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Preface

Ask any analytical chemist what constitutes the most important aspect of any quantitative ana‐
lytical determination, and the most frequent response one might receive is “calibration” and per‐
haps even “calibration and validation.” One might ask: “Why would this be so?” If one mulls
over this matter for a moment, the answer might become apparent. Consider any analytical in‐
strument, e.g., a UV-visible spectrophotometer, and the absorbance response produced as radia‐
tion from the spectrophotometer’s source lamp passes through the solution of absorbing analyte
and is absorbed to a particular degree. At face value, that absorbance has no meaning at all un‐
less that signal is referenced to a known amount of the absorbing analyte present in the measured
solution. Now, the absorbance does have meaning, as it can be expressed as a number of absorb‐
ance units per unit amount of the sought-after analyte and may potentially be used for determi‐
nation of analyte concentration in an unknown solution or other types of sample. This
referencing process is known as calibration.

The calibration process establishes a relationship between analyte signal and analyte concentra‐
tion that is useful for quantitation of a sought-after analyte in a sample, using a given analytical
method. A typical approach is to measure the signals produced by a series of calibration stand‐
ards of known analyte concentrations that cover a particular range of concentration and then re‐
gress the blank-corrected signals (response variable) on the standard concentrations (predictor
variable) to obtain the equation (i.e., calibration curve) that best fits the experimental calibration
data and yields predicted values of the response variable. This type of approach to calibration is
termed univariate (one response variable, one or more predictor variables) calibration and can
also hold for the opposite arrangement—a response variable of concentration regressed on a pre‐
dictor variable of signal. Also, included under the umbrella of univariate calibration methods is
multiple linear regression (MLR), comprised of one response variable (usually concentration) re‐
gressed into two or more predictor variables (usually signal). Another broad class of calibration
model, known as multivariate (two or more response and predictor variables each) calibration,
involves the use of data arrays for the response and predictor variables, with the response ma‐
trix regressed on the predictor matrix, using the principles of linear algebra and statistics. Most
multivariate calibrations are designed so that the response matrix is the array of concentration
vectors for the calibration standards containing the sought-after analytes and the predictor ma‐
trix is the array of signal vectors for, e.g., spectra or chromatograms of the calibration standards
at, e.g., particular wavelengths/frequencies or response times.  

The validation process is equally important, as it verifies the signal-versus-concentration relation‐
ship acquired from the calibration samples via analysis of another, separate set of samples with
known concentrations of analyte. A set of predicted analyte concentrations for the validation
samples are then obtained using the calibration relationship for the method employed. The
known and predicted concentrations of the validation samples are compared, and the residuals
(errors or differences between known and predicted concentration) are analyzed statistically,
e.g., by standard deviation and bias, to evaluate the accuracy and precision (i.e., the reliability),
respectively, of the calibration system and, ultimately, the analytical method used for analyte
quantitation. Other validation parameters assess the goodness of fit of the experimental calibra‐
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tion data to the values predicted by the calibration curve and also yield the limits of analyte con‐
centration detectable by the analytical method utilized as well as the sensitivity of the method.

The focus of this book is on the roles of calibration and validation in the utilization of these tech‐
niques and their associated methods for analyte quantitation in samples. A number of ap‐
proaches to calibration and validation of analytical methods will be presented in a series of
selected research papers and reviews dealing with such topics as the use of the internal standard
method for calibration and quantitation of proteins in biological matrices by LC-MS/MS, using a
variety of data preprocessing methods and a DoE (Design of Experiments) chemometric ap‐
proach to the development of calibration models for vibrational spectroscopic methods, employ‐
ing DoE in conjunction with such chemometric methods as partial least squares (PLS), principal
component analysis (PCA), and parallel factor analysis (PFA) for application to pharmaceutical
analysis, and application of a variety of univariate and multivariate regression methods to the
development of calibration models for laser-induced breakdown spectroscopy (LIBS).

This book seeks to introduce the reader to current methodologies in analytical calibration and
validation. This collection of contributed research articles and reviews addresses current devel‐
opments in the calibration of analytical methods and techniques and their subsequent validation.
Section 1, “Introduction,” contains an Introductory Chapter, a broad overview of analytical cali‐
bration and validation, and a brief synopsis of the following chapters. Section 2, “Calibration
Approaches,” presents five chapters covering calibration schemes for some modern analytical
methods and techniques. The last chapter in this section provides a segue into Section 3, “Valida‐
tion Approaches,” which contains two chapters on validation procedures and parameters. This
book is a valuable source of scientific information for anyone interested in analytical calibration
and validation.

