 days for the experiments. The cluster
contains 153 genes. The analysis of transcription factor–binding sites for the cluster showed
that genes from this cluster were enriched to transcription factors BACH1 and BACH2.
BACH1 and BACH2 promote B cell development by repressing the myeloid program [32].
They belong to the basic region–leucine zipper family and are transcription repressors binding
to Maf-recognition elements (MAREs) [33]. BACH2 has critical roles in both acquired immu-
nity and innate immunity, including immunoglobulin CSR, the somatic hypermutation of
immunoglobulin-encoding genes [34, 35]. BACH2 expression is activated by E2A, Foxo1 and
Pax5 in pro-B cells. BACH2 may have a role in early B cell development [36]. BACH1 structure
is closely related to BACH2, but its role in B cell development and hematopoiesis largely
remains unclear [33]. BACH2 expression frequently preceded that of Ebf1 and Pax5 in the
common lymphoid progenitors (CLPs). BACH factors directly repressed various myeloid
genes in CLPs and this repression restricted the fate of CLPs to the B cell lineage [32].

In this cluster, chemokine genes CCL22 and CCL17 were the most significantly differentiated
genes during naïve B cell activation after IL4 and anti-CD40 signal stimulation. CCL22 and
CCL17 are both ligands for the chemokine receptor CCR4. CCR4 gene was also showed in
Cluster C6 to have a transient induction after IL4 and anti-CD40 signal stimulation. All three
transcripts were within the top 20 differentially expressed genes during the activation of
immunoglobulin class switching in human activated B cells. CCL22 and CCL17 are NF-kappa
B (NF-kB) target genes, indicating a central role for the NF-kB pathway in the activation of CSR
stimulated by IL4 and anti-CD40. The top differentially expressed genes also contained
another NF-kB target gene, the TNF receptor-associated factor (TRAF1) [37], which was also
profiled in Cluster A1. There were many clinical reports that indicated both chemokines might
be involved in human immunoglobulin class switching. A significantly higher increase in
CCL17, CCL22 and IL-4 serum levels in grass pollen–exposed subjects was observed [38].
Sensitized children with allergic symptoms showed higher CCL17 and CCL22 levels and
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higher ratios between these Th2-associated chemokines and the Th1-associated chemokine
CXCL10 than nonsensitized children without allergic symptoms [39]. Using human dendritic
cells (DCs), in vitro exposure to house dust mite (HDM) of DCs from HDM-allergic patients
but not healthy controls caused CCL17 and CCL22 release that resulted in chemoattraction of
polarized human Th2 cells in a CCR4-dependent way [40]. Both CCL22 and CCL17 have been
suggested as biomarkers for disease activity in atopic dermatitis (AD), and raised cord blood
(CB) levels of CCL22 predict subsequent allergic sensitization, while raised CCL17 in GC
predicts the later development of allergic symptoms, including asthma. Consistent with these
observations, allergen exposure in sensitized individuals leads to a dynamic increase in CCL17
and CCL22 [38]. High-affinity neutral ligands have been developed for CCL22 and CCL17 and
attenuate levels of CCL22, CCL17 and IgE in a mouse model of atopic dermatitis as well as
improve skin inflammatory symptoms [31]. CCL17 was also shown to have exon retention
during B cell activation [31]. All the evidence indicated both chemokines and their receptor
CCR4 play important roles in immunoglobulin class switching.

3.1.2. Cluster A2

Cluster A2was immediately downregulated after IL4 and anti-CD40 cosignal stimulation and the
expressions did not change during the course of 12 days of CSR. Cluster A2 contains 83 genes that
present downregulating genes during B cell activation. These genes expressed significantly lower
in activated B cells than in naïve B cells during the time course of IL4 and anti-CD40 stimulation.
The analysis of gene ontology indicated the genes in this cluster were involved with immune
system process.

FOSB and FOS were the most significantly downregulated genes in Cluster A2 during CSR in
naïve B cells after IL4 and anti-CD40 stimulation. FOS genes encode leucine zipper proteins that
can dimerize with proteins of the JUN family and form transcription factor complex activating
protein-1 (AP-1) [41]. The FOS family consists of 4 members: FOS, FOSB, FOSL1 and FOSL2.
Activating protein-1 (AP-1) is a dimeric transcription factor composed of Jun, FOS or activating
transcription factor (ATF) subunits that bind to a common DNA site, the AP-1–binding site [42].
The different AP-1 factors may regulate different target genes and thus execute distinct biological
functions [43]. In addition to regulation by heterodimerization among Jun, FOS and ATF pro-
teins, AP-1 activity is regulated through interactions with specific protein kinases and a variety
of transcriptional coactivators [44–46]. Nitrogen oxide (NO) is the radical inhibiting IgE/Ag-
induced IL-4, IL-6 and TNF production. It inhibits phosphorylation of phospholipase Cγ1 and
the AP-1 transcription factor protein c-Jun. NO further completely abrogated IgE/Ag-induced
DNA-binding activity of the nuclear AP-1 proteins FOS and Jun to regulate allergic inflamma-
tion [47]. FOS-interacting protein (FIP) is a transcription factor that binds to c-FOS. The aggrega-
tion of the mast cell’s high-affinity receptor for IgE induced the synthesis of FIP and increased its
DNA-binding activity. Moreover, downregulation of the isoenzyme protein kinase C-β (PKC-β)
resulted in profound inhibition of FIP-FOS DNA-binding activity [48].

3.2. Cluster B group

Cluster B group showed gradually sustained induction during CSR in B cells. Cluster B1 is the
most interesting cluster that sustained induction earlier than Cluster B2.

Gene Expression during the Activation of Human B Cells
http://dx.doi.org/10.5772/intechopen.71863

169



3. The global gene regulation of CSR in human B cells

In vitro, IL4 and anti-CD40 signals can mimic signals from T cell in GCs to induce a strong
activation of NF-κB leading human B cells to a proliferative burst and CSR to IgE and IgG [30].
These costimulation signals were applied in the naïve B cells isolated from healthy tonsils and
profiled the transcripts at 6 time points for 12 days (0, 12, 36, 72, 120 and 288 h). More than one
thousand genes were observed to have significantly differentiated expression after IL4 and
anti-CD40 stimulation [31]. The significantly differentiated genes can be formed in 4 cluster
groups including 13 temporal profiles. Each cluster contains many new genes that were not
known to have roles in CSR before.

3.1. Cluster A group

Cluster A group represented the gene expression on (Cluster A1) or off (Cluster A2) in naïve
human B cells after IL4 and anti-CD40 stimulation.

3.1.1. Cluster A1

Cluster A1 was immediately upregulated after IL4 and anti-CD40 cosignal stimulation and the
expressions did not change during the course of 12 days for the experiments. The cluster
contains 153 genes. The analysis of transcription factor–binding sites for the cluster showed
that genes from this cluster were enriched to transcription factors BACH1 and BACH2.
BACH1 and BACH2 promote B cell development by repressing the myeloid program [32].
They belong to the basic region–leucine zipper family and are transcription repressors binding
to Maf-recognition elements (MAREs) [33]. BACH2 has critical roles in both acquired immu-
nity and innate immunity, including immunoglobulin CSR, the somatic hypermutation of
immunoglobulin-encoding genes [34, 35]. BACH2 expression is activated by E2A, Foxo1 and
Pax5 in pro-B cells. BACH2 may have a role in early B cell development [36]. BACH1 structure
is closely related to BACH2, but its role in B cell development and hematopoiesis largely
remains unclear [33]. BACH2 expression frequently preceded that of Ebf1 and Pax5 in the
common lymphoid progenitors (CLPs). BACH factors directly repressed various myeloid
genes in CLPs and this repression restricted the fate of CLPs to the B cell lineage [32].

In this cluster, chemokine genes CCL22 and CCL17 were the most significantly differentiated
genes during naïve B cell activation after IL4 and anti-CD40 signal stimulation. CCL22 and
CCL17 are both ligands for the chemokine receptor CCR4. CCR4 gene was also showed in
Cluster C6 to have a transient induction after IL4 and anti-CD40 signal stimulation. All three
transcripts were within the top 20 differentially expressed genes during the activation of
immunoglobulin class switching in human activated B cells. CCL22 and CCL17 are NF-kappa
B (NF-kB) target genes, indicating a central role for the NF-kB pathway in the activation of CSR
stimulated by IL4 and anti-CD40. The top differentially expressed genes also contained
another NF-kB target gene, the TNF receptor-associated factor (TRAF1) [37], which was also
profiled in Cluster A1. There were many clinical reports that indicated both chemokines might
be involved in human immunoglobulin class switching. A significantly higher increase in
CCL17, CCL22 and IL-4 serum levels in grass pollen–exposed subjects was observed [38].
Sensitized children with allergic symptoms showed higher CCL17 and CCL22 levels and

Gene Expression and Regulation in Mammalian Cells - Transcription From General Aspects168

higher ratios between these Th2-associated chemokines and the Th1-associated chemokine
CXCL10 than nonsensitized children without allergic symptoms [39]. Using human dendritic
cells (DCs), in vitro exposure to house dust mite (HDM) of DCs from HDM-allergic patients
but not healthy controls caused CCL17 and CCL22 release that resulted in chemoattraction of
polarized human Th2 cells in a CCR4-dependent way [40]. Both CCL22 and CCL17 have been
suggested as biomarkers for disease activity in atopic dermatitis (AD), and raised cord blood
(CB) levels of CCL22 predict subsequent allergic sensitization, while raised CCL17 in GC
predicts the later development of allergic symptoms, including asthma. Consistent with these
observations, allergen exposure in sensitized individuals leads to a dynamic increase in CCL17
and CCL22 [38]. High-affinity neutral ligands have been developed for CCL22 and CCL17 and
attenuate levels of CCL22, CCL17 and IgE in a mouse model of atopic dermatitis as well as
improve skin inflammatory symptoms [31]. CCL17 was also shown to have exon retention
during B cell activation [31]. All the evidence indicated both chemokines and their receptor
CCR4 play important roles in immunoglobulin class switching.

3.1.2. Cluster A2

Cluster A2was immediately downregulated after IL4 and anti-CD40 cosignal stimulation and the
expressions did not change during the course of 12 days of CSR. Cluster A2 contains 83 genes that
present downregulating genes during B cell activation. These genes expressed significantly lower
in activated B cells than in naïve B cells during the time course of IL4 and anti-CD40 stimulation.
The analysis of gene ontology indicated the genes in this cluster were involved with immune
system process.

FOSB and FOS were the most significantly downregulated genes in Cluster A2 during CSR in
naïve B cells after IL4 and anti-CD40 stimulation. FOS genes encode leucine zipper proteins that
can dimerize with proteins of the JUN family and form transcription factor complex activating
protein-1 (AP-1) [41]. The FOS family consists of 4 members: FOS, FOSB, FOSL1 and FOSL2.
Activating protein-1 (AP-1) is a dimeric transcription factor composed of Jun, FOS or activating
transcription factor (ATF) subunits that bind to a common DNA site, the AP-1–binding site [42].
The different AP-1 factors may regulate different target genes and thus execute distinct biological
functions [43]. In addition to regulation by heterodimerization among Jun, FOS and ATF pro-
teins, AP-1 activity is regulated through interactions with specific protein kinases and a variety
of transcriptional coactivators [44–46]. Nitrogen oxide (NO) is the radical inhibiting IgE/Ag-
induced IL-4, IL-6 and TNF production. It inhibits phosphorylation of phospholipase Cγ1 and
the AP-1 transcription factor protein c-Jun. NO further completely abrogated IgE/Ag-induced
DNA-binding activity of the nuclear AP-1 proteins FOS and Jun to regulate allergic inflamma-
tion [47]. FOS-interacting protein (FIP) is a transcription factor that binds to c-FOS. The aggrega-
tion of the mast cell’s high-affinity receptor for IgE induced the synthesis of FIP and increased its
DNA-binding activity. Moreover, downregulation of the isoenzyme protein kinase C-β (PKC-β)
resulted in profound inhibition of FIP-FOS DNA-binding activity [48].

3.2. Cluster B group

Cluster B group showed gradually sustained induction during CSR in B cells. Cluster B1 is the
most interesting cluster that sustained induction earlier than Cluster B2.

Gene Expression during the Activation of Human B Cells
http://dx.doi.org/10.5772/intechopen.71863

169



3.2.1. Cluster B1

Cluster B1 was the first group to show gradually sustained expression after IL4 and anti-CD40
cosignal stimulation. Cluster B1 contains 126 genes and the analysis of gene ontology showed
that genes in this cluster were majorly involved in the cellular amine metabolic process. The
analysis of transcription factor–binding sites indicated the genes in this cluster were enriched
to transcription factors RSRFC4 and STAT. Both transcription factors were involved with
allergic and airway epithelia inflammations [49, 50]. RSRF-binding sites were found in the
regulatory sequences of a number of growth factor–inducible and muscle-specific genes [51]. It
was showed that engagement of the B cell antigen receptor could activate STAT through Lyn
in a JAK-independent pathway [52].

There were several well-known genes to regulate B cell differentiation in germinal center includ-
ing AICDA [24], IRF4 [53], XBP1 [54], BATF3 [55] and NFIL3 [56] in this cluster. The cluster
showed other genes exhibiting synchronic, coordinated expression with the well-documented
regulation genes. IL17RB and BHLHE40 genes were the most significantly differentiated in the
cluster. IL17RB encodes a cytokine receptor that specifically binds to IL17B and IL17E but does
not bind to IL17 and IL17C. IL17RB has been shown to mediate the activation of NF-κB [57].
IL17RB showed highly synchronic expression with AICDA in the cluster. IL17RB abundance has
previously been shown to increase upon allergen challenge in patients with seasonal allergic
rhinitis [58], IgE [59] and asthma [60]. The result indicated that the increase in IL17RB formed an
early component of the transcriptional cascade that initiated the germinal center response in B
cells. BHLHE40 encodes a basic helix-loop-helix protein expressed in various tissues and is an
environmentally inducible moderator of circadian rhythms and cellular differentiation.
BHLHE40 was profiled at its core of the B1 Cluster. BHLHE40 was recently shown to operate as
a master regulator of germinal center activities, modulating the expression of more than 100
target genes [61]. Circadian oscillations in symptom severity are a prominent feature of atopic
diseases including atopic dermatitis, asthma, chronic urticarial and allergic rhinitis [62–64]. The
variation in IgE/mast cell allergic reactions was recently demonstrated to depend on the circa-
dian clock in mice [65]. Mice deficient for the BHLHE40 ortholog display a variety of immune
features including abnormal IgG1 and IgE levels and defective elimination of activated B cells, as
well as exhibiting circadian rhythm phenomena [66]. Like BHLHE40, NFIL3 in this cluster also
participates in signaling pathways relating to the circadian clock [67], and together, these data
suggest there may be a circadian component to class switch recombination and that this may be
of relevance to time-of-day phenomena in IgE-driven diseases.

3.2.2. Cluster B2

The genes in Cluster B2 were also gradually sustained induction but they come later in time
than Cluster B1 during CSR in human B cell. The cluster contains 112 genes. The most
significantly differentiated genes were EPHB1 and TNFSF4.

Erythropoietin-producing hepatocellular carcinoma (Eph) receptors are a subfamily of recep-
tor tyrosine kinases (RTKs) [68, 69]. The receptors and their ligands, the ephrins, mediate
numerous developmental processes, particularly in the nervous system [70]. Tyrosine phos-
phorylation of EphB1 requires presentation of ephrin-B1 in either clustered or membrane-
attached forms [71]. Eph receptors and ephrin ligands have been shown to be differentially
expressed on leucocytes. Ephrin-B3 binds to B lymphocytes, most likely via a nonclassical
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receptor, and induces migration of the memory B cell subpopulation [72]. NFSF4 encodes a
cytokine of the tumor necrosis factor (TNF) ligand family. The encoded protein functions in T
cell and antigen-presenting cell (APC) interact and mediate adhesion of activated T cells to
endothelial cells. The tumor necrosis factor ligand superfamily member 4 gene (TNFSF4,
OX40L), which encodes for the costimulatory molecule OX40 ligand, has been identified as a
susceptibility gene for systemic lupus erythematosus (SLE) in multiple studies [73, 74].

3.3. Cluster C group

Cluster C group has six profiling clusters to show transient induction during CSR in B cells
according to the time they were inducted.

3.3.1. Cluster C1

Cluster C1 was the first group to be inducted transcendently during CSR. It has 79 genes and
the analysis of gene ontology indicated the genes in this cluster were involved in ribonucleo-
protein complex biogenesis. Heterogeneous nuclear ribonucleoproteins (hnRNPs) are a large
family of RNA-binding proteins that are important for multiple aspects of nucleic acid metab-
olism [75]. TFEC and RRP12 were the most significantly introduced genes in this cluster.

Transcription factor EC (TFEC) acts as a repressor or an activator. TFEC works as a transcrip-
tional repressor on minimal promoter containing element F in an E-box sequence-specific man-
ner [76]. It can act as a transcriptional transactivator on the proximal promoter region of the
tartrate-resistant acid phosphatase (TRAP) E-box containing promoter. It also acts as a transcrip-
tional repressor on minimal promoter containing mu E3 enhancer sequence [77]. Gain-of-func-
tion assays indicated that TFEC was capable of expanding hematopoietic stem cells–derived
hematopoiesis. TFEC mutants were showed to reduce hematopoiesis in the caudal hematopoi-
etic tissue, leading to anemia. It mediated these changes by increasing the expression of several
cytokines in caudal endothelial cells [78]. Ribosomal RNA Processing 12 Homolog (RRP12) is a
protein that may have a function to bind to poly(A) RNA. Rrp12 and the exportin Crm1
participate in late assembly events in the nucleolus during 40S ribosomal subunit biogenesis
[79], but there is little knowledge of TFEC and RR12 regulating B cell growth.

3.3.2. Cluster C2

Cluster C2 was the second group to be inducted transcendently during CSR in human B cells
and this cluster contains 112 genes. LMNB2 and B4GALT5 were the most significantly intro-
duced in this cluster.

LMNB2 encodes a B-type nuclear lamin. The nuclear lamina consists of a two-dimensional
matrix of proteins located next to the inner nuclear membrane. Lamin proteins are thought to
be involved in nuclear stability, chromatin structure and gene expression. B-type lamins play a
role in DNA replication, the formation of the mitotic spindle, chromatin organization and
regulation of gene expression [80]. B4GALT5 encodes one of seven beta-1,4-galactosyltransferase.
It is the type II membrane-bound glycoproteins that appear to have exclusive specificity for the
donor substrate UDP-galactose; B4GALT5 was found to have a change in a statin-induced
experiment in gene expression in EBV-transformed and native B cells [81].
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3.3.3. Cluster C3

Cluster C3 was the third group to be inducted transcendently during CSR in B cells and the cluster
has 105 genes. The analysis of gene ontology indicated the genes in this cluster were involved with
DNAmetabolic process.UHRF1 and CHEK1were the most significantly introduced in this group.

UHRF1 gene encodes a member of a subfamily of RING-finger–type E3 ubiquitin ligases. The
protein binds to specific DNA sequences and recruits a histone deacetylase to regulate gene
expression. Its expression peaks at late G1 phase and continues during G2 and M phases of the
cell cycle. Colonization of germ-free mice with gut microbiota showed increasing expression of
Uhrf1 in Treg cells. Uhrf1 deficiency resulted in de-repression of the gene (Cdkn1a) [77]. CHEK1
encodes a protein belonging to the Ser/Thr protein kinase family. It is required for checkpoint-
mediated cell cycle arrest in response to DNA damage or the presence of unreplicated DNA.
Activated CHEK1 can phosphorylate and modulate the activity of a number of proteins includ-
ing p53, providing a link between sensing of DNA damage and p53 checkpoint activity. BCL6
can directly bind to a DNA consensus element in the CHEK1 promoter and repress its expression
in normal and malignant B cell [82].

3.3.4. Cluster C4

Cluster C4 was the fourth group to be inducted transcendently during CSR and it has 151 genes.
The analysis of gene ontology showed that the genes in this cluster were majorly involved in the
M phase. The analysis of transcription factor enrichment indicated the genes in this cluster were
enriched to nuclear transcription factor Y (NF-Y). NF-Y in eukaryotes consists of three different
subunits, NF-YA, NF-YB and NF-YC, which are all necessary for the formation of NF-Y com-
plexes and binding to CCAAT boxes in promoters of their target genes. Recent studies demon-
strated novel contributions of NF-Y to apoptosis and apoptosis-induced proliferation and in
photoreceptor cell differentiation during the development of the Drosophila compound eye [83].

KIF14 and PRC1 were the most significantly differential expression genes in the cluster. KIF14
encodes a member of the kinesin-3 superfamily of microtubule motor proteins. These proteins
are involved in numerous processes including vesicle transport, chromosome segregation,
mitotic spindle formation and cytokinesis. Knockdown of this gene results in failed cytokinesis
with endoreplication. This gene was identified as a likely oncogene in breast, lung and ovarian
cancers, as well as in retinoblastomas and gliomas [84]. Protein regulator of cytokinesis 1
(PRC1) gene is a crucial regulator of cytokinesis [85]. Its suppression may result in mitotic
failure and its involvement in various cancers [86]. PRC1 is a key regulator of cytokinesis that
cross-links antiparallel microtubules. Multiple mitotic kinesins and microtubule-associated
proteins (MAPs) act in concert to direct cytokinesis [87]. The MAP and microtubule-bundling
protein PRC1 is one of the key molecules required for the integrity of this structure. Endoge-
nous PRC1 can be interacted with KIF14. KIF14 targets the central spindle via its interaction
with PRC1 and has an essential function in cytokinesis [88].

3.3.5. Cluster C5

Cluster C5 was the fifth group to be inducted transcendently and it has 99 genes. MCM10 and
PCNA genes were the most differentially expressed in the cluster.
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MCM10 encodes one of the highly conserved mini-chromosome maintenance proteins (MCM)
that are involved in the initiation of eukaryotic genome replication. Human MCM10 regulates
the catalytic subunit of DNA polymerase-α and prevents DNA damage during replication
[89]. MCM10 interacts with RECQ4 (RecQ helicases 4) and is important for efficient replication
[90, 91]. PCNA encodes a cofactor of DNA polymerase delta in nucleus. The protein acts as a
homotrimer and helps increase the processivity of leading strand synthesis during DNA
replication. PCNA was well studied in plants and had the ability to stimulate the activity of
DNA polymerase δ and the ability to interact with p21, a regulator of the cell cycle [92].

3.3.6. Cluster C6

Cluster C6 was the sixth group to be inducted transcendently and it contains 128 genes. CCR4
and HIST1H1C genes were the most differentially expressed in the whole process during naïve
B cell activation with IL4 and anti-CD40 signal stimulation.

CCR4 is the receptor of CCL17 and CCL22. It is later inducted, which means that the three may
work in late stage of CSR. CCR4 was previously detected in nongerminal center cells. The
possible functional roles in CSR were discussed in Section 3.1.1. Histone H1 has previously
been shown to influence mast cell–mediated type-I hyperreactivity in mice [93].

3.4. Cluster D group

Cluster D group has three profiling clusters to show transient downregulation during CSR
according to the time of downregulation.

3.4.1. Cluster D1

Cluster D1 was the first group to be inducted transcendently and it contains 99 genes. GPR18
and TP53INP1 genes were the most differentially expressed in the cluster.

GPR18 encodes G protein–coupled receptor 18. The activity of this receptor is mediated by G
proteins, which inhibit adenylyl cyclase [94], and it contributes to regulation of the immune
system. GPR18 also mediates NAGly-induced process of reorganization of actin filaments
and induction of acrosomal exocytosis. Stimulation of human spermatozoa with the GPR18
ligand N-arachidonoylglycine induced the phosphorylation of 12 protein kinases. N-
arachidonoylglycine affects the cytoskeleton by changing levels of F-actin and inducing the
acrosome reaction in human spermatozoa in a concentration-dependent manner. GPR18
might be involved in physiological processes of human spermatozoa [95]. Tumor protein
53-induced nuclear protein 1 (TP53INP1) is a tumor suppressor. It was described as a p53
target gene involved in cell death, cell-cycle arrest and cellular migration [96]. TP53INP1 is
also able to interact with ATG8-family proteins to induce autophagy-dependent cell death
by caspase-dependent autophagy [97].

3.4.2. Cluster D2

Cluster D2 was the second group to be inducted transcendently during CSR in B cells. It
contains 69 genes. RAB6B and PM20D1 genes were the most differentially expressed.
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RAB6B (RAB6B, member RAS oncogene family) has the ability for GTP binding and myosin V
binding. Members of the RAB subfamily of small GTPases play an important role in the regula-
tion of intracellular transport routes [98]. RAB6B is predominantly expressed in brain and the
neuroblastoma cell line SK-N-SH. In brain, RAB6B was found to be specifically expressed
in microglia, pericytes and Purkinje cells. Endogenous RAB6B localizes to the Golgi apparatus
and to ERGIC-53–positive vesicles. RAB6B displayed lower GTP-binding activities, and in overe-
xpression studies, the protein is distributed over Golgi and ER membranes [99]. A secreted
enzyme, peptidase M20 domain containing 1 (PM20D1), is enriched in UCP1(+) versus UCP1(�)
adipocytes. These data identify an enzymatic node and a family of metabolites that regulate
energy homeostasis [99].

3.4.3. Cluster D3

Cluster D3 was the third group to be inducted transcendently in CSR of human B
cells and the cluster has 113 genes. IKZF2 and ADCY1 genes were the most differentially
expressed.

IKZF2 encodes a member of the Ikaros family of zinc-finger proteins. Three members of this
protein family (Ikaros, Aiolos and Helios) are hematopoietic-specific transcription factors involv-
ed in the regulation of lymphocyte development. This protein forms homo- or heterodimers with
other Ikaros family members and has a function predominantly in early hematopoietic develop-
ment. Helios is preferentially expressed at the mRNA level by regulatory T cells (Treg cells) and is
potentially a specific marker of thymic-derived Treg cells. It raises the possibility that a significant
percentage of Foxp3+ Treg cells are generated extrathymically [100]. ADCY1 gene encodes a
member of the adenylate cyclase family that is primarily expressed in the brain. This protein is
regulated by calcium/calmodulin concentration. Cyclic AMP (cAMP) production, which is impor-
tant for mechanotransduction within the inner ear, is catalyzed by adenylate cyclases (AC).
ADCY1 has an evolutionarily conserved role in hearing, and cAMP signaling is important to hair
cell function within the inner ear [101].

The most significantly differential genes in each cluster and major pathways in each cluster are
listed in Table 1. The most interesting clusters are Cluster A1 and Cluster B1 and the full gene
names of these two clusters are listed in Tables 2 and 3.

Cluster Numbers Activation
during CSR

Most significant genes Pathways involved References

A1 153 Expression on CCL22; CCL17; TRAF; BCL2L1;
MYB; VIM; TRIP10; FAS; PTGIR;
EBI3; AHR; NCF2

ERK signaling, TRAF
pathway; insulin pathway;
NF-kB pathway

[105–108]

A2 83 Expression off MARCH1; FOSB; DUSP1; FOS;
CR1; CR2; RGS2; PLD4; CCR6;
RASGRP2; MOP-1; FCRLA

Toll-like receptor signaling
pathways, MAPK signaling
pathway; innate immune
system pathway

[109–111]

Gene Expression and Regulation in Mammalian Cells - Transcription From General Aspects174

Cluster Numbers Activation
during CSR

Most significant genes Pathways involved References

B1 126 Sustained
induction

BHLHE40; IL17RB; NFIL3;
HOMER2; AICDA; BATF3;
ARID5A; DUSP4; CD80;
TNFAIP2; XBP1; MTHFD2

Circadian rhythm pathway;
IL-17 family signaling
pathways; IL4-mediated
signaling pathway

[57, 112, 113]

B2 112 Sustained
induction

EPHB1; TNFSF4; DPYSL2;
RPS6KA2; SLC41A1; AMICA1;
MIIP; RGS9; CISH; LRRC32;
AUH; SLC37A3

EPH-Ephrin signaling; TNF
superfamily pathway;
transport of glucose pathway

[114–116]

C1 79 Transient
induction

TFEC; RRP12; SLC29A1;
GPATCH4; SSRP1; BCL2A1;
CYB561; NME1; TTLL12; FASN;
NETO2; SLC27A4

C-MYB transcription factor
network; apoptosis
modulation and signaling

[117, 118]

C2 112 Transient
induction

LMNB2; B4GALT5; SLC43A3;
ESPL1; EZH2; PSMC3; SUV39H2;
MREG; FSCN1; SRC;
PHOSPHO2-KLHL23

Apoptosis pathway;
glycosaminoglycan
metabolism pathway

[119, 120]

C3 105 Transient
induction

UHRF1; CHEK1; FANCI;
CHAF1B; DTL; CDC6; EXO1;
MCM6; CHAF1A; CDC45; TCF19

Chromatin regulation/
acetylation pathway; DNA
double-strand break repair
pathway

[121, 122]

C4 151 Transient
induction

KIF14; PRC1; NDC80; NUF2;
HMMR; DEPDC1; AURKA;
ARHGAP11B; BRCA1; FAM72B;
HIST1H4L; DLGAP5; HIST1H1B

Signaling by Rho GTPases;
cell cycle pathway; DNA
double-strand break repair
pathway

[85, 123, 124]

C5 99 Transient
induction

MCM10; PCNA; TCFL5; HELLS;
ZC3HAV1L; PHF19; CARM1;
VDR; LIMA1; MYH10; SEMA4A;
TMOD1

Telomere C-strand synthesis
pathway; apoptosis
modulation and signaling;
chromatin regulation/
acetylation

[125–127]

C6 128 Transient
induction

CCR4; HIST1H1C; CHRNA6;
HIST1H3I; CCL1; GPR55; SYT11;
PSTPIP2; KIAA1549L;
HIST1H1D; PSAT1; TFDP2

Signaling by GPCR; apoptosis
induced DNA fragmentation;
nicotine pathway

[128–130]

D1 69 Transient
downregulation

GPR18; TP53INP1; IFIT2;
RNASET2; LBH; DOK3; FGD3;
CD69; OAS1; ABCG1; PNOC;
PARP15

Signaling by GPCR; p53
pathway, innate immune
system; B cell development
pathway

[96, 131–133]

D2 69 Transient
downregulation

RAB6B; PM20D1; CYP2C19;
CPNE4; TNFSF8; HIST1H2BD;
METTL7A; ADHFE1; TMEM140;
JMJD7; KLHL24; POU2AF1

Vesicle-mediated transport;
drug metabolism; ERK
signaling

[134–136]

D3 113 Transient
downregulation

IKZF2; ADCY1; APOBEC3H;
VAMP5; PDCD1LG2; CYP2C18;
ILDR1; ADRB1; TM6SF1;
GCSAM; CHAC1; ENPP3

mRNA editing—C to U
conversion; NF-kB signaling;
cytochrome P450 pathway

[137–139]

Table 1. The most significantly differential genes and pathways in each cluster during CSR.
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RAB6B (RAB6B, member RAS oncogene family) has the ability for GTP binding and myosin V
binding. Members of the RAB subfamily of small GTPases play an important role in the regula-
tion of intracellular transport routes [98]. RAB6B is predominantly expressed in brain and the
neuroblastoma cell line SK-N-SH. In brain, RAB6B was found to be specifically expressed
in microglia, pericytes and Purkinje cells. Endogenous RAB6B localizes to the Golgi apparatus
and to ERGIC-53–positive vesicles. RAB6B displayed lower GTP-binding activities, and in overe-
xpression studies, the protein is distributed over Golgi and ER membranes [99]. A secreted
enzyme, peptidase M20 domain containing 1 (PM20D1), is enriched in UCP1(+) versus UCP1(�)
adipocytes. These data identify an enzymatic node and a family of metabolites that regulate
energy homeostasis [99].

3.4.3. Cluster D3

Cluster D3 was the third group to be inducted transcendently in CSR of human B
cells and the cluster has 113 genes. IKZF2 and ADCY1 genes were the most differentially
expressed.

IKZF2 encodes a member of the Ikaros family of zinc-finger proteins. Three members of this
protein family (Ikaros, Aiolos and Helios) are hematopoietic-specific transcription factors involv-
ed in the regulation of lymphocyte development. This protein forms homo- or heterodimers with
other Ikaros family members and has a function predominantly in early hematopoietic develop-
ment. Helios is preferentially expressed at the mRNA level by regulatory T cells (Treg cells) and is
potentially a specific marker of thymic-derived Treg cells. It raises the possibility that a significant
percentage of Foxp3+ Treg cells are generated extrathymically [100]. ADCY1 gene encodes a
member of the adenylate cyclase family that is primarily expressed in the brain. This protein is
regulated by calcium/calmodulin concentration. Cyclic AMP (cAMP) production, which is impor-
tant for mechanotransduction within the inner ear, is catalyzed by adenylate cyclases (AC).
ADCY1 has an evolutionarily conserved role in hearing, and cAMP signaling is important to hair
cell function within the inner ear [101].

The most significantly differential genes in each cluster and major pathways in each cluster are
listed in Table 1. The most interesting clusters are Cluster A1 and Cluster B1 and the full gene
names of these two clusters are listed in Tables 2 and 3.

Cluster Numbers Activation
during CSR

Most significant genes Pathways involved References

A1 153 Expression on CCL22; CCL17; TRAF; BCL2L1;
MYB; VIM; TRIP10; FAS; PTGIR;
EBI3; AHR; NCF2

ERK signaling, TRAF
pathway; insulin pathway;
NF-kB pathway

[105–108]

A2 83 Expression off MARCH1; FOSB; DUSP1; FOS;
CR1; CR2; RGS2; PLD4; CCR6;
RASGRP2; MOP-1; FCRLA

Toll-like receptor signaling
pathways, MAPK signaling
pathway; innate immune
system pathway

[109–111]
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Cluster Numbers Activation
during CSR

Most significant genes Pathways involved References

B1 126 Sustained
induction

BHLHE40; IL17RB; NFIL3;
HOMER2; AICDA; BATF3;
ARID5A; DUSP4; CD80;
TNFAIP2; XBP1; MTHFD2

Circadian rhythm pathway;
IL-17 family signaling
pathways; IL4-mediated
signaling pathway

[57, 112, 113]

B2 112 Sustained
induction

EPHB1; TNFSF4; DPYSL2;
RPS6KA2; SLC41A1; AMICA1;
MIIP; RGS9; CISH; LRRC32;
AUH; SLC37A3

EPH-Ephrin signaling; TNF
superfamily pathway;
transport of glucose pathway

[114–116]

C1 79 Transient
induction

TFEC; RRP12; SLC29A1;
GPATCH4; SSRP1; BCL2A1;
CYB561; NME1; TTLL12; FASN;
NETO2; SLC27A4

C-MYB transcription factor
network; apoptosis
modulation and signaling

[117, 118]

C2 112 Transient
induction

LMNB2; B4GALT5; SLC43A3;
ESPL1; EZH2; PSMC3; SUV39H2;
MREG; FSCN1; SRC;
PHOSPHO2-KLHL23

Apoptosis pathway;
glycosaminoglycan
metabolism pathway

[119, 120]

C3 105 Transient
induction

UHRF1; CHEK1; FANCI;
CHAF1B; DTL; CDC6; EXO1;
MCM6; CHAF1A; CDC45; TCF19

Chromatin regulation/
acetylation pathway; DNA
double-strand break repair
pathway

[121, 122]

C4 151 Transient
induction

KIF14; PRC1; NDC80; NUF2;
HMMR; DEPDC1; AURKA;
ARHGAP11B; BRCA1; FAM72B;
HIST1H4L; DLGAP5; HIST1H1B

Signaling by Rho GTPases;
cell cycle pathway; DNA
double-strand break repair
pathway

[85, 123, 124]

C5 99 Transient
induction

MCM10; PCNA; TCFL5; HELLS;
ZC3HAV1L; PHF19; CARM1;
VDR; LIMA1; MYH10; SEMA4A;
TMOD1

Telomere C-strand synthesis
pathway; apoptosis
modulation and signaling;
chromatin regulation/
acetylation

[125–127]

C6 128 Transient
induction

CCR4; HIST1H1C; CHRNA6;
HIST1H3I; CCL1; GPR55; SYT11;
PSTPIP2; KIAA1549L;
HIST1H1D; PSAT1; TFDP2

Signaling by GPCR; apoptosis
induced DNA fragmentation;
nicotine pathway

[128–130]

D1 69 Transient
downregulation

GPR18; TP53INP1; IFIT2;
RNASET2; LBH; DOK3; FGD3;
CD69; OAS1; ABCG1; PNOC;
PARP15

Signaling by GPCR; p53
pathway, innate immune
system; B cell development
pathway

[96, 131–133]

D2 69 Transient
downregulation

RAB6B; PM20D1; CYP2C19;
CPNE4; TNFSF8; HIST1H2BD;
METTL7A; ADHFE1; TMEM140;
JMJD7; KLHL24; POU2AF1

Vesicle-mediated transport;
drug metabolism; ERK
signaling

[134–136]

D3 113 Transient
downregulation

IKZF2; ADCY1; APOBEC3H;
VAMP5; PDCD1LG2; CYP2C18;
ILDR1; ADRB1; TM6SF1;
GCSAM; CHAC1; ENPP3

mRNA editing—C to U
conversion; NF-kB signaling;
cytochrome P450 pathway

[137–139]

Table 1. The most significantly differential genes and pathways in each cluster during CSR.
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4. The future research on CSR in human B cells

A total of 1399 genes were shown to have differential expression during CSR in human B cells,
and the novel genes have the roles in immune system process, cellular amine and DNA
process and cell cycle phase or ribonucleoprotein biogenesis. Understanding the precisely
functional roles of these novel genes in CSR in human B cells will bring new insights into the
mechanisms of CSR and find potential therapeutic targets for human immune disorders such
as allergic asthma and autoimmune diseases.

The next stage of research will also focus on determining how the naïve B cells turn into the
specific IgE-, IgA- or IgG-releasing cells after T cell cytokines signal stimulation. The different
stages of CSR in human B cell may contain unique transcription regulators for the destiny for
each single cell. The development of single-cell sequencing provides a unique opportunity to
explore the subsets of the human B cells to generate IgE, IgA and IgG. Obtaining high-quality
single-cell sequencing data from B cells depends on efficient isolation of individual cells and
amplifications of the genome or transcriptome of single cell to acquire sufficient materials for
downstream analysis, identifying true variations from technological biases [102]. One of the
major challenges of analyzing single-cell genomics data is to develop tools that differentiate
technical artifacts and noise introduced during single-cell isolation, whole genome amplifica-
tion, whole transcriptome amplification and sequencing from true biological variation. There
are many factors that can influence the single-cell analysis. During single-cell isolation, the
population of cells can be biased through the selection of cells based on size, viability or
propensity to enter the cell cycle. Cells from cell lines as control may be problematic as they

Cluster B1: 126 genes

BHLHE40 IL17RB NFIL3 HOMER2 AICDA BATF3 ARID5A DUSP4 CD80 TNFAIP2

XBP1 MTHFD2 CD86 CD59 CAMK4 MFHAS1 SLC1A5 SRGN USP46 CHDH

HDGFR3 PIGX FLT1 RNF19B LTA NOD2 ZNF788 AARS ATXN1 RFC5

WARS PXDC1 PPP1R14A DENND5A QSOX1 STK38L PRR5L RGS10 SLC7A5 SCCPDH

RRAGD LY75-
CD302

ADAMDEC1 YARS GPHN TRIM16L IRF4 NINJ1 SLC7A1 SOCS1

CD274 ECHDC3 NECAP2 TSPAN33 SEC11C LOXL3 AHRR RALB ARID3A RDX

CSF1 THG1L SLC39A8 SAMSN1 TXNL1 STK35 DARS TARS CLDND1 C12orf5

SEL1L CARS FAM162A VCL SEPHS1 XPOT ACSL1 GOT1 PFKM NSMCE1

RBM47 CEP19 ATXN2L DHRS3 RAB39B DCTN2 PABPC4 HIVEP1 CCDC126 ACADVL

MTX2 AEN TFG RBPJ SLC25A20 ETFDH COPA NR4A3 GPX4 ITFG3

DUSP22 CTNS IL2RA RAP1A TNFAIP1 PAM SLC37A1 DCTN6 AKAP2 RIPK2

RAB21 RPS23 KIAA1279 MARS ZNF267 CLCN5 NFKBID PRPSAP1 NEDD1 ZNF382

CDKN1A PRRT3 LYSMD1 NCK2 AZIN1 KIF5B

Table 3. The lists of Cluster B1.
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4. The future research on CSR in human B cells

A total of 1399 genes were shown to have differential expression during CSR in human B cells,
and the novel genes have the roles in immune system process, cellular amine and DNA
process and cell cycle phase or ribonucleoprotein biogenesis. Understanding the precisely
functional roles of these novel genes in CSR in human B cells will bring new insights into the
mechanisms of CSR and find potential therapeutic targets for human immune disorders such
as allergic asthma and autoimmune diseases.

