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Preface 

Chemometrics has been defined as "a chemical discipline that uses statistical and 
mathematical methods to design or select optimum procedures and experiments, and 
to provide maximum chemical information by analyzing chemical data". 
Chemometrics can be considered as a part of the wider field chemoinformatics, and 
has close relationships to bioinformatics.  

The start of chemometrics dates back to the 1960s, when multivariate data analysis 
methods - like for instance the "learning machine" - have been tried for solving rather 
complicated problems in chemistry, such as the automatic interpretation of molecular 
spectra. The name chemometrics was first used by Svante Wold in 1972 (in Swedish, 
kemometria) and it was established in 1974 by Bruce Kowalski. The first years of 
chemometrics were characterized by rather uncritical use of machine learning methods 
for complex - often too complex - tasks in chemistry and consequently sometimes 
accompanied by ignorance and refusal of many chemists. However, in this time also 
falls the presentation of the PLS regression method by chemometricians, which is now 
the most used method for evaluation of multivariate data, not only in chemistry. 
During the next decades chemometricians learned to use multivariate data analysis in 
a proper and safe way for problems with a realistic chance for success, and also found 
back to the underlying statistical concepts. Chemometrics contributed with valuable 
method developments and provided many stimulants in the area. Furthermore, 
commercial software became available and nowadays several basic chemometric 
methods, like principal component analysis, multivariate classification, and multiple 
regression (by PLS and other approaches) are routinely used in chemical research and 
industry. Admittedly, sometimes without the necessary elementary knowledge about 
the used methods.   

Despite the broad definition of chemometrics, the most important part of it is still the 
application of multivariate data analysis to chemistry-relevant data. Chemical-physical 
systems of practical interest are often complicated and relationships between available 
(measurement) data and desired data (properties, origin) cannot be described by 
theory. Therefore, a typical chemometric approach is not based on "first principles" but 
is "data driven" and has the goal to create empirical models. A thorough evaluation of 
the performance of such models is essential for new cases. Multivariate statistical data 
analysis has been proven as a powerful tool for analyzing and structuring such data 
sets from chemistry and biochemistry.  



XII Preface

This book is a collection of 14 chapters, divided into three sections. Assignment of the 
chapters to these sections only indicates the main contents of a chapter because most 
are interdisciplinary and contains theoretical as well as practical aspects.  

In section "Methods" the topics comprise statistical model comparison, treatment of 
compositional data, methods for the estimation of kinetic parameters, and a new 
approach for exploratory data analysis. A comprehensive chapter presents an 
overview of experimental optimization. 

Section "Biochemistry" deals with biomarker identification, kinetics of enzyme 
reactions, selection of substances with anticancer properties, and the use of an 
electronic nose for the identification of foodborne pathogens. 

Section "Technology" focuses on chemometric methods used in food technology, for 
water quality estimation, for the characterization of nanocomposite materials by NMR 
spectra, and in chromatographic separation processes. 

The topics of this book cover a wide range of highly relevant problems in chemistry 
and chemical/biological technology. The presented solutions may be of interest to the 
reader even if not working exactly in the fields described in the chapters. The book is 
intended for chemists, chemical engineers, and biotechnologists working in research, 
production or education. Students in these areas will find a source with highly diverse 
and successful applications of chemometric methods. In this sense, the major goal of 
this "mosaic of contributions" - presented in a book - is to promote new and adequate 
use of multivariate data analysis methods in chemistry and related fields.  

March 2012 

Kurt Varmuza 
Vienna University of Technology, 

Vienna,  
Austria 
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Model Population Analysis  
for Statistical Model Comparison 
Hong-Dong Li1, Yi-Zeng Liang1 and Qing-Song Xu2 

1College of Chemistry and Chemical Engineering, Central South University, Changsha, 
2School of Mathematic Sciences, Central South University, Changsha, 

P. R. China 

1. Introduction 
Model comparison plays a central role in statistical learning and chemometrics. 
Performances of models need to be assessed using a given criterion based on which 
models can be compared. To our knowledge, there exist a variety of criteria that can be 
applied for model assessment, such as Akaike’s information criterion (AIC) [1], Bayesian 
information criterion (BIC) [2], deviance information criterion (DIC),Mallow’s Cp statistic, 
cross validation [3-6] and so on. There is a large body of literature that is devoted to these 
criteria. With the aid of a chosen criterion, different models can be compared. For 
example, a model with a smaller AIC or BIC is preferred if AIC or BIC are chosen for 
model assessment.  

In chemometrics, model comparison is usually conducted by validating different models on 
an independent test set or by using cross validation [4, 5, 7], resulting in a single value, i.e. 
root mean squared error of prediction (RMSEP) or root mean squared error of cross 
validation (RMSECV). This single metrics is heavily dependent on the selection of the 
independent test set (RMSEP) or the partition of the training data (RMSECV). Therefore, we 
have reasons to say that this kind of comparison is lack of statistical assessment and also at 
the risk of drawing wrong conclusions. We recently proposed model population analysis 
(MPA) as a general framework for designing chemometrics/bioinformatics methods [8]. 
MPA has been shown to be promising in outlier detection and variable selection. Here we 
hypothesize that reliably statistical model comparison could be achieved via the use of 
model population analysis.  

2. Model population analysis 
2.1 The framework of model population analysis 

Model population analysis has been recently proposed for developing chemometrics 
methods in our previous work [8]. As is shown in Figure 1, MPA works in three steps which 
are summarized as (1) randomly generating N sub-datasets using Monte Carlo sampling (2) 
building one sub-model on each sub-dataset and (3) statistically analyzing some interesting 
output of all the N sub-models.  
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Fig. 1. The schematic of MPA. MCS is the abbreviation of Monte Carlo Sampling. 

2.1.1 Monte Carlo sampling for generating a sub-dataset 

Sampling plays a key role in statistics which allows us to generate replicate sub-datasets 
from which an interested unknown parameter could be estimated. For a given dataset (X, y), 
it is assumed that the design matrix X contains m samples in rows and p variables in 
columns, the response vector y is of size m×1. The number of Monte Carlo samplings is set 
to N. In this setting, N sub-datasets can be drawn from N Monte Carlo samplings with or 
without replacement [9, 10], which are denoted as (Xsub, ysub)i, i = 1, 2, 3, …N.  

2.1.2 Establishing a sub-model using each sub-dataset 

For each sub-dataset (Xsub, ysub)i, a sub-model can be constructed using a selected method, 
e.g. partial least squares (PLS) [11] or support vector machines (SVM) [12]. Denote the sub-
model established as fi (X). Then, all these sub-models can be put into a collection: 

 C = (f1(X), f2(X), f3(X),…, fN(X))   (1) 
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All these N sub-models are mutually different but have the same goal that is to predict the 
response value y. 

2.1.3 Statistically analyzing an interesting output of all the sub-models  

The core of model population analysis is statistical analysis of an interesting output, e.g. 
prediction errors or regression coefficients, of all these sub-models. Indeed, it is difficult to 
give a clear answer on what output should be analyzed and how the analysis should be 
done. Different designs for the analysis will lead to different algorithms. As proof-of-
principle, it was shown in our previous work that the analysis of the distribution of 
prediction errors  is effective in outlier detection [13].  

2.2 Insights provided by model population analysis  

As described above, Monte Carlo sampling serves as the basics of model population analysis 
that help generate distributions of interesting parameters one would like to analyze. 
Looking on the surface, it seems to be very natural and easy to generate distributions using 
Monte Carlo sampling. However, here we show by examples that the distribution provided 
by model population analysis can indeed provide very useful information that gives 
insights into the data under investigation. 

2.2.1 Are there any outliers? 

Two datasets are fist simulated. The first contains only normal samples, whereas there are 3 
outliers in the second dataset, which are shown in Plot A and B of Figure 2, respectively. For 
each dataset, a percentage (70%) of samples are randomly selected to build a linear 
regression model of which the slope and intercept is recorded. Repeating this procedure 
1000 times, we obtain 1000 values for both the slope and intercept. For both datasets, the 
intercept is plotted against the slope as displayed in Plot C and D, respectively. It can be 
observed that the joint distribution of the intercept and slope for the normal dataset appears 
to be multivariate normally distributed. In contrast, this distribution for the dataset with 
outliers looks quite different, far from a normal distribution. Specifically, the distributions of 
slopes for both datasets are shown in Plot E and F. These results show that the existence of 
outliers can greatly influence a regression model, which is reflected by the odd distributions 
of both slopes and intercepts. In return, a distribution of a model parameter that is far from 
a normal one would, most likely, indicate some abnormality in the data.  

2.2.2 Are there any interfering variables? 

In this study, we first simulate a design matrix X of size 50 × 10, the response variable Y is 
simulated by multiplying X with a 10-dimensional regression vector. Gussian noises with 
standard deviation equal to 1 are then added to Y. That is to say, all the variables in X 
are ”true variables” that collectively predict Y. This dataset (X, Y) is denoted SIMUTRUE. 
Then another design matrix F is simulated of size 50 × 10. Denote the combination of X and 
F as Z=[X F]. This dataset (Z, Y) is called SIMUINTF, which contains variables that are not 
predictive of Y. For both datasets, we randomly choose 70% samples to first build a 
regression model which is then used to make predictions on the remaining 30% samples, 
resulting in a RMSEP value. Repeating this procedure 1000 times, we, for both datasets,  
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Fig. 2. A simulation study illustrating the use of model population analysis to detect 
whether a dataset contains outliers. Plot A and Plot B shows the data simulated without and 
with outliers, respectively. 1000 linear regression models computed using 1000 sub-datasets 
randomly selected and the slope and intercept are presented in Plot C and D. Specifically, 
the distribution of slope for these two simulated datasets are displayed in Plot E and Plot F. 
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Fig. 3. The distribution of RMSEPs using the variable set that contains only “true variables” 
(upper panel) and the variable set that includes not only “true variables” but also 
“interfering variables” (lower panel). 

obtain 1000 RMSEP values, of which the distributions are given in Figure 3. Clearly, the 
distribution of RMSEP of the SIMUINTF is right shifted, indicating the existence of variables 
that are not predictive of Y can degrade the performance of a regression model. We call this 
kind of variables “interfering variables”. Can you tell whether a dataset contains interfering 
variables for a real world dataset? Curious readers may ask a question like this. Indeed, we 
can.  We can do replicate experiments to estimate the experimental error that could serve as 
a reference by which it is possible to judge whether interfering variables exist. For example, 
if a model containing a large number of variables (with true variables included) shows a 
large prediction error compared to the experimental error, we may predict that interfering 
variables exist. In this situation, variable selection is encouraged and can greatly improve 
the performance of a model. Actually, when interfering variables exist, variable selection is a 
must. Other methods that use latent variables like PCR or PLS cannot work well because 
latent variables have contributions coming from interfering variables.  

2.3 Applications of model population analysis 

Using the idea of model population analysis, we have developed algorithms that address 
the fundamental issues in chemical modeling: outlier detection and variable selection. For 
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outlier detection, we developed the MC method [13]. For variable selection, we developed 
subwindow permutation analysis (SPA) [14], noise-incorporated subwindow permutation 
analysis (NISPA) [15] and margin influence analysis (MIA) [16]. Here, we first give a brief 
description of these algorithms, aiming at providing examples that could help interested 
readers to understand how to design an algorithm by borrowing the framework of model 
population analysis.  

As can be seen from Figure 1, These MPA-based methods share the first two steps that are 
(1) generating N sub-datasets and (2) building N sub-models. The third step “statistical 
analysis of an interesting output of all these N sub-models” is the core of model population 
analysis that underlines different methods. The key points of these methods as well as 
another method Monte Carlo uninformative variable elimination (MCUVE) that also 
implements the idea of MPA are summarized in Table 1. In a word, the distribution from 
model population analysis contains abundant information that provides insight into the 
data analyzed and by making full use of these information, effective algorithms can be 
developed for solving a given problem. 

 
Methods* What to statistically analyze 
MC method Distribution of prediction errors of each sample 
SPA Distribution of prediction errors before and after each variable is 

permuted 
NISPA Distribution of prediction errors before and after each variable is 

permuted with one noise variable as reference 
MIA Distribution of margins of support vector machines sub-models 
MCUVE Distribution of regression coefficients of PLS regression sub-models 

*: The MC method, SPA, NISPA, MIA and MCUVE are described in references [13], [14], [15] [16] and 
[27]. 

Table 1. Key points of MPA-based methods. 

2.4 Model population analysis and bayesian analysis 

There exist similarities as well as differences between model population analysis and 
Bayesian analysis. One important similarity is that both methods consider the parameter of 
interest not as a single number but a distribution. In model population analysis, we generate 
distributions by causing variations in samples and/or variables using Monte Carlo 
sampling [17]. In contrast, in Bayesian analysis the parameter to infer is first assumed to be 
from a prior distribution and then observed data are used to update this prior distribution 
to the posterior distribution from which parameter inference can be conducted and 
predictions can be made [18-20]. The output of Bayesian analysis is a posterior distribution 
of some interesting parameter. This posterior distribution provides a natural link between 
Bayesian analysis and model population analysis. Taking Bayesian linear regression (BLR) 
[20] as an example, the output can be a large number of regression coefficient vectors that 
are sampled from its posterior distribution. These regression coefficient vectors actually 
represent a population of sub-models that can be used directly for model population 
analysis. Our future work will be constructing useful algorithms by borrowing merits of 
both Bayesian analysis and model population analysis.  
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2.5 Model population analysis and ensemble learning  

Ensemble learning methods, such as bagging[21], boosting [22] and random forests [23], 
have emerged as very promising strategies for building a predictive model and these 
methods have found applications in a wide variety of fields. Recently, a new ensemble 
technique, called feature-subspace aggregating (Feating) [24], was proposed that was shown 
to have nice performances. The key point of these ensemble methods is aggregating a large 
number of models built using sub-datasets randomly generated using for example 
bootstrapping. Then ensemble models make predictions by doing a majority voting for 
classification or averaging for regression. In our opinion, the basic idea of ensemble learning 
methods is the same as that in model population analysis. In this sense, ensemble learning 
methods can also be formulated into the framework of model population analysis.  

3. Model population analysis for statistical model comparison   
Based on model population analysis, here we propose to perform model comparison by 
deriving an empirical distribution of the difference of RMSEP or RMSECV between two 
models (variable sets), followed by testing the null hypothesis that the difference of RMSEP 
or RMSECV between two models is zero. Without loss of generality, we describe the 
proposed method by taking the distribution of difference of RMSEP as an example. We 
assume that the data X consists of m samples in row and p variables in column and the 
target value Y is an m-dimensional column vector. Two variable sets, say V1 and V2, selected 
from the p variables, then can be compared using the MPA-based method described below.   

First, a percentage, say 80%, from the m samples with variables in V1 and V2 is randomly 
selected to build two regression models using a preselected modeling method such as PLS 
[11] or support vector machines (SVMs) [12], respectively. Then an RMSEP value can be 
computed for each model by using the remaining 20% samples as the test set. Denote the 
two RMSEP values as RMSEP1 and RMSEP2, of which the difference can be calculated as  

 D = RMSEP1-RMSEP2  (2) 

By repeating this procedure N, say 1000, times, N D values are obtained and collected into a 
vector D. Now, the model comparison can be formulated into a hypothesis test problem as: 

Null hypothesis: the mean of D is zero. 

Alternative hypothesis: the mean of D is not zero. 

By employing a statistical test method, e.g. t-test or Mann-Whitney U test [25], a P value can 
be computed for strictly assessing whether the mean of D is significantly different from zero 
(P<0.05) or not (P>0.05). If P<0.05, the sign of the mean of D is then used to compare which 
model (variable set) is of better predictive performance. If P>0.05, we say two models have 
the same predictive ability.  

4. Results and discussions 
4.1 Comparison of predictive performances of variables subsets 

The corn NIR data measured on mp5 instrument is used to illustrate the use of the proposed 
method (http://software.eigenvector.com/Data/index.html). This data contain NIR spectra 
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measured at 700 wavelengths on 80 corn samples. The original NIR spectra are shown in 
Figure 4. The chemical property modeled here is the content of protein. As was 
demonstrated in a large body of literature [26-30], variable selection can improve the 
predictive performance of a model. Here we would like to investigate whether the gain in 
predictive accuracy using variable subsets identified by variable selection methods is 
significant.  
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Fig. 4. Original near infrared spectra of corn on the mp5 instrument. 

Uninformative variable elimination (UVE) is a widely used method for variable selection in 
chemometrics [26]. Its extended version, Monte Carlo UVE (MCUVE), was recently 
proposed [27, 31]. Mimicking the principle of “survival of the fittest” in Darwin’s evolution 
theory, we developed a variable selection method in our previous work, called competitive 
adaptive reweighted sampling (CARS) [8, 28, 32, 33], which was shown to have the potential 
to identify an optimal subset of variables that show high predictive performances. The 
source codes of CARS are freely available at [34, 35].  

In this study, MCUVE and CARS is chosen to first identify two variable sets, named V1 and 
V2, respectively. The set of the original 700 variables are denoted as V0. Before data analysis, 
each wavelength of the original NIR spectra is standardized to have zero mean and unit 
variance. Regarding the pretreatment of spectral data, using original spectra, mean-centered 
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Fig. 5. Comparison of selected wavelengths using MC-UVE (red circles) and CARS (blue 
dots). The green line denotes the mean of the 80 corn NIR spectra.   

spectra or standardized spectra indeed would lead to different results. But the difference is 
usually not big according to our experience. The reason why we choose standardization is to 
remove the influence of each wavelength’s variance on PLS modeling because the 
decomposition of spectrum data X using PLS depends on the magnitude of covariance 
between wavelengths and the target variable Y. The number of PLS components are 
optimized using 5-fold cross validation. For MCUVE, the number of Monte Carlo 
simulations is set to 1000 and at each simulation 80% samples are selected randomly to build 
a calibration model. We use the reliability index (RI) to rank each wavelength and the 
number of wavelengths (with a maximum 200 wavelengths allowed) is identified using 5-
fold cross validation. Using MCUVE, 115 wavelengths in 5 bands (1176-1196nm, 1508-
1528nm, 1686-1696nm, 1960-2062nm and 2158-2226nm) are finally selected and shown in 
Figure 5 as red circles. For CARS, the number of iterations is set to 50. Using CARS, 
altogether 28 variables (1188, 1202, 1204, 1396, 1690, 1692, 1710, 1800, 1870, 2048, 2050, 2052, 
2064, 2098, 2102, 2104, 2106, 2108, 2166, 2168, 2238, 2270, 2382, 2402, 2434, 2436, 2468 and 
2472 nm) are singled out and these variables are also shown in Figure 5 as blue dots. 
Intuitively, MCUVE selects 5 wavelength bands while the variables selected by CARS are 
more diverse and scattered at different regions. In addition, the Pearson correlations 
variables selected by both methods are shown in Figure 6.  
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spectra or standardized spectra indeed would lead to different results. But the difference is 
usually not big according to our experience. The reason why we choose standardization is to 
remove the influence of each wavelength’s variance on PLS modeling because the 
decomposition of spectrum data X using PLS depends on the magnitude of covariance 
between wavelengths and the target variable Y. The number of PLS components are 
optimized using 5-fold cross validation. For MCUVE, the number of Monte Carlo 
simulations is set to 1000 and at each simulation 80% samples are selected randomly to build 
a calibration model. We use the reliability index (RI) to rank each wavelength and the 
number of wavelengths (with a maximum 200 wavelengths allowed) is identified using 5-
fold cross validation. Using MCUVE, 115 wavelengths in 5 bands (1176-1196nm, 1508-
1528nm, 1686-1696nm, 1960-2062nm and 2158-2226nm) are finally selected and shown in 
Figure 5 as red circles. For CARS, the number of iterations is set to 50. Using CARS, 
altogether 28 variables (1188, 1202, 1204, 1396, 1690, 1692, 1710, 1800, 1870, 2048, 2050, 2052, 
2064, 2098, 2102, 2104, 2106, 2108, 2166, 2168, 2238, 2270, 2382, 2402, 2434, 2436, 2468 and 
2472 nm) are singled out and these variables are also shown in Figure 5 as blue dots. 
Intuitively, MCUVE selects 5 wavelength bands while the variables selected by CARS are 
more diverse and scattered at different regions. In addition, the Pearson correlations 
variables selected by both methods are shown in Figure 6.  



 
Chemometrics in Practical Applications 

 

12

 
Fig. 6. The Pearson pair-wise correlations of variables selected using MCUVE (115 variables, 
left) and CARS (28 variables, right). 

We choose PLS for building regression models. For the MPA-based method for model 
comparison, the number of Monte Carlo simulations is set to 1000 and at each simulation 
60% samples are randomly selected as training samples and the rest 40% work as test 
samples. The number of PLS components is chosen based on 5-fold cross validation. In this 
setting, we first calculated 1000 values of RMSEP0, RMSEP1 and RMSEP2 using V0, V1 and 
V2, respectively. The distributions of RMSEP0, RMSEP1 and RMSEP2 are shown in Figure 7. 
The mean and standard deviations of these three distributions are 0.169±0.025 (full spectra), 
0.147±0.018 (MCUVE) and 0.108±0.015 (CARS). On the whole, both variable selection 
methods improve the predictive performance in terms of lower prediction errors and 
smaller standard deviations. Looking closely, the model selected by CARS has smaller 
standard deviation than that of MCUVE. The reason may be that CARS selected individual 
wavelengths and these wavelengths display lower correlations (see Figure 6) than those 
wavelength bands selected by MCUVE. The lower correlation results in better model 
stability which is reflected by smaller standard deviations of prediction errors. Therefore 
from the perspective of prediction ability, we recommend to adopt methods that select 
individual wavelengths rather than continuous wavelength bands. 

Firstly, we compare the performance of the model selected by MCUVE to the full spectral 
model. The distribution of D values (MCUVE – Full spectra) is shown in Plot A of Figure 8. 
The mean of D is -0.023 and is shown to be not zero (P < 0.000001) using a two-side t test, 
indicating that MCUVE significantly improves the predictive performance. Of particular 
note, it can be observed that a percentage (83.1%) of D values are negative and the 
remaining (16.9%) is positive, which indicates model comparison based on a single split of 
the data into a training set and a corresponding test set may have the potential risk of 
drawing a wrong conclusion. In this case, the probability of saying that MCUVE does not 
improve predictive performances is about 0.169. However, this problem can be solved by 
the proposed MPA-based method because the model performance is tested on a large 
number of sub-datasets, rendering the current method potentially useful for reliably 

 
Model Population Analysis for Statistical Model Comparison 

 

13 

 
Fig. 7. Distributions of root mean squared errors of prediction (RMSEP) from 1000 test sets 
(32 samples) randomly selected from the 80 corn samples using full spectra and variables 
selected by MCUVE and CARS, respectively. 

statistical model comparison. With our method, we have evidence showing that the 
improvement resulting from MCUVE is significant.  

 
Fig. 8. The distributions of D values. The P values of t test for these three distributions are 
8.36×10-120, 0 and 0, respectively. 
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Further, the performance of the model selected by CARS is compared to the full spectral 
model. The distribution of D values (CARS – Full spectrum) is shown in Plot B of Figure 8. 
The mean of D is -0.061 which is much smaller that that from MCUVE (-0.023). Using a two-
side t test, this mean is shown to be significantly different from zero (P = 0), indicating that 
the improvement over the full spectral model is significant. Interestingly, it is found that all 
the D values are negative, which implies the model selected by CARS is highly predictive 
and there is little evidence to recommend the use of a full spectral model, at least for this 
dataset. 

Finally, we compare the models selected by MCUVE and CARS, respectively. The 
distribution of D values (CARS – MCUVE) is shown in Plot C of Figure 8. The mean of D 
values is -0.039. Using a two-side t test, this mean is shown to be significantly different from 
zero (P = 0), indicating that the improvement of CARS over MCUVE is significant. We find 
that 98.9% of D values are negative and only 1.1% are positive, which suggests that there is a 
small probability to draw a wrong conclusion that MCUVE performs better than CARS. 
However, with the help of MPA, this risky conclusion can be avoided, indeed.  

Summing up, we have conducted statistical comparison of the full spectral model and the 
models selected by MCUVE and CARS based on the distribution of D values calculated 
using RMSEP. Our results show that model comparison based on a single split of the data 
into a training set and a corresponding test set may result in a wrong conclusion and the 
proposed MPA approach can avoid drawing such a wrong conclusion thus providing a 
solution to this problem. 

4.2 Comparison of PCR, PLS and an ECR model 

In chemometrics, PCR and PLS seem to be the most widely used method for building a 
calibration model. Recently, we developed a method, called elastic component regression 
(ECR), which utilizes a tuning parameter α∈[0,1] to supervise the decomposition of X-matrix 
[36], which falls into the category of continuum regression [37-40]. It is demonstrated 
theoretically that the elastic component resulting from ECR coincides with principal 
components of PCA when α = 0 and also coincides with PLS components when α = 1. In this 
context, PCR and PLS occupy the two ends of ECR and α∈(0,1) will lead to an infinite 
number of transitional models which collectively uncover the model path from PCR to PLS. 
The source codes implementing ECR in MATLAB are freely available at [41]. In this section, 
we would like to compare the predictive performance of PCR, PLS and an ECR model with 
α = 0.5. 

We still use the corn protein data described in Section 4.1. Here we do not consider all the 
variables but only the 28 wavelengths selected by CARS. For the proposed method, the 
number of Monte Carlo simulations is set to 1000. At each simulation 60% samples selected 
randomly are used as training samples and the remaining serve as test samples. The number 
of latent variables (LVs) for PCR, PLS and ECR (α = 0.5) is chosen using 5-fold cross 
validation.  

Figure 9 shows the three distributions of RMSEP computed using PCR, PLS and ECR (α = 
0.5). The mean and standard deviations of these distributions are 0.1069±0.0140, 
0.1028±0.0111 and 0.0764±0.0108, respectively. Obviously, PLS achieves the lowest 
prediction errors as well as the smallest standard deviations.  In contrast, PCR performs the 

 
Model Population Analysis for Statistical Model Comparison 

 

15 

worst. As a transitional model that is between PCR and PLS, ECR with α = 0.5 achieves the 
medium level performance.  

  
Fig. 9. The distributions of RMSEP from PCR, PLS and an ECR model with α =0.5 

  
Fig. 10. The distributions of D values. The P values of t test for these three distributions are 
0, 0 and 0, respectively. 
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worst. As a transitional model that is between PCR and PLS, ECR with α = 0.5 achieves the 
medium level performance.  

  
Fig. 9. The distributions of RMSEP from PCR, PLS and an ECR model with α =0.5 

  
Fig. 10. The distributions of D values. The P values of t test for these three distributions are 
0, 0 and 0, respectively. 
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The distributions of D values are displayed in Figure 10. The means of these three 
distributions are -0.0041 (Plot A), -0.0305 (Plot B) and -0.0264 (Plot C), respectively. Using a 
two-side t test, it is shown that all these three distributions of D values have a mean value 
that is significant not zero with P values equal to 0 , 0 and 0 for Plot A, Plot B and Plot C. To 
conclude, this section provides illustrative examples for the comparison of different 
modeling methods. Our example demonstrates that PLS (an ECR model associated with α = 
1) performs better than PCR (an ECR model associated with α = 0) and a specific transitional 
ECR model associated with α = 0.5 has the moderate performance. 

4.3 Comparison of PLS-LDA models before and after variable selection 

Partial least squares-linear discriminant analysis (PLS-LDA) is frequently used in 
chemometrics and metabolomics/metabonomics for building predictive classification 
models and/or biomarker discovery [32, 42-45]. With the development of modern high-
throughput analytical instruments, the data generated often contains a large number of 
variables (wavelengths, m/z ratios etc). Most of these variables are not relevant to the 
problem under investigation. Moreover, a model constructed using this kind of data that 
contain irrelevant variables would not be likely to have good predictive performance. 
Variable selection provides a solution to this problem that can help select a small number of 
informative variables that could be more predictive than an all-variable model.  

In the present work, two methods are chosen to conduct variable selection. The first is t-test, 
which is a simple univariate method that determines whether two samples from normal 
distributions could have the same mean when standard deviations are unknown but 
assumed to be equal. The second is subwindow permutation analysis (SPA) which was a 
model population analysis-based approach proposed in our previous work [14]. The main 
characteristic of SPA is that it can output a conditional P value by implicitly taking into 
account synergistic effects among multiple variables. With this conditional P value, 
important variables or conditionally important variables can be identified. The source codes 
in Matlab and R are freely available at [46].We apply these two methods on a type 2 diabetes 
mellitus dataset that contains 90 samples (45 healthy and 45 cases) each of which is 
characterized by 21 metabolites measured using a GC/MS instrument. Details of this dataset 
can be found in reference [32].  

Using t-test, 13 out of the 21 variables are identified to be significant (P < 0.01). For SPA, we 
use the same setting as described in our previous work [14]. Three variables are selected 
with the aid of SPA. Let V0, V1 and V2 denote the sets containing all the 21 variables, the 13 
variables selected by t-test and the 3 variables selected by SPA, respectively. To run the 
proposed method, we set the number of Monte Carlo simulations to 1000. At each 
simulation 70% samples are randomly selected to build a PLS-LDA model with the number 
of latent variables optimized by 10-fold cross validation. The remaining 30% samples 
working as test sets on which the misclassification error is computed. 

Figure 11 shows the distributions of misclassification errors computed using these three 
variable sets. The mean and standard deviations of these distributions are 0.065±0.048 (all 
variables), 0.042±0.037 (t-test) and 0.034±0.034 (SPA), respectively. It can be found that the 
models using selected variables have lower prediction errors as well as higher stability in 
terms of smaller standard deviations, indicating that variable selection can improve the  
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Fig. 11. The distributions of misclassification error on 1000 test sets using all variables and 
variables selected by t test and SPA, respectively. 

performance of a classification model. The reason why SPA performs better than t-test is 
that synergistic effects among multiple variables are implicitly taken into account in SPA 
while t-test only considers univariate associations.  

 
Fig. 12. The distributions of D values. The P values of t test for these three distributions are 
1.66×10-46, 1.02×10-57 and 1.27×10-8. 
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We conducted pair-wise comparison of performances of the three variable sets described 
above. The distribution of D values (t-test – all variables) is shown in Plot A of Figure 12. 
The mean of D is -0.023 and is demonstrated to be significantly not zero (P=0) using a two-
side t test, suggesting the improvement of variable selection. In spite of this improvement, 
we should also notice that a percentage (17.3%) of D values is positive, which again imply 
that model comparison based on a single split of the data into a training set and a 
corresponding test set is risky. However, with the aid of this MPA-based approach, it is 
likely to reliably compare different models in a statistical manner.  

The distribution of D values (SPA – all variables) is shown in Plot B of Figure 12. The mean of 
D is -0.031 and is shown to be not zero (P = 0). Also, 171 D values are positive, again indicating 
the necessity of the use of a population of models for model comparison. In analogy, Plot C in 
Figure 12 displays the distributions of D values (SPA-t-test). After applying a two-side t-test, 
we found that the improvement of SPA over t-test is significant (P= 0). For this distribution, 
22.7% D values is positive, indicating that based on a random splitting of the data t-test will 
have a 22.7% chance to perform better than SPA. However, based on a large scale comparison, 
the overall performance of SPA is statistically better than t-test. 

To conclude, in this section we have compared the performances of the original variable set 
and variable sets selected using t-test and SPA. We found evidences to support the use of 
the proposed model population analysis approach for statistical model comparison of 
different classification models. 

5. Conclusions 
A model population analysis approach for statistical model comparison is developed in this 
work. From our case studies, we have found strong evidences that support the use of model 
population analysis for the comparison of different variable sets or different modeling 
methods in both regression and classification. P values resulting from the proposed method 
in combination with the sign of the mean of D values clearly shows whether two models 
have the same performance or which model is significantly better. 
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1. Introduction 
A lot of multivariate data sets of interest to scientists are called compositional or "closed" 
data sets, and consists essentially of relative proportions. A recent search on the web  by 
entering "chemical compositional data", led to more than 2,730,000 results within different 
fields and disciplines, but specially, agricultural and food sciences (August 2011 using 
Google searcher). The driving causes for the composition of foods lie on four factors 
(González, 2007): Genetic factor (genetic control and manipulation of original specimens), 
Environmental factor (soil, climate and symbiotic and parasite organisms), Agricultural 
factor (cultures, crop, irrigation, fertilizers and harvest practices) and Processing factor 
(post-harvest manipulation, preservation, additives, conversion to another food preparation 
and finished product). But the influences of these factors are hidden behind the analytical 
measurements and only can be inferred and uncover by using suitable chemometric 
procedures. 

Chemometrics is a term originally coined by Svante Wold and could be defined as "The art 
of extracting chemically relevant information from data produced in chemical experiments" 
(Wold, 1995). Besides, chemometrics can be also defined as the application of mathematical, 
statistical, graphical or symbolic methods to maximize the chemical information which can 
be extracted from data (Rock, 1985). Within the jargon of chemometrics some other terms are 
very common; among them, multivariate analysis and pattern recognition are often used. 
Chemometricians use the term Multivariate Analysis in reference to the different 
approaches (mathematical, statistical, graphical...) when considering samples featured by 
multiple descriptors simultaneously. Pattern recognition is a branch of the Artificial 
Intelligence that seeks to identify similarities and regularities present in the data in order to 
attain natural classification and grouping. When applied to chemical compositional data, 
pattern recognition methods can be seen as multivariate analysis applied to chemical 
measurements to find classification rules for discrimination issues. Depending on our 
knowledge about the category or class membership of the data set, two approaches can be 
applied: Supervised or unsupervised learning (pattern recognition).  

Supervised learning methods develop rules for the classification of unknown samples on the 
basis of a group of samples with known categories (known set). Unsupervised learning 
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1. Introduction 
A lot of multivariate data sets of interest to scientists are called compositional or "closed" 
data sets, and consists essentially of relative proportions. A recent search on the web  by 
entering "chemical compositional data", led to more than 2,730,000 results within different 
fields and disciplines, but specially, agricultural and food sciences (August 2011 using 
Google searcher). The driving causes for the composition of foods lie on four factors 
(González, 2007): Genetic factor (genetic control and manipulation of original specimens), 
Environmental factor (soil, climate and symbiotic and parasite organisms), Agricultural 
factor (cultures, crop, irrigation, fertilizers and harvest practices) and Processing factor 
(post-harvest manipulation, preservation, additives, conversion to another food preparation 
and finished product). But the influences of these factors are hidden behind the analytical 
measurements and only can be inferred and uncover by using suitable chemometric 
procedures. 

Chemometrics is a term originally coined by Svante Wold and could be defined as "The art 
of extracting chemically relevant information from data produced in chemical experiments" 
(Wold, 1995). Besides, chemometrics can be also defined as the application of mathematical, 
statistical, graphical or symbolic methods to maximize the chemical information which can 
be extracted from data (Rock, 1985). Within the jargon of chemometrics some other terms are 
very common; among them, multivariate analysis and pattern recognition are often used. 
Chemometricians use the term Multivariate Analysis in reference to the different 
approaches (mathematical, statistical, graphical...) when considering samples featured by 
multiple descriptors simultaneously. Pattern recognition is a branch of the Artificial 
Intelligence that seeks to identify similarities and regularities present in the data in order to 
attain natural classification and grouping. When applied to chemical compositional data, 
pattern recognition methods can be seen as multivariate analysis applied to chemical 
measurements to find classification rules for discrimination issues. Depending on our 
knowledge about the category or class membership of the data set, two approaches can be 
applied: Supervised or unsupervised learning (pattern recognition).  

Supervised learning methods develop rules for the classification of unknown samples on the 
basis of a group of samples with known categories (known set). Unsupervised learning 
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methods instead do not assume any known set and the goal is to find clusters of objects 
which may be assigned to classes. There is hardly any quantitative analytical method that 
does not make use of chemometrics. Even if one confines the scope to supervised learning 
pattern recognition, these chemometric techniques are increasingly being applied to of 
compositional data for classification and authentication purposes. The discrimination of the 
geographical origin, the assignation to Denominations of Origin, the classification of 
varieties and cultivars are typical issues in agriculture and food science.  

There are analytical techniques such as the based on sensors arrays (electronic nose and 
electronic tongue) that cannot be imaginable without the help of chemometrics. Thus, one 
could celebrate the triumph of chemometrics...so what is wrong? (Pretsch & Wilkin, 2006). 
The answer could be supported by a very well-known quotation attributed to the british 
politician D'Israeli (Defernez & Kemsley, 1997) but modified by us as follows: "There are 
three kinds of lies: Lies, damned lies and chemometrics". Here we have changed the original 
word "statistics" into "chemometrics" in order to point out the suspicion towards some 
chemometric techniques even within the scientific community. There is no doubt that 
unwarranted reliance on poorly understood chemometric methods is responsible for such as 
suspicion.  

By the way, chemometric techniques are applied using statistical/chemometric software 
packages that work as black boxes for final users. Sometimes the blindly use of "intelligent 
problem solvers" or similar wizards with a lot of hidden options as default may lead to 
misleading results. Accordingly, it should be advisable to use software packages with full 
control on parameters and options, and obviously, this software should be used by a 
chemometric connaisseur.  

There are special statistical methods intended for closed data such as compositional ones 
(Aitchison, 2003; Egozcue et al., 2003; Varmuza & Filzmoser, 2009), but a detailed 
description of these methods may be outside the scope of this chapter. 

2. About the data set 
Supervised learning techniques are used either for developing classification rules which 
accurately predict the classification of unknown patterns or samples (Kryger, 1981) or for 
finding calibration relationships between one set of measurements which are easy or cheap 
to acquire, and other measurements which are expensive or labour intensive, in order to 
predict these later (Naes et al., 2004). The simplest calibration problem consists of predicting 
a single response (y-variable) from a known predictor (x-variable) and can be solved by 
using ordinary linear regression (OLR). When fitting a single response from several 
predictive variables, multiple linear regression (MLR) may be used; but for the sake of 
avoiding multicollinearity drawbacks, some other procedures such as principal component 
regression (PCR) or partial least squares regression (PLS) are a good choice. If faced to 
several response variables, multivariate partial least squares (PLS2) techniques have to be 
used. These procedures are common in multivariate calibration (analyte concentrations from 
NIR data) or linear free energy relationships (pKa values from molecular descriptors). 
However, in some instances like quantitative structure-activity relationships (QSAR), non 
linear strategies are needed, such as quadratic partial least squares regression (QPLS), or 
regression procedures based on artificial neural networks or support vector machines. All 
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these calibration procedures have to be suitably validated by using validation procedures 
based on the knowledge of class memberships of the objects, in a similar way as discussed 
below in this chapter that is devoted to supervised learning for classification. 

Let us assume that a known set of samples is available, where the category or class 
membership of every sample is a priori known. Then a suitable planning of the data-
acquisition process is needed. At this point, chemical experience, savoir faire and intuition 
are invaluable in order to decide which measurements should be made on the samples and 
which variables of these measurements are most likely to contain class information.  

In the case of compositional data, a lot of analytical techniques can be chosen.  Analytical 
procedures based on these techniques are then selected to be applied to the samples. Selected 
analytical methods have to be fully validated and with an estimation of their uncertainty 
(González & Herrador, 2007) and carried out in Quality Assurance conditions (equipment 
within specifications, qualified staff, and documentation written as Standard Operational 
Procedures...). Measurements should be carried out at least duplicate and according to a given 
experimental design to ensure randomization and avoid systematic trends.  

Difficulties arise when the concentration of an element is below the detection limit (DL). It is 
often standard practice to report these data simply as ‘<DL’ values. Such ‘censoring’ of data, 
however, can complicate all subsequent statistical analyses. The best method to use 
generally depends on the amount of data below the detection limit, the size of the data set, 
and the probability distribution of the measurements. When the number of ‘< DL’ 
observations is small, replacing them with a constant is generally satisfactory (Clarke, 1998). 
The values that are commonly used to replace the ‘< DL’ values are 0, DL, or DL/2. 
Distributional methods such as the marginal maximum likelihood estimation (Chung, 1993) 
or more robust techniques (Helsel, 1990) are often required when a large number of ‘< DL’ 
observations are present. 

After all measurements are done we can built the corresponding data table or data matrix. 
A sample, object or pattern is described by a set of "p" variables, features or descriptors. 
So, all descriptors of one pattern form a 'pattern vector' and accordingly, a given pattern 
"i" can be seen as a vector ix  whose components are i1 i2 ij ipx ,x ,... x ,... x in the vectorial 

space defined by the features. In matricial form, pattern vectors are row vectors. If we 
have n patterns, we can build a data matrix n×pX by assembling the different row pattern 

vectors. A change in perspective is also possible: A given feature "j" can be seen as a 
column vector jx  with components 1j 2j ij njx ,x ,... x ,... x  in the vectorial space defined by the 

patterns. We can also construct the data matrix by assembling the different feature 
column vectors. Accordingly, the data matrix can be considered as describing the patterns 
in terms of features or vice versa. This lead to two main classes of chemometric techniques 
called Q- and R-modes respectively. R-mode techniques are concerned with the 
relationships amongst the features of the experiment and examine the interplay between 
the columns of the data matrix. A starting point for R-mode procedures is the covariance 
matrix of mean centered variables TC = X X  whose elements are given by 

  1
1

n

jk lj j lk k
l=1

c = x - x x - x
n   where j kx  and x are the mean of the observations on the jth 
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methods instead do not assume any known set and the goal is to find clusters of objects 
which may be assigned to classes. There is hardly any quantitative analytical method that 
does not make use of chemometrics. Even if one confines the scope to supervised learning 
pattern recognition, these chemometric techniques are increasingly being applied to of 
compositional data for classification and authentication purposes. The discrimination of the 
geographical origin, the assignation to Denominations of Origin, the classification of 
varieties and cultivars are typical issues in agriculture and food science.  

There are analytical techniques such as the based on sensors arrays (electronic nose and 
electronic tongue) that cannot be imaginable without the help of chemometrics. Thus, one 
could celebrate the triumph of chemometrics...so what is wrong? (Pretsch & Wilkin, 2006). 
The answer could be supported by a very well-known quotation attributed to the british 
politician D'Israeli (Defernez & Kemsley, 1997) but modified by us as follows: "There are 
three kinds of lies: Lies, damned lies and chemometrics". Here we have changed the original 
word "statistics" into "chemometrics" in order to point out the suspicion towards some 
chemometric techniques even within the scientific community. There is no doubt that 
unwarranted reliance on poorly understood chemometric methods is responsible for such as 
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By the way, chemometric techniques are applied using statistical/chemometric software 
packages that work as black boxes for final users. Sometimes the blindly use of "intelligent 
problem solvers" or similar wizards with a lot of hidden options as default may lead to 
misleading results. Accordingly, it should be advisable to use software packages with full 
control on parameters and options, and obviously, this software should be used by a 
chemometric connaisseur.  

There are special statistical methods intended for closed data such as compositional ones 
(Aitchison, 2003; Egozcue et al., 2003; Varmuza & Filzmoser, 2009), but a detailed 
description of these methods may be outside the scope of this chapter. 

2. About the data set 
Supervised learning techniques are used either for developing classification rules which 
accurately predict the classification of unknown patterns or samples (Kryger, 1981) or for 
finding calibration relationships between one set of measurements which are easy or cheap 
to acquire, and other measurements which are expensive or labour intensive, in order to 
predict these later (Naes et al., 2004). The simplest calibration problem consists of predicting 
a single response (y-variable) from a known predictor (x-variable) and can be solved by 
using ordinary linear regression (OLR). When fitting a single response from several 
predictive variables, multiple linear regression (MLR) may be used; but for the sake of 
avoiding multicollinearity drawbacks, some other procedures such as principal component 
regression (PCR) or partial least squares regression (PLS) are a good choice. If faced to 
several response variables, multivariate partial least squares (PLS2) techniques have to be 
used. These procedures are common in multivariate calibration (analyte concentrations from 
NIR data) or linear free energy relationships (pKa values from molecular descriptors). 
However, in some instances like quantitative structure-activity relationships (QSAR), non 
linear strategies are needed, such as quadratic partial least squares regression (QPLS), or 
regression procedures based on artificial neural networks or support vector machines. All 
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these calibration procedures have to be suitably validated by using validation procedures 
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are invaluable in order to decide which measurements should be made on the samples and 
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Difficulties arise when the concentration of an element is below the detection limit (DL). It is 
often standard practice to report these data simply as ‘<DL’ values. Such ‘censoring’ of data, 
however, can complicate all subsequent statistical analyses. The best method to use 
generally depends on the amount of data below the detection limit, the size of the data set, 
and the probability distribution of the measurements. When the number of ‘< DL’ 
observations is small, replacing them with a constant is generally satisfactory (Clarke, 1998). 
The values that are commonly used to replace the ‘< DL’ values are 0, DL, or DL/2. 
Distributional methods such as the marginal maximum likelihood estimation (Chung, 1993) 
or more robust techniques (Helsel, 1990) are often required when a large number of ‘< DL’ 
observations are present. 

After all measurements are done we can built the corresponding data table or data matrix. 
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So, all descriptors of one pattern form a 'pattern vector' and accordingly, a given pattern 
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and kth feature. If working with autoscaled data, the sample correlation matrix and the 
covariance matrix are identical. The element rjk of correlation matrix R represents the 

cosine between each pair of column vectors and is given by jk
jk

jj kk

c
r

c c
 . The diagonal 

elements of R are always unity. The alternative viewpoint considers the relationships 
between patterns, the Q-mode technique. This way normally starts with a matrix of 
distances between the objects in the n-dimensional pattern space to study the clustering of 
samples. Typical metric measurements are Euclidean, Minkowski, Manhattan, Hamming, 
Tanimoto and Mahalanobis distances (Varmuza, 1980). 

3. Inspect data matrix 

Once the data matrix has been built, it should be fully examined in order to ensure the 
suitable application of Supervised Learning methodology. A typical undesirable issue is 
the existence of missing data. Holes in the data matrix must be avoided; however some 
measurements may not have been recorded or are impossible to obtain experimentally 
due to insufficient sample amounts or due to high costs. Besides, data can be missing due 
to various malfunctions of the instruments, or responses can be outside the instrument 
range.  

As stated above, most chemometric techniques of data analysis do not allow for data gaps 
and thereof different methods have been applied for handling missing values in data matrix. 
Aside from the extreme situations of casewise deletion or mean substitution, the use of 
iterative algorithms (IA) is a promising tool. Each iteration consists of two steps. The first 
step performs estimation of model parameters just as if there were no missing data. The 
second step finds the conditional expectation of the missing elements given the observed 
data and current estimated parameters. The detailed procedure depends on the particular 
application. The typical IA used in Principal Component Analysis can be summarized as 
(Walczak & Massart, 2001): 

1. Fill in missing elements with their initial estimates (expected values, calculated as the 
mean of the corresponding row’s and column’s means) 

2. Perform singular value decomposition of the complete data set 
3. Reconstruct X with the predefined number of factors 
4. Replace the missing elements with the predicted values and go to step 2 until 

convergence. 

Replacement of missing values or censored data with any value is always risky since this 
can substantially change the correlation in the data. It is possible to deal with both missing 
values and outliers simultaneously (Stanimirova et al., 2007). An excellent revision dealing 
with zeros and missing values in compositional data sets using non-parametric imputation 
has been performed by Martin-Fernández et al. (2003). 

On the other hand, a number of chemometric procedures are based on the assumption of 
normality of features. Accordingly, features should be assessed for normality. The well- 
known Kolmogorov-Smirnov, Shapiro-Wilks and Lilliefors tests are often used (González, 
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2007), although the data about the skewness and kurtosis of the distribution are also of 
interest in order to consider parametric or non parametric descriptive statistics. Some simple 
presentations such as the Box-and-whisker plots help in the visual identification of outliers 
and other unusual characteristics of the data set. The box-and-whisker plot assorted with a 
numerical scale is a graphical representation of the five-number summary of the data set 
(Miller & Miller, 2005) where it is described by its extremes, its lower and upper quartiles 
and the median and gives at a glance the spread and the symmetry of the data set. Box-and-
whisker plots may reveal suspicious patterns that should be tested for outliers. Abnormal 
data can road chemometric techniques leading to misleading conclusions, especially when 
outliers are present in the training set. Univariate outlier tests such as Dean and Dixon 
(1951) or Grubbs (1969) assays are not suitable. Instead, multivariate criteria for outlier 
detection are more advisable. The techniques based on the Mahalanobis distance 
(Gemperline & Boyer, 1995), and the hat matrix leverage (Hoaglin & Welsch, 1978) have 
been often used for decades. Hat matrix   1T TH X X X X


 has diagonal values iih  called 

leverage values. Patterns having leverage values higher than 2p/n are commonly 
considered outliers. However these methods are unreliable for multivariate outlier 
detection. Numerous methods for outlier detection have been based on the singular value 
decomposition or Principal Component Analysis (PCA) (Jollife, 2002). Soft Independent 
Modelling of Class Analogy (SIMCA) has been also applied to outlier detection (Mertens et 
al. , 1994). Once outliers have been deleted, researchers usually remove them from the data 
set, but outliers could be corrected before applying the definite mathematical procedures by 
using robust algorithms (Daszykowski et al., 2007). Robust methods give better results, 
specially some improved algorithms such as resampling by the half-means (RHM) and 
smallest half-volume (SHV) (Egan & Morgan , 1998).  

Within the field of food authentication, the wrong conclusions are, however, mostly due to 
data sets that do not keep all aspects of the food characterisation (partial or skewed data set) 
or do merge data measured with different techniques (Aparicio & Aparicio-Ruiz, 2002). A 
classical example is the assessment of the geographical origin of Italian virgin olive oils by 
Artificial Neural Networks (ANN). The differences between oils were mainly due to the use 
of different chromatographic columns (packed columns against capillary columns) when 
quantifying the free fatty acid (FFA) profile of the oils from Southern and Northern Italy 
respectively (Zupan et al. , 1994). The neural network thus mostly learned to recognise the 
chromatographic columns. 

4. Data pre-treatment 
Data transformation (scaling) can be applied either for statistical dictates to optimise the 
analysis or based on chemical reasons. Raw compositional data are expressed in 
concentration units that can differ by orders of magnitude (e.g., percentage, ppm or ppb), 
the features with the largest absolute values are likely to dominate and influence the rule 
development and the classification process. Thus, for statistical needs, transformation of raw 
data can be applied to uniformize feature values. Autoscaling and column range scaling are 
the most common transformation (Sharaf et al., 1986). In the autoscaling or Z-
transformation, raw data are transformed according to  
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and can be seen as a parametric scaling by column standardisation leading to 
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Now, the transformed data verify '0 1ijx  . Range scaling can be considered as an 

interpolation of data within the interval (0,1). It is a non-parametric scaling but sensitive to 
outliers. When the data contain outliers and the preprocessing is necessary, one should 
consider robust way of data preprocessing in the context of robust Soft Independent 
Modelling of Class Analogy (SIMCA) method (Daszykowski et al., 2007). 

The second kind of transformations are done for chemical reasons and comprise the called 
"constant-row sum" and "normalization variable" (Johnson & Ehrlich, 2002). Dealing with 
compositional data, concentrations can vary widely due to dilution away from a source. 
In the case of contaminated sediment investigations, for example, concentrations may 
decrease exponentially away from the effluent pipe. However, if the relative proportions 
of individual analytes remain relatively constant, then we would infer a single source 
scenario coupled with dilution far away from the source. Thus, a transformation is needed 
to normalize concentration/dilution effects. Commonly this is done using a 
transformation to a fractional ratio or percent, where each concentration value is divided 
by the total concentration of the sample: Row profile or constant row-sum transformation 
because the sum of analyte concentrations in each sample (across rows) sums unity or 
100%: 
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single species or compound set as reference congener, the normalization variable. This 
transformation involves setting the value of the normalization feature to unity, and the 
values of all other features to some proportion of 1.0, such that their ratios with respect to 
the normalization feature remain the same in the original metric. 

When n > p, the rank of data matrix is p (if all features are independent).  Thus, autoscaling 
and minimax transformations do not change data dimensionality because these treatments 
do not induce any bound between features. Row profiles instead build a relationship 
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between features scores (the constant-row sum) that decreases the data dimensionality by 1 
and the rank of data matrix is then p-1. Accordingly, the patterns fall on a hypersurface in 
the feature space and it is advisable to remove one feature to avoid problems involving 
matrix inversion when the rank of the matrix is less than p.  

As a final remark it should be realized that when using some Supervised Learning 
techniques like SIMCA, the scaling of the data set is carried out only over the samples 
belonging to the same class (separate scaling). This is due because the own fundamentals of 
the methodology and has a beneficial effect on the classification (Derde et al., 1982). 

5. Feature selection and extraction 
Irrelevant features are very expensive ones, because they contribute to the chemical 
information with noise only; but even more expensive may be simply wrong features. 
Accordingly, they should be eliminated in order to circumvent disturb in classification. In 
almost all chemical applications of pattern recognition the number of original raw features is 
too large and a reduction of the dimensionality is necessary. Features which are essential for 
classification purposes are often called intrinsic features. Thus, a common practise to avoid 
redundant information consists of computing the correlation matrix of features R. Pair of 
most correlated features can be either combined or one of them is deleted. Researchers 
should be aware that the number of independent descriptors or features, p, must be much 
smaller than that of patterns, n. Otherwise, we can build a classification rule that even 
separates randomly selected classes of the training set (Varmuza, 1980). This assumes that 
the set of features is linearly independent (actually, it is the basis of the vectorial space) and 
the number of features is the dimensionality of the vectorial space. Accordingly, the true 
dimensionality should be evaluated for instance from an eigenanalysis (PCA) of the data 
matrix and extract the proper number of factors which correspond to the true 
dimensionality (d) of the space. Most efficient criteria for extracting the proper number of 
underlying factors are based on the Malinowski indicator function (Malinowski, 2002) and 
the Wold's Cross-Validation procedure (Wold, 1978). For most classification methods, a ratio 
n/d > 3 is advised and > 10, desirable. However, PCA-based methods like SIMCA or Partial 
Least Squares Discriminant Analysis (PLS-DA) can be applied without problem when p >> 
n. However, even in these instances there are suitable methods for selecting a subset of 
features and to build a final model based on it. 

Therefore, when it is advisable the feature selection, weighing methods determine the 
importance of the scaled features for a certain classification problem. Consider a pattern 
vector 1 2( , ,... )i i i ipx x x x

 . Assuming that the data matrix X can be partitioned into a number 
Q of classes, let ( )C

ix  a pattern vector belonging to class C. The averaged patterns 
( ) and Cm m   represent the general mean vector and the C-class mean,  according to: 
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When they are applied to a selected j feature we have 
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between features scores (the constant-row sum) that decreases the data dimensionality by 1 
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the feature space and it is advisable to remove one feature to avoid problems involving 
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As a final remark it should be realized that when using some Supervised Learning 
techniques like SIMCA, the scaling of the data set is carried out only over the samples 
belonging to the same class (separate scaling). This is due because the own fundamentals of 
the methodology and has a beneficial effect on the classification (Derde et al., 1982). 

5. Feature selection and extraction 
Irrelevant features are very expensive ones, because they contribute to the chemical 
information with noise only; but even more expensive may be simply wrong features. 
Accordingly, they should be eliminated in order to circumvent disturb in classification. In 
almost all chemical applications of pattern recognition the number of original raw features is 
too large and a reduction of the dimensionality is necessary. Features which are essential for 
classification purposes are often called intrinsic features. Thus, a common practise to avoid 
redundant information consists of computing the correlation matrix of features R. Pair of 
most correlated features can be either combined or one of them is deleted. Researchers 
should be aware that the number of independent descriptors or features, p, must be much 
smaller than that of patterns, n. Otherwise, we can build a classification rule that even 
separates randomly selected classes of the training set (Varmuza, 1980). This assumes that 
the set of features is linearly independent (actually, it is the basis of the vectorial space) and 
the number of features is the dimensionality of the vectorial space. Accordingly, the true 
dimensionality should be evaluated for instance from an eigenanalysis (PCA) of the data 
matrix and extract the proper number of factors which correspond to the true 
dimensionality (d) of the space. Most efficient criteria for extracting the proper number of 
underlying factors are based on the Malinowski indicator function (Malinowski, 2002) and 
the Wold's Cross-Validation procedure (Wold, 1978). For most classification methods, a ratio 
n/d > 3 is advised and > 10, desirable. However, PCA-based methods like SIMCA or Partial 
Least Squares Discriminant Analysis (PLS-DA) can be applied without problem when p >> 
n. However, even in these instances there are suitable methods for selecting a subset of 
features and to build a final model based on it. 

Therefore, when it is advisable the feature selection, weighing methods determine the 
importance of the scaled features for a certain classification problem. Consider a pattern 
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Where n(C) is the number of patterns of class C. 

Accordingly, we can explore the inter-class scatter matrix as well as the intra-class scatter 
matrix. The total scatter matrix can be obtained as 
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and its elements as 
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The within classes scatter matrix, together with its element is given by 
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And the between classes matrix and element,  
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For a case involving two classes 1 and 2 and one feature j we have the following: 
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Weighting features in Supervised Learning techniques can be then extracted from its relative 
importance in discriminating classes pairwise. The largest weight corresponds to the most 
important feature. The most common weighting factors are: 

 Variance weights (VW) (Kowalski & Bender, 1972): jj
j

jj

B
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 Fisher weights (FW) (Duda et al., 2000): 
(1) (2) 2( )j j

j
jj

m m
FW

W


  

 Coomans weights (g) (Coomans et al., 1978): 
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A multi-group criterion is the called Wilks'   or McCabe U statistics (McCabe, 1975). This is 
a general statistic used as a measure for testing the difference among group centroids. All 
classes are assumed to be homogeneous variance-covariance matrices and the statistic is 
defined as  

 det
det

W SSW SSW
T SST SSB SSW

   


 (11) 

Where SSW, SSB and SST refer to the sum of squares corresponding to the scatter matrices 

W, B and T, respectively, as defined above. Remembering that the ratio BSS
WSS

   is the 

coefficient of canonical correlation, 1   , and hence when 1   for intrinsic features, 
0   and more significant are the centroid difference. Before calculation of the statistic, 

data should be autoscaled. This later criterion as well as the largest values of Rao's distance 
or Mahalanobis distance is generally used in Stepwise Discriminant Analysis (Coomans et 
al., 1979). Certain Supervised Learning techniques enable feature selection according to its 
own philosophy. Thus, for instance, SIMCA test the intrinsic features according the values 
of two indices called discriminating power and modelling power (Kvalheim & Karstang, 
1992). Using ANNs for variable selection is attractive since one can globally adapt the 
variables selector together with the classifier by using the called "pruning" facilities. Pruning 
is a heuristic method to feature selection by building networks that do not use those 
variables as inputs. Thus, various combinations of input features can be added and 
removed, building new networks for each (Maier et al., 1998).  

Genetic algorithms are also very useful for feature selection in fast methods such as PLS 
(Leardi & Lupiañez, 1998). 

6. Development of the decision rule 
In order to focus the commonly used Supervised Learning techniques of pattern recognition 
we have selected the following methods: K-Nearest Neighbours (KNN) (Silverman & Jones, 
1989), Linear Discriminant Analysis (LDA) (Coomans et al., 1979), Canonical Variate 
Analysis (CVA) (Cole & Phelps, 1979), Soft Independent Modelling of Class Analogy 
(SIMCA) (Wold, 1976), Unequal dispersed classes (UNEQ) (Derde & Massart, 1986), PLS-DA 
(Stahle & Wold, 1987), Procrustes Discriminant Analysis (PDA) (González-Arjona et al., 
2001), and methods based on ANN such as Multi-Layer Perceptrons (MLP) (Zupan & 
Gasteiger, 1993; Bishop, 2000), Supervised Kohonen Networks (Melssen et al., 2006), 
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is a heuristic method to feature selection by building networks that do not use those 
variables as inputs. Thus, various combinations of input features can be added and 
removed, building new networks for each (Maier et al., 1998).  

Genetic algorithms are also very useful for feature selection in fast methods such as PLS 
(Leardi & Lupiañez, 1998). 

6. Development of the decision rule 
In order to focus the commonly used Supervised Learning techniques of pattern recognition 
we have selected the following methods: K-Nearest Neighbours (KNN) (Silverman & Jones, 
1989), Linear Discriminant Analysis (LDA) (Coomans et al., 1979), Canonical Variate 
Analysis (CVA) (Cole & Phelps, 1979), Soft Independent Modelling of Class Analogy 
(SIMCA) (Wold, 1976), Unequal dispersed classes (UNEQ) (Derde & Massart, 1986), PLS-DA 
(Stahle & Wold, 1987), Procrustes Discriminant Analysis (PDA) (González-Arjona et al., 
2001), and methods based on ANN such as Multi-Layer Perceptrons (MLP) (Zupan & 
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Kohonen Class-Modelling (KCM) (Marini et al., 2005), and Probabilistic Neural Networks 
(PNN) (Streit & Luginbuhl, 1994). Recently, new special classification techniques arose. A 
procedure called Classification And Influence Matrix Analysis (CAIMAN) has been 
introduced by Todeschini et al (2007). The method is based on the leverage matrix and 
models each class by means of the class dispersion matrix and calculates the leverage of 
each sample with respect to each class model space. Since about two decades another new 
classification (and regression) revolutionary technique based on statistical learning theory 
and kernel latent variables has been proposed: Support Vector Machines (SVM) (Vapnik, 
1998; Abe, 2005; Burges, 1998). The purpose of SVM is separate the classes in a vectorial 
space independently on the probabilistic distribution of pattern vectors in the data set 
(Berrueta et al., 2007). This separation is performed with the particular hyperplane which 
maximizes a quantity called margin. The margin is the distance from a hyperplane 
separating the classes to the nearest point in the data set (Pardo & Sberveglieri, 2005). The 
training pattern vectors closest to the separation boundary are called support vectors. When 
dealing with a non linear boundary, the kernel method is applied. The key idea of kernel 
method is a transformation of the original vectorial space (input space) to a high 
dimensional Hilbert space (feature space), in which the classes can be separated linearly. 
The main advantages of SVM against its most direct concurrent method, ANN, are the easy 
avoiding of overfitting by using a penalty parameter and the finding of a deterministic 
global minimum against the non deterministic local minimum attained with ANN.     

Some of the mentioned methods are equivalent. Let us consider some couples: CVA and 
LDA and PLS-DA and PDA. CVA attempts to find linear combinations of variables from 
each set that exhibit maximum correlation. These may be referred to as canonical variates, 
and data can be displayed as scatterplot of one against the other. The problem of 
maximizing the correlation can be formulated as an eigenanalysis problem with the largest 
eigenvalue providing the maximized correlation and the eigenvectors giving the canonical 
variates. Loadings of original features in the canonical variates and cumulative proportions 
of eigenvalues are interpreted, partly by analogy with PCA. Note that if one set of features 
are dummy variables giving group indicators, and then CVA is mathematically identical to 
LDA (González-Arjona et al., 2006). PLS-DA finds latent variables in the feature space which 
have a maximum covariance with the y variable. PDA may be considered equivalent to PLS-
DA. The only difference is that in PDA, eigenvectors are obtained from the covariance 
matrix TZ Z instead of TX X , with TZ Y X  where Y is the membership target matrix 
constructed with ones and zeros: For a three classes problem, sample labels are 001, 010 and 
100. Accordingly, we can consider CVA equivalent to LDA and PLS-DA equivalent to PDA. 

Researchers should be aware of apply the proper methods according to the nature and goals 
of the chemical problem. As Daszykowski and Walczak pointed out in his excellent survey 
(Daszykowski & Walczak, 2006), in many applications, unsupervised methods such as PCA 
are used for classification purposes instead of the supervised approach.  If the data set is 
well structured, then PCA-scores plot can reveal grouping of patterns with different origin, 
although the lack of these groups in the PCA space does not necessarily mean that there is 
no statistical difference between these samples. PCA by definition maximizes data variance, 
but the main variance cannot be necessarily associated with the studied effect (for instance, 
sample origin). Evidently, PCA can be used for exploration, compression and visualization 
of data trends, but it cannot be used as Supervised Learning classification method. 
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On the other hands, according to the nature of the chemical problem, some supervised 
techniques perform better than others, because its own fundamentals and scope. In order to 
consider the different possibilities, four paradigms can be envisaged: 

1. Parametric/non-parametric techniques: This first distinction can be made between 
techniques that take account of the information on the population distribution. Non 
parametric techniques such as KNN, ANN, CAIMAN and SVM make no 
assumption on the population distribution while parametric methods (LDA, 
SIMCA, UNEQ, PLS-DA) are based on the information of the distribution functions. 
LDA and UNEQ are based on the assumption that the population distributions are 
multivariate normally distributed. SIMCA is a parametric method that constructs a 
PCA model for each class separately and it assumes that the residuals are normally 
distributed. PLS-DA is also a parametric technique because the prediction of class 
memberships is performed by means of model that can be formulated as a 
regression equation of Y matrix (class membership codes) against X matrix 
(González-Arjona et al., 1999). 

2. Discriminating (hard)/Class-Modelling (soft) techniques: Pure classification, discriminating 
or hard classification techniques are said to apply for the first level of Pattern 
Recognition, where objects are classified into either of a number of defined classes 
(Albano et al., 1978). These methods operate dividing the hyperspace in as many 
regions as the number of classes so that, if a sample falls in the region of space 
corresponding to a particular category, it is classified as belonging to that category. 
These kinds of methods include LDA, KNN, PLS-DA, MLP, PNN and SVM. On the 
other hands, Class-Modelling techniques build frontiers between each class and the rest 
of the universe. The decision rule for a given class is a class box that envelopes the 
position of the class in the pattern space. So, three kinds of classification are possible: (i) 
an object is assigned to a category if it is situated inside the boundaries of only a class 
box, (ii) an object can be inside the boundaries (overlapping region) of more than one 
class box, or (iii) an object is considered to be an outlier for that class if it falls outside 
the class box. These are the features to be covered by methods designed for the so called 
second level of Pattern Recognition: The first level plus the possibility of outliers and 
multicategory objects. Thus, typical class modelling techniques are SIMCA and UNEQ 
as well as some modified kind of ANN as KCM. CAIMAN method is developed in 
different options: D-CAIMAN is a discriminating classification method and M-
CAIMAN is a class modelling one. 

3. Deterministic/Probabilistic techniques: A deterministic method classifies an object in one 
and only one of the training classes and the degree of reliability of this decision is not 
measured. Probabilistic methods provide an estimate of the reliability of the 
classification decision. KNN, MLP, SVM and CAIMAN are deterministic. Other 
techniques, including some kind of ANN are probabilistic (e.g., PNN where a Bayesian 
decision is implemented).  

4. Linear/Non-Linear separation boundaries: Here our attention is focused on the 
mathematical form of the decision boundary. Typical non-linear classification 
techniques are based on ANN and SVM, specially devoted to apply for classification 
problems of non-linear nature. It is remarkable that CAIMAN method seems not to 
suffer of nonlinear class separability problems. 
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Kohonen Class-Modelling (KCM) (Marini et al., 2005), and Probabilistic Neural Networks 
(PNN) (Streit & Luginbuhl, 1994). Recently, new special classification techniques arose. A 
procedure called Classification And Influence Matrix Analysis (CAIMAN) has been 
introduced by Todeschini et al (2007). The method is based on the leverage matrix and 
models each class by means of the class dispersion matrix and calculates the leverage of 
each sample with respect to each class model space. Since about two decades another new 
classification (and regression) revolutionary technique based on statistical learning theory 
and kernel latent variables has been proposed: Support Vector Machines (SVM) (Vapnik, 
1998; Abe, 2005; Burges, 1998). The purpose of SVM is separate the classes in a vectorial 
space independently on the probabilistic distribution of pattern vectors in the data set 
(Berrueta et al., 2007). This separation is performed with the particular hyperplane which 
maximizes a quantity called margin. The margin is the distance from a hyperplane 
separating the classes to the nearest point in the data set (Pardo & Sberveglieri, 2005). The 
training pattern vectors closest to the separation boundary are called support vectors. When 
dealing with a non linear boundary, the kernel method is applied. The key idea of kernel 
method is a transformation of the original vectorial space (input space) to a high 
dimensional Hilbert space (feature space), in which the classes can be separated linearly. 
The main advantages of SVM against its most direct concurrent method, ANN, are the easy 
avoiding of overfitting by using a penalty parameter and the finding of a deterministic 
global minimum against the non deterministic local minimum attained with ANN.     

Some of the mentioned methods are equivalent. Let us consider some couples: CVA and 
LDA and PLS-DA and PDA. CVA attempts to find linear combinations of variables from 
each set that exhibit maximum correlation. These may be referred to as canonical variates, 
and data can be displayed as scatterplot of one against the other. The problem of 
maximizing the correlation can be formulated as an eigenanalysis problem with the largest 
eigenvalue providing the maximized correlation and the eigenvectors giving the canonical 
variates. Loadings of original features in the canonical variates and cumulative proportions 
of eigenvalues are interpreted, partly by analogy with PCA. Note that if one set of features 
are dummy variables giving group indicators, and then CVA is mathematically identical to 
LDA (González-Arjona et al., 2006). PLS-DA finds latent variables in the feature space which 
have a maximum covariance with the y variable. PDA may be considered equivalent to PLS-
DA. The only difference is that in PDA, eigenvectors are obtained from the covariance 
matrix TZ Z instead of TX X , with TZ Y X  where Y is the membership target matrix 
constructed with ones and zeros: For a three classes problem, sample labels are 001, 010 and 
100. Accordingly, we can consider CVA equivalent to LDA and PLS-DA equivalent to PDA. 

Researchers should be aware of apply the proper methods according to the nature and goals 
of the chemical problem. As Daszykowski and Walczak pointed out in his excellent survey 
(Daszykowski & Walczak, 2006), in many applications, unsupervised methods such as PCA 
are used for classification purposes instead of the supervised approach.  If the data set is 
well structured, then PCA-scores plot can reveal grouping of patterns with different origin, 
although the lack of these groups in the PCA space does not necessarily mean that there is 
no statistical difference between these samples. PCA by definition maximizes data variance, 
but the main variance cannot be necessarily associated with the studied effect (for instance, 
sample origin). Evidently, PCA can be used for exploration, compression and visualization 
of data trends, but it cannot be used as Supervised Learning classification method. 
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On the other hands, according to the nature of the chemical problem, some supervised 
techniques perform better than others, because its own fundamentals and scope. In order to 
consider the different possibilities, four paradigms can be envisaged: 

1. Parametric/non-parametric techniques: This first distinction can be made between 
techniques that take account of the information on the population distribution. Non 
parametric techniques such as KNN, ANN, CAIMAN and SVM make no 
assumption on the population distribution while parametric methods (LDA, 
SIMCA, UNEQ, PLS-DA) are based on the information of the distribution functions. 
LDA and UNEQ are based on the assumption that the population distributions are 
multivariate normally distributed. SIMCA is a parametric method that constructs a 
PCA model for each class separately and it assumes that the residuals are normally 
distributed. PLS-DA is also a parametric technique because the prediction of class 
memberships is performed by means of model that can be formulated as a 
regression equation of Y matrix (class membership codes) against X matrix 
(González-Arjona et al., 1999). 

2. Discriminating (hard)/Class-Modelling (soft) techniques: Pure classification, discriminating 
or hard classification techniques are said to apply for the first level of Pattern 
Recognition, where objects are classified into either of a number of defined classes 
(Albano et al., 1978). These methods operate dividing the hyperspace in as many 
regions as the number of classes so that, if a sample falls in the region of space 
corresponding to a particular category, it is classified as belonging to that category. 
These kinds of methods include LDA, KNN, PLS-DA, MLP, PNN and SVM. On the 
other hands, Class-Modelling techniques build frontiers between each class and the rest 
of the universe. The decision rule for a given class is a class box that envelopes the 
position of the class in the pattern space. So, three kinds of classification are possible: (i) 
an object is assigned to a category if it is situated inside the boundaries of only a class 
box, (ii) an object can be inside the boundaries (overlapping region) of more than one 
class box, or (iii) an object is considered to be an outlier for that class if it falls outside 
the class box. These are the features to be covered by methods designed for the so called 
second level of Pattern Recognition: The first level plus the possibility of outliers and 
multicategory objects. Thus, typical class modelling techniques are SIMCA and UNEQ 
as well as some modified kind of ANN as KCM. CAIMAN method is developed in 
different options: D-CAIMAN is a discriminating classification method and M-
CAIMAN is a class modelling one. 

3. Deterministic/Probabilistic techniques: A deterministic method classifies an object in one 
and only one of the training classes and the degree of reliability of this decision is not 
measured. Probabilistic methods provide an estimate of the reliability of the 
classification decision. KNN, MLP, SVM and CAIMAN are deterministic. Other 
techniques, including some kind of ANN are probabilistic (e.g., PNN where a Bayesian 
decision is implemented).  

4. Linear/Non-Linear separation boundaries: Here our attention is focused on the 
mathematical form of the decision boundary. Typical non-linear classification 
techniques are based on ANN and SVM, specially devoted to apply for classification 
problems of non-linear nature. It is remarkable that CAIMAN method seems not to 
suffer of nonlinear class separability problems. 
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7. Validation of the decision rule 

A very important issue is the improper model validation. This pitfall even appears in very 
simple cases, such as the fitting of a series of data points by using a polynomial function. If 
we use a parsimonic fitting where the number of points is higher than the number of 
polynomial coefficients, the fitting train the generalities of the data set. Overparametrized 
fitting where the number of points becomes equal to the number of polynimial coefficients, 
trains idiosyncrasies and leads to overtraining or overfitting. Thus, a complex fitting 
function may fit the noise, not just the signal. Overfitting is a Damocles' sword that 
gravitates over any attempt to model the classification rule. We are interested to an 
intermediate behaviour: A model which is powerful enough to represent the underlying 
structure of the data (generalities), but not so powerful that it faithfully models the noise 
(idiosyncrasies) associated to data. This balance is known as the bias-variance tradeoff . The 
bias-variance tradeoff is most likely to become a problem when we have relatively few data 
points. In the opposite case, there is no danger of overfitting, as the noise associated with 
any single data point plays an immaterial role in the overall fit. 

If we transfer the problem of fitting a polynomial to data into the use of another functions, 
such as the discriminant functions of canonical variates issued from LDA, the number of 
discriminant functions will be p (the number of features) or Q-1 (Q is the number of classes), 
whichever is smaller. As a rule of thumb (Defernez & Kemsley, 1997), the onset of 

overfitting should be strongly suspected when the dimensionality 
3

n Qd 
 . One of the 

simplest and most widely used means of preventing overfitting is to split the known data 
set into two sets: the training set and the validation, evaluation, prediction or test set.  

Commonly, the known set is generally randomly divided into the training and validation 
sets, containing about P% and 100-P% samples of every class. Typical values are 75-25% or 
even 50-50% for training and validation sets. The classification performance is computed in 
average. Thus, the randomly generation of training and validation sets is repeated a number 
of times, 10 times for instance. Once the classification rule is developed, some workers 
consider as validation parameters the recalling efficiency (rate of training samples correctly 
classified by the rule) and, specially, the prediction ability (rate of evaluation samples 
correctly classified by the rule).  

An alternative to the generation of training and validation sets are the cross-validation and 
the bootstrapping method (Efron and Gong, 1983). In the called k-fold cross validation, the 
know set is split into k subsets of approximately equal size. Then the training is performed k 
times, each time leaving out one of k the subsets, but using only the omitted subset to 
predict its class membership. From all predictions, the percentage of hits gives an averaged 
predictive ability. A very common and simple case of cross-validation is the leave-one-out 
method: At any given time, only a pattern is considered and tested and the remaining 
patterns form the training set. Training and prediction is repeated until each pattern was 
treated as test once. This later procedure is easily confused with jacknifing because both 
techniques involve omitting each pattern in turn, but cross-validation is used just for 
validation purposes and jacknife is applied in order to estimate the bias of a statistic. 
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In bootstrapping, we repeatedly analyze subsamples, instead of subsets of the known set. 
Each subsample is a random sample with replacement from the full sample (known set). 
Bootstrapping seems to perform better than cross-validation in many instances (Efron, 1983). 

However, the performance rate obtained for validating the decision rule could be 
misleading because they do not consider the number of false positive and false negative for 
each class. These two concepts provide a deep knowledge of the classes’ space. Accordingly, 
it seems to be more advisable the use of terms sensitivity (SENS) and specificity (SPEC) 
(González-Arjona et al., 2006) for validating the decision rule. The SENS of a class 
corresponds to the rate of evaluation objects belonging to the class that are correctly 
classified, and the SPEC of a class corresponds to the rate of evaluation objects not belonging 
to the class that are correctly considered as belonging to the other classes. This may be 
explained in terms of the first and second kind of risks associated with prediction. The first 
kind of errors (α) corresponds to the probability of erroneously reject a member of the class 
as a non-member (rate of false negative, FN). The second kind of errors (β) corresponds to 
the probability of erroneously classify a non-member of the class as a member (rate of false 
positive, FP). Accordingly, for a given class A, and setting An  as the number of members of 
class A, An  as the number of non-members of class A, An  as the number of members of 
class A correctly classified as “belonging to class A” and An  as the number of non-
members of class A classified as “not belonging to class A”, we have (Yang et al., 2005):  

 A A A

A A A

TP n FP n n
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TP and TN being the number of True Positive and True Negative members of the 
considered class. Accordingly, 
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It is clear that values close to unity for both parameters indicates a successfully validation 
performance. 

With these parameters it can be built the called confusion matrix for class A: 

 C
A
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 

  
 

 (14) 

As it has been outlined, the common validation procedure consists of dividing the known 
set into two subsets, namely training and validation set. However, the validation procedure 
has to be considered with more caution in case of some kinds of ANN such as MLP because 
they suffer a special overfitting damage. The MLP consists of formal neurons and 
connection (weights) between them. As it is well known, neurons in MLP are commonly 
arranged in three layers: an input layer, one hidden layer (sometimes plus a bias neuron) 



 
Chemometrics in Practical Applications 

 

32

7. Validation of the decision rule 

A very important issue is the improper model validation. This pitfall even appears in very 
simple cases, such as the fitting of a series of data points by using a polynomial function. If 
we use a parsimonic fitting where the number of points is higher than the number of 
polynomial coefficients, the fitting train the generalities of the data set. Overparametrized 
fitting where the number of points becomes equal to the number of polynimial coefficients, 
trains idiosyncrasies and leads to overtraining or overfitting. Thus, a complex fitting 
function may fit the noise, not just the signal. Overfitting is a Damocles' sword that 
gravitates over any attempt to model the classification rule. We are interested to an 
intermediate behaviour: A model which is powerful enough to represent the underlying 
structure of the data (generalities), but not so powerful that it faithfully models the noise 
(idiosyncrasies) associated to data. This balance is known as the bias-variance tradeoff . The 
bias-variance tradeoff is most likely to become a problem when we have relatively few data 
points. In the opposite case, there is no danger of overfitting, as the noise associated with 
any single data point plays an immaterial role in the overall fit. 

If we transfer the problem of fitting a polynomial to data into the use of another functions, 
such as the discriminant functions of canonical variates issued from LDA, the number of 
discriminant functions will be p (the number of features) or Q-1 (Q is the number of classes), 
whichever is smaller. As a rule of thumb (Defernez & Kemsley, 1997), the onset of 

overfitting should be strongly suspected when the dimensionality 
3

n Qd 
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simplest and most widely used means of preventing overfitting is to split the known data 
set into two sets: the training set and the validation, evaluation, prediction or test set.  

Commonly, the known set is generally randomly divided into the training and validation 
sets, containing about P% and 100-P% samples of every class. Typical values are 75-25% or 
even 50-50% for training and validation sets. The classification performance is computed in 
average. Thus, the randomly generation of training and validation sets is repeated a number 
of times, 10 times for instance. Once the classification rule is developed, some workers 
consider as validation parameters the recalling efficiency (rate of training samples correctly 
classified by the rule) and, specially, the prediction ability (rate of evaluation samples 
correctly classified by the rule).  

An alternative to the generation of training and validation sets are the cross-validation and 
the bootstrapping method (Efron and Gong, 1983). In the called k-fold cross validation, the 
know set is split into k subsets of approximately equal size. Then the training is performed k 
times, each time leaving out one of k the subsets, but using only the omitted subset to 
predict its class membership. From all predictions, the percentage of hits gives an averaged 
predictive ability. A very common and simple case of cross-validation is the leave-one-out 
method: At any given time, only a pattern is considered and tested and the remaining 
patterns form the training set. Training and prediction is repeated until each pattern was 
treated as test once. This later procedure is easily confused with jacknifing because both 
techniques involve omitting each pattern in turn, but cross-validation is used just for 
validation purposes and jacknife is applied in order to estimate the bias of a statistic. 
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In bootstrapping, we repeatedly analyze subsamples, instead of subsets of the known set. 
Each subsample is a random sample with replacement from the full sample (known set). 
Bootstrapping seems to perform better than cross-validation in many instances (Efron, 1983). 

However, the performance rate obtained for validating the decision rule could be 
misleading because they do not consider the number of false positive and false negative for 
each class. These two concepts provide a deep knowledge of the classes’ space. Accordingly, 
it seems to be more advisable the use of terms sensitivity (SENS) and specificity (SPEC) 
(González-Arjona et al., 2006) for validating the decision rule. The SENS of a class 
corresponds to the rate of evaluation objects belonging to the class that are correctly 
classified, and the SPEC of a class corresponds to the rate of evaluation objects not belonging 
to the class that are correctly considered as belonging to the other classes. This may be 
explained in terms of the first and second kind of risks associated with prediction. The first 
kind of errors (α) corresponds to the probability of erroneously reject a member of the class 
as a non-member (rate of false negative, FN). The second kind of errors (β) corresponds to 
the probability of erroneously classify a non-member of the class as a member (rate of false 
positive, FP). Accordingly, for a given class A, and setting An  as the number of members of 
class A, An  as the number of non-members of class A, An  as the number of members of 
class A correctly classified as “belonging to class A” and An  as the number of non-
members of class A classified as “not belonging to class A”, we have (Yang et al., 2005):  
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TP and TN being the number of True Positive and True Negative members of the 
considered class. Accordingly, 

 

FN1 1

FP1 1

A

A A

A

A A

n TPSENS
n n TP FN
n TNSPEC
n n TN FP





     


     


 (13) 

It is clear that values close to unity for both parameters indicates a successfully validation 
performance. 

With these parameters it can be built the called confusion matrix for class A: 
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As it has been outlined, the common validation procedure consists of dividing the known 
set into two subsets, namely training and validation set. However, the validation procedure 
has to be considered with more caution in case of some kinds of ANN such as MLP because 
they suffer a special overfitting damage. The MLP consists of formal neurons and 
connection (weights) between them. As it is well known, neurons in MLP are commonly 
arranged in three layers: an input layer, one hidden layer (sometimes plus a bias neuron) 
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and an output layer.  The number of hidden nodes in a MLP indicates the complexity of the 
relationship in a way very similar to the fitting of a polynomial to a data set. Too many 
connections have the risk of a network specialization in training noise and poor prediction 
ability. Accordingly, a first action should be minimizing the number of neurons of the 
hidden layer. Some authors (Andrea & Kalayeh, 1991) have proposed the parameter   
which plays a major role in determining the best architecture: 

 Number of data points in the training set
Sum of the number of connections in the network

      (15) 

In order to avoid overfitting it is recommended that 1 2.2  . 

Besides, the overfitting problem can be minimized by monitoring the performance of the 
network during training by using an extra verification set different from training set. This 
verification set is needed in order to stop the training process before the ANN learns 
idiosyncrasies present in the training data that leads to overfitting (González, 2007).  

8. Concluding remarks 

The selection of the supervised learning technique depends on the nature of the particular 
problem. If we have a data set composed only by a given number of classes and the rule is 
going to be used on test samples that we know they may belong to one of the former 
established classes only, then we can select a discriminating technique such as LDA, PLS-
DA, SVM or some kind of  discriminating ANN (MLP or PNN). Otherwise, class modelling 
techniques such as SIMCA, UNEQ or KCM are useful. Class modelling tools offer at least 
two main advantages: To identify samples which do not fall in any of the examined 
categories (and therefore can be either simply outlying observations or members of a new 
class not considered in the known set) and to take into account samples that can 
simultaneously belong to more than one class (multiclass patterns). 

If the idiosyncrasy of the problem suggests that the boundaries could be of non-linear 
nature, then the use of SVM or ANN is the best choice. 

In cases where the number of features in higher than the number of samples (p > n), a 
previous or simultaneous step dealing with feature selection is needed when non-PCA 
based techniques are used (KNN, LDA, ANN, UNEQ). PCA-based methods such as SIMCA 
and PLS-DA can be applied without need of feature selection. This characteristic is very 
interesting beyond of compositional analysis, when samples are characterized by a 
spectrum, like in spectrometric methods (FT-IR, FT-Raman, NMR...). A different behaviour 
of these two methods against the number of FP and FN has been noticed (Dahlberg et al., 
1997). SIMCA is focused on class specificities, and hence it detects strangers with high 
accuracy (only when the model set does not contain outliers. Otherwise, robust SIMCA 
model can be used), but sometimes fails to recognize its own members if the class is not 
homogeneous enough or the training set is not large enough. PLS-DA, on the contrary, deals 
with an implicitly closed universe (since the Y variables have a constant sum) so that it 
ignores the possibility of strangers. However, this has the advantage to make the method 
more robust to class inhomogeneities, since what matters most in class differences. 
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In compositional data, as pointed out Berrueta et al. (2007), the main problem is class 
overlap, but with a suitable feature selection and adequate sample size, good classification 
performances can be achieved. In general, non-linear methods such as ANN or SVM are 
rarely needed and most classification problems can be solved using linear techniques (LDA, 
CVA, PLS_DA).  

Sometimes, several different types of techniques can be applied to the same data set. 
Classification methods are numerous and then the main problem is to select the most 
suitable one, especially dealing with quantitative criteria like prediction ability or 
misclassification percentage. In order to carry out the comparison adequately, the 
McNemar's test is a good choice (Roggo et al., 2003). Two classification procedures A and B 
are trained and the same validation set is used. Null hypothesis is that both techniques lead 
to the same misclassification rate. McNemar's test is based on a 2 test with one degree of 
freedom if the number of samples is higher than 20. The way to obtain the McNemar's 
statistic is as follows: 
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The critical value for a 5% significance level is 3.84. In order to get insight about this 
procedure, the paper of Roggo et al (2006) is very promising. 

Finally, a last consideration about problems with the data set representativeness. As it has 
been claimed in a published report a LDA was applied to differentiate 12 classes of oils on 
the basis of the chromatographic data, where some classes contained two or three members 
only (and besides, the model was not validated). There is no need of being an expertise 
chemometrician to be aware of two or three samples are insufficient to draw any relevant 
conclusion about the class to which they belong. There are more sources of possible data 
variance than the number of samples used to estimate class variability (Daszykowski & 
Walczak, 2006). The requirements of a sufficient number of samples for every class could be 
envisaged according to a class modelling technique to extract the class dimensionality and 
consider, for instance, a number of members within three to ten times this dimensionality. 

Aside from this representativity context, it should be point out that when the aim is to 
classify food products or to build a classification rule to check the authentic origin of 
samples, they have to be collected very carefully according to a well established sampling 
plan. Often not enough care is taken about it, and thus is it hardly possible to obtain 
accurate classification models. 
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and an output layer.  The number of hidden nodes in a MLP indicates the complexity of the 
relationship in a way very similar to the fitting of a polynomial to a data set. Too many 
connections have the risk of a network specialization in training noise and poor prediction 
ability. Accordingly, a first action should be minimizing the number of neurons of the 
hidden layer. Some authors (Andrea & Kalayeh, 1991) have proposed the parameter   
which plays a major role in determining the best architecture: 

 Number of data points in the training set
Sum of the number of connections in the network

      (15) 

In order to avoid overfitting it is recommended that 1 2.2  . 

Besides, the overfitting problem can be minimized by monitoring the performance of the 
network during training by using an extra verification set different from training set. This 
verification set is needed in order to stop the training process before the ANN learns 
idiosyncrasies present in the training data that leads to overfitting (González, 2007).  

8. Concluding remarks 

The selection of the supervised learning technique depends on the nature of the particular 
problem. If we have a data set composed only by a given number of classes and the rule is 
going to be used on test samples that we know they may belong to one of the former 
established classes only, then we can select a discriminating technique such as LDA, PLS-
DA, SVM or some kind of  discriminating ANN (MLP or PNN). Otherwise, class modelling 
techniques such as SIMCA, UNEQ or KCM are useful. Class modelling tools offer at least 
two main advantages: To identify samples which do not fall in any of the examined 
categories (and therefore can be either simply outlying observations or members of a new 
class not considered in the known set) and to take into account samples that can 
simultaneously belong to more than one class (multiclass patterns). 