I am most grateful to Mr. Teo Kos, the initial Publishing Process Manager for this project, for all
his efforts and support at the start of this book project and Mrs. Marina Dusevic who succeeded
him for her supervision and organization of the publication of all materials; her assistance to me
and the authors in the completion of our work in an easy, timely manner; and her helpful advice
and guidance throughout the bulk of this project. I thank the authors for their excellent contribu‐
tions to this compendium of research articles and reviews on calibration and validation schemes
for quantitative analysis. I express many thanks to the technical editor who prepared these
manuscripts for publication by InTech Open Access Publisher. I thank my wife, Resa, who is
also an analytical chemist, for her advice, support, and encouragement; the University of Pitts‐
burgh at Greensburg for their support; my secretary, Mrs. Valerie Kubenko, for her encourage‐
ment and assistance with this project as well as with my administrative and academic duties
during my work on this book; and finally—and perhaps most importantly—my colleague, fel‐
low administrator, and our campus statistician, Dr. Dean Nelson, for his support, encourage‐
ment, and helpful advice on statistics. Lastly, I am honored to complete this book project on the
occasion of my 61st birthday—a nice “present” for the one who is embracing his later years with
enthusiasm and has no intention of ceasing his work on analytical data treatment.

Mark T. Stauffer, PhD
University of Pittsburgh, Greensburg

Greensburg, Pennsylvania
United States of America
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1. The necessary processes of calibration and validation in chemical 
analysis

One of the most critical aspects of any analytical method, if not THE most critical aspect,
is the calibration of the response of the particular equipment with respect to concentration
of the sought-after analyte. This aspect of the quantitative determination of an interesting
analyte is necessary to understanding the interesting, and sometimes complicated, relation-
ship between the signal produced by the desired analyte present in an interesting sample
and subsequently measured by the analyst, and the amount (e.g., mass, moles, concentra-
tion) of that analyte in the sample. Without such a relationship, let alone the methods and
techniques to acquire it, analytical chemistry as we know it would be impossible, if not
horrendously difficult.

In this introductory chapter, the author (Editor) wishes to provide some background infor-
mation for the reader, toward appreciation and understanding of the relevance and neces-
sity of the process of calibration in quantitative chemical analysis, and the equally relevant
and necessary role of the process of validation, or verification, of the calibration process.
The subsequent chapters of this book will deal with the (much) finer details of analytical
calibration and validation in current applications to various analytical methodologies, and
thus allow the reader to see the many “faces” of calibration and validation in the realm of
chemical analysis.

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.
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1.1. What are calibration and validation, as applied to chemical analysis?

1.1.1. Calibration in chemical analysis

Calibration, in its broadest sense, may be defined as the process of bringing a task, method, 
procedure, or some operation in general, into conformity with a set of objectives and goals 
that are solidly established and highly reliable; i.e., based on information that is precise and 
accurate [1]. In analytical chemistry, calibration is defined as the process of assessment and 
refinement of the accuracy and precision of a method, and particularly the associated mea-
suring equipment (i.e., an instrument), employed for the quantitative determination of a 
sought-after analyte [2]. The assessment of the analytical method and related instrumentation 
is based on analysis one or more reference samples that contain known, established quantities 
of the analyte(s) to be determined in the analysis. Usually, the number of reference samples, 
also known as standards, may be as few as two (i.e., a standard containing a known amount of 
analyte, and a blank or standard containing no known amount of analyte), or as many as, say, 
10 (e.g., one blank and nine non-zero standards containing varying amounts of analyte). The 
scope of this process expands significantly when one considers the sample matrix in which 
the analyte(s) reside(s) and the processes needed to extract the desired analyte(s) from that 
matrix (if such processes are required), the instrumentation that produces and measures the 
analyte signal(s), and analysis of the calibration data [2].

1.1.2. Validation in chemical analysis

The term validation denotes, in general, verification of something; i.e., demonstrating by some 
means that an object, concept, etc. is accurate or valid [1]. In analytical chemistry, validation 
has the same meaning—in this case, though, the “something” to be verified is the analytical 
method used for analyte quantitation [3]. The calibration scheme employed in the analytical 
determination is particularly subject to verification, and must be, as the reliability of the ana-
lytical results produced by the determination is dependent on the reliability of the calibration 
expression that relates analyte signal to its concentration. Typical parameters used to validate 
a quantitative determination of an analyte include accuracy, precision, limits of detection and 
quantitation, limits of linearity of the calibration curve, dynamic range of calibration, robust-
ness, sensitivity, and selectivity [3].

