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Preface

Hyperspectral imaging (HSI) is the set of activities by which images are captured and spec‐
tral radiance values are assigned to each pixel, through the range of wavelengths of the elec‐
tromagnetic spectrum under visible and infrared regions. HSI sensors provide information
on hundreds of narrow wavelength bands of composite. The pixels are sorted and character‐
ized using statistical analysis and software to classify between groups of pixels. The data
from each wavelength band is connected to a three-dimensional hyperspectral imaging (da‐
ta hypercube) for processing and analysis. Hypercube is composed of layers and each layer
represents data at a specific wavelength. HSI is quite important in food quality and assur‐
ance, agricultural practices, and environmental quality.

Hopefully, this book will serve as a handbook for students, researchers, and practitioners in
HSI and inspire some future research ideas by identifying potential research directions. The
book consists of nine chapters, each focusing on a certain aspect of the problem. Within ev‐
ery chapter, the reader will be given an overview of the background information on the sub‐
ject at hand and in many cases a description of the authors’ original proposed solution. The
chapters in this book are sorted alphabetically, according to the first author’s surname. They
should give the reader a general idea where the current research efforts are heading, both
within HSI area itself and in interdisciplinary approaches.

Chapter 1 introduces trends on HSI development on fruits and vegetables and meat and tea
safety, which can be inspected in-line by HSI not only for increasing the quality and safety
of food products but also for offering significant earnings to food processors, with low cost
and fast detection of microorganisms. The authors also present HSI techniques for agricul‐
tural practices, which are very important in crop monitoring for soil nutrients, plant water
stress, disease, insect attack, estimation of crop yield, and pollution tracking.

Chapter 2 introduces multimode hyperspectral imaging for food quality and safety because
there is a great need to assess the composition of food, quantitatively and reproducibly, to
avoid any unintended scenarios, ranging from a product not being quite what it is stated to
be intentional adulteration to random contamination.

Chapter 3 considers hyperspectral imaging and their applications in the nondestructive
quality assessment of fruits and vegetables. The authors report HSI as a detailed overview
of the introduction, latest developments, and applications of hyperspectral imaging in the
nondestructive assessment of fruits and vegetables. Additionally, they include principal
components, basic theories, and corresponding processing and analytical methods.

Chapter 4 reports HSI for assessing quality and safety of meat. The authors present quality
attributes including meat sensory attributes, chemical attributes, and technological attrib‐
utes. In addition, they show the advantages, disadvantages, and problems to be tackled fac‐
ing the HSI.
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Chapter 5 considers model fitting to pattern recognition in hyperspectral images. The au‐
thors propose a new algorithm for Salmonella typhimurium detection on tomato surfaces in a
visible range (400–1000 nm). Gaussian model was used to take out a model that could calcu‐
late its definite integral, and the result of this algorithm is the area under curve (AUC),
which gives a quantitative approach of spectral signatures.

In Chapter 6, a sequential classification of hyperspectral images is analyzed. The authors
consider the hyperspectral classification problems with the consideration of sequential data
collection. The related techniques include data normalization, dimension reduction, classifi‐
cation, spatial information integration, etc., and the way to accommodate these techniques
into the context of sequential data collecting and processing.

Chapter 7 presents soil contamination mapping with HSI on Prydniprovskiy Chemical Plant
in Ukraine, which is an issue of severe importance for Ukraine. The authors introduce regu‐
lar radioecological observations and up-to-date contamination mapping based on advanced
HSI geoinformational techniques and showcase an ability to prepare for, respond to, and
manage potential adverse effects from pollution with radionuclides and heavy metals.

Chapter 8 reports the target visualization method to process a hyperspectral image. The au‐
thors introduce how visualization of data sets may be useful, for object recognition, by using
additional nonformalized external attributes. They convert a hyperspectral image into a sin‐
gle-channel synthesized image in gray scale, on which the objects of interest for the problem
under consideration are selected.

Chapter 9 introduces a novel graph construction for hyperspectral data unmixing. The au‐
thors present graph construction for hyperspectral data and associated unmixing methods
based on graph regularization. The authors review fundamental elements of graph and
present different ways to construct graphs in both spatial and spectral senses for hyperspec‐
tral images.
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1. Introduction

Hyperspectral imaging (HSI) is the set of activities by which images are captured and spec-
tral radiance values assigned to each pixel through the range of wavelengths of the electro-
magnetic spectrum under visible and infrared regions. HSI sensors provide information on 
hundreds of narrow wavelength bands of composite. The pixels are sorted and characterized 
using statistical analysis and software to classify among groups of pixels. The data from each 
wavelength band are connecting into a three-dimensional hyperspectral (data hypercube) for 
processing and analysis. Hypercube is composed of layers, and each layer represents data 
at a specific wavelength. HSI is quite important in food quality and assurance, agricultural 
practices and environmental quality.

2. HSI in assurance of food quality

Nowadays, consumers are interested in food quality and safety assurance. Fruits and vegeta-
bles can be inspected in-line by HSI for increasing the quality and safety of food products but 
also to offer significant earnings to food processors [1]. Spectral variations due to morphologi-
cal changes of most fruits and vegetables decrease the prediction of models; in addition, the 
interferences that specimens possess might affect the classification accuracy, therefore imaging 
techniques in dealing with morphological effects are needed. Another demand is the automatic 
recognition of representative region of interest based on computer software to improve model 

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



Chapter 1

Introductory Chapter: Trends on Hyperspectral
Imaging Development

Alejandro Isabel Luna Maldonado,
Humberto Rodríguez Fuentes and
Juan Antonio Vidales Contreras

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.76998

Provisional chapter

DOI: 10.5772/intechopen.76998

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons  
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,  
distribution, and reproduction in any medium, provided the original work is properly cited. 

Introductory Chapter: Trends on Hyperspectral 
Imaging Development

Alejandro Isabel Luna Maldonado, 
Humberto Rodríguez Fuentes and 
Juan Antonio Vidales Contreras

Additional information is available at the end of the chapter

1. Introduction

Hyperspectral imaging (HSI) is the set of activities by which images are captured and spec-
tral radiance values assigned to each pixel through the range of wavelengths of the electro-
magnetic spectrum under visible and infrared regions. HSI sensors provide information on 
hundreds of narrow wavelength bands of composite. The pixels are sorted and characterized 
using statistical analysis and software to classify among groups of pixels. The data from each 
wavelength band are connecting into a three-dimensional hyperspectral (data hypercube) for 
processing and analysis. Hypercube is composed of layers, and each layer represents data 
at a specific wavelength. HSI is quite important in food quality and assurance, agricultural 
practices and environmental quality.

2. HSI in assurance of food quality

Nowadays, consumers are interested in food quality and safety assurance. Fruits and vegeta-
bles can be inspected in-line by HSI for increasing the quality and safety of food products but 
also to offer significant earnings to food processors [1]. Spectral variations due to morphologi-
cal changes of most fruits and vegetables decrease the prediction of models; in addition, the 
interferences that specimens possess might affect the classification accuracy, therefore imaging 
techniques in dealing with morphological effects are needed. Another demand is the automatic 
recognition of representative region of interest based on computer software to improve model 

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



efficiency. HSI systems with low-cost and fast-detecting properties are provided [2]. An effective 
pixel-based apple bruise region extraction method has been proposed to obtain the complete 
bruise region. The hyperspectral images of 60 apples were obtained at 0, 12, and 18 h during 
an experiment. Principal component analysis (PCA) eliminates repetitious data of hypercubes. 
Random Forest (RF) model obtained high and steady classification accuracy. The mean accu-
racy of bruise extraction models reached 99.9 [3]. Color parameters (L*, a* and b*), firmness, and 
soluble solid content (SSC) have been quantified by HSI in the visible and near infrared (VNIR) 
regions between 600 and 975 nm and the short wave near infrared (SWIR) region between 865 
and 1610 nm. SSC can be exactly predicted by SWIR hyperspectral imaging with than 0.8, while 
L* and a* adjusted better with VNIR hyperspectral imaging displayed correlation coefficients 
greater than 0.7 for [4]. Near infrared (NIR) hyperspectral imaging can classify among maize 
kernels of varying hardness and between fungal infected and sound kernels [5].

For the quick and nondestructive detection of microbial decay in muscle of beef, pork, poul-
try, fish, and so on, techniques have been used such as visible and near-infrared spectroscopy, 
Fourier transform infrared spectroscopy, fluorescence spectroscopy, Raman spectroscopy, 
and hyperspectral imaging. When those techniques are combined with chemometric analy-
sis, spectral preprocessing and modeling methods are successfully developed for the deter-
mination of total viable count, aerobic plate count, Enterobacteriaceae, Pseudomonas, Escherichia 
coli, and lactic acid bacteria loads in muscle [6].

Starch content in adulterated fresh cheese has been measured using HSI. In a research, adul-
terated fresh cheese was prepared using concentrations of starch of 0.055–12.705 mg g−1; after-
wards, HSI images in the range of 200–1000 nm, distributed in 101 bands were acquired. A 
partial least square regression (PLSR) model of starch content was obtained with a determi-
nation coefficient (R2) of 0.9915 and a root mean square error of cross-validation (RMSECV) 
of 0.3979. With five variables, a correlation coefficient of validation (r) of 0.8321 and a mean 
square error prediction (RMSEP) of 1.3515 was found for a reduced model [7].

Haugh unit (HU) index is a measure of the quality of the albumen in various studies on egg 
quality. HU is a destructive test of specimen and correctly reflects the batch of eggs being 
processed. In a study, fresh eggs were stored at 25°C and measured after storage for 0, 4, 7, 
10, 14, 18 and 21 days by HSI system in the wavelength range of 900–1700 nm and compared 
to HU for each egg. A calibration model for HU initially used PLSR and then cross-validation 
was performed and a coefficient of determination (R2) of 0.91 and root mean square error of 
calibration (RMSEC) of 4.58 was obtained; however, displayed colors of acquired image of 
eggs were different correspond to the freshness of the eggs based on HU [8].

Dairy product companies are demanding systems for quantifying and qualifying differences 
between milk powders. Hyperspectral imaging (HSI) has been used to distinguish between 
milk powders manufactured in factories and of differing practical and useful qualities, for 
instance, dispersibility. HSI and multivariate analysis techniques such as principal compo-
nent analysis (PCA) and partial least squares (PLS) regression were performed. The PCA 
results exhibited differences in the first and second principal components. The PLS technique 
showed that HSI information could be used to forecast the dispersibility parameter and then 
establish significant correlations between hyperspectral images and crucial quality attributes 
of milk powder either on, or at line in close to real time [9].

Hyperspectral Imaging in Agriculture, Food and Environment4

Herbal tea demand is increasing because of consumers coming to know of its health ben-
efits. Chromatographical techniques require destructive sample preparation using solvents; 
therefore, HSI could be a nondestructive alternative method. In a research, HSI pushbroom 
system captured images of the raw material and tea blends by SisuChema SWIR (short wave 
infrared). Subsequently, the images were analyzed using multivariate analysis software. PCA 
revealed 54.2% chemical variation between S. tortuosum and C. genistoides raw materials. A 
partial least squares-discriminant analysis (PLS-DA) model had confidence prediction of 
95.8% and it was possible to visualize the tea blend constituents (based on pixel classification) 
as S. tortuosum and C. genistoides and quantitatively predicted C. genistoides as the major con-
stituent (>97%) while S. tortuosum was existent in lower amounts (<3%) [10].

Advanced preprocessing methods for denoising that possess high efficiency and high exacti-
tude are appearing to improve the predicting accuracy for using hyperspectral images in food 
quality evaluation and analysis. Adaptive filters have been developed for applications since 
they can steadily adjust itself to the changing imaging environment [11]. Hyperspectral pan-
sharpening method has been used with high frequency layer of each band of the hyperspec-
tral image as the guidance image of the guided filter for extraction of spatial details from both 
the panchromatic image and the hyperspectral image. The total spatial attributes are added in 
the end into each band of the HS image low frequency  layer to generate the last image [12].

On the other hand, hyperspectral fluorescence imaging (HSFI) method has been used to 
evaluate quality and safety of food since it combines the advantages of both hyperspectral 
imaging and fluorescence spectroscopy. However, it cannot be said that HSFI is very effective 
for measuring quality attributes. The potential of this technology for food and agricultural 
product quality and safety in online inspection will improve rapidly with advances in optical 
sensing and computer systems [13].

3. HSI in assurance of agricultural practices

The development of hyperspectral imaging systems, both aerial and ground, has been very 
important in crop monitoring for nutrients, water stress, disease, insect attack and estimation 
of crop yield in smart agriculture.

The remote perception of water stress in a citrus orchard have been researched using leaf mea-
surements of chlorophyll fluorescence and Photochemical Reflectance Index (PRI) data, seasonal 
time-series of crown temperature and PRI, and high-resolution airborne imagery [14]. The min-
iaturization technology has supplied markets with hyperspectral imagers operating on frame 
format, which is highly attractive for unmanned aerial vehicle (UAV) based remote sensing, 
because it provides better stability and the likelihood to grab stereoscopic data sets, bringing 
in a possibility for three dimensional hyperspectral object reconstruction [15]. In some studies, 
UAV has been performed to acquire RGB images for vegetation analysis [16]. Liquid crystal tun-
able filter (LCTF)-based hyperspectral imaging system transmitted selected wavelengths with-
out the requirement to exchange optical filters from UAV and measured 14 different ground 
objects in vegetative areas. Additionally, the machine learning (ML) approach using a support 
vector machine (SVM) model reached a classification accuracy of 94.5% in vegetated areas [17]. 
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In recent research, automated remote sensing procedures have been developed, assessed, and 
compared based on novel, low-cost HSI system for the identification of beetle infestations in 
barks at the individual tree level in urban forests achieving an overall accuracy of 81% (kappa: 
0.70), compared to the aircraft results of 73% (kappa: 0.56) in a smaller sub-area [18].

4. HSI in assurance of environmental quality

HSI is rapidly becoming a key tool for pollution tracking changes in the environment. 
Hyperspectral microscopy (HM) has been explored for nanotoxicity studies of materials in 
a more native state and truer to conditions of biomedical pertinence. Additionally, HM had 
potential and found its earliest macroscopic applications in geologic surveying. However, anal-
ysis of air or water samples is constrained by the challenge of immobilizing particles [19]. A 
study based on Hyperspectral Imaging (HSI), was developed to establish an efficient method 
to characterize marine microplastic litter. Reliable information on abundance, size, shape and 
polymer type for the whole ensemble of plastic particles in each sample was retrieved from 
hyperspectral images [20]. A new algorithm has been evaluated using the Hyperspectral Imager 
for Coastal Ocean (HICO). The hyperspectral vicarious calibration was applied to HICO, show-
ing the validity and consistency of HICO’s ocean color products [21]. HSI can arrange pixel 
providing a lot of potential for material characterization. A study demonstrated that HSI is 
possible for recognition of pigments [22]. Modern studies of heavy metal pollution of soils have 
been focused on the hyperspectral reflectance of typical metals in soils and in plants measured 
either in situ or in the laboratory. Most of these studies used wavebands lie within the visible 
near infrared range of the spectrum, especially the red edge. Metals detection must rely on 
their co-variation with the spectrally responsive metals or organic matter in the soils [23].
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Abstract

Food safety and quality are becoming progressively important, and a failure to imple-
ment monitoring processes and identify anomalies in composition, production, and dis-
tribution can lead to severe financial and customer health damages. If consumers were 
uncertain about food safety and quality, the impact could be profound; hence, we need 
better ways of minimizing such risks. On the data management side, the rise of artificial 
intelligence, data analytics, the Internet of Things, and blockchain all provide enormous 
opportunities for supply chain management and liability management, but the impact of 
any approach starts with the quality of the relevant data. Here, we present state-of-the-art 
spectroscopic technologies including hyperspectral reflectance, fluorescence imaging as 
well as Raman spectroscopy, and speckle imaging that are all validated for food safety 
and quality applications. We believe a multimode approach comprising of a number of 
these synergetic optical detection modes is needed for the highest performance. We pres-
ent a plan where our implementations reflect this concept through a multimode tabletop 
system in the sense that a large, real-time production-level device would be based on 
more modes than this mid-level one, while a handheld, portable unit may only address 
fewer challenges, but with a lower cost and size.

Keywords: multimode optical imaging, food contamination, hyperspectral imaging, 
food quality, multimode data management, machine learning

1. Introduction

There is a great need to assess the composition of food, quantitatively and reproducibly, in 
order to avoid any unintended scenarios, ranging from a product not being quite what it is 
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stated to be (e.g., lesser quality fish or olive oil) to intentional adulteration (including by ter-
rorist intent) to random contamination (such as by bacteria that can be lethal). These constitute 
the application domain of, respectively, food quality, food defense, and food safety. Given the 
place food occupies in society, and the possible extreme implications of any negative events, 
there is great interest in bringing the best testing to the task of ensuring the quality and safety 
of our food supply. Unfortunately, some of the currently prevalent methods (molecular/bio-
chemical/biophysical, such as polymerase chain reaction (PCR), chromatography, mass spec-
trometry, etc.) are intrinsically too slow to yield results in real time, and also rely on random 
and very sparse sampling. We believe that the power of light as an investigational tool can be 
brought to the resulting challenge and focus on this possibility here.

Optical imaging is an approach rapidly growing in popularity and applications due to techno-
logical advances that have enabled the production of smaller, less expensive, more efficient, and 
faster light sources and detectors. These new technologies have facilitated the acquisition of more 
accurate optical image sets, yielding molecular, structural, and physiological information from 
targeted samples. There are many different optical measurement techniques used by industry 
and academic researchers alike, with each technology usually focusing on a specific property of 
light (intensity, polarization, wavelength, coherence, temporal change, etc.). We believe, how-
ever, that no single method can provide the comprehensive analysis of food that is required.

When applied to food samples, the accuracy of optical detection techniques can be limited 
due to factors such as low penetration depth and lack of contrast, especially for low biomarker 
concentrations. However, using a strategic combination of multiple optical detection technol-
ogies in an optical system that thus becomes multimode, the chemical and/or biological detec-
tion accuracy can be substantially improved. Each individual detection method can provide a 
specific and complementary (sometimes even synergetic) piece of information regarding the 
sample being examined. Thus, by combining a number of these methods, the impact of the 
individual limitations can be minimized, and their combined strengths may be harnessed to 
deliver highly specific results.

The advantages of multimode optical imaging include greatly reducing the time required 
for the initial detection and enumeration of contaminants, with minimal sample preparation, 
nondestructive evaluation, fast acquisition times, and visualization of the spatial distribution 
of numerous components simultaneously. These advantages are highly useful in detecting 
contaminants in food for assessing safety and quality, and the use of multiple modes of detec-
tion, properly combined, is essential for effectiveness and performance.

We summarize here optical technologies which are useful in food safety and quality applica-
tions, highlighting both successes and limitations, thus underscoring the usefulness of the 
new, multimode approach we propose.

2. Hyperspectral imaging

Hyperspectral imaging (HSI) is a growing platform technology that functions by integrat-
ing conventional imaging and spectroscopy to gain spatial and spectral information from 
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an object [1]. It is capable of capturing reflectance, transmittance, and fluorescence images in 
the visible and infrared regions with submillimeter spatial resolution [2] and high spectral 
resolution (10 nm). While HSI was originally developed for remote sensing [3], it has gained 
popularity in the field of food safety and analysis with new applications reported in fruits and 
vegetables [4–20, 34, 37, 42], poultry [21–25], and meat [26–28]. Some advantages HSI has in 
comparison with other techniques such as RGB imaging, NIR spectroscopy, and multicolor 
imaging include being able to produce spatial and spectral information, multiconstituent 
information, and sensitivity to minor components [1].

HSI in the near infrared (NIR) can provide chemical composition of red meat such as predic-
tion of fat, protein, and water content of lamb meat [32]. Moreover, this method enables the 
detection of certain bacteria in food, such as E. coli [33]. Fungal growth on food products is 
of particular concern due to the potential for detrimental effects on population health rang-
ing from allergic reactions and respiratory problems to the production of mycotoxins. HSI 
has been deployed to identify fungal species such as Aspergillus flavus, Aspergillus parasiti-
cus, Aspergillus niger, and Fusarium spp. which can produce mycotoxins, which are secondary 
metabolites that are toxic for humans and animals [36, 37].

A common source of contamination for fresh products and other raw materials used to pro-
duce food is fecal contamination; hence it would be highly desirable to develop an automatic 
inspection system for use in the field and on processing lines. Multispectral detection of fecal 
contamination on apples using HSI imaging was demonstrated by Kim et al. [45]. A HSI sys-
tem with a range of 450–851 nm was used to examine reflectance images of experimentally 
contaminated apples. Fecal contamination sites were evaluated using principal component 
analysis (PCA) with the goal of identifying two to four wavelengths that could be used in an 
online multispectral imaging system. As shown in Figure 1, their results showed that con-
tamination could be identified using either of three wavelengths in the green, red, and NIR 
regions.

With the use of HSI in the spectral range of 400–1000 nm, E. coli loads in grass carp fish 
have been measured to evaluate microbial spoilage. In 2015, the researchers demonstrated 
that reflectance HSI in combination with multivariate analysis had the ability to rapidly and 
noninvasively quantify and visualize the E. coli loads in grass carp fish flesh during the spoil-
age process [35]. Distribution maps, shown in Figure 2, were created to allow for visual-
ization of E. coli contamination. These distribution maps were vital in that they provided 
more detailed information of postmortem spoilage development in grass carp flesh. One of 
the main advantages that HSI has over conventional spectroscopy methods is its ability to 
visualize distribution maps of the contamination in a pixel-wise manner. By multiplying the 
regression coefficients of the multiple linear regression model by the spectrum of each pixel 
in the image, a prediction map was generated for showing the distribution of E. coli within 
the fish flesh. The different E. coli loads were represented by different colors from blue to 
red. As E. coli load increased, the color of the images shifted from blue to red, reflecting the 
growth of bacteria.

In 2013, Feng et al. [36] presented HSI as a nondestructive tool for direct, quantitative deter-
mination of Enterobacteriaceae loads on chicken fillets. The authors developed partial least 
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squares regression (PLSR) models and root mean squared errors. After a simplified model was 
developed, the PLSR model, it was used for predicting Enterobacteriaceae loads in every pixel 
of the image acquired from HSI, resulting in a new image called a “prediction map.” In this 
prediction map, a color scale was used to describe the different microbial loads in each spot 
of the sample. As shown in Figure 3, when the microbial loads increase, the images shift from 
a blue color to a more reddish one, this reflects the growth of bacteria on the chicken fillets.

Figure 1. First and second principal component images obtained using 748–851 nm region of the hyperspectral 
reflectance image data for (A) fuji, (B) gala, (C) golden delicious, and (D) red delicious apples [45].

Figure 2. These are examples of distribution maps of E. coli loads in fish filets. The distribution maps showed how the 
level of E. coli contamination varied from one sample to the next. A shift in color intensity is seen from blue to red, 
reflecting the increase in E. coli contamination [35].

Hyperspectral Imaging in Agriculture, Food and Environment14

Changes in temperature during cold storage of meat products can lead to undesirable micro-
bial growths, which may affect food safety. A study of the spoilage of beef was reported by 
Peng et al. [41]; in this work, HSI was exploited to measure biochemical changes within the 
fresh beef. The research demonstrated that HSI showed potential for real-time and nonde-
structive detection of bacterial spoilage in beef.

Work performed by Barbin et al. [43] used HSI in the near-infrared range (900–1700 nm) to 
determine the total viable count and psychotropic plate count in chilled pork during stor-
age. NIR hyperspectral images in the reflectance mode were captured every 48 h from each 
sample. Assuming that meat spoilage is evident at a microbial load of 107 CFU per gram or 
cm2, the author’s defined a cutoff point of 106 CFU/g as an acceptable threshold of freshness. 
By examining the spectral information that was obtained from the samples, a difference was 
observed in the wavelength range between 1300 and 1600 nm, where fresh samples had lower 
absorbance than spoiled samples (see Figure 4). This spectral region is commonly assigned to 
N-H stretch of proteins (amines and amides) and their interactions with water, and it could 
suggest the occurrence of proteolytic changes, which are recognized as the main indicator for 
the onset of spoilage in meat products.

In 2016, Everard et al. [51] presented fluorescence HSI coupled with multivariate image 
analysis techniques utilized for the detection of fecal contaminates on spinach leaves. Violet 
fluorescence excitation was provided at 405 nm, and light emission was recorded from 464 
to 800 nm. Partial least square discriminant analysis (PLSDA) and wavelength ratio meth-
ods were compared for detection accuracy for fecal contamination. The PLSDA model had 
19% false positives for nonfresh post storage leaves. A wavelength ratio technique using four 
wavebands (680, 688, 703, and 723 nm) was successful in identifying 100% of fecal contami-
nates on both fresh and nonfresh leaves.

Figure 3. This is an image of a median-filtered prediction map for validation set using the simplified PLSR model built 
on three wavelengths (930, 1121, and 1345 nm). Values under each sample predict the Enterobacteriaceae counts (in log10 
CFU g−1) [36].
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Detection of fecal contamination on cantaloupes using HS fluorescence imagery was dem-
onstrated by Vargas et al. [46]. HS images of cantaloupes artificially contaminated with a 
range of diluted bovine feces were acquired from 425 to 774 nm in response to ultraviolet-A 
(320–400 nm) excitation. Evaluation of images at emission peak wavelengths indicated that 
675 nm exhibited the greatest contrast between contaminated and untreated surface areas. 
Two-band ratios compared with the single-band images enhanced the contrast between the 
fecal contaminated spots and untreated cantaloupe surfaces.

Yang et al. [47] examined methods to classify fecal contamination on leafy greens. They uti-
lized HS fluorescence imaging system with ultraviolet-A excitation (320–400 nm) for detec-
tion of bovine fecal contaminants on the abaxial and adaxial surfaces of romaine lettuce and 
baby spinach leaves. They applied six spots of fecal contamination to each of the 40 lettuce 
and spinach leaves. Their results showed that for both lettuce and spinach, the detection of 
fecal matter was best obtained using the ratio of the signal from 666 nm divided by that from 
680 nm, (R values of 0.98 for romaine lettuce and 0.96 for baby spinach).

3. Raman spectroscopy and spectral imaging

Raman spectroscopy is a nondestructive spectroscopic technique, based on the vibrational 
properties of the constituent molecules, that provides molecular information about the sam-
ple under examination. The Raman signal results from molecules being excited by a small 

Figure 4. (a) absorbance spectra for fresh and spoiled samples (after 7 days of storage); (b) second derivative spectra for 
fresh and spoiled samples showing potentially relevant wavelengths [43].
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amount of incident light at a specific wavelength. The remitted light has some of its photons 
shifted to different wavelengths by the addition or subtraction of vibrational energy from 
some of the tissue intramolecular bonds [44]. Contrast is achieved when the tissue molecular 
constituents differ enough that the Raman signals from two tissues have different wavelength 
distributions. Raman spectral imaging (RSI) intertwines Raman spectroscopy and digital 
imaging to visualize the composition and structure of a target, thereby having great potential 
for food safety and analysis [29]. Historically Raman imaging systems have only been able 
to perform Raman measurement at a microscopic level and were unable to evaluate whole 
surfaces of individual foods. Recent studies have shown a benchtop point-scanning Raman 
chemical imaging system designed and developed for food safety research [56]. Raman imag-
ing is a highly specific and sensitive technique as it allows for the detection of particular 
chemicals at low concentrations, such as detecting melamine particles in dry milk. This tech-
nique has wide applications, and due to its specificity, it may help detect contaminants in 
food products of different sizes.

A study aimed at the detection and differentiation of important food and waterborne bacteria 
(E. coli, Staphylococcus epidermidis, Listeria monocytogenes, and Enterococcus faecalis) was per-
formed by Fan et al. [38] using surface-enhanced Raman spectroscopy (SERS) coupled with 
intracellular nanosilver as SERS substrates. Variations observed in the spectral patterns of 
bacterial pathogens are due to the different quantity and distribution of cellular components 
like proteins, phospholipids, nucleic acids, and carbohydrates. SERS coupled with statistical 
analysis has become very useful in discriminating and detecting bacterial cells, spores, and 
viruses.

In another study, a portable Raman sensor system was presented with an integrated 671 nm 
microsystem diode laser as excitation light source for the rapid in situ detection of meat spoil-
age and bacteria [39]. The system used in this chapter is an example of the reduction in form 
factor of enabled by recent advances and is comprised of three main components: a handheld 
measurement head with a laser driver electronics board, the Raman optical bench, and finally, 
a battery pack. This method was used to rapidly detect meat spoilage in specific pork cuts, 
musculus longissimus dorsi (LD) and musculus semimembranosus (SM). The authors were able 
to determine the total number of mesophilic aerobic microorganisms on the surface of the 
meat to show possible correlations of the bacterial growth with the measured Raman spec-
tra. In 2007, the food industry faced substantial economic losses following the discovery of 
melamine, a nitrogen rich chemical, in human and pet foods [48]. In one SERS study which 
employed SERS-active substrates, the concentration of melamine was measured in wheat glu-
ten, chicken feed, and processed foods such as cake and noodles [49, 50].

4. Speckle imaging

Spoilage and poisoning of food products by microorganisms is a major issue in food safety 
and human health. As these microorganisms grow and become more active, they cause dete-
rioration of food quality and cause food intoxication. Some of the microorganisms capable of 
such damage are bacteria, yeast, and mold. As detailed earlier, there have been many different  

Multimode Hyperspectral Imaging for Food Quality and Safety
http://dx.doi.org/10.5772/intechopen.76358

17



Detection of fecal contamination on cantaloupes using HS fluorescence imagery was dem-
onstrated by Vargas et al. [46]. HS images of cantaloupes artificially contaminated with a 
range of diluted bovine feces were acquired from 425 to 774 nm in response to ultraviolet-A 
(320–400 nm) excitation. Evaluation of images at emission peak wavelengths indicated that 
675 nm exhibited the greatest contrast between contaminated and untreated surface areas. 
Two-band ratios compared with the single-band images enhanced the contrast between the 
fecal contaminated spots and untreated cantaloupe surfaces.

Yang et al. [47] examined methods to classify fecal contamination on leafy greens. They uti-
lized HS fluorescence imaging system with ultraviolet-A excitation (320–400 nm) for detec-
tion of bovine fecal contaminants on the abaxial and adaxial surfaces of romaine lettuce and 
baby spinach leaves. They applied six spots of fecal contamination to each of the 40 lettuce 
and spinach leaves. Their results showed that for both lettuce and spinach, the detection of 
fecal matter was best obtained using the ratio of the signal from 666 nm divided by that from 
680 nm, (R values of 0.98 for romaine lettuce and 0.96 for baby spinach).

3. Raman spectroscopy and spectral imaging

Raman spectroscopy is a nondestructive spectroscopic technique, based on the vibrational 
properties of the constituent molecules, that provides molecular information about the sam-
ple under examination. The Raman signal results from molecules being excited by a small 

Figure 4. (a) absorbance spectra for fresh and spoiled samples (after 7 days of storage); (b) second derivative spectra for 
fresh and spoiled samples showing potentially relevant wavelengths [43].

Hyperspectral Imaging in Agriculture, Food and Environment16

amount of incident light at a specific wavelength. The remitted light has some of its photons 
shifted to different wavelengths by the addition or subtraction of vibrational energy from 
some of the tissue intramolecular bonds [44]. Contrast is achieved when the tissue molecular 
constituents differ enough that the Raman signals from two tissues have different wavelength 
distributions. Raman spectral imaging (RSI) intertwines Raman spectroscopy and digital 
imaging to visualize the composition and structure of a target, thereby having great potential 
for food safety and analysis [29]. Historically Raman imaging systems have only been able 
to perform Raman measurement at a microscopic level and were unable to evaluate whole 
surfaces of individual foods. Recent studies have shown a benchtop point-scanning Raman 
chemical imaging system designed and developed for food safety research [56]. Raman imag-
ing is a highly specific and sensitive technique as it allows for the detection of particular 
chemicals at low concentrations, such as detecting melamine particles in dry milk. This tech-
nique has wide applications, and due to its specificity, it may help detect contaminants in 
food products of different sizes.

A study aimed at the detection and differentiation of important food and waterborne bacteria 
(E. coli, Staphylococcus epidermidis, Listeria monocytogenes, and Enterococcus faecalis) was per-
formed by Fan et al. [38] using surface-enhanced Raman spectroscopy (SERS) coupled with 
intracellular nanosilver as SERS substrates. Variations observed in the spectral patterns of 
bacterial pathogens are due to the different quantity and distribution of cellular components 
like proteins, phospholipids, nucleic acids, and carbohydrates. SERS coupled with statistical 
analysis has become very useful in discriminating and detecting bacterial cells, spores, and 
viruses.

In another study, a portable Raman sensor system was presented with an integrated 671 nm 
microsystem diode laser as excitation light source for the rapid in situ detection of meat spoil-
age and bacteria [39]. The system used in this chapter is an example of the reduction in form 
factor of enabled by recent advances and is comprised of three main components: a handheld 
measurement head with a laser driver electronics board, the Raman optical bench, and finally, 
a battery pack. This method was used to rapidly detect meat spoilage in specific pork cuts, 
musculus longissimus dorsi (LD) and musculus semimembranosus (SM). The authors were able 
to determine the total number of mesophilic aerobic microorganisms on the surface of the 
meat to show possible correlations of the bacterial growth with the measured Raman spec-
tra. In 2007, the food industry faced substantial economic losses following the discovery of 
melamine, a nitrogen rich chemical, in human and pet foods [48]. In one SERS study which 
employed SERS-active substrates, the concentration of melamine was measured in wheat glu-
ten, chicken feed, and processed foods such as cake and noodles [49, 50].

4. Speckle imaging

Spoilage and poisoning of food products by microorganisms is a major issue in food safety 
and human health. As these microorganisms grow and become more active, they cause dete-
rioration of food quality and cause food intoxication. Some of the microorganisms capable of 
such damage are bacteria, yeast, and mold. As detailed earlier, there have been many different  

Multimode Hyperspectral Imaging for Food Quality and Safety
http://dx.doi.org/10.5772/intechopen.76358

17



technologies developed to detect harmful microorganisms in food products such as hyper-
spectral imaging, Raman spectroscopy, and high-performance liquid chromatography. All 
these methods have certain intrinsic short comings. Factors such as the need for a well-
equipped laboratory, high-cost equipment, complicated procedures for sample preparation 
and long analysis times, and trained professional operators limit their widespread application 
in the food processing, transportation, marketing, and preservation in various food industries.

A technology that is finding increasing favor by circumventing many of these limitations is 
laser speckle imaging. Laser speckle imaging has been introduced in this field of application 
to monitor moving particles in optically inhomogeneous media by analyzing time-varying 
laser speckle patterns for applications such as measuring meat quality and detecting contami-
nants. Unlike multiple light scattering in meat which exhibits static and deterministic speckle 
intensity patterns, light paths associated with the movements of living microorganisms result 
in time-varying changes in the speckle intensity patterns. Therefore, by detecting the decor-
relation in the laser speckle intensity patterns from tissues, the living activities of microorgan-
isms can be detected.

Another advantage of this method is the ability to examine meats sealed with transparent 
packaging because this method detects time-varying signals in reflected laser beams and 
transparent plastic does not affect these. Furthermore, the technique can provide rapid assess-
ment as bacterial colonies can be detected within a few seconds [30]. Thus, this method pro-
vides an efficient and effective way to detect live bacteria in food products to avoid food 
toxicity. Speckle imaging systems have been demonstrated to indicate the presence of bacte-
rial colonies and other contaminants in both food and water [31]. Technology such as this 
may be very effective in the marketplace as food producers or consumers themselves may be 
able to use them to assess food safety. As mentioned, there are currently several approaches 
available for detecting low levels of microorganisms in food; however, they require complex 
equipment, high costs, invasive procedures, and skilled technicians to operate which all act to 
restrict its widespread adoption and use in the food industry [31].

Work performed by Yoong et al. [53] aimed to detect and quantify various levels of contami-
nation using chicken breast meat samples. The meats contaminated with bacteria had sig-
nificant decreases in the autocorrelation values over the time lag, whereas the control group 
(meat treated with a PBS solution) did not show any major changes. The meat treated with a 
high concentration of bacteria had more significant changes over the time lag compared with 
the meat treated with a low concentration of bacteria. Moreover, the decrease in the autocor-
relation value was proportional to the concentration of the treated bacteria. The measured 
autocorrelation values were all statistically different from one another (p < 0.001), and the 
decreases in the autocorrelation were proportional to the concentration of bacteria. Thus, the 
authors were able to show that through various experimental validations, spontaneous bacte-
rial activity caused strong decorrelation in laser speckle dynamics (Figure 5).

In 2014, Kim et al. [55] presented a label-free bacterial colony phenotyping technology called 
bacterial rapid detection using optical scattering technology (BARDOT), which can provide 
classification for several different types of bacteria. Recent experiments with colonies of Bacillus 
species using speckle imaging show a certain speckle formation that allows for the detection and 
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identification of these bacterial species. As the center diameter of the Bacillus spp. colony grew 
from 500 to 900 microns, the average speckle area decreased twofold and the number of small 
speckles increased sevenfold. As Bacillus colonies grow, the average speckle size in the scatter 
pattern decreases and the number of smaller speckle increases due to the swarming growth 
characteristics of bacteria within the colony [40]. Singh et al. showed the real-time detection and 
identification of Salmonella colonies grown from inoculated peanut butter, chicken breast, and 
spinach or from naturally contaminated meat using BARDOT technology (90–100% accuracy)  
in the presence of background microbiota from naturally contaminated meat [52].

5. Multimode hyperspectral imaging system

Due to the multicomponent nature of foods, their reflectance or fluorescence spectra are 
complex and chemometric methods using multivariate analysis are needed to extract con-
taminant-specific information. By varying both the excitation and detection wavelengths and 
measuring both reflectance and fluorescence emission properties of a food sample, we can 
fine-tune algorithms for specific foods and contaminants. It has been shown that for biologi-
cal tissues, dual or multiple excitation fluorescence can increase the specificity and accuracy 
of classification and quantification of specific sources of fluorescence [54]. Rasch et al. [57] 
showed the combination of different spectroscopic methods (such as fluorescence and NIR 
spectroscopy) becomes a promising approach to circumvent such single method inherent 
limitations and to use optical sensing for in situ mycotoxin detection. Additional chemomet-
ric tools are essential to eliminate disturbing factors and to extract the desired biochemical 
information with respect to contamination with fungi and/or mycotoxins.

Figure 5. This image illustrates the groups attempt at assessing bacterial activity in meat. (A) shows representative 
autocorrelation amps in meat treated with various concentrations of bacteria at various time lags. (B) Averaged C(tau) 
values over the areas in (A) as a function of the time lag. (C) quantification of the autocorrelation values at tau = 10 s [53].
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An example of a multimode hyperspectral imaging system operates in fluorescence and reflec-
tance modes as well as speckle imaging is shown in Figure 6 developed by SafetySpect Inc. 
The system uses spectral band sequential imaging on the detection side. To ensure high signal-
to-noise level, camera and spectral selection filter integration time is optimized for each spec-
tral band from visible to the near infrared. The illumination module uses two independent 
light sources to provide illumination for fluorescence excitation and reflectance measurements 
using three computer-controlled LED illumination rings. The UVA (375 nm) and blue/violet 
(420 nm) LED rings provide fluorescence excitation. White LEDs will be used for reflectance 
illumination. The HSi-440CO hyperspectral imaging system (Gooch & Housego, UK, origi-
nally developed by ChromoDynamics, Inc.) incorporated in the proposed system can image 
and analyze multiple signals in fixed and living cells at video rates. Its tunable filter can switch 
wavelengths within microseconds. The system acquires multiwavelength, high-spatial and 
spectral resolution image datasets, and can compute and display quantitative signal-specific 
images in near real time. The spectrally controllable image capture system can record spectral 
images of food samples in wavelengths ranging from 450 to 800 nm. The system is configured 
as a tabletop platform where illumination and detection will operate above the food sample.

In this system, time-varying speckle signals can be quantitatively addressed with the speckle 
correlation time. A sample containing living microorganisms will have a correlation time way 
shorter than a static one, and thus contaminated food will be less time-correlated as compared 
to fresh food due to the spontaneous motility of microorganisms. Correlation time of  scattered 
light from samples, the presence and activity of microorganisms can be quantitatively analyzed.

Figure 6. Configuration of the multimode HSI.
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Let us consider I (x,y,t) the image of the sample at time t. The correlation coefficient between 
two images of the sample at different times is given by the normalized autocorrelation function:

  C  (  x, y, t )    =   1 ___ T − τ     ∑  
t=1

  
T−τ

  I  (  x, y, t )    . I  (  x, y, t + τ )   δt  (1)

where T is the total acquisition time, δt the time difference, and τ the time lag. In the case of 
food contamination assessment, the sample is expected to be static and the correlation to be 
close to the unity. Every decorrelation effect is due, then, to the presence of live microorgan-
isms moving across the sample.

6. Conclusions

There is inherent risk in food (preparing, selling, and consuming it), and we need better ways 
of minimizing such risk. The number of people who are sickened by problematic food is 
staggering (it is estimated that 1/6 of the US population is thus affected yearly), and the num-
ber of people who die (~3000/year) is unacceptable. If one examines the rather extensive risk 
management/mitigation literature, it is evident that certain fields of human endeavor (such 
as air travel) are doing a better job than others in minimizing the undesirable scenarios. A 
particularly pragmatic take on this field was provided by Dr. J. Reason [58], who developed 
an approach he termed the Swiss Cheese theory (Figure 7). Basically, he posits that we all 
want to insert countermeasures between us and hazards, to prevent harm, but because we are 
human and thus imperfect, these countermeasures are like a slice of Swiss cheese. The most 
logical and direct improvement is to “stack” the slices of cheese, as the holes do not align, 
and prevention is achieved. Translated to imaging for food safety, this calls for a multimode 
approach, which is what we propose (see Figure 8). The number of modes needed for good 
performance scales, naturally, with the difficulty of the problem, and we plan to have our 
implementations reflect this, in the sense that a large, real-time production-level device will 
be based on more modes than a mid-level (e.g., restaurant) one, while a handheld, portable 
unit may only address 80% of the challenges, but with ~20% of the cost and size.

Figure 7. Dr. Reason’s Swiss cheese theory of accident causation/prevention.
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others [1]. Consequently, the accurate, rapid, and objective assessment system in the process-
ing stage is essential to ensure the quality of fruits and vegetables during processing opera-
tions. Food process control necessitates real-time monitoring at critical processing points [2].

Traditional optical sensing techniques, such as imaging and spectroscopy, have limitations to 
acquire adequate spatial and spectral information for nondestructive evaluation of food and 
agricultural products. Generally, conventional imaging cannot acquire spectral information 
and spectroscopy measurement cannot cover large sample area. In general, the frequently-
used vision systems for fruits and vegetables sorting are based on color video camera that 
imitates the vision of the human eye by capturing images using three filters centered on red, 
green and blue (RGB) wavelengths [3, 4]. Thus, they are limited to observing scenes and are 
usually not able to obtain much information about the external or internal composition of the 
products or to detect some defects or alteration whose color is similar to the color of the sound 
skin. In addition, traditional methods of fruits and vegetables monitoring involving analytical 
techniques are too time consuming, expensive and require sample destruction.

Over the past decades, with the rapid development of information science, image processing 
and pattern recognition technology, optical sensing technologies have been emerged as sci-
entific tools for nondestructive assessment for quality of fruits and vegetables. Spectral imag-
ing technology, combining conventional imaging and spectroscopy techniques, can acquire 
spatial and spectral information from the target, which is used for evaluating individual food 
products. In particular, hyperspectral imaging has been widely researched and developed 
by integrating spectroscopy and imaging techniques into a system that can obtain a spatial 
map of spectral variation, resulting in many successful applications in the quality assessment 
of fruits and vegetables. A typical spectral image is composed of a set of monochromatic 
images corresponding to certain wavelengths, and hyperspectral image systems have the 
natural advantage compared to the traditional computer vision, even the human vision [2]. 
Hyperspectral imaging systems can make it possible to extract some appearance features that 
are difficult or impossible with the traditional computer vision systems.

This chapter focuses on hyperspectral imaging technologies in the quality nondestructive 
assessment of fruits and vegetables. In the second section, overview, components, and dif-
ferent image acquisition technologies of hyperspectral imaging are explained and discussed. 
Hyperspectral images generate a large amount of information that can be processed using 
different statistical techniques [1]. In the third section, varying nondestructive processing and 
analysis methods are illustrated in detail. Finally, applications of this technology are discussed, 
and conclusions are given.

2. Hyperspectral imaging technique

2.1. Overview of hyperspectral imaging

Hyperspectral imaging, known also as chemical or spectroscopic imaging, is an emerging tech-
nique that integrates conventional imaging and spectroscopy to simultaneously collect spatial 
and spectral information from an object. The term “hyperspectral imaging” was derived from 
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works in remote sensing first mentioned by Goetz et al. in [5] to make a direct identification 
of surface materials in the form of images. Although originally developed for remote sensing, 
hyperspectral imaging system is gradually found to have natural advantages over the traditional 
computer vision systems [2] in such diverse fields as agriculture [6–9]. With the development of 
optical sensing and imaging techniques, hyperspectral imaging has recently emerged as a sci-
entific and efficient inspection and assessment tool for quality of fruits and vegetables. The goal 
of hyperspectral imaging is to obtain the spectrum for each pixel in the image of a scene, with 
the purpose of finding objects, identifying materials, or detecting processes [10]. To obtain high 
spectral resolution and narrow band image data, hyperspectral imaging is generally combined 
with spectroscopic technique, two-dimensional geometric space and one-dimensional spectral 
information detection.