The next stage of research will also focus on determining how the naïve B cells turn into the
specific IgE-, IgA- or IgG-releasing cells after T cell cytokines signal stimulation. The different
stages of CSR in human B cell may contain unique transcription regulators for the destiny for
each single cell. The development of single-cell sequencing provides a unique opportunity to
explore the subsets of the human B cells to generate IgE, IgA and IgG. Obtaining high-quality
single-cell sequencing data from B cells depends on efficient isolation of individual cells and
amplifications of the genome or transcriptome of single cell to acquire sufficient materials for
downstream analysis, identifying true variations from technological biases [102]. One of the
major challenges of analyzing single-cell genomics data is to develop tools that differentiate
technical artifacts and noise introduced during single-cell isolation, whole genome amplifica-
tion, whole transcriptome amplification and sequencing from true biological variation. There
are many factors that can influence the single-cell analysis. During single-cell isolation, the
population of cells can be biased through the selection of cells based on size, viability or
propensity to enter the cell cycle. Cells from cell lines as control may be problematic as they

Cluster B1: 126 genes

BHLHE40 IL17RB NFIL3 HOMER2 AICDA BATF3 ARID5A DUSP4 CD80 TNFAIP2

XBP1 MTHFD2 CD86 CD59 CAMK4 MFHAS1 SLC1A5 SRGN USP46 CHDH

HDGFR3 PIGX FLT1 RNF19B LTA NOD2 ZNF788 AARS ATXN1 RFC5

WARS PXDC1 PPP1R14A DENND5A QSOX1 STK38L PRR5L RGS10 SLC7A5 SCCPDH

RRAGD LY75-
CD302

ADAMDEC1 YARS GPHN TRIM16L IRF4 NINJ1 SLC7A1 SOCS1

CD274 ECHDC3 NECAP2 TSPAN33 SEC11C LOXL3 AHRR RALB ARID3A RDX

CSF1 THG1L SLC39A8 SAMSN1 TXNL1 STK35 DARS TARS CLDND1 C12orf5

SEL1L CARS FAM162A VCL SEPHS1 XPOT ACSL1 GOT1 PFKM NSMCE1

RBM47 CEP19 ATXN2L DHRS3 RAB39B DCTN2 PABPC4 HIVEP1 CCDC126 ACADVL

MTX2 AEN TFG RBPJ SLC25A20 ETFDH COPA NR4A3 GPX4 ITFG3

DUSP22 CTNS IL2RA RAP1A TNFAIP1 PAM SLC37A1 DCTN6 AKAP2 RIPK2

RAB21 RPS23 KIAA1279 MARS ZNF267 CLCN5 NFKBID PRPSAP1 NEDD1 ZNF382

CDKN1A PRRT3 LYSMD1 NCK2 AZIN1 KIF5B

Table 3. The lists of Cluster B1.
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may not be diploid, and they can be highly aneuploid or even polyploidy. These will affect
experimental performance [102]. Our understanding of human B cell function in CSR will
derive from comparisons between healthy individuals and those with particular immunolog-
ical diseases, and among groups of patients having the same disease with different clinical
outcomes. For example, human SLE is clinically heterogeneous [103], making treatment deci-
sion challenging. It is important to know which B cell subsets are responsible for which
functions in immune diseases, in addition to identifying how a “signature” profile for an
individual subject’s collection of subsets may correlate with disease outcome that could even-
tually allow greater optimization of targeted therapies [104].

Abbreviation

AC adenylate cyclases

AID activation-induced cytidine deaminase

AP-1 activating protein-1

APC antigen-presenting cell

APE apurinic/apyrimidic endonuclease

BCRs B cell receptors

Be-1 B effector 1

Be-2 B effector 2

CB cord blood

CLPs common lymphoid progenitors

CSR class switch recombination

DCs dendritic cells

DSBs double-strand DNA breaks

Eph erythropoietin-producing hepatocellular

FIP FOS-interacting protein

FO follicular

GCs germinal centers

HDM house dust mite

hnRNPs heterogeneous nuclear ribonucleoproteins

IgH Ig heavy-chain

MAPs microtubule-associated proteins
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MAREs Maf-recognition elements

MCM mini-chromosome maintenance proteins

MZ marginal zone

NF-kB NF-kappa B

NHEJ nonhomologous end-joining

NO nitrogen oxide

PKC-β protein kinase C-β

PRC1 protein regulator of cytokinesis 1

RAG recombination activating gene

RTKs receptor tyrosine kinases

SLE systemic lupus erythematosus

TD T lymphocyte dependent

TFEC transcription factor EC

TI T lymphocyte independent

TNF tumor necrosis factor

TRAF TNF receptor associated factor

TRAP tartrate-resistant acid phosphatase

UNG uracil DNA glycosylase
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may not be diploid, and they can be highly aneuploid or even polyploidy. These will affect
experimental performance [102]. Our understanding of human B cell function in CSR will
derive from comparisons between healthy individuals and those with particular immunolog-
ical diseases, and among groups of patients having the same disease with different clinical
outcomes. For example, human SLE is clinically heterogeneous [103], making treatment deci-
sion challenging. It is important to know which B cell subsets are responsible for which
functions in immune diseases, in addition to identifying how a “signature” profile for an
individual subject’s collection of subsets may correlate with disease outcome that could even-
tually allow greater optimization of targeted therapies [104].

Abbreviation

AC adenylate cyclases

AID activation-induced cytidine deaminase

AP-1 activating protein-1

APC antigen-presenting cell

APE apurinic/apyrimidic endonuclease

BCRs B cell receptors

Be-1 B effector 1

Be-2 B effector 2

CB cord blood

CLPs common lymphoid progenitors

CSR class switch recombination

DCs dendritic cells

DSBs double-strand DNA breaks

Eph erythropoietin-producing hepatocellular

FIP FOS-interacting protein

FO follicular

GCs germinal centers

HDM house dust mite

hnRNPs heterogeneous nuclear ribonucleoproteins

IgH Ig heavy-chain

MAPs microtubule-associated proteins
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MAREs Maf-recognition elements

MCM mini-chromosome maintenance proteins

MZ marginal zone

NF-kB NF-kappa B

NHEJ nonhomologous end-joining

NO nitrogen oxide

PKC-β protein kinase C-β

PRC1 protein regulator of cytokinesis 1

RAG recombination activating gene

RTKs receptor tyrosine kinases

SLE systemic lupus erythematosus

TD T lymphocyte dependent

TFEC transcription factor EC

TI T lymphocyte independent

TNF tumor necrosis factor

TRAF TNF receptor associated factor

TRAP tartrate-resistant acid phosphatase

UNG uracil DNA glycosylase
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Abstract

Functionally polarized CD4 T helper (Th) cells, such as Th1, Th2, and Th17 cells, are 
essential for the regulation of acquired immunity. Differentiation of naïve CD4 T cells 
into Th2 cells is characterized by chromatin remodeling and the induced expression of a 
set of Th2-specific genes, which include Th2 cytokine genes. In the first stage of this dif-
ferentiation, a Th2-skewing cytokine environment, especially IL-4, induces STAT6 activa-
tion. Activated STAT6 increases the expression of GATA3, a master regulator of Th2 cell 
differentiation, via direct binding to the Gata3 gene locus. This transcriptional induc-
tion of Gata3 mRNA during Th2 cell differentiation is accompanied by dynamic changes 
in the binding patterns of two epigenetic modification proteins such as Polycomb and 
Trithorax complexes. Consequently, expressed GATA3 epigenetically modifies and 
upregulates Th2-specific genes to establish Th2 cell identity. This identity is maintained 
by high-level expression of the Gata3 gene controlled by Menin, which is a member of the 
Trithorax proteins, after cycles of cultivation in vitro and a long-term resting state in vivo. 
Thus, the Menin-GATA3 axis handles the Th2-specific gene regulatory network.

Keywords: Th2, GATA3, STAT6, Menin 

1. Introduction

Naïve CD4-positive (CD4+) T cells can differentiate into several effector T cell subsets, mainly 
known as Th1, Th2, and Th17 cells [1]. Th1 cells perform the crucial function of protecting 
against viruses and intracellular pathogens. Th17 cells similarly work against extracellular bac-
teria or fungi. Th2 cells are required for the removal of extracellular parasites. Each effector sub-
set exerts its protective functions through the secretion of unique cytokines. Th1 cells mainly 
produce IFN-γ, which activates macrophages and CD8 T cells. Th17 cells secrete IL-17A, which 
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propagates cascades of events that lead to neutrophil recruitment, inflammation, and host 
defense [2]. Th2 cells activate B cells to induce immunoglobulin class switching through IL-4, 
and enhance mucus production from epithelial cells by IL-13. In addition, Th2 cells recruit 
eosinophils to induce an inflammatory response through IL-5. However, the responses caused 
by these subsets are sometimes excessive and result in immunological diseases. For example, 
an excess amount of Th2 cytokines is known to induce allergic disease, such as asthma [3].

Each subset-specific cytokine enhances differentiation toward the corresponding Th subset, 
and environmental cytokines decide the differentiation fate of CD4 T cells. For example, IL-12-
induced STAT4 activation in Th1 cells and IL-4-induced STAT6 activation in Th2 cells are 
essential for their respective differentiation [4, 5]. These STAT signals are commonly used for 
CD4 T cell differentiation into each subset and induce the upregulation of master transcrip-
tion factors, T-bet in Th1 and GATA3 in Th2 [6, 7]. The master transcription factors directly 
bind to DNA and regulate the expression of each subset-specific gene, causing epigenetic 
modification of the DNA, which stabilizes the differentiation program. Due to this epigenetic 
modification, fully differentiated effector T cells are rarely converted to other Th subsets and 
are able to maintain their identity during the transition from effector to memory cells.

The Th2 master transcription factor GATA3 collaborates with the epigenetic regulator Menin 
to induce and stabilize the complex gene regulatory network. Th2-specific genes, which have 
been identified by gene expression profiling [8, 9], participate in this regulatory network and 
are controlled by neither, either or both GATA3 and Menin [10]. In fact, GATA3 or Menin dele-
tion results in the loss of Th2 identity [10, 11]. Clarifying the interplay between the transcrip-
tion factors and epigenetic modifiers is required to comprehend the Th2 cell biology and to 
identify new therapeutic targets for Th2-mediated immunological diseases [3].

2. STAT6 and GATA3: important transcription factors for Th2 cells

2.1. STAT6 is activated by IL-4 signaling

The most essential pathway promoting the Th2 fate is the IL-4 signaling cascade, followed 
by activating the transcription factor STAT6 [12–14]. When IL-4 is recognized by its receptor 
(type-I IL-4R), which consists of IL-4 receptor alpha chain (IL-4Rα) and a common gamma 
chain (γc), IL-4 can transmit a signal into a cell. Binding of IL-4 induces dimerization of IL-4Rα 
and γc, resulting in the phosphorylation of tyrosine residues within the intracellular portion 
of IL-4Rα by Janus Kinases. This phosphorylated intracellular portion of IL-4Rα recruits and 
phosphorylates signal transducer and activator of transcription (STAT)6, which then forms a 
dimer and translocates into the nucleus where the dimerized STAT6 regulates the expression 
of IL-4 target genes. STAT6 recognizes the DNA sequence TTCNNNNGAA, whereas other 
STAT family proteins prefer the DNA sequence TTCNNNGAA [15].

Like other STAT proteins, a major role of STAT6 is to activate the expression of its target genes, 
which is how it received its name (“signal transducer and activator of transcription”). The best-
known target gene of STAT6 is the Gata3 gene, and the detailed mechanisms underlying the STAT6-
dependent regulation of the Gata3 gene are described in Section 4. However, some studies have 

Gene Expression and Regulation in Mammalian Cells - Transcription From General Aspects192

reported that STAT6 also exerts an inhibitory function by occupying overlapping binding sites of 
other transcription factors and blocking their binding [16, 17]. It is now well known that STAT-
mediated repression is important for the lineage commitment of Th subsets [18]. For example, 
STAT6 binds to the genomic loci of Th1-associated genes and inhibits their expression, and STAT4, 
a key transcription factor of Th1, acts on Th2-associated genes in a similar way [19].

It has been proposed that the IL-4/STAT6 cascade is necessary for the Th2 phenotype. This 
fact is also demonstrated by a series of knockout studies. In these studies, IL-4 deficient mice 
showed impaired Th2 responses, attributed to a reduced Th2 effector cytokine production, 
loss of IgE class switching, and reduced eosinophilia upon infection with Nippostrongylus 
brasiliensis [20]. A similar but more significant phenotype is observed in STAT6 knockout mice. 
In addition, STAT6 appears to be highly specific to Th2 functions, as the phenotype of STAT6-
deficient mice is largely related to the loss of the Th2 cell function, and deficient mice show 
normal development with ordinary numbers of T cells [21, 22]. Other STAT signaling cascades 
are also involved in Th2 polarization. STAT5A and STAT3, which are activated by IL-2 [23] 
and IL-6 [24], respectively, are also reported to induce the Th2 phenotype. However, STAT5 
and STAT3 are activated not only in Th2 but also in other CD4+ T cell subsets. Therefore, only 
STAT6 exclusively promotes Th2 differentiation.

2.2. GATA3 plays roles in various tissues as well as the immune system

The GATA family proteins (GATA1–6) are conserved transcription factors that contain one 
or two C2-C2-type zinc-finger motif that recognize the consensus DNA sequence WGATAR  
[25–27]. Each member of the GATA family has different expression patterns in the body and can 
be grouped into hematopoietic factors (GATA1–3) and endodermal factors (GATA4–6). Among 
hematopoietic cells, immune cells, particularly developing and mature T cells, natural killer (NK) 
cells, and CD1-restricted NKT cells, mainly express GATA-binding protein 3 (GATA3) [6, 28, 
29]. Mature mast cells express GATA1 and GATA2 but not GATA3 [30]. Outside of the immune 
system, GATA3 is also expressed in many embryonic and adult tissues, including the adrenal 
glands, kidneys, central nervous system, inner ear, hair follicles and skin, and breast tissue [27].

In the immune system, GATA3 is predominantly expressed in T lymphocytes and is essential 
for the development of CD4 single-positive (SP) cells in the thymus [31–33]. GATA3 exerts an 
important function at the β-selection checkpoint, which is involved in the CD4 versus CD8 
lineage choice in the thymus [34]. It is continuously expressed in peripheral naïve CD4 T cells 
at a basal level, where the activation of STAT6 induced by the IL-4/IL-4 receptor signaling 
pathway upregulates Gata3 mRNA expression during Th2 cell differentiation [35]. GATA3 is 
thought to be necessary as the master regulator of Th2 differentiation [6, 7], since enforced 
GATA3 expression induces Th2 differentiation even when the cells are cultured under Th1-
skewing conditions [35]. Enforced expression of GATA3 has also been reported to endog-
enously upregulate GATA3 expression [36]. In addition, the amount of GATA3 protein in Th2 
cells is regulated by various posttranscriptional mechanisms [37–39]. Furthermore, high-level 
expression of GATA3 is essential for the production of large amounts of Th2 cytokines in 
established Th2 cells [11, 40–42]. The detailed mechanisms underlying the GATA3-dependent 
regulation of its target genes are described in Section 5.
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skewing conditions [35]. Enforced expression of GATA3 has also been reported to endog-
enously upregulate GATA3 expression [36]. In addition, the amount of GATA3 protein in Th2 
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3. Polycomb and Trithorax proteins: fundamental epigenetic 
regulators for cell differentiation

3.1. Polycomb and Trithorax proteins epigenetically modify chromatin in a different 
way

Huge numbers of genes involved in epigenetic regulation have been identified. Many of them 
encode histone-modifying enzymatic proteins and their interaction partners. Among them, 
members of the Polycomb group (PcG) and Trithorax group (TrxG) complexes have been recog-
nized as key epigenetic regulators [3, 43–46]. PcG and TrxG proteins were originally identified in 
Drosophila; however, they also play essential roles in controlling mammalian gene expression in 
various normal and tumor tissues. It has long been thought that PcG and TrxG proteins antago-
nize each other for turning target gene expression off or on, respectively. PcG proteins mediate 
gene silencing by controlling the repressive histone mark H3K27me3 (trimethylated histone H3 
lysine 27), whereas TrxG proteins mediate gene activation by modifying the permissive histone 
mark H3K4me3. Both histone-modifying complexes are often found to regulate the same genes 
at different stages of development [47]. In addition, emerging evidence shows that PcG and 
TxrG proteins participate in complex regulatory mechanisms in mammalian tissues [48].

PcG complexes are classified into two canonical types such as Polycomb repressive complex 1 
(PRC1) and PRC2. Both of them are involved in transcriptional repression. A sequential recruit-
ing mechanism is proposed for the binding of PRC2 and PRC1 to genomic DNA. First, enhancer 
of zeste (EZH), the enzymatically active subunit of PRC2, methylates H3K27. Next, the PRC1 
complex recognizes trimethylated H3K27, resulting in its co-localization with PRC2. In addition, 
the ring finger protein 1 (RING1), a subunit of PRC1, has a ubiquitin ligase activity for histone 
H2AK119 [49]. In CD4+ T cells, Ezh2 appeared to directly bind and facilitate the correct expression 
of the Gata3 gene during differentiation into effector Th2 cells [50, 51]. In our previous study, Ezh2 
bound much more strongly to transcription factor genes, including the Gata3 gene, than to the 
cytokine or cytokine receptor genes. Genome-wide, in the genes encoding transcription factors, 
the Ezh2 binding levels appear to be higher in non-expressed genes than in expressed genes [52].

In contrast, mixed lineage leukemia (MLL) family proteins, which are major subunits of the 
TrxG complex, have H3K4 methyltransferase activity that induces a change in the chromatin 
structure to a form permissive for transcription. In mammals, six H3K4 methylases (MLL1–4, 
SET1A, and SET1B) have been discovered [53]. The H3K4 methylase complexes containing 
MLL1 or MLL2 are associated with a unique subunit named Menin (encoded by the Men1 
gene in mice). A mutation of MEN1 has been found in patients with multiple endocrine neo-
plasia type 1 (MEN1) syndrome [54, 55]. Menin can act as a tumor suppressor and is required 
for TrxG complex binding to DNA [53]. Menin is also indicated to have essential roles in the 
immune system, as Menin has been shown to be important for the Th2 cell function both in 
mice and humans [51, 56]. The MLL3- or MLL4-containing complex associates with the H3K27 
demethylase UTX (encoded by the Kdm6a gene in mice) and induces demethylation. H3K4 
trimethylation appears to be mediated by these MLL-associated complexes in a gene-specific 
manner. The SET1A- or SET1B-containing complexes have the unique WD repeat-containing 
82 (WDR82). TrxG proteins activate target gene expression and/or keep them active, indicating 
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that these proteins are associated with more than simple gene activation [53]. TrxG proteins 
have more diverse binding molecules than PcG proteins with which they form complexes.

3.2. Spatial interplay between Polycomb and Trithorax complexes

Although many studies have been performed on the nature of PcG proteins and TrxG pro-
teins individually, few have successfully defined how transcriptional counter-regulation is 
organized by the PcG and TrxG complexes. One pioneering work demonstrated the dynamic 
transformations of histone modifications during T cell development [57]. In addition, in our 
previous study, we successfully analyzed how the global signature of PcG and TrxG co-occu-
pied genes changed during the developmental process. This study showed that a binding 
pattern in which Ezh2 binds upstream and Menin binds downstream of the transcription start 
site was frequently found at highly expressed genes, and a binding pattern in which Ezh2 and 
Menin bind to opposite positions was frequently found at low-expressed genes in T lympho-
cytes. Interestingly, genes showing a binding pattern in which Ezh2 and Menin occupied the 
same position displayed greatly enhanced sensitivity to Ezh2 deletion [3, 58].

4. STAT6 induces dynamic changes in epigenetic states at the Gata3 
gene locus

4.1. The Gata3 gene is epigenetically regulated during Th2 cell differentiation

Epigenetic changes at the Gata3 gene locus in T cells are essential for the acquisition and 
maintenance of the Th2 cell identity [3, 51, 59]. During Th2 cell differentiation, PcG and TrxG 
proteins dynamically change their binding patterns at the Gata3 gene locus. In addition, these 
epigenetic changes result in GATA3 protein upregulation that consequently induces chro-
matin remodeling at the Th2 cytokine gene loci, including Il4, Il5, and Il13 [51, 59]. The Gata3 
gene is known to have distal and proximal promoters. Both basal transcription in naïve CD4 T 
cells and induced transcription in differentiated Th2 cells are controlled by the proximal pro-
moter [51, 60]. In naïve CD4 T cells, PcG complexes bind upstream and TrxG complexes bind 
downstream of the Gata3 proximal promoter [51]. During Th2 cell differentiation, PcG pro-
teins dissociate upstream of the Gata3 proximal promoter, and the binding of TrxG proteins 
spreads into this region. Consequently, rapid alterations in the binding patterns of PcG and 
TrxG proteins are observed in the region between the Gata3 distal and proximal promoters 
in this period. Histone modification patterns basically exhibit the same behavior; H3K27me3 
levels are decreased at the upstream region of the Gata3 proximal promoter, and H3K4me3 
spreads into this region. In contrast, changes in DNA methylation pattern are only observed 
at exon 2, in which DNA is methylated in naïve CD4 T cells and demethylated in Th2 cells 
[61]. At present, the mechanism underlying this demethylation process remains unclear.

4.2. STAT6 directly modifies epigenetic states at the Gata3 gene locus

We identified two functional STAT6 binding sites within the intronic regions of the Gata3 gene locus 
[51]. A chromatin immunoprecipitation followed by massively parallel sequencing (ChIP-seq)  
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analysis also identified one STAT6 binding site at the same region [62]. In the absence of STAT6, 
displacement of PcG by TrxG is not observed. These results indicate that STAT6 directly binds 
to the Gata3 gene locus and induces PcG/TrxG displacement, although the precise mechanism is 
still unclear. A study of human Th2 cells indicated that STAT6 binding was hardly detected at the 
GATA3 gene locus, although STAT6 knockdown was effective for reducing the GATA3 expres-
sion [18]. Interestingly, our ChIP-seq analysis detected one GATA3 binding peak close to one of 
the STAT6 binding sites at the Gata3 gene locus [8, 51] and one of the strong peaks on the assay 
for transposase-accessible chromatin sequencing (ATAC-seq) [63]. This GATA3 binding site may 
be important for cis-regulation via GATA3-dependent auto activation of the Gata3 gene [36]. 
Although STAT6 induces TrxG spreading into the promoter region, the T cell-specific deletion of 
Menin, a component of the TrxG complex, does not affect Th2 cell differentiation. This suggests 
that the induction of high-level expression of Gata3 (i.e. the acquisition of the Th2 cell identity) 
is dependent on STAT6 and not the Menin/TrxG complex [51]. However, the maintenance of 
the Gata3 expression is dependent on the Menin/TrxG complex and independent of IL-4 and 
STAT6 in Th2 cells. A similar molecular mechanism was found to underlie the Gata3 expression 
in vivo [10, 64]. In human memory Th2 cells, MLL and Menin form a core transcriptional com-
plex and regulate the GATA3 expression [65]. Therefore, TrxG proteins represent an essential 
mechanism underlying transcriptional maintenance in the memory Th2 cell response [3].

4.3. PRC2 components prevent hyperactivation of the Gata3 gene

In contrast to TrxG proteins, PcG proteins are proposed to maintain their Gata3 expression at 
an appropriate level in CD4 T cells [3]. T cell-specific deletion of Ezh2 enhances the sensitivity 
of IL-4 and results in Gata3 upregulation and hyper-production of Th2 cytokines [50]. A ChIP-
seq analysis revealed that the Ezh2 binding levels were high at the Gata3 gene locus but very 
low at the Th2 cytokine gene loci, indicating that Ezh2 controls the Th2 cytokine expression 
via direct binding to the Gata3 gene locus. However, measurable levels of H3K27me3 were 
detected at the Il4 and Il13 genes loci, and direct regulation of H3K27me3 by Ezh2 at these 
genes has also been proposed as important for transcriptional silencing in Th1 cells [66]. In 
contrast, SUV39H1-dependent H3K9me3 has been found to maintain the silencing of Th1 cell-
related genes in Th2 cells [67].

5. GATA3-dependent epigenetic and transcriptional regulation in 
the Th2 cytokine gene loci

5.1. Chromatin remodeling induced by GATA3 at the Th2 cytokine gene loci

Induction of changes in histone modifications has been reported at the Il4, Il5, and Il13 gene loci 
(so-called the Th2 cytokine gene loci) during Th2 differentiation [12, 59, 68]. Particularly, histone 
H3K4 methylation and H3K9 acetylation play an important role in forming the open chromatin 
structure. Thus, the regions that acquire these histone modifications become accessible to tran-
scription factors and are frequently associated with DNase I hypersensitive (HS) sites. Chromatin 
remodeling at the Th2 cytokine gene loci is necessary for the efficient expression of IL-4, IL-5, and 
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IL-13 in Th2 cells, and GATA3 has been proposed to regulate chromatin remodeling at these 
genes. Notably, the H3K9 acetylation levels are higher around the GATA3 binding sites at the 
Th2 cytokine gene loci than the regions without GATA3 binding [8]. However, genome-wide sur-
veys on GATA3 binding and histone modifications suggest that GATA3 binding do not perfectly 
coincide with changes in permissive histone modifications, which correlate highly with the states 
of transcription [62, 69]. In fact, some studies suggest that GATA3 acts not only as an activator 
but also as a repressor in both Th1 and Th2 cells [8]. Although GATA3 is recognized as a master 
regulator of Th2 cell differentiation, the transcription of many Th2-specific genes is not regulated 
by GATA3 itself; therefore, GATA3 is not the only essential factor for Th2 differentiation.

5.2. Interaction between GATA3 and regulatory elements

It has been reported that GATA3 interacts with some regulatory elements at Th2 cytokine 
gene loci, including conserved non-coding sequence (CNS)-1, HSVa, the conserved GATA 
response element (CGRE), and HSII in intron 2 of the Il4 gene [12, 68, 70–74]. CNS-1 is located 
at the intergenic region between the Il4 and Il13 genes and was originally described as Th2-
specific HS sites (HSS1 and HSS2) [75, 76]. To characterize the function of CNS-1, mice lack-
ing this genomic region was generated [77]. Genetic deletion of the CNS-1 region resulted in a 
reduction of Th2 cells producing IL-4, IL-5, and IL-13. In this mutant mouse, IL-4 production 
in vivo was also abrogated [77]. However, CNS-1-deficieny had no effect on IL-4 production in  
bone marrow-derived mast cells [78]. This is consistent with the observation of no HS sites 
in CNS-1 of mast cells. Although an electrophoresis mobility shift assay showed that GATA3 
binds to HSS2 in vitro [70, 71], two independent genome-wide GATA3 ChIP-seq data analy-
ses failed to detect significant GATA3 binding peak in the CNS-1 region (Figure 1) [8, 79].  

Figure 1. GATA3-dependent epigenetic and transcriptional regulation in the Th2 cytokine gene loci. Epigenetic 
permissive histone marks (H3K9 acetylation and H3K4 tri-methylation) in the Th2 cytokine loci are shown in Th1 and 
Th2 cells (GSE28292) using the IGV genome browser (http://www.broadinstitute.org/igv/). GATA3 ChIP-seq data with 
statistically significant peaks (asterisks) are also shown in Th2 cells. DNA methylation data are shown in CD4+ naïve T, 
Th1, and Th2 cells (GSE25688). Data from an assay for transposase-accessible chromatin sequencing (ATAC-Seq), which 
identifies opened chromatin regions, were obtained for lung Th2 cells (GSE77695).
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at the intergenic region between the Il4 and Il13 genes and was originally described as Th2-
specific HS sites (HSS1 and HSS2) [75, 76]. To characterize the function of CNS-1, mice lack-
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in vivo was also abrogated [77]. However, CNS-1-deficieny had no effect on IL-4 production in  
bone marrow-derived mast cells [78]. This is consistent with the observation of no HS sites 
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Figure 1. GATA3-dependent epigenetic and transcriptional regulation in the Th2 cytokine gene loci. Epigenetic 
permissive histone marks (H3K9 acetylation and H3K4 tri-methylation) in the Th2 cytokine loci are shown in Th1 and 
Th2 cells (GSE28292) using the IGV genome browser (http://www.broadinstitute.org/igv/). GATA3 ChIP-seq data with 
statistically significant peaks (asterisks) are also shown in Th2 cells. DNA methylation data are shown in CD4+ naïve T, 
Th1, and Th2 cells (GSE25688). Data from an assay for transposase-accessible chromatin sequencing (ATAC-Seq), which 
identifies opened chromatin regions, were obtained for lung Th2 cells (GSE77695).
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Taken together with the fact that histone acetylation levels are increased with progressive DNA 
demethylation in the CNS-1 region [61, 80], this region may recruit other critical transcription 
factors that induce epigenetic modifications and promote IL-4 production in Th2 cells.

HSVa is a TCR re-stimulation-dependent HS site, whose DNase I hypersensitiveness is 
induced in Th2 cells upon stimulation [72]. HSVa is located 5 kbp downstream of the 3′ end 
of the Il4 coding region. Th2 cells generated from the mice in which the genomic region 
containing both HSVa and HSV (CNS-2) has been deleted display a reduced IL-4 produc-
tion [81]. Another study reported on the phenotypes of mice with genomes containing the 
specific deletion of the CNS-2 region [82]. Mice lacking CNS-2 display marked defects in Th2 
humoral immune responses. However, the effector Th2 cells involved in tissue responses 
were not likely to be dependent on CNS-2. In this region, increased histone acetylation lev-
els are observed. In contrast, changes in DNA methylation state are not induced, as DNA is 
demethylated even in naïve CD4 T cells [80]. By using a conventional ChIP technique, both 
GATA3 and nuclear factor of activated T cells 1 (NFAT1) have been shown to bind to HSVa 
in Th2 cells [72]. We and others have performed a GATA3 ChIP-seq analysis and detected 
GATA3 binding peaks at the HSVa [8, 79], implying that HSVa functions as an important 
regulatory element through which GATA3 and NFAT1 collaborate to induce IL-4 production 
in stimulated Th2 cells.

As we reported in 2002, CGRE was originally identified as a region with a 71-bp sequence 
located 1.6 kbp upstream of the Il13 gene [73]. The location of CGRE corresponds approxi-
mately to the site of HSI. CGRE contains four putative GATA-binding sequences conserved 
across species [73]. Strong signals of GATA3 binding have been detected by both conventional 
ChIP assay and ChIP-seq analyses at the CGRE [8, 9, 79]. Interestingly, CGRE is also located 
at the 5′ edge of the region of histone hyperacetylation, suggesting that GATA3 binds to the 
CGRE and induces histone acetylation toward the 3′ region of the Il13 gene. Indeed, GATA3 
associates with RNA polymerase II and CBP/p300, which contain histone acetyltransferase 
activity at this region [73]. In addition, CGRE is located at the 5′ edge of the accessible DNA 
region detected by ATAC-seq [63]. Thus, the CGRE region may play an important role in Il13 
transcription and in chromatin remodeling at the Il13 locus. Notably, the Th2 cells generated 
from CGRE-deficient mice exhibit diminished IL-13 but not IL-4 or IL-5 production [74].

Among several GATA3 binding sites found in the Il4 gene locus, the strongest GATA3 bind-
ing signal was detected at the HSII site located in intron 2 of the Il4 gene [8]. This region also 
contains binding sites for STAT5, which has been reported to be important for the mainte-
nance of DNA accessibility of this region in Th2 cells [23, 83]. Correspondingly, a strong 
ATAC-seq peak was detected at this region in Th2 cells [63]. Recently, a group reported that 
genetic deletion of HSII resulted in a reduction in IL-4 but not IL-13 production, implying 
its role in regulating IL-4 production [74]. In addition to histone hyperacetylation induced 
in this region, H3K4me3 was strongly induced at HSII in Th2 but not Th1 cells [84], suggest-
ing that GATA3 may work together with STAT5 and remodel the chromatin structure at this 
region. Parallel to changes in histone modifications, progressive DNA demethylation was 
observed across the Il4 gene locus. In naïve CD4 T cells, only the promoter region of the Il4 
gene is demethylated, and DNA demethylation extends into the Il4 gene body during Th2 
cell differentiation [80].
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5.3. GATA3-dependent transcriptional regulation of Th2 signature genes

In addition to regulating chromatin remodeling, GATA3 may induce Il5 and Il13 transcription 
by directly binding to the promoters of these cytokine genes upon TCR re-stimulation [7, 85–87]. 
In fact, Gata3 siRNA knockdown just before TCR re-stimulation resulted in reduced expression 
of Il5 and Il13 in established Th2 cells (Figure 2). The role of GATA3 in Il5 and Il13 transcription 
was also reported using genetic deletion of the Gata3 gene. While GATA3 deletion during Th2 
differentiation abolished the expression of all Th2 cytokines, GATA3 deletion in established Th2 

Figure 2. The effects of GATA3 knockdown on the Th2-specific genes in effector and memory Th2 cells. The effects 
of GATA3 knockdown on effector Th2 (upper) and memory Th2 (lower) were determined with qRT-PCR (originally 
published in PLoS ONE. Sasaki et al. [9]). The relative expression (GATA3/control siRNA) is rank-ordered and shown as 
a percentage. The genes indicated in the red bar showed increased GATA3 dependency in memory Th2 cells, while those 
in blue showed decreased GATA3 dependency.
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Taken together with the fact that histone acetylation levels are increased with progressive DNA 
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cells strongly influenced the expression of both IL-5 and IL-13 and induced only a modest reduc-
tion in IL-4 production [42]. GATA3 is also crucial for the expression of the Th2 cytokine genes 
in memory Th2 cells, as Gata3 siRNA knockdown reduces the transcription of those genes [9]. 
Furthermore, GATA3 is involved in the transcriptional regulation of other Th2 signature genes 
in both effector and memory Th2 cells (Figure 2). Approximately half of the Th2-specific genes  
(16 out of 31) showed a significant reduction in their expression in effector Th2 cells (F2r, Mapk12, 
Il1r2, Il4, Tanc2, Ptgir, Nfil3, Rnf128, Asb2, Tmtc2, Ccnjl, Gata3, Cyp11a1, Il13, Ccr8, and Il5) by GATA3 
knockdown. In contrast, only the Tube1 gene showed a significant increase in its expression. These 
results suggest that a major role of GATA3 is the activation of its target gene transcription.

Interestingly, changes in GATA3 dependency are observed during transition from effector to 
memory cells. In a previous study [9], we compared the GATA3 dependency in Th2-specific 
genes between effector Th2 cells and in vivo-generated memory Th2 cells by Gata3 siRNA knock-
down. GATA3 dependency increased by more than twofold in the Epas1 and Il24 genes in mem-
ory Th2 cells compared to the effector Th2 cells. In addition, for the Tube1, Rnfl28, Ccr8, and Il5 
genes, the GATA3 dependency decreased by more than twofold. These results indicate that each 
Th2-specific gene differentially changes its dependency on GATA3 during maturation to mem-
ory Th2 cells from effector Th2 cells. The changes in GATA3 dependency, however, do not cor-
relate with dependency itself. For example, Il5 is a gene with high dependency on GATA3 that 
shows a decreased dependency in memory Th2 cells. Taken together, these findings indicate 
that GATA3 is important for maintaining the transcriptional signatures in established Th2 cells.

6. A gene regulatory network in fully developed Th2 cells: the 
interplay between GATA3 and Menin, a component of the Trithorax 
complex

As described in Section 4.2, although Menin deficiency had little effect on the ordinary induc-
tion of Th2 differentiation, ‘Th2 cells’ lost their Th2 identity after several cycles of cultivation 
in the absence of Menin. Our study also revealed that Menin directly bound and epigeneti-
cally regulated the Gata3 gene, suggesting that constant expression of Menin and its binding 
to the Gata3 locus is necessary for the maintenance of the Th2 identity. Similar results were 
obtained with in vivo-generated memory Th2 cells, indicating that Menin maintains the mem-
ory Th2 cell function during the long-term resting phase. Indeed, Menin-deficient memory 
Th2 cells show an impaired ability to recruit eosinophils to the lung, causing the attenuation 
of airway inflammation induced by memory Th2 cells [52].

Since Th2 cells derived from Menin-deficient mice have defects in both Menin and GATA3 
expression, whether the lack of Menin, decreased expression of GATA3, or both are respon-
sible for the dysregulation of the Th2-specific gene expression in Menin-deficient cells remains 
unclear. In a recent study [52], we addressed this point using differentiated Th2 cells with two 
additional cycles of cultivation (Th2-3rd cells). Consequently, the gene expression profiles under 
three conditions (i.e. genetic deletion of Menin, Gata3 siRNA treatment, and retroviral gene 
transduction of hGATA3) were used to classify the Th2-specific genes into four groups (Figure 3).  
Asb2, Ccr8, Gzma, Il4, Il5, Il13, Il24, Mapk12, Tanc2, and Tube1 were assigned to Group 1, being 
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controlled by both GATA3 and Menin. Interestingly, only Gzma was negatively regulated by 
Menin, while the other nine genes were positively regulated. Although Gata3 siRNA treatment 
downregulated the Gzma expression, the forced expression of hGATA3 also reduced the Gzma 
expression for some unknown reason. Seven genes (Crem, Cyp11a1, F2r, Nfil3, Ptgir, Rnf128, 
and Tmtc2) were found to be positively controlled by GATA3 and not affected by Menin defi-
ciency (Group 2). Group 3 consisted of Spry2 and S100a, which were found to be controlled in 
a Menin-dependent and GATA3-independent manner. For the other 11 genes (Ccnjl, Dusp4, 
Ecm1, Epas1, Grtp1, Il1r2, Itgb3, Jdp2, Penk, Plcd1, and Tnfrsf8), neither Gata3 knockdown nor 
Menin deficiency had a significant effect on the gene expression (Group 4).

In our ChIP-seq analysis, the direct binding of Menin was observed in most of the 31 Th2-
specific genes, except for Asb2, Mapk12, Ecm1, Grtp1, and Plcd1. Nine of the Menin target 
genes (Ccr8, Gata3, Il4, Il5, Il13, Il24, S100a1, Tanc2, and Tube1) were positively regulated by 
Menin, whereas two targets (Gzma and Spry2) were negatively regulated. No significant effect 
of Menin deficiency was observed on the other 15 targets (Ccnjl, Crem, Cyp11a1, Dusp4, Epas1, 
F2r, Il1r2, Itgb3, Jdp2, Nfil3, Ptgir, Penk, Rnf128, Tmtc2, and Tnfrsf8). Several questions remain 
to be addressed regarding this regulatory network: Are any other factors involved? What 
recruits Menin to these gene loci? Why does Menin exert a suppressive effect on some target 
genes? (Table 1).

Figure 3. Th2-specific gene regulatory network. The regulatory network formed by Menin- and Th2-specific genes, including 
GATA3 (originally published in The Journal of Immunology. Onodera et al. [10]). Group 1 contains genes that are controlled by 
both GATA3 and Menin. Genes in Groups 2 and 3 are controlled by either GATA3 or Menin, respectively. Group 4 includes 
genes that are affected by neither GATA3 knockdown nor Menin knockout. Red arrows indicate the regulatory interactions 
that activate the target gene expression, whereas blue lines indicate the suppressive effects for targets.
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cells strongly influenced the expression of both IL-5 and IL-13 and induced only a modest reduc-
tion in IL-4 production [42]. GATA3 is also crucial for the expression of the Th2 cytokine genes 
in memory Th2 cells, as Gata3 siRNA knockdown reduces the transcription of those genes [9]. 
Furthermore, GATA3 is involved in the transcriptional regulation of other Th2 signature genes 
in both effector and memory Th2 cells (Figure 2). Approximately half of the Th2-specific genes  
(16 out of 31) showed a significant reduction in their expression in effector Th2 cells (F2r, Mapk12, 
Il1r2, Il4, Tanc2, Ptgir, Nfil3, Rnf128, Asb2, Tmtc2, Ccnjl, Gata3, Cyp11a1, Il13, Ccr8, and Il5) by GATA3 
knockdown. In contrast, only the Tube1 gene showed a significant increase in its expression. These 
results suggest that a major role of GATA3 is the activation of its target gene transcription.

Interestingly, changes in GATA3 dependency are observed during transition from effector to 
memory cells. In a previous study [9], we compared the GATA3 dependency in Th2-specific 
genes between effector Th2 cells and in vivo-generated memory Th2 cells by Gata3 siRNA knock-
down. GATA3 dependency increased by more than twofold in the Epas1 and Il24 genes in mem-
ory Th2 cells compared to the effector Th2 cells. In addition, for the Tube1, Rnfl28, Ccr8, and Il5 
genes, the GATA3 dependency decreased by more than twofold. These results indicate that each 
Th2-specific gene differentially changes its dependency on GATA3 during maturation to mem-
ory Th2 cells from effector Th2 cells. The changes in GATA3 dependency, however, do not cor-
relate with dependency itself. For example, Il5 is a gene with high dependency on GATA3 that 
shows a decreased dependency in memory Th2 cells. Taken together, these findings indicate 
that GATA3 is important for maintaining the transcriptional signatures in established Th2 cells.