If the idiosyncrasy of the problem suggests that the boundaries could be of non-linear 
nature, then the use of SVM or ANN is the best choice. 

In cases where the number of features in higher than the number of samples (p > n), a 
previous or simultaneous step dealing with feature selection is needed when non-PCA 
based techniques are used (KNN, LDA, ANN, UNEQ). PCA-based methods such as SIMCA 
and PLS-DA can be applied without need of feature selection. This characteristic is very 
interesting beyond of compositional analysis, when samples are characterized by a 
spectrum, like in spectrometric methods (FT-IR, FT-Raman, NMR...). A different behaviour 
of these two methods against the number of FP and FN has been noticed (Dahlberg et al., 
1997). SIMCA is focused on class specificities, and hence it detects strangers with high 
accuracy (only when the model set does not contain outliers. Otherwise, robust SIMCA 
model can be used), but sometimes fails to recognize its own members if the class is not 
homogeneous enough or the training set is not large enough. PLS-DA, on the contrary, deals 
with an implicitly closed universe (since the Y variables have a constant sum) so that it 
ignores the possibility of strangers. However, this has the advantage to make the method 
more robust to class inhomogeneities, since what matters most in class differences. 
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In compositional data, as pointed out Berrueta et al. (2007), the main problem is class 
overlap, but with a suitable feature selection and adequate sample size, good classification 
performances can be achieved. In general, non-linear methods such as ANN or SVM are 
rarely needed and most classification problems can be solved using linear techniques (LDA, 
CVA, PLS_DA).  

Sometimes, several different types of techniques can be applied to the same data set. 
Classification methods are numerous and then the main problem is to select the most 
suitable one, especially dealing with quantitative criteria like prediction ability or 
misclassification percentage. In order to carry out the comparison adequately, the 
McNemar's test is a good choice (Roggo et al., 2003). Two classification procedures A and B 
are trained and the same validation set is used. Null hypothesis is that both techniques lead 
to the same misclassification rate. McNemar's test is based on a 2 test with one degree of 
freedom if the number of samples is higher than 20. The way to obtain the McNemar's 
statistic is as follows: 
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The critical value for a 5% significance level is 3.84. In order to get insight about this 
procedure, the paper of Roggo et al (2006) is very promising. 

Finally, a last consideration about problems with the data set representativeness. As it has 
been claimed in a published report a LDA was applied to differentiate 12 classes of oils on 
the basis of the chromatographic data, where some classes contained two or three members 
only (and besides, the model was not validated). There is no need of being an expertise 
chemometrician to be aware of two or three samples are insufficient to draw any relevant 
conclusion about the class to which they belong. There are more sources of possible data 
variance than the number of samples used to estimate class variability (Daszykowski & 
Walczak, 2006). The requirements of a sufficient number of samples for every class could be 
envisaged according to a class modelling technique to extract the class dimensionality and 
consider, for instance, a number of members within three to ten times this dimensionality. 

Aside from this representativity context, it should be point out that when the aim is to 
classify food products or to build a classification rule to check the authentic origin of 
samples, they have to be collected very carefully according to a well established sampling 
plan. Often not enough care is taken about it, and thus is it hardly possible to obtain 
accurate classification models. 
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1. Introduction 
This chapter is intended to demonstrate some recent approaches to the quantitative 
determination of chemical processes based on the quantitative analysis of experimental 
spectrophotometric measurements. In this chapter we will discuss kinetic processes, 
equilibrium processes and also processes that include a combination of kinetic and 
equilibrium steps.  

We also emphasise the advantage of ‘global’ multivariate (multiwavelength) data analysis 
which has the advantage of allowing the robust determination of more complex 
mechanisms than single wavelength analysis and also has the benefit of yielding the spectra 
of all the participating species. 

Rather than dwell on the mathematical derivation of the complex numerical algorithms and 
a repetition of the fundamentals of non-linear regression methods and least squares fitting 
which are available from a wide variety of sources (Martell and Motekaitis 1988; Polster and 
Lachmann 1989; Gans 1992; Press, Vetterling et al. 1995; Maeder and Neuhold 2007), we aim 
to show the experimentalist how to obtain the results they are interested, using purpose 
designed global analysis software and a variety of worked examples. We will be using 
ReactLab, a suite of versatile and powerful reaction modelling and analysis tools developed 
by the authors. Other academic and commercial applications exist for multivariate and 
related types of analysis and the reader is encouraged to explore these for comparative 
purposes.  All offer different features and benefits but will not be discussed here.   

2. Spectrophotometry, the ideal technique for process analysis 
Any spectroscopic technique is ideal for the analysis of chemical processes as there is no 
interference in the underlying chemistry by the measurement technique. This is in sharp 
contrast to say chromatographic analysis or other separation methods which are totally 
unsuitable for the analysis of dynamic equilibrium systems. Such methods are also of very 
limited use for kinetic studies which often are too fast on the chromatographic time scale of 
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typically tens of minutes to hours (except where reactions are first quenched and the 
intermediates stabilised). In contrast most forms of spectroscopy provide a completely non-
invasive snapshot of a sample’s composition at a single instant. 

Amongst the different spectroscopies routinely available to the chemist, light absorption 
spectrophotometry in the UV-Visible (UV/Vis) is most common for several reasons: 
instruments are relatively inexpensive and accurate, they provide stable referenced signals 
as they are usually split or double beam instruments, there is a simple relationship between 
concentration and the measured absorbance signal (Beer-Lambert’s law) and many 
compounds absorb somewhere in the accessible wavelength region. As a consequence there 
is a considerable amount of software available for the analysis of spectrophotometric data. 
This is the case both for kinetic and equilibrium investigations. NMR spectroscopy is a 
powerful method for structural investigations but it is less commonly used for quantitative 
analytical purposes. A theoretically very powerful alternative to UV/Vis absorption 
spectroscopy is FT-IR spectroscopy. The richness of IR spectra is very attractive as there is 
much more information contained in an IR spectrum compared with a relatively 
structureless UV/Vis spectrum. The main disadvantage is the lack of long term stability as 
FT-IR instruments are single beam instruments. Other difficulties include solvent absorption 
and the lack of non-absorbing cell materials, particularly for aqueous solutions. However, 
attenuated total reflection or ATR is a promising novel measurement technique in the IR. 
Near-IR spectroscopy is very similar to UV/Vis spectroscopy and is covered by the present 
discussions. 

Of course fluorescence detection is a very sensitive and important tool particularly in 
kinetics studies and can yield important mechanistic information where intermediates do 
not possess chromophores and are therefore colourless or are studied at very low 
concentrations. In the main fluorescence studies are carried out at a single emission 
wavelength or adopting the total fluorescence approach (using cut-off filters), so there is no 
wavelength discrimination in the data. Whilst this type of measurement can be analysed by 
the methods described below and is essentially equivalent to analysing single wavelength 
absorption data. We will in the following discussion concentrate on the general case of 
processing multiwavelength measurements 

3. The experiment, structure of the data 
For kinetic investigations the absorption of the reacting solution is measured as a function of 
reaction time; for equilibrium investigations the absorption is recorded as a function of the 
reagent addition or another independent variable such as pH. Absorption readings can of 
course be taken at a single wavelength but with modern instrumentations it is routine and 
advantageous to record complete spectra vs. time or reagent addition. This is particularly 
prevalent with the use of photodiode array (PDA) based spectrophotometers and online 
detectors. 

In the case of kinetics, depending on the rate of a chemical reaction the mixing of the reagents 
that undergo the reaction has to be done fast using a stopped-flow instrument or it can be 
done manually for slower reactions in the cuvette of a standard UV-Vis spectrometer with 
suitably triggered spectral data acquisition. A series of spectra are collected at time intervals 
following the mixing event to cover the reaction time of interest. The measured spectra change 
as the reaction proceeds from reagents to products (Wilkins 1991; Espenson 1995). 
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For equilibrium investigations the spectra of a series of pre-mixed and equilibrated solutions 
have to be recorded (Martell and Motekaitis 1988; Polster and Lachmann 1989). This is most 
commonly done as a titration where small amounts of a reagent are added stepwise to the 
solution under investigation. Titrations can be done in the cuvette, requiring internal stirring 
after each addition, prior to the absorption measurement, or the solutions can be mixed 
externally with transfer of the equilibrated solutions into the cuvette performed manually or 
using a flow cell and automatic pumping. In an alternative configuration optical probes can 
be coupled to the optical path in some spectrometers and placed into the solution contained 
in an external titration vessel (Norman and Maeder 2006). Often the pHs of the equilibrated 
titration solutions are recorded together with the absorption spectra where protonation 
equilibria are a feature of the mechanism. 

For both kinetic and equilibrium investigations the measurement data can be arranged in a 
data matrix D which contains row-wise the recorded spectra as a function of time or reagent 
addition. The number of columns of D is the number of wavelengths, nlam, over which the 
spectra are taken. For single wavelength data the matrix reduces to a single column (vector). 
The number of rows, nspectra, corresponds to the number of spectra recorded during the 
process (one at each time interval for kinetics or reagent addition for an equilibrium 
titration). The dimensions of D thus are nspectra×nlam. For spectra taken on a mechanical 
scanning instrument, the number of wavelengths can be 1 to typically some 10 or 20 but for 
diode array instruments it can easily be in excess of 1000 depending on the solid state 
detector pixel resolution (typically these provide a resolution progression of 256, 512 and 
1024 pixels). The number of spectra taken is typically much larger on a stopped-flow 
instrument equipped with a fast diode array detector with a typical minimum spectrum 
acquisition time of the order of a millisecond. Frequently a logarithmic time base is an 
option which enables both fast and slower events to be resolved in a single kinetic 
experiment. A graphical representation of a date matrix D is given in Figure 1.  

wavelength

time
pH
added reagent

 
Fig. 1. Graphical representation of a data matrix D, the spectra are arranged as the rows. 

For both kinetic and equilibrium investigations, we obtain a series of spectra each of which 
represent the solution at one particular moment during the process. The spectra are taken as 
a function of time or reagent addition. 

4. Information to be gained from the measurements 
The purpose of collecting this type of data is to determine the chemical reaction mechanism 
that describes the underlying process in terms of identifiable steps together with the 
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associated key parameters; the rates and/or equilibrium constants which define the 
interconversions and stabilities of the various species. This may initially be a purely 
academic exercise to characterise a novel chemical reaction for publication purposes but 
ultimately defines the behaviour of the participating species for any future research into this 
or related chemistry as well as being the foundation for commercially important 
applications e.g. drug binding interactions in pharmaceutical development or reaction 
optimisation in industrial processes.   

The objective is therefore to find the chemical model which best fits the data and validate 
and refine this model with subsequent experiments under other conditions. The clear benefit 
of multi-wavelength measurements is that the model must satisfy (fit) the data at all 
measurement wavelengths simultaneously and this significantly helps the accurate 
determination of multiple parameters and also allows determination of the individual 
spectra of the participating species. 

5. Beer-Lambert’s law 
Before we can start the possible ways of extracting the useful parameters from the measured 
data set, the rate constants in the case of kinetics, the equilibrium constants in the case of 
equilibria, we need to further investigate the structure of the data matrix D. According to 
Beer-Lambert’s law for multicomponent systems, the total absorption at any particular 
wavelength is the sum over all individual contributions of all absorbing species at this 
wavelength. It is best to write this as an equation: 

 
ncomp

k=1
D(i,j) = C(i,k) ×A(k,j)  (1) 

where: 
D(i,j): absorption of the i-th solution at wavelength j 
C(i,k); concentration of the k-th component in the i-th solution 
A(k,j): molar absorptivity of the k-th component at the j-th wavelength 
ncomp: number of components in the system under investigation. 

Thus equation (1) represents a system of i×j equations with many unknowns, i.e. all 
elements of C (nspectra×ncomp) and all elements of A (ncomp×nlam). 

It is extremely useful to realise that the structure of Beer-Lambert’s law allows the writing of 
Equation (1) in a very elegant matrix notion, Equation (2) and Figure 2 

 D = C×A  (2) 

=D C

A

 
Fig. 2. Beer-Lambert’s law, Equation (1) in matrix notation. 
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The matrix D(nspectra×nlam) is the product of a matrix of concentrations 
C(nspectra×ncomp) and a matrix A(ncomp×nlam). C contains as columns the concentration 
profiles of the reacting components and the matrix A contains, as rows, their molar 
absorption spectra. 

Equations (1) and (2) and Figure 2 represent the ideal case of perfect absorption readings 
without any experimental noise. This of course is not realistic and both equations have to be 
augmented by an error term, R(i,j) which is the difference between the ideal value and its 
measured counterpart, equation (3) and Figure 3. 

 

ncomp

k=1
D(i,j) = C(i,k) ×A(k,j) R(i,j)

 = +







D C A R
 (3) 

=D C

A

R+

 
Fig. 3. Beer-Lambert’s law including the residuals. 

The goal of the fitting is to determine that set of matrices C and A for which the sum over all 
the squares of the residuals, ssq, is minimal,  

 
nspectra nlam

i=1 j=1
ssq =  R(i,j)    (4) 

At first sight this looks like a very daunting task. However, as we will see, it is 
manageable. 

Ideally the final square sum achieved should be numerically equal to the sum of the squares 
of the Gaussian noise in the measurement – usually instrumental in origin. At this point the 
fit cannot be further improved, though this is not a guarantee that the model is the correct 
one.  

6. The chemical model 

The first and central step of any data analysis is the computation of the matrix C of 
concentration profiles based on the proposed chemical model and the associated parameters 
such as, but not exclusively, the rate and or equilibrium constants. Initially these key 
parameters may be only rough estimates of the true values. 

So far the explanations are valid for kinetic and equilibrium studies. The difference between 
these two investigation lies in the different computations required for the calculation of the 
concentration profiles in the matrix C. 
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7. Kinetics 
The chemical model for a kinetic investigation is a set of reaction equations which describe the 
process under investigation. Consider as an example the basic enzymatic reaction scheme 

 +1 2

-1

k k
k

E + S  ES  E + P   (5) 

An enzyme E reacts rapidly and reversibly with the substrate S to form an enzyme substrate 
complex ES. This is followed by the 1st order chemical conversion of the substrate and 
release of product. The free enzyme is then available to undergo another catalytic cycle.   

Before proceeding to a ReactLab based mechanistic analysis it is informative to briefly 
outline the classical approach to the quantitative analysis of this and similar basic enzyme 
mechanisms. The reader is referred to the many kinetics textbooks available for a more 
detailed description of these methods. The scheme in equation (5) was proposed by 
Michaelis and Menten in 1913 to aid in the interpretation of kinetic behaviour of enzyme-
substrate reactions (Menten and Michaelis 1913). This model of the catalytic process was the 
basis for an analysis of measured initial rates (v) as a function of initial substrate 
concentration in order to determine the constants  KM (The Michaelis constant) and Vmax that 
characterise the reaction. At low [S], v increases linearly, but as [S] increases the rise in v 
slows and ultimately reaches a limiting value Vmax. 

Analysis was based on the derived Michaelis Menten formula: 

 

0 cat

M

[E ] [S] kv = 
K  + [S]

 (6) 

Where Vmax= kcat[E]0 , and KM is equal to the substrate concentration at which v= ½ Vmax. The 
key to this derivation is that the enzyme substrate complex ES is in dynamic equilibrium 
with free E and S and the catalytic step proceeds with a first order rate constant kcat. This 
‘turnover number’ kcat is represented by k2 in the scheme in equation (5).  

It can be shown that under conditions where k2 << k-1 then KM is in fact equal to the 
equilibrium dissociation constant K1, 

 

+1
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[ES] kK  =  = 
[E] [S] k

  (7) 

Importantly, however, the parameter KM is not always equivalent to this fundamental 
equilibrium constant K1 when this constraint (k2 << k-1) doesn’t apply. 

Furthermore though the Michealis Menten scheme can be extended to cover more complex 
mechanisms with additional intermediates, the KM and kcat parameters now become even 
more complex combinations of individual rate and equilibrium constants. The kcat and KM 
parameters determined by these classical approaches are therefore not the fundamental 
constants defining the mechanism and significant effort is required to determine the true 
underlying equilibrium and microscopic rate constants.  

In contrast direct analysis using ReactLab to fit the core mechanism to suitable data delivers 
the true underlying rate and equilibrium constants in a wholly generic way that can be 
applied without assumptions and also to more complex models.  
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This involves the modelling of the entire mechanism to deliver the matrix C comprising the 
concentration profiles of all the participating species. The reaction scheme in equation (5) 
defines a set of ordinary differential equations, ODE’s, which need to be solved or 
integrated (Maeder and Neuhold 2007). Reaction schemes that only consist of first order 
reactions can be integrated analytically in which case the concentration can be calculated 
directly at any point using the resulting explicit function. Most other schemes, containing 
one or more second order reactions, require numerical integration. Numerical integration is 
usually done with variable step-size Runge-Kutta algorithms, unless the system is ‘stiff’ 
(comprising both very fast and slow reactions) for which special stiff solvers, such as Gear 
and Bulirsch-Stoer algorithms are available (Press, Vetterling et al. 1995). 

Integration, explicit or numerical, requires the knowledge of the initial conditions, in the 
case of kinetics the initial concentrations of all interacting species. For the above example, 
equation 

  
k k+1 2
k-1

E + S  ES  E + P  (5),  

and using the rate constants (k+1=103 M-1 sec-1, k-1=102 sec-1, k2=102 sec-1) and initial 
concentrations, ([S]0=1 M, [E]0=10-4 M), the resulting concentration profiles generated by 
numerical integration and used to populate the columns of matrix C are shown in Figure 4.  
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Fig. 4. Concentration profiles for the enzymatic reaction of equation (5); an expanded 
concentration axis is used in the right panel. 

The transformation of the substrate into the product follows approximately zero-th order 
kinetics for most of the reaction whilst the substrate is in excess and all the enzyme sites are 
populated. Later in the reaction the substrate is exhausted and free enzyme released. The 
expanded plot in the right hand panel displays more clearly the small concentrations for the 
enzyme and the enzyme-substrate complex.  

8. Equilibria 
The chemical model for an equilibrium process is similar to the model of a kinetic process, 
only now there are exclusively equilibrium interactions, e.g. 
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7. Kinetics 
The chemical model for a kinetic investigation is a set of reaction equations which describe the 
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with free E and S and the catalytic step proceeds with a first order rate constant kcat. This 
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It can be shown that under conditions where k2 << k-1 then KM is in fact equal to the 
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Importantly, however, the parameter KM is not always equivalent to this fundamental 
equilibrium constant K1 when this constraint (k2 << k-1) doesn’t apply. 

Furthermore though the Michealis Menten scheme can be extended to cover more complex 
mechanisms with additional intermediates, the KM and kcat parameters now become even 
more complex combinations of individual rate and equilibrium constants. The kcat and KM 
parameters determined by these classical approaches are therefore not the fundamental 
constants defining the mechanism and significant effort is required to determine the true 
underlying equilibrium and microscopic rate constants.  

In contrast direct analysis using ReactLab to fit the core mechanism to suitable data delivers 
the true underlying rate and equilibrium constants in a wholly generic way that can be 
applied without assumptions and also to more complex models.  
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This involves the modelling of the entire mechanism to deliver the matrix C comprising the 
concentration profiles of all the participating species. The reaction scheme in equation (5) 
defines a set of ordinary differential equations, ODE’s, which need to be solved or 
integrated (Maeder and Neuhold 2007). Reaction schemes that only consist of first order 
reactions can be integrated analytically in which case the concentration can be calculated 
directly at any point using the resulting explicit function. Most other schemes, containing 
one or more second order reactions, require numerical integration. Numerical integration is 
usually done with variable step-size Runge-Kutta algorithms, unless the system is ‘stiff’ 
(comprising both very fast and slow reactions) for which special stiff solvers, such as Gear 
and Bulirsch-Stoer algorithms are available (Press, Vetterling et al. 1995). 

Integration, explicit or numerical, requires the knowledge of the initial conditions, in the 
case of kinetics the initial concentrations of all interacting species. For the above example, 
equation 
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and using the rate constants (k+1=103 M-1 sec-1, k-1=102 sec-1, k2=102 sec-1) and initial 
concentrations, ([S]0=1 M, [E]0=10-4 M), the resulting concentration profiles generated by 
numerical integration and used to populate the columns of matrix C are shown in Figure 4.  
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Fig. 4. Concentration profiles for the enzymatic reaction of equation (5); an expanded 
concentration axis is used in the right panel. 

The transformation of the substrate into the product follows approximately zero-th order 
kinetics for most of the reaction whilst the substrate is in excess and all the enzyme sites are 
populated. Later in the reaction the substrate is exhausted and free enzyme released. The 
expanded plot in the right hand panel displays more clearly the small concentrations for the 
enzyme and the enzyme-substrate complex.  

8. Equilibria 
The chemical model for an equilibrium process is similar to the model of a kinetic process, 
only now there are exclusively equilibrium interactions, e.g. 
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 (8) 

The chemistry in this example comprises the protonation equilibria of the di-protic acid AH2 
and the mono-protic acid BH. The key difference now is that the steps are defined in terms 
of instantaneous stability or equilibrium constants, and the fast processes of the attainment 
of the equilibria are not observed. 

Equilibrium investigations require a titration, which consists of the preparation of a series of 
solutions with different but known total component concentrations. In equilibrium studies 
we distinguish between components and species. Components are the building blocks; in 
the example (6) they are A, B and H; species are all the different molecules that are formed 
from the components during the titration, the example they are A, AH, AH2, B, BH, H and 
OH. Note, the components are also species. 

Instead of utilising numerical integration to compute the concentration profiles of the 
individual species as we did with kinetic time courses we instead use an iterative Newton-
Raphson algorithm to determine the speciation based on the total component concentrations 
for each sample and the estimated equilibrium constants (Maeder and Neuhold 2007).  

For a titration of 10ml of a solution with total component concentrations [A]tot= 0.1M, 
[B]tot=0.06 M and [H]tot=0.4M with 5ml of 1.0M NaOH the concentration profiles of Figure 5 
result. The protonation constants are log(KAH)=9, log(KAH2)=3 and log(KBH)=4. 
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Fig. 5. Concentration profiles for the titration of an acidified solution of AH2 and BH with 
NaOH. 

8.1 Kinetics with coupled protonation equilibria 

A significant recent development is the incorporation of instantaneous equilibria to kinetic 
analyses. Careful combination of numerical integration computations alongside the 
Newton-Raphson speciation calculations have made this possible (Maeder, Neuhold et al. 
2002). This development has made the modelling of significantly more complex and realistic 
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mechanisms possible. An example is the complex formation between ammonia and Ni2+ in 
aqueous solution as represented in equation (9).  
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 (9) 

Ni2+ is interacting with NH3 to form the 1:1 and subsequently the 1:2 complexes. Importantly 
the ammonia is also involved in a protonation equilibrium. As a result the pH changes 
during the reaction and the rates of the complex formation reactions appear to change. The 
classical approach to this situation is to add buffers that approximately maintain constant 
pH and thus also the protonation equilibrium. Since buffers often interfere with the process 
under investigation the possibility of avoiding them is advantageous. This has only been 
made possible by this more sophisticated method of mechanistic analysis. 
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Fig. 6. The concentration profiles for the complex species in the reaction of Ni2+ and NH3; 
also displayed is the pH of the reacting solution. 

The concentration profiles for the complex species are shown in Figure 6. The patterns for a 
‘normal’ consecutive reaction are distorted as the reaction slows down with the drop in pH 
from 9.5 to 8.2. The initial concentrations for this reaction are [Ni2+]0=0.1 M, [NH3]0=0.25 M 
and [H+]0=0.1 M. 

9. Parameters 
Any parameter that is used to calculate the matrix C of concentrations is potentially a 
parameter that can be fitted. Obvious parameters are the rate constants k and the 
equilibrium constants K; other less obvious parameters are the initial concentrations in 
kinetics or the total concentrations in equilibrium titrations. Concentration determinations 
are of course very common in equilibrium studies (quantitative titrations); for several 
reasons concentrations are not often fitted in kinetic studies. For first order reactions the 
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Fig. 5. Concentration profiles for the titration of an acidified solution of AH2 and BH with 
NaOH. 

8.1 Kinetics with coupled protonation equilibria 

A significant recent development is the incorporation of instantaneous equilibria to kinetic 
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mechanisms possible. An example is the complex formation between ammonia and Ni2+ in 
aqueous solution as represented in equation (9).  
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Ni2+ is interacting with NH3 to form the 1:1 and subsequently the 1:2 complexes. Importantly 
the ammonia is also involved in a protonation equilibrium. As a result the pH changes 
during the reaction and the rates of the complex formation reactions appear to change. The 
classical approach to this situation is to add buffers that approximately maintain constant 
pH and thus also the protonation equilibrium. Since buffers often interfere with the process 
under investigation the possibility of avoiding them is advantageous. This has only been 
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Fig. 6. The concentration profiles for the complex species in the reaction of Ni2+ and NH3; 
also displayed is the pH of the reacting solution. 

The concentration profiles for the complex species are shown in Figure 6. The patterns for a 
‘normal’ consecutive reaction are distorted as the reaction slows down with the drop in pH 
from 9.5 to 8.2. The initial concentrations for this reaction are [Ni2+]0=0.1 M, [NH3]0=0.25 M 
and [H+]0=0.1 M. 

9. Parameters 
Any parameter that is used to calculate the matrix C of concentrations is potentially a 
parameter that can be fitted. Obvious parameters are the rate constants k and the 
equilibrium constants K; other less obvious parameters are the initial concentrations in 
kinetics or the total concentrations in equilibrium titrations. Concentration determinations 
are of course very common in equilibrium studies (quantitative titrations); for several 
reasons concentrations are not often fitted in kinetic studies. For first order reactions the 
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concentrations are not defined at all unless there is additional spectroscopic information, i.e. 
molar absorptivities. For second order reactions they are in principle defined but only very 
poorly and thus kinetic determination is not a robust analytical technique in this case. 

The parameters defining C are non-linear parameters and cannot be fitted explicitly, they 
need to be computed iteratively. Estimates are provided, a matrix C constructed and this is 
compared to the measurement according to the steps that follow below. Once this is 
complete it is possible to calculate shifts in these parameter estimates in a way that will 
improve the fit (i.e. reduce the square sum) when a new C is computed. This iterative 
improvement of the non-linear parameters is the basis of the non-linear regression algorithm 
at the heart of most fitting programs.    

10. Calculation of the absorption spectra 
The relationship between the matrix C and the measurement is based on equation (3). The 
matrix A contains the molar absorptivity for each species at each measured wavelength. All 
these molar absorptivities are unknown and thus also parameters to be determined. When 
spectra are collected the number of these parameters can be very large, but fortunately they 
are linear parameters and can be dealt with differently to the non-linear parameters 
discussed above.  

Once the concentration profiles have been calculated, the matrix A of absorption spectra is 
computed. This is a linear least-squares calculation with an explicit solution 

 +A = C D  (10) 

C+ is the pseudo-inverse of the concentration matrix C, it can be calculated as (CtC)-1Ct , or 
better using a numerically superior algorithm (Press, Vetterling et al. 1995). 

11. Non-linear regression: fitting of the non-linear parameters 
Fitting of the parameters requires the software to systematically vary all non-linear 
parameters, the rate and equilibrium constants as well as others such as initial 
concentrations, with the aim of minimising the sum of squares over all residuals, as defined 
in equation (4). 

There are several algorithms for that task, the simplex algorithm which is relatively easy to 
program and features robust convergence with a high price of slow computation times 
particularly for the fitting of many parameters. Significantly faster is the Newton-Gauss 
algorithm; additionally it delivers error estimates for the parameters and with 
implementation of the Marquardt algorithm it is also very robust (Gans 1992; Maeder and 
Neuhold 2007).   

As mentioned earlier non-linear regression is an iterative process and, provided the initial 
parameter estimates are not too poor and the model is not under-determined by the data, 
will converge to a unique minimum yielding the best fit parameters. With more complex 
models it is often necessary to fix certain parameters (either rate constants, equilibrium 
constants or complete spectra) particularly if they are known through independent 
investigations and most fitting applications will allow this type of constraint to be applied.  
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12. ReactLab analysis tools 
ReactLab™ (Jplus Consulting Ltd) is a suite of software which is designed to carry out the 
fitting of reaction models to either kinetic or equilibrium multiwavelength (or single 
wavelength) data sets. All the core calculations described above are handled internally and 
the user simply provides the experimental measurements and a reaction scheme that is to be 
fitted to the data. A range of relevant supporting options are available as well as 
comprehensive graphical tools for visualising the data and the result of the analysis. To 
facilitate this all data, models and results are provided in pre-formatted Excel workbooks to 
allow post processing of results or customised plots to be added after the main analysis is 
complete.  

13. Representing the chemical model 
As has been discussed, at the root of the analysis is the generation of the species 
concentration matrix C. 

Fitting a proposed reaction mechanism, or part of it, to the data therefore requires the 
determination of C from a reaction scheme preferably as would be written by a chemist. The 
ReactLab representation of the Ni2+/NH3 complexation mechanism of Equation (9) is shown 
in Figure 7. Forward arrows, >, are used to represent rate constants and the equal sign, =, 
represents an instantaneous equilibrium, e.g. a protonation equilibrium. 

 
Fig. 7. The ReactLab definition of the mechanism in Equation (7) with rate and equilibrium 
constants used to compute the concentration profiles of Figure 6. 

To get from this scheme to our intermediate matrix C involves a number of key 
computational steps requiring firstly the dissection of the mechanism into its fundamental 
mathematical building blocks. Many analysis tools require the user to take this initial step 
manually, and therefore understand some fairly sophisticated underlying mathematical 
principles. Whilst this is no bad thing it does complicate the overall process and provide a 
significant barrier to trying and becoming familiar with this type of direct data fitting using 
numerical integration based algorithms. A significant advance has been the development of 
model editors and translators which carry out this process transparently. These can be 
found in a variety of data fitting applications including ReactLab. 

14. Examples 

In the following we will guide the reader through the steps required for the successful 
analysis of a number of example data sets. This section consists of two examples each from 
kinetics and equilibrium studies. 
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investigations and most fitting applications will allow this type of constraint to be applied.  

Analysis of Chemical Processes, Determination  
of the Reaction Mechanism and Fitting of Equilibrium and Rate Constants 

 

51 

12. ReactLab analysis tools 
ReactLab™ (Jplus Consulting Ltd) is a suite of software which is designed to carry out the 
fitting of reaction models to either kinetic or equilibrium multiwavelength (or single 
wavelength) data sets. All the core calculations described above are handled internally and 
the user simply provides the experimental measurements and a reaction scheme that is to be 
fitted to the data. A range of relevant supporting options are available as well as 
comprehensive graphical tools for visualising the data and the result of the analysis. To 
facilitate this all data, models and results are provided in pre-formatted Excel workbooks to 
allow post processing of results or customised plots to be added after the main analysis is 
complete.  

13. Representing the chemical model 
As has been discussed, at the root of the analysis is the generation of the species 
concentration matrix C. 

Fitting a proposed reaction mechanism, or part of it, to the data therefore requires the 
determination of C from a reaction scheme preferably as would be written by a chemist. The 
ReactLab representation of the Ni2+/NH3 complexation mechanism of Equation (9) is shown 
in Figure 7. Forward arrows, >, are used to represent rate constants and the equal sign, =, 
represents an instantaneous equilibrium, e.g. a protonation equilibrium. 

 
Fig. 7. The ReactLab definition of the mechanism in Equation (7) with rate and equilibrium 
constants used to compute the concentration profiles of Figure 6. 

To get from this scheme to our intermediate matrix C involves a number of key 
computational steps requiring firstly the dissection of the mechanism into its fundamental 
mathematical building blocks. Many analysis tools require the user to take this initial step 
manually, and therefore understand some fairly sophisticated underlying mathematical 
principles. Whilst this is no bad thing it does complicate the overall process and provide a 
significant barrier to trying and becoming familiar with this type of direct data fitting using 
numerical integration based algorithms. A significant advance has been the development of 
model editors and translators which carry out this process transparently. These can be 
found in a variety of data fitting applications including ReactLab. 

14. Examples 

In the following we will guide the reader through the steps required for the successful 
analysis of a number of example data sets. This section consists of two examples each from 
kinetics and equilibrium studies. 
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Example 1: Consecutive reaction scheme  1 2k kA B C  

The data set comprises a collection spectra measured as a function of time. These are 
arranged as rows of the ‘Data’ worksheet in Figure 8, the first spectrum in the cells D6:X6, 
the second in D7:X7, and so on. For each spectrum the measurement time is required and 
these times are collected in column C. The vector of wavelengths at which the spectra were 
acquired is stored in the row 5 above the spectra. The two inserted figures display the data 
as a function of time and of wavelength. 

 
Fig. 8. The data arranged in an excel spreadsheet; the figure on the left displays the kinetic 
traces at all wavelengths, the figure on the right displays the measured spectra.  

Prior to the fitting, the chemical reaction model on which the analysis will be based needs to 
be defined. As mentioned above ReactLab and other modern programs incorporate a model 
translator that allows the definition in a natural chemistry language and which subsequently 
translates automatically into internal coefficient information that allows the automatic 
construction of the mathematical expressions required by the numerical and speciation 
algorithms. Note for each reaction an initial guess for the rate constant has to be supplied. 
The ReactLab model is for this reaction is shown in Figure 9. 

 
Fig. 9. The definition of the chemical model for the consecutive reaction scheme 

 1 2k kA B C  

The ‘compiler’ recognises that there are 3 reacting species, A, B, C, and 2 rate constants. For 
the initial concentrations the appropriate values have to be supplied by the user. In the 
example [A]init=0.001 M [B]init and [C]init are zero. Further the spectral status of each species 
needs to be defined, in the example all 3 species are ‘colored’ i.e. they do absorb in the 
wavelength range of the data, see Figure 10. The alternative ‘non-absorbing’ indicates that 
the species does not absorb in the measured range. Advanced packages including ReactLab 
also allow the implementation of ‘known’ spectra which need to be introduced elsewhere in 
the workbook. 
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Fig. 10. For the consecutive reaction scheme there are 3 reaction species for which initial 
concentrations need to be given. 

The program is now in a position to first calculate the concentration of all species as a 
function of time and subsequently their absorption spectra. The results for the present initial 
guesses for the rate constants are displayed in Figure 11. 

 
Fig. 11. The concentration profiles and absorption spectra, as calculated with initial guesses 
for the rate constants shown in Figure 9. 

The concentration profiles indicate a fast first reaction A>B and a much slower subsequent 
reaction B>C. However, the calculated, partially negative absorption spectra clearly 
demonstrate that there is ‘something wrong’, that the initial guesses for the rate constants 
are obviously not correct. In this example the deviations are not too severe indicating the 
model itself is plausible.  

Clicking the Fit button initiates the iterative improvement of the parameters and after a few 
iterations the ‘perfect’ results are evident. This of course is supportive of the validity of the 
model itself. If the scheme is wrong and cannot account for the detail in the data, a good fit 
will be unobtainable. The ReactLab GUI at the end of the fit is given in Figure 12. 

On the other hand an over complex model has to be carefully avoided as any data can 
usually be fitted with enough parameters (including artefacts!). Occam’s razor should be 
assiduously applied accepting the simplest model that fits the data as the most likely.  

Of course it is also a risk that a model is underdetermined by the data. Put simply the 
information in the measurement is not sufficient to deliver a unique solution, and the 
program will not converge properly and usually oscillate delivering one of an infinite 
number of solutions (usually combinations of rates). Whilst this does not imply the model is 
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Fig. 12. The ReactLab GUI displaying the progress of ssq, the residuals, the absorption 
spectra and the concentration profiles after the fitting. 

incorrect, further work will be required to determine and fix key parameters or spectra in 
order to resolve the problem.  

Example 2: Kinetic analysis of the reaction of Ellmans reagent (DTNB) and thioglycerol RS. 

This example illustrates the direct fitting of a simplified model followed by the correct and 
more complex model to a data set collected using a PDA on a stopped flow (data courtesy of 
TgK Scientific Ltd, UK).  

Ellmans reagent, 5,5’-Dithio-bis(2-nitrobenzoic acid) or DTNB is a commercially available 
reagent for quantifying thiols both in pure and biological samples and measuring the 
number of thiol groups on proteins. The reaction yields a colored thiolate, RS-TNB, ion 
which absorbs at 412nm and can be used to quantify the original thiol concentration. In this 
particular case the reaction with thioglycerol, RS-, leads to a 2 step disulphide exchange 
reaction and is particularly suited for establishing the dead-time of stopped flow 
instruments (Paul, Kirschner et al. 1979). The reaction is represented in Figure 13. The model 
in the ReactLab definition is given in Figure 16. 
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Fig. 13. The 2-step reaction of DTNB with a thiolate, RS-. 

A 3-D representation of the spectra measured at different time intervals for a total of 1.5 sec. 
on a stopped-flow instrument is shown in Figure 14. 
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Fig. 14. Spectral changes resulting from the reactions of Ellmans reagent (DTNB) and 
thioglycerol (RS-).  

In the experiment a large excess of thioglycerol was used and thus the two second order 
reactions can be approximated with a two-step pseudo first order sequential mechanism. 
Thus, we first attempt to fit this biphasic reaction with a simple consecutive reaction scheme 
with three colored species  1 2k kA B C  (Figure 15). The fitted rates are 75sec-1 and 
3.9sec-1. 
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Fig. 15. A simple consecutive reaction model with best fit rates and spectra. 

The problems with this fit are two-fold. First we know the reactions are second order and 
that the intermediate spectrum for species B is implausible with two peaks. 

The complete model as defined in ReactLab, together with the fit at 412 nm, is displayed in 
Figure 16. Whilst the square sum is not significantly improved the spectra are now correct 
according to literature sources and the corresponding rates for the 2 steps are 1.57 ×104 ± 6 
M-1sec-1 and 780 ± 2 M-1sec-1. 

 
 

  
 

Fig. 16. Fitting the complete mechanism to the data yields the correct rates. The right panel 
displays the quality of the fit at 412 nm on a logarithmic time axis. 

The concentration profiles and spectra resulting from a fit to the correct model are now as in 
Figure 17. 
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Fig. 17. Concentration profiles and molar absorption spectra for the analysis based on the 
complete reaction scheme. 

This example does serve to demonstrate that good fits can be obtained with an incorrect or 
simplistic model and that some insight and care is required to establish the correct 
mechanism and obtain genuine parameters. What is certainly true is that the second model 
could only be fitted because of the numerical integration of the more complex second order 
mechanisms. This was a trivial change of model configuration in ReactLab and could not 
have been achieved using classical analysis approaches. Secondly the importance of dealing 
with whole spectra is highlighted in that the spectra resulting for the fit provide important 
insight into the underlying chemistry and must make sense in this respect. Single 
wavelength kinetic analysis has no such indirect reinforcement.  

By way of a final comment on this example; we noted that the data was collected under 
pseudo first order conditions i.e. one reagent in excess. This ubiquitous approach was 
essential to enable the determination of second order rate constants using a first order fit by 
classical analysis using explicit functions (usually sums of exponentials). In the pseudo first 
order simplification a 2nd order rate constant is calculated from the observed pseudo first 
order rate constant. 
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Numerical integration methods eliminate the need for this constraint and therefore any 
requirement to work under pseudo first order conditions (or indeed the comparable 
constraint of keeping the reactant concentrations equal).  

Example 3: Equilibrium investigation, concentration determination of a diprotic and a 
strong acid 

Titrations can be used for the determination of equilibrium constants and insofar the 
analysis is very similar to a kinetic investigation. Titrations are also an important analytical 
tool for the determination of concentrations, in real terms this is probably the more common 
application. 

Let us consider a titration of a solution of the diprotic acid AH2 in the presence of an excess 
of a strong acid, e.g. HCl. The equilibrium model only includes the diprotic acid as the 
strong acid is always completely dissociated, see the ReactLab model in Fig. 18. 

 
Fig. 18. The model for a diprotic acid that undergoes two protonation equilibria. 

The components are A and H, the species are A, AH, AH2, H, OH. For the components the 
total concentrations have to be known in each solution during the titration. They are 
collected in the columns E and F of a spreadsheet. The measured spectra are collected from 
the cell N7 on, see Figure 19 

 
Fig. 19. Data entry for a titration, the crucial total concentrations are stored in the columns E 
and F, the spectra to the right (incomplete in this Figure). 

In the example 10ml of a solution containing A and H are titrated with 0.1 ml aliquots of 
base. The concentrations [A]tot and [H]tot are computed from the volumes and concentrations 
of the original solution in the ‘beaker’ and in the ‘burette’. These concentrations are stored in 
the main sheet in the rows 37 and 38 as seen in Figure 20. 

The definition of the total concentrations of A and H in the ‘beaker’ are defined in the cells 
C37, D37, the same component concentrations in the burette solution in the row below. 
Often these concentrations are known and then there is nothing to be added. In the example 
the component concentrations in the ‘beaker’ are to be fitted. This is achieved by defining  
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Fig. 20. Model entry and information on concentrations and spectral status. 

them as auxiliary parameters in the cells K7, K8; the contents of cells C37, D37, are now 
references to the auxiliary parameters which are fitted. 

Fitting results in values for the concentrations and their error estimates, Figure 21. 

 
Fig. 21. The result of the fitting of the concentrations, complete with error analysis. 

Example 4: Equilibrium Interaction between Cu2+ and PHE (1,9-Bis(2-hydroxyphenyl)-2,5,8-
triazanonane) 

In this example we demonstrate the analysis of ‘pH-metered’ titrations, a mode of titration 
that is common in for the investigation of equilibria in aqueous solution. In this kind of 
titration the independent variable is the pH, rather than the added volume of reagent as has 
been the case in all previous examples. As before the measured spectra are the dependent 
variables. An important rationale for ‘pH-metered’ titrations is the fact that it is often 
difficult to completely exclude CO2 during the whole titration. Unknown amounts of CO2 
result in the addition of unknown amounts of acid via formation of carbonate species.  In 
‘pH-metered’ titrations the effect of this impurity is minimal as long as none of the 
carbonate species interfere with the process under investigation; the effect in the ‘default 
mode’ can be much more pronounced. The price to pay for that advantage is more complex 
data acquisition as the pH has to be measured and recorded together with the spectra after 
each addition of reagent. 
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The example is the titration of PHE, 1,9-Bis(2-hydroxyphenyl)-2,5,8-triazanonane, with Cu2+ 
in aqueous solution.(Gampp, Haspra et al. 1984) The structure of the ligand is shown below. 
It forms several complexes: ML, where the ligand is penta-coordinated presumable via all 
three secondary amine groups as well as the deprotonated phenolates; and two partially 
protonated species MLH and MLH2, in these complexes one or both of the phenolates are 
protonated and most likely not or only very weakly coordinated. 

 
 

N
H

N
H

N
H OHOH  

 

In this titration a solution of 7.2310-4 M Cu2+ and 1.6010-3 M PHE with an excess HCl were 
titrated with a total of approx. 750L NaOH solution. After each addition of the base the pH 
and the spectrum were measured. The total concentrations of metal and ligand are entered 
for each sample in the ‘Data’ worksheet. Note that the columns for the total concentration of 
the protons is left empty: the measured pH in column M is defining the free proton 
concentration which in turn is used to compute all species concentrations in conjunction 
with the total concentrations of in this case the metal ion and the ligand provided, see Figure 
22. 

 
 

 
 

Fig. 22. Only the total concentrations of the metal and ligand are required, the column for 
the protons is left empty. Column M contains the pH values and the entry ‘pH’ in cell M6 to 
indicate a ‘pH-metered’ titration. 

The measurement is displayed in Figure 23, each curve is the measured absorption at one 
particular wavelength. 
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Fig. 23. The measurement, here displayed as a series of titration curves at the different 
wavelengths. 

The ligand PHE has five protonation constants which have to be determined independently. 
The successive logK values are 10.06, 10.41, 9.09, 7.94 and 4.18. Note that in the model the 
protonations are defined as overall stabilities, see Figure 24. 

The results of the analysis are summarised in Figure 24 and Figure 25. Again the protonation 
equilibria for the complex species are defined as formation constants, the logK values for the 

protonation equilibria ML+H MLH  and 2MLH+H MLH are 8.42 and 3.92. 

 
Fig. 24. The fitted equilibrium constants for the formation of the ML, MLH and MLH2 
complexes. 

The concentration profiles are represented in two different modes, the left part has the 
measured pH as the x-axis and only the metal species are shown, the right part shows all 
species concentrations as a function of the added volume of base. This figure reveals that a 
substantial excess of acid has been added to the initial solution and the first 0.2 mL of base 
are used to neutralise this excess 
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titrated with a total of approx. 750L NaOH solution. After each addition of the base the pH 
and the spectrum were measured. The total concentrations of metal and ligand are entered 
for each sample in the ‘Data’ worksheet. Note that the columns for the total concentration of 
the protons is left empty: the measured pH in column M is defining the free proton 
concentration which in turn is used to compute all species concentrations in conjunction 
with the total concentrations of in this case the metal ion and the ligand provided, see Figure 
22. 

 
 

 
 

Fig. 22. Only the total concentrations of the metal and ligand are required, the column for 
the protons is left empty. Column M contains the pH values and the entry ‘pH’ in cell M6 to 
indicate a ‘pH-metered’ titration. 

The measurement is displayed in Figure 23, each curve is the measured absorption at one 
particular wavelength. 
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Fig. 23. The measurement, here displayed as a series of titration curves at the different 
wavelengths. 

The ligand PHE has five protonation constants which have to be determined independently. 
The successive logK values are 10.06, 10.41, 9.09, 7.94 and 4.18. Note that in the model the 
protonations are defined as overall stabilities, see Figure 24. 

The results of the analysis are summarised in Figure 24 and Figure 25. Again the protonation 
equilibria for the complex species are defined as formation constants, the logK values for the 

protonation equilibria ML+H MLH  and 2MLH+H MLH are 8.42 and 3.92. 

 
Fig. 24. The fitted equilibrium constants for the formation of the ML, MLH and MLH2 
complexes. 

The concentration profiles are represented in two different modes, the left part has the 
measured pH as the x-axis and only the metal species are shown, the right part shows all 
species concentrations as a function of the added volume of base. This figure reveals that a 
substantial excess of acid has been added to the initial solution and the first 0.2 mL of base 
are used to neutralise this excess 
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Fig. 25. The concentration profiles of the complexes as a function of pH and all species as a 
function of the volume of added base. 

15. Conclusion 
Data fitting is a well-established method that has been extensively used for the analysis of 
chemical processes since the beginnings of instrumental methods. Generally, increasing 
sophistication of instrumentation has inspired parallel developments in numerical methods 
for appropriate analysis of ever better and more plentiful data. This chapter concentrates on 
spectroscopic methods for the investigation of chemical processes; it details the structure of 
the data and the principles of model based data fitting. It is rounded of by a collection of 
typical and illustrative examples using a modern data analysis software package. The aim is 
to demonstrate the power and effortlessness of modern data analysis of typical data sets. 
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1. Introduction

Exploratory Data Analysis (EDA) has been employed for decades in many research fields,
including social sciences, psychology, education, medicine, chemometrics and related fields
(1) (2). EDA is both a data analysis philosophy and a set of tools (3). Nevertheless, while
the philosophy has essentially remained the same, the tools are in constant evolution. The
application of EDA to current problems is challenging due to the large scale of the data sets
involved. For instance, genomics data sets can have up to a million of variables (5). There
is a clear interest in developing EDA methods to manage these scales of data while taking
advantage of the basic importance of simply looking at data (3).

In data sets with a large number of variables, collinear data and missing values, projection
models based on latent structures, such as Principal Component Analysis (PCA) (6) (7) (1) and
Partial Least Squares (PLS) (8) (9) (10), are valuable tools within EDA. Projection models and
the set of tools used in combination simplify the analysis of complex data sets, pointing out
to special observations (outliers), clusters of similar observations, groups of related variables,
and crossed relationships between specific observations and variables. All this information is
of paramount importance to improve data knowledge.

EDA based on projection models has been successfully applied in the area of chemometrics
and industrial process analysis. In this chapter, several standard tools for EDA with projection
models, namely score plots, loading plots and biplots, are revised and their limitations are
elucidated. Two recently proposed tools are introduced to overcome these limitations. The
first of them, named Missing-data methods for Exploratory Data Analysis or MEDA for short
(11), is used to investigate the relationships between variables in projection subspaces. The
second one is an extension of MEDA, named observation-based MEDA or oMEDA (33), to
discover the relationships between observations and variables. The EDA approach based on
PCA/PLS with scores and loading plots, MEDA and oMEDA is illustrated with several real
examples from the chemometrics field.

This chapter is organized as follows. Section 2 briefly discusses the importance of subspace
models and score plots to explore the data distribution. Section 3 is devoted to the
investigation of the relationship among variables in a data set. Section 4 studies the
relationship between observations and variables in latent subspaces. Section 5 presents
a EDA case study of Quantitative Structure-Activity Relationship (QSAR) modelling and
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Fig. 25. The concentration profiles of the complexes as a function of pH and all species as a 
function of the volume of added base. 

15. Conclusion 
Data fitting is a well-established method that has been extensively used for the analysis of 
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spectroscopic methods for the investigation of chemical processes; it details the structure of 
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1. Introduction

Exploratory Data Analysis (EDA) has been employed for decades in many research fields,
including social sciences, psychology, education, medicine, chemometrics and related fields
(1) (2). EDA is both a data analysis philosophy and a set of tools (3). Nevertheless, while
the philosophy has essentially remained the same, the tools are in constant evolution. The
application of EDA to current problems is challenging due to the large scale of the data sets
involved. For instance, genomics data sets can have up to a million of variables (5). There
is a clear interest in developing EDA methods to manage these scales of data while taking
advantage of the basic importance of simply looking at data (3).

In data sets with a large number of variables, collinear data and missing values, projection
models based on latent structures, such as Principal Component Analysis (PCA) (6) (7) (1) and
Partial Least Squares (PLS) (8) (9) (10), are valuable tools within EDA. Projection models and
the set of tools used in combination simplify the analysis of complex data sets, pointing out
to special observations (outliers), clusters of similar observations, groups of related variables,
and crossed relationships between specific observations and variables. All this information is
of paramount importance to improve data knowledge.

EDA based on projection models has been successfully applied in the area of chemometrics
and industrial process analysis. In this chapter, several standard tools for EDA with projection
models, namely score plots, loading plots and biplots, are revised and their limitations are
elucidated. Two recently proposed tools are introduced to overcome these limitations. The
first of them, named Missing-data methods for Exploratory Data Analysis or MEDA for short
(11), is used to investigate the relationships between variables in projection subspaces. The
second one is an extension of MEDA, named observation-based MEDA or oMEDA (33), to
discover the relationships between observations and variables. The EDA approach based on
PCA/PLS with scores and loading plots, MEDA and oMEDA is illustrated with several real
examples from the chemometrics field.

This chapter is organized as follows. Section 2 briefly discusses the importance of subspace
models and score plots to explore the data distribution. Section 3 is devoted to the
investigation of the relationship among variables in a data set. Section 4 studies the
relationship between observations and variables in latent subspaces. Section 5 presents
a EDA case study of Quantitative Structure-Activity Relationship (QSAR) modelling and
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section 6 proposes some concluding remarks. Examples and Figures were computed
using the MATLAB programming environment, with the PLS-Toolbox (32) and home-made
software. A MATLAB toolbox with the tools employed in this chapter is available at
http://wdb.ugr.es/ josecamacho/.

2. Patterns in the data distribution

The distribution of the observations in a data set contains relevant information for data
understanding. For instance, in an industrial process, one outlier may represent an abnormal
situation which affects the process variables to a large extent. Studying this observation with
more detail, one may be able to identify if it is the result of a process upset or, very commonly,
a sensor failure. Also, clusters of observations may represent different operation points.
Outliers, clusters and trends in the data may be indicative of the degree of control in the
process and of assignable sources of variation. The identification of these sources of variation
may lead to the reduction of the variance in the process with the consequent reduction of
costs.

The distribution of the observations can be visualized using scatter plots. For obvious
reasons, scatter plots are limited to three dimensions at most, and typically to two dimensions.
Therefore, the direct observation of the data distribution in data sets with several tens,
hundreds or even thousands of variables is not possible. One can always construct scatter
plots for selective pairs or thirds of variables, but this is an overwhelming and often
misleading approach. Projection models overcome this problem. PCA and PLS can be used
straightforwardly to visualize the distribution of the data in the latent subspace, considering
only a few latent variables (LVs) which contain most of the variability of interest. Scatter plots
of the scores corresponding to the LVs, the so-called score plots, are used for this purpose.

Score plots are well known and accepted in the chemometric field. Although simple to
understand, score plots are paramount for EDA. The following example may be illustrative
of this. In Figure 1, three simulated data sets of the same size (100 × 100) are compared.
Data simulation was performed using the technique named Approximation of a DIstribution
for a given COVariance matrix (15), or ADICOV for short. Using this technique, the same
covariance structure was simulated for the three data sets but with different distributions:
the first data set presents a multi-normal distribution in the latent subspace, the second
one presents a severe outlier and the third one presents a pair of clusters. If the scatter
plot of the observations in the plane spanned by the first two variables is depicted (first
row of Figure 1), the data sets seem to be almost identical. Therefore, unless an extensive
exploration is performed, the three data sets may be though to come from a similar data
generation procedure. However, if a PCA model for each data set is fitted and the score
plots corresponding to the first 2 PCs are shown (second row of Figure 1), differences among
the three data sets are made apparent: in the second data set there is one outlier (right side
of Figure 1(e)) and in the third data set there are two clusters of observations. As already
discussed, the capability to find these details is paramount for data understanding, since
outliers and clusters are very informative of the underlaying phenomena. Most of the times
these details are also apparent in the original variables, but finding them may be a tedious
work. Score plots after PCA modelling are perfectly suited to discover large deviations
among the observations, avoiding the overwhelming task of visualizing each possible pair
of original variables. Also, score plots in regression models such as PLS are paramount for
model interpretation prior to prediction.
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(f) Third Data Set

Fig. 1. Experiment with three simulated data sets of dimension 100 × 100. Data simulation
was performed using the ADICOV technique (15). In the first row of figures, the scatter plots
corresponding to the first two variables in the data sets are shown. In the second row of
figures, the scatter plots (score plots) corresponding to the first two PCs in the data sets are
shown.

3. Relationships among variables

PCA has been often employed to explore the relationships among variables in a data set
(19; 20). Nevertheless, it is generally accepted that Factor Analysis (FA) is better suited
than PCA to study these relationships (1; 7). This is because FA algorithms are designed
to distinguish between shared and unique variability. The shared variability, the so-called
communalities in the FA community, reflect the common factors–common variability–among
observable variables. The unique variability is only present in one observable variable. The
common factors make up the relationship structure in the data. PCA makes no distinction
between shared and unique variability and therefore it is not suited to find the structure in the
data.

When either PCA or FA are used for data understanding, a two step procedure is typically
followed (1; 7). Firstly, the model is calibrated from the available data. Secondly, the model is
rotated to obtain a so-called simple structure. The second step is aimed at obtaining loading
vectors with as much loadings close to 0 as possible. That way, the loading vectors are easier
to interpret. It is generally accepted that oblique transformations are preferred to the more
simple orthogonal transformations (19; 20), although in many situations the results are similar
(1).

The limitation of PCA to detect common factors and the application of rotation methods will
be illustrated using the pipelines artificial examples (14). Data for each pipeline are simulated
according to the following equalities:
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Outliers, clusters and trends in the data may be indicative of the degree of control in the
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of the scores corresponding to the LVs, the so-called score plots, are used for this purpose.

Score plots are well known and accepted in the chemometric field. Although simple to
understand, score plots are paramount for EDA. The following example may be illustrative
of this. In Figure 1, three simulated data sets of the same size (100 × 100) are compared.
Data simulation was performed using the technique named Approximation of a DIstribution
for a given COVariance matrix (15), or ADICOV for short. Using this technique, the same
covariance structure was simulated for the three data sets but with different distributions:
the first data set presents a multi-normal distribution in the latent subspace, the second
one presents a severe outlier and the third one presents a pair of clusters. If the scatter
plot of the observations in the plane spanned by the first two variables is depicted (first
row of Figure 1), the data sets seem to be almost identical. Therefore, unless an extensive
exploration is performed, the three data sets may be though to come from a similar data
generation procedure. However, if a PCA model for each data set is fitted and the score
plots corresponding to the first 2 PCs are shown (second row of Figure 1), differences among
the three data sets are made apparent: in the second data set there is one outlier (right side
of Figure 1(e)) and in the third data set there are two clusters of observations. As already
discussed, the capability to find these details is paramount for data understanding, since
outliers and clusters are very informative of the underlaying phenomena. Most of the times
these details are also apparent in the original variables, but finding them may be a tedious
work. Score plots after PCA modelling are perfectly suited to discover large deviations
among the observations, avoiding the overwhelming task of visualizing each possible pair
of original variables. Also, score plots in regression models such as PLS are paramount for
model interpretation prior to prediction.

64 Chemometrics in Practical Applications Exploratory Data Analysis with Latent Subspace Models 3

−4 −2 0 2 4
−4

−3

−2

−1

0

1

2

3

4

Variable 1

V
ar

ia
bl

e 
2

(a) First Data Set

−4 −2 0 2 4
−4

−3

−2

−1

0

1

2

3

4

Variable 1

V
ar

ia
bl

e 
2

(b) Second Data Set

−4 −2 0 2 4
−4

−3

−2

−1

0

1

2

3

4

Variable 1

V
ar

ia
bl

e 
2

(c) Third Data Set

−15 −10 −5 0 5 10 15
−10

−5

0

5

10

Scores on PC 1 (41.33%)

S
co

re
s 

on
 P

C
 2

 (
11

.2
8%

)

(d) First Data Set

−10 0 10 20 30
−10

−5

0

5

10

Scores on PC 1 (41.33%)

S
co

re
s 

on
 P

C
 2

 (
11

.2
8%

)

(e) Second Data Set

−4 −2 0 2 4 6 8 10 12
−8

−6

−4

−2

0

2

4

6

8

10

Scores on PC 1 (41.33%)

S
co

re
s 

on
 P

C
 2

 (
11

.2
8%

)

(f) Third Data Set

Fig. 1. Experiment with three simulated data sets of dimension 100 × 100. Data simulation
was performed using the ADICOV technique (15). In the first row of figures, the scatter plots
corresponding to the first two variables in the data sets are shown. In the second row of
figures, the scatter plots (score plots) corresponding to the first two PCs in the data sets are
shown.

3. Relationships among variables

PCA has been often employed to explore the relationships among variables in a data set
(19; 20). Nevertheless, it is generally accepted that Factor Analysis (FA) is better suited
than PCA to study these relationships (1; 7). This is because FA algorithms are designed
to distinguish between shared and unique variability. The shared variability, the so-called
communalities in the FA community, reflect the common factors–common variability–among
observable variables. The unique variability is only present in one observable variable. The
common factors make up the relationship structure in the data. PCA makes no distinction
between shared and unique variability and therefore it is not suited to find the structure in the
data.

When either PCA or FA are used for data understanding, a two step procedure is typically
followed (1; 7). Firstly, the model is calibrated from the available data. Secondly, the model is
rotated to obtain a so-called simple structure. The second step is aimed at obtaining loading
vectors with as much loadings close to 0 as possible. That way, the loading vectors are easier
to interpret. It is generally accepted that oblique transformations are preferred to the more
simple orthogonal transformations (19; 20), although in many situations the results are similar
(1).

The limitation of PCA to detect common factors and the application of rotation methods will
be illustrated using the pipelines artificial examples (14). Data for each pipeline are simulated
according to the following equalities:
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(b) Varimax rotation

Fig. 2. Loading plots of the PCA model fitted from the data in the two pipelines example: (a)
original loadings and (b) loadings after varimax rotation.

F12 = F1 + F2

F123 = F1 + F2 + F3

where F1, F2 and F3 represent liquid flows which are generated independently at random
following a normal distribution of 0 mean and standard deviation 1. A 30% of measurement
noise is generated for each of the five variables in a pipeline at random, following a normal
distribution of 0 mean:

x̃i = (xi +
√

0.3 · n)/(
√

1.3)

where x̃i is the contaminated variable, xi the noise-free variable and n the noise generated.
This simulation structure generates blocks of five variables with three common factors: the
common factor F1, present in the observed variables F1, F12 and F123; the common factor F2,
present in the observed variables F2, F12 and F123; and the common factor F3, present in F3
and F123. Data sets of any size can be obtained by combining the variables from different
pipelines. In this present example, a data set with 100 observations from two pipelines for
which data are independently generated is considered. Thus, the size of the data set is 100 ×
10 and the variability is built from 6 common factors.

Figure 2 shows the loading plots of the PCA model of the data before and after rotation.
Loading plots are interpreted so that close variables, provided they are far enough from the
origin of coordinates, are considered to be correlated. This interpretation is not always correct.
In Figure 2(a), the first component separates the variables corresponding to the two pipelines.
The second component captures variance of most variables, specially of those in the second
pipeline. The two PCs capture variability corresponding to most common factors in the data
at the same time, which complicates the interpretation. As already discussed, PCA is focused
on variance, without making the distinction between unique and shared variance. The result
is that the common factors are not aligned with the PCs. Thus, one single component reflects
several common factors and the same common factor may be reflected in several components.
As a consequence, variables with high and similar loadings in the same subset of components
do not necessarily need to be correlated, since they may present very different loadings

66 Chemometrics in Practical Applications Exploratory Data Analysis with Latent Subspace Models 5

in others components. Because of this, inspecting only a pair of components may lead to
incorrect conclusions. A good interpretation would require inspecting and interrelating all
pairs of components with relevant information, something which may be challenging in many
situations. This problem affects the interpretation and it is the reason why FA is generally
preferred to PCA.

Figure 2(b) shows the resulting loadings after applying one of the most used rotation methods:
the varimax rotation. Now, the variables corresponding to each pipeline are grouped towards
one of the loading vectors. This highlights the fact that there are two main and orthogonal
sources of variability, each one representing the variability in a pipeline. Also, in the first
component variables collected from pipeline 2 present low loadings whereas in the second
component variables collected from pipeline 1 present low loadings. This is the result of
applying the notion of simple structure, with most of the loadings rotated towards 0. The
interpretation is simplified as a consequence of improving the alignment of components with
common factors. This is especially useful in data sets with many variables.

Although FA and rotation methods may improve the interpretation, they still present
severe limitations. The derivation of the structure in the data from a loading plot is not
straightforward. On the other hand, the rotated model depends greatly on the normalization
of the data and the number of PCs (1; 21). To avoid this, several alternative approaches to
rotation have been suggested. The point in common of these approaches is that they find
a trade-off between variance explained and model simplicity (1). Nevertheless, imposing a
simple structure has also drawbacks. Reference (11) shows that, when simplicity is pursued,
there is a potential risk of simplifying even the true relationships in the data set, missing part
of the data structure. Thus, the indirect improvement of data interpretation by imposing a
simple structure may also report misleading results in certain situations.

3.1 MEDA

MEDA is designed to find the true relationships in the data. Therefore, it is an alternative to
rotation methods or in general to the simple structure approach. A main advantage of MEDA
is that, unlike rotation or FA methods, it is applied over any projection subspace without
actually modifying it. The benefit is twofold. Firstly, MEDA is straightforwardly applied in
any subspace of interest: PCA (maximizing variance), PLS (maximizing correlations) and any
other. On the contrary, FA methods are typically based on complicated algorithms, several
of which have not been extended to regression. Secondly, MEDA is also useful for model
interpretation, since common factors and components are easily interrelated. This is quite
useful, for instance, in the selection of the number of components.

MEDA is based on the capability of missing values estimation of projection models (22–27).
The MEDA approach is depicted in Figure 3. Firstly, a projection model is fitted from the
calibration N × M matrix X (and optionally Y). Then, for each variable m, matrix Xm is
constructed, which is a N × M matrix full with zeros except in the m-th column where it
contains the m-th column of matrix X. Using Xm and the model, the scores are estimated with
a missing data method. The known data regression (KDR) method (22; 25) is suggested at this
point. From the scores, the original data is reconstructed and the estimation error computed.
The variability of the estimation error is compared to that of the original data according to the
following index of goodness of prediction:
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Fig. 2. Loading plots of the PCA model fitted from the data in the two pipelines example: (a)
original loadings and (b) loadings after varimax rotation.

F12 = F1 + F2

F123 = F1 + F2 + F3

where F1, F2 and F3 represent liquid flows which are generated independently at random
following a normal distribution of 0 mean and standard deviation 1. A 30% of measurement
noise is generated for each of the five variables in a pipeline at random, following a normal
distribution of 0 mean:

x̃i = (xi +
√

0.3 · n)/(
√

1.3)

where x̃i is the contaminated variable, xi the noise-free variable and n the noise generated.
This simulation structure generates blocks of five variables with three common factors: the
common factor F1, present in the observed variables F1, F12 and F123; the common factor F2,
present in the observed variables F2, F12 and F123; and the common factor F3, present in F3
and F123. Data sets of any size can be obtained by combining the variables from different
pipelines. In this present example, a data set with 100 observations from two pipelines for
which data are independently generated is considered. Thus, the size of the data set is 100 ×
10 and the variability is built from 6 common factors.

Figure 2 shows the loading plots of the PCA model of the data before and after rotation.
Loading plots are interpreted so that close variables, provided they are far enough from the
origin of coordinates, are considered to be correlated. This interpretation is not always correct.
In Figure 2(a), the first component separates the variables corresponding to the two pipelines.
The second component captures variance of most variables, specially of those in the second
pipeline. The two PCs capture variability corresponding to most common factors in the data
at the same time, which complicates the interpretation. As already discussed, PCA is focused
on variance, without making the distinction between unique and shared variance. The result
is that the common factors are not aligned with the PCs. Thus, one single component reflects
several common factors and the same common factor may be reflected in several components.
As a consequence, variables with high and similar loadings in the same subset of components
do not necessarily need to be correlated, since they may present very different loadings
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in others components. Because of this, inspecting only a pair of components may lead to
incorrect conclusions. A good interpretation would require inspecting and interrelating all
pairs of components with relevant information, something which may be challenging in many
situations. This problem affects the interpretation and it is the reason why FA is generally
preferred to PCA.

Figure 2(b) shows the resulting loadings after applying one of the most used rotation methods:
the varimax rotation. Now, the variables corresponding to each pipeline are grouped towards
one of the loading vectors. This highlights the fact that there are two main and orthogonal
sources of variability, each one representing the variability in a pipeline. Also, in the first
component variables collected from pipeline 2 present low loadings whereas in the second
component variables collected from pipeline 1 present low loadings. This is the result of
applying the notion of simple structure, with most of the loadings rotated towards 0. The
interpretation is simplified as a consequence of improving the alignment of components with
common factors. This is especially useful in data sets with many variables.

Although FA and rotation methods may improve the interpretation, they still present
severe limitations. The derivation of the structure in the data from a loading plot is not
straightforward. On the other hand, the rotated model depends greatly on the normalization
of the data and the number of PCs (1; 21). To avoid this, several alternative approaches to
rotation have been suggested. The point in common of these approaches is that they find
a trade-off between variance explained and model simplicity (1). Nevertheless, imposing a
simple structure has also drawbacks. Reference (11) shows that, when simplicity is pursued,
there is a potential risk of simplifying even the true relationships in the data set, missing part
of the data structure. Thus, the indirect improvement of data interpretation by imposing a
simple structure may also report misleading results in certain situations.

3.1 MEDA

MEDA is designed to find the true relationships in the data. Therefore, it is an alternative to
rotation methods or in general to the simple structure approach. A main advantage of MEDA
is that, unlike rotation or FA methods, it is applied over any projection subspace without
actually modifying it. The benefit is twofold. Firstly, MEDA is straightforwardly applied in
any subspace of interest: PCA (maximizing variance), PLS (maximizing correlations) and any
other. On the contrary, FA methods are typically based on complicated algorithms, several
of which have not been extended to regression. Secondly, MEDA is also useful for model
interpretation, since common factors and components are easily interrelated. This is quite
useful, for instance, in the selection of the number of components.

MEDA is based on the capability of missing values estimation of projection models (22–27).
The MEDA approach is depicted in Figure 3. Firstly, a projection model is fitted from the
calibration N × M matrix X (and optionally Y). Then, for each variable m, matrix Xm is
constructed, which is a N × M matrix full with zeros except in the m-th column where it
contains the m-th column of matrix X. Using Xm and the model, the scores are estimated with
a missing data method. The known data regression (KDR) method (22; 25) is suggested at this
point. From the scores, the original data is reconstructed and the estimation error computed.
The variability of the estimation error is compared to that of the original data according to the
following index of goodness of prediction:
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Fig. 3. MEDA technique: (1) model calibration, (2) introduction of missing data, (3) missing
data imputation, (4) error computation, (5) computation of matrix Q2

A.

q2
A,(m,l) = 1 − �êA,(l)�2

�x(l)�2 , ∀l �= m. (1)

where êA,(l) corresponds to the estimation error for the l-th variable and x(l) is its actual value.
The closer the value of the index is to 1, the more related variables m and l are. After all the
indices corresponding to each pair of variables are computed, matrix Q2

A is formed so that
q2

A,(m,l) is located at row m and column l. For interpretation, when the number of variables is

large, matrix Q2
A can be shown as a color map. Also, a threshold can be applied to Q2

A so that
elements over this threshold are set to 1 and elements below the threshold are set to 0.

The procedure depicted in Figure 3 is the original and more general MEDA algorithm.
Nevertheless, provided KDR is the missing data estimation technique, matrix Q2

A can
be computed from cross-product matrices following a more direct procedure. The value
corresponding to the element in the i-th row and j-th column of matrix Q2

A in MEDA is equal
to:

q2
A,(m,l) =

2 · Sml · SmlA − (SmlA)2

Smm · Sll
. (2)

where Slm stands for the cross-product of variables xl and xm, i.e. Slm = xT
l · xm, and

SlmA stands for the cross-product of variables xl and xA
m, being xA

m the projection of xm in the
model sub-space in coordinates of the original space. Thus, Slm is the element in the l-th row
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Fig. 4. MEDA matrix from the PCA model fitted from the data in the two pipelines example.

and m-th column of the cross-product matrix XX = XT ·X and SlmA corresponds to the element
in the l-th row and m-th column of matrix XX · PA · Pt

A in PCA and of matrix XX · RA · Pt
A in

PLS, with:
RA = WA · (PT

A · WA)
−1. (3)

The relationship of the MEDA algorithm and cross-product matrices was firstly pointed out
by Arteaga (28) and it can also be derived from the original MEDA paper (11). Equation (2)
represents a direct and fast procedure to compute MEDA, similar in nature to the algorithms
for model fitting from cross-product matrices, namely the eigendecomposition (ED) for PCA
and the kernel algorithms (29) (30) (31) for PLS.

In Figure 4(a), the MEDA matrix corresponding to the 2 PCs PCA model of the example in
the previous section, the two independent pipelines, is shown. The structure in the data is
elucidated from this matrix. The separation between the two pipelines is shown in the fact
that upper-right and lower-left quadrants are close to zero. The relationship among variables
corresponding to factors F1 and F2 are also apparent in both pipelines. Since the variability
corresponding to factors F3 is barely captured by the first 2 PCs, these are not reflected in the
matrix. Nevertheless, if 6 PCs are selected, (Figure 4(b)) the complete structure in the data is
clearly found.

MEDA improves the interpretation of both the data set and the model fitted without actually
pursuing a simple structure. The result is that MEDA has better properties than rotation
methods: it is more accurate and its performance is not deteriorated when the number of
PCs is overestimated. Also, the output of MEDA does not depend on the normalization
of the loadings, like rotated models do, an it is not limited to subspaces with two or three
components at most. A comparison of MEDA with rotation methods is out of the scope of this
chapter. Please refer to (11) for it and also for a more algorithmic description of MEDA.

3.2 Loading plots and MEDA

The limitations of loading plots and the application of MEDA were introduced with the
pipelines artificial data set. This is further illustrated in this section with two examples
provided with the PLS-toolbox (32): the Wine data set, which is used in the documentation of
the cited software to show the capability of PCA for improving data understanding, and the
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Nevertheless, provided KDR is the missing data estimation technique, matrix Q2

A can
be computed from cross-product matrices following a more direct procedure. The value
corresponding to the element in the i-th row and j-th column of matrix Q2

A in MEDA is equal
to:
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where Slm stands for the cross-product of variables xl and xm, i.e. Slm = xT
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SlmA stands for the cross-product of variables xl and xA
m, being xA

m the projection of xm in the
model sub-space in coordinates of the original space. Thus, Slm is the element in the l-th row
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Fig. 4. MEDA matrix from the PCA model fitted from the data in the two pipelines example.

and m-th column of the cross-product matrix XX = XT ·X and SlmA corresponds to the element
in the l-th row and m-th column of matrix XX · PA · Pt

A in PCA and of matrix XX · RA · Pt
A in

PLS, with:
RA = WA · (PT

A · WA)
−1. (3)

The relationship of the MEDA algorithm and cross-product matrices was firstly pointed out
by Arteaga (28) and it can also be derived from the original MEDA paper (11). Equation (2)
represents a direct and fast procedure to compute MEDA, similar in nature to the algorithms
for model fitting from cross-product matrices, namely the eigendecomposition (ED) for PCA
and the kernel algorithms (29) (30) (31) for PLS.

In Figure 4(a), the MEDA matrix corresponding to the 2 PCs PCA model of the example in
the previous section, the two independent pipelines, is shown. The structure in the data is
elucidated from this matrix. The separation between the two pipelines is shown in the fact
that upper-right and lower-left quadrants are close to zero. The relationship among variables
corresponding to factors F1 and F2 are also apparent in both pipelines. Since the variability
corresponding to factors F3 is barely captured by the first 2 PCs, these are not reflected in the
matrix. Nevertheless, if 6 PCs are selected, (Figure 4(b)) the complete structure in the data is
clearly found.

MEDA improves the interpretation of both the data set and the model fitted without actually
pursuing a simple structure. The result is that MEDA has better properties than rotation
methods: it is more accurate and its performance is not deteriorated when the number of
PCs is overestimated. Also, the output of MEDA does not depend on the normalization
of the loadings, like rotated models do, an it is not limited to subspaces with two or three
components at most. A comparison of MEDA with rotation methods is out of the scope of this
chapter. Please refer to (11) for it and also for a more algorithmic description of MEDA.

3.2 Loading plots and MEDA

The limitations of loading plots and the application of MEDA were introduced with the
pipelines artificial data set. This is further illustrated in this section with two examples
provided with the PLS-toolbox (32): the Wine data set, which is used in the documentation of
the cited software to show the capability of PCA for improving data understanding, and the
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Fig. 5. Loading plot of the first 2 PCs from the Wine Data set provided with the PLS-toolbox
(32).

PLSdata data set, which is used to introduce regression models, including PLS. The reading
of the analysis and discussion of both data sets in (32) is recommended.

As suggested in (32), two PCs are selected for the PCA model of the Wine data set. The
corresponding loading plot is shown in Figure 5. According to the reference, this plot shows
that variables HeartD and LifeEx are negatively correlated, being this correlation captured
in the first component. Also, "wine is somewhat positively correlated with life expectancy,
likewise, liquor is somewhat positively correlated with heart disease". Finally, bear, wine and
liquor form a triangle in the figure, which "suggests that countries tend to trade one of these
vices for others, but the sum of the three tends to remain constant". Notice that although
these conclusions are interesting, some of them are not so evidently shown by the plot. For
instance, Liquor is almost as close to HeartD than to Wine. Is Liquor correlated to Wine as it
is to HeartD?

MEDA can be used to improve the interpretation of loading plots. In Figure 6(a), the MEDA
matrix for the first PC is shown. It confirms the negative correlation between HeartD and
LifeEx, and the–lower–positive correlation between HeartD and Liqour and LifeEx and Wine.
Notice that these three relationships are three different common factors. Nevertheless, they all
manifest in the same component, making the interpretation with loading plots more complex.
The MEDA matrix for the second PC in Figure 6(b) shows the relationship between the three
types of drinks. The fact that the second PC captures this relationship was not clear in the
loading plot. Furthermore, the MEDA matrix shows that Wine and Liquor are not correlated,
answering to the question in the previous paragraph. Finally, this absence of correlation
refutes that countries tend to trade wine for liquor or viceversa, although this effect may be
true for bear.

In the PLSdata data set, the aim is to obtain a regression model that relates 20 temperatures
measured in a Slurry-Fed Ceramic Melter (SFCM) with the level of molten glass. The x-block
contains 20 variables which correspond to temperatures collected in two vertical thermowells.
Variables 1 to 10 are taken from the bottom to the top in thermowell 1, and variables 11 to 20
from the bottom to the top in thermowell 2. The data set includes 300 training observations
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Fig. 7. Loading plots from the PLS model in the Slurry-Fed Ceramic Melter data set.

and 200 test observations. This same data set was used to illustrate MEDA with PCA in (11)
with the temperatures and the level of molten glass together in the same block of data 1.

1 There are some results of the analysis in (11) which are not coherent with those reported here, since the
data sets used do not contain the same observations.
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PLSdata data set, which is used to introduce regression models, including PLS. The reading
of the analysis and discussion of both data sets in (32) is recommended.

As suggested in (32), two PCs are selected for the PCA model of the Wine data set. The
corresponding loading plot is shown in Figure 5. According to the reference, this plot shows
that variables HeartD and LifeEx are negatively correlated, being this correlation captured
in the first component. Also, "wine is somewhat positively correlated with life expectancy,
likewise, liquor is somewhat positively correlated with heart disease". Finally, bear, wine and
liquor form a triangle in the figure, which "suggests that countries tend to trade one of these
vices for others, but the sum of the three tends to remain constant". Notice that although
these conclusions are interesting, some of them are not so evidently shown by the plot. For
instance, Liquor is almost as close to HeartD than to Wine. Is Liquor correlated to Wine as it
is to HeartD?

MEDA can be used to improve the interpretation of loading plots. In Figure 6(a), the MEDA
matrix for the first PC is shown. It confirms the negative correlation between HeartD and
LifeEx, and the–lower–positive correlation between HeartD and Liqour and LifeEx and Wine.
Notice that these three relationships are three different common factors. Nevertheless, they all
manifest in the same component, making the interpretation with loading plots more complex.
The MEDA matrix for the second PC in Figure 6(b) shows the relationship between the three
types of drinks. The fact that the second PC captures this relationship was not clear in the
loading plot. Furthermore, the MEDA matrix shows that Wine and Liquor are not correlated,
answering to the question in the previous paragraph. Finally, this absence of correlation
refutes that countries tend to trade wine for liquor or viceversa, although this effect may be
true for bear.

In the PLSdata data set, the aim is to obtain a regression model that relates 20 temperatures
measured in a Slurry-Fed Ceramic Melter (SFCM) with the level of molten glass. The x-block
contains 20 variables which correspond to temperatures collected in two vertical thermowells.
Variables 1 to 10 are taken from the bottom to the top in thermowell 1, and variables 11 to 20
from the bottom to the top in thermowell 2. The data set includes 300 training observations
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Fig. 7. Loading plots from the PLS model in the Slurry-Fed Ceramic Melter data set.

and 200 test observations. This same data set was used to illustrate MEDA with PCA in (11)
with the temperatures and the level of molten glass together in the same block of data 1.

1 There are some results of the analysis in (11) which are not coherent with those reported here, since the
data sets used do not contain the same observations.
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Fig. 8. MEDA matrices from the PLS model in the Slurry-Fed Ceramic Melter data set.

Following recommendations in (32), a 3 LVs PLS model from a mean-centered x-block was
fitted. The loading plots corresponding to the three possible pairs of LVs are shown in Figure
7. The first LV captures the predictive variance in the temperatures, with higher loadings
for higher indices of the temperatures in each thermowell. This holds exception made on
temperatures 10 and 20, which present their predictive variance in the second and third LVs,
being the variance in 10 between three and four times higher than that in 20. The third
LVs also seems to discriminate between both thermowells. For instance, in Figure 7(c) most
temperatures of the first thermowell are in the upper middle of the Figure, whereas most
temperatures of the second thermowell are in the lower middle. Nevertheless, it should
be noted that the third LV only captures 2% of the variability in the x-block and 1% of the
variability in the y-block.

The information gained with the loading plots can be complemented with that in MEDA,
which brings a much clearer picture of the structure in the data. The MEDA matrix for
the PLS model with 3 LVs is shown in Figure 8(a). There is a clear auto-correlation effect
in the temperatures, so that closer sensors are more correlated. This holds exception made
on temperatures 10 and 20. Also, the corresponding temperatures in both thermowells are
correlated, including 10 and 20. Finally, the temperatures at the bottom do not contain
almost any predictive information of the level of molten glass. In (32), the predictive error
by cross-validation is used to identify the number of LVs. Four LVs attain the minimum
predictive error, but 3 LVs are selected since the fourth LV does not contribute much to the
reduction of this error. In Figure 8(b), the contribution of this fourth LV is shown. It is
capturing the predictive variability from the third to the fifth temperature sensors in the first
thermowell, which are correlated. The corresponding variability in the second thermowell is
already captured by the first 3 LVs. This is an example of the capability of MEDA for model
interpretation, which can be very useful in the determination of the number of LVs. In this
case and depending on the application of the model, the fourth LV may be added to the model
in order to compensate the variance captured in both thermowells, even if the improvement
in prediction performance is not high.

The information provided by MEDA can also be useful for variable selection. In this example,
temperatures 1-2 and 11-12 do not contribute to a relevant degree to the regression model.
As shown in Table 1, if those variables are not used in the model, its prediction performance
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Variables Complete model [3 : 10 13 : 20] [3 : 10] [13 : 20]

LVs 3 3 3 3
X-block variance 88.79 89.84 96.36 96.93
Y-block variance 87.89 87.78 84.61 83.76
RMSEC 0.1035 0.1039 0.1166 0.1198
RMSECV 0.1098 0.1098 0.1253 0.1271
RMSEP 0.1396 0.1394 0.1522 0.1631

Table 1. Comparison of three PLS models in the Slurry-Fed Ceramic Melter data set. The
variance in both blocks of data and the Root Mean Square Error of Calibration (RMSEC),
Cross-validation (RMSECV) and Prediction (RMSEP) are compared.

remains the same. Also, considering the correlation among thermowells, one may be tempted
to use only one of the thermowells for prediction, reducing the associated costs of maintaining
two thermowells. If this is done, only 8 predictor variables are used and the prediction
performance is reduced, but not to a large extent. Correlated variables in a prediction model
help to better discriminate between true structure and noise. For instance, in this example,
when only the sensors of one thermowell are used, the PLS model captures more x-block
variance and less y-block variance. This is showing that more specific–noisy–variance in the
x-block is being captured. Using both thermowells reduces this effect. Another example of
variable selection with MEDA will be presented in Section 5.

3.3 correlation matrices and MEDA

There is a close similarity between MEDA and correlation matrices. To this regard, equation
(2) simplifies the interpretation of the MEDA procedure. The MEDA index combines the
original variance with the model subspace variance in Sml and SmlA . Also, the denominator
of the index in eq. (2) is the original variance. Thus, those pairs of variables where a high
amount of the total variance of one of them can be recovered from the other are highlighted.
This is convenient for data interpretation, since only factors of high variance are highlighted.
On the other hand, it is easy to see that when the number of LVs, A, equals the rank of X, then
Q2

A is equal to the element-wise squared correlation matrix of X, C2 (11). This can be observed
in the following element-wise equality:

q2
Rank(X),(m,l) =

S2
ml

Smm · Sll
= c2

(m,l). (4)

This equivalence shows that matrix Q2
A has a similar structure than the–element-wise

squared–correlation matrix. To elaborate this similarity, a correlation matrix can be easily
extended to the notion of latent subspace. The correlation matrix in the latent subspace, CA,
can de defined as the correlation matrix of the reconstruction of X with the first A LVs. Thus,
CA = PA · Pt

A · C · PA · Pt
A in PCA and CA = PA · Rt

A · C · RA · Pt
A in PLS. If the elements of CA

are then squared, the element-wise squared correlation in the latent subspace, noted as C2
A, is

obtained. Strictly speaking, each element of C2
A is defined as:

c2
A,(m,l) =

S2
mAlA

SmAmA · SlAlA
. (5)
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Fig. 8. MEDA matrices from the PLS model in the Slurry-Fed Ceramic Melter data set.

Following recommendations in (32), a 3 LVs PLS model from a mean-centered x-block was
fitted. The loading plots corresponding to the three possible pairs of LVs are shown in Figure
7. The first LV captures the predictive variance in the temperatures, with higher loadings
for higher indices of the temperatures in each thermowell. This holds exception made on
temperatures 10 and 20, which present their predictive variance in the second and third LVs,
being the variance in 10 between three and four times higher than that in 20. The third
LVs also seems to discriminate between both thermowells. For instance, in Figure 7(c) most
temperatures of the first thermowell are in the upper middle of the Figure, whereas most
temperatures of the second thermowell are in the lower middle. Nevertheless, it should
be noted that the third LV only captures 2% of the variability in the x-block and 1% of the
variability in the y-block.

The information gained with the loading plots can be complemented with that in MEDA,
which brings a much clearer picture of the structure in the data. The MEDA matrix for
the PLS model with 3 LVs is shown in Figure 8(a). There is a clear auto-correlation effect
in the temperatures, so that closer sensors are more correlated. This holds exception made
on temperatures 10 and 20. Also, the corresponding temperatures in both thermowells are
correlated, including 10 and 20. Finally, the temperatures at the bottom do not contain
almost any predictive information of the level of molten glass. In (32), the predictive error
by cross-validation is used to identify the number of LVs. Four LVs attain the minimum
predictive error, but 3 LVs are selected since the fourth LV does not contribute much to the
reduction of this error. In Figure 8(b), the contribution of this fourth LV is shown. It is
capturing the predictive variability from the third to the fifth temperature sensors in the first
thermowell, which are correlated. The corresponding variability in the second thermowell is
already captured by the first 3 LVs. This is an example of the capability of MEDA for model
interpretation, which can be very useful in the determination of the number of LVs. In this
case and depending on the application of the model, the fourth LV may be added to the model
in order to compensate the variance captured in both thermowells, even if the improvement
in prediction performance is not high.

The information provided by MEDA can also be useful for variable selection. In this example,
temperatures 1-2 and 11-12 do not contribute to a relevant degree to the regression model.
As shown in Table 1, if those variables are not used in the model, its prediction performance
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Table 1. Comparison of three PLS models in the Slurry-Fed Ceramic Melter data set. The
variance in both blocks of data and the Root Mean Square Error of Calibration (RMSEC),
Cross-validation (RMSECV) and Prediction (RMSEP) are compared.

remains the same. Also, considering the correlation among thermowells, one may be tempted
to use only one of the thermowells for prediction, reducing the associated costs of maintaining
two thermowells. If this is done, only 8 predictor variables are used and the prediction
performance is reduced, but not to a large extent. Correlated variables in a prediction model
help to better discriminate between true structure and noise. For instance, in this example,
when only the sensors of one thermowell are used, the PLS model captures more x-block
variance and less y-block variance. This is showing that more specific–noisy–variance in the
x-block is being captured. Using both thermowells reduces this effect. Another example of
variable selection with MEDA will be presented in Section 5.