2.2. Components of hyperspectral imaging system

Figure 1 shows the schematic of the hyperspectral imaging system commonly used in our 
research. As shown in Figure 1, a typical hyperspectral imaging system usually consists of the 
following components: a light source (illumination), a wavelength dispersion device (spectro-
graph), an area detector (camera), a transportation stage and a computer with corresponding 
software [11].

Light source for spectral imaging applications can generally be classified into two categories: 
illumination and excitation source. Broadband lights are generally used as the illumination 
sources for reflectance and transmittance imaging while narrowband lights are commonly 
used as the excitation sources. Therefore, illumination is a crucial part of the hyperspectral 
imaging system. Compared with the naked eyes, vision systems are affected by the level and 
quality of illumination. Illumination devices generate light that illuminates the inspected tar-
get objects; thus, the performance of the illumination system can greatly influence the quality 
of images and plays an important role in the overall efficiency and accuracy of the system 
[12]. Good illumination can help to improve the success of the image processing and analy-
sis by reducing noise, shadow, reflection, and enhancing image contrast [2]. In  addition, 

Figure 1. A schematic of the hyperspectral imaging system.
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Figure 2. Operating principles of diffraction grating and prism.

the positions, types of lamps, and color quality of the illumination are all considered when 
choosing the most suitable illumination. Incandescent lamps, fluorescent lamps, lasers, and 
infrared lamps are the commonly used light sources [13].

The wavelength dispersion device is one of the key components of hyperspectral imaging 
system. Filter, grating and prism are three typical wavelength dispersion devices. These opti-
cal devices are used to disperse broadband light into different wavelengths and project the 
scattered light onto the area detector. The principles of prism and diffraction grating are illus-
trated in Figure 2. In a word, filter is always used in the multispectral imaging system, while 
prism and grating are widely used in the hyperspectral imaging system [2]. Besides, the effi-
ciencies of the transmission components (e.g., prisms) are generally lower than those of the 
reflective optical component (e.g., mirrors). An optical wavelength dispersion device includes 
[14, 15]: a first substrate; an input unit formed on the first substrate having a slit for receiving 
an optical signal; a grating line formed on the first substrate for generating a diffracted light 
beam of the optical signal; a first optical reflector formed on the first substrate to the reflected 
output beam from the diffraction grating for the output; and a second substrate covered on 
the top of the input unit and the grating. The wavelength dispersion is capable to disperse 
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broadband light into varying wavelengths. Typical examples include filter wheels, imaging 
spectrographs, acousto-optic tunable filters, liquid crystal tunable filters, Fourier transform 
imaging spectrometers, and single shot imagers [16].

The camera, which is one of the image acquisition devices, is another core component of the 
hyperspectral imaging system. It is the carrier of the physical or chemical information and 
the light generated from the light source. Other image acquisition devices used in food appli-
cations are computed tomography (CT), magnetic resonance imaging (MRI), ultrasound and 
electrical tomography [17]. Charge coupled device (CCD) and complementary metal oxide 
semiconductor (CMOS) image sensors are two different means to generate the image digitally 
[2]. A CCD is a device for the movement of electrical charge, generally from within the device to 
an area where the charge can be manipulated. In the CCD image sensor, pixels are represented 
by P-doped metal oxide semiconductor (MOS) capacitors. When image acquisition starts, these 
capacitors are biased above the threshold for inversion, allowing the conversion of incoming 
photons into electron charges at the semiconductor-oxide interface [18]; then, the CCD is used 
to read out these charges. The CMOS image sensor consists of millions of pixel sensors, each 
of which includes a photo detector. As light enters the camera through the lens, it strikes the 
CMOS image sensor, allowing each photo detector to accumulate an electric charge based on 
the amount of light that strikes it. CMOS is also sometimes referred to as complementary-sym-
metry metal–oxide–semiconductor (COS-MOS). In general, the CMOS image sensor is used in 
applications with less exacting quality demands, and the CCD image sensor is widely used in 
medical, scientific and professional applications where high-quality image data are required.

Compared with the traditional computer vision system, a wavelength dispersion device and 
a transportation stage are additional components of hyperspectral or multispectral computer 
vision systems. The translation stage is used to move the sample past the objective lens when 
the camera captures only a line of the illuminated object.

The computer is not only used to control the hyperspectral imaging system for data acquisi-
tion, processing and analysis of image and spectral data for specific application, but also can 
provide storage space for hyperspectral image. By scanning the entire surface of the speci-
men, a complete hyperspectral image is created and displayed by the computer [19].

2.3. Generation of hyperspectral images

Hyperspectral image is three-dimensional hyperspectral cube, composed of two spatial and one 
wavelength dimension [20]. There are three approaches to build hyperspectral images based on 
the method by which spatial information is acquired as whiskbroom, pushbroom, and tunable 
filter known as point scanning, line scanning, and area scanning, respectively [21], as illustrated 
in Figure 3. The point-scan method (Figure 3a) is a basic spectroscopic approach, where a single 
point is scanned along two spatial dimensions by moving the sample or the detector. When a 
single point is scanned, the sample moves to the next measurement point and another spectrum 
is captured. By moving the sample systematically in two spatial dimensions, a complete hyper-
spectral image can be obtained. However, it is not suited for fast image acquisition because 
the scan of many points for two spatial dimensions is a time-consuming process. The line-scan 
method (Figure 3b) can be considered as an extension of point scanning method. In the line-scan 
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Figure 2. Operating principles of diffraction grating and prism.
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choosing the most suitable illumination. Incandescent lamps, fluorescent lamps, lasers, and 
infrared lamps are the commonly used light sources [13].

The wavelength dispersion device is one of the key components of hyperspectral imaging 
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prism and grating are widely used in the hyperspectral imaging system [2]. Besides, the effi-
ciencies of the transmission components (e.g., prisms) are generally lower than those of the 
reflective optical component (e.g., mirrors). An optical wavelength dispersion device includes 
[14, 15]: a first substrate; an input unit formed on the first substrate having a slit for receiving 
an optical signal; a grating line formed on the first substrate for generating a diffracted light 
beam of the optical signal; a first optical reflector formed on the first substrate to the reflected 
output beam from the diffraction grating for the output; and a second substrate covered on 
the top of the input unit and the grating. The wavelength dispersion is capable to disperse 
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broadband light into varying wavelengths. Typical examples include filter wheels, imaging 
spectrographs, acousto-optic tunable filters, liquid crystal tunable filters, Fourier transform 
imaging spectrometers, and single shot imagers [16].

The camera, which is one of the image acquisition devices, is another core component of the 
hyperspectral imaging system. It is the carrier of the physical or chemical information and 
the light generated from the light source. Other image acquisition devices used in food appli-
cations are computed tomography (CT), magnetic resonance imaging (MRI), ultrasound and 
electrical tomography [17]. Charge coupled device (CCD) and complementary metal oxide 
semiconductor (CMOS) image sensors are two different means to generate the image digitally 
[2]. A CCD is a device for the movement of electrical charge, generally from within the device to 
an area where the charge can be manipulated. In the CCD image sensor, pixels are represented 
by P-doped metal oxide semiconductor (MOS) capacitors. When image acquisition starts, these 
capacitors are biased above the threshold for inversion, allowing the conversion of incoming 
photons into electron charges at the semiconductor-oxide interface [18]; then, the CCD is used 
to read out these charges. The CMOS image sensor consists of millions of pixel sensors, each 
of which includes a photo detector. As light enters the camera through the lens, it strikes the 
CMOS image sensor, allowing each photo detector to accumulate an electric charge based on 
the amount of light that strikes it. CMOS is also sometimes referred to as complementary-sym-
metry metal–oxide–semiconductor (COS-MOS). In general, the CMOS image sensor is used in 
applications with less exacting quality demands, and the CCD image sensor is widely used in 
medical, scientific and professional applications where high-quality image data are required.

Compared with the traditional computer vision system, a wavelength dispersion device and 
a transportation stage are additional components of hyperspectral or multispectral computer 
vision systems. The translation stage is used to move the sample past the objective lens when 
the camera captures only a line of the illuminated object.

The computer is not only used to control the hyperspectral imaging system for data acquisi-
tion, processing and analysis of image and spectral data for specific application, but also can 
provide storage space for hyperspectral image. By scanning the entire surface of the speci-
men, a complete hyperspectral image is created and displayed by the computer [19].

2.3. Generation of hyperspectral images

Hyperspectral image is three-dimensional hyperspectral cube, composed of two spatial and one 
wavelength dimension [20]. There are three approaches to build hyperspectral images based on 
the method by which spatial information is acquired as whiskbroom, pushbroom, and tunable 
filter known as point scanning, line scanning, and area scanning, respectively [21], as illustrated 
in Figure 3. The point-scan method (Figure 3a) is a basic spectroscopic approach, where a single 
point is scanned along two spatial dimensions by moving the sample or the detector. When a 
single point is scanned, the sample moves to the next measurement point and another spectrum 
is captured. By moving the sample systematically in two spatial dimensions, a complete hyper-
spectral image can be obtained. However, it is not suited for fast image acquisition because 
the scan of many points for two spatial dimensions is a time-consuming process. The line-scan 
method (Figure 3b) can be considered as an extension of point scanning method. In the line-scan 
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method, a slit of spatial information and full spectral information for each spatial point in the 
linear field of view can be acquired simultaneously. But the line-scan method requires the use of 
an imaging spectrometer, in which a diffraction grating disperses light entering through a thin 
slit and projects. Food commodities normally are moved linearly along a production line [11]. 
Consequently, the line-scan method is appropriate for online inspection of individual food. The 
area-scan method (Figure 3c) does not require the relative movement between the sample and 
the detector and is usually used to collect images from the fixed scene. The line-san camera holds 
an advantage over area-scan camera. Unlike these area-scan cameras, a line-scan camera can 
expose a new image while the previous image is still reading out its data. A detailed description 
of data preprocessing methods can be found in the literature [22, 23].

As shown in Figure 4, hyperspectral imaging system is generally carried out in reflectance, 
transmittance or interactance modes according to the specific light-output captured by hyper-
spectral imaging system [24]. In the external quality inspection of fruits and vegetables, the 
reflectance mode is considered to be the most suitable approach. Position of light source and 
the optical detector (cameral, spectrograph, and lens) are different for each acquisition mode 
[21]. In the external quality inspection of fruits and vegetables, the reflectance mode (Figure 4a) 
is considered to be the most suitable approach. In reflectance mode, to avoid specular reflection, 
the detector captured the reflected light from the illuminated sample in a specific conformation. 
The transmitted light captured through the sample is often very weak but carries more valuable 
information and the detector is located on the opposite side of the light source. Transmittance 
mode (Figure 4b) is usually used to determine internal component concentration and detect 
internal defects of relative transparent materials [16]. Interactance mode (Figure 4c) is a combi-
nation of reflectance and transmittance where both light source and the detector are located in 
the same side of sample and parallel to each other.

Figure 3. Three different approaches to generate a hyperspectral image. (a) The point-scan method. (b) The line-scan 
method. (c) The line-scan method.
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2.4. Characteristics of the hyperspectral images

In the conventional RGB images, some unobvious quality character, which is even not visible 
to the human eyes, is impossible or difficult to detect. Unlike the conventional RGB images, 
whose spectrum information is very limited, the hyperspectral images contain extensive 
monochromatic image [2]. In one or several monochromatic images, the unobvious external 
quality characters can be very clear or easy to detect. Hyperspectral images are composed of 
numerous continuous wavebands for spatial position of an object studied.

Figure 5 illustrates the conceptual view of a hyperspectral image, which contains a stack of 
two-dimensional images one behind each other at different wavelengths and can be described 

Figure 4. Three different modes to generate a hyperspectral image. (a) The reflectance mode. (b) The transmittance 
mode. (c) The interactance mode.

Figure 5. The conceptual view of a hyperspectral image with spectral and spatial domains.
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method, a slit of spatial information and full spectral information for each spatial point in the 
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Consequently, the line-scan method is appropriate for online inspection of individual food. The 
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spectral imaging system [24]. In the external quality inspection of fruits and vegetables, the 
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is considered to be the most suitable approach. In reflectance mode, to avoid specular reflection, 
the detector captured the reflected light from the illuminated sample in a specific conformation. 
The transmitted light captured through the sample is often very weak but carries more valuable 
information and the detector is located on the opposite side of the light source. Transmittance 
mode (Figure 4b) is usually used to determine internal component concentration and detect 
internal defects of relative transparent materials [16]. Interactance mode (Figure 4c) is a combi-
nation of reflectance and transmittance where both light source and the detector are located in 
the same side of sample and parallel to each other.
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monochromatic image [2]. In one or several monochromatic images, the unobvious external 
quality characters can be very clear or easy to detect. Hyperspectral images are composed of 
numerous continuous wavebands for spatial position of an object studied.
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two-dimensional images one behind each other at different wavelengths and can be described 
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as I(x, y, λ) [21]. The diagram shows that the raw hyperspectral cube consists of a series of 
contiguous sub-images one behind each other at different wavelengths [16], and each sub-
image provides the spatial distribution of the spectral intensity at a certain wavelength. The 
hyperspectral images can be viewed either as a spectrum I (λ) at each individual pixel (x, y) 
or as an image I (x, y) at individual wavelength λ. Each image acquires spatially distributed 
spectral information at pixel level and can be used to analyze the biochemical constituent of a 
sample according to the spatial information. Each pixel containing a complete spectrum can 
be used to characterize the composition of that particular pixel.

2.5. Calibration of hyperspectral images

The hyperspectral imaging is a useful tool to acquire and record the raw hyperspectral infor-
mation of fruits and vegetables. However, due to the differences in camera quantum and 
physical configuration of imaging systems, the uncorrected radiance for the different sys-
tems, even for the same system used in different times, might be very different for the same 
sample taken under the same condition [25]. Therefore, accurate calibrations for a hyperspec-
tral imaging system are necessary to guarantee the stability and acceptability of the extracted 
hyperspectral image data and the consistent performance of the system. The original hyper-
spectral images can be calibrated into the reflectance mode based on black and white reference 
images. The hyperspectral reflectance images  R  for a spatial pixel ( i ) at a given wavelength 
was calculated by using the following equation [26, 27].

   R  i   =  (  
R  S  i   − R  D  i   ________ R  W  i   − R  D  i  

  )  × 100%  (1)

where RS, RD, and RW are respectively the raw intensity values of identical pixels from the 
sample image, dark reference image, and white reference images. Ri is the calibrated hyper-
spectral image in a unit of relative reflectance. The dark reference image RD (with ~0% reflec-
tance), which can be obtained with the light source turned off completely and the camera 
lens covered completely with its nonreflective opaque black cap, is used to remove the dark 
current effect of the area detectors [28]. The white reference image RW (with ~99% reflectance) 
represents the highest intensity values. RW can be acquired from a Teflon white surface under 
the same condition of the raw image.

3. Nondestructive assessment methods

The spectrum may be complicated by instrumental noise, complex chemical composition of 
products, environmental factors and other sources of variability [19]. As a consequence, spec-
tral and image preprocessing and correction are necessary to improve the quality of the data 
before data analysis [29]. Moreover, the chemometrics is crucial for information extraction 
and better interpretation of the acquired data. The methods for spectral preprocessing and 
correction, optimal wavelength selection, and imaging processing and analysis models are 
introduced in detail in the following sections, as illustrated in Figure 6.
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3.1. Spectral analysis methods

3.1.1. Spectral preprocessing methods

The spectra of solid and scattering samples such as vegetables are influenced by physical 
properties such as shape, size, etc. This creates baseline shifts and noises in the spectra with 
broad wavelength regions when analyzing quality parameters [30]; thus, preprocessing of 
near-infrared (NIR) spectral data has become an integral part of chemometrics modeling. The 
goal of the preprocessing is to remove physical effects in the spectra in order to improve the 
subsequent multivariate regression, classification model or exploratory analysis. Selecting 
suitable preprocessing methods should always be considered in relation to the successive 
modeling stage. The whole data processing generally consists of the following several steps: 
spectral preprocessing, calibration model and model validation. A detailed description of data 
preprocessing methods can be found elsewhere [24, 31]. Some of the preprocessing methods 
are presented in the following sections.

3.1.1.1. Averaging

Averaging over spectra is generally performed during the acquisition spectrum to reduce the 
thermal noise of the detector. The number of scans depends on the application: the PDA spec-
trophotometer operates at a typical acquisition time of less than 50 ms, with almost no time 
to get multiple scans in the online classification, while the PDA spectrophotometer measure-
ment time is less critical and can average several spectra without affecting the measurement 

Figure 6. The flowchart of analyzing methods with hyperspectral image.
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as I(x, y, λ) [21]. The diagram shows that the raw hyperspectral cube consists of a series of 
contiguous sub-images one behind each other at different wavelengths [16], and each sub-
image provides the spatial distribution of the spectral intensity at a certain wavelength. The 
hyperspectral images can be viewed either as a spectrum I (λ) at each individual pixel (x, y) 
or as an image I (x, y) at individual wavelength λ. Each image acquires spatially distributed 
spectral information at pixel level and can be used to analyze the biochemical constituent of a 
sample according to the spatial information. Each pixel containing a complete spectrum can 
be used to characterize the composition of that particular pixel.

2.5. Calibration of hyperspectral images

The hyperspectral imaging is a useful tool to acquire and record the raw hyperspectral infor-
mation of fruits and vegetables. However, due to the differences in camera quantum and 
physical configuration of imaging systems, the uncorrected radiance for the different sys-
tems, even for the same system used in different times, might be very different for the same 
sample taken under the same condition [25]. Therefore, accurate calibrations for a hyperspec-
tral imaging system are necessary to guarantee the stability and acceptability of the extracted 
hyperspectral image data and the consistent performance of the system. The original hyper-
spectral images can be calibrated into the reflectance mode based on black and white reference 
images. The hyperspectral reflectance images  R  for a spatial pixel ( i ) at a given wavelength 
was calculated by using the following equation [26, 27].
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where RS, RD, and RW are respectively the raw intensity values of identical pixels from the 
sample image, dark reference image, and white reference images. Ri is the calibrated hyper-
spectral image in a unit of relative reflectance. The dark reference image RD (with ~0% reflec-
tance), which can be obtained with the light source turned off completely and the camera 
lens covered completely with its nonreflective opaque black cap, is used to remove the dark 
current effect of the area detectors [28]. The white reference image RW (with ~99% reflectance) 
represents the highest intensity values. RW can be acquired from a Teflon white surface under 
the same condition of the raw image.

3. Nondestructive assessment methods

The spectrum may be complicated by instrumental noise, complex chemical composition of 
products, environmental factors and other sources of variability [19]. As a consequence, spec-
tral and image preprocessing and correction are necessary to improve the quality of the data 
before data analysis [29]. Moreover, the chemometrics is crucial for information extraction 
and better interpretation of the acquired data. The methods for spectral preprocessing and 
correction, optimal wavelength selection, and imaging processing and analysis models are 
introduced in detail in the following sections, as illustrated in Figure 6.
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near-infrared (NIR) spectral data has become an integral part of chemometrics modeling. The 
goal of the preprocessing is to remove physical effects in the spectra in order to improve the 
subsequent multivariate regression, classification model or exploratory analysis. Selecting 
suitable preprocessing methods should always be considered in relation to the successive 
modeling stage. The whole data processing generally consists of the following several steps: 
spectral preprocessing, calibration model and model validation. A detailed description of data 
preprocessing methods can be found elsewhere [24, 31]. Some of the preprocessing methods 
are presented in the following sections.

3.1.1.1. Averaging

Averaging over spectra is generally performed during the acquisition spectrum to reduce the 
thermal noise of the detector. The number of scans depends on the application: the PDA spec-
trophotometer operates at a typical acquisition time of less than 50 ms, with almost no time 
to get multiple scans in the online classification, while the PDA spectrophotometer measure-
ment time is less critical and can average several spectra without affecting the measurement 
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throughput rate in the laboratory [32]. Averaging over wavelengths is used to smooth the 
spectrum or to reduce the number of wavelengths. Overall, most spectrophotometers may 
provide a better spectral resolution than the actual optical resolution.

3.1.1.2. Centering

For all practical purposes, it is recommended that data be centered or mean centered. The first 
stage in centering is often to subtract the average from each variable. The objective of center-
ing is to ensure that all results will be interpretable in term of variation around the mean [32]. 
This is especially crucial if the variables differ significantly in their relative magnitudes, as the 
values with the greatest variance will be favored in regression analysis.

3.1.1.3. Smoothing

Smoothing is used to reduce high-frequency noise from the spectral data and signal-to-noise 
without reducing the number of spectral variables. Its principle is to acquire an optimal esti-
mation value by averaging or fitting several points in a window. The broader the window is, 
the lower the spectral resolution would be [24]. Consequently, it is important to choose the 
window width properly. Smoothing improves the vision of the original spectra in addition to 
remove the useless information. Based on different smoothing fit methods, smoothing could 
be divided into moving average smoothing, Gaussian filter smoothing, median filter smooth-
ing and Savitzky-Golay smoothing (S-G smoothing) [33, 34]. Different smoothing algorithms 
are adapted to different specific types of noise models. In other words, the appropriate 
smoothing algorithm should be selected flexibly according to the noise situation contained 
in the actual image.

3.1.1.4. Standard normal variate

Standard normal variate (SNV) is a row-oriented transformation which is capable of remov-
ing the multiplicative interferences from spectral caused by scatter and particle size effects 
from spectral data. SNV removes scatter effects by centering and scaling each individual 
spectrum [35, 36]. The method assumes that the absorbance of each wavelength point in the 
spectrum meets some certain distribution such as Gaussian distribution. Each spectrum can 
be calibrated based on this assumption. Firstly, the average value of a spectrum is subtracted 
from the original spectrum, and then the result is divided by the standard deviation [24]. This 
method is widely used when the variables are measured in different ranges or in different 
units, and it cannot be used for NIR spectroscopy because the noise from variables with small 
standard deviations may explode and lead to unreliable or incorrect models.

3.1.1.5. Multiplicative scatter correction

Multiplicative scatter correction (MSC) is a transformation method used to compensate for 
additive or multiplicative effects in spectral data [36, 37]. It is performed by correcting the 
scatter level of each to the level of an average spectrum. Similar to SNV, the objective of MSC 
is to eliminate the deviations caused by particle size and scattering [36]. The difference is that 
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MSC standardizes every spectrum using the mean spectrum of all spectra while SNC use only 
the data from that spectrum. Therefore, for MSC effects on each spectrum alone, the correc-
tion capability of MSC is usually weaker than that of SNV. In SNV correction, each individual 
spectrum is normalized to zero mean and unit variance [32].

3.1.1.6. Derivative correction

Derivative is used to remove overlapping peaks and baseline shifts induced by the variation 
of particle sizes and instrumental conditions, so that more details within the spectra can be 
revealed [31, 32]. The first derivative of a spectrum is simply a measure of the slope of the 
spectral curve at every point [38, 39]. The slope of the curve is not affected by baseline offsets 
in the spectrum, and thus, the first derivative is a very effective method for removing baseline 
offsets. However, peaks in raw spectra usually become zero-crossing points in first derivative 
spectra, which can be difficult to interpret. The second derivative is a measure of the change 
in the slope of the curve. In addition to ignoring the offset, it is not affected by any linear that 
may exist in the data, and is therefore a very effective method for removing both the base-
line offset and slope from a spectrum. The second derivative can help resolve nearby peaks 
and sharpen spectral features. Peaks in raw spectra change sign and turn to negative peaks 
with lobes on either side in the second derivative. Two commonly used spectral derivative 
approaches are Gap-Segment derivative and Savitzky-Golay (S-G) derivative [24].

3.1.1.7. Transformation

In spectral analysis, Fourier transformation (FT) and Wavelet transformation (WT) are often 
used for data compression, smoothing and filtering, as well as for the extraction of effective 
information. FT is a very important signal processing technique, which can realize the trans-
formation between time domain functions and frequency domain functions. The principle of 
it is to decompose the original spectrum into the sum of sinusoidal waves of many varying 
amplitudes, frequencies and directions. WT is based on the idea of decomposing chemical 
signals into scale compositions according to their different frequencies by applying a basis 
function [24]. WT is similar to FT with a completely different merit function. The main differ-
ence is that FT decomposes the signal into sines and cosines; in contrary, WT uses functions 
that are localized in both the real and Fourier space [40].

3.1.2. Optimal wavelength selection methods

Due to the high resolution of modern spectroscopy instrumentations, the acquired spectral 
data set may have thousands of variables/wavelengths and hundreds or thousands of samples 
[41, 42]. Thus the hyperspectral imaging inspection algorithm will be very  time-consuming 
due to the large-scale massive data. In order to simplify the complexity of computation, 
improve the efficiency of the detection, and meet the inspection speed required by the indus-
try, variable selection (wavelength selection) is the most necessary and important step to select 
the optimal variables and remove the highly calibrated variables [43]. Many methods based 
on different criteria have been developed for this purpose. Some of them include competitive 
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throughput rate in the laboratory [32]. Averaging over wavelengths is used to smooth the 
spectrum or to reduce the number of wavelengths. Overall, most spectrophotometers may 
provide a better spectral resolution than the actual optical resolution.

3.1.1.2. Centering

For all practical purposes, it is recommended that data be centered or mean centered. The first 
stage in centering is often to subtract the average from each variable. The objective of center-
ing is to ensure that all results will be interpretable in term of variation around the mean [32]. 
This is especially crucial if the variables differ significantly in their relative magnitudes, as the 
values with the greatest variance will be favored in regression analysis.

3.1.1.3. Smoothing

Smoothing is used to reduce high-frequency noise from the spectral data and signal-to-noise 
without reducing the number of spectral variables. Its principle is to acquire an optimal esti-
mation value by averaging or fitting several points in a window. The broader the window is, 
the lower the spectral resolution would be [24]. Consequently, it is important to choose the 
window width properly. Smoothing improves the vision of the original spectra in addition to 
remove the useless information. Based on different smoothing fit methods, smoothing could 
be divided into moving average smoothing, Gaussian filter smoothing, median filter smooth-
ing and Savitzky-Golay smoothing (S-G smoothing) [33, 34]. Different smoothing algorithms 
are adapted to different specific types of noise models. In other words, the appropriate 
smoothing algorithm should be selected flexibly according to the noise situation contained 
in the actual image.

3.1.1.4. Standard normal variate

Standard normal variate (SNV) is a row-oriented transformation which is capable of remov-
ing the multiplicative interferences from spectral caused by scatter and particle size effects 
from spectral data. SNV removes scatter effects by centering and scaling each individual 
spectrum [35, 36]. The method assumes that the absorbance of each wavelength point in the 
spectrum meets some certain distribution such as Gaussian distribution. Each spectrum can 
be calibrated based on this assumption. Firstly, the average value of a spectrum is subtracted 
from the original spectrum, and then the result is divided by the standard deviation [24]. This 
method is widely used when the variables are measured in different ranges or in different 
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is to eliminate the deviations caused by particle size and scattering [36]. The difference is that 
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MSC standardizes every spectrum using the mean spectrum of all spectra while SNC use only 
the data from that spectrum. Therefore, for MSC effects on each spectrum alone, the correc-
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spectrum is normalized to zero mean and unit variance [32].
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formation between time domain functions and frequency domain functions. The principle of 
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signals into scale compositions according to their different frequencies by applying a basis 
function [24]. WT is similar to FT with a completely different merit function. The main differ-
ence is that FT decomposes the signal into sines and cosines; in contrary, WT uses functions 
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3.1.2. Optimal wavelength selection methods

Due to the high resolution of modern spectroscopy instrumentations, the acquired spectral 
data set may have thousands of variables/wavelengths and hundreds or thousands of samples 
[41, 42]. Thus the hyperspectral imaging inspection algorithm will be very  time-consuming 
due to the large-scale massive data. In order to simplify the complexity of computation, 
improve the efficiency of the detection, and meet the inspection speed required by the indus-
try, variable selection (wavelength selection) is the most necessary and important step to select 
the optimal variables and remove the highly calibrated variables [43]. Many methods based 
on different criteria have been developed for this purpose. Some of them include competitive 
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adaptive reweighted sampling (CARS), random frog (RF), successive projections algorithm 
(SPA), genetic algorithm (GA) and uninformative variables elimination (UVE) which can be 
implemented prior to the construction of both regression and classification models.

3.1.2.1. Competitive adaptive reweighted sampling (CARS)

Competitive adaptive reweighted sampling (CARS) is a novel wavelength selection algorithm 
employing the “survival of the fittest” principle from Darwin’s evolution theory [44]. It is 
originally developed to select informative wavelengths from contiguous spectral data, specifi-
cally applied for the first time to NIR spectroscopy. The method selects wavelength subsets 
sequentially from the sampling runs in an iterative manner. It basically consists of a number 
of iterations involving [45]: (1) Monte Carlo (MC) model sampling, (2) wavelength reduction 
by exponentially decreasing function (EDF), (3) wavelength reduction by adaptive reweighted 
sampling (ARS), and (4) model building with each subset of selected variables and CV to cal-
culate prediction error. Figure 7 shows the scheme of the CARS algorithm. For each MCS run 
or iteration, the four steps mentioned above will be repeated, obtaining an error for each one. 
Finally, the subset with the lowest RMSECV value will be determined as the optimal subset 
[46]. The key wavelengths selected by CARS are considered as the wavelengths with the large 
absolute regression coefficients in a multivariate linear regression model. The exponential 
decay function is used to control the retention rate of variable in the algorithm, and it has the 
potential to select an optimal combination of the wavelengths.

3.1.2.2. Random frog (RF)

Random frog (RF) algorithm is a useful wavelength selection technique based on the frame-
work of reversible jump Markov chain Monte Carlo (MCMC) or the multiple  decision 

Figure 7. The flowchart of the competitive adaptive reweighted sampling algorithm.
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trees. Like CARS, it works in an iterative manner; meanwhile, it calculates the selection 
probability for each variable. Briefly, random frog works in three steps [47, 48]: (1) initial-
izing randomly a variable subset V0 containing Q variables; (2) generating a candidate 
variable subset V* including Q* variable; accept V* as V1 with a certain probability and let 
V0 = V1; repeat the above procedures until N iterations are finished; and (3) computing a 
selection probability of each variable which can be used as a measure of variable impor-
tance. The schematic is shown in Figure 8. The advantage of random frog is that it does not 
require any rigorous mathematical formula. And it do not need to use the previous distri-
bution in formal reversible jump MCMC methods, which makes it easier to implement and 
compute. There are five tuning parameters to control the RF performance, which can be 
optimized in the routine. The two most important parameters are the number of variables 
contained in the number of iterations and the initial variable set.

3.1.2.3. Successive projections algorithm (SPA)

The successive projections algorithm (SPA), a forward selection method which uses simple 
operations in a vector space to minimize variable collinearity, is a novel variable selection 
strategy in hyperspectral image analysis for multivariate calibration [49, 50]. The main pur-
pose of SPA is to select wavelengths with minimal redundancy [43]. In summary, the steps to 
execute SPA are: (1) carrying out projections on the N matrix and generating K chains of M 
variables each, (2) evaluating candidate subsets of variables extracted from the chains gener-

Figure 8. The flowchart of the random frog algorithm.
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ated in the first phase, and (3) eliminating procedures aimed at discarding uninformative 
variables without significant loss of prediction capability. Many successful applications have 
proven SPA to be an outstanding variable selection approach.

3.1.2.4. Genetic algorithm (GA)

The Genetic algorithm (GA) is an effective globe searching algorithm. Based on a fitness func-
tion, GA is an iterative process starting from a population of randomly generated individuals 
and achieves optimal solutions through genetic operations including crossover, selection and 
mutation [24]. The steps of GA involved are [51]: (1) building an initial population of variable 
sets by setting bits for each variable randomly, (2) fitting a PLS regression model to each variable 
set and computing the performance, (3) a collection of variable sets with higher performance 
are selected to survive, (4) crossover and mutation, (5) the surviving and modified variable sets 
from the population. Through such operation, irrelevant spectral information is eliminated and 
the number of spectral variables is reduced.

3.1.2.5. Uninformative variable elimination (UVE)

The uninformative variable elimination (UVE) is a method for variable selection based on 
an analysis of regression coefficient of PLS. The UVE method was employed by Sun et al. 
Readers are referred to the corresponding references for details about many effective variable 
selection methods [52]. The method builds a large number of models with randomly selected 
calibration samples at first, and then each variable is evaluated with a stability of the corre-
sponding coefficients in these models. Variables with poor stability are known as uninforma-
tive variable and are eliminated [53].

3.1.3. Calibration models

Multivariate regression techniques (quantitative analysis) aim to establish a relationship 
between the observed response values and spectral matrix. In our research, partial least 
squares (PLS) regression is a common multivariate method used in calibration of spectros-
copy data. The principle of PLS is to use a linear least squares fitting technique. It builds 
linear models between an independent matrix X (spectral data) and a dependent matrix Y 
and estimate the regression coefficient matrix using least squares fitting techniques. Least 
squares support vector machines (LS-SVM) can deal with nonlinear relationships between 
variables.

3.1.3.1. Partial least squares (PLS)

Partial least squares (PLS) analysis is widely used for calibration in present chemometric analy-
sis. It is an unsupervised statistical method used when not only a data array coming from X 
data is available but also a Y array that we want to predict from our X data [32]. Normally, there 
are two variable selection methods using PLS regression: using variable importance in projec-
tion scores and using regression coefficients estimated by PLS regression [54, 55]. The aim of 
PLS analysis is to find a latent variables linear regression model by projecting the X variables 
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and the Y variables into a new latent space, where the covariance between these latent variables 
is maximized [1]. PLS analysis can be performed to establish the regression model leading 
to the content prediction of chemical components. PLS considers simultaneously the variable 
matrix Y (the values of SSC, pH) and the variable matrix X (the spectral data). Generally, the 
first step in PLS is to decompose the matrix, and the model is given:

  X = TP + E  (2)

  Y = UQ + F  (3)

In these equations, X is a n × m spectral matrix (n is the number of samples, m is the number 
of wavelengths), T and U are the score matrices of X matrix and Y matrix, P is the m × k matrix 
of X matrix and Q is the loading (l × k), and y is the reference data (n × l) that needs to be pre-
dicted from X (k is the number of latent variables), and E and F are the errors which come from 
the process of PLS regression [43]. The second step is that T and U are processed by linear 
regression. It must build the following linear correlation:

  U = BT + E  (4)

where B represents the internal relations between U and T. In order to reach this object this 
object, the coordinate of T is rotated.

3.1.3.2. Least square support vector machine (LS-SVM)

Least square support vector machine (LS-SVM) is a set of related supervised learning 
method that analyzes data and recognizes patterns, and is used for classification and regres-
sion analysis. PLS method can only handle linear problems and builds a linear relationship 
between spectral variables and target chemical response such as SSC value. However, some 
researchers reported that the latent nonlinear information might be existed in the spectra 
data of fruit and the nonlinear models were better than linear models. The computational 
complexity and quality of the SVM does not directly depend on the dimension of input data. 
Therefore, least square support vector machine (LS-SVM) was applied to build a nonlinear 
model for a comparison of the prediction performance with linear PLS models. LS-SVM is 
widely applied in pattern recognition and function regression for the advantage of limited 
over-fitting, high predictive reliability and strong generalization ability [24]. More details of 
LS-SVM method can be found in the paper [56, 57]. The final LS-SVM regression model can 
be expressed as:

  y (x)  =  ∑ 
k=1

  
N
     a  k   K (x,  x  k  )  + b  (5)

where K(x, xk) is the kernel function, xk is the input vector, αk is the Lagrange multiplier called 
support value, and b is the bias. The radial basis function (RBF), which is a frequently used 
kernel function K(x, xk), is used in this study and defined as follows:
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In the equation, ‖xk-x‖ represents the distance between input vector and threshold vector, and 
σ is a width vector. Generally, the selected variables by wavelength selection methods could 
be used as the inputs to build the LS-SVM models.

3.1.4. Model validation

Validation procedures are crucial to assess the accuracy of the calibration and to avoid over-
fitting. The prediction ability of a calibration model can be evaluated by the correlation coef-
ficient (r), root mean square error of prediction (RMSEP) and calibration (RMSEC) between 
the predicted value and the measured value in validation set [24]. In order to establish use-
ful calibration models, different methods in spectral preprocessing and calibration modeling 
as mentioned above should be investigated. When cross validation is employed, the predic-
tion performance could also be assessed by the root mean square error for cross validation 
(RMSECV). These indices are defined as follows:

  r =  √ 

___________

   
 ∑ 
i=1

  
n
      (  y ̂    i   −  y  i  )    2 

 ___________ 
 ∑ 
i=1

  
n
      (  y ̂    i   −  y  mean  )    2 

      (7)

  RMSEC =  √ 
____________

    1 __  n  c      ∑ 
i=1

  
 n  c  

      (  y ̂    i   −  y  i  )    2     (8)

  RMSEP =  √ 
____________

    1 __  n  p      ∑ 
i=1

  
 n  p  

      (  y ̂    i   −  y  i  )    2     (9)

  bias =   1 __ n    ∑ 
i=1

  
n
    (  y ̂    i   −  y  i  )   (10)

where,    y  ̂   
i
    is the predicted value of the ith observation, yi is the measured value of the ith obser-

vation, ym is the mean value of the calibration or prediction set, n, nc, and np are respectively the 
number of observations in the data set, calibration and prediction set. Generally, a good model 
should have higher correlation coefficients, lower RMSEC, RMSEP, and bias values [58, 59].

3.2. Image processing and analysis techniques

Image processing and image analysis are considered to be the core of the hyperspectral 
imaging system with various algorithms and methods available to complete the specific clas-
sification and measurement. As illustrated in Figure 9, image processing and analysis are 
performed in three levels. The low level processing is the basic processing of image, which 
involves image acquisition and image preprocessing, and is the important step in image 
processing and analysis, which involves image segmentation, feature extraction, representa-
tion, and description [60]; the high level processing is the key step of image analysis, which 
involves recognition, interpretation and classification [2].
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3.2.1. Image processing methods

The assessment accuracy of fruits and vegetables quality is highly related to the images. 
However, owing to the imperfections of the image acquisition systems, the images acquired 
are subject to various defects that will need subsequent processing. Image processing plays 
an important role in hyperspectral data analysis. The image processing involves a series of 
steps, which can be divided into three major steps: image preprocessing, segmentation and 
feature extraction [61].

The purpose of image preprocessing and calibration is to improve the quality of the obtained 
images by removing the noise, increasing the contrast and correcting the distortion [2]. Generally, 
the frequently used preprocessing methods include basic point operations (intensity mappings) 
and histogram equalization [43]. Basic point operations, such as luminance inversion and mul-
tiplicative brightness scaling, can improve by stretching the brightness levels into a mapping 
between the input level and the output level. Histogram equalization provides a sophisticated 
method for modifying the dynamic range and contrast of an image by changing the image so that 
its intensity histogram has a desired shape. Histogram model use nonlinear and nonmonotonic 
transfer functions to map the pixel intensity values of input and output images. Other typical 
image preprocessing techniques include filtering, transformation and arithmetic operations.

Image segmentation is the most vital and challenging step to partition the image into regions 
of interest (ROI). The goal of image segmentation is aimed at simplifying and altering the 
representation of an image into something more meaningful and easier to analyze. Image seg-
mentation is typically used to locate objects and boundaries (lines, curves, etc.) in images. The 
accuracy of image segmentation plays an important role in the subsequent image processing. 
Threshold-based segmentation, edge-based segmentation, region-based segmentation, and 
classification-based segmentation are four major types of segmentation methods [62–64].

Feature extraction is a key step in connecting image processing and analysis, which converts 
image data or segmented regions into a set of feature vectors. In image processing, feature extrac-
tion builds features intended to be informative and nonredundant, facilitating the subsequent 

Figure 9. Different levels of image processing.
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transfer functions to map the pixel intensity values of input and output images. Other typical 
image preprocessing techniques include filtering, transformation and arithmetic operations.

Image segmentation is the most vital and challenging step to partition the image into regions 
of interest (ROI). The goal of image segmentation is aimed at simplifying and altering the 
representation of an image into something more meaningful and easier to analyze. Image seg-
mentation is typically used to locate objects and boundaries (lines, curves, etc.) in images. The 
accuracy of image segmentation plays an important role in the subsequent image processing. 
Threshold-based segmentation, edge-based segmentation, region-based segmentation, and 
classification-based segmentation are four major types of segmentation methods [62–64].

Feature extraction is a key step in connecting image processing and analysis, which converts 
image data or segmented regions into a set of feature vectors. In image processing, feature extrac-
tion builds features intended to be informative and nonredundant, facilitating the subsequent 

Figure 9. Different levels of image processing.
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learning and generalization step [65]. When the image segmentation is successfully performed, 
if the data in ROI to an algorithm is too large to be processed, it can reduce its dimensionality. 
Feature extraction is related to dimensionality reduction. Thus, feature extraction is crucial to 
the accuracy of quality assessment. In general, shape features, texture features, color features 
and size features of the target are typically extracted for quality assessment.

3.2.2. Image analysis methods

Image analysis is a nondestructive method of calculating measurements and statistics based 
on the interesting values of images’ pixels, and their corresponding spatial location. The image 
analysis is performed on the feature extracted from the image, and interprets the results. It 
uses intuitive explanations to display images and mathematically processing images, helping 
to solve the problem of computer vision. Vision measurement and pattern classification are the 
most crucial parts of image analysis.

Vision measurement is a quantitative analysis method in the image analysis. Visual measure-
ment is the process of quantifying the parameters of interest from the features extracted from 
the image. It is the process of quantitative measurement of interest parameters based on the 
characteristics extracted from the image [66]. The computer vision systems can achieve different 
types of measurements. Generally, typical measurements include the size, texture and color.

Pattern classification, also known as pattern recognition, is a method for qualitative analysis in 
the image analysis. It is the science of reasoning based on measurement characteristics through 
probabilistic, statistical, computational geometry, multivariate analysis and algorithm design 
techniques. The classification techniques can be divided into two types: supervised meth-
ods and unsupervised methods. In the image analysis, the supervised methods are the most 
widely used. In most cases, the supervised classification method aims to build a model or a 
classifier for classification of labels according to the corresponding characteristics, while the 
unsupervised classification method is mainly used to classify image by finding out similarity 
between the selected features and using clustering algorithm. The widely used pattern classi-
fication methods in image analysis include Artificial Neural Network (ANN), Support vector 
machine (SVM), K-Nearest Neighbor (KNN), Adaptive Boosting, and decision tree. ANN is a 
nonlinear statistical data modeling tool that attempts to mimic the fault tolerance and capac-
ity to learn biological neural systems by modeling the low-level structure of the brain [1]. 
ANN is widely used in hyperspectral image analysis, because it can handle a large amount 
of heterogeneous data with considerable flexibility and nonlinearity. It is composed of a set 
of interconnected artificial neurons, which are like a parallel system that capable of resolving 
the paradigm that linear computing cannot. SVM is a supervised nonparametric statistical 
learning model with associated learning algorithms that analyze data and recognize patterns, 
used for classification and regression analysis. In addition to performing linear classification, 
SVM can use the so-called kernel technique to efficiently perform nonlinear classification and 
map its inputs implicitly into high-dimensional feature spaces. As SVM, AdaBoost is one of 
the most successful supervised classification methods with the aim to maximize the minimum 
margin of a training sample [2]. KNN is another unsupervised classification method which is 
able to predict the response of the new sample by analyzing a certain number of the nearest 
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neighbors in the feature space of the sample. In KNN, dataset is classified by minimizing the 
sum of squares of distances between each category and the corresponding cluster centroid 
[67]. Decision trees are commonly used in hyperspectral image analysis, to help identify a 
strategy that is most likely to reach a goal.

4. Applications in the quality assessment of fruits and vegetables

4.1. Applications of surface defect detection

The presence of surface defects influences the quality and price of fruits and vegetables, and 
weeding out the fruits and vegetables with serious defects early can prevent the infection of 
the whole patch. Therefore, detection of surface defects is the most commonly extended appli-
cation of image and spectral analysis to the external quality inspection of fruits and vegetables.

Visual inspection of fruits and vegetables with respect to color, texture, size, and shape by tra-
ditional computer vision is already automated in the commercial sorting machines. However, 
sorting by defects is still a challenging task due to the high variance of defect types and exis-
tence of stem/calyx concavities [68]. The color, texture, or internal components of defects may 
be different from that of the sound; therefore, color, texture, or spectral reflectance are usually 
selected as the defect features to discriminate the defects from the sound peel. Many applica-
tions aimed to detect defects based on these features have been described by using hyperspec-
tral or multispectral imaging system.