6. A gene regulatory network in fully developed Th2 cells: the 
interplay between GATA3 and Menin, a component of the Trithorax 
complex

As described in Section 4.2, although Menin deficiency had little effect on the ordinary induc-
tion of Th2 differentiation, ‘Th2 cells’ lost their Th2 identity after several cycles of cultivation 
in the absence of Menin. Our study also revealed that Menin directly bound and epigeneti-
cally regulated the Gata3 gene, suggesting that constant expression of Menin and its binding 
to the Gata3 locus is necessary for the maintenance of the Th2 identity. Similar results were 
obtained with in vivo-generated memory Th2 cells, indicating that Menin maintains the mem-
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RefSeq ID Gene symbol Group GO term (function, process, or component)

NM_008355 Il13 1 Cytokine activity

NM_010558 Il5 1 Cytokine activity [88]

NM_023049 Asb2 1 Contributes to ubiquitin protein ligase activity [89]

NM_028006 Tube1 1 GTPase activity

NM_013871 Mapk12 1 MAP kinase activity

NM_010370 Gzma 1 Serine-type peptidase activity [90]

NM_053095 Il24 1 Cytokine activity [91]

NM_007720 Ccr8 1 C-C chemokine receptor activity [92]

NM_021283 Il4 1 Cytokine activity [93]

NM_181071 Tanc2 1 In utero embryonic development [94]

NM_017373 Nflil3 2 RNA polymerase II core promoter sequence-specific DNA 
binding [95]

NM_013498 Crem 2 Core promoter sequence-specific DNA binding [96]

NM_008967 Ptgir 2 G-protein coupled receptor activity

NM_010169 F2r 2 G-protein alpha-/beta-subunit binding [97]

NM_019779 Cyp11a1 2 Cholesterol monooxygenase (side-chain-cleaving) activity [98]

NM_177368 Tmtc2 2 Calcium ion homeostasis

NM_023270 Rnf128 2 Ubiquitin protein ligase activity [99]

NM_011309 S100a1 3 Protein binding [100]

NM_011897 Spry2 3 Negative regulation of ERK1 and ERK2 cascade [101]

NM_007899 Ecm1 4 Interleukin-2 receptor binding [102]

NM_009401 Tnfsf8 4 Tumor necrosis factor-activated receptor activity

NM_176933 Dusp4 4 MAP kinase tyrosine/serine/threonine phosphatase activity

NM_016780 Itgb3 4 Alpha9-beta1 integrin-ADAM8 complex [103]

NM_010555 Il1r2 4 Interleukin-1 receptor activity [104]

NM_010137 Epas1 4 DNA binding transcription factor activity [105]

NM_001045530 Ccnjl 4 Nucleus component

NM_019676 Plcd1 4 Phosphatidylinositol phosphate binding [106]

NM_001002927 Penk 4 Aggressive behavior [107]

NM_030887 Jdp2 4 RNA polymerase II proximal promoter sequence-specific DNA 
binding [108]

NM_025768 Grtp1 4 Rab GTPase binding

Table 1. Summary of the target genes of the GATA3 and Menin with functions of the encoded proteins (based on https://
www.ncbi.nlm.nih.gov/gene).
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7. Conclusions

Since the human genome project was completed in 2003, the human genomic DNA database 
has become accessible to researchers [109]. Open access to the reference genomes of humans, 
mice, and other organisms encourages scientists to develop elegant technologies, including 
ChIP-seq and high-throughput sequencing of RNA (RNA-seq) [110]. This technique enables 
us to analyze the epigenetic status of each population of cells on a genome-wide scale. Many 
scientists have tried to use this technique to clarify the functional roles of epigenetic modifica-
tions in gene expression, particularly in the fields of developmental biology and immunology 
[47].

Recently, we identified several important principles between the binding positions of PcG and 
TrxG proteins and the gene expression [52]; a binding pattern in which PcG binds upstream and 
TrxG binds downstream of the transcription start site is frequently found at highly expressed 
genes, and a binding pattern in which PcG and TrxG bind to opposite positions is frequently 
found at low-expressed genes in T lymphocytes. We hope that these findings will prove useful 
for understanding how CD4+ T cells acquire effector functions and identifying new thera-
peutic targets for treating allergic diseases, such as asthma, allergic rhinitis, food allergy, and 
atopic dermatitis. A recently developed epigenetic editing technique using the CRISPR/Cas9 
system now allows us to modify epigenetic marks in a site-specific manner [111]. In the future, 
we may use this technique to treat various diseases cause by epigenetic alternations.

Abbreviations

ATAC-Seq assay for transposase-accessible chromatin sequencing

ChIP-Seq chromatin immunoprecipitation followed by massively parallel sequencing

CNS conserved non-coding sequence

H3K27me3 trimethylated histone H3 lysine 27

H3K4me3 trimethylated histone H3 lysine 4

HS DNase I hypersensitive site

IL interleukin

PcG Polycomb group

PRC Polycomb repressive complex

STAT signal transducer and activator of transcription

Th helper T cell

TrxG Trithorax group
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Abstract

The immune system is under strict regulatory control to ensure homeostasis of inflammatory
responses, lying dormant when not needed but quick to act when called upon. Small changes
in gene expression can lead to drastic changes in lineage commitment, cellular function, and
immunity. Conventional assessment of these changes centered on the analysis of mRNA
levels through a variety of methodologies, including microarrays. However, mRNA synthesis
does not always correlate directly to protein synthesis and downstream functional activity.
Work conducted in recent years has begun to shed light on the various post-transcriptional
changes that occur in response to a dynamic external environment in which a given immune
cell type encounters. In this chapter, we provide a critical review of key post-transcriptional
and translational mechanisms of regulation of gene expression in the immune system, with
an emphasis of these regulatory processes in various CD4+ T cell subsets and their related
effector functions.

Keywords: inflammation, CD4+ T cells, transcriptional, translatome, immune regulation,
immunity

1. Introduction

CD4+ Tcells are key players in the adaptive immune response, capable of adapting their function
depending on the immune challenge being faced. CD4+ T cells employ a wide variety of signal-
ing pathways to integrate environmental cues and translate them into the requisite gene expres-
sion programs required to carry out their effector functions. These gene expression programs are
enacted by a complex network of factors, involving the direct action of transcription factors to
drive mRNA synthesis, epigenetic modification of DNA accessibility to modulate gene expres-
sion, as well as a variety of post-transcriptional mechanisms including RNA-binding proteins
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an emphasis of these regulatory processes in various CD4+ T cell subsets and their related
effector functions.
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1. Introduction

CD4+ Tcells are key players in the adaptive immune response, capable of adapting their function
depending on the immune challenge being faced. CD4+ T cells employ a wide variety of signal-
ing pathways to integrate environmental cues and translate them into the requisite gene expres-
sion programs required to carry out their effector functions. These gene expression programs are
enacted by a complex network of factors, involving the direct action of transcription factors to
drive mRNA synthesis, epigenetic modification of DNA accessibility to modulate gene expres-
sion, as well as a variety of post-transcriptional mechanisms including RNA-binding proteins
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and microRNA that influence the stability and translation of synthesized mRNA. This complex-
ity ensures that CD4+ T cells can mount an appropriate and adequate response to a wide variety
of pathogens.

2. Transcriptional regulation of CD4+ Tcell activation

Complex transcriptional changes are required for CD4+ T cell generation and egress from the
thymus (reviewed in [1]). Recent thymic emigrant naïve CD4+ T cells are maintained in the
periphery through the action of important cytokines, like IL-7, which support cell survival.
Naïve CD4+ T cells maintain high levels of the IL-7 receptor (CD127), which is maintained in
part through the action of the transcription factor, ETS-1 [2]. ETS-1 has been shown to directly
bind the il7ra promoter to maintain expression on the cell surface, with levels of ETS-1 being
shown to directly correlate with the levels of CD127 expression. Runx1 is another transcription
factor that is required for CD127 expression in naïve CD4+ T cells, possessing a binding site in
close proximity to ETS-1 in the il7ra promoter [3]. Signaling through CD127 is necessary to
trigger phosphorylation of STAT5 and the expression of the antiapoptotic proteins BCL-2,
BCL-xL, and MCL-1, all necessary for the survival of naïve CD4+ T cells during homeostatic
expansion. This results in the maintenance of the pool of naïve cells prior to antigen engage-
ment of the T cell receptor (TCR) [4]. The recognition of the cognate antigen by the TCR is
responsible for the initial changes to the T cell transcriptional program through the activation
of the Nuclear Factor of Activated T Cells (NFAT) transcription factor family. In naïve CD4+ T
cells, NFAT is maintained in a phosphorylated and inactive state through the action of the
kinases GSK3 and CK1 [5, 6]; however, the TCR signaling cascade and subsequent calcium
influx result in the dephosphorylation of NFAT by calcineurin allowing for nuclear transloca-
tion of NFAT to enact its transcriptional program [7]. The nature of this transcriptional pro-
gram is dependent on the presence of the NFAT binding partner, AP-1. The AP-1 complex
consists of the FOS and JUN transcription factors and is assembled upon activation of the
CD28 co-stimulatory pathway [8]. The cooperative action of NFAT and AP-1 drives the tran-
scription of IL-2, which acts in an autocrine and paracrine fashion, and drives the proliferation
of CD4+ T cells via phosphorylation of STAT5. STAT5 signaling is responsible for enhancing
the transcription of genes necessary for the proliferation and survival of CD4+ T cells following
activation, including promoting the expression of the high-affinity component of its own
receptor CD25 (IL-2Rα chain), while reducing the transcription of CD127 [9, 10]. Co-
engagement of the TCR and CD28 co-stimulatory molecule also promotes the activation of
the NF-κB family of transcription factors, necessary to prevent activation-induced cell death
and apoptosis [11]. While NFAT and NF-κB are necessary during the initial stages of T cell
activation, they are also necessary for the differentiation o CD4+ T cells into distinct Th cell
subset each endowed with its cytokine signature and specific effector functions [12, 13]. The
CD4+ T cell lineage choice is determined largely by the extracellular milieu and presence of
various cytokines that trigger the expression of a diverse network of transcription factors upon
activation of the cytokine signaling pathways. This lineage choice is determined by a number
of factors including the nature of the pathogen and genetic background of the host. Several Th
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cell subsets have been identified and include Th1 effector T (TEFF) cells arise to enhance
cytotoxic activity of immune cells against intracellular bacterial and viral infections, Th2 cells
facilitating antibody generation, and Th17 cells protecting against extracellular pathogens
including parasites and fungi, while regulatory T cells (TREG) are necessary for the resolution
of inflammation and to control aberrant T cell responses in the periphery to promote self-
tolerance [14].

2.1. Transcription factor networks regulating CD4+ Tcell differentiation

Th cell lineage commitment is dependent on the expression and function of lineage-specifying
transcriptional factors. The transcription factor TBX21 (T-bet) is thought to be the main driver
of the Th1 transcriptional program, which is initiated through the activation of STAT pathways
by Interferon gamma (IFNγ) and IL-12 secreted by antigen-presenting cells (APCs) [15]. IFNγ-
activated STAT1 binds the Tbx21 promoter to drive the first round of T-bet expression [16].
This prompts the expression of the IL-12 receptor β2 subunit, allowing IL-12 present in the
extracellular milieu to activate STAT4, which further drives T-bet expression [17]. T-bet also
activates the transcription of the transcription factors H2.0-like homeobox (HLX) and runt-
related transcription factor 3 (RUNX3) [18, 19]. T-bet can bind the IFNγ promoter facilitating
chromatin looping, allowing for T-bet binding partners HLX and RUNX3 to drive IFNγ
expression in Th1 cells [20]. IFNγ acts in a feed-forward loop to drive continued T-bet expres-
sion through STAT1. The production of IFNγ is also regulated by the NF-κB family member,
RelA, with RelA deficiency being shown to reduce IFNγ expression. Additionally, the recruit-
ment of RelA to the ifng locus is dependent on T-bet expression [21]. NFAT has also been
shown to act synergistically with T-bet by binding the 50 enhancer region of the ifng gene [22].
However, the NFAT enhancing activity is not limited to the Th1 cell differentiation, as it has
been linked to the promotion of a variety of activation-induced genes in CD4+ T cells, with
activation of these genes being blocked by calcineurin inhibitors [23]. T-bet is responsible for
activating the majority of Th1-related genes including the chemokine receptors CXCR3 and
CCR5 as well as the requisite ligand CCL3 and CCL4 for attracting other Th1 cells to the site of
inflammation [24]. The T-bet-mediated Th1 transcriptional program also drives the expression
of other Th1 cytokines including TNFα and lymphotoxin-α [25].

The Th2 transcriptional program is largely mediated through the action of GATA3. While
GATA3 expression is already present in naive CD4+ T cells, it is insufficient to drive Th2
polarization [26]. Enhanced expression of GATA3 in Th2 cells can occur in response to two
distinct pathways. IL-4 activates STAT6 to activate the transcription of GATA3 while signaling
through the Notch pathway can activate GATA3 transcription independent of STAT6 [27, 28].
Activation of GATA3 induces its partner transcription factor c-MAF [29]. Together, they induce
the expression of IL-4, which acts as an enhancer of Th2 differentiation in an autocrine loop
through STAT6 leading to increased GATA3 expression [30]. GATA3 and STAT6 act in con-
junction to activate transcription of Th2 cytokine genes il5 and il13, as well as further transcrip-
tion of il4 [26]. The transcription factor BCL3 has also been shown to transactivate the GATA3
promoter [31]. The NF-κB family member p50 is important for Th2 function, as mice lacking
p50 are unable to transcribe il4, il5, and il13 [32]. NFAT is also known to act as an enhancer for
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gram is dependent on the presence of the NFAT binding partner, AP-1. The AP-1 complex
consists of the FOS and JUN transcription factors and is assembled upon activation of the
CD28 co-stimulatory pathway [8]. The cooperative action of NFAT and AP-1 drives the tran-
scription of IL-2, which acts in an autocrine and paracrine fashion, and drives the proliferation
of CD4+ T cells via phosphorylation of STAT5. STAT5 signaling is responsible for enhancing
the transcription of genes necessary for the proliferation and survival of CD4+ T cells following
activation, including promoting the expression of the high-affinity component of its own
receptor CD25 (IL-2Rα chain), while reducing the transcription of CD127 [9, 10]. Co-
engagement of the TCR and CD28 co-stimulatory molecule also promotes the activation of
the NF-κB family of transcription factors, necessary to prevent activation-induced cell death
and apoptosis [11]. While NFAT and NF-κB are necessary during the initial stages of T cell
activation, they are also necessary for the differentiation o CD4+ T cells into distinct Th cell
subset each endowed with its cytokine signature and specific effector functions [12, 13]. The
CD4+ T cell lineage choice is determined largely by the extracellular milieu and presence of
various cytokines that trigger the expression of a diverse network of transcription factors upon
activation of the cytokine signaling pathways. This lineage choice is determined by a number
of factors including the nature of the pathogen and genetic background of the host. Several Th
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of the Th1 transcriptional program, which is initiated through the activation of STAT pathways
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activated STAT1 binds the Tbx21 promoter to drive the first round of T-bet expression [16].
This prompts the expression of the IL-12 receptor β2 subunit, allowing IL-12 present in the
extracellular milieu to activate STAT4, which further drives T-bet expression [17]. T-bet also
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RelA, with RelA deficiency being shown to reduce IFNγ expression. Additionally, the recruit-
ment of RelA to the ifng locus is dependent on T-bet expression [21]. NFAT has also been
shown to act synergistically with T-bet by binding the 50 enhancer region of the ifng gene [22].
However, the NFAT enhancing activity is not limited to the Th1 cell differentiation, as it has
been linked to the promotion of a variety of activation-induced genes in CD4+ T cells, with
activation of these genes being blocked by calcineurin inhibitors [23]. T-bet is responsible for
activating the majority of Th1-related genes including the chemokine receptors CXCR3 and
CCR5 as well as the requisite ligand CCL3 and CCL4 for attracting other Th1 cells to the site of
inflammation [24]. The T-bet-mediated Th1 transcriptional program also drives the expression
of other Th1 cytokines including TNFα and lymphotoxin-α [25].

The Th2 transcriptional program is largely mediated through the action of GATA3. While
GATA3 expression is already present in naive CD4+ T cells, it is insufficient to drive Th2
polarization [26]. Enhanced expression of GATA3 in Th2 cells can occur in response to two
distinct pathways. IL-4 activates STAT6 to activate the transcription of GATA3 while signaling
through the Notch pathway can activate GATA3 transcription independent of STAT6 [27, 28].
Activation of GATA3 induces its partner transcription factor c-MAF [29]. Together, they induce
the expression of IL-4, which acts as an enhancer of Th2 differentiation in an autocrine loop
through STAT6 leading to increased GATA3 expression [30]. GATA3 and STAT6 act in con-
junction to activate transcription of Th2 cytokine genes il5 and il13, as well as further transcrip-
tion of il4 [26]. The transcription factor BCL3 has also been shown to transactivate the GATA3
promoter [31]. The NF-κB family member p50 is important for Th2 function, as mice lacking
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GATA3 binding to il4 locus to further cement Th2 lineage commitment due to an IL-4 feed-
forward loop [33]. While GATA3 drives the Th2 transcriptional program, it can also restrict
Th1 differentiation by repressing the transcription of IFNγ and STAT4 [34]. Conversely, T-bet
in conjunction with RUNX3 can suppress il4 transcription by competing with GATA3 for
binding to the il4 promoter [19].

Th17 cells arise in specific conditions where Th1 and Th2 differentiation can be inhibited as the
presence of the Th1 or Th2 transcriptional program can repress Th17 differentiation. The
transcription factor RORγT (encoded by the rorc gene) is responsible for driving Th17 differ-
entiation and effector function [35]. RORγT induction is dependent on the Transforming
Growth Factor β (TGF-β) signaling pathway, which inhibits both Th1 and Th2 differentiation
[36, 37]. TGF-β signaling on its own favors the development of TREG cells; however, the
presence of exogenous IL-6 redirects cells toward a Th17 fate. IL-6 mediated activation of
STAT3 is responsible for blocking expression of the master regulatory transcription factor of
TREG cells, Foxp3 [38, 39]. In the absence of Foxp3, TGF-β induces the transcription of RORγT
that activates the transcription of Th17-related cytokines including IL-17A/F, IL-21, and IL-22
[35]. IL-21 amplifies STAT3 activity through an autocrine loop to further enhance Th17 differ-
entiation [40]. RORγT is also responsible for inducing the expression of the IL-23R to allow for
enhanced maintenance of RORγT expression [37]. Exogenous IL-23 and autocrine IL-21 act in
concert with TGF-β to activate further transcription of RORγT, enhancing commitment to the
Th17 lineage. The transcription factor DDx5 partner with RORγT to drive Th17 cytokine
expression; however, it is dispensable for RORγT induction [41]. DDX5 and RORγT co-localize
to the il17a and il17f loci to enhance Th17 effector function. The transcription factor BATF is
another important early regulator of the Th17 transcriptional program. BATF-deficient mice
possess normal Th1 and Th2 differentiation; however, Th17 induction in these mice was
severely impaired as they failed to induce the expression of IL-21 and RORγT [42].

TREG cells are central to the maintenance of peripheral tolerance and the resolution of inflamma-
tion. TREG cells can differentiate in the thymus or under unique stimulatory conditions in the
periphery. As such, The TREG cell pool consists of thymic-derived TREG cells (tTREG) as well as
peripherally induced TREG cells (pTREG) cells [43]. Foxp3 expression in tTREG cells has been
shown to be dependent on the binding of several transcription factors to both the foxp3 promoter
and conserved noncoding sequences (CNS), which function as enhancers of foxp3 transcription
[44]. The NFATandAP-1 complexes bind to the foxp3 promoter following TCR stimulation in the
thymus to drive Foxp3 expression [44]. The NF-κB family member c-Rel is responsible for
enhancing tTREG generation through binding to CNS3, while the Foxo family member proteins,
Foxo1 and Foxo3, enhance expression through binding to the foxp3 promoter as well as to CNS2
[45, 46]. In the periphery, induction of Foxp3 in pTREG cells is dependent on the action of key
cytokines like TGF-β. TGF-β signaling activates Mothers Against Decapentaplegic Homologues
2 and 3 (SMAD2/3), which act in concert with NFAT to drive Foxp3 expression by binding to
CNS1 [47]. Foxp3 has been shown to interact with ~361 binding partners that allow it to enable
the TREG transcriptional program. Foxp3 acts mostly as a transcriptional repressor preventing the
expression of Th1 and Th2 characteristic cytokines including IFNγ, IL-2, and IL-4. This repres-
sive activity is dependent on the interaction of Foxp3 and NFAT and Eos [48–50]. Repression of
IL-2 expression and production means that TREG cells, anergic by nature, are entirely dependent
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on exogenous sources of IL-2 for proliferation and survival. However, this need is in part met by
enhanced CD25 transcription by Foxp3. Moreover, upregulation of CD25 in TREG cells allows
them to receive the requisite STAT5 signals for the mediation of their suppressive effector
function [43]. The transcriptional program enacted by Foxp3 is also responsible for upregulating
the expression of genes that give TREG cells their suppressive capacity. This includes the anti-
inflammatory cytokine, IL-10, as well as surface proteins such as CTLA4 for contact-dependent
inhibition of APCs, and CD39/CD73 to shift the extracellular milieu from an ATP-driven inflam-
matory state through conversion of ATP to adenosine [48, 51, 52]. TREG cells have also been
shown to depend on co-expression of T-bet, GATA3, and RORγT to mediate suppression of the
CD4+ Th cell subsets, in turn enabling them to express distinct chemokine receptors to allow
TREG cells to traffic to inflammatory sites and suppress the corresponding TEFF cell type [53].
TREG cells are also known to downregulate Foxp3 expression resulting in their reprogramming
into highly pro-inflammatory cells under certain inflammatory contexts [54]. However, the
nature of environmental triggers, stability, and reversibility of this transformation remains a
topic of intense investigation.

3. Epigenetic control of transcriptional programs in Th cell subsets

The transcriptional programs described thus far shed light on the mechanism leading to the
differentiation of various CD4+ T cell subsets (Figure 1). However, the ability of transcription
factors to drive their relative gene expression programs is dependent on several key factors
including transcription factor abundance, their location, any posttranslational modifications,
and importantly, whether the enhancer or promoter region they bind to is accessible in the
DNA. The accessibility of DNA is dictated by chromatin accessibility dependent on nucleo-
some modifications as well as the methylation status of the DNA itself.

Methylation of cytosines in cytosine-phosphate-guanine (CpG) dinucleotides in promoter and
enhancer regions of the DNA has been shown to directly impact the ability of transcription
factors to drive mRNA expression by either directly inhibiting transcription factor binding or
through recruitment of methyl-CpG-binding domain proteins [55]. DNA methylation markers
are transferred to progeny DNA through the action of DNA methyl transferase 1 (DNMT1),
while demethylating enzymes such as Tet2 can facilitate the removal of methyl groups from
CpG islands [56, 57]. Unlike DNA methylation, the nucleosome modifications present in
chromatin can be dynamic and varied. Nucleosomes can vary in their composition with
variant form of histone H2, H3, and linker histones being incorporated or removed from the
nucleosome to alter DNA accessibility. Histone modifications include the addition of acetyl or
methyl groups as well as sumoyl, ubiquitin, and ADP-ribose to modify DNA-binding sites for
regulatory elements that can either enhance or repress transcription [58]. Accessible DNA
results in the creation of DNase1 hypersensitivity sites, which has allowed for identification
of permissive sites in the DNA [59]. Recent studies have uncovered a wide array of possible
histone modifications that take place within mammalian cells; however, a few main types of
modifications stand out as being characteristic of silenced, readily accessible, and inactive but
ready to be transcribed genes. Silenced genes are characterized by the presence of histone H3 with
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thymus to drive Foxp3 expression [44]. The NF-κB family member c-Rel is responsible for
enhancing tTREG generation through binding to CNS3, while the Foxo family member proteins,
Foxo1 and Foxo3, enhance expression through binding to the foxp3 promoter as well as to CNS2
[45, 46]. In the periphery, induction of Foxp3 in pTREG cells is dependent on the action of key
cytokines like TGF-β. TGF-β signaling activates Mothers Against Decapentaplegic Homologues
2 and 3 (SMAD2/3), which act in concert with NFAT to drive Foxp3 expression by binding to
CNS1 [47]. Foxp3 has been shown to interact with ~361 binding partners that allow it to enable
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expression of Th1 and Th2 characteristic cytokines including IFNγ, IL-2, and IL-4. This repres-
sive activity is dependent on the interaction of Foxp3 and NFAT and Eos [48–50]. Repression of
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factors to drive their relative gene expression programs is dependent on several key factors
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Methylation of cytosines in cytosine-phosphate-guanine (CpG) dinucleotides in promoter and
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are transferred to progeny DNA through the action of DNA methyl transferase 1 (DNMT1),
while demethylating enzymes such as Tet2 can facilitate the removal of methyl groups from
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variant form of histone H2, H3, and linker histones being incorporated or removed from the
nucleosome to alter DNA accessibility. Histone modifications include the addition of acetyl or
methyl groups as well as sumoyl, ubiquitin, and ADP-ribose to modify DNA-binding sites for
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results in the creation of DNase1 hypersensitivity sites, which has allowed for identification
of permissive sites in the DNA [59]. Recent studies have uncovered a wide array of possible
histone modifications that take place within mammalian cells; however, a few main types of
modifications stand out as being characteristic of silenced, readily accessible, and inactive but
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either dimethylation or trimethylation of lysine 9 or 27 (H3K27 and K3 K9), whereas readily
accessible and transcribed genes possess single, di-, or tri- methylation of lysine 4 on histone 3
(H3K4) [60]. In addition, the presence of acetyl groups on histones increases the mobility of
nucleosomes, allowing enhanced transcription of genes in proximity to acetylated histones. Genes
that are inactive but poised and ready to be transcribed possess bivalent modifications incorporat-
ing both permissive and silencing modifications. In recently activated naïve CD4+ T cells, the
presence of these bivalent modifications at important cytokine loci allows Th subset-dependent
factors to make the corresponding loci more accessible while silencing loci associated with
alternate lineages. TCR stimulation results in the creation of DNAse-1 hypersensitivity sites in
the ifng and il4 loci dependent on the recruitment of NFAT to these loci, as inhibition of TCR
activation with CsA ablated the creation of these sites [61].

Figure 1. A generalized overview of CD4+ T cell activation and differentiation. Activation of the TCR and CD28
co-stimulation pathways is required for the induction of genes necessary for T cell proliferation and survival, allowing
for further differentiation based on requisite signals. Activation of STAT1 and STAT4 pathways, triggered by IFNγ and
IL-12 respectively, is required to induce the expression of T-bet resulting in the secretion of IFNγ and other Th1 cytokines.
The Th2 lineage is driven by GATA3 upon activation of the STAT6 pathway by IL-4. TGF-β in conjunction with STAT3
activating signals is required to drive a Th17 response via expression of RORγT. Similarly, TGF-β and NFAT can facilitate
the conversion of TEFF cells to a TREG phenotype through induction of Foxp3, resulting in the expression of proteins
required for TREG suppressive function but making them dependent on exogenous IL-2 for proliferation and survival.
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During Th1 lineage commitment, the ifng locus is marked by the presence of both H3K4 and
H3K27 modifications; however, progression through Th1 differentiation in response to the
initial upregulation of T-bet leads to a significant increase in the presence of permissive H3K4
modifications, while H3K27 modifications are removed throughout the locus [62]. This results
in a marked increase of DNase-1 hypersensitivity sites at regulatory elements of the IFNγ
locus. STAT4 further contributes to the generation of a permissive environment at this locus
through recruitment of chromatin-remodeling complexes to the promoter allowing for
increased IFNγ expression [63]. However, while STAT4 signaling is required for enhancing
Th1 differentiation, T-bet can drive lineage commitment in the absence of STAT4 signaling due
to its ability to bind the ifng locus when it is repressively methylated and to recruit histone
demethylases to remove repressive H3K27 modifications [64]. Additionally, T-bet is known to
recruit methyl-transferases to create permissive H3K4 trimethylation [65]. Thus, T-bet expres-
sion can override the repressive modifications to the ifng locus during the process of Th2
differentiation.

The epigenetic modifications that arise during Th2 differentiation have been extensively stud-
ied in past decades. Unlike the loci for other subset-specific cytokines, the il4 promoter pos-
sesses a reduced degree of CpG methylation allowing low-level transcription of il4 mRNA
following the TCR stimulation, allowing this locus to convert to a more permissive state as the
level of Th2 cytokine signaling increases [66, 67]. The increased IL-4 signaling through STAT6
results in the recruitment of histone acetyl transferases to the GATA3 promoter [68]. As the
expression of GATA3 increases in Th2 cells, it mediates a variety of epigenetic changes at Th2
cytokine loci. One action of GATA3 is to inhibit the binding of MBD proteins to CpG methyl
groups and restrict the action of DNMT1, resulting in a loss of CpG methylation as cells
continue to divide under Th2 polarizing conditions [69]. Even in committed Th1 cells, inhibi-
tion of DNMT1 results in the ability of Th1 cells to secrete IL-4, demonstrating the importance
of GATA3-mediated demethylation of the Th2 cytokine locus in Th2 cell commitment [66].
GATA3 is also able to sustain its own expression through recruitment of methyltransferases to
the gata3 promoter to induce permissive H3K4 modifications, indicating that while STAT6 is
necessary for the initiating the conversion of naïve CD4+ T cells to a Th2 phenotype, GATA3
transcriptional activity and epigenetic modifications are responsible for stabilizing commit-
ment to the Th2 cell fate. In addition to maintain Th2 differentiation, GATA3 is known to bind
the ifng promoter in conjunction with STAT6 to mediate recruitment of methyltransferases to
increase the presence of repressive H3K27 modifications, as well as by recruiting histone
deacetylase complexes to further repress transcription of the ifng locus and suppress Th1 cell
commitment [70].

Unlike with Th1 and Th2 differentiation, there is no evidence that the master transcription
factor of the Th17 lineage, RORγT, can induce the necessary epigenetic changes to facilitate the
Th17 transcriptional program. However, STAT3 is known to recruit histone acetyltransferases
to the il17a and il17f promoters to promote Th17 effector function [71]. Interestingly, analysis
of histone modifications in freshly isolated Th17 cells has revealed that they possess bivalent
modifications at both the ifng and tbx21 loci, allowing for the generation of IFNγ+IL-17+
Th cells. These loci are thought to become permissive following TCR stimulation, and studies
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either dimethylation or trimethylation of lysine 9 or 27 (H3K27 and K3 K9), whereas readily
accessible and transcribed genes possess single, di-, or tri- methylation of lysine 4 on histone 3
(H3K4) [60]. In addition, the presence of acetyl groups on histones increases the mobility of
nucleosomes, allowing enhanced transcription of genes in proximity to acetylated histones. Genes
that are inactive but poised and ready to be transcribed possess bivalent modifications incorporat-
ing both permissive and silencing modifications. In recently activated naïve CD4+ T cells, the
presence of these bivalent modifications at important cytokine loci allows Th subset-dependent
factors to make the corresponding loci more accessible while silencing loci associated with
alternate lineages. TCR stimulation results in the creation of DNAse-1 hypersensitivity sites in
the ifng and il4 loci dependent on the recruitment of NFAT to these loci, as inhibition of TCR
activation with CsA ablated the creation of these sites [61].

Figure 1. A generalized overview of CD4+ T cell activation and differentiation. Activation of the TCR and CD28
co-stimulation pathways is required for the induction of genes necessary for T cell proliferation and survival, allowing
for further differentiation based on requisite signals. Activation of STAT1 and STAT4 pathways, triggered by IFNγ and
IL-12 respectively, is required to induce the expression of T-bet resulting in the secretion of IFNγ and other Th1 cytokines.
The Th2 lineage is driven by GATA3 upon activation of the STAT6 pathway by IL-4. TGF-β in conjunction with STAT3
activating signals is required to drive a Th17 response via expression of RORγT. Similarly, TGF-β and NFAT can facilitate
the conversion of TEFF cells to a TREG phenotype through induction of Foxp3, resulting in the expression of proteins
required for TREG suppressive function but making them dependent on exogenous IL-2 for proliferation and survival.
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necessary for the initiating the conversion of naïve CD4+ T cells to a Th2 phenotype, GATA3
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ment to the Th2 cell fate. In addition to maintain Th2 differentiation, GATA3 is known to bind
the ifng promoter in conjunction with STAT6 to mediate recruitment of methyltransferases to
increase the presence of repressive H3K27 modifications, as well as by recruiting histone
deacetylase complexes to further repress transcription of the ifng locus and suppress Th1 cell
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Unlike with Th1 and Th2 differentiation, there is no evidence that the master transcription
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with immunization of OT-II mice with ovalbumin reveal an increase in the amount of double
positive cells compared to unimmunized controls with higher levels of il12rb2 mRNA found
within the Th17 cells of immunized mice [72].

The epigenetic landscape of TREG cells is crucial for the induction and stable expression of
Foxp3 and ensuing TREG transcriptional program through alterations to the CNS regions of
the foxp3 locus. While the binding of c-REL to CNS3 is important for Foxp3 induction in
tTREG cells in the thymus, and the binding of SMAD/NFAT complexes to CNS1 is responsible
for the induction of Foxp3 in pTREG cells, CNS2 has been identified as being necessary for
sustained Foxp3 expression in the maintenance of the TREG phenotype [73]. This region,
termed as the TREG-specific demethylated region (TSDR), contains binding sites for various
transcription factors involved in maintaining Foxp3 expression, including ETS-1, STAT5,
CREB/ATF, as well as Foxp3 itself [74]. In tTREG cells, this region is devoid of CpG methyla-
tion while being highly methylated in induced TREG cells; however, pTREG cells induced
in vivo possess partially hypomethylated TSDRs resembling that of tTREG cells [75]. Mainte-
nance of the TSDR in TREG cells is achieved in part through regulation of DNMT1 expression.
DNMT1 has been shown to be able to disrupt the TSDR in tTREG cells. DNMT1 expression is
induced via activation of STAT3 in response to exogenous IL-6, resulting in methylation of
the TSDR and downregulation of Foxp3 expression. In addition, the strength of TCR signal-
ing during pTREG induction has been shown to regulate the level of DNMT expression, with
high levels of TCR signaling resulting in the impaired induction of Foxp3. Conversely, TGF-β
signaling is known to antagonize DNMT1 activity in TREG cells [76, 77]. Furthermore, the
MBD protein MBD2 has been demonstrated to be essential for maintenance of the TSDR in
tTREG cells. tTREG from MBD2�/� mice were shown to possess demethylated TSDR in the
thymus but were unable to maintain the TSDR in the periphery. This is due to impaired
recruitment of the demethylase Tet2 to the TSDR in the absence of MBD2, suggesting a role
for MBD2 in the active demethylation of the TSDR [78].

4. Regulation of mRNA stability in CD4+ Tcell subsets

Thus far, we have examined how transcriptional and epigenetic changes are able to influence
various gene expression programs of CD4+ T cell subsets through the induction of mRNA
synthesis to enact both lineage commitment and effector function. However, recent studies
have demonstrated that the level of mRNA within a cell is dependent not only on the genera-
tion of new mRNA transcripts but also on the stability of mRNA in the cytosol allowing for
continued protein expression. Several mechanisms have been described that are capable of
regulating mRNA stability including RNA-binding proteins (RBP) as well as other RNA
molecules.

RBPs are a specialized group of proteins that recognize conserved sequences present in the
untranslated regions (UTR) of mRNA. One of the determinants of mRNA stability is the length
of the polyadenylated tails with the removal of mRNA poly-a-tails being a precursor to the
removal of 50 CAP and subsequent degradation of mRNA [79]. The RBP CPEB1 has been
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shown to recognize cytosolic polyacetylation motifs in the UTR of mRNA and can modulate
the length of the poly-a-tail depending on its phosphorylation status. Other RBPs such as
tristetraprolin (TTP) recognize AU-rich elements (ARE) and are responsible for degrading
mRNA synthesized under homeostatic conditions, but can be inactivated in inflammatory
contexts to facilitate mRNA translation. Conversely, RBPs-like HuR can stabilize mRNA
within the cytosol, allowing for prolonged gene expression [80].

Recent years have seen an emergence in the study of how noncoding RNA molecules can
regulate mRNA stability. This group consists of short RNA sequences called micro-RNA
(miRNA) as well as longer noncoding sequences (LncRNA). miRNAs are synthesized as
longer pre-miRNA; however, processing by various RNAse proteins, such as Drosha, Dicer,
and DGCR8, cleaves the miRNA molecule to its mature ~22 nucleotide length consisting of a
sequence that is antisense to its mRNA target, with binding sites being found primarily in the
UTR regions of target mRNA transcripts. Mature miRNA recruits the RNA-induced silencing
complex to target mRNA transcripts, inducing their degradation [81]. On the other hand,
LncRNA has been shown to play a variety of roles, including miRNA sponges by providing
decoy sites for miRNA binding as well as factors involved in facilitating transcription factor
complex formation [82].

These mRNA stability mechanisms play an important role in the activation of naïve CD4+ T
cells. The absence of miRNA in T cells through ablation of the processing enzyme DICER
resulted in a decrease in the expansion of DICER-deficient CD4+ T cells following TCR stimu-
lation [83]. Importantly, the miR 17~92 cluster has been found to have an important function in
facilitating the CD28 co-stimulatory pathway through repression of the inhibitory protein
PTEN, allowing for T cell proliferation [84]. miRNA has also been shown to modulate TCR
sensitivity, with miR-181a targeting the inhibitory kinases PTPN22 and SHP-2, which act to
terminate TCR signaling. Antagonizing miR-181a abolishes CD69 expression, a characteristic
marker of recent TCR stimulation [85]. miR-21 also contributes to the epigenetic landscape in T
cell by targeting DNMT1 mRNA, creating hypomethylated regions in CD4 + T cells, resulting
in aberrant activation and cytokine secretion [86]. On the other hand, several miRNAs are
known to restrict CD4+ T cell activation, and miR181c targets IL-2 mRNA to repress expression
in naïve CD4+ T cells; however, its expression is downregulated following TCR stimulation
allowing for IL-2 secretion [87]. mIR-125b has also been shown to be important in keeping
CD4 + T cells in a naïve state by targeting key cytokines and cytokine receptors involved in
CD4 + T cell differentiation [88]. However, another study has demonstrated that TCR activa-
tion causes lymphocytes to produce mRNA transcripts with shortened UTRs negating some of
the inhibitory effect of miRNAs [89]. In addition, expression of the RBP HuR is increased in
activated CD4+ T cells, resulting in increased mRNA stability [90].

mRNA stability has been shown to be a contributing factor in regulating Th1/Th2 differentia-
tion. miR-155 facilitates Th1 differentiation by targeting the Th2 accessory transcription factor
c-Maf to limit Th2 differentiation, while miR-17 has been shown to restrict expression of the
TGF-β receptor subunit 2 to block Th17 and pTREG conversion [91–93]. Other miRNAs have
been shown to limit Th1 differentiation. miR-138 has been shown to alter the Th1/Th2 cell
balance by targeting RUNX3 mRNA impeding the T-bet-mediated induction of IFNγ [94].
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contexts to facilitate mRNA translation. Conversely, RBPs-like HuR can stabilize mRNA
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the inhibitory effect of miRNAs [89]. In addition, expression of the RBP HuR is increased in
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tion. miR-155 facilitates Th1 differentiation by targeting the Th2 accessory transcription factor
c-Maf to limit Th2 differentiation, while miR-17 has been shown to restrict expression of the
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Signaling through STAT1 initiates the transcription of miR-29, which contributes to the restric-
tion of Th1 lineage commitment by directly targeting both T-bet and IFNγ mRNA, preventing
the IFNγ-mediated feed-forward loop from driving further T-bet expression [95]. The RNA-
binding protein TTP is also known to degrade IFNγ mRNA in activated T cells resulting in a
twofold reduction of the half-life of IFNγ-mRNA in CD4+ T cells [96]. TTP has also been shown
to facilitate degradation of TNFα mRNA in other cell types, suggesting that a similar mecha-
nism may be present in Th1 cells. The RBP HuR has shown to increase the half-life of il4 and
il13 mRNA to promote Th2 differentiation. Furthermore, HuR protected GATA3 from TTP-
mediated degradation by blocking the ARE element present in GATA3 mRNA [97–99].
miRNA has also been linked to increased Th2 responses. Studies employing the use of asthma
models have revealed that miR-19 and mIR-146a are able to enhance Th2 responses with
elevated levels being detected in Th2 cytokine-secreting cells [100]. Elevated cytokine secretion
was seen in cells that express miR-19 compared to miR-19-deficient cells that express high
levels of GATA3. Ablation of miR-146a resulted in a skewing toward Th1/Th17 differentiation
[101]. Other miRNAs act to increase the DNA-binding activity of GATA3 with mIR-126
targeting a negative regulator of GATA3 transcriptional activity [102]. Conversely, some
miRNAs act to reduce Th2 differentiation directly with miR-340 destabilizing IL-4 mRNA or
indirectly with miR-128 resulting in increased ubiquitin-mediated degradation of GATA3
through targeting of BMI1 [103].