3.3 correlation matrices and MEDA

There is a close similarity between MEDA and correlation matrices. To this regard, equation
(2) simplifies the interpretation of the MEDA procedure. The MEDA index combines the
original variance with the model subspace variance in Sml and SmlA . Also, the denominator
of the index in eq. (2) is the original variance. Thus, those pairs of variables where a high
amount of the total variance of one of them can be recovered from the other are highlighted.
This is convenient for data interpretation, since only factors of high variance are highlighted.
On the other hand, it is easy to see that when the number of LVs, A, equals the rank of X, then
Q2

A is equal to the element-wise squared correlation matrix of X, C2 (11). This can be observed
in the following element-wise equality:

q2
Rank(X),(m,l) =
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Smm · Sll
= c2

(m,l). (4)

This equivalence shows that matrix Q2
A has a similar structure than the–element-wise

squared–correlation matrix. To elaborate this similarity, a correlation matrix can be easily
extended to the notion of latent subspace. The correlation matrix in the latent subspace, CA,
can de defined as the correlation matrix of the reconstruction of X with the first A LVs. Thus,
CA = PA · Pt

A · C · PA · Pt
A in PCA and CA = PA · Rt

A · C · RA · Pt
A in PLS. If the elements of CA

are then squared, the element-wise squared correlation in the latent subspace, noted as C2
A, is

obtained. Strictly speaking, each element of C2
A is defined as:
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A,(m,l) =
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mAlA

SmAmA · SlAlA
. (5)
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However, for the same reason explained before, if C2
A is aimed at data interpretation, the

denominator should be original variance:

c2
A,(m,l) =

S2
mAlA

Smm · Sll
. (6)

If this equation is compared to equation (2), we can see that the main difference between
MEDA and the–projected and element-wise squared–correlation matrix is the combination
of original and projected variance in the numerator of the former. This combination is
paramount for interpretation. Figure 9 illustrates this. The example of the pipelines is used
again, but in this case ten pipelines and only 20 observations are considered, yielding a
dimension of 20 × 50 in the data. Two data sets are simulated. In the first one, the pipelines
are correlated. As a consequence, the data present three common factors represented by the
three biggest eigenvalues in Figure 9(a). In the second one, each pipeline is independently
generated, yielding a more distributed variance in the eigenvalues (Figure 9(b)). For matrices
Q2

A and C2
A to infer the structure in the data, they should have large values in the elements

which represent real structural information (common factors) and low values in the rest of
the elements. Since in both data sets it is known a-priori which elements in the matrices
represent actual common factors and which not, the mean values for the two groups of
elements in matrices Q2

A and C2
A can be computed. The ratio of these means, computed by

dividing the mean of the elements with common factors by the mean of the elements without
common factors, is a measure of the discrimination capability between structure and noise
of each matrix. The higher this index is, the better the discrimination capability is. This
ratio is shown in Figures 9(c) and 9(d) for different numbers of PCs. Q2

A outperforms C2
A

until all relevant eigenvalues are incorporated to the model. Also, Q2
A presents maximum

discrimination capability for a reduced number of components. Notice that both alternative
definitions of C2

A in equations (5) and (6) give exactly the same result, though equation (6) is
preferred for visual interpretation.

4. Connection between observations and variables

The most relevant issue for data understanding is probably the connection between
observations and variables. It is almost useless to detect certain details in the data distribution,
such as outliers or clusters, if the set of variables related to these details are not identified.
Traditionally, biplots (12) have been used for this purpose. In biplots, the scatter plots
of loadings and scores are combined in a single plot. Apart from relevant considerations
regarding the comparability of the axes in the plot, which is also important for any scatter
plots, and of the scales in scores and loadings (18), biplots may be misleading just because of
the loading plot included. In this point, a variant of MEDA, named observation-based MEDA
or oMEDA, can be used to unveil the connection between observations and variables without
the limitations of biplots.

4.1 oMEDA

oMEDA is a variant of MEDA to connect observations and variables. Basically, oMEDA is
a MEDA algorithm applied over a combination of the original data and a dummy variable
designed to cover the observations of interest. Take the following example: a number of
subsets of observations {C1, ..., CN} form different clusters in the scores plot which are located
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Fig. 9. Comparison of MEDA and the projected and element-wise squared covariance matrix
in the identification of the data structure from the PCA model fitted from the data in the ten
pipelines example: (a) and (b) show the eigenvalues when the pipelines are correlated and
independent, respectively, and (c) and (d) show the ratio between the mean of the elements
with common factors and the mean of the elements without common factors in the matrices.

far from the bulk of the data, L. One may be interested in identifying, for instance, the
variables related to the deviation of C1 from L without considering the rest of clusters. For
that, a dummy variable d is created so that observations in C1 are set to 1, observations in L
are set to -1, while the remaining observations are left to 0. Also, values other than 1 and -1 can
be included in the dummy variable if desired. oMEDA is then performed using this dummy
variable.

The oMEDA technique is illustrated in Figure 10. Firstly, the dummy variable is designed
and combined with the data set. Then, a MEDA run is performed by predicting the original
variables from the dummy variable. The result is a single vector, d2

A, of dimension M × 1,
being M the number of original variables. In practice, the oMEDA index is slightly different to
that used in MEDA. Being d the dummy variable, designed to compare a set of observations
with value 1 (or in general positive values) with another set with value -1 (or in general
negative values), then the oMEDA index follows:

d2
A,(l) = �xd

(l)�2 − �êd
A,(l)�2, ∀l. (7)
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If this equation is compared to equation (2), we can see that the main difference between
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elements in matrices Q2

A and C2
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of each matrix. The higher this index is, the better the discrimination capability is. This
ratio is shown in Figures 9(c) and 9(d) for different numbers of PCs. Q2

A outperforms C2
A

until all relevant eigenvalues are incorporated to the model. Also, Q2
A presents maximum

discrimination capability for a reduced number of components. Notice that both alternative
definitions of C2

A in equations (5) and (6) give exactly the same result, though equation (6) is
preferred for visual interpretation.

4. Connection between observations and variables

The most relevant issue for data understanding is probably the connection between
observations and variables. It is almost useless to detect certain details in the data distribution,
such as outliers or clusters, if the set of variables related to these details are not identified.
Traditionally, biplots (12) have been used for this purpose. In biplots, the scatter plots
of loadings and scores are combined in a single plot. Apart from relevant considerations
regarding the comparability of the axes in the plot, which is also important for any scatter
plots, and of the scales in scores and loadings (18), biplots may be misleading just because of
the loading plot included. In this point, a variant of MEDA, named observation-based MEDA
or oMEDA, can be used to unveil the connection between observations and variables without
the limitations of biplots.

4.1 oMEDA

oMEDA is a variant of MEDA to connect observations and variables. Basically, oMEDA is
a MEDA algorithm applied over a combination of the original data and a dummy variable
designed to cover the observations of interest. Take the following example: a number of
subsets of observations {C1, ..., CN} form different clusters in the scores plot which are located
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Fig. 9. Comparison of MEDA and the projected and element-wise squared covariance matrix
in the identification of the data structure from the PCA model fitted from the data in the ten
pipelines example: (a) and (b) show the eigenvalues when the pipelines are correlated and
independent, respectively, and (c) and (d) show the ratio between the mean of the elements
with common factors and the mean of the elements without common factors in the matrices.

far from the bulk of the data, L. One may be interested in identifying, for instance, the
variables related to the deviation of C1 from L without considering the rest of clusters. For
that, a dummy variable d is created so that observations in C1 are set to 1, observations in L
are set to -1, while the remaining observations are left to 0. Also, values other than 1 and -1 can
be included in the dummy variable if desired. oMEDA is then performed using this dummy
variable.

The oMEDA technique is illustrated in Figure 10. Firstly, the dummy variable is designed
and combined with the data set. Then, a MEDA run is performed by predicting the original
variables from the dummy variable. The result is a single vector, d2

A, of dimension M × 1,
being M the number of original variables. In practice, the oMEDA index is slightly different to
that used in MEDA. Being d the dummy variable, designed to compare a set of observations
with value 1 (or in general positive values) with another set with value -1 (or in general
negative values), then the oMEDA index follows:

d2
A,(l) = �xd

(l)�2 − �êd
A,(l)�2, ∀l. (7)

75Exploratory Data Analysis with Latent Subspace Models



14 Will-be-set-by-IN-TECH

Fig. 10. oMEDA technique: (1) introduction of the dummy variable, (2) model calibration, (3)
introduction of missing data, (4) missing data imputation, (5) error computation, (6)
computation of vector d2

A.

where xd
(l) represents the values of the l-th variable in the original observations different to

0 in d and êd
A,(l) is the corresponding estimation error. The main difference between the

computation of index d2
A,(l) in oMEDA and that of MEDA is the absence of the denominator

in the former. This modification is convenient to avoid high values in d2
A,(l) when the amount

of variance of a variable in the reduced set of observations of interest is very low. Once d2
A is

computed for a given dummy variable, sign information can be added from the mean vectors
of the two groups of observations considered (33).

In practice, in order to avoid any modification in the PCA or PLS subspace due to the
introduction of the dummy variable, the oMEDA algorithm is slightly more complex than
the procedure shown in Figure 10. For a description of this algorithm refer to (33). However,
like in MEDA, the oMEDA vector can be computed in a more direct way by assuming KDR
(26) is used as the missing data estimation procedure. If this holds, the oMEDA vector follows:

d2
A,(l) = 2 · xt

(l) · D · xA,(l) − xt
A,(l) · D · xA,(l), (8)

where x(l) represents the l-th variable in the–complete–set of original observations and xA,(l)
its projection in the latent subspace in coordinates of the original space and:
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Fig. 11. oMEDA vector of two clusters of data from the 10 PCs PCA model of a simulated
data set of dimension 100 × 100. This model captures 30% of the variability. Data present two
clusters in variable 10.

D =
d · (d)T

�d�2 . (9)

Finally, the equation can also be reexpressed as follows:

d2
A,(l) =

1
N

· (2 · Σd
(l) − Σd

A,(l)) · |Σd
A,(l)| (10)

with Σd
(l) and Σd

A,(l) being the weighted sum of elements in x(l) and xA,(l) according to the
weights in d, respectively. Equation (10) has two advantages. Firstly, it presents the oMEDA
vector as a weighted sum of values, which is easier to understand. Secondly, it has the sign
computation built in, due to the absolute value in the last element. Notice also that oMEDA
inherits the combination of total and projected variance present in MEDA.

In Figure 11 an example of oMEDA is shown. For this, a 100 × 100 data set with two clusters
of data was simulated. The distribution of the observations was designed so that both clusters
had significantly different values only in variable 10 and then data was auto-scaled. The
oMEDA vector clearly highlights variable 10 as the main difference between both clusters.

4.2 Biplots vs oMEDA

Let us return to the discussion regarding the relationship between the common factors and
the components. As already commented, several common factors can be captured by the
same component in a projection model. As a result, a group of variables may be located close
in a loading plot without the need to be correlated. This is also true for the observations.
Thus, two observations closely located in a score plot may be quite similar or quite different
depending on their scores in the remaining LVs. However, score plots are typically employed
to observe a general distribution of the observations. This exploration is more aimed at
finding differences among observations rather than similarities. Because of this, the problem
described for loading plots is not so relevant for the typical use of score plots. However, this is
a problem when interpreting biplots. In biplots, deviations in the observations are related to
deviations in the variables. Like loading plots, biplots may be useful to perform a fast view on
the data, but any conclusion should be confirmed with another technique. oMEDA is perfectly
suited for this.
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Fig. 10. oMEDA technique: (1) introduction of the dummy variable, (2) model calibration, (3)
introduction of missing data, (4) missing data imputation, (5) error computation, (6)
computation of vector d2

A.
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A,(l) when the amount

of variance of a variable in the reduced set of observations of interest is very low. Once d2
A is

computed for a given dummy variable, sign information can be added from the mean vectors
of the two groups of observations considered (33).

In practice, in order to avoid any modification in the PCA or PLS subspace due to the
introduction of the dummy variable, the oMEDA algorithm is slightly more complex than
the procedure shown in Figure 10. For a description of this algorithm refer to (33). However,
like in MEDA, the oMEDA vector can be computed in a more direct way by assuming KDR
(26) is used as the missing data estimation procedure. If this holds, the oMEDA vector follows:

d2
A,(l) = 2 · xt

(l) · D · xA,(l) − xt
A,(l) · D · xA,(l), (8)

where x(l) represents the l-th variable in the–complete–set of original observations and xA,(l)
its projection in the latent subspace in coordinates of the original space and:
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Fig. 11. oMEDA vector of two clusters of data from the 10 PCs PCA model of a simulated
data set of dimension 100 × 100. This model captures 30% of the variability. Data present two
clusters in variable 10.

D =
d · (d)T

�d�2 . (9)

Finally, the equation can also be reexpressed as follows:

d2
A,(l) =

1
N

· (2 · Σd
(l) − Σd

A,(l)) · |Σd
A,(l)| (10)

with Σd
(l) and Σd

A,(l) being the weighted sum of elements in x(l) and xA,(l) according to the
weights in d, respectively. Equation (10) has two advantages. Firstly, it presents the oMEDA
vector as a weighted sum of values, which is easier to understand. Secondly, it has the sign
computation built in, due to the absolute value in the last element. Notice also that oMEDA
inherits the combination of total and projected variance present in MEDA.

In Figure 11 an example of oMEDA is shown. For this, a 100 × 100 data set with two clusters
of data was simulated. The distribution of the observations was designed so that both clusters
had significantly different values only in variable 10 and then data was auto-scaled. The
oMEDA vector clearly highlights variable 10 as the main difference between both clusters.

4.2 Biplots vs oMEDA

Let us return to the discussion regarding the relationship between the common factors and
the components. As already commented, several common factors can be captured by the
same component in a projection model. As a result, a group of variables may be located close
in a loading plot without the need to be correlated. This is also true for the observations.
Thus, two observations closely located in a score plot may be quite similar or quite different
depending on their scores in the remaining LVs. However, score plots are typically employed
to observe a general distribution of the observations. This exploration is more aimed at
finding differences among observations rather than similarities. Because of this, the problem
described for loading plots is not so relevant for the typical use of score plots. However, this is
a problem when interpreting biplots. In biplots, deviations in the observations are related to
deviations in the variables. Like loading plots, biplots may be useful to perform a fast view on
the data, but any conclusion should be confirmed with another technique. oMEDA is perfectly
suited for this.
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Fig. 12. Biplot of the first 2 PCs from the Wine Data set provided with the PLS-toolbox (32).
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Fig. 13. Score plot of the first 2 PCs from the Wine Data set provided with the PLS-toolbox
(32) and two artificial observations.

In Figure 12, the biplot of the Wine data set is presented. The distribution of the scores show
that all countries but Russia follow a trend from the Czech Republic to France, while Russia
is located far from this trend. The biplot may be useful to make hypothesis on the variables
related to the special nature of Russia or to the trend in the rest of countries. Nevertheless,
this hypothesis making is not straightforward. To illustrate this, in Figure 13 the scores are
shown together with two artificial observations. The artificial observations were designed to
lay close to Russia in the score plot of the first two PCs. In both cases, three of the five variables
were left to their average value in the Wine data set and only two variables are set to approach
Russia. Thus, observation W&LE only uses variables Wine and LifeEx to yield a point close
to Russia in the score plot while the other variables are set to the average. Observation L&B
only uses Liquor and Beer. With this example, it can be concluded that very little can be said
about Russia only by looking at the biplot.
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Fig. 14. oMEDA vectors of the first 2 PCs from the Wine Data set provided with the
PLS-toolbox (32). Russia (a), L&B (b) and W&LE (c) compared to the rest of countries.

In Figure 14(a), the oMEDA vector to discover the differences between Russia and the rest
of countries is shown. For this, a dummy variable is built where all observations except
Russia are set to -1 and Russia is set to 1. oMEDA shows that Russia has in general less
life expectancy and more heart disease and liquor consumption than the rest of countries. The
same experiment is repeated for artificial observations L&B and W&LE in Figures 14(b) and
14(c). oMEDA clearly distinguishes among the three observations, while in the biplot they
seem to be very similar.

To analyze the trend shown by all countries except Russia in Figure 12, the simplest approach
is to compare the most separated observations, in this case France and the Czech Republic.
The oMEDA vector is shown in Figure 15(a). In this case, the dummy variable is built so that
France has value 1, the Czech Republic has value -1 and the rest of the countries have 0 value.
Thus, positive values in the oMEDA vector identify variables with higher value in France
than in the Czech Republic and negative values the opposite. oMEDA shows that the French
consume more wine and less beer than Czech people. Also, according to the data, the former
seem to be more healthy.

Comparing the two most separated observations may be misleading in certain situations.
Another choice is to use the capability of oMEDA to unveil the variables related to any
direction in a score plot. For instance, let us analyze the trend of the countries incorporating
the information in all the countries. For this, different weights are considered in the dummy
variable. We can think of these weights as-approximate–projections of the observations in
the direction of interest. Following this approach, the weights listed in Table 2 are assigned,
which approximate the projection of the countries in the imaginary line depicted by the arrow
in Figure 13. Since Russia is not in the trend, it is left to 0. Using these weights, the resulting
oMEDA vector is shown in Figure 15(b). In this case, the analysis of the complete set of
observations in the trend resembles the conclusions in the analysis of the two most separated
observations.

Country Weight CountryWeight

France 3 Mexico -1
Italy 2 U.S.A. -1
Switz 1 Austra -1
Japan 1 Brit -1
Russia 0 Czech -3

Table 2. Weights used in the dummy variable for the oMEDA vector in Figure 15(b).
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In Figure 12, the biplot of the Wine data set is presented. The distribution of the scores show
that all countries but Russia follow a trend from the Czech Republic to France, while Russia
is located far from this trend. The biplot may be useful to make hypothesis on the variables
related to the special nature of Russia or to the trend in the rest of countries. Nevertheless,
this hypothesis making is not straightforward. To illustrate this, in Figure 13 the scores are
shown together with two artificial observations. The artificial observations were designed to
lay close to Russia in the score plot of the first two PCs. In both cases, three of the five variables
were left to their average value in the Wine data set and only two variables are set to approach
Russia. Thus, observation W&LE only uses variables Wine and LifeEx to yield a point close
to Russia in the score plot while the other variables are set to the average. Observation L&B
only uses Liquor and Beer. With this example, it can be concluded that very little can be said
about Russia only by looking at the biplot.
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In Figure 14(a), the oMEDA vector to discover the differences between Russia and the rest
of countries is shown. For this, a dummy variable is built where all observations except
Russia are set to -1 and Russia is set to 1. oMEDA shows that Russia has in general less
life expectancy and more heart disease and liquor consumption than the rest of countries. The
same experiment is repeated for artificial observations L&B and W&LE in Figures 14(b) and
14(c). oMEDA clearly distinguishes among the three observations, while in the biplot they
seem to be very similar.

To analyze the trend shown by all countries except Russia in Figure 12, the simplest approach
is to compare the most separated observations, in this case France and the Czech Republic.
The oMEDA vector is shown in Figure 15(a). In this case, the dummy variable is built so that
France has value 1, the Czech Republic has value -1 and the rest of the countries have 0 value.
Thus, positive values in the oMEDA vector identify variables with higher value in France
than in the Czech Republic and negative values the opposite. oMEDA shows that the French
consume more wine and less beer than Czech people. Also, according to the data, the former
seem to be more healthy.

Comparing the two most separated observations may be misleading in certain situations.
Another choice is to use the capability of oMEDA to unveil the variables related to any
direction in a score plot. For instance, let us analyze the trend of the countries incorporating
the information in all the countries. For this, different weights are considered in the dummy
variable. We can think of these weights as-approximate–projections of the observations in
the direction of interest. Following this approach, the weights listed in Table 2 are assigned,
which approximate the projection of the countries in the imaginary line depicted by the arrow
in Figure 13. Since Russia is not in the trend, it is left to 0. Using these weights, the resulting
oMEDA vector is shown in Figure 15(b). In this case, the analysis of the complete set of
observations in the trend resembles the conclusions in the analysis of the two most separated
observations.

Country Weight CountryWeight

France 3 Mexico -1
Italy 2 U.S.A. -1
Switz 1 Austra -1
Japan 1 Brit -1
Russia 0 Czech -3

Table 2. Weights used in the dummy variable for the oMEDA vector in Figure 15(b).
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Fig. 15. oMEDA vectors of the first 2 PCs from the Wine Data set provided with the
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the score plot by all countries except Russia is analyzed.
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Fig. 16. Measured vs predicted values of molten glass level in the PLS model with 3 LVs
fitted from the Slurry-Fed Ceramic Melter (SFCM) data set in (32).

Let us return to the PLSdata data set. A PLS model relating temperatures with the level of
molten glass was previously fitted. As already discussed, the data set includes 300 training
observations and 200 test observations. The measured and predicted values of both sets of
observations are compared in Figure 16(a). The predicted values in the test observations
(inverted triangles) tend to be higher than true values. This is also observed in Figure 16(b).
The cause for this seems to be that the process has slightly moved from the operation point
where training data was collected. oMEDA can be used to identify this change of operation
point by simply comparing training and test observations in the model subspace. Thus,
training (value 1) and test observations (value -1) are compared in the subspace spanned by
the first 3 LVs of the PLS model fitted only from training data. The resulting oMEDA vector is
shown in Figure 17. According to the result, considering the test observations have value -1 in
the dummy variable, it can be concluded that the process has moved to a situation in which
top temperatures are higher than during model calibration.

5. Case study: Selwood data set

In this section, an exploratory data analysis of the Selwood data set (34) is carried out. The data
set was downloaded from http://michem.disat.unimib.it/chm/download/datasets.htm. It
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LVs fitted from the Slurry-Fed Ceramic Melter (SFCM) data set in (32).
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Fig. 18. Scores corresponding to the first LV in the PLS model with the complete set of
descriptors of the Selwood dataset.

consists of 31 antifilarial antimycin A1 analogues for which 53 physicochemical descriptors
were calculated for Quantitative Structure-Activity Relationship (QSAR) modelling. The set
of descriptors is listed in Table 3. These descriptors are used for predicting in vitro antifilarial
activity (-LOGEC50). This data set has been employed for testing variables selection methods,
for instance in (35; 36), in order to find a reduced number of descriptors with best prediction
performance. Generally speaking, these variable selection methods are based on complex
optimization algorithms which make use of heuristics to reduce the search space.

Indices Descriptors

1:10 ATCH1 ATCH2 ATCH3 ATCH4 ATCH5 ATCH6 ATCH7 ATCH8 ATCH9 ATCH10
11:20 DIPV_X DIPV_Y DIPV_Z DIPMOM ESDL1 ESDL2 ESDL3 ESDL4 ESDL5 ESDL6
21:30 ESDL7 ESDL8 ESDL9 ESDL10 NSDL1 NSDL2 NSDL3 NSDL4 NSDL5 NSDL6
31:40 NSDL7 NSDL8 NSDL9 NSDL10 VDWVOL SURF_A MOFI_X MOFI_Y MOFI_Z PEAX_X
41:50 PEAX_Y PEAX_Z MOL_WT S8_1DX S8_1DY S8_1DZ S8_1CX S8_1CY S8_1CZ LOGP
51:53 M_PNT SUM_F SUM_R

Table 3. Physicochemical descriptors of the Selwood dataset.
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Let us return to the PLSdata data set. A PLS model relating temperatures with the level of
molten glass was previously fitted. As already discussed, the data set includes 300 training
observations and 200 test observations. The measured and predicted values of both sets of
observations are compared in Figure 16(a). The predicted values in the test observations
(inverted triangles) tend to be higher than true values. This is also observed in Figure 16(b).
The cause for this seems to be that the process has slightly moved from the operation point
where training data was collected. oMEDA can be used to identify this change of operation
point by simply comparing training and test observations in the model subspace. Thus,
training (value 1) and test observations (value -1) are compared in the subspace spanned by
the first 3 LVs of the PLS model fitted only from training data. The resulting oMEDA vector is
shown in Figure 17. According to the result, considering the test observations have value -1 in
the dummy variable, it can be concluded that the process has moved to a situation in which
top temperatures are higher than during model calibration.

5. Case study: Selwood data set

In this section, an exploratory data analysis of the Selwood data set (34) is carried out. The data
set was downloaded from http://michem.disat.unimib.it/chm/download/datasets.htm. It
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consists of 31 antifilarial antimycin A1 analogues for which 53 physicochemical descriptors
were calculated for Quantitative Structure-Activity Relationship (QSAR) modelling. The set
of descriptors is listed in Table 3. These descriptors are used for predicting in vitro antifilarial
activity (-LOGEC50). This data set has been employed for testing variables selection methods,
for instance in (35; 36), in order to find a reduced number of descriptors with best prediction
performance. Generally speaking, these variable selection methods are based on complex
optimization algorithms which make use of heuristics to reduce the search space.

Indices Descriptors

1:10 ATCH1 ATCH2 ATCH3 ATCH4 ATCH5 ATCH6 ATCH7 ATCH8 ATCH9 ATCH10
11:20 DIPV_X DIPV_Y DIPV_Z DIPMOM ESDL1 ESDL2 ESDL3 ESDL4 ESDL5 ESDL6
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Table 3. Physicochemical descriptors of the Selwood dataset.

81Exploratory Data Analysis with Latent Subspace Models



20 Will-be-set-by-IN-TECH

10 20 30 40 50
−1

−0.5

0

0.5

1

Variables

(a) Loadings

10 20 30 40 50
−1

−0.5

0

0.5

1

Variables

(b) Weights

10 20 30 40 50
−0.1

−0.05

0

0.05

0.1

Variables

(c) Regression Coefficients

10 20 30 40 50
−10

−5

0

5

10

Variables

(d) oMeda (K17, J1, J19 and K18 vs the rest)

Fig. 19. Several vectors corresponding to the first LV in the PLS model with the complete set
of descriptors of the Selwood dataset.

First of all, a PLS model is calibrated between the complete set of descriptors and -LOGEC50.
Leave-one-out cross-validation suggests one LV. The score plot corresponding to the 31
analogues in that LV are shown in Figure 18. Four of the compounds, namely K17, J1, J19 and
K18, present an abnormally low score. This deviation is highly contributing to the variance
in the first LV and the reason for it should be investigated. Two of these compounds, K17
and K18, were catalogued as outliers by (34), where the authors stated that "Chemically, these
compounds are distinct from the bulk of the training set in that they have an n-alkyl side chain
as opposed to a side chain of the phenoxy ether type". Since the four compounds present an
abnormally low score in the first LV, typically the analyst may interpret the coefficients of
that LV to try to explain this abnormality. In Figure 19, the loadings, weights and regression
coefficients of the PLS model are presented together with the oMEDA vector. The latter
identifies those variables related to the deviation of the four compounds from the rest. The
oMEDA vector is similar, but with opposite sign, to the other vectors in several descriptors,
but quite different in others. Therefore, the loadings, weights or coefficient vectors should
not be used in this case for the investigation of the deviation, or otherwise one may arrive to
incorrect conclusions. On the other hand, it may be worth to check whether the oMEDA vector
is representative of the deviation in the four compounds. Performing oMEDA individually on
each of the compounds confirm this fact (see Figure 20)
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Fig. 20. oMEDA vectors corresponding to the first LV in the PLS model with the complete set
of descriptors of the Selwood dataset. To compute each of the vectors, one of the four
compounds K17, J1, J19 and K18 are set to 1 in the dummy variable and the other three are
set to 0, while the rest of compounds in the data set are set to -1.

The subsequent step is to search for relevant descriptors (variable selection) For this, MEDA
will be employed. In this point, there are two choices. The four compounds with low score
in the first LV may be treated as outliers and separated from the rest of the data (34) or the
complete data set may be modelled with a single QSAR model (35; 36). It should be noted
that differences among observations in one model may not be found in a different model,
so that the same observation may be an outlier or a normal observation depending on the
model. Furthermore, as discussed in (35), the more general the QSAR model is, so that it
models a wider set of compounds, the better. Therefore, the complete set of compounds will
be considered in the remaining of the example. On the other hand, regarding the analysis tools
used, there are different possibilities. MEDA may be applied over the PLS model relating the
descriptors in the x-block and -LOGEC50 in the y-block. Alternatively, both blocks may be
joined together in a single block of data and MEDA with PCA be applied. The second choice
will be generally preferred to avoid over-fitting, but typically both approaches may lead to
the same conclusions, like it happens in the present example.

The application of MEDA requires to select the number of PCs in the PCA model. Considering
that the aim is to understand how the variability in -LOGEC50 is related to the descriptors in

83Exploratory Data Analysis with Latent Subspace Models



20 Will-be-set-by-IN-TECH

10 20 30 40 50
−1

−0.5

0

0.5

1

Variables

(a) Loadings

10 20 30 40 50
−1

−0.5

0

0.5

1

Variables

(b) Weights

10 20 30 40 50
−0.1

−0.05

0

0.05

0.1

Variables

(c) Regression Coefficients

10 20 30 40 50
−10

−5

0

5

10

Variables

(d) oMeda (K17, J1, J19 and K18 vs the rest)

Fig. 19. Several vectors corresponding to the first LV in the PLS model with the complete set
of descriptors of the Selwood dataset.

First of all, a PLS model is calibrated between the complete set of descriptors and -LOGEC50.
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analogues in that LV are shown in Figure 18. Four of the compounds, namely K17, J1, J19 and
K18, present an abnormally low score. This deviation is highly contributing to the variance
in the first LV and the reason for it should be investigated. Two of these compounds, K17
and K18, were catalogued as outliers by (34), where the authors stated that "Chemically, these
compounds are distinct from the bulk of the training set in that they have an n-alkyl side chain
as opposed to a side chain of the phenoxy ether type". Since the four compounds present an
abnormally low score in the first LV, typically the analyst may interpret the coefficients of
that LV to try to explain this abnormality. In Figure 19, the loadings, weights and regression
coefficients of the PLS model are presented together with the oMEDA vector. The latter
identifies those variables related to the deviation of the four compounds from the rest. The
oMEDA vector is similar, but with opposite sign, to the other vectors in several descriptors,
but quite different in others. Therefore, the loadings, weights or coefficient vectors should
not be used in this case for the investigation of the deviation, or otherwise one may arrive to
incorrect conclusions. On the other hand, it may be worth to check whether the oMEDA vector
is representative of the deviation in the four compounds. Performing oMEDA individually on
each of the compounds confirm this fact (see Figure 20)
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Fig. 20. oMEDA vectors corresponding to the first LV in the PLS model with the complete set
of descriptors of the Selwood dataset. To compute each of the vectors, one of the four
compounds K17, J1, J19 and K18 are set to 1 in the dummy variable and the other three are
set to 0, while the rest of compounds in the data set are set to -1.

The subsequent step is to search for relevant descriptors (variable selection) For this, MEDA
will be employed. In this point, there are two choices. The four compounds with low score
in the first LV may be treated as outliers and separated from the rest of the data (34) or the
complete data set may be modelled with a single QSAR model (35; 36). It should be noted
that differences among observations in one model may not be found in a different model,
so that the same observation may be an outlier or a normal observation depending on the
model. Furthermore, as discussed in (35), the more general the QSAR model is, so that it
models a wider set of compounds, the better. Therefore, the complete set of compounds will
be considered in the remaining of the example. On the other hand, regarding the analysis tools
used, there are different possibilities. MEDA may be applied over the PLS model relating the
descriptors in the x-block and -LOGEC50 in the y-block. Alternatively, both blocks may be
joined together in a single block of data and MEDA with PCA be applied. The second choice
will be generally preferred to avoid over-fitting, but typically both approaches may lead to
the same conclusions, like it happens in the present example.

The application of MEDA requires to select the number of PCs in the PCA model. Considering
that the aim is to understand how the variability in -LOGEC50 is related to the descriptors in
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Fig. 21. Structural and Variance Information (SVI) plot of in vitro antifilarial activity
(-LOGEC50). The data set considered combines -LOGEC50 with the complete set of
descriptors of the Selwood dataset.

the data set, the Structural and Variance Information (SVI) plots are the adequate analysis tool
(14). The SVI plots combine variance information with structural information to elucidate how
a PCA model captures the variance of a single variable. The SVI plot of a variable v reveals
how the following indices evolve with the addition of PCs in the PCA model:

• The R2 statistic, which measures the variance of v.

• The Q2 statistic, which measures the performance of the missing data imputation of v, or
otherwise stated its prediction performance.

• The α statistic, which measures the portion of variance of v which is identified as unique
variance, i.e. variance not shared with other variables.

• The stability of α, as an indicator of the stability of the model calibration.

Figure 21 shows the SVI plot of -LOGEC50 in the PCA model with the complete set of
descriptors. The plot shows that the model remains quite stable until 5-6 PCs are included.
This is seen in the closeness of the circles which represents the different instances of α
computed on a leave-one-out cross-validation run. The main portion of variability in
-LOGEC50 is captured in the second and eighth PCs. Nevertheless, is not until the tenth
PC that the missing data imputation (Q2) yields a high value. For more PCs, the captured
variability is only slightly augmented. Since MEDA makes use of the missing data imputation
of a PCA model, Q2 is a relevant index. At the same time, from equation (2) is clear that MEDA
is also influenced by captured variance. Thus, 10 PCs are selected. In any case, it should be
noted that MEDA is quite robust to the overestimation in the number of PCs (11) and very
similar MEDA matrices are obtained for 3 or more PCs in this example.

The MEDA matrix corresponding to the PCA model with 10 PCs from the data set which
combines -LOGEC50 with the complete set of descriptors of the Selwood dataset is presented
in Figure 22. For variable selection, the most relevant part of this matrix is the last column
(or row), which corresponds to -LOGEC50. This vector is shown in Figure 23(a). Those
descriptors with high value in this vector are the ones from which -LOGEC50 can be better
predicted. Nevertheless, the selection of, say, the first n variables with higher value is not an
adequate strategy because the relationship among the descriptors should also be considered.
Let us select the descriptor with better prediction performance, in this case ATCH6, though
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Fig. 22. MEDA matrix of the PCA model with 10 PCs from the data set which combines the
in vitro antifilarial activity (-LOGEC50) with the complete set of descriptors of the Selwood
dataset.
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Fig. 23. MEDA vector corresponding to the in vitro antifilarial activity (-LOGEC50) (a)
comparison between this vector and that corresponding to ATCH6 (b) and MEDA vector
corresponding to LOGP (c) in the PCA model with 10 PCs from the data set which combines
-LOGEC50 with the complete set of descriptors of the Selwood dataset.

ATCH1, ATCH3, ATCH7 or SUM_F have a very similar prediction performance. The
least-squares regression model with ATCH6 as regressor attains a Q2 equal to 0.30, more than
the Q2 attained by any number of LVs in the PLS model with the complete set of descriptors. If
for instance ATCH6 and ATCH1 are used as regressors, Q2 = 0.26 is obtained for least squares
regression and Q2 = 0.31 for PLS with 1 LV, which means an almost negligible improvement
with the addition of ATCH1. The facts that the improvement is low and that the 1 LV PLS
model outperforms the least squares model are caused by the correlation between ATCH6
and ATCH1, correlation clearly pointed out in the MEDA matrix (see the element at the sixth
column and first row or the first column and sixth row) Clearly, both ATCH6 and ATCH1 are
related to the same common factor in -LOGEC50. However, the variability in -LOGEC50 is the
result of several sources of variability, which may be common factors with other descriptors.
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variance, i.e. variance not shared with other variables.
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Figure 21 shows the SVI plot of -LOGEC50 in the PCA model with the complete set of
descriptors. The plot shows that the model remains quite stable until 5-6 PCs are included.
This is seen in the closeness of the circles which represents the different instances of α
computed on a leave-one-out cross-validation run. The main portion of variability in
-LOGEC50 is captured in the second and eighth PCs. Nevertheless, is not until the tenth
PC that the missing data imputation (Q2) yields a high value. For more PCs, the captured
variability is only slightly augmented. Since MEDA makes use of the missing data imputation
of a PCA model, Q2 is a relevant index. At the same time, from equation (2) is clear that MEDA
is also influenced by captured variance. Thus, 10 PCs are selected. In any case, it should be
noted that MEDA is quite robust to the overestimation in the number of PCs (11) and very
similar MEDA matrices are obtained for 3 or more PCs in this example.

The MEDA matrix corresponding to the PCA model with 10 PCs from the data set which
combines -LOGEC50 with the complete set of descriptors of the Selwood dataset is presented
in Figure 22. For variable selection, the most relevant part of this matrix is the last column
(or row), which corresponds to -LOGEC50. This vector is shown in Figure 23(a). Those
descriptors with high value in this vector are the ones from which -LOGEC50 can be better
predicted. Nevertheless, the selection of, say, the first n variables with higher value is not an
adequate strategy because the relationship among the descriptors should also be considered.
Let us select the descriptor with better prediction performance, in this case ATCH6, though
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comparison between this vector and that corresponding to ATCH6 (b) and MEDA vector
corresponding to LOGP (c) in the PCA model with 10 PCs from the data set which combines
-LOGEC50 with the complete set of descriptors of the Selwood dataset.

ATCH1, ATCH3, ATCH7 or SUM_F have a very similar prediction performance. The
least-squares regression model with ATCH6 as regressor attains a Q2 equal to 0.30, more than
the Q2 attained by any number of LVs in the PLS model with the complete set of descriptors. If
for instance ATCH6 and ATCH1 are used as regressors, Q2 = 0.26 is obtained for least squares
regression and Q2 = 0.31 for PLS with 1 LV, which means an almost negligible improvement
with the addition of ATCH1. The facts that the improvement is low and that the 1 LV PLS
model outperforms the least squares model are caused by the correlation between ATCH6
and ATCH1, correlation clearly pointed out in the MEDA matrix (see the element at the sixth
column and first row or the first column and sixth row) Clearly, both ATCH6 and ATCH1 are
related to the same common factor in -LOGEC50. However, the variability in -LOGEC50 is the
result of several sources of variability, which may be common factors with other descriptors.
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Therefore, in order to introduce a new common factor in the model other than that in ATCH6,
we need to find a descriptor related to -LOGEC50 but not to ATCH6. Also, the model may be
improved by introducing a descriptor related to ATCH6 but not to -LOGEC50. For this, Figure
23(b) compares the columns in the MEDA matrix corresponding to ATCH6 and -LOGEC50.
The comparison should not be performed in terms of direct differences between values. For
instance, ATCH1 and ATCH6 are much more correlated than ATCH1 and -LOGEC50. It is
the difference in shape which is informative. Thus, we find that -LOGEC50 present a high
correlation with LOGP (variable 50) which is not found in ATCH6. Thus, LOGP presents a
common factor with -LOGEC50 which is not present in ATCH6. Using LOGP and ATCH6 as
regressors, the least squares model presents Q2 = 0.37.

If an additional descriptor is to be added to the model, again it should present a different
common factor with any of the variables in the model. The MEDA vector corresponding to
LOGP is shown in Figure 23(c). This descriptor is related to a number of variables which are
not related to -LOGEC50. This relationship represents a common factor in LOGP but not in
-LOGEC50. The inclusion of a descriptor containing this common factor, for instance MOFI_Y
(variable 38) may improve prediction because it may help to distinguish the portion of
variability in LOGP which is useful to predict -LOGEC50 from the portion which is not. Using
LOGP, ATCH6 and MOFI_Y as regressors yields Q2 = 0.56, illustrating that the addition of a
descriptor which is not related to the predicted variable may be useful for prediction.

In Figure 24, the two common factors described before, the one present in ATCH6 and
-LOGEC50 and the one present in LOGP and MOFI_Y, are approximately highlighted in
the MEDA matrix. If variables ATCH6 and MOFI_Y are replaced by others with the same
common factors, the prediction performance of the model remains similar. However, LOGP
is utmost for the model since is the only descriptor which relates the second common factor
and -LOGEC50. These results are coherent with findings in the literature. Both (35) and (36)
highlight the relevance of LOGP, and justify it with the results in several more publications.
Furthermore, the top 10 models found in (35), presented in Table 4, follow the same patter of
the solution found here. The models with three descriptors contain LOGP with one descriptor
from the first and second common factors. The models with two descriptors contain LOGP
and a variable with the second common factor.

Descriptors Q2

SUM_F (52) LOGP (50) MOFI_Y (38) 0.647
ESDL3 (17) LOGP (50) SURF_A (36) 0.645
SUM_F (52) LOGP (50) MOFI_Z (39) 0.644
LOGP (50) MOFI_Z (39) 0.534
ESDL3 (17) LOGP (50) MOFI_Y (38) 0.605
ESDL3 (17) LOGP (50) MOFI_Z (39) 0.601
LOGP (50) MOFI_Y (38) 0.524
LOGP (50) PEAX_X (40) 0.518
LOGP (50) SURF_A (36) 0.501
SUM_F (52) LOGP (50) PEAX_X (40) 0.599

Table 4. Top 10 models obtained after variable selection of the Selwood data set in (35)

Finally, in Figure 25 the plot of measured vs predicted values of -LOGEC50 in the model
resulting from the exploration is shown. No outliers are identified, though the four
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Fig. 24. MEDA matrix of the PCA model with 10 PCs from the data set which combines the
in vitro antifilarial activity (-LOGEC50) with the complete set of descriptors of the Selwood
dataset. Two common factors are highlighted. The first one is mainly found in descriptors 1
to 3, 5 to 7, 17, 52 and 53. The second one is mainly found in descriptors 35, 36, 38 to 40, 45, 47
and 50. Though the second common factor is not present in -LOGEC50, it is in LOGP.
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Fig. 25. Plot of measured vs predicted values of -LOGEC50 in the model with regressors
LOGP, ATCH6 and MOFI_Y of the Selwood dataset.

compounds previously highlighted are found at the bottom left corner. This result support
the non-convenience of isolating these compounds.

Notice that MEDA is not a variable selection technique per se and therefore other methods
may be more powerful for this purpose. Nevertheless, being an exploratory method, the
benefit of using MEDA for variable selection is that the general solution can be identified and
understood, like in the present example. On the contrary, most variable selection approaches
are based on highly complex algorithms which can only report a set of possible alternative
solutions (e.g. Table 4).
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The comparison should not be performed in terms of direct differences between values. For
instance, ATCH1 and ATCH6 are much more correlated than ATCH1 and -LOGEC50. It is
the difference in shape which is informative. Thus, we find that -LOGEC50 present a high
correlation with LOGP (variable 50) which is not found in ATCH6. Thus, LOGP presents a
common factor with -LOGEC50 which is not present in ATCH6. Using LOGP and ATCH6 as
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Table 4. Top 10 models obtained after variable selection of the Selwood data set in (35)
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compounds previously highlighted are found at the bottom left corner. This result support
the non-convenience of isolating these compounds.

Notice that MEDA is not a variable selection technique per se and therefore other methods
may be more powerful for this purpose. Nevertheless, being an exploratory method, the
benefit of using MEDA for variable selection is that the general solution can be identified and
understood, like in the present example. On the contrary, most variable selection approaches
are based on highly complex algorithms which can only report a set of possible alternative
solutions (e.g. Table 4).

87Exploratory Data Analysis with Latent Subspace Models



26 Will-be-set-by-IN-TECH

6. Conclusion

In this chapter, new tools for exploratory data analysis are presented and combined with
already well known techniques in the chemometrics field, such as projection models, score
and loading plots. The shortcomings and potential pitfalls in the application of common tools
are elucidated and illustrated with examples. Then, the new techniques are introduced to
overcome these problems.

The Missing-data methods for Exploratory Data Analysis technique, MEDA for short, studies
the relationships among variables. As it is discussed in the chapter, while chemometric
models such as PCA and PLS are quite useful for data understanding, they have a main
problem which complicates its interpretation: a single component captures several sources
of variability or common factors and at the same time a single common factor is captured in
several components. MEDA, like rotation methods or Factor Analysis (FA), is a tool for the
identification of the common factors in subspace models, in order to elucidate the structure
in the data. The output of MEDA is similar to a correlation matrix but with better properties
associated. MEDA is the perfect complement of loading plots. It gives a different picture of the
relationships among variables which is especially useful to find groups of related variables.
Using a Quantitative Structure-Activity Relationship (QSAR) example, it was shown that the
understanding of the relationships among variables in the data may lead to perform variable
selection with similar performance of highly sophisticated algorithms, with the extra benefit
that the global solution is not only found but also understood.

The second technique introduced in this chapter is a variant of MEDA, named
observation-based MEDA or oMEDA. oMEDA was designed to identify the variables which
differ between two groups of observations in a latent subspace, but it can be used for the more
general problem of identifying the variables related to a given direction in the score plot. Thus,
when a number of observations are located in a specific direction in the score plot, oMEDA
gives the variables related to that distribution. oMEDA is the perfect complement of score
plots and much more reliable than biplots. It can also be seen as an extension of contribution
plots to groups of observations. It may be especially useful to check whether the distribution
of a new set of observations agree with a calibration model.

Though MEDA and oMEDA are grounded on missing-data imputation methods and their
original algorithms are complex to a certain extent, both tools can be computed with very
simple equations. A MATLAB toolbox with the tools employed in this chapter, including
MEDA, oMEDA, ADICOV and SVI plots, is available at http://wdb.ugr.es/ josecamacho/.
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6. Conclusion

In this chapter, new tools for exploratory data analysis are presented and combined with
already well known techniques in the chemometrics field, such as projection models, score
and loading plots. The shortcomings and potential pitfalls in the application of common tools
are elucidated and illustrated with examples. Then, the new techniques are introduced to
overcome these problems.

The Missing-data methods for Exploratory Data Analysis technique, MEDA for short, studies
the relationships among variables. As it is discussed in the chapter, while chemometric
models such as PCA and PLS are quite useful for data understanding, they have a main
problem which complicates its interpretation: a single component captures several sources
of variability or common factors and at the same time a single common factor is captured in
several components. MEDA, like rotation methods or Factor Analysis (FA), is a tool for the
identification of the common factors in subspace models, in order to elucidate the structure
in the data. The output of MEDA is similar to a correlation matrix but with better properties
associated. MEDA is the perfect complement of loading plots. It gives a different picture of the
relationships among variables which is especially useful to find groups of related variables.
Using a Quantitative Structure-Activity Relationship (QSAR) example, it was shown that the
understanding of the relationships among variables in the data may lead to perform variable
selection with similar performance of highly sophisticated algorithms, with the extra benefit
that the global solution is not only found but also understood.

The second technique introduced in this chapter is a variant of MEDA, named
observation-based MEDA or oMEDA. oMEDA was designed to identify the variables which
differ between two groups of observations in a latent subspace, but it can be used for the more
general problem of identifying the variables related to a given direction in the score plot. Thus,
when a number of observations are located in a specific direction in the score plot, oMEDA
gives the variables related to that distribution. oMEDA is the perfect complement of score
plots and much more reliable than biplots. It can also be seen as an extension of contribution
plots to groups of observations. It may be especially useful to check whether the distribution
of a new set of observations agree with a calibration model.

Though MEDA and oMEDA are grounded on missing-data imputation methods and their
original algorithms are complex to a certain extent, both tools can be computed with very
simple equations. A MATLAB toolbox with the tools employed in this chapter, including
MEDA, oMEDA, ADICOV and SVI plots, is available at http://wdb.ugr.es/ josecamacho/.
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1. Introduction 
Statistical design of experiments (DOE) is commonly seen as an essential part of 
chemometrics. However, it is often overlooked in chemometric practice. The general 
objective of DOE is to guarantee that the dependencies between experimental conditions 
and the outcome of the experiments (the responses) can be estimated reliably at minimal 
cost, i.e. with the minimal number of experiments. DOE can be divided into several 
subtopics, such as finding the most important variables from a large set of variables 
(screening designs), finding the effect of a mixture composition on the response variables 
(mixture designs), finding sources of error (variance component analysis) in a 
measurements system, finding optimal conditions in continuous processes (evolutionary 
operation, EVOP) or batch processes (response surface methodology, RSM), or designing 
experiments for optimal parameter estimation in mathematical models (optimal design).   

Several good textbooks exist. Of the general DOE textbooks, i.e. the ones that are focused on 
any special field, perhaps (Box et. al., 2005), (Box & Draper, 2007) and (Montgomery, 1991) 
are the most widely used ones. Some of the DOE textbooks, e.g. (Bayne & Rubin, 1986), 
(Carlson & Carlson, 2005) and (Bruns et. al., 2006) focus on chemometric problems. Good 
textbooks covering other fields of applications include e.g. (Himmelblau, 1970) for chemical 
engineering, (Berthouex & Brown, 2002) and (Hanrahan, 2009) for environmental 
engineering, or (Haaland, 1989) for biotechnology. Many textbooks about linear models or 
quality technology also have good treatments of DOE, e.g. (Neter et. al., 1996), (Vardeman, 
1994) and (Kolarik, 1995). 

More extensive lists of DOE literature are given in many textbooks, see e.g. (Box & Draper, 
2007) , or in the documentation of commercial DOE software packages, see e.g. (JMP, release 
6) 

This chapter focuses on common strategies of empirical optimization, i.e. optimization 
based on designed experiments and their results. The reader should be familiar with basic 
statistical concepts. However, for the reader’s convenience, the key concepts needed in DOE 
will be reviewed. Mathematical prerequisites include basic knowledge of linear algebra, 
functions of several variables and elementary calculus. However, neither theory, nor the 
methodology is presented in a rigorous mathematical style; rather the style is relying on 
examples, common sense, and on pinpointing the key ideas. 
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The aim of this chapter is that the material could be used to guide chemists, chemical 
engineers and chemometricians in real applications requiring experimentation. Naturally, 
the examples presented have chemical/chemometric origin, but as with most statistical 
techniques, the field of possible applications is truly vast. The focus is on problems with 
quantitative variables and, correspondingly, on regression techniques. Qualitative 
(categorical) variables and analysis of variance (ANOVA) are merely mentioned. 

Typical chemometric applications of RSM are such as optimization of chemical syntheses, 
optimization of chemical reactors or other unit operations of chemical processes, or 
optimization of chromatographic columns.  

2. Optimization strategies 
This section introduces the two most common empirical optimization strategies, the simplex 
method and the Box-Wilson strategy. The emphasis is on the latter, as it has a wider scope of 
applications. This section presents the basic idea; the techniques needed at different steps in 
following the given strategy are given in the subsequent sections. 

2.1 The Nelder-Mead simplex strategy 

The Nelder-Mead simplex algorithm was published already on 1965, and it has become a 
‘classic’ (Nelder & Mead, 1965). Several variants and applications of it have been published 
since then. It is often also called the flexible polyhedron method. It should be noted that it 
has nothing to do with the so-called Dantzig’s simplex method used in linear programming. 
It can be used both in mathematical and empirical optimization. 

The algorithm is based on so-called simplices N-polytopes with N+1 vertices, where N is the 
number of (design) variables. For example, a simplex in two dimensions is a triangle, and a 
simplex in three dimensions is a tetrahedron. The idea behind the method is simple: a 
simplex provided with the corresponding response values (or function values in 
mathematical optimization) gives a minimal set of points to fit perfectly an N-dimensional 
hyperplane in a (N+1)-dimensional space. For example for two variables and the responses, 
the space is a plane in 3-dimensional space. Such a hyperplane is the simplest linear 
approximation of the underlying nonlinear function, often called a response surface, or 
rather a response hypersurface. The idea is to reflect the vertex corresponding to the worst 
response value along the hyperplane with respect to the opposing edge. The algorithm has 
special rules for cases in which the response at a reflected point doesn’t give improvement, 
or if an additional expanded reflection gives improvement. These special rules make the 
simplex sometimes shrink, and sometimes expand. Therefore, it is also called the flexible 
simplex algorithm.  

The idea is easiest understood graphically in a case with 2 variables: Fig. 1 depicts an ideal 
response surface the yield of a batch reactor with respect to the batch length in minutes and 
the reactor temperature in C. The model is ideal in the sense that the response values are 
free from experimental error. We can see that first the simplex expands because the surface 
around the starting simplex is quite planar. Once the chain of simplexes attains the ridge 
going approximately from right, some of the simplexes are contracted, i.e. they shrink 
considerably. You can easily see, how a reflection would worsen the response (this is 
depicted as an arrow in the upper left panel). Once the chain finds the direction of the ridge, 
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the simplexes expand again and approach the optimum effectively. The Nelder-Mead 
simplex algorithm is not very effective in final positioning of the optimal point, because that 
would require many contractions. 

 
Fig. 1. Sequences of Nelder-Mead simplex experiments with respect to time and temperature 
based on an errorless reactor model. In all panels, the x-axis corresponds to reaction time in 
minutes and y-axis corresponds to reactor temperature in C. Two edges of the last simplex 
are in red in all panels. Upper left panel: the first 4 simplexes and the reflection of the last 
simplex. Upper right panel: the first 4 simplexes and the first contraction of the last simplex. 
Lower right panel: the first 7 simplexes and the second contraction of the last simplex. 
Lower right panel: the first 12 simplexes and the expanded reflection of the last simplex. 

The Nelder-Mead algorithm has been used successfully e.g. in optimizing chromatographic 
columns. However, its applicability is restricted by the fact that it doesn’t work well if the 
results contain substantial experimental error. Therefore, in most cases another type of a 
strategy is a better choice, presented in the next section. 

2.2 The Box-Wilson strategy (the gradient method) 

In this section we try to give an overall picture of the Box-Wilson strategy, and the different 
types of designs used within the strategy will be explained in subsequent sections; the focus 
is on the strategy itself.  
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The basic idea behind the Box-Wilson strategy is to follow the path of the steepest ascent 
towards the optimal point. In determining the direction of the steepest ascent, 
mathematically speaking, the gradient vector, the method uses local polynomial modelling. 
It is a sequential method, where the sequence of main steps is: 1) make a design around the 
current best point, 2) make a polynomial model, 3) determine the gradient path, and 4) carry 
out experiments along the path as long as the results will improve. After step 4, return to 
step 1, and repeat the sequence of steps. Typically the steps 1-4 have to be repeated 2 to 3 
times. 

Normally the first design is a 2N  factorial design (see section 3.1) with an additional centre 
point, possibly replicated one or more times. The idea is that, at the beginning of the 
optimization, the surface within the design area is approximately linear, i.e. a hyperplane. A 
2N  factorial design allows also modelling of interaction effects. Interactions are common in 
problems of chemical or biological origin. The additional centre point can be used to check 
for curvature. If the curvature is found to be statistically significant, the design should be 
upgraded into a second order design (see section 5), allowing building of a quadratic model. 
The replicate experiments are used to estimate the mean experimental error, and for testing 
model adequacy, i.e. the lack-of-fit in the model.  

After the first round of steps 1-4 (see also Fig. 4), it is clear that a linear or linear plus 
interactions model cannot fit the results anymore, as the results first get better and then 
worse. Therefore, at this point, an appropriate design is a second order design, typically a 
central composite or a Box-Behnken design (explained in section 5), both allowing building 
of a quadratic polynomial model. The analysis of the quadratic model lets us estimate 
whether the optimum is located near the design area or further away. In the latter case, new 
experiments are again conducted along the gradient path, but in the first case, the new 
experiments will be located around the optimum predicted by the model.  

The idea is best grasped by a graphical illustration given in Figs. 2 and 3 using the same 
reactor model as in section 2.1. Fig. 2 shows the theoretical errorless response surface, the 
region of the initial design (the black rectangle), and the theoretical gradient path. The 
contours inside the rectangle show that the response behaves approximately linearly inside 
the region of the first design (the contours are approximately parallel straight lines). 

It is important to understand that the gradient path must be calculated using small enough 
steps. This is best seen graphically: Fig. 3 shows what happens using too large a step size: 
too large a step size creates the typical zigzag pattern. Obviously, this is inefficient, and such 
a path also misses the optimum.  

Next we shall try to illustrate how the gradient method works in practice. In order to make 
the situation more realistic, we have added Gaussian noise 2( 0, 1)   to the yield, given 
by the simulation model of the reactor, i.e. instead of carrying out real experiments, the 
results are obtained from the model. In addition, random experimental error is added to the 
modelled responses. The sequence of designs following the box-Wilson strategy and the 
corresponding gradient path experiments are depicted in Fig. 4. Notice that the gradient 
path based on the model of the first design is slightly curved due to the interaction between 
time and temperature. 
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Fig. 2. The gradient path (black solid line with dots at points of calculation) of a reactor 
model yield surface. The solid line cannot be distinguished due to the small step size 
between the points of calculation. 

 
Fig. 3. The gradient path (black solid line with dots at the points of calculation) of a reactor 
model yield surface. The path is calculated using too large a step size causing the zigzag 
pattern. 
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Fig. 2. The gradient path (black solid line with dots at points of calculation) of a reactor 
model yield surface. The solid line cannot be distinguished due to the small step size 
between the points of calculation. 

 
Fig. 3. The gradient path (black solid line with dots at the points of calculation) of a reactor 
model yield surface. The path is calculated using too large a step size causing the zigzag 
pattern. 
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Fig. 4. The first design (blue asterisks) and the gradient path (magenta solid line) based on 
an empirical model estimated from the results of the experiments. Four points from the 
gradient path are chosen for the experiments (green circles). A second order design (red x’s) 
and the gradient path based on its modelled results (turquoise solid line with x’s at the 
experimental points). The best results of the four sets of experiments, showing excellent 
improvement, are 61.3, 76.3, 82.7 and 93.9. 

Typically, the next step would be making of a new second order design around the best 
point. However, one should keep in mind that the sensitivity to changes in the design 
variables decreases. As a consequence, any systematic changes may be hidden under 
experimental errors. Therefore, the accurate location of the optimum is difficult to find, 
perhaps requiring repetitions of the whole design. 

Simulation models like the one used in this example are very useful in practising Box-
Wilson strategy. It can be obtained upon request from the author in the form of a Matlab, R 
or Excel VBA. For maximal learning, the user is advised to start the procedure at different 
locations. 

3. Factorial designs 

Factorial designs make the basis of all most common designs. The idea of factorial designs is 
simple: a factorial design is made up of all possible combinations of all chosen values, often 
called levels, of all design variables. Factorial designs can be used both for qualitative and 
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quantitative variables. If variables 1 2, ,  ,  Nx x x  have 1 2, , ,  Nm m m  different levels, the 
number of experiments is 1 2  Nm m m . As a simple example, let us consider a case where 
the variables and their levels are: 1x  the type of a catalyst (A, B and C), 2x  the catalyst 
concentration (1 ppm and 2 ppm), and  3x  the reaction temperature (60 C, 70 C and 80 C). 
The corresponding factorial design is given in Table 1. 
 

x1 x2 x3 

A 1 60 

B 1 60 

C 1 60 

A 2 60 

B 2 60 

C 2 60 

A 1 70 

B 1 70 

C 1 70 

A 2 70 

B 2 70 

C 2 70 

A 1 80 

B 1 80 

C 1 80 

A 2 80 

B 2 80 

C 2 80 

Table 1. A simple factorial design of three variables. 

It is good to understand why factorial designs are good designs. The main reasons are that 
they are orthogonal and balanced. Orthogonality means that the factor (variable) effects can be 
estimated independently. For example, in the previous example the effect of the catalyst can 
be estimated independently of the catalyst concentration effect. In a balanced design, each 
variable combination appears equally many times. In order to understand why 
orthogonality is important, let us study an example of a design that is not orthogonal. This 
design, given in Table 2 below, has two design variables, 1x  and 2x , and one response 
variable, y. 
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x1 x2 y 

1.18 0.96 0.91 

1.90 2.12 1.98 

3.27 2.98 2.99 

4.04 3.88 3.97 

4.84 5.10 5.03 

5.88 6.01 5.96 

7.14 7.14 7.07 

8.05 8.08 7.92 

9.04 8.96 9.09 

9.98 10.19 10.02 

2.30 2.96 3.76 

2.94 4.10 4.85 

4.29 5.01 5.95 

5.18 5.80 6.88 

5.84 7.14 7.98 

6.85 7.90 9.16 

8.33 8.98 10.26 

8.96 10.05 10.98 

10.00 11.09 12.21 

10.82 12.08 12.94 

10.13 8.88 8.20 

10.91 9.94 9.15 

12.10 10.83 10.30 

12.57 11.56 11.16 

13.53 13.04 12.13 

14.85 14.00 12.72 

16.19 15.16 13.99 

17.01 16.22 14.72 

18.31 16.86 16.28 

19.21 18.47 17.35 

Table 2. A non-orthogonal design. 
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Now, if we plot the response against the design variables we get the following plot: 

 
Fig. 5. Response (y) against the design variables ( 1x and 2x ) in a non-orthogonal design; 
upper panel: y against, lower panel: y against. 

Now, Fig. 5 clearly gives the illusion that the response depends approximately linearly both 
on 1x and 2x  with positive slopes. However, the true slope between y and 1x  is negative. 
To see this, let us plot the design variable against each other and show the response values 
as text, as shown in Fig. 6. 

Now, careful inspection of Fig. 6 reveals that actually yield decreases when increases. The 
reason for the wrong illusion that Fig. 5 gives is that 1x  and 2x  are strongly correlated with 
each other, i.e. the design variables are collinear. Although fitting a linear regression model 
using both design variables would give correct signs for the regression coefficients, 
collinearity will increase the confidence intervals of the regression coefficients. Problems of 
this kind can be avoided by using factorial designs. 

After this example, it is obvious that orthogonality, or near orthogonality, is a desired 
property of a good experimental design. Other desired properties are 

 The design contains as few experiments as possible for reliable results. 
 The design gives reliable estimates for the empirical model fitted to the data. 
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Fig. 6. Response (y) against the design variables ( 1x  and 2x ) in a non-orthogonal design; the 
response values (y values) are shown on upper right position with respect to each point. 

 The design allows checking the reliability of the model fitted to the data, typically by 
statistical tests about the model parameters and the model adequacy (lack-of-fit), and 
by cross validation. 

In general, factorial designs have these properties, except for the minimal number of the 
experiments. This topic will be treated in the subsequent sections. 

3.1 Two level factorial designs 

Factorial designs with only two values (levels) for all design variables are the most 
frequently used designs. This is mainly due to the following facts: 1) the number of 
experiments is less than with more levels, and 2) the results can be analysed using 
regression analysis for both qualitative and quantitative variables. The natural limitation is 
that only linear (main) effects and interactions effects can be detected. A drawback of full 
two-level factorial designs with a high number of variables is that the number of 
experiments is also high. Fortunately, this problem can be solved by using so-called 
fractional factorial designs, explained in section 3.3. 
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Two-level factorial designs, usually called 2N  designs, are typically tabulated using 
dimensionless coded variables having only values -1 or +1. For example, for a variable that 
represents a catalyst type, type A might correspond to -1 and type B might correspond to +1, 
or coarse raw material might be -1 and fine raw material might be +1. For quantitative 
variables, coding can be performed by the formula  

 1
2





i i

i
i

x xX
x

 (1) 

where iX  stands for the coded value of the i’th variable, 1x  stands for the original value of 
the i’th variable, ix  stands for the centre point value of the original i’th variable, and  ix  
stands for the difference of the original two values of the i’th variable. The half value of the 
difference is called the step size. All statistical analyses of the results are usually carried out 
using the coded variables. Quite often, we need to convert also coded dimensionless values 
into the original physical values. For quantitative variables, we can simply use the inverse of 
Eq. 1, i.e.  

 1
2   i i i ix x x X  (2) 

Tables of two-level factorial designs can be found in most textbooks of DOE. A good source 
is also NIST SEMATECH e-Handbook of Statistical Methods (NIST SEMATCH). Another 
way to create such tables is to use DOE-software e.g. (JMP, MODDE, MiniTab,…). It is also 
very easy to create tables of two-level factorial designs in any spreadsheet program. For 
example in Excel, you can simply enter the somewhat hideous formula  

=2*MOD(FLOOR((ROW($B3)-ROW($B$3))/2^(COLUMN(C$2)-COLUMN($C$2));1);2)-1  

into the cell C3, and then first copy the formula to the right as many time as there are 
variables in the design (N) and finally copy the whole first row down 2N  times. Of course, 
you can enter the formula anywhere in the spreadsheet, e.g. if you enter it into the cell D7 
the references in the ROW functions must be changed into $C7 and $C$7, and the references 
in the column function must be changed into D$6 and $D$6, respectively. 

If all variables are quantitative it is advisable to add a centre point into the design, i.e. an 
experiment where all variables are set to their mean values. Consequently, in coded units, 
all variables have value 0. The centre point experiment can be used to detect nonlinearities 
within the design area. If the mean experimental error is not known, usually the most 
effective way to find it out is to repeat the centre point experiment. All experiments, 
including the possible centre point replicates, should be carried out in random order. The 
importance of randomization is well explained in e.g. (Box, Hunter & Hunter). 

3.1.1 Empirical models related to two-level factorial designs 

2N designs can be used only for linear models with optional interaction terms up order N. 
By experience, it is known that interaction of order higher than two are seldom significant. 
Therefore, it is common to consider those terms as random noise, giving extra degrees of 
freedom for error estimation. However, one should be careful about such interpretations, 
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and models should always be carefully validated. It should also be noted that the residual 
errors always contain both experimental error and modelling error. For this reason, 
independent replicate experiments are of utmost importance, and only having a reliable 
estimate of the experimental error gives a possibility to check for lack-of-fit, i.e. the model 
adequacy. 

The general form of a model for a response variable y with linear terms and interaction 
terms up to order N is 

 
1   

      
N N N

i i ij i j ijk i j k
i i j i j k

y b X b X X b X X X  (3) 

The number of terms in the second sum is  
2

 
 
 

N
, and in the third sum it is

3
 
 
 

N
, and so on. 

The most common model types used are models with linear terms only, or models with 
linear terms and pairwise interaction terms.  

If all terms of model (3) are used, and there are no replicate experiments in the 
corresponding 2N  design, there are as many unknown parameters in the model as there are 
experiments in the design, leaving no degrees of freedom for the residual error, i.e. all 
residuals are zero. In such cases, the design is called saturated with respect to the model, or 
just saturated, if it is obvious what the model is.  In these cases traditional statistical tests 
cannot be employed. Instead, the significant terms can often be detected by inspecting the 
estimated model parameter values using normal probability plots. 

Later we need to differentiate between the terms “design matrix” and “model matrix”. A 
design matrix is a expN N  matrix whose columns are the values of design variables where 

expN  is the number of experiments. A model matrix is a expN p  matrix that is the design 
matrix appended with columns corresponding to the model terms. For example, a model 
matrix for a linear plus interaction model for two variables has a column of ones 
(corresponding to the intercept), columns for values of 1X  and 2X  and a column for values 
of the product 1 2X X . 

It is good to understand the nature of the pairwise interaction terms. Let us consider a 
model for two variables, i.e. 0 1 1 2 2 12 1 2   y b b X b X b X X , and let us rearrange the terms as 

 0 1 1 2 12 1 2   y b b X b b X X . This form reveals that the interaction actually means that the 
slope of 2X  depends linearly on 1X . Taking 1X  as the common factor instead of 2X  shows 
that the slope of 1X  depends linearly on 2X . In other words, a pairwise interaction between 
two variables means that the other variable affects the effect of the other one. If two 
variables don’t interact, their effects are said to be additive. Fig. 7 depicts additive and 
interacting variables. 

In problems of chemical or biological nature, it is more a rule than an exception that 
interactions between variables exist. Therefore, main effect models serve only as rough 
approximations, and are used typically in cases with a very high number of variables. It is 
also quite often useful to try to model some transformation of the response variable,  
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Fig. 7. Linear dependency of y on 1x and on 2x . Left panel: an additive case without 
interaction, right panel: a non-additive case. Blue line: 2x has a constant value, green line: 

2x has another constant value. 

typically a logarithm, or a Box-Cox transformation. Usually the aim is to find a 
transformation that makes the residuals as normal as possible. 

3.1.2 Analysing the results of two level factorial designs 

Two level factorial designs can be analysed either by analysis of variance (ANOVA) or by 
regression analysis. Using regression analysis is more straightforward, and we shall 
concentrate on it in the sequel. However, one should bear in mind that the interpretation of the 
estimated model parameter is different between quantitative and qualitative variables. 
Actually, due to the orthogonality of 2N  designs, regression analysis could be carried out 
quite easily even by hand using the well-known Yates algorithm, see e.g. (Box & Draper, 2007).  

Ordinary least squares regression (OLS) is the most common way to analyse results of 
orthogonal designs, but sometimes more robust techniques, e.g. minimizing the median of 
absolute values of the residuals, can be employed. Using latent variable techniques, e.g. PLS, 
doesn’t give any extra benefit with orthogonal designs. However, in some other kind of 
designs, typically optimal designs or mixture designs, latent variable techniques can be 
useful.  
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Fig. 7. Linear dependency of y on 1x and on 2x . Left panel: an additive case without 
interaction, right panel: a non-additive case. Blue line: 2x has a constant value, green line: 

2x has another constant value. 

typically a logarithm, or a Box-Cox transformation. Usually the aim is to find a 
transformation that makes the residuals as normal as possible. 
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regression analysis. Using regression analysis is more straightforward, and we shall 
concentrate on it in the sequel. However, one should bear in mind that the interpretation of the 
estimated model parameter is different between quantitative and qualitative variables. 
Actually, due to the orthogonality of 2N  designs, regression analysis could be carried out 
quite easily even by hand using the well-known Yates algorithm, see e.g. (Box & Draper, 2007).  

Ordinary least squares regression (OLS) is the most common way to analyse results of 
orthogonal designs, but sometimes more robust techniques, e.g. minimizing the median of 
absolute values of the residuals, can be employed. Using latent variable techniques, e.g. PLS, 
doesn’t give any extra benefit with orthogonal designs. However, in some other kind of 
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The mathematics and statistical theory behind regression analysis can be found in any basic 
textbook about regression analysis or statistical linear models see e.g. (Weisberg, 1985) or 
(Neter et. al., 1996). In this chapter we shall concentrate on applying and interpreting the 
results of OLS in DOE problems. However, it is always good to bear in mind the statistical 
assumptions behind the classical regression tests, i.e. approximately normally distributed 
and independent errors. The latter is more important, and dependencies between random 
errors can make the results of the tests completely useless. This fact is well illustrated in 
(Box et. al., 2005). Even moderate deviations from normality are usually not too harmful, 
unless they are caused by gross errors, i.e. by outliers. For this reason, normal probability 
plots, or other tools for detecting outliers, should always be included in validating the 
model. 

Since OLS is such a standard technique, a plethora of software alternatives exists for 
carrying out the regression analyses of the results of a given design. One can use general 
mathematics software like Matlab, Octave, Mathematica, Maple etc., or general purpose 
statistical software like S-plus, R, Statistica, MiniTab, SPSS, etc, or even spreadsheet 
programs like Excel or Open Office Calc. However, it is advisable to use software that 
contains those model validation tools that are commonly used with designed experiments. 
Practically all general mathematical or statistical software packages contain such tools. 

Quite often there are more than one response variables. In such cases, it is typical to estimate 
models for each response separately. If a multivariate response is a ‘curve’, e.g. a spectrum 
or a distribution, it may be simpler to use latent variable methods, typically PLS or PCR. 

This example is taken from Box & Draper (Box & Draper, 2007). 

3.2 Model validation 

Model validation is an essential part of analysing the results of a design. It should be noted 
that most of the techniques presented in this section can be used with all kinds of designs, 
not only with 2N  designs.   

In the worst case, the validation yields the conclusion that the design variables have no 
effect on the response(s), significantly different from random variation. In such a case, one 
has to consider the following alternatives: 1) to increase the step sizes in the design 
variables, 2) to replicate the experiments one or more times, or 3) to make a new design with 
new design variables. In the opposite case, i.e. the model and at least some of the design 
variables are found to be statistically significant, the continuation depends on the scope of 
the design, and on the results of the (regression) analysis. The techniques used for 
optimization tasks are presented in subsequent sections. 

3.2.1 Classical statistical tests 

Classical statistical tests can be applied mainly to validate regression models that are linear 
with respect to the model parameters. The most common empirical models used in DOE are 
linear models (main effect models), linear plus interactions models, and quadratic models. 
They all are linear with respect to the parameters. The most useful of these (in DOE context) 
are 1) t-tests for testing the significance of the individual terms of the model, 2) the lack-of-fit 
test for testing the model adequacy, and 3) outlier tests based on so-called externally 
studentized residuals, see e.g. (Neter et. al., 1996).  
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The t-test for testing the significance of the individual terms of the model is based on the test 
statistic that is calculated by dividing a regression coefficient by its standard deviation. This 
statistic can be shown to follow the t-distribution with 1 n p  degrees of freedom where n 
is the number experiments, and p is the number of model parameters. If the model doesn’t 
contain an intercept, the number of degrees of freedom is n p .  Typically, a term in the 
model is considered significant if the p-value of the test statistic is below 0.05. 

The standard errors of the coefficients are usually based on the residual error. If the design 
contains a reasonable number of replicates this estimate can also be based on the standard 
error of the replicates. The residual based standard error of the i’th regression coefficient 

ibs  
can be easily transformed into replicate error based ones by the formula /

iE R bMS MS s . In 
this case the degrees of freedom are 1rn   (the symbols are explained in the next 
paragraph). 

The lack-of fit test can be applied only if the design contains replicate experiments which 
permit estimation of the so-called pure error, i.e. an error term that is free from modelling 
errors. Assuming that the replicate experiments are included in regression, the calculations 
are carried out according to the following equations. First calculate the pure error sum of 
squares ESS  
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where rn  is the number of replicates, iy ’s are outcomes of the replicate experiments, and y  
is the mean value of the replicate experiments. The number of degrees of freedom of ESS is 

1rn . Then calculate the residual sum of squares RSS : 
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where n is the number of experiments and ŷ ’s are the fitted values, i.e. the values 
calculated using the estimated model. The number of degrees of freedom of RSS is 

1 n p , or n p  if the model doesn’t contain an intercept. Then calculate the lack-of-fit 
sum of squares LOFSS : 

  LOF R ESS SS SS  (6) 

The number of degrees of freedom of LOFSS  is 1  rn n p , or  rn n p  if the model 
doesn’t contain an intercept. Then, calculate the lack-of-fit mean squares LOFMS  and the 
pure error mean squares EMS  by dividing the corresponding sums of squares by their 
degrees of freedom. Finally, calculate the lack-of-fit test statistic /LOF LOF EF MS MS . It can 
be shown that LOFF  follows an F-distribution with 1  rn n p  (or  rn n p ) and 1rn  
degrees of freedom. If LOFF  is significantly greater than 1, it is said that the model suffers 
from lack-of-fit, and if it is significantly less than 1, it is said that the model suffers from 
over-fit. 
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An externally studentized residual is a deleted residual, i.e. residual calculated using leave-
one-out cross-validation, divided the standard error of deleted residuals. It can be shown 
that the externally studentized residuals follow a t-distribution with 2 n p  degrees of 
freedom, or 1 n p  degrees of freedom if the model doesn’t contain an intercept. If the p-
value of an externally studentized residual is small enough, the result of the corresponding 
experiment is called an outlier. Typically, outliers should be removed, or the corresponding 
experiments should be repeated. If the result of a repeated experiment still gives an outlying 
value, it is likely that model suffers from lack-of-fit. Otherwise, the conclusion is that 
something went wrong in the original experiment. 

3.2.2 Cross-validation 

Cross-validation is familiar to all chemometricians. However, in using cross-validation 
for validating results of designed experiments some important issues should be 
considered. First, cross-validation requires extra degrees of freedom, and consequently 
all candidate models cannot be cross-validated. For example, in a 22  design, a model 
containing linear terms and the pairwise interaction cannot be cross-validated. 
Secondly, often the designs become severely unbalanced, when observations are left 
out. For example, in a 22  design with a centre point, the model containing linear terms 
and the pairwise interaction can be cross-validated, but when the corner point (+1, +1) 
is left out, the design is very weak for estimating the interaction term; in such cases the 
results of cross-validation can be too pessimistic. On the other hand, replicated 
experiments may give too optimistic results in cross-validation, as the design variable 
combinations corresponding to replicate experiments are never left out. This problem 
can be easily avoided by using the response averages instead of individual responses of 
the replicated experiments. 

Usually only statistically significant terms are kept in the final model. However, it is also 
common to include mildly non-significant terms in the model, if keeping such terms 
improves cross-validated results. 

3.2.3 Normal probability plots 

Normal probability plots, also called normal qq-plots, can be used to study either the 
regression coefficients or the residuals (or deleted residuals). The former is typically used in 
saturated models where ordinary t-tests cannot be applied. Normal probability plots are 
constructed by first sorting the values from the smallest to largest. Then the proportions 

 0.5 / ip i n  are calculated, where n is the number of the values, and i is the ordinal 
number of a sorted value, i.e. 1 for the smallest value and n for the largest value (subtracting 
0.5 is called the continuity correction). Then the normal score, i.e. inverse of ip  using the 
standard normal distribution, is calculated. Finally, the values are plotted against the 
normal scores. If the distribution of the values is normal, the points lie approximately on a 
straight line. The interpretation in the former case is that the leftmost or the rightmost values 
that do not follow a linear pattern represent significant terms. In the latter case, the same 
kind of values represent outlying residuals. 
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3.2.4 Variable selection 

If the design is orthogonal, or nearly orthogonal, removing or adding terms into the model 
doesn’t affect the significance of the other terms. This is also the case if the estimates of the 
standard error of the coefficients are based on the standard error of the estimates (cf. 3.2.1). 
Therefore, variable selection based on significance is very simple; just take the variables 
significant enough, without worrying about e.g. the order of taking terms into a model. 
Because models based on designed experiments are often used for extrapolatory prediction, 
one should, whenever possible, test the models using cross-validation. However, one should 
bear in mind the limitations of cross-validation when it is applied to designed experiments 
(cf. 3.2.2). In addition, it is wise also to test models with almost significant variables using 
cross-validation, since sometimes such models have better predictive power. 

If the design is not orthogonal, traditional variable (feature) selection techniques can be 
used, e.g. forward, backward, stepwise, or all checking possible models (total search). 
Naturally, the selection can be based on different criteria, e.g. Mallows pC , PRESS, 2R , 2Q , 
Akaike’s information etc., see e.g. (Weisberg, 1985). If models are used for extrapolatory 
prediction, a good choice for a criterion is to minimize PRESS or maximize 2Q . In many 
cases of DOE modelling, the number of possible model terms, typically linear, pair-wise 
interaction, and quadratic terms, is moderate. For example, a full quadratic model for 4 
variables has 14 terms, plus the intercept. Thus the number of all possible sub-models is 214 
which is 16384. In such cases, with the speed of modern computers, it is easy to test all sub-
models with respect to the chosen criterion. However, if the number of variables is greater, 
going through all possible regression models becomes impossible in practice. In such cases, 
one can use genetic algorithms, see e.g. (Koljonen & al., 2008).  

Another approach is to use latent variable techniques, e.g. PLS or PCR, in which the 
selection of the dimension replaces the selection of variables. Although variable selection 
seems more natural, and is more commonly used in typical applications of DOE than latent 
variable methods, neither of the approaches have been proved generally better. Therefore, it 
is good to try out different approaches, combined with proper model validation techniques. 

A third alternative is to use shrinkage methods, i.e. different forms of ridge regression. 
Recently, new algorithms based on L1 norm have been developed, including such as LASSO 
(Tibshirani, 1996), LARS (Efron & al., 2004), or elastic nets (Zou & al., 2005). Elastic nets use 
combinations of L1 and L2 norm penalties. Penalizing the least squares solution by the L1 
norm of the regression coefficient tends to make the non-significant terms zero which 
effectively means selecting variables. 

In a typical application of DOE, the responses are multivariate in a way that they represent 
individual features which, in turn, typically depend on different variable combinations of 
the design variables. In such cases, it is better to build separate models for each response, i.e. 
the significant variables have to be selected separately for each response. However, if the 
response is a spectrum, or an object of similar nature, variable selection should usually be 
carried out for all responses simultaneously, using e.g. PLS regression or some other 
multivariate regression technique. In such cases, there’s an extra problem of combining the 
individual criteria of the goodness of fit into a single criterion. In many cases, a weighted 
average of e.g. the RMSEP values, i.e. the standard residual errors in cross-validation, of the 
individual responses is a good choice, e.g. using signal to noise ratios as weights. 
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3.2.5 An example of a 2N design 

As a simple example of a 2N  design we take a 22  design published in the Brazilian Journal of 
Chemical Engineering (Silva et. al., 2011).  In this study the ethanol production by Pichia 
stipitis was evaluated in a stirred tank bioreactor using semi defined medium containing 
xylose (90.0 g/l) as the main carbon source. Experimental assays were performed according to 
a 22  full factorial design to evaluate the influence of aeration (0.25 to 0.75 vvm) and agitation 
(150 to 250 rpm) conditions on ethanol production. The design contains also a centre point 
(0.50 vvm and 200 rpm), and in a replication of the (+1, +1) experiment. It should be noted that 
this design is not fully orthogonal due the exceptional selection of the replication experiment 
(the design would have been orthogonal, if the centre point had been replicated).   

The results of the design are given in Table 3 below (X1 and X2 refer to aeration and 
agitation in coded levels, respectively). 
 

Assay Aeration Agitation X1 X2 Production (g/l) 
1 0.25 150 -1 -1 23.0 
2 0.75 150 1 -1 17.7 
3 0.25 250 -1 1 26.7 
4 0.75 250 1 1 16.2 
5 0.75 250 1 1 16.1 
6 0.50 200 0 0 19.4 

Table 3. A 22  design. 

Fig. 8 shows the effect of aeration at the two levels of agitation. From the figure, it is clear 
that aeration has much greater influence on productivity (Production) than agitation. It also 
shows an interaction between the variables. Considering the very small difference in the 
response between the two replicate experiments, it is plausible to consider both aeration and 
the interaction between aeration and agitation significant effects. 

 
Fig. 8. Production vs. aeration. Blue solid line: Agitation = 150; red dashed line: Agitation = 250. 
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If we carry out classical statistical tests used in regression analysis, it should be remembered 
that the design has only one replicated experiment, and consequently very few degrees of 
freedom for the residual error. Testing lack-of-fit, or nonlinearity, is also unreliable because 
we can estimate the (pure) experimental error with only one degree of freedom. However, it 
is always possible to use common sense and investigations about the effects on relative 
basis. For example, the difference between the centre point result and the mean value of the 
other (corner point) results is only 0.45 which is relatively small compared to differences 
between the corner points. Therefore, it is highly unlikely that the behaviour would be 
nonlinear within the experimental region. Consequently, it is likely that the model doesn’t 
suffer from lack-of-fit, and a linear plus interaction model should suffice.  

Now, let us look at the results of the regression analyses of a linear plus interaction model 
(model 1), the same model without the agitation main effect (model 2), and the model with 
aeration only (model 3). The regression analyses are carried out using basic R and some 
additional DOE functions written by the author (these DOE functions, including the R-
scripts of all examples of this chapter, are available from the author upon request).  

The R listing of the summary of the regression models 1, 2 and 3 are given in Tables 4-6 
below. Note that values of the regression coefficients of the same effects vary a little between 
the models. This is due to the fact that design is not fully orthogonal. In an orthogonal 
design, the estimates of the same regression coefficients will not change when terms are 
dropped out. 

 
 

 Estimate Std. Error t value p value 
(Intercept) 20.6205 0.4042 51.015 0.000384 

X1 -3.9244 0.4454 -8.811 0.012638 
X2 0.5756 0.4454 1.292 0.325404 

I(X1 * X2) -1.2744 0.4454 -2.861 0.325404 
Residual standard error: 0.9541 on 2 degrees of freedom 
Multiple R-squared: 0.9796,     Adjusted R-squared: 0.9489 
F-statistic: 31.95 on 3 and 2 DF,  p-value: 0.03051 

 

Table 4. Regression summary of model 1 (I(X1 * X2) denotes interaction between X1 and X2). 

 
 

 Estimate Std. Error t value p value 
(Intercept) 20.6882 0.4433 46.668 2.17e-05 

X1 -3.8397 0.4873 -7.879 0.00426 
I(X1 * X2) -1.1897 0.4873 -2.441 0.09238 

Residual standard error: 1.055 on 3 degrees of freedom 
Multiple R-squared: 0.9625,     Adjusted R-squared: 0.9375 
F-statistic: 38.48 on 2 and 3 DF,  p-value: 0.007266 

 

Table 5. Regression summary of model 2 (I(X1 * X2) denotes interaction between X1 and X2). 
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3.2.5 An example of a 2N design 

As a simple example of a 2N  design we take a 22  design published in the Brazilian Journal of 
Chemical Engineering (Silva et. al., 2011).  In this study the ethanol production by Pichia 
stipitis was evaluated in a stirred tank bioreactor using semi defined medium containing 
xylose (90.0 g/l) as the main carbon source. Experimental assays were performed according to 
a 22  full factorial design to evaluate the influence of aeration (0.25 to 0.75 vvm) and agitation 
(150 to 250 rpm) conditions on ethanol production. The design contains also a centre point 
(0.50 vvm and 200 rpm), and in a replication of the (+1, +1) experiment. It should be noted that 
this design is not fully orthogonal due the exceptional selection of the replication experiment 
(the design would have been orthogonal, if the centre point had been replicated).   

The results of the design are given in Table 3 below (X1 and X2 refer to aeration and 
agitation in coded levels, respectively). 
 

Assay Aeration Agitation X1 X2 Production (g/l) 
1 0.25 150 -1 -1 23.0 
2 0.75 150 1 -1 17.7 
3 0.25 250 -1 1 26.7 
4 0.75 250 1 1 16.2 
5 0.75 250 1 1 16.1 
6 0.50 200 0 0 19.4 

Table 3. A 22  design. 

Fig. 8 shows the effect of aeration at the two levels of agitation. From the figure, it is clear 
that aeration has much greater influence on productivity (Production) than agitation. It also 
shows an interaction between the variables. Considering the very small difference in the 
response between the two replicate experiments, it is plausible to consider both aeration and 
the interaction between aeration and agitation significant effects. 

 
Fig. 8. Production vs. aeration. Blue solid line: Agitation = 150; red dashed line: Agitation = 250. 
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If we carry out classical statistical tests used in regression analysis, it should be remembered 
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 Estimate Std. Error t value p value 
(Intercept) 20.5241 0.6558 31.3 6.21e-06 

X1 -4.0448 0.7184 -5.63 0.0049 
Residual standard error: 1.579 on 4 degrees of freedom 
Multiple R-squared: 0.8879,     Adjusted R-squared: 0.8599 
F-statistic: 38.48 on 1 and 4 DF,  p-value: 0.004896 

Table 6. Regression summary of model 3. 

The residual standard error is approximately 1 g/l in models 1 and 2. This seems quite high 
compared to the variation in replicate experiments (16.2 and 16.1 g/l) corresponding to the 
pure experimental pure error standard deviation of ca. 0.071 g/l. The calculations of a lack-
of-fit test for model 2 are the following: The residual sum of squares (SSRES) is 3·1.0552 = 
3.339. The pure error sum of squares (SSE) is 1·0.0712 = 0.005. The lack-of-fit sum of squares 
(SSLOF) is 3.339-0.005 = 3.334. The corresponding mean squares are SSLOF/( dfRES- dfE) = 
SSLOF/(3-1) = 3.334/2 = 1.667 and the lack-of-fit F-statistic is MSLOF/MSE = 1.667/0.005 = 
333.4 having 2 and 1 degrees of freedom. The corresponding p-value is 0.039 which is 
significant at the 0.05 level of significance. Thus, a formal lack-of-fit test exhibits significant 
lack-of-fit, but one must keep in mind that estimating standard deviation from only two 
observations is very unreliable. The lack-of-fit p-values for models 1 and 3 are 0.033 and 
0.028, respectively, i.e. the lack-of-fit is least significant in model 2. 

The effect of aeration (X1) is significant in all models, and according to model 1 it is obvious 
that agitation doesn’t have a significant effect on productivity. The interaction term is not 
significant in any of the models; however, it is not uncommon to include terms whose p-
values are between 0.05 and 0.10 in models used for designing new experiments. The results 
of the new experiments would then either support or contradict the existence of an 
interaction. 

Carrying out the leave-one-out (loo) cross-validation, gives the following Q2 values  
(Table 7). 
 

Model R2 Q2 

1 98.0 -22.0 

2 96.2 84.5 

3 88.8 68.1 

Table 7. Comparison of R2 and Q2 values between model 1-3. 

Fig. 9 shows the fitted and CV-predicted production values and the corresponding residual 
normal probability plots of models 1-3. By cross-validation, the model 2, i.e. 

0 1 1 12 1 2  y b b X b X X , is the best one. Finally, Fig. 10 shows the contour plot of the best 
model, model 2. 
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Fig. 9. Cross-validation of models 1-3. Left panel: Production vs. the number of experiment; 
black circles: data; blue triangles: fitted values; red pluses: cross-validated leave-one-out 
prediction. Right panel: Normal probability plots of the cross-validated leave-one-out 
residuals. 
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Fig. 10. Production vs. Aeration and Agitation. 

3.3 Fractional 2N designs (2N-p designs) 

The number of experiments in 2N designs grows rapidly with the number of variables N. 
This problem can be avoided by choosing only part of the experiments of the full design. 
Naturally, using only a fraction of the full design, information is lost. The idea behind 
fractional 2N designs is to select the experiments in a way that the information lost is related 
only to higher order interactions which seldom represent significant effects.  

3.3.1 Generating 2N-p designs 

The selection of experiments in 2N-p designs can be accomplished by using so-called 
generators (see e.g. Box & al., 2005). A generator is an equation between algebraic elements 
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that represent variable effects, typically denoted by bold face numbers or upper case letters. 
For example 1 denotes the effect of variable 1. If there are more than 9 variables in the 
design, brackets are used to avoid confusion, i.e. we would use (12) instead of 12 to 
represent the effect of the variable 12. The bold face letter I represents the average response, 
i.e. the intercept of the model when coded variables are used. The generator elements 
(effects) follow the following algebraic rules of ‘products’ between the effects. 