Due to lack of spectral information in conventional color images, traditional computer vision 
system is not efficient for the inspection of some defects with similar color and texture as sound 
peel, such as bruises, rottenness, or chilling injury. Hyperspectral and multispectral imaging 
systems provide powerful tools not only to detect skin defects but also to differentiate between 
a variety of defects that have similar color and texture or even to detect some defects that are 
not clearly visible [1]. Bruising is one of the familiar defects occurring on fruits and vegetables 
during post-harvest handling and processing stage. The existing commercial sorting machines 
are still not available in detecting bruises [69, 70]. An experiment of using a hyperspectral imag-
ing system for bruise detection on apples was conducted by Xing et al. [70]. PCA and PLSDA 
were used to extract the spectral and spatial features from the hyperspectral images in the 
region between 400 and 1000 nm. Their experiment proved that combination of image process-
ing and chemometric tools had a potential in detecting the bruises on apples. In order to detect 
the early bruises in apples, Baranowski et al. [69] proposed a system that included hyperspec-
tral cameras equipped with sensors working in the visible and near-infrared (400–1000 nm), 
short-wavelength infrared (1000–2500 nm) and thermal imaging camera in mid-wavelength 
infrared (3500–5000 nm) ranges. Results showed that the principal components analysis (PCA) 
and minimum noise fraction (MNF) analyses of the images could make it possible to distin-
guish between areas with defects in the tissue and the sound ones, and the fast Fourier analysis 
of the image sequences after pulse heating of the fruit surface could provide additional infor-
mation not only about the position of the area of damaged tissue but also about its depth. As 
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learning and generalization step [65]. When the image segmentation is successfully performed, 
if the data in ROI to an algorithm is too large to be processed, it can reduce its dimensionality. 
Feature extraction is related to dimensionality reduction. Thus, feature extraction is crucial to 
the accuracy of quality assessment. In general, shape features, texture features, color features 
and size features of the target are typically extracted for quality assessment.

3.2.2. Image analysis methods

Image analysis is a nondestructive method of calculating measurements and statistics based 
on the interesting values of images’ pixels, and their corresponding spatial location. The image 
analysis is performed on the feature extracted from the image, and interprets the results. It 
uses intuitive explanations to display images and mathematically processing images, helping 
to solve the problem of computer vision. Vision measurement and pattern classification are the 
most crucial parts of image analysis.

Vision measurement is a quantitative analysis method in the image analysis. Visual measure-
ment is the process of quantifying the parameters of interest from the features extracted from 
the image. It is the process of quantitative measurement of interest parameters based on the 
characteristics extracted from the image [66]. The computer vision systems can achieve different 
types of measurements. Generally, typical measurements include the size, texture and color.

Pattern classification, also known as pattern recognition, is a method for qualitative analysis in 
the image analysis. It is the science of reasoning based on measurement characteristics through 
probabilistic, statistical, computational geometry, multivariate analysis and algorithm design 
techniques. The classification techniques can be divided into two types: supervised meth-
ods and unsupervised methods. In the image analysis, the supervised methods are the most 
widely used. In most cases, the supervised classification method aims to build a model or a 
classifier for classification of labels according to the corresponding characteristics, while the 
unsupervised classification method is mainly used to classify image by finding out similarity 
between the selected features and using clustering algorithm. The widely used pattern classi-
fication methods in image analysis include Artificial Neural Network (ANN), Support vector 
machine (SVM), K-Nearest Neighbor (KNN), Adaptive Boosting, and decision tree. ANN is a 
nonlinear statistical data modeling tool that attempts to mimic the fault tolerance and capac-
ity to learn biological neural systems by modeling the low-level structure of the brain [1]. 
ANN is widely used in hyperspectral image analysis, because it can handle a large amount 
of heterogeneous data with considerable flexibility and nonlinearity. It is composed of a set 
of interconnected artificial neurons, which are like a parallel system that capable of resolving 
the paradigm that linear computing cannot. SVM is a supervised nonparametric statistical 
learning model with associated learning algorithms that analyze data and recognize patterns, 
used for classification and regression analysis. In addition to performing linear classification, 
SVM can use the so-called kernel technique to efficiently perform nonlinear classification and 
map its inputs implicitly into high-dimensional feature spaces. As SVM, AdaBoost is one of 
the most successful supervised classification methods with the aim to maximize the minimum 
margin of a training sample [2]. KNN is another unsupervised classification method which is 
able to predict the response of the new sample by analyzing a certain number of the nearest 
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neighbors in the feature space of the sample. In KNN, dataset is classified by minimizing the 
sum of squares of distances between each category and the corresponding cluster centroid 
[67]. Decision trees are commonly used in hyperspectral image analysis, to help identify a 
strategy that is most likely to reach a goal.

4. Applications in the quality assessment of fruits and vegetables

4.1. Applications of surface defect detection

The presence of surface defects influences the quality and price of fruits and vegetables, and 
weeding out the fruits and vegetables with serious defects early can prevent the infection of 
the whole patch. Therefore, detection of surface defects is the most commonly extended appli-
cation of image and spectral analysis to the external quality inspection of fruits and vegetables.

Visual inspection of fruits and vegetables with respect to color, texture, size, and shape by tra-
ditional computer vision is already automated in the commercial sorting machines. However, 
sorting by defects is still a challenging task due to the high variance of defect types and exis-
tence of stem/calyx concavities [68]. The color, texture, or internal components of defects may 
be different from that of the sound; therefore, color, texture, or spectral reflectance are usually 
selected as the defect features to discriminate the defects from the sound peel. Many applica-
tions aimed to detect defects based on these features have been described by using hyperspec-
tral or multispectral imaging system.

Due to lack of spectral information in conventional color images, traditional computer vision 
system is not efficient for the inspection of some defects with similar color and texture as sound 
peel, such as bruises, rottenness, or chilling injury. Hyperspectral and multispectral imaging 
systems provide powerful tools not only to detect skin defects but also to differentiate between 
a variety of defects that have similar color and texture or even to detect some defects that are 
not clearly visible [1]. Bruising is one of the familiar defects occurring on fruits and vegetables 
during post-harvest handling and processing stage. The existing commercial sorting machines 
are still not available in detecting bruises [69, 70]. An experiment of using a hyperspectral imag-
ing system for bruise detection on apples was conducted by Xing et al. [70]. PCA and PLSDA 
were used to extract the spectral and spatial features from the hyperspectral images in the 
region between 400 and 1000 nm. Their experiment proved that combination of image process-
ing and chemometric tools had a potential in detecting the bruises on apples. In order to detect 
the early bruises in apples, Baranowski et al. [69] proposed a system that included hyperspec-
tral cameras equipped with sensors working in the visible and near-infrared (400–1000 nm), 
short-wavelength infrared (1000–2500 nm) and thermal imaging camera in mid-wavelength 
infrared (3500–5000 nm) ranges. Results showed that the principal components analysis (PCA) 
and minimum noise fraction (MNF) analyses of the images could make it possible to distin-
guish between areas with defects in the tissue and the sound ones, and the fast Fourier analysis 
of the image sequences after pulse heating of the fruit surface could provide additional infor-
mation not only about the position of the area of damaged tissue but also about its depth. As 
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unsupervised methods, the class number and the color or intensity value for each class are 
always randomly assigned by PCA and MNF. The robustness and stability of their algorithms 
are needed to be tested in inline inspection situation.

Decay is another common defect with great potential risk for consumers, sellers and growers. 
To fast detect and visualize the early decay in citrus, Li et al. [71] developed multispectral 
image processing method with mean normalization reducing spectral variability due to spher-
ical fruit. The overall accuracy of 98.6% for test set with no false negatives was achieved. Their 
idea behind the proposed algorithm can be extended to detect the nonvisible damages of other 
fruit. Gómez-Sanchis et al. [72] presents the development of a hyperspectral system based on 
two liquid crystal tuneable filters for the acquisition of images of spherical fruits. They also 
designed a system that allows the filters to be exchanged quickly and without altering the 
acquired scene. The system and decay segmentation results are shown in Figure 10. Correctly 
classifying 98% of pixels as rotten or nonrotten tissues were achieved; however, changing the 
filters frequently decreases the detection efficiency, especially when working in the sorting 
line, the rotating products might cause the acquired scene vary with each of the filters.

Chilling injury is a common defect occurring during the storage and transportation at low tem-
peratures. Liu et al. [73] developed a hyperspectral imaging system to detect the chilling injury 
in cucumber by using band ratio and PCA methods. Results revealed that either band ratio 
algorithm (Q811/756) or PCA transform in a spectral region between 733 and 848 nm could 
detect the chilling injury with an accuracy of over 90%. Ariana and Lu [74] found that the 
hyperspectral imaging under transmittance mode has shown potential for detecting internal 

Figure 10. The system and decay segmentation results proposed by Gómez-Sanchis et al. (a) Hemispherical illumination 
chamber used to illuminate spherical objects (b) System created to facilitate the swap of two LCTF filters (c) RGB images 
and segmented images of mandarins with decay lesions [72].
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defect. However, the technique still cannot meet the online speed requirement because of the 
need to acquire and analyze a large amount of image data. They determined up to four-wave-
band subsets by a branch and bound algorithm combined with the k-nearest neighbor classi-
fier. The highest classification accuracies of 94.7 and 82.9% were achieved for cucumbers and 
whole pickles, respectively.

However, the acquisition and processing of the hyperspectral images is time-consuming, and 
the redundancy data makes the hyperspectral imaging system impossible to be used in-line 
or real-time. Actually, the hyperspectral imaging is always used for analysis and determin-
ing the effective wavelengths for a multispectral imaging system. Based on hyperspectral 
images and PCA, four efficient wavelengths (558, 678, 728, and 892 nm) were selected, and 
then a multispectral imaging system was developed by Xing et al. [75] to detect the bruises on 
apples. An overall accuracy of about 86% was obtained with their systems and algorithms. A 
near commercial multispectral imaging prototype for inline bruise detection was developed 
by Huang et al. [76] in NERCITA, China. Segmented principal component analysis (PCA) was 
conducted to eliminate data redundancy and select optimal wavelengths. Two dichroic beam-
splitters, two band-pass filters with the center at selected wavelengths and three prism-based 
2CCD multispectral progressive area scan cameras were used to develop the multispectral 
imaging system. Static and online tests were evaluated by their system, and 91.5% and 74.6% 
overall accuracy were achieved for static and online detection, respectively.

Table 1 shows a detailed summary of studies about the defect detection of fruits and veg-
etables by using hyperspectral imaging systems.

4.2. Applications of internal quality parameter measurement

4.2.1. Soluble solids content (SSC)

Soluble solids content, also named total soluble solids (TSS) content, is a collective index for 
sweetness measurement [77]. In the preharvest period, SSC profoundly dominates the opti-
mal harvest time for various fruits and vegetables, whereas changes of SSC during the shelf-
life period after harvesting would lead to quality fluctuation of fruits and vegetables [77]. 
Therefore, soluble solids content is an important internal quality attribute in determining fruit 
maturity and harvest time, and in assessing and grading post-harvest quality of apples [78].

In the past 20 years, many studies have been reported on predicting SSC in fruits using near-
infrared spectroscopic technique. Leivavalenzuela et al. [79] made a report on the applica-
tion of hyperspectral imaging technique for predicting the SSC of blueberries in the visible 
and short-wave near-infrared region of 500–1000 nm. In this study, Calibration models using 
partial least squares method were developed to predict the SSC, and the effect of fruit orienta-
tion on the model performance was evaluated. Results showed that hyperspectral imaging 
is promising for online sorting and grading of blueberries for firmness and perhaps SSC as 
well. Mendoza et al. [80] developed two different hyperspectral imaging systems: a station-
ary hyperspectral imaging system and a prototype on-line hyperspectral imaging system to 
evaluate the SSC in apples. The work used several methods, including discrete and continu-
ous wavelet transform and conventional image texture analysis. Finally, the results showed 
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always randomly assigned by PCA and MNF. The robustness and stability of their algorithms 
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idea behind the proposed algorithm can be extended to detect the nonvisible damages of other 
fruit. Gómez-Sanchis et al. [72] presents the development of a hyperspectral system based on 
two liquid crystal tuneable filters for the acquisition of images of spherical fruits. They also 
designed a system that allows the filters to be exchanged quickly and without altering the 
acquired scene. The system and decay segmentation results are shown in Figure 10. Correctly 
classifying 98% of pixels as rotten or nonrotten tissues were achieved; however, changing the 
filters frequently decreases the detection efficiency, especially when working in the sorting 
line, the rotating products might cause the acquired scene vary with each of the filters.
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in cucumber by using band ratio and PCA methods. Results revealed that either band ratio 
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detect the chilling injury with an accuracy of over 90%. Ariana and Lu [74] found that the 
hyperspectral imaging under transmittance mode has shown potential for detecting internal 
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defect. However, the technique still cannot meet the online speed requirement because of the 
need to acquire and analyze a large amount of image data. They determined up to four-wave-
band subsets by a branch and bound algorithm combined with the k-nearest neighbor classi-
fier. The highest classification accuracies of 94.7 and 82.9% were achieved for cucumbers and 
whole pickles, respectively.

However, the acquisition and processing of the hyperspectral images is time-consuming, and 
the redundancy data makes the hyperspectral imaging system impossible to be used in-line 
or real-time. Actually, the hyperspectral imaging is always used for analysis and determin-
ing the effective wavelengths for a multispectral imaging system. Based on hyperspectral 
images and PCA, four efficient wavelengths (558, 678, 728, and 892 nm) were selected, and 
then a multispectral imaging system was developed by Xing et al. [75] to detect the bruises on 
apples. An overall accuracy of about 86% was obtained with their systems and algorithms. A 
near commercial multispectral imaging prototype for inline bruise detection was developed 
by Huang et al. [76] in NERCITA, China. Segmented principal component analysis (PCA) was 
conducted to eliminate data redundancy and select optimal wavelengths. Two dichroic beam-
splitters, two band-pass filters with the center at selected wavelengths and three prism-based 
2CCD multispectral progressive area scan cameras were used to develop the multispectral 
imaging system. Static and online tests were evaluated by their system, and 91.5% and 74.6% 
overall accuracy were achieved for static and online detection, respectively.

Table 1 shows a detailed summary of studies about the defect detection of fruits and veg-
etables by using hyperspectral imaging systems.

4.2. Applications of internal quality parameter measurement

4.2.1. Soluble solids content (SSC)

Soluble solids content, also named total soluble solids (TSS) content, is a collective index for 
sweetness measurement [77]. In the preharvest period, SSC profoundly dominates the opti-
mal harvest time for various fruits and vegetables, whereas changes of SSC during the shelf-
life period after harvesting would lead to quality fluctuation of fruits and vegetables [77]. 
Therefore, soluble solids content is an important internal quality attribute in determining fruit 
maturity and harvest time, and in assessing and grading post-harvest quality of apples [78].

In the past 20 years, many studies have been reported on predicting SSC in fruits using near-
infrared spectroscopic technique. Leivavalenzuela et al. [79] made a report on the applica-
tion of hyperspectral imaging technique for predicting the SSC of blueberries in the visible 
and short-wave near-infrared region of 500–1000 nm. In this study, Calibration models using 
partial least squares method were developed to predict the SSC, and the effect of fruit orienta-
tion on the model performance was evaluated. Results showed that hyperspectral imaging 
is promising for online sorting and grading of blueberries for firmness and perhaps SSC as 
well. Mendoza et al. [80] developed two different hyperspectral imaging systems: a station-
ary hyperspectral imaging system and a prototype on-line hyperspectral imaging system to 
evaluate the SSC in apples. The work used several methods, including discrete and continu-
ous wavelet transform and conventional image texture analysis. Finally, the results showed 
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Products Species Applications Types of 
CVS

Methods Accuracy Reference

Fruits Apple Quality grading MIS Statistical and 
syntactical 
classifiers

93.5% [81]

Apple Defect segmentation MIS ANN – [68]

Apple Quality evaluation MIS Flat-field 
correction

95% [82]

Apple Bruise detection HIS PCA, MNF, 
SIMCA, LDA, 
SVM

– [69]

Apple Defect detection HIS ASD – [83]

Apple Defect and feces 
detection

MIS _ – [84]

Apple Bruise detection HIS PLS, SDA 93.95% [85]

Apple Efficient wavelength 
selection

MIS QDA – [86]

Apple Rottenness detection HIS LDA, CART 91.2% [87]

Apple Bitter pit detection HIS PLS – [88]

Apple Defect detection MIS ANN 95.4% [89]

Apple Defect detection HIS BR 99.5% [90]

Apple Defect detection HIS SD, PCA – [83]

Apple Decayed spot, wound 
and rot detection

MIS BR 92.42% [91]

Apple Bruise detection HIS PCA, PLSDA 86% [70]

Apple Bruise detection MIS PCA, MT 86% [75]

Apple Bruise detection HIS PCA >77.5% [75]

Apple Bruise detection HIS PCA, MNT 88%, 94% [92]

Apple Defect detection MIS Rotating 90% [93]

Apple Defect detection MIS PCA, ANN 79% [94]

Apple Chilling injury 
detection

HIS ANN 98.4% [95]

Citrus Canker detection MIS BR, T 95.3% [96]

Citrus Skin damage 
detection

MIS Bayesian 
discriminant 
analysis

86% [97]

Citrus Common defect 
detection

HIS PCA 93.7% [98]

Citrus Light correction HIS Light 
correction

– [87]

Citrus Rottenness detection HIS ANN, DT 98% [99]
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that the integration of spectral and image features for hyperspectral scattering technique sig-
nificantly improved firmness and SSC prediction (by the t-test) for all three cultivars but with 
a lesser degree of pronouncement for SSC.

Peng et al. [78] did a research on the hyperspectral imaging system for predicting soluble sol-
ids content (SSC) of “Golden Delicious” apples which was calibrated both spectrally and spa-
tially. Their proposed methods, evaluating and comparing different mathematical models for 
describing the hyperspectral scattering profiles over the spectral region between 450 nm and 
1000 nm coupled with the scattering profile correction methods, could improve the hyper-
spectral scattering technique for measuring fruit quality; and the study also showed the modi-
fied Lorentzian distribution function with three parameters without including the parameter 
for the asymptotic value which was most appropriate for predicting both fruit firmness and 
SSC. Rajkumar et al. [110] at three different temperatures used a hyperspectral imaging tech-
nique in the visible and NIR regions (400–1000 nm) to study bananas’ SSC. Some quality 
parameters like moisture content were also determined and correlated with the spectral data 
using PLS. Their proposed methods, coupled with the scattering profile correction methods, 
could improve the hyperspectral scattering technique for measuring banana fruit quality.

Products Species Applications Types of 
CVS

Methods Accuracy Reference

Pear Bruise detection HIS PCA, MLC, 
EDC, MDC, 
SAM

93.8–95% [100]

Strawberry Bruise detection HIS LDA, ND, 
ANN

100% [101]

Cherry Pit detection HIS NN 97% [102]

Jujube Insect infestation 
detection

HIS JMP, MA 97% [103]

Vegetables Cucumber Bruise detection HIS PCA, BR 75-95% [89]

Cucumber Chilling injury 
detection

HIS PCA, FLD 91% [104]

Cucumber Chilling injury 
detection

HIS BR, PCA >90% [75, 105]

Mushroom Bruise detection HIS PCA 79-100% [106]

Mushroom Freeze damage 
detection

HIS PCA, LDA 95% [107]

Mushroom Enzymatic browning HIS PLS-DA – [108]

Onion Sour skin disease 
detection

HIS MS – [109]

HIS: hyperspectral imaging system; MIS: multispectral imaging system; BR: band ratio; MS: mean reflectance spectra; 
ASD: asymmetric second difference; MT: moments thresholding; and T: thresholding.

Table 1. Summary of studies about the defect detection of fruits and vegetables.
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Apple Decayed spot, wound 
and rot detection
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detection
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that the integration of spectral and image features for hyperspectral scattering technique sig-
nificantly improved firmness and SSC prediction (by the t-test) for all three cultivars but with 
a lesser degree of pronouncement for SSC.

Peng et al. [78] did a research on the hyperspectral imaging system for predicting soluble sol-
ids content (SSC) of “Golden Delicious” apples which was calibrated both spectrally and spa-
tially. Their proposed methods, evaluating and comparing different mathematical models for 
describing the hyperspectral scattering profiles over the spectral region between 450 nm and 
1000 nm coupled with the scattering profile correction methods, could improve the hyper-
spectral scattering technique for measuring fruit quality; and the study also showed the modi-
fied Lorentzian distribution function with three parameters without including the parameter 
for the asymptotic value which was most appropriate for predicting both fruit firmness and 
SSC. Rajkumar et al. [110] at three different temperatures used a hyperspectral imaging tech-
nique in the visible and NIR regions (400–1000 nm) to study bananas’ SSC. Some quality 
parameters like moisture content were also determined and correlated with the spectral data 
using PLS. Their proposed methods, coupled with the scattering profile correction methods, 
could improve the hyperspectral scattering technique for measuring banana fruit quality.

Products Species Applications Types of 
CVS

Methods Accuracy Reference

Pear Bruise detection HIS PCA, MLC, 
EDC, MDC, 
SAM

93.8–95% [100]

Strawberry Bruise detection HIS LDA, ND, 
ANN

100% [101]

Cherry Pit detection HIS NN 97% [102]

Jujube Insect infestation 
detection

HIS JMP, MA 97% [103]

Vegetables Cucumber Bruise detection HIS PCA, BR 75-95% [89]

Cucumber Chilling injury 
detection

HIS PCA, FLD 91% [104]

Cucumber Chilling injury 
detection

HIS BR, PCA >90% [75, 105]

Mushroom Bruise detection HIS PCA 79-100% [106]

Mushroom Freeze damage 
detection

HIS PCA, LDA 95% [107]

Mushroom Enzymatic browning HIS PLS-DA – [108]

Onion Sour skin disease 
detection

HIS MS – [109]

HIS: hyperspectral imaging system; MIS: multispectral imaging system; BR: band ratio; MS: mean reflectance spectra; 
ASD: asymmetric second difference; MT: moments thresholding; and T: thresholding.

Table 1. Summary of studies about the defect detection of fruits and vegetables.
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Applications of hyperspectral imaging in fruit and vegetable SSC measurement could also be 
found in other crop products, such as strawberries, pears and so on [111, 112].

4.2.2. Firmness

Firmness is an important textural attribute for fruits and directly influences their shelf life 
and consumer acceptance, and it is an important internal quality attribute in determining 
fruit maturity and harvest time, and in assessing and grading post-harvest quality of apples. 
Thus, nondestructive sensing of fruit firmness would provide the fruit industry with a mean to 
ensure the quality and consistency of individual fruit, increase consumer satisfaction, and thus 
improve industry profitability [113].

Peng and Lu [113] proposed ten modified Lorentzian distribution with three parameters to 
characterize spatial scattering profiles from scattering images for Golden Delicious apples. 
A multilinear regression analysis was performed to predict the relationship between 
parameters of the scattering profile and the firmness of apples. This new method, coupled 
with the scattering profile correction methods, improved the hyperspectral scattering tech-
nique for measuring fruit and vegetable quality. Fan et al. [114] acquired hyperspectral 
reflectance image from each pear in visible and near-infrared (400–1000 nm) regions by 
employing the hyperspectral imaging system to determine SSC and firmness of pears. In 
this study, the variables selected by SPA, CARS and the combination of CARS and SPA 
were used for PLS regression. The overall results indicated that the CARS-SPA was an 
effective way for the selection of effective variables and the hyperspectral imaging system 
together with CARS-SPA-PLS model could be applied as a fast and potential method for 
the determination of SSC and firmness of pear. Qin et al. [115] measured the absorption and 
reduced scattering coefficients of apples through a spatially-resolved hyperspectral imag-
ing technique and related them to fruit firmness. This research demonstrated the potential 
of using spectral absorption and scattering properties to evaluate internal quality attributes 
of horticultural products.

4.2.3. Acidity/pH

The acid content is often determined by a titratable method. A common method used for mea-
suring ethylene production is to extract a gas sample from the internal core space of fruit or 
from a sealed container, in which fruits have been kept for a period of time and then analyzed 
using gas chromatograph [116]. The quality of fruit or vegetables is determined by a series of 
properties, such as acidity, which makes them attractive to consumers, is very crucial.

Cayuela et al. [117] described a portable AOTF-NIR spectrophotometer with a wide spectral 
range between 1100 and 2300 nm, which was equipped with a reflectance post-dispersive opti-
cal configuration and an InGaAs detector used for NIR prediction of fruit moisture content 
and free acidity. ElMasry et al. [111] determined acidity in strawberries by feat of a visible/
NIR hyperspectral imaging system (400–1000 nm). It was found that the spectral pretreatments 
of mean-centering and automatic baseline correction enhanced PLS calibration model when 
compared with others pretreatments, such as Savitzky-Golay smoothing, MSC, and first and 
second derivatives.
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Rungpichayapichet et al. [118] proposed a new hyperspectral imaging technology using a 
newly developed frame camera which was applied to determine internal properties of mango 
fruits including firmness, total soluble solids (TSS) and titratable acidity (TA). In their study, 
prediction models were developed using spectral data from relative surface reflectance of 160 
fruits in the visible and NIR region of 450–998 nm analyzed by PLS regression. From their 
results, HSI can be used as a nondestructive technique for determining the quality of fruits 
which could potentially enhance grading capabilities in the industrial handling and process-
ing of mango. Baiano et al. [119] carried out acidity determination in 7 cultivars of table grapes 
using NIR HSI with PLS models performing on the mean-centering correction spectra, and 
they achieved the coefficients of determination for predicting titratable acid and pH of red 
grapes and white grapes. They concluded that spectra information was not correlated with 
the sensory data, making hard prediction of attribute perception.

In addition to these fruits, the application of hyperspectral images acidity with broader range 
of 1000–2300 nm was acquired for the determination of total fat in beef cuts with good predic-
tion abilities [120]. In other study, Abdel-Nour et al. [121] applied hyperspectral transmittance 
imaging (900–1700 nm) to classify eggs into three types with different docosahexaenoic acid 
contents using K-means analysis, resulting in 100% classification accuracy. Liu and Ngadi 
[122] detected fertility and early embryo development of chicken eggs using near-infrared 
hyperspectral imaging.

4.2.4. Moisture/water content

A fruit or vegetable consists of many different constituents, where water is the major com-
ponent in fruits and vegetables [16]. Moisture content influences the taste, texture, weight, 
appearance, and shelf life of fruits and vegetables. Therefore, even a slight deviation from 
a defined standard can adversely impact the physical properties of a fruit or vegetable. For 
these reasons, the analysis to the moisture content of food products has a critical impact on 
quality and safety features [123].

Recently, hyperspectral imaging has also been used for determining the water content of other 
large variety of fruits and vegetables. Mollazade et al. [124] evaluated the potential of hyper-
spectral imaging combined with artificial neural networks to predict the moisture content in 
tomato fruit and to obtain spatial distribution maps. Their works displayed the spatial distribu-
tion of moisture content as a color map, where colors represent different values of predicted 
attribute. Finally, result showed that the feasibility of the method for characterizing the spatial 
distribution of an attribute in horticultural produce. Dong and Guo [125] proposed a hyper-
spectral reflectance imaging technology in near-infrared regions (900–1,70,002 nm) to evaluate 
soluble solids content (SSC), firmness, moisture content, and pH values of “Fuji” apples. They 
employed PLS regression, LS-SVM and back propagation (BP) network modeling methods to 
establish models to predict SSC, firmness, MC, and pH of apples, respectively. Results indicated 
that the moisture content could be predicted exactly by all developed models.

Firtha et al. [126] described an approach for the prediction of moisture content in carrot tissue. 
The work reduced the data load of hyperspectral experiments by using sample-specific vector-to-
scalar operators for real-time feature extraction and a systematic procedure for compensating for 
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Applications of hyperspectral imaging in fruit and vegetable SSC measurement could also be 
found in other crop products, such as strawberries, pears and so on [111, 112].
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Thus, nondestructive sensing of fruit firmness would provide the fruit industry with a mean to 
ensure the quality and consistency of individual fruit, increase consumer satisfaction, and thus 
improve industry profitability [113].

Peng and Lu [113] proposed ten modified Lorentzian distribution with three parameters to 
characterize spatial scattering profiles from scattering images for Golden Delicious apples. 
A multilinear regression analysis was performed to predict the relationship between 
parameters of the scattering profile and the firmness of apples. This new method, coupled 
with the scattering profile correction methods, improved the hyperspectral scattering tech-
nique for measuring fruit and vegetable quality. Fan et al. [114] acquired hyperspectral 
reflectance image from each pear in visible and near-infrared (400–1000 nm) regions by 
employing the hyperspectral imaging system to determine SSC and firmness of pears. In 
this study, the variables selected by SPA, CARS and the combination of CARS and SPA 
were used for PLS regression. The overall results indicated that the CARS-SPA was an 
effective way for the selection of effective variables and the hyperspectral imaging system 
together with CARS-SPA-PLS model could be applied as a fast and potential method for 
the determination of SSC and firmness of pear. Qin et al. [115] measured the absorption and 
reduced scattering coefficients of apples through a spatially-resolved hyperspectral imag-
ing technique and related them to fruit firmness. This research demonstrated the potential 
of using spectral absorption and scattering properties to evaluate internal quality attributes 
of horticultural products.

4.2.3. Acidity/pH

The acid content is often determined by a titratable method. A common method used for mea-
suring ethylene production is to extract a gas sample from the internal core space of fruit or 
from a sealed container, in which fruits have been kept for a period of time and then analyzed 
using gas chromatograph [116]. The quality of fruit or vegetables is determined by a series of 
properties, such as acidity, which makes them attractive to consumers, is very crucial.

Cayuela et al. [117] described a portable AOTF-NIR spectrophotometer with a wide spectral 
range between 1100 and 2300 nm, which was equipped with a reflectance post-dispersive opti-
cal configuration and an InGaAs detector used for NIR prediction of fruit moisture content 
and free acidity. ElMasry et al. [111] determined acidity in strawberries by feat of a visible/
NIR hyperspectral imaging system (400–1000 nm). It was found that the spectral pretreatments 
of mean-centering and automatic baseline correction enhanced PLS calibration model when 
compared with others pretreatments, such as Savitzky-Golay smoothing, MSC, and first and 
second derivatives.

Hyperspectral Imaging in Agriculture, Food and Environment50

Rungpichayapichet et al. [118] proposed a new hyperspectral imaging technology using a 
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fruits including firmness, total soluble solids (TSS) and titratable acidity (TA). In their study, 
prediction models were developed using spectral data from relative surface reflectance of 160 
fruits in the visible and NIR region of 450–998 nm analyzed by PLS regression. From their 
results, HSI can be used as a nondestructive technique for determining the quality of fruits 
which could potentially enhance grading capabilities in the industrial handling and process-
ing of mango. Baiano et al. [119] carried out acidity determination in 7 cultivars of table grapes 
using NIR HSI with PLS models performing on the mean-centering correction spectra, and 
they achieved the coefficients of determination for predicting titratable acid and pH of red 
grapes and white grapes. They concluded that spectra information was not correlated with 
the sensory data, making hard prediction of attribute perception.

In addition to these fruits, the application of hyperspectral images acidity with broader range 
of 1000–2300 nm was acquired for the determination of total fat in beef cuts with good predic-
tion abilities [120]. In other study, Abdel-Nour et al. [121] applied hyperspectral transmittance 
imaging (900–1700 nm) to classify eggs into three types with different docosahexaenoic acid 
contents using K-means analysis, resulting in 100% classification accuracy. Liu and Ngadi 
[122] detected fertility and early embryo development of chicken eggs using near-infrared 
hyperspectral imaging.

4.2.4. Moisture/water content

A fruit or vegetable consists of many different constituents, where water is the major com-
ponent in fruits and vegetables [16]. Moisture content influences the taste, texture, weight, 
appearance, and shelf life of fruits and vegetables. Therefore, even a slight deviation from 
a defined standard can adversely impact the physical properties of a fruit or vegetable. For 
these reasons, the analysis to the moisture content of food products has a critical impact on 
quality and safety features [123].

Recently, hyperspectral imaging has also been used for determining the water content of other 
large variety of fruits and vegetables. Mollazade et al. [124] evaluated the potential of hyper-
spectral imaging combined with artificial neural networks to predict the moisture content in 
tomato fruit and to obtain spatial distribution maps. Their works displayed the spatial distribu-
tion of moisture content as a color map, where colors represent different values of predicted 
attribute. Finally, result showed that the feasibility of the method for characterizing the spatial 
distribution of an attribute in horticultural produce. Dong and Guo [125] proposed a hyper-
spectral reflectance imaging technology in near-infrared regions (900–1,70,002 nm) to evaluate 
soluble solids content (SSC), firmness, moisture content, and pH values of “Fuji” apples. They 
employed PLS regression, LS-SVM and back propagation (BP) network modeling methods to 
establish models to predict SSC, firmness, MC, and pH of apples, respectively. Results indicated 
that the moisture content could be predicted exactly by all developed models.

Firtha et al. [126] described an approach for the prediction of moisture content in carrot tissue. 
The work reduced the data load of hyperspectral experiments by using sample-specific vector-to-
scalar operators for real-time feature extraction and a systematic procedure for compensating for 
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 pixels in the NIR sensor. Results demonstrated that the approach to predict the moisture content of 
carrots is feasible. Except what we mentioned above, hyperspectral imaging can be applied on the 
moisture content of all kinds of fruits and vegetables such as strawberries and soybean [24, 127].

4.2.5. Starch content

Starch is the main form of carbohydrate in our food, which is present in a variety of grains, 
vegetables and fruits. During the ripening of fruit, starch is changed into sugar, which gives 
sweetness to ripe fruits [128]. The harvest time of fruits, matching the desired commercial 
characteristics, is assessed through starch-iodine test in practice [129].

Peirs et al. [130] employed a threshold value of the first principal component score image to 
measure the starch distribution and starch index of apple fruit during maturation. Results 
showed that the starch concentration obtained in each position of the fruit was continu-
ously measured compared with the discrete values obtained with the traditional technique. 
The method that they are proposed will speed up the application while the purchase costs 
decrease considerably and can be considered as a model system to map quality attributes of 
fruits. Menesatti et al. [129] researched the relationships of near-infrared (NIR) spectral images, 
starch/starch-free patterns visually assessed and RGB color images through PLS-DA to assess 
the starch index of apples. They studied the spectral region between 1000 and 1,70,002 nm 
through PLS-DA to assess the starch index in apples. Their proposed methods, avoiding 
expert’s subjective interpretation of starch index assignment, show the feasibility of NIR imag-
ing spectroscopy as a tool for fruit maturity determination.

Chen et al. [131] studied nondestructive detection of starch content in potatoes using the SPA-
MLR model and SPA-PLSR model, respectively. Results showed that the effect of the SPA-MLR 
model was superior to that of the SPA-PLSR model. Trong et al. [132] employed the starch 
index to estimate the optimal cooking time of potatoes. The changes caused by the microstruc-
ture and composition of starch affected the interaction of light with the starch granules at dif-
ferent regions inside the potatoes. In their research, the potential of hyperspectral imaging in 
the wavelength range of 400 nm to 1000 nm in combination with chemometric tools and image 
processing for contactless detection of the cooking front in potatoes has been investigated.

4.2.6. Ripening/maturity stages

The definition of apple maturity corresponding to the stage of fruit development, giving 
minimum acceptable quality to the ultimate consumer, implies measurable points in the com-
modity’s development and the need for techniques to measure maturity [133]. In addition, 
concerning the internal quality, maturity is extremely important to determine the harvest 
time and optimize the post-harvest treatment and environment [1, 16].

In recent years, many works on the determination of the maturity of fruits have been reported. 
An example of such studies is that of Rajkumar et al. [110] who studied banana fruit quality 
and maturity stages at three different temperatures by using hyperspectral imaging technique 
in the visible and near-infrared (400–1000 nm) regions to determine the quality parameters 
like moisture content. In their research, they concluded that the change in TSS and firmness 
of banana fruits stored at different temperatures during the ripening process followed the 
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 polynomial relationships and the change in moisture content followed a linear relationship at 
different maturity stages. And Garridonovell et al. [134] evaluated the potential of RGB digi-
tal imaging and hyperspectral imaging for  discriminating maturity level in apples. In their 
research, segmentation, preprocessing and PLS-DA are applied to hyperspectral data analy-
sis, while illumination correction, dimensionality reduction and linear discriminant analysis 
(LDA) are applied to RGB data analysis. Finally, they concluded that hyperspectral discrimina-
tion classified different storage regimes better than RGB.

Herrerolangreo et al. [135] developed an automatic procedure which is able to classify com-
mercial peaches according to their maturity stage through multispectral imaging techniques. 
They proposed and validated the process of evaluating peach maturity through spectral 
imaging, which is very crucial for ensuring its quality of optimum peach ripeness. The pro-
posed method is nondestructive and quick, and thus, it will have a good perspective for its 
application in fresh fruit packing lines. Girod et al. [136] introduced a nondestructive and 
quick technique that can measure the DM content to assess the maturity of avocados. The 
work analyzed avocado fruits at different maturity stages through hyperspectral imaging in 
reflectance and absorbance modes. The proposed method indicated that the reasonably accu-
rate models could be obtained for DM content with the entire spectral range. Applications of 
hyperspectral imaging to measure maturity stages of fruit and vegetable could also be found 
in pawpaws, tomatoes and grapes [1, 137, 138].

5. Conclusions

Over the past decades, hyperspectral imaging technique has been rapidly developing and 
widely applied in nondestructive fruit and vegetable quality assessment. This chapter pro-
vides the principles, developments and applications of hyperspectral imaging technology in 
the quality inspection of fruits and vegetables. The principal components, basic theories and 
corresponding processing and analytical methods are also reported in this chapter. Looking 
into the future of fast inline sorting industry, hyperspectral imaging faces both challenges 
and opportunities. The challenges include the influence of physical and biological variability, 
whole surface detection, discrimination between defects and stems/calyxes, unobvious defect 
detection, robustness of the features and algorithms, as well as rapid multispectral imaging 
system development. Though many solutions have been presented to solve the challenging 
problems in fruit and vegetable quality inspection by using hyperspectral imaging technique 
in previous studies by the scientific researchers worldwide, the challenges presented above 
will continue to be intractable problems for a long time.
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Starch is the main form of carbohydrate in our food, which is present in a variety of grains, 
vegetables and fruits. During the ripening of fruit, starch is changed into sugar, which gives 
sweetness to ripe fruits [128]. The harvest time of fruits, matching the desired commercial 
characteristics, is assessed through starch-iodine test in practice [129].

Peirs et al. [130] employed a threshold value of the first principal component score image to 
measure the starch distribution and starch index of apple fruit during maturation. Results 
showed that the starch concentration obtained in each position of the fruit was continu-
ously measured compared with the discrete values obtained with the traditional technique. 
The method that they are proposed will speed up the application while the purchase costs 
decrease considerably and can be considered as a model system to map quality attributes of 
fruits. Menesatti et al. [129] researched the relationships of near-infrared (NIR) spectral images, 
starch/starch-free patterns visually assessed and RGB color images through PLS-DA to assess 
the starch index of apples. They studied the spectral region between 1000 and 1,70,002 nm 
through PLS-DA to assess the starch index in apples. Their proposed methods, avoiding 
expert’s subjective interpretation of starch index assignment, show the feasibility of NIR imag-
ing spectroscopy as a tool for fruit maturity determination.

Chen et al. [131] studied nondestructive detection of starch content in potatoes using the SPA-
MLR model and SPA-PLSR model, respectively. Results showed that the effect of the SPA-MLR 
model was superior to that of the SPA-PLSR model. Trong et al. [132] employed the starch 
index to estimate the optimal cooking time of potatoes. The changes caused by the microstruc-
ture and composition of starch affected the interaction of light with the starch granules at dif-
ferent regions inside the potatoes. In their research, the potential of hyperspectral imaging in 
the wavelength range of 400 nm to 1000 nm in combination with chemometric tools and image 
processing for contactless detection of the cooking front in potatoes has been investigated.

4.2.6. Ripening/maturity stages

The definition of apple maturity corresponding to the stage of fruit development, giving 
minimum acceptable quality to the ultimate consumer, implies measurable points in the com-
modity’s development and the need for techniques to measure maturity [133]. In addition, 
concerning the internal quality, maturity is extremely important to determine the harvest 
time and optimize the post-harvest treatment and environment [1, 16].

In recent years, many works on the determination of the maturity of fruits have been reported. 
An example of such studies is that of Rajkumar et al. [110] who studied banana fruit quality 
and maturity stages at three different temperatures by using hyperspectral imaging technique 
in the visible and near-infrared (400–1000 nm) regions to determine the quality parameters 
like moisture content. In their research, they concluded that the change in TSS and firmness 
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 polynomial relationships and the change in moisture content followed a linear relationship at 
different maturity stages. And Garridonovell et al. [134] evaluated the potential of RGB digi-
tal imaging and hyperspectral imaging for  discriminating maturity level in apples. In their 
research, segmentation, preprocessing and PLS-DA are applied to hyperspectral data analy-
sis, while illumination correction, dimensionality reduction and linear discriminant analysis 
(LDA) are applied to RGB data analysis. Finally, they concluded that hyperspectral discrimina-
tion classified different storage regimes better than RGB.
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mercial peaches according to their maturity stage through multispectral imaging techniques. 
They proposed and validated the process of evaluating peach maturity through spectral 
imaging, which is very crucial for ensuring its quality of optimum peach ripeness. The pro-
posed method is nondestructive and quick, and thus, it will have a good perspective for its 
application in fresh fruit packing lines. Girod et al. [136] introduced a nondestructive and 
quick technique that can measure the DM content to assess the maturity of avocados. The 
work analyzed avocado fruits at different maturity stages through hyperspectral imaging in 
reflectance and absorbance modes. The proposed method indicated that the reasonably accu-
rate models could be obtained for DM content with the entire spectral range. Applications of 
hyperspectral imaging to measure maturity stages of fruit and vegetable could also be found 
in pawpaws, tomatoes and grapes [1, 137, 138].
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widely applied in nondestructive fruit and vegetable quality assessment. This chapter pro-
vides the principles, developments and applications of hyperspectral imaging technology in 
the quality inspection of fruits and vegetables. The principal components, basic theories and 
corresponding processing and analytical methods are also reported in this chapter. Looking 
into the future of fast inline sorting industry, hyperspectral imaging faces both challenges 
and opportunities. The challenges include the influence of physical and biological variability, 
whole surface detection, discrimination between defects and stems/calyxes, unobvious defect 
detection, robustness of the features and algorithms, as well as rapid multispectral imaging 
system development. Though many solutions have been presented to solve the challenging 
problems in fruit and vegetable quality inspection by using hyperspectral imaging technique 
in previous studies by the scientific researchers worldwide, the challenges presented above 
will continue to be intractable problems for a long time.