2. Rationale for calibration and validation in analytical chemistry

The rationale for performing a calibration of an analytical method may be stated as follows: 
to obtain a valid relationship between the signal produced by the analyte and the quantity of analyte 
in two or more samples of known analyte concentration (standards), that can be described mathemati-
cally and used by the analyst to obtain quantitative information on the analyte in samples of unknown 
analyte concentration. The calibration process for an analytical method involves measuring the 
signal produced by an analyte of interest in two or more standards (at least one blank and one 
non-zero standard) containing known quantities of the analyte. The measured signals from 
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all of the standards are total signals due to the contributions of the analyte plus other compo-
nents in the standard matrix (e.g., an aqueous solution). The measured signals are then cor-
rected for the blank signal, which is due to the other components in the standards. This blank 
correction of all standard signals yields a zero signal for the blank and non-zero signals for the 
non-zero standards, yielding in turn the signal due to the analyte only. The blank-corrected 
analyte signal, and the corresponding analyte concentration, are subjected to the appropriate 
mathematical and statistical treatment, usually linear least squares or other type of regression, 
to yield a mathematical equation for the best-fit line that describes the signal-concentration 
relationship [2, 3]. This mathematical expression may be used by the analyst to calculate the 
concentration of the sought-after analyte in samples of unknown analyte concentration.

The rationale for carrying out a validation study of the analytical calibration may be expressed 
as follows: to verify the reliability of the calibration scheme, via assessment of the accuracy and preci-
sion of the calibration and the analytical results yielded by it. For an analytical method to produce 
results that are both accurate and precise, the calibration setup employed must also be accu-
rate and precise. The validation, or verification, process involves assessment of the calibration 
data, the outcome of the regression of those data, and the analytical results obtained. The 
assessment is accomplished by calculation of various statistics that address such parameters 
as the accuracy and precision of the analyte results, sensitivity of the method to the analyte, 
selectivity of the method for the analyte over other potentially interfering chemical species, 
and the lowest concentration of analyte that can be detected by the method as well as the low-
est analyte concentration that can be detected with reasonable accuracy and precision [2, 3].

3. Calibration methodologies

One can say that the process of calibration has many ‘faces”. There is a myriad of possible 
approaches to the design and analysis of calibration schemes; all one has to do is peruse the 
published, peer-reviewed literature of analytical chemistry to get an idea of the breadth and 
depth of calibration methods that have been developed and subsequently implemented for a 
variety of quantitative analytical determinations over many years. Two aspects of the calibra-
tion process in chemical analysis, particularly, are critical to the development and implemen-
tation of calibration schemes for analytical methods. These aspects are:

• The design of the method, which would include such considerations as the number of 
analytes to be determined, the number of blanks and non-zero standards, the matrix of 
the blanks and standards, the concentration range of each analyte, and application of the 
method to univariate (one variable) or multivariate (more than one variable) data.

• The mathematical/statistical treatment of the calibration data (i.e., analyte signals and concen-
trations) that will yield a logical, workable relationship between signal and concentration.

Let us now discuss briefly the aforementioned items as they apply to calibration and valida-
tion of analytical methods.
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accurate [1]. In analytical chemistry, calibration is defined as the process of assessment and 
refinement of the accuracy and precision of a method, and particularly the associated mea-
suring equipment (i.e., an instrument), employed for the quantitative determination of a 
sought-after analyte [2]. The assessment of the analytical method and related instrumentation 
is based on analysis one or more reference samples that contain known, established quantities 
of the analyte(s) to be determined in the analysis. Usually, the number of reference samples, 
also known as standards, may be as few as two (i.e., a standard containing a known amount of 
analyte, and a blank or standard containing no known amount of analyte), or as many as, say, 
10 (e.g., one blank and nine non-zero standards containing varying amounts of analyte). The 
scope of this process expands significantly when one considers the sample matrix in which 
the analyte(s) reside(s) and the processes needed to extract the desired analyte(s) from that 
matrix (if such processes are required), the instrumentation that produces and measures the 
analyte signal(s), and analysis of the calibration data [2].

1.1.2. Validation in chemical analysis

The term validation denotes, in general, verification of something; i.e., demonstrating by some 
means that an object, concept, etc. is accurate or valid [1]. In analytical chemistry, validation 
has the same meaning—in this case, though, the “something” to be verified is the analytical 
method used for analyte quantitation [3]. The calibration scheme employed in the analytical 
determination is particularly subject to verification, and must be, as the reliability of the ana-
lytical results produced by the determination is dependent on the reliability of the calibration 
expression that relates analyte signal to its concentration. Typical parameters used to validate 
a quantitative determination of an analyte include accuracy, precision, limits of detection and 
quantitation, limits of linearity of the calibration curve, dynamic range of calibration, robust-
ness, sensitivity, and selectivity [3].