The effects are commutative, e.g. 12 = 21 
The effects are associative, e.g. (12)3 = 1(23) 
I is a neutral element, e.g. I2 = 2 
Even powers produce the neutral element, e.g. 22 = I or 2222 = I (naturally, for example  
222 = 2) 

Now, a generator of a design is an equation between a product of effects and I, for example 
123 = I. The interpretation of a product, also called a word, is that of a corresponding 
interaction between the effects. Thus, for example, 123 = I means that the third order 
interaction between variables 1-3 is confounded with the mean response in a design 
generated using this generator. Confounding (sometimes called aliasing) means that the 
confounding effects cannot be estimated unequivocally using this design. For example, in a 
design generated by 123 = I the model cannot contain both an intercept and a third order 
interaction. If the model is deliberately chosen to have both an intercept and the third order 
interaction term, there is no way to tell whether the estimate of the intercept really 
represents the intercept or the third order interaction.  

Furthermore, any equation derived from the original generator, using the given algebraic 
rules, gives a confounding pattern. For example multiplying both sides of 123 = I by 1 gives 
1123 = 1I. Using the given rules this simplifies into I23 = 1I and then into 23 = 1. Thus, in a 
design with this generator the pairwise interaction between variable 2 and 3 is confounded 
with variable 1. Multiplying the original generator by 2 and 3 it is easy to see that all 
pairwise interactions are confounded with main effects (2 with 13 and 3 with 12) in this 
design. Consequently, the only reasonable model whose parameters can be estimated 
unequivocally, is the main effect model 0 1 1 2 2 3 3   y b b X b X b X . Technically possible 
alternative models, but hardly useful in practice, would be e.g. 

0 1 1 2 2 12 1 2   y b b X b X b X X  or 123 1 2 3 1 1 2 2 3 3   y b X X X b X b X b X .  

A design can be generated using more than one generator. Each generator halves the 
number of experiments. For example, a design with two generators has only ¼ of the 
original number of experiments in the corresponding full 2N design. If p is the number of 
generators, the corresponding fractional 2N design is denoted by 2N-p.  

In practice, 2N-p designs are constructed by first making a full 2N design table and then 
adding columns that contain the interaction terms corresponding to the generator words. 
Then only those experiments (rows) are selected where all interaction terms are +1. 
Alternatively one can choose the experiments where all interaction terms are -1. As an 
example, let us construct a 23-1 design with the generator 123 = I. The full design table 
with an additional column containing the three-way interaction term is given in  
Table 8. 
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Table 8. 
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1x  2x  3x  1 2 3x x x  

-1 -1 -1 -1 
-1 -1 +1 +1 
-1 +1 -1 +1 
-1 +1 +1 -1 
+1 -1 -1 +1 
+1 -1 +1 -1 
+1 +1 -1 -1 
+1 +1 +1 +1 

Table 8. A table for constructing a 23-1 design. 

Now, the desired design table is obtained by deleting the rows 1, 4, 6 and 7. An alternative 
design is obtained by deleting the rows 2, 3, 5 and 8. 

3.3.2 Confounding (aliasing) and resolution 

An important concept related to 2N-p designs is the resolution of a design, denoted by roman 
numerals. Technically, resolution is the minimum word length of all possible generators 
derived from the original set of generators. For design with a single generator, finding out 
the resolution is easy. For example, the resolution of the 23-1 design with the generator 123 = 
I is III because the length of the word 123 is 3 (note that e.g. (12) would be counted as a 
single letter in a generator word). If there are more generators than one, the situation is 
more complicated. For example, if the generators in a 25-2 design were 1234 = I and 1235 = I, 
then the equation 1234 = 1235 would be true which after multiplying both sides 1235 gives 
45 = I. Thus the resolution of this design would be II. Naturally, this would be a really bad 
design with confounding main effects.  

The interpretation of the resolution of a design is (designs of resolution below III are 
normally not used) 

 If the resolution is III, only a main effect model can be used 
 If the resolution is IV, a main effect model with half of all the pairwise interaction 

effects can be used 
 If the resolution is V or higher, a main effect model with all pairwise interaction effects 

can be used 

If the resolution is higher than V also at least some of the higher order interaction can be 
estimated. There are many sources of tables listing 2N-p designs and their confounding 
patterns, e.g. Table 3.17 in (NIST SEMATCH). Usually these tables give so-called minimum 
aberration designs, i.e. designs that minimize the number of short words in all possible 
generators of a design with given N and p. 

3.3.3 Example 

This example is taken from (Box & Draper, 2007) (Example 5.2 p. 189), but the analysis is not 
completely identical to the one given in the book. 
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The task was to improve the yield (y) (in percentage) of a laboratory scale drug synthesis. 
The five design variables were the reaction time (t), the reactor temperature (T), the 
amount of reagent B (B), the amount of reagent C (C), and the amount of reagent D (D). 
The chosen design levels in a two level fractional factorial design are given in Table 9 
below. 
 

Coded Original Lower (-1) Upper (+1) Formula 

X1 t 6 h 10 h 1
8

2



tX  

X2 T 85⁰C 90⁰C 2
87.5

2.5



TX  

X3 B 30 ml 60 ml 3
45

15



BX  

X4 C 90 ml 115 ml 4
102.5

12.5



CX  

X5 D 40 g 50 g 5
45

5



DX  

Table 9. The variable levels of example 3.3.3. 

The design was chosen to be a fractional resolution V design (25-1) with the generator I = 
12345. The design table in coded units, including the yields and the run order of the 
experiments is given in Table 10 ( y stands for the yield). 
 

order X1 X2 X3 X4 X5 y 
16 -1 -1 -1 -1 1 51.8 
2 1 -1 -1 -1 -1 56.3 
10 -1 1 -1 -1 -1 56.8 
1 1 1 -1 -1 1 48.3 
14 -1 -1 1 -1 -1 62.3 
8 1 -1 1 -1 1 49.8 
9 -1 1 1 -1 1 49.0 
7 1 1 1 -1 -1 46.0 
4 -1 -1 -1 1 -1 72.6 
15 1 -1 -1 1 1 49.5 
13 -1 1 -1 1 1 56.8 
3 1 1 -1 1 -1 63.1 
12 -1 -1 1 1 1 64.6 
6 1 -1 1 1 -1 67.8 
5 -1 1 1 1 -1 70.3 
11 1 1 1 1 1 49.8 

Table 10. The design of example 3.3.3 in coded units. 

Since the resolution of this design is V, we can estimate a model containing linear and pair-
wise interaction effects. However the design is saturated with respect to this model, and 
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X4 C 90 ml 115 ml 4
102.5

12.5



CX  

X5 D 40 g 50 g 5
45

5



DX  

Table 9. The variable levels of example 3.3.3. 

The design was chosen to be a fractional resolution V design (25-1) with the generator I = 
12345. The design table in coded units, including the yields and the run order of the 
experiments is given in Table 10 ( y stands for the yield). 
 

order X1 X2 X3 X4 X5 y 
16 -1 -1 -1 -1 1 51.8 
2 1 -1 -1 -1 -1 56.3 
10 -1 1 -1 -1 -1 56.8 
1 1 1 -1 -1 1 48.3 
14 -1 -1 1 -1 -1 62.3 
8 1 -1 1 -1 1 49.8 
9 -1 1 1 -1 1 49.0 
7 1 1 1 -1 -1 46.0 
4 -1 -1 -1 1 -1 72.6 
15 1 -1 -1 1 1 49.5 
13 -1 1 -1 1 1 56.8 
3 1 1 -1 1 -1 63.1 
12 -1 -1 1 1 1 64.6 
6 1 -1 1 1 -1 67.8 
5 -1 1 1 1 -1 70.3 
11 1 1 1 1 1 49.8 

Table 10. The design of example 3.3.3 in coded units. 

Since the resolution of this design is V, we can estimate a model containing linear and pair-
wise interaction effects. However the design is saturated with respect to this model, and 
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thus the model cannot be validated by statistical tests, or by cross-validation. The regression 
summary is given Table 11. 
 

 Estimate Std. Error t value p value 
(Intercept) 57.1750 NA NA NA 

t -3.3500 NA NA NA 
T -2.1625 NA NA NA 
B 0.2750 NA NA NA 
C 4.6375 NA NA NA 
D -4.7250 NA NA NA 

I(t * T) 0.1375 NA NA NA 
I(t * B) -0.7500 NA NA NA 
I(T * B) -1.5125 NA NA NA 
I(t * C) -0.9125 NA NA NA 
I(T * C) 0.3500 NA NA NA 
I(B * C) 1.0375 NA NA NA 
I(t * D) 0.2500 NA NA NA 
I(T * D) 0.6875 NA NA NA 
I(B * D) 0.5750 NA NA NA 
I(C * D) -1.9125 NA NA NA 

Residual standard error: NaN on 0 degrees of freedom 
Multiple R-squared:     1,      Adjusted R-squared:   NaN 
F-statistic:   NaN on 15 and 0 DF,  p-value: NA 

Table 11. Regression summary of the linear plus pairwise interactions model. NA stands for 
“not available”. 

Because the design is saturated with respect to the linear plus pairwise interactions model 
there are no degrees of freedom for any regression statistics. Therefore, for selecting the 
significant terms we have to use either a normal probability plot of the estimated values of 
the regression coefficient or variable selection techniques. We chose to use forward selection 
based on the Q2 value. This technique gave the maximum Q2 value in a model with 4 linear 
terms and 7 pairwise interaction terms. However, after 6 terms the increase in the Q2 value 
is minimal, and in order to avoid over-fitting we chose to use the model with 6 terms. The 
chosen terms were the main effects of t, T, C and D, and the interaction effects between C 
and D and between T and B. This model has a Q2 value  83.8 % and the regression summary 
for this model is given in Table 12. 

All terms in the model are now statistically significant at 5 % significance level, and the 
predictive power of the model is fairly good according the Q2 value . Section 4.3 shows how 
this model has been used in search for improvement. 

3.4 Plackett-Burman (screening) designs 

If the number of variables is high, and the aim is to select the most important variables for 
further experimentation, usually only the main effects are of interest. In such cases the most 
cost effective choice is to use designs that have as many experiments as there are parameters in  
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 Estimate Std. Error t value p value 
(Intercept) 57.1750 0.6284 90.980 1.19e-14 

t -3.3500 0.6284 -5.331 0.000474 
T -2.1625 0.6284 -3.441 0.007378 
C 4.6375 0.6284 7.379 4.19e-05 
D -4.7250 0.6284 -7.519 3.62e-05 

I(T * B) -1.5125 0.6284 -2.407 0.039457 
I(C * D) 1.9125 0.6284 -3.043 0.013944 

Residual standard error: NaN on 0 degrees of freedom 
Multiple R-squared:     1,      Adjusted R-squared:   NaN 

F-statistic:   NaN on 15 and 0 DF,  p-value: NA 

Table 12. Regression summary of the 6 terms model. 

the corresponding main effect model, i.e. N+1 experiments. It can be proved that such 
designs that are also orthogonal exist in multiples of 4, i.e. for 3, 7, 11, … variables having 4, 
8, 12, … experiments respectively. The ones in which the number of experiments is a power 
of 2 are actually 2N-p designs. Thus for example a Plackett-Burman design for 3 variables that 
has 8 = 23 experiments is a 23-1 design. General construction of Plackett-Burman designs is 
beyond the scope of this chapter. The interested reader can refer to e.g. section 5.3.3.5 in 
(NIST SEMATECH). Plackett-Burman designs are also called 2-level Taguchi designs or 
Hadamard matrices. 

3.5 Blocking 

Sometimes uncontrolled factors, such as work shifts, raw material batches, differences in 
pieces of equipment, etc., may affect the results. In such cases the effects of such variables 
should be taken into account in the design. If the design variables are qualitative, such 
classical designs as randomized blocks design, Latin square design, or Graeco-Latin square 
design can be used, see e.g. (Montgomery, 1991). If the design variables are quantitative, a 
common technique is to have extra columns (variables) for the uncontrolled variables. For 
2N and CC-designs, tables of different blocking schemes exist, see e.g. section 5.3.3.3.3. in 
(NIST SEMATECH). 

3.6 Sizing designs 

An important issue in DOE is the total number of experiments, i.e. the size of a design. 
Sizing can be based on predictive power, or on the power of detecting differences of 
predefined size Δ. The latter is more commonly used, and many commercial DOE software 
packages have tools for determining the required number of estimates in such a way that 
the statistical power, i.e. 1   (   is the probability of type II error), has a desired value at a 
given level of significance  . For pairwise comparisons, exact methods based on the non-
central t-distribution exist. For example, in R the function called power.t.test can be used to 
find the number of experiments needed in pairwise comparisons. For multiple comparisons, 
one can use the so-called Wheeler’s formula (Wheeler, 1974) for an estimate of the required 
number of experiments n:  24 / n r  where r is the number of levels of a factor,   is the 
experimental standard deviation, and   is size of the difference. The formula assumes that 
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thus the model cannot be validated by statistical tests, or by cross-validation. The regression 
summary is given Table 11. 
 

 Estimate Std. Error t value p value 
(Intercept) 57.1750 NA NA NA 

t -3.3500 NA NA NA 
T -2.1625 NA NA NA 
B 0.2750 NA NA NA 
C 4.6375 NA NA NA 
D -4.7250 NA NA NA 

I(t * T) 0.1375 NA NA NA 
I(t * B) -0.7500 NA NA NA 
I(T * B) -1.5125 NA NA NA 
I(t * C) -0.9125 NA NA NA 
I(T * C) 0.3500 NA NA NA 
I(B * C) 1.0375 NA NA NA 
I(t * D) 0.2500 NA NA NA 
I(T * D) 0.6875 NA NA NA 
I(B * D) 0.5750 NA NA NA 
I(C * D) -1.9125 NA NA NA 

Residual standard error: NaN on 0 degrees of freedom 
Multiple R-squared:     1,      Adjusted R-squared:   NaN 
F-statistic:   NaN on 15 and 0 DF,  p-value: NA 

Table 11. Regression summary of the linear plus pairwise interactions model. NA stands for 
“not available”. 

Because the design is saturated with respect to the linear plus pairwise interactions model 
there are no degrees of freedom for any regression statistics. Therefore, for selecting the 
significant terms we have to use either a normal probability plot of the estimated values of 
the regression coefficient or variable selection techniques. We chose to use forward selection 
based on the Q2 value. This technique gave the maximum Q2 value in a model with 4 linear 
terms and 7 pairwise interaction terms. However, after 6 terms the increase in the Q2 value 
is minimal, and in order to avoid over-fitting we chose to use the model with 6 terms. The 
chosen terms were the main effects of t, T, C and D, and the interaction effects between C 
and D and between T and B. This model has a Q2 value  83.8 % and the regression summary 
for this model is given in Table 12. 

All terms in the model are now statistically significant at 5 % significance level, and the 
predictive power of the model is fairly good according the Q2 value . Section 4.3 shows how 
this model has been used in search for improvement. 

3.4 Plackett-Burman (screening) designs 

If the number of variables is high, and the aim is to select the most important variables for 
further experimentation, usually only the main effects are of interest. In such cases the most 
cost effective choice is to use designs that have as many experiments as there are parameters in  
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 Estimate Std. Error t value p value 
(Intercept) 57.1750 0.6284 90.980 1.19e-14 

t -3.3500 0.6284 -5.331 0.000474 
T -2.1625 0.6284 -3.441 0.007378 
C 4.6375 0.6284 7.379 4.19e-05 
D -4.7250 0.6284 -7.519 3.62e-05 

I(T * B) -1.5125 0.6284 -2.407 0.039457 
I(C * D) 1.9125 0.6284 -3.043 0.013944 

Residual standard error: NaN on 0 degrees of freedom 
Multiple R-squared:     1,      Adjusted R-squared:   NaN 

F-statistic:   NaN on 15 and 0 DF,  p-value: NA 

Table 12. Regression summary of the 6 terms model. 

the corresponding main effect model, i.e. N+1 experiments. It can be proved that such 
designs that are also orthogonal exist in multiples of 4, i.e. for 3, 7, 11, … variables having 4, 
8, 12, … experiments respectively. The ones in which the number of experiments is a power 
of 2 are actually 2N-p designs. Thus for example a Plackett-Burman design for 3 variables that 
has 8 = 23 experiments is a 23-1 design. General construction of Plackett-Burman designs is 
beyond the scope of this chapter. The interested reader can refer to e.g. section 5.3.3.5 in 
(NIST SEMATECH). Plackett-Burman designs are also called 2-level Taguchi designs or 
Hadamard matrices. 

3.5 Blocking 

Sometimes uncontrolled factors, such as work shifts, raw material batches, differences in 
pieces of equipment, etc., may affect the results. In such cases the effects of such variables 
should be taken into account in the design. If the design variables are qualitative, such 
classical designs as randomized blocks design, Latin square design, or Graeco-Latin square 
design can be used, see e.g. (Montgomery, 1991). If the design variables are quantitative, a 
common technique is to have extra columns (variables) for the uncontrolled variables. For 
2N and CC-designs, tables of different blocking schemes exist, see e.g. section 5.3.3.3.3. in 
(NIST SEMATECH). 

3.6 Sizing designs 

An important issue in DOE is the total number of experiments, i.e. the size of a design. 
Sizing can be based on predictive power, or on the power of detecting differences of 
predefined size Δ. The latter is more commonly used, and many commercial DOE software 
packages have tools for determining the required number of estimates in such a way that 
the statistical power, i.e. 1   (   is the probability of type II error), has a desired value at a 
given level of significance  . For pairwise comparisons, exact methods based on the non-
central t-distribution exist. For example, in R the function called power.t.test can be used to 
find the number of experiments needed in pairwise comparisons. For multiple comparisons, 
one can use the so-called Wheeler’s formula (Wheeler, 1974) for an estimate of the required 
number of experiments n:  24 / n r  where r is the number of levels of a factor,   is the 
experimental standard deviation, and   is size of the difference. The formula assumes that 
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the level of significance   is 0.05, and the power 1    is 0.90.  Wheeler gives also formulas 
for several other common design/model combinations (Wheeler, 1974).  

4. Improving results by steepest ascent 

If the goal of the experimentation has been to optimize something, the next step after 
analysing the results of a 2N  or a fractional 2N  design is to try to make improvement using 
knowledge provided by the analysis. The most common technique is the method of steepest 
ascent, also called the gradient (path) method. 

4.1 Calculating the gradient path 

It is well known from calculus that the direction of the steepest ascent on a response surface 
is given by the gradient vector, i.e. the vector of partial derivatives with respect to the design 
variables at a given point. The basic idea has been presented in section 3.2, and now we shall 
present the technical details. 

In principle, the procedure is simple. First we choose a starting point, say 0X , which 
typically is the centre point of the design. Then we calculate the gradient vector, say  at 
this point. Note that it is important to use coded variables in gradient calculations. Next, the 
gradient vector has to be scaled small enough in order to avoid zigzagging (see 2.2). This can 
be done by multiplying the corresponding unit vector, 0 /    , by a scaling factor, say 
c. Now, the gradient path points are obtained by calculating , 1,2, , 0X = X + i (i-1) c i n  
where n is the number of points. Once the points have been calculated, the experimental 
points are chosen from the path so that the distance between the points matches the desired 
step size, typically 1 in coded units. Naturally, the coded values have to be decoded into 
physical values having the original units before experimentation. 

4.2 Alternative improvement techniques 

Another principle in searching optimal new experiments is to use direct optimization 
techniques using the current model. In this approach, first the search region has to be 
defined. There are basically two different alternatives: 1) a hypercube whose centre is at the 
design centre with a given length for the sides of the hypercube, or 2) a hypersphere whose 
centre is at the design centre with a given radius. In the first alternative, typically the length 
of the side is first set to a value slightly over 2, say 3, giving mild extrapolation outside the 
experimental region. In the latter, typically the length of the radius is first set to a value 
slightly over 1, say 1.5, giving mild extrapolation outside the experimental region. 

If the model is a linear plus pair-wise interactions model, the solution can easily be shown to 
be one of the vertices of the hypercube in the hypercube approach. If the model is a 
quadratic one, and the optimum (according to the model) is not inside the hypercube, the 
solution is a point on one of the edges of the hypercube and a point on the hypersphere in 
the hypersphere approach. In both approaches, the solution is found most easily using some 
iterative constrained optimization tool, e.g. Excel’s Solver Tool. In the latter (hypersphere) 
approach, it is easy to show, using the Lagrange multiplier technique of constrained 
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optimization, that the optimal point Xopt  on the hypersphere of radius r is obtained by 
  12  X B I bopt  , where   is solved from the equation   1 2 22  B I b r . The notation is 

explained in section 5.2. Unfortunately,   must be solved numerically unless the model is 
linear. The benefit of using (numerical) iterative optimization in both approaches, or using 
the gradient path technique, is that they all work for all kind of models, not only for 
quadratic ones. 

4.3 Example 

Let us continue with the example of section 3.3.3 and see how the model can be used to 
design new experiments along the gradient path. The model of the previous example can be 
written (in coded variables) 

 0 1 1 2 2 4 4 5 5 23 2 3 45 4 5      y b b X b X b X b X b X X b X X  (7) 

The coefficients (b’s) refer to the values given in Table 12. The gradient, i.e. the direction of 
steepest ascent, is the vector of partial derivatives of the model with respect to the variables. 
Differentiating the expression given in Eq. 7 gives in matrix notation 

  1 2 23 3 23 2 4 45 5 5 45 4               Tb b b X b X b b X b b X  (8) 

Because this is a directional vector, it can be scaled to have any length. If we want it to have 
unit length, it must be divided by its norm, i.e. we use /  . Now, let us start the 
calculation of the gradient path from the centre of the design, where all coded values are 
zeros. Substituting numerical values into Eq. 8 gives 

  3.35  2.16   0.00   4.64   4.72    T  (9) 

The norm of this vector is ca. 7.73. Dividing Eq. 9 by its norm gives 

  0.43  0.28   0.00   0.60   0.61    T


 (10) 

These are almost the same values as in the example 6.3.2 in (Box & Draper, 2007) though we 
have used a different model with significant interaction terms included. The reason for this 
is that the starting point is the centre point where the interaction terms vanish because the 
coefficients are multiplied by zeros. 

The vector of Eq. 10 tells us that we should decrease the time by 0.43 coded units, the 
temperature by 0.28 coded units, and the amount of reagent D by 0.61 coded units and 
increase the amount of reagent C by 0.60 coded units.  Of course, there isn’t much sense to 
carry out this experiment because it is inside the experimental region. Therefore we shall 
continue from this point onwards in the direction of the gradient. Now, because of the 
interactions, we have to recalculate the normed gradient at the new point where 1 0.43 X , 

2 0.28 X , 3 0.00X , 4 0.60X , and 5 0.61 X . 

When this is added to the previous values, we get 1 0.80 X , 2 0.52 X , 3 0.05X , 
4 1.23X , and 5 1.25 X . These values differ slightly more from the values in the original 
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the level of significance   is 0.05, and the power 1    is 0.90.  Wheeler gives also formulas 
for several other common design/model combinations (Wheeler, 1974).  

4. Improving results by steepest ascent 

If the goal of the experimentation has been to optimize something, the next step after 
analysing the results of a 2N  or a fractional 2N  design is to try to make improvement using 
knowledge provided by the analysis. The most common technique is the method of steepest 
ascent, also called the gradient (path) method. 

4.1 Calculating the gradient path 

It is well known from calculus that the direction of the steepest ascent on a response surface 
is given by the gradient vector, i.e. the vector of partial derivatives with respect to the design 
variables at a given point. The basic idea has been presented in section 3.2, and now we shall 
present the technical details. 

In principle, the procedure is simple. First we choose a starting point, say 0X , which 
typically is the centre point of the design. Then we calculate the gradient vector, say  at 
this point. Note that it is important to use coded variables in gradient calculations. Next, the 
gradient vector has to be scaled small enough in order to avoid zigzagging (see 2.2). This can 
be done by multiplying the corresponding unit vector, 0 /    , by a scaling factor, say 
c. Now, the gradient path points are obtained by calculating , 1,2, , 0X = X + i (i-1) c i n  
where n is the number of points. Once the points have been calculated, the experimental 
points are chosen from the path so that the distance between the points matches the desired 
step size, typically 1 in coded units. Naturally, the coded values have to be decoded into 
physical values having the original units before experimentation. 

4.2 Alternative improvement techniques 

Another principle in searching optimal new experiments is to use direct optimization 
techniques using the current model. In this approach, first the search region has to be 
defined. There are basically two different alternatives: 1) a hypercube whose centre is at the 
design centre with a given length for the sides of the hypercube, or 2) a hypersphere whose 
centre is at the design centre with a given radius. In the first alternative, typically the length 
of the side is first set to a value slightly over 2, say 3, giving mild extrapolation outside the 
experimental region. In the latter, typically the length of the radius is first set to a value 
slightly over 1, say 1.5, giving mild extrapolation outside the experimental region. 

If the model is a linear plus pair-wise interactions model, the solution can easily be shown to 
be one of the vertices of the hypercube in the hypercube approach. If the model is a 
quadratic one, and the optimum (according to the model) is not inside the hypercube, the 
solution is a point on one of the edges of the hypercube and a point on the hypersphere in 
the hypersphere approach. In both approaches, the solution is found most easily using some 
iterative constrained optimization tool, e.g. Excel’s Solver Tool. In the latter (hypersphere) 
approach, it is easy to show, using the Lagrange multiplier technique of constrained 
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optimization, that the optimal point Xopt  on the hypersphere of radius r is obtained by 
  12  X B I bopt  , where   is solved from the equation   1 2 22  B I b r . The notation is 

explained in section 5.2. Unfortunately,   must be solved numerically unless the model is 
linear. The benefit of using (numerical) iterative optimization in both approaches, or using 
the gradient path technique, is that they all work for all kind of models, not only for 
quadratic ones. 

4.3 Example 

Let us continue with the example of section 3.3.3 and see how the model can be used to 
design new experiments along the gradient path. The model of the previous example can be 
written (in coded variables) 

 0 1 1 2 2 4 4 5 5 23 2 3 45 4 5      y b b X b X b X b X b X X b X X  (7) 

The coefficients (b’s) refer to the values given in Table 12. The gradient, i.e. the direction of 
steepest ascent, is the vector of partial derivatives of the model with respect to the variables. 
Differentiating the expression given in Eq. 7 gives in matrix notation 

  1 2 23 3 23 2 4 45 5 5 45 4               Tb b b X b X b b X b b X  (8) 

Because this is a directional vector, it can be scaled to have any length. If we want it to have 
unit length, it must be divided by its norm, i.e. we use /  . Now, let us start the 
calculation of the gradient path from the centre of the design, where all coded values are 
zeros. Substituting numerical values into Eq. 8 gives 

  3.35  2.16   0.00   4.64   4.72    T  (9) 

The norm of this vector is ca. 7.73. Dividing Eq. 9 by its norm gives 

  0.43  0.28   0.00   0.60   0.61    T


 (10) 

These are almost the same values as in the example 6.3.2 in (Box & Draper, 2007) though we 
have used a different model with significant interaction terms included. The reason for this 
is that the starting point is the centre point where the interaction terms vanish because the 
coefficients are multiplied by zeros. 

The vector of Eq. 10 tells us that we should decrease the time by 0.43 coded units, the 
temperature by 0.28 coded units, and the amount of reagent D by 0.61 coded units and 
increase the amount of reagent C by 0.60 coded units.  Of course, there isn’t much sense to 
carry out this experiment because it is inside the experimental region. Therefore we shall 
continue from this point onwards in the direction of the gradient. Now, because of the 
interactions, we have to recalculate the normed gradient at the new point where 1 0.43 X , 

2 0.28 X , 3 0.00X , 4 0.60X , and 5 0.61 X . 

When this is added to the previous values, we get 1 0.80 X , 2 0.52 X , 3 0.05X , 
4 1.23X , and 5 1.25 X . These values differ slightly more from the values in the original 
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source; however the difference has hardly any significance. The difference becomes more 
substantial if we continue the procedure because the interactions start to bend the gradient 
path. Box and Draper calculated the new points at distances 2, 4 , 6 and 8 in coded units 
from the centre point. If we do the same we get the points given in Table 13. 
 

Distance X1 X2 X3 X4 X5 
2 -0.80 -0.52 0.05 1.23 -1.25
4 -1.38 -0.91 0.21 2.55 -2.57
6 -1.82 -1.25 0.40 3.90 -3.93
8 -2.18 -1.55 0.62 5.26 -5.23

Table 13. Four new experiments (in coded units) along the gradient path. 

For comparison, the values in the book together with the reported yields of these 
experiments are given in Table 14. 
 

Distance X1 X2 X3 X4 X5 yield
2 -0.86 -0.56 0.08 1.20 -1.22 72.6 
4 -1.72 -1.12 0.16 2.40 -2.44 85.1 
6 -2.58 -1.68 0.24 3.60 -3.66 82.4 
8 -3.44 -2.24 0.32 4.80 -4.88 80.8 

Table 14. Four new experiments (in coded units) along the gradient path given in (Box & 
Draper, 2007). 

The differences in the design variables in the last two rows start to be significant, but 
unfortunately we cannot check whether they had been any better than the ones used in the 
actual experiments. The actual experiments really gave substantial improvement; see 
Example 6.3.2 in (Box & Draper, 2007).  

Before going to quadratic designs and models, let us recall what was said about calculation 
step in section 3.2 and let us calculate the gradient using a step size 0.1 instead of 1.0, but 
tabulating only those points where the sum of the steps is two, i.e. the arc length along the 
path between two sequential points is approximately 2. These points are given in Table 15. 
 

Distance X1 X2 X3 X4 X5 
2 -0.74 -0.48 0.08 1.26 -1.27
4 -1.28 -0.87 0.24 2.58 -2.61
6 -1.70 -1.20 0.43 3.94 -3.96
8 -2.04 -1.50 0.64 5.30 -5.34

Table 15. Four new experiments (in coded units) along the gradient path using a small step 
size in the gradient path calculation. 

If you compare these values with our first table, the differences are not big. The reason is 
that the model has not quadratic terms and the zigzag effect, explained in section 3.2, would 
take place only with really large step sizes. In any case, the best way to do these calculations 
is to use appropriate software, and then it doesn’t matter if you calculate more accurately 
using a small step size. 
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Of course, before experimentation, one has to convert the coded units back to physical units. 
This could be easily done by solving for the variables in physical units from the equations 
given in the column Formula in Table 9. However, the easiest way is to use appropriate 
software. Table 16 gives the values in Table 15 in physical units. 
 

Distance t T B C D
2 6.5 86.3 46.1 118.2 38.6
4 5.4 85.3 48.6 134.8 32.0
6 4.6 84.5 51.5 151.7 25.2
8 3.9 83.7 54.6 168.8 18.3

Table 16. Experiments of Table 15 in physical units. 

5. Second and higher order designs and response surface modelling 
When the response doesn’t depend linearly on the design variables, two-level designs are 
not adequate. Nonlinear behaviour can typically be detected by comparing the centre point 
results with the actual 2N design point results. Alternatively, a nonlinear region is found by 
steepest ascent experiments. Sometimes nonlinearity can be assumed by prior knowledge 
about the system under study. There are several alternative designs for empirical nonlinear 
modelling. Before going to the different design alternatives let us review the most common 
nonlinear empirical model types. The emphasis is on so-called quadratic models, commonly 
used in the Box-Wilson strategy of empirical optimization. We shall first introduce typical 
models used with these designs, and after that, introduce the most common designs used 
for creating such models. 

5.1 Typical nonlinear empirical models 

The most common nonlinear empirical model is a second order polynomial of the design 
variables, often called a quadratic response surface model, or simply, a quadratic model. It is 
a linear plus pairwise interactions model added with quadratic terms, i.e. design variables 
ra ised to  power 2 .  For  example,  a  quadrat ic  model  for  two variables  i s 

2 2
0 1 1 2 2 12 1 2 11 1 22 2     y b b X b X b X X b X b X . In general, we use the notation that   ib  is the 

coefficient of iX , iib  is the coefficient of 2
iX , and ,  ijb i j  is the coefficient of   i jX X . Fig. 11 

depicts typical quadratic surfaces of two variables 1X  and 2X . Now, let B be a matrix 
whose diagonal elements iiB  are defined by 2ii iiB b , and the other elements ,  ijB i j  are 
defined by ,  ij ijB b i j  and ,  ji ijB b i j . By definition, the matrix B is symmetric. Also, let 
b be the vector of main effect coefficients, i.e.  1 2,  ,  ,b  Nb b n T . Using this notation, a  

quadratic model can expressed in matrix notation as 0
1
2

  x b x BxT Ty b  where x is the 
vector  1 2, , , T

NX X X . 

If a quadratic model has more than 2 variables, any 2 variables can be chosen as free 
variables corresponding to the x and y axes of the plot, and the other variables are kept at 
constant levels. Varying the values of the other variables in a systematic way, a good 
overview of the dependencies can be obtained till up to 4 or 5 variables. With more 
variables, one must rely on computational techniques. 
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source; however the difference has hardly any significance. The difference becomes more 
substantial if we continue the procedure because the interactions start to bend the gradient 
path. Box and Draper calculated the new points at distances 2, 4 , 6 and 8 in coded units 
from the centre point. If we do the same we get the points given in Table 13. 
 

Distance X1 X2 X3 X4 X5 
2 -0.80 -0.52 0.05 1.23 -1.25
4 -1.38 -0.91 0.21 2.55 -2.57
6 -1.82 -1.25 0.40 3.90 -3.93
8 -2.18 -1.55 0.62 5.26 -5.23

Table 13. Four new experiments (in coded units) along the gradient path. 

For comparison, the values in the book together with the reported yields of these 
experiments are given in Table 14. 
 

Distance X1 X2 X3 X4 X5 yield
2 -0.86 -0.56 0.08 1.20 -1.22 72.6 
4 -1.72 -1.12 0.16 2.40 -2.44 85.1 
6 -2.58 -1.68 0.24 3.60 -3.66 82.4 
8 -3.44 -2.24 0.32 4.80 -4.88 80.8 

Table 14. Four new experiments (in coded units) along the gradient path given in (Box & 
Draper, 2007). 

The differences in the design variables in the last two rows start to be significant, but 
unfortunately we cannot check whether they had been any better than the ones used in the 
actual experiments. The actual experiments really gave substantial improvement; see 
Example 6.3.2 in (Box & Draper, 2007).  

Before going to quadratic designs and models, let us recall what was said about calculation 
step in section 3.2 and let us calculate the gradient using a step size 0.1 instead of 1.0, but 
tabulating only those points where the sum of the steps is two, i.e. the arc length along the 
path between two sequential points is approximately 2. These points are given in Table 15. 
 

Distance X1 X2 X3 X4 X5 
2 -0.74 -0.48 0.08 1.26 -1.27
4 -1.28 -0.87 0.24 2.58 -2.61
6 -1.70 -1.20 0.43 3.94 -3.96
8 -2.04 -1.50 0.64 5.30 -5.34

Table 15. Four new experiments (in coded units) along the gradient path using a small step 
size in the gradient path calculation. 

If you compare these values with our first table, the differences are not big. The reason is 
that the model has not quadratic terms and the zigzag effect, explained in section 3.2, would 
take place only with really large step sizes. In any case, the best way to do these calculations 
is to use appropriate software, and then it doesn’t matter if you calculate more accurately 
using a small step size. 
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If a quadratic model has more than 2 variables, any 2 variables can be chosen as free 
variables corresponding to the x and y axes of the plot, and the other variables are kept at 
constant levels. Varying the values of the other variables in a systematic way, a good 
overview of the dependencies can be obtained till up to 4 or 5 variables. With more 
variables, one must rely on computational techniques. 
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Fig. 11. Typical quadratic surfaces of 2 variables ( 1X  and 2X ): a surface having a minimum 
(upper left), a surface having a maximum (upper right), a surface having a saddle point 
(lower left), and a surface having a ridge (lower right). 

Other model alternatives are higher order polynomials, rational functions of several 
variables, nonlinear PLS, neural networks, nonlinear SVM etc. With higher order 
polynomials, or with linearized rational functions, it advisable to use ridge regression, PLS, 
or some other constrained regression technique, see e.g. (Taavitsainen, 2010). These 
alternatives are useful typically in cases where the response is bounded in the experimental 
region; see e.g. (Taavitsainen et. al., 2010).  

5.2 Estimation and validation of nonlinear empirical models 

Basically the analyses and techniques presented in sections 3.1.2 and 3.2 are applicable to 
nonlinear models as well. Actually, polynomial models are linear in parameters, and thus 
the theory of linear regression applies. Normally, nonlinear regression refers to regression 
analysis of models that are nonlinear in parameters. This topic is not treated in this chapter, 
and the interested reader may see e.g. (Bard, 1973) 

It should be noted that some of the designs presented in section 5.3 are not orthogonal, and 
therefore PLS or ridge regression are more appropriate methods than OLS for parameter 
estimation, especially in so-called mixture designs.  
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For quadratic models, a special form of analysis called canonical analysis is commonly used 
for gaining better understanding of the model. However, this topic is beyond the scope of 
this chapter, and the reader is advised to see e.g. (Box & Draper, 2007). Part of the canonical 
analysis is to calculate the so called stationary point of the model. A stationary point is a 
point where the gradient with respect to the design variables vanishes. Solving for the 
stationary point is straightforward. The stationary point is the solution of the linear system 
of equations     Bx b , obtained by differentiation from the model in matrix form given in 
section 5.1. A stationary point can represent a minimum point, a maximum point, or a 
saddle point depending on the model coefficients. 

5.3 Common higher order designs 

Next we shall introduce the most common designs used for response surface modelling 
(RSM). 

5.3.1 Factorial MN designs 

Full factorial designs with M levels can be used for estimating polynomials of order at most 
1M . Naturally, these designs are feasible only with very few variables, say maximum 3, 

and typically for only few levels, say at most 4. For example, a 44 design would contain 256 
which would be seldom feasible. However, the recent development in parallel microreactor 
systems having e.g. 64 simultaneously operating reactors at different conditions can make 
such designs reasonable. 

5.3.2 Fractional factorial MN designs, and mixed level factorial design. 

Sometimes it is known that one or more variables act nonlinearly and the others linearly. For 
such cases a mixed level factorial design is a good choice. A simple way to construct e.g. a 3 
or a 4 level mixed level factorial design is to combine a pair of variables in a 2N  design into 
a single new variable (Z) having 3 or 4 levels using the coding given in Table 17 
( 1 2 3,  ,x x x and 4x  represent the levels of the variable constructed from a pair of variables 
( ,i jX X ) in the original 2N  design). 

 
 

iX jX Z (3 levels) Z (4 levels)

-1 -1 1x 1x

-1 +1 2x 2x

+1 -1 2x 3x

+1 +1 3x 4x
 

Table 17. Construction of a 3, or 4 level variable from two variables of a 2N  design. 

There are also fractional factorial designs which are commonly used in Taguchi 
methodology. The most common such designs are the so-called Taguchi L9 and L27 
orthogonal arrays, see e.g. (NIST SEMATECH). 
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orthogonal arrays, see e.g. (NIST SEMATECH). 
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5.3.3 Box-Behnken designs 

The structure and construction of Box-Behnken designs (Box & Behnken, 1960) is simple.  

First, a 12 N  design is constructed, say X0, then a 12  NN  by N matrix of zeros X is created. 
After this, X is divided into N blocks of 12 N  rows and all columns, and in each block the 
columns, omitting the i’th column, is replaced by X0. Finally one or more rows of N zeros are 
appended to X. This is easy to program e.g. in Matlab or R starting from a 12  N  design.  The 
following R commands will do the work for any number of variables (mton is a function 
that generates NM  designs, and nrep is the number of replicates at the centre point): 

X0 <- as.matrix(mton(2,N-1)) 
M  <- 2^(N-1) 
X  <- matrix(0,N*M,N) 
for(i in 1:N) X[((i-1)*M+1):(M*i),(1:N)[-i]] <- X0 
X  <- rbind(X,rep(nrep,N)) 

As an example, Table 18 shows a Box-Behnken design of 3 variables and 3 centre point 
replicate experiments. 
 

1X 2X 3X

0 -1 -1 
0 -1 +1 
0 +1 -1 
0 +1 +1 
-1 0 -1 
-1 0 +1 
+1 0 -1 
+1 0 +1 
-1 -1 0 
-1 +1 0 
+1 -1 0 
+1 +1 0 
0 0 0 
0 0 0 
0 0 0 

Table 18. A Box-Behnken design with 3 variables. 

5.3.4 Central composite designs  

The so-called central composite (CC) designs are perhaps the most common ones used in 
RSM, perhaps due their simple structure (for other possible reasons, see section 5.3). As the 
name suggests they are composed of other designs, namely, of a factorial or fractional 2N  
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part, of so-called axial points, and of centre points. Sometimes the latter two parts together 
are called a star design. As an example, Table 19 shows a CC design for two variables. 
 

1X 2X  
-1 -1 

Factorial 2
2 

part 

-1 +1 
+1 -1 
+1 +1 
 0 A

xial 
points 

0 
 0 
0 
0 0 Centre

points 0 0 

Table 19. A CC design with 2 variables. 

The value   depends on the kind of properties we want the design to have. Typical desired 
properties are orthogonality, rotatability, and symmetry. A rotatable design is such that the 
prediction variance of a point in the design space does depend only on its distance from. 
design centre, not on its direction. Let us denote the number of the centre points by cpN . 
Then, for an orthogonal design   is given by the following Eq. 11. 

  
1

2 422 2 2
4

 
     
  

N
N N

cpN N  (11) 

The derivation of this rather formidable looking equation, and of the two following ones, are 
given e.g. in (Box & Draper, 2007). It should be noted that the model matrix obtained with 
this choice for   is not strictly orthogonal, because the intercept column (the column of 
ones) vector is not orthogonal to the column vector of the quadratic terms. However, all the 
other columns of the model matrix are orthogonal to each other. This can also be expressed 
by saying that the quadratic effects are partially confounded with the intercept. 

For a rotatable design, the appropriate value for   is given by the equation Eq. 12. 

 42
N

  (12) 

For maximal symmetry, i.e. all points except for the centre point, lie on a hypersphere of 
radius   , the appropriate value for   is given by the equation Eq. 13 

  N  (13) 

A common fourth choice is to set   to 1. Such CC design is called a face centred CC design 
(CCF). For  ’s greater than 1 the designs are called circumscribed, CCC. Some other 
alternatives, e.g. compromising between orthogonality and rotatability, exist too. Sometimes 
a CCC design is scaled so that   is scale to 1, and the coordinates of the factorial points are 
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are called a star design. As an example, Table 19 shows a CC design for two variables. 
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A common fourth choice is to set   to 1. Such CC design is called a face centred CC design 
(CCF). For  ’s greater than 1 the designs are called circumscribed, CCC. Some other 
alternatives, e.g. compromising between orthogonality and rotatability, exist too. Sometimes 
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scaled to 1 /  . Such designs are called inscribed (CCI), though they actually are CCC 
designs with a different coding of variables. 

Figs. 12 and 13 depict a CCC and a CCF design of 3 variables. 

 

Fig. 12. A CCC design in coded units for 3 variables ( 1X , 2X and 3X ) with 
3
42 . 

5.3.5 Doehlert designs 

Doehlert designs are constructed from so-called regular simplexes. For example, a regular 
triangle and a regular tetrahedron represent regular simplexes in 2D and 3D, respectively. A 
Doehlert design for two variables consists of the vertexes of 6 adjacent regular triangles. 
Thus it comprises the vertexes of a regular hexagon plus the centre point. Doehlert designs 
fill the experimental space in a regular way in the sense that distances between the 
experimental points are constant. Doehlert designs have 21  N N  experimental points, 
which is less than in CC designs. Thus they are typically used in cases where the 
experiments are either very expensive or time consuming.  The interested reader may refer 
to e.g. (Doehlert, 1970). Construction of Doehlert designs for more than 2 variables is rather 
tedious, and use of appropriate software, or tables of Doehlert designs, are recommended, 
see e.g. (Bruns & al, 2006) 
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Fig. 13. A CCF design in coded units for 3 variables ( 1X , 2X and 3X ) with 1 . 

5.3.6 Mixture designs 

If the design variables are proportions of constituents in a mixture, then in each experiment 
the values of the design variables sum up to 1 (100 %). In such cases, ordinary designs 
cannot be applied, since the row sums of ordinary designs vary irrespective of the coding 
used. If there are no other constraints than the closure constraint, the most common designs 
are the so-called simplex lattice, and simplex centroid designs. If some constraints are 
imposed as well, a good choice is to use optimal designs (see the next section), though other 
alternatives exist as well; see e.g. (Cornell, 1981), or (Montgomery, 1991).  

The closure constraint has to be taken into account also in modelling results of mixture 
experiments. The closure means that the columns of the model matrix are linearly 
dependent making the matrix singular. One way to overcome this problem is to make the 
model using only 1N   variables, because we need to know only the values of 1N   
variables, and the value of the N’th variable is one minus the sum of the others. However, 
this may make the interpretation of the model coefficients quite difficult. Another 
alternative is to use the so-called Scheffe polynomials, i.e. polynomials without the intercept 
and the quadratic terms. It can be shown that Scheffe polynomials of N variables represent 
the same model as an ordinary polynomial of 1N   variables, naturally with different 
values for the polynomial coefficients. For example the quadratic polynomial of two 
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Fig. 13. A CCF design in coded units for 3 variables ( 1X , 2X and 3X ) with 1 . 

5.3.6 Mixture designs 

If the design variables are proportions of constituents in a mixture, then in each experiment 
the values of the design variables sum up to 1 (100 %). In such cases, ordinary designs 
cannot be applied, since the row sums of ordinary designs vary irrespective of the coding 
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experiments. The closure means that the columns of the model matrix are linearly 
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variables, and the value of the N’th variable is one minus the sum of the others. However, 
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alternative is to use the so-called Scheffe polynomials, i.e. polynomials without the intercept 
and the quadratic terms. It can be shown that Scheffe polynomials of N variables represent 
the same model as an ordinary polynomial of 1N   variables, naturally with different 
values for the polynomial coefficients. For example the quadratic polynomial of two 
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variables 1 1 2 2 12 1 2  y b X b X b X X can be simplified into   2
2 1 2 12 1 12 1    y b b b b X b X  if 

2 11 X X . This shows that it is a quadratic function of 1X  only; for more details see e.g. 
(Cornell, 1981).  

The model matrices of mixture designs are not orthogonal, and they are usually quite ill-
conditioned. For this reason, it is commonly recommended to use PLS or ridge regression 
for estimating the model parameters.  

5.3.7 Optimal designs 

The idea behind so-called optimal designs is to select the experimental points so that they 
satisfy some optimality criterion about the model to be used. It is important to notice that 
the optimality of such designs is always dependent on the model. For this reason, optimal 
designs are often used in designing experiments for mechanistic modelling problems. In 
empirical modelling we don’t know the model representing the ‘true’ behaviour, and even a 
good empirical model is just an approximation of the true behaviour. Of course, if it has 
been decided to use e.g. a quadratic approximation, using a design that is optimal for a 
quadratic model is perfectly logical. However, the design still should have extra 
experiments that allow assessing the lack-of-fit. 

Typically optimal designs are planned for quadratic models. Probably the most common 
optimality criterion is the D-optimality criterion. A D-optimal design is a design that 

minimizes the determinant of the information matrix, i.e. 
1

X XT  where X  is the model 

matrix. There are several other optimality criteria, typically related to minimizing the 
variance of predictions, or to minimizing the variances of the model parameter estimates. In 
many cases, a design that is optimal according to one criterion is also optimal or nearly 
optimal according to several other criteria as well.  

A nice feature in optimal designs is that it is easy take into account constraints in the design 
space, e.g. a mixture constraint, or a constraint in which one variable always has to have a 
greater value than some other variable. Constraints can sometimes be handled by some 
‘tricks’, e.g. instead of using 1x  and 2x  when 1 2x x , one could use in design 1x  and 3x  
and set 2 1 3 x x x , i.e. to use a variable that tells how much greater to the value of 1x  the 
value of 2x  is. In general, using optimal designs is the most straightforward approach for 
constrained problems. 

In practice, constructing optimal designs requires suitable software. Optimal design routines 
are available in most commercial statistical software packages containing tools for DOE. 
There is also an R package for creating optimal designs, called AlgDesign (http://cran.r-
project.org/web/packages/AlgDesign/index.html). See also (Fedorov, 1972) or (Atkinson 
et. al., 2007). 

5.4 Choosing an appropriate second order design 

As we have seen, there are many types of designs for nonlinear empirical (usually 
quadratic) models. How does a practitioner know which one to choose? A good strategy is 
to try first a simple design that has extra degrees of freedom for validation and for checking 
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model adequacy. Of course, if the problem at hand is a mixture problem, one has to rely on 
mixture designs or optimal designs. If the experiments are very expensive, one may have to 
use saturated, or almost saturated designs, e.g. optimal designs or Doehlert  designs. In 
other cases CC or Box-Behnken designs are better choices. For 3 variables, a Box-Behnken 
design contains fewer experiments than a CC design for 3 variables, but for more variables it 
is the other way round. For example, a 4 variable Box-Behnken design (without replicates) 
contains 33 experiments, as the corresponding CC design contains 25 experiments. Thus, 
except for mixture problems or constrained problems, a CC design is usually the best choice. 
In general, CCC designs should be preferred to CCF designs, but otherwise choosing the 
value for   is usually not a big issue from the practical point of view; the differences in 
performance are minor. CCF designs should be used only in cases where there is a real 
benefit of having fewer variable levels than the 5 variable levels of CCC designs (CCF 
designs use only 3 variable levels). 

5.5 Example: Analysis of a Doehlert design for two variables 

This example comes from (Dos Santos et. al., 2008). The aim was to optimize the recovery 
percentage of several elements with respect to the temperature and the volume of 
concentrated nitric acid from which we take only the recovery percentage of manganese (for 
details, see (Dos Santos et. al., 2008). The design is a Doehlert design with 3 replicates, and it 
is given in physical units in Table 20. 
 

Temperature Volume Recovery %

135 5 89.0 

165 5 90.2 

120 3 90.4 

150 3 94.3 

150 3 91.6 

150 3 91.2 

180 3 91.0 

135 1 82.6 

165 1 88.0 

Table 20. A Doehlert design with 2 variables. 

Next, the variables are coded so that the maximum values are set to +1 and the minimum 

values are set to 1 . Thus the coding formulas will be 1
150

30



TX , and 2

3
2



VX . The 

design in coded units is given in Table 21. 
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1X  2X Recovery %
-0.5 +1 89.0 
0.5 +1 90.2 
-1 0 90.4 
0 0 94.3 
0 0 91.6 
0 0 91.2 

+1 0 91.0 
-0.5 -1 82.6 
+0.5 -1 88.0 

Table 21. A Doehlert design with 2 variables in coded units. 

Fig. 14 shows the design together with the recoveries visualizing the hexagonal structure of 
the design.  

 
Fig. 14. The design of example 5.4.1 together with the measured recovery percentages. 
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Next a quadratic model is fitted to the data. The parameter estimates and the related 
statistics are given in Table 22. 
 

 Estimate Std. Error t value p value 
(Intercept) 92.37 1.14 81.06 4.14e-06 

X1 1.30 1.14 1.14 0.337 
X2 2.15 0.99 2.18 0.118 

I(X1^2) -1.67 1.80 -0.93 0.423 
I(X1 * X2) -2.10 1.97 -1.06 0.365 
I(X2^2) -4.50 1.35 -3.33 0.045 

Residual standard error: 1.974 on 3 degrees of freedom 
Multiple R-squared: 0.8594,     Adjusted R-squared: 0.6251 
F-statistic: 3.668 on 5 and 3 DF,  p-value: 0.1569 

Table 22. Regression summary of the quadratic model. 

According to Table 22 only the intercept and the quadratic effect of 2x  are significant. The 
p-value of the lack-of-fit test based on the 3 replicates is ca. 0.28. Thus the lack-of-fit is not 
significant. The apparent reason for the low significance is the rather poor repeatability of 
the experiments. The standard deviation of the recoveries of the replicate experiments is ca. 
1.68 which is relatively high compared to the overall variation in the recoveries. 

Next, let us see the results of cross-validation. Before cross-validation, the 3 replicates are 
replaced by the average of them. Fig. 15 shows the cross-validation results. 

According to the cross-validation the predictions of the model are not very good. Due to the 
poor repeatability, i.e. large experimental error, it is hard to tell whether the reason for 
unreliable prediction is the large experimental error or something else, e.g. more 
complicated nonlinearity than quadratic one. According to the model, the optimum lies 
inside the experimental region and it corresponds to the stationary point. The optimal point 
in coded units is 1 0.25X  and 2 0.17X  which corresponds to T = 158 and V = 3.35 in 
physical units. This should be compared to Fig. 16 which shows the corresponding response 
surface. 

6. Multi-response optimization 
A common problem is to optimize the values of several responses simultaneously. This 
occurs quite frequently, because many products have to meet several different goodness 
criteria. The problem in such applications is that the individual optima can be contradictory, 
i.e. the optimal values for one of the responses may be far from the optimal values for some 
other response. Several different techniques, such as finding the so-called Pareto optimal 
result, exist. By far the simplest approach to this problem is to use so-called desirability 
functions, presented in the next section. The idea was first presented by (Derringer & Suich, 
1980) in an application of product development in rubber industry. 

Optimization using the desirability function technique can be divided into the following 
steps: 
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Fig. 15. Cross-validation of the quadratic model. Left panel: Recovery % vs. the number of 
experiment; black circles: data; blue triangles: fitted values; red pluses: cross-validated 
leave-one-out prediction. Right panel: Normal probability plots of the cross-validated leave-
one-out residuals. 
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Fig. 16. Recovery % vs. Temperature and Volume. 

First make a regression model, based on the designed experiments, individually for each 
response. Validate the models and proceed to step 2 after all models are satisfactory. 

Make a desirability function  i i id D y  for each response separately (i goes from 1 to the 
number responses, say q). Remember that the responses have been modelled as functions of 
the design variables, i.e.  1 2,  , , i i Ny f X X X .   

Building the desirabilities should be done together with a person who knows what the 
customers want from the product, and it is typically team work. How to build such 
functions in practice is explained later. Note that combining the two functions, desirabilities 
can be expressed as functions of design variables only. 



 
Chemometrics in Practical Applications 

 

132 

 
 
 
 
 

 
 
 
 
 

Fig. 15. Cross-validation of the quadratic model. Left panel: Recovery % vs. the number of 
experiment; black circles: data; blue triangles: fitted values; red pluses: cross-validated 
leave-one-out prediction. Right panel: Normal probability plots of the cross-validated leave-
one-out residuals. 

 
Experimental Optimization and Response Surfaces 

 

133 

 
Fig. 16. Recovery % vs. Temperature and Volume. 

First make a regression model, based on the designed experiments, individually for each 
response. Validate the models and proceed to step 2 after all models are satisfactory. 

Make a desirability function  i i id D y  for each response separately (i goes from 1 to the 
number responses, say q). Remember that the responses have been modelled as functions of 
the design variables, i.e.  1 2,  , , i i Ny f X X X .   

Building the desirabilities should be done together with a person who knows what the 
customers want from the product, and it is typically team work. How to build such 
functions in practice is explained later. Note that combining the two functions, desirabilities 
can be expressed as functions of design variables only. 



 
Chemometrics in Practical Applications 

 

134 

Use an optimizer to maximize the combined desirability D which is the geometric mean of 

the individual desirabilities, i.e.  
1

1 2    q
qD D D D , with respect to the design variables. 

Check by experimentation that the found optimum really gives a good product. 

There are many ways to produce suitable desirability functions, one of which is explained in 
(Derringer & Suich, 1980). Any function that gives the 1 value for a perfect response and the 
value 0 for an unacceptable product and continuously values between 0 and 1 for responses 
whose goodness is in-between unacceptable and perfect can be used. One of the simplest 

alternatives is to use the following functions: 
1

1


 
  
 
 

iy a
b

id e  for one-sided desirabilities, 

and 





c
iy a
b

id e  for two-sided desirabilities. The parameters a, b and c are user-defined 
parameters chosen with the help of an expert on the product quality. 

The idea is best illustrated by an example. Let us consider an example where the product 
would be the better the higher its elasticity is. Let us also assume that elasticity from 0.60 
upwards would mean a practically perfect product and elasticity below 0.30 would mean a 
totally unacceptable product. Then the one-sided desirability function looks like (with a = 
0.46 and b = 0.028) the one given in Fig. 17. 

 
Fig. 17. A one-sided desirability function for elasticity that should be 0.60 or more and that 
would be totally unacceptable below 0.30. 
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If for some reason, the elasticity should not be higher than 0.60, and the elasticity over 
0.90 or elasticity below 0.30 meant an unacceptable product, we would need a two-sided 
desirability function, e.g. like the one given in Fig. 18 (with a = 0.60, b = 0.028 and c =  
2.5). 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

Fig. 18. A two-sided desirability function for elasticity that should be 0.60 and that would be 
totally unacceptable below 0.30 or above 0.90. 
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For practical examples see e.g. (Taavitsainen et. al., 2010) or (Laine et. al., 2011). 

7. Conclusion 

Design of experiments is as much of an art as of science. Becoming an expert in the field 
requires both theoretical studies and experience in practical applications. Although many 
problems can be solved in principle by hand calculations, in practice use of suitable software 
is needed. If the person involved is not familiar with command line style programs whose 
use is essentially that of programming, he or she is recommended to use some commercial 
software that typically also guide the user in the design and in the analysis of the results. 
The use of simulation models, where artificial experimental error is added into the results of 
the simulation, is highly recommended. 
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For practical examples see e.g. (Taavitsainen et. al., 2010) or (Laine et. al., 2011). 

7. Conclusion 

Design of experiments is as much of an art as of science. Becoming an expert in the field 
requires both theoretical studies and experience in practical applications. Although many 
problems can be solved in principle by hand calculations, in practice use of suitable software 
is needed. If the person involved is not familiar with command line style programs whose 
use is essentially that of programming, he or she is recommended to use some commercial 
software that typically also guide the user in the design and in the analysis of the results. 
The use of simulation models, where artificial experimental error is added into the results of 
the simulation, is highly recommended. 
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1. Introduction

Biomarker selection represents a key step in bioinformatic data processing pipelines; examples
range from DNA microarrays (Tusher et al., 2001; Yousef et al., 2009) to proteomics (Araki
et al., 2010; Oh et al., 2011) to metabolomics (Chadeau-Hyam et al., 2010). Meaningful
biological interpretation is greatly aided by identification of a “short-list” of features –
biomarkers – characterizing the main differences between several states in a biological system.
In a two-class setting the biomarkers are those variables (metabolites, proteins, genes ...) that
allow discrimination between the classes. A class or group tag can be used to distinguish
many situations: it can be used to discriminate between treated and non-treated samples, to
mark different varieties of the same organism, etcetera. In the following, we will – for clarity
– restrict the discussion to metabolomics, and the variables will constitute concentration
levels of metabolites, but similar arguments hold mutatis mutandis for other -omics sciences,
such as proteomics and transcriptomics, where the variables correspond to protein levels or
expression levels, respectively.

There are several reasons why the selection of biomarker short-lists can be beneficial:

• Predictive purposes: using only a small number of biomarkers in predictive class modeling
in general leads to better, i.e., more robust and more accurate predictions.

• Interpretative purposes: it makes sense to first concentrate on those metabolites that
show clear differences in levels in the different classes, since our knowledge of metabolic
networks in many cases is only scratching the surface.

• Discovery purposes: the complete characterization of unknown compounds identified in
untargeted experiments is time- and resource-consuming. The primary focus should thus
be placed on a carefully selected group of “unknowns” to be characterized at structural
and functional level.

Two fundamentally different statistical approaches to biomarker selection are possible. With
the first, experimental data can be used to construct multivariate statistical models of
increasing complexity and predictive power – well-known examples are Partial Least Square
Discriminant Analysis (PLS-DA) (Barker & Rayens, 2003; Kemsley, 1996; Szymanska et al.,
2011) or Principal Component Linear Discriminant Analysis (PC-LDA) (Smit et al., 2007; Werf
et al., 2006). Inspection of the model coefficients then should point to those variables that
are important for class discrimination. As an alternative, univariate statistical tests can be
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applied to individual variables, treating each one independent of the others and indicating
which of them show significant differences between groups (see, e.g., Guo et al. (2007);
Reiner et al. (2003); Zuber & Strimmer (2009)). Multivariate techniques are potentially more
powerful in pin-pointing weak differences because they take into account correlation among
the variables, but the models can be too much adapted to the experimental data, leading to
poor generalization capacity. Univariate approaches, in contrast, both could miss important
“weak” details and could overestimate the importance of certain variables, because correlation
between variables is not taken into account.

As for many sciences with the “omics” suffix, in metabolomics the number of experimental
variables usually greatly exceeds the number of objects, especially with the development
of new mass-spectrometry-based technologies. In MS-based metabolomics, high resolution
mass spectrometers are often coupled with high performance chromatographic techniques,
like Ultra Performance Liquid Chromatography (UPLC). In these experiments, the variables,
i.e., the metabolites, are represented by mass/retention-time combinations, and it is typical
to have numbers of features varying from several hundreds to several thousands, depending
on the experimental and analytical conditions. This increase in experimental possibilities,
however, does not correspond to a proportional increase in the number of available samples,
which can be limited by the availability of biological samples, by laboratory practice, in
particular when complex protocols are required, and also by ethical issues, when, for example,
experiments on animals have to be planned.

All these constraints produce small sample sets, presenting serious challenges for the statistical
analysis, mainly because there is simply not enough information to model the natural
biological variability. The situation is critical for multivariate approaches where the
parameters of the statistical model need to be optimized (e.g., the number of components
in a PLS-DA model). For this purpose, the classical approach is to use sub-sampling in
combination with estimates of predictive power, like crossvalidation (Stone, 1974). In extreme
conditions, i.e., really small sample sizes, this sub-sampling can give rise to inconsistent
sub-models and tuning in the classical way becomes virtually impossible. In Hanczar et al.
(2010), as an example, conclusions are focussed on ROC-based statistics (see below), but they
are equally relevant for classical error estimates like the root-mean-square error of prediction,
RMSEP) multivariate techniques can be still applied to the full data set, but it is not possible
to assess the reliability of the biomarker selection pipeline, even if it is still reasonable to
think that the biomarkers are strongly contributing to the statistical model. In these situations,
univariate methods seem the best solution, also considering the presence of several strategies
able to determine cut-off values in t-test based techniques (e.g., thresholding of p values
subjected to some form of multiple testing correction (Benjamini & Hochberg, 1995; Noble,
2009; Reiner et al., 2003)). Regardless of the statistical strategy, for the “biomarkers” extracted
in these conditions there is no obvious validation possible in the statistical sense; however, the
results of the experiments are extremely important in the hypothesis generation phase to plan
more informative investigations.

Interestingly, there is no literature on the effect of sample size on biomarker identification in
the “omics” sciences, and the objective of this contribution is to fill this gap. We focus on a
two-class problem, and in particular on small data sets. In our approach, real class differences
have been introduced by spiking apple extracts with selected compounds, analyzing them
using UPLC-TOF mass spectrometry, and comparing the feature lists to those of unspiked
apple extracts. Using these data we are able to run a comparison between two multivariate
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methods (PLS-DA and PC-LDA) and the univariate t-test, leading to at least a rough estimate
of how consistent biomarker discovery can be when small sample sizes are considered. In
particular, we compare the effect of sample size reduction on multivariate and univariate
models on the basis of Receiver Operating Characteristics (ROC) (Brown & Davis, 2005).

2. Material and methods

2.1 Biomarker Identification

There are many strategies for identifying differentially expressed variables in two-class
situations – a recent overview can be found in Saeys et al. (2007). A general approach is to
construct a model with good predictive properties, and to see which variables are important in
such a model. Given the low sample-to-variable ratio, however, one can not expect to be able
to fit very complicated models, and in many cases a linear model is the best one can do (Hastie
et al., 2001). The oldest, and most well-known technique is Linear Discriminant Analysis
(LDA, McLachlan (2004)). One formulation of this technique, dating back to R.A. Fisher, is to
find a linear combination of variables a that maximizes the ratio of the between-groups sums
of squares, B, and the within-groups sums of squares W :

aT Ba/aTWa (1)

That is, a is the direction that maximizes the separation between the classes, both by having
compact classes (a small within-groups variance) and by having the class centers far apart (a
large between-groups variance). Large values in a indicate which variables are important in
the discrimination. Another formulation is to calculate the Mahalanobis distance of a new
sample x to the class centers μi:

d(x, i) = (x − μi)
T Σ−1 (x − μi) (2)

The new sample is then assigned to the class of the closest center. This approach is equivalent
to Fisher’s criterion for two classes (but not for more than two classes). In this equation, Σ is
the (estimated) pooled covariance matrix of the classes. If the Mahalanobis distance to each
class center is calculated using the individual class covariance matrices, the result is Quadratic
Discriminant Analysis (QDA), which as the name suggests, no longer leads to linear class
boundaries. A final formulation is to use regression using indicator variables for the class.
In a two-class situation one can use, e.g., the values of −1 and 1 for the two classes; positive
predictions will be assigned to class one, and negative predictions to class −1. In many other
cases, 0 and 1 are used, and the class threshold is put at 0.5. When there are more than two
classes, one can use a separate column in the dependent variable for every class – if a sample
belongs to that class the column should contain 1, else 0. Again, the size of the regression
coefficients indicates which of the variables contribute most to the discrimination.

For most applications in the “omics” fields, even the most simple multivariate techniques
such as Linear Discriminant Analysis (LDA) cannot be applied directly. From Equation 2
it is clear that an inverse of the the covariance matrix Σ needs to be calculated, which is
impossible in cases where the number of variables exceeds the number of samples. In practice,
the number of samples is nowhere near the number of variables. For QDA, the situation is
even worse: to allow a stable matrix inversion, every single class should have at least as many
samples as variables (and preferably quite a bit more). A common approach is to compress the
information in the data into a low number of latent variables (LVs), either using PCA (leading
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to PC-LDA, e.g. Smit et al. (2007); Werf et al. (2006)) or PLS (which gives PLS-DA; see Barker
& Rayens (2003); Kemsley (1996)), and to perform the discriminant analysis on the resulting
score matrices. These are not only of low dimension, but also orthogonal so that the matrix
inversion, the calculation of Σ−1, can be performed very fast and reliably. Both for PC-LDA
and PLS-DA, the problem is more often usually cast in a regression context, where again the
response variable Y can take values of either 0 or 1. The model thus becomes:

Y = XB + E ≈ TPT B + E (3)

where E is the matrix of residuals. Matrix X is decomposed into a score matrix T and a loading
matrix P, both consisting of a very low number of latent variables, typically less than ten or
twenty. The coefficients for the scores, A = PT B, can therefore be easily be calculated in the
normal way of least-squares regression:

A = (TTT)−1TTY (4)

which by premultiplication with P lead to estimates for the overall regression coefficients B:

B = PA (5)

These equations are the same for both PLS-DA and PC-LDA. The difference lies in the
decomposition of X. In PC-LDA, T and P correspond to the scores and loadings, respectively,
from PCA. That is, the class of the samples is completely ignored, and the only criterion is to
capture as much variance as possible from X. In PLS-DA, on the other hand, the scores and
loadings are taken from a PLS model and the decomposition of X does take into account class
information: the first PLS components by definition explain more, often much more, variance
of Y than the first PCA components.

Both methods, PC-LDA as well as PLS-DA, are usually very sensitive to the choice of the
number of LVs. Taking too few LVs will lead to bad predictions since important information is
missed. Taking too many, the model will be too flexible and will show a phenomenon known
as overtraining: it is more or less learning all the examples in the training set by heart but is
not able to generalize and to make good predictions for new, unseen samples. As discussed,
the assessment of the optimal number of LVs is neigh impossible with small sample sets. In
the case under consideration, the extent of this effect is investigated by constructing several
models with increasing numbers of LVs. Using real and simulated data sets (see below),
models with 1–4, 6, and 8 LVs, respectively, are compared.

A simplification of statistical modeling can be obtained by ignoring all possible correlations
between variables and assuming a diagonal covariance matrix, which leads to diagonal
discriminant analysis (DDA). It can be shown that using the latter for feature selection
corresponds to examining regular t-statistics (Zuber & Strimmer, 2009), and this is the
approach we will take in this paper. For each variable, the difference between the class means
x̄1i and x̄2i is transformed into a z-score by dividing by the appropriate standard deviation
estimate si:

zi = |x̄1i − x̄2i|/si (6)

Using the appropriate number of degrees of freedom, these z-scores can be transformed into
p values, which have the usual interpretation of the probability under the null hypothesis
of encountering an observation with a value that is at least as extreme. In biomarker
identification, p values can be used to sort the variables in order of importance and it is also
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possible to decide a cut-off value to identify variables which show “significant” differences
from the null hypothesis.

Generally speaking, the absolute size of coefficients is taken as a measure for the likelihood of
being a true marker: the variable with the largest coefficient, in a PLS-DA model for example,
is the first biomarker candidate, the second largest the second candidate, and so on. Note that
this approach assumes that all variables have been standardized, i.e., scaled to mean zero and
unit variance. This is often done in metabolomics to prevent dominance of highly abundant
metabolites. Statistics from a t-test can be treated in the same way.

2.2 Quality assessment

To evaluate the performance of biomarker selections one typically relies on quantities like the
fraction of true positives, i.e., that fraction of the real biomarkers that is actually identified by
the selection method, and the false positives – those variables that have been selected but do
not correspond to real differences. Similarly, true and false negatives can be defined. These
statistics can be summarized graphically in an ROC plot (Brown & Davis, 2005), where the
fraction of true positives (y-axis) is plotted against the fraction of false positives (x-axis). These
two characteristics are also known as the sensitivity and the (complement of) specificity. An
ideal biomarker identification method would lead to a position in the top left corner: all true
biomarkers would be found (the fraction of true positives would be one, or close to one) with
no or only very few false positives. Gradually relaxing the selection criterion, allowing more
and more variables to be considered as biomarkers, generally leads to an increase in the true
positive fraction (upwards in the plot), but also to an increase in the false positive fraction (in
the plot to the right). The best biomarker selection method is obviously the one that finds all
biomarkers very quickly, leading to a very steep ROC curve at the beginning.

A quantitative measure of the efficiency of a method can be obtained by calculating the area
under the ROC curve (AUC). A value of one (or close to one) indicates that the method does a
very good job in identifying biomarkers – all true biomarkers are found almost immediately.
A value of one half indicates a completely random selection (this corresponds to the diagonal
in the ROC plot). Values significantly lower than one half should not occur. In many cases,
the most important area in the ROC plot is the left side, which indicates the efficiency of the
model in selecting the most important biomarkers. Consequently, it is common to calculate
a partial area under the curve (pAUC), for instance up to twenty percent of false positives
(pAUC.2). In a method with higher pAUC, the true biomarkers will be present in the first
positions of the candidate biomarkers list, hence this is the quantity that will be considered in
the current paper.

2.3 Apple data set

Twenty apples, variety Golden Delicious, were purchased at the local store. Extracts of every
single fruit were prepared according to Vrhovsek et al. (Vrhovsek et al., 2004). The core of the
fruit was removed with a corer and each apple was cut into equal slices. Three slices (cortex
and skin) from the opposite side of each fruit were used for the preparation of aqueous acetone
extracts. The samples were homogenized in a blender Osterizer model 847-86 at speed one
in a mixture of acetone/water (70/30 w/w). Before the injection, acetone was evaporated
by rotary evaporation, the samples were brought back to the original volume with ethanol
and were filtered with a 0.22 μm filter (Millipore, Bedford, USA). UPLC-MS spectra were
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fruit was removed with a corer and each apple was cut into equal slices. Three slices (cortex
and skin) from the opposite side of each fruit were used for the preparation of aqueous acetone
extracts. The samples were homogenized in a blender Osterizer model 847-86 at speed one
in a mixture of acetone/water (70/30 w/w). Before the injection, acetone was evaporated
by rotary evaporation, the samples were brought back to the original volume with ethanol
and were filtered with a 0.22 μm filter (Millipore, Bedford, USA). UPLC-MS spectra were
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HPLC ACQUITY UPLC (Waters)
Column BEH C18 1.7 μm, 2.1*50 mm
Column temperature 40◦C
Injection volume 5μl
Eluent flux 0.8 mlmin−1

Solvent A 0.1% formic acid in H2O
Solvent B 0.1% formic acid in MeOH
Gradient linear gradient

from 0 to 100% of solvent B in 10 minutes
100% of B for 2 minutes
100% A within 0.1 minutes
Equilibration for 2.9 minutes.

Mass Spectrometer SYNAPT Q-TOF (Waters)
Mass range 50-3000 Da.
Capillary 3 kV
Sampling cone 25 V
Extraction cone 3 V
Source temperatures 150◦C
Desolvation temperatures 500◦C
Cone gas flow 50 Lh−1

Desolvation gas flow 1000 Lh−1

Table 1. Chromatographic and spectrometric conditions of the spiked-apple data set.

acquired on a ACQUITY - SYNAPT Q-TOF (Waters, Milford, USA) in positive and negative
ion mode with the chromatographic conditions summarized in Table 1. No technical replicates
were performed. Raw data were transformed to the open NetCDF format by the DataBridge
built-in utility of the MassLynx software.

Class differences were introduced by spiking ten of the twenty extracts with a number of
selected compounds, leaving the other ten as “untreated” controls. The majority of the spiked
compounds are known to be commonly present in apples, while two of them (trans-resveratrol
and cyanidin-3-galactoside) are not naturally present in the chosen matrix. The concentrations
of the specific compounds in the pooled extract are presented in Table 2; markers were
added in different concentrations to test the identification pipeline in conditions which mimic
those found in a typical metabolomic experiment, where variation is usually present at
different concentration levels. As an example of what the data look like, the first control
sample, measured in positive mode, is shown in Figure 1. The horizontal axis shows the
chromatographic dimension, and the vertical axis the mass-to-charge ratio. Circles indicate
features that have been identified in this plane. In the remainder only the extracted triplets for
the features, consisting of retention time, mass-to-charge ratio and intensity, will be used.

Feature extraction is performed with XCMS (Smith et al., 2006) and all statistical analyses
are carried out in R (R Development Core Team, 2011). The CentWave peak-picking
algorithm (Tautenhahn et al., 2008) is applied, using the following parameter settings: ppm
= 20, peakwidth = c(3,15), snthresh = 2, prefilter = c(3,5). The average numbers of detected
features per chromatogram are 1179 and 610 for positive and negative ion mode, respectively.
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Fig. 1. Visualization of the data of the first control sample, measured in positive mode. The
top of the figure shows the square root of the Total Ion Current (TIC); background color
indicates the intensity of the signal in the plane formed by retention time and m/zaxes.
Circles indicate features found by the peak picking; the fill colour of these circles indicates
the intensity of the features.

Compound mgl−1 pool Δ Conc. (mgl−1)

quercetin-3-galactoside (querc-3-gal) 5.69 1.48
quercetin 0.006 0.008
quercetin-3-glucoside (querc-3-glc) 1.05 0.3
quercetin-3-rhamnoside (querc-3rham) 3.64 3.55
phloridzin 2.92 2.3
cyanidin-3-galactoside (cy-3-gal) n.d. 0.57
trans-resveratrol n.d. 0.4

Table 2. Spiked compound summary. The difference in concentration is relative to the one
measured in the pooled extract. Cyanidin-3-galactoside and trans-resveratrol are not
normally found in Golden Delicious.
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After grouping across samples, features are screened for isotopes, clusters and common
adducts with in-house developed software.

Due to fragmentation occurring in the ionization source, it is common for a single neutral
molecule to give rise to several ionic species. A single spiked compound can then generate
several “biomarkers” in the MS peak table. Adducts, isotopes and common clusters are
automatically screened, but fragments must be included in the biomarker list, as in real
metabolomic experiments no a priori knowledge can be used to distinguish molecular
from fragment ions. For the apple data set, the characteristic couples mass/retention time
for all spiked metabolites were identified by manual inspection of the UPLC-MS profiles
of standards. For negative ions the following numbers of features have been associated
with the spike-in compounds: querc-3-gal/querc-3-glc (1 feature), phloridzin (2 features),
trans-resveratrol (1), querc-3-rham (1). In the case of positive ion mode the numbers are
cy-3-gal (1), trans-resveratrol (1), querc-3-rham (1), quercetin (1) and phloridzin (4). These
feature are now taken to be the “true” biomarkers and they are used to construct ROC
curves. The data set, as well as a more extended version including different concentrations
of spiked-in compounds is publicly available in the R package BioMark (see http://cran.
r-project.org/web/packages/BioMark, Wehrens & Franceschi (2011)) and has been
used to evaluate a novel stability-based biomarker selection method (Wehrens et al., 2011).

In this application, the effects of decreasing sample size are investigated by subsampling
the original set of twenty samples: sample sizes of 16, 12, 8 and 6 apples, respectively, are
considered. In all cases, both classes (spiked and control) have equal sizes, which is the most
easy case for detecting significant differences. Results are summarized by analysis of ROC
curves – to prevent effects from accidentally easy or difficult subsets, the final ROC curves are
obtained by averaging the results of 100 repeated re-samplings.

2.4 Simulated data sets

To assess the behaviour of biomarker selection for larger data sets, we resort to simulation.
Simulated data sets have been constructed as multivariate normal distributions, using the
means and covariance matrices of the experimental data: both classes (untreated and spiked)
have been simulated separately. Simulations are performed for both positive and negative
modes; in every simulation, one hundred data sets are created. The outcomes reported here
are the averages of the results for the one hundred simulations. Data sets consisting of 10, 25,
50 and 200 biological samples per class have been synthesized.

3. Results and discussion

As a first step, the data are visualized using Principal Component Analysis (PCA). Since the
intensities of the features can vary enormously, standardized data are used. The score plots
for the positive and negative data sets are shown in Figure 2 for the positive ion mode, and in
Figure 3 for the negative mode. In both cases, control and spiked data sets are not completely
separated and the same is also true for the other PCs (not shown). This fact indicates that
the “inherent” variability of the data set is not perturbed to a significant extent by spiking, as
could be expected considering the small number of affected variables.

Even with this data structure, biomarker selection strategies can still perform efficiently.
Figure 2 and Figure 3 also display the score plots of a PCA analysis performed considering
only the top 10 variables selected by univariate t-testing. In these conditions, the separation
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Fig. 2. PCA score plot (PC1 vs PC2) for the positive ion mode data set after standardization.
In the left plot the principal components have been calculated on the full data set. In the right
panel PCA analysis has been performed considering only the top 10 variables selected by a
t-test.

between control and spiked samples is evident, thus indicating that this subset of the variables
separates the two classes. Whether these ten variables contain the true biomarkers remains to
be seen: especially in small data sets there may be chance correlations causing false positives,
and seeing differences between the two groups in the score plots after t-testing in fact is
trivial. The score plot is merely showing that the variables, selected on the bases of their
discriminating power, are separating the two classes. As already discussed, small data sets
will in general not capture all relevant biological variability, which implies that the predictive
power of statistical models based on small data sets usually is very low. To illustrate this
effect, the predictive power, i.e., the fraction of correct predictions for PC-LDA and PLS-DA
models is presented in Figure 4. Four subsets of different sizes are considered as training sets,
and the estimate of predictive power is based on predictions for the apples not in the training
set. Again, the results are the average over 100 different subsamplings. Even if the control
and spiked subsets are different, it can be seen that the predictive power of the multivariate
methods is comparable to random selection, meaning that for every subset different variables
will be important in the models and no consistency can be achieved. However, it is important
to point out that this fact does not mean that some of the true biomarkers are not consistently
selected upon subsetting, but rather that the more important variables are changing from a
subset to another: even with models that are unpredictive it is possible to extract relatively
good lists of putative biomarkers. Obviously, with very different characteristics for the two
classes there will be predictive power, but for realistic data sets like the one used in this paper,
where differences are small, it is unwise to focus solely on prediction.

To evaluate the efficiency of the different methods as far as biomarker selection is concerned,
ROC curves for the t-test and two-component PLS-DA and PC-LDA models are presented in
Figure 5, for 3, 4, 6 and 8 biological samples per class, respectively. The ROC curves indicate
that all three variables selection methods perform significantly better than random selection.
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Fig. 2. PCA score plot (PC1 vs PC2) for the positive ion mode data set after standardization.
In the left plot the principal components have been calculated on the full data set. In the right
panel PCA analysis has been performed considering only the top 10 variables selected by a
t-test.

between control and spiked samples is evident, thus indicating that this subset of the variables
separates the two classes. Whether these ten variables contain the true biomarkers remains to
be seen: especially in small data sets there may be chance correlations causing false positives,
and seeing differences between the two groups in the score plots after t-testing in fact is
trivial. The score plot is merely showing that the variables, selected on the bases of their
discriminating power, are separating the two classes. As already discussed, small data sets
will in general not capture all relevant biological variability, which implies that the predictive
power of statistical models based on small data sets usually is very low. To illustrate this
effect, the predictive power, i.e., the fraction of correct predictions for PC-LDA and PLS-DA
models is presented in Figure 4. Four subsets of different sizes are considered as training sets,
and the estimate of predictive power is based on predictions for the apples not in the training
set. Again, the results are the average over 100 different subsamplings. Even if the control
and spiked subsets are different, it can be seen that the predictive power of the multivariate
methods is comparable to random selection, meaning that for every subset different variables
will be important in the models and no consistency can be achieved. However, it is important
to point out that this fact does not mean that some of the true biomarkers are not consistently
selected upon subsetting, but rather that the more important variables are changing from a
subset to another: even with models that are unpredictive it is possible to extract relatively
good lists of putative biomarkers. Obviously, with very different characteristics for the two
classes there will be predictive power, but for realistic data sets like the one used in this paper,
where differences are small, it is unwise to focus solely on prediction.

To evaluate the efficiency of the different methods as far as biomarker selection is concerned,
ROC curves for the t-test and two-component PLS-DA and PC-LDA models are presented in
Figure 5, for 3, 4, 6 and 8 biological samples per class, respectively. The ROC curves indicate
that all three variables selection methods perform significantly better than random selection.
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Of the three, PC-LDA is always the least efficient, while PLS-DA and the t-test have a very
similar performance. In absolute terms, the efficiency of the three methods increases with
the number of biological samples. ROC curves for all possible conditions were constructed
and the results are summarized in terms of early AUC (pAUC.2) in Figure 6, for positive and
negative ion mode, respectively. From these figures it is possible to extract some clear trends:
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Fig. 5. ROC curves for the t-test and two component PLS-DA and PC-LDA as a function of
the number of samples per class.

1. The performance of the methods improves by increasing the number samples per class.

2. The performance of PLS-DA is not particularly sensitive to the number of components.

3. PC-LDA does not show top class performance in any of the conditions considered.

4. The performance of PC-LDA is very much dependent on the number of components.

5. Multivariate approaches do not show a definitive advantage over univariate t-testing.

As expected, the performances of all the methods in terms of biomarker identification decrease
with a reduction of the data set size. However, it is important to point out that even
in the worst possible case (3 samples per class) early AUC for PLS-DA and the t-test are
significantly greater than that obtained for completely random selection. This indicates that
both methods can be used effectively in the biomarker selection phase, even with a low
number of samples. In other words, features related to spiked compounds are consistently
present in the top positions of the ordered list of experimental variables, which implies that
also models constructed with very few samples can be relied upon to recognize these features.

The performance of PC-LDA is very much dependent on the number of components taken
into account. This behavior can be explained by considering that in PC-LDA the variable
reduction step is performed without any knowledge of class labels, only selecting the
directions of greater variance. If these directions show little discriminating power, their
supervised linear combination leads to poor modeling. However, performance improves with
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4. The performance of PC-LDA is very much dependent on the number of components.

5. Multivariate approaches do not show a definitive advantage over univariate t-testing.

As expected, the performances of all the methods in terms of biomarker identification decrease
with a reduction of the data set size. However, it is important to point out that even
in the worst possible case (3 samples per class) early AUC for PLS-DA and the t-test are
significantly greater than that obtained for completely random selection. This indicates that
both methods can be used effectively in the biomarker selection phase, even with a low
number of samples. In other words, features related to spiked compounds are consistently
present in the top positions of the ordered list of experimental variables, which implies that
also models constructed with very few samples can be relied upon to recognize these features.

The performance of PC-LDA is very much dependent on the number of components taken
into account. This behavior can be explained by considering that in PC-LDA the variable
reduction step is performed without any knowledge of class labels, only selecting the
directions of greater variance. If these directions show little discriminating power, their
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the number of components, as an increase of the number of LVs leads to a better “coverage”
of the data space. These limitations do not affect PLS-DA, as the variable reduction step
is already performed in a supervised framework, where discriminating power is the main
request. This means that the first PLS components are by definition more relevant than the
first PCA components in biomarker identification. The other side of the coin is the danger
of overfitting, very real in the application of PLS-DA (Westerhuis et al., 2008) – we will come
back to this point later.

In this small-sample set, the t-test does as well as the best multivariate methods. This shows
that modeling the correlation structure is not necessarily an advantage if the number of
samples is low, or, alternatively, that the true correlation structure has not been captured well
enough from the few samples that are available to allow meaningful inference. A definite
advantage of the t-test is that it has no tunable parameters and can be applied without further
optimization. It should be noted that we do not need to apply multiple-testing corrections
in this context since we only use the order of the absolute size of the t-statistics to construct
the ROC curves, and not a specific cut-off level α. In other applications, however, this aspect
should be taken into account.

To extend the comparison between different models beyond the limits imposed by the apple
experiment, ROC curves and early AUC were calculated for the simulated data using larger
sample sizes (10, 25, 50, 200), both for positive and negative ion modes. The dependence of
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Fig. 7. pAUC.2 for PLS-DA, PC-LDA and t-test as a function of the number of samples per
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pAUC.2 on the number of replicates and of components is presented in Figure 7, comparing
the multivariate methods to the t-test and to “random” selection.

This analysis shows that PC-LDA only becomes effective if a large number of LVs is
considered: the true biomarkers should have appreciable weight in the latent variables and
it is by no means certain that this is the case for the first couple of LVs. Is it worth noting
that for negative ion mode, the model with 2 LVs is comparable to random selection. In the
case of PLS-DA, this dependence on the number of LVs is less evident and shows an opposite
trend: the best performance is obtained with the smallest number of LVs. This is in agreement
with the explanation given earlier: the relevant variables are captured in the very first PLS
components, and the effect of overtraining leads to deterioration if more components are
added. If anything, it is surprising that the overtraining effect is relatively small for these
data.

The results on the simulated data sets are in agreement with the conclusions from the apple
data. Differences between the methods decrease with increasing sample sizes, but even
with the largest number of objects (200 in each group) the t-test still performs as well as
PLS-DA. Multivariate testing is slightly more effective for the positive ion mode, while the
t-test shows a slight advantage for the negative ion mode. This behaviour is probably due to
the different characteristics of both ionization modes, leading to different levels of correlation
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of the data space. These limitations do not affect PLS-DA, as the variable reduction step
is already performed in a supervised framework, where discriminating power is the main
request. This means that the first PLS components are by definition more relevant than the
first PCA components in biomarker identification. The other side of the coin is the danger
of overfitting, very real in the application of PLS-DA (Westerhuis et al., 2008) – we will come
back to this point later.

In this small-sample set, the t-test does as well as the best multivariate methods. This shows
that modeling the correlation structure is not necessarily an advantage if the number of
samples is low, or, alternatively, that the true correlation structure has not been captured well
enough from the few samples that are available to allow meaningful inference. A definite
advantage of the t-test is that it has no tunable parameters and can be applied without further
optimization. It should be noted that we do not need to apply multiple-testing corrections
in this context since we only use the order of the absolute size of the t-statistics to construct
the ROC curves, and not a specific cut-off level α. In other applications, however, this aspect
should be taken into account.

To extend the comparison between different models beyond the limits imposed by the apple
experiment, ROC curves and early AUC were calculated for the simulated data using larger
sample sizes (10, 25, 50, 200), both for positive and negative ion modes. The dependence of
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pAUC.2 on the number of replicates and of components is presented in Figure 7, comparing
the multivariate methods to the t-test and to “random” selection.