Author details

Xiaona Li, Ruolan Li, Mengyu Wang, Yaru Liu, Baohua Zhang* and Jun Zhou

*Address all correspondence to: bhzhang@njau.edu.cn

College of Engineering, Nanjing Agricultural University, Nanjing, Jiangsu, PR China

Hyperspectral Imaging and Their Applications in the Nondestructive Quality Assessment…
http://dx.doi.org/10.5772/intechopen.72250

53



References

[1] Lorente D, Aleixos N, Gómez-Sanchis J, et al. Recent Advances and Applications of 
Hyperspectral Imaging for Fruit and Vegetable Quality Assessment. An Introduction to 
Quantum Computing Algorithms. Birkhauser; 2012. pp. 231-252

[2] Zhang B, Huang W, Li J, Zhao C, Fan S, Wu J, Liu C. Principles, developments and 
applications of computer vision for external quality inspection of fruits and vegetables: 
A review. Food Research International. 2014;62:326-343

[3] Costa C, Antonucci F, Pallottino F, Aguzzi J, Sun DW, Menesatti P. Shape analysis of 
agricultural products: A review of recent research advances and potential application to 
computer vision. Food & Bioprocess Technology. 2011;4:673-692

[4] Cubero S, Aleixos N, Moltó E, Gómez-Sanchis J, Blasco J. Advances in machine vision 
applications for automatic inspection and quality evaluation of fruits and vegetables. 
Food & Bioprocess Technology. 2011;4:487-504

[5] Goetz AF, Vane G, Solomon JE, Rock BN. Imaging spectrometry for Earth remote sens-
ing. Science. 1985;228:1147-1153

[6] Arngren M, Schmidt MN, Larsen J. Unmixing of Hyperspectral images using Bayesian 
non-negative matrix factorization with volume prior. Journal of Signal Processing 
Systems. 2011;65:479-496

[7] Monteiro ST, Minekawa Y, Kosugi Y. Prediction of sweetness and amino acid content in 
soybean crops from hyperspectral imagery. Isprs Journal of Photogrammetry & Remote 
Sensing. 2007;62:2-12

[8] Smail VW, Fritz AK, Wetzel DL. Chemical imaging of intact seeds with NIR focal plane 
array assists plant breeding. Vibrational Spectroscopy. 2006;42:215-221

[9] Uno Y, Prasher SO, Lacroix R, Goel PK, Karimi Y, Viau A, Patel RM. Artificial neural 
networks to predict corn yield from compact airborne spectrographic imager data. 
Computers & Electronics in Agriculture. 2005;47:149-161

[10] Chang CI. Hyperspectral Imaging: Techniques for Spectral Detection and Classification. 
Plenum Publishing Co; 2003

[11] Qin J, Chao K, Kim MS, Lu R, Burks TF. Hyperspectral and multispectral imaging for 
evaluating food safety and quality. Journal of Food Engineering. 2013;118:157-171

[12] Zeng XA. Recent developments and applications of hyperspectral imaging for qual-
ity evaluation of agricultural products: A review. Critical Reviews in Food Science & 
Nutrition. 2015;55:1744

[13] Akodagali J, Balaji S. Computer vision and image analysis based techniques for automatic 
characterization of fruits a review. Biotechnology and Bioengineering. 2012;38:1001-1006

[14] Kathman A Optical device and associated methods. In: US. US8411379[P]. 2013

Hyperspectral Imaging in Agriculture, Food and Environment54

[15] Ko CH. Optical Wavelength Dispersion Device and Method of Manufacturing the Same. 
2017

[16] Wu D, Sun DW. Advanced applications of hyperspectral imaging technology for food 
quality and safety analysis and assessment: A review – Part II: Applications. Innovative 
Food Science & Emerging Technologies. 2013;19:15-28

[17] Du CJ, Sun DW. Recent developments in the applications of image processing techniques 
for food quality evaluation. Trends in Food Science & Technology. 2004;15:230-249

[18] Chow RH, Hwang JY, Lee NS, Shung KK, Weitz AC. System and method for determin-
ing tumor invasiveness. US 20140087411 A1 [P]. 2014

[19] Liu D, Zeng XA, Sun DW. Recent developments and applications of hyperspectral imag-
ing for quality evaluation of agricultural products: A review. Critical Reviews in Food 
Science & Nutrition. 2015;55:1744

[20] Liu Z, Jing W. Hyperspectral endmember detection method based on Bayesian Decision 
Theory. In: Software Engineering and Knowledge Engineering: Theory and Practice. 
Springer Berlin Heidelberg; 2012. pp. 727-732

[21] Elmasry G, Kamruzzaman M, Sun D, Allen P. Principles and applications of hyperspec-
tral imaging in quality evaluation of agro-food products: A review. Critical Reviews in 
Food Science & Nutrition. 2012;52:999

[22] Patel YG, Rajadhyaksha M, Dimarzio CA. Optimization of pupil design for point-
scanning and line-scanning confocal microscopy. Biomedical Optics Express. 2011;2: 
2231

[23] Wilson T, Hewlett SJ. Imaging in scanning microscopes with slit-shaped detectors. 
Journal of Microscopy. 1990;160:115-139

[24] Wang H, Peng J, Xie C, Bao Y, Yong H. Fruit quality evaluation using spectroscopy tech-
nology: A review. Sensors. 2015;15:11889

[25] Huang W, Zhang B, Li J, et al. Early detection of bruises on apples using near-infra-
red hyperspectral image [C]. International Conference on Photonics and Image in 
Agriculture Engineering. 2013:87610P

[26] Lee WH, Kim MS, Lee H, Delwiche SR, Bae H, Kim DY, Cho BK. Hyperspectral 
near-infrared imaging for the detection of physical damages of pear. Journal of Food 
Engineering. 2014;130:1-7

[27] Fox G, Manley M. Applications of single kernel conventional andhyperspectral imag-
ing near infrared spectroscopy in cereals. Journal of the Science of Food & Agriculture. 
2014;94:174-179

[28] Zhang B, Fan S, Li J, Huang W, Zhao C, Qian M, Zheng L. Detection of early rottenness 
on apples by using hyperspectral imaging combined with spectral analysis and image 
processing. Food Analytical Methods. 2015;8:2075-2086

Hyperspectral Imaging and Their Applications in the Nondestructive Quality Assessment…
http://dx.doi.org/10.5772/intechopen.72250

55



References

[1] Lorente D, Aleixos N, Gómez-Sanchis J, et al. Recent Advances and Applications of 
Hyperspectral Imaging for Fruit and Vegetable Quality Assessment. An Introduction to 
Quantum Computing Algorithms. Birkhauser; 2012. pp. 231-252

[2] Zhang B, Huang W, Li J, Zhao C, Fan S, Wu J, Liu C. Principles, developments and 
applications of computer vision for external quality inspection of fruits and vegetables: 
A review. Food Research International. 2014;62:326-343

[3] Costa C, Antonucci F, Pallottino F, Aguzzi J, Sun DW, Menesatti P. Shape analysis of 
agricultural products: A review of recent research advances and potential application to 
computer vision. Food & Bioprocess Technology. 2011;4:673-692

[4] Cubero S, Aleixos N, Moltó E, Gómez-Sanchis J, Blasco J. Advances in machine vision 
applications for automatic inspection and quality evaluation of fruits and vegetables. 
Food & Bioprocess Technology. 2011;4:487-504

[5] Goetz AF, Vane G, Solomon JE, Rock BN. Imaging spectrometry for Earth remote sens-
ing. Science. 1985;228:1147-1153

[6] Arngren M, Schmidt MN, Larsen J. Unmixing of Hyperspectral images using Bayesian 
non-negative matrix factorization with volume prior. Journal of Signal Processing 
Systems. 2011;65:479-496

[7] Monteiro ST, Minekawa Y, Kosugi Y. Prediction of sweetness and amino acid content in 
soybean crops from hyperspectral imagery. Isprs Journal of Photogrammetry & Remote 
Sensing. 2007;62:2-12

[8] Smail VW, Fritz AK, Wetzel DL. Chemical imaging of intact seeds with NIR focal plane 
array assists plant breeding. Vibrational Spectroscopy. 2006;42:215-221

[9] Uno Y, Prasher SO, Lacroix R, Goel PK, Karimi Y, Viau A, Patel RM. Artificial neural 
networks to predict corn yield from compact airborne spectrographic imager data. 
Computers & Electronics in Agriculture. 2005;47:149-161

[10] Chang CI. Hyperspectral Imaging: Techniques for Spectral Detection and Classification. 
Plenum Publishing Co; 2003

[11] Qin J, Chao K, Kim MS, Lu R, Burks TF. Hyperspectral and multispectral imaging for 
evaluating food safety and quality. Journal of Food Engineering. 2013;118:157-171

[12] Zeng XA. Recent developments and applications of hyperspectral imaging for qual-
ity evaluation of agricultural products: A review. Critical Reviews in Food Science & 
Nutrition. 2015;55:1744

[13] Akodagali J, Balaji S. Computer vision and image analysis based techniques for automatic 
characterization of fruits a review. Biotechnology and Bioengineering. 2012;38:1001-1006

[14] Kathman A Optical device and associated methods. In: US. US8411379[P]. 2013

Hyperspectral Imaging in Agriculture, Food and Environment54

[15] Ko CH. Optical Wavelength Dispersion Device and Method of Manufacturing the Same. 
2017

[16] Wu D, Sun DW. Advanced applications of hyperspectral imaging technology for food 
quality and safety analysis and assessment: A review – Part II: Applications. Innovative 
Food Science & Emerging Technologies. 2013;19:15-28

[17] Du CJ, Sun DW. Recent developments in the applications of image processing techniques 
for food quality evaluation. Trends in Food Science & Technology. 2004;15:230-249

[18] Chow RH, Hwang JY, Lee NS, Shung KK, Weitz AC. System and method for determin-
ing tumor invasiveness. US 20140087411 A1 [P]. 2014

[19] Liu D, Zeng XA, Sun DW. Recent developments and applications of hyperspectral imag-
ing for quality evaluation of agricultural products: A review. Critical Reviews in Food 
Science & Nutrition. 2015;55:1744

[20] Liu Z, Jing W. Hyperspectral endmember detection method based on Bayesian Decision 
Theory. In: Software Engineering and Knowledge Engineering: Theory and Practice. 
Springer Berlin Heidelberg; 2012. pp. 727-732

[21] Elmasry G, Kamruzzaman M, Sun D, Allen P. Principles and applications of hyperspec-
tral imaging in quality evaluation of agro-food products: A review. Critical Reviews in 
Food Science & Nutrition. 2012;52:999

[22] Patel YG, Rajadhyaksha M, Dimarzio CA. Optimization of pupil design for point-
scanning and line-scanning confocal microscopy. Biomedical Optics Express. 2011;2: 
2231

[23] Wilson T, Hewlett SJ. Imaging in scanning microscopes with slit-shaped detectors. 
Journal of Microscopy. 1990;160:115-139

[24] Wang H, Peng J, Xie C, Bao Y, Yong H. Fruit quality evaluation using spectroscopy tech-
nology: A review. Sensors. 2015;15:11889

[25] Huang W, Zhang B, Li J, et al. Early detection of bruises on apples using near-infra-
red hyperspectral image [C]. International Conference on Photonics and Image in 
Agriculture Engineering. 2013:87610P

[26] Lee WH, Kim MS, Lee H, Delwiche SR, Bae H, Kim DY, Cho BK. Hyperspectral 
near-infrared imaging for the detection of physical damages of pear. Journal of Food 
Engineering. 2014;130:1-7

[27] Fox G, Manley M. Applications of single kernel conventional andhyperspectral imag-
ing near infrared spectroscopy in cereals. Journal of the Science of Food & Agriculture. 
2014;94:174-179

[28] Zhang B, Fan S, Li J, Huang W, Zhao C, Qian M, Zheng L. Detection of early rottenness 
on apples by using hyperspectral imaging combined with spectral analysis and image 
processing. Food Analytical Methods. 2015;8:2075-2086

Hyperspectral Imaging and Their Applications in the Nondestructive Quality Assessment…
http://dx.doi.org/10.5772/intechopen.72250

55



[29] Zhang X, Chen S, Ling Z, Zhou X, Ding DY, Kim YS, Xu F. Method for removing 
spectral contaminants to improve analysis of Raman imaging data. Scientific Reports. 
2017;7:39891

[30] Magwaza LS, Opara UL, Nieuwoudt H, Cronje PJR, Saeys W, Nicolaï B. NIR spectros-
copy applications for internal and external quality analysis of citrus fruit – A review. 
Food & Bioprocess Technology. 2012;5:425-444

[31] Rinnan Å, Berg FVD, Engelsen SB. Review of the most common pre-processing techniques 
for near-infrared spectra. TrAC – Trends in Analytical Chemistry. 2009;28:1201-1222

[32] Nicolaï BM, Beullens K, Bobelyn E, Peirs A, Saeys W, Theron KI, Lammertyn J. 
Nondestructive measurement of fruit and vegetable quality by means of NIR spectros-
copy: A review. Postharvest Biology & Technology. 2007;46:99-118

[33] Kim JH, Jeung GW, Lee JW, Kim KS. Performance Evaluation of a Two-Dimensional 
Savitzky-Golay Filter for Image Smoothing Applications. 2016

[34] Sun T, Xu WL, Lin JL, Liu MH, He XW. Determination of soluble solids content in 
navel oranges by Vis/NIR diffuse transmission spectra combined with CARS method. 
Spectroscopy & Spectral Analysis. 2012;32:3229-3233

[35] Barnes R, Dhanoa M, Lister S. Letter: Correction to the description of standard normal 
variate (SNV) and de-trend (DT) ransformations in practical spectroscopy with appli-
cations in food and everage analysis – 2nd ed. Journal of Near Infrared Spectroscopy. 
1993;1:185-186

[36] Dhanoa MS, Barnes RJ, Lister SJ. Standard normal variate transformation and de-trend-
ing of near-infrared diffuse reflectance spectra. Applied Spectroscopy. 1989;43:772-777

[37] Maleki MR, Mouazen AM, Ramon H, Jde B. Multiplicative scatter correction during on-line 
measurement with near infrared spectroscopy. Biosystems Engineering. 2007;96:427-433

[38] Chen JY, Zhang H, Ma J, Tuchiya T, Miao Y. Determination of the degree of degrada-
tion of frying rapeseed oil using Fourier-transform infrared spectroscopy combined 
with partial least-squares regression. International Journal of Analytical Chemistry. 
2015;2015:185367

[39] Workman JJ, Springsteen AW. Applied spectroscopy: A compact reference for practitio-
ners. 1998

[40] Ganesh A, Jena SK, Balasubramanian G, Pradhan N. A comparison study of function 
approximation using Fourier and Wavelet transforms. 2011:784-787

[41] Sun T, Lin H, Xu H, Ying Y. Effect of fruit moving speed on predicting soluble solids con-
tent of ‘Cuiguan’ pears (Pomaceae pyrifolia Nakai cv. Cuiguan) using PLS and LS-SVM 
regression. Postharvest Biology & Technology. 2009;51:86-90

[42] Hui L. Non-destructive detection of kiwifruit firmness based on near-infrared dif-
fused spectroscopy. Transactions of the Chinese Society for Agricultural Machinery. 
2011;42:145-149

Hyperspectral Imaging in Agriculture, Food and Environment56

[43] Liu D, Sun DW, Zeng XA. Recent advances in wavelength selection techniques for 
hyperspectral image processing in the food industry. Food & Bioprocess Technology. 
2014;7:307-323

[44] Li H, Liang Y, Xu Q, Cao D. Key wavelengths screening using competitive adaptive 
reweighted sampling method for multivariate calibration. Analytica Chimica Acta. 
2009;648:77

[45] Yun Y, Wei Y, Zhao X, Wu W, Liang Y, Lu H. A green method for the quantification of 
polysaccharides in Dendrobium officinale. RSC Advances. 2015;5:105057-105065

[46] Yang Y, Jin Y, Wu Y, Chen Y. (2016). Application of near infrared spectroscopy combined 
with competitive adaptive reweighted sampling partial least squares for on-line moni-
toring of the concentration process of Wangbi tablet 24

[47] Li HD, Xu QS, Liang YZ. Random frog: An efficient reversible jump Markov Chain 
Monte Carlo-like approach for variable selection with applications to gene selection and 
disease classification. Analytica Chimica Acta. 2012;740:20-26

[48] Yun YH, Li HD, Wood LRE, Fan W, Wang JJ, Cao DS, Xu QS, Liang YZ. An efficient 
method of wavelength interval selection based on random frog for multivariate spec-
tral calibration. Spectrochimica Acta Part A Molecular & Biomolecular Spectroscopy. 
2013;111:31

[49] Araújo MCU, Saldanha TCB, Galvão RKH, Yoneyama T, Chame HC, Visani V. The suc-
cessive projections algorithm for variable selection in spectroscopic multicomponent 
analysis. Chemometrics and Intelligent Laboratory Systems. 2001;57:65-73

[50] Wu D, Sun DW, He Y. Application of long-wave near infrared hyperspectral imaging for 
measurement of color distribution in salmon fillet. Innovative Food Science & Emerging 
Technologies. 2012;16:361-372

[51] Mehmood T, Liland KH, Snipen L, Sæbø S. A review of variable selection methods in 
partial least squares regression. Chemometrics and Intelligent Laboratory Systems. 
2012;118:62-69

[52] And VC, Massart D, Noord OED, And SDJ, Vandeginste BM, Sterna C. Elimination of 
uninformative variables for multivariate calibration. Analytical Chemistry. 1996;68:3851

[53] Cai W, Li Y, Shao X. A variable selection method based on uninformative variable 
elimination for multivariate calibration of near-infrared spectra. Chemometrics and 
Intelligent Laboratory Systems. 2008;90:188-194

[54] Giuseppe P, Paolo P, Hans-Dieter Z. Performance of PLS regression coefficients in select-
ing variables for each response of a multivariate PLS for omics-type data. Advances & 
Applications in Bioinformatics & Chemistry – AABC. 2009;2:57-70

[55] Mehmood T, Martens H, Sæbø S, Warringer J, Snipen L. A partial least squares based 
algorithm for parsimonious variable selection. Algorithms for Molecular Biology Amb. 
2011;6:27

Hyperspectral Imaging and Their Applications in the Nondestructive Quality Assessment…
http://dx.doi.org/10.5772/intechopen.72250

57



[29] Zhang X, Chen S, Ling Z, Zhou X, Ding DY, Kim YS, Xu F. Method for removing 
spectral contaminants to improve analysis of Raman imaging data. Scientific Reports. 
2017;7:39891

[30] Magwaza LS, Opara UL, Nieuwoudt H, Cronje PJR, Saeys W, Nicolaï B. NIR spectros-
copy applications for internal and external quality analysis of citrus fruit – A review. 
Food & Bioprocess Technology. 2012;5:425-444

[31] Rinnan Å, Berg FVD, Engelsen SB. Review of the most common pre-processing techniques 
for near-infrared spectra. TrAC – Trends in Analytical Chemistry. 2009;28:1201-1222

[32] Nicolaï BM, Beullens K, Bobelyn E, Peirs A, Saeys W, Theron KI, Lammertyn J. 
Nondestructive measurement of fruit and vegetable quality by means of NIR spectros-
copy: A review. Postharvest Biology & Technology. 2007;46:99-118

[33] Kim JH, Jeung GW, Lee JW, Kim KS. Performance Evaluation of a Two-Dimensional 
Savitzky-Golay Filter for Image Smoothing Applications. 2016

[34] Sun T, Xu WL, Lin JL, Liu MH, He XW. Determination of soluble solids content in 
navel oranges by Vis/NIR diffuse transmission spectra combined with CARS method. 
Spectroscopy & Spectral Analysis. 2012;32:3229-3233

[35] Barnes R, Dhanoa M, Lister S. Letter: Correction to the description of standard normal 
variate (SNV) and de-trend (DT) ransformations in practical spectroscopy with appli-
cations in food and everage analysis – 2nd ed. Journal of Near Infrared Spectroscopy. 
1993;1:185-186

[36] Dhanoa MS, Barnes RJ, Lister SJ. Standard normal variate transformation and de-trend-
ing of near-infrared diffuse reflectance spectra. Applied Spectroscopy. 1989;43:772-777

[37] Maleki MR, Mouazen AM, Ramon H, Jde B. Multiplicative scatter correction during on-line 
measurement with near infrared spectroscopy. Biosystems Engineering. 2007;96:427-433

[38] Chen JY, Zhang H, Ma J, Tuchiya T, Miao Y. Determination of the degree of degrada-
tion of frying rapeseed oil using Fourier-transform infrared spectroscopy combined 
with partial least-squares regression. International Journal of Analytical Chemistry. 
2015;2015:185367

[39] Workman JJ, Springsteen AW. Applied spectroscopy: A compact reference for practitio-
ners. 1998

[40] Ganesh A, Jena SK, Balasubramanian G, Pradhan N. A comparison study of function 
approximation using Fourier and Wavelet transforms. 2011:784-787

[41] Sun T, Lin H, Xu H, Ying Y. Effect of fruit moving speed on predicting soluble solids con-
tent of ‘Cuiguan’ pears (Pomaceae pyrifolia Nakai cv. Cuiguan) using PLS and LS-SVM 
regression. Postharvest Biology & Technology. 2009;51:86-90

[42] Hui L. Non-destructive detection of kiwifruit firmness based on near-infrared dif-
fused spectroscopy. Transactions of the Chinese Society for Agricultural Machinery. 
2011;42:145-149

Hyperspectral Imaging in Agriculture, Food and Environment56

[43] Liu D, Sun DW, Zeng XA. Recent advances in wavelength selection techniques for 
hyperspectral image processing in the food industry. Food & Bioprocess Technology. 
2014;7:307-323

[44] Li H, Liang Y, Xu Q, Cao D. Key wavelengths screening using competitive adaptive 
reweighted sampling method for multivariate calibration. Analytica Chimica Acta. 
2009;648:77

[45] Yun Y, Wei Y, Zhao X, Wu W, Liang Y, Lu H. A green method for the quantification of 
polysaccharides in Dendrobium officinale. RSC Advances. 2015;5:105057-105065

[46] Yang Y, Jin Y, Wu Y, Chen Y. (2016). Application of near infrared spectroscopy combined 
with competitive adaptive reweighted sampling partial least squares for on-line moni-
toring of the concentration process of Wangbi tablet 24

[47] Li HD, Xu QS, Liang YZ. Random frog: An efficient reversible jump Markov Chain 
Monte Carlo-like approach for variable selection with applications to gene selection and 
disease classification. Analytica Chimica Acta. 2012;740:20-26

[48] Yun YH, Li HD, Wood LRE, Fan W, Wang JJ, Cao DS, Xu QS, Liang YZ. An efficient 
method of wavelength interval selection based on random frog for multivariate spec-
tral calibration. Spectrochimica Acta Part A Molecular & Biomolecular Spectroscopy. 
2013;111:31

[49] Araújo MCU, Saldanha TCB, Galvão RKH, Yoneyama T, Chame HC, Visani V. The suc-
cessive projections algorithm for variable selection in spectroscopic multicomponent 
analysis. Chemometrics and Intelligent Laboratory Systems. 2001;57:65-73

[50] Wu D, Sun DW, He Y. Application of long-wave near infrared hyperspectral imaging for 
measurement of color distribution in salmon fillet. Innovative Food Science & Emerging 
Technologies. 2012;16:361-372

[51] Mehmood T, Liland KH, Snipen L, Sæbø S. A review of variable selection methods in 
partial least squares regression. Chemometrics and Intelligent Laboratory Systems. 
2012;118:62-69

[52] And VC, Massart D, Noord OED, And SDJ, Vandeginste BM, Sterna C. Elimination of 
uninformative variables for multivariate calibration. Analytical Chemistry. 1996;68:3851

[53] Cai W, Li Y, Shao X. A variable selection method based on uninformative variable 
elimination for multivariate calibration of near-infrared spectra. Chemometrics and 
Intelligent Laboratory Systems. 2008;90:188-194

[54] Giuseppe P, Paolo P, Hans-Dieter Z. Performance of PLS regression coefficients in select-
ing variables for each response of a multivariate PLS for omics-type data. Advances & 
Applications in Bioinformatics & Chemistry – AABC. 2009;2:57-70

[55] Mehmood T, Martens H, Sæbø S, Warringer J, Snipen L. A partial least squares based 
algorithm for parsimonious variable selection. Algorithms for Molecular Biology Amb. 
2011;6:27

Hyperspectral Imaging and Their Applications in the Nondestructive Quality Assessment…
http://dx.doi.org/10.5772/intechopen.72250

57



[56] Liu F, He Y, Wang L, Pan H. Feasibility of the use of visible and near infrared spectros-
copy to assess soluble solids content and pH of rice wines. Journal of Food Engineering. 
2007;83:430-435

[57] Suykens JAK, Vandewalle J. Least squares support vector machine classifiers. Neural 
Processing Letters. 1999;9:293-300

[58] Lin S, Huang X. Advances in computer science, environment, ecoinformatics, and edu-
cation. In: International Conference, CSEE 2011, Wuhan, China, August 21-22, 2011. 
Proceedings, Part IV. Communications in Computer & Information Science. 2011. p. 218

[59] Shao Y, Yong H. Visible/near infrared spectroscopy and chemometrics for the prediction 
of trace element (Fe and Zn) levels in rice leaf. Sensors. 2013;13:1872

[60] Zou X, Zhao J. Nondestructive Measurement in Food and Agro-Products. 2015

[61] Sharma N, Ray AK, Sharma S, Shukla KK, Pradhan S, Aggarwal LM. Segmentation and 
classification of medical images using texture-primitive features: Application of BAM-
type artificial neural network. Journal of Medical Physics. 2008;33:119-126

[62] Jackman P, Sun DW, Allen P. Recent advances in the use of computer vision technol-
ogy in the quality assessment of fresh meats. Trends in Food Science & Technology. 
2011;22:185-197

[63] Narendra VG, Hareesh KS. Quality inspection and grading of agricultural and food 
products by computer vision-a review. International Journal of Computer Applications. 
2010;2:43-65

[64] Teena M, Manickavasagan A, Mothershaw A, Hadi SE, Jayas DS. Potential of machine 
vision techniques for detecting Fecal and microbial contamination of food products: A 
review. Food & Bioprocess Technology. 2013;6:1621-1634

[65] Kamila NK. Handbook of Research on Emerging Perspectives in Intelligent Pattern 
Recognition, Analysis, and Image Processing: Information Science Reference Imprint of: 
IGI Publishing. 2016

[66] Park B, Lu R. Hyperspectral imaging technology in food and agriculture. Food Engineering. 
2015

[67] Shawe-Taylor J, Cristianini N. Kernel methods for pattern analysis. Journal of the 
American Statistical Association. 2004;101:1730-1730

[68] Unay D, Gosselin B. Automatic defect segmentation of ‘Jonagold’ apples on multi-spec-
tral images: A comparative study. Postharvest Biology & Technology. 2006;42:271-279

[69] Baranowski P, Mazurek W, Wozniak J, Majewska U. Detection of early bruises in 
apples using hyperspectral data and thermal imaging. Journal of Food Engineering. 
2012;110:345-355

[70] Xing J, Saeys W, Baerdemaeker JD. Combination of chemometric tools and image 
processing for bruise detection on apples. Computers & Electronics in Agriculture. 
2007;56:1-13

Hyperspectral Imaging in Agriculture, Food and Environment58

[71] Li J, Tian X, Huang W, Zhang B, Fan S. Application of long-wave near infrared hyper-
spectral imaging for measurement of soluble solid content (SSC) in pear. Food Analytical 
Methods. 2016;9:3087-3098

[72] Gómez-Sanchis J, Lorente D, Soria-Olivas E, Aleixos N, Cubero S, Blasco J. Development 
of a hyperspectral computer vision system based on two liquid crystal tuneable filters for 
fruit inspection. Application to detect citrus fruits decay. Food & Bioprocess Technology. 
2014;7:1047-1056

[73] Liu Y, Chen YR, Wang CY, Chan DE, Kim MS. Development of hyperspectral imaging 
technique for the detection of chilling injury in cucumbers; spectral and image analysis. 
Applied Engineering in Agriculture. 2006;22:101-111

[74] Ariana DP, Lu RF. Evaluation of internal defect and surface color of whole pickles using 
hyperspectral imaging. Journal of Food Engineering. 2010;96:583-590

[75] Xing J, Bravo C, Jancsok PT, Ramon H, De Baerdemaeker J. Detecting bruises on ‘Golden 
Delicious’ apples using hyperspectral imaging with multiple wavebands. Biosystems 
Engineering. 2005;90:27-36

[76] Huang Q, Chen Q, Li H, et al. Non-destructively sensing pork’s freshness indicator 
using near infrared multispectral imaging technique. Rsc Advances. 2015;5:95903-95910

[77] Pu YY, Sun DW, Riccioli C, et al. Calibration transfer from micro NIR spectrometer to 
hyperspectral imaging: A case study on predicting soluble solids content of bananito 
fruit (Musa acuminata). Food Analytical Methods. 2017;1-13

[78] Peng Y, Lu R. Analysis of spatially resolved hyperspectral scattering images for assess-
ing apple fruit firmness and soluble solids content. Postharvest Biology & Technology. 
2008;48:52-62

[79] Leivavalenzuela GA, Lu R, Aguilera JM. Prediction of firmness and soluble solids con-
tent of blueberries using hyperspectral reflectance imaging. Journal of Food Engineering. 
2013;115:91-98

[80] Mendoza F, Lu R, Ariana D, et al. Integrated spectral and image analysis of hyperspec-
tral scattering data for prediction of apple fruit firmness and soluble solids content. 
Postharvest Biology & Technology. 2011;62:149-160

[81] Unay D, Gosselin B, Kleynen O, Leemans V, Destain MF, Debeir O. Automatic grad-
ing of bi-colored apples by multispectral machine vision. Computers and Electronics in 
Agriculture. 2011;75:204-212

[82] Throop JA, Aneshansley DJ, Anger WC, Peterson DL. Quality evaluation of apples 
based on surface defects: Development of an automated inspection system. Postharvest 
Biology and Technology. 2005;36:281-290

[83] Mehl PM, Chen YR, Kim MS, Chan DE. Development of hyperspectral imaging tech-
nique for the detection of apple surface defects and contaminations. Journal of Food 
Engineering. 2004;61:67-81

Hyperspectral Imaging and Their Applications in the Nondestructive Quality Assessment…
http://dx.doi.org/10.5772/intechopen.72250

59



[56] Liu F, He Y, Wang L, Pan H. Feasibility of the use of visible and near infrared spectros-
copy to assess soluble solids content and pH of rice wines. Journal of Food Engineering. 
2007;83:430-435

[57] Suykens JAK, Vandewalle J. Least squares support vector machine classifiers. Neural 
Processing Letters. 1999;9:293-300

[58] Lin S, Huang X. Advances in computer science, environment, ecoinformatics, and edu-
cation. In: International Conference, CSEE 2011, Wuhan, China, August 21-22, 2011. 
Proceedings, Part IV. Communications in Computer & Information Science. 2011. p. 218

[59] Shao Y, Yong H. Visible/near infrared spectroscopy and chemometrics for the prediction 
of trace element (Fe and Zn) levels in rice leaf. Sensors. 2013;13:1872

[60] Zou X, Zhao J. Nondestructive Measurement in Food and Agro-Products. 2015

[61] Sharma N, Ray AK, Sharma S, Shukla KK, Pradhan S, Aggarwal LM. Segmentation and 
classification of medical images using texture-primitive features: Application of BAM-
type artificial neural network. Journal of Medical Physics. 2008;33:119-126

[62] Jackman P, Sun DW, Allen P. Recent advances in the use of computer vision technol-
ogy in the quality assessment of fresh meats. Trends in Food Science & Technology. 
2011;22:185-197

[63] Narendra VG, Hareesh KS. Quality inspection and grading of agricultural and food 
products by computer vision-a review. International Journal of Computer Applications. 
2010;2:43-65

[64] Teena M, Manickavasagan A, Mothershaw A, Hadi SE, Jayas DS. Potential of machine 
vision techniques for detecting Fecal and microbial contamination of food products: A 
review. Food & Bioprocess Technology. 2013;6:1621-1634

[65] Kamila NK. Handbook of Research on Emerging Perspectives in Intelligent Pattern 
Recognition, Analysis, and Image Processing: Information Science Reference Imprint of: 
IGI Publishing. 2016

[66] Park B, Lu R. Hyperspectral imaging technology in food and agriculture. Food Engineering. 
2015

[67] Shawe-Taylor J, Cristianini N. Kernel methods for pattern analysis. Journal of the 
American Statistical Association. 2004;101:1730-1730

[68] Unay D, Gosselin B. Automatic defect segmentation of ‘Jonagold’ apples on multi-spec-
tral images: A comparative study. Postharvest Biology & Technology. 2006;42:271-279

[69] Baranowski P, Mazurek W, Wozniak J, Majewska U. Detection of early bruises in 
apples using hyperspectral data and thermal imaging. Journal of Food Engineering. 
2012;110:345-355

[70] Xing J, Saeys W, Baerdemaeker JD. Combination of chemometric tools and image 
processing for bruise detection on apples. Computers & Electronics in Agriculture. 
2007;56:1-13

Hyperspectral Imaging in Agriculture, Food and Environment58

[71] Li J, Tian X, Huang W, Zhang B, Fan S. Application of long-wave near infrared hyper-
spectral imaging for measurement of soluble solid content (SSC) in pear. Food Analytical 
Methods. 2016;9:3087-3098

[72] Gómez-Sanchis J, Lorente D, Soria-Olivas E, Aleixos N, Cubero S, Blasco J. Development 
of a hyperspectral computer vision system based on two liquid crystal tuneable filters for 
fruit inspection. Application to detect citrus fruits decay. Food & Bioprocess Technology. 
2014;7:1047-1056

[73] Liu Y, Chen YR, Wang CY, Chan DE, Kim MS. Development of hyperspectral imaging 
technique for the detection of chilling injury in cucumbers; spectral and image analysis. 
Applied Engineering in Agriculture. 2006;22:101-111

[74] Ariana DP, Lu RF. Evaluation of internal defect and surface color of whole pickles using 
hyperspectral imaging. Journal of Food Engineering. 2010;96:583-590

[75] Xing J, Bravo C, Jancsok PT, Ramon H, De Baerdemaeker J. Detecting bruises on ‘Golden 
Delicious’ apples using hyperspectral imaging with multiple wavebands. Biosystems 
Engineering. 2005;90:27-36

[76] Huang Q, Chen Q, Li H, et al. Non-destructively sensing pork’s freshness indicator 
using near infrared multispectral imaging technique. Rsc Advances. 2015;5:95903-95910

[77] Pu YY, Sun DW, Riccioli C, et al. Calibration transfer from micro NIR spectrometer to 
hyperspectral imaging: A case study on predicting soluble solids content of bananito 
fruit (Musa acuminata). Food Analytical Methods. 2017;1-13

[78] Peng Y, Lu R. Analysis of spatially resolved hyperspectral scattering images for assess-
ing apple fruit firmness and soluble solids content. Postharvest Biology & Technology. 
2008;48:52-62

[79] Leivavalenzuela GA, Lu R, Aguilera JM. Prediction of firmness and soluble solids con-
tent of blueberries using hyperspectral reflectance imaging. Journal of Food Engineering. 
2013;115:91-98

[80] Mendoza F, Lu R, Ariana D, et al. Integrated spectral and image analysis of hyperspec-
tral scattering data for prediction of apple fruit firmness and soluble solids content. 
Postharvest Biology & Technology. 2011;62:149-160

[81] Unay D, Gosselin B, Kleynen O, Leemans V, Destain MF, Debeir O. Automatic grad-
ing of bi-colored apples by multispectral machine vision. Computers and Electronics in 
Agriculture. 2011;75:204-212

[82] Throop JA, Aneshansley DJ, Anger WC, Peterson DL. Quality evaluation of apples 
based on surface defects: Development of an automated inspection system. Postharvest 
Biology and Technology. 2005;36:281-290

[83] Mehl PM, Chen YR, Kim MS, Chan DE. Development of hyperspectral imaging tech-
nique for the detection of apple surface defects and contaminations. Journal of Food 
Engineering. 2004;61:67-81

Hyperspectral Imaging and Their Applications in the Nondestructive Quality Assessment…
http://dx.doi.org/10.5772/intechopen.72250

59



[84] Kim MS, Cho BK, Lefcourt AM, Chen YR, Kang S. Multispectral fluorescence lifetime 
imaging of feces-contaminated apples by time-resolved laser-induced fluorescence 
imaging system with tunable excitation wavelengths. Applied Optics. 2008;47:1608-1616

[85] Elmasry G, Wang N, Vigneault C, et al. Early detection of apple bruises on different 
background colors using hyperspectral imaging. LWT – Food Science and Technology. 
2008;41:337-345

[86] Kleynen O, Leemans V, Destain MF. Selection of the most efficient wavelength bands for 
‘Jonagold’ apple sorting. Postharvest Biology and Technology. 2003;30:221-232

[87] Gomez-Sanchis J, Gomez-Chova L, Aleixos N, Camps-Valls G, Montesinos-Herrero C,  
Molto E, Blasco J. Hyperspectral system for early detection of rottenness caused by 
Penicillium digitatum in mandarins. Journal of Food Engineering. 2008;89:80-86

[88] Nicolaï BM, Lotze E, Peirs A Scheerlinck N, Theron KI. Non-destructive measurement 
of bitter pit in apple fruit using NIR hyperspectral imaging. Postharvest Biology and 
Technology. 2006;40:1-6

[89] Ariana D, Guyer DE, Shrestha B. Integrating multispectral reflectance and fluorescence 
imaging for defect detection on apples. Computers and Electronics in Agriculture. 
2006;50:148-161

[90] Kim MS, Chen Y-R, Cho B-K, Chao K, Yang C-C, Lefcourt AM, Chan D. Hyperspectral reflec-
tance and fluorescence line-scan imaging for online defect and fecal contamination inspec-
tion of apples. Sensing and Instrumentation for Food Quality and Safety. 2007;1:151-159

[91] Lee D-J, Schoenberger R, Archibald J, McCollum S. Development of a machine vision 
system for automatic date grading using digital reflective near-infrared imaging. Journal 
of Food Engineering. 2008;86:388-398

[92] Lu R. Detection of bruises on apples using near-infrared hyperspectral imaging. 
Transactions of the ASAE. 2003;46:523-530

[93] Bennedsen BS, Peterson DL, Tabb A. Identifying defects in images of rotating apples. 
Computers and Electronics in Agriculture. 2005;48:92-102

[94] Bennedsen BS, Peterson DL, Tabb A. Identifying apple surface defects using princi-
pal components analysis and artificial neural networks. Transactions of the ASABE. 
2007;50:2257-2265

[95] ElMasry G, Wang N, Vigneault C. Detecting chilling injury in red delicious apple using 
hyperspectral imaging and neural networks. Postharvest Biology and Technology. 
2009;52:1-8

[96] Qin JW, Burks TF, Zhao XH, Niphadkar N, Ritenour MA. Development of a two-
band spectral imaging system for real-time citrus canker detection. Journal of Food 
Engineering. 2012;108:87-93

[97] Blasco J, Cubero S, Gomez-Sanchis J, Mira P, Molto E. Development of a machine for the 
automatic sorting of pomegranate (Punica Granatum) arils based on computer vision. 
Journal of Food Engineering. 2009;90:27-34

Hyperspectral Imaging in Agriculture, Food and Environment60

[98] Li JB, Rao XQ, Ying YB. Detection of common defects on oranges using hyperspectral 
reflectance imaging. Computers and Electronics in Agriculture. 2011;78:38-48

[99] Gomez-Sanchis J, Martin-Guerrero JD, Soria-Olivas E, Martinez-Sober M, Magdalena-
Benedito R, Blasco J. Detecting rottenness caused by Penicillium genus fungi in cit-
rus fruits using machine learning techniques. Expert Systems with Applications. 
2012;39:780-785

[100] Zhao JW, Ouyang Q, Chen QS, Wang JH. Detection of bruise on pear by hyperspectral 
imaging sensor with different classification algorithms. Sensor Letters. 2010;8:570-576

[101] Nagata M, Tallada JG, Kobayashi T. Bruise detection using NIR hyperspectral imag-
ing for strawberry (Fragaria × ananassa Duch.). Environment Control in Biology. 
2006;44:133

[102] Qin J, Lu R. Detection of pits in tart cherries by hyperspectral transmission imaging. 
Transactions of the ASAE. 2005;48:1963-1970

[103] Wang J, Nakano K, Ohashi S, et al. Detection of external insect infestations in jujube fruit 
using hyperspectral reflectance imaging. Biosystems Engineering. 2011;108:345-351

[104] Cheng X, Chen YR, Tao Y, Wang CY, Kim MS, Lefcourt AM. A novel integrated PCA 
and FLD method on hyperspectral image feature extraction for cucumber chllling dam-
age inspection. Transactions of the ASAE. 2004;47:1313-1320

[105] Liu YL, Chen YR, Wang CY, Chan DE, Kim MS. Development of a simple algorithm for 
the detection of chilling injury in cucumbers from visible/near-infrared hyperspectral 
imaging. Applied Spectroscopy. 2005;59:78-85

[106] Gowen AA, O’Donnell CP, Taghizadeh M, Cullen PJ, Frias JM, Downey G. Hyperspectral 
imaging combined with principal component analysis for bruise damage detection on 
white mushrooms (Agaricus bisporus). Journal of Chemometrics. 2008;22:259-267

[107] Gowen AA, Taghizadeh M, O’Donnell CP. Identification of mushrooms subjected to 
freeze damage using hyperspectral imaging. Journal of Food Engineering. 2009;93:7-12

[108] Taghizadeh M, Gowen AA, O’Donnell CP. The potential of visible-near infrared hyper-
spectral imaging to discriminate between casing soil, enzymatic browning and undam-
aged tissue on mushroom (Agaricus bisporus) surfaces. Computers and Electronics in 
Agriculture. 2011;77:74-80

[109] Wang Y, Zhang M, Mujumdar AS. Influence of green banana flour substitution for cas-
sava starch on the nutrition, color, texture and sensory quality in two types of snacks. 
LWT-Food Science and Technology. 2012;47:175-182

[110] Rajkumar P, Wang N, Eimasry G, Gsv R, Gariepy Y. Studies on banana fruit qual-
ity and maturity stages using hyperspectral imaging. Journal of Food Engineering. 
2012;108:194-200

[111] Elmasry G, Wang N, Elsayed A, et al. Hyperspectral imaging for nondestructive 
determination of some quality attributes for strawberry. Journal of Food Engineering. 
2007;81:98-107

Hyperspectral Imaging and Their Applications in the Nondestructive Quality Assessment…
http://dx.doi.org/10.5772/intechopen.72250

61



[84] Kim MS, Cho BK, Lefcourt AM, Chen YR, Kang S. Multispectral fluorescence lifetime 
imaging of feces-contaminated apples by time-resolved laser-induced fluorescence 
imaging system with tunable excitation wavelengths. Applied Optics. 2008;47:1608-1616

[85] Elmasry G, Wang N, Vigneault C, et al. Early detection of apple bruises on different 
background colors using hyperspectral imaging. LWT – Food Science and Technology. 
2008;41:337-345

[86] Kleynen O, Leemans V, Destain MF. Selection of the most efficient wavelength bands for 
‘Jonagold’ apple sorting. Postharvest Biology and Technology. 2003;30:221-232

[87] Gomez-Sanchis J, Gomez-Chova L, Aleixos N, Camps-Valls G, Montesinos-Herrero C,  
Molto E, Blasco J. Hyperspectral system for early detection of rottenness caused by 
Penicillium digitatum in mandarins. Journal of Food Engineering. 2008;89:80-86

[88] Nicolaï BM, Lotze E, Peirs A Scheerlinck N, Theron KI. Non-destructive measurement 
of bitter pit in apple fruit using NIR hyperspectral imaging. Postharvest Biology and 
Technology. 2006;40:1-6

[89] Ariana D, Guyer DE, Shrestha B. Integrating multispectral reflectance and fluorescence 
imaging for defect detection on apples. Computers and Electronics in Agriculture. 
2006;50:148-161

[90] Kim MS, Chen Y-R, Cho B-K, Chao K, Yang C-C, Lefcourt AM, Chan D. Hyperspectral reflec-
tance and fluorescence line-scan imaging for online defect and fecal contamination inspec-
tion of apples. Sensing and Instrumentation for Food Quality and Safety. 2007;1:151-159

[91] Lee D-J, Schoenberger R, Archibald J, McCollum S. Development of a machine vision 
system for automatic date grading using digital reflective near-infrared imaging. Journal 
of Food Engineering. 2008;86:388-398

[92] Lu R. Detection of bruises on apples using near-infrared hyperspectral imaging. 
Transactions of the ASAE. 2003;46:523-530

[93] Bennedsen BS, Peterson DL, Tabb A. Identifying defects in images of rotating apples. 
Computers and Electronics in Agriculture. 2005;48:92-102

[94] Bennedsen BS, Peterson DL, Tabb A. Identifying apple surface defects using princi-
pal components analysis and artificial neural networks. Transactions of the ASABE. 
2007;50:2257-2265

[95] ElMasry G, Wang N, Vigneault C. Detecting chilling injury in red delicious apple using 
hyperspectral imaging and neural networks. Postharvest Biology and Technology. 
2009;52:1-8

[96] Qin JW, Burks TF, Zhao XH, Niphadkar N, Ritenour MA. Development of a two-
band spectral imaging system for real-time citrus canker detection. Journal of Food 
Engineering. 2012;108:87-93

[97] Blasco J, Cubero S, Gomez-Sanchis J, Mira P, Molto E. Development of a machine for the 
automatic sorting of pomegranate (Punica Granatum) arils based on computer vision. 
Journal of Food Engineering. 2009;90:27-34

Hyperspectral Imaging in Agriculture, Food and Environment60

[98] Li JB, Rao XQ, Ying YB. Detection of common defects on oranges using hyperspectral 
reflectance imaging. Computers and Electronics in Agriculture. 2011;78:38-48

[99] Gomez-Sanchis J, Martin-Guerrero JD, Soria-Olivas E, Martinez-Sober M, Magdalena-
Benedito R, Blasco J. Detecting rottenness caused by Penicillium genus fungi in cit-
rus fruits using machine learning techniques. Expert Systems with Applications. 
2012;39:780-785

[100] Zhao JW, Ouyang Q, Chen QS, Wang JH. Detection of bruise on pear by hyperspectral 
imaging sensor with different classification algorithms. Sensor Letters. 2010;8:570-576

[101] Nagata M, Tallada JG, Kobayashi T. Bruise detection using NIR hyperspectral imag-
ing for strawberry (Fragaria × ananassa Duch.). Environment Control in Biology. 
2006;44:133

[102] Qin J, Lu R. Detection of pits in tart cherries by hyperspectral transmission imaging. 
Transactions of the ASAE. 2005;48:1963-1970

[103] Wang J, Nakano K, Ohashi S, et al. Detection of external insect infestations in jujube fruit 
using hyperspectral reflectance imaging. Biosystems Engineering. 2011;108:345-351

[104] Cheng X, Chen YR, Tao Y, Wang CY, Kim MS, Lefcourt AM. A novel integrated PCA 
and FLD method on hyperspectral image feature extraction for cucumber chllling dam-
age inspection. Transactions of the ASAE. 2004;47:1313-1320

[105] Liu YL, Chen YR, Wang CY, Chan DE, Kim MS. Development of a simple algorithm for 
the detection of chilling injury in cucumbers from visible/near-infrared hyperspectral 
imaging. Applied Spectroscopy. 2005;59:78-85