2. Rationale for calibration and validation in analytical chemistry

The rationale for performing a calibration of an analytical method may be stated as follows: 
to obtain a valid relationship between the signal produced by the analyte and the quantity of analyte 
in two or more samples of known analyte concentration (standards), that can be described mathemati-
cally and used by the analyst to obtain quantitative information on the analyte in samples of unknown 
analyte concentration. The calibration process for an analytical method involves measuring the 
signal produced by an analyte of interest in two or more standards (at least one blank and one 
non-zero standard) containing known quantities of the analyte. The measured signals from 
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all of the standards are total signals due to the contributions of the analyte plus other compo-
nents in the standard matrix (e.g., an aqueous solution). The measured signals are then cor-
rected for the blank signal, which is due to the other components in the standards. This blank 
correction of all standard signals yields a zero signal for the blank and non-zero signals for the 
non-zero standards, yielding in turn the signal due to the analyte only. The blank-corrected 
analyte signal, and the corresponding analyte concentration, are subjected to the appropriate 
mathematical and statistical treatment, usually linear least squares or other type of regression, 
to yield a mathematical equation for the best-fit line that describes the signal-concentration 
relationship [2, 3]. This mathematical expression may be used by the analyst to calculate the 
concentration of the sought-after analyte in samples of unknown analyte concentration.

The rationale for carrying out a validation study of the analytical calibration may be expressed 
as follows: to verify the reliability of the calibration scheme, via assessment of the accuracy and preci-
sion of the calibration and the analytical results yielded by it. For an analytical method to produce 
results that are both accurate and precise, the calibration setup employed must also be accu-
rate and precise. The validation, or verification, process involves assessment of the calibration 
data, the outcome of the regression of those data, and the analytical results obtained. The 
assessment is accomplished by calculation of various statistics that address such parameters 
as the accuracy and precision of the analyte results, sensitivity of the method to the analyte, 
selectivity of the method for the analyte over other potentially interfering chemical species, 
and the lowest concentration of analyte that can be detected by the method as well as the low-
est analyte concentration that can be detected with reasonable accuracy and precision [2, 3].

3. Calibration methodologies

One can say that the process of calibration has many ‘faces”. There is a myriad of possible 
approaches to the design and analysis of calibration schemes; all one has to do is peruse the 
published, peer-reviewed literature of analytical chemistry to get an idea of the breadth and 
depth of calibration methods that have been developed and subsequently implemented for a 
variety of quantitative analytical determinations over many years. Two aspects of the calibra-
tion process in chemical analysis, particularly, are critical to the development and implemen-
tation of calibration schemes for analytical methods. These aspects are:

• The design of the method, which would include such considerations as the number of 
analytes to be determined, the number of blanks and non-zero standards, the matrix of 
the blanks and standards, the concentration range of each analyte, and application of the 
method to univariate (one variable) or multivariate (more than one variable) data.

• The mathematical/statistical treatment of the calibration data (i.e., analyte signals and concen-
trations) that will yield a logical, workable relationship between signal and concentration.

Let us now discuss briefly the aforementioned items as they apply to calibration and valida-
tion of analytical methods.

Introductory Chapter: The Many Faces of Calibration and Validation in Analytical Methodology…
http://dx.doi.org/10.5772/intechopen.75304

5



3.1. Calibration methods: some established designs

A calibration scheme may consist of as few as two standards (a blank sample containing no 
known analyte plus a standard sample containing a known, non-zero quantity of analyte) 
to a series of standards (at least one blank sample and many standards containing known, 
and varying, amounts of the analyte) in which the analyte concentrations are arranged in 
order of increasing concentration. The resulting calibration method may be designed so that 
known quantities of the analyte are added to the sample matrix, or include a non-analyte 
chemical species that serves as an internal reference against which the analyte response may 
be ratioed to produce a relative response, or even prepare calibration standard solutions in, 
e.g., an aqueous medium, apart from the samples. The design of the method may be as simple 
as comparison of a standard sample containing a known concentration of the analyte to the 
unknown sample, or as complex as a series of calibration standards for one or more sought-
after analytes. Let us now look briefly at some well known, widely used calibration methods 
employed for quantitation of interesting analytes.