This analysis shows that PC-LDA only becomes effective if a large number of LVs is
considered: the true biomarkers should have appreciable weight in the latent variables and
it is by no means certain that this is the case for the first couple of LVs. Is it worth noting
that for negative ion mode, the model with 2 LVs is comparable to random selection. In the
case of PLS-DA, this dependence on the number of LVs is less evident and shows an opposite
trend: the best performance is obtained with the smallest number of LVs. This is in agreement
with the explanation given earlier: the relevant variables are captured in the very first PLS
components, and the effect of overtraining leads to deterioration if more components are
added. If anything, it is surprising that the overtraining effect is relatively small for these
data.

The results on the simulated data sets are in agreement with the conclusions from the apple
data. Differences between the methods decrease with increasing sample sizes, but even
with the largest number of objects (200 in each group) the t-test still performs as well as
PLS-DA. Multivariate testing is slightly more effective for the positive ion mode, while the
t-test shows a slight advantage for the negative ion mode. This behaviour is probably due to
the different characteristics of both ionization modes, leading to different levels of correlation
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between biomarkers. Indeed, in positive ion mode, the ionization shows a more pronounced
fragmentation (phloridzine, for example, gives rise to four different biomarkers).

4. Conclusions

In this paper we have investigated the effects of sample set size on the performance of
some popular strategies for biomarker identification (PLS-DA, PC-LDA and the t-test). The
experiments are performed on a spiked metabolomic data set measured in apple extracts by
UPLC-QTOF. The efficiency of the different statistical approaches is compared in terms of ROC
curves, and in order to assess general trends, simulated data have been used to extend the data
set. The experimental results clearly show that Linear Discriminant Analysis carried out on
the Principal Components (PC-LDA) is the least efficient strategy for biomarker identification
among the ones we considered. PLS-DA and the t-test show comparable performances in all
the considered conditions. These results, and the observation that PLS-DA based selection
is relatively consistent for different numbers of components, indicate that multivariate and
univariate approaches are equally efficient for the apple data set. It is perhaps surprising that
relatively good results in terms of biomarker selection are obtained, even for models that have
very poor predictive performance. One should realise, however, that this is not a paradox at
all: it merely is the result from the low sample-to-variable ratio, leading to chance correlations
of intensities of metabolite signals with class. The true biomarkers are often present among
the most significant variables in, e.g., a PLS-DA model, but many other false positives are,
too, destroying the predictive power. One recently published approach actually utilizes
this variability by focusing only on those variables that are consistently present in the most
important variables upon disturbance of the data by jackkifing or bootstrapping (Wehrens
et al., 2011).

The main point of this contribution, however, is the relation between data set size and
reliability of biomarker identification. As expected, all the methods become less efficient as the
number of biological replicates decreases, but even in these conditions the use of PLS-DA and
the t-test offer effective biomarker identification strategies. This observation is fundamentally
important in all studies where it is impossible to acquire more samples, and suggests that
small sample sizes can still allow reliable selection of biomarkers.
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1. Introduction 
A reaction system of Michaelis-Menten enzyme on single substrate can be characterized by 
the initial substrate concentration before enzyme action (S0), the maximal reaction rate (Vm) 
and Michaelis-Menten constant (Km), besides some other required parameters. The 
estimations of S0, Vm and Km can be used to measure enzyme substrates, enzyme activities, 
epitope or hapten (enzyme-immunoassay), irreversible inhibitors and so on. During enzyme 
reaction, the changes of substrate or product concentrations can be monitored; continuous 
monitor of such changes provides a reaction curve while discontinuous monitor of such 
changes provides signals just for the starting point and the terminating point of enzyme 
reaction. It is an end-point method when only signals for the starting point and the 
terminating point are analyzed. It is a kinetic method when a range of data from a reaction 
curve are analyzed, and can be classifieid into the initial rate method and kinetic analysis of 
reaction curve. The initial rate method only analyzes data for initial rate reaction whose 
instantaneous rates are constants; kinetic analysis of reaction curve analyzes data whose 
instantaneous rates show obvious deviations from the initial rate (Bergmeyer, 1983; 
Guilbault, 1976; Marangoni, 2003). To estimate those parameters of an enzyme reaction 
system, kinetic analysis of reaction curve is favoured because the analysis of one reaction 
curve can concomitantly provide Vm, S0 and Km. Hence, methods for kinetic analysis of 
reaction curve to estimate parameters of enzyme reaction systems are widely studied. 

An enzyme reaction curve is a function of dependent variables, which are proportional to 
concentrations of a substrate or product, with respect to reaction time as the predictor 
variable. In general, there are two types of enzyme reaction curves. The first type involves 
the action of just one enzyme, and employs either a selective substrate to detect the activity 
of one enzyme of interest or a specific enzyme to act on a unique substrate of interest. The 
second type involves the actions of at least two enzymes, and requires at least one auxiliary 
enzyme as a tool to continuously monitor a reaction curve. The second type is an enzyme-
coupled reaction system. For kinetic analysis of reaction curve, there are many reports on 
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one enzyme reaction system, but are just a few reports on enzyme-coupled reaction system 
(Atkins & Nimmo, 1973; Liao, et al., 2005; Duggleby, 1983, 1985, 1994; Walsh, 2010). 

In theory, enzyme reactions may tolerate reversibility, the activation/inhibition by 
substrates/products, and even thermo-inactivation of enzyme. From a mathematic view, it 
is still feasible to estimate parameters of an enzyme reaction system by kinetic analysis of 
reaction curve if the roles of all those factors mentioned above are included in a kinetic 
model (Baywenton, 1986; Duggleby, 1983, 1994; Moruno-Davila, et al., 2001; Varon, et al., 
1998). However, enzyme kinetics is usually so complex due to the effects of those mentioned 
factors that there are always some technical challenges for kinetic analysis of reaction curve. 
Hence, most methods for kinetic analysis of reaction curve are reported for enzymes whose 
actions suffer alterations by those mentioned factors as few as possible. 

In practice, kinetic analysis of reaction curve usually employs nonlinear-least-square-
fitting (NLSF) of the differential or integrated rate equation(s) to either the reaction curve 
per se or data set(s) transformed from the reaction curve (Cornish-Bowden, 1995; 
Duggleby, 1983, 1994; Orsi & Tipton, 1979). The use of NLSF rather than matrix inversion 
is due to the existence of multiple minima of the sum of residual squares with respect to 
some nonlinear parameters (Liao, et al., 2003a, 2007a). When a differential rate equation is 
used, numerical differentiation of data from the reaction curve has to be employed to 
derive instantsneous reaction rates. In this case, there must be intervals as short as 
possible to monitor reaction curves (Burden & Faires, 2001; Dagys, 1990; Hasinoff, 1985; 
Koerber & Fink, 1987). However, the instantaneous reaction rates from reaction curves 
inherenetly exhibit narrow distribution ranges and large errors; the strategy by numerical 
differentiation of data in a reaction curve is unfavourable for estimating Vm and S0 
because of their low reliaiblity and unsatisfactory working ranges. On the other hand, 
when an integrated rate equation of an enzyme reaction is used for kinetic analysis of 
reaction curve, there is no prerequisites of short intervals to record reaction curves so that 
automated analyses in parallel can be realized for enhanced performance with a large 
number of samples. As a result, integrated rate equations of enzymes are widely studied 
for kinetic analysis of reaction curve to estimate parameters of enzyme reaction systems 
(Duggleby, 1994;Liao, et al, 2003a, 2005a; Orsi & Tipton, 1979). 

Due possibly to the limitation on computation resources, integrated rate equations of 
enzymes in such methods are usually rearranged into special forms to facilitate NLSF after 
data transformation (Atkins & Nimmo, 1973; Orsi & Tipton, 1979). In appearance, the uses 
of different forms of the same integrated rate equation for NLSF to data sets transformed 
from the same reaction curve can give the same parameters. However, kinetic analysis of 
reaction curve with rearranged forms of an integrated rate equation always gives 
parameters with uncertainty too large to have practical roles (Newman, et al, 1974). 
Therefore, proper forms of an integrated rate equation should be selected carefully for 
estimating parameters by kinetic analysis of reaction curve. 

In the past ten years, our group studied chemometrics for kinetic analysis of reaction curve 
to estimate parameters of enzyme reaction systems; the following results were found. (a) In 
terms of reliability and performance for estimating parameters, the use of the integrated rate 
equations with the predictor variable of reaction time is superior to the use of the integrated 
rate equations with predictor variables other than reaction time (Liao, et al., 2005a); (b) the 
integration of kinetic analysis of reaction curve with other methods to quantify initial rates 
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and substrates has more absorbing advantages (Liu, et al., 2009; Yang, et al., 2010); such 
integration strategies can be applied to enzyme-coupled reaction systems and enzymes 
sufferring inhibition by substrates/products. Herein, we discuss chemometrics for both 
kinetic analysis of reaction curve and its integration with other methods, and demonstrate 
their applications to quantify enzyme initial rates and substrates with some typical enzymes. 

2. Kinetic analysis of enzyme reaction curve: chemometrics and application 
To estimate parameters by kinetic analysis of reaction curve, the desired parameters are 
included in a set of parameters for the best fitting. Regardless of the number of enzymes 
involved in a reaction curve, there are the following two approaches for kinetic analysis of 
reaction curve based on different ways to realize NLSF and their data transformation. 

In the first approach, with a differential or integrated rate equation, a series of dependent 
variables are derived from data in a reaction curve with each set of preset parameters. 
Such dependent variables should follow a predetermined response to predictor variables 
that are either reaction time or data transformed from those in the reaction curve. The 
goodness of the predetermined response is the criterion for the best fitting. In this 
approach, NLSF is realized with a model for data transformed from a reaction curve 
(Burguillo, 1983; Cornish-Bowden, 1995; Liao, 2005; Liao, et al., 2003a, 2003b, 2005a, 2005b; 
Orsi & Tipton, 1979). 

In the second approach, reaction curves are calculated with sets of preset parameters by 
iterative numerical integration from a preset staring point. Such calculated reaction curves 
are fit to a reaction curve of interest; the least sum of residual squares indicates the best 
fitting (Duggleby, 1983, 1994; Moruno-Davila, et al., 2001; Varon, et al., 1998; Yang, et al., 
2010). In this approach, calculated reaction curves still utilize reaction time as the predictor 
variable and become discrete at the same intervals as the reaction curve of interest. Clearly, 
there is no transformation of data from a reaction curve in this approach. 

With any enzyme, iterative numerical integration of the differential rate equation(s) from 
a starting point with sets of preset parameters can be universally applicable regardless of 
the complexity of the kinetics. Thus, the second approach exhibits better universality and 
there are few technical challenges to kinetic analysis of reaction curve via NLSF. In fact, 
however, the second approach is occasionally utilized while the first approach is widely 
practiced. 

In the following subsections, the differential rate equation of simple Michaelis-Menten 
kinetics on single substrate is integrated; the prerequisites for kinetic analysis of reaction 
curve with integrated rate equations, kinetic analysis of enzyme-coupled reaction curve, the 
integrations of kinetic analysis of reaction curve with other methods, and the applications of 
such integration strategies to some typical enzymes are discussed. 

2.1 Integrated rate equation for one enzyme on single substrate 

Assigning instantaneous substrate concentration to S, instantaneous reaction time to t, 
steady-state kinetics of Michaelis-Menten enzyme on single substrate follows Equ.(1). 

 m m( ) ( )dS dt V S K S     (1) 
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and substrates has more absorbing advantages (Liu, et al., 2009; Yang, et al., 2010); such 
integration strategies can be applied to enzyme-coupled reaction systems and enzymes 
sufferring inhibition by substrates/products. Herein, we discuss chemometrics for both 
kinetic analysis of reaction curve and its integration with other methods, and demonstrate 
their applications to quantify enzyme initial rates and substrates with some typical enzymes. 

2. Kinetic analysis of enzyme reaction curve: chemometrics and application 
To estimate parameters by kinetic analysis of reaction curve, the desired parameters are 
included in a set of parameters for the best fitting. Regardless of the number of enzymes 
involved in a reaction curve, there are the following two approaches for kinetic analysis of 
reaction curve based on different ways to realize NLSF and their data transformation. 

In the first approach, with a differential or integrated rate equation, a series of dependent 
variables are derived from data in a reaction curve with each set of preset parameters. 
Such dependent variables should follow a predetermined response to predictor variables 
that are either reaction time or data transformed from those in the reaction curve. The 
goodness of the predetermined response is the criterion for the best fitting. In this 
approach, NLSF is realized with a model for data transformed from a reaction curve 
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2010). In this approach, calculated reaction curves still utilize reaction time as the predictor 
variable and become discrete at the same intervals as the reaction curve of interest. Clearly, 
there is no transformation of data from a reaction curve in this approach. 

With any enzyme, iterative numerical integration of the differential rate equation(s) from 
a starting point with sets of preset parameters can be universally applicable regardless of 
the complexity of the kinetics. Thus, the second approach exhibits better universality and 
there are few technical challenges to kinetic analysis of reaction curve via NLSF. In fact, 
however, the second approach is occasionally utilized while the first approach is widely 
practiced. 

In the following subsections, the differential rate equation of simple Michaelis-Menten 
kinetics on single substrate is integrated; the prerequisites for kinetic analysis of reaction 
curve with integrated rate equations, kinetic analysis of enzyme-coupled reaction curve, the 
integrations of kinetic analysis of reaction curve with other methods, and the applications of 
such integration strategies to some typical enzymes are discussed. 

2.1 Integrated rate equation for one enzyme on single substrate 

Assigning instantaneous substrate concentration to S, instantaneous reaction time to t, 
steady-state kinetics of Michaelis-Menten enzyme on single substrate follows Equ.(1). 

 m m( ) ( )dS dt V S K S     (1) 
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Assigning the substrate concentration at the first point for analysis to S1, Equ.(1) is 
integrated into Equ.(2) when the enzyme is stable, the substrate and product do not alter the 
intrinsic activity of the enzyme and the reaction is irreversible (Atkins & Nimmo, 1973; 
Marangoni, 2003; Orsi & Tipton, 1979; Zou & Zhu, 1997). In Equ.(2), tlag accounts for the lag 
time of steady-state reaction. After transformation of data in a reaction curve according to 
Equ.(3), there should be a linear response of the left part in Equ.(2) to reaction time, as in 
Equ.(4). The goodness of this linear response is judged based on regression analysis. 
However, to estimate parameters by kinetic analysis of reaction curve via NLSF, there are 
the following general prerequisites for Equ.(2) or any of its equivalency.  

 1 m 1 m m lag( ) ln( ) ( ) ( )S - S K S S V K t t     (2) 

 1 m 1( ) ln( )y S - S K S S   (3) 

 y a b t    (4) 

The first prerequisite is that enzyme reaction should apparently follow kinetics on single 
substrate. For enzyme reactions with multiple substrates whose concentrations are all 
changing during reactions, kinetic analysis of reaction curve always give parameters of too 
low reliability to have practical roles no matter what methods are used for NLSF (data 
unpublished). From our experiences to estimate parameters by kinetic analyses of reaction 
curves, any substrate at levels below 10% of its Km can be considered negligible; the use of 
one substrate at levels below 10% of those of other substrates can make enzyme reactions 
follow single substrate kinetics (Liao, et al, 2001; Liao, et al, 2003a, 2003b; Li et al., 2011; Zhao 
et al., 2006). For any enzyme on multiple substrates, therefore, there are two approaches to 
make it apparently follow kinetics on single substrate. The first is the use of one substrate of 
interest at levels below 10% of those of the other substrates; this approach has universal 
applicability to common enzymes such as hydrolases in aqueous buffers and oxidases in air-
saturated buffers. The second is the utilization of special reaction systems to regenerate the 
substrate of the enzyme of interest by actions of some auxiliary enzymes, and indeed this 
approach usually yields enzyme-coupled reaction curves of complicated kinetics. 

The second prerequisite is that enzyme reaction should be irreversible. In theory, the 
estimation of parameters by kinetic analysis of reaction curve is still feasible when reaction 
reversibility is considered, but the estimated parameters possess too low reliability to have 
practical roles (data unpublished). Generally, a preparation of a substance with 
contaminants less than 1% in mass content can be taken as a pure substance. Namely, a 
reagent leftover in a reaction accounting for less than 1% of that before reaction can be 
negligible. For convenience, therefore, an enzyme reaction is considered irreversible when 
the leftover level of a substrate of interest in equilibrium is much less than 1%of its initial 
one. To promote the consumption of the substrate of interest, the concentrations of other 
substrates should be preset at levels much over 10 times the initial level of the substrate of 
interest. In this case, the enzyme reaction is apparently irreversible and follows kinetics on 
single substrate. Or else, the use of scavenging reactions to remove products can drive the 
reaction forward. The concurrent uses of both approaches are usually better. 

The third prerequisite is that there should be steady-state data for analysis (Atkins & 
Nimmo, 1973; Dixon & Webb, 1979; Liao, et al, 2005a; Marangoni, 2003; Orsi & Tipton, 1979). 
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For this prerequisite, the first and the last points of data in a reaction curve for analysis 
should be carefully selected. The first point should exclude data within the lag time of 
steady-state reaction. The last point should ensure data for analyses to have substrate 
concentrations high enough for steady-state reaction. Namely, substrate concentrations 
should be much higher than the concentration of the active site of the enzyme (Dixon & 
Webb, 1979). The use of special weighting functions for NLSF can mitigate the contributions 
of residual squares at low substrate levels that potentially obviate steady-state reaction. 

The forth prerequisite is that the enzyme should be stable to validate Equ.(2), or else the 
inactivation kinetics of the enzyme should be included in the kinetic model. Enzyme 
stability should be checked before kinetic analysis of reaction curve. When the inactivation 
kinetics of an enzyme is included in a kinetic model for kinetic analysis of reaction curve, 
the integrated rate equation is usually quite complex or even inaccessible if the inactivation 
kinetics is too complex. For kinetic analysis of reaction curve of complicated kinetics, 
numerical integration to produce calculated reaction curves for NLSF to a reaction curve of 
interest, instead of NLSF with Equ.(4), can be used to estimate parameters (Duggleby, 1983, 
1994; Moruno-Davila, et al., 2001; Varon, et al., 1998; Yang, et al., 2010). 

The fifth prerequisite is that there should be negligible inhibition/activation of activity of an 
enzyme by products/substrates, or else such inhibition/activation on the activity of the 
enzyme by its substrate/product should be included in an integrated rate equation for 
kinetic analysis of reaction curve (Zhao, L.N., et al., 2006). For validating Equ.(2), any 
substrate that alters enzyme activity should be preset at levels low enough to cause 
negligible alterations; any product that alters enzyme activity can be scavenged by proper 
reactions. When such alterations are complex, numerical integration of differential rate 
equations for NLSF to a reaction curve of interest can be used (Duggleby, 1983, 1994; 
Moruno-Davila, et al., 2001; Varon, et al., 1998). 

Obviously, the first three prerequisites are mandatory for the inherent reliability of 
parameters estimated by kinetic analysis of reaction curve; the later two prerequisites are 
required for the validity of Equ.(2) or its equivalency for kinetic analysis of reaction curve. 

2.2 Realization of NLSF and limitation on parameter estimation 

To estimate parameters by kinetic analysis of reaction curve based on NLSF, the main 
concerns are the satisfaction to the prerequisites for the quality of data under analysis, the 
procedure to realize NLSF, and the reliability of parameters estimated thereby. 

For the estimation of parameters by kinetic analysis of reaction curve, there are two general 
prerequisites for the quality of data under analysis: (a) there should be a minimum number 
of the effective data whose changes in signals are over three times the random error; (b) 
there should be a minimum consumption percentage of the substrate in such effective data 
for analysis. In general, at least two parameters like Vm and S0 should be estimated; the 
minimum number of the effective data should be no less than 7 (Atkins & Nimmo, 1973; 
Baywenton, 1986; Miller, J. C. & Miller, J. N., 1993). The minimum consumption percentage 
of the substrate can be about 40% if only Vm and S0 are estimated while other parameters are 
fixed as constants. In general, the estimation of more parameters requires higher 
consumption percentages of the substrate in the effective data for analysis. 
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Baywenton, 1986; Miller, J. C. & Miller, J. N., 1993). The minimum consumption percentage 
of the substrate can be about 40% if only Vm and S0 are estimated while other parameters are 
fixed as constants. In general, the estimation of more parameters requires higher 
consumption percentages of the substrate in the effective data for analysis. 
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With a valid Equ.(2), data in a reaction curve can be transformed according to Equ.(3) to 
realize NLSF with Equ.(4). The use of Equ.(4) for NLSF needs no special treatment of the 
unknown tlag. For any method to continuously monitor reaction curve, there may be an 
unknown but constant background in signals (Newman, et al., 1974; Liao, et al., 2003a, 
2005a; Yang, et al., 2010). Thus, the background in the signal for S1 in Equ.(2) is better to be 
treated as a nonlinear parameter to realize NLSF; this procedure gives the term of NLSF but 
causes the burden of computation; as a result, a rearranged form of Equ.(2) is suggested for 
kinetic analysis of reaction curve (Atkins & Nimmo, 1973; Liao, et al., 2005a). 

In theory, Equ.(2) can be rearranged into Equ.(5) as a linear function of Vm and Km. In 
Equ.(5), the instantaneous reaction time at the moment for S1 is preset as zero so that there is 
no treatment of tlag. When the signal for S1 is not treated as a nonlinear parameter, kinetic 
analysis of reaction curve by fitting with Equ.(5) can be finished within 1 s with a pocket 
calculator. However, parameters estimated with Equ.(5) always have so large errors that 
Equ.(5) is scarcely practiced in biomedical analyses. Hence, the proper form of an integrated 
rate equation after validating should be selected carefully. 

 1 lag m m 1 lag( ) ( ) (ln( ) ( ))S - S t t V K S S t t      (5) 

In principle, to reliably estimate parameters based on NLSF, the distribution ranges of both 
the dependent variables and the predictor variables in any kinetic model should be as wide 
as possible while their random errors should be as small as possible (Baywenton, 1986; del 
Rio, et al., 2001; Draper & Smith, 1998; Miller, J. C. & Miller, J. N., 1993). By serial studies 
with common enzymes, we found the use of Equ.(4) or similar forms of integrated rate 
equations with the predictor variables of reaction time for kinetic analysis of reaction curve 
could give reliable Vm and S0, when Km was fixed at a constant after optimization (Liao, 
2005; Liao, et al, 2001, 2003a, 2003b, 2005a, 2005b, 2006, 2007b; Zhao, Y.S., et al., 2006, 2009). 
Reaction time as the predictor variable has the widest distribution and the smallest random 
errors, in comparison to the predictor variable in Equ.(5). The left part in Equ.(4) also 
possess a wider distribution range. Such differences in predictor variables and dependent 
variables should account for different reliability of parameters estimated with Equ.(2) and 
Equ.(5), and thus an integrated rate equation with the predictor variable of reaction time 
may be the proper form for kinetic analysis of reaction curve. However, when NLSF with 
Equ.(4) is realized with S1 as a nonlinear parameter, there is nearly 10 s for computation 
with Celeron 300A CPU on a personal computer. Currently, computation resource is no 
longer a problem and thus Equ.(4) or its equivalent equations should always be adopted. 

The selection of a weighting factor for kinetic analysis of reaction curve is also a concern. 
Based on error propagation and the principle for weighted NLSF with y defined in Equ.(3), 
squares of instantaneous rates can be the weighting factors (Wf) with Equ.(4) for NLSF to get 
the weighted sum of residual squares (Q), as described in Equ.(6), Equ.(7) and Equ.(8) 
(Baywenton, 1986; Draper & Smith, 1998; Gutierrez & Danielson, 2006; Miller, J. C. & Miller, 
J. N., 1993). The use of a weighting function like Equ.(7) can mitigate the effects of errors in 
substrate or product concentrations near the completion of reaction. The resistance of an 
estimated parameter (the variation within 3% in our studies) to reasonable changes in data 
ranges for analysis can be a criterion to judge the reliability of parameter estimated. 

 m m( ) ( )y S K S K S       (6) 
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 2 2f predicted calculated( )Q W y y    (8) 

It is also concerned which parameter is suitable for estimation by kinetic analysis of reaction 
curve. In theory, all parameters of an enzyme reaction system can be simultaneously 
estimated by kinetic analysis of reaction curve. However, there is unknown covariance 
among some parameters to devalue their reliability; there is the limited accuracy of original 
data for analyses and the estimation of some parameters with narrow working ranges will 
have negligible practical roles. Vm is independent of all other parameters and so is S0, and 
the assay of Vm and S0 are already routinely practiced in biomedical analyses. Therefore, Vm 
and S0 may be the parameters suitable for estimation by kinetic analysis of reaction curve. 
Additionally, Km is used for screening enzyme mutants and enzyme inhibitors; but Km 
estimated by kinetic analysis of reaction curve usually exhibits lower reliability and is 
preferred to be fixed for estimating Vm and S0. If Km is estimated as well, S1 should be at 
least 1.5-fold Km and there should be more than 85% consumption of the substrate in the 
data selected for analysis (Atkins & Nimmo, 1973; Liao, et al., 2005a; Newman, et al., 1974; 
Orsi & Tipton, 1979). To estimate Km, the initial datum (S1) and its corresponding ending 
datum from a reaction curve for analysis should be tried sequentially till the requirements 
for data range are met concurrently. In this case, the estimation of S1 has no practical roles. 
In general, the resistance of Vm and S0 to reasonable changes in ranges of data for analyses 
can be a criterion to select the optimized set of parameters that are fixed as constants. 

In comparison to the low reliability to estimate Km independently for screening enzyme 
inhibitors and enzyme mutants, the ratio of Vm to Km as an index of enzyme activity can be 
estimated robustly by kinetic analysis of reaction curve. Reversible inhibitors of Michaelis-
Menten enzyme include competitive, noncompetitive, uncompetitive and mixed ones 
(Bergmeyer, 1983; Dixon & Webb, 1979; Marangoni, 2003). The ratios of Vm to Km will 
respond to concentrations of common inhibitors except uncompetitive ones that are very 
rare in nature. Thus, the ratio of Vm to Km can be used for screening common inhibitors. 
More importantly, the ratio of Vm to Km is an index of the intrinsic activity of an enzyme and 
the estimation of the ratios of Vm to Km can also be a promising strategy to screen enzyme 
mutants of powerful catalytic capacity (Fresht, 1985; Liao, et al., 2001; Northrop, 1983). 

For robust estimation of the ratio of Vm to Km of an enzyme, S0 can be preset at a value below 
10% of Km to simplify Equ.(2) into Equ.(9). Steady-state data from a reaction curve can be 
analyzed after data transformation according to the left part in Equ.(9). For validating 
Equ.(9), it is proposed that S0 should be below 1% of Km (Mey1er-Almes & Auer, 2000). The 
use of extremely low S0 requires special methods to monitor enzyme reaction curves and 
steady-state reaction can not always be achieved with enzymes of low intrinsic catalytic 
activities. On the other hand, the use of S0 below 10% of Km is reasonable to estimate the 
ratio of Vm to Km (Liao, et al., 2001). To estimate the ratio of Vm to Km, the use of Equ.(9) to 
analyze data is robust and resistant to variations of S0 if Equ.(9) is valid; this property makes 
the estimation of the ratio of Vm to Km for screening reversible inhibitors superior to the 
estimation of the half-inhibition concentrations (Cheng & Prusoff, 1973). 

 1 m mln( ) ( )S S a V K t    (9) 
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estimated by kinetic analysis of reaction curve usually exhibits lower reliability and is 
preferred to be fixed for estimating Vm and S0. If Km is estimated as well, S1 should be at 
least 1.5-fold Km and there should be more than 85% consumption of the substrate in the 
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for data range are met concurrently. In this case, the estimation of S1 has no practical roles. 
In general, the resistance of Vm and S0 to reasonable changes in ranges of data for analyses 
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inhibitors and enzyme mutants, the ratio of Vm to Km as an index of enzyme activity can be 
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respond to concentrations of common inhibitors except uncompetitive ones that are very 
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More importantly, the ratio of Vm to Km is an index of the intrinsic activity of an enzyme and 
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mutants of powerful catalytic capacity (Fresht, 1985; Liao, et al., 2001; Northrop, 1983). 
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10% of Km to simplify Equ.(2) into Equ.(9). Steady-state data from a reaction curve can be 
analyzed after data transformation according to the left part in Equ.(9). For validating 
Equ.(9), it is proposed that S0 should be below 1% of Km (Mey1er-Almes & Auer, 2000). The 
use of extremely low S0 requires special methods to monitor enzyme reaction curves and 
steady-state reaction can not always be achieved with enzymes of low intrinsic catalytic 
activities. On the other hand, the use of S0 below 10% of Km is reasonable to estimate the 
ratio of Vm to Km (Liao, et al., 2001). To estimate the ratio of Vm to Km, the use of Equ.(9) to 
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Kinetic analysis of reaction curve requires more considerations when activities of enzymes 
are altered by their substrates/products. In this case, more parameters can be included in 
kinetic models similar to Equ.(2) for kinetic analysis of reaction curve, but there must be 
complicated process to optimize reaction conditions and preset parameters. Based on the 
principle for kinetic analysis of reaction curve described above, we developed some new 
integration strategies to successfully quantify enzyme initial rates and substrate with 
absorbing performance even when the activities of enzymes of interest are altered 
significantly by substrates/products (Li, et al., 2011; Liao, 2007a; Zhao, L.N., et al., 2006). 

2.3 Kinetic analysis of enzyme-coupled reaction curve 

When neither substrate nor product is suitable for continuous monitor of reaction curve, a 
tool enzyme can be used to regenerate a substrate or consume a product of the enzyme of 
interest; the action of the tool enzyme should consume/generate a substrate/product as an 
indicator suitable for continuous monitor of reaction curve. Namely, the reaction of the tool 
enzyme is coupled to the reaction of an enzyme of interest for continuous monitor of 
reaction curve (Bergmeyer, 1983; Guilbault, 1976; Dixon & Webb, 1979). When such enzyme-
coupled assays are used to measure initial rates of an enzyme, there are always 
unsatisfactory linear range because the activities of the tool enzyme is always limited and 
the concentration of the substrate of the tool enzyme is also limited (Bergmeyer, 1983; Dixon 
& Webb, 1979). It is expected that kinetic analysis of enzyme-coupled reaction curve may 
effectively enhance the upper limit of linear response. However, kinetics of enzyme-coupled 
reaction systems is described with a set of differential rate equations, which cause difficulty 
in accessing an integrated rate equation with the predictor variable of reaction time. 

In this case, iterative numerical integration to obtain calculated reaction curves for NLSF to a 
reaction curve of interest can be used (Duggleby, 1983, 1994; Moruno-Davila, et al., 2001; 
Varon, et al., 1998; Yang, et al., 2010). Lactic dehydrogenase (LDH) is widely used as a tool 
enzyme for enzyme-coupled assay. The assay of activity of alanineaminotransferase (ALT) 
in sera has important biomedical roles and usually employs LDH-coupled assay. For LDH-
coupled ALT assay, iterative numerical integration of the set of differential rate equations 
with each set of preset parameters from a preset starting point can produce a calculated 
reaction curve; such a calculated reaction curve can be made discrete at the same intervals as 
the reaction curve of interest and then be used for NLSF to the reaction curve of interest. 

The process of iterative numerical integration for LDH-coupled ALT assay is given below 
(Yang, et al., 2010). In an LDH-coupled ALT reaction system, assigning instantaneous 
concentration of NADH to Cn,i, instantaneous concentration of pyruvate to Cp,i, 
instantaneous absorbance at 340 n for NADH to Ai, the molar absorptivity of NADH to , 
the initial rate of ALT under steady-state reaction to V1k, the maximal activity of LDH to Vm, 
the integration step to Δt , there are Equ.(10), Equ.(11) and Equ.(12) to describe the iterative 
integration of the set of differential rate equations. Calculated reaction curves according to 
Equ. (12) using different sets of preset parameters become discrete and are fit to the reaction 
curve of interest, and background absorbance at 340 nm is treated as a parameter as well. 

  n,i i b(   )C A A    (10) 
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By simulation with such a new approach for kinetic analysis of enzyme-coupled reaction 
curve recorded at 1-s intervals, the upper limit of linear response for measuring ALT initial 
rates is increased to about five times that by the classical initial rate method. This new 
approach is resistant to reasonable variations in data range for analysis. By experimentation 
using the sampling intervals of 10 s, the upper limit is about three times that by the classical 
initial rate method. Therefore, this new approach for kinetic analysis of enzyme-coupled 
reaction curve is advantageous, and can potentially be a universal approach for kinetic 
analysis of reaction curve of any system of much complicated kinetics. 

The computation time for numerical integration is inversely proportional to the integration 
step, Δt ; the use of shorter Δt  is always better but Δt  of 0.20 s at low cost on computation 
is sufficient for a desirable upper limit of linear response. This new approach with Celeron 
300A CPU on a personal computer needs about 10 min for just 30 data in a LDH-coupled 
reaction curve, but it consumes just about 5 s with Lenovo Notebook S10e. The advancement 
of personal computers surely can promote the practice of this approach. 

2.4 Integration of kinetic analysis of reaction curve with other methods 

Any analytical method should have favourable analysis efficiency, wide linear range, low 
cost and strong robustness. Kinetic analysis of reaction curve for Vm and S0 assay can have 
much better upper limit of linear response, but inevitably tolerates low analysis efficiency 
when wide linear range is required. Based on kinetic analysis of reaction curve, however, 
our group developed two integration strategies for enzyme initial rate and substrate assay, 
respectively, with both favourable analysis efficiency and ideal linear ranges. 

2.4.1 New integration strategy for enzyme initial rate assay 

The classical initial rate method to measure enzyme initial rates requires S0 much higher 
than Km to have desirable linear ranges (Bergmeyer, 1983; Dixon & Webb, 1979; Guilbault, 
1976; Marangoni, 2003). Due to substrate inhibition, limited solubility and other causes, 
practical substrate levels are always relatively low and thus the linear ranges by the classical 
initial rate method are always unsatisfactory (Li, et al., 2011; Morishita, et al., 2000; Stromme 
& Theodorsen, 1976). As described above, kinetic analysis of reaction curve can measure 
enzyme Vm, and many approaches based on kinetic analysis of reaction curve are already 
proposed (Cheng, et al., 2008; Claro, 2000; Cornish-Bowden 1975, 1995; Dagys, et al., 1986, 
1990; Duggleby, 1983, 1985, 1994; Hasinoff, 1985; Koerber, & Fink, 1987; Liao, et al., 2001; Lu 
& Fei, 2003; Marangoni, 2003; Walsh, et al. 2010). Such approaches all require substrate 
consumption percentage over 40% with Km preset as a constant. As a result, there should be 
intolerably long reaction duration to monitor reaction curves for samples of low enzyme 
activities, or else the lower limits of linear response are unfavourable. 

The integration of kinetic analysis of reaction curve using proper integrated rate equations 
with the classical initial rate method gives an integration strategy to measure enzyme initial 
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By simulation with such a new approach for kinetic analysis of enzyme-coupled reaction 
curve recorded at 1-s intervals, the upper limit of linear response for measuring ALT initial 
rates is increased to about five times that by the classical initial rate method. This new 
approach is resistant to reasonable variations in data range for analysis. By experimentation 
using the sampling intervals of 10 s, the upper limit is about three times that by the classical 
initial rate method. Therefore, this new approach for kinetic analysis of enzyme-coupled 
reaction curve is advantageous, and can potentially be a universal approach for kinetic 
analysis of reaction curve of any system of much complicated kinetics. 

The computation time for numerical integration is inversely proportional to the integration 
step, Δt ; the use of shorter Δt  is always better but Δt  of 0.20 s at low cost on computation 
is sufficient for a desirable upper limit of linear response. This new approach with Celeron 
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reaction curve, but it consumes just about 5 s with Lenovo Notebook S10e. The advancement 
of personal computers surely can promote the practice of this approach. 
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much better upper limit of linear response, but inevitably tolerates low analysis efficiency 
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The classical initial rate method to measure enzyme initial rates requires S0 much higher 
than Km to have desirable linear ranges (Bergmeyer, 1983; Dixon & Webb, 1979; Guilbault, 
1976; Marangoni, 2003). Due to substrate inhibition, limited solubility and other causes, 
practical substrate levels are always relatively low and thus the linear ranges by the classical 
initial rate method are always unsatisfactory (Li, et al., 2011; Morishita, et al., 2000; Stromme 
& Theodorsen, 1976). As described above, kinetic analysis of reaction curve can measure 
enzyme Vm, and many approaches based on kinetic analysis of reaction curve are already 
proposed (Cheng, et al., 2008; Claro, 2000; Cornish-Bowden 1975, 1995; Dagys, et al., 1986, 
1990; Duggleby, 1983, 1985, 1994; Hasinoff, 1985; Koerber, & Fink, 1987; Liao, et al., 2001; Lu 
& Fei, 2003; Marangoni, 2003; Walsh, et al. 2010). Such approaches all require substrate 
consumption percentage over 40% with Km preset as a constant. As a result, there should be 
intolerably long reaction duration to monitor reaction curves for samples of low enzyme 
activities, or else the lower limits of linear response are unfavourable. 

The integration of kinetic analysis of reaction curve using proper integrated rate equations 
with the classical initial rate method gives an integration strategy to measure enzyme initial 
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rates with expanded linear ranges and practical analysis efficiency. This integration strategy 
is effective at substrate concentrations from one-eighth of Km to three-fold of Km (Li, et al., 
2011; Liao, et al., 2009; Liu, et al., 2009; Yang, et al., 2011). The integration strategy for 
enzyme initial rate assay uses a special method to convert Vm into initial rates so that the 
indexes of enzyme activities by both methods become the same; it is applicable to enzymes 
suffering strong inhibition by substrates/products (Li, et al., 2011). Walsh et al. proposed an 
integration strategy to measure enzyme initial rate but they employed Equ.(9) that requires 
substrate levels below 10% of Km (Walsh, et al. 2010). Our integration strategy is valid at any 
substrate level to satisfy Equ.(2) and hence can be a universal approach to common enzymes 
of different Km. The principles and applications of the integration strategy to one enzyme 
reaction systems and enzyme-coupled reaction systems are discussed below. 

As for one enzyme reaction systems, kinetic analysis of reaction curve can be realized with 
an integrated rate equation after data transformation; the integration strategy for enzyme 
initial rate assay requires enzyme kinetics on single substrate and an integrated rate 
equation with the predictor variable of reaction time (Liao, et al., 2003a, 2005a, Zhao, L.N., et 
al., 2006). Moreover, the integration strategy should solve the following challenges: (a) there 
should be an overlapped range of enzyme activities measurable by both methods with 
consistent results; (b) there should be consistent slopes of linear response for enzyme 
activities to enzyme quantities by both methods (Figure 1). After these two challenges are 
solved, the linear segment of response by the classical initial rate method is an extended line 
of the linear segment of response by kinetic analysis of reaction curve (Liu, et al., 2009). 

To solve the first challenge, a practical S0 and reasonable duration to monitor reaction curve 
for favourable analysis efficiency are required as optimized experimental conditions. By 
mathematic derivation and simulation analyses to solve the first challenge, it is 
demonstrated that a ratio of S0 to Km from 0.5 to 2.5, the duration of 5.0 min to monitor 
reaction curves at intervals no longer than 10 s can solve the first challenge for most 
enzymes, any ratio of S0 to Km smaller than 0.5 or larger than 2.5 requires longer duration to 
monitor reaction curves. The use of S0 about one-eighth of Km requires no shorter than 8.0 
min to monitor reaction curves at 10-s intervals to solve the first challenge (Li, et al., 2011; 
Liu, et al., 2009). When S0 is too much larger than three times Km, reaction time to record 
reaction curves for analysis to solve the first challenge should be much longer than 5 min. 
Clearly, the first challenge can be solved with practical S0 for favourable analysis efficiency.  

To solve the second challenge, Km and other parameters should be optimized and fixed as 
constants to estimate Vm by kinetic analysis of reaction curve, and a preset substrate 
concentration (PSC) should be optimized to covert Vm into initial rates according to the 
differential rate equation. In theory, a reliable Vm should be independent of ranges of data 
when they are reasonably restricted, and CVs for estimating parameters by enzymatic 
analysis are usually about 5%. Hence, the estimation of Vm with variations below 3% for the 
changes of substrate consumption percentages from 60% to 90% can be a criterion to select 
the optimized set of preset parameters. For converting Vm into initial rates, the optimized 
PSC is usually about 93% of S0 and can be refined for different enzymes (Li, et al., 2011; Liao, 
et al., 2009; Liu, et al., 2009; Yang, et al., 2011). Optimized Km and PSC to solve the second 
challenge are parameters for data processing while optimized S0 and reaction duration to 
solve the first challenge are experimental conditions. The concomitant solution of the two 
challenges provides feasibility and potential reliability to the integration strategy. 
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Fig. 1. The integration strategy for enzyme initial rate assay (Modified from Liu et al. (2009)). 

After the integration strategy for enzyme initial rate assay is validated, a switch point 
should be determined for changing from the classical initial rate method to kinetic analysis 
of reaction curve. The estimation of Vm by kinetic analysis of reaction curve usually prefers 
substrate consumption percentages reasonably high. Therefore, the substrate consumption 
percentage that gives an enzyme activity from 90% to 100% of the upper limit of linear 
response by the classical initial rate method can be used as the switch point. 

It should be noted that the lower limit of linear response is difficult to be defined for enzyme 
initial rate assay by an integration strategy. For most methods, their lower limits of linear 
response are usually defined as three times the standard errors of estimate (Miller, J. C. & 
Miller, J. N., 1993). Usually, enzyme initial rate assay utilizes just one method for data 
processing and the difference between the lower limit and the upper limit of linear response 
is seldom over 30-fold. By the integration strategy, the measurable ranges of enzyme 
quantities cover two magnitudes and the detection limit is reduced to that by the classical 
initial rate method. By manual operation, different dilution ratios of a stock solution of the 
enzyme have to be used and any dilution error will increase the standard error of estimate 
for regression analysis. The measurement of higher enzyme activities will inevitably have 
larger standard deviation. Thus, regression analysis of the response of all measurable 
enzyme initial rates by the integration strategy to quantities of the enzyme will give higher 
standard error of estimate and thus an unfavourable lower limit of linear response. By this 
new integration strategy, we arbitrarily use twice the lower limit of linear response by the 
classical initial rate method as the lower limit if the overall standard error of estimate is 
more than twice that by the classical initial rate method alone; or else, the lower limit of 
linear response is still three times the overall standard error of estimate. 

Taken together, for measuring initial rates of enzyme acting on single substrate by the 
integration strategy based on NLSF and data transformation, there are the following basic 
steps different from those by the classical initial rate method. The first is to work out the 
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al., 2006). Moreover, the integration strategy should solve the following challenges: (a) there 
should be an overlapped range of enzyme activities measurable by both methods with 
consistent results; (b) there should be consistent slopes of linear response for enzyme 
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solved, the linear segment of response by the classical initial rate method is an extended line 
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PSC is usually about 93% of S0 and can be refined for different enzymes (Li, et al., 2011; Liao, 
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linear response is still three times the overall standard error of estimate. 

Taken together, for measuring initial rates of enzyme acting on single substrate by the 
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integrated rate equation with the predictor variable of reaction time. The second is to 
optimize individually their parameters fixed as constants for kinetic analysis of reaction 
curve. The third is to optimize a ratio of S0 to Km and duration to monitor reaction curves; 
usually a ratio of S0 to Km from 0.5 to 2.5, the duration of 5.0 min and intervals of 10 s are 
effective. The forth is to refine PSC around 93% of S0 to convert Vm into initial rates. 

As for enzyme-coupled reaction system, initial rate itself is estimated by kinetic analysis of 
reaction curve based on numerical integration and NLSF of calculated reaction curves to a 
reaction curve of interest. Consequently, neither the conversion of indexes nor the 
optimization of parameters for such conversion is required and the integration strategy can 
be realized easily. By kinetic analysis of enzyme-coupled reaction curve, there still should be 
a minimum number of the effective data and a minimum substrate consumption percentage 
in the effective data for analysis; these prerequisites lead to unsatisfactory lower limits of 
linear response for favourable analysis efficiency (the use of reaction duration within 5.0 
min). The classical initial rate method is effective to enzyme-coupled reaction systems when 
activities of the enzyme of interest are not too high. Therefore, this new approach for kinetic 
analysis of enzyme-coupled reaction curve can be integrated with the classical initial rate 
method to quantify enzyme initial rates potentially for wider linear ranges. 

With enzyme-coupled reaction systems, only the first challenge should be solved to practice 
the integration strategy. Namely, reaction duration and sampling intervals to record 
reaction curve should be optimized so that there is an overlapped region of enzyme initial 
rates measurable by both methods with consistent results. The upper limit of the classical 
initial rate method should be high enough so that data after reaction of about 5.0 min for 
enzyme activity at such an upper limit are suitable for kinetic analysis of reaction curve. The 
integration strategy gives an approximated linear range from the lower limit of linear 
response by the classical initial rate method to the upper limit of linear response by kinetic 
analysis of LDH-coupled ALT reaction curve (Yang, et al., 2010). 

2.4.2 New integration strategy for enzyme substrate assay 

Analysis of a biochemical as the substrate of a typical tool enzyme, i.e., enzymatic analysis of 
substrate in biological samples, is important in biomedicine (Bergmeyer, 1983; Dilena, 1986; 
Guilbault, 1976; Moss, 1980). In general, there are the kinetic method and the end-point 
method for enzyme substrate assay; the end-point method is called the equilibrium method, 
and it determines the difference between the initial signal for a reaction system before 
enzyme action and the last signal after the completion of enzyme reaction; such differences 
proportional to S0 can serve as an index of substrate concentration (Dilena, et al., 1986; 
Guilbault, 1976; Moss, 1980; Zhao, et al., 2009). For better analysis efficiency and lower cost 
on tool enzymes, kinetic methods for enzyme substrate assay are preferred. Among 
available kinetic methods, the initial rate method based on the response of initial rates of an 
enzyme at a fixed quantity to substrate concentrations is conventional; however, it tolerates 
sensitivity to any factor affecting enzyme activities, requires tool enzymes of high Km, and 
has narrow linear ranges. Kinetic analysis of reaction curve with a differential rate equation 
to estimate S0 is proposed with favourable resistance to variations in enzyme activities and 
has upper limit of linear response over Km, but it suffers from high sensitivity to background 
and has unfavourable lower limit of linear response (Dilena, et al., 1986; Hamilton & Pardue, 
1982; Moss, 1980). Hence, new kinetic methods for enzyme substrate assay are still desired. 
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For enzymatic analysis of substrate, the equilibrium method can still be preferable as long as 
it has desirable analysis efficiency and favourable cost on tool enzyme. In theory, the last 
signal for the stable product or the background in the equilibrium method can be estimated 
by kinetic analysis of reaction curve with data far before the completion of reaction. This 
process can be a new kinetic method for enzyme substrate assay and is distinguished from 
the equilibrium method and other kinetic methods by its prediction of the last signal after 
the completion of enzyme reaction (Liao, 2005; Liao, et al., 2003, 2005a, 2006; Zhao, L.N., et 
al., 2006; Zhao, Y.S., et al., 2006, 2009). This new kinetic method should have resistance to 
factors affecting enzyme activities and upper limit of linear response higher than Km besides 
all advantages of common kinetic methods. 

An enzyme reaction curve can be monitored by absorbance of a stable product or the 
substrate itself (Figure 2). The initial absorbance before enzyme action (A0) thus is the 
background (Ab) when absorbance for a stable product is quantified, or is the absorbance of 
the substrate plus background when absorbance of the substrate is quantified. The last 
absorbance after the completion of enzyme reaction, which is predicted by kinetic analysis 
of reaction curve, is the maximum absorbance of the stable product plus the background 
(Am) or Ab itself. There is strong covariance between the initial signal and the last signal for 
the same reaction system; this assertion enhances precision of this kinetic method for 
substrate assay (Baywenton, 1986; Liao, et al, 2005b; Zhao, Y.S., et al., 2009). 

 
Fig. 2. Demonstration of reaction curves of uricase (293 nm) and glutathione-S-tranferase 
(340 nm), and the prediction of the last absorbance after infinite reaction time 

However, this new kinetic method for substrate assay can by no means concomitantly have 
wider linear ranges and desirable analysis efficiency. Due to the prerequisites of the quality 
of data for kinetic analysis of reaction curve, the activity of a tool enzyme for enzymatic 
analysis of substrate should be reasonably high for higher upper limit of linear response, but 
it should be reasonably low for favourable lower limit of linear response. On the other hand, 
the duration to monitor reaction curves should be long enough to have higher upper limit at 
reasonable cost on a tool enzyme, but should be as short as possible for favourable analysis 
efficiency. Thus, this new kinetic method alone requires tough optimizations of conditions. 
Moreover, there are the inevitable random noises from any instrument to record an enzyme 
reaction curve; when there is much small difference between the initial signal before enzyme 
action and the last signal recorded after the preset reaction duration, this kinetic method for 
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integrated rate equation with the predictor variable of reaction time. The second is to 
optimize individually their parameters fixed as constants for kinetic analysis of reaction 
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usually a ratio of S0 to Km from 0.5 to 2.5, the duration of 5.0 min and intervals of 10 s are 
effective. The forth is to refine PSC around 93% of S0 to convert Vm into initial rates. 

As for enzyme-coupled reaction system, initial rate itself is estimated by kinetic analysis of 
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optimization of parameters for such conversion is required and the integration strategy can 
be realized easily. By kinetic analysis of enzyme-coupled reaction curve, there still should be 
a minimum number of the effective data and a minimum substrate consumption percentage 
in the effective data for analysis; these prerequisites lead to unsatisfactory lower limits of 
linear response for favourable analysis efficiency (the use of reaction duration within 5.0 
min). The classical initial rate method is effective to enzyme-coupled reaction systems when 
activities of the enzyme of interest are not too high. Therefore, this new approach for kinetic 
analysis of enzyme-coupled reaction curve can be integrated with the classical initial rate 
method to quantify enzyme initial rates potentially for wider linear ranges. 
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method for enzyme substrate assay; the end-point method is called the equilibrium method, 
and it determines the difference between the initial signal for a reaction system before 
enzyme action and the last signal after the completion of enzyme reaction; such differences 
proportional to S0 can serve as an index of substrate concentration (Dilena, et al., 1986; 
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on tool enzymes, kinetic methods for enzyme substrate assay are preferred. Among 
available kinetic methods, the initial rate method based on the response of initial rates of an 
enzyme at a fixed quantity to substrate concentrations is conventional; however, it tolerates 
sensitivity to any factor affecting enzyme activities, requires tool enzymes of high Km, and 
has narrow linear ranges. Kinetic analysis of reaction curve with a differential rate equation 
to estimate S0 is proposed with favourable resistance to variations in enzyme activities and 
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substrate assay always has unsatisfactory precision. Therefore, this new kinetic method 
itself is still much beyond satisfaction for substrate assay.  

To concomitantly have wider linear ranges, desirable analysis efficiency and favourable 
precision for enzyme substrate assay, the integration of kinetic analysis of reaction curve 
with the equilibrium method can be used. The indexes of substrate quantities by the two 
methods have exactly the same physical meanings, and thus the integration strategy can be 
easily realized for enzyme substrate assay. By this integration strategy, there should still be 
an overlapped range of concentrations of the substrate measurable consistently by both 
methods, besides a switch threshold within such an overlapped region to change from the 
equilibrium method to kinetic analysis of reaction curve. Additionally, this overlapped 
region of substrate concentration measurable by both methods with consistent results 
should localize in a range of substrate concentration high enough for reasonable precision of 
substrate assay based on kinetic analysis of enzyme reaction curve. These requirements can 
be met as described below. (a) The upper limit of linear response by the equilibrium method 
should be optimized to be high enough, so that the difference between the initial signal 
before enzyme action and the last recorded signal for about 80% of this upper limit is 50 
times higher than the random noise of an instrument to record enzyme reaction curves; such 
a difference can be used as the switch threshold. (b) The activity of a tool enzyme and the 
duration to monitor reaction curve as experimental conditions should be optimized; kinetic 
parameters except Vm for kinetic analysis of reaction curve are optimized as well. The 
resistance of the predicted last signal to reasonable variations in data ranges for analysis can 
be a criterion to judge the optimized set of preset parameters. For favourable analysis 
efficiency in clinical laboratories, reaction duration can be about 5.0 min. This reaction 
duration results in a minimum activity of the tool enzyme for the integration strategy so that 
the upper limit of linear response by the equilibrium method can be high enough to switch 
to kinetic analysis of reaction curve. This integration strategy after optimizations can 
simultaneously have wider linear ranges, higher analysis efficiency and lower cost, better 
precision and stronger resistance to factors affecting enzyme activities. 

Similarly, with the integration strategy for enzyme substrate assay, we also use twice the 
lower limit of the equilibrium method as the lower limit by the integration strategy if the 
standard error of estimate is much larger; or else, three times the standard error of estimate 
by the integration strategy is taken as the lower limit of linear response. 

In general, the following steps are required to realize this integration strategy for enzyme 
substrate assay: (a) to work out the integrated rate equation with the predictor variable of 
reaction time; (b) to optimize individually the (kinetic) parameters preset as constants for 
kinetic analysis of reaction curve; (c) to optimize the activity of the tool enzyme so that data 
for the upper limit of linear response by the equilibrium method within about 5.0-min 
reaction are suitable for kinetic analysis of reaction curve. As demonstrated later, this 
integration strategy is applicable to enzymes suffering from strong product inhibition. 

2.5 Applications of new methods to some typical enzymes 

We investigated kinetic analysis of reaction curve with arylesterase (Liao, et al., 2001, 2003a, 
2007b), alcohol dehydrogenase (ADH) (Liao, et al., 2007a), gama-glutamyltransfease (Li, et 
al., 2011), uricase (Liao, 2005; Liao, et al., 2005a, 2005b, 2006; Liu, et al., 2009; Zhao, Y.S., et 
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al., 2006, 2009), glutathione-S-tranferase (GST) (Liao, et al., 2003b; Zhao, L.N., et al., 2006), 
butylcholineasterase (Liao, et al., 2009; Yang, et al., 2011), LDH (Cheng, et al., 2008) and 
LDH-coupled ALT reaction systems (Yang, et al., 2010). Uricase of simple kinetics is a good 
example to study new methods for kinetic analysis of reaction curve; reactions of GGT and 
ADH suffer product inhibition and kinetic analyses of their reaction curves are complicated 
because they require unreported parameters. Hence, our new methods for kinetic analysis of 
reaction curve and the integration strategies for quantifying enzyme substrates and initial 
rates are demonstrated with uricase, GST and ADH as examples. 

2.5.1 Uricase reaction 

Uricase follows simple Michaelis-Menten kinetics on single substrate in air-saturated 
buffers, and suffers neither reversible reaction nor product inhibition (Liao, 2005; Liao, et al., 
2005a, 2005b; Zhao, Y.S., et al., 2006). Uricase reaction curve can be monitored by absorbance 
at 293 nm. The potential interference from the intermediate 5-hydroxylisourate with uric 
acid absorbance at 293 nm can be alleviated by analyzing data of steady-state reaction in 
borate buffer at high reaction pH (Kahn & Tipton, 1998; Priest & Pitts, 1972). The integrated 
rate equation for uricase reaction with the predictor variable of reaction time is Equ.(4). 
Uricases from different sources have different Km (Liao, et al., 2005a, 2006; Zhang, et al., 
2010; Zhao, Y.S., et al., 2006). Using Equ.(4), Km of Candidate utilis is estimated with 
reasonable reliability (Liao, et al., 2005a). Using Equ.(9) to estimate the ratio of Vm to Km, 
uricase mutants of better catalytic capacity and their sensitivity to xanthine are routinely 
characterized (data unpublished). Thus, we used uricases of different Km as models to test 
the two integration strategies for enzyme substrate assay and initial rate assay, respectively. 

Uricase from Bacillus fastidiosus A.T.C.C. 29604 has high Km to facilitate predicting Ab 

(Zhang, et al., 2010; Zhao, Y.S., et al., 2006, 2009). Reaction curves at low levels of uric acid 
with this uricase at 40 U/L are demonstrated in Fig. 3. Steady-state reaction is not reached 
within 30 s since reaction initiation; it is difficult to get more than 5 data with absorbance 
changes over 0.003 for kinetic analysis of reaction curve at uric acid levels below 3.0 mol/L. 
At 40 U/L of this uricase, the absorbance after reaction for 5.0 min has negligible difference 
from that after reaction for 30 min for uric acid below 5.0 mol/L. To quantify the difference 
between A0 and Ab after reaction for 5.0 min, the equilibrium method has an upper limit of 
about 5.0 mol/L, while kinetic analysis of reaction curve with Km as a constant is feasible 
for S0 of about 5.0 mol/L. Thus, the change of absorbance over 0.050 between A0 and the 
absorbance after reaction for 5.0 min can be the switch threshold to change from the 
equilibrium method to kinetic analysis of reaction curve. 

This integration strategy for enzyme substrate assay gives the linear response from about 1.5 
mol/L up to 60 mol/L uric acid at 40 U/L uricase (Fig.4, unpublished), and shows 
resistance to the action of xanthine at 30 mol/L in reaction solutions (this level of xanthine 
always caused negative interference with all available kits commercialized for serum uric 
acid assay). Therefore, the integration strategy for uric acid assay is clearly superior to any 
other uricase method reported. 

Uricases from Candida sp. with Km of 6.6 mol/L (Sigma U0880) and Bacillus fastidious 
uricase from A.T.C.C. 29604 with Km of 0.22 mmol/L are used to test the integration strategy 
for initial rate assay. The use of uric acid at S0 of 25 mol/L to monitor reaction curves  
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substrate assay always has unsatisfactory precision. Therefore, this new kinetic method 
itself is still much beyond satisfaction for substrate assay.  
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Fig. 3. Reaction curves (absorbance at 293 nm) at low levels of uric acid and 40 U/L uricase 
(recombinant uricase in E. Coli BL21 was as reported before (Zhang, et al., 2010)). 

within 8.0 min or at S0 of 75 mol/L to monitor reaction curves within 5.0 min, the 
integration strategy to measure initial rates of both uricases is feasible; the use of PSC of 93% 
S0 to convert Vm into initial rates gives the linear range of about two magnitudes (Liu, et al., 
2009). Therefore, the integration strategy for enzyme initial rate assay is also advantageous. 

 
Fig. 4. Response of absorbance change at 293 nm to preset uric acid levels at 40 U/L uricase.  

2.5.2 Glutathione-S-transferase reaction 

Using purified alkaline GST isozyme from porcine liver as model on glutathione (GSH) and 
2,4,-dinitrochlorobenzene (CDNB) as substrates, GST reaction curves are monitored by 
absorbance at 340 nm (Kunze, 1997; Pabst, et al, 1974; Zhao, L.N., et al., 2006). To promote 
reaction on single substrate, CDNB is fixed at 1.0 mmol/L while GSH concentrations are 
kept below 0.10 mmol/L (Zhao, L.N., et al., 2006). Because the concentration of product is 
calculated from absorbance at 340 nm, the background absorbance before GST reaction is 
adjusted to zero so that there is no need to treat Ab as a parameter. This treatment of 
background absorbance eliminate the estimation of Ab and thus confronts with no problem 
of covariance between Ab and Am for NLSF. However, GST reaction is more complicated 
than uricase because it suffers strong product inhibition with an unreported inhibition 
constant (Kunze, 1997; Pabst, et al, 1974). Thus, the effectiveness of the two integration 
strategies is tested for measuring initial rate and GSH levels after the inhibition constant of 
the product is optimized for kinetic analysis of GST reaction curve. 
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The following symbols are assigned: C to instantaneous concentration of CDNB, B to 
instantaneous concentration of GSH, Q to instantaneous concentration of the product, Kma to 
Km of GST for CSNB, Kmb to Km of GST for GSH, Kia to the dissociation constant of GSH, Kiq 

to the dissociation constant of the product, A for instantaneous absorbance, Am for the 
maximal absorbance of the product, ε to difference in absorptivity of product and CDNB, Vm 
for the maximal reaction rate of GST. The differential rate equation for GST reaction is 
Equ.(13). After the definition of M1, M2 and M3, the integrated rate equation with the 
predictor variable of reaction time is Equ.(19) if GST reaction is irreversible and a process 
similar to that for Equ.(4) is employed (Zhao, L.N., et al., 2006). 
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Fig. 5. Estimated Vm to changes in data ranges for analyses with 60 mol/L GSH. 
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adjusted to zero so that there is no need to treat Ab as a parameter. This treatment of 
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of covariance between Ab and Am for NLSF. However, GST reaction is more complicated 
than uricase because it suffers strong product inhibition with an unreported inhibition 
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to the dissociation constant of the product, A for instantaneous absorbance, Am for the 
maximal absorbance of the product, ε to difference in absorptivity of product and CDNB, Vm 
for the maximal reaction rate of GST. The differential rate equation for GST reaction is 
Equ.(13). After the definition of M1, M2 and M3, the integrated rate equation with the 
predictor variable of reaction time is Equ.(19) if GST reaction is irreversible and a process 
similar to that for Equ.(4) is employed (Zhao, L.N., et al., 2006). 

 
   

 

mb m ib ma iq mb

ma iq m

1 1

1 1

K V K K Q K K C B
V

K Q K C V

         

     

 (13) 

 1 ma iq( )M K K   (14) 

 
2 ma ib ma iq m ma iq

0 ma iq

( )
        ( )
M K K K K A K K

C A K K



     
   

 (15) 

  
3

0 0

ma m mb m

ib mb iq ma m iq

M K A K C C A
K K A K K A A K




      

        (16) 

 
21 2 3

m
m

M A M A M dA C V dt
A A

   
    


 (17) 

 
     

 
2

1 1 2

1 2 32

2 2m m m

m mm

Y M A A M A M A A

M M A M Ln A AA

        

      
 (18) 

  m lagY C V t T a b t         (19) 

 
Fig. 5. Estimated Vm to changes in data ranges for analyses with 60 mol/L GSH. 



 
Chemometrics in Practical Applications 

 

174 

As demonstrated in the definition of M1, M2 and M3, kinetic parameters preset as constants 
for kinetic analysis of GST reaction curve should have strong covariance. Except Kiq as an 
unknown kinetic parameter for optimization, other kinetic parameters are those reported 
(Kunze, 1997; Pabst, et al, 1974). To optimize Kiq, two criteria are used. The first is the 
consistency of predicted Am at a series of GSH concentrations using data of 6.0-min reaction 
with that by the equilibrium method after 40 min reaction (GST activity is optimized to 
complete the reaction within 40 min). The second is the resistance of Vm to reasonable 
changes in data ranges for analyses. After stepwise optimization, Kiq is fixed at 4.0 mol/L; 
Am predicted for GSH from 5.0 mol/L to 50 mol/L is consistent with that by the 
equilibrium method (Zhao, L.N., et al. 2006); the estimation of Vm is resistant to changes of 
data ranges (Fig. 5). Therefore, Kiq is optimized and fixed as a constant at 4.0 mol/L. 

 
Fig. 6. Response of GSH concentration determined to preset GSH concentrations (the 
equilibrium method uses data with 6.0 min reaction). 

 
Fig. 7. Response of initial rates to quantities of purified porcine alkaline GST. 

Kinetic analysis of GST reaction curve can predict Am for GSH over 4.0 mol/L, but there 
are no sufficient data for analyses at GSH below 3.0 mol/L; after optimization of GST 
activity for complete conversion of GSH at 5.0 mol/L within 6.0 min, reaction curve within 
5.0 min for GSH at 5.0 mol/L can be used for kinetic analysis of reaction curve to predict 
Am. With the optimized GST activity for reaction within 5.0 min, the linear range for GSH 
assay is from 1.5 mol/L to over 90.0 mol/L by the integration strategy while it is from 4.0 
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mol/L to over 90.0 mol/L by kinetic analysis of reaction curve alone (Fig. 6, 
unpublished). By the equilibrium method alone for reaction within 5.0 min, the assay of 80.0 
mol/L GSH requires GST activity that is 50 folds higher due to the inhibition of GST by the 
accumulated product. Therefore, the integration strategy for GSH assay is obviously 
advantageous. 

The integration strategy for measuring GST initial rates is tested. For convenience, S0 of the 
final GSH is fixed at 50 mol/L and the duration to monitor reaction curve is optimized. 
After the analyses of reaction curves recorded within 10 min, it is found that reaction for 6.0 
min is sufficient to provide the required overlapped region of GST activities measurable by 
both methods. By using Kiq fixed at 4.0 mol/L as a constant, the reaction duration of 6.0 
min and PSC at 48 mol/L to convert Vm to initial rates, the integration strategy gives a 
linear range from 2.0 U/L to 60 U/L; kinetic analysis of reaction curve alone gives the linear 
range from 5.0 U/L to 60 U/L while the classical initial rate method alone gives a linear 
range from 1.0 U/L to 5.0 U/L (Fig. 7, unpublished). Clearly, with enzyme suffering strong 
product inhibition, the integration strategy for enzyme initial rate assay is advantageous. 

2.5.3 Alcohol dehydrogenase reaction 

ADH is widely used for serum ethanol assay. ADH kinetics is sophisticated due to the 
reversibility of reaction and the inhibition by both acetaldehyde and NADH as products. To 
simplify ADH kinetics, some special approaches are employed to make ADH reaction 
apparently irreversible on single substrate (alcohol). Thus, reaction pH is optimized to 9.2 to 
scavenge hydrogen ion; semicabarzide at final 75 mmol/L is used to remove acetaldehyde 
as completely as possible; final nicotinamide adenine dinucleotide (NAD+) is 3.0 mmol/L; 
final ADH is about 50 U/L (Liao, et al., 2007a). By assigning the maximal absorbance at 340 
nm for reduced nicotinamide adenine dinucleotide (NADH) by the equilibrium method to 
Ame and that by kinetic analysis of reaction curve to Amk, kinetic analysis of ADH reaction 
curve should predict Amk consistent with Ame, but requires some special efforts. 

 
Fig. 8. Response of F values to preset Cald for kinetic analysis of reaction curve for 0.31 
mmol/L ethanol (reproduced with permission from Liao, et al, 2007a).  

The use of semicabarzide reduces concentrations of acetaldehyde (Cald) to unknown levels, 
and thus complicates the treatment of acetaldehyde inhibition on ADH. The integration rate 
equation with the predictor variable of reaction time can be worked out for ADH (Liao, et 
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al., 2007a). All kinetic parameters and NAD+ concentrations are preset as those used or 
reported (Ganzhorn, et al. 1987). However, there are multiple maxima of the goodness of fit 
with the continuous increase in steady-state Cald for kinetic analysis of reaction curve (Fig. 
8). Thus, Cald can not be concomitantly estimated by kinetic analysis of reaction curve, and a 
special approach is used to approximate steady-state Cald for predicting Amk.  

 
Fig. 9. Correlation function of the best steady-state Cald with Ame (reproduced with 
permission from Liao, et al, 2007a).  

Under the same reaction conditions, the equilibrium method can determine Ame for ethanol 
below 0.20 mmol/L after reaction for 50 min. For kinetic analyses of such reaction curves, 
the lag time for steady-state reaction is estimated to be over 40 s and is used to select data of 
steady-state reaction for analysis. Using the equilibrium method as the reference method, 
the best steady-state Cald for data of 6.0-min reaction is obtained for consistency of Amk with 
Ame at each tested ethanol level from 10 mol/L to 0.17 mmol/L. After dilution and 
determination by the equilibrium method, Ame for each tested ethanol level from 0.17 
mmol/L to 0.30 mmol/L is also available. Consequently, an exponential additive function is 
obtained to approximate the correlation of the best Cald for predicting Amk consistent with 
Ame (Fig. 9). This special correlation function for Cald and Amk is used as a restriction function 
to iteratively adjust Cald for predicting Amk; namely, iterative kinetic analysis of reaction 
curve with Cald predicted from the restriction function using previous Amk finally gives the 
desired Amk. Such an artificial intelligence approach to the steady-state Cald for kinetic 
analysis of reaction curve can hardly be found in publications. 

To start kinetic analysis of an ADH reaction curve, the highest absorbance under analysis 
is taken as Amk to predict the best Cald for the current run of kinetic analysis of reaction 
curve. The estimated Amk is then used to predict the second Cald for the second run of 
kinetic analysis of reaction curve (Fig. 10). Such an iterative kinetic analysis of reaction 
curve can predict Amk consistent with Ame for 0.31 mmol/L ethanol when reaction 
duration is just 6.0 min and the convergence criterion is set for absorbance change below 
0.0015 in Amk. Usually convergence is achieved with 7 runs of the iterative kinetic analysis 
of reaction. Moreover, it is resistant to the change of ADH activities by 50% and 
coefficients of variation (CV) are below 5% for final ethanol levels from 20 mol/L to 310 
mol/L in reaction solutions. 
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Fig. 10. Iterative adjustment of Cald to predict Amk for 0.31 mmol/L ethanol at 50 U/L ADH 
(reproduced with permission from Liao, et al, 2007a).  

Obviously, by this special approach for kinetic analysis of ADH reaction curve, the upper 
limit of linear response is excellent, but the lower limit of linear response is over 5.0 mol 
ethanol. Under the stated reaction conditions, the equilibrium method after reaction for 8.0 
min is effective to quantify ethanol up to final 6.0 mol. Thus, the equilibrium method with 
reaction duration of 8.0 min can be integrated with iterative kinetic analysis of reaction 
curve for quantifying ethanol; this integration strategy gives the linear range from about 
final 2.0 mol to about 0.30 mmol/L ethanol in reaction solutions; it has CVs below 8% for 
ethanol below 10 mol/L, and CVs below 5% for ethanol over 20 mol/L (Liao, et al., 
2007a). These results clearly supported the advantage of the new integration strategy for 
substrate assay and the importance of chemometrics in kinetic enzymatic analysis of 
substrate. 

2.6 Programming for kinetic analysis of enzyme reaction curve  

Most software package like Origin, SAS, MATLAB can perform kinetic analysis of reaction 
curve, but they are usually ineffective to implicit functions for kinetic analysis of reaction 
curve. For convenience and the use of some complicated methods for kinetic analysis of 
reaction curve in widow-aided mode, self-programming is still favourable. 

For simplicity in programming, we used Visual Basic 6.0 to write the source code and 
working windows (Liu, et al., 2011). The executable program has the main window to 
perform kinetic analysis of reaction curve (Fig. 11). Original data for each reaction curve is 
stored as a text file, and keywords are used to indicate specific information related to the 
reaction curve including sample numbering, the enzyme used, the quantification method, 
some necessary kinetic parameters, and usually initial signal before enzyme action. Such 
information is read into memory by the software for kinetic analysis of reaction curve. 

On the main window to perform kinetic analysis of reaction curve, original data are listed 
and plotted for eyesight-checking of data for steady-state reaction. Text boxes are used to 
input some common parameters like Km, and most parameters are read from the text file for 
the reaction curve. Subprogram for an enzyme reaction system is called for running; results 
are displayed on the main window and may be saved in text file for further analysis. 
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Fig. 11. Main window for the executable PCFenzyme  

We called the software PCFenzyme. An old version of the executable PCFenzyme can be 
downloaded at http://dx.doi.org/10.1016/j.clinbiochem.2008.11.016. The latest version of 
the executable PCFenzyme with new methods included is available upon request by e-mail.  

3. Conclusion 
The following conclusions can be drawn. (a) Kinetic analysis of reaction curve can give the 
initial substrate concentration before enzyme action, the maximal reaction rate, Michaelis-
Menten constant and other related parameters of an enzyme reaction system; for reliability, 
however, it is better to just estimate the initial substrate concentration before enzyme action 
and the maximal reaction rate with Michaelis-Menten constant and other parameters fixed 
as constants after optimization. (b) For an enzyme whose integrated rate equation with the 
predictor variable of reaction time is accessible, kinetic analysis of reaction curve can 
estimate parameters via nonlinear-least-square-fitting after transformation of data from the 
reaction curve under analysis. (c) For an enzyme reaction system whose kinetics is described 
by a set of differential rate equations or is difficult to be integrated with the predictor of 
reaction time, iterative numerical integration of the differential rate equation(s) with a series 
of preset parameters can produce serial calculated reaction curves; such calculated reaction 
curves can be fit to the reaction curve under analysis for estimating parameters based on 
nonlinear-least-square-fitting. This approach is applicable to enzyme-coupled reaction 
systems of sophisticated kinetics. (d) The integration of kinetic analysis of reaction curve 
with the equilibrium method can quantify enzyme substrates with expanded linear ranges, 
favourable analysis efficiency, low cost on tool enzyme, desirable resistance to factors 
affecting enzyme activities and enhanced precision; it can be applied to enzyme reaction 
suffering strong product inhibition. (e) The integration of kinetic analysis of reaction curve 
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with the classical initial rate method can measure enzyme initial rates with wide linear 
ranges, favourable analysis efficiency and practical levels of substrates; it can be applicable 
to enzyme-coupled reaction curve or enzyme reaction suffering product inhibition. 

Taken together, kinetic analysis of enzyme reaction curves under optimized conditions can 
screen common reversible inhibitors and enzyme mutants; the integration strategy for 
measuring enzyme activities can quantify serum enzymes and enzyme labels in enzyme-
immunoassays to expand the quantifiable ranges, and can be applied to quantify irreversible 
inhibitors as environmental pollutants; the integration strategy to quantify enzyme substrate 
can be the second-generation approaches and potentially find wide applications in clinical 
laboratory medicine. Therefore, these new methodologies for enzymatic analyses based on 
chemometrics can potentially find their important applications in biomedical sciences.  
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1. Introduction

Cancer is a class of diseases characterized by uncontrolled growth of abnormal cells of an
organism. All over the world millions of people die every year owing to one of the different
types of cancer. Unfortunately cancer chemotherapy finds a serious limitation since treatment
with drugs is followed by drug resistance in the tumorous cells and side effects (Efferth, 2005).
So researches have been directed to make chemotherapy treatment more efficient.

In the late years literature has reported the research on natural products as a good strategy to
discover new chemotherapy agents. One of the plants that have shown anticancer properties
is Artemisia annua L. (qinghao). It has the active ingredient artemisinin, which is used as
antimalarial. Artemisinin and derivatives have excellent efficacy against multidrug-resistant
strains of P. falciparum and they are very well tolerated (Price et al., 1998). Recently the
sensibility to artemisinin has been evaluated in some tumorous cells. Studies suggest that
artemisinin is more toxic to cancerous cells than to normal cells, so giving a new perspective
in cancer therapy (Lai et al, 2009).

However ... This book is on chemometrics and what has chemometrics to do with cancer
chemotherapy? Well... understanding how these two different areas can be related to one
another is the purpose of this chapter. You just must keep on reading this chapter and
you will see the many ways chemometrics can be employed to investigate the "behavior"
molecules exhibit considering anticancer activity and to make predictions about drugs that
were not tested yet. The potential application of chemometrics to analytical data arising from
problems in biology and medicine is enormous and, in fact, the applications of chemometrics
have diversified substantially over the last few years (Brereton, 2007; 2009). At the end of the
chapter you will note that, as in many areas of research, chemometrics plays an important role
in medicinal chemistry, fortunately.

Firstly it is necessary to remember that producing a drug is something that takes time and
money, so the process must be rationalized! However, in the past, drugs were discovered by
synthesizing a lot of molecules, rather without rigorous criteria, and testing experimentally all
of them to evaluate their capacity of cure of the disease or at least to control it. But in process
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2 Will-be-set-by-IN-TECH

of time this methodology became more and more inadequate, for the more new compounds
are studied the less a new compound may be discovered to be potent against a disease. It has
long been desired to design active structures on the basis of logic and calculations, not relying
on chance or trial-and-error (Fujita, 1995).

Nowadays, in science, there is a basic assumpion that molecular properties and structural
characteristics are closely connected to biological functions of the compounds. It is
often assumed that compounds with similar properties and structures also display similar
biological responses. Chemical structure encodes a large amount of information explaining
why a certain molecule is active, toxic or insoluble (Rajarshi, 2008). Thus to understand the
mechanism of action of a drug it is necessary to interpret the role played by its molecular and
structural properties.

In the last decades, much scientific research has focused on how to capture and convert the
information encoded in a molecular structure into one or more numbers used to establish
quantitative relationships between structures and properties, biological activities or other
experimental properties (Puzyn et al., 2010). Quantitative structure-activity relationship
(QSAR) studies have been of great value in medicinal chemistry. Statistical tools can be used
for the prediction of the biological activities of new compounds based only on the knowledge
of their chemical structures, i.e., not depending on experimental data, which are unknown.
Such a strategy gives very useful information for the understanding of the mechanisms of the
action of drugs and proposals for syntheses, in this way rationalizing drug discovery. QSAR
is alive and well (Doweyko, 2008), that is, QSAR has been used with success and so it is still
of relevance today.

Moreover advances in computation brought software that made possible to get many different
types of information (descriptors) about the molecules. Consequently data gathered through
experiments and computers can produce a huge matrix whose elements are information
related to molecules. But it seems that analyzing all them will require infinite patience!

What to do?

Chemometics has the solution!

That is true because chemometrics is the art of extracting chemically relevant information
from data produced in chemical experiments (Wold, 1995). Most people only think of statistics
when faced with a lot of quantitative information to process (Bruns et al., 2006). In this text
we show a common and efficient methodology used in medicinal chemistry to rationalize
the process of producing a new drug by employing chemometric methods. It is presented a
molecular modeling and a chemometric study of 25 artemisinins, which involves artemisinin
and derivatives (training set, Fig. 1) with different degrees of cytotoxicities against human
hepatocellular carcinoma HepG2 (Liu et al, 2005), since among the malignant tumors in the
liver, the hepatocellular carcinoma is very commom. Literature has showed the application
of the methodology here described to investigate biological properties (antimalarial and
anticancer) of artemisinin and derivatives (Barbosa et al., 2011); (Cardoso et al., 2008);
(Pinheiro et al., 2003).

2. Methodology

Any chemometric study requires data. In this study data are obtained from molecular
descriptors calculated through computation. The start point is the molecular modeling
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step, which consists on the construction of the structures and the complete optimization of
their geometries through a quantum chemistry approach implemented in computer. This
is necessary to represent molecules as real as possible and thus to compute their molecular
descriptors. The B3LYP/6-31G∗∗ method (Levine, 1991) as implemented in the Gaussian 98
program was employed (Frisch et al., 1998), considering this strategy is suitable for optimizing
well all structures since a good description of the geometrical parameters of artemisinin is
achieved.

The 25 compounds investigated include artemisinin, amides, esters, alcohols, ketones, and
five-membered ring derivatives. All compounds have been associated to their in vitro
bioactivity against a human hepatocellular carcinoma cell line, HepG2, and were labeled
previously into two classes according with their activities: (-) less active (those with IC50 � 97
μM) and (+) more active (those with IC50 < 97 μM) derivatives. The criteria for choosing this
value of IC50 are rather subjective. Nevertheless it is convenient to say that 97 μM is the IC50
for artemisinin and the higher IC50 the less active is the compound.

After molecular modeling, 1700 descriptors (independent variables) were computed for
each molecule in the training set. They represent different source of chemical information
(features) regarding the molecules and include geometric, electronic, quantum-chemical,
physical-chemical, topological descriptors and others. They are assumed to be important
to understand molecular characteristics such as bioactivity against cancer. In fact one of
the purposes of a research like this is to find which descriptors of the molecules are better
related to the disease under study, in this example cancer. The software used to compute
these descriptors were e-Dragon (Virtual Computational Laboratory , 2010), a product from
the Virtual Computational Laboratory and Gaussian 98 (Frisch et al., 1998).
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Fig. 1. Artemisinin and derivatives (training set) with different degrees of cytotoxicities
against human hepatocellular carcinoma HepG2

However, a crucial point to be considered in any data analysis is preprocessing. The original
data matrix usually does not have optimal value distribution for the analysis (for example

187Chemometric Study on Molecules with Anticancer Properties



2 Will-be-set-by-IN-TECH
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Fig. 1. Artemisinin and derivatives (training set) with different degrees of cytotoxicities
against human hepatocellular carcinoma HepG2

However, a crucial point to be considered in any data analysis is preprocessing. The original
data matrix usually does not have optimal value distribution for the analysis (for example
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it has different units and variances in variables), which requires some pretreatment prior
to multivariate analysis. In general, the autoscale preprocessing, which results in scaled
variables with zero mean and unit variance, is used (Ferreira, 2002). Then, all variables were
auto-scaled as a preprocessing so that they could be standardized and this way could have
the same importance regarding the scale.

Then the next step consists on application of multivariate statistical methods to find key
features involving molecules, descriptors and anticancer activity. The methods include
principal component analysis (PCA), hiererchical cluster analysis (HCA), K-nearest neighbor
method (KNN), soft independent modeling of class analogy method (SIMCA) and stepwise
discriminant analysis (SDA). The analyses were performed on a data matrix with dimension
25 lines (molecules) x 1700 columns (descriptors), not shown for convenience. For a further
study of the methodology applied there are standard books available such as (Varmuza &
Filzmoser, 2009) and (Manly, 2004).

2.1 PCA

Suppose that in your study, like in the example exhibited in this chapter, you have a large
set of data, certainly it will not be a simple task to analyze so many variables and extract
useful information from them. It would be a "revolution" in your research if you could
confidently interpret all data in a simpler way. Fortunately, with the aid of PCA technique,
this "revolution" can happen. Through PCA you can reduce the total number of variables to
a smaller set while maintaining as much of the original information as is possible. No matter
your area of research this is a great advantage.

Fig. 2. Plot of PC1-PC2 scores for artemisinin and derivates (training set) with activity
against human hepatocellular carcinoma HepG2. More active compounds displayed on the
left side (plus sign) while less active ones on the right side (minus sign)

Now considering our data matrix, PCA was employed looking for a small group of descriptors
so that they alone were responsible for classifying all 25 samples into two distinct classes:
more active and less active. Besides it is desirable to choose uncorrelated descriptors that
could be easier to interpret and analyze, trying to associate them to cytotoxicities against
human hepatocellular carcinoma HepG2.
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Furthermore, given the large quantity of multivariate data available, it was necessary to
reduce the number of variables. Thus, if two any descriptors had a high Pearson correlation
coefficient (r > 0.8), one of the two was randomly excluded from the matrix, since theoretically
they describe the same property to be modeled (biological response). Therefore it is sufficient
to use only one of them as an independent variable in a predictive model (Ferreira, 2002).
Moreover those descriptors that showed the same values for most of the samples were
eliminated too.

Compound IC5 Mor29m O1 MlogP Activity
1 4.862 -0.305 -0.246 2.845 97
2 5.253 -0.308 -0.200 2.630 >100
3 5.389 -0.372 -0.202 3.080 >100
4 5.628 -0.445 -0.194 4.845 9.5
5 5.684 -0.474 -0.205 5.250 2.8
6 5.624 -0.525 -0.214 5.644 1.2
7 5.501 -0.514 -0.211 6.027 0.46
8 5.364 -0.518 -0.191 6.400 0.79
9 5.225 -0.501 -0.210 6.765 4.2

10 5.217 -0.236 -0.205 3.036 >100
11 5.597 -0.526 -0.218 6.050 0.72
12 5.197 -0.179 -0.225 7.171 >100
13 5.253 -0.364 -0.246 3.141 >100
14 5.253 -0.322 -0.237 3.141 >100
15 5.159 -0.294 -0.259 7.095 >100
16 5.159 -0.232 -0.258 7.095 >100
17 5.180 -0.443 -0.219 2.996 >100
18 5.168 -0.307 -0.209 7.131 >100
19 5.624 -0.485 -0.186 5.644 1.8
20 5.856 -0.518 -0.218 3.941 3.5
21 5.543 -0.562 -0.344 5.449 1.3
22 5.419 -0.560 -0.320 5.837 0.77
23 5.280 -0.591 -0.281 6.215 0.74
24 5.516 -0.498 -0.269 5.855 3.7
25 5.488 -0.545 -0.273 5.815 0.47

Mean 5.378 -0.425 -0.234 5.164
Stardard Deviation 0.225 0.121 0.040 1.570

Table 1. Values of the four descriptors selected through PCA for compounds from the
training set

After this step, PCA was performed in order to continue reducing the dimensionality of the
data, find descriptors that could be useful in characterizing the behavior of the compounds
acting against cancer and look for natural clustering in the data and outlier samples. While
processing PCA, several attempts to obtain a good classification of the compounds are made.
At each attempt, one or more variables are removed, PCA is run and the score and loading
plots are analyzed.

The score plot gives information about the compounds (similarities and differences). The
loading plot gives information about the variables (how they are connected to each other and
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which are the best to describe the variance in the original data). Depending on the results
displayed by the plots, variables remain removed or included in the data matrix. If a removal
of a variable contributes to separate compounds showed by the score plot into two classes
(more and less active), then in the next attempt PCA is run without this variable. But if no
improvement is achieved, then the variable removed is inserted in the data matrix, another
variable is selected to be removed and PCA is run again. The loadings plot gives good clues
on which variables must be excluded. Variables that are very close to one another indicate
they are correlated and, as stated before, only one of them needs to remain.

This methodology comprises part of the art of variable selection: patience and intuition are
the fundamental tools here. It is not necessary to mention that the more you know about
the system you are investigating (samples and variables and how they are connected), the
more you can have success in the process of finding variables that really are important to your
investigation. Variable selection does not occur like magic, at least, not always!

The descriptors selected in PCA were IC5, Mor29m, O1 and MlogP, which represent four
distinct types of interactions related to the molecules, especially between the molecules and
the biological receptor. These descriptors are classified as steric (IC5), 3D-morse (Mor29m),
electronic (O1) and molecular (MlogP). The main properties of a drug that appear to influence
its activity are its lipophilicity, the electronic effects within the molecule and the size and shape
of the molecule (steric effects) (Gareth, 2003).

Fig. 3. Plot of the PC1-PC2 loadings for the four descriptors selected through PCA

The PCA results show the score plot (Fig. 2) relative to the first and second principal
components. In PC1, there is a distinct separation of the compounds into two classes. More
active compounds are on the left side, while less active are on the right side. They were chosen
among all data set (1700 descriptors) and they are assumed to be very important to investigate
anticancer mechanism involving artemisinins. Table 1 displays the values computed for these
four descriptors. This step was crucial since a matrix with 1700 columns was reduced to
only 4 columns. No doubt it is more appropriate to deal with a smaller matrix. The first
three principal components, PC1, PC2 and PC3 explained 43.6%, 28.7% and 20.9% of the total
variance, respectively. The Pearson correlation coefficient between the variables is in general
low (less than 0.25, in absolute values); exception occurs between Mor29m and IC5, which is
-0.65).
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Fig. 4. HCA dendogram for artemisinin and derivatives (training set) with biological activity
against human hepatocellular carcinoma HepG2. Plus sign for more active compounds while
minus sign for less active ones
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The loading plot relative to the first and second principal components can be seen in Fig. 3.
PC1 and PC2 are expressed in Equations 1 and 2, respectively, as a function of the four selected
descriptors. They represent quantitative variables that provide the overall predictive ability
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descriptors. They represent quantitative variables that provide the overall predictive ability
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of the different sets of molecular descriptors selected. In Equation 1 the loadings of IC5 and
MlogP are negative whereas they are positive for Mor29m and O1. Among all of them IC5
and Mor29m are the most important to PC1 due to the magnitude of their coefficients (-0.613
and 0.687, respectively) in comparison to O1 and MlogP (0.234 and -0.313, respectively). For a
compound to be more active against cancer, it must generally be connected to negative values
for PC1, that is, it must present high values for IC5 and MlogP, but more negative values for
Mor29m and O1.