[106] Gowen AA, O’Donnell CP, Taghizadeh M, Cullen PJ, Frias JM, Downey G. Hyperspectral 
imaging combined with principal component analysis for bruise damage detection on 
white mushrooms (Agaricus bisporus). Journal of Chemometrics. 2008;22:259-267

[107] Gowen AA, Taghizadeh M, O’Donnell CP. Identification of mushrooms subjected to 
freeze damage using hyperspectral imaging. Journal of Food Engineering. 2009;93:7-12

[108] Taghizadeh M, Gowen AA, O’Donnell CP. The potential of visible-near infrared hyper-
spectral imaging to discriminate between casing soil, enzymatic browning and undam-
aged tissue on mushroom (Agaricus bisporus) surfaces. Computers and Electronics in 
Agriculture. 2011;77:74-80

[109] Wang Y, Zhang M, Mujumdar AS. Influence of green banana flour substitution for cas-
sava starch on the nutrition, color, texture and sensory quality in two types of snacks. 
LWT-Food Science and Technology. 2012;47:175-182

[110] Rajkumar P, Wang N, Eimasry G, Gsv R, Gariepy Y. Studies on banana fruit qual-
ity and maturity stages using hyperspectral imaging. Journal of Food Engineering. 
2012;108:194-200

[111] Elmasry G, Wang N, Elsayed A, et al. Hyperspectral imaging for nondestructive 
determination of some quality attributes for strawberry. Journal of Food Engineering. 
2007;81:98-107

Hyperspectral Imaging and Their Applications in the Nondestructive Quality Assessment…
http://dx.doi.org/10.5772/intechopen.72250

61



[112] Li J, Zhang B, Zhao C, et al. Qualitative analysis of soluble solid content and firm-
ness of pear based on successive projections algorithm and least square support vector 
machine. Sensor Letters. 2014;12:575-580 (576)

[113] Peng Y, Lu R. Improving apple fruit firmness predictions by effective correction of mul-
tispectral scattering images. Postharvest Biology & Technology. 2006;41:266-274

[114] Fan S, Huang W, Guo Z, Zhang B, Zhao C. Prediction of soluble solids content and 
firmness of pears using hyperspectral reflectance imaging. Food Analytical Methods. 
2015;8:1936-1946

[115] Qin J, Lu R, Peng Y. Internal quality evaluation of apples using spectral absorption and 
scattering properties. Proceedings of SPIE. 2007;6761, 67610M-67610M-67611

[116] Noh HK, Lu R. Hyperspectral laser-induced fluorescence imaging for assessing apple 
fruit quality. Postharvest Biology & Technology. 2007;43:193-201

[117] Cayuela JA, Garc AJM, Caliani N. NIR prediction of fruit moisture, free acidity and oil 
content in intact olives. Grasas Y Aceites. 2009;60:194-202

[118] Rungpichayapichet P, Nagle M, Yuwanbun P, Khuwijitjaru P, Mahayothee B, Müller J.  
Prediction mapping of physicochemical properties in mango by hyperspectral imag-
ing. Biosystems Engineering. 2017;159:109-120

[119] Baiano A, Terracone C, Peri G, et al. Application of hyperspectral imaging for predic-
tion of physico-chemical and sensory characteristics of table grapes. Computers & 
Electronics in Agriculture. 2012;87:142-151

[120] Kobayashi K, Matsui Y, Maebuchi Y, et al. Near infrared spectroscopy and hyperspec-
tral imaging for prediction and visualisation of fat and fatty acid content in intact raw 
beef cuts. Journal of Near Infrared Spectroscopy. 2010;18:301-315

[121] Abdel-Nour N, Ngadi M. Detection of omega-3 fatty acid in designer eggs using hyper-
spectral imaging. International Journal of Food Sciences & Nutrition. 2011;62:418-422

[122] Liu L, Ngadi MO. Detecting fertility and early embryo development of chicken 
eggs using near-infrared hyperspectral imaging. Food & Bioprocess Technology. 
2013;6:2503-2513

[123] Pu YY, Feng YZ, Sun DW. Recent progress of hyperspectral imaging on quality and 
safety inspection of fruits and vegetables: A review. Comprehensive Reviews in Food 
Science & Food Safety. 2015;14:176-188

[124] Mollazade K, Omid M, Akhlaghian-Tab F, Mohtasebi SS, Zude M. Spatial mapping of 
moisture content in tomato fruits using hyperspectral imaging and artificial neural net-
works. In: CIGR-Ageng2012: IV International workshop on Computer Image Analysis 
in Agriculture. 2012

[125] Dong J, Guo W, Wang Z, et al. Nondestructive determination of soluble solids content 
of ‘Fuji’ apples produced in different areas and bagged with different materials during 
ripening. Food Analytical Methods. 2016;9:1087-1095

Hyperspectral Imaging in Agriculture, Food and Environment62

[126] Firtha F, Fekete A, Kaszab T, Gillay B, Nogulanagy M, Kovács Z, Kantor DB. Methods 
for improving image quality and reducing data load of NIR hyperspectral images. 
Sensors. 2008;8:3287

[127] Huang M, Wang Q, Zhang M, Zhu Q. Prediction of color and moisture content for veg-
etable soybean during drying using hyperspectral imaging technology. Journal of Food 
Engineering. 2014;128:24-30

[128] Maria T, Tsaniklidis G, Delis C, Nikolopoulou AE, Nikoloudakis N, Karapanos I, 
Aivalakis G. Gene transcript accumulation and enzyme activity of β-amylases suggest 
involvement in the starch depletion during the ripening of cherry tomatoes. Plant Gene. 
2016;5:8-12

[129] Menesatti P, Zanella A, D’Andrea S, Costa C, Paglia G, Pallottino F, Zude M. Supervised 
multivariate analysis of hyper-spectral NIR images to evaluate the starch index of 
apples. Food & Bioprocess Technology. 2009;2:308-314

[130] Peirs A, Scheerlinck N, De Baerdemaeker J, et al. Starch index determination of apple 
fruit by means of a hyperspectral near infrared reflectance imaging system. Journal of 
Near Infrared Spectroscopy. 2003;11:379-389

[131] Chen WU, Jian-Guo HE, Xiao-Guang HE, et al. Non-destructive detection of starch con-
tent in potatoes based on near-infrared hyperspectral imaging technique. Journal of 
Henan University of Technology. 2014

[132] Trong NND, Tsuta M, Nicola BM, et al. Prediction of optimal cooking time for boiled 
potatoes by hyperspectral imaging. Journal of Food Engineering. 2011;105:617-624

[133] Crisosto CH. Stone fruit maturity indices: A descriptive review. Postharvest News & 
Information. 1994

[134] Garridonovell C, Pérezmarin D, Amigo JM, Fernándeznovales J, Guerrero JE, 
Garridovaro A. Grading and color evolution of apples using RGB and hyperspectral 
imaging vision cameras. Journal of Food Engineering. 2012;113:281-288

[135] Herrerolangreo A, Lunadei L, Lle L, et al. Multispectral vision for monitoring peach 
ripeness. Journal of Food Science. 2011;76:E178

[136] Girod D, Landry JA, Doyon G, Osuna-García JA, Salazar-García S, Goenaga R. 
Evaluating hass avocado maturity using hyperspectral imaging. Caribbean Food Crops 
Society. 2008

[137] Greensill C, Newman D. An investigation into the determination of the maturity of 
pawpaws (Carica papaya) from NIR transmission spectra. Journal of Near Infrared 
Spectroscopy. 1999;7:109-116

[138] Julio NB, José Miguel HH, Francisco José H. Determination of technological matu-
rity of grapes and total phenolic compounds of grape skins in red and white cultivars 
during ripening by near infrared hyperspectral image: A preliminary approach. Food 
Chemistry. 2014;152:586-591

Hyperspectral Imaging and Their Applications in the Nondestructive Quality Assessment…
http://dx.doi.org/10.5772/intechopen.72250

63



[112] Li J, Zhang B, Zhao C, et al. Qualitative analysis of soluble solid content and firm-
ness of pear based on successive projections algorithm and least square support vector 
machine. Sensor Letters. 2014;12:575-580 (576)

[113] Peng Y, Lu R. Improving apple fruit firmness predictions by effective correction of mul-
tispectral scattering images. Postharvest Biology & Technology. 2006;41:266-274

[114] Fan S, Huang W, Guo Z, Zhang B, Zhao C. Prediction of soluble solids content and 
firmness of pears using hyperspectral reflectance imaging. Food Analytical Methods. 
2015;8:1936-1946

[115] Qin J, Lu R, Peng Y. Internal quality evaluation of apples using spectral absorption and 
scattering properties. Proceedings of SPIE. 2007;6761, 67610M-67610M-67611

[116] Noh HK, Lu R. Hyperspectral laser-induced fluorescence imaging for assessing apple 
fruit quality. Postharvest Biology & Technology. 2007;43:193-201

[117] Cayuela JA, Garc AJM, Caliani N. NIR prediction of fruit moisture, free acidity and oil 
content in intact olives. Grasas Y Aceites. 2009;60:194-202

[118] Rungpichayapichet P, Nagle M, Yuwanbun P, Khuwijitjaru P, Mahayothee B, Müller J.  
Prediction mapping of physicochemical properties in mango by hyperspectral imag-
ing. Biosystems Engineering. 2017;159:109-120

[119] Baiano A, Terracone C, Peri G, et al. Application of hyperspectral imaging for predic-
tion of physico-chemical and sensory characteristics of table grapes. Computers & 
Electronics in Agriculture. 2012;87:142-151

[120] Kobayashi K, Matsui Y, Maebuchi Y, et al. Near infrared spectroscopy and hyperspec-
tral imaging for prediction and visualisation of fat and fatty acid content in intact raw 
beef cuts. Journal of Near Infrared Spectroscopy. 2010;18:301-315

[121] Abdel-Nour N, Ngadi M. Detection of omega-3 fatty acid in designer eggs using hyper-
spectral imaging. International Journal of Food Sciences & Nutrition. 2011;62:418-422

[122] Liu L, Ngadi MO. Detecting fertility and early embryo development of chicken 
eggs using near-infrared hyperspectral imaging. Food & Bioprocess Technology. 
2013;6:2503-2513

[123] Pu YY, Feng YZ, Sun DW. Recent progress of hyperspectral imaging on quality and 
safety inspection of fruits and vegetables: A review. Comprehensive Reviews in Food 
Science & Food Safety. 2015;14:176-188

[124] Mollazade K, Omid M, Akhlaghian-Tab F, Mohtasebi SS, Zude M. Spatial mapping of 
moisture content in tomato fruits using hyperspectral imaging and artificial neural net-
works. In: CIGR-Ageng2012: IV International workshop on Computer Image Analysis 
in Agriculture. 2012

[125] Dong J, Guo W, Wang Z, et al. Nondestructive determination of soluble solids content 
of ‘Fuji’ apples produced in different areas and bagged with different materials during 
ripening. Food Analytical Methods. 2016;9:1087-1095

Hyperspectral Imaging in Agriculture, Food and Environment62

[126] Firtha F, Fekete A, Kaszab T, Gillay B, Nogulanagy M, Kovács Z, Kantor DB. Methods 
for improving image quality and reducing data load of NIR hyperspectral images. 
Sensors. 2008;8:3287

[127] Huang M, Wang Q, Zhang M, Zhu Q. Prediction of color and moisture content for veg-
etable soybean during drying using hyperspectral imaging technology. Journal of Food 
Engineering. 2014;128:24-30

[128] Maria T, Tsaniklidis G, Delis C, Nikolopoulou AE, Nikoloudakis N, Karapanos I, 
Aivalakis G. Gene transcript accumulation and enzyme activity of β-amylases suggest 
involvement in the starch depletion during the ripening of cherry tomatoes. Plant Gene. 
2016;5:8-12

[129] Menesatti P, Zanella A, D’Andrea S, Costa C, Paglia G, Pallottino F, Zude M. Supervised 
multivariate analysis of hyper-spectral NIR images to evaluate the starch index of 
apples. Food & Bioprocess Technology. 2009;2:308-314

[130] Peirs A, Scheerlinck N, De Baerdemaeker J, et al. Starch index determination of apple 
fruit by means of a hyperspectral near infrared reflectance imaging system. Journal of 
Near Infrared Spectroscopy. 2003;11:379-389

[131] Chen WU, Jian-Guo HE, Xiao-Guang HE, et al. Non-destructive detection of starch con-
tent in potatoes based on near-infrared hyperspectral imaging technique. Journal of 
Henan University of Technology. 2014

[132] Trong NND, Tsuta M, Nicola BM, et al. Prediction of optimal cooking time for boiled 
potatoes by hyperspectral imaging. Journal of Food Engineering. 2011;105:617-624

[133] Crisosto CH. Stone fruit maturity indices: A descriptive review. Postharvest News & 
Information. 1994

[134] Garridonovell C, Pérezmarin D, Amigo JM, Fernándeznovales J, Guerrero JE, 
Garridovaro A. Grading and color evolution of apples using RGB and hyperspectral 
imaging vision cameras. Journal of Food Engineering. 2012;113:281-288

[135] Herrerolangreo A, Lunadei L, Lle L, et al. Multispectral vision for monitoring peach 
ripeness. Journal of Food Science. 2011;76:E178

[136] Girod D, Landry JA, Doyon G, Osuna-García JA, Salazar-García S, Goenaga R. 
Evaluating hass avocado maturity using hyperspectral imaging. Caribbean Food Crops 
Society. 2008

[137] Greensill C, Newman D. An investigation into the determination of the maturity of 
pawpaws (Carica papaya) from NIR transmission spectra. Journal of Near Infrared 
Spectroscopy. 1999;7:109-116

[138] Julio NB, José Miguel HH, Francisco José H. Determination of technological matu-
rity of grapes and total phenolic compounds of grape skins in red and white cultivars 
during ripening by near infrared hyperspectral image: A preliminary approach. Food 
Chemistry. 2014;152:586-591

Hyperspectral Imaging and Their Applications in the Nondestructive Quality Assessment…
http://dx.doi.org/10.5772/intechopen.72250

63



Chapter 4

Hyperspectral Imaging for Assessing Quality and
Safety of Meat

Wenxiu Wang and Yankun Peng

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.74371

Provisional chapter

DOI: 10.5772/intechopen.74371

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons  
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,  
distribution, and reproduction in any medium, provided the original work is properly cited. 

Hyperspectral Imaging for Assessing Quality and 
Safety of Meat

Wenxiu Wang and Yankun Peng

Additional information is available at the end of the chapter

Abstract

Hyperspectral imaging (HSI) technology is a novel nondestructive method and has found 
various applications in the agricultural and food industry. In this chapter, the employ-
ment of HSI for meat quality assessment and safety control was summarized. The quality 
attributes include sensory attributes (color and marbling), chemical attributes (moisture, 
protein, intramuscular fat, and fatty acids), and technological attributes (pH, tenderness, 
and water holding capacity (WHC)). The safety attributes mainly include bacterial con-
tamination and freshness determination. The spectral method is described in terms of 
the basic working principle, fundamental configurations, analysis period, and applica-
tions in meat assessment. In addition, the advantages, disadvantages, and problems to 
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are concerned with nutritive value and human health. Technological attributes like pH, water 
holding capacity (WHC), and tenderness are important factors that affect the eating quality 
[2]. Safety is another concern about meat, which can be challenged in several ways, such as 
biological issues and chemical contamination [3]. The former is considered as the biggest 
threat. This is because meat is ease of perishability and is suitable for the microbial growth.

The conventional methods for determination of the aforementioned traits include sensory 
evaluation and instrumental analysis [4]. They can provide accurate results and have been 
used for decades. However, they have some drawbacks as they are destructive, time-con-
suming, and labor-intensive. To match up with the demands of producers, manufacturers, 
distributors, retailers, and especially consumers for reliable and real-time evaluation of meat, 
nondestructive, rapid, and efficient tools are in urgent need. Hyperspectral imaging (HSI) 
technology has emerged as an alternative method. It combines the advantages of spectro-
scopic and imaging techniques and can acquire the spatial and spectral information simul-
taneously [5]. Owing to the merits, it has found numerous applications in agro-products for 
determination of internal traits and external features [6, 7]. A typical hyperspectral reflec-
tance measurement system is shown in Figure 1, which mainly consists of a CCD camera, an 
imaging spectrograph, a zoom lens, illumination, computer, etc. When obtaining scattering 
images, an optical fiber is usually needed to form a point light source [8]. The hyperspectral 
data are collected in a three-dimensional (3D) form called “hypercube,” among which two 
dimensions are spatial information expressed in x and y, and the third dimension is wave-
length information, which is represented with λ [9].

After acquisition of reflectance images, chemometric tools are required to relate them and 
reference values of tested samples. Generally, the image is corrected and segmented first. 
Then, a range of interest (ROI) is selected and the mean spectrum is extracted from it. 
Figure 2 shows the reflectance spectra extracted from a pixel. Subsequently, the spectrum 
undergoes (1) pretreatments to reduce and correct the adverse interferences caused by 
scattering, baseline drift, etc. The commonly used methods include Savitzky-Golay (SG) 

Figure 1. Schematic diagram of a hyperspectral reflectance measurement system.
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smoothing, derivation, standard normal variate transformation (SNVT), orthogonal sig-
nal correction (OSC), and so on [10]; (2) feature wavelengths selection to eliminate the 
unwanted information and retain the characteristic wavelengths for simplifying the model-
ing. Genetic algorithm (GA), successive projection algorithm (SPA), uninformative variable 
elimination (UVE), etc. are efficient approaches for this purpose; (3) model establishment 
for quantitative or qualitative analysis using partial least squares regression (PLSR), mul-
tiple linear regression (MLR), least squares support vector machine (LS-SVM), and so on. 
In this case, chemical maps can be created by transferring the model to every pixel in the 
image to show distributions of each ingredient in a pixel-wise manner. Usually, the mod-
els are evaluated with correlation coefficient of calibration, prediction, and cross validation 
(Rc, Rp, and Rcv) and coefficient of determination for the calibration, prediction, and cross 
validation (Rc

2, Rp
2, and Rcv

2).

As to the spatially resolved hyperspectral images, effective nonlinear curve-fitting algorithms 
are usually required to extract scattering characteristics. Lorentzian distribution function is 
one of them, which has been intensively used in optic research to describe the light distribu-
tion patterns. It has three forms of expression: two-parameter, three-parameter, and four-
parameter [11], and they are expressed as shown in Eqs. (1)–(3):

  R =   b ______ 1 +   (x / c)    2     (1)

  R = a +   b ______ 1 +   (x / c)    2     (2)

  R = a +   b _______ 1 +   (x / c)    d     (3)

Figure 2. Reflectance spectra extracted from hyperspectral image.
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where R represents the light intensity, x is the scattering distance, a is the asymptotic value, 
b represents the peak value, c is the full width at b/2, and d is the slope around the inflection 
point. Similar with the Lorentzian distribution function, Gompertz function also has three 
forms of expression, namely, two-parameter, three-parameter, and four-parameter functions 
[11]. Eqs. (4)–(6) show their mathematical expressions:

  R = 1 − exp  {exp  (ε − 𝛿𝛿x) }   (4)

  R = 1 −  (1 − α)  exp  {− exp  (ε − 𝛿𝛿x) }   (5)

  R = α + β [1 − exp  {− exp  (ε − 𝛿𝛿x) } ]   (6)

where R represents the light intensity, x is the scattering distance, α is the asymptotic value, β 
is the upper value, ε represents the full scattering width, and δ is the slope value. Boltzmann 
function is another equation to describe light scattering and absorption in turbid materials. 
Absorption coefficient (μa) and scattering coefficient (μs’) can be extracted to characterize the 
chemical or physical properties of tested samples. A more detailed introduction to the fitting 
functions was given by Peng [12].

As a vast number of data are contained in a hyperspectral image, the high-dimensional nature 
increases the difficulty in acquiring and processing the huge data. Multispectral imaging (MSI) 
is a simplified version, which uses few (generally less than 10) discrete spectral images. By 
acquiring the spatial and spectral information that are directly useful for meat detection, the 
experiment and analysis period are simplified [13]. Besides, simpler algorithms are needed, 
and the data size is decreased significantly, making it feasible to be implemented in the field 
or industry for real-time applications.

2. Quality assessment using HSI

2.1. Sensory quality attributes

Of all the sensory attributes, color is one of the most critical indicators which determine the 
first impression on meat for consumers. Meanwhile, they also reflect the freshness degree 
of meat and will in turn affect consumers’ willingness to purchase. Color is related with 
the content and molecular type of myoglobin and hemoglobin in meat. Conventionally, the 
meat color is measured by means of a colorimeter to obtain the L* (light), a* (red-green), 
and b* (yellow-blue). Marbling pattern is another important indicator, which would directly 
influence the grade and price of meat. The grading of meat is commonly conducted by well-
trained professionals referring to different carcass grading standards.

To overcome the shortcomings of subjectivity and laboriousness in the traditional method, a 
HSI system in the spectral range of 400–1100 nm (Figure 3a) was used to acquire the scattering 

Hyperspectral Imaging in Agriculture, Food and Environment68

images of beef samples [14]. Different from that in Figure 1, a halogen tungsten lamp coupled 
with an optical fiber constituted the light source unit. The hyperspectral image was shown in 
Figure 3b, in which the vertical axis was wavelength axis and the horizontal axis represented 
the spatial distance. Then, three-parameter Lorentzian distribution function was employed to 
fit the scattering profile. A good fitting effect was observed between 450 and 1090 nm with the 
correlation coefficient greater than 0.90. The wavelengths below 450 nm and above 1090 nm 
contained considerable noise; hence, they were eliminated in the subsequent analysis.

Stepwise regression analysis was performed to determine the characteristic wavelengths 
before model establishment. Seven, seven, and eight wavelengths were selected for L*, a*, 
and b*, respectively, as shown in Table 1. Most of the identified wavelengths were related 
with deoxymyoglobin, oxymyoglobin, metmyoglobin, and sulfmyoglobin. Then, MLR mod-
els based on the combined Lorentzian parameters were created with Rcv of 0.96, 0.96, and 0.97 
for L*, a*, and b*, respectively. The satisfactory results demonstrated the feasibility of spatially 
scattering information for color evaluation.

The nondestructive determination of meat color based on reflectance spectra was also carried 
out. Hyperspectral images of beef, lamb, and pork in the range of 400–1000 nm were collected 
[15]. Unlike the previous studies in which different feature wavelengths were selected for 
each attribute, a set of important variables were identified for L*, a*, and b* to create models. 
They were 450, 460, 600, 620, 820, and 980 nm, which had little deviation from those chosen in 

Figure 3. (a) Acquisition system for hyperspectral scattering image and (b) original scattering image for beef sample.

Quality attributes Feature wavelengths (nm)

L* 653, 678, 722, 868, 875, 920, 1050

a* 465, 575, 614, 635, 671, 724, 978

b* 486, 524, 540, 645, 700, 721, 780, 954

Table 1. Feature wavelengths for color selected by stepwise regression analysis.
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Ref. [14]. The differences in image acquisition system and chemical compositions of meat may 
account for the deviation. Based on the six wavelengths, MLR models were built which gave 
Rp

2 of 0.97, 0.84, and 0.82 for L*, a*, and b*. The results also laid foundation for the develop-
ment of MSI detection device for color determination.

The capacity of HSI technology for beef marbling grade analysis has been confirmed. Images 
of a total of 33 beef samples were collected and divided into seven grades, 1, 1.5, 2, 2.5, 3, 3.5, 
and 4, according to the industry standard NY/T 676–2003 [16]. Figure 4 showed the image of 
a sample with grade of 3 at 470, 550, 600, 660, 720, 850, and 950 nm. The eighth one in Figure 
4 was the combination of images at 720 (red), 550 (green), and 470 nm (blue). It can be seen 
that higher brightness and stronger muscle reflexes were found in the near-infrared region. In 
the visible region, the muscles and fat had larger contrast, which was favorable for marbling 
segmentation. Then, ROIs for the muscle and fat were selected, respectively, and their mean 
reflectance spectra were extracted from the ROI. Calculate the reflection intensity ratios of the 
muscle and fat at each wavelength, and the biggest ratio was observed at 530 nm. Hence, it was 
identified as the optimal wavelength for marbling feature extraction.

Based on the images at 530 nm, big fat area (higher than 14.88 mm2 which corresponded to 75 
pixels), medium fat area (between 3.72 and 14.88 mm2), and small fat area (below 3.72 mm2 
which corresponded to 20 pixels) were calculated. Taking the three parameters as indepen-
dent variables, MLR model was built with Rcv

2 of 0.92 and standard error of cross validation 
(SECV) of 0.45. Meanwhile, the regular decision function was also trialed to relate the image 
features and marbling grades with classification accuracy of 78.8%, which was lower than 
MLR model (84.8%). The overall results were satisfactory and demonstrated the feasibility of 
HSI for marbling evaluation.

The marbling scores of fresh, frozen, and frozen-thawed pork were quantified by a HSI 
system in the range of 900–1700 nm [17]. After ROI selection, a Gabor filter was performed 

Figure 4. Images at seven wavelengths and RGB image of beef sample.
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on the images, and the mean Gabor-filtered spectra and raw spectra were obtained. Then, 
they were pretreated with first derivative (FD), and MLR models were built linking the pro-
cessed spectra at the feature wavelengths and marbling scores. The wavelengths selected 
and model results for fresh, frozen, and frozen-thawed pork were shown in Table 2. The 
promising results confirmed the capacity of Gabor filter technique in extracting image 
features.

2.2. Chemical quality attributes

Of all the chemical compositions, moisture, protein, and IMF are three major components of 
meat. FAs are also important indicators and have attracted more and more attentions in recent 
days. The reasons may be that the amount and types of FAs would influence other attributes 
and they also had some relationship with the cardiovascular diseases [18]. The traditional 
measurement methods for those attributes were drying method, Soxhlet method, Kjeldahl 
method, or gas chromatographic method. They are destructive, time-consuming, and labori-
ous and cannot realize simultaneous detection of multiple attributes. As these chemical com-
positions contained C▬H, N▬H, or O▬H bonds, the applications of HSI mainly focused on 
the usage of reflectance spectra to realize nondestructive determination.

A HSI system in the range of 900–1700 nm was used for determination of moisture, IMF, and 
protein in lamb meat [19]. A total of 126 samples containing three different muscles (semi-
tendinosus (ST), semimembranosus (SM), and longissimus dorsi (LD)) were employed for 
hyperspectral image acquisition and reference analysis. After image correction and segmen-
tation, spectral data were extracted from the ROIs. Samples were divided into calibration 
and validation set according to a ratio of 2:1, namely, 84 vs. 42 samples. The ranges of mois-
ture, IMF, and protein in the calibration set were 69.65–76.35, 0.75–7.62, and 21.30–24.05%. 
In the prediction set, the ranges were 69.45–75.64, 0.74–6.01, and 21.24–23.84%. The mois-
ture and IMF had a big standard deviation, while the protein had a relatively small standard 
deviation.

First, PLSR models based on full-band spectra were built. Rcv
2 of 0.94, 0.94, and 0.67 were found 

for moisture, IMF, and protein. The reason for the poor prediction ability for protein may be 

Sample Image features Key wavelengths Rc Rcv Rp

Fresh DMR 1082, 1188, 1217, 1236, 1452 0.85 0.83 0.91

Fresh DMG 1082, 1188, 1236, 1346, 1380 0.88 0.86 0.88

Frozen DMR 1217, 1236 0.84 0.83 0.90

Frozen DMG 1217, 1231, 1264, 1514 0.83 0.83 0.85

Frozen-thawed DMR 1169, 1255 0.82 0.81 0.89

Frozen-thawed DMG 1078, 1174, 1226, 1346, 1433 0.89 0.87 0.91

Note: DMR and DMG represented the first derivative spectra of raw and Gabor-filtered images. Rc, Rcv, and Rp represented 
the correlation coefficient of calibration, cross validation, and prediction, respectively.

Table 2. Selected key wavelengths and model performance.
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on the images, and the mean Gabor-filtered spectra and raw spectra were obtained. Then, 
they were pretreated with first derivative (FD), and MLR models were built linking the pro-
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and model results for fresh, frozen, and frozen-thawed pork were shown in Table 2. The 
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2 of 0.94, 0.94, and 0.67 were found 

for moisture, IMF, and protein. The reason for the poor prediction ability for protein may be 

Sample Image features Key wavelengths Rc Rcv Rp
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Fresh DMG 1082, 1188, 1236, 1346, 1380 0.88 0.86 0.88

Frozen DMR 1217, 1236 0.84 0.83 0.90

Frozen DMG 1217, 1231, 1264, 1514 0.83 0.83 0.85
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Frozen-thawed DMG 1078, 1174, 1226, 1346, 1433 0.89 0.87 0.91
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Table 2. Selected key wavelengths and model performance.
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the narrow range of reference. To enhance the model for protein, some samples were minced 
with adjoined fat portion of the muscle to increase the reference ranges to 16.30–24.05%. New 
PLSR model was then built based on the modified data with Rcv

2 of 0.85, indicating a sig-
nificant improvement. Feature wavelengths were further selected according to the regression 
coefficients obtained from the PLSR models. For moisture and IMF, 6 out of 237 wavelengths 
were selected, namely, 960, 1057, 1131, 1211, 1308, and 1394 nm. For protein, 1008, 1211, 1315, 
1445, 1562, and 1649 nm were identified as the important wavelengths. Simplified models 
were again created with Rcv

2 of 0.86, 0.90, and 0.83 for moisture, IMF, and protein. The results 
were similar with those using the whole spectral range, which confirmed the capacity of HSI 
for prediction of chemical compositions.

As to the FA prediction using HSI, few studies were conducted. A HSI system in the near-
infrared range of 1000–2300 nm was used to detect the FAs in intact raw beef cuts [20]. The 
FAs included the total saturated fatty acid (SFA), total unsaturated fatty acid (UFA), myristic 
(C14:0), palmitic (C16:0), stearic (C18:0), myristoleic (C14:1), palmitoleic (C16:1), oleic (C18:1), 
and linoleic (C18:2) acids. Similar with the aforementioned procedure, reflectance spectra 
were extracted and converted to absorbance values. Multiple scattering correction (MSC) was 
conducted on the absorbance spectra to correct spectral intensity differences. PLSR models 
were then built, yielding satisfactory results for SFA and UFA with Rp

2 of 0.87 and 0.89. For 
other attributes, the Rp

2 varied from 0.68 to 0.89. Apply the models to every pixel in the hyper-
spectral images, the chemical maps were generated, and the distributions of each composition 
can be observed intuitively.

2.3. Technological quality attributes

The technological quality attributes of meat mainly include pH, tenderness, and WHC, which 
are related to some structural and biochemical phenomena in living or carcass muscles. 
These attributes depend not only on the type of animal feed and fatty acid composition of 
carcass but also on the maturation effect. pH is considered as an important indicator of meat 
quality as it affects the color, tenderness, flavor after cooking, shelf life, and water retention. 
Meanwhile, it is also a reference to judge the meat freshness as it increases when meat turns 
spoiled. The traditional measurement for pH is by means of a pH meter to insert it into the 
meat. Tenderness directly affects the eating quality and commodity value of meat. It is closely 
related with the muscle structure (connective tissue) and biochemical composition (proteoly-
sis of myofibrils and cytoskeletal proteins) of meat. Sensory evaluation and Warner-Bratzler 
shear force (WBSF) or slice shear force (SSF) are currently used methods for tenderness deter-
mination. WHC refers to the ability of the muscle to retain water and is an important factor 
that affects the color, flavor, and tenderness of meat. The conventional measurement methods 
include cooking loss method, drip loss method, squeezing method, and so on.

The determination of technological attributes using hyperspectral scattering imaging tech-
nique had been explored, and satisfactory results were obtained. Similar with the afore-
mentioned analysis procedure for color, predictive models were built to relate the multiple 
“parameter spectra” of Lorentzian, Gompertz, or Boltzmann function and reference values. 
A sample of this topic about tenderness evaluation was given in Ref. [21]. A total of 31 pork 
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samples were collected for scattering image acquisition and tenderness measurement by 
WBSF method. Then, the authors used three-parameter Lorentzian distribution function to 
fit the scattering profile, and accurate fitting performance was observed. For example, the fit-
ting correlation coefficient at 575 nm was 0.998. Individual parameters a, b, and c (as shown 
in Figure 5) and the combination parameters of (b-a), (b-a) × c, (b-a)/c, and “a&b&c” were 
extracted. Likewise, stepwise regression analysis was performed to determine the optimal 
wavelength combinations for each parameter. Comparison of results showed that the models 
based on parameters a, b, (b-a), and (b-a)/c performed better with Rcv of 0.831, 0.860, 0.856, and 
0.930, respectively.

Meanwhile, the modified Gompertz function was also employed to extract scattering char-
acteristic of pork samples [22]. Promising fitting performance was found between 470 and 
960 nm with coefficients all around 0.99. Parameters α, β, ε, and δ were then extracted, and 
their spectra at each wavelength were shown in Figure 6. As no optimal wavelengths were 
found for parameter β, hence, MLR models based on individual (α, ε, and δ) and integrated 
(α&ε&δ) were established and compared. The model based on the integrated one was superior 
to others with Rcv of 0.949, due to that more comprehensive information was involved. The 
overall results were better than the best result using Lorentzian parameter (b-a)/c (Rcv = 0.930).

Studies on using reflectance spectra in conjunction with multivariate analysis for noncontact 
measurement of pH, tenderness, and WHC have been conducted intensively. Hyperspectral 
images in the range of 900–1700 nm of beef samples were collected to predict WHC [23]. 
Samples were prepared with three different breeds and different muscles (M. longissimus 
dorsi (LD), M. semitendinosus (ST), and Psoas major (PM)). Thus, the reference values of 
WHC had a large variation, which was beneficial to build a robust model. PLSR model was 
then built to correlate the spectra and reference values measured by drip loss method, and an 
Rcv

2 of 0.89 was obtained. According to the regression coefficients of PLSR model, six impor-
tant wavelengths at the peak positions were further selected, namely, 940, 997, 1144, 1214, 
1342, and 1443 nm. New PLSR model based on the feature wavelengths was created with Rcv

2 
of 0.87, demonstrating the potential of HSI for postmortem nondestructive determination of 
WHC. Key wavelengths for WHC in lamb meat in the range of 400–1000 nm were identified as 
545, 610, 705, 765, 805, 900, 940, and 970 nm in Ref. [24]. Based on these wavelengths, LS-SVM 
model was built, yielding a good prediction performance with Rp

2 of 0.93.

Figure 5. Lorentzian parameters extracted from pork images: (a) parameter a, (b) parameter b, and (c) parameter c.
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Besides, the feasibility of texture feature in predicting beef tenderness was also explored [25]. 
Three hundred and ninety-four hyperspectral images between 480 and 1020 nm were selected 
for each beef sample. Principal component analysis (PCA) was first conducted on these 
images to reduce the data dimension. The first five principal component images (PC1–PC5)  
are shown in Figure 7. It can be seen that the PC1 image contained most of the original image 
information with contribution rate more than 85%. The PC2 image contained little efficient 
information, while the PC3 image provided complementary information to PC1. The vari-
ance contribution rate of the first three principal component images was 95.37%, which was 
enough to represent the original information of the sample.

Further, gray-level co-occurrence matrix (GLCM) was used to extract texture variables from 
the three PCA images. Eight characteristic parameters including the mean, contrast, entropy, 

Figure 6. Gompertz parameters extracted from pork samples: (a) parameter α, (b) parameter β, (c) parameter ε, and (d) 
parameter δ.

Figure 7. PC1–PC5 feature images for beef sample.
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dissimilarity, correlation, homogeneity, variance, and second moment were obtained. 
Figure 8 showed the texture features for the image at 630 nm. Thus, a total of 24 features were 
acquired for each sample. Taking them as the input variables, SVM and linear discrimination 
analysis (LDA) were established. The comparison of classification model results showed that 
LDA model had better performance than SVM with accuracy in the prediction set of 94.44%. 
The study also indicated that texture features can be used to determine the distribution of 
meat tenderness.

3. Safety control using HSI

Meat safety refers to the potential threat to human health. The applications of HSI on safety 
control mainly focused on the bacterial contamination and freshness determination. Bacterial 
contamination, often expressed as total viable counts (TVC), is an important microbiologi-
cal indicator to determine the contamination and spoilage degree of meat. It is also used to 
predict the shelf life of meat or meat products. The quantity of 106 colony-forming units per 
gram (CFU/g) is considered as an acceptable limit, beyond which the meat became inedible 
[26]. Pseudomonas is a specific spoilage bacteria for meat stored at 4°C. The present method 
to evaluate TVC is plate-counting method, which is cumbersome and time-consuming and 
cannot satisfy the requirement for real-time detection. Freshness is a combination of flavor, 
taste, color, texture, and taste, and it is also a critical criterion to measure whether the meat 
meets the consumption standard. During the storage, proteins in meat tissue are broken 
down into low-molecular metabolites (alkaline substances such as ammonia and amines) 
with the action of enzymes and bacteria. Then, they are combined with acid within meat 
and form total volatile basic nitrogen (TVB-N) [27]. Traditional methods available for TVB-N 
detection include semimicro nitrogen determination and micro-diffusion method. They 
are time-consuming and destructive; hence, rapid and noncontact analytical methods are 
encouraged for TVB-N detection.

Figure 8. Eight texture features for image at 630 nm.
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3.1. Bacterial contamination detection using HSI

In the previous studies, the ability of spatially scattering images for TVC, Escherichia coli, and 
Pseudomonas determination has been demonstrated. Such examples were given in Refs. [21, 
28–29]. Hyperspectral images of beef samples stored within 2 weeks were collected [30]. To 
increase the signal-to-noise ratio of images, a 2 × 2 union (binning) operation was conducted, 
and then images of 520 × 688 pixels were acquired. For each sample, 4 different positions were 
selected for scanning and 4 times per position; thus, a total of 16 images were acquired for 
each sample. The reference values for TVC was then measured and recorded as log10CFU/g. 
Figure 9 showed the bacterial growth curves. It can be seen that with storage time passed by, 
the TVC increased from 4.89 to 8.89.

Then, two-parameter Lorentzian distribution function was used to fit the scattering profiles. 
Parameters b, c, and b × c were obtained, and their correlation coefficients with log10CFU/g 
were shown in Figure 10. A similar trend was observed for the three parameters, especially 
for parameters b and b × c, which had almost the same correlation coefficients over the range of 
560–770 nm. Stepwise regression analysis was further performed to select the representative 
wavelengths for each parameter, as shown in Table 3. MLR models were established based on 
these wavelengths, and the results were also shown in Table 3. It can be seen that parameter 
b × c performed the best with Rp

2 of 0.96 and standard error of prediction set (SEP) of 0.23. The 
results demonstrated the feasibility of HSI for nondestructive determination of TVC.

The potential of reflectance spectra for bacterial contamination measurement has also been 
explored, and satisfactory results were obtained. Zheng et al. conducted a study to build a 
precise and simple model with low cost for TVC of pork [31]. Fifty chilled pork samples were 
collected and stored in a refrigerator at 4°C. Hyperspectral images in the range of 400–1100 nm 
were acquired, and spectra were extracted from a ROI and averaged. The original spectra for 
all the experimental samples were shown in Figure 11. Crests and troughs were observed 
between 530 and 580 nm, which were reported to be associated with myoglobin. The absorp-
tion peak at 980 nm was related to water absorption, corresponding to the second overtones 
of O▬H stretching.

Figure 9. Bacterial growth curves during storage.
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To improve model accuracy, different pretreatment methods including SNVT, MSC, FD, 
second derivative (2D), Haar transformation (HT), and centering transformation (CT) were 
tried. Linear and nonlinear models, namely, PLSR and support vector regression (SVR) mod-
els, were built and compared. The SVR model combined with 2D pretreatment yielded the 
best result, with Rc and Rp of 0.99 and 0.94. Applying the optimal model to the hyperspectral 
images, the spatial distribution of bacteria can be observed clearly. Figure 12 showed the 
chemical maps of TVC at different contamination levels, and the prediction results can be 
observed intuitively. It can be seen that there was an evident tendency of color change with 

Figure 10. Correlation coefficients of parameters b, c, and b × c with log10CFU/g.

Parameter Feature wavelengths (nm) SEC SEP Rp
2 RSD (%)

b 592, 596, 602, 659, 803, 825 0.48 0.47 0.91 6.30

c 596, 838, 905, 913 0.70 0.62 0.69 8.31

b × c 596, 822, 838, 841, 889, 900 0.44 0.23 0.96 3.08

Note: SEC, standard error of calibration set; SEP, standard error of prediction set; Rp
2, determination coefficient in the 

prediction set; RSD, relative standard deviation.

Table 3. Selected feature wavelengths and modeling results.

Figure 11. Original reflectance spectra of 50 pork samples.
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the increase of TVC content. When the bacterial contamination level was low, the density of 
blue color was dominant. In contrast, the red color occupied almost the whole image when the 
TVC content was 9.20. The change in color was inconsistent with the microbial content, which 
verified the prediction capacity of HSI for real-time monitoring of the bacterial contamination 
level.

In addition to these studies using HSI to predict TVC, MSI also demonstrated the application 
potential for TVC determination. One example was given in Ref. [32]. The authors used a rapid 
MSI device to detect pork spoilage with different storage temperatures (0, 5, 10, 15, and 20°C) 
and package types (aerobic and modified atmosphere). A reasonable prediction result for TVC 
was obtained with SEP of 7.47%, demonstrating the feasibility of using the setup to predict 
microbial counts in minced meat. Study for beef detection was carried out in Ref. [33]. The 
authors explored the capacity of MSI in determining microbial counts of aerobically packaged 
beef stored at different temperatures (0, 4, 8, 12, and 16°C). Average estimation deviations of 
11.6, 13.6, and 16.7% were obtained for Pseudomonas spp., B. thermosphacta, and TVC, respec-
tively. In recent days, “signature” spectra of contaminated aerobically packaged beef stored at 
2, 8, and 15°C were extracted using MSI technique in Ref. [34]. According to a threshold of 2 
log10CFU/g, samples were discriminated into two classes with accuracy of 80.8%.
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2707–2016, meat is deemed to be semi-fresh or putrid if the TVB-N is beyond 15 mg/100 g. 
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As freshness is a complex criterion, generally, more than one attribute are combined to give 
a comprehensive evaluation of meat. The prediction ability of hyperspectral images within 
470–1000 nm for simultaneous determination of TVB-N and pH was explored in Ref. [35]. 
Meat was classified into three grades: fresh (TVB-N ≤ 15 mg/100 g, pH 5.8–6.0), semi-fresh 
(TVB-N ≤ 25 mg/100 g, pH 6.0–6.3), and spoiled (TVB-N > 25 mg/100 g, pH > 6.3). Based on a 
halogen tungsten light source, hyperspectral images were acquired, as shown in Figure 13a. 
The vertical line represented the reflectance information at a certain position on the scanning 
line, and the horizontal line represented the diffusion information at a certain wavelength. 
Meat presented different diffusion characteristics at different wavelengths and positions. 
Figure 13b showed the spatial diffusion curves at 635, 760, 575, and 980 nm, and Figure 
13c showed the reflectance spectra at 0, 5, 10, and 15 mm from the center of the scanning 
line. It can be seen that the spatial diffusion curve is a symmetrical pattern with a maximum 
intensity at the center of the scanning line. As the distance from the center increases at both 
ends, the intensity of the scattered light rapidly decreases. Based on the reflectance spectra 
pretreated with SG, TVB-N was well predicted with Rp of 0.90. According to the abovemen-
tioned classification standard, meat can be discriminated into different grades with total 
accuracy of 91%.

Another noteworthy report was given in Ref. [36]. The authors designed a portable device based 
on MSI technology to nondestructively detect TVB-N content in intact meat. The device was 
composed of hardware system, self-developed programming software, and the built-in pre-
diction model. The schematic map of the developed portable device was shown in Figure 14, 
which mainly included an optical fiber, camera, filter, lens, computer, etc. The working flow-
chart was as follows: first, place the sample on the bracket, and press the external trigger switch, 
and then the image acquisition unit triggered the CCD camera to acquire image. Meanwhile, 
the filters were switched to obtain images at different wavelengths. After image collection, the 
software performed real-time processing, and the prediction results were displayed real time on 
the liquid crystal display. The scattering profiles of images were fitted using the four-parameter 
Lorentzian distribution function, and PLSR model based on the four parameters yielded a satis-
factory result with Rp

2 of 0.87 for TVB-N.

Based on the images obtained by a MSI system, GLCM was also explored to extract feature 
variables for TVB-N prediction. In Ref. [37], features were obtained from three characteristic 

Figure 13. (a) Hyperspectral image of pork, (b) spatial diffusion curves at different wavelengths, and (c) reflectance 
spectra at different positions.
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images at 1280, 1440, and 1660 nm. Then, a new algorithm, namely, back propagation neural 
network adaptive boosting method, was proposed, obtaining a reasonable prediction result 
Rp of 0.8325. Their work indicated that the MSI system can be an efficient tool for TVB-N 
determination, and the research would facilitate its practical usage in meat industry.

4. Conclusions

This chapter summarized the applications of HSI and MSI in quality evaluation and safety 
control of meat. The current studies have demonstrated the capacity of HSI in quantitatively 
and qualitatively detection of meat. By integrating both spectroscopic and imaging techniques 
in one system, the spectral and spatial information of tested samples are acquired simultane-
ously, which paves way for its extensive applications in meat assessment. As more detailed 
and comprehensive characteristics of meat are extracted, the quality and safety attributes can 
be better predicted than using single spectroscopic or imaging technology.