Many studies in recent years have also demonstrated the importance of miRNA in regulating
Th17 and TREG differentiation and function. miR-21 facilitates TGF-β signaling pathway by
targeting the negative regulator SMAD 7, which can enhance the generation of both cell types
[104]. The STAT signaling activity in these cells is also under regulation of miR-155. mIR-155 is
thought to enhance TREG survival through attenuation of SOCS1, and inhibitor of STAT
signaling to enhance STAT5 activity in TREG cells [105]. This miRNA, however, has also been
shown to be important for the IFNγ and IL-17 secretion in response to H. Pylori infection
indicating that miRNA can play a role in both suppressing and driving inflammation [106]. In
Th17 cells, miR-155 has not been shown to directly target RORγT or BATF mRNA; however,
there is a significant reduction in il17f, il17a, and il22 mRNA transcripts in the absence of miR-
155 [107]. miR-326 has an indirect effect in enhancing Th17 differentiation by targeting ETS-1, a
known negative regulator of the Th17 lineage [108]. Other miRNAs have been shown to have
subset specific functions. Elevated expression of miR-10a is detected in both tTREG and pTREG

cells. While ablation of miR-10a results in a slight reduction of Foxp3 levels in tTREG cells, its
expression is important in maintaining lineage commitment in pTREG cells through degrada-
tion of Bcl-6 mRNA to inhibit conversion of these cells to a follicular T helper (Tfh) phenotype
[109]. Other miRNAs are involved in modulating TREG effector function. miR-466 l has been
shown to mask ARE elements in the 30 UTR of IL-10 mRNA to prevent degradation via TTP in
other cell types, while the miR-17~92 cluster has been demonstrated to be necessary for the
expansion of IL-10 secreting TREG cells [110, 111]. Conversely, miR-210 is involved in the
downregulation of Foxp3 expression and miR142-3p and miR-31 are known to target the
cAMP generation pathways, inhibiting TREG metabolism [112–114].

The study of mRNA stability has revealed a convoluted network of miRNA and RBPs while
adding another layer of complexity to the transcription factor and epigenetic modifications
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dictating CD4 + T cell subset differentiation and function. Due to the permissive nature of
miRNA base pairing, further investigation is necessary to uncover the mechanism by which
miRNA targets specific mRNA for degradation depending on the context a cell finds itself in.

5. The emerging role of differential mRNA translation in modulating
CD4+ Tcell functions

The accessibility of DNA, the activity of necessary transcription factors, and the mechanisms
governing how long mRNA lasts in the cytosol are all key factors in determining the total
abundance of specific mRNA transcripts within cells. Historically, techniques measuring
RNA abundance including RT-PCR and microarrays have been used to identify how specific
factors mediate their effect in CD4+ T cells through examination of their RNA signature.
These transcriptional signatures have been useful in inferring the genes involved in giving
CD4+ T cell subsets their diverse and specific functions in regulating the adaptive immune
response to achieve a balance between necessary inflammatory functions for host protection
without undue detrimental effects from over activity. However, studies in recent years have
revealed discrepancies between mRNA transcript and protein levels within cells, suggesting
that mechanisms controlling gene transcription and mRNA stability are insufficient to
explain the full scope of regulatory mechanisms governing immune cell function [115, 116].
From a functional standpoint, translational regulation of gene expression offers several
advantages in controlling immune responses. Thus, translational regulation of gene expres-
sion enables rapid integration of environmental cues to control protein activity, allows rapid
onset and reversibility of the response by utilizing the existing mRNA pool within a cell, and
forgoes the need for de novo mRNA synthesis. The advent of techniques to measure ribo-
some loading on individual mRNA transcripts has led to the identification of multiple genes
in both the innate and adaptive immune systems that are regulated at the level of mRNA
translation.

Studies in CD4+ T cells have shown distinct translational regulation regulating several key
components of cell function. IL-2 is translationally repressed in naïve CD4+ T cells through
inhibition of ribosome loading to prevent aberrant expression prior to TCR stimulation [117].
The MAPK-signal integrating kinase, Mnk1, has been shown to promote the translation of
TNFα via phosphorylation of the translational silencer hnRNP A1, preventing its binding to
TNFα mRNA [118]. Additionally, the rate of GATA3 translation is increased following the
activation of the CD28 co-stimulatory pathway in CD4+ T cells without direct increase in
GATA3 mRNA abundance, while IL-4 signaling can facilitate IL-4 translation in a similar
manner [97, 119]. Recently, a genome-wide study examined the role of mRNA translational
regulation in CD4+ T cell subsets [120]. The isolation of polyribosome-bound transcripts,
enriched with highly translated mRNA transcripts and comparison with total cytosolic
mRNA, identified distinct translational signatures differentiating TREG and TEFF cells. While
there was little discrepancy in the translational signature of naïve unstimulated cells, TCR
stimulation causes these subsets to acquire divergent translational programs. The identified
translationally regulated mRNAs were found to be co-regulated in groups corresponding to
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Th17 cells, miR-155 has not been shown to directly target RORγT or BATF mRNA; however,
there is a significant reduction in il17f, il17a, and il22 mRNA transcripts in the absence of miR-
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expression is important in maintaining lineage commitment in pTREG cells through degrada-
tion of Bcl-6 mRNA to inhibit conversion of these cells to a follicular T helper (Tfh) phenotype
[109]. Other miRNAs are involved in modulating TREG effector function. miR-466 l has been
shown to mask ARE elements in the 30 UTR of IL-10 mRNA to prevent degradation via TTP in
other cell types, while the miR-17~92 cluster has been demonstrated to be necessary for the
expansion of IL-10 secreting TREG cells [110, 111]. Conversely, miR-210 is involved in the
downregulation of Foxp3 expression and miR142-3p and miR-31 are known to target the
cAMP generation pathways, inhibiting TREG metabolism [112–114].

The study of mRNA stability has revealed a convoluted network of miRNA and RBPs while
adding another layer of complexity to the transcription factor and epigenetic modifications
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dictating CD4 + T cell subset differentiation and function. Due to the permissive nature of
miRNA base pairing, further investigation is necessary to uncover the mechanism by which
miRNA targets specific mRNA for degradation depending on the context a cell finds itself in.

5. The emerging role of differential mRNA translation in modulating
CD4+ Tcell functions

The accessibility of DNA, the activity of necessary transcription factors, and the mechanisms
governing how long mRNA lasts in the cytosol are all key factors in determining the total
abundance of specific mRNA transcripts within cells. Historically, techniques measuring
RNA abundance including RT-PCR and microarrays have been used to identify how specific
factors mediate their effect in CD4+ T cells through examination of their RNA signature.
These transcriptional signatures have been useful in inferring the genes involved in giving
CD4+ T cell subsets their diverse and specific functions in regulating the adaptive immune
response to achieve a balance between necessary inflammatory functions for host protection
without undue detrimental effects from over activity. However, studies in recent years have
revealed discrepancies between mRNA transcript and protein levels within cells, suggesting
that mechanisms controlling gene transcription and mRNA stability are insufficient to
explain the full scope of regulatory mechanisms governing immune cell function [115, 116].
From a functional standpoint, translational regulation of gene expression offers several
advantages in controlling immune responses. Thus, translational regulation of gene expres-
sion enables rapid integration of environmental cues to control protein activity, allows rapid
onset and reversibility of the response by utilizing the existing mRNA pool within a cell, and
forgoes the need for de novo mRNA synthesis. The advent of techniques to measure ribo-
some loading on individual mRNA transcripts has led to the identification of multiple genes
in both the innate and adaptive immune systems that are regulated at the level of mRNA
translation.

Studies in CD4+ T cells have shown distinct translational regulation regulating several key
components of cell function. IL-2 is translationally repressed in naïve CD4+ T cells through
inhibition of ribosome loading to prevent aberrant expression prior to TCR stimulation [117].
The MAPK-signal integrating kinase, Mnk1, has been shown to promote the translation of
TNFα via phosphorylation of the translational silencer hnRNP A1, preventing its binding to
TNFα mRNA [118]. Additionally, the rate of GATA3 translation is increased following the
activation of the CD28 co-stimulatory pathway in CD4+ T cells without direct increase in
GATA3 mRNA abundance, while IL-4 signaling can facilitate IL-4 translation in a similar
manner [97, 119]. Recently, a genome-wide study examined the role of mRNA translational
regulation in CD4+ T cell subsets [120]. The isolation of polyribosome-bound transcripts,
enriched with highly translated mRNA transcripts and comparison with total cytosolic
mRNA, identified distinct translational signatures differentiating TREG and TEFF cells. While
there was little discrepancy in the translational signature of naïve unstimulated cells, TCR
stimulation causes these subsets to acquire divergent translational programs. The identified
translationally regulated mRNAs were found to be co-regulated in groups corresponding to
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specific biological processes. Among these, the genes involved in cell cycle progression were
found to be translationally silenced in TCR-stimulated TREG cells compared to TEFF cells.
Within this group of genes, there was a significant reduction in the translation of the eukary-
otic translation initiation factor, eIF4E.

eIF4E is a key component of the eIF4F translation initiation complex responsible for binding
the 50CAP of mRNA to initiate ribosome assembly and mRNA translation. eIF4E is necessary
for the translation of many genes encoding for proliferation, survival, and cell cycle progres-
sion [121]. During homeostatic conditions, the eIF4E-binding proteins, eIF4E-BP1 and 2, bind
and sequester eIF4E. Growth factors, hormones, or cytokines signaling through the PI3K/
AKT axis activate the mammalian target of rapamycin (mTOR). Activation of the mTOR
pathway results in the phosphorylation of eiF4E-BP and the release of eIF4E into the cytosol,
allowing for eIF4E-mediated translation. Consistent with the translational silencing of eIF4E
in TREG cells, mTOR gene deficiency or inhibition can abrogate the proliferation and differ-
entiation of Th1, Th2, or Th17 cells, while promoting Foxp3 expression and adopting a TREG

phenotype [122]. In line with this, inhibition of eIF4E activity in CD4+ T cells abrogated their
proliferation in response to TCR stimulation in the presence of IL-2 [120]. Surprisingly,
inhibition of eIF4E activity in activated TEFF cells also resulted in the induction of Foxp3
expression in a subset of cells, suggesting that modulation of eIF4E expression may impact
CD4+ T cell lineage identity, with translational silencing of eIF4E being required for TREG

stability.

The study of mRNA translation regulation is an emerging concept in the study of CD4+ T cell
function, offering a new perspective on the regulation of the complicated gene-expression
programs found in CD4+ T cells. Further investigation is necessary to understand how CD4+
T cells can integrate environmental signals to fine tune a transcriptional landscape to modulate
function without undoing the complex transcriptional and epigenetic changes necessary to
acquire their specialized functions in the first place.

6. Conclusion

Several post-transcriptional mechanisms regulate gene expression for many key aspects of T
cell activation, differentiation, and effector functions. During immune responses, the rapid
induction and termination of various immune cell effector activities must be controlled in a
timely and efficient manner to prevent the adverse consequences of pathologic inflammation.
To achieve this fine control of biological responses, transcriptional mechanisms play an essen-
tial role for the regulation of gene expression. Moreover, many post-transcriptional mecha-
nisms, including translational control of gene expression, are particularly advantageous to a
cell as it integrates inflammatory signals with rapid and context-dependent protein synthesis
and effector responses without the energy expenditures associated with time-consuming de
novo mRNA synthesis. Recent single gene or genome-wide approaches highlight how post-
transcriptional mechanisms control gene expression in various innate and adaptive cell types
and potentiate a modular regulation of gene expression for a more efficient response to cellular
activation and environmental cues.
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The past decade has witnessed a rapid rise in research on post-transcriptional mechanisms
directing gene expression programs in innate immune cells. However, the mechanisms under-
lying the regulation of adaptive immunity still remain poorly defined. For instance, uncov-
ering the regulatory steps that control gene expression events during cell function in CD4+ T
cell subsets, key orchestrators of adaptive immunity, may shed light into the identification of
novel immune “checkpoints” and therapeutic applications. Unraveling the molecular defini-
tion of key pathways involved in T cell proliferation or differentiation, promotion of Foxp3+
TREG activities in metastatic tumors, or those that induce pathogenic T cell lineages in autoim-
mune diseases, for example, could allow for the development of novel therapies to restore
immune quiescence.
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Abstract

Disruption of the regulatory mechanisms that control cell proliferation and cell migration 
results in multiple disease states including cancer and leukaemia. The proline-rich home-
odomain protein (PRH)/haematopoietically expressed homeobox protein (HHEX) is a tran-
scription factor that controls cell proliferation and cell migration in a variety of tissues in the 
adult and in the embryo. Phosphorylation of PRH by Protein Kinase CK2 (Casein Kinase II) 
stops PRH from binding to DNA and regulating the transcription of its direct target genes. In 
leukaemic cells, phosphorylation also results in the production of a transdominant-negative 
truncated PRH phosphoprotein by the proteasome. Phosphorylation of PRH is increased in 
breast and prostate cancer cells and the consequent loss of PRH activity increases cell prolif-
eration and migration. PRH also regulates the proliferation of vascular smooth muscle cells 
and CK2-dependent phosphorylation of PRH in these cells accompanies increased cell prolif-
eration during intimal thickening. Thus the ability of PRH to regulate cell behaviour and the 
control of PRH by CK2 is not limited to a specific cell type or tissue. This raises the possibility 
that the PRH-CK2 axis could be targeted in a variety of disease states ranging from multiple 
cancers to the intimal thickening that occurs in vein bypass graft failure and restenosis.

Keywords: cell proliferation, cell migration, cell invasion, tumourigenesis, tumour 
growth, restenosis, intimal thickening

1. Introduction

The proline-rich homeodomain (PRH) or haematopoietically expressed homeobox (HHEX) 
protein, is a highly conserved transcription factor belonging to the homeodomain family 
(reviewed by Soufi et al. [1]). Originally characterised in the haematopoietic compartment 
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[2–4], PRH has since been found in a wide variety of tissues [1]. PRH is critically important in 
embryonic development where it regulates anteroposterior axis formation and the develop-
ment of multiple organ systems including the liver, thyroid, lung, thymus, gallbladder and 
pancreas [5–8]. In the adult, PRH is expressed in a variety of tissues including the thyroid, 
lungs, liver and haematopoietic compartment [4, 9]. In these tissues PRH acts as a master 
regulator of genes important in cell proliferation, cell migration and invasion, and cell differ-
entiation [1]. Changes in PRH activity therefore have profound effects on cell behaviour. This 
review focuses on the regulation of PRH activity by Protein Kinase CK2 and the role that this 
plays in tumourigenesis and in the control of vascular smooth muscle cell (VSMC) prolifera-
tion during intimal thickening.

2. The regulation of gene expression by PRH

2.1. The PRH protein

The PRH protein has three functional domains; a central homeodomain that mediates DNA 
binding, with N-terminal and C-terminal domains that regulate transcription (Figure 1). 
The PRH homeodomain is a 60 amino acid sequence that forms three α helices. The sec-
ond and third helices make up a helix-turn-helix motif and together with amino acids in an 
N-terminal arm of this domain, this mediates sequence-specific DNA binding. The muta-
tion of asparagine to alanine at position 187 within the PRH homeodomain dramatically 
reduces DNA binding and prevents PRH from repressing the transcription of its direct target 
genes [10, 11]. The PRH homeodomain also mediates binding to transcription factor AP1 
[12]. The PRH N-terminal domain can repress transcription when attached to a heterologous 
DNA binding domain [10, 13]. Additionally, the N-terminal domain interacts with a variety 
of proteins including the promyelocytic leukaemic (PML) protein, eukaryotic initiation fac-
tor 4E (eIF-4E), proteasome subunit C8, and the regulatory subunit of Protein Kinase CK2 

Figure 1. PRH and PRH-interacting proteins. A schematic representation of the PRH protein. The homeodomain and the 
N- and C-terminal domains are indicated along with the serine residues known to be phosphorylated by CK2 (S163 and 
S177). PRH-interacting proteins are listed and their binding sites on PRH are indicated by brackets. Some of the protein-
protein interactions have not been mapped to defined regions of PRH.
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[14–17]. The C-terminal domain is rich in acidic residues and it also functions in transcrip-
tional regulation since its loss prevents PRH from activating transcription of the sodium-
dependent bile acid co-transporter (NTCP) gene [18, 19].

The PRH protein forms oligomeric complexes in vitro and in cells [20]. The PRH N-terminal 
domain is resistant to SDS (sodium dodecyl sulphate)-induced denaturation and does not 
have extensive α-helical or β-sheet secondary structures. However, this domain forms dimers 
that interact with the PRH homeodomain [20]. In vitro studies suggest that octameric PRH 
oligomers form via the association four PRH dimers [20]. This has implications for DNA bind-
ing since although the isolated PRH homeodomain binds to a single DNA site, the full length 
PRH protein binds to linear arrays of homeodomain binding sites with high affinity [21]. 
Several genes that are directly regulated by PRH including Goosecoid (GSC), TLE4, VEGFA, 
VEGFR-1 (FLT1), and endothelial cell-specific molecule-1 (ESM-1) contain multiple, putative 
PRH-binding sequences [8, 21–23]. This suggests that PRH oligomers bind to these linear 
arrays to regulate gene expression. However, it is possible that a single PRH binding site may 
be sufficient to confer gene regulation by PRH.

2.2. The regulation of gene expression

Like many transcription factors PRH can either repress or activate transcription depending 
on its target gene (see Soufi et al. [1] and Gaston et al. [40] for lists of PRH target genes) and 
its partner proteins (shown in Figure 1). For example, PRH represses the Goosecoid, ESM-
1, VEGFA, VEGFR-1, VEGFR-2, and thyroglobulin promoters [8, 21, 23, 24]. An Eh1 motif 
in PRH N-terminal domain allows PRH to recruit members the Groucho/transducin-like 
enhancer of split (TLE) family of co-repressor proteins which in turn recruit histone deacety-
lases [25]. Similarly, PRH can repress transcription by recruiting the polycomb-repressive 
complex 2 (PRC2) to target genes to bring about histone methylation [26]. These co-repressor 
interactions can bring about short- and long-range transcriptional repression through histone 
modification and consequent chromatin condensation. PRH can also repress transcription by 
interfering with other transcription factors. Binding of PRH to GATA-2 suppresses GATA-2-
mediated activation of vascular endothelial growth factor receptor 2 (VEGFR-2) transcription 
[27]. Similarly, PRH binds to Jun and cMyc inhibiting Jun- and cMyc-dependent transcription 
activation, respectively [12, 28]. PRH also activates transcription through multiple mecha-
nisms including direct binding to target promoters as in the case of the NTCP promoter [19]. 
Moreover, PRH binding to hepatocyte nuclear factor 1α (HNF-1α) and serum-response factor 
(SRF) increases HNF-1α- and SRF-activated transcription [29, 30]. In addition, PRH can regu-
late gene expression post-transcriptionally through binding to eIF-4E. PRH binding to eIF-4E 
in PML nuclear bodies disrupts these structures and blocks eIF-4E-dependent transport of 
cyclin D1 mRNA down-regulating cyclin D1 protein expression [15].

2.3. PRH activity in tumourigenesis

Inappropriate expression and/or aberrant subcellular localization of PRH has been observed 
in a variety of disease states including acute myelogenous leukaemia (AML) [31, 32], chronic 
myelogenous leukaemia (CML) [32], breast, thyroid, and prostate cancer [33–36], liver disease, 
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and cardiovascular disease [37, 38]. In normal haematopoietic cells PRH protein is clearly dis-
cernable in distinct foci within the nucleus, co-localising with PML and translation factor eIF-
4E [14, 25], whereas in AML and CML PRH appears to be mislocalised to the cytoplasm [32]. 
Comparably, in thyroid cancer and breast cancer cells, PRH appears to be mislocalised from 
the nuclear compartment to the cytoplasm and often shows down-regulation in expression 
[33–35]. In breast and prostate cells loss of PRH activity results in increase cell proliferation 
and increased cell migration and invasion [35, 36]. Moreover, PRH over-expression in mouse 
mammary tumour cells inhibits tumour growth in vivo [36]. Similarly, PRH over-expression 
in liver cancer cells inhibits tumour growth in a xenograft mouse model [39] and PRH directly 
interacts with c-Myc to inhibit hepatocyte proliferation [28]. These studies are consistent with 
PRH playing a tumour suppressive role in these cell types.

In contrast, PRH has been shown to function as an oncoprotein in T-cell lineages and in AML 
subtypes (reviewed by Gaston et al. [40]). In retroviral insertion experiments in mice (Lvis1)-
elevated PRH expression is associated with B-cell- and T-cell-derived leukaemias and lym-
phomas [41, 42]. Transgenic mice with ectopic PRH expression in T cell progenitors showed 
increased numbers of progenitors but this did not result in leukaemia [43]. However mice 
transplanted with bone marrow cells transduced with a retrovirus expressing PRH exhibit 
aggressive neoplastic transformation within T-cell populations [44] and in mouse models of 
early T-cell precursor-like acute lymphoblastic leukaemia (ETP-ALL), PRH is important in 
Lmo2-driven T-cell self-renewal [45, 46]. Furthermore, in a mouse model of AML elevated 
PRH is essential for the initiation and maintenance of the leukaemia [26]. Interestingly a 
human AML has been identified where alteration of the Nup98 and PRH genes to form a 
fusion gene is the only identified cytogenetic abnormality [31].

2.4. PRH in vascular compartments

PRH is expressed in the developing vascular system in haematopoietic and endothelial pro-
genitor cells [9]. PRH over-expression inhibits haematopoietic and vascular development in 
embryoid bodies [47] while PRH loss leads to abnormal vasculogenesis and cardiac morpho-
genesis [5]. PRH can inhibit the proliferation of leukaemic cells by repressing the transcription of 
VEGFA and other genes involved in VEGF signalling and haematopoietic and vascular biology 
[48]. PRH is also important in neo-angiogenesis; in endothelial cells PRH represses transcription 
of multiple genes that control blood vessel formation including VEGFR-1, VEGFR-2, tyrosine 
kinase with Ig and EGF homology domains (TIE)-1, TIE-2, and neuropilin-1 [27, 49]. PRH is also 
targeted by urokinase-type plasminogen activator (uPA). uPA regulates angiogenesis and vascu-
lar permeability by proteolytic degradation of the extracellular matrix and through intracellular 
signalling. Single chain uPA is transported from the cell surface receptors to the nucleus where 
it modulates gene transcription by binding to transcription factors including PRH. The binding 
of uPA to PRH derepresses VEGFR-1 and VEGFR-2 thereby promoting their expression [50].

Importantly, PRH is up-regulated in VSMCs after balloon injury of the rat aorta [37]. During 
the period of cell dedifferentiation and cell proliferation following injury, PRH activates 
transcription of SMemb/NMHC-B, a marker for dedifferentiated cells [37]. Moreover, over-
expression of PRH in embryonic fibroblasts results in the expression of early, but not late, 
markers of VSMC differentiation [29]. It has also been reported that in VSMCs infected 
with Human Cytomegalovirus (HCMV) PRH up-regulation promotes cell proliferation and 
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inhibits apoptosis [51]. Our recent work has shown that PRH inhibits the proliferation of 
human and rat VSMCs (see Section 6.2 [38]). This suggests that HCMV infection may switch 
PRH from being an inhibitor of VSMC proliferation to an activator.

3. Protein kinase CK2

3.1. CK2 structure

Protein Kinase CK2 (formerly known as Casein Kinase II) is a ubiquitously expressed 
enzyme important in a range of cellular functions and processes including cell cycle pro-
gression and cell migration and invasion [52]. CK2 is a Ser/Thr kinase with the minimal 
consensus target sequence Ser/Thr– X – X – Asp/Glu/pSer (where X indicates any non-
basic amino acid). However, CK2 can phosphorylate wide variety of target sequences. CK2 
exists as a hetero-tetrameric enzyme consisting of two catalytic α subunits and two regu-
latory β subunits. In humans, two isoenzymic forms of the catalytic subunit, designated 
α and α′, are well-characterised while a more recently discovered α″ subunit is less well 
understood [53–55].

3.2. CK2 function

CK2 is important in the control of cell migration and cell proliferation and in many other 
cell functions. To this end CK2 is pleiotropic, in that it has multiple effects via the phos-
phorylation of numerous cytoplasmic and nuclear proteins. For example, phosphorylation 
of inhibitor of kappa B (IκB) by CK2 causes disassembly of the nuclear factor kappa-light-
chain-enhancer of activated B cells (NF-κB)-IκB complex [56]. This allows NF-κB to regu-
late the transcription of genes involved in cell cycle progression and cell survival. CK2 is 
also important in the control of extracellular proteins. For example, phosphorylation of the 
extracellular matrix protein vitronectin by CK2 is important for the adhesion of VSMCs 
[57]. CK2 itself is regulated by multiple signalling cascades and can cross talk to co-ordi-
nate cell survival and cell proliferation. The ABL, Src and ERK kinase families all act as 
upstream regulators of CK2 and inhibitors that target these kinases can be used to inhibit 
CK2 indirectly [58–60].

3.3. CK2 in tumourigenesis

Aberrant CK2 activity has been demonstrated to be oncogenic and elevated CK2 expression is 
seen in multiple cancers including breast [61], prostate [62], lung [63], head and neck [64], and 
kidney cancers [65]. CK2-mediated abrogation of tumour suppressor activity or stimulation 
of oncogenic proteins has been demonstrated to play a significant role in tumourigenesis. The 
tumour suppressors promyelocytic leukaemia protein (PML), connexin, and phosphatase and 
tensin homology protein (PTEN) are all CK2 substrates that are inactivated by phosphoryla-
tion [66]. CK2 has additionally been shown to potentiate aberrant activation of oncoproteins 
including NF-κB [56], and AKT [67]. Drugs that inhibit CK2 have proven to be well-tolerated 
in a number of clinical trials and systemic or local delivery of these inhibitors is therefore a 
potential treatment for multiple disease states [68, 69].
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α and α′, are well-characterised while a more recently discovered α″ subunit is less well 
understood [53–55].
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CK2 is important in the control of cell migration and cell proliferation and in many other 
cell functions. To this end CK2 is pleiotropic, in that it has multiple effects via the phos-
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extracellular matrix protein vitronectin by CK2 is important for the adhesion of VSMCs 
[57]. CK2 itself is regulated by multiple signalling cascades and can cross talk to co-ordi-
nate cell survival and cell proliferation. The ABL, Src and ERK kinase families all act as 
upstream regulators of CK2 and inhibitors that target these kinases can be used to inhibit 
CK2 indirectly [58–60].

3.3. CK2 in tumourigenesis

Aberrant CK2 activity has been demonstrated to be oncogenic and elevated CK2 expression is 
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kidney cancers [65]. CK2-mediated abrogation of tumour suppressor activity or stimulation 
of oncogenic proteins has been demonstrated to play a significant role in tumourigenesis. The 
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4. The regulation of PRH by CK2

4.1. CK2 binds to PRH and phosphorylates the homeodomain

To identify PRH binding proteins we performed a yeast two hybrid screen using PRH as 
bait. This showed that the regulatory β subunit of CK2 can bind to the PRH N terminal 
domain [17]. The interaction was confirmed in human chronic myeloid leukaemia K562 cells 
using pull-down experiments and co-immunoprecipitation [17]. Importantly, PRH is a phos-
phoprotein in these cells and pharmacological inhibition of CK2 with DMAT (2-dimethyl-
amino-4,5,6,7-tetrabromo-1H-benzimidazole) or TBB (4,5,6,7-tetrabromo-1H-benzotriazole) 
significantly reduces the amount of phosphorylated PRH (pPRH) indicating that PRH is also 
a CK2 substrate [17]. CK2β controls substrate specificity and therefore the interaction with 
PRH is potentially of importance for the control of CK2 activity on other specific substrates as 
well as in the phosphorylation of PRH.

To map CK2 phosphorylation sites within PRH, purified, human PRH protein was incubated 
with CK2 and ATP and subjected to surface-enhancer laser desorption/ionisation time-of-
flight mass spectrophotometry (SELDI-TOF-MS) analysis. This showed that S163 and S177 
located within the PRH homeodomain can be phosphorylated by CK2 [17]. S163 is located 
within a CK2 target consensus site while S177 is within a non-consensus site. Subsequently 
further phosphorylation sites have been identified within PRH but these sites have not been 
associated with a specific kinase.

4.2. Phosphorylation of PRH blocks DNA binding

Phosphorylation of the PRH homeodomain by CK2 abrogates PRH DNA-binding activity in 
vitro [17]. Interestingly DNA binding activity is restored by a subsequent incubation of pPRH 
with calf intestinal alkaline phosphatase. Thus, CK2-mediated phosphorylation of PRH func-
tions as a reversible switch for DNA binding [17]. CK2 has also been shown to inhibit the 
binding of PRH to DNA in cells. Ectopic over-expression of PRH in K562 cells represses tran-
scription of the PRH target gene VEGFR-1 but this repression is lost on co-transfection with 
CK2α and β transgenes [48]. However, the repression of VEGFR-1 transcription by a PRH 
mutant in which phosphorylation of serine 163 and serine 177 is prevented by the replace-
ment of these residues by cysteine residues is not inhibited by CK2 over-expression [48]. 
Quantitative chromatin immunoprecipitation (ChIP) showed that CK2 over-expression does 
not prevent the binding of PRH S163C,S177C to the VEGFR-1 promoter as it does with wild-
type PRH [48].

4.3. Phosphorylation of PRH induces protein processing

Hypo-phosphorylated PRH is stable in K562 cells treated with the translation inhibitor 
anisomycin [48]. However, pPRH is rapidly degraded in these cells. The half-life of pPRH 
is extended by treatment with proteasome inhibitors showing that phosphorylation targets 
PRH for proteasome-mediated protein cleavage. Interestingly, pPRH is cleaved to produce 
is a stable truncated protein that lacks the C-terminal domain (PRHδC). Over-expression of 
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CK2 increases the production of this cleavage product and the truncated protein can act as 
transdominant negative regulator of full-length PRH by sequestering TLE co-repressor pro-
teins and possibly other PRH interacting proteins [48]. This suggests that phosphorylation 
of PRH not only blocks DNA binding but also acts to prevent unphosphorylated PRH from 
regulating transcription (Figure 2). As might be expected, PRH S163C,S177C cannot be phos-
phorylated at these residues and this protein is not processed by the proteasome. In contrast, 
the phosphomimetic PRH S163E,S177E is more readily processed to produce PRHδC than 
wild type PRH [48].

4.4. pPRH in tumourigenesis

Pre-clinical studies have shown that pPRH is elevated in benign prostatic hyperplasias and 
in breast ductal carcinoma in situ compared to normal tissues [35, 36]. PRH localization is 
also altered in prostate and breast tumours compared to normal tissue. Both increased pPRH 
and increased PRH cytoplasmic localization are indicative of PRH inactivation and it is likely 
that this contributes to increased cell proliferation in these diseases. Interestingly, pPRH is 
less highly elevated in aggressive prostate adenocarcinomas and invasive breast carcinomas 
[35]. This could be due to decreased total PRH expression in these cancers. Thus high levels 
of pPRH appear to correlate more with hyperproliferative disease in these tissues rather than 
with advanced cancer.

5. PRH and CK2 in tumourigenesis

5.1. pPRH and PRH as potential biomarkers

The identification of protein modifications that contribute to increased cancer cell prolifera-
tion and increased cell migration and invasion is likely to result in new therapeutic approaches 
that could be of great benefit to patients. Moreover such cancer biomarkers could be useful as 
prognostic indicators and as indicators of pharmacologic responses to a therapeutic interven-
tion. Prognostic biomarkers that can flag a tumour as potentially benign or requiring further 
treatment are urgently required. Many breast and prostate tumours for example do not need 

Figure 2. Phosphorylation of PRH by CK2 induces protein cleavage. PRH recruits co-repressor proteins including TLE 
to target genes such as VEGFR-1 in order to repress transcription. Phosphorylation of PRH by CK2 (shown as a filled 
lollipop) prevents PRH from binding to DNA and targets the protein for processing by the proteasome. The PRHδC 
protein cannot bind to DNA but it can sequester TLE proteins (and possibly other PRH interacting proteins) and thereby 
block transcriptional repression by PRH.

Phosphorylation of PRH/HHEX by Protein Kinase CK2 Regulates Cell Proliferation and Cell…
http://dx.doi.org/10.5772/intechopen.72902

243



4. The regulation of PRH by CK2

4.1. CK2 binds to PRH and phosphorylates the homeodomain

To identify PRH binding proteins we performed a yeast two hybrid screen using PRH as 
bait. This showed that the regulatory β subunit of CK2 can bind to the PRH N terminal 
domain [17]. The interaction was confirmed in human chronic myeloid leukaemia K562 cells 
using pull-down experiments and co-immunoprecipitation [17]. Importantly, PRH is a phos-
phoprotein in these cells and pharmacological inhibition of CK2 with DMAT (2-dimethyl-
amino-4,5,6,7-tetrabromo-1H-benzimidazole) or TBB (4,5,6,7-tetrabromo-1H-benzotriazole) 
significantly reduces the amount of phosphorylated PRH (pPRH) indicating that PRH is also 
a CK2 substrate [17]. CK2β controls substrate specificity and therefore the interaction with 
PRH is potentially of importance for the control of CK2 activity on other specific substrates as 
well as in the phosphorylation of PRH.

To map CK2 phosphorylation sites within PRH, purified, human PRH protein was incubated 
with CK2 and ATP and subjected to surface-enhancer laser desorption/ionisation time-of-
flight mass spectrophotometry (SELDI-TOF-MS) analysis. This showed that S163 and S177 
located within the PRH homeodomain can be phosphorylated by CK2 [17]. S163 is located 
within a CK2 target consensus site while S177 is within a non-consensus site. Subsequently 
further phosphorylation sites have been identified within PRH but these sites have not been 
associated with a specific kinase.

4.2. Phosphorylation of PRH blocks DNA binding

Phosphorylation of the PRH homeodomain by CK2 abrogates PRH DNA-binding activity in 
vitro [17]. Interestingly DNA binding activity is restored by a subsequent incubation of pPRH 
with calf intestinal alkaline phosphatase. Thus, CK2-mediated phosphorylation of PRH func-
tions as a reversible switch for DNA binding [17]. CK2 has also been shown to inhibit the 
binding of PRH to DNA in cells. Ectopic over-expression of PRH in K562 cells represses tran-
scription of the PRH target gene VEGFR-1 but this repression is lost on co-transfection with 
CK2α and β transgenes [48]. However, the repression of VEGFR-1 transcription by a PRH 
mutant in which phosphorylation of serine 163 and serine 177 is prevented by the replace-
ment of these residues by cysteine residues is not inhibited by CK2 over-expression [48]. 
Quantitative chromatin immunoprecipitation (ChIP) showed that CK2 over-expression does 
not prevent the binding of PRH S163C,S177C to the VEGFR-1 promoter as it does with wild-
type PRH [48].

4.3. Phosphorylation of PRH induces protein processing

Hypo-phosphorylated PRH is stable in K562 cells treated with the translation inhibitor 
anisomycin [48]. However, pPRH is rapidly degraded in these cells. The half-life of pPRH 
is extended by treatment with proteasome inhibitors showing that phosphorylation targets 
PRH for proteasome-mediated protein cleavage. Interestingly, pPRH is cleaved to produce 
is a stable truncated protein that lacks the C-terminal domain (PRHδC). Over-expression of 

Gene Expression and Regulation in Mammalian Cells - Transcription From General Aspects242

CK2 increases the production of this cleavage product and the truncated protein can act as 
transdominant negative regulator of full-length PRH by sequestering TLE co-repressor pro-
teins and possibly other PRH interacting proteins [48]. This suggests that phosphorylation 
of PRH not only blocks DNA binding but also acts to prevent unphosphorylated PRH from 
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intervention and are currently over-treated by surgery because of a lack of biomarkers for 
prognosis. In pre-clinical studies the levels and localization of pPRH and PRH appear to be 
altered in breast and prostate tumours compared to controls [35, 36]. However, additional 
studies with large numbers of patients will be required to determine whether pPRH and PRH 
or the pPRH/PRH ratio is a good prognostic indicator.

5.2. The restoration of PRH function

Since PRH appears to be inactivated in breast and prostate cancer cells by CK2-dependent 
phosphorylation resulting in increased cell proliferation and cell migration, the inhibition of 
CK2 in these tissues would be expected to restore PRH function. This would be expected to 
inhibit cell proliferation and it could inhibit tumour growth. CK2 inhibitors have been pro-
posed as novel treatments for multiple cancers including prostate cancer. In normal immor-
talised prostate epithelial cells the inhibition of proliferation brought about by the inhibition 
of CK2 requires the presence of PRH [35]. It is likely that CK2 inhibitors will have similar 
effects in other cancer cell types through the prevention of PRH phosphorylation and the 
restoration of PRH function. Indirect inhibition of CK2 activity can also restore PRH function 
and re-establish the control of cell proliferation. Our previous work showed that in chronic 
myeloid leukaemia cells Dasatinib decreases CK2 activity and decreases the phosphorylation 
of PRH [58]. Dasatinib inhibits membrane bound tyrosine kinases and Src family kinases and 
is an efficacious therapeutic for leukaemias expressing BCR-ABL fusion proteins and those 
with activated Src [70]. Importantly, Src-kinases are known to stimulate CK2 activity [59]. It 
is possible that other Abl/Src kinase inhibitors will also restore PRH activity via the indirect 
inhibition of CK2. However, since PRH can act as oncoprotein in some cell types it is possible 
that the reduction of PRH phosphorylation in these cell types might be counterproductive.

6. Saphenous vein graft failure

6.1. Intimal thickening in saphenous vein grafts

Atherosclerotic plaque development within coronary arteries is a major precursor for myo-
cardial infarction (commonly known as heart attack). Coronary artery bypass graft (CABG) 
surgery is an effective treatment for occlusive or ruptured coronary artery atherosclerotic 
plaques; surgery most often involves harvesting and grafting of healthy, autologous saphe-
nous vein to bypass the occluded artery and facilitate revascularisation of the cardiac tis-
sue [71, 72]. Arteriovenous grafts are however predisposed to reblocking (restenosis), and 
despite extensive research, 10–15% of CABG patients suffer early vein graft failure within 
the first year after surgery, and as many as 50% suffer graft failure within 10 years [71–73]. 
Thrombosis, intimal thickening, and accelerated atherosclerosis are the underlying causes of 
saphenous vein graft failure. Intimal thickening, which serves as a foundation for superim-
posed atherosclerosis, is often the cause of late vein graft failure (Figure 3), while thrombosis 
is the cause of early graft failure. Intimal thickening is a product of aberrant VSMC migration 
into the intima where they proliferate and deposit extracellular matrix.
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6.2. PRH is up-regulated in neointimal cells

PRH expression is up-regulated in the intimal compartment of rat thoracic aortas injured with 
a balloon embolectomy catheter – a robust model for neointimal hyperplasia [37]. However, 
PRH mRNA and protein expression is absent in healthy aorta. Moreover PRH activates tran-
scription of SMemb/NMHC-B, a marker of dedifferentiated VSMCs with a synthetic, prolif-
erative phenotype, and not of differentiated VSMCs with a quiescent, contractile phenotype 
[37]. Together these findings could indicate that PRH promotes VSMC de-differentiation 
and accumulation in the intima, thereby accelerating disease progression. However, ectopic 
overexpression of wild-type PRH in primary cultures of rat aortic VSMCs inhibits cell cycle 
progression, whereas siRNA-mediated knockdown of PRH promotes cell proliferation [38]. 
These data clearly indicate an anti-proliferative role for PRH in VSMCs. Transfection of iso-
lated rat aortic VSMCs with a vector expressing PRH F32E, a mutant that does not bind TLE, 
did not block cell proliferation suggesting that in these cells, PRH inhibits cell cycle pro-
gression in a TLE-independent manner (KSW unpublished observations). Interestingly, PRH 
S163C,S177C exhibited a prolonged anti-mitotic effect with respect to wild-type PRH [38]. 
This indicates that phosphorylation of PRH at Ser163 and Ser177 prevents PRH from inhibit-
ing VSMC proliferation. Moreover, adenovirus-mediated gene transfer of PRH S163C,S177C 
retarded intimal thickening in an ex vivo human saphenous vein organ culture model [38]. 
It is hence likely that PRH is up-regulated during neointima formation in dedifferentiated, 
proliferating VSMCs as a negative feedback mechanism to prevent further rounds of mitosis.