PC1 = −0.613IC5 + 0.687Mor29m + 0.234O1 − 0.313MlogP (1)

PC2 = −0.445IC5 + 0.081Mor29m − 0.743O1 + 0.493MlogP (2)

2.2 HCA

Considering the necessity of grouping molecules of similar kind into respective categories
(more and less active ones), HCA is suitable for this purpose since it is possible to visualize
the disposition of molecules with respect to their similarities and so make suppositions of how
they may act against the disease. When performing HCA many approaches are available.
Each one differs basically by the way samples are grouped.
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Compound K1 K2 K3 K4 K5 K6
1 - - - - - -
2 - - - - - -
3 - - - - - -
4 + + + + + +
5 + + + + + +
6 + + + + + +
7 + + + + + +
8 + + + + + +
9 + + + + + +

10 - - - - - -
11 + + + + + +
12 - - - - - -
13 - - - - - -
14 - - - - - -
15 - - - - - -
16 - - - - - -
17 - - - - - -
18 - - - - - -
19 + + + + + +
20 + + + + + +
21 + + + + + +
22 + + + + + +
23 + + + + + +
24 + + + + + +
25 + + + + + +

Table 2. Classification of compounds from the training set according to KNN method

Fig. 9. Variations in descriptors: a) Variations in IC5 for each cluster; b) Variations in Mor29m
for each cluster; c) Variations in O1 for each cluster; d) Variations in MlogP for each cluster

In this work, classification through HCA was based on the Euclidean distance and the average
group method. This method established links between samples/cluster. The distance between
two clusters was computed as the distance between the average values (the mean vector or
centroids) of the two clusters. The descriptors employed in HCA were the same selected in
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of the different sets of molecular descriptors selected. In Equation 1 the loadings of IC5 and
MlogP are negative whereas they are positive for Mor29m and O1. Among all of them IC5
and Mor29m are the most important to PC1 due to the magnitude of their coefficients (-0.613
and 0.687, respectively) in comparison to O1 and MlogP (0.234 and -0.313, respectively). For a
compound to be more active against cancer, it must generally be connected to negative values
for PC1, that is, it must present high values for IC5 and MlogP, but more negative values for
Mor29m and O1.

PC1 = −0.613IC5 + 0.687Mor29m + 0.234O1 − 0.313MlogP (1)

PC2 = −0.445IC5 + 0.081Mor29m − 0.743O1 + 0.493MlogP (2)

2.2 HCA

Considering the necessity of grouping molecules of similar kind into respective categories
(more and less active ones), HCA is suitable for this purpose since it is possible to visualize
the disposition of molecules with respect to their similarities and so make suppositions of how
they may act against the disease. When performing HCA many approaches are available.
Each one differs basically by the way samples are grouped.

192 Chemometrics in Practical Applications Chemometric Study on Molecules with Anticancer Properties 9

Compound K1 K2 K3 K4 K5 K6
1 - - - - - -
2 - - - - - -
3 - - - - - -
4 + + + + + +
5 + + + + + +
6 + + + + + +
7 + + + + + +
8 + + + + + +
9 + + + + + +

10 - - - - - -
11 + + + + + +
12 - - - - - -
13 - - - - - -
14 - - - - - -
15 - - - - - -
16 - - - - - -
17 - - - - - -
18 - - - - - -
19 + + + + + +
20 + + + + + +
21 + + + + + +
22 + + + + + +
23 + + + + + +
24 + + + + + +
25 + + + + + +

Table 2. Classification of compounds from the training set according to KNN method

Fig. 9. Variations in descriptors: a) Variations in IC5 for each cluster; b) Variations in Mor29m
for each cluster; c) Variations in O1 for each cluster; d) Variations in MlogP for each cluster

In this work, classification through HCA was based on the Euclidean distance and the average
group method. This method established links between samples/cluster. The distance between
two clusters was computed as the distance between the average values (the mean vector or
centroids) of the two clusters. The descriptors employed in HCA were the same selected in
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PCA, that is, IC5, Mor29m, O1 and MlogP. The representation of clustering results is shown by
the dendogram in Fig. 4, which depicts the similarity of samples. The branches on the bottom
of the dendogram represent single samples. The length of the branches linking two clusters
is related to their similarity. Long branches are related to low similarity while short branches
mean high similarity. On the scale of similarity, a value of 100 is assigned to identical samples
and a value of 0 to the most dissimilar samples. For a better interpretation of the dendogram,
the clusters are also analyzed alone (Figs. 5, 6, 7 and 8 ), and variations in descriptors in each
cluster are presented in Fig. 9. The scale above each figure is associated to the property
considered and the letters indicate the cluster in the dendogram. It is easily recognized
that descriptors in clusters in general have different pattern of variations, a characteristic
supported by the fact that clusters have different groups of molecules.

Group or class Number of Compounds Compounds wrongly classified
K1 K2 K3 K4 K5 K6

Less active 11 0 0 0 0 0 0
More active 14 0 0 0 0 0 0

%Correct information 25 100 100 100 100 100 100

Table 3. Classification matrix obtained by using KNN

The dendogram shows compounds classified into two different classes according to their
activities with no sample incorrectly classified. Less active compounds are on the left side
and are divided into clusters A (Fig. 5) and B (Fig. 6). In cluster A substituints have either
C2H5 (2, 10, 13, 14 and 17) or C4H9 (3). Here the lowest values for IC5 (Fig. 9a) and MlogP are
found (Fig. 9d). In cluster B (12, 15, 16 and 18) all substituints have C18H37 and are present the
highest values for MlogP (Fig. 9d). Considering more active samples, right side of the figure,
in cluster C (Fig. 7) compounds have amide group (exception is 11, ester, and 19, ketone) and
attached to this group there is an alkyl chain of 8 to 18 carbon atoms. Here the descriptor IC5
displays the highest values (Fig. 9a). In Cluster D (Fig. 8) substituints have an alkyl chain of
12 to 16 carbon atoms and the six-membered ring molecules with oxygen O11 are replaced by
five-membered ring molecules. Compounds display the lowest values for Mor29m (Fig. 9b)
and O1 (Fig. 9c).

Besides these two methods of classification (PCA and HCA), others (KNN, SIMCA and SDA)
were applied to data. They are important to construct reliable models useful to classify new
compounds (test set) regarding their ability to face cancer. This is certainly the ultimate
purpose of many researches in planning a new drug.

2.3 KNN

This method categorizes an unknown object based on its proximity to samples already placed
in categories. After built the model, compounds from the test set are classified and their classes
predicted taking into account the multivariate distance of the compound with respect to K
samples in the training set. The model built for KNN in this example employs leave one out
method, has 6 (six) as a maximum k value and autoscaled data. Table 2 shows classification
for each sample at each k value. Column number corresponds to k setting so that the first
column of this matrix holds the class for each training set sample when only one neighbor
(the nearest) is polled whereas the last column holds the class for the samples when the kmax
nearest neighbors are polled. Tables 2 and 3 summarizes the results for KNN analysis. All
6-nearest neighbors classified samples correctly.
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2.4 SIMCA

The SIMCA method develops principal component models for each training set category. The
main goal is the reliable classification of new samples. When a prediction is made in SIMCA,
new samples insufficiently close to the PC space of a class are considered non-members. Table
4 shows classification for compounds from the training set. Here sample 9 was classified
incorrectly since its activity is 4.2 (more active) but it is classified by SIMCA as less active.

Compound
1 2 3 4 5 6 7 8 9 10 11 12 13

Class - - - + + + + + - - + - -
Compound

14 15 16 17 18 19 20 21 22 23 24 25
Class - - - - - + + + + + + +

Table 4. Classification of compounds from the training set according to SIMCA method

Probably the reason for this misclassification lies in the fact that compound 9 may not be "well
grouped" into one of the two classes. In fact when you analyze Fig. 2 you note that 9 is the
compound classified as more active that is closer to compounds classified as less active.

Group or Class Number of Compounds True group
More active Less active

Less active 11 0 11
More active 14 14 0

Total 25
%Correct information 100 100

Table 5. Classification matrix obtained by using SDA

2.5 SDA

SDA is also a multivariate method that attempts to maximize the probability of correct
allocation. The main objectives of SDA are to separate objects from distinct populations and
to allocate new objects into populations previously defined.

The discrimination functions for less active and more active classes are, respectively,
Equations 3 and 4, given below:

YLESS = −5.728 − 2.825MlogP − 0.682O1 − 3.243IC5 + 7.745Mor29m (3)

YMORE = −3.536 + 2.220MlogP + 0.536O1 + 2.548IC5 − 6.086Mor29m (4)

The way the method is used is based on the following steps:

(a) Initially, for each molecule, the values for descriptors (IC5, Mor29m, O1 and MlogP) are
computed;

(b) The values from (a) are inserted in the two discrimination functions (Equation 3 and
Equation 4 ). However, since these equations were obtained from autoscaled values from
Table 1 (training set), it is necessary that values from Table 7 (test set) are autoscaled before
inserted into the equations;
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and a value of 0 to the most dissimilar samples. For a better interpretation of the dendogram,
the clusters are also analyzed alone (Figs. 5, 6, 7 and 8 ), and variations in descriptors in each
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considered and the letters indicate the cluster in the dendogram. It is easily recognized
that descriptors in clusters in general have different pattern of variations, a characteristic
supported by the fact that clusters have different groups of molecules.
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C2H5 (2, 10, 13, 14 and 17) or C4H9 (3). Here the lowest values for IC5 (Fig. 9a) and MlogP are
found (Fig. 9d). In cluster B (12, 15, 16 and 18) all substituints have C18H37 and are present the
highest values for MlogP (Fig. 9d). Considering more active samples, right side of the figure,
in cluster C (Fig. 7) compounds have amide group (exception is 11, ester, and 19, ketone) and
attached to this group there is an alkyl chain of 8 to 18 carbon atoms. Here the descriptor IC5
displays the highest values (Fig. 9a). In Cluster D (Fig. 8) substituints have an alkyl chain of
12 to 16 carbon atoms and the six-membered ring molecules with oxygen O11 are replaced by
five-membered ring molecules. Compounds display the lowest values for Mor29m (Fig. 9b)
and O1 (Fig. 9c).

Besides these two methods of classification (PCA and HCA), others (KNN, SIMCA and SDA)
were applied to data. They are important to construct reliable models useful to classify new
compounds (test set) regarding their ability to face cancer. This is certainly the ultimate
purpose of many researches in planning a new drug.

2.3 KNN

This method categorizes an unknown object based on its proximity to samples already placed
in categories. After built the model, compounds from the test set are classified and their classes
predicted taking into account the multivariate distance of the compound with respect to K
samples in the training set. The model built for KNN in this example employs leave one out
method, has 6 (six) as a maximum k value and autoscaled data. Table 2 shows classification
for each sample at each k value. Column number corresponds to k setting so that the first
column of this matrix holds the class for each training set sample when only one neighbor
(the nearest) is polled whereas the last column holds the class for the samples when the kmax
nearest neighbors are polled. Tables 2 and 3 summarizes the results for KNN analysis. All
6-nearest neighbors classified samples correctly.
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2.4 SIMCA

The SIMCA method develops principal component models for each training set category. The
main goal is the reliable classification of new samples. When a prediction is made in SIMCA,
new samples insufficiently close to the PC space of a class are considered non-members. Table
4 shows classification for compounds from the training set. Here sample 9 was classified
incorrectly since its activity is 4.2 (more active) but it is classified by SIMCA as less active.

Compound
1 2 3 4 5 6 7 8 9 10 11 12 13

Class - - - + + + + + - - + - -
Compound

14 15 16 17 18 19 20 21 22 23 24 25
Class - - - - - + + + + + + +

Table 4. Classification of compounds from the training set according to SIMCA method

Probably the reason for this misclassification lies in the fact that compound 9 may not be "well
grouped" into one of the two classes. In fact when you analyze Fig. 2 you note that 9 is the
compound classified as more active that is closer to compounds classified as less active.

Group or Class Number of Compounds True group
More active Less active

Less active 11 0 11
More active 14 14 0

Total 25
%Correct information 100 100

Table 5. Classification matrix obtained by using SDA

2.5 SDA

SDA is also a multivariate method that attempts to maximize the probability of correct
allocation. The main objectives of SDA are to separate objects from distinct populations and
to allocate new objects into populations previously defined.

The discrimination functions for less active and more active classes are, respectively,
Equations 3 and 4, given below:

YLESS = −5.728 − 2.825MlogP − 0.682O1 − 3.243IC5 + 7.745Mor29m (3)

YMORE = −3.536 + 2.220MlogP + 0.536O1 + 2.548IC5 − 6.086Mor29m (4)

The way the method is used is based on the following steps:

(a) Initially, for each molecule, the values for descriptors (IC5, Mor29m, O1 and MlogP) are
computed;

(b) The values from (a) are inserted in the two discrimination functions (Equation 3 and
Equation 4 ). However, since these equations were obtained from autoscaled values from
Table 1 (training set), it is necessary that values from Table 7 (test set) are autoscaled before
inserted into the equations;
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(c) The two values computed from (b) are compared. In case the value calculated from
Equation 3 is higher than that from Equation 4, then the molecule is classified as less active.
Otherwise, the molecule is classified as more active.

Group or Class Number of Compounds True group
More active Less active

Less active 11 0 11
More active 14 14 0

Total 25
%Correct information 100 100

Table 6. Classification matrix obtained by using SDA with Cross Validation

Through SDA all compounds of the training set were classified as presented in Table 5. The
classification error rate was 0% resulting in a satisfactory separation between more and less
active compounds.

The reliability of the model is determined by carrying out a cross-validation test, which uses
the leave-one-out technique. In this procedure, one compound is omitted of the data set and
the classification functions are built based on the remaining compounds. Afterwards, the
omitted compound is classified according to the classification functions generated. In the next
step, the omitted compound is included and a new compound is removed, and the procedure
goes on until the last compound is removed. The obtained results with the cross-validation
methodology are summarized in Table 6. Since the total of correct information was 100%, the
model can be believed as being a good model.

Compound IC5 Mor29m O1 MlogP
26 5.371 -0.437 -0.238 2.461
27 5.526 -0.544 -0.249 2.496
28 5.402 -0.516 -0.241 1.649
29 5.336 -0.481 -0.239 2.461
30 5.572 -0.553 -0.238 2.305
31 5.464 -0.411 -0.226 3.117
32 5.584 -0.323 -0.244 3.328
33 5.282 -0.496 -0.226 3.225
34 5.483 -0.570 -0.345 2.090
35 5.583 -0.667 -0.262 2.922

Table 7. Values of the four descriptors for the compounds from the test set

2.6 Classification of unknown compounds

The models built from compounds from the training set through PCA, HCA, KNN, SIMCA
and SDA now can be used to classify others compounds (test set, Fig. 10) whose anticancer
activities are unknown. So ten compounds were proposed here to verify if they must be
classified as less active or more active against a human hepatocellular carcinoma cell line,
HepG2. In fact, they were not selected from any literature, so it is supposed that they have
not been tested against this carcinoma. These compounds were selected so that they have
substituitions at the same positions as those for the training set (R1 and R2) and the same type
of atoms. It is important to keep the main characteristics of the compounds that generated
the models. This way good predictions can be achieved. The classification of the test set was
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based on the four descriptors used in the models: IC5, Mor29m, O1 and MlogP, according to
Table 7.
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Fig. 10. Compounds from the test set which must be classified as either less active or more
active

Compound PCA HCA KNN SIMCA SDA
26 - - - - -
27 + + + + +
28 - - - - -
29 - - - - -
30 + + + + +
31 - - - - -
32 - - - - -
33 - - - - -
34 + + + + +
35 + + + + +

Table 8. Predicted classification for unknown compounds from the test set through different
methods. Minus sign (-) for a compound classified as less active while plus sign (+) for a
compound classified as more active

The result presented in Table 8 reveal that all samples (test set) receive the same classification
by the four methods. Compounds 26, 28, 29, 31, 32 and 33 were classified as less active while
compounds 27, 30, 34 and 35 were classified as more active. If you look for an explanation
for such a pattern you will note that 26 and 27 present carboxylic acid group at the end of
the chain, but only 27 is classified as more active. So it is possible that the change of an ester
group by an amide group causes increase in activity. However when two amide groups are
considered as occurs in 28 and 30 more carbon atoms in substituent means more active. Now
comparing 26, 29, 31 and 32, all of them have ester group associated with another different
group and they all are classified as less active. The presence of the second group seams not to
modify activity too much. The same effect is found in 34 and 35, both more active.

3. Conclusion

All multivariate statistical methods (PCA, HCA, KNN, SIMCA and SDA) classified the 25
compounds from the training set into two distinct classes: more active and less active
according to their degree of anticancer HepG2 activity. This classification was based on IC5,
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(c) The two values computed from (b) are compared. In case the value calculated from
Equation 3 is higher than that from Equation 4, then the molecule is classified as less active.
Otherwise, the molecule is classified as more active.

Group or Class Number of Compounds True group
More active Less active

Less active 11 0 11
More active 14 14 0

Total 25
%Correct information 100 100

Table 6. Classification matrix obtained by using SDA with Cross Validation

Through SDA all compounds of the training set were classified as presented in Table 5. The
classification error rate was 0% resulting in a satisfactory separation between more and less
active compounds.

The reliability of the model is determined by carrying out a cross-validation test, which uses
the leave-one-out technique. In this procedure, one compound is omitted of the data set and
the classification functions are built based on the remaining compounds. Afterwards, the
omitted compound is classified according to the classification functions generated. In the next
step, the omitted compound is included and a new compound is removed, and the procedure
goes on until the last compound is removed. The obtained results with the cross-validation
methodology are summarized in Table 6. Since the total of correct information was 100%, the
model can be believed as being a good model.

Compound IC5 Mor29m O1 MlogP
26 5.371 -0.437 -0.238 2.461
27 5.526 -0.544 -0.249 2.496
28 5.402 -0.516 -0.241 1.649
29 5.336 -0.481 -0.239 2.461
30 5.572 -0.553 -0.238 2.305
31 5.464 -0.411 -0.226 3.117
32 5.584 -0.323 -0.244 3.328
33 5.282 -0.496 -0.226 3.225
34 5.483 -0.570 -0.345 2.090
35 5.583 -0.667 -0.262 2.922

Table 7. Values of the four descriptors for the compounds from the test set

2.6 Classification of unknown compounds

The models built from compounds from the training set through PCA, HCA, KNN, SIMCA
and SDA now can be used to classify others compounds (test set, Fig. 10) whose anticancer
activities are unknown. So ten compounds were proposed here to verify if they must be
classified as less active or more active against a human hepatocellular carcinoma cell line,
HepG2. In fact, they were not selected from any literature, so it is supposed that they have
not been tested against this carcinoma. These compounds were selected so that they have
substituitions at the same positions as those for the training set (R1 and R2) and the same type
of atoms. It is important to keep the main characteristics of the compounds that generated
the models. This way good predictions can be achieved. The classification of the test set was
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Compound PCA HCA KNN SIMCA SDA
26 - - - - -
27 + + + + +
28 - - - - -
29 - - - - -
30 + + + + +
31 - - - - -
32 - - - - -
33 - - - - -
34 + + + + +
35 + + + + +

Table 8. Predicted classification for unknown compounds from the test set through different
methods. Minus sign (-) for a compound classified as less active while plus sign (+) for a
compound classified as more active

The result presented in Table 8 reveal that all samples (test set) receive the same classification
by the four methods. Compounds 26, 28, 29, 31, 32 and 33 were classified as less active while
compounds 27, 30, 34 and 35 were classified as more active. If you look for an explanation
for such a pattern you will note that 26 and 27 present carboxylic acid group at the end of
the chain, but only 27 is classified as more active. So it is possible that the change of an ester
group by an amide group causes increase in activity. However when two amide groups are
considered as occurs in 28 and 30 more carbon atoms in substituent means more active. Now
comparing 26, 29, 31 and 32, all of them have ester group associated with another different
group and they all are classified as less active. The presence of the second group seams not to
modify activity too much. The same effect is found in 34 and 35, both more active.

3. Conclusion

All multivariate statistical methods (PCA, HCA, KNN, SIMCA and SDA) classified the 25
compounds from the training set into two distinct classes: more active and less active
according to their degree of anticancer HepG2 activity. This classification was based on IC5,
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Mor29m, O1 and MlogP descriptors. They represent four distinct classes of interactions related
to the molecules, especially between the molecules and the biological receptor: steric (IC5),
3D-morse (Mor29m), electronic (O1) and molecular (MlogP).

A test set with ten molecules with unknown anticancer activity has its molecules classified,
according to their biological response, into more active or less active compound. The results
reveal in which classes they are grouped. In general molecules classified as more active must
be seen as more efficient in cancer treatment than those classified as less active. Then the
developed studies with PCA, HCA, KNN, SIMCA and SDA can provide valuable insight
into the experimental process of syntheses and biological evaluation of the new artemisinin
derivatives with activity against cancer HepG2. Without chemometrics no model and,
consequently, no classification could be possible unless you are a prophet!

The interfacioal location of chemometrics, falling between measurements on the one side
and statistical and computational theory and methods on the other, poses a challenge to the
new practioner (Brow et al., 2009). The future of chemometrics lies in the development of
innovative solutions to interesting problems. Some of the most exciting opportunities for
innovation and new developments in the field of chemometrics lie at the interface between
chemical and biological sciences. These opportunities are made possible by the exciting new
scientific advances and discoveries of the past decade (Gemperline, 2006).

Finally, after reading this chapter you certainly must have noticed that chemometrics is a
useful tool in medicinal chemistry, mainly when the great diversity of data is taken into
account, because a lot of conclusions can be achieved. A study like this one here presented,
where different methods are employed, is one of the examples of how chemometrics is
important in drug design. Thus applications of statistics in chemical data analysis looking
for the discovery of more efficacious drugs against diseases must continue and will certainly
help researches.
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1. Introduction 

Diseases caused by foodborne pathogens have been a serious threat to public health and 
food safety for decades and remain one of the major concerns of our society. There are 
hundreds of diseases caused by different foodborne pathogenic microorganisms, including 
pathogenic viruses, bacteria, fungi, parasites, marine phytoplankton, and cyanobacteria, etc 
(Hui, 2001). Among these, bacteria such as Salmonella  spp.,  Shigella  spp.,  Escherichia  coli, 
Staphylococcus  aureus,  Campylobacter  jejuni,  Campylobacter  coli,  Bacillus  cereus,  Vibrio 
parahaemolyticus and Listeria monocytogenes are the most common foodborne pathogens 
(McClure, 2002), which can spread easily and rapidly under requiring food, moisture and a 
favorable temperature (Bhunia, 2008). 

Identification and detection pathogens in clinical, environmental or food samples usually 
involves time-consuming growth in selective media, subsequent isolation and laborious 
biochemical and molecular diagnostic procedures (Gates, 2011). Many of these techniques 
are also expensive or not sensitive enough for the early detection of bacterial activity (Adley, 
2006). The development of alternative analytical techniques that are rapid and simple has 
become increasingly important to reduce sample preparation time investment and to 
conduct real time analyses. 

It is well known that microorganisms can produce species-specific microbial volatile organic 
compounds (MVOCs), or odor compounds, which characterize as odor fingerprinting 
(Turner & Magan, 2004). Early in this research area, the question arose as to can we use odor 
fingerprinting like DNA fingerprinting to identify or detect microbe in pure culture or in 
food samples. To date it is still a very interesting scientific question. Many studies (Bjurman, 
1999, Kim et al., 2007, Korpi et al., 1998, Pasanen et al., 1996, Wilkins et al., 2003), especially 
those using analytical tools such as gas chromatography (GC) or gas chromatography 
coupled with mass spectrometry (GC–MS) for headspace analysis, have shown that 
microorganisms produce many MVOCs, including alcohols, aliphatic acids and terpenes, 
some of which have characteristic odors (Schnürer et al., 1999). 
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Fig. 1. Electronic nose devices mimic the human olfactory system.  

The electronic devices simulate the different stages of the human olfactory system, resulting 
in volatile odor recognition, which can now be used to discriminate between different 
bacterial infections. (Turner & Magan, 2004)  

During the past three decades there has been significant research interest in the 
development of electronic nose (E-nose) technology for food, agricultural and 
environmental applications (Buratti et al., 2004, Pasanen et al., 1996, Romain et al., 2000, 
Wilkins et al., 2003). The term E-nose describes a machine olfaction system, which 
successfully mimics human olfaction and intelligently integrates of multitudes of 
technologies like sensing technology, chemometrics, microelectronics and advanced soft 
computing (see Fig. 1). Basically, this device is used to detect and distinguish complex odor 
at low cost. Typically, an electronic nose consists of three parts: a sensor array which is 
exposed to the volatiles, conversion of the sensor signals to a readable format, and software 
analysis of the data to produce characteristic outputs related to the odor encountered. The 
output from the sensor array may be interpreted via a variety of chemometrics methods 
(Capone et al., 2001, Evans et al., 2000, Haugen & Kvaal, 1998) such as principal component 
analysis (PCA), discriminant function analysis (DFA), cluster analysis (CA), soft 
independent modelling by class analogy (SIMCA), partial least squares (PLS) and artificial 
neural networks (ANN) to discriminate between different samples. The data obtained from 
the sensor array are comparative and generally not quantitative or qualitative in any way. It 
has the potential to be a sensitive, fast, one-step method to characterize a wide array of 
different volatile chemicals. Since the first model of an intelligent electronic gas sensing 
model was described, a significant amount of gas sensing research has been focused on 
several industrial applications. 

Recently, some novel microbiological applications of E-nose have been reported, such as the 
characterization of fungi (Keshri et al., 1998, Pasanen et al., 1996, Schnürer et al., 1999), 
bacteria (Dutta et al., 2005, Pavlou et al., 2002a) and the diagnosis of disease (Gardner et al., 
2000, Pavlou et al., 2002b, Zhang et al., 2000). It is more and more clear that E-nose 
techniques coupled with different chemometrics analyses of the odor fingerprinting offer a 
wide range of applications for food microbiology, including identification of foodborne 
pathogen. 
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2. Detection strategies 
Several E-nose devices have been developed, all of which comprise three basic building 
blocks: a volatile gas odor passes over a sensor array, the conductance of the sensors 
changes owing to the level of binding and results in a set of sensor signals, which are 
coupled to data-analysis software to produce an output (Turner & Magan, 2004). 

The main strategy of foodborne pathogen identification based on E-nose, which is composed 
of three steps: headspace sampling, gas sensor detection and chemometrics analysis  
(see Fig. 2).  

 
Fig. 2. Electronic nose and chemometrics for the identification of foodborne pathogen. The 
main strategy of foodborne pathogen identification based on E-nose. 

2.1 Headspace sampling 

Before analysis, the bacterial cultures should be transferred into standard 20 ml headspace 
vials and sealed with PTFE-lined Teflon caps to equilibrate the headspace. Sample handling 
is a critical step affecting the analysis by E-nose. The quality of the analysis can be improved 
by adopting an appropriate sampling technique. To introduce the volatile compounds 
present in the headspace (HS) of the sample into the E-nose’s detection system, several 
headspace sampling techniques have been used in E-nose. Typically, the methods of 
headspace sampling (Ayoko, 2004) include static headspace (SHS) technique, purge and trap 
(P&T) technique, stir bar sorptive extraction (SBSE) technique, inside-needle dynamic 
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headspace sampling (Ayoko, 2004) include static headspace (SHS) technique, purge and trap 
(P&T) technique, stir bar sorptive extraction (SBSE) technique, inside-needle dynamic 
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extraction (INDEX) technique, membrane introduction mass spectrometry (MIMS) 
technique and solid phase micro extraction (SPME) technique. 

Unlike the other techniques, SPME has a considerable concentration capacity and is very 
simple because it does not require especial equipment. The principle involves exposing a 
silica fibre covered with a thin layer of adsorbent in the HS of the sample in order to trap the 
volatile components onto the fibre. The adsorbed compounds are desorbed by heating and 
introduced into the detection system. A SPME sampler consists of a fused silica fiber that is 
coated by a suitable polymer (e.g. PDMS, PDMS/divinylbenzene, carboxen/PDMS) and 
housed inside a needle. The fiber is exposed to headspace volatile and after sampling is 
complete, it is retracted into the needle. Apart from the nature of the adsorbent deposited on 
the fiber, the main parameters to optimize are the equilibration time, the sample 
temperature and the duration of extraction. Compared with other sampling methods, SPME 
is simple to use and reasonably sensitive, so it is a user-friendly pre-concentration method. 

In our studies, the headspace sampling method of E-nose was optimized for MVOCs 
analysis. The samples were placed in the HS100 auto-sampler in arbitrary order. The 
automatic injection unit heated the samples to 37°C with an incubation time of 600 seconds. 
The temperature of the injection syringe was 47°C. The delay time between two injections 
was 300 seconds. Then the adsorbed compounds are desorbed by heating and introduced 
into the detection system (Yu Y. X., 2010a, Yu Y. X., 2010b).  

2.2 Gas sensor detection 

The most complicated part of electronic olfaction process is odor capture and sensor 
technology to be deployed for such capturing. Once the volatile compounds of samples are 
introduced into the gas sensor detection system, the sensor array is exposed to the volatile 
compounds and then the odor fingerprint of samples is generated from sensor respond. By 
chemical interaction between the volatile compounds and the gas sensors, the state of the 
sensors is altered giving rise to electrical signals that are registered by the instrument of E-
nose. In this way the signals from the individual sensor represent a pattern that is unique for 
the gas mixture measured and those data based on sensors is transformed to a matrix. The 
ideal sensors to be integrated in an electronic nose should fulfill the following criteria 
(Barsan & Weimar, 2001, James et al., 2005): high sensitivity toward the volatile chemical 
compounds, that is, the chemicals to be detected may be present in the concentration range 
of ppm or ppb, and the sensor should be sufficiently sensitive to small concentration level of 
gaseous species within a volatile mixture, similar to that of the human nose (down to 10−12 
g/ml); low sensitivity toward humidity and temperature; medium selectivity, that is, they 
must respond to a range of different compounds present in the headspace of the sample; 
high stability; high reproducibility and reliability; high speed of response, short reaction and 
recovery time, that is, in order to be used for online measurements, the response time of the 
sensor should be in the range of seconds; reversibility, that is, the sensor should be able to 
recover after exposure to gas; robust and durable; easy calibration; easily processable data 
output; and small dimensions. 

The E-nose used in our studies is a commercial equipment (FOX4000, Alpha M.O.S., 
Toulouse, France), with 18 metal oxide sensors (LY2/AA, LY2/G, LY2/gCT,  LY2/gCTl, 
LY2/Gh, LY2/LG,  P10/1,  P10/2, P30/1, P30/2, P40/1, P40/2,  PA2, T30/1, T40/2, T70/2, 
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T40/1, TA2), and this sensor array system is used for monitoring the volatile compounds 
produced by microorganism, and so on. The descriptors associated with the sensors are 
shown in Table 1. FOX4000 E-nose assay measurements showed signal with maximum 
intensities changing with the type of samples, which indicate that discrimination is 
obtained. 

 
 
 

Sensors Volatile description Sensors Volatile description 

LY2/LG Fluoride, chloride, oxynitride, 
sulphide P30 /1 Hydrocarbons, ammonia, 

ethanol 

LY2 /G Ammonia, amines, Carbon 
oxygen compounds T70 /2 Toluene, xylene, carbon 

monoxide 
LY2 /AA Alcohol, acetone, ammonia T40 /1 Fluorine 
LY2 /GH Ammonia, amines compounds P40 /1 Fluorine, chlorine 

P40 /2 Chlorine, hydrogen sulfide, 
fluoride LY2 /gCTL hydrogen sulfide 

P30 /2 Hydrogen sulphide, ketone LY2 /gCT Propane, butane 

T30 /1 Polar compound, hydrogen 
chloride T40 /2 chlorine 

P10 /1 Nonpolar compound: 
hydrocarbon, Ammonia, chlorine PA /2 Ethanol, ammonia, amine 

compounds 

P10 /2 Nonpolar compound: Methane, 
ethane TA /2 ethanol 

 

Table 1. Sensor types and volatile descriptors of FOX4000 E-nose. 

Each sensor element changes its electrical resistance (Rmax) when exposed to volatile 
compounds. In order to produce consistent data for the classification, the sensor response is 
presented with a volatile chemical relative to the baseline electrical resistance in fresh air, 
which is the maximum change in the sensor electrical resistance divided by the initial 
electrical resistance, as follows: 

Relative electrical resistance change = ( Rmax − R0) / R0 

where R0 is the initial baseline electrical resistance of the sensor and Rmax − R0 is the 
maximum change of the sensor electrical resistance. The baseline of the sensors was 
acquired in a synthetic air saturated steam at fixed temperature. The relative electrical 
resistance change value was used for data evaluation because it gives the most stable result, 
and is more robust against sensor baseline variation (Siripatrawan, 2008). 

Data of the relative electrical resistance changes from the 18 sensors can combine with 
every sample to form a matrix (see Fig. 2: The library data base) and the data is without 
preprocessing prior to chemometrics analysis. The sensor response is stored in the 
computer through data acquisition card and these data sets are analyzed to extract 
information. 
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T40/1, TA2), and this sensor array system is used for monitoring the volatile compounds 
produced by microorganism, and so on. The descriptors associated with the sensors are 
shown in Table 1. FOX4000 E-nose assay measurements showed signal with maximum 
intensities changing with the type of samples, which indicate that discrimination is 
obtained. 
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Table 1. Sensor types and volatile descriptors of FOX4000 E-nose. 

Each sensor element changes its electrical resistance (Rmax) when exposed to volatile 
compounds. In order to produce consistent data for the classification, the sensor response is 
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which is the maximum change in the sensor electrical resistance divided by the initial 
electrical resistance, as follows: 

Relative electrical resistance change = ( Rmax − R0) / R0 

where R0 is the initial baseline electrical resistance of the sensor and Rmax − R0 is the 
maximum change of the sensor electrical resistance. The baseline of the sensors was 
acquired in a synthetic air saturated steam at fixed temperature. The relative electrical 
resistance change value was used for data evaluation because it gives the most stable result, 
and is more robust against sensor baseline variation (Siripatrawan, 2008). 

Data of the relative electrical resistance changes from the 18 sensors can combine with 
every sample to form a matrix (see Fig. 2: The library data base) and the data is without 
preprocessing prior to chemometrics analysis. The sensor response is stored in the 
computer through data acquisition card and these data sets are analyzed to extract 
information. 



 
Chemometrics in Practical Applications 

 

206 

2.3 Chemometrics analysis 

The matrix of signal is interpreted by multivariate chemometrics techniques like the PCA, 
PLS, ANN, and so on. Samples with similar odor fingerprinting generally give rise to similar 
sensor response patterns, while samples with different odor fingerprinting show differences 
in their patterns. The sensors of an E-nose can respond to both odorous and odorless volatile 
compounds. 

These various chemometrics methods are used in those works, according to the aim of the 
studies. Generally speaking, the chemometrics methods can be divided into two types: 
unsupervised and supervised methods(Mariey et al., 2001). The objective of unsupervised 
methods is to extrapolate the odor fingerprinting data without a prior knowledge about the 
bacteria studied. Principal component analysis (PCA) and Hierarchical cluster analysis 
(HCA) are major examples of unsupervised methods. Supervised methods, on the other 
hand, require prior knowledge of the sample identity. With a set of well-characterized 
samples, a model can be trained so that it can predict the identity of unknown samples. 
Discriminant analysis (DA) and artificial neural network (ANN) analysis are major 
examples of supervised methods. 

PCA is used to reduce the multidimensionality of the data set into its most dominant 
components or scores while maintaining the relevant variation between the data points. 
PCA identifies the natural clusters in the data set with the first principal component (PC) 
expressing the largest amount of variation, followed by the second PC which conveys the 
second most important factor of the remaining analysis, and so forth(Di et al., 2009, Huang 
et al., 2009, Ivosev et al., 2008). Score plots can be used to interpret the similarities and 
differences between bacteria. The closer the samples are within a score plot, the more similar 
they are with respect to the principal component score evaluated(Mariey et al., 2001). In our 
studies, each sample data of 18 sensors is then compared to the others in order to make 
homogeneous groups. A scatter plot can then be drawn to visualize the results, each sample 
being represented by a plot. 

3. Application of E-nose and chemometrics for bacteria identification 
With the success of the above applications of the E-nose have been published, the authors 
were interested in determining whether or not an E-nose would be able to identify bacteria. 
A series of experiments were designed to determine this. In this part, bacteria identification 
at different levels (genus, species, strains) was cited as an example to illustrate using this 
integrated technology to foodborne bacteria effective identification. 

3.1 At genus level 

In this study, three bacteria, Listeria monocytogenes, Staphylococcus lentus and Bacillus cereus, 
which from three different genus, were investigated for the odor fingerprint by E-nose. The 
result of PCA (Fig.3a) shows that, the fingerprints give a good difference between the blank 
culture and the bacterial culture, and the three bacteria can be classified from each other by 
the odor fingerprints. Using the cluster analysis to represent the sensor responses (Fig. 3b), it 
is also possible to obtain a clear separation between the blank control and culture inoculated 
with bacteria. And the CA result also reveals that successful discrimination between the 
bacteria at different genus is possible(Yu Y. X., 2010a). 

 
Electronic Nose Integrated with Chemometrics for Rapid Identification of Foodborne Pathogen 

 

207 

 
Fig. 3(a). Principal components analysis (PCA) for the discrimination of three bacteria from 
different genus on the basis of E-nose. The plot displays clear discrimination between the 
four groups, accounting for nearly 99% of the variance within the dataset. 

 
Fig. 3(b). Cluster analysis (CA) for the discrimination of three bacteria from different genus 
on the basis of E-nose. (S. lentus: SL1-SL5, B. cereus: BC1-BC5, L. monocytogenes: LM1-LM5, 
control blank culture: CT1-CT5). 
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four groups, accounting for nearly 99% of the variance within the dataset. 

 
Fig. 3(b). Cluster analysis (CA) for the discrimination of three bacteria from different genus 
on the basis of E-nose. (S. lentus: SL1-SL5, B. cereus: BC1-BC5, L. monocytogenes: LM1-LM5, 
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3.2 At species level 

In this study, using the same collection methodology, the E-nose was tested for its ability to 
distinguish among bacterial pathogens at species levels. Four species bacteria selected from 
Pseudomonas sp, named Pseudomonas fragi, Pseudomonas fluorescens, Pseudomonas putida and 
Pseudomonas aeruginosa, were investigated for the odor fingerprint by E-nose. It is clear that 
the E-nose was able to distinguish amongst all specimens tested. The PCA result in Fig.4(a) 
shows a representative experiment, where individual species of bacteria clustered in 
individual groups, separate from each other and the bacteria Pseudomonas fragi is given a 
great difference form the three other bacteria by the odor fingerprints. The result of cluster 
analysis in Fig. 4(b) also reveals that successful discrimination between the different bacteria 
at strains level is possible. 

 
 
 
 
 
 
 

 
 
 
 

Fig. 4(a). Principal components analysis (PCA) for the discrimination of four different 
species of Pseudomonas sp on the basis of E-nose. The plot displays clear discrimination 
between the four groups, accounting for nearly 99% of the variance within the dataset. 
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(P. fragi: Pfr1-Pfr4, P. fluorescens: Pfl1-Pfl4, P. putida: Ppu1-Ppu4, P. aeruginosa: Pae1-Pae4). 

Fig. 4(b). Cluster analysis (CA) for the discrimination of four different species of 
Pseudomonas sp on the basis of E-nose.  

3.3 At strains level 

The next set of experiments involved testing the integrated method to see whether it could 
correctly differentiate bacteria samples as different strains. In this study, four strains of 
Vibrio parahaemolyticus, named V. parahaemolyticus F01, V. parahaemolyticus F13, V. 
parahaemolyticus F38 and V. parahaemolyticus F54, were compared with the odor fingerprint 
by E-nose. As shown in a representative data set in Fig. 5(a), the four strains of V. 
parahaemolyticus are separated from each other. However, the result from cluster analysis in 
Fig. 5(b) shows that some overlap appeared between V. parahaemolyticus F01 and V. 
parahaemolyticus F13, and it indicate that the odor fingerprints of these two strains may be 
too similar to identify by this method. 
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Fig. 5(a). Principal components analysis (PCA) for the discrimination of four different 
strains of V. parahaemolyticus on the basis of E-nose. The plot displays clear discrimination 
between the four groups, accounting for nearly 99% of the variance within the dataset. 

4. Future perspectives 

Electronic nose technology is relatively new and holds great promise as a detection tool in 
food safety area because it is portable, rapid and has potential applicability in foodborne 
pathogen identification or detection. On the basis of the work described above, we have 
demonstrated that the E-nose integrated with chemometrics can be used to identify 
pathogen bacteria at genus, species and strains levels. 

As to know, bacteria respond to environmental triggers by switching to different 
physiological states. If such changes can be detected in the odor fingerprints, then E-nose 
analysis can produce information that can be very useful in determining virulence, 
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(V.p F01: F011-F014, V.p F13: F131-F134, V.p F38: F381-F384, V.p F54: F541-F544). 

Fig. 5(b). Cluster analysis (CA) for the discrimination of four different strains of V. 
parahaemolyticus on the basis of E-nose.  

conducting epidemiological studies, or determining the source of a food poisoning 
outbreak. Of course the ability to produce information on the physiological state of a 
microorganism offers many potential benefits. Nevertheless, a variety of different 
fingerprints, produced under a variety of growth conditions, must be developed for each 
pathogen, for inclusion in the reference database. To avoid this complication, we should 
culture the pathogens under controlled conditions. Otherwise, the identification algorithm 
must be capable of sorting through them all, to find a single, reliable, positive identification 
for the unknown. 

Recently developed chemometrics algorithms are particularly suited to the rapid analysis 
and depiction of this data. Chemometrics is one approach that may offer novel insights into 
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our understanding of the difference of microbiology. Adopting appropriate chemometrics 
methods will improve the quality of analysis. 

Odor fingerprinting method based on E-nose is still in its infancy. Many recent technological 
advances, which are outside the scope of this chapter, can be used to transform the odor 
fingerprinting concept into user-friendly, automated systems for high-throughput analyses. 
The introduction of smaller, faster and smarter instrumentation of E-nose to the market 
could also depend much on the embedding of chemometrics. In addition, more and more 
classification techniques based on odor fingerprinting may be developed to classify the 
pathogens into exact levels such as genus, species and stains. Further investigation may 
contribute to make a distinction between the pathogen and non-pathogen bacterial.  

In short, E-nose integrated with chemometrics is a reliable, rapid, and economic technique 
which could be explored as a routine diagnostic tool for microbial analysis. 
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our understanding of the difference of microbiology. Adopting appropriate chemometrics 
methods will improve the quality of analysis. 

Odor fingerprinting method based on E-nose is still in its infancy. Many recent technological 
advances, which are outside the scope of this chapter, can be used to transform the odor 
fingerprinting concept into user-friendly, automated systems for high-throughput analyses. 
The introduction of smaller, faster and smarter instrumentation of E-nose to the market 
could also depend much on the embedding of chemometrics. In addition, more and more 
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pathogens into exact levels such as genus, species and stains. Further investigation may 
contribute to make a distinction between the pathogen and non-pathogen bacterial.  

In short, E-nose integrated with chemometrics is a reliable, rapid, and economic technique 
which could be explored as a routine diagnostic tool for microbial analysis. 
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1. Introduction 
The food sector is one of the most important voices in the economic field as it fulfills one of 
the main needs of man. The changes in the society in recent years have radically modified 
the food industry by combining the concept of globalization with the revaluation of local 
production. Besides the production needs to be global, in fact, there are always strong forces 
that tend to re-evaluate the expression of the deep local production like social history and 
centuries-old tradition. 

The increase in productivity, in ever-expanding market, has prompted a reorganization of 
control systems to maximize product standardization, ensuring a high level of food security, 
promote greater compliance among all batches produced. The protection of large quantities 
of production, however, necessarily passes through systems to highlight possible fraud 
present throughout the production chain: from the raw materials (controlled by the 
producer) to the finished products (controlled by large sales organizations). The fraud also 
concern the protection of local productions: the products of guaranteed origin must be 
characterized in such a way to identify specific properties easily and detectable by objective 
means. 

The laboratories employ analytical techniques that are often inadequate because they 
require many samples, a long time to get the response, staff with high analytical ability. In a 
context where the speed is an imperative, technology solutions must require fewer samples 
or, at least no one (non-destructive techniques); they have to provide quick answers, if not 
immediate, in order to allow the operator to decide quickly about further steps to control or 
release the product to market; they must be easy to use, to promote their use throughout the 
production chain where it is not always possible to have analytical laboratories. The 
technologies must therefore be adapted to this new approach to production: the sensors and 
the necessary related data modeling, which allows the "measure", are evolving to meet the 
needs of the agri-food sector. The trial involves, often, Research Institutions on the side of 
Companies, a sign of a great interest and a high level of expectations. The manufacturers of 
technologies, often, provide devices that require calibration phases not always easy to 
perform, but that are often the subject of actual researches. These are particularly complex 
when the modeling approach must be based on chemometrics. 

This chapter is essentially divided into two parts: the first part analyzes the theoretical 
principles of the most important technologies, currently used in the food industry, that used 
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a chemometric approach for the analysis of data (spectrophotometry Vis/NIR (Visible and 
Near InfraRed) and NIR (Near InfraRed), Image Analysis with particular regard to 
Hyperspectral Image Analysis and Electronic Nose); the second part will present some case 
studies of particular interest related to the same technologies (fruit and vegetables, wine, 
meat, fish, dairy, olive, coffee, baked goods, etc.) (Frank & Todeschini, 1994; Massart et al., 
1997 and 1998; Basilevsk, 1994; Jackson, 1991). 

2. Technologies used in the food sector combined with chemometrics 
2.1 NIR and Vis/NIR spectroscopy 

Among the non-destructive techniques has met a significant development in the last 20 
years the optical analysis in the region of near infrared (NIR) and visible-near infrared 
(Vis/NIR), based on the use of information arising from the interaction between the 
structure of food and light. 

2.1.1 Electromagnetic radiation 

Spectroscopic analysis is a group of techniques allowing to get information on the structure 
of matter through its interaction with electromagnetic radiation. 

Radiation is characterized by (Fessenden & Fessenden, 1993): 

- a wavelength (λ), which is the distance between two adjacent maxima and is measured 
in nm; 

- a frequency (ν), representing the number of oscillations described by the wave per unit 
of time and is measured in hertz (cycles/s); 

- a wave number (n), which represents the number of cycles per centimeter and is 
measured in cm-1. 

The entire electromagnetic spectrum is divided into several regions, each characterized by a 
range of wavelengths (Fig.1) 

 
Fig. 1. The electromagnetic spectrum (Lunadei, 2008). 
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2.1.2 Transitions in the near infrared region (NIR) 

The radiation from the infrared region is able to promote transitions at vibrational level. The 
infrared spectroscopy is used to acquire information about the nature of the functional 
groups present in a molecule. The infrared region is conventionally divided into three sub-
regions: near (750-2500 nm), medium (2500-50000 nm) and far infrared (50-1000 µm). 

Fundamental vibrational transitions, namely between the ground state and first excited 
state, take place in the mid-infrared, while in the region of near-infrared absorption bands 
are due to transitions between the ground state and the second or the third excited state. 
This type of transitions are called overtones and their absorption bands are generally very 
weak. The absorption bands associated with overtones can be identified and correlated to 
the corresponding absorption bands arising from the fundamental vibrational transitions 
because they fall at multiple wavelengths of these. 

Following the process of absorption of photons by molecules the intensity of the radiation 
undergoes a decrease. The law that governs the absorption process is known as the Beer-
Lambert Law: 

 A = log (I0/I) = log (1/T) = ε·l·c (1) 

where: 

A = absorbance [log (incident light intensity/transmitted beam intensity)]; 
T = transmittance [beam intensity transmitted/incident light intensity]; 
I0 = radiation intensity before interacting with the sample; 
I = radiation intensity after interaction with the sample; 
ε = molar extinction coefficient characteristic of each molecule (l•mol-1•cm-1); 
l = optical path length crossed by radiation (cm); 
c = sample concentration (mol/l). 

The spectrum is a graph where in the abscissa is reported a magnitude related to the nature 
of radiation such as the wavelength (λ) or the wave number (n) and in the Y-axis a quantity 
related to the change in the intensity of radiation as absorbance (A) or transmittance (T). 

2.1.3 Instruments 

Since ‘70s producers developed analysis instruments specifically for NIR analysis trying to 
simplify them to fit also less skillful users, thanks to integrated statistical software and to 
partial automation of analysis.  

Instruments built in this period can be divided in three groups: desk instruments, compact 
portable instruments and on-line compatible devices.  

Devices evolved over the years also for the systems employed to select wavelength. First 
instruments used filter devices able to select only some wavelength (Fig. 2). These devices 
are efficient when specific wavelength are needed. Since the second half of ‘80s instruments 
capable to acquire simultaneously the sample spectrum in a specific interval of wavelength 
were introduced, recording the average spectrum of a single defined sample area (diode 
array systems and FT-NIR instruments) (Stark & Luchter, 2003). At the same time, 
chemometric data analysis growth helped to diffuse NIR analysis. 
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Fig. 2. Development of the different analysis technologies scheme (Stark & Luchter, 2003). 

Particularly, food sector showed interest towards NIR and Vis/NIR instruments, both 
mobile and on-line. Devices based on diode array spectrophotometers and FT-NIR desk 
systems proved to be the best for this sector.  

Both in the case of portable and stationary instruments, the fundamental components of 
these systems are common and are four: 

- Light source; 
- Light radiation transport system; 
- Sample compartment and measurement zone; 
- Spectrophotometer and Personal Computers.  

Light source 

Tungsten filament halogen lamps are chosen as the light source by most of the instruments. 
This is due to a good compromise between good performance and relatively low cost. This 
type of lamps are particularly suitable for use in low voltage. A little drawback may be 
represented by sensitivity to vibration of the filament. 

Halogen bulbs are filled with halogen gas to extend their lives by using the return of 
evaporated tungsten to the filament. The life of the lamp depends on the design of the 
filament and the temperature of use, on average ranges from a minimum of 50 hours and a 
maximum of 10000 hours at rated voltage. The lamp should be chosen according to the use 
conditions and the spectral region of interest. An increase in the voltage of the lamp may 
cause a shift of the peaks of the emission spectrum towards the visible region but can also 
lead to a reduction of 30% of its useful life. On the contrary, use of lower voltages can 
increase the lamp life together, however, with an intensity reduction of light radiation, 
especially in the visible region. Emission spectrum of the tungsten filament changes as a 
function of temperature and emissivity of the tungsten filament. The spectrum shows high 
intensity in the VNIR region (NIR region close to the area of the visible). 
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Even if less common, alternative light sources are available. For example, LED light sources 
and ad laser sources could be used. LED sources (light emitting diodes) are certainly 
interesting sources thank to their efficiency and their small size. They meet, however, a 
limited distribution due to limited availability of LEDs emitting at wavelengths in the NIR 
region. Technology to produce LEDs to cover most of the NIR region already exists, but 
demand for this type of light sources is currently too low and the development of 
commercial product of this type is still in an early stage.  

The use of laser sources guarantees very intense emission in a narrow band. But the reduced 
spectral range covered by each specific laser source can cause problems in some 
applications. In any case the complexity and high cost of these devices have limited very 
much their use so far, mostly restricted to the world of research. 

Light radiation transport system 

Light source must be very close to the sample to light it up with good intensity. This is not 
always possible, so systems able to convey light on the samples are needed. Thanks to optic 
fibers this problem was solved, allowing the development of different shapes devices. 

The use of fiber optics allows to separate the area of placement of the instrument from the 
measuring proper area. There are indeed numerous circumstances on products sorting 
line in which environmental conditions do not fulfill direct installation of measure 
instruments. For example, high temperature, excessive vibrations or lack of space are 
restricting factors to the use of on-line NIR devices. In all these situations optic fibers are 
the solution to the problem of conveying light. They transmit light from lamp to sample 
and from sample to spectrophotometer. They allow to have an immediate measure on a 
localized sample area, thanks to their small dimensions, reaching areas difficult to access. 
Furthermore, they are made of a dielectric material that protects from electric and 
electromagnetic interferences. ‘Optic fibers’ means fibers optically transparent, purposely 
studied to transmit light thanks to total internal reflection phenomenon. Internal 
reflection is said to be total because it is highly efficient, in fact more than 99,999% 
radiation energy is transmitted in every reflection. This means that radiation can be 
reflected thousands of times during the way without suffer an appreciable attenuation of 
intensity (Osborne et al., 1993). 

Optic fiber consists of an inner core, a covering zone and of an external protection cover. The 
core is usually made of pure silica, but can also be used plastics or special glasses. The 
cladding area consists of material with a lower refractive index, while the exterior is only to 
protect the fiber from mechanical, thermal and chemical stress. 

In figure 3 are shown the inner core and the cladding of an optical fiber. Index of refraction 
of inner core have to be bigger than cladding one. Each ray of light that penetrates inside the 
fiber with an angle ≤ θmax (acceptance angle) is totally reflected with high efficiency within 
the fiber.  

Sample compartment and measurement zone 

Samples compartment and measurement zone are highly influenced by the technique of 
acquisition of spectra. Different techniques are employed, depending on type of samples, 
solid or liquid, small or large, to be measured in plan or in line, that influence the geometry 
of the measurement zone.  
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This is due to a good compromise between good performance and relatively low cost. This 
type of lamps are particularly suitable for use in low voltage. A little drawback may be 
represented by sensitivity to vibration of the filament. 

Halogen bulbs are filled with halogen gas to extend their lives by using the return of 
evaporated tungsten to the filament. The life of the lamp depends on the design of the 
filament and the temperature of use, on average ranges from a minimum of 50 hours and a 
maximum of 10000 hours at rated voltage. The lamp should be chosen according to the use 
conditions and the spectral region of interest. An increase in the voltage of the lamp may 
cause a shift of the peaks of the emission spectrum towards the visible region but can also 
lead to a reduction of 30% of its useful life. On the contrary, use of lower voltages can 
increase the lamp life together, however, with an intensity reduction of light radiation, 
especially in the visible region. Emission spectrum of the tungsten filament changes as a 
function of temperature and emissivity of the tungsten filament. The spectrum shows high 
intensity in the VNIR region (NIR region close to the area of the visible). 
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Even if less common, alternative light sources are available. For example, LED light sources 
and ad laser sources could be used. LED sources (light emitting diodes) are certainly 
interesting sources thank to their efficiency and their small size. They meet, however, a 
limited distribution due to limited availability of LEDs emitting at wavelengths in the NIR 
region. Technology to produce LEDs to cover most of the NIR region already exists, but 
demand for this type of light sources is currently too low and the development of 
commercial product of this type is still in an early stage.  

The use of laser sources guarantees very intense emission in a narrow band. But the reduced 
spectral range covered by each specific laser source can cause problems in some 
applications. In any case the complexity and high cost of these devices have limited very 
much their use so far, mostly restricted to the world of research. 

Light radiation transport system 

Light source must be very close to the sample to light it up with good intensity. This is not 
always possible, so systems able to convey light on the samples are needed. Thanks to optic 
fibers this problem was solved, allowing the development of different shapes devices. 

The use of fiber optics allows to separate the area of placement of the instrument from the 
measuring proper area. There are indeed numerous circumstances on products sorting 
line in which environmental conditions do not fulfill direct installation of measure 
instruments. For example, high temperature, excessive vibrations or lack of space are 
restricting factors to the use of on-line NIR devices. In all these situations optic fibers are 
the solution to the problem of conveying light. They transmit light from lamp to sample 
and from sample to spectrophotometer. They allow to have an immediate measure on a 
localized sample area, thanks to their small dimensions, reaching areas difficult to access. 
Furthermore, they are made of a dielectric material that protects from electric and 
electromagnetic interferences. ‘Optic fibers’ means fibers optically transparent, purposely 
studied to transmit light thanks to total internal reflection phenomenon. Internal 
reflection is said to be total because it is highly efficient, in fact more than 99,999% 
radiation energy is transmitted in every reflection. This means that radiation can be 
reflected thousands of times during the way without suffer an appreciable attenuation of 
intensity (Osborne et al., 1993). 

Optic fiber consists of an inner core, a covering zone and of an external protection cover. The 
core is usually made of pure silica, but can also be used plastics or special glasses. The 
cladding area consists of material with a lower refractive index, while the exterior is only to 
protect the fiber from mechanical, thermal and chemical stress. 

In figure 3 are shown the inner core and the cladding of an optical fiber. Index of refraction 
of inner core have to be bigger than cladding one. Each ray of light that penetrates inside the 
fiber with an angle ≤ θmax (acceptance angle) is totally reflected with high efficiency within 
the fiber.  

Sample compartment and measurement zone 

Samples compartment and measurement zone are highly influenced by the technique of 
acquisition of spectra. Different techniques are employed, depending on type of samples, 
solid or liquid, small or large, to be measured in plan or in line, that influence the geometry 
of the measurement zone.  
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Fig. 3. Scheme of an optical fiber. The acceptance cone is determined by the critical angle for 
incoming light radiation. Buffer absorbs the radiation not reflected by the cladding. Jacket 
has a protective function. 

The techniques to acquire spectra are four: transmittance, reflectance, transflectance and 
interactance. They are different mainly for the different positioning of the light source and of 
the measurement sensor around the sample (Fig. 4).  

a. Transmittance - The transmittance measurements are based on the acquisition of 
spectral information by measuring the light that goes through the whole sample (Lu & 
Ariana, 2002). The use of analysis in transmittance can explore much of the internal 
structure of the product. This showed that is a technique particularly well suited to 
detect internal defects. To achieve significant results with this technique is required a 
high intensity light source and a high sensitivity measuring device. This because 
intensity of light able to cross the product is often very low. The transmittance 
measurements generally require a particular geometry of the measuring chamber, 
which can greatly influence the design of the instrument. 

b. Reflectance - This technique measures the component of radiation reflected from the 
sample. The radiation is not reflected on the surface but penetrates into the sample a 
few millimeters, radiation is partly absorbed and partly reflected back again. Measuring 
this component of reflected radiation after interacting with the sample is possible to 
establish a relationship of proportionality between reflectance and analyte 
concentration in the sample. The reflectance measurement technique is well suited to 
the analysis of solid matrices because the levels of intensity of light radiation after the 
interaction with the sample are high.  

This technique also allows to put in a limited space inside a tip the bundle of fibers that 
illuminate the sample and the fibers leading to the spectrophotometer the radiation 
after the interaction with the product. Therefore the use of this type of acquisition 
technique is particularly versatile and is suitable for compact, portable instruments, 
designed for use in field or on the process line. The major drawback using this 
technique is related to the possibility to investigate only the outer area of the sample 
without having the chance to go deep inside. 
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c. Transflectance – This technique is used in case it is preferable to have a single point of 
measurement, as in the case of acquisitions in reflectance. In this case, however, the 
incident light passes through the whole sample, is reflected by a special reflective 
surface, recross the sample and strikes the sensor located near the area of illumination. 
The incident light so makes a double passage through the sample. Obviously this type 
of technique can be used only in the case of samples very permeable to light radiation 
such as partially transparent fluid. It is therefore not applicable to solid samples. 

d. Interactance - This technique is considered a hybrid between transmittance and 
reflectance, as it uses characteristics of both techniques previously seen. In this case the 
light source and sensor are located in areas near the sample but between them 
physically separated. So the radiation reaches the measurement sensor after interacting 
with part of internal structure of the sample. This technique is mainly used in the 
analysis of big solid samples, for example, a whole fruit. Interactance is thus a 
compromise between reflectance and transmittance and has good ability to detect 
internal defects of the product combined with a good intensity of light radiation. This 
analysis is widely used on static equipment where, through the use of special holders, is 
easily obtained the separation between the areas of incidence of light radiation and the 
area to which the sensor is placed. It is instead difficult to use this configuration on-line 
because is complicated to place a barrier between incident and returning light to the 
sensor directly on the process line. 

 
Fig. 4. Setup for the acquisition of (a) reflectance, (b) transmittance, and (c) interactance 
spectra, with (i) the light source, (ii) fruit, (iii) monochromator/detector, (iv) light barrier, 
and (v) support. In interactance mode, light due to specular reflection is physically 
prevented from entering the monochromator by means of a light barrier (Nicolai et al., 
2007). 

Spectrophotometer and Personal Computers 

Spectrophotometer can be considered the heart of an instrument for NIR analysis. The 
employed technology for the wavelengths selection greatly influences the performance of 
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the instrument. For example, the use of filters allows instruments to record the signal of a 
single wavelength at a time. Modern instruments (diode array instruments and 
interferometers) allow to record the spectrum of the entire wavelengths range. 

Instruments equipped with a diode array spectrophotometer are those who have met the 
increased use for portable and online applications in food sector. This is due to their 
compact size, versatility and robustness, thanks to the lack of moving parts during 
operation and also thanks to a relatively low cost.  

As seen before, fiber optic sensor collects the portion of the electromagnetic radiation after 
interaction with the internal structure of the sample and transfers it to the 
spectrophotometer. The optical fiber is connected to the optical bench of the instrument. The 
optical bench allows to decompose the electromagnetic radiation and recording the intensity 
at different wavelengths.  

Optical bench of this type of instrument generally consists of five components: 

a. Optical fiber connector: connects the fiber optic with the optical bench of the 
instrument. 

b. First spherical mirror (collimating mirror), has the function of collimating the light and 
send it to the diffraction grating. 

c. Diffraction grating: in this area of the instrument, the light is split into different 
wavelengths and sent to the second spherical mirror. 

d. Second spherical mirror (focussing mirror), collects diffracted radiation from the 
grating and sends them to the CCD sensor.  

e. Matrix CCD sensor (diode array): records the signal intensity at each wavelength. 

High sensitivity of the CCD matrix sensor compensate the low intensity of light radiation 
input due to the reduced diameter of the optical fibers used. Sensors used are generally Si-
diode array or InGaAs-diode array. The first ones are certainly the most common and cheap 
and allow the acquisition of the spectrum in the range between 400 and 1100 nm, so are used 
for Vis/NIR analysis. InGaAs sensors, more expensive, are used in applications requiring 
the acquisition of spectra at longer wavelengths, their use should range from 900 to 2300 
nm. 

Recorded signal by the CCD sensor is digitized and acquired by a PC using the software 
management tool of the instruments. Software records and allows to display graphically the 
spectrum of the analyzed sample. The management software also allows to interface with 
the spectrophotometer enabling to change some parameters during the acquisition of 
spectra.  

2.2 Image analysis 

In the food industry, since some time, there is a growing interest in image analysis 
techniques, since the appearance of a food contains a variety of information directly related 
to the quality of the product itself and this characteristics are difficult to measure through 
use of classical methods of analysis. In addition, image analysis techniques: provide 
information much more accurate than human vision, are objective and continuous over time 
and offer the great advantage of being non-destructive. These features, enable vision 
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systems to be used in real time on the process lines, allowing on-line control and automation 
of  sorting and classification within the production cycle (Guanasekaran & Ding, 1994). 

The objective of the application of image analysis techniques, in the food sector, is the 
quantification of geometric and densitometric characteristic of image, acquired in a form 
that represents meaningful information (at macro and microscopic level) of appearance of 
an object (Diezak, 1988). The evolution of these techniques and their implementation in the 
vision machine in form of hardware and specialized software, allows a wide flexibility of 
applications, a high capacity of calculation and a rigorous statistical approach. 

The benefits of image analysis techniques (Brosnan & Sun, 2004) that rely on the use of 
machine vision systems can be summarized as follows: 

a. are non-destructive techniques; 
b. techniques are use-friendly, rapid, precise, accurate and efficient; 
c. generate objective data that can be recorded for analysis deferred; 
d. allow a complete analysis of the lots and not just a single sample of the lot; 
e. reduce the involvement of human personnel in performing tedious tasks and allow the 

automation of various functions that would require intensive work shifts; 
f. are reasonably affordable cost. 

These suggest the reason that drives scientific research, of the agro-food sector, to devote to 
the study and analysis of machine vision systems to analyze the internal and external 
quality characteristics of food, valued according to the optical properties of the products. 
With a suitable light source, it is possible to extract information about color, shape, size and 
texture. From these features, it is possible to know many objective aspects of the sample, to 
be able to correlate, through statistical analysis, the characteristics defined by quality 
parameters (degree of maturation, the presence of external or internal mechanical defects, 
class, etc.) (Du & Sun, 2006, Zheng et al., 2006).  

The image analysis may have several applications in the food industry: as a descriptor or as 
gastronomic and technologic parameter. Vision machine can also be used to know size, 
structure, color in order to quantify the macro and microscopic surface defects of a product 
or for the characterization and identification of foods or to monitor the shelf life (Riva, 1999). 
"Image analysis" is a wide designation that include, in addition to classical studies in 
grayscale and RGB images, the analysis of images collected by mean multiple spectral 
channels (multispectral) or, more recently, hyperspectral images, technique exploited for its 
full extension in the spectral direction.  

The hyperspectral image (Chemical and Spectroscopic Imaging) is an emerging technology, 
non-destructive, which complements the conventional imaging with spectroscopy in order 
to obtain, from an object, information, both spectral and spatial. The hyperspectral images 
are digital images in which each element (pixel) is not a single number or a set of three 
numbers, like the color pictures (RGB), but a whole spectrum associated with that point. 
They are three-dimensional blocks of data. Their main advantage is that they provide spatial 
information necessary for the study of non-homogeneous samples. The advantage of this 
technique is the ability to detect in a foodstuff even minor constituents, isolated spatially. 

To support image analysis, chemometric techniques are necessary to process and to model, 
data sets, in order to extract the highest possible information content. Methods of 
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classification, modeling, multivariate regression, similarity analysis, principal components 
analysis, methods of experimental design and optimization, must be applied on the basis of 
each different condition and needs. 

2.2.1 The vision system 

The machine vision systems, appeared in the early sixties and then spread over time, in 
many fields of application, are composed of a lighting system, a data acquisition system 
connected to a computer, via a capture card, which digitizes (converts the signal into 
numerical form) and stores the analogic electrical signal, at the output from the camera 
sensor (Russ et al., 1988). The scanned image is then "converted" into a numerical matrix. 
Captured images are elaborated by appropriate processing softwares in order to acquire the 
useful information. In figure 5 shows an example of vision machine. 

 
Fig. 5. Example of image acquisition of an inspected sample. 

It is important to choose the localization of light source, but also the type of light source 
(incandescent, halogen, fluorescent, etc.) influences the performance of the analysis. In fact, 
although the light sources emitting electromagnetic radiation corresponding to the visible 
(VIS, 400-700 nm), ultraviolet (UV 10-400 nm) and near infrared (NIR, 700-1400 nm) are the 
most widely used, to create a digital image can also be used other types of light sources in 
order to emit different radiations, depending on the purpose of analysis. For example, to 
determine the internal structure of objects and/or identify any internal defects, it's possible 
to use an X-ray source, even if, although this type of source gives good results, its 
application is much more widespread in the medical field than in the agro-food, this is due 
to high costs of equipment and low speed of operating. 

2.2.2 The digital image 

A digital image is generated from the conversion of an analogic video signal produced by a 
digital camera into an electronic signal (scanning), then stored in the memory of a PC in the 
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form of binary information. Any digital image can be considered as an array of points, the 
pixels, that make up the smallest element of an image. Each pixel contains a double set of 
information: its position in space, identified by the values (x, y) and the value of its intensity. 
Digital images can be represented using only two colors, typically black and white (binary 
image), or shades of gray (monochrome image) or a range of colors (multichannel image). 
The value of light intensity will be different depending on the type of image. 

The pixels, in the binary images, can have, as the intensity value, or 0 (equivalent to black) 
or 1 (white). The value of intensity in monochrome images, will be within a range, defined 
gray scale, from 0 to L, which usually corresponds to the interval from 0 (or 1) to 255 (or 
256), where a value of 0 corresponds to black, a value of 255 corresponds to white, and 
intermediate values to the various shades of gray.  

Finally, in multi-channel images, the color of each pixel will be identified by three or four 
values, depending on the reference color model. For example, in RGB color space, each pixel 
will be characterized by a three values, each between 0 and 255, respectively, corresponding 
to the intensity in the red, green and blue. When all three values are 0, the color of object  is 
black, and when all three have maximum value, the object will be white, while, when there 
are equal levels of R, G and B, the gray color is generated. The images of this type, in fact, 
may be considered as a three-dimensional matrix, consisting of three overlapping matrices 
having the same number of rows and columns, where the elements of the first matrix 
represent the pixel intensity in the red channel, those in the second matrix, the green 
channel and those of third matrix, in the blue channel. 

2.2.3 Multispectral and hyperspectral images 

RGB images, represented by three overlapping monochrome images, are the simplest 
example of multichannel images. In medical applications, in geotechnical, in the analysis of 
materials and of remote sensing, instead, are often used sensors capable of acquiring 
multispectral and hyperspectral images,  two particular types of multi-channel images. The 
multispectral images are typically acquired in three/ten spectral bands including in the 
range of Vis, but also in the field of IR, fairly spaced (Aleixos et al., 2002). In this way it's 
possible to extract a larger number of information from the images respect those normally 
obtained from the analysis of RGB images.  

An example of bands normally used in this type of analysis, are the band of blue (430-490 
nm), green (491-560 nm), red (620-700 nm), NIR (700-1400 nm), MIR (1400-1750 nm). The 
spectral combinations can be different depending on the purpose of analysis. The 
combination of NIR-RG (near infrared, red, green) is often used to identify green areas in 
satellite images, because the green color reflects a lot in the NIR wavelength. The 
combination of NIR-R-B (near infrared, red, blue) is very useful to verify the ripening stage 
of fruit, this is due to the chlorophyll that shows a peak of adsorption in the wavelength of 
the red. Finally, the combination of NIR-MIR-blue (NIR, MIR and blue) is useful to observe 
the sea depth, the green areas in remote sensing images. 

Hyperspectral imaging (HSI) combines spectroscopy and the traditional imaging to form a 
three-dimensional structure of multivariate data (hypercube). The hyperspectral images are 
consist of many spectral bands acquired in a narrow and contiguous way, allowing to 
analyze each pixel in the multiple wavelengths simultaneously and, therefore, to obtain a 
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form of binary information. Any digital image can be considered as an array of points, the 
pixels, that make up the smallest element of an image. Each pixel contains a double set of 
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combination of NIR-RG (near infrared, red, green) is often used to identify green areas in 
satellite images, because the green color reflects a lot in the NIR wavelength. The 
combination of NIR-R-B (near infrared, red, blue) is very useful to verify the ripening stage 
of fruit, this is due to the chlorophyll that shows a peak of adsorption in the wavelength of 
the red. Finally, the combination of NIR-MIR-blue (NIR, MIR and blue) is useful to observe 
the sea depth, the green areas in remote sensing images. 

Hyperspectral imaging (HSI) combines spectroscopy and the traditional imaging to form a 
three-dimensional structure of multivariate data (hypercube). The hyperspectral images are 
consist of many spectral bands acquired in a narrow and contiguous way, allowing to 
analyze each pixel in the multiple wavelengths simultaneously and, therefore, to obtain a 
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spectrum associated with a single pixels. The set of data constituting an hyperspectral image 
can be thought  as a kind of data cube, with two spatial directions, ideally resting on the 
surface observed, and a spectral dimension. Extracting a horizontal plane from the cube it is 
possible to get a monochrome image, while the set of values, corresponding to a fixed 
position in the plane (x, y), is the spectrum of a pixel of the image (Fig. 6). 

 

Fig. 6. Example of hyperspectral image. 

With the hyperspectral imaging, you can acquire the spectra in reflectance, in transmission 
and fluorescence as a function of the different kind of sample to analysis, even if the most of 
the scientific works, present in the literature, using spectral images acquired in reflectance, 
transmission and emission. 

The significant time savings that can be made to the industrial production processes, 
encourage the use of this instrumentation. The hyperspectral image analysis has many 
advantages, but still has some defects. The advantages of using hyperspectral analysis for 
what concerns the agro-food sector can be summarized as follows: 

a. does not necessary to prepare the test sample; 
b. it is a non-invasive, non-destructive methodology, it avoids the sample loss that can be 

used for other purposes or analysis; 
c. can be regarded as an economic tool that it allows a saving of time, labor, reagents, and 

a strong cost-saving for the waste treatment; 
d. for each pixel of the analyzed sample is possible to have the full spectrum and not a 

only absorbance value for few wavelength; 
e. many constituents can be determined simultaneously within a sample, such as color 

and morphological characteristics; 
f. due to its high spectral resolution, it is possible to estimate both qualitative than 

quantitative information; 
g. it is also possible to select a single region of interest of the sample, and save it in a 

spectral library. 
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As mentioned previously, one of the advantages HSI is the large volume of data available in 
each hypercube, with which to create the calibration and validation set. But, the information 
derived from the analysis, contain also redundant information. This abundance of data has 
two drawback, one due to the high computational load of heavy data size and the second is 
due to the long acquisition times, given the size of the data being collected (Firtha et al. 
2008). Therefore, it is desirable to reduce the load to manageable levels, especially if the goal 
is the application of HSI techniques in real time, on-line on production lines. In fact, in many 
cases, the large amount of data acquired from the spectral image, is appropriately reduced 
(with chemometric processing) so as to select only those wavelengths interesting for the 
intended purpose. Once the spectral bands of interest were identified, a multispectral 
system, with only selected wavelengths, can be engineered a system for industrial 
application. Another negative aspect is that the spectral image analysis is an indirect method 
to which it is necessary to apply appropriate chemometric techniques and a procedure of 
data transfer. 

The spectral image is not suitable for liquid and homogeneous samples. In fact, the value of 
this type of image is evident when applied to heterogeneous samples, and many foods are 
an excellent heterogeneous matrix. Despite the novelty of applying HSI in the food sector, 
many jobs are already present in the literature. 

The traditional image analysis, based on a computer system, has had a strong development 
in the food sector with the aim of replacing the human eye on saving costs and improving 
efficiency, speed and accuracy. But the computer vision technology is not able to select 
between objects of similar colors, to make complex classifications, to predict quality 
characteristics (e.g. chemical composition) or detect internal defects. Since the quality of a 
food is not an individual attribute but it contains a number of inherent characteristics of the 
food itself, to measure the optical properties of food products has been one of the most 
studied non-destructive techniques for the simultaneous detection of different quality 
parameters. In fact, the light reflected from the food contains information about constituents 
near and at the surface of the foodstuff. Near-infrared spectroscopy technology (NIRS) is 
rapid, non-destructive, easy to apply on-line and off-line. With this technology, it is possible 
to obtain spectroscopic information about the components of analyzed sample, but it is not 
possible to know the position of the component. 

The only characteristic of appearance (color, shape, etc.) however, are easily detectable with 
conventional image analysis. The combination of image analysis technology and 
spectroscopy is the chemical imaging spectroscopy that allows to get spatial and spectral 
information for each pixel of the foodstuff. This technology allowing to know the location of 
each chemical component in the scanned image. Table 1 summarizes the main differences 
between the three analytical technologies: imaging, spectroscopy and hyperspectral 
imaging. 

2.3 Electronic nose (e-nose) 

“An instrument which comprises an array of electronic chemical sensors with partial 
specificity and appropriate pattern recognition system, capable of recognizing simple or 
complex odors” is the term of “electronic nose” coined in 1988 by Gardner and Bartlett 
(Gardner and Bartlett, 1994). 
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Features Imaging Spectroscopy Hyperspectral 
Imaging 

Spatial information √ x √ 

Spectral information x √ √ 

Multi-costituent information x √ √ 

Building chimica images x x √ 
Flexibility of spectral  information 
extraction x x √ 

Table 1. Main differences among imaging, spectroscopy and hyperspectral imaging 
techniques (ElMarsy & Sun, 2010). 

Scientific interest in the use of electronic noses was formalised, the first time, in a workshop 
on chemosensory information processing during a session of the North Atlantic Treaty 
Organization (NATO) that was entirely dedicated to the topic of artificial olfaction. Since 
1991, interest in biological sensors technology has grown considerably as is evident by 
numerous scientific articles. Moreover, commercial efforts to improve sensor technologies 
and  to develop tools of greater sophistication and improved capabilities, with diverse 
sensitivities, are with ever-expanding (Wilson & Baietto, 2009). 

Electronic noses are emerging as an innovative analytical-sensorial tool to characterize the 
sensory comparison of food in terms of freshness, determination of geographical origin, 
seasoning. The first electronic nose goes back to the '80s, when Persaud and Dodd of the 
University of Warwick (UK) tried to model and simulate the operation of the olfactory 
system of mammals with solid state sensors. Since then, artificial olfactory systems are 
designed closer to the natural one. 

The electronic nose is a technology that tends to replace/complement the human olfactory 
system. The tool does not analyze the chemical composition of the volatile fraction, but it 
identifies the olfactory fingerprint. 

Currently, these electronic devices are characterized by complex architecture, where it is 
possible to try to reproduce the functioning of the olfactory system of mammals. The tool is 
a biomimetic system that is designed to mimic the functioning of the olfactory systems that 
we find in nature, specifically human olfactory system. Typically, an electronic nose collects 
information through an array of sensors, able to respond in a selective mode and reversible 
to the presence of chemicals, generating electrical signals as a function of their 
concentration. Currently, the sensors that have reached the highest level of development are 
made from metal oxides semiconductor (MOS). The sensors are usually characterized by fast 
response, low energy consumption, small size, high sensitivity, reliability, stability and 
reproducibility. In addition to semiconductor of metal, the sensor can be made of transistors, 
plated with metal semiconductor (MOSFETs), or conductive polymers. The MOS sensors are 
inorganic, typically made of tin oxide, zinc oxide, titanium oxide, tungsten oxide. The 
absorption of gas by them change their conductivity. These sensors operate at high 
temperatures, between 200 and 500 °C and are relatively cheap. In figure 7 is represented the 
main parts of a typical sensor. 
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Fig. 7. The main parts of a typical sensor (Deisingh et al. 2004) 

Below, ten possible MOS sensors for reading specific molecules (Table 2): 
 

Sensor Molecules detected 
W1C Aromatic compounds 
W5S Oxides of nitrogen, low specificity 
W3C Ammonium compounds, aromatic 
W6S Hydrogen 
W5C Alkanes, aromatic compounds, less polar compounds 
W1S Methane, low specificity 
W1W Sulfur compounds, terpenes, limonene, pyrazines 

W2S Alcohol, partially aromatic compounds, low specificity 

W2W Aromatic compounds, organic sulfur compounds 
W3S Methane 

Table 2. Example of sensors in the electronic nose, with their categories of compounds that 
can to determine 

The information is initially encoded as electrical unit, but are immediately captured and 
digitized in order to be numerically translated by a computer system. In practice, an odorant 
is described by the electronic nose, based on the responses of individual sensors, as a point 
or a region of a multidimensional space. 

Thanks to special algorithms, derived from the discipline called pattern recognition, the 
system is able to build an olfactory map in order to allow a qualitative and quantitative 
analysis, discriminating a foodstuff simply by its olfactory fingerprint. 

The architecture of an electronic nose (Fig. 8) is significantly dependent on the application 
for which it is designed. In general, the electronic nose, is characterized by the presence of a 
vacuum system, a large number of gas sensors, a subsystem of acquisition and digitization 
and by a processing subsystem able to implement appropriate algorithms for classification 
or regression. 
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Fig. 8. A generalized structure of an electronic nose. (Deisingh et al. 2004)  

The principle of working which operates the electronic nose is distinctly different from that 
of commonly used analytical instruments (e.g. gas chromatograph). The e-nose gives an 
overall assessment of the volatile fraction of the foodstuff that is, in large part responsible 
for the perception of the aroma of the investigated sample, without the need to separate and 
identify the various components. All the responses of the sensors resulted from the 
electronic nose creates a "map" of non-specific signals that constitute the profile of the food 
product, also called olfactory fingerprints. 

The goal is to find a relationship between the set of independent variables, resulted from the 
sensor, and the set of dependent variables, characteristics of the sample. Chemometrics 
software required for data set processing, in environmental and food sectors, allows to 
process the data by methods of multivariate analysis such as PCA (Principal Component 
Analysis), LDA (Linear Discriminant Analysis), PLS (Partial Least Square Analysis), DFA 
(Discriminant Function Analysis). As example the Principal Component Analysis (PCA) is a 
method for detecting patterns in data sets and express them in order to highlight their 
similarities and/or differences. Example of electronic nose applications, in the food sector, 
could be: to monitor of foodstuff shelf life, to check certified quality or the trademark DOP, 
to make microbiological tests, to check  controlled atmosphere in the packaging, to control 
fermentation stage or to identify the presence of components of the packaging transferred in 
the product, or to verify the state of cleaning of kegs (on-line measures). 

2.4 Chemometrics in food sector 

Chemometrics is an essential part of NIR and Vis/NIR spectroscopy in food sector. NIR and 
Vis/NIR instrumentation in fact must always be complemented with chemometric analysis 
to enable to extract useful information present in the spectra separating it both from not 
useful information to solve the problem and from spectral noise. Chemometric techniques 
most used are the principal component analysis (PCA) as a technique of qualitative analysis 
of the data and PLS regression analysis as a technique to obtain quantitative prediction of 
the parameters of interest (Naes et al., 2002; Wold et al., 2001; Nicolai et al., 2007; Cen & He, 
2007). 
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The developed models should be tested using independent samples as validation sets to 
verify model accuracy and robustness. To evaluate model accuracy, the statistics used were 
the coefficient of correlation in calibration (rcal), coefficient of correlation in prediction (rpred), 
root mean square error of calibration (RMSEC), and root mean square error of prediction 
(RMSEP). 

Correlation coefficients (rcal and rpred): 
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where yi are the reference values, ŷi are the values predicted by the PLS model, and ў is the 
averaged reference value. 

Standard errors of calibration and prediction (RMSEC and RMSEP): 
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where n is the number of validated objects, and ŷi and yi are the predicted and measured 
values of the ith observation in the calibration or validation set, respectively. This value gives 
the average uncertainty that can be expected for predictions of future samples. The 
optimum calibrations should be selected based on minimizing the RMSEP. Percent errors 
(RMSEC% and RMSEP%) could be also calculated as: RMSEC (%) = RMSEC/averaged 
reference values of each parameter. 

Prediction capacity of a model can be evaluated with the ratio performance deviation (RPD) 
(Williams & Sobering, 1996). The RPD is defined as the ratio of the standard deviation of the 
response variable to the RMSEP. RPD value > 2.5 means that the model has good prediction 
accuracy. 

3. Applications 
3.1 NIR and Vis/NIR spectroscopy 

During the last 50 years, there has been a lot of emphasis on the quality and safety of the 
food products, of the production processes, and the relationship between the two (Burns 
and Ciurczak, 2001). 

Near infrared (NIR) spectroscopy has proved to be one of the most efficient and advanced 
tools for monitoring and controlling of process and product quality in food industry. A lot 
of work has been done in this area. This review focuses on the use of NIR spectroscopy for 
the analysis of foods such as meat, fruit, grain, dairy products, oil, honey, wine and other 
areas, and looks at the literature published in the last 10 years. 



 
Chemometrics in Practical Applications 

 

232 

 
Fig. 8. A generalized structure of an electronic nose. (Deisingh et al. 2004)  

The principle of working which operates the electronic nose is distinctly different from that 
of commonly used analytical instruments (e.g. gas chromatograph). The e-nose gives an 
overall assessment of the volatile fraction of the foodstuff that is, in large part responsible 
for the perception of the aroma of the investigated sample, without the need to separate and 
identify the various components. All the responses of the sensors resulted from the 
electronic nose creates a "map" of non-specific signals that constitute the profile of the food 
product, also called olfactory fingerprints. 

The goal is to find a relationship between the set of independent variables, resulted from the 
sensor, and the set of dependent variables, characteristics of the sample. Chemometrics 
software required for data set processing, in environmental and food sectors, allows to 
process the data by methods of multivariate analysis such as PCA (Principal Component 
Analysis), LDA (Linear Discriminant Analysis), PLS (Partial Least Square Analysis), DFA 
(Discriminant Function Analysis). As example the Principal Component Analysis (PCA) is a 
method for detecting patterns in data sets and express them in order to highlight their 
similarities and/or differences. Example of electronic nose applications, in the food sector, 
could be: to monitor of foodstuff shelf life, to check certified quality or the trademark DOP, 
to make microbiological tests, to check  controlled atmosphere in the packaging, to control 
fermentation stage or to identify the presence of components of the packaging transferred in 
the product, or to verify the state of cleaning of kegs (on-line measures). 

2.4 Chemometrics in food sector 

Chemometrics is an essential part of NIR and Vis/NIR spectroscopy in food sector. NIR and 
Vis/NIR instrumentation in fact must always be complemented with chemometric analysis 
to enable to extract useful information present in the spectra separating it both from not 
useful information to solve the problem and from spectral noise. Chemometric techniques 
most used are the principal component analysis (PCA) as a technique of qualitative analysis 
of the data and PLS regression analysis as a technique to obtain quantitative prediction of 
the parameters of interest (Naes et al., 2002; Wold et al., 2001; Nicolai et al., 2007; Cen & He, 
2007). 

 
Chemometrics in Food Technology 

 

233 

The developed models should be tested using independent samples as validation sets to 
verify model accuracy and robustness. To evaluate model accuracy, the statistics used were 
the coefficient of correlation in calibration (rcal), coefficient of correlation in prediction (rpred), 
root mean square error of calibration (RMSEC), and root mean square error of prediction 
(RMSEP). 

Correlation coefficients (rcal and rpred): 

 
 

 

2

1
cal pred

2

1

ˆ
r   or  r 1

n

i i
i

n

i
i

y y

y y






 






 (2) 

where yi are the reference values, ŷi are the values predicted by the PLS model, and ў is the 
averaged reference value. 

Standard errors of calibration and prediction (RMSEC and RMSEP): 

 
 2

1
ˆ

RMSEC or RMSEP

n

i i
i

y y

n






 (3) 

where n is the number of validated objects, and ŷi and yi are the predicted and measured 
values of the ith observation in the calibration or validation set, respectively. This value gives 
the average uncertainty that can be expected for predictions of future samples. The 
optimum calibrations should be selected based on minimizing the RMSEP. Percent errors 
(RMSEC% and RMSEP%) could be also calculated as: RMSEC (%) = RMSEC/averaged 
reference values of each parameter. 

Prediction capacity of a model can be evaluated with the ratio performance deviation (RPD) 
(Williams & Sobering, 1996). The RPD is defined as the ratio of the standard deviation of the 
response variable to the RMSEP. RPD value > 2.5 means that the model has good prediction 
accuracy. 

3. Applications 
3.1 NIR and Vis/NIR spectroscopy 

During the last 50 years, there has been a lot of emphasis on the quality and safety of the 
food products, of the production processes, and the relationship between the two (Burns 
and Ciurczak, 2001). 

Near infrared (NIR) spectroscopy has proved to be one of the most efficient and advanced 
tools for monitoring and controlling of process and product quality in food industry. A lot 
of work has been done in this area. This review focuses on the use of NIR spectroscopy for 
the analysis of foods such as meat, fruit, grain, dairy products, oil, honey, wine and other 
areas, and looks at the literature published in the last 10 years. 
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3.1.1 Fruit and vegetables 

Water is the most important chemical constituent of fruits and vegetables and water highly 
absorbs NIR radiation, so the NIR spectrum of such materials is dominated by water. 
Further, the NIR spectrum is essentially composed of a large set of overtones and 
combination bands. This, in combination with the complex chemical composition of a 
typical fruit or vegetable causes the NIR spectrum to be highly convoluted. Multivariate 
statistical techniques are required to extract the information about quality attributes which is 
buried in the NIR spectrum. Developments in multivariate statistical techniques such as 
partial least squares (PLS) regression and principal component analysis (PCA) are then 
applied to extract the required information from such convoluted spectra (Cozzolino et al., 
2006b; McClure, 2003; Naes et al., 2004; Nicolai et al., 2007;). 

The availability of low cost miniaturised spectrophotometers has opened up the possibility 
of portable devices which can be used directly on field for monitoring the maturity of fruit. 

Guidetti et al. (2008) tested a portable Vis/NIR device (450-980 nm) for the prediction of 
ripening indexes (soluble solids content and firmness) and presence of compounds with 
functional properties (total anthocyanins, total flavonoids, total polyphenols and ascorbic 
acid) of of blueberries (‘Brigitta’ and ‘Duke’ varieties). Good predictive statistics were 
obtained with correlation coefficients (r) between 0.80 and 0.92 for the regression models 
built for fresh berries (Table 3). Similar results were obtained for the regression models for 
homogenized samples with r > 0.8 for all the indexes. Results showed that Vis/NIR 
spectroscopy is an interesting and rapid tool for assessing blueberry ripeness.  
 

Dependent 
variable LV 

Calibration Cross validation 

rcal RMSEC rcv RMSECV 

TSS (°Brix) 4 0.86 0.78 0.85 0.79 

Young’s Module 
(MPa) 3 0.87 0.65 0.87 0.66 

Total 
anthocyanins 
(mg/g f. w.) 