However, despite the fact that the HSI and MSI technology has gained significant devel-
opment, there are still several drawbacks facing this technology. First, as spectral and spa-
tial information are collected simultaneously, a huge data are acquired for one scanning. 
Thus, image acquisition and processing become more difficult than other single technolo-
gies. With such massive raw image data, it is difficult for HSI systems to be widely imple-
mented for online and real-time application. Secondly, the HSI instrument is relatively 
expensive compared with conventional methods, thus increasing the cost of commercial 
detection and impeding its broader adoption. Thirdly, as the nature of nondestructive 
prediction for HSI technology lies in the establishment of qualitative or quantitative mod-
els with reference values, laborious calibration procedures are necessary. Much effort is 
needed to build accurate models, which makes it time-consuming and costly at the begin-
ning. In addition, the subsequent model updating also requires substantial time, energy, 
and funds.

To overcome these difficulties, some effort has been taken as possible solutions in response to 
these disadvantages. On the one hand, to speed up the analysis period, identifying the most 

Figure 14. Portable device for TVB-N determination based on MSI.
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influential wavelengths to eliminate the irrelevant information is an efficient method. In fact, 
various algorithms for feature wavelengths selection have been proposed for elimination of 
redundant information and reduction of multicollinearity problem. However, the important 
variables chosen by different approaches are not consistent even for the same set of spec-
tra, and some selected wavelengths lack of scientific interpretability. Hence, more efficient 
chemometric methods are in need to improve model performance and robustness. On the 
other hand, the hardware system with good performance is the precondition and founda-
tion of obtaining stable and high signal-to-noise optical signals. Hence, the enhancement in 
instrumental development in combination with the availability of high-speed computer will 
facilitate this technique to be dominant in the future. With further research and development, 
the HSI and MSI technology can become a powerful tool for online and real-time monitoring 
the quality and safety of meat.
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variables chosen by different approaches are not consistent even for the same set of spec-
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Abstract

Worldwide, the concern on food safety, for example, on agriculture products, has become
a topic with huge relevance. Nowadays, hyperspectral imaging systems for rapid detec-
tion of dangerous agents have emerged in response to these needs. In this research project,
we proposed a new algorithm for Salmonella typhimurium detection on tomato surfaces in
visible range (400–1000 nm). Gaussian model was used as a way to take out a model that
could be calculated its definite integral; the final result of this algorithm is the area under
curve (AUC), which gives a quantitative approach of spectral signatures. Three doses
(5, 10, and 15 μL) and a control response (0 μL) were spread out on 20 tomatoes’ surface.
Subsequently, it was observed that some decrease responses with higher dose; also,
numerically this pattern was seen with the help of AUC value. As a last step, a single
factor analysis of variance showed no significance due to doses. Despite this outcome, the
algorithm provides to be a good methodology for pathogen detection.

Keywords: food safety, hyperspectral imaging system, AUC, Gaussian model, ANOVA

1. Introduction

Hyperspectral imaging technology has been well developed in different areas of the industry,
such as mining, quality assessment in food processes and detection of diseases that affect crops
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and fruits, among others [1]; it is also important to mention that nowadays the reduction cost
of sensors and electrical circuits has allowed the gradual immersion of hyperspectral imaging
systems. Supervised learning is characterized by the need to know the expected responses
based on human knowledge or the characteristics of the system; these responses are known as
target function; then the system tries to compare our inputs (in our case the set of pixels) with
this function, to the process of comparison, and testing of inputs with expected responses is
called learning; the learning process ends when the algorithm has an acceptable level of
performance; supervised learning can be grouped into two approaches such as classification
and regression [2].

Classification approach: the data should be grouped into “categories,” for example, “infected,”
“uninfected,” “damaged,” “undamaged,” and “mature.”

Regression approach: data are treated as continuous function that can be modeled with
mathematical functions that predict behavior. Some examples of supervised machine learning
algorithms are:

• Linear regression

• Support vector machines

• Supervised neuronal network

On the other hand, the unsupervised processes try to model the distribution of the data and
thus to obtain conclusions; this type of algorithm group has similar characteristics along the
data by itself, without the help of expected knowledge [3]. Accordingly, there are two
approaches:

Clustering: in this type of analysis, the result is groups of data that share characteristics
associated with certain trends, for example, the economy of a country with respect to the level
of education of its population.

Association: in this type of analysis you want to find rules that describe a large portion of the
data, such as “people who buy X also tend to buy Y.”

Examples of these unsupervised learning algorithms are:

• PCA

• PLSR

• Fisher’s discriminant analysis

• K-means clustering

• Unsupervised neuronal network

Choosing one of these methodologies to work depends on conditions of the experiment, that
is, if into the experiment, the possibility to calibrate the algorithm with an expected response
exists, for example, if an expert is able to detect damaged areas in a crop, before starting the
research, this information could generate the target function and can be used to train the
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algorithm [4]. Besides, data provided for hypercubes are usually analyzed by statistical pattern
recognition approaches in three-dimensional space; these analyses come across from the sim-
plest to the most complex; an additional way to getting relevant information from spectral data
is analyzing its shape with curve fitting. Also, hyperspectral curve fitting methodology has the
advantage of modeling multiple overlapping absorption, transmittance, and reflectance, with
substantial less bands [5].

Moreover, wavelet is another technique that has impacted the way to analyze hyperspectral
data. Due to its application on fields such as signal and image processing, pattern recognition,
and data compression, wavelet transform has been an alternative for data analysis and dimen-
sionality reduction [6]; the main idea of processing with wavelet transform is to decompose a
signal into a series of shifted and scaled sub-representation of the mother wavelet function.
This decomposition provides a hierarchical framework for interpreting the spectral informa-
tion; some researchers have utilized wavelet transform for feature extraction, for example,
classification of health and damage areas in leaves [7]. Other researchers [8] have studied the
combination between PCA and wavelet coefficient to improve dimension reduction, and also
they could highlight the small variations contained in spatial information. Another interesting
application performed with wavelets was the fusion between hyperspectral and multispectral
data [9]; the fusion image that proved to have more relevant information due to wavelets could
be considered as a low-pass and high-pass filters that allow separate information which is not
found with the naked eye.

Several researches that worked with modeling fitting and wavelet approach can be found in
scientific literature; we are going to mention some of them: in Ref. [10], they investigated anomaly
detection on a test data cube taken from a part of San Diego International Airport; in this research
they proposed to use a Gauss-Markov algorithm to detect and classify statistical parameters
within the data, that is, covariance matrix; as a result they show two binary images with 100%
of target detection. It was developed a new algorithm [11] based on index total chlorophyll (Cab)
content; they proposed a new index called area under curve normalized to maximal band depth
between 650 and 725 nm (ANMB650–725); as a preliminary step, the area under the continuum-
removed reflectance curve in the range of 650–725 nm (AUC650–725) was computed. As an
outcome, using area under curve (AUC) divided by a maximal band depth could predict chloro-
phyll content with good accuracy. It should be noted that despite the fact most of the current
equipment operates between 400 and 2500 nm (visible and near infrared), it is important to select
correctly the bands which contain the data where the area of interest is located; due to this fact,
numerous works that focus on algorithms for band selection exist [12–14]. In addition, Ref. [15]
compared different mathematical models for describing the hyperspectral scattering data in
order to predict fruit firmness and soluble solid content (SSC) of Golden Delicious apples; the
model utilized in the research was the Lorentzian distribution function, which gave a high fitting
with an average correlation coefficient (r) greater than 0.995, owing to the oval shape of apples; it
was necessary to calculate the integral of the measurement reflectance as a function of the area
covered by the lens of the camera and the reflectance intensity I over the acceptance angle. As a
conclusion, they mention that mathematical modeling of scattering data to obtain the total light
reflectance, using an appropriate Lorentzian function, can provide a good way to predict apple
fruit firmness and soluble solid content.
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2. Salmonella typhimurium detection using hyperspectral imaging system

Foodborne detection has been a topic of interest in recent decades, due to food industry and
government regulations. Traditional techniques based on agar culture media have huge short-
comings in rapid confirmation response and the inability to analyze a large number of sam-
ples; another disadvantage is the need to destroy the fruits in order to carry out the planting on
the culture media. Moreover, hyperspectral imaging system has emerged as tool to detect
bacteria in a considerable reduced time [16].

Specifically, S. typhimurium infection is usually transmitted by consumption of contaminated
fruits, vegetables, fresh beef, or pork. Outbreaks caused by these bacteria have been reported
in Canada, Europe, and the United States [17]; the symptoms of these bacteria are gastrointes-
tinal problems, fevers, and in some cases death.

On the other hand, Mexican tomato production faces the challenge of complying with regula-
tions imposed by the United States (USA) and Canada, where agricultural products must
comply with safety features for sale in the foreign market; as well as economic losses in recent
years due to the waiting for a long period of time and doubtful detection on infectious agents
have caused the need for faster and more efficient detection methods [18].

This research project was focused on on the obtaining of the hyperspectral signatures and
Gaussian prediction models with high fitting to calculate the AUC and with this information
detect S. typhimurium on tomato surface. Hyperspectral imaging system promises to be a good
technique for worldwide food safety.

3. Materials and methods

3.1. Biotechnological material

S. typhimurium was used, suspended in a media culture (broth in cryopreservation state) neces-
sary for its survival. The experiment utilized commercial selective media Salmonella-Shigella (SS)
agar, Hektoen enteric, and xylose lysine deoxycholate (XLD) agar. To isolate the bacteria, the
streak plate isolation method was used; to display and select the suspect colonies more easily,
this procedure was performed in triplicate. Assay tubes with 5 mL of tetrathionate broth were
inoculated with S. typhimurium strain. This culture medium contains peptone and sodium
carbonate, and the selectivity is the result of the presence of sodium thiosulfate that generates
tetrathionate when added at a ratio of 0.2% iodine-iodide solution and 0.1% of bright green to
each tube, allowing the growth of bacteria containing the reductase enzyme tetrathionate, and
inhibits the development of other accompanying microorganisms. The incubation time was 24 h
at a temperature of 37�C under aerobic conditions.

3.2. Tomato samples

Twenty tomatoes (Solanum lycopersicum L.) variety “Roma” were selected in a state of
postharvest; they were purchased at a local supermarket in the municipality of General
Escobedo, Nuevo Leon, Mexico. The tomatoes complied with high visual quality.
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3.3. Hypercube of contaminated tomato

3.3.1. Hyperspectral system

The hyperspectral equipment utilized for this research was the PIKE F210b (Alliend Vision
Technologies, GmbH); the camera is coupled to a Spectograph ImSpector V10E (Specim,
Spectral Imaging Ltd.); the hyperspectral system is attached to a linear translation structure,
which is, essentially, a band, a motor, and a speed regulation stage. This is necessary due to the
push-broom operation; besides, the spectral range of the equipment goes from 400 to 1000 nm.
Finally, the system works with two halogen-tungsten bulbs with a power of 60 W.

3.3.2. Sample inoculation

In order to start the research, the first step was inoculating the surface of 20 tomatoes with
Salmonella typhimurium bacteria at three different amounts of dosification; these were 5, 10, and
15 μL and a zone with no contamination (0 μL), as we can see in Figure 1. The spread of a little
drop on the tomato surface it was carry out with the help a micropipette.

Figure 1. Tomato hypercubes shown in wavelength 692 nm; each tomato was labeled with four square-shaped zones
which was spread with 0, 5, 10, and 15 μL of S. typhimurium.
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20 hypercubes were obtained with a 600 � 1920 spatial resolution and 1080 bands with 12 bits
of resolution.

3.3.3. Preprocessing and data preparation

Hyperspectral imaging processing usually has a pre-stage called preprocessing, necessary to
remove the effect of death pixels, noisy signals, errors caused by analog to digital process
conversion, etc. Additionally, due to high abundance of data, it required a calibration process
and test hypercubes for correcting data [19]. A general workflow is shown in Figure 2, and its
subsequent analysis is discussed in the next section.

3.3.4. Normalization

The analysis of hypercubes involves huge amount of data, thence one of the main reasons for
be adapt the hypercubes to more manageable sizes and with this to improve the computer
processing time.

Figure 2. Workflow of proposed algorithm for pathogen detection, using area under curve.
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As the first step, normalization of all hypercube was carried out using Eq. (1):

HypercubeNormalized ¼
RawHypercube�Dark_reference
White_reference�Dark_reference

(1)

where HypercubeNormalized is the calibrated hypercube, RawHypercube is the total data without
any type of process, Dark_referencewas taken with the absence of illumination and camera lens
covered, and White_reference data cube was generated with a high reflectance white mosaic
and the lights on.

3.3.5. Spatial and spectral crop

As was mentioned before, each cube of data had a spatial dimension of 600 � 1920. It should
be noted that most of this information is merged with the background, which is not necessary
to analyze, from there that a spatial cropping was necessary. Each cube was reduced to an
average cube of 280 � 565 spatial dimension. On the other hand, sometimes it is not necessary
to keep all data corresponding to start and end of the spectra, thereby a spectral crop was
conducted in order to reduce no essential data.

3.3.6. Smoothing spectra

In hyperspectral preprocessing, the use of smoothing methods to remove high-frequency noise
signal on the reflectance spectra is regular; a quite common smoothing method used in remote
sensing is the Savitzky-Golay filter [20], which is based on least-squares polynomial approach
applied on the short steps of wavelengths. In this procedure, a window of 11 steps, with a
polynomial degree 2, was used. Figure 3 shows all spectra after preprocessing mentioned
above. Each spectrum is the result of a region of interest (ROI) averaging a contiguous qua-
dratic shape of nine pixels.

Figure 3. Spectra of 80 pixels extracted from 20 tomatoes; a ROI was selected in each contaminated zone.
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3.3.7. Obtaining modeling of spectral signatures

On the other hand, inature a bunch of data distribution is frequently located as a Gaussian or
normal distribution (as it is shown in Figure 2), so that this model relates directly the behavior
of the datasets. Gaussian curve fitting is still investigated as an algorithm for detecting patterns
in biological, social, and physical sciences [21].

In order to compute Gaussian models for each spectrum, MATLAB 2016a and curve fitting
tool (cftool) were used. A total of 80 models were obtained; after several tests and errors, the
best combination found for modeling was Gaussian polynomial model with five terms as the
form of Eq. (2):

f xð Þ ¼ a1e
� x�b1

c1

� �2

þ a2e
� x�b2

c2

� �2

þ a3e
� x�b3

c3

� �2

þ a4e
� x�b4

c4

� �2

þ a5e
� x�b5

c5

� �2

(2)

where f xð Þ is the Gaussian model, x is the wavelength independent variable, and a1, a2, a3, a4,
a5, b1, b2, b3, b4, b5, c1, c2, c3, c4, c5 are the coefficients to be calculated.

3.3.8. Computing area under curve and statistical analysis

The calculation of all areas was carried out, by calculating the define integral (Eq. (3)). MATLAB
2016a provides an effective command called “quad” which numerically evaluates the integral,
with an adaptive Simpson quadrature [22]:

A ¼
ðwl1
wl0

f xð Þdx (3)

where A is the AUC; wl0, wl1 are the lower and upper limits, respectively, of wavelength; and
f xð Þ is a Gaussian model. Besides, the range between 582 and 850 nm was utilized, distributed
into 482 bands.

After the areas under curves were obtained, a single factor analysis of variance (ANOVA) was
performed in EXCEL 2016; the reason for this was to find ou if any relationship between the
dosage amount (every 5 μL) and the decrease of the spectral signature response exists; a total
of 20 tomatoes and 80 areas were analyzed.

4. Results and discussion

4.1. Gauss model results

Table 1 shows corresponding results of goodness of fit curve with Gaussians models. A low
value in sum of squares error (SSE) is notorious, meaning that the model has a smaller random
error component, since they are closer to zero [23]; as well as the coefficient of determination
(R2) has values higher than 0.9986; this proves high matching between the Gaussian model and
the spectra responses to a certain dose. Besides, the other two parametric models for goodness
of fit are adjusted R-sq and root-mean-square error (RMSE) which shows values higher than
0.99920 and less than 0.001, respectively.
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Another mathematical approach to know the good fitting of one predicted model is known as
residuals, defined as the differences between the response of original data and the response to
predicted model (Eq. (4)) with regard to recognizing if the model was

Dose (μL) SSE R2 Adj R-sq RMSE

0 0.00045494 0.99908 0.99905 0.00091

5 0.00026017 0.99939 0.99937 0.00071

10 0.0006778 0.99864 0.99860 0.00109

15 0.00037805 0.99922 0.99920 0.00085

Table 1. Results of fit models; every value is the media of fit result of each dose.

Figure 4. Upper graph shows an example of smoothed spectra (blue) and the predicted model (red); lower plot shows a
random behavior on residuals, which means good prediction.
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r ¼ y� y
_

(4)

where r are the residuals, y are the spectra of contaminated zones, and y
_

is the predicted
model. An example of residual response is shown in Figure 4. Whether the plot of residuals
seems to behave in a random way, it means that the model fits the data well; otherwise, if
residuals appear to behave in a systematic pattern, then it is a clear case of mismatch between
data and model [24]. In this research, the whole 80 models showed random residuals.

4.2. Areas under curve and their analysis

Areas extracted from all spectral signatures are shown in Figure 5. The trend in this dataset
seems to decrease with higher dose in most subsamples; the meaning of this is greater absor-
bance on the infected surface; as an exception, tomato surfaces 3, 4, 5, 6, 10, 11, 13, and 15 do
not seem to have this behavior; one possible explanation is closely related with orientation and
position at the time of hypercube acquisition, that is, little light saturation zones.

As a last step, the results of calculation for a single factor ANOVA are shown in Table 2.
Because P-value <0.05 means that there is no significance between doses and spectra response,
a similar methodology was conducted by [25].

Figure 5. Total areas under curve of 20 tomatoes.

ANOVA

Source of variation SS df MS F P-value F crit

Between groups 17.8996928 3 5.96656427 0.59978245 0.6171155 2.72494392

Within groups 756.038935 76 9.94788072

Total 773.938627 79

Table 2. Results of single factor ANOVA, taking AUC for data analysis.
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5. Conclusion

Up to now, hyperspectral dataset analysis is carried out by different methodologies, algo-
rithms, and techniques; in this research, we proposed to calculate AUC as an alternative for
hypercubes; after AUC calculation, a single factor ANOVA would be enough for data analysis.

Despite results set down, it seems like visible range is not a good band for S. typhimurium
detection. Secondly, sample orientation could improve results, since only a little inclination
degree generated zone with high saturation because of the shiny nature of the tomato surface.

The novelty in this work was that there is little information related to the modeling of spectral
signatures and their subsequent calculation of AUC as method to determine factors such as
degree of contamination on fruits surface. Moreover, this methodology tries to quantify a
spectral signature assigning it a value for understanding phenomenon that interacts with
hyperspectral image systems. Future works could be related to improving AUC with different
spectral responses in using variates fruit surfaces. Although there could be other variables to
consider, which would affect the results as such, the scope of this work could be said to be a
preliminar research.
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Abstract

Hyperspectral imaging has become increasingly popular in applications such as agricul-
ture, food, and environment. Rich spectral information of hyperspectral images leads to
new possibilities and new challenges in data processing. In this chapter, we consider the
hyperspectral classification problems in consideration of sequential data collection, which
is a frequent setting in industrial pushboom imaging systems. We present related tech-
niques including data normalization, dimension reduction, classification, and spatial
information integration and the way to accommodate these techniques to the context of
sequential data collecting and processing. The propose scheme is validated with real data
collected in our laboratory. The methodology of result assessment is also presented.

Keywords: hyperspectral sorting, sequential hyperspectral data processing,
spatial-spectral information, hyperspectral classification

1. Introduction

Hyperspectral imaging is a continuously growing area and has received considerable attention
in the last decade. Hyperspectral data provide a wide spectral range, coupled with a high-
spectral resolution. These characteristics are suitable for detection and classification of surfaces
and chemical elements in the observed images. Rich information in spectral dimension pro-
vides solutions to many problems that cannot be solved by traditional RGB imaging or
multispectral imaging.

Applications include land use analysis, pollution monitoring, wide-area reconnaissance, and
field surveillance, to cite a few. Typical cases related to food quality, agriculture, and environ-
ment include as follows:

1. Food safety plays an important role in our daily life. We often use a combination of
appearance, hand-feel, and smell of the product to make a judgment of the quality of fruits
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or vegetables. But it is not enough to judge if there are abnormalities, deformations, or
even visible defects in the fruit or vegetable. Awareness about food safety has exemplified
the requirement for a rapid and accurate hyperspectral detection system [1].

2. Precision agriculture is a farming management concept based on observing, measuring,
and inter and intrafield variability in crops. Precision agriculture using hyperspectral
remote sensing is acquired and processed to derive maps of crop biophysical parameters,
to measure the amount of plant cover, and to distinguish between crops and weeds [2].

3. Due to the pressures of over consumption, population, and technology, the biophysical
environment is being degraded, sometimes permanently. Many of the earth’s resources are
on the verge of exhaustion because they are influenced by human impacts across many
countries [3]. Many attempts are made to prevent damage or manage the impacts of
human activity on natural resources. Hyperspectral classification used in resource recov-
ery can make it rapid and efficient.

One of the most important tasks of hyperspectral image processing is image classification. Rich
spectral information of hyperspectral image provides the possibility to classify materials that
are difficult to be distinguished by other imagery techniques. In the past decades, different
kinds of hyperspectral classification methods have been proposed [4–9]. However, the existed
methods may not be suitable for a real-time material sorting system. Pushboom imaging
systems are frequently used in industry sorting, such a system collects columns of an image
one after another in a sequential manner (see Figure 1). It is thus necessary to design a
framework for online classification tasks and accommodate convectional algorithms to the
sequential processing setting.

In this chapter, we present a scheme of sequential classification for hyperspectral sorting
systems. This scheme can be used in various fields, such as measuring food quality and
resource recovery. We present the main techniques in this sorting and processing, including
data normalization, dimension reduction, classification, and spatial information integration
and the way to accommodate these techniques to the context of sequential data collecting and
processing.

The rest of this chapter is organized as follows. In Section 2, we propose the main steps of
sequential hyperspectral classification processing system. In Section 3, detailed methods are

Figure 1. Sequential hyperspectral data collecting and processing by a pushboom system. Hyperspectral camera captures
data xk at time instant k, which is one of the sequential columns of the entire image, yk is the result after processing
(classification label in this case).
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presented for sequential hyperspectral image processing and sorting. Experiment results are
then discussed in Section 4. Section 5 concludes the chapter.

2. System overview

Before proceeding to elaborate the proposed sequential hyperspectral image classification
method, we first present the notation and the data model used in this work. We consider that
the hyperspectral image under study has h pixels in column and w pixels in row, where h is a
fixed size that is determined by the spatial resolution of the camera, and w actually increases
toward infinity with the moving of the pushboom system. Each pixel consists of a reflectance
vector consisting of p contiguous spectral bands. Then, let

• N ¼ h� w be the total number of pixels.

• X ¼ X1;X2;X3;⋯;Xp
� �T be the p�Nð Þ hyperspectral images.

• Xk i; jð Þ represents a pixel, where the subscript k denotes the index of the spectral band, i
and j represent the location of pixel in the spatial domain.

The data collecting and processing of a real-time hyperspectral sorting system consist of the
following major steps.

1. Sequential image acquisition.

2. Data preprocessing.

3. Material classification.

The hyperspectral data used in this work set are collected by the system of GaiaField in our
laboratory. The parameters of the used system are provided in Table 1. Our online processing
is based on windowed columns. After collecting each column, we use this column with several
previous ones to form a window and perform data processing steps within this window.
Black-white normalization is used for basic data normalization. Techniques of PCA and
hyperspectral decorrelation of fuzzy sets are used for dimension reduction [10]. Typical tech-
niques such as GML and SVM are presented for material classification. Considering the
positive effect of spatial information on processing results [11], we also propose to integrate

Equipment type GaiaField and GaiaSorter

Moving speed of loading platform 4.1 cm/s

Spectral resolution 128

Spatial resolution 650� 348

Distance between lens and samples 24 cm

Exposure time 3 ms

Table 1. Equipment parameters.
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spatial dimension and spectral dimension to achieve an enhanced classification accuracy.
Finally, classification accuracy is characterized by metrics such as confusion matrix and κ
coefficient. Details of the used techniques and results will be provided later.

3. Processing methods

3.1. Data preprocessing

Data preprocessing steps include basic data normalization and spectral decorrelation. They are
performed one after another as described later.

3.1.1. Basic data normalization

An important preprocessing is the so-called black-white calibration. This calibration is carried
out by recording an image for black and another for white, as described below, to remove the
effect of dark current of the camera sensor and avoid the uneven light intensity of each band.
At an offline phase, the black image (B) is acquired by turning off the light source and covering
the camera lens with its cap. The white image (W) is acquired by adopting a standard white
ceramic tile under the same conditions as the raw image. Then, image correction is performed
by [12],

I ¼ I0 � B
W � B

(1)

where I is the hyperspectral image after normalization, I0 is the original hyperspectral image
that is captured in our laboratory, B is the black reference image, and W is the white reference
image.

3.1.2. Data dimension reduction

The high-spectral resolution of hyperspectral data enables us to classify materials that are
undistinguishable with conventional methods. However, a large number of spectral channels
result in difficulties in processing in terms of classifier training (Hughes phenomenon) and
computational burdens. Data dimension reduction can be performed due to the above facts
and existence of information redundancies across bands.

3.1.2.1. PCA

PCA is one of the most popular methods for data dimension reduction. PCA computes a linear
transformation for high-dimensional input vectors, and this transformation maps the data into
a low-dimensional orthogonal subspace. For simplicity, we assume that the data samples have
zero mean. Otherwise, we can centralize the data by subtracting the mean
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Y ¼ X� E Xð Þ (2)

The principle analysis is based on the eigenstructure of the data. We therefore calculate the
covariance matrix of Y and perform the eigendecomposition on this matrix. The ith eigenvector
of matrix Y is denoted by ai with associated eigenvalue denoted by λi.

To reduce the dimension of data, we select an appropriate number of eigenvectors ai
corresponding to the value of eigenvalues λi from large to small, to form the representation
coefficient matrix A [13].

Z ¼ ATX (3)

where Z is the hyperspectral image data after decorrelation.

3.1.2.2. Fuzzy sets

Using fuzzy sets to decorrelate the hyperspectral data is based on a priori knowledge that the
adjacent wavelengths of the spectrum are more correlated than the distant pairs, as the spectral
information varies smoothly and successively. We consider sampling spectral characteristics by
a group of adjacent spectral bands, which can be obtained by dividing the spectra in separate
groups to attain the desired spectral selectivity. We propose separating the hyperspectral data
into a number of M fuzzy groups where each group covers a range of wavelengths [14]. The
contribution of each wavelength is modeled by a membership function Mf i λð Þ. We use a
triangular function as the membership function, shown in Figure 2.

Mf i ¼
1� λ� λi

D
, λi �D < λ < λi þD

0 otherwise

8<
: (4)

where λi is the central wavelength value of the fuzzy set i, and D is the distance of central
wavelengths of two adjacent fuzzy sets.

The spectral wavelengths of all points have different membership degrees in different fuzzy
sets. Each wavelength has different degree of membership in two adjacent fuzzy sets, while the
membership degree in the remaining fuzzy sets is 0 (Figure 3).

Figure 2. Triangular function.
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The energy of each fuzzy set is calculated by weighting the intensity of each spectrum element
using membership functions associated with each fuzzy set, i.e.,

Xi ¼
ðλ¼K
λ¼0

Mf i � L λð Þdλ (5)

where Xi is the energy of each fuzzy set, and L λð Þ is the intensity of each spectrum element.

Based on the energy values of each fuzzy set, we can obtain useful information about the
spectral characteristics. In this way, each hyperspectral image pixel can be defined by a vector
containing the energy values of the M fuzzy sets as

X ¼ X1;X2;⋯;XMf gT (6)

3.2. Material classification

In this section, we present the algorithm to classifier/sort the captured data using features (data
of reduced dimension) extracted by PCA or fuzzy set method. We first review these two
popular classification methods in a general manner. Then we introduce how to incorporate
spatial information into the classification. Finally, sequential processing with window-based
method will be discussed.

3.2.1. Gaussian maximum likelihood classification

Spectra of distinct material of hyperspectral data form data clusters in a space with the
dimension of the feature, and we assume that the data features of each material approximately
follow a multivariate normal distribution. To be specific, data features of a material i and the p
dimension probability density function in form of:

Figure 3. Triangular function weighted process.
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p ðX ωij Þ ¼ 1
2π

� �p
2

Σij j�
1
2exp � 1

2
X� μi

� �T
Σ�1i X� μi

� �� �
(7)

where μ and Σ are the mean vector and the covariance matrix, respectively. i denotes the label
of class [15]. Each pixel in the hyperspectral image is labeled as the class that achieves maxi-
mum probability.

3.2.2. Support vector machine

SVM is one of the most effectively and widely used methods in statistical learning. SVM aims
to find the best tradeoff of model complexity and learning ability with limited sample infor-
mation. SVM can effectively solve the Hughes phenomenon caused by insufficient samples in
hyperspectral classification.

The goal of training algorithm is to design an optimal hyperplane. The training principle of
SVM is to find a linear optimal separating hyperplane [16]. Let x be the input pixel vectors
satisfying

g xð Þ ¼ ωTxþ ω0 ¼ 0 (8)

This method constructs a hyperplane that maximizes the margins between classes, specified by
a (usually small) subset of the data that define the position of the separator. These points are
referred to as the support vectors [17]. The decision function is as follow:

f xð Þ ¼ sgn ωTxþ b
� � ¼ sgn

Xl

i¼1
αiyixi

Txþ b

 !
(9)

where αi is the ith Lagrange coefficient, yi is the corresponding classification label, xi is the ith
support vector, x is the input pixel vector, N is the number of support vector, and b is the
decision offset coefficient. For two-class hyperspectral classification, f xð Þ takes value of either 1
or 0, suggesting the class that the current pixel belongs. For multiclass classification, we can
use one versus one, one versus rest, hierarchical support vector machine or other strategy to
obtain the multiclass label.

Sometimes, data cannot be separated by a linear classifier. Therefore, kernel methods are used
to map data from the original input space to a higher dimension space. Thanks to the kernel
trick, we only need to know the form of the inner product in that space instead of using the
explicit map [16]. Popular kernel functions include as follows:

Linear kernel:

K x; xj
� � ¼ x � xj: (10)

Polynomial kernel:
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K x; xið Þ ¼ xTxi
� �þ 1
� �q

, q > 0 (11)

where q is the polynomial order.

Radial basis function kernel:

K x; xið Þ ¼ exp �� x� xik k2
σ2

 !
(12)

where σ2 is kernel bandwidth.

Sigmoid kernel:

K x; xið Þ ¼ tan h v xTxi
� �þ c

� �
(13)

for appropriate values of v and c, so that Mercer’s conditions are satisfied [16].

3.2.3. Incorporating spatial information

Conventionally, hyperspectral data classification algorithms are proposed based on spectro-
scopic viewpoint, and they ignore the spatial information that embeds in neighboring pixels
[18]. Integration of spatial and spectral information may improve the processing performance.
We propose to combine spatial dimension and spectral dimension information to improve the
classification accuracy. The proposed method investigates the spatial information based on the
connection component labeling in the following. We generate the mean image by averaging
data after dimension reduction over spectra bands. A component labeling algorithms then
applied to the binarized mean image. In our system, if an object is marked by connected
component labeling and over 60% pixels are labeled as a class, we consider that all pixels
within this connected region actually belong to the associated material. The classification
accuracy will be improved using this strategy.

3.2.4. Sequential processing

We use a sliding window to assemble the acquired hyperspectral data, whose columns are
collected sequentially one after another. The use of a sliding window facilitates to incorporate
the spatial information in processing. The width of the sliding window should be determined
by considering the data acquisition rate, data processing speed, and spatial correlation of the
observed scenario. In our system, the width of the sliding window (L) is set to 15. Our
hyperspectral images are captured by a pushboom system where columns of images are
collected sequentially one after another. After collecting each column, we use this column with
several previous ones to form a sliding window and perform data processing steps within this
window. Let L be the width of the sliding window, and we set L ¼ 15 in our experimental
(Figure 4).
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4. Experimental results

We collect the hyperspectral data with our pushboom system of Gaia. The images are acquired
in the 400–1000 nm wavelength range, with a spectral resolution of 7 nm, for a total of 128
wavelengths (p ¼ 128). Their image resolutions h and w are 650 and 348 (650� 348), respec-
tively. The hyperspectral data include four kinds of fruits: tomato, jujube, lemon, and orange.
In this study, we use a sliding window of size 15 for online processing of data. Twenty-three
sequential hyperspectral images are extracted for classification. The datasets captured are
divided into training and testing sets, where 300 pixels of each material are used for training
and 30,603 pixels are used for testing.

After data preprocessing, we select 300 pixels of each material from the training set as sample
points to form a hyperspectral image. The pixels of the image are converted into row vectors
by row or column to form a two-dimensional matrix, which is used for data reduction. The
operation of the test set is the same as that of the training set.

After the PCA transformation, the eigenvalue distribution is shown in Figure 5. This scree plot
shows that the first eight factors explain most of the variability. The remaining factors explain a
very small proportion of the variability and are likely unimportant. We select the principal
component, which takes 99% of the eigenvalues, as the data after dimensionality reduction.
For fuzzy-set data reduction, we fold 128 bands with a triangular window of length 32, and
then we sample the data using at each 16 points, so that the data dimension also reduces to 8.
We use eight-connected component labeling method to remove the background of data after
dimension reduction.

We then study the classification results of GML principle and SVM.We classify the data obtained
from dimension reduction and background material removal (see Figures 6 and 7). The result of
classification with spatial information (connected region labeling) is shown in Figure 8.

Figure 4. Sliding window.
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K x; xið Þ ¼ xTxi
� �þ 1
� �q

, q > 0 (11)

where q is the polynomial order.

Radial basis function kernel:

K x; xið Þ ¼ exp �� x� xik k2
σ2

 !
(12)

where σ2 is kernel bandwidth.

Sigmoid kernel:

K x; xið Þ ¼ tan h v xTxi
� �þ c

� �
(13)
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4.1. Performance evaluation of results

4.1.1. Confusion matrix

A confusion matrix is a table that is often used to describe the performance of a classifier on a
set of test data for which the true values are known. It compares the classification result with
the reference image, and we need to determine the labels of each point in the reference image
in the classified image. The confusion matrixes of our experiment are shown in Table 2.

Figure 5. Eigenvalue distribution.

Figure 6. (a) GML classification with PCA and (b) GML classification with fuzzy sets.
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A ¼

m11 m12 ⋯ m1k

m21 m22 ⋯ m2k

⋮ ⋮ ⋮
mk1 mk2 ⋯ mkk

2
6664

3
7775 (14)

where mij shows pixels should belong to class i, which is wrongly assigned to class j, and k is
the class number of the classification results (Figures 9 and 10).

Figure 7. (a) SVM classification with PCA and (b) SVM classification with fuzzy sets.

Figure 8. Classification with spatial information (connected region labeling) achieves almost 100% accuracy.
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4.1.2. κ coefficient

κ can reflect the classification error of the whole image and solve the problem that the
classification accuracy depends too much on the number of classes and the number of samples.
κ is performed by adopting the following equation:

κ ¼
N
Pk
i¼0

mi, i �
Pk
i¼0

miþ �mþi

N2 �P
k

i¼0
miþ �mþi

(15)

Class Actual class

Chinese date Lemon Orange Tomato Row sum

(1) GML classification with PCA

Predict class Chinese date 1745 0 0 0 1745

Lemon 4 9618 0 0 9622

Orange 0 183 11,654 0 11,837

Tomato 26 14 0 7359 7399

Column sum 1775 9815 11,654 7359 30,603

(2) GML classification with fuzzy sets

Predict class Chinese date 1745 0 0 0 1745

Lemon 3 9619 0 0 9622

Orange 258 2 11,577 0 11,837

Tomato 36 7 0 7356 7399

Column sum 2042 9628 11,577 7356 30,603

(3) SVM classification with PCA

Predict class Chinese date 1744 1 0 0 1745

Lemon 6 9616 0 0 9622

Orange 466 1089 10,282 0 11,837

Tomato 29 0 0 7370 7399

Column sum 2245 10,706 10,282 7370 30,603

(4) SVM classification with fuzzy sets

Predict class Chinese date 1738 0 0 7 1745

Lemon 5 9617 0 0 9622

Orange 1489 2826 7522 0 11,837

Tomato 28 1144 0 6227 7399

Column sum 3260 13,587 7522 6234 30,603

Table 2. Confusion matrix of classification results: (1) GML classification with PCA, (2) GML classification with fuzzy
sets, (3) SVM classification with PCA, and (4) SVM classification with fuzzy sets.
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where miþ is the sum of the line i in the confusion matrix, and mþi is the sum of the column i in
the confusion matrix.

κ of GML based on PCA dimensionality reduction is 98.93%, and κ of SVM is 92.55%. κ of
GML based on fuzzy-set reduction technique is 98.56%, and κ of SVM is 74.69%. From the
results of κ, we can see that the classification based on PCA is better than fuzzy sets, GML is
better than SVM, and GML based on PCA is the best method for sequential classification of
hyperspectral images.

4.1.3. Other metrics

Other metrics include classification accuracy, product’s accuracy (PA), and omission errors (OEs).

Figure 9. (a) Confusion matrix of GML classification with PCA and (b) confusion matrix of GML classification with fuzzy
sets.

Figure 10. (a) Confusion matrix of SVM classification with fuzzy sets and (b) confusion matrix of SVM classification with
fuzzy sets.
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Classification accuracy indicates the correct rate of the classifier, as illustrated in Eq. (16).

Ai ¼

Pk
i¼0

mi, i

Pk
i¼0

mþi

(16)

PA is used to indicate the rate of the classification result that is correctly classified, as illus-
trated in Eq. (17). User’s accuracy is used to indicate the rate of the pixels that are correctly
divided into class I to the total number of pixels that are divided into I classes, as shown in
Eq. (18).

PAi ¼ mi, i

mþi
(17)

Other metrics Chinese date Lemon Orange Tomato

(1) GML classification with PCA

PAi 0.9831 0.9799 1 1

OEi 0.0169 0.0201 0 0

UAi 1 0.9996 0.9845 0.9946

CEi 0 0.0004 0.0155 0.054

(2) GML classification with fuzzy sets

PAi 0.8546 0.9991 1 1

OEi 0.1454 0.0009 0 0

UAi 1 0.9997 0.9780 0.9941

CEi 0 0.0003 0.0220 0.0059

(3) SVM classification with PCA

PAi 0.7768 0.8982 1 1

OEi 0.2232 0.1018 0 0

UAi 1 0.9994 0.8686 0.9961

CEi 0 0.0006 0.1314 0.0039

(4) SVM classification with fuzzy sets

PAi 0.5331 0.7078 1 0.9989

OEi 0.4669 0.2922 0 0.0011

UAi 0.9960 0.9995 0.6355 0.8416

CEi 0.0040 0.0005 0.3645 0.1584

Table 3. Other metrics: (1) GML classification with PCA, (2) GML classification with fuzzy sets, (3) SVM classification
with PCA, and (4) SVM classification with fuzzy sets.
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UAi ¼ mi, i

miþ
(18)

OEs represent the number of pixels in class I that is incorrectly assigned to other class, as
shown in Eq. (19). Commission errors (CEs) indicate the percentage of other class pixels that
are incorrectly divided into class I, as illustrated in Eq. (20).

OEi ¼ 1� mi, i

mþi
(19)

CEi ¼ 1� mi, i

miþ
(20)

Classification accuracy of GML based on PCA dimensionality reduction is 99.26%, and classi-
fication accuracy of SVM is 94.80%. Classification accuracy of GML based on fuzzy-set reduc-
tion technique is 99.00%, and classification accuracy of SVM is 82.03%. From this evaluation
and Table 3, GML based on PCA dimensionality reduction is the proposed solution for
sequential classification of hyperspectral images.

5. Conclusion

The major objective of this chapter is to build a sequential hyperspectral classification method
for an industrial material sorting system. We propose hyperspectral images captured by a
pushboom system where columns of images are collected sequentially one after another to
get sequential hyperspectral images. PCA and fuzzy sets are used for data decorrelation. We
study the GML and SVM classification with the data obtained from dimension reduction and
background material removal and carry out the performance analysis. The results show that
the accuracy rate of GML based on PCA dimensionality reduction is 99.26%, and the accuracy
rate of SVM is 94.80%. The accuracy of GML based on fuzzy-set reduction technique is 99.00%,
and the accuracy rate of SVM is 82.03%. After combing the spatial and spectral information,
the accuracy of classification of hyperspectral images can be 100%.

The designed framework shows several advantages in terms of processing speed, efficiency,
and accuracy. It may play an important role in industrial material sorting for agricultural
products, food, and industrial waste sorting.
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Abstract

Radioactive contamination of soils is an issue of severe importance for Ukraine remain-
ing with a significant post-Soviet baggage of not settled problems regarding radioactive 
waste. Regular radioecological observations and up-to-date contamination mapping 
based on advanced geoinformation techniques give an ability to prepare for, respond to, 
and manage potential adverse effects from pollution with radionuclides and heavy metals. 
Hyperspectral satellite imagery provides potentially powerful tool for soil contamination 
detection and mapping. An intention to find a relation between remotely sensed hyper-
spectral and ground-based measured soil contamination fractions in area of the uranium 
mill tailings deposits near Kamianske city was made. An advanced algorithm based on 
known TCMI (target-constrained minimal interference)-matched filter with a nonnega-
tive constraint was applied to determine the soil contamination fractions by hyperspectral 
imagery. The time series maps of spatial distribution of the soil contamination fractions 
within study area around the Sukhachevske tailings dump are presented. Time series 
analysis of the map resulted in two independent parameters: the average value for the 
entire observation period and the daily mean increment of the soil contamination fractions.

Keywords: Pre-Dnieper chemical plant, uranium mill tailings, soil contamination 
fractions, hyperspectral imaging, spectral unmixing, time series analysis

1. Introduction

Nowadays, agriculture became the leading branch of the Ukrainian economy. Ukraine places 
among the world’s top 10 producers of wheat, barley, corn, and soybeans and is the leader 

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



Chapter 7

Soil Contamination Mapping with Hyperspectral
Imagery: Pre-Dnieper Chemical Plant (Ukraine) Case
Study

Sergey A. Stankevich, Mykola M. Kharytonov,
Anna A. Kozlova, Vadym Yu. Korovin,
Mykhailo O. Svidenyuk and Alexander M. Valyaev

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.72601

Provisional chapter

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons  
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, 
and reproduction in any medium, provided the original work is properly cited. 

DOI: 10.5772/intechopen.72601

Soil Contamination Mapping with Hyperspectral Imagery: 
Pre-Dnieper Chemical Plant (Ukraine) Case Study

Sergey A. Stankevich, Mykola M. Kharytonov,  
Anna A. Kozlova, Vadym Yu. Korovin,  
Mykhailo O. Svidenyuk and Alexander M. Valyaev

Additional information is available at the end of the chapter

Abstract

Radioactive contamination of soils is an issue of severe importance for Ukraine remain-
ing with a significant post-Soviet baggage of not settled problems regarding radioactive 
waste. Regular radioecological observations and up-to-date contamination mapping 
based on advanced geoinformation techniques give an ability to prepare for, respond to, 
and manage potential adverse effects from pollution with radionuclides and heavy metals. 
Hyperspectral satellite imagery provides potentially powerful tool for soil contamination 
detection and mapping. An intention to find a relation between remotely sensed hyper-
spectral and ground-based measured soil contamination fractions in area of the uranium 
mill tailings deposits near Kamianske city was made. An advanced algorithm based on 
known TCMI (target-constrained minimal interference)-matched filter with a nonnega-
tive constraint was applied to determine the soil contamination fractions by hyperspectral 
imagery. The time series maps of spatial distribution of the soil contamination fractions 
within study area around the Sukhachevske tailings dump are presented. Time series 
analysis of the map resulted in two independent parameters: the average value for the 
entire observation period and the daily mean increment of the soil contamination fractions.

Keywords: Pre-Dnieper chemical plant, uranium mill tailings, soil contamination 
fractions, hyperspectral imaging, spectral unmixing, time series analysis

1. Introduction

Nowadays, agriculture became the leading branch of the Ukrainian economy. Ukraine places 
among the world’s top 10 producers of wheat, barley, corn, and soybeans and is the leader 

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



in the production and export of sunflower. One-third of Ukrainian agrarian products are 
exported to European countries. Such agricultural achievements are primarily caused by the 
rich land potential of the country. There are 60.4 million hectares of mollisols in Ukraine. 
Moreover, almost 42 million hectares (about 69%) of them are arable lands and farmlands. 
The southern and central regions of Ukraine are especially fertile due to the highest content 
of humus in the local mollisols [1].