3.1.1. External standard method

The external standard method is perhaps the best known and most widely used calibration 
method among analytical scientists. The external standard method employs a series of stan-
dards consisting of at least one blank that contains no known concentration of the sought-after 
analyte, and several non-zero standards containing known concentrations of the analyte and 
prepared in order of increasing analyte concentration. The calibration standards are prepared 
separate from (external to) the sample matrix, usually in a solvent, e.g., water, and containing 
the reagents used in sample preparation. The measured signals of the blank and non-zero 
standards are adjusted for the blank signal to yield a signal that reflects the signal due only to 
the analyte [3, 4]. The resulting blank-adjusted signals for the calibration standards are then 
regressed on the corresponding analyte concentrations to yield a calibration equation that is 
useful for determination of the concentration of the desired analyte in the unknown samples. 
If the analyte signal (I)-concentration (C) relationship is, e.g., first-order (i.e., “straight line”) 
linear with a slope m, the resulting calibration function will be of the form given by Eq. (1) [3]:

  I = mC +  I  0    (1)

The blank-corrected signals of the standards may also be plotted versus the corresponding 
analyte concentrations, as illustrated in Figure 1. The calibration equation for this plot is 
shown on the plot itself.

3.1.2. Standard addition method

This approach is employed mostly with samples that possess a component which yields a sig-
nal that interferes with the signal due to the analyte [3, 5, 6]. The method of standard addition 
involves direct addition (i.e., spiking) of known amounts of the analyte, usually as aliquots of 
a stock or working standard solution of the analyte, into equal-volume portions or aliquots of 
the sample itself. One of the sample aliquots is unspiked (i.e., no analyte added above what 
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may already be in the sample), while the other aliquots are spiked with increasing amounts 
of the analyte, analogous to the scheme used for an external standard calibration. The effect 
of this addition of known amounts of the analyte to the aliquots of sample is to increase 
the signal due to the analyte in order to surmount the signal from the interfering species. 
The measured analyte signals of the unspiked and spiked sample aliquots are then regressed 
against the corresponding concentrations of spiked analyte to yield a calibration function that 
is utilized for determination of analyte concentration in the original sample by calculation of 
analyte concentration at zero signal. The standard addition method is used primarily to deter-
mine analytes in samples that contain chemical components which interfere with the signal 
produced by the analyte. An example of a standard addition plot is depicted in Figure 2.

3.1.3. Internal standard method

The internal standard method makes use of addition of a chemical species, different from the 
analyte, in a constant amount to calibration standards, blanks, and samples involved in the 
quantitative determination of the analyte [2, 3]. A ratio of the analyte signal (IA,S) to the inter-
nal standard signal (IIS,S) is calculated for the blank and each standard. Likewise, a ratio of the 
analyte concentration (CA,S) to the internal standard concentration (CIS,S) is calculated for each 
standard (including the blank) in the calibration set. The signal ratios (IA,S/IIS,S) are then plotted 
against the concentration ratios (CA,S/CIS,S) to produce a calibration curve and its calibration 
equation of the form given by Eq. (2):

    
 I  A,S   ___  I  IS,S  

   = m   
 C  A,S   ____  C  IS,S  

    (2)

Figure 1. An example of a first-order linear calibration curve for determination of aluminum by the spectrophotometric 
Eriochrome Cyanine R method (courtesy of original research of the author, November 2015).
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In Eq. (2), m is the slope of the calibration function. The internal standard method is used for 
irreproducible amounts of sample, varying signals from determination to determination, or 
losses of sample occurring during sample preparation.

3.2. Regression and analytical calibration

Regression is a statistical process in which the relationship between a dependent, or response, 
variable (e.g., “y”) and an independent, or predictor, variable (e.g., “x”) is determined and 
explained [7]. Through a collection of mathematical calculations, the equation that relates “y” 
to “x”, and in essence explains it, is derived for its intended use. In a chemical analysis, the 
calibration process involves regression of the dependent variable (usually signal, but can be 
concentration regarding inverse calibration methods) on one or more independent variables; 
usually, concentration is taken as the independent variable, but signal is treated as the inde-
pendent variable in inverse calibration methods [8–10]. The type of method employed for 
regression of calibration data in an analytical determination depends on how many analytes 
are to be determined as well as how many responses are to be measured; i.e., is the calibration 
model to be used univariate (one variable) or multivariate (more than one variable) in structure? 
This point is a good segue into the topic of univariate versus multivariate calibration, and 
some regression methods that are appropriate for either or both calibration models.