6.3. CK2 activity during intimal thickening

Multiple studies have implicated the involvement of CK2 in the regulation of VSMC prolifer-
ation and pathophysiological intimal thickening. For example, treatment of cultured human 
aortic smooth muscle cells with emodin (1,3,8-trihydroxy-6-methylanthraquinone) – a natu-
rally occurring CK2 inhibitor used in traditional Chinese medicine – blocked platelet-derived 
growth factor (PDGF)- and tumour necrosis factor α (TNF-α)-induced cell proliferation in a 
dose-dependent manner [74]. Also, in the rat aortic VSMC line A10, inhibition of CK2 with the 
synthetic compounds DDZ (daidzein) and DRB (5,6-dichlorobenzimidazole riboside) antag-
onised lysophosphatidic acid-induced cell division [75]. However, emodin, DDZ and DRB 

Figure 3. Intimal hyperplasia in saphenous vein grafts. Intimal hyperplasia in saphenous vein grafts is a consequence of 
the migration of medial VSMCs to the intima and their subsequent proliferation and deposition of extracellular matrix. 
Neointima formation results in narrowing of the lumen and a consequent restriction of blood flow.
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of CK2 requires the presence of PRH [35]. It is likely that CK2 inhibitors will have similar 
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Thrombosis, intimal thickening, and accelerated atherosclerosis are the underlying causes of 
saphenous vein graft failure. Intimal thickening, which serves as a foundation for superim-
posed atherosclerosis, is often the cause of late vein graft failure (Figure 3), while thrombosis 
is the cause of early graft failure. Intimal thickening is a product of aberrant VSMC migration 
into the intima where they proliferate and deposit extracellular matrix.
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did not block cell proliferation suggesting that in these cells, PRH inhibits cell cycle pro-
gression in a TLE-independent manner (KSW unpublished observations). Interestingly, PRH 
S163C,S177C exhibited a prolonged anti-mitotic effect with respect to wild-type PRH [38]. 
This indicates that phosphorylation of PRH at Ser163 and Ser177 prevents PRH from inhibit-
ing VSMC proliferation. Moreover, adenovirus-mediated gene transfer of PRH S163C,S177C 
retarded intimal thickening in an ex vivo human saphenous vein organ culture model [38]. 
It is hence likely that PRH is up-regulated during neointima formation in dedifferentiated, 
proliferating VSMCs as a negative feedback mechanism to prevent further rounds of mitosis.

6.3. CK2 activity during intimal thickening

Multiple studies have implicated the involvement of CK2 in the regulation of VSMC prolifer-
ation and pathophysiological intimal thickening. For example, treatment of cultured human 
aortic smooth muscle cells with emodin (1,3,8-trihydroxy-6-methylanthraquinone) – a natu-
rally occurring CK2 inhibitor used in traditional Chinese medicine – blocked platelet-derived 
growth factor (PDGF)- and tumour necrosis factor α (TNF-α)-induced cell proliferation in a 
dose-dependent manner [74]. Also, in the rat aortic VSMC line A10, inhibition of CK2 with the 
synthetic compounds DDZ (daidzein) and DRB (5,6-dichlorobenzimidazole riboside) antag-
onised lysophosphatidic acid-induced cell division [75]. However, emodin, DDZ and DRB 
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Neointima formation results in narrowing of the lumen and a consequent restriction of blood flow.
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Figure 4. The inhibition of CK2 prevents intimal thickening. Top – phosphorylation of PRH by CK2 prevents PRH from 
inhibiting VSMC proliferation and this contributes to vein graft failure. Bottom – pharmacological inhibition of CK2 
allows PRH to suppress VSMC proliferation and thereby prevent neointima formation. Other CK2 target proteins are 
also likely to play a role in the prevention of intimal thickening following CK2 inhibition.

show high promiscuity as inhibitors [76]. PDGF, basic fibroblast growth factor (bFGF), and 
Wnt proteins are well-recognised atherogenic mitogens that are up-regulated in atheroscle-
rotic and restenotic lesions ([38] and references therein). Interestingly, pharmacological inhibi-
tion of CK2 with the highly selective compounds TBB and K66 suppresses PDGF-, bFGF- and 
Wnt-4-induced cell replication in primary cultures of rat aortic VSMCs [38]. Silencing of CK2 
using exogenous siRNAs also inhibited VSMC proliferation further suggesting that CK2 pro-
motes the proliferation of these cells. Furthermore, treatment of human saphenous vein organ 
cultures with the CK2 inhibitor K66 disrupted neointima formation [38].

6.4. CK2 acts via PRH to modulate VSMC proliferation

One mechanism through which CK2 may facilitate VSMC proliferation could be via blocking 
PRH activity. Treatment with the K66 failed to arrest PDGF- and bFGF-stimulated cell cycle 
progression in VSMCs with depleted levels of PRH [38]. Thus CK2-dependent mitogenic sig-
nal transduction at least in part requires the presence of PRH (Figure 4). Similarly, treatment 
of human immortalised myelogenous K562 cells with the CK2 inhibitor DMAT inhibits cell 
proliferation but has no significant effect on the proliferation of K562 cells in which PRH has 
been knocked down using shRNA [58]. In K562 cells PRH controls cell proliferation via the 
inhibition of VEGF signalling [24, 58]. Further work is required to determine whether PRH 
controls VSMC proliferation via the inhibition of VEGF signalling or whether other signal-
ling pathways targeted by PRH are important in this context. For instance, another poten-
tial mechanism by which PRH might control VSMC proliferation involves urokinase-type 
plasminogen activator (uPA)-mediated signalling [77]. uPA is a serine protease that is up-
regulated in atheromas and restenotic lesions of human arteries [77–79]. In uPA deficient 
mice, subsequent to either electrical or mechanical arterial injury, intimal thickening and cell 
accumulation is significantly reduced compared to wild-type mice [80]. In human umbilical 
vein VSMCs, endogenous uPA has been shown to be involved in the induction of a mito-
genic response by either PDGF or bFGF [77]. Furthermore, in PDGF- or bFGF-stimulated 
cells, pharmacological inhibition of uPA and CK2 with p-aminobenzamidine and 4 μM TBB, 
respectively, markedly enhances the anti-proliferative effects of 4 μM TBB alone in an addi-
tive manner [77]. Intracellular uPA has recently been shown to bind to PRH in endothelial 
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cells and to prevent PRH from repressing VEGF signalling genes [50]. Therefore it is possible 
that the effects of uPA inhibition on endothelial proliferation and CK2 inhibition on VSMC 
proliferation during intimal thickening are both mediated by PRH.

6.5. Implications for saphenous vein grafts

As protein kinase CK2 is ubiquitously expressed, systemic delivery of a CK2 inhibitor for the 
treatment of saphenous vein graft degeneration may cause unwanted side effects. However, 
perivascular drug delivery systems could be employed for localised, sustained release of a CK2 
inhibitor to a grafted vein. Such a system has been used to deliver sunitinib in a biocompatible 
hyaluronic acid-based hydrogel within a polyactide-co-glycolide perivascular wrap [81]. Other 
approaches for delivery include drug-eluting nanoparticles and drug-linked  antibodies [82].

Gene therapy also has therapeutic potential in alleviating saphenous vein graft stenosis, and 
could be used for the introduction of PRH, particularly PRH S163C,S177C, to grafted vein. 
Genetic manipulation of a venous graft must however occur peri-operatively, meaning there is 
only a single opportunity to complete gene transfer. Therefore, helper-dependent adenovirus 
technology may be necessary to provide prolonged expression of PRH or PRH S163C,S177C 
within the grafted conduit [83, 84]. In a similar instance, delivery of tissue inhibitor of metal-
loproteinase 3 (TIMP-3) has been shown to block neointima formation in autologous porcine 
arteriovenous interposition grafts for up to 3 months [85].

7. Conclusion

The regulation of cell proliferation and cell migration/invasion by PRH is not limited to a 
particular cell type. Similarly, the control of PRH by CK2-dependent phosphorylation is also 
seen in multiple cell types. The PRH-CK2 axis is likely to be important for the regulation of 
cell proliferation and cell behaviour across a broad spectrum of cell types and in a variety of 
disease states. Further work in this area is therefore likely to be of great clinical relevance.
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Figure 4. The inhibition of CK2 prevents intimal thickening. Top – phosphorylation of PRH by CK2 prevents PRH from 
inhibiting VSMC proliferation and this contributes to vein graft failure. Bottom – pharmacological inhibition of CK2 
allows PRH to suppress VSMC proliferation and thereby prevent neointima formation. Other CK2 target proteins are 
also likely to play a role in the prevention of intimal thickening following CK2 inhibition.

show high promiscuity as inhibitors [76]. PDGF, basic fibroblast growth factor (bFGF), and 
Wnt proteins are well-recognised atherogenic mitogens that are up-regulated in atheroscle-
rotic and restenotic lesions ([38] and references therein). Interestingly, pharmacological inhibi-
tion of CK2 with the highly selective compounds TBB and K66 suppresses PDGF-, bFGF- and 
Wnt-4-induced cell replication in primary cultures of rat aortic VSMCs [38]. Silencing of CK2 
using exogenous siRNAs also inhibited VSMC proliferation further suggesting that CK2 pro-
motes the proliferation of these cells. Furthermore, treatment of human saphenous vein organ 
cultures with the CK2 inhibitor K66 disrupted neointima formation [38].

6.4. CK2 acts via PRH to modulate VSMC proliferation

One mechanism through which CK2 may facilitate VSMC proliferation could be via blocking 
PRH activity. Treatment with the K66 failed to arrest PDGF- and bFGF-stimulated cell cycle 
progression in VSMCs with depleted levels of PRH [38]. Thus CK2-dependent mitogenic sig-
nal transduction at least in part requires the presence of PRH (Figure 4). Similarly, treatment 
of human immortalised myelogenous K562 cells with the CK2 inhibitor DMAT inhibits cell 
proliferation but has no significant effect on the proliferation of K562 cells in which PRH has 
been knocked down using shRNA [58]. In K562 cells PRH controls cell proliferation via the 
inhibition of VEGF signalling [24, 58]. Further work is required to determine whether PRH 
controls VSMC proliferation via the inhibition of VEGF signalling or whether other signal-
ling pathways targeted by PRH are important in this context. For instance, another poten-
tial mechanism by which PRH might control VSMC proliferation involves urokinase-type 
plasminogen activator (uPA)-mediated signalling [77]. uPA is a serine protease that is up-
regulated in atheromas and restenotic lesions of human arteries [77–79]. In uPA deficient 
mice, subsequent to either electrical or mechanical arterial injury, intimal thickening and cell 
accumulation is significantly reduced compared to wild-type mice [80]. In human umbilical 
vein VSMCs, endogenous uPA has been shown to be involved in the induction of a mito-
genic response by either PDGF or bFGF [77]. Furthermore, in PDGF- or bFGF-stimulated 
cells, pharmacological inhibition of uPA and CK2 with p-aminobenzamidine and 4 μM TBB, 
respectively, markedly enhances the anti-proliferative effects of 4 μM TBB alone in an addi-
tive manner [77]. Intracellular uPA has recently been shown to bind to PRH in endothelial 
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cells and to prevent PRH from repressing VEGF signalling genes [50]. Therefore it is possible 
that the effects of uPA inhibition on endothelial proliferation and CK2 inhibition on VSMC 
proliferation during intimal thickening are both mediated by PRH.

6.5. Implications for saphenous vein grafts

As protein kinase CK2 is ubiquitously expressed, systemic delivery of a CK2 inhibitor for the 
treatment of saphenous vein graft degeneration may cause unwanted side effects. However, 
perivascular drug delivery systems could be employed for localised, sustained release of a CK2 
inhibitor to a grafted vein. Such a system has been used to deliver sunitinib in a biocompatible 
hyaluronic acid-based hydrogel within a polyactide-co-glycolide perivascular wrap [81]. Other 
approaches for delivery include drug-eluting nanoparticles and drug-linked  antibodies [82].

Gene therapy also has therapeutic potential in alleviating saphenous vein graft stenosis, and 
could be used for the introduction of PRH, particularly PRH S163C,S177C, to grafted vein. 
Genetic manipulation of a venous graft must however occur peri-operatively, meaning there is 
only a single opportunity to complete gene transfer. Therefore, helper-dependent adenovirus 
technology may be necessary to provide prolonged expression of PRH or PRH S163C,S177C 
within the grafted conduit [83, 84]. In a similar instance, delivery of tissue inhibitor of metal-
loproteinase 3 (TIMP-3) has been shown to block neointima formation in autologous porcine 
arteriovenous interposition grafts for up to 3 months [85].

7. Conclusion

The regulation of cell proliferation and cell migration/invasion by PRH is not limited to a 
particular cell type. Similarly, the control of PRH by CK2-dependent phosphorylation is also 
seen in multiple cell types. The PRH-CK2 axis is likely to be important for the regulation of 
cell proliferation and cell behaviour across a broad spectrum of cell types and in a variety of 
disease states. Further work in this area is therefore likely to be of great clinical relevance.
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Abstract

The altered expression of cell adhesion molecules (CAMs) correlates with the malignant 
progression of many epithelial tumors. MUC18/CD146/A32/MelCAM/S-endo 1, a CAM 
in the immunoglobulin gene superfamily, is an integral membrane glycoprotein. MUC18 
is not a mucin, resulting from its misleading nomenclature by the original discoverer. We 
re-named it as METCAM (metastasis-regulating CAM), based on its very interesting bio-
logical roles in tumor formation and metastasis of many epithelial tumors. Initial findings 
show that METCAM/MUC18 expression has a positive effect (as a tumor and metastasis 
promoter) on the progression of breast cancer, most melanoma cell lines, nasopharyngeal 
carcinoma (NPC) type II, and prostate cancer. Later research results show that METCAM/
MUC18 expression has a negative effect (as a tumor suppressor and metastasis suppressor) 
on the progression of ovarian cancer, one mouse melanoma cell line, and nasopharyngeal 
carcinoma type I, and perhaps hemangioma. Since the above dual function of METCAM/
MUC18 occurs only in different cell lines from the same cancer type or in those from dif-
ferent cancer types, we suggest that the different effect of METCAM/MUC18 on tumor 
formation and metastasis of different cancer cell line may be due to different intrinsic prop-
erties (co-factors) in each cancer cell line that modify the biological functions of METCAM/
MUC18 in the intrinsic properties of tumor cells and their interactions with the tumor 
microenvironment. This chapter will review the published work and present some possi-
ble mechanisms for the METCAM/MUC18-mediated cancer progression for future studies.

Keywords: METCAM/MUC18, breast cancer, melanoma, nasopharyngeal carcinoma, 
ovarian cancer, prostate cancer, tumors

1. Introduction

Cancer progression is very complex because many genes are directly or indirectly involved in 
the process. The accumulation of the multiple intrinsic changes leading to aberrant alterations 
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of gene expression can contribute to tumorigenesis and its progression to the malignant phe-
notype. This is because the genome of malignant tumor cells has greater instability than non-
malignant tumor cells and renders malignant tumor cells more prone to acquiring multiple 
mutations [1]. Tumorigenesis involves expression of many oncogenes and tumor suppressor 
genes [2, 3], which will not be elaborated here. Likewise, metastasis also involves many metas-
tasis enhancer genes and metastasis suppressor genes [2, 3] ever since the successful conver-
sion of a non-metastatic Ha-ras-transformed NIH 3 T3 fibroblast cells to metastatic tumor cells 
by transfecting the cells with the DNA fragments isolated from a human metastatic tumor [4]. 
This also suggests that many alternative pathways are possible for metastasis, similar to mul-
tiple alternative pathways leading to tumorigenesis [2, 3]. This includes the genes encoding 
cell adhesion molecules (CAMs), such as E-cadherin [5], integrins α2β1 [6] and αVβ3 [7], CD44 
[8], EPCAM [9, 10], ALCAM [11], and METCAM/MUC18 [12, 13]. The list of these genes has 
been rapidly lengthened because of the advent of modern state-of-the-art technologies, such 
as SAGE analysis [14, 15], DNA chip microarray analysis [16–19], and proteomics [20–22].  
Some of these genes may be commonly used by metastatic tumors derived from different 
tissues, if these genes render tumor cells with a metastatic advantage over other tumor cells, 
regardless of their origins. Some oncogenes or tumor suppressor genes may also play direct 
or indirect roles in tumor metastasis, if they directly or indirectly alter cytoskeleton structure, 
cellular motility, invasiveness, and render them having growth advantages in target organs.

Tumor metastases fortunately are a rare event due to metastatic inefficiency. It was originally 
thought that only a very small population of the metastatic cells could reach and establish 
the growth in the distant target organs after they successfully intravasate or extravasate the 
vasculatures or lymphatics, and then survive the assaults in the circulatory system, which 
includes the attacks from the immune system and the destructive hydrodynamic shearing [23]. 
However, recent results of observing the process with in vivo video microscopy appear to sup-
port the notion that metastatic inefficiency is more likely due to that only a small percentage 
of tumor cells are able to dock and establish secondary growths in distant organs after sur-
vival from the attacks from the immune system and the assault from the mechanical shearing, 
since both highly metastatic cells and non-metastatic cells have similar migratory and invasive 
abilities to intravasate or extravasate the circulatory systems [24]. The successful establish-
ment of secondary growth by metastatic cells may result from a complex interaction of tumor 
cells with the extracellular matrix in the favorable microenvironment of the target organs. 
This interaction may also be due to the altered expressions of many cell adhesion molecules 
(CAMs) in metastatic cells that alter their ability to interact with the extracellular matrix.

CAMs govern the social behaviors of the cells. The altered expression of CAMs affects cell-cell 
interactions and cell-extracellular matrix interactions, which results in changing the cellular 
motility and invasiveness [25]. Altered expression of CAMs also can affect survival and growth 
of tumor cells and alter angiogenesis [26]. As such, CAMs may promote or suppress the meta-
static potential of tumor cells [26]. The metastatic potential of a tumor cell could be the conse-
quence of a complex participation of many over- or under-expressed CAMs, as documented in 
many carcinomas [27]. For example, integrins αV, α4, and β3, I-CAM, METCAM/MUC18, and 
HLA-DR are over-expressed, whereas E-cadherin, α-catenin, and VCAM are under-expressed 
in metastatic melanomas [28]. On the other hand, the metastatic potential of a tumor cell could 
be due to the altered expression of a single CAM. For example, over-expression of integrin 
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α2β1 decreases the metastasis of breast carcinoma cells [6], whereas over-expression of integ-
rin αVβ3 increases the metastatic potential of human prostate carcinoma cells [7].

Effects of altered expression of I-CAM, V-CAM, some integrins (αV, α4, and ß3), L1CAM, 
METCAM/MUC18 [28], and E-cadherin [29] on the metastasis of melanoma have been dem-
onstrated. Studies of the altered expression of CAMs on the metastasis of prostate cancers are 
E-cadherin [5], CD44 [8, 30], CEA-CAM [31, 32], and some integrins [7, 33, 34]. Increased expres-
sion of E-cadherin [35] and the standard form of CD44 [8] suppresses metastasis of prostate car-
cinoma. On the contrary, increased expression of a splicing variant form of CD44, CD44v7-v10, 
correlates with the progression of prostate carcinoma and enhances in vitro invasiveness of human 
prostate cancer cell lines [30]. Increased expression of CEA-CAM1 suppresses tumorigenesis [32]; 
however, the effect on metastasis has not been tested. The effect of a single integrin mostly is not 
obvious except αVβ3, α6β1, and α3β1 integrins in prostate cancer, perhaps many members of the 
integrin family are functionally compensatory to each other [33–36]. Aberrant expression of CAMs 
has been associated with nasopharyngeal carcinoma (NPC). For examples, up-regulation of ICAM 
[37] and down-regulation of E-cadherin [38, 39] and connexin 43 [40] correlate with the progres-
sion of NPC; however, the expression of CD44 does not [38]. Aberrant expression of various CAMs 
associated with the malignant progression of ovarian cancer are mucins [41], integrins [42], CD44 
[43], L1CAM [44], E-cadherin [45], claudin-3 [46], EpCAM [9, 10], and METCAM/MUC18 [47, 48].

For the past two decades, we have focused our research on the role of METCAM/MUC18 in 
the progression of several epithelial tumors: first, we tried to correlate the expression level of 
METCAM/MUC18, which was determined by using the methods of immunohistochemistry 
and/or RT-PCR, with the pathological state of the tumor tissues and from the results to propose 
a hypothesis to predict the possible positive or negative role played by METCAM/MUC18 in the 
progression of each cancer. Then we tested the hypothesis by investigating effects of METCAM/
MUC18 over-expression or under-expression on in vitro cellular behaviors and tumorigenesis and 
on in vivo tumorigenesis in athymic nude mice, or if possible, in syngeneic mice. We studied the 
effect of the expression of METCAM/MUC18 on the progression of melanoma cell lines [49, 50]  
and prostate cancer cell lines [51–55], and then extended our research to breast cancer cell 
lines [56–58], ovarian cancer cell lines [48, 59, 60], and nasopharyngeal carcinoma cell lines [61]. 
Possible mechanisms played by METCAM/MUC18 were preliminarily determined by analyz-
ing the expression levels of several downstream effectors in the tumor tissues excised from these 
mice. In this chapter, I will summarize the findings of the above research activities and review 
the dual role of METCAM/MUC18 in the progression of breast cancer, melanoma, nasopharyn-
geal carcinoma, ovarian cancer, and prostate cancer [48–62]. I will also propose some possible 
mechanisms of METCAM/MUC18-mediated tumorigenesis and metastasis for future studies.

2. METCAM/MUC18

Human METCAM/MUC18 (huMETCAM/MUC18), a CAM in the immunoglobulin gene 
superfamily, is an integral membrane glycoprotein [63]. The name “MUC18”, which was 
originally coined by Judy Johnson [63], has often been mistaken as a new member in the 
mucin family. Other names, such as CD146, A32, and S-endo 1, were not used because they 
did not reflect its biological functions [63–68]. The names MCAM and MELCAM with an 
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α2β1 decreases the metastasis of breast carcinoma cells [6], whereas over-expression of integ-
rin αVβ3 increases the metastatic potential of human prostate carcinoma cells [7].
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MUC18 over-expression or under-expression on in vitro cellular behaviors and tumorigenesis and 
on in vivo tumorigenesis in athymic nude mice, or if possible, in syngeneic mice. We studied the 
effect of the expression of METCAM/MUC18 on the progression of melanoma cell lines [49, 50]  
and prostate cancer cell lines [51–55], and then extended our research to breast cancer cell 
lines [56–58], ovarian cancer cell lines [48, 59, 60], and nasopharyngeal carcinoma cell lines [61]. 
Possible mechanisms played by METCAM/MUC18 were preliminarily determined by analyz-
ing the expression levels of several downstream effectors in the tumor tissues excised from these 
mice. In this chapter, I will summarize the findings of the above research activities and review 
the dual role of METCAM/MUC18 in the progression of breast cancer, melanoma, nasopharyn-
geal carcinoma, ovarian cancer, and prostate cancer [48–62]. I will also propose some possible 
mechanisms of METCAM/MUC18-mediated tumorigenesis and metastasis for future studies.

2. METCAM/MUC18

Human METCAM/MUC18 (huMETCAM/MUC18), a CAM in the immunoglobulin gene 
superfamily, is an integral membrane glycoprotein [63]. The name “MUC18”, which was 
originally coined by Judy Johnson [63], has often been mistaken as a new member in the 
mucin family. Other names, such as CD146, A32, and S-endo 1, were not used because they 
did not reflect its biological functions [63–68]. The names MCAM and MELCAM with an 
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over-emphasis on its role in melanoma [28] are discarded because MUC18 is involved in the 
metastasis of many cancers besides melanoma ([69] and this review). To eliminate confusion 
and to reflect its biochemical properties and key role in the progression of epithelial tumors, 
we have created a new name for MUC18: METCAM (metastasis CAM), an immunoglobulin-
like CAM that regulates metastasis [69]. MUC18 is included in our nomenclature to com-
memorate its original discovery [63].

Judy Johnson’s group was the first group to clone and characterize the sequence of a huMET-
CAM/MUC18 cDNA from human melanoma [63]. Later my group cloned the huMETCAM/
MUC18 cDNA from several human melanoma cell lines and human prostate cancer cell lines 
[70]. The DNA sequences of our huMETCAM/MUC18 cDNA clones from three human mela-
noma cell lines, three human prostate cancer cell lines, and several human nasopharyngeal tis-
sues are similar; therefore, we conclude that our huMETCAM/MUC18 cDNA gene is the major 
common form in comparison to that of Judy Johnson. The amino acid sequences deduced from 
the DNA sequence of our huMETCAM/MUC18 cDNA differ from that of Johnson’s group 
in seven amino acids [63, 70]. Regardless of minor differences in amino acid sequences, all 
huMETCAM/MUC18 cDNAs encode 646 amino acids that include a N-terminal extracellular 
domain of 558 amino acids, of which at the N-terminus it has 28 amino acids characteristic of 
a signal peptide sequence, a transmembrane domain of 24 amino acids (amino acid #559–583), 
and an intracellular cytoplasmic domain of 64 amino acids at the C-terminus (Figure 1). The 
molecular weight of the un-glycosylated form of huMETCAM/MUC18 protein is estimated to 
be about 72 kDa [63, 69, 70]. Since huMETCAM/MUC18 has eight putative N-glycosylation 
sites (Asn-X-Ser/Thr), it is often heavily glycosylated and sialylated resulting with an apparent 
molecular weight between 113,000 and 150,000, dependent upon the tissue origin. The extra-
cellular domain of the protein contains five immunoglobulin-like domains (V-V-C2-C2-C2) 
[63, 70] and an X domain [69, 70]. The cytoplasmic domain contains peptide sequences that are 
potentially be phosphorylated by protein kinase A (PKA), protein kinase C (PKC), and casein 
kinase 2 (CK 2) [63, 64, 69, 70]. My lab has also cloned the mouse METCAM/MUC18 (moMET-
CAM/MUC18) cDNA, which contains 648 amino acids with 76.2% identity with huMETCAM/
MUC18 [71]. The structure of the huMETCAM/MUC18 protein is illustrated in Figure 1.

Similar to other CAMs, the functions of huMETCAM/MUC18 has been studied in relation to 
cell-cell and cell-extracellular matrix interactions, which trigger a cascade of signals that affect 
cytoskeleton structure and cellular motility and invasiveness. Figure 1 shows the six conserved 

Figure 1. The protein structure of human METCAM/MUC18.
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 N-glycosylation sites, which are located in the V1, the region between the C2′ and the C2″, the 
C2″, and the X domains in the extracellular domain, and five potential phosphorylation sites 
in the intracellular cytoplasmic tail. From the protein structure, we predicted that METCAM/
MUC18 may have additional functions, which may include synergistic interactions with 
growth factor receptors (as a co-receptor) to modulate cell functions and to trigger on intra-
cellular signaling pathways, activation of matrix metalloproteinases (MMPs), serving as a 
co-activator for other cell functions, and serving as a co-transporter for extracellular small 
molecules (for example, calcium ion influx) [69], as summarized in Figure 2.

HuMETCAM/MUC18 is expressed in several normal tissues/cells, such as endothelial cells, 
hair follicular cells, smooth muscle cells, normal breast epithelial cells, basal cells in bronchial 
epithelium, the cerebellum, intermediate trophoblasts, some activated T cells [66], ovarian 
epithelial cells [48], and normal nasopharynx epithelial cells [61]. In addition, huMETCAM/
MUC18 is expressed in several cancers, such as melanoma, gestational trophoblastic tumors, 
leiomyosarcoma, angiosarcoma, hemangioma, Kaposi’s sarcoma, schwannoma, some lung 
squamous and small cell carcinomas, some breast cancer, and some neuroblastoma [66]. For 
the past two decades, we have also found that huMETCAM/MUC18 is also expressed in pros-
tate cancer [72], ovarian cancer [48], and nasopharyngeal carcinoma [61].

Figure 2. A proposed model for the outside-in and inside-out signaling of METCAM/MUC18 and its possible crosstalk 
with signal transduction pathways.
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3. Role of METCM/MUC18 in the tumorigenesis and metastasis of 
different human cancers

3.1. METCAM/MUC18 plays a positive role in the progression of breast cancer

METCAM/MUC18 was suggested by two groups to play a tumor suppressor role [73, 74], but by 
the two other groups as a tumor promoter in the progression of human breast cancer [75, 76]. To 
resolve the controversial role of METCAM/MUC18 in the progression of human breast cancer, 
we set out independent studies to investigate the actual role played by METCAM/MUC18 in the 
progression of human breast cancer. We found that enforced expression of METCAM/MUC18 in 
both MCF-7 and SK-BR-3 cell lines increased their in vitro motility, invasiveness, and colony 
formation in soft agar (in vitro tumorigenesis). Furthermore, enforced expression of METCAM/
MUC18 in both cell lines increased tumor-take and tumorigenesis in athymic nude mice [56–58].

Moreover, anti-METCAM/MUC18 antibody decreased the motility and invasiveness of the two 
basal-like cell lines, MDA-MB-231 and MDA-MB-468 [57]. Enforced expression of METCAM/
MUC18 increases the metastasis of both basal-like cell lines in athymic nude mice [77]. Taken 
together, METCAM/MUC18 plays a positive role in the progression of four human breast 
cancer cell lines. Therefore, METCAM/MUC18 is a novel oncogene for mammary carcinoma 
cells and may be useful as a therapeutic target for the treatment of breast cancer. From further 
preliminary mechanical studies we suggest that METCAM/MUC18 promotes the progression 
of human breast cancer cells by increasing proliferation, angiogenesis, switching to aerobic 
glycolysis, and epithelial-to-mesenchymal transition (EMT) [56–58], thus its downstream sig-
naling molecules may also be used as therapeutic targets for the treatment of breast cancer.

3.2. METCAM/MUC18 plays a dual role in the progression of melanoma

HuMETCAM/MUC18 was highly expressed on the cellular surface of most malignant human 
melanomas and has been suggested to play a positive role in the progression of human mela-
noma [63, 64]. Three groups demonstrate that the stably ectopic expression of the huMETCAM/
MUC18 cDNA gene in three non-metastatic human cutaneous melanoma cell lines increases 
the metastatic ability of these cell lines in immune-deficient mouse models [12, 67]. Our group 
focused our studies on mouse melanomas, we show that stable, ectopic expression of moMET-
CAM/MUC18 in two low-metastatic mouse melanoma cell lines, K1735-3 and K1735-10,  
increases their metastatic abilities in immune-competent syngeneic mice [49]. METCAM/
MUC18 enables melanoma cells to establish pulmonary metastasis only when the cells are injected 
into the tail vein (experimental metastasis) [12, 13, 49, 50], thus bypassing the initial stages of 
metastasis. In contrast, no metastasis was found when METCAM/MUC18-expressing mela-
noma cells were injected subcutaneously (spontaneous metastasis) either in immune-deficient  
mouse models [12, 67] or in immune-competent syngeneic mouse models [13, 49]. We concluded 
that moMETCAM/MUC18 may promote melanoma metastasis only in the later stages of metasta-
sis. This result is consistent with the observation of one of the three original groups that huMET-
CAM/MUC18 does not initiate the conversion (transformation) of melanocytes into melanoma [78].

In contrast to the role of moMETCAM/MUC18 in promoting metastasis in the two mouse 
melanoma cell lines K1735 clone 3 and clone 10, surprisingly we found that over-expression of 
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moMETCAM/MUC18 in one mouse melanoma cell line K1735 clone 9 decreased subcutaneous 
tumorigenesis and decreased pulmonary lung nodule formation when cells were injected into 
the tail vein in an isogenic mouse model [50]. Thus MCAM/MUC18 acts as a tumor and metas-
tasis suppressor for the K1735-9 subline, different from its role in other K1735 sublines, K1735-3 
and K1735-10. We suggest that ectopic expression of MCAM/MUC18 in different sublines may 
interact with different intrinsic co-factors/ligands, which may contribute to these intrinsic proper-
ties, such as adhesion-associated signaling cascades and cytoskeleton rearrangement, leading to 
different epithelial-to-mesenchymal transition of these cells and hence the intrinsic tumorigenic 
and metastatic potential of these cells. Different intrinsic co-factors in different K1735 sublines, 
which may modulate the functions of MCAM/MUC18 in the cells, leading to interact differently 
with the tumor microenvironment, may render sublines manifest differently in tumorigenic-
ity and metastasis in vivo. Moreover, interactions of METCAM/MUC18 with these co-factors/
ligands may render different sublines/cell lines being regulated by other physiological factors 
in vivo, which may enhance or inhibit in vivo growth of the tumor cells by altering metabolic 
switch, by altering apoptosis, or by up-regulating or down-regulating angiogenesis, as well as by 
boosting up or suppressing immune system in the tumor microenvironment and in the lung [50].

These syngeneic mouse systems are more useful models than the immune-deficient mouse sys-
tems for better understanding mechanisms of the complex role played by MCAM/MUC18 in 
the progression of melanoma cells. Furthermore, since these syngeneic mouse models more 
closely mimic the clinical melanoma cases in comparison to xenograft models, the knowledge 
gained from using these systems may also be useful for designing efficacious clinical thera-
pies. Therefore, when therapeutic means are developed, we should keep in mind the dual 
role played by MCAM/MUC18. We should also be aware of the response of immunotherapy 
by using anti-METCAM/MUC18 monoclonal antibodies [79] and therapy by using MCAM/
MUC18-specifc siRNAs [80] may be different in different patients.

3.3. METCAM/MUC18 plays a dual role in the progression of nasopharyngeal 
carcinoma

Nasopharyngeal carcinoma (NPC) is a malignant head and neck cancer; 90% of that develops 
in the non-lymphomatous, squamous epithelial lining of posterior nasopharynx [81]. NPC is 
heterogeneous: it manifests one of the three subtypes (or three patterns): keratinizing squa-
mous cell carcinomas (WHO type I), non-keratinizing squamous cell carcinomas (WHO type 
II), and undifferentiated carcinomas (WHO type III) [61, 81]. Epidemiological studies suggest 
that three major etiological factors, such as genetic susceptibility, environmental factors, and 
infection with Epstein Barr virus (EBV), contribute to the extraordinary incidence in endemic 
areas [61]. However, how these major etiological factors contribute to the initiation and devel-
opment and final progression is not known. Nevertheless, these etiological factors may induce 
aberrant expression of cell adhesion molecules (CAMs) in NPC and leading to tumorigenesis 
and malignant progression. Aberrant expression of CAMs has been associated with the pro-
gression of NPC [37–40]. However, the possible aberrant expression of METCAM/MUC18 in 
nasopharyngeal carcinoma has not been studied.

We initiated the study of the possible roles of METCAM/MUC18 in the malignant progression of 
NPC by using immunohistochemistry to determine the expression of the protein in the tissues of 
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normal nasopharynx and NPC and two established NPC cell lines [61]. We found that METCAM/
MUC18 was expressed in all of the normal nasopharynx, but weakly expressed in only 27% 
of the NPC tissues, suggesting that METCAM/MUC18 may function as a tumor suppressor in 
the development of NPC during the progression of the disease [61]. To test the hypothesis, we 
investigated the effect of METCAM/MUC18 over-expression on in vitro cellular behavior and in 
vivo tumorigenesis of two NPC cell lines in athymic nude mice. Indeed, METCAM/MUC18 over-
expression suppressed the tumor growth of NPC-TW01 cells, which were established from type 
I NPC [81], as shown in [82, 83]. We suggested that METCAM/MUC18 plays a tumor suppressor 
role in the type I NPC [82, 83]. On the contrary, over-expression promoted the tumor growth of 
NPC-TW04 cells, which were established from type II NPC [81], as shown in [82, 84]. We suggest 
that METCAM/MUC18 plays a tumor promoter role in the type II NPC [82, 84].

We suggest that the dual role played by METCAM/MUC18 in the progression of two different 
types of NPC’s may be modulated by different intrinsic factors and also in different stromal 
microenvironment. These two NPC cell lines may serve as models for understanding the con-
tribution of three etiological factors to trigger the malignant progression of NPC and for trans-
lational applications. Radiotherapy has been used for the treatment of NPC; however, NPC has 
been notoriously resistant to radiotherapy. Thus, we sought the possibility of altering the radio-
sensitivity of NPC by ectopically increased expression of METCAM/MUC18 in NPC cell lines. 
Our preliminary studies show that radio-sensitivity of the tumors induced from both cell lines in 
athymic nude mice was increased by increased expression of METCAM/MUC18. Thus, ectopi-
cally increased expression of this protein may be used for clinical treatment [data not shown].

3.4. METCAM/MUC18 plays a negative role in the progression of ovarian cancer

METCAM/MUC18 expression has been recently to correlate with the progression of ovarian 
cancer [47, 48], and perhaps affect the in vitro behaviors of ovarian cancer cells [85]; however, the 
role of METCAM/MUC18 in the progression of epithelial ovarian cancer has not been directly 
studied in animal models. For this purpose, we initiated the studies by directly testing the 
effect of over-expression of METCAM/MUC18 on the ability of SK-OV-3 cells in in vitro motil-
ity and invasiveness, and in vivo tumor formation in nude mice after subcutaneous (SC) injec-
tion and in vivo progression in nude mice after intraperitoneal (IP) injection. Over-expression 
of METCAM/MUC18 inhibited in vitro motility and invasiveness [59] and suppressed in vivo 
tumorigenesis and malignant progression of the human ovarian cancer cell line SK-OV-3 [59]. 
Similar results were shown in another human ovarian cancer cell line, BG-1 (data not shown).

Taken together, we provided in vitro and in vivo evidence to support the notion that METCAM/
MUC18 plays a suppressing role in tumorigenesis and malignant progression of two human 
ovarian cancer cell lines [59, 60]. We strongly suggested that METCAM/MUC18 is a novel 
tumor and metastasis suppressor for the progression of human ovarian cancer cells.