According to the Constitution of Ukraine, “Land shall be the main national asset and as 
such shall be under special protection” (Art. 14). Nevertheless, more than half of the fertile 
lands in Ukraine suffer from different types of degradation: loss of the fertile layer, erosion, 
and contamination. The problem of radioactive contamination of soils is extremely topical 
for Ukraine [2].

The mining and processing of uranium ore started in Soviet Ukraine in the late 1940s as a 
secret without any requirements of environmental safety. Uranium raw materials enrich-
ment lasted in Ukraine until the Soviet Union fell apart in 1991. Currently, there are about 
120 local contaminated sites that are identified inside and near Kamianske (former city name is 
Dniprodzerzhynsk). The exposure dose of these spots in several times is higher than the control.

Production Association of Pre-Dnieper chemical plant (PA PCP) was one of the most powerful 
uranium enterprises of the former USSR. Activity of the enterprise has led to formation of ura-
nium ore traces. In particular, they can appear in a form of specific contamination fractions on the 
surface of the soil. Such focal points of the radiation pollution are enriched with radium-226 and 
other uranium-thorium radionuclides. They have been formed as a result of uranium extraction 
and ore recycling. There are nine radioactive waste storage facilities developed since the pro-
duction at the PA PCP was launched. They are placed at the plant site as well as adjacent areas.

Radioactive solid and liquid waste is accumulated in gullies and hollows and on the upper 
terrace of the Dnieper river near other mining and metallurgical enterprises. Agricultural 
lands adjoin uranium tailings from all sides. Each year, as a result of wind erosion, more than 
30 tons of radioactive dust settles on the arable lands. Also, radionuclides may be discharged 
to the atmosphere through by radon emanation.

Production of uranium concentrate was halted on PCP in connection with Soviet Union col-
lapse. Several liquidation-reclamation actions were made within environmental programs to 
manage safe condition of uranium production with PCP [3, 4]. However, the management and 
maintenance of these neglected facilities are still problems of the current interest. Therefore, 
environmental security requires the use of modern technologies [5].

A set of environment security technologies are needed to be implemented to monitor, assess, 
and visualize the agricultural soil contamination. It will give an ability to prepare for, respond 
to, and manage potential adverse effects from radioactive pollution.

The goal of the research was the elimination of the negative environmental effects of the PCP 
activity. Uranium milling activities is a source of considerable soil contamination by radioactive 
substance, making a harmful impact on environment and the population. Regular  radioecological 
observations and up-to-date contamination mapping become a primary issue for  environmental 
protection of areas surrounding uranium ore milling works. Hyperspectral satellite imagery 
provides a potentially powerful tool for radioactive pollutant detection and mapping.

Hyperspectral Imaging in Agriculture, Food and Environment122

2. Main sources and ways of soil contamination

2.1. Uranium mill tailings deposits

The Sukhachevske tailings dump and Base S tailings deposit are located on the right bank of 
the Dnieper 5 km southeast of Kamianske (Figure 1a).

The Sukhachevske wet uranium tailings dump is still partly covered with water. The dump 
is located on the left branch of the Rozsoluvata ravine in the Sukha Sura river valley. The 
tailings’ construction is a ravine partitioned by two dams and consisted of two sections, one 
arranged behind the other (Figure 1b). Base S tailings deposit is located 830 m east of the 
Sukhachevske tailings dump.

The chemical composition of wastes formed the major source of uranium ore minerals (quartz, 
feldspar, hydromica, kaolinite) combined with the chemicals used during ore processing (sulfu-
ric and nitric acid) and products of neutralization of the resulting acidic environment (lime). The 
exposure dose rate of gamma radiation on the surface of the waste not covered by water varies 
from 100 to 1800 mcR/h. Power of equivalent dose of gamma radiation at a height of 1 m above 
the surface of the stored materials is changed in the downstream part from 0.31 to 4.08 μSv/h, in 
the upper reaches of 0.59–4.4 μSv/h, and averages the lower section of 1.91 ± 0.55 μSv/h.

The concentrations of radon-222 in the waste varies from 0.17 ± 0.03 MBq/m3 to 1.73 ± 0.25 MBq/m3  
at a depth of 0.6 m. The flux density of radon-222 from the surface is in the range of 
0.03–1.475 Bq/m2·s.

Figure 1. Location of the main uranium mill tailings deposits around Kamianske city (a) and an aerial photo of 
Sukhachevske tailings dump from http://wikimapia.org (b).
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Liquid waste is represented by the waters of a pond in the central part of the tailings dump 
and pore water in the bulk of the solid waste. The slurry water contains barium, cadmium, 
strontium, cobalt, fluoride, nickel, zinc, silicium, manganese, and aluminum.

The main purpose of another tailings deposit—Base S—was a temporary warehousing of raw 
uranium delivered to the plant for further processing. It was built in 1960 and was in opera-
tion until 1990.

Now, the technology for waste storage at the tailings dump is disturbed: water pumping sta-
tions and conduits were destroyed; the feeding of water to the tailings dump was terminated; 
fencing facilities are destroyed in many places; and sewage water pipeline from PCP to the 
Sukhachevske uranium tailings dump suffered from numerous violations and corrosion. As a 
result, radioactive dust and sewage water have contaminated surrounding areas.

2.2. Ways of radioactive contamination spreading

2.2.1. Wind-driven spread of contaminants

The frequency of repetition directions of the wind is one of the determining factors to assess 
the transport of fine particles from the surface of waste storage. The right side of Kamianske 
city is under prevailing southerly wind spreading. This fact coincides with increment of tech-
nogenic load from the southern side of the second section of Sukhachevske tailings dump [6]. 
The predominant annual average wind frequency of occurrence has its maximum in north-
northwest direction (Figure 2). However, the excess over the rest is minimal.

Average wind speed is in the range of 2.9–4.4 m/s (Table 1).

A large part of the surveillance zone near the Sukhachevske tailings dump is used for agri-
cultural production. About 90% of the total area of farmland is plowed and used for cereals 
(wheat, barley, corn, oats), forages, and technical crops (sunflower and rape) cultivation. Lower 
slopes and bottoms of the ravines are used for haymaking and grazing. The  forest  vegetation 
in the area is represented by forest belts on the plateau and its slopes. Each year, because of 
wind erosion, considerable amount of contaminated dust particles settle on arable lands.

Figure 2. Frequency of wind directions (%) by long-term observations: (а) July average and (b) annual average [7].
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2.2.2. Transfer of contaminants by hydrological network and surface runoff

Surface runoff from contaminated land is one of the major processes responsible for the con-
tamination of water bodies. From the catchment area, the contaminants draining into the 
streams accumulate in floodplains and riverbeds. Rivers, drying out in warm seasons, cause 
secondary wind-driven contamination.

The Sukha Sura river is a tributary of the Mokra Sura river. Meantime, the pool of the Mokra 
Sura river is bordered with pool of the Samotkan river from the northwest, with the river 
Bazavluk in the southwest, with the Tomakovka river from the east, and near the Dnieper 
river from the north and east (Figure 3).

3. Materials and methods

3.1. Target and background spectral separation

Known algorithms for polluting agents’ detection, which are used to analyze the spectrometric 
measurements, are based on the target and background spectral separation [8]. Therefore, the target 
spectra are necessary before starting the analysis of hyperspectral imagery. Before  hyperspectral 
imaging engagement, the spectrometric measurements of contaminated soil samples were per-
formed in ground control points (GCP), which are plotted in Figure 4a. Soil equivalent dose rate 
measurements were performed 10 times for each sample and then averaging (Tables 2 and 3).

Laboratory spectrometric measurements of field samples were carried out using the 
FieldSpec 3FR high-precision portable spectrometer (Figure 4b) developed by Analytical 

Month I II III IV V VI VII VIII IX X XI XII Year

Wind speed (m/sec) 4.2 4.4 4.2 3.9 3.3 3.2 3.0 2.9 3.0 3.5 3.6 3.8 3.6

Table 1. Average month and annual wind speed by long-term observations (m/s) [7].

Figure 3. Basin of the Mokra Sura river.
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Spectral Devices, Inc. (ASD, Inc.) company (http://www.asdi.com//). The main specifications 
of FieldSpec 3FR instrument are as follows: spectral range is 350–2500 nm, spectral sampling 
interval is 1.4 nm inside 350–1000 nm range, 2 nm inside 1000–2500 nm range, and output 
spectral sampling interval is 1 nm (interpolated).

Spectra of the field samples measured using FieldSpec3FR were calibrated as absolute reflec-
tance, including both reflectance value and standard deviation. It is clear that to match the 

Figure 4. Ground control points of in situ measurements (a) and ASD FieldSpec 3FR portable spectrometer used for 
spectrometric measurements of contaminated soil samples (b).

The Sukhachevske tailings dump

Point code С 1 С 2 С 3 С 4 С 5 С 6 С 7 С 8 С 9 С 10

Equivalent dose 
rate (μSv/h)

0.11–
0.16

0.10–
0.14

0.09–
0.12

0.12–
0.16

0.11–
0.14

0.08–
0.12

0.09–
0.13

0.69–
0.80

0.16–
0.19

0.18– 
0.23

Table 2. Results of in situ measurements of soil equivalent dose rate at the Sukhachevske tailings dump.

The Base S tailings deposit

Point code B 1 B 2 B 3 B 4 B 5 B 6 B 7 B 8 B 9 B 10

Equivalent dose 
rate (μSv/h)

1.15–
1.24

0.38–
0.44

0.21–
0.26

0.15–
0.21

0.39–
0.46

0.39–
1.08

2.22–
2.41

2.02–
2.13

0.14–
0.18

0.13– 
0.17

Table 3. Results of in situ measurements of soil equivalent dose rate at the Base S tailings deposit. Comparative to average 
background within Dniprodzerzhinsk city [7]  equivalent dose rate in points B1, B6, B7 and B8 was 8-17 times more.
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FieldSpec 3FR and Hyperion spectra correctly, the latter one should be recalibrated to land 
surface reflectance too.

The target spectra of soil samples at sites B and C within PCP acquired by FieldSpec 3FR 
spectrometer are shown in Figure 5.

3.2. Hyperspectral imagery time series and preprocessing

The Hyperion imaging spectrometer was part of the NASA’s Earth Observing Mission 1 
(EO-1). Hyperion was the first imaging spectrometer to routinely acquire science-grade data 
from Earth orbit. Its 242 bands covered the visible, near-infrared, and shortwave infrared 
bands (400–2500 nm) with 10 nm bandwidths. The spatial resolution of 30 m was sufficient to 
address most land application issues [9].

Images are available for free download through the United States Geological Survey (USGS) 
EarthExplorer. Timeline includes EO-1/Hyperion products on the 4-year period from 20 July 
2012 to 13 July 2016 (Figure 6). All the images have been radiometrically calibrated based 
on gain and offset values from metadata file. As a result, a stack of 196 bands in 426–2395 nm 
range for each image have been formed.

The images were converted into surface reflectance using MODTRAN 4 atmospheric 
model approach [10]. It uses only approximate specification of sensor band locations 
(i.e., central wavelengths) and their radiometric calibration; no additional metadata were 
required [11].

Figure 5. Target spectra of soil samples: (a) at the Sukhachevske tailings dump and (b) at the Base S tailings deposit.
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Table 2. Results of in situ measurements of soil equivalent dose rate at the Sukhachevske tailings dump.

The Base S tailings deposit

Point code B 1 B 2 B 3 B 4 B 5 B 6 B 7 B 8 B 9 B 10

Equivalent dose 
rate (μSv/h)

1.15–
1.24

0.38–
0.44

0.21–
0.26

0.15–
0.21

0.39–
0.46

0.39–
1.08

2.22–
2.41

2.02–
2.13

0.14–
0.18

0.13– 
0.17

Table 3. Results of in situ measurements of soil equivalent dose rate at the Base S tailings deposit. Comparative to average 
background within Dniprodzerzhinsk city [7]  equivalent dose rate in points B1, B6, B7 and B8 was 8-17 times more.
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FieldSpec 3FR and Hyperion spectra correctly, the latter one should be recalibrated to land 
surface reflectance too.

The target spectra of soil samples at sites B and C within PCP acquired by FieldSpec 3FR 
spectrometer are shown in Figure 5.

3.2. Hyperspectral imagery time series and preprocessing

The Hyperion imaging spectrometer was part of the NASA’s Earth Observing Mission 1 
(EO-1). Hyperion was the first imaging spectrometer to routinely acquire science-grade data 
from Earth orbit. Its 242 bands covered the visible, near-infrared, and shortwave infrared 
bands (400–2500 nm) with 10 nm bandwidths. The spatial resolution of 30 m was sufficient to 
address most land application issues [9].

Images are available for free download through the United States Geological Survey (USGS) 
EarthExplorer. Timeline includes EO-1/Hyperion products on the 4-year period from 20 July 
2012 to 13 July 2016 (Figure 6). All the images have been radiometrically calibrated based 
on gain and offset values from metadata file. As a result, a stack of 196 bands in 426–2395 nm 
range for each image have been formed.

The images were converted into surface reflectance using MODTRAN 4 atmospheric 
model approach [10]. It uses only approximate specification of sensor band locations 
(i.e., central wavelengths) and their radiometric calibration; no additional metadata were 
required [11].

Figure 5. Target spectra of soil samples: (a) at the Sukhachevske tailings dump and (b) at the Base S tailings deposit.
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Each band of every image of timeline was checked on salt-and-pepper noise in two iterations 
by signal-to-noise ratio (SNR). Bad band list was formed to remove low SNR bands [12]. New 
stack for images consists of 87 bands in 487–2324 nm range. All the images have been clipped 
by image coordinate system and geo-referenced.

3.3. Hyperspectral imagery processing for target spectral mapping

Usually, polluting substances are present in the soil in a small amount and therefore con-
tribute insignificantly to the overall reflection spectrum. A spectral unmixing technique 
is used to detect such small impurities. Coarse spatial resolution of hyperspectral imager 
leads to the possibility of several different spectra capturing jointly, causing errors in their 
separation [13]. If the spectral samples are quite a few, it is possible to separate the differ-
ent spectral one from another, even within a joint field of view. The linear unmixing model 
is used most commonly. This model calculates the contribution of each spectrum  available 

Figure 6. EO-1/Hyperion images over the Sukhachevske tailings dump: Band combinations are R, 640; G, 548; and B, 
487 nm.
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within the field of view. Linear unmixing model provides the homogeneous spectral 
weighing in proportion to their fractions within the field of view [14]. Methods and algo-
rithms for spectral unmixing are developed for decades [15]. In our case the hyperspec-
tral imagery from NASA’s EO-1/Hyperion satellite sensor (https://eo1.gsfc.nasa.gov/) was 
used. This instrument operates in 400–2500 nm spectral range with 30 m spatial resolution 
on the ground surface [16].

The general processing dataflow is described by the flowchart in Figure 7 diagram.

Both hyperion sensor and FieldSpec spectrometer raw data are calibrated for land surface reflec-
tance output. Then, the high spectral resolution FieldSpec data transformed into Hyperion’s 
spectral signatures through the FieldSpec’s spectral convolution with Hyperion’s band spectral 
responses [17]. Now, it is possible to perform pixel-by-pixel matching of the target and current 
signatures for spectral fraction mapping. The matching procedure implies simultaneous reli-
ability evaluation of the target signature retrieving. Further, these estimates are used to adjust 
the values of detected target spectral fractions (the fusion operator). Finally, the distribution 
maps of the target spectra are generated for the entire hyperspectral image scene.

The spectral unmixing model assumes that every ith spectral signature, i = 1 … n, can be writ-
ten as an m-dimensional vector yi, where m is the number of spectral samples, and each jth 
target spectrum—by an m-dimensional vector xj, j = 1 … p. Let X as the matrix of target spectra 
of size m × p, and αi = (α1, α2 … αр)Т as the vector of target spectral fractions in the ith spectral 
signature. Linear mixing model for yi spectrum is expressed by equation:

   y  i   = X  α  i   +  ε  i    (1)

where εi is the residual vector which can be considered as the additive noise [18].

Figure 7. Hyperspectral imagery general flowchart.
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The main restriction of unmixing is exceedance of the spectral sample number over the num-
ber of target spectra which are unmixed:

  m ≥ p  (2)

If all elements of X matrix are known, then the problem comes down to solving a system 
of linear equations by least squares (LS) method, possibly with some constraints: nonnega-
tively (nonnegatively constrained least squares (NCLS)), sum-to-one equality (sum-to-one 
constrained least squares (SCLS)), or both simultaneously (fully constrained least squares 
(FCLS)). In [8] paper a special algorithm based on modified FCLS method was proposed.

Unfortunately, in practice, as a rule, the all spectral composition of the whole scene is 
unknown. In this case the other method must be applied which extract one or more known 
target spectra, and the rest are considered as unwanted [19]. The TCMI (target-constrained 
minimal interference) filter, proposed in [20] paper, is the most perfect of such methods. In 
TCMI filter the estimation of sum of target spectral fractions in ith signature is equal to wT yi, 
where yi is the mixed spectrum and w is the solution of minimization problem:
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Generally, it is can be assumed that the first k spectra are the target and rest k + 1 … p ones are 
unwanted. Then, an explicit formula for w will be as follows:
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If the target signature is alone, then the TCMI filter is simplified to the CEM (constrained 
energy minimization) one [21]. Thereupon,

   w  CEM  T   =   
 x  1  T   Y   −1 

 __________  x  1  T   Y   −1   x  1  
    

where x1 is the target spectrum.

In order to apply the TCMI filter for target spectral fractions, the ones estimations in ith mixed 
signature will be.

   α  TCMIi   =   ( X   T   Y   −1  X)    −1   X   T   Y   −1   y  i    (5)

where αTCMIi is a p-dimensional vector. The TCMI and CEM filters can be reduced to linear 
transform of spectra with the kind of a LS method also known as the OSP (orthogonal sub-
space projection) method [22].
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Any components of αTCMIi vector can be negative. Theoretically, the small value of fraction 
estimate indicates that this spectrum is not present inside mixed signature. Nevertheless, the 
negative values are unacceptable as fraction estimates. To avoid the negative values of esti-
mates, it is reasonable to apply a method similar to the NCLS. Such improvement of the clas-
sical TCMI algorithm was proposed in [23] paper.

Combination of the TCMI and NCLS methods consists in finding a target spectral fractions αi 
in the ith mixed signature as a minimum value in the equation system with constraints:

   { 
   ( y  i   − X  α  i  )    T   Y   −1   ( y  i   − X  α  i  )  → min 

      α  ij   ≥ 0, j = 1, 2 .. p     

Like TCMI and CEM, the TCMI-NCLS method is reduced to spectral multiplication by the Y–1/2 
matrix and to succeed application of the NCLS method. The TCMI-NCLS algorithm provides a 
higher accuracy than the classical TCMI in spectral unmixing for land cover classification [23].

The processing of hyperspectral imagery for soil contamination mapping of study area was 
carried out through the determination of target spectral fractions in each hyperspectral pixel 
by the TCMI-NCLS algorithm.

Our previous experience has shown that it is necessary to estimate the error probability and 
to adjust the expected values of target spectral fractions (the Fusion procedure) for reliable 
results. Similar approach was applied for soil contamination mapping within Kiev city area 
using the hyperion hyperspectral image [24]. Techniques based on information divergence 
[25], Bhattacharyya statistical distance [26], spectral-topological classifier [27], and fuzzy deci-
sion tree [28] were considered. Finally, the information divergence and Bhattacharyya statisti-
cal distance were involved to adjust the target spectral fractions after TCMI-NCLS algorithm 
applying over input hyperspectral image.

It is possible to ensure further improvement in evaluation reliability by analyzing the time 
series of research area imagery rather than stand-alone images. Time series analysis is a uni-
versal tool for the systems and process state assessment, as well as for its prediction. Time 
series analysis is especially important for the remote sensing data processing [29]. The pur-
pose of time series analysis is to determine the parameters of the occurring change dynamics, 
primarily the trend and periodic components [30]. The Earth’s surface imagery time series 
should be considered as composite of individual time series in each pixel.

4. Results and discussion

In the current research, the subfractions of each target spectrum were summed up, and in this 
way, the maps of spatial distribution of soil with pollution has been formed. Figure 8 contains 
the spatial distribution of the total fractions of target spectra within the scene of the study area. 
Since the applied algorithm detects contaminant fractions only on the surfaces of exposed soil 
and has restrictions for detecting them on other soils covered with snow or vegetation, spatial 
distribution of the total fractions of target spectra is differently represented in the images of 
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certain stages of the season. The least indicative are the images of the warm period when most 
of the study area is covered by natural (in the floodplain of the Sukha Sura river) or agricultural 
(on the arable lands) vegetation as it can be seen from the images of 10 May 2013, 20 July 2013, 
and 13 July 2016. The image for the snowless winter period (18 February 2015) demonstrates 
spatial distribution of the contaminant fractions most entirely, excepting small areas of artificial 
surfaces and areas covered with snow and ice. Spatial distributions of the contaminant frac-
tions on the images of the autumn period (18 September 2014, 17 September 2015) are reflected 
depending on the soil exposure and the way it was cultivated during agricultural works and dif-
fer from year to year. Besides, the detection of contaminant fractions can also be affected by the 
state of the soil at the time of survey, to the extent that it is waterlogged, cultivated, or eroded.

The pixel-by-pixel simultaneous processing of all target spectral maps resulted in spatial dis-
tributions of time series parameters. Because the total number of hyperspectral images in time 
series was not too large, an analysis of their time series turns into the linear trend extracting 
[31]. The linear trend is described by two independent parameters: the average value for the 
entire observation period and the daily mean increment. The results of parameter calculation 
of Hyperion image’s time series linear trend for both scenes are illustrated in Figure 9.

The data on average value and daily increment show hot spots of high technogenic load 
around Rozsoluvata ravine.

Figure 8. Target spectral total fractions by fused TCMI-NCLS algorithm.
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5. Conclusions

Our research was made with intention to find a relation between remotely sensed hyper-
spectral and ground-based measured soil contamination fractions in the area of the uranium 
mill tailings deposits. Other types of urban industrial landscapes were not involved in the 
process of hyperspectral classification. Airborne dust and erosion processes were selected as 
the main reasons of environment pollution with radionuclides and heavy metals in the terri-
tory occupied with two tailings of uranium mill tailings. The spectra of field samples taken 
near the two deposits were compared with hyperspectral images. The maps on average value 
and daily increment assessment are background to classify area with different levels of tech-
nogenic load.

Additionally, our research has confirmed that hyperspectral imaging is a useful and an effi-
cient tool for soil contamination mapping. One allows to detect small contaminant fractions 
on the soil surface by spectral end-member unmixing, if it is not shaded by vegetation or 
other covers. The proposed NCLS-TCMI algorithm is more advanced than the known CEM 
and TCMI ones, and it provides more reliable detection of soil contaminant’s fractions. At the 
same time, the similarity of contaminated and non-contaminated soils’ spectra and the small 
value of detected fractions have resulted in the need for additional adjustment of mapping 
outputs. This specified problem can be mitigated by taking certain measures when preparing 
the input data and carrying out the mapping. First, the reference spectra should be prepared 

Figure 9. Spatial distributions of the time series parameters: (a) daily mean increment and (b) average value for the entire 
observation period.
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not only for soils but also for other land covers within the scene. This will make it possible to 
carry out a full-scale land cover classification and to build a mask of soil of interest only before 
the final mapping. Second, the reference spectra of both contaminated and non-contaminated 
soils are required for contaminants’ reliable detection. This will permit the Bayesian rule 
engagement for similar spectral discrimination.

Future works should be devoted to the development of complete all-in-one technology for 
mapping of soil contamination using hyperspectral imagery and its wide-ranging statistically 
significant probation over variety of test sites.
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not only for soils but also for other land covers within the scene. This will make it possible to 
carry out a full-scale land cover classification and to build a mask of soil of interest only before 
the final mapping. Second, the reference spectra of both contaminated and non-contaminated 
soils are required for contaminants’ reliable detection. This will permit the Bayesian rule 
engagement for similar spectral discrimination.

Future works should be devoted to the development of complete all-in-one technology for 
mapping of soil contamination using hyperspectral imagery and its wide-ranging statistically 
significant probation over variety of test sites.
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Abstract

Processing hyperspectral images allows you to decode images and recognize objects in 
the scene on the base of analysis of spectrums. In some problems, information about the 
spectra may not be sufficient. In this case, visualization of data sets may use, for object 
recognition, by use additional non-formalized external attributes (for example, indicat-
ing the relative position of objects). Target visualization is a visualization adapted to a 
specific task of application. The method discussed in this chapter uses a way to visualize 
a measure of similarity to the sample. As a result of the transformation, the hyperspectral 
(multichannel) image is converted into a single-channel synthesized image in grayscale, 
on which the objects of interest for the problem under consideration are selected. By 
changing the brightness and contrast of the synthesized image, it is possible to interac-
tively adjust the results of automatic processing.

Keywords: hyperspectral image, visualization, interpretation, detection, interactive 
participation

1. Introduction

Hyperspectral image (HSI) is a set of images of one object (scene, slide, field of view, etc.), 
that match different narrow wavelength subranges, provides powerful tool for detection and 
recognition of objects under surveying.

Hyperspectral data use is a serious problem caused by need of processing of huge amount 
of information (tens and hundreds gigabytes). Most of hyperspectral image recognition 
algorithms are highly resource-intensive, especially when striving to provide full classifica-
tion of hyperspectral information. Information about spectra may be insufficient for some 
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tasks. In those cases acceptable interpretation cannot be realized without human assis-
tance. The data visualization facilitates making decision for an expert-user allowing him 
to use unobvious signs obtained from experience. Watching all of the band images from 
HSI (HSI can consist of more than 300 spectral bands) is a labor-intensive and inefficient 
task. Segmentation methods are used to represent visual information in more compact view. 
These methods mark out homogeneous regions in the image that allows representing hyper-
spectral image in view of some synthesized image, for example, in pseudo-color, which 
facilitates visual perception. However, only in some cases a criterion of true segmentation 
exists. Visualization only allows us to reveal errors. And for the result correction, we need 
to process all over again using altered parameters of the algorithm. When solving a certain 
task, not all of the objects are of equal interest. Obviously, the visualization should be done 
so that the objects of interest were represented in the result image in the best way, but the 
details that prevent from good visual perception were eliminated. I.e. visualization should 
be targeted. Such adaptation of data processing to a specific practical task can be realized 
by means of target visualization method. As a result of such transformation the information 
contained in HSI is represented in the synthesized image in grayscale where the brightness 
range is concentrated on the details of the image that are of interest for user. The method 
combines mathematical computation speed with visual assessment and possibility to cor-
rect interpretation process interactively. In addition, the useful information is appreciably 
compressed, that is very important for remote sensing tasks.

2. Target visualization of HSI

Target visualization converts a set of images that constitute a hyperspectral image into a syn-
thesized single-channel image that provides a visual representation of the data for a particular 
application. To perform the target visualization of HSI the image transform method is used. 
The method visualizes measure of similarity to a sample within a space of attributes [1, 2, 7].

Hyperspectral image, or so-called hypercube, is a collection of pictures of a single object that 
correspond to different narrow subranges of wavelengths,

  B ∈  { B  kmn  , k = 1, … , K} , m = 1, … , M, n = 1, … , N  (1)

where k – the spectral subrange number; (m, n) – the spatial coordinates of an image pixel;  
M – the number of lines in the image; N – the number of columns; Bkmn – the brightness value 
at point (m, n) in the kth frequency subrange.

As the attributes, that distinguish the objects of interest, the spectral characteristics are used. 
Moreover, can be used other characteristics that are used in tasks on image classification [3, 4], 
such as: features of brightness, texture, gradient and characteristics of adjacency. The values 
of the characteristics used for each pixel, can be obtained a priori or via image pre-processing.

Thus, each pixel of the HSI with certain spatial coordinates has its coordinates within a fea-
ture space. In the visualization method for each task on HSI processing a decision function is 

Hyperspectral Imaging in Agriculture, Food and Environment140

formed within a set of feature values. The decision function quantitatively determines belong-
ing of the pixel to the object of interest. Then the result image is synthesized. Pixel bright-
ness of this image conforms to the decision function value. Changing brightness range in the 
obtained image and using his notion about the object being studied, user can interactively set 
threshold to mark out the object of interest.

The main problem of the method is to choose a decision function that corresponds to a specific 
applied task. Some of tasks and the choice of the decision function for them are listed as an 
example below:

1. To pick out objects on the HSI that have spectral characteristics that are similar to charac-
teristics Ok from a spectral library.

2. To pick out objects on the HSI that are similar to the characteristics of an object-sample 
with specified spatial coordinates—i.e., sample Ok is specified by spatial coordinates (m, n): 
Ok = Bkmn.

3. To pick out objects which have the most widely represented spectra on the HSI 
(endmembers).

4. To pick out objects which have the most uncommon spectra.

5. To pick out boundaries of homogeneous regions on the HSI.

6. To pick out objects on thematic images—i.e., on images obtained by using mathematical 
operations with spectral bands [5].

The suitable decision function for the tasks 1–5 is the measure of similarity to the sample [1, 2]. 
Similarity can be specified by one of the measures of closeness of the vectors used for HSI clas-
sification, such as:

• the Euclidean distance

  d 1  mn   =  √ 
_______________

   ∑ K=1  K      (   B  kmn   −  O  k   )     
2
    ;    (2)

• the distance measured by the spectral angle

  d 2  mn   = arccos   (   ∑ K=1  K     (   B  kmn   −  O  k   )    /  √ 
_____________

   ∑ K=1  K     B  kmn  2   ∑ K=1  K     O  k  2     )    ;    (3)

• the maximum distance

  d 3  mn   = max  { | B  1mn   −  O  1  | , … ,  | B  Kmn   −  O  K  | } .  (4)

As a sample, multidimensional feature vector is chosen from set of points of the attribute 
space. A sample can be chosen either by specifying of a priori known feature values or by 
pointing to one of the discriminated objects.
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tasks. In those cases acceptable interpretation cannot be realized without human assis-
tance. The data visualization facilitates making decision for an expert-user allowing him 
to use unobvious signs obtained from experience. Watching all of the band images from 
HSI (HSI can consist of more than 300 spectral bands) is a labor-intensive and inefficient 
task. Segmentation methods are used to represent visual information in more compact view. 
These methods mark out homogeneous regions in the image that allows representing hyper-
spectral image in view of some synthesized image, for example, in pseudo-color, which 
facilitates visual perception. However, only in some cases a criterion of true segmentation 
exists. Visualization only allows us to reveal errors. And for the result correction, we need 
to process all over again using altered parameters of the algorithm. When solving a certain 
task, not all of the objects are of equal interest. Obviously, the visualization should be done 
so that the objects of interest were represented in the result image in the best way, but the 
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  B ∈  { B  kmn  , k = 1, … , K} , m = 1, … , M, n = 1, … , N  (1)

where k – the spectral subrange number; (m, n) – the spatial coordinates of an image pixel;  
M – the number of lines in the image; N – the number of columns; Bkmn – the brightness value 
at point (m, n) in the kth frequency subrange.

As the attributes, that distinguish the objects of interest, the spectral characteristics are used. 
Moreover, can be used other characteristics that are used in tasks on image classification [3, 4], 
such as: features of brightness, texture, gradient and characteristics of adjacency. The values 
of the characteristics used for each pixel, can be obtained a priori or via image pre-processing.

Thus, each pixel of the HSI with certain spatial coordinates has its coordinates within a fea-
ture space. In the visualization method for each task on HSI processing a decision function is 
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formed within a set of feature values. The decision function quantitatively determines belong-
ing of the pixel to the object of interest. Then the result image is synthesized. Pixel bright-
ness of this image conforms to the decision function value. Changing brightness range in the 
obtained image and using his notion about the object being studied, user can interactively set 
threshold to mark out the object of interest.

The main problem of the method is to choose a decision function that corresponds to a specific 
applied task. Some of tasks and the choice of the decision function for them are listed as an 
example below:

1. To pick out objects on the HSI that have spectral characteristics that are similar to charac-
teristics Ok from a spectral library.

2. To pick out objects on the HSI that are similar to the characteristics of an object-sample 
with specified spatial coordinates—i.e., sample Ok is specified by spatial coordinates (m, n): 
Ok = Bkmn.

3. To pick out objects which have the most widely represented spectra on the HSI 
(endmembers).

4. To pick out objects which have the most uncommon spectra.

5. To pick out boundaries of homogeneous regions on the HSI.

6. To pick out objects on thematic images—i.e., on images obtained by using mathematical 
operations with spectral bands [5].

The suitable decision function for the tasks 1–5 is the measure of similarity to the sample [1, 2]. 
Similarity can be specified by one of the measures of closeness of the vectors used for HSI clas-
sification, such as:

• the Euclidean distance

  d 1  mn   =  √ 
_______________

   ∑ K=1  K      (   B  kmn   −  O  k   )     
2
    ;    (2)

• the distance measured by the spectral angle

  d 2  mn   = arccos   (   ∑ K=1  K     (   B  kmn   −  O  k   )    /  √ 
_____________

   ∑ K=1  K     B  kmn  2   ∑ K=1  K     O  k  2     )    ;    (3)

• the maximum distance

  d 3  mn   = max  { | B  1mn   −  O  1  | , … ,  | B  Kmn   −  O  K  | } .  (4)

As a sample, multidimensional feature vector is chosen from set of points of the attribute 
space. A sample can be chosen either by specifying of a priori known feature values or by 
pointing to one of the discriminated objects.
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Some set of vectors over region E of the feature space can be chosen as a sample, too. In this 
case it is possible to use the Mahalanobis distance—i.e., the distance given by the expression:

  d 4  mn   =   ( B  kmn   −   ̄  O )    T   C   −1  ( B  kmn   −   ̄  O ) ,  (5)

where    ̄  O   —the mean of set E, and C—a covariant matrix of set E.

For task 6, the suitable decision function is

  d 5  mn   = f ( B  kmn  )  − Por,  (6)

where  f ( B  
kmn

  )  —some function of the spectral characteristics, used when synthesizing index 
images, and Por—the fixed a priori value of the index.

If an information on probability distribution of attributes of the sample is available, a measure 
based on conditional probabilities can be used (Bayesian approach). Any of a priori estimated 
characteristics of studied objects can be participant in forming of a measure.

By choosing of a sample and a measure of similarity we can adapt visual representation to a 
specified task on interpretation. Choice of a sample can be based on:

• visual analysis of some of the presented pictures;

• a priori information about the object of interest location;

• an information about the spectral features of the required object from a specially created 
database.

The value of the decision function (similarity measure value) is brightness of the pixel on the 
synthesized image. The largest brightness value is assigned to the pixels which are closest 
to the sample within the attribute space. The other pixels have brightness value according 
to their distance from the sample. By representing the matrix of the similarity measure in 
gradations of gray, we obtain a visualization of the HSI adapted to the applied task. Since the 
brightness of each image pixel characterizes its similarity to the object of interest, by visually 
choosing the brightness threshold and by varying the contrast, a specialist can discriminate 
the object that interests him by using his knowledge of the object and accumulated experience.

Various versions of the visualization of the same scene can be obtained by selecting various 
samples and similarity measures. This allows the observer to analyze the imaged scene by 
changing samples and similarity measures. Such a tool can be compared to a magnifying glass 
in feature space (on synthesized images various parts of the feature space can be detailed).

Target visualization used in various application areas of image processing, has a specificity 
that is determined by the area of the study and conditions of registration of images.

3. Target visualization of biomedical images

Computer image analysis is one of the relatively new medical technologies that are of great 
importance in medical research and diagnosing diseases. Due to the complexity of biomedical 
images, it is almost impossible to completely replace the human brain in processing them. At 
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the same time, the method of target visualization of images allows, with the participation of a 
qualified user, to quickly identify and measure objects of interest.

An example of the visualization of hyperspectral images with different samples is shown in 
Figures 1 and 2. The source data was obtained using autofluorescent microscopy in the spectral 
range from 420 to 750 nm with an interval of 6 nm. (The image represents Convallaria rhizome 
section, acquisition with the Leica TCS SP5. The data were provided us by Biotechnologisches 
Zentrum der TU Dresden). Figure 1 shows four of the 50 images of the specimen as an exam-
ple of the initial data.

The capabilities of visualizing multispectral images are demonstrated in Figure 2. The results 
obtained by transforming the 50 initial images using various samples are shown in this figure. 
The samples are represented in the form of graphs of spectra under the transformed images.

Another example of using visualization of hyperspectral images of biomedical theme. This 
example demonstrates a non-invasive method of isolation of tumor cells using a hyperspectral 
image. In this paper we used the HSI represented on the website of the Australian National 
Agency CSIRO—www.cmis.csiro.au/iap.

In Figure 3 the multispectral image of a mouse lung with a tumor, marked with fluorescent 
protein, obtained in 16 spectral bands is shown. It is assumed that the tumor has uncommon 
spectrums relating to the attribute space. The initial multispectral image is difficult for visual 
analysis (it is not easy to notice differences), but on the resulting synthesized images, shown 
in Figure 4, various regions of the studied object are clearly distinguished. For distinguishing 
these regions all of the initial spectral band images are involved into processing.

Under each synthesized image in Figure 4, there is the histogram which corresponds to the dis-
tribution of distances (d) in the attribute space from the spectrum of the sample to the spectrum 
of each pixel in the image. The histogram provides information on the number of pixels with 
a spectrum similar to the spectrum of the sample. Using the histogram, it is possible to set the 
start threshold value for the image binarization and distinguishing the objects like the sample.

Figure 5 shows the result of selecting objects corresponding to the three samples.

The thresholds were chosen at the first minimum of the histograms.

By altering the threshold value, it is possible to vary result of the visualization in according to 
the contextual information and experience of the user.

Figure 1. Sample 4 of 50 raw pictures from the HSI of micropreparation in the wavelength range 420–750 nm used for 
processing. (a) Wavelength of 462 nm, (b) 606 nm, (c) 654 nm, and (d) 702 nm.

Using the Target-Visualization Method to Process Hyperspectral Images
http://dx.doi.org/10.5772/intechopen.72249

143



Some set of vectors over region E of the feature space can be chosen as a sample, too. In this 
case it is possible to use the Mahalanobis distance—i.e., the distance given by the expression:

  d 4  mn   =   ( B  kmn   −   ̄  O )    T   C   −1  ( B  kmn   −   ̄  O ) ,  (5)

where    ̄  O   —the mean of set E, and C—a covariant matrix of set E.

For task 6, the suitable decision function is

  d 5  mn   = f ( B  kmn  )  − Por,  (6)

where  f ( B  
kmn

  )  —some function of the spectral characteristics, used when synthesizing index 
images, and Por—the fixed a priori value of the index.

If an information on probability distribution of attributes of the sample is available, a measure 
based on conditional probabilities can be used (Bayesian approach). Any of a priori estimated 
characteristics of studied objects can be participant in forming of a measure.

By choosing of a sample and a measure of similarity we can adapt visual representation to a 
specified task on interpretation. Choice of a sample can be based on:

• visual analysis of some of the presented pictures;

• a priori information about the object of interest location;

• an information about the spectral features of the required object from a specially created 
database.

The value of the decision function (similarity measure value) is brightness of the pixel on the 
synthesized image. The largest brightness value is assigned to the pixels which are closest 
to the sample within the attribute space. The other pixels have brightness value according 
to their distance from the sample. By representing the matrix of the similarity measure in 
gradations of gray, we obtain a visualization of the HSI adapted to the applied task. Since the 
brightness of each image pixel characterizes its similarity to the object of interest, by visually 
choosing the brightness threshold and by varying the contrast, a specialist can discriminate 
the object that interests him by using his knowledge of the object and accumulated experience.

Various versions of the visualization of the same scene can be obtained by selecting various 
samples and similarity measures. This allows the observer to analyze the imaged scene by 
changing samples and similarity measures. Such a tool can be compared to a magnifying glass 
in feature space (on synthesized images various parts of the feature space can be detailed).

Target visualization used in various application areas of image processing, has a specificity 
that is determined by the area of the study and conditions of registration of images.

3. Target visualization of biomedical images

Computer image analysis is one of the relatively new medical technologies that are of great 
importance in medical research and diagnosing diseases. Due to the complexity of biomedical 
images, it is almost impossible to completely replace the human brain in processing them. At 

Hyperspectral Imaging in Agriculture, Food and Environment142
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The method also allows us to distinguish pixels with spectral characteristics which are rare 
relatively most spectra of this image. For this purpose the Mahalanobis distance for some 
region E can be used—i.e., the distance from the vector y to the mean vector   m  

X
    of a set of vec-

tors X which is specified by expression:

  d (y,  m  X  )  =   (y −  m  X  )    T   C  X  −1  (y −  m  X  )   (7)

where   C  
X
    is a covariant matrix of set X.

Figure 2. The image (a) was obtained by transforming the 50 source images using three appropriate samples (b).

Figure 3. Multispectral image of a mouse lung obtained in 16 different spectral bands.
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Figure 4. The result of visualization of 16 images for three samples: (a) Sample 1; (b) Sample 2; and (c) Sample 3.

Figure 5. The result of selecting objects corresponding to the three samples (the images are inverted): (a) Sample 1; (b) 
Sample 2; and (c) Sample 3.

Figure 6. Steps of distinguishing pixels with uncommon spectral characteristics: (1) the spatial region defining the set X; 
(2) visualization of the initial images using Mahalanobis distance; (3) the result of distinguishing pixels with uncommon 
spectral characteristics (the image is inverted).
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In our case, the set X is the set of vectors of the attribute space, which correspond to the most 
representative part of the image in Figure 6a. This area is indicated with the solid line. Figure 6b 
represents the result of visualization with the Mahalanobis distance over the set X use.

All pixels which are close by their spectral characteristics to   m  
X
    have light hue. Pixels, which 

are appreciably different from   m  
X
   , have dark hue. Nevertheless, the dark pixels may have dif-

ferent spectral characteristics. To find regions of the image, which are similar by uncommon 
characteristics, one should choose a dark pixel within the interesting region and use its spec-
tral characteristics as a sample. In Figure 6c. the result of distinguishing one of the clusters of 
pixels with uncommon spectral characteristics is represented.

4. The target visualization of HSI using contextual information

The use of contextual information when processing hyperspectral images will be shown in the 
example of the detection of tampering with a financial document. The HSI of the document 
was presented to us by ZAO “Scientific Devices”.

Figure 7 represents 4 of 125 initial pictures used for processing of the HSI of the financial 
document, obtained within spectral range 401–998 nm.

In these pictures, as in the others, not shown in Figure 7, it is difficult to separate the details of 
the text written with, though similar by spectrum, but still different ink. To detect the falsifica-
tion the target visualization of the HSI consisting of 125 was used. To detect the falsification 
the target-visualization of the HSI consisting of 125 pictures was used. The goal of the visu-
alization initially was to distinguish objects that have a spectrum similar to that of the main 
handwritten text.

The method [2] was used; the letter o (indicated in Figure 8a by an arrow) was chosen as a 
specimen of the main text. The choice of this sample was based on comprehension of the task 
(in this part of the text the falsification was senseless). Spectral angle measure  d 2  

mn
   was chosen 

as a measure of the similarity. This gave the synthesized image shown in Figure 8b. The 
brightness of each pixel of the synthesized image is determined by the similarity of the spec-
trum that corresponds to a specified pixel with the spectrum of the sample. The image shown 
in Figure 8c was obtained by varying the brightness and contrast.

A section of the text was then selected that did not appear on the synthesized image (indicated 
in Figure 8a by an arrow). Choice of this specimen was based on the fact that the spectrum of 
this object was different from the main handwritten text and was handwriting, too (another 
sort of inks might be used). The spectrum of this section, differed from the spectrum of the 
main text, was taken as a sample of an forgery. Differences between spectrum of ink of the 
main text and one’s spectrum of the forgery are shown in Figure 9.

Visualization of the text that corresponds to this spectrum is shown in Figure 10b and after 
correcting the brightness and contrast—in Figure 10c. The letters “TY” and the numeral 
“0”belong to the forgery.
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Thus, forgery detection was performed with an interactive user participation, which used 
information of an indirect nature (“the main text” and “handwritten text different from the 
main one”).

Figure 7. Four of 125 initial pictures used for processing of the HSI, obtained in spectral range 401–998 nm. (a) The 
picture corresponding to 492,50 nm; (b) 636,69 nm; (c) 780,80 nm; (d) 997,15 nm.
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Detection of objects of interest can be performed with a greater degree of automation by 
combining automatic segmentation and target visualization. At the first stage, automatic seg-
mentation of the spectra of the hyperspectral image is performed. As a result of automatic 
segmentation, the main spectra are determined. After such preliminary segmentation, an 
interactive correction can be made using the target visualization of the measure of similarity 
with the samples-representatives of the corrected areas.

As an example, we performed HSI processing with the joint use of automatic segmentation and 
the target visualization of the main spectra [6–8]. The main spectra are determined by auto-
matic segmentation. The visualization of the similarity of the spectra of current pixels to the 
main spectra is shown by the synthesized images in Figure 11a. Interactive correction of these 
synthesized images, performed with a change in the brightness range, is shown in Figure 11b.

Figure 8. Distinguishing the text whose spectrum is similar to the spectrum of inks of the main handwritten text. (a) The 
image that corresponds to 545,37 nm with an element of the main text indicated by an arrow; (b) the synthesized image 
for which the main handwritten text was taken as a reference; (c) the synthesized image with correction of the brightness 
and contrast.
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Figure 9. Spectrum of ink of the main text and spectrum of ink of the forgery.