3.2.1. Univariate and multivariate calibration: regression methods

For sets of data/results, the term univariate refers to a one-variable set of data, e.g., a row or 
column of titration volumes. The term multivariate describes a set of data/results that contains 

Figure 2. An example of a standard addition calibration curve for determination of iron in mine drainage by the 
colorimetric Ferene-S method (courtesy of original research of the author and former students, November 2010).
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two or more variables, e.g., a group of sodium concentrations and the corresponding signal 
intensities measured by flame emission spectrometry—a two-variable system comprised of 
an independent variable and a dependent variable. In analytical calibration, however, the 
descriptor univariate calibration refers to one dependent variable (e.g., usually signal, but can 
be concentration) regressed on one or more independent variables (e.g., usually concentra-
tion, but can be signal), and the term multivariate calibration denotes two or more dependent 
variables (e.g., usually concentrations of two or more analytes) regressed on two or more 
independent variables (e.g., usually the corresponding signals) [9–13]. For each of these two 
broad categories of analytical calibration, there are regression methods that have been demon-
strated to provide the sought-after relationship between an analyte signal and the correspond-
ing analyte concentration [9–13]. Table 1 provides a list of some of these well known, widely 
used regression methods for quantitative analytical calibration, and the type of regression. In 
the subsequent chapters of this book, some of the regression methods indicated in Table 1 will 
be encountered, and their applications to calibration of various analytical methods illustrated.

Regression method Univariate/multivariate mode

Ordinary least-squares (OLS)

• Simple OLS (i.e., linear least-squares)

• Multiple OLS (i.e., multiple linear regression 
(MLR))

• Multivariate OLS (includes K-matrix and P-matrix 
methods)

Univariate (simple OLS, multiple OLS)

Multivariate (multivariate OLS)

Stepwise Univariate/multivariate

Weighted Univariate/multivariate

Principal component (PCR) Univariate/multivariate (usually, one dependent variable 
regressed on multiple independent variables)

Partial least-squares (PLS)

• PLS-1 (one dependent variable regressed on mul-
tiple independent variables)

• PLS-2 (multiple dependent variables regressed on 
multiple independent variables)

Univariate (PLS-1)

Multivariate (PLS-2)

Canonical correlation analysis (CCA) Multivariate

Ridge Univariate

Lasso Univariate

Regression trees Univariate/multivariate

Artificial neural networks (ANN) Univariate/multivariate

Table 1. Selected univariate and multivariate regression models applied to calibration data in quantitative analytical 
determinations [9–13].
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4. Validation parameters for assessment of the reliability of 
calibration methods

Without the means to assess the reliability (i.e., accuracy and precision) of the calibration 
scheme used for quantitative determination of an interesting analyte, the calibration curve 
employed for quantitation of the analyte and the quantitative results for analyte concentra-
tion in the sample—in fact, the entire analytical method—become questionable and thereby 
unreliable. Thus, the need for validation, or assessment of the performance of the calibration 
for a quantitative analysis, becomes imperative for a successful analytical determination. 
Validation can also have more than one “face” as well.

4.1. Some examples of validation parameters

Various statistical parameters and methods have been developed over the years to accomplish 
the task of performing assessments of the reliability of calibration schemes used in quantita-
tive analyses. These parameters examine such aspects of calibration schemes as the linearity of 
the resulting calibration curve, the goodness of fit of the regression model to the experimental 
calibration data, the precision of the calibration slope, and the standard errors of calibration 
(SEC) and prediction (SEP) [9–13], among other quantities. Such statistical parameters as the 
regression equation (i.e., slope (m) and y-intercept (b)), square of the Pearson correlation coef-
ficient (R2), and standard error of the regression (sr) are among the assessors of calibration 
performance for a univariate case (i.e., an analyte signal dependent on a corresponding analyte 
concentration, or vice versa) [2–4, 8], and are parameters that are usually an undergraduate 
chemist’s first exposure to calibration and validation in a quantitative analysis course. As those 
involved in data analysis know (all too well), there is much more to consider regarding calibra-
tion and validation methodologies. For both univariate and multivariate calibrations, param-
eters such as total and explained residual variance (TRV and ERV, respectively), mean square error 
(MSE), root mean square error (RMSE, an indicator of calibration accuracy), standard error (SE, or 
standard deviation of prediction errors, an indicator of calibration precision), bias, and the coef-
ficient of determination (R2, a.k.a. the square of the Pearson correlation coefficient) are widely and 
commonly used for assessment of calibration reliability. The formulas and descriptions for the 
aforementioned evaluation parameters may be found in any number of texts on chemometrics 
and statistics [9–13].

4.2. Validation methods: cross-validation and bootstrapping

Calibrations models are usually designed using two sets of response (dependent) variable and 
predictor (independent) variable data: a training set which, as the name suggests, “trains” or 
develops the model, and the test or prediction, or validation, set that “tests” the validity of the 
developed model. Assessment of the reliability of the developed calibration (training) model 
is made by application of that model to the validation (test) set via comparison of the predicted 
results to the known validation quantities; thus, it is the test set that acts as the assessor of the 
calibration model [11, 12]. Using a specific training and test set only once for development and 
testing of a calibration scheme may not always produce reliable results using the selected test 
data. Also, an insufficient amount of calibration data to yield a sufficiently large number of 
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predicted results can be problematical in evaluating the calibration scheme. Toward this end, 
two methods in particular, cross-validation and bootstrapping, have been developed to increase 
the number of predictions for a given calibration model.