3.5. METCAM/MUC18 plays a positive role in the progression of prostate cancer

Over-expression of METCAM/MUC18 is not limited to melanoma as previously thought and 
also later research carried out by one of the original three groups proved that MelCAM/MCAM/
MUC18 did not play an important role in converting normal melanocyte into melanoma [78]. 
With this in mind, we have initiated the study of trying to correlate the huMETCAM/MUC18 
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expression with prostate cancer at different pathological stages. Molecular biological and 
immunological methods were used to study the expression of huMETCAM/MUC18 in two 
prostate cancer cell lines (DU145 and PC-3) and in human tissues of normal prostates, BPH, 
PIN, and prostate cancer, and immunohistochemistry was used for its expression in tissue sec-
tions of paraffin-embedded human prostate cancer [70, 72]. From the results, we suggested a 
possibility that huMETCAM/MUC18 may be used as a novel early diagnostic marker for the 
metastatic potential of human prostate cancer. These notions are further strengthened by the 
results of our studies in a transgenic mouse model, transgenic adenocarcinoma mouse prostate 
(TRAMP) [52]. Furthermore, we have suggested a hypothesis that huMETCAM/MUC18 very 
likely plays an important role in tumorigenesis and metastasis of human prostate cancer cells 
[72]. Then we carried out systematic studies of huMETCAM/MUC18-mediated prostate can-
cer metastasis in animal models to test the above hypothesis. We have tested the effect of ecto-
pic expression of huMETCAM/MUC18 in human prostate LNCaP cells on their ability to form 
tumor in the non-orthotopic subcutaneous sites [53] and in the orthotopic prostate glands and 
to initiate metastasis in nude mice [51]. In contrast to melanoma cells, we have obtained evi-
dence to prove that huMETCAM/MUC18 is a key determinant in initiating the metastasis of 
prostate cancer [51]. The detailed evidence is briefly described as follows:

3.5.1. Over-expression of huMETCAM/MUC18 correlates with the development and 
malignant progression of human prostate cancer

Two groups initiated the studies by testing possible huMETCAM/MUC18 expression in pros-
tate cancer cell lines and prostate cancer tissues; however, they were unable to obtain positive 
results because the monoclonal antibodies used were incapable of recognizing the huMET-
CAM/MUC18 epitopes in prostate cancer cell lines and tissues [65, 86]. But we were able to 
use our chicken polyclonal antibodies for Western blot analysis and immunohistochemistry to 
detect the expression of huMETCAM/MUC18 antigens in prostate cancer cell lines and human 
prostate cancer tissues. We confirmed these results by using the RT-PCR analysis to show the 
presence of huMETCAM/MUC18 mRNA [70, 72]. We found that huMETCAM/MUC18 was 
neither expressed in most (90%) of the normal epithelial cells in the prostatic ducts/acini nor 
in any (100%) of these cells in BPH, but it was detectable in the majority (greater than 80%) of 
the neoplastic prostate epithelial cells (high-grade PIN), high-grade prostate adenocarcinomas, 
and metastatic lesions. HuMETCAM/MUC18 was expressed in two metastatic human prostate 
cancer cell lines, DU145 and PC-3, and one bladder cancer cell line, Tsu-Pr1, but not in one 
non-metastatic prostate cancer cell line, LNCaP [70, 72]. Thus, we conclude that huMETCAM/
MUC18 is not expressed in normal and benign hyperplastic human prostate tissues, but its 
expression increases during prostate cancer initiation (high-grade PIN), progression to carci-
noma, and in metastatic cell lines and metastatic lesions. Taken together, over-expression of 
METCAM/MUC18 correlates with the initiation of malignant progression of human prostate 
cancer [70, 72], suggesting that huMETCAM/MUC18 may be a useful marker for monitoring 
the metastatic potential of prostate cancer cells [70, 72]. Furthermore, the extent of in vitro motil-
ity and invasiveness is directly proportional to the extent of huMETCAM/MUC18 expression in 
four human cancer cell lines [70]. Our anti-huMETCAM/MUC18 antibody was able to signifi-
cantly block the in vitro motility and invasiveness of various human prostate cancer cell lines 
[70]. Therefore, we propose the hypothesis that huMETCAM/MUC18 may directly mediate the 
increased epithelial-to-mesenchymal transition and initiate the progression of prostate cancers.
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3.5.2. Correlation of over-expression of mouse METCAM/MUC18 with the malignant 
progression of prostate cancer in a transgenic mouse model (TRAMP)

If the above hypothesis is correct, we should be able to correlate moMETCAM/MUC18 expres-
sion with the development and progression of prostate cancer in a transgenic mouse model. To 
test this possibility, we have used the autochthonous TRAMP (transgenic adenocarcinoma mouse 
prostate) model for the experiment by collaborating with Dr Norman Greenberg’s group. The 
TRAMP model established by Dr Norman Greenberg [87] is one of two transgenic mouse mod-
els that have been established for studying the tumorigenesis and metastasis of prostate cancer 
[87, 88]. This model was created by transfecting the germ line of the C57BL/6 inbred strain of mice 
with fusion gene of the rat probasin (PB) gene promoter and the SV40 T antigen (Tag) gene. The 
expression of the PB-Tag transgene is regulated by androgens and only localized to the prostatic 
epithelial cells in the dorsolateral and ventral lobes. When the mice reach an age of 12–20 weeks, 
TRAMP mice histologically show mild to severe hyperplasia with cribriform structures. By an 
age of 26 weeks, severe hyperplasia and adenocarcinoma is manifested. By an age of 26–33 weeks, 
all TRAMP males show primary tumors and metastasis in the lymph nodes and lungs and less 
frequently in the bones, kidney, and adrenal glands. In this transgenic model, the epithelial origin 
of the tumors and metastatic deposits has been successfully shown [87] in prostates.

MoMETCAM/MUC18 expression was determined by Western blot analysis and/or immuno-
histochemistry by using our chicken anti-moMETCAM/MUC18 antibodies [71] during the pro-
gression of mouse prostate adenocarcinoma in this transgenic mouse model. When these mice 
reached 12–20 weeks of age, they began to show PIN in the prostate glands. When they reached 
178–181 days of age (25.7–25.9 weeks), they had primary tumors in the prostate glands and the 
expression of moMETCAM/MUC18 mRNA and protein was detectable. Tumors continued to 
grow beyond an age of 32.4 weeks, when some mice were found dead. Interestingly, metas-
tasis was found even when tumors were small (less than 0.5 g) and the level of moMETCAM/
MUC18 expression was much lower. MoMETCAM/MUC18 was not detectable in the pros-
tates of the control group (presumably having the normal organ). The tumor metastasizes to 
peri-aortic lymph nodes in all the mice that had primary tumors. Metastatic lesions were also 
observed in seminal vesicles, abdomen cavity, livers, and lungs in some mice. The expression 
of MoMETCAM/MUC18 was detectable in all PINs, prostate adenocarcinomas, and metastatic 
lesions. We concluded that the moMETCAM/MUC18 expression was increased during the pro-
gression of the mouse prostate cancer in this transgenic mouse model [52]. Bone metastasis has 
been observed, though we have not analyzed the bone samples of these transgenic mice [89].

3.5.3. Over-expression of huMETCAM/MUC18 increases the tumor-take and metastasis of 
human prostate cancer cells

To test the hypothesis that huMETCAM/MUC18 may increase the metastatic potential of human 
prostate cancer cells, we successfully obtained G418-resistant clones that express a high level 
of huMETCAM/MUC18 after transfecting the huMETCAM/MUC18 cDNA gene into a human 
prostate cancer LNCaP cell line that did not previously express huMETCAM/MUC18 and had a 
minimal ability to metastasize. We then injected these clones orthotopically into one of the dor-
solateral lobes of the prostate. We found that ectopically enforced huMETCAM/MUC18 expres-
sion increases the tumor-take and initiates the metastasis of LNCaP cells to various organs, such 
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as the seminal vesicles, the ureter, the kidney, and the peri-aortic lymph nodes, in athymic nude 
mice [51]. Since metastatic lesions were only observed in the mice with tumors, we also con-
cluded that metastasis is closely associated with the tumorigenesis, as suggested by Weiss [23], 
but tumor formation without the expression of huMETCAM/MUC18 did not lead to metastasis.

Alternatively, we have also established a xenograft mouse model to further study how the 
expression of huMETCAM/MUC18 mediates tumorigenesis of LNCaP cells. We subcutane-
ously injected the huMETCAM/MUC18-expressing LNCaP cells together with Matrigel and 
observed the appearance of tumors at different times in a nude mouse model [53]. We found 
that ectopic (or enforced) expression of huMETCAM/MUC18 increased the early on-set of 
tumorigenesis of LNCaP cells in this mouse model [53]. Ectopic (or enforced) expression 
of huMETCAM/MUC18 increases the tumor formation of LNCaP cells [53]. We concluded 
that the enforced expression of huMETCAM/MUC18 in human prostate cancer LNCaP cells 
increased the tumor growth more than the control cells.

These results confirming that huMETCAM/MUC18 plays an important role in increasing 
tumorigenesis and initiating metastasis of LNCaP cells, consistent with our earlier findings 
that huMETCAM/MUC18 is frequently expressed in the pre-malignant high-grade PIN and 
in human prostate cancer tissues [72]. Taken together, the hypothesis that METCAM/MUC18 
plays an important role in initiating prostate cancer progression is well-supported by evidence.

Recently, we further shown that huMETCAM/MUC18 also played a positive role in the pro-
gression of another prostate cancer cell line, DU145, by showing that the tumorigenesis of 
DU145 in an athymic nude mouse model was decreased when the endogenously expressed 
METCAM/MUC18 was decreased by knock-down with SiRNAs [54, 55].

3.6. METCAM/MUC18 plays a dual role in other tumors

In addition to melanoma, prostate cancer, breast cancer, ovarian cancer, and NPC, METCAM/
MUC18 is also expressed in other cancers, such as gestational trophoblastic tumors, leiomyo-
sarcoma, angiosarcoma, Kaposi’s sarcoma, some lung squamous and small cell carcinomas, 
and some neuroblastoma; however, the role of METCAM/MUC18 in the development of most 
of these cancers has not been investigated [65, 66]. In our preliminary tests, we observed 
that moMETCAM/MUC18 was expressed at a higher level in one angiosarcoma clone, SVR, 
which was transfected with H-Ras, than in an immortalized normal endothelial cell line con-
trol, MS-1 [62]. The higher expression level of moMETCAM/MUC18 was correlated with the 
higher tumorigenicity of the SVR cell line [69, 90], suggesting that METCAM/MUC18 pro-
moted the development of angiosarcoma [62, 69, 90]. Recent findings from other groups also 
suggest that METCAM/MUC18 also plays a positive role in the progression of osteosarcoma 
[91], hepatocellular carcinoma [92, 93], gastric cancer [94], non-small cell lung adenocarci-
noma [95], small cell lung cancer [96], and pancreatic cancer [98].

On the other hand, the possible tumor and metastasis suppressor role of METCAM/MUC18 
has also been extended from melanoma, ovarian cancer, and NPC, to colorectal cancer 
[97], pancreatic cancer [99], and perhaps, hemangioma [100]. Table 1 summarizes the role 
of METCAM/MUC18 in the tumor formation and/or cancer metastasis of various tumors/
cancers.
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has also been extended from melanoma, ovarian cancer, and NPC, to colorectal cancer 
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Taken together, the dual role of METCAM/MUC18 may be explained by that the intrinsic 
properties of each cancer cell line may provide co-factors that either positively or negatively 
regulate METCAM/MUC18-mediated tumorigenesis and metastasis. To understand further 
the role of METCAM/MUC18 in these processes, it is essential to identify these intrinsic co-
factors in the future studies.

Tumor/cancers Tumorigenesis Metastasis References

Clinical prostate cancer and human 
prostate cancer cell lines

Increasing Increasing and affecting initiation 
in the early stage (PIN)

[51, 53–55, 70, 72]

Prostate adenocarcinoma in 
TRAMP mice

Increasing Increasing and affecting initiation 
in the early stage

[52]

Clinical melanoma and human 
melanoma cell lines

No effect Increasing and affecting at the 
late stage

[12, 67]

Mouse melanoma cells (K1735-3 
and 10)

No effect or suppression Increasing and affecting at the 
late stage

[13, 49, 71]

Mouse melanoma cells (K1735-9) Suppression Suppression [13, 50, 71]

Angiosarcoma Increasing Possible promotion, by not 
determined

[62, 69, 90]

Human breast cancer cell line 
MCF-7

Promotion Not determined [56]

Human breast cancer cell line 
SK-BR-3

Promotion Not determined [57–58]

Human breast cancer cell lines 
MDA-MB-231 and 468

Promotion Promotion [57, 77]

Hemangioma Possible suppression, but 
bot determined

Not determined [100]

Nasopharyngeal carcinoma type I Suppression Possible suppression, but not 
determined

[82, 83]

Nasopharyngeal carcinoma type II Promotion Possible augmentation, but not 
determined

[82, 84]

Ovarian cancer Suppression Suppression [48, 59, 60]

Colorectal cancer Suppression Suppression [97]

Gastric cancer Promotion Not determined [94]

Non-small cell lung carcinoma Promotion Not determined [95]

Small cell lung carcinoma Promotion Not determined [96]

Hepatocellular carcinoma Promotion Promotion [92, 93]

Osteosarcoma Promotion Not determined [91]

Pancreatic cancer Promotion or suppression Not determined [98, 99]

Table 1. The possible role of METCAM/MUC18 in tumor formation and/or cancer metastasis of various tumors/cancers.
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4. Possible molecular mechanisms of the huMETCAM/MUC18-
mediated progression of cancer

Since the discovery of huMETCAM/MUC18 in the 1980s, about three groups have worked on 
the role of huMETCAM/MUC18 in melanoma metastasis [12, 63, 64, 67], another group on the 
role of huMETCAM/MUC18 in the biology of endothelial cells [68], and our group joined in 
the effort to study the role of huMETCAM/MUC18 in the progression of melanoma and pros-
tate cancer, and later breast cancer, ovarian cancer, and NPC, as described above. Though we 
are beginning to understand the biology of METCAM/MUC18-mediated cancer progression, 
however, many questions of linking the regulation of the expression of this gene to its role in 
cancer progression are remained to be answered. For examples, the contribution of the pro-
tein structure and the glycosylation of the protein to the function of huMETCAM/MUC18 in 
the progression of cancer have not been systematically studied. How the protein mediates the 
interaction of tumor cells with the tumor microenvironment is not well studied. Though only 
limited information is available for huMETCAM/MUC18’s outside-in and inside-out signal-
ing in endothelial cells, and the signaling information for the METCAM/MUC18-mediated 
progression of various cancer cells are not much known. How the expression of METCAM/
MUC18 is regulated at the level of transcription is minimally studied. We will try to address 
these questions by taking advantage of the currently known information from various sources 
to propose possibilities for much needed studies in the future.

4.1. The presentation of huMETCAM/MUC18 on the surface of cancer tissues may 
be different from cancer to cancer

Our unique contribution to the biology of METCAM/MUC18 was mainly attributed to the 
high specificity of our chicken antibodies [70, 71], to reconcile the different, sometimes contro-
versial, findings [73, 86], we suggest that the presentation of huMETCAM/MUC18 on the cel-
lular surface in normal and carcinoma tissues may be different from cancer to cancer [70, 72]. 
HuMETCAM/MUC18 may be presented differently in various cancer cell lines because of 
different carbohydrate composition, differential distribution of huMETCAM/MUC18 in the 
cholesterol-enriched lipid raft membrane fraction of the plasma membrane, different interac-
tions of huMETCAM/MUC18 with other membrane proteins, and different lipid modifica-
tion of the protein. There appears to have some correlation of the predominant cytoplasmic 
expression of huMETCAM/MUC18 antigens with the malignant progression of human pros-
tate carcinomas, but not in human melanoma. To test the above possibilities, it is necessary to 
express the whole or a fragment of the protein in a large scale in human cancer cells lines in 
order to purify the protein for biochemical characterization and for crystallization and physi-
cal structure studies. Alternatively, to probe the functions of different parts of the molecule 
and for translational research, a complete set of monoclonal antibodies can be induced from 
the purified whole protein or its fragments. In line with these, a repertoire of mouse monoclo-
nal antibodies has been successfully constructed by Yen’s group [101]. We also intend to make 
a repertoire of rabbit monoclonal antibodies for the above purpose.
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Taken together, the dual role of METCAM/MUC18 may be explained by that the intrinsic 
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[52]
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[12, 67]
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and 10)

No effect or suppression Increasing and affecting at the 
late stage

[13, 49, 71]

Mouse melanoma cells (K1735-9) Suppression Suppression [13, 50, 71]

Angiosarcoma Increasing Possible promotion, by not 
determined

[62, 69, 90]

Human breast cancer cell line 
MCF-7

Promotion Not determined [56]

Human breast cancer cell line 
SK-BR-3

Promotion Not determined [57–58]

Human breast cancer cell lines 
MDA-MB-231 and 468

Promotion Promotion [57, 77]
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Not determined [100]
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determined

[82, 83]
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[82, 84]

Ovarian cancer Suppression Suppression [48, 59, 60]

Colorectal cancer Suppression Suppression [97]

Gastric cancer Promotion Not determined [94]

Non-small cell lung carcinoma Promotion Not determined [95]

Small cell lung carcinoma Promotion Not determined [96]

Hepatocellular carcinoma Promotion Promotion [92, 93]

Osteosarcoma Promotion Not determined [91]

Pancreatic cancer Promotion or suppression Not determined [98, 99]

Table 1. The possible role of METCAM/MUC18 in tumor formation and/or cancer metastasis of various tumors/cancers.
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4. Possible molecular mechanisms of the huMETCAM/MUC18-
mediated progression of cancer
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versial, findings [73, 86], we suggest that the presentation of huMETCAM/MUC18 on the cel-
lular surface in normal and carcinoma tissues may be different from cancer to cancer [70, 72]. 
HuMETCAM/MUC18 may be presented differently in various cancer cell lines because of 
different carbohydrate composition, differential distribution of huMETCAM/MUC18 in the 
cholesterol-enriched lipid raft membrane fraction of the plasma membrane, different interac-
tions of huMETCAM/MUC18 with other membrane proteins, and different lipid modifica-
tion of the protein. There appears to have some correlation of the predominant cytoplasmic 
expression of huMETCAM/MUC18 antigens with the malignant progression of human pros-
tate carcinomas, but not in human melanoma. To test the above possibilities, it is necessary to 
express the whole or a fragment of the protein in a large scale in human cancer cells lines in 
order to purify the protein for biochemical characterization and for crystallization and physi-
cal structure studies. Alternatively, to probe the functions of different parts of the molecule 
and for translational research, a complete set of monoclonal antibodies can be induced from 
the purified whole protein or its fragments. In line with these, a repertoire of mouse monoclo-
nal antibodies has been successfully constructed by Yen’s group [101]. We also intend to make 
a repertoire of rabbit monoclonal antibodies for the above purpose.
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4.2. Which domains of huMETCAM/MUC18 are required for tumorigenesis and 
metastasis?

The relation of the protein structure of huMETCAM/MUC18 to its functions in tumorigenesis 
and metastasis has not been systematically defined. For this purpose, the partial known infor-
mation of the functional domain(s) of the two huMETCAM/MUC18-related cell adhesion mol-
ecules in the Ig-like gene superfamily, such as CEA-CAM [31, 32] and ALCAM [102–104], might 
be used as a guide for designing tests to probe the functional domains in the external domain of 
huMETCAM/MUC18. The known functions of the cytoplasmic tail of several cell adhesion mol-
ecules may also provide clues to understand the function of the cytoplasmic tail of huMETCAM/
MUC18 in crosstalk with signal pathways leading to tumorigenesis and metastasis [105–107].  
For example, the domain of CEACAM1 required for tumorigenesis seems to reside in the intra-
cellular cytoplasmic tail, but not in the extracellular domain [31, 32]. The N-terminal most Ig-like 
domain of the extracellular portion of ALCAM seems to be responsible for homophilic and het-
erophilic interactions [103, 104]. However, the domain(s) of these two molecules required for 
metastasis have not yet been studied. Since the information from these related proteins is very 
limited, we cannot logically predict the role of both the extracellular domain and the intracellu-
lar tail of the Ig-like CAMs in tumorigenesis and metastasis. To begin addressing this question, 
in the past, we have generated mutants deleted different domains of huMETCAM/MUC18 by 
using a special PCR method [108] and used them to determine their contribution to tumorigen-
esis. The ecto-domain of huMETCAM/MUC18 was similar to the whole wild type cDNA to be 
able to induce tumorigenesis of LNCaP cells in nude mice, suggesting that the ecto-domain 
alone was sufficient to induce tumor of human prostate cancer cells in vivo, implying that the 
cytoplasmic domain was not essential for this process [data not shown].

However, similar tests of using only the cytoplasmic domain have not been performed for 
LNCaP cells. Rather, the function of the cytoplasmic domain of huMETCAM/MUC18 was 
tested for the human ovarian cancer cell line BG-1 that the cytoplasmic domain alone was able 
to induce tumors in nude mice [data not shown].

In conclusion, we are not clear if this is true only for BG-1 cells or this is generally true for all 
cancer cell lines, which requires further studies.

4.3. The possible role of glycosylation in the huMETCAM/MUC18-mediated cancer 
metastasis

Glycosylation of a protein has been shown to affect the proper folding, stability, and/or activ-
ity of a protein [109]. Furthermore, the glycosylation of a cell adhesion molecule may affect its 
ability to induce metastasis of cancer cells [110–113].

Both huMETCAM/MUC18 and moMETCAM/MUC18 have an apparent molecular weight of 
about 150 kDa [114], because they are heavily glycosylated, sialylated, and post-translationally  
modified. We have shown that the apparent molecular weight of huMETCAM/MUC18 
expressed in different human cancer cell lines was decreased after digestion with N-glycosidase 
F and neuraminidase (sialidase), but not with O-glycosidase or endoglycosidase H [62, 69], 
suggesting that huMETCAM/MUC18 has both sialic acid and N-glycans as carbohydrate 
side chains. Glycosylation in different cancer may be different that has been shown by using 
the anti-HNK-1 monoclonal antibody Leu 7 to probe the expression of HNK-1 epitope,  
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a sulfated-glycan with the structure of sulfo → 3GlcAβ1 → 3Galβ1 → 4GlcNA-cβ1→ R, in 
melanomas and prostate cancer tissues [115–120]. The expression level of the HNK-1 epitope is 
proportional to that of human METCAM/MUC18 in human melanoma, and both are predomi-
nantly expressed on the plasma membrane of melanoma cells. In contrast, the HNK-1 epitope 
is found to be predominantly present in the cytoplasm of human prostate epithelial cells. In 
addition, different from the increased expression level of huMETCAM/MUC18 in prostate can-
cer, the expression of the HNK-1 epitope is decreased in the more advanced grades of human 
prostate cancer [120]. We suggest that the sugar moieties in the N-glycans of huMETCAM/
MUC18 in human prostate cancer cells are different from that in melanoma cells; this may be 
related to its more profound effect on promoting the tumorigenesis and metastasis of human 
prostate cancer LNCaP cells than that of melanoma cells [12, 51, 69, 70]. Thus, we hypothesize 
that the N-glycans at the N-glycosylation sites of huMETCAM/MUC18 should have a sig-
nificant effect on their in vitro motility and invasiveness and other in vitro cellular behaviors 
(for example, cell-cell adhesion and cell-extracellular matrix interaction) as well as tumori-
genesis and metastasis of human prostate cancer and melanoma cells and very likely also in 
other human cancer cells that express METCAM/MUC18, since glycosylation of huMETCAM/
MUC18 may affect its ability to mediate cell-cell adhesion and cell-extracellular matrix interac-
tion. This notion is supported by a recent publication that GCNT3 is an upstream regulator of 
METCAM and it glycosylates METCAM/MUC18 and extends its half-life, leading to further 
elevation of S100A8/A9-mediated cellular motility in melanoma cells [121].

The human huMETCAM/MUC18 protein has nine potential N-glycosylation sites (Asn-X-Ser/Thr 
or N-X-S/T sites) [63, 64, 70] and the mouse METCAM/MUC18 has seven [71]. Their locations on 
huMETCAM/MUC18 are depicted in Figure 1. Six N-glycosylation sites are conserved between 
the two proteins: 56/58 NL/FS, 418/420NRT, 449/451NLS, 467NGT/469NGS, 507NTS/509NTT, 
and 544/546NST [69]. Since the apparent molecular weight of huMETCAM/MUC18 and moMET-
CAM/MUC18 in the SDS gel are similar, we suggest that only these six conserved N-glycosylation 
sites are actually glycosylated. All these N-glycosylation sites are located in the external domains 
of V1, C′, C″, and X. The effect of N-glycosylation on the function of huMETCAM/MUC18 can be 
tested by using genetic means to alter the N-glycosylation sites. First, we should test the effect of 
mutations in the six conserved sites of the huMETCAM/MUC18 on in vitro cell-cell aggregation 
and cell-extracellular matrix adhesion and on in vivo tumorigenesis and metastasis of human can-
cer cells. The N-glycosylation site can be point mutated from Asn to Ala or Gln [122, 123] or may 
be linker-scanning mutated by replacing the three codons (the nine nucleotide sequence) with a 
nine bp oligonucleotide containing a unique restriction site sequence [124]. Both kinds of muta-
tion are better than deletion mutations, since they do not change the relative physical location of 
the mutated sequences and thus the phenotype of the mutant is directly related to the substituted 
sequence without the complicated influence of the added sequences from the surrounding region 
of interest. The linker-scanning mutations from our experience are superior to the point muta-
tions because they usually manifest a more dramatic phenotype [124].

4.4. The heterophilic ligands of METCAM/MUC18 may play an important role in 
the cell-cell and cell-extracellular matrix interactions and cancer metastasis

To further understand how huMETCAM/MUC18 mediates metastasis of cancer cells to certain 
target organs, it is important to identify the heterophilic ligand(s) of huMETCAM/MUC18 and 
to know how it regulates cellular behaviors, and how it interacts with members of the signal  
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mation of the functional domain(s) of the two huMETCAM/MUC18-related cell adhesion mol-
ecules in the Ig-like gene superfamily, such as CEA-CAM [31, 32] and ALCAM [102–104], might 
be used as a guide for designing tests to probe the functional domains in the external domain of 
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ecules may also provide clues to understand the function of the cytoplasmic tail of huMETCAM/
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alone was sufficient to induce tumor of human prostate cancer cells in vivo, implying that the 
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However, similar tests of using only the cytoplasmic domain have not been performed for 
LNCaP cells. Rather, the function of the cytoplasmic domain of huMETCAM/MUC18 was 
tested for the human ovarian cancer cell line BG-1 that the cytoplasmic domain alone was able 
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cancer cell lines, which requires further studies.

4.3. The possible role of glycosylation in the huMETCAM/MUC18-mediated cancer 
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Glycosylation of a protein has been shown to affect the proper folding, stability, and/or activ-
ity of a protein [109]. Furthermore, the glycosylation of a cell adhesion molecule may affect its 
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about 150 kDa [114], because they are heavily glycosylated, sialylated, and post-translationally  
modified. We have shown that the apparent molecular weight of huMETCAM/MUC18 
expressed in different human cancer cell lines was decreased after digestion with N-glycosidase 
F and neuraminidase (sialidase), but not with O-glycosidase or endoglycosidase H [62, 69], 
suggesting that huMETCAM/MUC18 has both sialic acid and N-glycans as carbohydrate 
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addition, different from the increased expression level of huMETCAM/MUC18 in prostate can-
cer, the expression of the HNK-1 epitope is decreased in the more advanced grades of human 
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tion. This notion is supported by a recent publication that GCNT3 is an upstream regulator of 
METCAM and it glycosylates METCAM/MUC18 and extends its half-life, leading to further 
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nine bp oligonucleotide containing a unique restriction site sequence [124]. Both kinds of muta-
tion are better than deletion mutations, since they do not change the relative physical location of 
the mutated sequences and thus the phenotype of the mutant is directly related to the substituted 
sequence without the complicated influence of the added sequences from the surrounding region 
of interest. The linker-scanning mutations from our experience are superior to the point muta-
tions because they usually manifest a more dramatic phenotype [124].

4.4. The heterophilic ligands of METCAM/MUC18 may play an important role in 
the cell-cell and cell-extracellular matrix interactions and cancer metastasis

To further understand how huMETCAM/MUC18 mediates metastasis of cancer cells to certain 
target organs, it is important to identify the heterophilic ligand(s) of huMETCAM/MUC18 and 
to know how it regulates cellular behaviors, and how it interacts with members of the signal  
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transduction pathways. Previous studies suggest that huMETCAM/MUC18 prefers to interact 
with heterophilic ligand(s) [125, 126], which, however, has not been identified. But at least we 
know that some components of proteoglycans such as, glycosaminoglycan, hyaluronic acid, 
dermatan sulfate, keratan sulfate, heparin, heparan sulfate, chondroitin-6-sulfate, and heparan 
sulfate proteoglycan, have been excluded [125, 126]. The heterophilic ligands of huMETCAM/
MUC18 are highly likely to be proteins. The proteins possessing SH3 domain [127] may be the 
possible candidates; however, the proteins containing the SH3 domain may not be the real ligands 
since they interact with MUC18 with a low affinity. The neurite outgrowth factor (a member of 
the laminin family) [128] may be another possible candidate; however, the cDNA gene of the neu-
rite outgrowth factor has not been cloned for further characterization. To identify the authentic 
heterophilic ligands of huMETCAM/MUC18, stringent biochemical criteria should be employed.

To search for the ligand(s), many methods may be employed, such as immunoaffinity pull-
down method [129], METCAM/MUC18-GST fusion protein pull-down method [69], METCAM/
MUC18-AP fusion method to screen an expression library [130, 131], or METCAM/MUC18 used 
for screening counter-acting peptides in a phage library expressing random peptides [132, 133]. 
So far, we have attempted to use an immunoaffinity pull-down method to identify the hetero-
philic ligands of huMETCAM/MUC18. From our preliminary results, we found that a protein 
of 72 kDa may be a potential ligand, which is expressed on the cellular surface of two human 
prostate cancer cell lines and one human melanoma cell line [69]. This putative ligand protein 
appeared to be present in the extract of the human prostate cancer cell line, PC-3, more than 
that in DU145. We excluded the possibility that this protein may be the breakdown product of 
huMETCAM/MUC18 because of its discrete size. We are in the process of preparing a sufficient 
quantity of the protein for further characterization with mass spectrometry. In addition, we 
have successfully expressed a huMETCAM/MUC18-ectodoamin-GST fusion protein in LNCaP 
cells. The fusion protein will be purified and also used for pulling down ligands. Alternatively, 
we have used a huMETCAM/MUC18-AP fusion protein to screen a human brain cDNA expres-
sion library; preliminary trials indicated that this methodology appears to be promising.

4.5. METCAM/MUC18-mediated signal transduction and cancer metastasis

The intracellular cytoplasmic tail of huMETCAM/MUC18 contains three consensus sequences 
to be recognized by PKC, one by PKA, and one by CK2 [63, 69, 70]. Though not biochemically 
proven, the cytoplasmic tail presumably is phosphorylated by these kinases. It probably has 
a capacity to crosstalk and network different signal pathways, similar to the cytoplasmic tails 
of other CAMs [106, 107, 134, 135]. Thus METCAM/MUC18, as an integral membrane protein 
and a cell adhesion molecule, should mediate inside-out and outside-in signals, which may 
be participating in cell-cell communication, cell-extracellular matrix interaction, and affecting 
the cellular motility and invasiveness [134, 135]. Furthermore, its interaction with cognate 
heterophilic ligand(s) may affect how it promotes angiogenesis and how it mediates targeting 
to specific organs and facilitates metastasis. Moreover, it may interact with androgen/andro-
gen receptor, growth factors/receptors, chemokines/receptors, and Ca2+-mediated signaling 
members. Figure 2 summarizes the possible crosstalk of huMETCAM/MUC18 with many 
members of signal transduction pathways, which are supported by the following:

The downstream signal transduction of this protein has been studied in endothelial cells. 
Anfosso et al. [68] showed that antibody cross-linked huMETCAM/MUC18 (which mimics cell 
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adhesion on the cell surface) induces phosphorylation of both FAK and PyK2 (a member of the 
FAK family) and association of FAK with paxillin in the endothelial cells, which leads to the acti-
vation of focal adhesion complexes, similar to the outside-in signaling triggered by the engage-
ment of integrins with the extracellular matrix. In addition, the engagement of huMETCAM/
MUC18 also triggers direct association with Fyn, a member of the c-Src family, which activates 
adhesion-associated signaling cascades and cytoskeleton rearrangement, leading to increasing 
motility, and invasiveness. Since FAK and PyK2 do not directly associate with huMETCAM/
MUC18 and the molecules that link the huMETCAM/MUC18 with FAK or PYK2 have not been 
identified, but huMETCAM/MUC18, similar to integrins, may use Fyn (and talin) for this pur-
pose. We suggest that it is likely that focal adhesion complexes and signaling cascades may also 
be present in the prostate cancer and melanoma cells, since the over-expression of huMETCAM/
MUC18 increases motility and invasiveness of human prostate cancer cells and melanoma cells.

Anfosso et al. further found that huMETCAM/MUC18 engagement also induces a Ca2+ influx, 
indicating that it is also able to initiate a store-operated calcium mobilization [136]. Ca2+ inside 
the cell may play a very important role—more so than other secondary messengers—in focal 
adhesion-induced actin cytoskeleton rearrangement and cellular motility, which is supported 
by the fact that locally elevated Ca2+ inside the cell triggers focal adhesion disassembly and 
enhances residency of focal adhesion kinase at focal adhesions [137, 138]. The link between 
the cell adhesion role of huMETCAM/MUC18 with Ca2+ influx is supported by the evidence 
that human METCAM/MUC18 is coupled to a Fyn-dependent pathway that triggers activa-
tion of phospholipase C-γ1 via tyrosine phosphorylation, which leads to increased Ca2+ influx 
that is in turn required for the tyrosine phosphorylation of PyK2 and p130Cas and formation 
of a complex between PyK2, p130Cas, and paxillin, which in turn leads to cell adhesion and 
cell motility. Taken together, huMETCAM/MUC18 is a signaling molecule involved in the 
dynamics of actin cytoskeleton rearrangement. The elevation of Ca2+ influx also has other 
effects: it is linked to Ras-Raf1-MAP kinase via PyK2 and involved in cell proliferation by 
activating phospholipase C-γ1, which in turn activates PKCs that affects cell proliferation, 
differentiation, and transcriptional control of other genes (for example, c-Myc target genes); 
and it may directly activate transcription factors, such as NF-kB, NF-AT, and CREB, which 
regulate transcription of genes in proliferation, survival, and/or apoptosis [139].

AKT (or PKB), the cellular homolog of the retroviral oncogene v-AKT, is a serine/threonine 
kinase. AKT is a key member in the AKT/PI3K/PTEN signaling pathway [140]. AKT is acti-
vated by phosphorylation at Thr 308 and Ser473 by its upstream factor, PI3 kinase, and is 
inactivated by de-phosphorylation by PTEN, a tumor suppressor. Upon activation, AKT pro-
motes cell survival by interfering with the cell apoptosis (when cells are exposed to pro-apop-
totic signals, such as growth factor withdraw, irradiation, DNA damage, detachment, and the 
administration of apoptosis-inducing reagents) [140] and also promotes motility, prolifera-
tion, growth, angiogenesis, and the activation of mTOR (mammalian target of rapamycin) 
[141]. AKT also can be activated by Ras, which in turn is activated by a growth factor receptor 
or by RTK and survival factors, IGF1. In melanoma cells, when AKT activation is inhibited, 
huMETCAM/MUC18 expression is reduced. When AKT is super-activated, huMETCAM/
MUC18 expression is increased. On the other hand, the over-expression of huMETCAM/
MUC18 in melanoma cells led to further activation of AKT, resulting in cell survival under 
stress conditions [142]. It is not clear how the expression of AKT is directly or indirectly affect-
ing the expression of huMETCAM/MUC18 and which isoforms is involved, since there are 
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transduction pathways. Previous studies suggest that huMETCAM/MUC18 prefers to interact 
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To search for the ligand(s), many methods may be employed, such as immunoaffinity pull-
down method [129], METCAM/MUC18-GST fusion protein pull-down method [69], METCAM/
MUC18-AP fusion method to screen an expression library [130, 131], or METCAM/MUC18 used 
for screening counter-acting peptides in a phage library expressing random peptides [132, 133]. 
So far, we have attempted to use an immunoaffinity pull-down method to identify the hetero-
philic ligands of huMETCAM/MUC18. From our preliminary results, we found that a protein 
of 72 kDa may be a potential ligand, which is expressed on the cellular surface of two human 
prostate cancer cell lines and one human melanoma cell line [69]. This putative ligand protein 
appeared to be present in the extract of the human prostate cancer cell line, PC-3, more than 
that in DU145. We excluded the possibility that this protein may be the breakdown product of 
huMETCAM/MUC18 because of its discrete size. We are in the process of preparing a sufficient 
quantity of the protein for further characterization with mass spectrometry. In addition, we 
have successfully expressed a huMETCAM/MUC18-ectodoamin-GST fusion protein in LNCaP 
cells. The fusion protein will be purified and also used for pulling down ligands. Alternatively, 
we have used a huMETCAM/MUC18-AP fusion protein to screen a human brain cDNA expres-
sion library; preliminary trials indicated that this methodology appears to be promising.

4.5. METCAM/MUC18-mediated signal transduction and cancer metastasis

The intracellular cytoplasmic tail of huMETCAM/MUC18 contains three consensus sequences 
to be recognized by PKC, one by PKA, and one by CK2 [63, 69, 70]. Though not biochemically 
proven, the cytoplasmic tail presumably is phosphorylated by these kinases. It probably has 
a capacity to crosstalk and network different signal pathways, similar to the cytoplasmic tails 
of other CAMs [106, 107, 134, 135]. Thus METCAM/MUC18, as an integral membrane protein 
and a cell adhesion molecule, should mediate inside-out and outside-in signals, which may 
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adhesion on the cell surface) induces phosphorylation of both FAK and PyK2 (a member of the 
FAK family) and association of FAK with paxillin in the endothelial cells, which leads to the acti-
vation of focal adhesion complexes, similar to the outside-in signaling triggered by the engage-
ment of integrins with the extracellular matrix. In addition, the engagement of huMETCAM/
MUC18 also triggers direct association with Fyn, a member of the c-Src family, which activates 
adhesion-associated signaling cascades and cytoskeleton rearrangement, leading to increasing 
motility, and invasiveness. Since FAK and PyK2 do not directly associate with huMETCAM/
MUC18 and the molecules that link the huMETCAM/MUC18 with FAK or PYK2 have not been 
identified, but huMETCAM/MUC18, similar to integrins, may use Fyn (and talin) for this pur-
pose. We suggest that it is likely that focal adhesion complexes and signaling cascades may also 
be present in the prostate cancer and melanoma cells, since the over-expression of huMETCAM/
MUC18 increases motility and invasiveness of human prostate cancer cells and melanoma cells.
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the cell adhesion role of huMETCAM/MUC18 with Ca2+ influx is supported by the evidence 
that human METCAM/MUC18 is coupled to a Fyn-dependent pathway that triggers activa-
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of a complex between PyK2, p130Cas, and paxillin, which in turn leads to cell adhesion and 
cell motility. Taken together, huMETCAM/MUC18 is a signaling molecule involved in the 
dynamics of actin cytoskeleton rearrangement. The elevation of Ca2+ influx also has other 
effects: it is linked to Ras-Raf1-MAP kinase via PyK2 and involved in cell proliferation by 
activating phospholipase C-γ1, which in turn activates PKCs that affects cell proliferation, 
differentiation, and transcriptional control of other genes (for example, c-Myc target genes); 
and it may directly activate transcription factors, such as NF-kB, NF-AT, and CREB, which 
regulate transcription of genes in proliferation, survival, and/or apoptosis [139].

AKT (or PKB), the cellular homolog of the retroviral oncogene v-AKT, is a serine/threonine 
kinase. AKT is a key member in the AKT/PI3K/PTEN signaling pathway [140]. AKT is acti-
vated by phosphorylation at Thr 308 and Ser473 by its upstream factor, PI3 kinase, and is 
inactivated by de-phosphorylation by PTEN, a tumor suppressor. Upon activation, AKT pro-
motes cell survival by interfering with the cell apoptosis (when cells are exposed to pro-apop-
totic signals, such as growth factor withdraw, irradiation, DNA damage, detachment, and the 
administration of apoptosis-inducing reagents) [140] and also promotes motility, prolifera-
tion, growth, angiogenesis, and the activation of mTOR (mammalian target of rapamycin) 
[141]. AKT also can be activated by Ras, which in turn is activated by a growth factor receptor 
or by RTK and survival factors, IGF1. In melanoma cells, when AKT activation is inhibited, 
huMETCAM/MUC18 expression is reduced. When AKT is super-activated, huMETCAM/
MUC18 expression is increased. On the other hand, the over-expression of huMETCAM/
MUC18 in melanoma cells led to further activation of AKT, resulting in cell survival under 
stress conditions [142]. It is not clear how the expression of AKT is directly or indirectly affect-
ing the expression of huMETCAM/MUC18 and which isoforms is involved, since there are 
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three isoforms of AKT: AKT-1, AKT-2, and AKT-3. One possible crosstalk between METCAM/
MUC18 and AKT may be linked by casein kinase 2, as described further.

Casein kinase 2 (CK2) was discovered in the 1950s. The history of CK2 is full of paradoxes 
and unexpected findings [143]. The α-subunits and the β-subunits of CK2 are found to be 
un-coordinately distributed in different cellular compartments, suggesting that the interac-
tion partners of the α-subunits and the β-subunits may be different and much more complex 
than we have previously thought. CK2 is constitutively active, and no oncogenic CK2 mutant 
is known; but high CK2 activity correlates to neoplasia. It was thought to be one of the most 
pleiotropic protein kinases. However, a phospho-proteomics analysis of these CK2 null cells 
suggests that CK2 pleiotropy may be less pronounced than expected, supporting the idea that 
the phospho-proteome generated by this kinase is flexible and not rigidly pre-determined. 
Furthermore, CK2 is dispensable, since it can be replaced by other kinases to perform the 
phosphorylation of critical sites whenever CK2 activity is nullified. CK2 may also be involved 
in cell survival by directly affecting AKT activity or indirectly interacting with members of 
the AKT survival pathway. We suggest that a potential sequence present in the huMETCAM/
MUC18 cytoplasmic tail may be recognized by CK2 as its substrate and may link the recipro-
cal mutual effect between huMETCAM/MUC18 and AKT.