Figure 10. Allocation of the handwritten text of the forgery. (a) The image that corresponds to 545,37 nm with an element 
of the forgery indicated by an arrow; (b) the synthesized image from the spectrum of the inks of the forgery (the arrow 
in (a)) and (c) the synthesized image with correction of the brightness and contrast.
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5. Automatic high-accurate coordinate superposition of images 
obtained in different conditions

Efficient interpretation of images of objects and scenes may be often achieved only with com-
bined processing of video data obtained at different time, by different surveying devices, 

Figure 11. Results of the combined use of automatic segmentation and target visualization of similarity to the main 
spectra. (a) Visualization of similarity to the spectra obtained by automatic segmentation; (b) the images edited by 
selecting the brightness range.
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within different spectral ranges. For combined processing of such images automatic high-
accurate coordinate superposition of them is required. Such images, even being obtained with 
the same aspects and at the same scale, considerably differs one from other. Thus usual corre-
lation methods of image superposition may be inadequate [4]. There are two appreciably dif-
ferent approaches to image coordinate superposition: methods based on areas and methods 
based on image details. Each of these approaches has various advantages and disadvantages. 
These two approaches may be combined by means of the method of image processing by 
similarity to a sample [8].

To carry out the correlation coordinate superposition of these images, each of them is sug-
gested to be preliminary transformed by the method of similarity to a sample involving, as an 
attribute space, textural, gradient features and features of adjacency.

The method does not use reference points of a scene directly. Transforming each of the super-
posed images by the method of similarity to a sample increase reliability of the superposition 
methods based on areas. Indeed, this transforming allows us to increase similarity of the 
images when true superposing of them and to increase their differences when relative shift-
ing. Such transformations can be performed quite a lot, but as much as different samples exist 
in the fixed image.

For each sample, the correlation method determines the coordinates of the shift. The samples 
are chosen automatically (without the assistance of user). All of the available samples may be 
used. But if the images have a lot of samples, they can be selected randomly. For the selected 
samples a distribution is plotted.

Example of defining a coordinate shift the image obtained in the visible range with the image 
obtained in the infrared range, is presented in Figure 12. Presented in these shots images of 
the scene in the visible and IR ranges (Figure 12a and b), have parallel shift. The proposed 
method determined the shift; the displacement was estimated in fractions of a pixel. Figure 12c 

Figure 12. Determining shift of the images by coordinates. (a) and (b) the initial images; (c) histogram of the shift 
estimations.
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5. Automatic high-accurate coordinate superposition of images 
obtained in different conditions
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bined processing of video data obtained at different time, by different surveying devices, 

Figure 11. Results of the combined use of automatic segmentation and target visualization of similarity to the main 
spectra. (a) Visualization of similarity to the spectra obtained by automatic segmentation; (b) the images edited by 
selecting the brightness range.
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represents distribution of shifts obtained for various samples. Quality of the superposing may 
be estimated by statistical characteristics. For example, for this distribution of shifts the fol-
lowing characteristics were calculated: mode of the distribution corresponds to shifts: −0.25 
pixels along OX axis, −0.5 pixels along OY axis; the mean shift along OX axis is equal to −0.2 
pixels and the mean shift along OY axis is equal to −0.6 pixels; the standard deviation along 
OX axis is equal to 0.52 pixels and the standard deviation along OY axis is equal to 0.55 pixels.

6. The target visualization of hyperspectral images in the sphere of 
environmental remote sensing

Up-to-date equipment allows you to collect and analyze information in very narrow spectral 
bands and is used in various applications. In particular, for water monitoring, hyperspectral 
technology makes it possible to identify the distribution of algae by the concentrations of 
chlorophyll, and also to detect impurities of mineral substances in water and to determine the 
coefficients of cloudiness. Hyperspectral data can also be used to identify threatened vegeta-
tion types, some chemical toxins, changes in the chemical composition of soils, etc.

Processing hyperspectral images in remote sensing is related with the difficulties arising from 
the need to take into account the various distortions that appear in the process of formation 
of the HSI.

In known methods of processing remote sensing data before using hyperspectral information, 
the data pre-processing is performed. The main stages, of the pre-processing are:

• radiometric correction (correcting the distortion due to the uneven sensitivity of the ele-
ments of the detectors, accounting for the effects of the atmosphere),

• geometric correction (georeferencing);

• combining images obtained in different spectral bands,

• recalculation of data of distant shooting in values of coefficients of spectral brightness [10].

Such pretreatment is complex and requires additional information, time and computational 
resources.

Using the target visualization allows us to facilitate the processing of remote sensing data. 
Really, the target visualization allows us to significantly reduce influence on results of 
decryption of conditions of shooting (a condition of the atmosphere, exposition parameters), 
as a sample can be chosen on the initial images. In this case, the values of attributes of a the 
sample are obtained under the same conditions of shooting, as the values of attributes of the 
visualized scene.

Using the developed method of the target visualization the work on creation of the informa-
tion layer “Swamp” on the territory of St.-Petersburg has been done [9]. Remote sensing data, 
435 micro landscapes of 11 types on total area of about 40 sq. km were mapped.
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Majority of the swamps in the city is under strong anthropogenic influence due to which 
the images of the wetlands on the territory of St.-Petersburg are very diverse (by type) 
and variegated (by the spectral and spatial characteristics) structure, which creates a big 
problem in their interpretation by space images. As input data, the following materials 
were used:

• the multispectral images of the territory of St. Petersburg obtained by the Quickbird satel-
lite equipment with the resolution 2.4 m on per pixel;

• the materials of field researches;

• the available landscape and thematic maps.

Here, the images of the territory of town Lomonosov (near by the seaport) in four spectral 
bands, obtained in August by means of the Quickbird satellite equipment, are presented 
(Figure 13).

Using the linked archival map and the results of field researches, the necessary samples 
area on the image was allocated. As the sample area in this case, understand the territory 
which characteristics precisely match the description of this type of a micro landscape in the 
accepted scheme of classification.

For an example the polygon corresponding to the coastal open swamp was chosen. Due to the 
complexity of the research object, additional information was used in the form of additional 
images (Figure 14):

Figure 13. Images of the territory of town Lomonosov (near by the seaport) in four spectral bands obtained in August by 
means of the Quickbird satellite equipment.
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• images derived on the base of spatial-spectral, textural, gradient and morphological char-
acteristics of the original images;

• images obtained at other season.

The result of the target visualization the coastal open swamps is presented in Figure 15a. The 
result of the interactive correction of the brightness and contrast are presented in Figure 15b.

7. Search for the boundaries of homogeneous regions on 
hyperspectral image

The target visualization method is also applicable to the problem of finding out the boundar-
ies of homogeneous regions on hyperspectral image.

Figure 15. The result of the target visualization of the coastal open swamps: (a) the result of the target visualization; (b) 
the result of the interactive correction.

Figure 14. The additional images derived from the original images by using different filters: (a) high pass filter; (b) 
Laplas filter; (c) local sigma filter; (d) visualization of the texture of one of the original images.
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Methods of search the boundaries are well developed for grayscale images [3, 10]. Grayscale 
image is considered as a function of two variables (x, y) and it is assumed that the boundaries 
of the regions correspond to maxima of the gradient of this function. The main problem of the 
search of boundary is instability their results to noise. Due to some redundancy in the joint 
use of multi-channel data, the selection of boundaries on the hyperspectral image is more sta-
ble to noise. The target visualization can be used to find out the boundaries of homogeneous 
regions. For this purpose, the hyperspectral image is transformed in the following way. For 
each pixel of the hyperspectral image with coordinates (m, n) the maximum spectral angle in 
a local region of size 3 × 3 pixels with center at (m, n) is calculated. The hyperspectral image 
is converted to a single-band image in accordance with the value of the spectral angle   ug  

mn
   .  

Figure 16. Detection of boundaries of homogenous regions for hyperspectral image. (a) Some selection of pictures from 
the hyperspectral cube; (b) the synthesized image which visualizes the maximum value of spectral angles within local 
regions of 3 × 3 pixels; (c) the result of allocation the boundaries.
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To the obtained synthesized image in tones of gray that contains information of all chan-
nels, the known methods of search for the boundaries on halftone images can be applied. In 
addition, visualization of the gradient makes it possible to interactively edit the result of the 
boundary outlining.

Figure 16 demonstrates this method of selection of boundaries of homogeneous regions on 
the hyperspectral image of an urban area.

The hyperspectral image was provided by the Norwegian company Norsk Elektro Opitkk (330 
channels). Figure 16a shows some shots from this hyperspectral cube. Note that the images 
of the individual channels are fuzzy, and some channels are highly noisy. In Figure 16b the 
synthesized image, visualizing   ug  

mn
    the maximal spectral angles within local regions of 3 × 3, is 

presented. The result of the interactive selection of the boundaries on the basis of this synthe-
sized image is shown in Figure 16c.

8. Conclusion

Use of the target visualization of hyperspectral images has a number of useful properties. 
Image processing by using this method is easy and quite intelligible to applied specialists. 
Visual data representation makes it easy for user to take a decision, allowing him to use unfor-
malized signs according to his experience and to interactively control process of recognition 
of objects of interest. The transform performs rapid and compact representation of data. 
Indeed, measure of similarity is computed quickly and is a scalar value, that allows repre-
senting the synthesized image in one channel, and allows us to transmit it over one commu-
nication channel. It is easy enough to implement both interactive and automatic selection of 
objects of interest by choosing a threshold for brightness on a synthesized image. The method 
allows us to considerably diminish the influence of survey conditions (state of atmosphere, 
exposure parameters) on results of visual interpretation, because a sample can be chosen from 
the initial images. In this case the spectral attribute values are obtained under the same survey 
conditions as the feature values of the visualized scene.

The method is implemented in the basic software [10], which allows the target-visualization 
of hyperspectral images both automatically and with interactive user participation.

The program performs the following operations.

• Shows the source images in each channel.

• Implements a method for visualizing hyperspectral image using the method of similarity 
to the reference spectrum.

• Changes the brightness and contrast of the visualization result.

• Synthesizes a color image in a pseudocolor using different reference spectra and different 
similarity measures.
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• The program includes tools that allow you to:

• Zoom the image. To do making a selection of region of an arbitrary shape on the image

• Cut an arbitrary fragment of a hyperspectral image and perform the same actions with it 
as with the whole image.

• Write the results of the processing to the file.

• View the spectral curves in different, user-selected, spatial points of the image.

• To store the spectra measured in the process of operation in the spectral library and use 
them later.
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Abstract

This chapter presents graph construction for hyperspectral data and associated unmixing
methods based on graph regularization. Graph is a ubiquitous mathematical tool for
modeling relations between objects under study. In the context of hyperspectral image
analysis, constructing graphs can be useful to relate pixels in order to perform corporative
analysis instead of analyzing each pixel individually. In this chapter, we review funda-
mental elements of graphs and present different ways to construct graphs in both spatial
and spectral senses for hyperspectral images. By incorporating a graph regularization, we
then formulate a general hyperspectral unmixing problem that can be important for
applications such as remote sensing and environment monitoring. Alternating direction
method of multipliers (ADMM) is also presented as a generic tool for solving the formu-
lated unmixing problems. Experiments validate the proposed scheme with both synthetic
data and real remote sensing data.

Keywords: hyperspectral imaging, graph construction, spectral unmixing, graph
regularization, spectral-spatial correlation

1. Introduction

Hyperspectral imaging analysis has found a wide range of applications including agricultural
monitoring, environment detection, meteorological information forecast, medical examination,
and camouflage tests [1]. In a hyperspectral image, pixels are typically mixtures of several pure
material components due to the limitation of spatial resolution and intimate interactions among
materials. Spectral unmixing is thus one of the most important tasks in hyperspectral data
analysis, aiming to separate the observed pixel spectra into a collection of constituent spectra, or
spectral signatures, called endmembers and to estimate fractions associated with each compo-
nent called abundances. Spectral unmixing provides a comprehensive and quantitative mapping
of the elementary materials that are present in the acquired data, and it is widely used for many
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applications, such as determining the constitutions of geological mixtures and performing a
classification of crops and vegetation.

Most spectral unmixing approaches are designed based on pre-assumed mixture models that
describe in an analytical way how the endmembers are combined to mixed spectra measured
by the sensor [2]. The linear mixing model (LMM) is the most widely used one, and it assumes
that the mixing occurs at a macroscopic scale [3]. A measured spectrum is the linear combina-
tions of the endmembers, weighted by the fractional abundances. To be physically interpret-
able, LMM is usually performed with two physical constraints, abundance nonnegative
constraint (ANC) and abundance sum-to-one constraint (ASC). Multiple scattering effects and
intimate interactions in real environment require using nonlinear mixture models. Such
models include intimate mixture model [4], bilinear model [5], linear-quadratic mixing model
(LQM) [6], polynomial post-nonlinear mixing model (PPNM) [7], to cite a few. However, due
to the simplicity and interpretability of the analysis results, LMM-based unmixing strategies
are mostly used in practice [2]. A number of unmixing algorithms are proposed, including
long-standing geometrical and statistical approaches and the recently introduced sparse
regression-based unmixing algorithms [8–11].

Considering inherent spatial-spectral duality exists in hyperspectral data, regularized
unmixing algorithms have been proposed in recent years to make use of spectral information
and spatial contextual information to enhance the unmixing performance. For instance, in
[8], authors introduce a total variation (TV) regularizer to promote spatial consistency of
estimated abundances. In [12], the quadratic Laplacian regularization is introduced based on
graph representation. In [13], authors present a spatial spectral coherence regularization that
relates abundance estimation of a pixel to that of its neighboring pixels with spectral simi-
larities. In [14], authors perform the unmixing with low-rank spatial regularization within
fixed-size square windows.

However, it is necessary to establish a frame for these various ways of regularization via a
proper mathematical tool. A graph is a ubiquitous structure that describes the connection
relationship of a set of vertices. Graph theory is actively used in fields such as biochemistry
(genomics), electrical engineering (communication networks and coding theory), computer
science (algorithms and computation), and operations research (scheduling) [15]. In addi-
tion, several works apply graph theoretical techniques to hyperspectral images, including
methods for dimensionality reduction [16], anomaly detection [17], and classification [18]. In
the context of hyperspectral data unmixing, a graph can be used to model relations of spatial
and spectral information of hyperspectral pixels. In this chapter, we will present a variety of
ways to construct a graph for hyperspectral unmixing and formulate the associated
unmixing problem with solutions given by the alternating direction method of multipliers
(ADMM) strategy.

The remainder of the chapter is organized as follows: Section 2 introduces graph theory and
graph construction methods in the context of hyperspectral unmixing. Section 3 formulates the
sparse linear unmixing problem based on graph regularization. In Section 4, the solution to the
formulated problem is derived via the ADMM algorithm. Section 5 reports the experiment’s
results. Finally, Section 6 concludes this chapter.
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2. Graph construction

2.1. Introduction to graphs

We firstly review some fundamental elements of a graph. A graph is a general data structure
described by G ¼ V;Eð Þ , where a finite set of vertices, also called nodes, is denoted by V and a
finite set of pairs of the form vivj

� �
is referred to as edges. Edges indicate the relation between

vertices, and they can be directed or undirected. Directed edges utilize ordered pairs of points
that indicate the source and sink of each connection, that is, vivj

� �
represents an edge from vi

to vj. Undirected edges only indicate the relationship between vertices and do not consider the

ordering, that is, vivj
� �

is the same as vjvi
� �

: We may associate each edge with a weight to
describe the importance or the cost of this connection (Figure 1).

In a simple setting, if two vertices are connected by an edge, the weight is set to 1, otherwise
the weight is 0. The following part introduces some other ways to measure the similarity
among vertices, in other words, to define the weights. We can use either adjacency matrices
or incidence matrices to describe graphs depending on the type of operations to be performed.
Elements of the matrix A indicate whether pairs of vertices are connected or not in a graph.
Element Aij is 1 when there is an edge from vertex i to vertex j and zero when there is no edge.
If the graph is undirected, the adjacency matrix is symmetric. Incidence matrices show the
relationship between vertices and edges. An undirected graph can have two kinds of incidence
matrices: unoriented and oriented matrices. An oriented incidence matrix in the undirected
graph can be denoted by B∈ℝn�m , where n is the number of vertices and m is the number of
edges. That is, in the column of edge ek , the positive undirected graph can be denoted by
B∈ℝn�m , where n is the number of vertices and m is the number of edges. That is, in the
column of edge ek , there is positive weight Aij in the row corresponding to one vertex vi of ek
and negative weight -Aij in the row corresponding to the other vertex vj of ek , and all other
rows are set to 0.

In addition, a degree matrix for a graph is a diagonal matrix D ¼ diag d1;⋯di;⋯dnð Þ , where n
is the number of vertices and di is the degree of the vertex vi in G. The degree matrix is
indicating every vertex’s degree which is the number of edges connecting to one vertex. It is

Figure 1. Example of a graph.
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applications, such as determining the constitutions of geological mixtures and performing a
classification of crops and vegetation.

Most spectral unmixing approaches are designed based on pre-assumed mixture models that
describe in an analytical way how the endmembers are combined to mixed spectra measured
by the sensor [2]. The linear mixing model (LMM) is the most widely used one, and it assumes
that the mixing occurs at a macroscopic scale [3]. A measured spectrum is the linear combina-
tions of the endmembers, weighted by the fractional abundances. To be physically interpret-
able, LMM is usually performed with two physical constraints, abundance nonnegative
constraint (ANC) and abundance sum-to-one constraint (ASC). Multiple scattering effects and
intimate interactions in real environment require using nonlinear mixture models. Such
models include intimate mixture model [4], bilinear model [5], linear-quadratic mixing model
(LQM) [6], polynomial post-nonlinear mixing model (PPNM) [7], to cite a few. However, due
to the simplicity and interpretability of the analysis results, LMM-based unmixing strategies
are mostly used in practice [2]. A number of unmixing algorithms are proposed, including
long-standing geometrical and statistical approaches and the recently introduced sparse
regression-based unmixing algorithms [8–11].

Considering inherent spatial-spectral duality exists in hyperspectral data, regularized
unmixing algorithms have been proposed in recent years to make use of spectral information
and spatial contextual information to enhance the unmixing performance. For instance, in
[8], authors introduce a total variation (TV) regularizer to promote spatial consistency of
estimated abundances. In [12], the quadratic Laplacian regularization is introduced based on
graph representation. In [13], authors present a spatial spectral coherence regularization that
relates abundance estimation of a pixel to that of its neighboring pixels with spectral simi-
larities. In [14], authors perform the unmixing with low-rank spatial regularization within
fixed-size square windows.

However, it is necessary to establish a frame for these various ways of regularization via a
proper mathematical tool. A graph is a ubiquitous structure that describes the connection
relationship of a set of vertices. Graph theory is actively used in fields such as biochemistry
(genomics), electrical engineering (communication networks and coding theory), computer
science (algorithms and computation), and operations research (scheduling) [15]. In addi-
tion, several works apply graph theoretical techniques to hyperspectral images, including
methods for dimensionality reduction [16], anomaly detection [17], and classification [18]. In
the context of hyperspectral data unmixing, a graph can be used to model relations of spatial
and spectral information of hyperspectral pixels. In this chapter, we will present a variety of
ways to construct a graph for hyperspectral unmixing and formulate the associated
unmixing problem with solutions given by the alternating direction method of multipliers
(ADMM) strategy.

The remainder of the chapter is organized as follows: Section 2 introduces graph theory and
graph construction methods in the context of hyperspectral unmixing. Section 3 formulates the
sparse linear unmixing problem based on graph regularization. In Section 4, the solution to the
formulated problem is derived via the ADMM algorithm. Section 5 reports the experiment’s
results. Finally, Section 6 concludes this chapter.
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indicating every vertex’s degree which is the number of edges connecting to one vertex. It is
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normally used together with the adjacency matrix to construct the Laplacian matrix L of a
graph, which is L ¼ D�A.

2.2. Graph construction for hyperspectral images

In this part, we elaborate the ways to construct graphs in the context of hyperspectral image
analysis. The performance of spectral unmixing is closely tied to the graph construction of
images, and in the hyperspectral remote sensing literature, there are a number of techniques.
In [19], authors summarize a survey of spectral graph construction techniques and discuss
advantages and disadvantages of these techniques. Generally, each pixel can be viewed as a
vertex (or node), and each vertex is associated with a continuous spectrum. A set of edges can
be set and assigned with weights in different senses as presented here below.

2.2.1. Four-neighbor graph

A common and straightforward construction is to consider the four-neighbor graph, where
every vertex (i.e., every pixel) is connected to four nearest spatially adjacent neighboring
pixels, as illustrated in Figure 2.

2.2.2. Threshold-compared graph

Another alternative to construct a graph is to calculate all pairwise distances and an edge is
placed if the distance between two vertices is less than a user-predefined threshold. The
distance in the hyperspectral image can be measured using the spectral distance or spatial
distance. For instance, vi and vj are two vertices that are associated with spectral vectors with L

bands, then their Euclidean distance is vi � vj
�� �� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPL
k¼1 vik � vjk
� �2q

.

Figure 2. Spatial four-neighbor method.
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2.2.3. K-nearest neighbor graph

Constructing a graph with k-nearest neighbors (k-NN) is a popular method. In this case, an edge
is set between two vertices if vertex vj is in k-NN of vertex vi. Each vertex has its own k-nearest
neighbors. Consequently, the graph is a directed graph. It is worth noting that constructing such
a graph requires calculating all pairwise distances and ordering these values on each vertex, and
these operations lead to high computational costs.

2.2.4. Spatial-spectral graph

As pixels in a hyperspectral image possess spatial locations and spectral signatures, it can be
beneficial to construct a graph by incorporating both spatial and spectral information. For
instance, a graph can be constructed with local four neighborhood pixels and by considering
spectral similarity among pixels, as described in Figure 3.

2.2.5. Weighted graph

Above methods construct unweighted graphs with only connection indications among pixels.
Several other methods further impose weights on each edge. For instance, spectral similarity
measured by the Gaussian kernel can be used to define weights:

Aij ¼ exp � vi � vj
�� ��2

2σ2

 !
(1)

where σ is the kernel bandwidth and defined by users. As a generalization, a radial basis
function (also called a diffusion kernel) in spectral distance with two parameters σi and σj is
introduced in [20], given by:

Figure 3. An example of four spatial neighbors and k-NN spectral neighbors.
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2.2.3. K-nearest neighbor graph

Constructing a graph with k-nearest neighbors (k-NN) is a popular method. In this case, an edge
is set between two vertices if vertex vj is in k-NN of vertex vi. Each vertex has its own k-nearest
neighbors. Consequently, the graph is a directed graph. It is worth noting that constructing such
a graph requires calculating all pairwise distances and ordering these values on each vertex, and
these operations lead to high computational costs.

2.2.4. Spatial-spectral graph

As pixels in a hyperspectral image possess spatial locations and spectral signatures, it can be
beneficial to construct a graph by incorporating both spatial and spectral information. For
instance, a graph can be constructed with local four neighborhood pixels and by considering
spectral similarity among pixels, as described in Figure 3.

2.2.5. Weighted graph

Above methods construct unweighted graphs with only connection indications among pixels.
Several other methods further impose weights on each edge. For instance, spectral similarity
measured by the Gaussian kernel can be used to define weights:

Aij ¼ exp � vi � vj
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where σ is the kernel bandwidth and defined by users. As a generalization, a radial basis
function (also called a diffusion kernel) in spectral distance with two parameters σi and σj is
introduced in [20], given by:

Figure 3. An example of four spatial neighbors and k-NN spectral neighbors.
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Aij ¼ exp � vi � vj
�� ��2

σiσj

 !
: (2)

Weights can also be calculated by considering both spatial and spectral information. For
instance, [21] proposes to define weights by:

Aij ¼ exp � vi � vj
�� ��2
cijσiσj

 !
∙exp � xi � xj

�� ��2
σ2d

 !
(3)

where xi is the spatial coordinates of pixel vi , cij is an integer indicating the number of common
neighbors between vi and vj , σi and σj are defined in [20], and the parameter σd is defined by
users which limits the size of regions spatially. In [22], authors consider the similarity of the
spectral angle instead of the spectral Euclidean distance.

Aij ¼ exp �θij
� �

∙exp � xi � xj
�� ��2

σ

 !
(4)

where θij denotes the spectral angle between vi and vj , xi is the spatial coordinates of pixel vi
and σ is the parameter defined by users. Note that some schemes of calculating weights can
make edges to be severed so as to change the structure of the graph [19].

There are also some other methods to construct graphs adapted to hyperspectral images, such
as adaptive nearest neighbor graphs, density-weighted k-NN graphs, and shared nearest-
neighbor graphs [19].

3. Graph-based regularization in unmixing

With a constructed graph at hand to model the relation of pixels, in this section, we present the
way to perform a sparse unmixing with the graph regularization.

3.1. Sparse unmixing

Consider the linear mixing model: y ¼ Sxþ n , where y∈ℝL is one observed pixel with L
spectral bands, S ¼ s1; s2;⋯; sR½ �∈ℝL�R is the library of spectral signatures including R pure
spectral signatures, and x∈ℝR is an abundance vector, n is the additive white noise vector.
Since it is often that an observed pixel is only composed of a small number of materials in the
library, the majority of entries of the abundance vector x are zero-valued, namely, x is sparse.
Assuming the library is available beforehand and the spare unmixing problem can be defined
as [23]:
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min
x

1
2

y� Sxk k22 þ λ xk k1
subject to : x ≥ 0

(5)

where λ is the regularized parameter.

In this chapter, we formulate the problem without ASC constraint because of using the l1 norm
regularization. Moreover, the validity of ASC is often questioned in the literature for practical
scenarios. Inwhat follows,we introduce the graph regularization to the above formulatedproblem.

3.2. Graph regularization for sparse unmixing

Since a graph relates the pixels of image via spatial and spectral relations, we can regularize the
unmixing problem with pixel relations defined by the graph. Let Y ¼ y1; y2;⋯yn

� �
∈ℝL�n be a

spectral matrix, where each column is one observed pixel including L spectral bands and n is the
number of pixels, and in a graph, n is also the number of vertices. Let X ¼ x1; x2;⋯xn½ �∈ℝR�n be
an abundance matrix in which each column is an abundance vector associated with one
observed pixel. With the graph representation of hyperspectral data, we achieve the sparse
unmixing by solving the following optimization problem:

min
x

1
2

Y� SXk k2F þ μ Xk k1,1 þ λgg1 Xð Þ
subject to : X ≥ 0

(6)

where

g1 Xð Þ ¼
Xn

i¼1

Xn

j¼1
Aij xi � xj
�� ��

1 (7)

This graph regularization term Eq. (7) is based on the assumption that if two vertices are
connected by an edge, then the abundances of the two vertices are similar. This term measures
the differences between all pairs of abundances weighted by their degrees of similarity in the
graph. The graph regularization then promotes piecewise constant transitions of estimates
among the related pixels. Parameter λg controls the regularization strength. Note that we can
rewrite Eq. (7) with the incidence matrix B as:

Xn

i¼1

Xn

j¼1
Aij xi � xj
�� ��

1 ¼ XBk k1,1 (8)

Problem Eq. (6) is equivalently expressed as:

min
x

1
2

Y� SXk k2F þ μ Xk k1,1 þ λg XBk k1,1
subject to : X ≥ 0

(9)
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If we use a spatial four-neighborhood graph in this unmixing problem with the weights being
simply set to 1 and 0, it can generally be identical with the SUnSAL-TV algorithm [8]. The right
term can promote piecewise constant transitions in the fractional abundance among neighbor-
hood pixels and achieve spatial consistency of estimated abundances.

Instead of considering promoting the similarities among estimated abundances, an alternative
way is to promote the similarities of reconstructed spectra among the connected pixels. In [24],
authors propose a nonlocal TV regularization, with the regularization term given as:

g2 Xð Þ ¼
Xn

i¼1

Xn

j¼1
Aij Sxi � Sxj
�� ��

1 (10)

This can also be written with incidence matrix B as:

g3 Xð Þ ¼ SXð ÞBk k1 (11)

4. Solution to the formulated problem

We propose to solve the formulated unmixing problem Eq. (9) via the ADMM algorithm. In this
section, we first briefly review the ADMM algorithm and then apply it to our unmixing problem.

4.1. Introduction of ADMM

ADMM is an algorithm that is intended to blend the decomposability of dual ascent with the
superior convergence properties of the method of multipliers. The algorithm solves problems
in the form [25]:

min f xð Þ þ g zð Þ
s:t: Axþ Bz ¼ c

(12)

with variables x∈Rn and z∈Rm
, where A∈Rp�n

, B∈Rp�m , and c∈Rp
.

The first step is to write the augmented Lagrangian of problem Eq. (12):

Lρ x; z; yð Þ ¼ f xð Þ þ g zð Þ þ yT Axþ Bz� cð Þ þ ρ
2

Axþ Bz� ck k22 (13)

ADMM suggests achieving the optimum via the following iterations:

xkþ1 ¼ argmin
x

Lρ x; zk; yk
� �

(14)

zkþ1 ¼ argmin
z

Lρ xkþ1; z; yk
� �

(15)

ykþ1 ¼ yk þ ρ Axkþ1 þ Bzkþ1 � c
� �

(16)
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where ρ > 0. The algorithm is very similar to dual ascent and the method of multipliers: it
consists of an x-minimization step Eq. (14), a z-minimization step Eq. (15), and a dual variable
update Eq. (16). As in the method of multipliers, the dual variable update uses a step size equal
to the augmented Lagrangian parameter ρ.

4.2. Solutions via ADMM

In order to apply the canonical ADMM algorithm to the problem (9), we introduce the auxiliary
variables and transform the problem as follows:

minimize
X,V1,V2,Z

1
2

Y� SXk k2F þ μ V2k k1,1 þ λg V4k k1,1 þ lℝR�n
þ

V2ð Þ
subject to V1 ¼ SX

V2 ¼ X
V3 ¼ X
V4 ¼ V3B

(17)

where lS is the indicator function of the set S , such as lS xð Þ ¼ 0 if x∈S and lS xð Þ ¼ þ∞ if x∉S.
Thus the augmented Lagrangian for Eq. (17) is as follows:

L X;V1!4;D1!4ð Þ ¼ 1
2

Y�V1k k2F þ μ V2k k1,1 þ λg V4k k1,1 þ lℝR�n
þ

V2ð Þ

þ ρ
2

SX�V1 �D1k k2F þ
ρ
2

X�V2 �D2k k2F
þ ρ

2
X�V3 �D3k k2F þ

ρ
2

V3B�V4 �D4k k2F

(18)

where D1,D2,D3,D4 are Lagrange multipliers and ρ is the penalty parameter.

The algorithm steps are as follows:

Step 1. Input the observed pixels Ymatrix, the library S , and the regularization parameters μ,λg;

Step 2. Initialization: X 0ð Þ,V 0ð Þ
1 ,⋯,V 0ð Þ

4 ,D 0ð Þ
1 ,⋯,D 0ð Þ

4 ,ρ, set k ¼ 0

Step 3. Repeat:

Step 4. X kþ1ð Þ  argminX Lρ X;V kð Þ
1 ;V kð Þ

2 ;V kð Þ
3 ;V kð Þ

4 ;D kð Þ
1 ;D kð Þ

2 ;D kð Þ
3 ;D kð Þ

4

� �

Step 5. V kþ1ð Þ
1  argminV1

Lρ X kþ1ð Þ;V1;V
kð Þ
2 ;V kð Þ

3 ;V kð Þ
4 ;D kð Þ

1 ;D kð Þ
2 ;D kð Þ

3 ;D kð Þ
4

� �

Step 6. V kþ1ð Þ
2  argminV2

Lρ X kþ1ð Þ;V kþ1ð Þ
1 ;V2;V

kð Þ
3 ;V kð Þ

4 ;D kð Þ
1 ;D kð Þ

2 ;D kð Þ
3 ;D kð Þ

4

� �

Step 7. V kþ1ð Þ
3  argminV3

Lρ X kþ1ð Þ;V kþ1ð Þ
1 ;V kþ1ð Þ

2 ;V3;V
kð Þ
4 ;D kð Þ

1 ;D kð Þ
2 ;D kð Þ

3 ;D kð Þ
4

� �

Step 8. V kþ1ð Þ
4  argminV4

Lρ X kþ1ð Þ;V kþ1ð Þ
1 ;V kþ1ð Þ

2 ;V kþ1ð Þ
3 ;V4;D

kð Þ
1 ;D kð Þ

2 ;D kð Þ
3 ;D kð Þ

4

� �
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If we use a spatial four-neighborhood graph in this unmixing problem with the weights being
simply set to 1 and 0, it can generally be identical with the SUnSAL-TV algorithm [8]. The right
term can promote piecewise constant transitions in the fractional abundance among neighbor-
hood pixels and achieve spatial consistency of estimated abundances.

Instead of considering promoting the similarities among estimated abundances, an alternative
way is to promote the similarities of reconstructed spectra among the connected pixels. In [24],
authors propose a nonlocal TV regularization, with the regularization term given as:

g2 Xð Þ ¼
Xn

i¼1

Xn

j¼1
Aij Sxi � Sxj
�� ��

1 (10)

This can also be written with incidence matrix B as:

g3 Xð Þ ¼ SXð ÞBk k1 (11)

4. Solution to the formulated problem

We propose to solve the formulated unmixing problem Eq. (9) via the ADMM algorithm. In this
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4.1. Introduction of ADMM

ADMM is an algorithm that is intended to blend the decomposability of dual ascent with the
superior convergence properties of the method of multipliers. The algorithm solves problems
in the form [25]:

min f xð Þ þ g zð Þ
s:t: Axþ Bz ¼ c

(12)

with variables x∈Rn and z∈Rm
, where A∈Rp�n

, B∈Rp�m , and c∈Rp
.

The first step is to write the augmented Lagrangian of problem Eq. (12):

Lρ x; z; yð Þ ¼ f xð Þ þ g zð Þ þ yT Axþ Bz� cð Þ þ ρ
2

Axþ Bz� ck k22 (13)

ADMM suggests achieving the optimum via the following iterations:

xkþ1 ¼ argmin
x

Lρ x; zk; yk
� �

(14)

zkþ1 ¼ argmin
z

Lρ xkþ1; z; yk
� �

(15)

ykþ1 ¼ yk þ ρ Axkþ1 þ Bzkþ1 � c
� �

(16)
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where ρ > 0. The algorithm is very similar to dual ascent and the method of multipliers: it
consists of an x-minimization step Eq. (14), a z-minimization step Eq. (15), and a dual variable
update Eq. (16). As in the method of multipliers, the dual variable update uses a step size equal
to the augmented Lagrangian parameter ρ.

4.2. Solutions via ADMM

In order to apply the canonical ADMM algorithm to the problem (9), we introduce the auxiliary
variables and transform the problem as follows:

minimize
X,V1,V2,Z

1
2

Y� SXk k2F þ μ V2k k1,1 þ λg V4k k1,1 þ lℝR�n
þ

V2ð Þ
subject to V1 ¼ SX

V2 ¼ X
V3 ¼ X
V4 ¼ V3B

(17)

where lS is the indicator function of the set S , such as lS xð Þ ¼ 0 if x∈S and lS xð Þ ¼ þ∞ if x∉S.
Thus the augmented Lagrangian for Eq. (17) is as follows:

L X;V1!4;D1!4ð Þ ¼ 1
2

Y�V1k k2F þ μ V2k k1,1 þ λg V4k k1,1 þ lℝR�n
þ

V2ð Þ

þ ρ
2

SX�V1 �D1k k2F þ
ρ
2

X�V2 �D2k k2F
þ ρ

2
X�V3 �D3k k2F þ

ρ
2

V3B�V4 �D4k k2F

(18)

where D1,D2,D3,D4 are Lagrange multipliers and ρ is the penalty parameter.

The algorithm steps are as follows:

Step 1. Input the observed pixels Ymatrix, the library S , and the regularization parameters μ,λg;

Step 2. Initialization: X 0ð Þ,V 0ð Þ
1 ,⋯,V 0ð Þ

4 ,D 0ð Þ
1 ,⋯,D 0ð Þ

4 ,ρ, set k ¼ 0

Step 3. Repeat:

Step 4. X kþ1ð Þ  argminX Lρ X;V kð Þ
1 ;V kð Þ

2 ;V kð Þ
3 ;V kð Þ

4 ;D kð Þ
1 ;D kð Þ

2 ;D kð Þ
3 ;D kð Þ

4

� �

Step 5. V kþ1ð Þ
1  argminV1

Lρ X kþ1ð Þ;V1;V
kð Þ
2 ;V kð Þ

3 ;V kð Þ
4 ;D kð Þ

1 ;D kð Þ
2 ;D kð Þ

3 ;D kð Þ
4

� �

Step 6. V kþ1ð Þ
2  argminV2

Lρ X kþ1ð Þ;V kþ1ð Þ
1 ;V2;V

kð Þ
3 ;V kð Þ

4 ;D kð Þ
1 ;D kð Þ

2 ;D kð Þ
3 ;D kð Þ

4

� �

Step 7. V kþ1ð Þ
3  argminV3

Lρ X kþ1ð Þ;V kþ1ð Þ
1 ;V kþ1ð Þ

2 ;V3;V
kð Þ
4 ;D kð Þ

1 ;D kð Þ
2 ;D kð Þ

3 ;D kð Þ
4

� �

Step 8. V kþ1ð Þ
4  argminV4

Lρ X kþ1ð Þ;V kþ1ð Þ
1 ;V kþ1ð Þ

2 ;V kþ1ð Þ
3 ;V4;D

kð Þ
1 ;D kð Þ

2 ;D kð Þ
3 ;D kð Þ

4

� �
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Step 9. Update the Lagrangian multipliers:

D kþ1ð Þ
1  D kð Þ

1 � SX kþ1ð Þ �V kþ1ð Þ
1

� �

D kþ1ð Þ
2  D kð Þ

2 � X kþ1ð Þ �V kþ1ð Þ
2

� �

D kþ1ð Þ
3  D kð Þ

3 � X kþ1ð Þ �V kþ1ð Þ
3

� �

D kþ1ð Þ
4  D kð Þ

4 � V kþ1ð Þ
3 B�V kþ1ð Þ

4

� �

Step 10. Until stopping criterion is satisfied.

In step 4 of minimizing the augmented Lagrangian with respect to X, the solution is:

X STSþ 2I
� ��1

ST V1 þD1ð Þ þV2 þD2 þV3 þD3
� �

(19)

Similarly, the solution of V1 minimization step 5 is:

V1  1
1þ ρ

Yþ ρ SX�D1ð Þ� �
(20)

To compute V2 in step 6, the solution is the well-known soft threshold [17]:

v2  max soft x� d2;
μ
ρ

� �
; 0

� �
(21)

where v2, x,d2 is the row of V2,X,D2 , respectively.

The solution of V3 minimization step 7 is:

V3  X�D3 þ V4 þD4ð ÞBT� �
Iþ BBT� ��1

(22)

The solution of V4 minimization step 8 is:

v4  soft f� d4;
λ
ρ

� �
(23)

where v4, f,d4 is the row of V4, F ¼ V3 � B,D4 , respectively.

5. Experiments

In this section, we illustrate the experimental results via a synthetic hyperspectral data set
(denoted by Data 1) and a real hyperspectral data set (denoted by Data 2) with various ways of
graph construction.

5.1. Experiments with simulated data sets

In this part, the synthetic data consists of 75� 75 pixels and is generated by 9 endmembers. The
endmembers are randomly selected from the spectral library advanced spaceborne thermal
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emission and reflection radiometer (ASTER). Each signature of endmembers has reflectance
values measured over 420 spectral bands. The pure regions and mixed regions involved between
two and five endmembers, spatially distributed in the form of square regions. The background is
a mixture of the five endmembers with the abundance values 0; 0; 0; 0; 0:1149; 0:0741; 0:2003;½
0:2055; 0:4051�.
The quality of unmixing results for the simulated data can be measured by comparing the
estimated and actual abundances using the root mean square error (RMSE),

15 dB 20 dB 30 dB

Four-neighbor graph 0.0246
μ = 0.005,λ = 0.05

0.0184
μ = 0.005,λ = 0.05

0.0051
μ = 5 � 10^(�4),λ = 0.01

Spectral-spatial combined graph 0.0085
k = 25;
μ = 5 � 10^(�4),λ = 0.01

0.0052
k = 25
μ = 0.005,λ = 0.01

0.0021
k = 25
μ = 5 � 10^(�4),λ = 0.005

Threshold-compared graph 0.0025
threshold = 9
μ = 5 � 10^(�4),λ = 0.1

0.0015
threshold = 3
μ = 5 � 10^(�4),λ = 0.5

0.0009
threshold = 0.25
μ = 5 � 10^(�4),λ = 0.1

Table 1. RMSE evaluating performances with different values of SNR, with three constructed graphs and optimal
regularized parameters. The values of threshold and k are also shown.

Figure 4. From top to bottom: The abundance maps of first, fifth, sixth, and eighth . From left to right: Real abundance
maps, estimated abundance maps with four-neighbor graph, spectral-spatial graph and threshold-compared graph,
respectively.
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Step 9. Update the Lagrangian multipliers:
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1

� �
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2

� �
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3  D kð Þ
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3

� �
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4

� �
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The solution of V4 minimization step 8 is:

v4  soft f� d4;
λ
ρ

� �
(23)

where v4, f,d4 is the row of V4, F ¼ V3 � B,D4 , respectively.

5. Experiments

In this section, we illustrate the experimental results via a synthetic hyperspectral data set
(denoted by Data 1) and a real hyperspectral data set (denoted by Data 2) with various ways of
graph construction.

5.1. Experiments with simulated data sets

In this part, the synthetic data consists of 75� 75 pixels and is generated by 9 endmembers. The
endmembers are randomly selected from the spectral library advanced spaceborne thermal
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emission and reflection radiometer (ASTER). Each signature of endmembers has reflectance
values measured over 420 spectral bands. The pure regions and mixed regions involved between
two and five endmembers, spatially distributed in the form of square regions. The background is
a mixture of the five endmembers with the abundance values 0; 0; 0; 0; 0:1149; 0:0741; 0:2003;½
0:2055; 0:4051�.
The quality of unmixing results for the simulated data can be measured by comparing the
estimated and actual abundances using the root mean square error (RMSE),
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μ = 5 � 10^(�4),λ = 0.1

Table 1. RMSE evaluating performances with different values of SNR, with three constructed graphs and optimal
regularized parameters. The values of threshold and k are also shown.

Figure 4. From top to bottom: The abundance maps of first, fifth, sixth, and eighth . From left to right: Real abundance
maps, estimated abundance maps with four-neighbor graph, spectral-spatial graph and threshold-compared graph,
respectively.
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RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
nR

Xn

i¼1
xi � bx ik k2

s
(24)

where xi and bxi are the actual and estimated abundance vectors of the ith pixel, n is the number
of pixels, and R is the number of endmembers.

We define the graph based on the simulated data using three methods: the four-neighbor
graph, the threshold-compared graph and the spectral-spatial graph respectively.

In the experiment, the threshold-compared undirected graph is constructed as follows:

Aij ¼ 1 if yi � yj
���

���
2

2
< threshold

0 otherwise

8<
: (25)

Figure 5. From top to bottom: The abundance maps of first and fifth. From left to right: FCLS, SUnSAL-TV, and the
proposed algorithm with the threshold-compared graph.
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where all pairs of spectral distance are compared with a user-defined threshold. Meanwhile,
the spectral-spatial graph is constructed by considering four neighbors of spatial location and
k-nearest neighbors of spectral distance.

From this table, we can see that the performance of the proposed algorithm with a threshold-
compared graph is better than the others. Although the second graph in Table 1 combines the
spectral and spatial information, using spatial relation is not always a good way to connect pixels
because it is possible that two adjacent pixels may have significantly different spectral features.
Figure 4 shows the true abundance maps and the abundances estimated by the proposed algo-
rithm associated with the three constructed graphs. We observe that the second row of the square
regions is better conserved with the proposed algorithm using the threshold-compared graph.

5.2. Experiments with AVIRIS data

We also tested algorithms with a real hyperspectral image. The image is captured on the Cuprite
mining district by AVIRIS. A sub-image of 250� 191 pixels was chosen, and it contains 188
spectral bands. The number of endmembers was estimated and set to 12 [26]. VCA algorithm
was then used to extract the endmembers. Here, we compare the FCLS [9], SUnSAL-TV, and the
proposed algorithm with a threshold-compared graph. Figure 5 shows the first and fifth abun-
dance maps of three algorithms respectively. We can see that the proposed algorithm highlights
localized targets without oversmoothing the image like in SUnSAL-TV and with less impurity
than in FCLS.

6. Conclusion

In this chapter, we propose to use graph as a mathematical tool to relate pixels in hyperspectral
data. We the present a variety of methods of constructing a graph according to spatial infor-
mation and spectral information embedded in an image. A sparse unmixing problem is then
formulated with the graph regularization to enhance the estimation performance. An ADMM-
based algorithm is then presented to solve the formulated problem. In the experiments, we
compare the unmixing performance of the presented unmixing algorithm with different
graphs, using a synthetic hyperspectral data and a real data. Future works include evaluating
the unmixing performance with weighted graphs.
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