4.2.1. Cross-validation

In cases for which there might be a paucity of data available to perform a thorough evaluation 
of the calibration model, a method known as cross-validation, that “resamples” both training 
and test data to produce a larger number of predictions, may be employed. Cross-validation 
works by splitting the total set of available calibration data into roughly equal-data segments, 
with one of the segments selected as the test set and the remaining segments serving as the 
training set. The calibration model is developed using the training set, and then tested on the 
test set. This process is continued until every segment has served as a test set. In this manner, 
the number of predictions for the model may be increased [10–13].

4.2.2. Bootstrapping

This method uses training sets with a set number of objects randomly selected from the avail-
able data set. A calibration model is developed from the training set and subsequently applied 
to the objects in the available data set that are not part of the training set. This process yields 
corresponding prediction values and their associated errors. The process is then repeated 
many (sometimes up to 1000) times. Two advantages of the bootstrap method are an uncom-
plicated approach and having the same number of objects in the training set; some disadvan-
tages are labor-intensive calculations, the possibility of unequal consideration of all objects in 
the available data, and results that are sometimes overly optimistic [11].

4.3. Validation parameters for the analytical method itself

Let us not forget about other parameters that are useful for validation of the analytical method 
itself. These are the so-called “figures of merit” [2–4]—the accuracy (i.e., bias) and precision 
(i.e., standard deviation) of the analytical results, limits of detection (LOD), quantitation 
(LOQ), and linearity (LOL), the dynamic range (the range of concentration linear with signal 
from the LOQ to the LOL; i.e., LOL/LOQ), sensitivity, and selectivity [2–4]. All of these param-
eters for method validation are ultimately connected, and traceable, to the calibration scheme 
employed for quantitation of sought-after analytes using an analytical method or technique.

5. Some “faces” of calibration and validation to be found in this book

In this book on calibration and validation of analytical methods are a collection of research 
and review chapters on various applications and other aspects of calibration and validation 
in chemical analysis. In these highly interesting chapters, one can see the many and varied 
“faces” of calibration and validation revealing themselves to the reader, waiting to be studied 
and utilized by interested researchers. A quick glimpse of these “faces” should provide the 
reader with a preview of what is in store as one explores the content of this book:
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4.2. Validation methods: cross-validation and bootstrapping
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develops the model, and the test or prediction, or validation, set that “tests” the validity of the 
developed model. Assessment of the reliability of the developed calibration (training) model 
is made by application of that model to the validation (test) set via comparison of the predicted 
results to the known validation quantities; thus, it is the test set that acts as the assessor of the 
calibration model [11, 12]. Using a specific training and test set only once for development and 
testing of a calibration scheme may not always produce reliable results using the selected test 
data. Also, an insufficient amount of calibration data to yield a sufficiently large number of 
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predicted results can be problematical in evaluating the calibration scheme. Toward this end, 
two methods in particular, cross-validation and bootstrapping, have been developed to increase 
the number of predictions for a given calibration model.

4.2.1. Cross-validation

In cases for which there might be a paucity of data available to perform a thorough evaluation 
of the calibration model, a method known as cross-validation, that “resamples” both training 
and test data to produce a larger number of predictions, may be employed. Cross-validation 
works by splitting the total set of available calibration data into roughly equal-data segments, 
with one of the segments selected as the test set and the remaining segments serving as the 
training set. The calibration model is developed using the training set, and then tested on the 
test set. This process is continued until every segment has served as a test set. In this manner, 
the number of predictions for the model may be increased [10–13].

4.2.2. Bootstrapping

This method uses training sets with a set number of objects randomly selected from the avail-
able data set. A calibration model is developed from the training set and subsequently applied 
to the objects in the available data set that are not part of the training set. This process yields 
corresponding prediction values and their associated errors. The process is then repeated 
many (sometimes up to 1000) times. Two advantages of the bootstrap method are an uncom-
plicated approach and having the same number of objects in the training set; some disadvan-
tages are labor-intensive calculations, the possibility of unequal consideration of all objects in 
the available data, and results that are sometimes overly optimistic [11].