PKC is the most extensively studied among all protein kinases. A huge number of mem-
bers are involved in the family of PKC. PKCs are encoded by nine different genes. It has a 
large family including three major families of isozymes with distinct regulation: cPKC (PKCα, 
PKCβΙ, PKCβII, and PKCγ), nPKC (PKCδ, PKCε, PKCη, and PKCθ), and aPKC (PKCλ, 
PKCζ, and PKCι) [144]. In addition, there are the PKC-related kinases, PRK ½ [145] and PKC-
binding partners [146]. The classical PKCs (cPKCs) are activated by PS, calcium, and DAG 
or PMA; the novel PKCs (nPKCs) are activated by PS and DAG or PMA; the atypical PKCs 
(aPKCs) are independent of PS, calcium, and DAG. PKC isozymes are key regulators of cel-
lular function, such as growth, differentiation, cell survival, neurotransmission, carcinogen-
esis, and cancer progression [144]. PKCs control multiple functions associated with cancer 
progression, in many cases in opposite manners. Depending on the context, PKCs can act 
either as promoters or suppressors of the cancer phenotype [147]. The PKC-related kinases, 
PRK ½ and PKC-binding partners may regulate and expand the functions of PKCs by posi-
tioning individual PKCs in the appropriate location to respond to specific receptor-mediated 
activating signals, bringing them in close contact with substrate proteins, directing them in 
vesicle trafficking between compartments, or integrating PKC-mediated signaling with other 
signaling pathways [145, 146]. Increased regulation of PKCα has been associated with the 
malignant progression of melanoma and that of PKCβII with the progression of colon/rectal 
cancer [144]. Up-regulation of PKCα, PKCε, and PKCζ, and down-regulation of PKCβ was 
associated with the progression of prostate cancer [144]. Over-expression of PKCε was suf-
ficient to transform androgen-sensitive LNCaP cells into an androgen-independent variant 
[144]. The contribution of PKCs to METCAM/MUC18-mediated tumor growth and metastasis 
has not been studied. At least, it is highly possible that PKCs may phosphorylate the cytoplas-
mic tail of METCAM/MUC18 at the three potential PKC phosphorylation sites; however, it is 
not clear which isoform of PKC is responsible it. Furthermore, some inside-out signals may 
turn on some of the PKC members, which in turn may interact with the cytoplasmic tail of 
huMETCAM/MUC18, leading to tumor cell survival, tumor vascularization, cytoskeleton re-
organization, focal adhesion, migration, and invasiveness [147].
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PKA is involved in cAMP-mediated signal transduction. The huMETCAM/MUC18 pro-
moter may be regulated by PKA [148], since it contains a consensus CREB-binding site, 
as shown in Figure 3. Thus, the expression of huMETCAM/MUC18 may be regulated by 
PKA. Furthermore, the activity/function of huMETCAM/MUC18 may be regulated by PKA-
mediated signals, perhaps after the phosphorylation of the cytoplasmic tail. Since PKA has 
been shown to regulate the Ca2+ channels and pumps, the Ca2+ influx induced by the huMET-
CAM/MUC18 engagement may also be regulated by PKA [139]. The effect of PKA on in vitro 
tumor growth and in vitro motility and invasiveness may be investigated after augmentation 
of the PKA activity by treatment of cells with forskolin. The effect of PKA on these processes 
may be reversed by treatment with specific inhibitors to reduce the PKA activity.

4.6. Transcriptional regulation of huMETCAM/MUC18 gene

Only a few studies have been done to understand the mechanism of transcriptional control 
of METCAM/MUC18 gene. The sequence of 900 bp in the core promoter region of huMET-
CAM/MUC18 has been characterized [64]. This promoter does not have a TATA box, but is 
GC-rich, which contains putative binding sites for SP-1, CREB [148], AP-2 [149, 150], c-Myb 
[151], N-Oct2 (Brn2) [152], Ets [153], CArG [154], and Egr-1 [155] and three insulin responsive 
elements (one Ets and two E-box motifs) [156], suggesting that huMETCAM/MUC18 expres-
sion may be regulated by growth-related signals [62, 69] (Figure 3).

AP-2 is a transcription repressor for the huMETCAM/MUC18 gene and it is also a suppres-
sor for the huMETCAM/MUC18-mediated metastasis [149, 150]. This is supported by the evi-
dence that transfection of highly metastatic melanoma cells (AP-2−/MUC18+) with the AP-2 
gene resulted in a down-regulation of huMETCAM/MUC18 gene and inhibited their tumor 
growth and metastasis in nude mice [149]. Similar down-regulation of huMETCAM/MUC18 
probably occurs in human prostate cancer cells [150]. Since the loss of AP-2 expression is at the 
early stage of prostate cancer development, this is consistent with our notion that MEMCAM/
MUC18 plays an important role in initiating the development of prostate cancer. The loss of 
AP-2 expression at the late stage of melanoma is also consistent with our hypothesis that MEM/
MUC18 plays a key role only in the late stage of the development of melanoma. ZBTB7A has 

Figure 3. Putative transcription factor-recognized motifs in the 900 bp core promoter and 5–10 kbp upstream region of 
the huMETCAM/MUC18 gene.
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(aPKCs) are independent of PS, calcium, and DAG. PKC isozymes are key regulators of cel-
lular function, such as growth, differentiation, cell survival, neurotransmission, carcinogen-
esis, and cancer progression [144]. PKCs control multiple functions associated with cancer 
progression, in many cases in opposite manners. Depending on the context, PKCs can act 
either as promoters or suppressors of the cancer phenotype [147]. The PKC-related kinases, 
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tioning individual PKCs in the appropriate location to respond to specific receptor-mediated 
activating signals, bringing them in close contact with substrate proteins, directing them in 
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cancer [144]. Up-regulation of PKCα, PKCε, and PKCζ, and down-regulation of PKCβ was 
associated with the progression of prostate cancer [144]. Over-expression of PKCε was suf-
ficient to transform androgen-sensitive LNCaP cells into an androgen-independent variant 
[144]. The contribution of PKCs to METCAM/MUC18-mediated tumor growth and metastasis 
has not been studied. At least, it is highly possible that PKCs may phosphorylate the cytoplas-
mic tail of METCAM/MUC18 at the three potential PKC phosphorylation sites; however, it is 
not clear which isoform of PKC is responsible it. Furthermore, some inside-out signals may 
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been shown to repress transcription of METCAM/MUC18 gene in melanoma [157]. METCAM/
MUC18 gene in osteosarcoma has been partly controlled by the transcription factor YY1 [158].

In addition to the sequence in the core promoter region, some upstream sequences should 
be required for the tissue-specific regulation of huMETCAM/MUC18 gene, since this 900 bp 
promoter region did not contain the necessary sequences to confer tissue specificity of the 
huMETCAM/MUC18 expression [159]. A recent finding appears to support this notion that 
Ets sequence in the 10 kbp upstream region is involved in the regulation of the expression of 
huMETCAM.MUC18 gene [160]. The sequence of the upstream region of the huMETCAM/
MUC18 promoter may be obtained by searching in the Celera or other web sites. We have 
obtained several clones that contain at least 4 kbp of the gene for future studies.

Furthermore, epigenetic control of the huMETCAM/MUC18 gene has not been extensively 
studied. Nevertheless, the epigenetic control of the expression of huMETCAM/MUC18 gene 
has been demonstrated in NPC [161] and prostate cancer [162]. HuMETCAM/MUC18 gene is 
located on human chromosome 11q23.3 [127] which has been shown to be methylated in NPC, 
suggesting that the expression of this gene may be regulated by epigenetic controls. METCAM/
MUC18 has been shown to be methylated in most of the early stage of prostate cancer [162].

5. Conclusions and clinical applications

METCAM/MUC18 may play a key positive function in the progression of prostate cancer, 
melanoma, breast cancer, gastric cancer, hepatocellular carcinoma, lung cancer, pancreatic 
cancer, and NPC type II. On the other hand, it may also have a key function in suppressing the 
progression of one mouse melanoma cell line, ovarian cancer, NPC type I, colorectal cancer, 
hemangioma, and perhaps other cancers. To further understand its role in these processes, it 
is essential to further define its functional domains, identify its cognate ligands and regula-
tors, and study its crosstalk with members of various signal transduction pathways and the 
regulation of its expression at the level of transcription. The knowledge obtained from our 
studies should be useful for designing effective means to arrest, or even better, to block the 
metastatic potential of these cancers. For example, a preclinical trial of using doxazosin, a 
α1-adrenergic antagonist, which has been used to treat the BPH patients, has been shown to 
reduce prostate cancer metastasis in the TRAMP mouse model [163]. Furthermore, the suc-
cess of preclinical trials has been demonstrated in using a fully humanized anti-METCAM/
MUC18 antibody against melanoma growth and metastasis [164] and in using a mouse anti-
METCAM/MUC18 monoclonal antibody against angiogenesis and tumor growth (hepatocel-
lular carcinoma, leiomyosarcoma, and pancreatic cancer) [165]. However, the dual role of 
METCAM/MUC18 in cancer progression warns us an important point in clinical applications 
that we should not be hasty in using monoclonal antibodies or siRNA for clinical trials, rather 
we should spend more effort on tailoring a personalized treatment in the future.
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Abstract

The nuclear factor κB (NF-κB) is one of the most pivotal transcription factors in mam-
malian cells. In many pathologies NF-κB is activated abnormally. This contributes to 
the development of various disorders such as cancer, acute kidney injury, lung disease, 
chronic inflammatory diseases, cardiovascular disease, and diabetes. This book chapter 
focuses on how methylation of NF-κB regulates its target genes differentially. The knowl-
edge from this chapter will provide scientific strategies for innovative therapeutic inter-
vention of NF-κB in a wide range of diseases.

Keywords: arginine, epigenetic enzymes, gene regulation, lysine, methylation, NF-κb, 
transcription factor

1. Introduction

The nuclear factor κB (NF-κB) is one of the most pivotal transcription factors in mammalian 
cells. In many pathologies NF-κB is activated abnormally. This contributes to the development 
of various disorders such as cancer, acute kidney injury, lung disease, chronic inflammatory 
diseases, cardiovascular disease, and diabetes [1]. NF-κB family is comprised of five family 
members: p65 (RelA), RelB, c-Rel, p50/p105 (NF-kB1), and p52/p100 (NF-kB2). Among them, 
the Rel homology domain (RHD) at their N-termini is a commonly share feature (Figure 1). It 
is necessary for protein dimerization, the inhibition of NF-κB (IκB) interaction, nuclear target-
ing, and DNA binding [2]. Additionally, a carboxy-terminal transactivation domain (TAD) 
also exists in the Rel proteins, such as p65 (Figure 1), RelB, and c-Rel. Among the NF-κB 
dimers, the p65:p50 heterodimer is the prototype.
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distribution, and reproduction in any medium, provided the original work is properly cited.
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The activity of NF-κB is frequently regulated by various modifications, namely, post-trans-
lational modifications (PTM). Among which, methylation is the newest type of modification 
that is discovered. The knowledge on NF-κB methylation is still scarce and not popularized 
among wide range of readers. Thus, in this chapter, we will focus on how methylation of 
NF-κB regulates its target genes differentially and provide perspectives and future directions 
in term of the research and application of NF-κB methylation. The knowledge from this chap-
ter will provide scientific strategies for innovative therapeutic intervention of NF-κB in a wide 
range of diseases.

2. NF-κB signaling pathways

The NF-κB signaling pathways play a very important role in signaling innate and adaptive 
immune responses and in many cellular processes. NF-κB signaling and subsequent target 
gene activation can be induced by a variety of factors including cytokines, stress, radiation, 
and also bacteria and viruses [3]. This signaling can be broken down into two signaling path-
ways: the canonical and non-canonical branches of the NF-κB pathway (Figure 2). In the 
canonical pathway, activity is regulated by interactions between IκB proteins and the p65:p50 
complex. IκB proteins hold NF-κB proteins in inactive conformations by binding in the cyto-
plasm and preventing nuclear localization. Extracellular signals including cytokines such as 
interleukin 1 β (IL-1β) and tumor necrosis factor α (TNFα), stress, free radicals, or radiation 
cause IκB kinase (IKK) activation. IKK is a complex that consists of the IKKα and IKKβ kinases 
and a third regulatory subunit known as NEMO/IKKγ [4, 5]. In the canonical pathway, IKKβ 
phosphorylates the N-terminal serine residues 32 and 36 of IκBα, resulting in its polyubiquiti-
nation and subsequent rapid proteasomal degradation [3]. This degradation allows the release 
of p65:p50 into the cytoplasm. The two-unit NF-κB complex then binds to the protein importin 
and translocates to the nucleus where it further binds to DNA and promotes increased expres-
sion of NF-κB target genes [6]. In the noncanonical pathway, the p100 and RelB proteins form 
an inactive dimer in the cytoplasm. Upon stimulation by a certain group of stimuli, such as 
B-cell activation factor (BAF) or CD40 ligand (CD40L), IKKα is subsequently activated through 
NF-κB-inducing kinase (NIK) mediation, leading to the ubiquitin/proteasomal processing of 

Figure 1. Diagram of the p65 subunit of NF-κB with methylation modifications. In the diagram, the arginine (R) 30 and 
lysine (K) 37, 218 and 221 are located at the Rel homology domain (RHD) (light gray), other 3 lysine sites K310, 314 and 
315 are located in the linker region (gray) between RHD and Transactivation domain (TA) (dark gray).
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p100 to p52. Once this processing has occurred, the RelB/p52 complex can translocate to the 
nucleus and bind to DNA to promote increased expression of NF-κB target genes [7].

3. The state of post-translational modifications (PTM) of NF-κB

Given the role of NF-ĸB in a wide range of important cellular and physiological processes, 
the potentially disastrous consequences of dysregulated NF-κB necessitates highly complex 
and finely regulated mechanisms for controlling NF-κB activity. NF-ĸB signaling can be influ-
enced at multiple levels, many of which converge on various components of the pathway 
including the IKK complex and the IĸB family of proteins [8]. For instance, the IKK complex 
remains one of the best-studied central regulators of NF-κB activation, and its phosphory-
lation of IκBα constitutes an essential event for subsequent signal transduction to both the 
canonical and non-canonical heterodimeric subunits of NF-κB [8, 9] as described above.

In addition to regulation by the IKK complex and the inhibitory IκB proteins, the NF-ĸB/Rel dimeric 
proteins are themselves subject to intricate regulation via a host of critical post-translational  

Figure 2. Two important NF-κB pathways. Left, in the canonical pathway, NF-κB subunit dimers are bound to inhibitory 
IκB proteins, which act to hold NF-κB complexes in an inactive state in the cytoplasm. Following stimulus of a receptor, 
the IκB kinase (IKK) complex becomes phosphorylated. IKK is made of two catalytically active kinases, IKKα and IKKβ, 
and the regulatory subunit IKKγ (NEMO). IKK then phosphorylates IκB proteins which are subsequently ubiquitinated 
and proteasomally degraded. This releases the bound subunits of NF-κB p65 and p50 into the cytoplasm. Following 
cytoplasmic release the subunits bind to importin and translocate to the nucleus where they can bind to the promoter 
and trigger the transcriptional activation of NF-κB target genes. Right, in the noncanonical pathway, the p100/RelB 
dimer remains in an inactive state until stimulated by a signaling cascade triggered by factors including CD40L or 
BAFF. Following stimulus and subsequent phosphorylation of IKKα by NIK, IKKα phosphorylates p100 associated with 
RelB, which leads to its ubiquitination and proteasomal processing to p52. The complexed p52/RelB can then translocate 
to the nucleus and bind to the target gene promoters and further activate the transcription of the NF-κB target genes.
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p100 to p52. Once this processing has occurred, the RelB/p52 complex can translocate to the 
nucleus and bind to DNA to promote increased expression of NF-κB target genes [7].

3. The state of post-translational modifications (PTM) of NF-κB

Given the role of NF-ĸB in a wide range of important cellular and physiological processes, 
the potentially disastrous consequences of dysregulated NF-κB necessitates highly complex 
and finely regulated mechanisms for controlling NF-κB activity. NF-ĸB signaling can be influ-
enced at multiple levels, many of which converge on various components of the pathway 
including the IKK complex and the IĸB family of proteins [8]. For instance, the IKK complex 
remains one of the best-studied central regulators of NF-κB activation, and its phosphory-
lation of IκBα constitutes an essential event for subsequent signal transduction to both the 
canonical and non-canonical heterodimeric subunits of NF-κB [8, 9] as described above.

In addition to regulation by the IKK complex and the inhibitory IκB proteins, the NF-ĸB/Rel dimeric 
proteins are themselves subject to intricate regulation via a host of critical post-translational  

Figure 2. Two important NF-κB pathways. Left, in the canonical pathway, NF-κB subunit dimers are bound to inhibitory 
IκB proteins, which act to hold NF-κB complexes in an inactive state in the cytoplasm. Following stimulus of a receptor, 
the IκB kinase (IKK) complex becomes phosphorylated. IKK is made of two catalytically active kinases, IKKα and IKKβ, 
and the regulatory subunit IKKγ (NEMO). IKK then phosphorylates IκB proteins which are subsequently ubiquitinated 
and proteasomally degraded. This releases the bound subunits of NF-κB p65 and p50 into the cytoplasm. Following 
cytoplasmic release the subunits bind to importin and translocate to the nucleus where they can bind to the promoter 
and trigger the transcriptional activation of NF-κB target genes. Right, in the noncanonical pathway, the p100/RelB 
dimer remains in an inactive state until stimulated by a signaling cascade triggered by factors including CD40L or 
BAFF. Following stimulus and subsequent phosphorylation of IKKα by NIK, IKKα phosphorylates p100 associated with 
RelB, which leads to its ubiquitination and proteasomal processing to p52. The complexed p52/RelB can then translocate 
to the nucleus and bind to the target gene promoters and further activate the transcription of the NF-κB target genes.
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modification (PTM) events [10–12]. PTMs on p65, the prototypical subunit of NF-κB, include 
[13, 14], acetylation [15–19], methylation [20–23], ubiquitination [24], nitrosylation [25], and 
sumoylation [26]. The consequences of these regulatory modifications are context dependent, 
and vary based on the nature and abundance of the NF-κB pathway stimulators [11, 22]. 
Moreover, the sites and/or crosstalk between modifications [16, 27] can yield different out-
comes with even the same modifications yielding quite distinct physiological effects [28–31]. 
Eventually, these PTMs work to dictate the duration and strength of activation and, accord-
ingly, the degree of transcriptional output [10, 32]. Moreover, some of these modifications 
serve as important means for crosstalk with other signaling pathways [33].

Our laboratory is one of the first few groups to discover that p65 can be methylated on lysine 
residues upon cytokine stimulation [20]. Subsequently, we pioneered the identification of 
arginine 30 (R30) methylation of p65 [22]. Below, we will thoroughly discuss the impact of 
these methylation sites on NF-κB-mediated differential gene regulation.

4. Methylation of the p65 subunit of NF-κB

4.1. Lysine methylation of p65

To date, a total of six lysine methylation sites have been reported: K37, 218, 221, 310, 314, and 
315 [18, 20]. By using a novel genetic approach, our lab identified that p65 can be methyl-
ated by a lysine methylase, the nuclear receptor-binding SET domain-containing protein 1 
(NSD1), and demethylated by a lysine demethylase, the F-box and leucine-rich repeat protein 
11 (FBXL11) [20]. This reversible lysine methylation of p65 is targeted at K218/K221 sites and 
affects NF-κB activity. K218/K221 methylation induces over 80% p65-dependent gene expres-
sion in mouse embryonic fibroblast cells (MEFs). The observation indicates that PTMs play an 
important role in fine-tuning the regulation of NF-κB [20].

Zhang et al. provided strong evidence regarding the function of p65 methylation by reporting 
that in response to TNFα, plant homeodomain finger protein 20 (PHF20) promotes NF-κB 
transcriptional activity by interacting with methylated p65 at K218/221. The methylation of 
p65 blocks recruitment of PP2A to p65, thereby leading to the persistent phosphorylation of 
p65 [34]. By using the immunohistochemistry (IHC) staining method, the authors showed 
that PHF20 and phosphorylated p65 are localized in the nucleus in glioma tissue specimens. 
The PHF20 expression levels are also tightly correlated with the clinical tumor grade after 
univariate analysis with a P value of 0.0018 (P < 0.05 is considered to be significant). These 
findings highlight the interrelated connections between overexpressed PHF20, methylation, 
and phosphorylation of p65 in human malignant gliomas [34].

In addition to our discovery of the methylation of K218/221, Ea et al. revealed that p65 
is monomethylated by histone methyltransferase, the Set domain-containing protein 
9 (Set9) at K37 in response to both IL-1β and TNFα treatment. The authors showed that 
TNFα induced p65 monomethylation is essential for the expression of NF-κB regulated 
genes. Methylated p65 stays in the nucleus, and Set9 might regulate its nuclear function. 
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Moreover, monomethylation of p65 increases the NF-κB DNA binding ability and recruit-
ment to the promoter of NF-κB target genes [18]. Interestingly, Yang et al. described that 
Set9 may also monomethylate p65 at K314 and K315 in addition to K37, and negatively 
regulate p65. The authors suggested that methylation of K314/315 inhibits the transcrip-
tional activity of NF-κB through proteasome-mediated degradation, and it downregulates 
NF-κB target gene expression [19], a phenomenon quite different from that of K37 methyla-
tion. Collectively, this evidence suggests the complexity of p65 methylation, and indicates 
that the same enzyme, such as SET9, may have different functions depending on the lysine 
residues it modifies. There is also a possibility that K37 modification occurs before K314/
K315 methylation. It is likely that K37 methylation is required for gene activation, while 
K314/315 methylation is required for the termination of NF-κB activity [18].

Besides the methylated lysine residues on p65 discussed above, another SET family mem-
ber SETD6, was also reported to monomethylate p65 at K310 under basal condition. Levy 
and colleagues observed that under the unstimulated condition, a proportion of p65 can be 
monomethylated by SETD6. This methylation event negatively regulates NF-κB target gene 
expression, including those involved in inflammatory response. The phenotype was proven 
in various cell lines, such as bone osteosarcoma U2OS, peripheral blood THP-1, and bone 
marrow-derived macrophages (BMDM), and therefore represents diverse disease models. 
Interestingly, Levy et al. found that K310 monomethylation-mediated NF-κB inhibition is due 
to the involvement of another protein, the G9A-like protein (GLP). By binding to monometh-
ylated K310, GLP enriches histone H3K9 dimethylation on the p65 target gene promoters, 
resulting in gene suppression. This SETD6-initiated lysine-methylation repressive pathway 
can be terminated by p65 phosphorylation at serine 311 (S311) and by the atypical protein 
kinase PKC-ζ [23]. This study presents a delicate example of how methylation and phos-
phorylation on p65 may regulate each other and be an integral part of a more sophisticated 
regulatory system of NF-κB.

An overlook of the biological roles of p65 lysine methylation and their modifying enzymes is 
shown in Table 1. It is evident that under various experimental conditions, p65 lysine meth-
ylation may affect NF-κB nucleus localization, transcriptional activity, and NF-κB target gene 
expression.

4.2. Arginine methylation of p65

Distinct from the methylation of lysine residues, our lab used Mass Spectrometry to discover 
that p65 can also be symmetrically methylated at arginine 30 residue (R30) [20, 22]. This 
important modification is carried out by the protein arginine methyltransferase 5 (PRMT5), 
an enzyme that belongs to the PRMT superfamily, contains 637 amino acids, and catalyzes the 
formation of symmetrically dimethylated arginine.

We reported that PRMT5 catalyzed p65 dimethylation upon IL-1β treatment. R30 to A mutant 
(R30A) of p65 decreased NF-κB activity and led to the downregulation of a subgroup of 
NF-κB inducible genes; among these are cytokine and chemokine genes. Conditional media 
from cells expressing the R30A mutant of p65 had much less NF-kB-inducing activity than its 
wild-type cohort. Additionally, through In Silico prediction we proposed that dimethylation 
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of R30 may mediate van der Waals contacts and stabilize domain interactions. The key residues 
involved are aspartic acid (D) 277, glutamic acid (E) 279, and threonine (T) 191. Since phenyl-
alanine (F) 184 positions closely to R30 and T191, R30 is sandwiched between F184/T191 on 
one side and D277/E279 on the other. This evidence affirms the importance of R30 methyla-
tion in increasing the ability of p65 to bind to DNA, resulting in the changes in its target gene 
expression [22].

Further demonstrating the complexity of R30 methylation, Reintjes et al. reported that PRMT1, 
another member of the PRMT superfamily, may asymmetrically methylate p65 at the same 
R30 that is symmetrically methylated by PRMT5 [35]. The information of R30 methylation by 
both PRMT5 and 1 is also included in Table 1. Different from PRMT5, PRMT1 is an enzyme 
containing 361 amino acids which catalyzes the formation of monomethyl-arginine and 
asymmetric dimethyl-arginine [36]. Reintjes and colleagues proposed an interesting model 
suggesting that symmetric dimethylation of R30 by PRMT5 seems to be induced at early time 
points, however, asymmetric dimethylation of R30 by PRMT1 is enriched at later time points. 
This idea presents an overall picture of the “meticulously calculated” regulation of NF-κB 
signaling, through symmetric and/or asymmetric R30 dimethylation that occurs at differ-
ent stages of NF-κB responses. This model represents a specific on/off switch mechanism for 
adjusting cytokine-induced NF-κB responses [35].

Type of methylation Site 
modified

Enzymes Biological function Reference

Monomethylation K37 SET9 Stabilizes nuclear localization and 
enhances p65 binding ability

[18]

Monomethylation K218 NSD1/FBXL11 Promotes NF-κB transcriptional 
activity and maintains p65 
phosphorylation on S536

[20, 34]

Dimethylation K221 NSD1/ FBXL11 Promotes NF-κB transcriptional 
activity and maintains p65 
phosphorylation on S536

[20, 34]

Monomethylation K310 SETD6 Decreases NF-κB target gene 
expression

[23]

Monomethylation K314 SET9 Decreases NF-κB activity and target 
gene expression

[19]

Monomethylation K315 SET9 Decreases NF-κB activity and target 
gene expression

[19]

Symmetric dimethylation R30 PRMT5 Enhances NF-κB DNA binding 
and transcriptional activities, 
and increases NF-κB target gene 
expression

[22, 35]

Asymmetric dimethylation R30 PRMT1 Reduces NF-κB DNA binding 
ability and decreases NF-κB target 
genes expression

[22, 35]

Table 1. Types of NF-κB methylation and its biological roles.
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4.3. Differential gene regulation by lysine and arginine methylation

As we mentioned earlier, a total of six lysine methylation sites can be methylated by different 
histone lysine methyltransferases in response to activating signals. Among them, K37, K218, 
and K221 are located in the RHD domain, while K310, K314, and K315 are in the linker region 
between RHD and the transactivation domain (TA) [36] (Figure 1). Using site mutagenesis, we 
generated the K218/221Q double mutant (DKQ) or the K37Q single mutant of p65. We found 
that in response to cytokines, such as IL-1β treatment, ~350 genes were rapidly induced within 
5 min after treatment, while an additional ~300 genes were significantly upregulated 30 min 
later. Additionally, 1500 genes were further induced between the time points of 1 and 24 h. We 
revealed that early growth response protein 1 (EGR1) was upregulated within 30 min and then 
began to decrease after 2 h. While C-X-C motif chemokine 10 (CXCL10, also known as IP10), and 
Interleukin 8 (IL-8) were upregulated after 1 h or longer treatment. However, their expression 
is much more stable than the EGR gene [21]. To further explore the different effects of DKQ 
and K37Q on gene expression, we conducted an Illumina array analysis, observing that DKQ 
is responsible for ~50%, while K37Q is only responsible for ~25% of NF-κB target gene regu-
lation. Among these genes, some were exclusively regulated by either DKQ or K37Q, while 
others were commonly regulated by both DKQ and K37Q. This is a very interesting phenom-
enon. Our work showed that a very tiny difference in NF-κB methylation, such as methylation 
on different lysine residues, could lead to dramatically different gene induction patterns. By 
using ChIP-seq and bioinformatics approaches, we further uncovered that NF-κB target genes 
can be classified into multiple subgroups based on the effects of DKQ or K37Q (up- or down-
regulation, or lysine site sensitivity) [21]. This data offers a valuable picture of the dynamic 
complexity of gene regulation by methylation of NF-κB on different lysine residues.

To further determine the difference between K and R methylation of p65 on NF-κB regulation, 
we conducted similar experiments as described above [21]. R30A and DKA (K218/221 K-A) 
mutants were generated in HEK293 cells. Illumina microarray experiments were carried out 
to analyze the gene populations affected by these mutations. We found that ~75% of NF-κB 
target genes were down-regulated by twofold or more by the R30A mutation, while signifi-
cantly fewer (~48%) genes were downregulated by the DKA mutation. This data suggests 
that R30 methylation is in charge of most NF-κB target gene expression, while K218/221 
methylation controls a much smaller population of the genes. Not surprisingly, Ingenuity 
Pathway Analysis (Figure 3) revealed that R30A and DKA control different functional net-
works. For instance, the top network for R30A is regarding the functions of Cellular Movement, 
Hematological System Development and Function, Immune Cell Trafficking, while the top network 
for DKA is related to Cell-mediated Immune Response, Cellular Development, Cellular Function 
and Maintenance, affirming the quite distinct cellular functions of R30 and K218/221 methyla-
tion. Figure 4 illustrates a representative network from either R30A or DKA regulated genes. 
Importantly, the NF-κB complex is identified as a critical node in both networks. Two typical 
NF-κB target genes, IL8 (CXCL8) and IP10 (CXCL10), are also shown as important compo-
nents in both networks.

Collectively, the evidence described above proves that methylation on different lysine resi-
dues or on different types of amino acids (lysine vs. arginine) on the p65 subunit of NF-κB, 
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of R30 may mediate van der Waals contacts and stabilize domain interactions. The key residues 
involved are aspartic acid (D) 277, glutamic acid (E) 279, and threonine (T) 191. Since phenyl-
alanine (F) 184 positions closely to R30 and T191, R30 is sandwiched between F184/T191 on 
one side and D277/E279 on the other. This evidence affirms the importance of R30 methyla-
tion in increasing the ability of p65 to bind to DNA, resulting in the changes in its target gene 
expression [22].

Further demonstrating the complexity of R30 methylation, Reintjes et al. reported that PRMT1, 
another member of the PRMT superfamily, may asymmetrically methylate p65 at the same 
R30 that is symmetrically methylated by PRMT5 [35]. The information of R30 methylation by 
both PRMT5 and 1 is also included in Table 1. Different from PRMT5, PRMT1 is an enzyme 
containing 361 amino acids which catalyzes the formation of monomethyl-arginine and 
asymmetric dimethyl-arginine [36]. Reintjes and colleagues proposed an interesting model 
suggesting that symmetric dimethylation of R30 by PRMT5 seems to be induced at early time 
points, however, asymmetric dimethylation of R30 by PRMT1 is enriched at later time points. 
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Type of methylation Site 
modified

Enzymes Biological function Reference

Monomethylation K37 SET9 Stabilizes nuclear localization and 
enhances p65 binding ability

[18]

Monomethylation K218 NSD1/FBXL11 Promotes NF-κB transcriptional 
activity and maintains p65 
phosphorylation on S536

[20, 34]

Dimethylation K221 NSD1/ FBXL11 Promotes NF-κB transcriptional 
activity and maintains p65 
phosphorylation on S536

[20, 34]

Monomethylation K310 SETD6 Decreases NF-κB target gene 
expression

[23]

Monomethylation K314 SET9 Decreases NF-κB activity and target 
gene expression

[19]

Monomethylation K315 SET9 Decreases NF-κB activity and target 
gene expression

[19]

Symmetric dimethylation R30 PRMT5 Enhances NF-κB DNA binding 
and transcriptional activities, 
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[22, 35]

Asymmetric dimethylation R30 PRMT1 Reduces NF-κB DNA binding 
ability and decreases NF-κB target 
genes expression

[22, 35]

Table 1. Types of NF-κB methylation and its biological roles.
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4.3. Differential gene regulation by lysine and arginine methylation

As we mentioned earlier, a total of six lysine methylation sites can be methylated by different 
histone lysine methyltransferases in response to activating signals. Among them, K37, K218, 
and K221 are located in the RHD domain, while K310, K314, and K315 are in the linker region 
between RHD and the transactivation domain (TA) [36] (Figure 1). Using site mutagenesis, we 
generated the K218/221Q double mutant (DKQ) or the K37Q single mutant of p65. We found 
that in response to cytokines, such as IL-1β treatment, ~350 genes were rapidly induced within 
5 min after treatment, while an additional ~300 genes were significantly upregulated 30 min 
later. Additionally, 1500 genes were further induced between the time points of 1 and 24 h. We 
revealed that early growth response protein 1 (EGR1) was upregulated within 30 min and then 
began to decrease after 2 h. While C-X-C motif chemokine 10 (CXCL10, also known as IP10), and 
Interleukin 8 (IL-8) were upregulated after 1 h or longer treatment. However, their expression 
is much more stable than the EGR gene [21]. To further explore the different effects of DKQ 
and K37Q on gene expression, we conducted an Illumina array analysis, observing that DKQ 
is responsible for ~50%, while K37Q is only responsible for ~25% of NF-κB target gene regu-
lation. Among these genes, some were exclusively regulated by either DKQ or K37Q, while 
others were commonly regulated by both DKQ and K37Q. This is a very interesting phenom-
enon. Our work showed that a very tiny difference in NF-κB methylation, such as methylation 
on different lysine residues, could lead to dramatically different gene induction patterns. By 
using ChIP-seq and bioinformatics approaches, we further uncovered that NF-κB target genes 
can be classified into multiple subgroups based on the effects of DKQ or K37Q (up- or down-
regulation, or lysine site sensitivity) [21]. This data offers a valuable picture of the dynamic 
complexity of gene regulation by methylation of NF-κB on different lysine residues.

To further determine the difference between K and R methylation of p65 on NF-κB regulation, 
we conducted similar experiments as described above [21]. R30A and DKA (K218/221 K-A) 
mutants were generated in HEK293 cells. Illumina microarray experiments were carried out 
to analyze the gene populations affected by these mutations. We found that ~75% of NF-κB 
target genes were down-regulated by twofold or more by the R30A mutation, while signifi-
cantly fewer (~48%) genes were downregulated by the DKA mutation. This data suggests 
that R30 methylation is in charge of most NF-κB target gene expression, while K218/221 
methylation controls a much smaller population of the genes. Not surprisingly, Ingenuity 
Pathway Analysis (Figure 3) revealed that R30A and DKA control different functional net-
works. For instance, the top network for R30A is regarding the functions of Cellular Movement, 
Hematological System Development and Function, Immune Cell Trafficking, while the top network 
for DKA is related to Cell-mediated Immune Response, Cellular Development, Cellular Function 
and Maintenance, affirming the quite distinct cellular functions of R30 and K218/221 methyla-
tion. Figure 4 illustrates a representative network from either R30A or DKA regulated genes. 
Importantly, the NF-κB complex is identified as a critical node in both networks. Two typical 
NF-κB target genes, IL8 (CXCL8) and IP10 (CXCL10), are also shown as important compo-
nents in both networks.

Collectively, the evidence described above proves that methylation on different lysine resi-
dues or on different types of amino acids (lysine vs. arginine) on the p65 subunit of NF-κB, 
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dictates differential gene regulation, leading to complex and distinct outcomes. The work on 
methylation of NF-κB has offered a unique angle for understanding the mechanisms under-
lying the extreme plasticity of the biological responses led by the finely tuned regulation of 
NF-κB. The knowledge gained by this study will enable us to better understand why NF-κB 
is dysregulated in a variety of disease states, thus providing critical guidance to the design of 
disease-specific therapeutics.

Figure 3. Top networks that are affected by either R30A or DKA mutations. Ingenuity pathway analysis (IPA), showing 
top five different functional networks that are associated with R30A or DKA mutation.

Figure 4. Example networks of R30A and DKA mutations, with NF-κB as a master node. Left panel, R30A mutation 
affects NF-κB orchestrated network. Right panel, DKA mutation interferes with NF-κB signaling. However, these two 
networks show quite distinct topographies and interactions with other signaling components. Note: Both IL8 and IP10 
are within the networks.
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5. Histone methylases as potential therapeutic targets in cancer

Due to the important role of NF-κB methylation in differential gene regulation, it is logical 
to recognize the essential roles of the enzymes that catalyze these methylation modifications. 
These enzymes are frequently histone methylases, and there are quite a few examples. Since 
the role of histone methylases in cancer has been well reviewed by Albert and Helin [37], 
below, we will only focus on PRMT5.

PRMT5 has been increasingly recognized as an important tumor promoter. We and others have 
observed elevated PRMT5 expression in cancers of the colon, pancreas, ovary, kidney, lung, 
bladder, liver, breast, prostate, cervix, and skin. This suggests that high levels of this enzyme 
may promote tumorigenesis, at least in part by facilitating NF-κB-induced gene expression [22, 
38]. For instance, by conducting colorectal cancer (CRC) tissue microarray (TMA), we found 
that PRMT5 is overexpressed in polyps, advanced stages of colorectal cancer, and in the meta-
static stage [39]. Similarly, PRMT5 is also overexpressed in various stages of pancreatic cancer, 
especially in the metastatic stage [39]. We proved that overexpression of PRMT5 promotes CRC 
HT29 cell and pancreatic cancer PANC1 cell proliferation, anchorage-independent growth, and 
cell migration ability. Knockdown of PRMT5 by shRNA showed the opposite effect, confirming 
PRMT5 functions as a tumor promoter in these cancers [39].

Additionally, overexpression of PRMT5 has been shown to be associated with poor epithelial 
ovarian cancer prognosis [40]. In a clinical study with 150 ovarian cancer patient samples, the 
overexpression of PRMT5 is found to be highly correlated with the Federation of Gynecology 
and Obstetrics (FIGO) advanced stage, which includes poor cell differentiation, high prolif-
eration activity, and lymph node involvement. The overall survival rate of patients with low 
PRMT5 expression is 90%. In contrast, only 30% of patients with high PRMT5 expression 
survived. The progression-free survival rate is 50% for patients with low PRMT5 expression, 
but in those with high PRMT5 expression the rate is only 10% [40].

Moreover, Kumar and colleagues showed that the expression level of PRMT5 is inversely cor-
related with oropharyngeal squamous cell carcinoma (OPSCC) patient outcome. For instance, 
high PRMT5 expression correlated with low overall survival and had over 1.7 times higher 
death risk than the patient who has low PRMT5 expression [41]. Together, these studies have 
identified PRMT5 as a promising therapeutic target in cancers.

To date, multiple efforts have been made to develop the small molecule inhibitors of PRMT5. 
For instance, EPZ015666 was reported [39, 42] to inhibit PRMT5 methyltransferase activity 
in panels of mantle cell lymphoma (MCL) cell lines (Maver-1, Mino, Granta-519, Jeko-1and 
Z-138). It also significantly inhibits tumor growth in Z-138 and Maver-1 MCL xenograft 
mouse model as compare with vehicle control.

Recently, by adapting the AlphaLISA technique into a sensitive high throughput screening 
platform, our lab identified PR5-LL-CM01 as a potent PRMT5 small molecule inhibitor. PR5-
LL-CM01 showed greater potency than EPZ015666 in both PDAC and CRC model [39].

Methylation of NF-κB and its Role in Gene Regulation
http://dx.doi.org/10.5772/intechopen.72552

299



dictates differential gene regulation, leading to complex and distinct outcomes. The work on 
methylation of NF-κB has offered a unique angle for understanding the mechanisms under-
lying the extreme plasticity of the biological responses led by the finely tuned regulation of 
NF-κB. The knowledge gained by this study will enable us to better understand why NF-κB 
is dysregulated in a variety of disease states, thus providing critical guidance to the design of 
disease-specific therapeutics.

Figure 3. Top networks that are affected by either R30A or DKA mutations. Ingenuity pathway analysis (IPA), showing 
top five different functional networks that are associated with R30A or DKA mutation.

Figure 4. Example networks of R30A and DKA mutations, with NF-κB as a master node. Left panel, R30A mutation 
affects NF-κB orchestrated network. Right panel, DKA mutation interferes with NF-κB signaling. However, these two 
networks show quite distinct topographies and interactions with other signaling components. Note: Both IL8 and IP10 
are within the networks.

Gene Expression and Regulation in Mammalian Cells - Transcription From General Aspects298

5. Histone methylases as potential therapeutic targets in cancer

Due to the important role of NF-κB methylation in differential gene regulation, it is logical 
to recognize the essential roles of the enzymes that catalyze these methylation modifications. 
These enzymes are frequently histone methylases, and there are quite a few examples. Since 
the role of histone methylases in cancer has been well reviewed by Albert and Helin [37], 
below, we will only focus on PRMT5.

PRMT5 has been increasingly recognized as an important tumor promoter. We and others have 
observed elevated PRMT5 expression in cancers of the colon, pancreas, ovary, kidney, lung, 
bladder, liver, breast, prostate, cervix, and skin. This suggests that high levels of this enzyme 
may promote tumorigenesis, at least in part by facilitating NF-κB-induced gene expression [22, 
38]. For instance, by conducting colorectal cancer (CRC) tissue microarray (TMA), we found 
that PRMT5 is overexpressed in polyps, advanced stages of colorectal cancer, and in the meta-
static stage [39]. Similarly, PRMT5 is also overexpressed in various stages of pancreatic cancer, 
especially in the metastatic stage [39]. We proved that overexpression of PRMT5 promotes CRC 
HT29 cell and pancreatic cancer PANC1 cell proliferation, anchorage-independent growth, and 
cell migration ability. Knockdown of PRMT5 by shRNA showed the opposite effect, confirming 
PRMT5 functions as a tumor promoter in these cancers [39].