4 0.87 0.31 0.87 0.31 

Total flavonoids 
(mg cat/g) 4 0.87 0.37 0.86 0.37 

Total 
polyphenols 

(mg cat/g f. w.) 
11 0.82 0.20 0.81 0.20 

Ascorbic acid 
(mg/100 g f. w.) 4 0.84 1.01 0.83 1.02 

Table 3. Results of PLS models for fresh ‘Duke’ berry samples (r = coefficient of correlation; 
RMSEC = root mean square of the standard error in calibration; RMSECV = root mean 
square of the standard error in cross-validation; LV = latent variables). All data were 
preprocessed by second derivative of reduced and smoothed data. 
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3.1.2 Meat 

In literature there are numerous applications of NIR spectroscopy for the analysis of meat 
quality. One of the most important aim is to monitor the freshness of meat products. Sinelli 
et al. in 2010 investigated the ability of Near Infrared spectroscopy to follow meat freshness 
decay. PCA was applied by authors to the data and was able to discriminate samples on the 
basis of storage time and temperature. The modelling of PC scores versus time allowed the 
setting of the time of initial freshness decay for the samples (6–7 days at 4.3 °C, 2–3 days at 
8.1 °C and less than 1 day at 15.5 °C). Authors reported that results showed the feasibility of 
NIR for estimating quality decay of fresh minced beef during marketing. 

Sierra et al. in 2007 conducted a study for the rapid prediction of the fatty acid (FA) profile 
of ground using near infrared transmittance spectroscopy (NIT). The samples were scanned 
in transmittance mode from 850 to 1050 nm. NIT spectra were able to accurately predict 
saturated R2=0,837, branched R2=0,701 and monounsaturated R2=0,852 FAs. Results were 
considered interesting because intramuscular fat content and composition influence 
consumer selection of meat products. 

Andrés et al. in 2007 implemented a study to evaluate the potential of visible and near 
infrared reflectance (NIR) spectroscopy to predict sensory characteristics related to the 
eating quality of lamb meat samples. A total of 232 muscle samples from Texel and Scottish 
Blackface lambs was analyzed by chemical procedures and scored by assessors in a taste 
panel and these parameters were predicted from Vis/NIR spectra. The results obtained by 
authors suggested that the more important regions of the spectra to estimate the sensory 
characteristics are related to the absorbance of intramuscular fat and water content in meat 
samples. 

Even in the meat industry have been tried online applications of NIR spectroscopy. A study 
was conducted by Prieto et al. in 2009a to assess the on-line implementation of visible and 
near infrared reflectance (Vis/NIR) spectroscopy as an early predictor of beef quality traits, 
by direct application of a fibre-optic probe to the muscle immediately after exposing the 
meat surface in the abattoir. Authors reported good correlation results only for prediction of 
colour parameters while  less good results were achieved for sensory parameters. 

NIR spectroscopy could be used for the detection of beef contamination from harmful 
pathogens and the protection of consumer safety. Amamcharla et al. in 2010 investigated the 
potential of Fourier transform infrared spectroscopy (FTIR) to discriminate the Salmonella 
contaminated packed beef. Principal component analysis was performed on the entire 
spectrum (4000–500 cm-1). Authors obtained encouraging classification results with different 
techniques and confirmed that NIR could be used for non-destructive discrimination of 
Salmonella contaminated packed beef samples from uncontaminated ones. 

A review published by Prieto et al. in 2009b indicates that NIR showed high potential to 
predict chemical meat properties and to categorize meat into quality classes. But authors 
underlined also that NIR showed in different cases limited ability for estimating 
technological and sensory attributes, which may be mainly due to the heterogeneity of the 
meat samples and their preparation, the low precision of the reference methods and the 
subjectivity of assessors in taste panels.  
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3.1.3 Grains, bread and pasta 

Grains including wheat, rice, and corn are main agricultural products in most countries. 
Grain quality is an important parameter not only for harvesting, but also for shipping 
(Burns and Ciurczak, 2001). In many countries, the price of grain is determined by its 
protein content, starch content, and/or hardness, often with substantial price increments 
between grades. 

Measurement of carotenoid content of maize by Vis/NIR spectroscopy was investigated by 
Brenna and Berardo (2004). They generated calibrations for several individual carotenoids 
and the total carotenoid content with good results (R2 about 0,9). 

Several applications can be found in literature regarding the use of NIR for the prediction of 
the main physical and rheological parameters of pasta and bread. De Temmerman et al. in 
2007 proposed near-infrared (NIR) reflectance spectroscopy for in-line determination of 
moisture concentrations in semolina pasta immediately after the extrusion process. Several 
pasta samples with different moisture concentrations were extruded while the reflectance 
spectra between 308 and 1704 nm were measured. An adequate prediction model was 
developed based on the Partial Least Squares (PLS) method using leave-one-out cross-
validation. Good results were obtained with R2 = 0,956 and very low level of RMSECV. This 
creates opportunities for measuring the moisture content with a low-cost sensor. 

Zardetto & Dalla Rosa in 2006 studied the evaluation of the chemical and physical 
characteristics of fresh egg pasta samples obtained by using two different production 
methodologies: extrusion and lamination. Authors evaluated that it is possible to 
discriminate the two kinds of products by using FT-NIR spectroscopy. FT-NIR analysis 
results suggest the presence of a different matrix–water association, a diverse level of starch 
gelatinization and a distinct starch–gluten interaction in the two kinds of pasteurised 
samples. 

The feasibility of using near infrared spectroscopy for prediction of nutrients in a wide 
range of bread varieties mainly produced from wheat and rye was investigated by Sørensen 
in 2009. Very good results were reported for the prediction of total contents of 
carbohydrates and energy from NIR data with R2 values of 0.98 and 0.99 respectively. 

Finally, a quick, non-destructive method, based on Fourier transform near-infrared (FT-NIR) 
spectroscopy for egg content determination of dry pasta was presented by Fodor et al. (2011) 
with good results. 

3.1.4 Wine 

Quantification of phenolic compounds in wine and during key stages in wine production is 
therefore an important quality control goal for the industry and several reports describing 
the application of NIR spectroscopy to this problem have been published. 

Grape composition at harvest is one of the most important factors determining the future 
quality of wine. Measurement of grape characteristics that impact product quality is a 
requirement for vineyard improvement and for optimum production of wines (Carrara et 
al., 2008). Inspection of grapes upon arrival at the winery is a critical point in the wine 
production chain (Elbatawi & Ebaid, 2006). 
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An optical, portable, experimental system (Vis/NIR spectrophotometer) for nondestructive 
and quick prediction of ripening parameters of fresh berries and homogenized samples of 
grapes in the wavelength range 450-980 nm was built and tested by Guidetti et al. (2010) 
(Fig. 9). Calibrations for technological ripening and for anthocyanins had good correlation 
coefficients (rcv > 0.90). These models were extensively validated using independent sample 
sets. Good statistical parameters were obtained for soluble solids content (r > 0.8, SEP < 1.24 
°Brix) and for titratable acidity (r > 0.8, SEP < 2.00 g tartaric acid L-1), showing the validity of 
the Vis/NIR spectrometer. Similarly, anthocyanins could be predicted accurately compared 
with the reference determination (Table 4). Finally, for qualitative analysis, spectral data on 
grapes were divided into two groups on the basis of grapes' soluble content and acidity in 
order to apply a classification analysis (PLS-DA). Good results were obtained with the 
Vis/NIR device, with 89% of samples correctly classified for soluble content and 83% of 
samples correctly classified for acidity. Results indicate that the Vis/NIR portable device 
could be an interesting and rapid tool for assessing grape ripeness directly in the field or 
upon receiving grapes in the wine industry. 

  
Fig. 9. Images of spectral acquisition phases on fresh berries and on homogenized samples. 
 

Parameter Pretreat- 
ment[a] LV Calibration  Validation 

r RMSEC r RMSEP 
TSS 

(°Brix) MSC+d2 5 0.93 0.95  0.75 0.95 

Titratable acidity 
(g tart. acid dm-3) MSC+d2 6 0.95 1.16  0.85 1.12 

pH 
 MSC+d2 5 0.85 0.08  0.80 0.13 

PA 
(mg dm-3) MSC+d2 5 0.95 80.90  0.78 129.00 

EA 
(mg dm-3) MSC+d2 3 0.93 57.70  0.84 77.70 

TP 
(OD 280 nm) MSC+d2 4 0.80 3.74  0.70 5.81 

[a] MSC = multiplicative scatter correction, and d2 = second derivative. 

Table 4. Results of PLS models for homogenized samples. 
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The application of some chemometric techniques directly to NIR spectral data with the aim 
of following the progress of conventional fermentation and maturation was investigated by 
Cozzolino et al. (2006b). The application of principal components analysis (PCA) allowed 
similar spectral changes in all samples to be followed over time. The PCA loading structure 
could be explained on the basis of absorptions from anthocyanins, tannins, phenolics, sugar 
and ethanol, the content of which changed according to different fermentation time points. 
This study demonstrated the possibility of applying NIR spectroscopy as a process 
analytical tool for the wine industry. 

Urbano-Cuadrado et al. (2004) analysed by Vis/NIR spectroscopy different parameters 
commonly monitored in wineries. Coefficients of determination obtained for the fifteen 
parameters were higher than 0.80 and in most cases higher than 0.90 while SECV values 
were close to those of the reference method. Authors said that these prediction accuracies 
were sufficient for screening purposes. 

Römisch et al. in 2009 presented a study on the characterization and determination of the 
geographical origin of wines. In this paper, three methods of discrimination and 
classification of multivariate data were considered and tested: the classification and 
regression trees (CART), the regularized discriminant analysis (RDA) and the partial least 
squares discriminant analysis (PLS-DA). PLS-DA analysis showed better classification 
results with percentage of correct classified samples from 88 to 100%. 

Finally, PLS and artificial neural networks (ANN) techniques were compared by Janik et al. 
in 2007 for the prediction of total anthocyanin content in redgrape homogenates. 

3.1.5 Other applications 

The applications of Vis/NIR and NIR spectroscopy and their chemometric techniques are 
present in many other sectors of the food industry. In literature are reported works relating 
to the dairy, oil, coffee, honey and chocolate industry. In particular, interesting studies have 
been conducted by some authors for the application of NIR spectroscopy in detecting the 
geographical origin of raw materials and finished products, defending the protected 
designation of origin (PDO). 

Olivieri et al. (2011) worked out the exploration of three different class-modelling techniques 
to evaluate classification abilities based on geographical origin of two PDO food products: 
olive oil from Liguria and honey from Corsica. Authors developed the best models for both 
Ligurian olive oil and Corsican honey by a potential function technique (POTFUN) with 
values of correctly classified around 83%. 

González-Martín et al. in 2011 presented a work on the evaluation by near infrared 
reflectance (NIR) spectroscopy of different sensorial attributes of different type of cheeses, 
taking as reference data the evaluation of the sensorial properties obtained by a panel of 
eight trained experts. NIR spectra were collected with a remote reflectance fibre optic probe 
applying the probe directly to the cheese samples and the calibration equations were 
developed by using modified partial least-squares (MPLS) regression for 50 samples of 
cheese. Authors stated that obtained results can be considered good and acceptable for all 
the parameters analyzed (presence of holes, hardness, chewiness, creamy, salty, buttery 
flavour, rancid flavour, pungency and retronasal sensation). 
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The quality of coffee is related to the chemical constituents of the roasted beans, whose 
composition depends on the composition of green beans (i.e., un-roasted). Unroasted coffee 
beans contain different chemical compounds, which react amongst themselves during coffee 
roasting influencing the final product. For this reason, monitoring the row materials and the 
roasting process is very important. Ribeiro et al. in 2011 elaborated PLS models correlating 
coffee beverage sensory data and NIR spectra of 51 Arabica roasted coffee samples. Acidity, 
bitterness, flavour, cleanliness, body and overall quality of coffee beverage were considered. 
Results were good and authors confirmed that it is possible to estimate the quality of coffee 
using PLS regression models obtained by using NIR spectra of roasted Arabica coffees. 

Da Costa Filho in 2009 elaborated a rapid method to determine sucrose in chocolate mass 
using near infrared spectroscopy. Data were modelled using partial least squares (PLS) and 
multiple linear regression (MLR), achieving good results (correlation coefficient of 0.998 and 
0.997 respectively for the two chemometric techniques). Results showed that NIR can be 
used as rapid method to determine sucrose in chocolate mass in chocolate factories.  

3.2 Image analysis 

The chemical imaging spectroscopy is applied to various fields, from astronomy to 
agriculture (Baranowski et al., 2008, Monteiro et al., 2007, V. Smail, 2006), from the 
pharmaceutical industry (Lyon et al. 2002, Roggo et al., 2005) to medicine (Ferris et al. 2001, 
Zheng et al., 2004). But in recent years, has also found use for quality control and safety in 
food (Gowen et al., 2007b).  

In general, classify or quantify the presence of compounds in a sample is the main purpose 
of the application in the food hyperspectral analysis. There already exist algorithms for 
classification and regression but, improved algorithms efficiency, could be a target, as well 
as create datasets, identify anomalies or objects with different spectral characteristics, 
compared hyperspectral image with those of data library. These goals can be achieved only 
if the experimental data are processed with chemometric methods. K-nearest neighbors and 
hierarchical clustering are examples of multivariate analysis that allow to get information 
from spectral and spatial data (Burger & Gowen, 2011). With the use of spectral image, 
which allows to obtain in a single determination, spectral and spatial information 
characterizing the sample, it is possible to identify which chemical species are present and 
how they are distributed in a matrix. Several chemometric techniques are available for the 
development of regression models (for example partial least squares regression, principal 
components regression, and linear regression) capable of estimating the concentrations of 
constituents in a sample, at the pixel level, allowing the spatial distribution or the mapping 
of a particular component in the sample analyzed. Moreover the hyperspectral image, 
combined with chemometric technique, is a powerful method to identify key wavelengths in 
order to develop of multispectral system, for on-line applications.  

Karoui & De Baerdemaeker (2006) wrote a review about the analytical methods coupled 
with chemometric tools for the determination of the quality and identity of dairy products. 
Spectroscopic techniques (NIR, MIR, FFFS front face fluorescence spectroscopy, etc.), 
coupled with chemometric tools have many potential advantages for the evaluation of the 
identity dairy products (milk, ice cream, yogurt, butter, cheese, etc). 
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The quality of coffee is related to the chemical constituents of the roasted beans, whose 
composition depends on the composition of green beans (i.e., un-roasted). Unroasted coffee 
beans contain different chemical compounds, which react amongst themselves during coffee 
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In another review Sankaran et al. (2010), compared the benefits and limitations of advanced 
techniques and multivariate methods to detect plant diseases in order to assist in monitoring 
health in plants under field conditions. These technologies include evaluation of volatile 
profiling (Electronic Nose), spectroscopy (fluorescence, visible and infrared) and imaging 
(fluorescence and hyperspectral) techniques for disease detection. 

In literature it's possible find several examples of applications of spectroscopic image 
analysis. Hyperspectral imaging could be used as critical control points of food processing 
to inspect for potential contaminants, defects or lesions. Their absence is essential for 
ensuring food quality and safety. In some case the application on-line was achieved. 

Ariana & Lu (2010), evaluated the internal defect and surface color of whole pickles, in a 
commercial pickle processing. They used a prototype of on-line hyperspectral imaging 
system, operating in the wavelength range of 400–1000 nm. Color of the pickles was 
modeled using tristimulus values: there were no differences in chroma and hue angle of 
good and defective pickles. PCA was applied to the hyperspectral images: transmittance 
images at 675–1000 nm were much more effective for internal defect detection compared to 
reflectance images for the visible region of 500–675 nm. A defect classification accuracy was 
of 86% compared with 70% by the human inspectors. 

Mehl et al. (2002), used hyperspectral image analysis and PCA, like chemometrics technique, 
to reduce the information resulting from HIS and to identify three spectral bands capable of 
separating normal from contaminated apples. These spectral bands were implemented in a 
multispectral imaging system. On 153 samples, it’s possible to get a good separation 
between normal and contaminated (scabs, fungal, soil contaminations, and bruises) apples 
was obtained for Gala (95%) and Golden Delicious (85%), separations were limited for Red 
Delicious (76%). 

HSI application for damage detection on the caps of white mushrooms (Agaricus bisporus) 
was investigated from Gowen et al. (2007a). They employed a pushbroom line-scanning HSI 
instrument (wavelength range: 400–1000 nm). They investigated two data reduction 
methods. In the first method, PCA was applied to the hypercube of each sample, and the 
second PC (PC 2) scores image was used for identification of bruise-damaged regions on the 
mushroom surface. In the second method PCA was applied to a dataset comprising of 
average spectra from regions normal and bruise-damaged tissue. The second method 
performed better than the first when applied to a set of independent mushroom samples. 
Further, they (Gowen et al., 2009) identified mushrooms subjected to freeze damage using 
hyperspectral imaging. In this case they used Standard Normal Variate (SNV) 
transformation to pretreat the data, then they applied a procedure based on PCA and LDA 
to classify spectra of mushrooms into undamaged and freeze-damaged groups. The 
undamaged mushrooms and freeze-damaged mushrooms could be classified with high 
accuracy (>95% correct classification) after only 45 min thawing (at 23 ± 2 °C) at that time 
freeze–thaw damage was not visibly evident. 

A study on fruits and vegetables (Cubero et al., 2010) used ultraviolet or near-infrared 
spectra to explore defects or features that the human eye is unable to see, with the aim of 
applying them for automatic inspection. This work present a summary of inspection 
systems for fruit and vegetables and the latest developments in the application of this 
technology to the inspection of internal and external quality of fruits and vegetables. 
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Li et al. (2011) detected common defects on oranges using hyperspectral (wavelength range: 
400-1000) reflectance imaging. The disadvantage of studied algorithm is that it could not 
discriminate between different types of defects. 

Bhuvaneswari et al. (2011) compared three methods (electronic speck counter, acid 
hydrolysis and flotation and near-infrared hyperspectral imaging) to investigate the 
presence of insect fragments (Tribolium castaneum_ Coleoptera: Tenebrionidae) in the 
semolina (ingredient for pasta and couscous). NIR hyperspectral imaging is a rapid, non-
destructive method, as  electronic speck counter, but they showed different correlation 
between insect fragments in the semolina and detection of specks in the samples: R2 = 0.99 
and 0.639-0.767 respectively. For NIR hyperspectral image technique, the prediction model 
were developed by PLS regression. 

The most important features in meat are tenderness, juiciness and flavour. Jackmana et al., 
(2011) wrote a review about recent advances in the use of computer vision technology in the 
quality assessment of fresh meats. The researcher support that the best opportunities for 
improving computer vision solutions is the application of hyperspectral imaging in 
combination with statistical modelling. This synergy can provide some additional 
information on meat composition and structure. However, in parallel, new image 
processing algorithms, developed in other scientific disciplines, should be carefully 
considered for potential application to meat images. 

Other applications concern the possibility of estimating a correlation between characteristics 
(physical or chemical) of the food and the spectra acquired with spectroscopic image. 
Moreover these techniques were able to locate and quantify the characteristic of interest 
within the image.  

In most cases the range of wavelength used in applications of hyperspectral images is 400-
1000 nm but Maftoonazad et al. (2010) used artificial neural network (ANN) modeling of 
hyperspectral radiometric (350-2500 nm) data for quality changes associated with avocados 
during storage. Respiration rate, total color difference, texture and weight loss of samples 
were measured as conventional quality parameters during storage. Hyperspectral imaging 
was used to evaluate spectral properties of avocados. Results indicated ANN models can 
predict the quality changes in avocado fruits better than the conventional regression models. 

While Mahesh et al. (2011) used near-infrared hyperspectral images (wavelength range: 960–
1700 nm), applied to a bulk samples, to classify the moisture levels (12, 14, 16, 18, and 20%) 
on the wheat. Principal components analysis (PCA) was used to identify the  region (1260–
1360 nm) with more information. The linear and quadratic discriminant analyses (LDA) and 
quadratic discriminant analysis (QDA) could classify the sample based on moisture contents 
than also identifying specific moisture levels with a god levels of accuracy (61- 100% in 
several case). Spectral features at key wavelengths of 1060, 1090, 1340, and 1450 nm were 
ranked at top in classifying wheat classes with different moisture contents. 

Manley et al. (2011) used near infrared hyperspectral imaging combined with chemometrics 
techniques for tracking diffusion of conditioning water in single wheat kernels of different 
hardnesses. NIR analysers is a commonly, non-destructive, non-contact and fast solution for 
quality control, and a used tool to detect the moisture-content of carrot samples during 
storage but Firtha (2009) used hyperspectral system that is able to detect the spatial 
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distribution of reflectance spectrum as well. Statistical analysis of the data has shown the 
optimal intensity function to describe moisture-content.  

The intent of Junkwon et al. (2009), was to develop a technique for weight and ripeness 
estimation of palm oil (Elaeis guieensis Jacq. var. tenera) bunches by hyperspectral and RGB 
color images. In the hyperspectral images, the total number of pixels in the bunch was also 
counted from an image composed of three wavelengths (560 nm, 680 nm, and 740 nm), 
while the total number of pixels of space between fruits was obtained at a wavelength of 910 
nm. Weight-estimation equations were determined by linear regression (LR) or multiple 
linear regression (MLR). As a result, the coefficient of determination (R2) of actual weight 
and estimated weight were at a level of 0.989 and 0.992 for color and hyperspectral images, 
respectively. About the estimation of palm oil bunch ripeness the bunches was classified in 4 
classes of ripeness (overripe, ripe, underripe, and unripe) (Fig. 10). Euclidean distances 
between the test sample and the standard 4 classes of ripeness were calculated, and the test 
sample was classified into the ripeness class. In the classification based on color image, 
(average RGB values of concealed and not-concealed areas), and by hyperspectral images 
(average intensity values of fruits pixels from the concealed area), the results of validation 
experiments with the developed estimation methods indicated acceptable estimation 
accuracy. 

 
Fig. 10. Bunches of palm oil:  a) unripe, b) underripe, c) ripe, and d) overripe (Junkwon et al., 
2009) 

Nguyen et al. (2011) illustrated the potential of combination of hyperspectral imaging 
chemometrics and image processing as a process monitoring tool for the potato processing 
industry. They predicted the optimal cooking time by hyperspectral imaging (wavelength 
range 400–1000 nm). By partial least squares discriminant analysis (PLS-DA), cooked and 
raw parts of boiled potatoes, were discriminated successfully. By modeling the evolution of 
the cooking front over time the optimal cooking time could be predicted with less than 10% 
relative error. 
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Yu H. & MacGregor J.F. (2003) applied multivariate image analysis and regression for 
prediction of coating content and distribution in the production of snack foods. Elaboration 
tools based on PCA and PLS was used for the extraction of features from RGB color images 
and for their use in predicting the average coating concentration and the coating 
distribution. On-line and off-line imaging were collected from several different snack food 
product lines and were used to develop and evaluate the methods. The better methods are 
now being used in the snack food industry for the on-line monitoring and  control of 
product quality.  

Siripatrawan et al. (2011) have developed a rapid method for the detection of Escherichia coli 
contamination in packaged fresh spinach using hyperspectral imaging (400–1000 nm) and 
chemometrics techniques. The PCA was implemented to remove redundant information of 
the hyperspectral data and artificial neural network (ANN) to correlate spectra with number 
of E. coli and to construct a prediction map of all pixel spectra of an image to display the 
number of E. coli in the sample.  

In this study (Barbin et al. 2011) a hyperspectral imaging technique (range from 900 to 1700 
nm) was developed to achieve fast, accurate, and objective determination of pork quality 
grades. The sample investigated were 75 pork cuts of longissimus dorsi muscle from three 
quality grades. Six significant wavelengths (960, 1074, 1124, 1147, 1207 and 1341 nm) that 
explain most of the variation among pork classes were identified from 2nd derivative 
spectra. PCA was carried out and the results indicated that pork classes could be precisely 
discriminated with overall accuracy of 96%. Algorithm was developed to produce 
classification maps of the investigated sample. 

Valous et al. (2010) communicated perspectives and aspects, relating to imaging, 
spectroscopic and colorimetric techniques on the quality evaluation and control of hams. 
These no-contact  and no-destructive techniques, can provide useful information regarding 
ham quality. Hams are considered a heterogenic solid system: varying colour, irregular 
shape and spatial distribution of pores. Fat-connective tissue, water, protein contribute to 
the microstructural complexity. This review paying attention on applications of imaging and 
spectroscopy techniques, for measuring properties and extracting features that correlate 
with ham quality. 

In literature is present a review (Mathiassena et al., 2011) that focused the attention on 
application of imaging technologies (VIS/NIR imaging, VIS/NIR imaging spectroscopy, 
planar and computed tomography (CT) X-ray imaging, and magnetic resonance imaging) to 
inspection of fish and fish products.  

Nicolai et al. (2007) wrote a review about the applications of non-destructive measurement 
of fruit and vegetable quality. Measurement principles are compared, and novel techniques 
(hyperspectral imaging) are reviewed. Special attention is paid to recent developments in 
portable systems. The problem of calibration transfer from one spectrophotometer to 
another is introduced, as well as techniques for calibration transfer. Chemometrics is an 
essential part of spectroscopy and the choice, of corrected techniques, is primary (linear or 
nonlinear regression, such as kernel-based methods are discussed). The principal objective 
of spectroscopy system applications in fruit and vegetables sector have focused on the 
nondestructive measurement of soluble solids content, texture, dry matter, acidity or 
disorders of fruit and vegetables. (root mean square error of prediction want to be 
achieved). 
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3.3 Electronic nose 

The preservation of quality in post-harvest is the prerequisite for agri-food products in the 
final stages of commercialization. The fruit quality is related to the appearance (skin color, 
size, shape, integrity of the fruit), to the sensorial properties (hardness and crispness of the 
flesh, juicy, acid/sugars) and  to safety (residues in fruit). 

The agri-food products contain a variety of information, directly related to their quality, 
traditionally measured by means of tedious, time consuming and destructive analysis. For 
this reason, there is a growing interest in easy to use, rapid and non-destructive techniques 
useful for quality assessment. 

Currently, electronic noses are mainly applied in the food industry to recognize the 
freshness of the products, the detection of fraud (source control, adulteration), the detection 
of contaminants. 

An essential step in the analysis with an electronic nose, is the high performance of 
statistical elaboration. The electronic nose provides multivariated results that need to be 
processed using chemometric techniques. Even if the best performing programs are 
sophisticated and, consequently, require the operation of skilled personnel, most companies 
have implemented user-friendly software for data treatment in commercially available 
electronic noses (Ampuero & Bosset, 2003).  

A commercial electronic nose, as a non-destructive tool, was used to characterise peach 
cultivars and to monitor their ripening stage during shelf-life (Benedetti et al. 2008). 
Principal component analysis (PCA) and linear discriminant analysis (LDA) were used to 
investigate whether the electronic nose was able to distinguish among four diverse cultivars. 
Classification and regression tree (CART) analysis was applied to characterise peach 
samples into the three classes of different ripening stages (unripe, ripe, over-ripe). Results 
classified samples in each respective group with a cross validation error rate of 4.87%. 

Regarding the fruit and vegetable sector Torri et al. (2010) investigated the applicability of a 
commercial electronic nose in monitoring freshness of packaged pineapple slices during 
storage. The obtained results showed that the electronic nose was able to discriminate 
between several samples and to monitor the changes in volatile compounds correlated with 
quality decay. The second derivative of the transition function, used to interpolate the PC1 
score trend versus the storage time at each temperature, was calculated to estimate the 
stability time.  

Ampuero and Bosset (2003), presented a review about the application of electronic nose 
applied to dairy products. The present review deal with as examples the evaluation of the 
cheese ripening, the detection of mould in cheese, the classification of milk by trademark, by 
fat level and by preservation process, the classification and the quantification of off-flavours 
in milk, the evaluation of Maillard reactions during heating processes in block-milk, as well 
as the identification of single strains of disinfectant–resistant bacteria in mixed cultures in 
milk. For each application correspond the chemometric method to extrapolate the maximum 
information. PCA analysis was carried out in order to associate descriptors (chocolate, 
caramel, burnt and nutty), typical of volatiles generated by Maillard reactions during milk 
heating. In another case PCA showed a correctly classification of sample in function of the 
origin of off-flavours. In figure 11 is showed an example of result carried out by DFA 
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(discriminant function analysis) statistical technique. In this case the aim of researcher was 
to classify samples of a given product by their place of production.  

 

Fig. 11. Classification of Emmental cheese by the geographic origin performed with an 
electronic nose based on mass spectrometry. The graph shows DFA 1 vs. DFA 2 with 100% 
group classification based on five variables. No validation set was considered due to the 
limited number of samples. A: Austria, D: Germany, F: France, Fi: Finland (Pillonel et al, 
2003) 

The potential of electronic nose technique was investigated to monitoring storage time and 
the quality attribute of eggs by Yongwei et al. (2009). Using techniques of multivariate 
analysis was distinguished eggs under cool and room-temperature storage. Results 
showed that the E-nose could distinguish eggs of different storage time under cool and 
room-temperature storage by LDA, PCA, BPNN and GANN. Good distinction between 
eggs stored for different times were obtained by PCA and LDA (results by LDA were 
better than those obtained by PCA). By means  BP neural network (BPNN) and the 
combination of a genetic algorithm and BP neural network (GANN) carried out good 
predictions for egg storage time (GANN demonstrated better correct classification rates 
than BPNN). The quadratic polynomial step regression (QPSR) algorithm established 
models that described the relationship between sensor signals and egg quality indices 
(Haugh unit and yolk factor). The QPST models showed an high predictive ability (R2 = 
0.91-0.93). 

Guidetti et al. (2011) used electronic nose and infrared thermography to detect 
physiological disorders on apples (Golden Delicious and Stark Delicious). In particular 
the aim was to differentiate typical external apple diseases (in particular, physiological, 
pathological and entomological disorders). The applicability of the e-nose is based on the 
hypothesis that apples affected by physiopathology produce different volatile compounds 
from those produced by healthy fruits. The electronic nose data were elaborated by LDA 
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3.3 Electronic nose 
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in order to classify the apples into the four classes. Figure 12 shows how the first two LDA 
functions discriminate among classes. Considering Stark variety, function 1 seems to 
discriminate among the physiopathologies while function 2 discriminate the healthy 
apples from those with physiological disorders. The error rate and the cross validation 
error rate were of 2.6% and 26.3% respectively. In the case of Golden variety, along the 
first function there is the separation of Control samples from the apples affected by 
diseases, while in the vertical direction (function 2) there is an evident discrimination 
among the three physiopathologies. The error rate and the cross validation error rate were 
of 0.8% and 18% respectively.  

 
   (a)     (b) 

Fig. 12. a) Canonical discriminant functions of LDA for Stark variety; b) Canonical 
discriminant functions of LDA for Golden variety. C=control, B=bitter pit, T=scab and 
CY=Cydia Pomonella. 

Cerrato Oliveros et al. (2002) selected array of 12 metal oxide sensors to detected 
adulteration in virgin olive oils samples and to quantify the percentage of adulteration by 
electronic nose. Multivariate chemometric techniques such as PCA were applied to choose a 
set of optimally discriminant variables. Excellent results were obtained in the differentiation 
of adulterated and non-adulterated olive oils, by application of LDA, QDA. The models 
provide very satisfactory results, with prediction percentages >95%, and in some cases 
almost 100%. The results with ANN are slightly worse, although the classification criterion 
used here was very strict. To determine the percentage of adulteration in olive oil samples  
multivariate calibration techniques based on partial least squares and ANN were employed. 
Not so good results were carried out, even if there are exceptions. Finally, classification 
techniques can be used to determine the amount of adulterant oil added with excellent 
results. 

4. Conclusion 
This work shows the principal non-destructive applications for analysis in food sector. They 
are rapid techniques used in combination with chemometrics analysis for qualitative and 
quantitative analysis.  

NIR spectroscopy is the technique that has been developed further in recent years. This 
success is because spectral measurement for one sample could be done in a few seconds. 
Numerous samples could be analyzed and multiindexes analysis can be carried out. 
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Compared with traditional methods, NIR and Vis/NIR are less expensive because of no 
demand of other materials such as chemical reagents except the electrical consumption. 
Many works are focused on the study of chemometrics. This is because an important 
challenge is to build robust calibration models, in fact it is important to apply chemometric 
methods able to select useful information from a great deal of spectral data. Moreover food 
researchers and analysts are looking for the sensitive wavelength in Vis/NIR region 
representing the characteristics of food products, with the aim of develop some simple and 
low-cost instruments (Cen & He, 2007). 

HSI is the new frontier for optical analysis of foods. The performance of HSI 
instrumentation has developed such that a full hypercube can now be acquired in just a few 
seconds. In tandem with these developments, advances in component design have led to 
reductions in the size and cost of HSI systems. This has led to increased interest in their 
online implementation for quality monitoring in major industries such as food and 
pharmaceutical (Burger & Gowen, 2011). In future, with further improvement, the HSI 
system could meet the need of a commercial plant setting.  

The equipment that the food industry has at its disposal is certainly complex and not easy to 
use. The chemometric approach has allowed, through different applicative researches, to 
arrive at algorithms that can support the analysis in the entire food chain from raw material 
producers to large retail organizations. Despite this, we are still faced with instrumentation 
with not easy usability and relatively high cost: the studies must move towards a more 
simplified instrumental approach through greater integration of hardware with software. 
The challenges are many: optimizing the information that you are able to extract from raw 
data and aimed at specific problems, simplify electronic components, increase the level of 
interaction tool/operator.  

In conclusion the only way of an interdisciplinary approach can lead to the solution of a 
system that can provide at different level more immediate response and more food safety 
and quality. 
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1. Introduction 
Developments in analytical techniques (GC-MS, LC-MS, 1H-, 13C-NMR, FT-MS, e.g.) are 
progressing rapidly and have been driven mostly by the requirements in the healthcare and 
food sectors. Simultaneous high-throughput measurements of several analytes at the level of 
the transcript (transcriptomics), proteins, (proteomics), and metabolites (metabolomics) are 
currently performed, producing a prodigious amount of data. Thus, the advent of omic 
studies has created an information explosion, resulting in a paradigm shift in the emphasis 
of analytical research of biological systems. The traditional approaches of biochemistry and 
molecular cell biology, where the cellular processes have been investigated individually and 
often independent of each other, are giving way to a wider approach of analyzing the 
cellular composition in its entirety, allowing achieving a quasi-complete metabolic picture.  

The exponential growth of data, largely from genomics and genomic technologies, has 
changed the way biologists think about and handle data. In order to derive meaning from 
these large data sets, tools are required to analyze and identify patterns in the data, and 
allow data to be placed into a biological context. In this scenario, biologists have a 
continuous need for tools to manage and analyze the ever-increasing data supply. Optimal 
use of the data set, primarily of chemical nature, requires effective methods to analyze and 
manage them. It is obvious that all omic approaches will rely heavily upon bioinformatics for 
the storage, retrieval, and analysis of large data sets. Thus, and taking into account the 
multivariate nature of analysis in omic technologies, there is an increase emphasis in 
research on the application of chemometric techniques for extracting relevant information.   
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Metabolomics* and chemometrics† have been used in a number of areas to provide 
biological information beyond the simple identification of cell constituents. These areas 
include: 

a. Fingerprinting of species, genotypes or ecotypes for taxonomic or biochemical (gene 
discovery) purposes; 

b. Monitoring the behavior of specific classes of metabolites in relation to applied 
exogenous chemical and/or physical stimuli; 

c. Studying developmental processes such as establishment of symbiotic associations or 
fruit ripening; 

d. Comparing and contrasting the metabolite content of mutant or transgenic plants with 
that of their wild-type counterparts. 

In general sense, strategies to obtain biological information in the above mentioned areas 
have focused on the analysis of metabolic differences that evidence responses to a range of 
extrinsic (ambient) and intrinsic (genetic) stimuli. Since no single analytical method has been 
found to obtain a complete picture of the metabolome of an organism, an association of 
advanced analytical techniques (GC-MS, LC-MS, FTIR, 1H-, 13C-NMR, FT-MS, e.g.) coupled 
to chemometrics, e.g., univariate (ANOVA, correlation analysis, regression analysis) or 
multivariate (PCA, HA, PLS) statistical techniques, has been performed in order to rapidly 
identify up- or down-regulated endogenous metabolites in complex matrices such as plant 
extracts, flours, starches, and biofluids, for instance. Plant extracts are recognized to be a 
complex matrix containing a wide range of primary and secondary metabolites that vary 
according to the environmental condition, genotype, developmental stage, and agronomic 
traits, for example. Such a complex matrix has long been used to characterize plant 
genotypes growing in a given geographic region and/or subjected to external stimuli, 
giving rise to additional information of interest, e.g., plant genetic breeding programs, local 
biodiversity conservation, food industry, and quality control in drug 
development/production processes.  

In the former case, programs for genetic breeding of plants have often focused on the 
analysis of landraces‡ genotypes (i.e., creole and local varieties), aiming at to identify 
individuals well adapted to specific local environmental conditions (soil and climate) and 
with superior agronomic performance and biomass yield. Indeed, the analysis and 
exploitation of the local genotypes’ diversity has long been used as a strategy to improve 
agronomic traits by conventional breeding methods in plant crops of economical interest, as 
well as for stimulating the preservation of plant genetic resources. Taking into consideration 
that a series of primary (e.g., proteins and starch) and secondary metabolites (alkaloids, 
phenolic acids, and carotenoids, for instance) are well recognized compounds associated to 
the plants’ adaptation mechanisms to their surroundings ecological factors, metabolomics 
and chemometrics have emerged as an interesting approach for helping the selection of 
                                                 
* Metabolomics: constitutes a quantitative and qualitative survey of the whole metabolites of an organism 
as well as a tissue, thus it reflects the genome and proteome of a sample. 
† Chemometrics: according to the definition of the Chemometrics Society, it is the chemical discipline that 
uses mathematical and statistical methods to design or select optimal procedures and experiments, and 
to provide maximum chemical information by analyzing chemical data. 
‡ Landraces are genotypes with a high capacity to tolerate biotic and abiotic stress, resulting in high 
yield stability and an intermediate yield level under a low input agricultural system. 
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superior genotypes, as further described in the first part of this chapter for maize landraces 
developed and cultured in southern regions of Brazil. 

In a second part of this chapter is described the adoption of a typical metabolomic platform, 
i.e., FTIR and UV-visible spectroscopies coupled to chemometrics, for discriminating 
propolis samples produced in southern Brazil, a region of huge plant biodiversity. Propolis 
is typically a complex matrix and has been recognized for its broad pharmacological 
activities (anti-inflammatory, antibacterial, antifungal, anticancer, and antioxidant, e.g.) 
since ancient times. Propolis (registration number chemical abstracts service - CAS 9009-62-
5) is a beekeeping resinous and complex product, with a variable physical appearance, 
collected and transformed by honey bees, Apis mellifera, from the vegetation they visit. It 
may be ochre, red, brown, light brown or green; some are friable and steady, while the 
others are gummy and elastic. 

Phenolics such as flavonoids and phenol-carboxylic acids are strategic components in 
propolis to render it bioactive against several pathogenic microorganisms, for instance as 
bacteriostatic and/or bactericidal agents. The flora (buds, twigs, bark, and less importantly, 
flowers) surrounding the hive is the basic source for the phenolics stuff and thus exerts an 
outstanding importance on the propolis final composition and on its physical, chemical, and 
biological properties. Although the wax component is an unquestionable supplement 
provided by the bee secretory apparatus by far less is known about the degree of intensity 
that these laborious insects play changing all the other chemical constituents collected in the 
Nature including minor ingredients like essential oils (10%), most of them responsible for 
the delicate and pleasant odor. All this flora contribution to propolis and the exact wax 
content may then explain physical properties such as color, taste, texture, melting point, and 
more importantly, from the health standpoint, a lot of pharmaceutical applications. 
However, for purpose of industrial applications, the propolis hydroalcoholic extract needs 
to meet specific composition in order to guarantee any claimed pharmacological activity. 
One common method used by the industry for quality control is analyzing the propolis 
sample for the presence of chemical markers known to be present in the specific propolis 
product they market. Even though this has been the acceptable method for quality control, 
the presence of the chemical markers do not always guarantee an individual is getting the 
actual propolis stated by the product label, especially if the product has been spiked with 
the chemical markers. The quantitation method for the chemical markers will confirm the 
compounds presence, but it may not confirm the presence of the propolis known to contain 
the chemical markers. Authentication of the propolis material may be possible by a chemical 
fingerprint of it and, if possible, of its botanical sources. Thus, chemical fingerprinting, i.e., 
metabolomics and chemometrics, is an additional method that has been claimed to be 
included in the quality control process in order to confirm or deny the propolis sample 
quality being used for manufacturing of a derived product of that resinous and complex 
matrix. The second part of this chapter aims to demonstrate the possibility of a FTIR and 
UV-vis metabolomic-chemometrics approach to identify and classify propolis samples 
originating from nineteen geographic regions (Santa Catarina State, southern Brazil) in 
different classes, on the basis of the concerted variation in metabolite levels detected by 
those spectroscopic techniques. Exploratory data analysis and patterns of chemical 
composition based on, for instance, principal component analysis, as well as discriminating 
models will be described in order to unravel propolis chemotypes produced in southern 
Brazil.  
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2. Maize: metabolomic and chemometric analyses for the study of landraces 
Maize (Zea mays L.) was chosen as a model for metabolomic analysis because although most 
of this cereal produced worldwide is used for animal feeding, an important amount is also 
used in human diet and for industrial purposes, providing raw material for food, 
pharmaceuticals, and cosmetics production. The maize grain is composed of several 
chemicals of commercial value and the diversity of its applications depends on the 
differences in relative chemical composition, e.g. protein, oil, and starch contents, traits that 
show prominent genetic components (Baye et al., 2006; White, 2001). Over the last centuries, 
farmers have created thousands of maize varieties suitable for cultivation in numerous 
environments. Accordingly, it seems consensual that the maize landraces’ phenotypes, e.g., 
morphological and agronomic traits and special chemical characteristics of grains are 
resultant of the domestication process. Thus, high throughput metabolomic analysis of 
maize genotypes could improve metabolic singularities knowledge about landraces, helping 
their characterization and evaluation, and indicating new alternatives for their use. In this 
context, to distinguish metabolic profiles it is necessary to consider the use of diverse 
analytical tools, such as spectroscopic and chromatographic techniques for instance. 
Techniques that are reproducible, stable with time, and do not require complex sample 
preparation such as infrared vibrational spectroscopy and nuclear magnetic resonance 
spectroscopy are desirable for metabolic profiling.  

2.1 Metabolic profiling of maize landraces through FTIR-PCA – integral and degermed 
flours 

Vibrational spectroscopy, and particularly Fourier transform infrared spectroscopy (FTIR) is 
thought to be interesting as one aims at discriminating and classifying maize landraces 
according to their chemical traits. FTIR is a physicochemical method that measures the 
vibrations of bonds within functional groups and generates a spectrum that can be regarded 
as a metabolic fingerprint. It is a flexible method that can quickly provide qualitative and 
quantitative information with minimal or no sample preparation of complex biological 
matrices (Ferreira et al., 2001). By other hand, a FTIR spectrum is complex, containing many 
variables per sample and making visual analysis very difficult. Hence, to extract useful 
information from the whole spectra, multivariate data analysis is needed, particularly 
through the determination of the principal components (PCA - Fukusaki & Kobayashi, 
2005). Such a multivariate analysis technique could allow the characterization of the sample 
relationships (scores plans or axis) and the recovery of their subspectral profiles (loadings). 
This approach was applied to classify flour samples from whole (integral) and degermed 
maize grains of twenty-six landraces developed and cultivated by small farmers in the far-
west region of Santa Catarina State, southern Brazil (Anchieta County – 26º31’11’’S, 
53º20’26’’W).  

Previously to multivariate analysis, FTIR spectra were normalized, baseline-corrected in the 
region of interest by drawing a straight line before resolution enhancement (k factor of 1.7) 
was applied using Fourier self deconvolution (Opus v. 5.0, Bruker Biospin, GmbH, 
Rheinstetten, Germany).  Chemometric analysis used normalized, baseline-corrected (3000–
600 cm-1. 1700 data points) and deconvoluted spectra, which were transferred via a JCAMP 
format (OPUS v. 5.0, Bruker Biospin GmbH, Rheinstetten, Germany) into the data analysis 
software for PCA (The Unscramble v. 9.1, CAMO Software Inc., Woodbridge, USA). 
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Previously to PCA analysis each spectrum within the (3000–600 cm-1) region was standard 
normal deviates corrected. 

Figure 1 shows a PCA scores scatter plot for flour samples from whole and degermed grains 
using the whole FTIR spectral window data set (3000–600 cm-1). The scores scatter plot (PC1 
vs. PC2) that contains 93% of the data set variability shows a clear discrimination among 
flour samples of whole and degermed grains. 

 

 

 
 

Fig. 1. Principal component analysis scores scatter plot of the FTIR data set in the spectral 
window of 3000–600 cm-1 wavenumber of landrace maize flours of whole and degermed 
grain cultivated in the southern Brazil. 

The samples of whole grains grouped in PC1+ axis seemed to be more discrepant in their 
chemical composition, appearing more scattered through the quadrants of the PCA 
representation. Figure 2 shows the loadings plot of PC1, revealing the most important 
wavenumbers which explain the distinction of the samples previously found (scores scatter 
plot). The loadings indicated a prominent effect of the lipid components (2924, 2850, and 
1743 cm-1) for the segregation observed. The two major structures of the grains are the 
endosperm and the germ (embryo) that constitute approximately 80 and 10% of the mature 
kernel dry weight, respectively. The endosperm is largely starch (approaching 90%) and the 
germ contains high levels of oil (30%) and protein (18% - Boyer & Hannah, 2001).  

The greatest chemical diversity observed in whole grains can be explained by genetic 
variation of embryos resulting from sexual reproduction. Some authors suggest that the 
high level of genetic and epigenetic diversity observed in maize could be responsible for its 
great adaptation capacity to a wide range of ecological factors. Lemos (2010) analyzing the 

 Whole grains 
o Degermed grains 



 
Chemometrics in Practical Applications 

 

256 

2. Maize: metabolomic and chemometric analyses for the study of landraces 
Maize (Zea mays L.) was chosen as a model for metabolomic analysis because although most 
of this cereal produced worldwide is used for animal feeding, an important amount is also 
used in human diet and for industrial purposes, providing raw material for food, 
pharmaceuticals, and cosmetics production. The maize grain is composed of several 
chemicals of commercial value and the diversity of its applications depends on the 
differences in relative chemical composition, e.g. protein, oil, and starch contents, traits that 
show prominent genetic components (Baye et al., 2006; White, 2001). Over the last centuries, 
farmers have created thousands of maize varieties suitable for cultivation in numerous 
environments. Accordingly, it seems consensual that the maize landraces’ phenotypes, e.g., 
morphological and agronomic traits and special chemical characteristics of grains are 
resultant of the domestication process. Thus, high throughput metabolomic analysis of 
maize genotypes could improve metabolic singularities knowledge about landraces, helping 
their characterization and evaluation, and indicating new alternatives for their use. In this 
context, to distinguish metabolic profiles it is necessary to consider the use of diverse 
analytical tools, such as spectroscopic and chromatographic techniques for instance. 
Techniques that are reproducible, stable with time, and do not require complex sample 
preparation such as infrared vibrational spectroscopy and nuclear magnetic resonance 
spectroscopy are desirable for metabolic profiling.  

2.1 Metabolic profiling of maize landraces through FTIR-PCA – integral and degermed 
flours 

Vibrational spectroscopy, and particularly Fourier transform infrared spectroscopy (FTIR) is 
thought to be interesting as one aims at discriminating and classifying maize landraces 
according to their chemical traits. FTIR is a physicochemical method that measures the 
vibrations of bonds within functional groups and generates a spectrum that can be regarded 
as a metabolic fingerprint. It is a flexible method that can quickly provide qualitative and 
quantitative information with minimal or no sample preparation of complex biological 
matrices (Ferreira et al., 2001). By other hand, a FTIR spectrum is complex, containing many 
variables per sample and making visual analysis very difficult. Hence, to extract useful 
information from the whole spectra, multivariate data analysis is needed, particularly 
through the determination of the principal components (PCA - Fukusaki & Kobayashi, 
2005). Such a multivariate analysis technique could allow the characterization of the sample 
relationships (scores plans or axis) and the recovery of their subspectral profiles (loadings). 
This approach was applied to classify flour samples from whole (integral) and degermed 
maize grains of twenty-six landraces developed and cultivated by small farmers in the far-
west region of Santa Catarina State, southern Brazil (Anchieta County – 26º31’11’’S, 
53º20’26’’W).  

Previously to multivariate analysis, FTIR spectra were normalized, baseline-corrected in the 
region of interest by drawing a straight line before resolution enhancement (k factor of 1.7) 
was applied using Fourier self deconvolution (Opus v. 5.0, Bruker Biospin, GmbH, 
Rheinstetten, Germany).  Chemometric analysis used normalized, baseline-corrected (3000–
600 cm-1. 1700 data points) and deconvoluted spectra, which were transferred via a JCAMP 
format (OPUS v. 5.0, Bruker Biospin GmbH, Rheinstetten, Germany) into the data analysis 
software for PCA (The Unscramble v. 9.1, CAMO Software Inc., Woodbridge, USA). 

Metabolomics and Chemometrics as Tools  
for Chemo(bio)diversity Analysis - Maize Landraces and Propolis 

 

257 

Previously to PCA analysis each spectrum within the (3000–600 cm-1) region was standard 
normal deviates corrected. 

Figure 1 shows a PCA scores scatter plot for flour samples from whole and degermed grains 
using the whole FTIR spectral window data set (3000–600 cm-1). The scores scatter plot (PC1 
vs. PC2) that contains 93% of the data set variability shows a clear discrimination among 
flour samples of whole and degermed grains. 

 

 

 
 

Fig. 1. Principal component analysis scores scatter plot of the FTIR data set in the spectral 
window of 3000–600 cm-1 wavenumber of landrace maize flours of whole and degermed 
grain cultivated in the southern Brazil. 

The samples of whole grains grouped in PC1+ axis seemed to be more discrepant in their 
chemical composition, appearing more scattered through the quadrants of the PCA 
representation. Figure 2 shows the loadings plot of PC1, revealing the most important 
wavenumbers which explain the distinction of the samples previously found (scores scatter 
plot). The loadings indicated a prominent effect of the lipid components (2924, 2850, and 
1743 cm-1) for the segregation observed. The two major structures of the grains are the 
endosperm and the germ (embryo) that constitute approximately 80 and 10% of the mature 
kernel dry weight, respectively. The endosperm is largely starch (approaching 90%) and the 
germ contains high levels of oil (30%) and protein (18% - Boyer & Hannah, 2001).  

The greatest chemical diversity observed in whole grains can be explained by genetic 
variation of embryos resulting from sexual reproduction. Some authors suggest that the 
high level of genetic and epigenetic diversity observed in maize could be responsible for its 
great adaptation capacity to a wide range of ecological factors. Lemos (2010) analyzing the 

 Whole grains 
o Degermed grains 



 
Chemometrics in Practical Applications 

 

258 

metabolic profile of maize landraces’ leaf tissues from Anchieta County (southern Brazil) 
found a prominent chemical variability among individuals of same variety, although inter-
variety variability has also been observed.  

 
 

 
 

Fig. 2. PC1 loadings plot of the FTIR spectra of maize flours of whole and degermed grains 
in the 3000–600 cm-1 wavenumber region. 

2.2 Starch recognition pattern of maize landraces by NMR spectroscopy and PCA 

The composition of maize grains can be heterogeneous for both the quantity and quality of 
compounds from endosperm as starch, protein, and oil. In this context, metabolomics 
coupled to chemometrics approach was successfully applied to the discrimination of 
starches from the studied twenty-six maize landraces. The starches were extracted from 
flours with distilled water (1: 70, w/v) under reflux (80oC, 1 h), precipitated with ethyl 
alcohol (12 h, 4oC), and oven-dried (55oC until constant weight). Samples (50 mg) were 
dissolved in DMSO-6 (0.6 mL) and 1H-NMR spectra obtained under standard conditions. 
Sodium-3-trimethylsilylpropionate (TMSP-2, 2, 3, 3-d4) was used as internal reference (ppm 
0.0). Spectra were processed using 32768 data points by applying an exponential line 
broadening of 0.3 Hz for sensitivity enhancement before Fourier transformation and were 
accurately phased, baseline adjusted, and converted into JCAMP format to build the data 
matrix. All calculations were carried out using the Pirouette software (v. 3.11, InfoMetrix, 
Woodinville, Washington, USA). The PCA analysis of the whole 1H-NMR data set (32.000 
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data points) was performed including the spectra of amylose and amylopectin standards. 
The chemical structures and the purity of the standards of amylose and amylopectin were 
confirmed by 13C-NMR spectroscopy. The PC1 (32%) vs. PC2 (28%) scores scatter plot 
allowed a clear segregation of the amylopectin standard and a discrimination for the maize 
flours samples in two groups (Fig. 3) by PC1 axis.  

 
Fig. 3. Classification plot of starch fractions of maize landraces for 1H-NMR after PCA 
analysis. The arrows shows the amylose and amylopectin stardands. 

The Roxo 41 variety located closer to the amylopectin standard suggesting the 
predominance of that polysaccharide in relation to amylose in its starchy fraction. This 
result is in accordance to PCA analysis of the IR data set of the fingerprint region of 
carbohydrates that diagnosed the starch granules from Roxo 41 with superior amylopectin 
amount in respect to their amylose content (data not shown). By other hand, the amylose 
standard was grouped with MPA1 and Rajado 8 Carreiras varieties, suggesting that the 
starch granules contain superior amount of that polysaccharide in its starchy fraction. 

3. Propolis: ATR-FTIR and UV-visible spectrophotometry coupled to 
chemometrics as an analytical approach for pattern recognition  
3.1 Attenuated total reflectance-Fourier transform infrared spectroscopy  

Propolis (registration number chemical abstracts service - CAS 9009-62-5) is a sticky colored 
material, which honeybees collect from different plants exudates and modify in its 
hypopharyngeal glands, being used in the hive to fill gaps and to protect against invaders as 
insects and microorganisms. Raw propolis usually contains 50% resin and balsam, 30% wax, 
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10% aromatic oils, 5% pollen, and 5% other substances as inorganic salts and amino acids. 
This resin has been used by humanity since ancient civilizations like Egyptian, Assyrian, 
Greek, Roman, and Inca. In these days, a number of studies have confirmed important 
biological activities such as antibacterial, antifungal, antiviral, antioxidant, anti-
inflammatory, hepatoprotective, and antitumoral (for review see Bankova, 2009; Banksota et 
al., 2001; Castaldo & Capasso, 2002). 

The aspect, texture and the chemical composition of propolis is highly variable and depends 
on the climate, season, bee species and mainly the local flora which is visited by bees to 
collect resin (Markham et al., 1996). For this reason, comparing propolis samples from 
distinct regions might be the same as to compare extracts of two plants that belong to 
different taxonomical families (Bankova, 2005).  

Propolis from Europe is the best known type of propolis. In European regions with 
temperate climate bees obtain resin mainly from the buds of Poplus species and the main 
bioactive components are flavonoids (Greenaway et al., 1990). In tropical countries, the 
botanical resources are much more variable in respect to temperate zones, so bees find much 
more possibilities of collecting resins and hence the chemical composition of tropical 
propolis are more variable and distinct from European ones (Sawaya et al., 2011). Different 
compounds have been reported in tropical propolis such as terpenoids and prenylated 
derivatives of p-coumaric acids in Brazilian propolis (Marcucci, 1995), lignans in Chilean 
samples (Valcic et al., 1998), and polyisoprenylated benzophenones in Venezuelan, 
Brazilian, and Cuban propolis (Cuesta-Rubio et al., 1999; Marcucci, 1995). 

In order to be accepted officially into the main stream of the healthcare system and for 
industrial applications, propolis needs chemical standardization that guarantees its quality, 
safety, efficacy, and provenance. The chemical diversity mainly caused by the botanical 
origin makes the standardization difficult. Since the chemistry and biological activity of 
propolis depends on its geographical origin, a proper method to discriminate its origin is 
needed (Bankova, 2005).   

Chromatographic methods (HPLC, TLC, GC, e.g.) are largely used to identification and 
quantification of propolis compounds, but it its becoming clear that to separate and evaluate 
all constituents of propolis is an almost impossible task (Sarbu & Mot, 2011). Even thought 
the presence of the chemical markers are considered an acceptable method for quality 
control, not always is guarantee about what is stated by the product label, especially if the 
product has been spiked with the chemical markers. Besides, literature has demonstrated 
that is not possible to ascribe the pharmacological activity solely to a unique compound and 
until now no single propolis component has shown to possess anti-bacterial activity higher 
than total extract (Kujumgiev et al., 1999; Popova et al., 2004). Thus, a possibility is offered 
by the fingerprinting methods that can analyze in a non-selective way the propolis samples 
as a whole.  

Poplar propolis, for example, can be distinguished by UV-visible spectrophotometric 
determination of all three important components (flavones and flavonols, flavonones and 
dihydroflavonols, and total phenolics - Popova et al., 2004), but some constraints regarding 
such an analytical approach has been claimed for propolis from tropical regions (Bankova & 
Marcucci, 2000).  
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The search for faster screening methods capable of characterizing propolis samples of 
different geographic origins and composition has lead to the use of direct insertion mass 
spectrometric fingerprinting techniques (ESI-MS and EASI-MS), which has proven to be a 
fast and robust method for propolis characterization (Sawaya et al., 2011), although this 
analytical approach can only detect compounds that ionize under the experimental 
conditions. Similarly, Fourier transform infrared vibrational spectroscopy (FTIR) has also 
demonstrated to be valuable to chemically characterize complex matrices such as propolis 
(Wu et al., 2008).  

In order to achieve the goal of treat propolis sample as a whole than just be focused only in 
marker compounds, chemometric methods are being considered an important tool to 
analyze the huge data sets generated by non-selective analytical techniques such as UV-vis, 
MS, NMR, and FT-IR, generating information not only about chemical composition of 
propolis but also discriminating its geographical origin. 

Authentication of propolis material may be possible by a chemical fingerprint of it and, if 
possible, of its botanical sources. Thus, chemical fingerprinting, i.e., metabolomics and 
chemometrics, is an additional method that has been claimed to be included as a quality 
control method in order to confirm or deny the propolis sample being used for the 
manufacturing of a derived product of that resinous and complex matrix. 

Over the last decades, infrared (IR) vibrational spectroscopy has been well established as a 
useful tool for structure elucidation and quality control in several industrial applications. 
Indeed, the development of Fourier transform (FT) IR and attenuated total reflectance (ATR) 
techniques have also evolved allowing rapid IR measurements of organosolvent extracts of 
plant tissues, edible oils, and essential oils, for example (Damm et al., 2005; Lai et al., 1994; 
Schulz & Baranska, 2007). In consequence of the strong dipole moment of water, IR 
spectroscopy applications have mostly focused on the analysis of dried or non-aqueous 
plant matrices and currently IR methods are widely used as a fast analytical technique for 
the authentication and detection of adulteration of vegetable oils.  

ATR-FTIR spectroscopy was applied to propolis samples collected in the autumn-2010 and 
originated from nineteen geographic regions of Santa Catarina State (southern Brazil) in 
order to gain insights as to the chemical profile of those complex matrices. FTIR 
spectroscopy measures the vibrations of bonds within functional groups and generates a 
spectrum that can be regarded as a metabolic fingerprint. Similar IR spectral profiles (3000 – 
600 cm-1, figure 4) were found by a preliminary visual analysis for purpose of an exploratory 
overview of data, revealing typical signals of e.g., lipids (2910 – 2845 cm-1), monoterpenes 
(1732, 1592, 1114, 1022, 972 cm-1), sesquiterpenes (1472 cm-1), and sucrose (1122 cm-1 - Schulz 
& Baranska, 2007) for all the studied samples. However, we were not able to identify by 
visual inspection of the spectra a clear picture regarding a discriminating effect of any 
primary or secondary metabolites among the propolis samples. 

A FTIR spectrum is complex, containing many variables per sample and making visual 
analysis very difficult. Hence, to extract extra useful information, i.e., latent variables, from 
the whole spectra chemometric analysis was performed considering the whole FTIR data set 
using principal components analysis (PCA) for an exploratory overview of data. This 
method could reveal similarity/dissimilarity patterns among propolis samples, simplifying  
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Fig. 4. IR spectral profile of propolis samples (autumn, 2010) produced in southern Brazil, 
according to the geographic regions of origin in Santa Catarina State. IR spectra are shown 
from top to bottom following the geographic precedence, i.e. 19 counties, of the propolis 
samples: Angelina (ANG), Balneário Gaivotas (BG), Bom Retiro (BR1 and BR2), Caçador 
(Cç), Campo-Erê (CE), Canoinhas (CA), Campos Novos (CN), Descanso (DS), José Boiteux 
(JB), Porto União (PU), Serra Alta (SA), São Joaquim (SJ1 and SJ2), São José do Cerrito (SJC), 
Urupema (URU), Vidal Ramos (VR), Florianópolis (FLN), and Xaxim (XX). 

data dimensions and results interpretation, without missing the more relevant information 
associated to them (Fukusaki & Kobayashi, 2005; Leardi, 2003). The covariance was choose 
for matrix construction in PCA calculation, since all variables considered were expressed in 
the same unit. By doing so, the magnitude differences were maintained, i.e., data were not 
standardized and variables contribution to samples distribution along axes was direct 
proportional to their magnitude. For the purpose of the propolis chemical profile analysis 
this kind of information is thought to be very useful, because wavenumber with higher 
absorbances (higher metabolites concentration) contribute more significantly with objects 
distribution into PCA, introducing quantitative information beside the compositional 
information of the sample data. 

The principal component analysis (PCA) of the whole spectral data (3000 – 600 cm-1, 1700 
data points) revealed that PC1 and PC2 defined 88% of the variability from the original IR 
data and a peculiar pattern of lipids (2914 cm-1 and 2848 cm-1 - C-H stretching vibrations) for 
the samples from the northern region (NR) of Santa Catarina State. The climate in that 
region is typically mesothermic, humid subtropical with a mild summer and an annual 
temperature average of 17.2ºC – 19.4ºC. On the other hand, the propolis produced in the 
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highlands (1360m altitude, annual maximum and minimum temperatures average of 18.9ºC 
and 9.3ºC, respectively) were discrepant regarding their monoterpene (1114 cm-1 and 972 
cm-1 - -CH2) and sesquiterpene (1472 cm-1 -  CH2) compounds (Schulz & Baranska, 2007) – 
Figure 5.  In despite of NR1 and NR2 propolis samples have grouped in PC1- and PC2+, they 
differ somewhat in respect to their chemical composition, an effect attributed to the flora 
composition found in those regions, e.g., mostly Atlantic Rainforest in NR1 as NR2 shows 
extensive areas covered by artificial reforestations i.e., Eucalyptus spp and Pinus spp, 
furnishing distinct raw materials for propolis production.       

 
 
 

 
 
 

Fig. 5. Principal component analysis scores scatter plot of the FTIR data set in the spectral 
window of 3000–600 cm-1 wavenumber (1700 data points) of propolis samples produced in 
the southern Brazil (Santa Catarina State). NR1, NR2 and HL refer to propolis samples 
originated from northern and highland regions of Santa Catarina State. The calculations 
were carried out using The Unscrambler software (v. 9.1, Oslo - Norway). PC1 and PC2 
accounts for 88% of the variance preserved. 

Further chemometric analysis took into consideration the fact that propolis is a very well 
known source of phenolic compounds, e.g., phenolics acids and flavonoids. Indeed, 
phenolic compounds occur ubiquitously in most plant species and take part of the 
chemical constitution of propolis worldwide. IR spectroscopy allows to identify phenolic 
compounds since they demonstrate strong IR bands due to C-H wagging vibrations 
between 1260 – 1180 cm-1 and 900 – 820 cm-1 (Schulz & Baranska, 2007). The principal 
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component calculations were performed for both 1260 – 1180 cm-1 and 900 – 820 cm-1 
spectral windows and PC1 and PC2 resolved about 96% of the spectral data variability. 
An interesting discrimination profile was detected where samples from the far-west (FW) 
region grouped distinctly in respect to northern (NR1) ones, which also differed from the 
highlands (HL) propolis samples. Such findings can be explained in any extension based 
on the flora composition of the studied geographic regions. In the northern and far-west 
regions of Santa Catarina State the Atlantic Rainforest is typically found, but the floristic 
composition varies according to the altitude, e.g., 240 m altitude – NR1 and 830 m – FW. 
Besides, as a mesothermic humid subtropical climate is found in NR1, the FW region is 
characterized by a temperate climate that determines a discrepant composition of plant 
species. Finally, the HL region (1360m altitude, temperate climate) is covered by the 
Araucaria Forest, where parana pine (Araucaria angustifolia, Gymnospermae, Araucariaceae) 
occurs as a dominant plant species. A. angustifolia produces a resinous exudate rich in 
guaiacyl type lignans, fatty acids, sterols (Anderegg & Rowe, 2009), phenolics, and 
terpenic acids that is thought to be used by honey bee (Apis mellifera) for the propolis 
production. Since the plant species populations influence the propolis chemical 
composition, the discrimination profile detected by ATR-FTIR coupled to chemometrics 
seems to be an interesting analytical approach to gain insights as to the effect of the 
climatic factors and floristic composition on the chemical traits of that complex  
matrix.    

3.2 Ultraviolet-visible scanning spectrophotometry 

Combination of UV-visible spectrophotometric wavelength scans and chemometric (PCA) 
analysis seems to be a simple and fast way to prospect plant extracts. This analytical 
strategy revealed to be fruitful for discrimination of habanero peppers according to their 
content of capsaicinoids, substances responsible for the pungency of their fruits (Davis et 
al., 2007).  

Chemometric analysis was performed considering the absorbance values of the total UV-
visible data set (200 m to 700 m, 450 data points) for the propolis samples in study, by 
using principal components analysis (PCA) for an exploratory overview of data.  

In a first approach, principal components analysis (PCA) was tested by both correlation and 
covariance matrices of calculations. If correlation is used, the data set is standardized (mean-
centered and columns scaled to the unit of variance), decreasing the effect of differences in 
magnitude between variables and leading to a distribution of objects (eigenvalues) with equal 
influence from all variables. On the other hand, if covariance is used, data is only mean-
centered; retaining its original scale. The resulting distribution is then determined either by 
composition and magnitude of variables, leading to a PCA representation more influenced 
by larger observed values (Manetti et al., 2004).  A similar distribution of objects was found 
for both correlation and covariance matrices in PC calculations, as PC1 and PC2 resolved 
91.2% and 96.3%, respectively of the variability of the spectrophotometric data set. Thus, the 
covariance matrix was chosen for PCA calculations, since all variables considered were 
expressed in the same unit. By doing so, the magnitude differences were maintained, i.e., 
data were not standardized and variables contribution to samples distribution along axes 
was direct proportional to their magnitude. For the purpose of the chemical profile analysis 
of the propolis samples this kind of information is thought to be very useful, because 
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wavelengths with higher absorbances (higher metabolites concentration) contribute more 
significantly with objects distribution into PCA, introducing quantitative information beside 
the compositional information of the sample data. 

Principal component analysis was performed using The Unscrambler software (v. 9.1, Oslo - 
Norway) and revealed mostly a distribution of the propolis samples along the PC1 axis (91% 
sample total variability), as PC2 (5% sample total variability) seemed to be lesser 
discriminator of the objects. A clear separation of the samples according to the east-west axis 
of Santa Catarina State could be found, where propolis produced near coastal regions (CR1 
and CR2) grouped in PC1+/PC2-, as the sample from the far-west region (FW) was detected 
in the opposite side of PC1 axis, along with the samples from the northern region (PU, Cç, 
and CA - Figure 6). Interestingly, propolis samples from the counties SJ, URU, BR (highlands 
counties), and ANG, which shown geographic proximities and a certain common floral 
composition, seemed to be similar in their chemical profiles as determined by UV-visible 
scanning spectrophotometry, grouping in PC1+/PC2+.  

 
 

 
 

Fig. 6. Principal component analysis scores scatter plot of the UV-visible data set in the 
spectral window of 200 m to 700 m (450 data points) of propolis samples produced in the 
southern Brazil (Santa Catarina State). CR1, CR2, and FW refer to propolis samples originated 
from coastal (BG and FLN Counties) and far-west (CE County) regions, respectively, of 
Santa Catarina State. The sample grouping of propolis with similar UV-visivel scanning 
profiles regarding their (poly)phenolic composition is detached in the PC1+/PC2+ 
quadrant. PC1 and PC2 resolved 96% of the total variability of the spectral data set. 
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High loadings associated to the wavelengths 394 m, 360 m, 440 m, and 310 m seemed 
to influence the observed distribution of the propolis samples and could be associated to the 
presence of (poly)phenolic compounds. In fact, the λmax for the cinnamic acid and its 
derivatives is near 310-320 m as for the flavonols is usually around 360 m (Tsao & Deng, 
2004). Further chemical analysis of the total content of phenolics ad flavonoids in the 
propolis originated from the counties SJ, URU, BR, and ANG revealed similar contents, with 
average concentrations of 1411.52 µg/ml and  4.61 µg/ml of those secondary metabolites, 
respectively, in the hydroalcoholic (70: 30, v/v) extract. Such findings differed (P<0.05 – 
Tukey test) in respect to the concentrations detected for the propolis samples produced in the 
coastal (793.67 µg/ml – total phenolics and 2.82 µg/ml – flavonoids) and far-west  (952.97 
µg/mL – total phenolics and 0.59 g/ml flavonoids) regions of Santa Catarina State, 
corroborating the PCA results herein shown.  

 
 
 
 
 
 
 

 
 
 
 
 

Fig. 7. Dendrogram of propolis samples using average linkage with Bray-Curtis 
dissimilarity measure. Data calculations were based on the absorbance values for the UV-
visible spectral window of 200 m to 700 m of propolis samples produced in Santa 
Catarina State - southern Brazil, autumn-2010. 

Metabolomics and Chemometrics as Tools  
for Chemo(bio)diversity Analysis - Maize Landraces and Propolis 

 

267 

In order to check the chemical similarity pattern of propolis samples detected by PCA, 
further cluster analysis of the whole absorbance UV-vis data set, i.e., absorbance values of 
200 m to 700 m (450 data points), was performed by using the Unweighted Pair Group 
Method with Arithmatic Mean (UPGMA) based on Bray-Curtis dissimilarity coefficient. 
UPGMA is a simple agglomerative or hierachical clustering method used in for the creation 
of phonetic trees, i.e., phenograms, hierarchical trees or dendrograms that indicate the 
similarity degree among samples/objects of interest, so that observations in the same cluster 
are similar in some sense. In UPGMA method after two objects with the least dissimilarity 
fuse together an arithmetic average of the dissimilarity of this new cluster and the rest of the 
objects is calculated. This leads to a reduction in the size of the original dissimilarity matrix. 
The procedure continues with the dissimilarity matrix being correspondingly reduced. 
When the average between an object and a cluster is calculated, the method gives equal 
weights to the members of the clusters when averaging, i.e., unweighted. Thus, in the 
progressive reduction of the dissimilarity matrix, only relationships between groups are 
considered, which are given equal weighting and this leads to loss of information about the 
relationships between pairs of objects (Legendre, 1998; Singh, 2008). 

The hierarchical tree of the similarity of chemical profiles of the propolis samples is shown 
in figure 7. The findings suggest a resemblance of grouping as found by PCA calculations in 
respect to the SJ, URU, BR, and ANG samples, as well as for the propolis originated from the 
coastal (BG and FLN) and northern regions (CA, PU, and Cç). Additionally, UPGMA 
analysis also discriminate the propolis produced in the western (AC, XX, and CN) and far-
west regions.  

4. Conclusions 

The chemo(bio)diversity analysis of maize landraces and propolis produced in southern 
regions of Brazil was successfully assessed by using a typical metabolomic platform 
involving spectroscopic techniques (FTIR, 1H- and 13C-NMR, and UV-visible) and 
chemometrics. The huge amount of data afforded by those spectroscopic techniques was 
analyzed using multivariate statistical methods such as principal component analysis and 
cluster analysis allowing obtaining extra information on the metabolic profile of the complex 
matrices in study.  

The analytical approach described showed to be suitable when ones aim to discriminate 
maize flour samples from whole and degermed maize, an issue thought to be important for 
the food, cosmetic, and pharmaceutical industries regarding the usage and quality control 
process of that raw material. Similarly, the classification of maize landraces according to 
their starch traits is considered technologically relevant in order to optimize the usage of 
non-chemically modified starches in industrial process, for instance.  

The classification of Brazilian propolis as to their chemical profiles and geographic regions 
seems to be relevant because that biomass is typically quite complex, making difficult and 
expensive to perform a complete characterization in that sense. By doing so, the propolis 
produced in southern Brazil might be better evaluated as to their potential usage in cosmetic 
and pharmaceutical industry, taking into consideration their secondary metabolite 
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constituents, e.g., mono/sesquiterpenes and phenolics. The coupling of chemometrics-
spectroscopic techniques used is thought to be essential to allow detecting peculiar chemical 
traits of the propolis samples according to their geographic regions in a simple and fast way. 
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1. Introduction  
The management of river water quality is a major environmental challenge. One of the 
major challenges is in determining point and non-point sources of pollutants. Industrial and 
municipal wastewater discharges can be considered as constant polluting sources, unlike 
surface water runoff which is seasonal and highly affected by climate. According to Aiken et 
al. (1982), 42 tributaries in Peninsular Malaysia are categorized as very polluted including 
the Langat River. Until 1999, there were about 13 polluted tributaries and 36 polluted rivers 
due to human activities such as, industry, construction and agriculture (Department of 
Environment, Malaysia (DOE), 1999). In 1990, there were 48 clean rivers classified as clean 
but the number is reduced to 32 rivers in 1999 (Rosnani Ibrahim, 2001). 

Surface water pollution is identified as the major problem affecting the Langat River Basin 
in Malaysia. Increase in developing areas within the river basin has in turn increased 
pollution loading into the Langat River. To avoid further degradation, the DOE have 
installed telemetric stations along the river basin to continuously monitor the water quality. 
As a result, abundant data were collected since 1988. There are 927 monitoring stations 
located within 120 river basins throughout Malaysia. Water quality data were used to 
determine the water quality status and to classify the rivers based on water quality index 
(WQI) and Interim National Water Quality Standards for Malaysia (INWQS). WQI provides 
a useful way to predict changes and trends in the water quality by considering multiple 
parameters. WQI is calculated from six selected water quality variables, namely dissolved 
oxygen (DO), biochemical oxygen demand (BOD), chemical oxygen demand (COD), 
suspended solid (SS), ammonical nitrogen (AN) and pH (DOE, 1997). It is a well-known 
phenomenon that the contribution of pollution loading into river systems from the 
environment involves a complex interaction of many factors (e.g. chemical, physical and 
meteorological interaction). These primary pollutants are emitted from land use activities 
surrounding the river basin (e.g. agriculture, forest, urban, industrial and others) Rapid 
urbanization along the Langat River plays an important role in the increase of point source 
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(PS) and non-point source (NPS). In view of this complex interaction, use of modelling 
techniques to solve this problem, is needed. However, the problem of obtaining models that 
adequately represent the dynamic behaviour of field data is not easy. Lack of good 
understanding and description of the phenomena involved, the availability of reliable and 
complete field data set and the estimation of the numerous parameters involved are the 
major factors contributing to this problem. Beck (1986) noted that, increase in model 
complexity will undoubtedly increase the number of parameters, leading to the problems of 
identification.  

Applications of ANN (Artificial Neural Networks) to environmental problems are becoming 
more common (Silverman and Dracup, 2000; Scardi, 2001; Recknagel et al., 2002; Bowden et 
al., 2005; Muttil and Chau, 2007). The applications of ANN, which are computing systems 
that were originally designed to simulate the structure and function of the brain (Rumelhart 
et al, 1986) is a relatively new concept in environmental modeling. If trained properly, a 
neural network model is capable of ‘learning’ linear as well as the nonlinear features in the 
data (Elsner and Tronis, 1992).  

ANN consists of a set of simple processing units (neurons) arranged in a defined 
architecture and connected by weighted channels which act to transform remotely-sensed 
data into a classification. The classification techniques of ANN are unlike the conventional 
ones. It is distribution-free, may sometimes use small training sets (Hepner et al., 1990) and, 
once trained; it is rapid computationally, which will be of value in processing large data sets 
(Gershon and Miller, 1993). Furthermore, ANNs have been shown to be able to map land 
cover more accurately compared to many widely used statistical classification techniques 
(Benediktsson et al., 1990; Foody et al., 1995) and alternatives such as evidential reasoning 
(Peddle et al., 1994). 

It has been proposed that the best tool to model non-linear environmental relationship is 
ANN (Zhang and Stanley, 1997; Jain and Indurthy, 2003). Research have been undertaken at 
Imperial College, London which attempts to investigate the capability of ANN approach in 
modelling spatial and temporal variations in river water quality (Clarici, 1995). ANNs were 
used as a predictive model to predict cyanobacteria Anabaena spp.  in the River Murray, 
South Australia (Maier et al., 1998). DeSilets et al. (1992), have also used ANN to predict 
salinity. Ha and Stenstrom (2003), proposed a neural network approach to examine the 
relationship between storm water quality and various types of land use.  

ANN has been successfully applied on the study of river water quality in Malaysia (Zarita 
Zainudin, 2001; Mohd Ekhwan Toriman and Hafizan Juahir, 2003; Hafizan Juahir et al., 
2003a,b; Hafizan et al, 2004a,b; 2005; Ruslan Rainis et al., 2004). An approach for identifying 
possibilities of water quality improvement could be developed by using this concept. Such 
information could provide opportunities for better river basin management to control river 
water pollution in Malaysia. In the Malaysian context, Hafizan Juahir et al. (2003a) showed 
that the ANN model gives a better performance compared to the autoregressive integrated 
moving average (ARIMA) model in forecasting DO. The use of ANN for river regulation 
(Mohd. Ekhwan Toriman and Hafizan Juahir, 2003) and the application of the second order 
back propagation method (Hafizan Juahir et al., 2004a) on water quality of the Langat River 
have also been demonstrated. 
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In natural environment, water quality is a multivariate phenomenon, at least as reflected in 
the multitude of constituents which are used to characterize the quality of water body. 
Water quality is very difficult to model because of the different interactions between 
pollutants and meteorological variables. The principal component analysis (PCA) is one of 
the approaches to avoid this problem and has received increasing attention as an accepted 
method in environmental pattern recognition (Simeonov et al., 2003; Wunderline et al., 2001; 
Helena et al., 2000; Loska and Wiechula, 2003)  

The objective of this study is to use the PCA method to classify predictor variables according 
to their interrelation, and to obtain parsimonious prediction model (i.e., model that depend 
on as few variables as necessary) for WQI with other physico-chemical and biological data 
as predictor variables to model the water quality of the Langat river. For this purpose, 
principal component scores of 23 physico-chemical and biological water quality parameters 
were generated and selected appropriately as input variables in ANN models for predicting 
WQI. 

2. Methodology 
2.1 The data and monitoring sites 

The water quality data in this study were obtained from seven stations along the main 
Langat River (Fig. 1).  

 
Fig. 1. Data from seven water quality stations (Sb) were selected in this study along the main 
river. 
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The water quality monitoring stations are manned by the DOE and Ministry of Natural 
Resource and Environment of Malaysia. The selected stations are illustrated in Table 1. The 
data used in the study is from September 1995 to May 2002. Seven sites were chosen, 
namely, Teluk Panglima Garang (site 7), Teluk Datok (site 6), Putrajaya (site 5), Kajang (site 
4), Cheras (site 3), Hulu Langat (site 2), Pangsoon and Ulu Lui (site 1). Sites 3 to site 7 are 
located in the region of high pollution load as there are a several wastewater drains situated 
in the middle and downstream of the Langat River basin. Site 2 is partly situated in the 
middle stream region, designated as moderately polluted.  Site 1 and a part of site 2 are 
located upstream of the Langat River, in an area of relatively low river pollution. It is worth 
mentioning here that some stations have missing data and not all stations were consistently 
sampled. 

Although there are 30 water quality parameters available, only 23 completely monitored 
parameters were selected. A total of 254 samples were used for the analysis. The 23 water 
quality parameters were dissolved oxygen (DO), biological oxygen demand (BOD), 
electrical conductivity (EC), chemical oxygen demand (COD), ammoniacal nitrogen (AN), 
pH,  suspended solids (SS), temperature (T), salinity (Sal), turbidity (Tur), dissolved solid 
(DS), total solid (TS), nitrate (NO ), chlorine (Cl ), phosphate (PO ), zinc (Zn), calcium (Ca), 
iron (Fe), potassium (K), magnesium (Mg), sodium (Na), E.coli and coliform. 

 
 
 
DOE Station 
No. 

Study 
Code 

Distance From 
Estuary (km) 

Grid Reference Location 

2814602 Sb07 4.19 2O. 52.027’N  101O 

26.241’E 
Kampung Air Tawar 
(penghujung jalan) 

2815603 Sb06 33.49 2O 48.952’N  101O 
30.780’E 

Telok Datuk, near Banting 
Town 

2817641 Sb05 63.43 2O 51.311’N  101O 
40.882’E 

Bridge at Kampung Dengkil 

2918606 Sb04 81.14 2O 57.835’N  101O 

47.030’E 
Near West Country Estate 

2917642 Sb03 86.94 2O 59.533’N  101O 
47.219’E 

Kajang bridge 

3017612 Sb02 93.38 3O 02.459’N  101O 
46.387’E 

Junction to Serdang, Cheras 
at Batu 11 

3118647 Sb01 113.99 3O 09.953’N  101O 
50.926’E 

Bridge at Batu 18 

 
 

Table 1. DOE sampling station at study area. 

2.2 Principal component analysis 

In this work, PCA was performed on the above mentioned water quality parameters to rank 
their relative significance and to describe their interrelation patterns. Chosen PC scores of 
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the 23 water quality parameters were used as input variables in ANN model to predict the 
WQI. The principal components (PCs) can be expressed as 

 
mjimjijiij xaxaxaz  ...2211

         (1) 

Where z is the component score, a is the component loading, x the measured value of 
variable, i is the component number, j is the sample number and m is the total number of 
variables.  

The PCs generated by PCA are sometimes not readily interpreted; therefore, it is advisable 
to rotate the PCs by varimax rotation. Varimax rotation ensures that each variable is 
maximally correlated with only one PC and a near zero association with the other 
components (Abdul-Wahab et al., 2005; Sousa et al., 2007). Varimax rotations applied on the 
PCs with eigenvalues more than 1 are considered significant (Kim and Mueller, 1987) where 
the typical criteria are 75-95% of total variance (Chen and Mynett, 2003). The rotations were 
carried out, in order to obtain new groups of variables.  Variables with communality greater 
than 0.7 are considered, having significant factor loadings (Stevens, 1986). 

2.3 Artificial neural networks for WQI prediction 

In this work, the back propagation (BP) ANN was used in the development of all the 
prediction models. The Activation Transfer Function of a back-propagation network is 
usually a differentiable Sigmoid (S-shape) function, which helps to apply the non-linear 
mapping from inputs to outputs. A three layer back-propagation ANN is used in this study. 
The number of input and output neurons is determined by the nature of the problem under 
study. In this study, the networks were trained, tested and validated with one hidden layer 
and 1 to 10 hidden neurons. This choice was based on the work of Jiang et al. (2004), who 
found that the results with one hidden layer was better than that of two hidden layers, and 
the best performance was obtained using a structure with 3 to 6 neurons in the hidden layer. 
The output neuron (layer) gives the predicted WQI value. 

Two different types of ANN models were developed. In the first type,  prediction was 
performed based on the original PCs. In the second type of ANNs developed, scores of 
rotated (varimax rotation) PCs (ANN-RPCs) with eigenvalues greater than 1 were selected 
as input. For this model, prediction of WQI was performed using two to six rotated 
principal components separately. 

The original PCs and rotated PCs (RPCs) data sets consist of 305 observations (305 rows) 
and are divided into training, testing and validating phases for WQI prediction. The ANN 
predicted WQI values are compared to the WQI values calculated using the DOE-WQI 
formula which is based on 6 water quality parameters, namely the DO, COD, BOD, AN, SS 
and pH (DOE, 1997). The input data matrix consists of 23 water quality variables (column) 
and 305 observations (rows) [23×305]. The observed data for each station is arranged 
according to time of observation from September 13, 1995 to June 7, 2002. Table 2 describes 
the data structure. The validation data is at least 10% of the whole data set, with 75% 
training set and 25% testing set data (Kuo et al., 2007). 
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No. of Observations Input parameters Output 
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1 Obs1,1 Obs1,2 Obs1,3 . . . . Obs1,23 O1,1 
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305 Obs305,1 Obs305,2 1     Obs305,23 O305,1 

          

Table 2. The data structure for ANN prediction model. 

2.4 Determination of model performance  

The model’s behaviour in both learning (training and testing) and validating phase, is 
evaluated using the following statistical methods; the correlation coefficient (R) at 95% 
confidence limit, given by equations; 
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and the mean bias error or residual error given by; 
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Where ˆ ix  and ix   represent observed values and the corresponding forecast values for i 
=1,2,…..,n. 

The prediction performance evaluated using these two methods are used to evaluate the 
accuracy of the forecast and for comparing the forecasting ability of each approach. 

The 95% confidence limit is used to determine that the predicted output lie within the 
confidence range. It is assumed that a predicted value fall into an interval within which 
there is an associated uncertainty. According to Wackerly et al. (1996), this uncertainty is 
derived from the residual errors that have already been calculated within that range of 
values. If the residual errors are randomly distributed, there is a general rule of thumb 
which states that they will lie within two standard deviations of their mean with a 
probability of 0.95. This method was used in the measurements of the ANN prediction 
performance conducted by some researchers (Bishop, 1995; Tibshirani, 1996; Shao et al., 
1997; Zhang et al., 1998; Lowe and Zapart, 1999; Townsend and Tarassenko, 1999) 

ANN models and statistical analyses were carried out using MATLAB 7.0 and XLSTAT2008 
(Excel2003 add-in) for Windows. 

Using Principal Component Scores  
and Artificial Neural Networks in Predicting Water Quality Index 

 

277 

3. Results and discussion  
Post PCA, out of the 23 principal components generated, only six PCs with eigenvalues 
higher than 1 (Table 3) were selected for the ANN input parameters. Selected PCs explained 
75.1% of the total variation. Furthermore, communality values were high for the selected 
PCs, for example, the values are 93% for Cond., 95% for Sal, 98% for DS and TS (Table 4). 
These results further confirm the choice of the selected number of PCs (Stevens, 1986). 

For the first six rotated PCs (RPCs), the loadings from PCA are given in Table 4. The highest 
correlations between variables are noted in bold. For instance, Cond., Sal, DS, TS, Cl, Ca, K, 
Mg and Na, have high correlations with RPC1. Eighteen variables with strong loadings were 
included in the six selected RPCs. Significant variables in RPC1 are Cond., Sal., DS, TS, Cl, 
Ca, K, Mg, and Na; in RPC2 they are DO, BOD and AN; in RPC3 they are SS and Tur and in 
RPC4, NO3- and PO43-. The only meaningful loads in RPC5 and RPC6 are pH and Zn. 
 

 PC1 PC2 PC3 PC4 PC5 PC6 
Eigenvalue 9.074 2.387 2.067 1.492 1.225 1.026 
Variability (%) 39.451 10.380 8.987 6.488 5.326 4.459 
Cumulative % 39.451 49.830 58.817 65.305 70.631 75.091 

Table 3. Descriptive statistics of selected original PCs with eigenvalues more than 1. 