Additionally, overexpression of PRMT5 has been shown to be associated with poor epithelial 
ovarian cancer prognosis [40]. In a clinical study with 150 ovarian cancer patient samples, the 
overexpression of PRMT5 is found to be highly correlated with the Federation of Gynecology 
and Obstetrics (FIGO) advanced stage, which includes poor cell differentiation, high prolif-
eration activity, and lymph node involvement. The overall survival rate of patients with low 
PRMT5 expression is 90%. In contrast, only 30% of patients with high PRMT5 expression 
survived. The progression-free survival rate is 50% for patients with low PRMT5 expression, 
but in those with high PRMT5 expression the rate is only 10% [40].

Moreover, Kumar and colleagues showed that the expression level of PRMT5 is inversely cor-
related with oropharyngeal squamous cell carcinoma (OPSCC) patient outcome. For instance, 
high PRMT5 expression correlated with low overall survival and had over 1.7 times higher 
death risk than the patient who has low PRMT5 expression [41]. Together, these studies have 
identified PRMT5 as a promising therapeutic target in cancers.

To date, multiple efforts have been made to develop the small molecule inhibitors of PRMT5. 
For instance, EPZ015666 was reported [39, 42] to inhibit PRMT5 methyltransferase activity 
in panels of mantle cell lymphoma (MCL) cell lines (Maver-1, Mino, Granta-519, Jeko-1and 
Z-138). It also significantly inhibits tumor growth in Z-138 and Maver-1 MCL xenograft 
mouse model as compare with vehicle control.

Recently, by adapting the AlphaLISA technique into a sensitive high throughput screening 
platform, our lab identified PR5-LL-CM01 as a potent PRMT5 small molecule inhibitor. PR5-
LL-CM01 showed greater potency than EPZ015666 in both PDAC and CRC model [39].

Methylation of NF-κB and its Role in Gene Regulation
http://dx.doi.org/10.5772/intechopen.72552

299



These examples highlight the great potential of using histone methylases, such as PRMT5, as 
novel therapeutic targets in cancer.

Likewise, other histone methylases (Table 1) that methylate NF-κB may also play critical 
roles in the development and progression of cancer and other hyper NF-κB driven diseases. 
Therefore, they constitute a group of highly promising future therapeutic targets for these 
pathological conditions.

6. Conclusion, perspective, and future directions

The implications of methylation of NF-κB are multi-fold and far reaching. Methylation pro-
vides a snapshot of the complexity underlying the regulation of this important transcription 
factor. Even with the studies done to date, researchers have just begun to understand the 
crosstalk between these different PTMs and their implications in normal cellular function and 
disease. Two interesting questions remain. First, how does methylation of these residues on 
the same subunit affect NF-κB function? Second, can we reconcile the effects of other kinds of 
PTMs coupled with methylation both in normal and diseases states? A deeper understanding 
of these aspects will shed important light on the overall strategies for the development of new 
therapeutic approaches to treat the affected diseases.

Cancer is one of the leading causes of morbidity and mortality worldwide. Methylation of 
NF-κB as described in this review highlights its significance in cancers and other inflamma-
tory diseases. Over the past decade, several transformative discoveries in epigenetics have led 
to the development of novel therapies that target epigenetic enzymes. However, the inquiries 
into acetylation and methylation modifications of lysines and arginines have been mainly 
focused on histone proteins. Important research identifying methylation residues on impor-
tant non-histone proteins like NF-κB may be crucial to developing therapeutic interventions 
that target these modifications. For instance, the PRMT5 inhibitor identified in our laboratory 
has paved the way for future drug development to treat cancers and other disease with hyper 
PRMT5-driven NF-κB activity [22, 39]. In addition to PRMT5, other histone methylases, such 
as NSD1, have been reported by us and others as a significant player in cancer development 
[20, 43–45]. Although researchers have been trying to develop a small NSD1 inhibitor for 
cancer treatment, no NSD1 specific inhibitor has yet been reported due to the large size of 
NSD1 enzyme and the lack of sufficiently sensitive assay development. Future effort on this 
front and other histone methylases are equally as important in developing new medicines 
that target PRMT5.

Additionally, as mentioned in the Introduction, the prototypical NF-κB is comprised of a 
heterodimer of p65 and p50 subunits. Though multiple sites of methylation have been dis-
covered on the p65 subunit of NF-κB, the potential methylation of the p50 subunit is quite 
understudied. With recent advances in proteomics and prediction software, novel methyla-
tion site(s) on p50 could arise in the near future. The study on p50 methylation could provide 
more a complete picture in terms of NF-κB regulation, and may possibly lead to novel discov-
eries regarding the methylation-mediated regulation of this subunit as well.
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Since NF-κB is an important transcription factor that also plays a fundamental role in normal 
cells, one must consider important factors such as specificity of inhibiting modification only in 
cancer cells but not in normal cells. Multi-targeted approaches that simultaneously cripple sev-
eral signaling pathways in cancer cells would be ideal, and a better understanding of the crosstalk 
between these pathways will advance the drug development process. In the future, a combina-
tion of advanced animal models, Cas9/CRISPR system, and more sophisticated bioinformatics 
approaches will serve as invaluable tools to study the implications of methylation on NF-κB and 
its interactions with other critical cellular factors that are important in the disease context. This 
will help to expedite the development of therapeutic tools to combat these deadly diseases.
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Abstract

Transcription factors play a critical role in regulating the gene expression programs 
that establish and maintain specific cell states in humans. Deregulation of these gene 
expression programs can lead to a broad range of diseases including cancer. SOX tran-
scription factors are a conserved group of transcriptional regulators that mediates DNA 
binding by a highly conserved high-mobility group (HMG) domain. Numerous evidence 
has recently demonstrated that SOX transcription factors critically control cell fate and 
differentiation in major developmental processes, and that their upregulation may be 
important for cancer progression. In this review, we discuss recent advances in our 
understanding of the role of SOX genes in cancer.

Keywords: transcription factors, cancer, SOX2, SOX4, SOX9, SOX11

1. Introduction

Cancer is caused by alterations in the control and activity of genes that in turn regulate cell growth 
and differentiation, leading to abnormal cell proliferation [1]. It is a multi-step process leading to 
profound metabolic and behavioral changes in a cell. The hallmarks of cancer include sustain-
ing proliferative signaling, evading growth suppressors, resisting cell death, enabling replica-
tive immortality, inducing angiogenesis, activating invasion and metastasis, genome instability, 
inflammation, reprogramming of energy metabolism and evading immune destruction [2]. Most 
human malignancies are caused by somatic alterations within the cancer genome either through 
gain-of-function mutations in proto-oncogenes or loss-of-function mutations in tumor suppres-
sor genes. Remarkable progress in cancer research has been made in the last 10 years. However, 
the detailed molecular mechanisms of cancer remain largely un-elucidated.

A transcription factor (TF) might be defined as any molecule participating, alone or as part 
of a complex, in the binding to a gene’s enhancer response element or promoter, with the 
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ultimate outcome being the up- or down-regulation of expression of that gene [3]. TFs are 
key genes involved in the regulation of gene expression. The human genome encodes over 
2000 different TF-coding genes, many of which are expressed in a cell type-specific manner to 
coordinate gene expression programs underlying a vast array of cellular processes [4]. TFs are 
commonly deregulated in the pathogenesis of human cancer. For instance, TP53 and MYC, 
which encode the TFs p53 (tumor suppressor protein 53) and c-Myc respectively, are among 
the most frequently changed genes across all cancers [5, 6].

Sex determining region Y (SRY)-related high-mobility group (HMG) box (SOX) family com-
prises more than 20 members, which have been shown to involve in regulation of many 
biological processes such as embryonic development, cell-fate decision, lineage commit-
ment, determination and differentiation [7–9]. This transcription factor family is divided 
into 10 subgroups based on the level of amino acid conservation within the HMG box and 
the presence of other motifs. In this review, we discuss the current understanding on the 
association between SOX genes and cancer. We particularly emphasize the role of several 
representative SOX subgroup proteins (SOX2, SOX4, SOX9 and SOX11) in cancer initiation 
and development.

2. The biological functions of SOX gene family

SOX genes are part of a larger family of HMG proteins. SOX proteins bind similar DNA motifs 
[(A/T)(A/T)CAA(A/T)G] through their HMG domain, which is highly conserved among SOX 
gene family. Due to the low affinity between SOX proteins and DNA, cofactors are usually 
required to stabilize their interactions with DNA [9]. Based on the degree of conservation 
of their HMG-box and the presence of defined HMG-independent structural domains, SOX 
proteins are organized into 10 subfamilies: SOXA-SOXJ. For example, the SOXA group con-
sists only of SRY; SOXB group comprises of two subgroups (SOXB1 and SOXB2); SOXB1 
includes SOX1, SOX2, and SOX3, whereas SOXB2 proteins include SOX14 and SOX21; SOXC 
group includes SOX4, SOX11, and SOX12; SOXD group includes SOX5, SOX6, and SOX13; 
SOXE group includes SOX8, SOX9, and SOX10; and SOXF group includes SOX7, SOX17, and 
SOX18; SOXG (SOX15) and SOXH (SOX30) proteins are structurally related to SOXB1 and 
SOXD proteins, respectively [10–13]. Individual members within the same SOX group share 
similar biochemical properties and thus have overlapping biological functions. However, 
SOX proteins from different groups have distinct biological functions [9]. SOX gene family 
has been demonstrated to play important roles in various biological processes including, but 
not limited to development, tissue homeostasis and regeneration, reprogramming [9, 14–16].

In vertebrates, SOX genes are well known regulators of numerous developmental pro-
cesses. Accumulating evidences have shown that SOX proteins are co-expressed in vari-
ous developing tissues in an overlapping manner and show functional redundancy. The 
transcriptional activities of SOX proteins are regulated via three major pathways: (1) the 
expression levels of SOX proteins are regulated in specific cell types and tissues with pre-
cise timing (2) SOX proteins are regulated by posttranslational modification (3) the partners 
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of SOX proteins are regulated to not only influence the specific recognition of the bind-
ing sites of SOX-partner complexes on the target genes, but also determine transcription 
activities and significantly enhance the activation/repression potential. For instance, SOXB1 
and SOXB2 proteins are important for the development of the central nervous system and 
foregut system [17–19]. SOXD proteins are important for the development of cartilage tis-
sues. In mouse embryos, SOX5, SOX6, SOX9 and collagen II are co-expressed in all cartilagi-
nous sites at around 12.5 dpc. After 17.5 dpc, the chondrocytes become hypertrophic in the 
growth plate cartilages, the expression of above SOX genes are inhibited and disappear in 
the hypertrophic chondrocytes [20]. The expression patterns of SOXE genes are important 
for the development of reproductive system. SOX8, SOX9 and SOX10 are expressed in the 
overlapping temporal and spatial expression patterns during gonads development, indicat-
ing the overlapping roles of these genes in mammalian sex determination and subsequent 
male sexual development [21, 22]. The members of SOXF group play important roles in the 
development of cardio-vascular system and extraembryonic endoderm. SOX7 and SOX17 
are crucial endoderm lineage-determining regulators and are involved in the later stage of 
extraembryonic differentiation [23–25].

SOX2 is an important marker for stem and progenitor cell populations in many adult tissues. 
SOX2 positive cells have been detected in progenitors of various tissues such as adult ret-
ina, trachea, tongue epithelium, dermal papilla of the hair follicle, adult testes, forestomach, 
glandular stomach, anus, cervix, esophagus, lens and dental epithelium [26–30]. Conditional 
SOX2 deletion significantly influences cell proliferation. In trachea, SOX2 expression is 
required to sustain tissue homeostasis by controlling the number of proliferating epithe-
lial cells as well as the proportion of basal, ciliated and Clara cells [28]. However, whether 
SOX2 expression is required for homeostasis in other adult tissues needs further investiga-
tion. In addition to maintaining tissue homeostasis, SOX2 plays an important role for tissue 
regeneration and repair. For instance, the basal stem cells could repair the damaged tracheal 
epithelium in mice within 7–10 days. The number of basal stem cells was significantly lower 
in the trachea with SOX2-deficience. Therefore, the injured trachea was unable to undergo 
efficient tissue repair. SOX2 is also important for peripheral nerve regeneration. When there 
is injury, mature adult Schwann cells dedifferentiate to a progenitor cell-like state by re-
expressing Sox2 [31].

The expression of four transcription factors, Oct4/Sox2/cMyc/Klf4, was able to convert differ-
entiated cells to pluripotent cells [32]. SOX2 is indispensable for the success of this reprogram-
ming process. However, the biological function of SOX2 seems to be closely correlated with 
its levels. SOX2 overexpression can promote differentiation and reduce the reprogramming 
efficiency of neural progenitor cells. In addition to SOX2, SOX1 and SOX3, which are also 
members of SOXB1 family, can replace SOX2 during the reprogramming process. SOX15 or 
SOX18 was also able to generate the pluripotent cells but less efficient than SOXB1 family [33].

Many members of SOX gene family have been demonstrated to be closely correlated with 
tumorigenesis [34, 35]. Below, we discuss the involvement of several SOX genes that have 
been most extensively studied in human malignancies so far. Table 1 listed these SOX genes 
and their clinical relevance in cancers.
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commonly deregulated in the pathogenesis of human cancer. For instance, TP53 and MYC, 
which encode the TFs p53 (tumor suppressor protein 53) and c-Myc respectively, are among 
the most frequently changed genes across all cancers [5, 6].

Sex determining region Y (SRY)-related high-mobility group (HMG) box (SOX) family com-
prises more than 20 members, which have been shown to involve in regulation of many 
biological processes such as embryonic development, cell-fate decision, lineage commit-
ment, determination and differentiation [7–9]. This transcription factor family is divided 
into 10 subgroups based on the level of amino acid conservation within the HMG box and 
the presence of other motifs. In this review, we discuss the current understanding on the 
association between SOX genes and cancer. We particularly emphasize the role of several 
representative SOX subgroup proteins (SOX2, SOX4, SOX9 and SOX11) in cancer initiation 
and development.

2. The biological functions of SOX gene family

SOX genes are part of a larger family of HMG proteins. SOX proteins bind similar DNA motifs 
[(A/T)(A/T)CAA(A/T)G] through their HMG domain, which is highly conserved among SOX 
gene family. Due to the low affinity between SOX proteins and DNA, cofactors are usually 
required to stabilize their interactions with DNA [9]. Based on the degree of conservation 
of their HMG-box and the presence of defined HMG-independent structural domains, SOX 
proteins are organized into 10 subfamilies: SOXA-SOXJ. For example, the SOXA group con-
sists only of SRY; SOXB group comprises of two subgroups (SOXB1 and SOXB2); SOXB1 
includes SOX1, SOX2, and SOX3, whereas SOXB2 proteins include SOX14 and SOX21; SOXC 
group includes SOX4, SOX11, and SOX12; SOXD group includes SOX5, SOX6, and SOX13; 
SOXE group includes SOX8, SOX9, and SOX10; and SOXF group includes SOX7, SOX17, and 
SOX18; SOXG (SOX15) and SOXH (SOX30) proteins are structurally related to SOXB1 and 
SOXD proteins, respectively [10–13]. Individual members within the same SOX group share 
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The expression of four transcription factors, Oct4/Sox2/cMyc/Klf4, was able to convert differ-
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3. SOX2 and cancer

The SOX2 gene is located on chromosome 3q26.3–q27, it belongs to the SOXB1 group and 
encodes for 317 amino acids [56, 57]. SOX2 is one of the key transcription factors for induced 
pluripotent stem cells establishment, stem cell maintenance, and lineage fate determinant. 
Deregulation of SOX2 has been associated with various diseases such as anophthalmia-esoph-
ageal-genital (AEG) syndrome and bilateral anaphthalmia/microphthalmia, anterior pitu-
itary hypoplasia, hypogonadotropic hypogonadism hypothalamic hamartoma, sensorineural 
hearing loss, and esophageal atresia [58, 59]. In addition to the above diseases, increasing evi-
dence has revealed there is a strong relationship between SOX2 and cancer. Cancer stem cells 
are key drivers of tumorigenesis and may be responsible for tumor initiation, growth and 
spawning metastases. SOX2-postive cancer stem cells were able to drive tumor initiation and 
therapy resistance in various types of cancers, indicating that it is a common phenomenon 
that SOX2 might mastermind the tumor initiating potential of cancer cells [60].

SOX2 silencing significantly suppresses the tumorigenicity of glioblastoma tumor-initi-
ating cells (TICs) [38]. Importantly, high levels of SOX2 have been associated with tumor 
aggressiveness and worse prognosis in glioblastoma, indicating targeting SOX2 might be an 

SOX genes Deregulation Potential clinical significance Reference

SOX2 Lung, esophagus and oral 
cancer↑

Promote tumor progression [36]

Melanoma↑ Enhance the self-renewal capacity of cancer 
stem cells

[37]

Glioblastoma ↑ Associated with tumor aggressiveness and 
worse prognosis

[38, 39]

Gastric cancer↓ Promote tumor progression [40]

SOX4 Oral cancer ↑ Promote tumor initiation and development [41, 42]

Prostate cancer↑ Associated with worse prognosis [43, 44]

Leukemia↑ Promote tumor progression [45]

Primary gallbladder carcinoma↓ Associated with worse prognosis [46]

SOX9 Papillary thyroid cancer↑ Promote tumor progression [47]

Breast cancer ↑ Associated with chemoresistance [48]

Gastric cancer ↑ Promote tumorigenesis [49]

Cervical carcinoma↓ Promote tumor progression [50]

SOX11 Breast cancer↑ Promote tumor progression [51]

Mantle cell lymphoma↑ Promote tumor progression [52–54]

Epithelial ovarian cancer↓ Associated with worse prognosis [55]

Gastric cancer↓ Associated with worse prognosis

Table 1. Deregulation of typical SOX genes and their clinical relevance in cancers.
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 effective strategy for the treatment of glioblastoma [39]. SOX2 is also amplified in squamous 
cell carcinomas of the lung, the esophagus, and the oral cavity. SOX2 amplification and SOX2 
protein overexpression might be responsible for the tumor initiation and progression in squa-
mous cell carcinomas derived from different organ sites [36]. SOX2 was found to be critical 
for maintaining the sphere-forming capacity of DU145 prostate cancer stem cells (PCSCs). 
It promoted the self-renewal of the PCSC population by regulating downstream of EGFR 
signaling [61]. Similarly, SOX2 was highly expressed in melanoma stem cells. SOX2 suppres-
sion remarkably inhibited self-renewal in melanoma spheres and in putative melanoma stem 
cells with high aldehyde dehydrogenase activity. On the contrary, SOX2 overexpression in 
melanoma cells enhanced their self-renewal in vitro. Animal models showed that SOX2 was 
critical for tumor initiation and continuous tumor growth. These data suggested that SOX2 
was an important factor for self-renewal and tumorigenicity of melanoma-initiating cells [37].

There are conflicting results regarding the role of SOX2 in gastric cancer. For instance, SOX2 
was dispensable for self-renewal of gastric stem cells. In addition, loss of SOX2 promoted tumor 
formation in Apc-deficient gastric cells in vivo and in vitro by inducing Tcf/Lef-dependent tran-
scription and upregulating intestinal metaplasia-associated genes, suggesting SOX2 acted as a 
tumor suppressor in gastric cancer [62]. In addition, the expression level of SOX2 expression 
was frequently downregulated in gastric cancers. Ectopic expression of SOX2 inhibited cell 
growth through cell-cycle arrest and apoptosis in gastric cells. Moreover, the gastric cancers 
with SOX2 methylation had a significantly worse survival than those without this methylation 
[40]. However, SOX2 was found to enhance the tumorigenicity and chemoresistance of cancer 
stem-like cells derived from gastric cancer, suggesting SOX2 plays an oncogenic role in gastric 
cancer [63]. SOX2 inhibition reduced cell proliferation and migration, promoted apoptosis 
and induced changes in cell cycle in vitro as well as suppressed the tumorigenic potential of 
gastric cancer cells in vivo [64]. The contradictory findings regarding the role of SOX2 in gas-
tric cancer further support the fact that the outcome of SOX2 activation is closely correlated 
with tumor origin and cellular context. Future experiments with lineage tracing and gain- 
and loss-of-function mouse models are required to clarify the role of SOX2 in gastric cancer. 
SOX2 is frequently regarded as an oncogene in lung SCCs, but previous studies indicated that 
higher SOX2 levels predicted favorable outcome in lung SCCs [65, 66]. The underlying reasons 
accounting for the contradictory role of SOX2 in lung SCCs warrant further exploration.

4. SOX4 and cancer

SOX4, one of group-C SOX genes, plays an important role in the regulation of transcription 
during developmental processes such as embryonic cardiac development, nervous system 
development, osteoblastic differentiation, and thymocyte development [67]. SOX4 gene 
is located on 6p22.3 and encodes a protein of 474 amino acids with three distinguishable 
domains: an HMG box, a glycine-rich region, and a serine-rich region. SOX4 is considered 
as one of the members of epithelial-mesenchymal transition (EMT)-transcriptional inducers. 
EMT is a key developmental program that is often activated during organismal development 
and the progression of epithelial tumors to metastatic cancers and may promote therapeutic 
resistance, indicating that SOX4 might be a potential therapeutic target for cancer treatment.
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 effective strategy for the treatment of glioblastoma [39]. SOX2 is also amplified in squamous 
cell carcinomas of the lung, the esophagus, and the oral cavity. SOX2 amplification and SOX2 
protein overexpression might be responsible for the tumor initiation and progression in squa-
mous cell carcinomas derived from different organ sites [36]. SOX2 was found to be critical 
for maintaining the sphere-forming capacity of DU145 prostate cancer stem cells (PCSCs). 
It promoted the self-renewal of the PCSC population by regulating downstream of EGFR 
signaling [61]. Similarly, SOX2 was highly expressed in melanoma stem cells. SOX2 suppres-
sion remarkably inhibited self-renewal in melanoma spheres and in putative melanoma stem 
cells with high aldehyde dehydrogenase activity. On the contrary, SOX2 overexpression in 
melanoma cells enhanced their self-renewal in vitro. Animal models showed that SOX2 was 
critical for tumor initiation and continuous tumor growth. These data suggested that SOX2 
was an important factor for self-renewal and tumorigenicity of melanoma-initiating cells [37].

There are conflicting results regarding the role of SOX2 in gastric cancer. For instance, SOX2 
was dispensable for self-renewal of gastric stem cells. In addition, loss of SOX2 promoted tumor 
formation in Apc-deficient gastric cells in vivo and in vitro by inducing Tcf/Lef-dependent tran-
scription and upregulating intestinal metaplasia-associated genes, suggesting SOX2 acted as a 
tumor suppressor in gastric cancer [62]. In addition, the expression level of SOX2 expression 
was frequently downregulated in gastric cancers. Ectopic expression of SOX2 inhibited cell 
growth through cell-cycle arrest and apoptosis in gastric cells. Moreover, the gastric cancers 
with SOX2 methylation had a significantly worse survival than those without this methylation 
[40]. However, SOX2 was found to enhance the tumorigenicity and chemoresistance of cancer 
stem-like cells derived from gastric cancer, suggesting SOX2 plays an oncogenic role in gastric 
cancer [63]. SOX2 inhibition reduced cell proliferation and migration, promoted apoptosis 
and induced changes in cell cycle in vitro as well as suppressed the tumorigenic potential of 
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Recently, multiple studies have reported altered expression of SOX4 in human cancers. Our 
group demonstrated that SOX4 was significantly upregulated when oral lichen planus (OLP) 
progressed to oral squamous cell carcinoma (OSCC). In addition, downregulation of SOX4 
suppressed the proliferation, migration and invasion of oral cancer cells. These findings sug-
gest that SOX4 might play a critical role in the progression of OLP to OSCC [41]. Similarly, the 
expression level of SOX4 was remarkably overexpressed in OSCC tissues compared to adjacent 
normal mucosa. Also SOX4 was important for maintaining the oncogenic phenotypes of oral 
cancer cells by promoting cell survival and increasing chemoradioresistance [68]. High SOX4 
expression levels were positively correlated with adverse clinicopathological parameters of 
OSCC, indicating that SOX4 might be significantly associated with poor prognosis of OSCC 
[42]. In addition to OSCC, SOX4 plays an oncogenic role in other malignancies. SOX4 was over-
expressed in prostate cancer (PCa) and higher SOX4 levels predicted unfavorable prognosis 
[43]. Upregulation of SOX4 in PCa was mechanistically induced by PTEN loss due to the acti-
vation of PI3K-AKT–mTOR signaling [44]. SOX4 was able to directly regulate the expression 
of the epigenetic modifier Ezh2 in breast cancer, indicating SOX4 might be indispensable for 
tumor progression [69]. SOX4 might combine with oncogenic Ras together to promote tumori-
genesis in vivo [70]. SOX4 was a direct target of C/EBPα and SOX4 suppression reduced the 
self-renewal of leukemic cells and restored their differentiation, indicating that SOX4 overex-
pression resulting from inactivation of C/EBPα promoted leukemia development [45].

However, it should be noted that SOX4 might also function as a tumor suppressor in tumori-
genesis. For instance, SOX4 was indispensable for p53 activation in response to DNA damage. 
In addition, SOX4 could stabilize p53 protein by inhibiting Mdm2-mediated p53 ubiquitina-
tion and degradation, suggesting that SOX4 might suppress the progression DNA damage 
response-associated cancer [71]. In primary gallbladder carcinoma (PGC), SOX4 upregulation 
was significantly associated with favorable clinical parameters. In addition, SOX4 overexpres-
sion predicted better survival [46]. The expression level of SOX4 was significantly reduced in 
metastatic melanoma compared with that in dysplastic nevi and primary melanoma. In addi-
tion, SOX4 suppression promoted the migration and invasion of melanoma cells in an NF-κB 
p50-dependent manner [72]. Taken together, these findings indicate that the concrete role of 
SOX4 is closely associated with tumor microenvironment and might be tissue specific.

5. SOX9 and cancer

The SOXE group comprises three members named SOX8, SOX9 and SOX10. SoxE proteins 
are important for the development of nervous system and neural crest progenitors. SOX9 
was first described as a candidate gene for campomelic dysplasia (CD), a genetic condition 
that affects the development of the skeleton and reproductive system [73]. SOX9 has been 
demonstrated to greatly contribute to the organogenesis and development of many tissue 
types, such as the stomach, pancreas, tooth and craniofacial tissues. In addition, SOX9 is also 
a master regulator of cartilage development. It is indispensable for roles in the chondrogenic 
lineage progression of mesenchymal stem cells [74].

Recent studies have reported that SOX9 is aberrantly expressed in several types of cancers. Higher 
expression levels of SOX9 are correlated with a poor prognosis in patients with Chordoma. In 
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addition, SOX9 downregulation suppressed the oncogenic behaviors of Chordoma cell in vitro, 
suggesting that SOX9 might function as an oncogene in Chordoma [75]. The expression of SOX9 
was upregulated in papillary thyroid cancer (PTC) tissues and cell lines. Downregulation of 
SOX9 inhibited the proliferation, colony formation, migration, invasion, as well as EMT phe-
notype of PTC cells. ERα–RUNX2 complex activated the SOX9 expression and promoted endo-
crine resistance and metastases [76]. In breast cancer, up-regulation of SOX9 expression was 
closely correlated with tamoxifen (TAM) resistance [77]. The SOX9 levels were significantly 
higher in osteosarcoma tissues compared with the adjacent normal tissues. However, CLDN8 
expression was significantly lower in osteosarcoma tissues. Knockdown of SOX9 inhibited the 
proliferation and migration but promoted the apoptosis of human osteosarcoma cell lines by 
downregulating CLDN8 [47]. FOXK2 was overexpressed in colorectal cancer tissues and asso-
ciated with poor prognosis. In fact, FOXK2 was shown to be transcriptionally activated by 
SOX9, suggesting that SOX9-FOXK2 axis plays a critical role in the development of colorectal 
cancer [48]. SOX9 upregulation was associated with Helicobacter pylori infection, elevated carci-
noembryonic antigen–related cell adhesion molecule 1 (CEACAM1) and gastrokine 1 (GKN1) 
inactivation. SOX9 knockdown suppressed the tumorigenic capacity of gastric cancer cells by 
inhibiting the downstream β-catenin signaling pathway [49]. Interestingly, SOX2 was expressed 
in highly proliferative but minimally invasive lung cancer cells; in contrast, cells with highly 
invasiveness capacity exhibited increased SOX9 expression but reduced SOX2 expression. The 
switch between SOX2 and SOX9 expression is epigenetically controlled and is important for 
determining cancer cell plasticity and metastatic progression [78]. Ectopic expression of SOX9 
enhanced growth, invasion, and angiogenesis, whereas silencing of endogenous SOX9 markedly 
impaired tumor growth in prostate cancer. High SOX9 levels drove tumorigenesis by reactivat-
ing the Wnt/β − catenin signaling in a subset of prostate cancer, indicating WNT inhibition might 
beneficial for the effective treatment of prostate cancer [79]. SOX9 was critical for maintaining 
proliferation, self-renewal, and tumorigenicity in liver cancer stem cells (CSCs), and SOX9 over-
expression was positively correlated with worse survival in HCC patients [80]. Although most 
studies showed that SOX9 played an oncogenic role in cancer development. Excopic expression 
of SOX9 was found to suppress cell growth, clonal capacity and colonosphere formation by 
inhibiting Wnt/ß-catenin signaling pathway and c-myc expression in colorectal cancer, suggest-
ing that SOX9 might be a tumor suppressor in colorectal cancer [81]. SOX9 expression was pro-
gressively decreased in cervical carcinoma in situ and especially in invasive cervical carcinoma, 
compared with normal cervix tissue. Lastly, SOX9 overexpression in cervical carcinoma cells 
inhibited cell growth in vitro and tumor formation in vivo, and vice versa [50].

6. SOX11 and cancer

Similar to SOX4, SOX11 is also a transcriptional activator that falls in the subgroup C. The 
Sox11 gene is mapped at chromosome 2p25.3 and the human SOX11 protein has 441 amino 
acids and 46.7 kDa molecular weight. It contains two functional domains: a HMG box 
DNA-binding domain and a transactivation domain [82]. SOX11 plays an important role in 
embryogenesis and tissue remodeling. Sox11 expression in most tissues is transient and thus 
little SOX11 expression has been found in terminally differentiated adult tissues. The role of 
SOX11 in the tumor microenvironment is cancer type-dependent.
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Recently, multiple studies have reported altered expression of SOX4 in human cancers. Our 
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[42]. In addition to OSCC, SOX4 plays an oncogenic role in other malignancies. SOX4 was over-
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[43]. Upregulation of SOX4 in PCa was mechanistically induced by PTEN loss due to the acti-
vation of PI3K-AKT–mTOR signaling [44]. SOX4 was able to directly regulate the expression 
of the epigenetic modifier Ezh2 in breast cancer, indicating SOX4 might be indispensable for 
tumor progression [69]. SOX4 might combine with oncogenic Ras together to promote tumori-
genesis in vivo [70]. SOX4 was a direct target of C/EBPα and SOX4 suppression reduced the 
self-renewal of leukemic cells and restored their differentiation, indicating that SOX4 overex-
pression resulting from inactivation of C/EBPα promoted leukemia development [45].

However, it should be noted that SOX4 might also function as a tumor suppressor in tumori-
genesis. For instance, SOX4 was indispensable for p53 activation in response to DNA damage. 
In addition, SOX4 could stabilize p53 protein by inhibiting Mdm2-mediated p53 ubiquitina-
tion and degradation, suggesting that SOX4 might suppress the progression DNA damage 
response-associated cancer [71]. In primary gallbladder carcinoma (PGC), SOX4 upregulation 
was significantly associated with favorable clinical parameters. In addition, SOX4 overexpres-
sion predicted better survival [46]. The expression level of SOX4 was significantly reduced in 
metastatic melanoma compared with that in dysplastic nevi and primary melanoma. In addi-
tion, SOX4 suppression promoted the migration and invasion of melanoma cells in an NF-κB 
p50-dependent manner [72]. Taken together, these findings indicate that the concrete role of 
SOX4 is closely associated with tumor microenvironment and might be tissue specific.

5. SOX9 and cancer

The SOXE group comprises three members named SOX8, SOX9 and SOX10. SoxE proteins 
are important for the development of nervous system and neural crest progenitors. SOX9 
was first described as a candidate gene for campomelic dysplasia (CD), a genetic condition 
that affects the development of the skeleton and reproductive system [73]. SOX9 has been 
demonstrated to greatly contribute to the organogenesis and development of many tissue 
types, such as the stomach, pancreas, tooth and craniofacial tissues. In addition, SOX9 is also 
a master regulator of cartilage development. It is indispensable for roles in the chondrogenic 
lineage progression of mesenchymal stem cells [74].

Recent studies have reported that SOX9 is aberrantly expressed in several types of cancers. Higher 
expression levels of SOX9 are correlated with a poor prognosis in patients with Chordoma. In 
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addition, SOX9 downregulation suppressed the oncogenic behaviors of Chordoma cell in vitro, 
suggesting that SOX9 might function as an oncogene in Chordoma [75]. The expression of SOX9 
was upregulated in papillary thyroid cancer (PTC) tissues and cell lines. Downregulation of 
SOX9 inhibited the proliferation, colony formation, migration, invasion, as well as EMT phe-
notype of PTC cells. ERα–RUNX2 complex activated the SOX9 expression and promoted endo-
crine resistance and metastases [76]. In breast cancer, up-regulation of SOX9 expression was 
closely correlated with tamoxifen (TAM) resistance [77]. The SOX9 levels were significantly 
higher in osteosarcoma tissues compared with the adjacent normal tissues. However, CLDN8 
expression was significantly lower in osteosarcoma tissues. Knockdown of SOX9 inhibited the 
proliferation and migration but promoted the apoptosis of human osteosarcoma cell lines by 
downregulating CLDN8 [47]. FOXK2 was overexpressed in colorectal cancer tissues and asso-
ciated with poor prognosis. In fact, FOXK2 was shown to be transcriptionally activated by 
SOX9, suggesting that SOX9-FOXK2 axis plays a critical role in the development of colorectal 
cancer [48]. SOX9 upregulation was associated with Helicobacter pylori infection, elevated carci-
noembryonic antigen–related cell adhesion molecule 1 (CEACAM1) and gastrokine 1 (GKN1) 
inactivation. SOX9 knockdown suppressed the tumorigenic capacity of gastric cancer cells by 
inhibiting the downstream β-catenin signaling pathway [49]. Interestingly, SOX2 was expressed 
in highly proliferative but minimally invasive lung cancer cells; in contrast, cells with highly 
invasiveness capacity exhibited increased SOX9 expression but reduced SOX2 expression. The 
switch between SOX2 and SOX9 expression is epigenetically controlled and is important for 
determining cancer cell plasticity and metastatic progression [78]. Ectopic expression of SOX9 
enhanced growth, invasion, and angiogenesis, whereas silencing of endogenous SOX9 markedly 
impaired tumor growth in prostate cancer. High SOX9 levels drove tumorigenesis by reactivat-
ing the Wnt/β − catenin signaling in a subset of prostate cancer, indicating WNT inhibition might 
beneficial for the effective treatment of prostate cancer [79]. SOX9 was critical for maintaining 
proliferation, self-renewal, and tumorigenicity in liver cancer stem cells (CSCs), and SOX9 over-
expression was positively correlated with worse survival in HCC patients [80]. Although most 
studies showed that SOX9 played an oncogenic role in cancer development. Excopic expression 
of SOX9 was found to suppress cell growth, clonal capacity and colonosphere formation by 
inhibiting Wnt/ß-catenin signaling pathway and c-myc expression in colorectal cancer, suggest-
ing that SOX9 might be a tumor suppressor in colorectal cancer [81]. SOX9 expression was pro-
gressively decreased in cervical carcinoma in situ and especially in invasive cervical carcinoma, 
compared with normal cervix tissue. Lastly, SOX9 overexpression in cervical carcinoma cells 
inhibited cell growth in vitro and tumor formation in vivo, and vice versa [50].

6. SOX11 and cancer

Similar to SOX4, SOX11 is also a transcriptional activator that falls in the subgroup C. The 
Sox11 gene is mapped at chromosome 2p25.3 and the human SOX11 protein has 441 amino 
acids and 46.7 kDa molecular weight. It contains two functional domains: a HMG box 
DNA-binding domain and a transactivation domain [82]. SOX11 plays an important role in 
embryogenesis and tissue remodeling. Sox11 expression in most tissues is transient and thus 
little SOX11 expression has been found in terminally differentiated adult tissues. The role of 
SOX11 in the tumor microenvironment is cancer type-dependent.
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Our recent studies have demonstrated that SOX11 plays a tumor promotion role in the devel-
opment of head and neck cancer (HNC) [83]. We have employed a liquid chromatography–
tandem mass spectrometry (LC–MS/MS) based approach to identify novel targets that may 
interact with SOX11 in HNC cells. The proteins that strongly bind to SOX11 in HNC cells 
may be important for maintaining the activity, stability and function of SOX11 or be regu-
lated by SOX11. Gene ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathway analysis indicated that many potential SOX11-binding partners were associated 
with protein synthesis, cell metabolism and cell–cell adhesion. We speculated that upregula-
tion of SOX11 might firstly activate the aggressive phenotypes of HNC cells by modulating 
the oncoprotein synthesis and altering cellular metabolism. Then it might further promote 
invasion and metastasis by affecting cell–cell adhesion system and formation and release of 
extracellular exosomes. One of the identified proteins, heat shock protein 90 alpha (HSP90α), 
was selected for further investigation. A biochemical interaction is validated between SOX11 
and HSP90α through the co-immunoprecipitation with Western blot analysis. In addition, we 
have found that downregulation of HSP90α inhibits the malignant phenotypes of HNC cells 
and HSP90α upregulation is significantly associated with worse clinical outcome of HNC, 
suggesting HSP90α might serve as a potential prognostic biomarker and therapeutic target 
for HNC [84].

Aberrant expression of SOX11 has been reported in other types of cancer. SOX11 levels were 
negatively correlated with the tumorigenic capacity of glioma-initiating cells [85]. Similarly, 
epithelial ovarian cancer patients with lower SOX11 suffered poorer recurrence-free survival 
[55]. SOX11 mRNA was downregulated in both gastric cancer (GC) cell lines and primary 
GC tissues. SOX11 gene promoter hyper-methylation was significantly associated with worse 
clinical parameters and poorer prognosis, suggesting that SOX11 might function as a tumor 
suppressor in gastric cancer [86]. The methylation frequency of serum SOX11 promoter in 
hepatocellular carcinoma (HCC) patients was significantly higher than that in chronic hepa-
titis B (CHB) patients. In addition, significant difference of serum SOX11 promoter methyla-
tion in HCC patients with vascular invasion and those without vascular invasion was found. 
Moreover, serum SOX11 promoter methylation was found to be more sensitive than serum 
alpha-fetoprotein for discriminating HCC from CHB [87]. Previous studies also reported 
SOX11 functions an oncogene during tumorigenesis. SOX11 upregulation can promote onco-
genic behaviors of ductal carcinoma in situ (DCIS) cells both in vitro and in vivo, indicating 
that SOX11 contributes to the progression of ductal carcinoma in situ to invasive breast cancer 
[88]. Similarly, SOX11 is an important regulator of multiple basal-like breast cancers (BLBCs) 
phenotypes, including growth, migration, invasion, and expression of signature BLBC genes. 
In addition, high SOX11 expression was also found to be a poor prognostic indicator of sur-
vival in women with breast cancer [51].

SOX11 is expressed in virtually all aggressive mantle cell lymphoma (MCL) and at lower 
levels in a subgroup of Burkitt and acute lymphoblastic lymphomas, but not in other lym-
phoid neoplasms. The in vivo tumorigenic potential of SOX11 in a MCL xenograft model has 
been demonstrated, indicating that SOX11 functions as an oncogene in MCL [52]. In addi-
tion, SOX11 can block the terminal B-cell differentiation through direct positive regulation of 
PAX5 and promote angiogenesis in MCL through regulating platelet-derived growth factor 
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A [52, 53]. Patients with SOX11-negative MCL exhibited more frequent non-nodal presenta-
tion and better survival compared with patients with SOX11-positive MCL [54]. However, 
there is contradictory result bout the association between SOX11 and survival in MCL. The 
overall survival was shorter in patients with SOX11-negative MCL compared to the patients 
with SOX11-positive MCL [89]. The relationship between SOX11 expression and survival of 
patients with MCL remains uncertain.

7. Conclusion

In conclusion, recent studies have started to uncover important functions of the SOX genes as 
regulators of cancer initiation and progression. Our understanding of the role of SOX genes is, 
however, still at its infancy. Contradicting results regarding the role of SOX genes have been 
reported in different types of cancer. This suggests that the molecular functions of SOX genes 
in tumorigenesis need to be examined carefully in tissue-specific setting.
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