 
Variables RPC1 RPC2 RPC3 RPC4 RPC5 RPC6 Communalities 
DO -0.205 -0.722 -0.121 0.046 0.485 -0.066 0.82 
BOD 0.035 0.740 0.071 0.110 0.110 0.022 0.58 
COD 0.340 0.103 0.081 -0.166 0.268 0.326 0.34 
SS -0.042 -0.009 0.920 0.010 -0.025 0.017 0.85 
pH 0.189 -0.109 -0.204 0.020 0.792 -0.083 0.72 
AN -0.092 0.797 -0.151 0.161 0.023 -0.032 0.69 
T 0.337 0.368 -0.242 -0.298 -0.317 0.208 0.54 
Cond. 0.963 0.022 -0.043 0.035 0.013 -0.022 0.93 
Sal. 0.974 0.023 -0.038 0.030 0.008 -0.004 0.95 
Tur. -0.031 -0.007 0.863 0.011 -0.140 -0.035 0.77 
DS 0.988 0.017 -0.034 0.013 0.009 -0.005 0.98 
TS 0.985 0.017 0.069 0.014 0.007 -0.003 0.98 
NO3- 0.018 0.033 0.107 0.688 -0.126 0.300 0.59 
Cl 0.986 0.010 -0.029 -0.004 0.020 0.005 0.97 
PO43- 0.023 0.312 -0.106 0.700 0.112 -0.073 0.62 
Zn -0.019 0.044 -0.011 0.186 -0.128 0.767 0.64 
Ca 0.980 0.028 -0.026 -0.043 -0.024 0.039 0.97 
Fe -0.080 0.043 0.475 0.540 0.066 0.192 0.57 
K 0.984 0.004 -0.031 -0.004 0.004 0.010 0.97 
Mg 0.974 0.000 -0.022 -0.028 -0.002 0.037 0.95 
Na 0.986 0.002 -0.025 -0.020 0.005 0.017 0.97 
COLI -0.254 0.361 0.097 -0.424 0.457 0.056 0.60 
COLIFORM -0.032 0.049 -0.025 0.042 -0.077 -0.517 0.28 

Table 4. Rotated factor loadings using six PCs. 
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Using the original principal component scores as inputs, the best architecture consist of a 
three layer network with 23 input neurons, 10 neurons in the hidden layer and one neuron 
in the output layer. Considering RPC scores as inputs, the best architectures were achieved 
with almost the same number of hidden neurons. The hidden neurons consist of 9 and 10 
neurons respectively. Training was carried out for a maximum 10000 iterations. Selection of 
the network was performed at maximum correlation coefficient (R) and 95% confidence 
limit.  

Table 5 and Figure 2 illustrate the prediction performances of ANN models using 
different combinations of PC scores as input variables. ANN using the first 2 PCs (PC1 
and PC2) does not perform very well as far as accuracy is concerned for all the training, 
testing and validation phases. It is observed that the prediction performance of the 
validation phase is slightly worse compared to the training and testing phases. It is 
important to point out that for this model, the cumulative percentage in explaining the 
variance given by these two RPCs is only 49.8%. None of the strong loading variables 
contains the variables forming the WQI equation. DO, BOD and pH loadings in PC2 
explain only 10.4% of the total variance.  

Based on the results, it is apparent that the WQI prediction performance increases with the 
increase in number of input variables. The highest accuracy in predicting WQI is given by 
model ANN-RPC6, which contains six RPCs with 75.1% variation explained, giving an R2 
value of 0.64 (training), 0.87 (testing), and 0.72 (validation) respectively. 

 
 
 

Model No.of 
PC 

R squared MBE 
Training Testing Validation Training Testing Validation 

ANN-RPC2 (2 inputs) 2 0.43 0.70 0.32 28.01 -167.90 -40.71 
ANN-RPC3 (3 inputs) 3 0.60 0.78 0.61 64.95 -109.68 6.60 
ANN-RPC4 (4 inputs) 4 0.53 0.79 0.47 0 -165.04 -89.78 
ANN-RPC5 (5 inputs) 5 0.53 0.79 0.47 140.12 -143.75 -44.77 
ANN-RPC6 (6 inputs) 6 0.64 0.87 0.72 67.93 -58.57 -44.61 
ANN-PC23 
(23 original PC inputs) 

 
23 
 

 
0.60 

 

 
0.85 

 

 
0.66 

 

 
-18 

 

 
-81.59 

 

 
-49.83 

 
 

Table 5. The prediction performances of the different ANN models. 

From table 5, it can be observed that the prediction performance of the ANN model using 
original PCs (23 input PC scores) is not significantly different from the RPC models. 
However, as RPC models use fewer variables and is far less complex, the advantage over the 
ANN-PC23 model is obvious. Comparing the MBE values, it is generally observed that the 
signs for the validation phases are negative for both the un-rotated and rotated PC models. 
This is an indication that the predicted WQI values are consistently underestimated in both 
approaches.  
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Part III 

Fig. 2. The prediction performances for different combination of PC scores during training,  
testing  and validation  phases : (i) 2 RPCs, (ii) 3 RPCs, (iii) 4 RPCs, (iv) 5 RPCs, (v) 6 RPCs 
and, (vi) 23 original PCs. 
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Fig. 2. The prediction performances for different combination of PC scores during training,  
testing  and validation  phases : (i) 2 RPCs, (ii) 3 RPCs, (iii) 4 RPCs, (iv) 5 RPCs, (v) 6 RPCs 
and, (vi) 23 original PCs. 
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This study also attempts to allocate 95% confidence interval on the WQI prediction 
produced by the best ANN model. Figure 3, 4 and 5 show the comparison between 
predicted values and the upper (UL) and lower limits (LL) lying within 95% confidence 
interval. This was carried out for ANN-RPC6 and ANN-PC23 models. It can be seen that 
only 4.3% out of the 305 predicted values were identified beyond the 95% confidence limit 
(1% fall below the LL and 3.3% fall beyond the UL) for ANN-RPC6. For ANN-PC23, 25% of 
the 305 observations fall beyond the upper and lower of 95% confidence interval limit (14% 
fall below the LL and 11.8% fall beyond the UL). This basically shows that by using reduced 
rotated PC scores as input, better results can be obtained without losing information. It is 
thus apparent that ANN prediction using scores of varimax rotated PCs result in a more 
accurate WQI prediction. 
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Fig. 3. Predicted WQI within the 95% confidence interval during training phase using (a) six 
rotated PCs, and (b) 23 original PCs. 
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Fig. 4. Predicted WQI within the 95% confidence interval during testing phase using (a) six 
rotated PCs, and (b) 23 original PCs. 
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Fig. 3. Predicted WQI within the 95% confidence interval during training phase using (a) six 
rotated PCs, and (b) 23 original PCs. 
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Fig. 4. Predicted WQI within the 95% confidence interval during testing phase using (a) six 
rotated PCs, and (b) 23 original PCs. 
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(b) 

Fig. 5. Predicted WQI within the 95% confidence interval during validation phase using (a) 
six rotated PCs, and (b) 23 original PCs. 

4. Conclusion  
In this work, a combination of PCA and ANN is used to predict WQI based on 23 historical 
water quality parameters. The original predictors were selected based on the available 
Malaysian DOE data. To obtain the latent variables as inputs into the ANN, two different 
approaches were used; one based on un-rotated original PCs and the other based on 
varimax rotated PCs. 

Using six PCs, significant loadings are observed for  Cond, Sal, DS, TS, Cl, Ca, K, Mg and Na 
in PC1,  DO, BOD and AN in PC2, SS and Tur in PC3, NO3- and PO43- in PC4, pH in PC5 
and Zn in PC6. ANN models based on these 6 PC scores can predict WQI with acceptable 
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accuracy (within 95% confidence limit). Moreover, the ANN model using the 23 original PCs 
as input, do not render the prediction more accurate, even with a complex network 
structure. The use of rotated PC scores based models is clearly more effective and efficient 
due to the elimination of collinearity and reduction of predictor variables without losing 
important information.  
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Fig. 5. Predicted WQI within the 95% confidence interval during validation phase using (a) 
six rotated PCs, and (b) 23 original PCs. 

4. Conclusion  
In this work, a combination of PCA and ANN is used to predict WQI based on 23 historical 
water quality parameters. The original predictors were selected based on the available 
Malaysian DOE data. To obtain the latent variables as inputs into the ANN, two different 
approaches were used; one based on un-rotated original PCs and the other based on 
varimax rotated PCs. 

Using six PCs, significant loadings are observed for  Cond, Sal, DS, TS, Cl, Ca, K, Mg and Na 
in PC1,  DO, BOD and AN in PC2, SS and Tur in PC3, NO3- and PO43- in PC4, pH in PC5 
and Zn in PC6. ANN models based on these 6 PC scores can predict WQI with acceptable 
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accuracy (within 95% confidence limit). Moreover, the ANN model using the 23 original PCs 
as input, do not render the prediction more accurate, even with a complex network 
structure. The use of rotated PC scores based models is clearly more effective and efficient 
due to the elimination of collinearity and reduction of predictor variables without losing 
important information.  
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1. Introduction 
This chapter provides a tutorial on the fundamental concept of Parallel factor (PARAFAC) 
analysis and a practical example of its application. PARAFAC, which attains clarity and 
simplicity in sorting out convoluted information of highly complex chemical systems, is a 
powerful and versatile tool for the detailed analysis of multi-way data, which is a dataset 
represented as a multidimensional array. Its intriguing idea to condense the essence of the 
information present in the multi-way data into a very compact matrix representation 
referred to as scores and loadings has gained considerable popularity among scientists in 
many different areas of research activities. 

The basic idea of PARAFAC is so flexible and general that its application is not limited to a 
particular field of spectroscopy confined to a specific electromagnetic probe. Examples of 
the application include fluorescence (Christensen et al., 2005; Rinnan et al., 2005), IR (Wu et 
al., 2003), NMR (Bro et al., 2010), UV (Ebrahimi et al., 2008; Van Benthem et al., 2011) and 
mass spectroscopy (Amigo et al., 2008). The first part of this chapter covers the theoretical 
background of trilinear decomposition of three-way data by PARAFAC with comparison to 
bilinear decomposition of two-way data by Principal component analysis (PCA).  

In the second part of this chapter, an illustrative example of PARAFAC analysis for three-
way data obtained in an actual laboratory experiment is presented to show how PARAFAC 
trilinear model can be constructed and analyzed to derive in-depth understanding of the 
system from the data. Thermal deformation of several types of poly lactic acid (PLA) 
nanocomposites undergoing grass-to-rubber transition is probed by cross-polarization 
magic-angle (CP-MAS) NMR spectroscopy. Namely, sets of temperature-dependent NMR 
spectra are measured under varying clay content in the PLA nanocomposite samples. While 
temperature strongly affects molecular dynamics of PLA, the clay content in the samples 
also influences the molecular mobility. Thus, NMR spectra in this study become a three-way 
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dataset described as a function of both temperature and clay content. Details of the effects of 
the temperature and clay content on the physical state of nanocomposite are elucidated by 
using PARAFAC trilinear model. 

2. PARAFAC 
2.1 Multi-way data 

So, what does a multi-way data look like? It is insightful first to note the data structures of 
two-way and three-way data. Schematic descriptions of two-way and three-way data based 
on external perturbation(s) are shown in Fig. 1. In a general spectroscopic measurement, 
external perturbations are applied to the system of interest to induce the response to the 
stimuli. Characteristic response of the system is presented in the form of spectrum. For 
example, when the thermal behaviour of a sample is studied by a spectroscopic method, 
such as IR, Raman and NMR, the sample is heated up to undergo thermal deformation and 
its molecular level variation induced by the stimulus is captured at each spectral variable, 
e.g. wavenumber. The spectral dataset thus obtained will be represented as a two-way array 
with the (i,j)th element denoting the spectral intensity value at the ith temperature and the 
jth wavenumber. 
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Fig. 1. Schematic illustration of two-way and three-way data. 

Now, let us consider another experiment with one more perturbation. As described above, 
stimulation of a single sample ends up with two-way data array. But what if we still have 
some more samples, whose properties (e.g. concentration) are different? We will repeat a 
similar experiment for every single sample. This generates multiple two-way data. Thus, the 
entire dataset eventually becomes a stuck of the multiple two-way data like a cube, which 
contains two dimensions concerning applied two perturbations. Such spectral dataset is 
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described as a three-way array with the (i,j,k)th element denoting the spectral intensity value 
at the ith concentration, the jth temperature, and the kth wavenumber. For example, the 
samples will show the variation of their molecular structure depending on the temperature. 
This may be also influenced by the change in the concentration. Thus the spectral intensities 
of the samples are potentially influenced by the temperature as well as concentration. 

2.2 PARAFAC model 

It is possible to condense the essence of the information present in multi-way data into a 
very compact matrix representation referred to as scores and loadings. The basic hypothesis 
of factor analysis techniques is that the improved proxy of the original data matrix can be 
reconstructed from only a limited number of significant factors. Thus, while the score and 
loading matrices contain only a small number of factors, it effectively carries all the 
necessary information about spectral features and, eventually, it becomes possible to sorting 
out the convoluted information content of highly complex chemical systems. The detailed 
analysis of such matrices potentially brings useful insight into building a mechanistic model 
for understanding complex phenomena studied by spectroscopic method. 

Principal component analysis (PCA) is mathematical decomposition of two-way data in 
terms of the orthogonal set of dominant factors, i.e., eigenvectors (Smilde et al., 2004; 
Shinzawa et al., 2010). Two-way data decomposition by PCA results in yielding two matrices 
called scores and loadings which complementarily represent the entire features broadly 
distributed in the two-way data as follows, 

  t
PCAX TP E  (1) 

where T and P are PCA score and loading matrices consisting of r vectors, respectively. The 
rank r corresponds to the number of principal components representing the significant 
portion of the information contained within the data matrix X. The selection of r is 
somewhat arbitrary. It is usually set to be a number, as small as possible but sufficiently 
large enough such that there are no obvious spectral features found in the residual matrix 
EPCA. The residual matrix EPCA is the portion of the original data, which is not accounted for 
by the first r principal components used for the data representation. The two matrices T and 
P complementally represent the entire features broadly distributed in X. Namely, T holds 
abstract information concerning the relationship among the samples and P contains 
summary of variable, e.g. wavenumber which provides chemically or physically meaningful 
interpretation to the pattern observed in T. For example, PCA of the two-way data based on 
temperature-dependent spectra provides T describing similar or dissimilar thermal 
behaviour of the sample during the perturbation period and corresponding P represent 
information on key molecular structure associated with such similar or dissimilar thermal 
behaviour of the sample. 

For even more data, PARAFAC is used to decompose a multi-way data and Fig. 2 illustrates 
graphical representation of PARAFAC operation to decompose a three-way data into score 
and loading vectors. PARAFAC is utilized to decompose the multi-way data into a linear 
combination of score and loading matrices (Smilde et al., 2004; Bro, 2004). The information 
on behavior induced by the perturbations is effectively described by score vectors and 
corresponding loading vectors provide chemically or physically meaningful interpretation 
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dataset described as a function of both temperature and clay content. Details of the effects of 
the temperature and clay content on the physical state of nanocomposite are elucidated by 
using PARAFAC trilinear model. 

2. PARAFAC 
2.1 Multi-way data 
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with the (i,j)th element denoting the spectral intensity value at the ith temperature and the 
jth wavenumber. 
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Fig. 1. Schematic illustration of two-way and three-way data. 
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described as a three-way array with the (i,j,k)th element denoting the spectral intensity value 
at the ith concentration, the jth temperature, and the kth wavenumber. For example, the 
samples will show the variation of their molecular structure depending on the temperature. 
This may be also influenced by the change in the concentration. Thus the spectral intensities 
of the samples are potentially influenced by the temperature as well as concentration. 

2.2 PARAFAC model 

It is possible to condense the essence of the information present in multi-way data into a 
very compact matrix representation referred to as scores and loadings. The basic hypothesis 
of factor analysis techniques is that the improved proxy of the original data matrix can be 
reconstructed from only a limited number of significant factors. Thus, while the score and 
loading matrices contain only a small number of factors, it effectively carries all the 
necessary information about spectral features and, eventually, it becomes possible to sorting 
out the convoluted information content of highly complex chemical systems. The detailed 
analysis of such matrices potentially brings useful insight into building a mechanistic model 
for understanding complex phenomena studied by spectroscopic method. 
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Shinzawa et al., 2010). Two-way data decomposition by PCA results in yielding two matrices 
called scores and loadings which complementarily represent the entire features broadly 
distributed in the two-way data as follows, 
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where T and P are PCA score and loading matrices consisting of r vectors, respectively. The 
rank r corresponds to the number of principal components representing the significant 
portion of the information contained within the data matrix X. The selection of r is 
somewhat arbitrary. It is usually set to be a number, as small as possible but sufficiently 
large enough such that there are no obvious spectral features found in the residual matrix 
EPCA. The residual matrix EPCA is the portion of the original data, which is not accounted for 
by the first r principal components used for the data representation. The two matrices T and 
P complementally represent the entire features broadly distributed in X. Namely, T holds 
abstract information concerning the relationship among the samples and P contains 
summary of variable, e.g. wavenumber which provides chemically or physically meaningful 
interpretation to the pattern observed in T. For example, PCA of the two-way data based on 
temperature-dependent spectra provides T describing similar or dissimilar thermal 
behaviour of the sample during the perturbation period and corresponding P represent 
information on key molecular structure associated with such similar or dissimilar thermal 
behaviour of the sample. 

For even more data, PARAFAC is used to decompose a multi-way data and Fig. 2 illustrates 
graphical representation of PARAFAC operation to decompose a three-way data into score 
and loading vectors. PARAFAC is utilized to decompose the multi-way data into a linear 
combination of score and loading matrices (Smilde et al., 2004; Bro, 2004). The information 
on behavior induced by the perturbations is effectively described by score vectors and 
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Fig. 2. Schematic illustration of PARAFAC trilinear model. 

to the patterns observed in the scores of the PARAFAC trilinear model. Namely, by using 
PARAFAC operation, I×J×K array matrix X can be expressed in terms of a product of score 
and loading matrices, A, B, and C, and a residual matrix E as follows 

 ( ) ( )I JK I JK   tX A(C B) E  (2) 

where (I × JK) refers to the way that the multi-way array is unfolded. The notation   

means Khatri-Rao product which operate Kronecker product   on partitioned matrices 
defined as 

 [ ]F F    1 1 2 2C B c b c b c b  (3) 

In PARAFAC analysis, the set of matrices A, B and C are usually obtained by iteratively 
solving alternating least-squares (ALS) problems ( )min I JK   t

A,B,C
X A(C B)  over A for fixed 

B and C, as well as the minimization over B or C in the similar matrix operation manner 
under appropriate model constraints, such as the non-negativity of concentration and 
spectral intensity (Bro & de Jong, 1997; Bro & Sidiropoulos, 1998). General procedure of 
PARAFAC becomes as follows, 

Initialize B and C to obtain Z as  

  Z C B  (4) 

A is given by 
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 (I JK)  tA X Z(Z Z)  (5) 

where the superscript + means the Moore-Penrose inverse. Then update Z as 

  Z C A  (6) 

B is obtained as 

 (J IK)  tB X Z(Z Z)  (7) 

Update Z as 

  Z B A  (8) 

C is given by 

 (K IJ)  tC X Z(Z Z)  (9) 

If the residual between the original X and reconstructed X by Eq. 2 is greater than error 
criteria, one repeats Eqs. (4)-(9) until convergence. 

The initial estimates for B and C is important to obtain sufficient minimization of the error 
criteria (Shinzawa et al., 2007, 2008a & 2008b). Although ALS algorithm usually offers an 
eventual convergence to the optimal solution with a sufficiently large number of iterations, 
it sometimes reaches the suboptimal local minimum (Jiang et al., 2003 & 2004). 
Unfortunately, such local convergence does not usually offer a global minimum, but it may 
just be stuck in a local minimum, producing insufficient solution. The major cause of the 
suboptimal local convergence may be a poor initial estimation. One possible solution for this 
problem is to select proper initial estimate which is less sensitive to the presence of a local 
minimum, e.g. via signaler value decomposition (Bro & de Jong, 1997; Bro & Sidiropoulos, 
1998; Wang et al., 2006; Awa et al., 2008). 

3. Example 
3.1 PLA nanocomposite 

A pertinent example for PARAFAC analysis based on NMR spectra of PLA nanocomposites 
is provided here to show how certain useful information can be effectively extracted from an 
actual laboratory experiment. 

Fig. 3 shows the molecular structure of PLA. PLA polymer is made up of many long chains 
consisting of the repeat unit shown in the figure. PLA is derived from renewable resources, 
such as corn starch via fermentation and it is biodegradable under the right conditions, such 
as the presence of oxygen (Tsuji et al., 2010). Thus, PLA is a possible candidate of a new class 
of renewable polymers as a substitute for the petrochemical polymers. However, the 
physical properties of PLA are inadequate for the replacement of conventional commodity 
plastics in many applications. 

Nanocomposite is a technique to improve the physical strength, thermal resistance and gas 
barrier by the dispersion of nanoclay into the polymer (Katti et al., 2006). The improvement 
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B and C, as well as the minimization over B or C in the similar matrix operation manner 
under appropriate model constraints, such as the non-negativity of concentration and 
spectral intensity (Bro & de Jong, 1997; Bro & Sidiropoulos, 1998). General procedure of 
PARAFAC becomes as follows, 

Initialize B and C to obtain Z as  
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C is given by 
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If the residual between the original X and reconstructed X by Eq. 2 is greater than error 
criteria, one repeats Eqs. (4)-(9) until convergence. 

The initial estimates for B and C is important to obtain sufficient minimization of the error 
criteria (Shinzawa et al., 2007, 2008a & 2008b). Although ALS algorithm usually offers an 
eventual convergence to the optimal solution with a sufficiently large number of iterations, 
it sometimes reaches the suboptimal local minimum (Jiang et al., 2003 & 2004). 
Unfortunately, such local convergence does not usually offer a global minimum, but it may 
just be stuck in a local minimum, producing insufficient solution. The major cause of the 
suboptimal local convergence may be a poor initial estimation. One possible solution for this 
problem is to select proper initial estimate which is less sensitive to the presence of a local 
minimum, e.g. via signaler value decomposition (Bro & de Jong, 1997; Bro & Sidiropoulos, 
1998; Wang et al., 2006; Awa et al., 2008). 

3. Example 
3.1 PLA nanocomposite 

A pertinent example for PARAFAC analysis based on NMR spectra of PLA nanocomposites 
is provided here to show how certain useful information can be effectively extracted from an 
actual laboratory experiment. 

Fig. 3 shows the molecular structure of PLA. PLA polymer is made up of many long chains 
consisting of the repeat unit shown in the figure. PLA is derived from renewable resources, 
such as corn starch via fermentation and it is biodegradable under the right conditions, such 
as the presence of oxygen (Tsuji et al., 2010). Thus, PLA is a possible candidate of a new class 
of renewable polymers as a substitute for the petrochemical polymers. However, the 
physical properties of PLA are inadequate for the replacement of conventional commodity 
plastics in many applications. 

Nanocomposite is a technique to improve the physical strength, thermal resistance and gas 
barrier by the dispersion of nanoclay into the polymer (Katti et al., 2006). The improvement 
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of such polymer properties by using nanocomposite is one of the primary areas of interest 
due to its potential applications. The polymer nanocomposites are generally formed by the 
addition of a small amount of nanoclay dispersion.  

 
Fig. 3. Molecular structure of PLA. 

Fig. 4 shows a schematic illustration of polymer nanocomposite. A typical form of the 
nanocomposite is intercalated nanocomposite, in which the unit cells of clay structure are 
expanded by the insertion of polymer into the interlayer spacing, while the periodicity of 
clay crystal structure is maintained. Most commonly, montmorillonite (MMT) is used as clay 
due to its highly expansive characteristic (Suguna Lakshmi et al., 2008; Cervantes-Uc et al., 
2009). The MMT unit cell is composed of aluminum octahedra sandwiched between two 
silica tetrahedra with the unit cell dimension of about 1 nm in thickness. For facilitating 
better miscibility of hydrophobic polymer with the clay and increasing the spacing of the 
interlayer clay gallery, it is often treated with organic modifiers which are generally long 
carbon chain compounds with alkylammonium or alkylphosphonium cations. 

Polymer Organoclay Intercalated 
nanocomposite

PolymerPolymer OrganoclayOrganoclay Intercalated 
nanocomposite

Intercalated 
nanocomposite  

Fig. 4. Schematic illustration of polymer nanocomposite. 

PLA nanocomposite samples used in this study were prepared with PLA (Teramac®, 
Unitika) and organically modified clay (S-BEN W®, Hojun). The samples were put into a 
Labo-plastomill consisting of a 30C150 kneader and an R100 mixer (Toyo Seiki Seisaku-sho, 
Ltd., Tokyo) to melt-blend at 190 °C and 50 rpm for about 10 minutes. Pellets thus obtained 
were pressed into 0.2 mm thick sheet sandwiched between two thick Teflon® films by a hot 
press at 190 °C.  

Fig. 5 represents the effect of nanocomposite on PLA probed by Thermomechanical analysis 
(TMA). TMA is a technique to monitor the physical deformation of object under a constant 
load, while varying the temperature. For example, in this case, the elongation of the PLA 
nanocomposite samples (clay content = 0, 5 and 15 wt%) were measured by imposing a 9.8 
mN load, while varying the temperature from 35 to 140 °C at a rate of 10 °C per a minute. 
The elongation of the samples starts when the temperature reaches glass transition 
temperature (Tg) of PLA, i.e. approximately 60 °C (Zhang et al., 2010). Then it gradually 
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increases with the increase of temperature and it finally reached constant levels at the close 
of the observation period, indicating that the observed plastic deformation is closely related 
to glass-to-rubber transition of the amorphous component of PLA. It is also noted that the 
samples results in the different levels of elongation depending on the clay content. For 
example, the neat PLA sample shows 14.4 % of elongation. In contrast, the PLA-
nanocomposite including 15 wt % of clay ends up with 9.1 % of elongation. The leveling off 
of the elongation indicates the formation of a network structure due to the presence of 
physical crosslinks created by the crystalline domain.  

Although such observation effectively detects the macroscopic changes in the mechanical 
properties caused by the presence of clay particles, additional fundamental molecular level 
understanding of the reinforcement mechanism is also desired. Spectroscopic method 
should become an important tool to probe the phenomena at the molecular level. 
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Fig. 5. Physical property of PLA samples proved by TMA.  

3.2 PALAFAC analysis of NMR spectra of PLA nomocomposites 

The temperature-dependent NMR spectra of the PLA samples collected under the varying 
temperature from 20 to 80 °C are shown in Fig. 6. Cross polarization-magic angle spinning 
(CP-MAS) NMR experiments were carried out on a Varian 400 NMR system spectrometer 
operated at 100.56 MHz for 13C resonance with a cross polarization contact time of 2 ms 
(Fawcett, 1996). A zirconium oxide rotor of 4 mm diameter was used to acquire the NMR 
spectra at a spinning rate of 15 kHz. Each sample was packed into a 4 mm cylinder-type 
MAS rotor. A set of temperature-dependent NMR spectra were obtained under varying 
ambient temperature from 20 to 80 °C at every 20 °C step. The heating rate was 
approximately 10 °C per an hour. 

Samples of semicrystalline polymers prepared from their melt possess complex 
supermolecular structure consisting of crystalline lamellae embedded in an amorphous 
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of such polymer properties by using nanocomposite is one of the primary areas of interest 
due to its potential applications. The polymer nanocomposites are generally formed by the 
addition of a small amount of nanoclay dispersion.  
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Fig. 5 represents the effect of nanocomposite on PLA probed by Thermomechanical analysis 
(TMA). TMA is a technique to monitor the physical deformation of object under a constant 
load, while varying the temperature. For example, in this case, the elongation of the PLA 
nanocomposite samples (clay content = 0, 5 and 15 wt%) were measured by imposing a 9.8 
mN load, while varying the temperature from 35 to 140 °C at a rate of 10 °C per a minute. 
The elongation of the samples starts when the temperature reaches glass transition 
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increases with the increase of temperature and it finally reached constant levels at the close 
of the observation period, indicating that the observed plastic deformation is closely related 
to glass-to-rubber transition of the amorphous component of PLA. It is also noted that the 
samples results in the different levels of elongation depending on the clay content. For 
example, the neat PLA sample shows 14.4 % of elongation. In contrast, the PLA-
nanocomposite including 15 wt % of clay ends up with 9.1 % of elongation. The leveling off 
of the elongation indicates the formation of a network structure due to the presence of 
physical crosslinks created by the crystalline domain.  

Although such observation effectively detects the macroscopic changes in the mechanical 
properties caused by the presence of clay particles, additional fundamental molecular level 
understanding of the reinforcement mechanism is also desired. Spectroscopic method 
should become an important tool to probe the phenomena at the molecular level. 
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3.2 PALAFAC analysis of NMR spectra of PLA nomocomposites 

The temperature-dependent NMR spectra of the PLA samples collected under the varying 
temperature from 20 to 80 °C are shown in Fig. 6. Cross polarization-magic angle spinning 
(CP-MAS) NMR experiments were carried out on a Varian 400 NMR system spectrometer 
operated at 100.56 MHz for 13C resonance with a cross polarization contact time of 2 ms 
(Fawcett, 1996). A zirconium oxide rotor of 4 mm diameter was used to acquire the NMR 
spectra at a spinning rate of 15 kHz. Each sample was packed into a 4 mm cylinder-type 
MAS rotor. A set of temperature-dependent NMR spectra were obtained under varying 
ambient temperature from 20 to 80 °C at every 20 °C step. The heating rate was 
approximately 10 °C per an hour. 

Samples of semicrystalline polymers prepared from their melt possess complex 
supermolecular structure consisting of crystalline lamellae embedded in an amorphous 
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matrix (Wunderlich, 1980). PLA essentially undergoes highly convoluted transition process, 
when temperature and its constitution are altered. These transitions include the melting of 
ordered molecular segments, as well as the grass-to-rubber transition and other relaxation of 
process of the amorphous component (Zhang et al., 2005; Meaurio et al., 2006).  
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Fig. 6. Temperature-dependent CP-MAS NMR spectra of neat PLA and PLA nanocomposite 
samples. 

The CP-MAS technique is ideal for the observation of 13C spectra of solid samples. Since the 
local environment of a chemical group in solids are generally rigid, this leads to further 
considerations for crystallography or, more generally, molecular packing (Fawcett, 1996). 
The CPMAS NMR study of semicrystalline PLA samples is often complicated by the 
presence of overlapped contributions from coexisting crystalline and amorphous. For 
example, the unimodal peak observed around 69.5 ppm is assignable to CH structure which 
represents mobility of the main chain of the PLA (Tsuji et al., 2010; Kister et al., 1998). It is 
noted that the peak intensity gradually decreases with the increase of the temperature. This 
may be explained as the decrease in the cross polarization efficiency by the change in the 
molecular dynamics during the heating. Thus, the variation of the spectral intensity here 
reflects the structural alternation of PLA induced by the temperature.  

More importantly, careful comparison of the samples reveals that the main feature of the 
NMR spectra of the three samples looks somewhat different. For example, the temperature-
dependent NMR spectra of the PLA nanocomposite including 15 wt% clay provides specific 
three peaks at 70.5, 69.5 and 68.4, indicating the presence of the crystalline structure in the 
sample (Tsuji et al., 2010; Kister et al., 1998). When the sample has no clay in the system, 
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these crystalline peaks are disappeared and compensated by the development of seemingly 
unimodal peak probably assigned to the amorphous of PLA (Tsuji et al., 2010; Kister et al., 
1998). This indicates that the presence of the clay substantially influences supermolecular 
structure of the PLA. Consequently, it is very likely that the change in the spectral feature of 
the three-way data is closely related to temperature and clay content of the system. Thus, in 
turn, the fully detailed analysis of the data provides an interesting opportunity to probe the 
nature of the PLA nanocomposite by elucidating the variation of the NMR spectral intensity 
induced by the each perturbation with PARAFAC trilinear decomposition. 
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Fig. 7. Score vectors in score matrix A representing thermal behaviours of amorphous and 
crystalline components in PLA samples. 

Fig. 7, 8 and 9 show results obtained from A, B and C matrices derived from PARAFAC 
analysis of the three-way NMR spectral data collected under varying temperature and clay 
content, respectively. Two major factors are indicated here, reflecting the fact that there are 
two species present in the system. One of the important benefits derived from PARAFAC 
decomposition of the multi-way data is the ability to rationally clarify the effect of the 
applied perturbations. For example, the matrix A represents abstract information on the 
temperature-induced behavior of the PLA under the influence of the clay content. In 
contrast, the matrix C holds essential information on the spectral intensity variation induced 
by the addition of the clay under the influence of the temperature. The matrix B contains 
loading vectors which provides chemical or physical interpretation to the patterns observed 
in the score matrices A and C. 

It is noted that the loading vector of the first component of the matrix B (Fig. 8) resembles 
the spectral feature of the amorphous component of PLA. The loading vector of the second 
component of the matrix B shows characteristic three peaks assignable to crystalline 
component of the PLA. Thus it is most likely that the second factor represents thermal 
behaviours of the crystalline components in PLA samples. 

Once the assignments for the loading vectors are established, it becomes possible to provide 
chemically meaningful interpretation to the score matrices A and C representing the 
dynamic behaviour of the components induced by the perturbations. For example, the score 
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matrix (Wunderlich, 1980). PLA essentially undergoes highly convoluted transition process, 
when temperature and its constitution are altered. These transitions include the melting of 
ordered molecular segments, as well as the grass-to-rubber transition and other relaxation of 
process of the amorphous component (Zhang et al., 2005; Meaurio et al., 2006).  
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Fig. 6. Temperature-dependent CP-MAS NMR spectra of neat PLA and PLA nanocomposite 
samples. 

The CP-MAS technique is ideal for the observation of 13C spectra of solid samples. Since the 
local environment of a chemical group in solids are generally rigid, this leads to further 
considerations for crystallography or, more generally, molecular packing (Fawcett, 1996). 
The CPMAS NMR study of semicrystalline PLA samples is often complicated by the 
presence of overlapped contributions from coexisting crystalline and amorphous. For 
example, the unimodal peak observed around 69.5 ppm is assignable to CH structure which 
represents mobility of the main chain of the PLA (Tsuji et al., 2010; Kister et al., 1998). It is 
noted that the peak intensity gradually decreases with the increase of the temperature. This 
may be explained as the decrease in the cross polarization efficiency by the change in the 
molecular dynamics during the heating. Thus, the variation of the spectral intensity here 
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More importantly, careful comparison of the samples reveals that the main feature of the 
NMR spectra of the three samples looks somewhat different. For example, the temperature-
dependent NMR spectra of the PLA nanocomposite including 15 wt% clay provides specific 
three peaks at 70.5, 69.5 and 68.4, indicating the presence of the crystalline structure in the 
sample (Tsuji et al., 2010; Kister et al., 1998). When the sample has no clay in the system, 
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these crystalline peaks are disappeared and compensated by the development of seemingly 
unimodal peak probably assigned to the amorphous of PLA (Tsuji et al., 2010; Kister et al., 
1998). This indicates that the presence of the clay substantially influences supermolecular 
structure of the PLA. Consequently, it is very likely that the change in the spectral feature of 
the three-way data is closely related to temperature and clay content of the system. Thus, in 
turn, the fully detailed analysis of the data provides an interesting opportunity to probe the 
nature of the PLA nanocomposite by elucidating the variation of the NMR spectral intensity 
induced by the each perturbation with PARAFAC trilinear decomposition. 
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Fig. 7. Score vectors in score matrix A representing thermal behaviours of amorphous and 
crystalline components in PLA samples. 

Fig. 7, 8 and 9 show results obtained from A, B and C matrices derived from PARAFAC 
analysis of the three-way NMR spectral data collected under varying temperature and clay 
content, respectively. Two major factors are indicated here, reflecting the fact that there are 
two species present in the system. One of the important benefits derived from PARAFAC 
decomposition of the multi-way data is the ability to rationally clarify the effect of the 
applied perturbations. For example, the matrix A represents abstract information on the 
temperature-induced behavior of the PLA under the influence of the clay content. In 
contrast, the matrix C holds essential information on the spectral intensity variation induced 
by the addition of the clay under the influence of the temperature. The matrix B contains 
loading vectors which provides chemical or physical interpretation to the patterns observed 
in the score matrices A and C. 

It is noted that the loading vector of the first component of the matrix B (Fig. 8) resembles 
the spectral feature of the amorphous component of PLA. The loading vector of the second 
component of the matrix B shows characteristic three peaks assignable to crystalline 
component of the PLA. Thus it is most likely that the second factor represents thermal 
behaviours of the crystalline components in PLA samples. 

Once the assignments for the loading vectors are established, it becomes possible to provide 
chemically meaningful interpretation to the score matrices A and C representing the 
dynamic behaviour of the components induced by the perturbations. For example, the score 
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vector of the first factor in the matrix A represents the temperature-induced behaviour of 
the amorphous component of the PLA. On the other hand the score vector of the second 
factor means that of the crystalline component of the PLA. It is noted the score vector of the 
amorphous components exhibits obvious decrease with the temperature and such decrease 
becomes significant when the temperature exceeds its Tg. In contrast, the change in the score 
value of the crystalline component is small, indicating no major variation during the heating 
process.  
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Fig. 8. Loading vectors in score matrix B representing thermal behaviours of amorphous and 
crystalline components in PLA samples. 

The predominant variation of the amorphous component in the temperature region is 
explained as its glass-to-rubber transition. The change induced in the temperature region is 
associated with the Micro-Brownian motion of the PLA polymer segment. At a low 
temperature the amorphous regions of a polymer are in the glassy state. In this state the 
molecules are frozen on place. They may be able to vibrate slightly, but do not have any 
segmental motion. When the polymer is heated up to reach its Tg, the molecules can start to 
wiggle around to become rubbery state. Such segmental motion predominantly occurs in 
amorphous region of PLA while such motion is strongly restricted in systematically folded 
crystalline lamellae structure. Thus, it is very likely the observed change of the amorphous is 
related to glass-to-rubber transition of the amorphous component. 

Now it is important to point out again that the predominant elongation in the TMA 
occurred around Tg. This elongation behaviour agrees well with the thermal behaviour of 
the amorphous component observed in the score matrix A. It thus suggests the physical 
elongation of the samples is essentially associated with the glass-to-rubber transition mainly 
occurred in the amorphous region. 

It also becomes possible to provide the detailed interpretation to the pattern observed in the 
matrix C representing the clay-induced behaviours of amorphous and crystalline 
components in the PLA samples. The gradual decrease of the score of the first factor can be 
explained as the decrease of the amorphous component and the change in the sore of the 
first factor corresponds to the increase in the crystalline component by the addition of the  
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Fig. 9. Score vectors in score matrix C representing clay-induced behaviours of amorphous 
and crystalline components in PLA samples. 

clay. It seems that the decrease in the amorphous is compensated by the development of the 
crystalline structure. In other words, the clay increases the frequency of the spontaneous 
nucleation of the PLA crystals. 

PARAFAC trilinear model of the three-way NMR data of the PLA nanocomposites reveals 
that the crystalline and amorphous structures of the PLA nanocomposites undergo different 
transition under the heating. Namely, the change in the micro-Brownian motion of the 
polymer segments mainly occurs in the amorphous region. In addition, the different 
variations between the crystalline and amorphous component suggest the different effects of 
the presence of clay particles on them, i.e. nucleating effect of the clay. The decrease in the 
amorphous portion should result in the reduction of the structure undergoing the glass-to-
rubber transition. Such variation of the crystallinity agrees well with the decreased 
elongation observed in the TMA. For example, in Fig. 5, the level of the elongation starting 
around Tg clearly decreases with the inclusion of the clay. 

This hypothesis is also clearly supported with corresponding transmission electron 
microscope (TEM) images and differential scanning calorimetry (DSC) results of the PLA 
nanocomposite sample. Fig. 10 represents the TEM images of the PLA nanocomposite 
sample including 15 wt% clay. For example, in Fig. 10(a), one can see that the clay is broadly 
distributed over the PLA matrix. On the other hand, Fig. 10(b) reveals that some parts of the 
interlayer gallery is obviously extended, suggesting the insertion of the PLA polymer into 
the clay layers, namely intercalation.  

DSC curves of the PLA samples, represented in Fig. 11, clearly show the presence of glass 
transition temperature around 60 °C. It is important to point out that this glass-to-rubber 
transition of amorphous component agrees well with the change in the elongation observed 
in the TMA. More importantly, the samples also provide obvious crystallization peak 
around 110 °C. The crystallization peak shows gradual increase by the inclusion of the clay 
content, suggesting quantitative increase in the amount of the crystalline structure. Thus, it  
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vector of the first factor in the matrix A represents the temperature-induced behaviour of 
the amorphous component of the PLA. On the other hand the score vector of the second 
factor means that of the crystalline component of the PLA. It is noted the score vector of the 
amorphous components exhibits obvious decrease with the temperature and such decrease 
becomes significant when the temperature exceeds its Tg. In contrast, the change in the score 
value of the crystalline component is small, indicating no major variation during the heating 
process.  
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crystalline components in PLA samples. 
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explained as its glass-to-rubber transition. The change induced in the temperature region is 
associated with the Micro-Brownian motion of the PLA polymer segment. At a low 
temperature the amorphous regions of a polymer are in the glassy state. In this state the 
molecules are frozen on place. They may be able to vibrate slightly, but do not have any 
segmental motion. When the polymer is heated up to reach its Tg, the molecules can start to 
wiggle around to become rubbery state. Such segmental motion predominantly occurs in 
amorphous region of PLA while such motion is strongly restricted in systematically folded 
crystalline lamellae structure. Thus, it is very likely the observed change of the amorphous is 
related to glass-to-rubber transition of the amorphous component. 

Now it is important to point out again that the predominant elongation in the TMA 
occurred around Tg. This elongation behaviour agrees well with the thermal behaviour of 
the amorphous component observed in the score matrix A. It thus suggests the physical 
elongation of the samples is essentially associated with the glass-to-rubber transition mainly 
occurred in the amorphous region. 

It also becomes possible to provide the detailed interpretation to the pattern observed in the 
matrix C representing the clay-induced behaviours of amorphous and crystalline 
components in the PLA samples. The gradual decrease of the score of the first factor can be 
explained as the decrease of the amorphous component and the change in the sore of the 
first factor corresponds to the increase in the crystalline component by the addition of the  
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Fig. 9. Score vectors in score matrix C representing clay-induced behaviours of amorphous 
and crystalline components in PLA samples. 

clay. It seems that the decrease in the amorphous is compensated by the development of the 
crystalline structure. In other words, the clay increases the frequency of the spontaneous 
nucleation of the PLA crystals. 

PARAFAC trilinear model of the three-way NMR data of the PLA nanocomposites reveals 
that the crystalline and amorphous structures of the PLA nanocomposites undergo different 
transition under the heating. Namely, the change in the micro-Brownian motion of the 
polymer segments mainly occurs in the amorphous region. In addition, the different 
variations between the crystalline and amorphous component suggest the different effects of 
the presence of clay particles on them, i.e. nucleating effect of the clay. The decrease in the 
amorphous portion should result in the reduction of the structure undergoing the glass-to-
rubber transition. Such variation of the crystallinity agrees well with the decreased 
elongation observed in the TMA. For example, in Fig. 5, the level of the elongation starting 
around Tg clearly decreases with the inclusion of the clay. 

This hypothesis is also clearly supported with corresponding transmission electron 
microscope (TEM) images and differential scanning calorimetry (DSC) results of the PLA 
nanocomposite sample. Fig. 10 represents the TEM images of the PLA nanocomposite 
sample including 15 wt% clay. For example, in Fig. 10(a), one can see that the clay is broadly 
distributed over the PLA matrix. On the other hand, Fig. 10(b) reveals that some parts of the 
interlayer gallery is obviously extended, suggesting the insertion of the PLA polymer into 
the clay layers, namely intercalation.  

DSC curves of the PLA samples, represented in Fig. 11, clearly show the presence of glass 
transition temperature around 60 °C. It is important to point out that this glass-to-rubber 
transition of amorphous component agrees well with the change in the elongation observed 
in the TMA. More importantly, the samples also provide obvious crystallization peak 
around 110 °C. The crystallization peak shows gradual increase by the inclusion of the clay 
content, suggesting quantitative increase in the amount of the crystalline structure. Thus, it  
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Fig. 10. TEM images of PLA nanocomposite sample. 

is very likely that the clay works as the nucleating agent to increase the frequency of the 
spontaneous nucleation of the PLA crystals. 

All the results put together, it provides overall picture of the system. When the clay is 
dispersed in the PLA matrix, the PLA polymer located at interlayer or around surface layer 
of the clay develops crystalline structure more frequently. The generation of the crystalline 
structure of PLA is compensated by the decrease of the amorphous content. This should 
decrease the structural portion substantially undergoing glass-to-rubber transition above Tg. 
Thus, in turn, it restricts the elongation of the samples during the heating process under a 
certain level of load. Consequently, it is demonstrated that PARAFAC analysis of the three-
way data of the PLA nanocomposite samples effectively elucidates the mechanisms of the 
improvement of the mechanical property by the clay. By carrying out detailed band position 
shift analysis of the three way data of the temperature- and clay- dependent NMR spectra of 
the PLA samples, it becomes possible to extract chemically meaningful information 
concerning the variation of the crystalline structure closely associated with the 
nanocomposite system. 
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Fig. 11. DSC curves of neat PLA and PLA nanocomposite samples. 

3. Conclusion 
The basic background of PARAFAC and its practical example based on the temperature-
dependent NMR spectra of the PLA nanocomposite samples are presented. The central 
concept of PARAFA decomposition of multi-way data lies in the fact that it can condense 
the essence of the information present in the multi-way data into a very compact matrix 
representation referred to as scores and loadings. Thus, while the score and loading matrices 
contain only a small number of factors, it effectively carries all the necessary information 
about spectral features and leads to sorting out the convoluted information content of highly 
complex chemical systems. 

The effect of PLA nanocomposite is studied by the PARAFAC analysis of the temperature-
dependent NMR spectra of several PLA nanocomposite samples including different clay 
contents. The PARAFAC analysis for the three-way data of the PLA nanocomposites 
revealed that the crystalline and amorphous structures of the PLA nanocomposites 
substantially undergo different transition under the heating. Namely, the change in the 
micro-Brownian motion of the polymer segments mainly occurs in the amorphous region 
when the PLA samples are heated up to their Tg. It also revealed that clay potentially works 
as nucleating effect of the clay. Namely, it increases the frequency of the spontaneous 
nucleation of the PLA crystals. Thus, in turn, the change in the population of the rigid 
crystalline and rubbery amorphous provides the improvement of the physical property. 
Consequently, it is possible to derive in-depth understanding of the PLA nanocomposites. 
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1. Introduction 
Interesting real-world samples are almost always present as mixtures containing the 
analyte(s) of interest and a matrix of components that are irrelevant to answering the 
analytical question at hand. Additionally, the compounds comprising the matrix are usually 
present in far greater abundance (both number and concentration) than the analytes of 
interest, making quantification or even detection of these analytes difficult if not impossible. 

When tasked with these types of samples, analysts turn to some form of separations 
technique such as gas or liquid chromatography (GC or LC) or capillary electrophoresis (CE) 
so that individual components in each sample may be quantified. More recently, more 
complex analytical questions are being probed, for example profiling blood or urine to 
identify a disease state or ascertaining the geographic origin of a food/beverage sample. 
These tasks often go beyond the simple quantification of one or two analytes in a sample. 
For these and other similar questions, separations scientists are turning more often to 
chemometric tools as a means of visualizing and interpreting the rich data that they obtain 
from their separations systems.  

Here we present a brief overview of separations approaches, with a focus on the data that 
are derived from different methods and on phenomena in the separations approach that 
lead to challenges in data interpretation. This is followed by a discussion of approaches that 
exist for the chemometric interpretation of separations data, specific challenges that arise in 
the chemometric treatment of these data, and solutions that have been implemented to deal 
with these challenges.  

1.1 Separations techniques 

Chromatography is widely used for the separation, purification, and analysis of mixtures. In 
general, analytes contained in either a gaseous or liquid mobile phase are flowed past a 
stationary phase which is usually confined within a column. Depending on the chemistries 
of the analytes and the conditions of the separation (mobile/stationary phase compositions, 
temperature, etc.) different compounds will partition between the two phases to varying 
degrees. The separation arises due to this differential partitioning, with analytes which 
associate weakly with the stationary phase passing through the column more quickly than 
those with a greater affinity for the stationary phase (Miller, 2005; Cazes, 2010). 
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There are many types of chromatography, with the most common being liquid 
chromatography (LC) where analytes partition between a mobile liquid phase and an 
immobile stationary phase, and gas chromatography (GC) where the mobile phase is a gas 
and the stationary phase is a solid or more often a viscous, liquid-like polymer. There are 
numerous modes for LC separations, including for example reverse-phase (RPLC), normal-
phase (NPLC), ion (IC), size exclusion (SEC), and hydrophilic interaction (HILIC) to name a 
few. From a point of view of chemometric data interpretation and the discussion in this 
chapter, all of these LC separations generate data which are equivalent. In any 
chromatographic separation, the sample is delivered to the inlet of the column while the 
outlet is connected to a detector, which records a continuous signal. The detector response 
rises and then falls to baseline based on the analyte flux passing through it, ideally 
generating one separate peak with an approximately Gaussian shape for each individual 
analyte. Assuming that the conditions for repeat analyses are not changed, the peak for a 
given analyte will appear at the same time in every analysis, with the peak area/height 
being proportional to the quantity of analyte present in a sample (Poole, 2003; Miller, 2005).  

Another separations technique which is popular for some samples is capillary 
electrophoresis (CE). Here, an electric field applied across a fused silica capillary containing 
a buffer induces motion of the buffer and analytes in the sample. The CE separation is 
dependent on differential mobilities of analytes in the solution in the presence of the electric 
field. This difference in mobilities is based on the fact that different analytes have different 
charges and sizes in solution. While the separation mechanism of CE is fundamentally 
different from the chromatographic mechanism, the data are a series of peaks recorded as a 
function of time. Consequently, the same tools can be applied to data from a CE separation, 
and similar concerns exist for the interpretation of these data (Poole, 2003; Miller, 2005). For 
ease of readability, and because chemometrics are more often applied to chromatographic 
data than electrophoretic data, we will often refer to a chromatogram in this chapter. This 
could equally be an electropherogram; when considering the application of chemometric 
techniques to separations data whether the origin is electrophoretic or chromatographic is 
largely irrelevant. 

When tasked with incredibly complex samples, analysts are now turning more and more 
frequently to so-called comprehensive multidimensional separations (e.g.: GC×GC, LC×LC, 
CE×CE) (Liu & Phillips, 1991; Erni & Frei, 1978; Michels et al., 2002). In these techniques, the 
mixture of compounds is sequentially separated by two different separation mechanisms. In 
the case of GC×GC, for example, a sample might be separated first on an apolar column, 
followed by a polar column. The exact workings of comprehensive multidimensional 
separations are beyond the scope of this work, and are discussed elsewhere (Górecki et al., 
2004; Cortes et al., 2009; François et al., 2009; Kivilompolo et al., 2011; Li et al., 2011). 
However, these techniques are gaining in popularity, and are capable of separating 
exceedingly complex mixtures comprising thousands of individual compounds. Due to the 
vastly improved separation power of these techniques, the data are much more information-
rich, and without some form of chemometric treatment it is essentially impossible to do 
more than scratch the surface of the information contained therein.  

1.2 Separations data 

The detector signal from a separations experiment, when plotted vs. time, yields a series of 
(ideally) Gaussian peaks, each representing one compound in the sample. Acquisition speed 
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is one consideration for a chromatographic detector: it must be sufficient to faithfully record 
the profile of each compound as it passes through the detector. In order to obtain an 
accurate peak profile, the minimum  number of acquisition points required across a peak is 
10. Thus, the required speed of the detector is intrinsically linked to the nature of the 
separation. In separations where the base width of the peaks are on the order of 5 s, a data 
rate of 2 Hz would be acceptable, but when peak widths are 100-200 ms, as in GC×GC, then 
detector rates on the order of 50-100 Hz are required for quantitative analysis.  

From a point of view of chemometric analysis of separations data, another important 
consideration is whether the detector is univariate or multivariate. Univariate detectors, 
such as the flame ionisation detector, or single-wavelength UV-visible spectrometer, record 
only one variable as a function of time, generating data which take the form of a vector of 
instrument response. Other detectors, typically mass spectrometers and multi-channel 
spectroscopic instruments, can be operated such that they record a multivariate response. 
Data from these instruments comprise an array of signal responses with each row 
representing a time when a response was recorded, and each column representing a variable 
that was recorded (e.g.: detector wavelength, ion mass-to-charge ratio). To the 
chemometrician, it is immediately obvious that there are numerous advantages to collecting 
multivariate chromatographic data; however, it is worth noting that most of this advantage 
has been by and large ignored by chromatographers. Typically, only the profile of a single 
variable vs. time would be used to selectively quantify an analyte, or the detector response 
across all channels at a given time used to help identify a peak.  

One other aspect of raw separations data is the sheer number of variables measured for each 
sample. When a univariate detector is used for a 15 min separation, operating with an 
acquisition speed of 10 Hz, the data will be a vector of 9000 individual measurements per 
sample. If a multivariate detector is employed instead, for example a mass spectrometer 
operating over a 30-300 m/z mass range, this number increases to 2 439 000 individual 
variables arranged in a 9000 × 271 array per sample! In the case of GC×GC-MS analyses, 
which are typically 60 min in length but have a high-speed MS collecting data at rates of 
~100 Hz, there are on the order of 100 million data points collected for each sample. 

2. Challenges with chromatographic data  
Variations in analytical separations data are, in principle, no different from those derived 
from any other instrument; being based on both chemical and non-chemical aspects of the 
analysis. All relevant information will be contained within the chemical variations and any 
chemometric approach to interpreting chromatographic data must be capable of identifying 
relevant chemical variation while minimizing the effects of irrelevant chemical and non-
chemical variations. Sources of irrelevant chemical variation include matrix peaks, here 
defined as any chemical source of signal introduced with the sample, but having no bearing 
on the conclusions drawn from the data. Additionally, there is background signal which can 
for example derive from changes in mobile phase concentration which influence detector 
signals in LC or chemical “bleed” signatures from stationary phases as they degrade in GC. 
Non-chemical variations include, for example, baseline drift (for non-chemical reasons), 
retention time shifts (due to minor fluctuations in operating conditions), and electronic 
noise. These may easily interfere with the relevant chemical information, degrading model 
performance and the validity of results (de la Mata-Espinosa et al., 2011a). Figure 1 presents 
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an overlay of several LC chromatograms of similar samples exemplifying the challenges of 
baseline drift and retention time shifts. One of the major challenges in handling 
chromatographic data using chemometric tools is appropriate pre-processing to remove as 
many non-chemical and irrelevant chemical variations as possible from the data set.  

 
Fig. 1. LC chromatograms of edible oils showing a high degree of variation in baseline. 

Initial efforts into the application of statistical and chemometric tools to chromatographic 
data were accomplished using data that were processed to provide a list of detected, 
integrated peak areas or heights (or the calibrated concentrations for known compounds). 
However, the trend in recent years has turned towards the direct chemometric 
interpretation of raw chromatographic signals (Watson et al., 2006; Johnson & Synovec, 
2002). The reason for this trend is that many errors can occur during integration of raw 
signals (Asher et al., 2009; de la Mata-Espinosa et al., 2011b). By applying chemometric tools 
directly to the raw data, many of these errors can be avoided. Of course, when working with 
the raw data, other issues become more important, most notably retention time shifts and 
the population of available variables. 

2.1 Baseline and noise 

Baseline variations, such as noise and drift, are due to small changes in experimental 
conditions, for example changes in detector response due to the mobile phase gradient in LC 
separations or increased levels of stationary phase bleed at higher temperatures in 
temperature-programmed GC. Other sources of noise and drift could include changes in 
detector response as its components age, contamination of solvents or gases, and of course 
electronic noise (which is minimal in modern chromatographic systems). 
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Chemometric approaches to handling chromatographic data should incorporate baseline 
correction of some form. When raw chromatographic data are processed, the method of 
baseline correction and its importance are generally obvious to the analyst. In the case 
where integrated peak tables are used, this is often done automatically by the 
chromatographic software with little consideration by the analyst, even though the manner 
in which the baseline is calculated will significantly influence the determination of peak 
areas/heights. 

2.2 Retention time shifts 

In all separations, retention times of peaks can easily shift by a few seconds from one 
analysis to the next. This is not much of an issue with simple samples having only a few 
peaks which are then integrated prior to chemometric analysis. However, retention times of 
peaks are used for identifying the compounds. With complex separations, unstable retention 
times may result in unreliable peak identification, making comparisons from one run to the 
next impossible. When comparing raw data this is even more important as one must ensure 
that the peak for a given component is always registered in the exact same position in the 
data matrix so that the algorithms will recognize the signals correctly. 

The causes of retention time shifts depend on the separations technique being used. In GC, 
peaks may shift due to degradation of the stationary phase, decreasing retention times over 
time; build-up of heavy matrix components which foul the column, effectively changing the 
chemistry of the stationary phase; minor gas leaks which alter the flow rate; or even matrix 
effects on the evaporation rate in the injector, affecting the rate of mass transfer to the 
column. In LC, peak shifts may be due to small fluctuations in mobile phase chemistry from 
one run to the next; temperature fluctuations which in turn affect solvent viscosity and 
solute diffusion coefficients, altering the kinetics as well as the thermodynamics of the 
separation; or degradation / fouling of the stationary phase of the column. CE is the 
technique most prone to drastic shifts in migration time, due to the instability of the 
electroosmotic flow in the capillary (Figure 2). Electroosmotic flow depends on the applied 
voltage, the buffer concentration and composition, and is incredibly sensitive to the surface 
chemistry of the capillary. The act of analyzing a sample by CE will often have a minor, 
possibly irreversible effect on the capillary surface, resulting in a change in the migration 
time of an analyte.  

Shifts in retention times are minimized by proper instrument maintenance, precise control 
of instrumental conditions or by using approaches such as retention time locking in GC to 
account for variations in instrument performance (Etxebarria et al., 2009; Mommers et al., 
2011) and relative retention times in CE. Even with these approaches, some retention time 
shifting will occur and require more advanced alignment techniques for correction prior to 
chemometric analysis. 

2.3 Incomplete separation 

Another challenge with the interpretation of chromatographic data is incomplete separation 
of peaks. If two or more compounds have similar retention characteristics under a given set 
of separation conditions, they will not be completely resolved, as evidenced by the peak 
clusters in Figure 1. In these cases, apportioning the signal between the different compounds  



 
Chemometrics in Practical Applications 

 

308 

an overlay of several LC chromatograms of similar samples exemplifying the challenges of 
baseline drift and retention time shifts. One of the major challenges in handling 
chromatographic data using chemometric tools is appropriate pre-processing to remove as 
many non-chemical and irrelevant chemical variations as possible from the data set.  

 
Fig. 1. LC chromatograms of edible oils showing a high degree of variation in baseline. 

Initial efforts into the application of statistical and chemometric tools to chromatographic 
data were accomplished using data that were processed to provide a list of detected, 
integrated peak areas or heights (or the calibrated concentrations for known compounds). 
However, the trend in recent years has turned towards the direct chemometric 
interpretation of raw chromatographic signals (Watson et al., 2006; Johnson & Synovec, 
2002). The reason for this trend is that many errors can occur during integration of raw 
signals (Asher et al., 2009; de la Mata-Espinosa et al., 2011b). By applying chemometric tools 
directly to the raw data, many of these errors can be avoided. Of course, when working with 
the raw data, other issues become more important, most notably retention time shifts and 
the population of available variables. 

2.1 Baseline and noise 

Baseline variations, such as noise and drift, are due to small changes in experimental 
conditions, for example changes in detector response due to the mobile phase gradient in LC 
separations or increased levels of stationary phase bleed at higher temperatures in 
temperature-programmed GC. Other sources of noise and drift could include changes in 
detector response as its components age, contamination of solvents or gases, and of course 
electronic noise (which is minimal in modern chromatographic systems). 
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Chemometric approaches to handling chromatographic data should incorporate baseline 
correction of some form. When raw chromatographic data are processed, the method of 
baseline correction and its importance are generally obvious to the analyst. In the case 
where integrated peak tables are used, this is often done automatically by the 
chromatographic software with little consideration by the analyst, even though the manner 
in which the baseline is calculated will significantly influence the determination of peak 
areas/heights. 

2.2 Retention time shifts 

In all separations, retention times of peaks can easily shift by a few seconds from one 
analysis to the next. This is not much of an issue with simple samples having only a few 
peaks which are then integrated prior to chemometric analysis. However, retention times of 
peaks are used for identifying the compounds. With complex separations, unstable retention 
times may result in unreliable peak identification, making comparisons from one run to the 
next impossible. When comparing raw data this is even more important as one must ensure 
that the peak for a given component is always registered in the exact same position in the 
data matrix so that the algorithms will recognize the signals correctly. 

The causes of retention time shifts depend on the separations technique being used. In GC, 
peaks may shift due to degradation of the stationary phase, decreasing retention times over 
time; build-up of heavy matrix components which foul the column, effectively changing the 
chemistry of the stationary phase; minor gas leaks which alter the flow rate; or even matrix 
effects on the evaporation rate in the injector, affecting the rate of mass transfer to the 
column. In LC, peak shifts may be due to small fluctuations in mobile phase chemistry from 
one run to the next; temperature fluctuations which in turn affect solvent viscosity and 
solute diffusion coefficients, altering the kinetics as well as the thermodynamics of the 
separation; or degradation / fouling of the stationary phase of the column. CE is the 
technique most prone to drastic shifts in migration time, due to the instability of the 
electroosmotic flow in the capillary (Figure 2). Electroosmotic flow depends on the applied 
voltage, the buffer concentration and composition, and is incredibly sensitive to the surface 
chemistry of the capillary. The act of analyzing a sample by CE will often have a minor, 
possibly irreversible effect on the capillary surface, resulting in a change in the migration 
time of an analyte.  

Shifts in retention times are minimized by proper instrument maintenance, precise control 
of instrumental conditions or by using approaches such as retention time locking in GC to 
account for variations in instrument performance (Etxebarria et al., 2009; Mommers et al., 
2011) and relative retention times in CE. Even with these approaches, some retention time 
shifting will occur and require more advanced alignment techniques for correction prior to 
chemometric analysis. 

2.3 Incomplete separation 

Another challenge with the interpretation of chromatographic data is incomplete separation 
of peaks. If two or more compounds have similar retention characteristics under a given set 
of separation conditions, they will not be completely resolved, as evidenced by the peak 
clusters in Figure 1. In these cases, apportioning the signal between the different compounds  
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Fig. 2. CE of substituted benzenes showing extreme misalignment. 

becomes a challenge, especially for univariate signals. The general approach used for these 
cases is one of deconvolution: decomposing the analytical signal to determine the 
contribution of each coeluting compound, or to determine the contribution of the compound 
of interest, disregarding the remaining data. 

2.4 Data overload 

As shown in Section 1.2, raw chromatographic signals present an overabundance of data to 
the analyst. This poses several challenges. From a practical point of view, attempts to 
construct a chemometric model using the entirety of the data set could easily exceed the 
capabilities of the computer system being used. More fundamentally, if the raw data are 
considered, the number of variables measured for each sample will vastly outnumber the 
number of samples available in the data set. These overdetermined systems can defeat many 
chemometric techniques due, for example, to collinear variables. Finally, for most 
chromatograms, especially multidimensional ones, only a small fraction of the data points 
actually contain meaningful signal. Most of the signal is due to background noise or 
irrelevant matrix components. Consequently, the raw data must somehow be reduced in 
size prior to chemometric analysis. This is typically achieved via a feature selection 
approach, as discussed in Section 3.3.3.  

3. Pre-processing steps for chromatographic data 
3.1 Baseline correction 

The aim of baseline correction is to separate the analyte signal of interest from signal which 
arises due to changes in mobile phase composition or stationary phase bleed and signal due 
to electronic noise. Several baseline correction methods have been proposed in literature, 
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with the two most common approaches being to fit a curve to the data and subtract this 
value from the signal, and modeling the baseline to exclude it using factor models (Amigo et 
al., 2010). 

Curve fitting is the classical approach used in virtually all commercial software packages 
provided by vendors of separations equipment. The algorithms used in this approach fit a 
polynomial function across segments of the chromatogram using regions where no analyte 
peaks elute to determine the coefficients of the polynomial and then interpolating the 
background signal for regions where peaks are eluting. The functions are usually first-order 
polynomials; however, higher-order polynomials or a series of connected first-order 
polynomials are also used in some situations. Having determined the equation of the 
background signal, the fitted line is then subtracted from the signal (Brereton, 2003; Gan et 
al., 2006; Kaczmarek et al., 2005; Zhang et al., 2010; Persson & Strang, 2003; Eilers, 2003). 
Correction of the baseline using curve fitting is demonstrated in Figure 3. 

 
Fig. 3. An LC chromatogram before (blue) and after (red) baseline correction. 

The approach of using models such as parallel factor analysis (PARAFAC) for background 
correction is analogous to the use of these approaches for deconvoluting coeluting peaks. As 
these models are more often used for this purpose than for simple background correction, 
they will be discussed in more detail in Section 3.3. These approaches often rely on having a 
multivariate signal and are applied to the chromatogram or more typically small selected 
regions where a single analyte elutes. The result of applying these deconvolution techniques 
for background correction is essentially the deconvolution of a single analyte peak, with the 
background noise making up the error matrix (Amigo et al., 2010). These approaches are 
generally more powerful and likely result in better quality analytical data, but they are not 
widely used in separation science. The reason for this is likely historical as these tools have 
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only recently become available to the separation sciences, while the classical curve fitting 
approach is well established, works with univariate detectors, and performs well in most 
practical situations. 

3.2 Alignment of separations data 

The retention times of analytes in separations fluctuate from one analytical run to the next 
and, in order for chemometric techniques to be applied to separations data, these 
fluctuations must be corrected during pre-processing. This ensures that the signal from each 
analyte in each analysis is correctly registered within the data matrix to be processed. There 
are essentially two approaches to this problem: integrated peak tables, or mathematical 
warping and alignment of the raw signal. 

3.2.1 Peak tables 

Integrated peak tables are the simplest way to ensure that analytical separations data are 
properly aligned for chemometric processing. In order to use this approach, one must be 
able to reliably assign a unique identifier to each peak in each sample of the data set, and 
ensure that the same compound is identified with the same identifier in each sample. It 
should be noted that while the compound name is an obvious identifier, a series of labels 
such as Unknown x, where x is a numerical identifier would also be acceptable in the event 
that compound names were unknown, so long as compounds are matched correctly. Rather 
than identifying peaks by retention time, one could use relative retention times or retention 
indices in order to adjust for slight variations in the retention times of peaks. Algorithms for 
aligning peak tables exist and perform well, so long as some peaks can be easily and reliably 
matched across all chromatograms (Lavine et al., 2001). 

The challenges with this approach stem from its reliance on integrated peak tables. Thus, 
any integration errors due to poorly-resolved peaks or peaks that are missed due to falling 
outside of integration parameters in the software will impact any subsequent analysis. 

3.2.2 Raw signal alignment 

Alignment of raw chromatographic signals prior to chemometric processing is more 
complex than the alignment of peak tables. In addition to the three more popular algorithms 
that will be presented below, there are several others that have been developed (Yao et al., 
2007; Toppo et al., 2008; Eilers, 2004; Van Nederkassel et al., 2006). In deciding which 
approach to use, one of the first questions to be answered is if the analysis is to be 
qualitative or quantitative. This is because some alignment methods can distort peaks, 
affecting their quantification. Some of the more common algorithms include correlation 
optimized warping (COW) (Nielsen et al., 1998; Tomasi et al., 2004), correlation optimized 
shifting (coshift) (Van den Berg, 2005), and a piecewise peak-matching algorithm (Johnson et 
al., 2003).  

In instances where there are non-systematic peak shifts, COW is a popular algorithm. COW 
relies on stretching or compressing segments of a sample signal such that the correlation 
coefficient between it and a reference signal is maximized for each interval. Care must be 
taken with the selection of the input parameters to avoid significant changes in peak shapes 
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as this approach to the warping of the chromatogram has been shown to affect peak areas, 
leading to poor quantitative conclusions (Nielsen et al., 1998; Tomasi  et al., 2004).  

A fast and simple alignment algorithm is coshift. This algorithm is useful when data only 
require a single left-right shift in retention time. The entire data matrix is shifted in one 
direction or the other by a set amount, maximizing the correlation between a target and the 
data matrix that required alignment. The single shifting value for the entire data matrix is a 
weakness, especially for chromatographic data where peaks can shift in different directions 
and to different extents in a single file. To handle this, an algorithm termed icoshift 
(interval-correlation-shifting) has been derived from coshift. Icoshift aligns each data matrix 
to a target by maximizing the cross-correlation between the sample and the target within a 
series of user-defined intervals (Savorani et al., 2010). The use of multiple intervals permits 
the alignment of separations data where shifts of different magnitudes and directions occur. 
These alignment algorithms have been used successfully for both one-dimensional data (de 
la Mata-Espinosa, 2011a; Liang, 2010; Laursen, 2010) and two-dimensional data, with some 
modifications (Zhang, 2008). It is important to note that the shifting of chromatograms using 
coshift or icoshift does not lead to distortions of peak shape, and consequently does not 
introduce errors into quantitative results. 

The piecewise peak matching approach (Johnson et al., 2003) provides another avenue for 
chromatographic alignment. In this approach, peaks are identified in a target signal to 
which all other signals will be aligned. The algorithm then identifies peaks within the 
sample signals located within predetermined windows of the peaks in the target. Peaks 
within windows are deemed to come from the same compound, and matched. The 
chromatograms are aligned by stretching or compressing the regions between peak apexes. 
A variant of this algorithm can be used when MS data are available. In this case, the mass 
spectrum at the apex of each peak in the target signal is compared to the mass spectrum of 
each peak within a set window on the sample signal and peaks are matched if their spectra 
have a high enough match quality (Watson et al., 2006). A general scheme for peak 
alignment using this approach is described in Figure 4. Depending on the number and 
relative positions of the peaks in chromatograms matched using this approach, peak shapes 
may be altered, possibly affecting quantitative results. 

One of the biggest challenges for all alignment algorithms is that they depend on the data to 
be aligned being reasonably similar in terms of both matrix and analyte peaks. In some 
instances this will not be the case. In our laboratory, we have observed this when analyzing 
arson debris where the matrix and analytes form an incredibly complex and variable 
chromatogram from one sample to the next. A similar situation can be easily imagined when 
processing samples of biological origin. One solution to this issue is to add markers to every 
sample prior to the separation step in the analysis. These markers should be easily 
identifiable within the samples, even under conditions where they coelute with matrix 
components; should occur in multiple, evenly distributed locations along the 
chromatogram, and should not occur natively in the samples. One choice is a series of 
deuterated compounds which, with MS detection, are trivial to identify even in a complex 
mixture (Sinkov et al., 2011b). One additional benefit is that these compounds can act as 
internal standards if quantitative results are desired. 
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relative positions of the peaks in chromatograms matched using this approach, peak shapes 
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components; should occur in multiple, evenly distributed locations along the 
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internal standards if quantitative results are desired. 
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Fig. 4. Flowchart for target-based chromatographic alignment, adapted from (Johnson et al., 
2003). 

3.3 Deconvolution of overlapping peaks 

The central issue in deconvolution is depicted in Figure 5. The instrument response is 
represented as a black solid line which is the sum of the four dashed, coloured peaks. 
Ideally, the four signals should be individually quantified. This is a common problem for 
analytical separations, even those of relatively simple mixtures. Some of these issues may be 
solved by changing the experimental conditions or using characteristic features 
(wavelengths or ions) of the coeluting analytes and a multivariate detector to selectively 
detect and quantify them. However, in many cases this is insufficient and more advanced 
techniques must be used. The strategies used for deconvolution depend heavily on whether 
the detector signal is univariate or multivariate. 

3.3.1 Deconvolution of univariate signals 

In the case of univariate signals, one is typically limited to using univariate curve-fitting 
analyses where a number of Gaussian or modified Gaussian curves are determined such 
that the sum of these curves fits the experimentally observed cluster of peaks (Felinger, 
1994). In these approaches, only a small window of chromatographic data (one peak cluster) 
should be processed at a time, and constraints such as fixed peak widths, shapes, 
unimodality, and non-negativity are often required to ensure the validity of the solution. 

To solve a univariate deconvolution problem, approaches such as evolving factor analysis 
(EFA) (Maeder, 1987) or multivariate curve resolution (MCR) (Tauler & Barceló, 1993), 
among others (Vivó-Truyols et al., 2002; Sarkar et al., 1998; Kong et al. 2005) can be used. 
When these approaches are used with univariate data, the variables to be solved for are the 
number, positions, and abundances of each of the peaks that make up the signal. 
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Fig. 5. Deconvolution of overlapping peaks. The black, solid trace represents the analytical 
signal observed at the detector, which is the sum of the four peaks represented by dashed 
lines. 

Multivariate curve resolution is widely applicable to separations data and is one of the most 
common approaches (Franch-Lage et al., 2011; Marini et al., 2011, de la Mata-Espinosa et al., 
2011a). The aim of this technique is to determine the number of components present in a 
sample and the contribution of each component to the sample. In performing MCR, the 
concentration and response profiles for each analyte are obtained, providing a qualitative 
and semi-quantitative overview of the components in an unresolved mixture without a priori 
knowledge of the mixture composition.  

3.3.2 Deconvolution of multivariate signals 

When multivariate detectors are used for separations, the additional dimension of 
information can be exploited to aid in deconvolution. MCR and EFA can also be used with 
multivariate data. In the case of MCR, the experimental matrix is decomposed into a matrix 
of concentration vs. time profiles (deconvoluted peaks) and pure spectral profiles of each 
compound. Knowledge of the number of components contributing to the signal in the 
region being deconvoluted is useful to guide the process and improve the results (de Juan & 
Tauler, 2006), though strictly speaking it is not required.  

Parallel factor analysis (PARAFAC) (Harshman, 1970; Bro, 1997; Amigo et al., 2010) is a 
technique that is ideally suited for interpreting multivariate separations data. PARAFAC is a 
decomposition model for multivariate data which provides three matrices, A, B and C 
which contain the scores and loadings for each component. The residuals, E, and the 
number of factors, r, are also extracted. The PARAFAC decomposition finds the best 



 
Chemometrics in Practical Applications 

 

314 

 
Fig. 4. Flowchart for target-based chromatographic alignment, adapted from (Johnson et al., 
2003). 

3.3 Deconvolution of overlapping peaks 

The central issue in deconvolution is depicted in Figure 5. The instrument response is 
represented as a black solid line which is the sum of the four dashed, coloured peaks. 
Ideally, the four signals should be individually quantified. This is a common problem for 
analytical separations, even those of relatively simple mixtures. Some of these issues may be 
solved by changing the experimental conditions or using characteristic features 
(wavelengths or ions) of the coeluting analytes and a multivariate detector to selectively 
detect and quantify them. However, in many cases this is insufficient and more advanced 
techniques must be used. The strategies used for deconvolution depend heavily on whether 
the detector signal is univariate or multivariate. 

3.3.1 Deconvolution of univariate signals 

In the case of univariate signals, one is typically limited to using univariate curve-fitting 
analyses where a number of Gaussian or modified Gaussian curves are determined such 
that the sum of these curves fits the experimentally observed cluster of peaks (Felinger, 
1994). In these approaches, only a small window of chromatographic data (one peak cluster) 
should be processed at a time, and constraints such as fixed peak widths, shapes, 
unimodality, and non-negativity are often required to ensure the validity of the solution. 

To solve a univariate deconvolution problem, approaches such as evolving factor analysis 
(EFA) (Maeder, 1987) or multivariate curve resolution (MCR) (Tauler & Barceló, 1993), 
among others (Vivó-Truyols et al., 2002; Sarkar et al., 1998; Kong et al. 2005) can be used. 
When these approaches are used with univariate data, the variables to be solved for are the 
number, positions, and abundances of each of the peaks that make up the signal. 

 
Application of Chemometrics to the Interpretation of Analytical Separations Data 

 

315 

 
Fig. 5. Deconvolution of overlapping peaks. The black, solid trace represents the analytical 
signal observed at the detector, which is the sum of the four peaks represented by dashed 
lines. 

Multivariate curve resolution is widely applicable to separations data and is one of the most 
common approaches (Franch-Lage et al., 2011; Marini et al., 2011, de la Mata-Espinosa et al., 
2011a). The aim of this technique is to determine the number of components present in a 
sample and the contribution of each component to the sample. In performing MCR, the 
concentration and response profiles for each analyte are obtained, providing a qualitative 
and semi-quantitative overview of the components in an unresolved mixture without a priori 
knowledge of the mixture composition.  

3.3.2 Deconvolution of multivariate signals 

When multivariate detectors are used for separations, the additional dimension of 
information can be exploited to aid in deconvolution. MCR and EFA can also be used with 
multivariate data. In the case of MCR, the experimental matrix is decomposed into a matrix 
of concentration vs. time profiles (deconvoluted peaks) and pure spectral profiles of each 
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trilinear model that minimizes the sum squares of the residuals in the model through a 
procedure of alternating least squares. 

The biggest advantage of using PARAFAC over other models is the uniqueness of the 
solution; PARAFAC is less flexible and uses fewer degrees of freedom, being a more 
restricted model. However, its unique solution reflects actual pure analyte profiles in both 
the time dimension and the spectral dimension. Thus, the results of PARAFAC analysis on a 
cluster of overlapping multivariate peaks provide both qualitative and quantitative data 
where the deconvoluted signals appear as analyte peaks. One restriction to the use of 
PARAFAC is that the data must be trilinear (Bro, 1997; Amigo et al., 2010). In the case of 
chromatographic techniques with a multivariate detector, the dimensions are retention time, 
detector signal, and samples. In the case of comprehensive multidimensional separations, 
such as GC×GC, PARAFAC considers retention in the two dimensions and the samples as 
the three dimensions. 

3.4 Feature selection 

High data acquisition rates combined with the length of time required for many separations 
results in a large number of data points collected for a given separation (see Section 1.2). In 
many situations, most of the data are collected when no analytes are eluting from the 
system, and represent background signal when only mobile phase is reaching the detector. 
In the case of spectroscopic and especially mass spectral detectors, at a given point in time, 
many of the recorded data in this dimension will not contain useful information, even when 
an analyte of interest is eluting. Furthermore, many components in the mixture can be 
completely irrelevant to analysis (Johnson & Synovec, 2002; Sinkov & Harynuk, 2011a). 
Consequently, only a small portion of separations data is potentially useful. It is also well 
known that any model will be heavily influenced by the specific variables that are included 
in its construction (Kjeldahl & Bro, 2010). 

The inclusion of irrelevant data is detrimental to the model because the mathematics 
attempt to account for variations observed in these irrelevant variables. Consequently the 
model is forced to model noise, resulting in a decrease in its predictive ability. Worse yet, 
the model could fit the data well and provide a seemingly useful prediction, until cross-
validation shows otherwise. Finally, the inclusion of extraneous variables increases the 
demands on the computer system being employed, making model construction slower, or in 
some cases outright impossible. Thus, prior reduction of separations data to a manageable 
size is crucial. Figure 6 depicts situations where either too few or too many variables were 
used to model a system.  

One common manner to achieve data reduction is to use a table of integrated peaks 
instead of raw chromatographic data. This has the advantage of reducing the number of 
variables to those compounds included in the peak list, removing baseline noise and, if 
the analyst knows which exact peaks to use, removing signal from irrelevant compounds. 
Problems with this approach include the restriction to identified compounds, which may 
or may not include all of the information required for modeling, and integration errors 
that skew results. Finally, even with an error-free comprehensive peak table, the analyst 
must still perform feature selection since many peaks will undoubtedly be irrelevant to 
the analysis. 

 
Application of Chemometrics to the Interpretation of Analytical Separations Data 

 

317 

In the case of multivariate detection, it can be advantageous to monitor only one or a few 
channels (wavelengths, ions, etc.) as this will selectively detect only a portion of the 
analytes, allowing the analyst to avoid many interfering species while greatly reducing the 
size of the data. However, in these cases the analyst must know exactly what signals to use 
and runs the risk of missing important features of the data encoded in the channels that 
were ignored. Further, using this approach destroys much of the multivariate advantage 
that can be realized through using these more complex (and expensive) detection strategies. 

Objective feature selection techniques generally have two steps: variable ranking, and 
variable selection. Objective variable ranking techniques such as analysis of variance 
(ANOVA) (Johnson & Synovec, 2002), the discriminating variable test (DIVA) (Rajalahti et 
al., 2009a, 2009b), and informative vectors (Teofilo et al., 2009) have the distinct advantage 
that variables are ranked based on a mathematically calculable “perceived utility” and not 
on subjective analyst perception. In essence, the data are given the chance to inform the user 
of what is relevant and what is likely noise, providing an approach that can be generalized 
to any set of analytical data.  

ANOVA is an effective method when the goal is to discriminate between classes of samples. 
ANOVA calculates the F ratio for each variable: the ratio of between-class variance to 
within-class variance. If the F ratio for a given variable is high, it is deemed to be more 
valuable for describing the difference between classes. Once the F ratio has been calculated 
for every data point in the chromatogram, the variables can be ranked in order of decreasing 
F ratio. A chemometric model is then constructed using a fraction of variables having the 
highest F ratio. One significant advantage of ANOVA is that the algorithm can be written 
with memory conservation in mind and thus is easily applied to data sets with very large 
numbers of samples and variables (hundreds or thousands of samples, each containing 
millions of variables). Consequently, it can be easily applied to a set of GC-MS 
chromatograms across the entire chromatogram, something that is difficult for other feature 
ranking approaches. 

DIVA is a feature ranking technique that aids feature selection prior to chemometric 
analysis (Rajalahti et al., 2009a, 2009b). This approach involves the creation of a PLS-DA 
model using all candidate variables. Projecting this PLS-DA model onto a new single LV 
yields what is termed a target projected (TP) model (Rajalahti et al., 2009a). From this, the 
ratio of explained variance to residual variance for each variable in the TP model provides 
its selectivity ratio, upon which variables are ranked (Rajalahti et al., 2009a, 2009b; 
Kvalheim, 1990; Kvalheim & Karstang, 1989). DIVA produces a ranking that is slightly 
different than that produced by ANOVA, though a direct comparison on chromatographic 
data has not yet been performed to our knowledge. 

Once variables have been ranked, those to be included in the model must be selected. This is 
generally achieved by constructing a model using a forward-selection or backwards 
elimination approach, in an attempt to maximize some metric of model quality. Model 
quality can be assessed based on several metrics such as mean correct classification rates 
(Rajalahti et al., 2009b) or the degree of separation between classes of samples in principal 
component (or latent variable) space, for example using either a Euclidian distance-based 
metric (Pierce et al., 2005) or a metric that accounts for size and shape of clusters (Sinkov & 
Harynuk, 2011a). 
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Once variables have been ranked, those to be included in the model must be selected. This is 
generally achieved by constructing a model using a forward-selection or backwards 
elimination approach, in an attempt to maximize some metric of model quality. Model 
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The one exception to the rank-and-select approach are genetic algorithms (Yoshida et al., 
2001), though due to the sheer number of variables present in a typical separation, these are 
not often used on the raw separations data as arriving at the optimal number and 
combination of variables is computationally inefficient and uncertain. 

Sometimes, several feature selection methods are used for a given analysis. For example, an 
analyst might reduce chromatogram to a peak table, selecting a series of candidate variables 
of interest and then perform further variable ranking and optimization on the integrated 
peak table, especially in the case of multidimensional separations where hundreds, if not 
thousands of compounds can be resolved (Felkel et al., 2010). 

Finally, cross-validation is extremely important, especially when processing raw separations 
data and using a feature ranking approach such as ANOVA. As discussed previously, raw 
separations data contain on the order of 105 to 106 data points for each sample. In these cases of 
overdetermined systems it is entirely possible that some combinations of variables containing 
only noise will, by random chance, indicate a difference between samples. When handling raw 
separations data, a good approach to avoid this problem is to break the data set into three 
separate sets: a training set to construct the model, an optimization set to optimize data 
processing parameters (such as alignment and feature selection), and finally a test set to 
determine if the optimized model has any meaning (Brereton, 2007). Of course this does 
require that one collect data for a large number of samples so that a representative population 
of samples exists for each of the three subsets of data. 

 
Fig. 6. Models constructed from the same data set using different numbers of top-ranked 
variables. (A) Too few variables; (B) Too many variables; (C) Optimal number of variables. 
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4. Applications and examples 
After applying the appropriate pre-processing, different chemometric techniques can be 
applied according to the aim of the study. Pattern recognition is one of the chemometric 
methods most used in analytical chemistry and this is true for separations data. Pattern 
recognition can be generally divided into two classes: exploratory data analysis and 
unsupervised and supervised pattern recognition (Otto, 2007; Brereton, 2007).  

Exploratory data analysis aims to extract important information, detect outliers and identify 
relationships between samples and its use is recommended prior to the application of other 
chemometric techniques. Examples of the use of exploratory data analysis tools applied to 
separations data include principal component analyisis (PCA) (de la Mata-Espinosa et al., 
2011a; Ruiz-Samblas et al., 2011) and factor analysis (Stanimirova et al., 2011). 

Unsupervised pattern recognition techniques uncover patterns within a data set without a 
priori class assignment of samples. Here, the objective is to find patterns in the data which 
allow grouping of similar samples using, for example, cluster analysis which has been 
applied to separations data by Reid et al. (2007). When supervised pattern recognition is 
used, the classes of samples in a training set are known and used to calibrate a model, which 
is then used to predict class assignments of unknown samples. Some examples of which are 
linear discriminant analysis (LDA), and partial least squares-discriminant analysis (PLS-DA) 
(de la Mata-Espinosa et al., 2011b; Zorzetti et al., 2011; Sinkov et al., 2011b). In a study 
performed by Sinkov et al., two alignment techniques for chromatographic data were 
compared. The data comprised raw GC-MS chromatograms of simulated arson debris 
where some samples contained different types of gasoline weathered to different extents 
spiked into debris samples which themselves exhibited a high degree of variability in their 
chemical composition. The goal was to build a PLS-DA model that could correctly classify 
debris samples based on whether or not they contained gasoline (Figure 7). As can be seen, 
the alignment algorithm used has a direct impact on the quality of the predictions. In Figure 
7A, there are multiple false positives, false negatives, and ambiguous samples. In Figure 7B, 
all samples are classified correctly and there are no ambiguous samples. 

Another example of applying chemometrics to separations data is depicted in Figures 8 and 
9. Here, interval PLS (iPLS) was applied to blends of oils in order to quantify the relative 
concentration of olive oil in the samples (de la Mata-Espinosa et al., 2011b). iPLS divides the 
data into a number of intervals and then calculates a PLS model for each interval. In this 
example, the two peak segments which presented the lower root mean square error of cross 
validation (RMSECV) were used for building the final PLS model.  

As mentioned in Section 3.3.2, PARAFAC is a chemometric tool for multidimensional data 
treatment. The scores and loadings obtained with PARAFAC can be used in two-way 
models for data exploration and quantitative analysis (Vosough et al., 2010). When small 
deviations in trilinearity exist within the data, usually due to relatively small shifts in 
retention time in the case of separations data, a modified version of PARAFAC called 
PARAFAC2 is recommended for use (Bro et al., 1999).  

Like PARAFAC, PARAFAC2 decomposes raw data into loading and score matrices but 
without the imposition of trilinearity as in PARAFAC. Even without this constraint, the 
PARAFAC2 model preserves the property of uniqueness that is so advantageous with 
PARAFAC. Thus, analyte profiles and concentrations can be estimated by PARAFAC2 even 
if chromatographic alignment is not perfect (Amigo et al., 2008; Skov et al., 2009). 
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Fig. 7. PLS-DA Models for identifying gasoline in simulated arson debris derived from the 
same raw data, but aligned with different techniques. (A) Feature-based alignment; (B) 
Deuterated alkane ladder – based alignment. All other treatment and model construction 
algorithms were the same in both cases. Hollow markers indicate data in the training set 
while filled markers indicate data in the validation set. Circles represent debris containing 
gasoline while triangles represent gasoline-free debris. Reprinted from Sinkov et al., 2011b, 
with permission. 

 
Fig. 8. Feature selection using iPLS. Segments in green showed lower RMSECV and were 
thus used to construct the final model. Reprinted from de la Mata-Espinosa et al., 2011b, 
with permission. 
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Fig. 9. Predicted vs. actual % olive oil using PLS model constructed based on results in 
Figure 8. Reprinted from de la Mata-Espinosa et al., 2011b, with permission. 

5. Conclusions 
The analyst must choose from a plethora of methods for processing separations data, a 
potentially daunting task. It is our hope that this review will help chromatographers 
entertaining thoughts of applying chemometrics to their data understand what they must 
consider when choosing how to prepare their data. Likewise, it is hoped that we have 
informed chemometricians of some of the specific challenges associated with the processing 
of chromatographic data and the origins of those limitations. In the development of a 
chemometric model for the interpretation of separations data, there are numerous 
opportunities for missteps that will exclude key information from the model and/or 
generate meaningless results. However, when due care is taken there are also many 
opportunities to apply chemometric techniques to transform the rich data generated by 
these powerful analytical tools into valuable information effectively and efficiently. 
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