4.3. Validation parameters for the analytical method itself

Let us not forget about other parameters that are useful for validation of the analytical method 
itself. These are the so-called “figures of merit” [2–4]—the accuracy (i.e., bias) and precision 
(i.e., standard deviation) of the analytical results, limits of detection (LOD), quantitation 
(LOQ), and linearity (LOL), the dynamic range (the range of concentration linear with signal 
from the LOQ to the LOL; i.e., LOL/LOQ), sensitivity, and selectivity [2–4]. All of these param-
eters for method validation are ultimately connected, and traceable, to the calibration scheme 
employed for quantitation of sought-after analytes using an analytical method or technique.

5. Some “faces” of calibration and validation to be found in this book

In this book on calibration and validation of analytical methods are a collection of research 
and review chapters on various applications and other aspects of calibration and validation 
in chemical analysis. In these highly interesting chapters, one can see the many and varied 
“faces” of calibration and validation revealing themselves to the reader, waiting to be studied 
and utilized by interested researchers. A quick glimpse of these “faces” should provide the 
reader with a preview of what is in store as one explores the content of this book:
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• The impact of factorial design and machine learning strategies on pharmaceutical analysis

• Multivariate calibration methods applied to development of vibrational spectroscopic 
methods

• Approaches to method validation for pharmaceutical assessments, using high-performance 
thin-layer chromatography (HPTLC)

• A review of criteria for assessment of analytical method reliability

• Using internal standards for quantitation of proteins in biological matrices by LC-MS/MS

• Calibration methods for laser-induced breakdown spectroscopy (LIBS)

• Analytical method validation, presented in the context of laboratory competence and gen-
eration of reliable analytical results

I anticipate that the reader will find this assemblage of chapters dealing with analytical method 
calibration and validation useful as well as interesting, and possibly inspiring some ideas for 
future studies.

6. Summary

This introductory chapter to this book on calibration and validation of analytical methods was 
written to provide the reader with a general overview of a sort on the topics of calibration and 
validation as applied to problems in chemical analysis. This included a general explanation 
of calibration and validation, the importance of these topics in quantitative analysis, and a 
rationale for their use in analytical chemistry. Also presented were overviews on calibration 
and regression methods, and validation parameters and methods for calibration schemes and 
analytical results. Finally, a glimpse of the subsequent chapters in this text was given. This 
introductory chapter is meant to be general in scope; the reader will get much more detail in 
the following research and review chapters. Thus, I invite the reader to explore the following 
chapters to see the various “faces” of analytical method calibration and validation.
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Abstract

Chemical measurement processes (CMPs) must be performed in a setup of controlled sta-
tistical conditions. Thus, validation of such a measurement process and assessment of its 
ability to accurately measure the analyte is important. Analytical calibration is the most 
crucial step in any analytical procedure targeting the estimation of analyte concentra-
tion. As a key component of any validation procedure, calibration must be properly con-
ducted. To achieve that, firm knowledge with the realms of the calibration process must 
exist. Several jurisdictions help to build up this acquaintance, including the terminology 
and definitions, the international guidelines and how they differ, schemes and manuals 
to be used to build a calibration model, metrological considerations, and assessment pro-
cedures. Careful thinking prior to any of the previous calibration aspects is necessary and 
helps to improve the product of the calibration process. Throughout this chapter, aspects 
of the calibration assembly will be thoroughly discussed. Different types of calibration 
will be revealed with a focus on analytical calibration for a CMP. Steps for a successful 
calibration will be described. The reader will be able to use information given throughout 
this chapter as a guide for an effective calibration process.

Keywords: analytical calibration, terminology, regulatory agencies, multi-, one- and 
two-standard calibrations, calibration methodologies

1. Introduction

Millions of analytical investigations are instigated every day. Despite the massive progress 
and advancements implemented to the developed techniques and instrumentations, calibra-
tion stays as the most critical stage in every analytical practice leading to the estimation of the 
target analyte.
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An analytical measurement process is a setup with a demarcated configuration that has been 
carried to be statistically controlled under the designated experimental conditions. To sub-
stantiate the efficacy of analytical processes and subsequently the applicability in routine 
analysis, the ability of such a method to “quantify” must be assessed. Thus, and to fetch such 
a status of statistical management, key elements including validation, and hence its metrologi-
cal frontier, calibration, must be clearly comprehended [1].

In the latest definition released by the Joint Committee for Guides in Metrology (JCGM) in 
their 3rd edition of the “International Vocabulary of Metrology, VIM”, calibration is: “opera-
tion that, under specified conditions, in a first step, establishes a relation between the quantity 
values with measurement uncertainties provided by measurement standards and corre-
sponding indications with associated measurement uncertainties and, in a second step, uses 
this information to establish a relation for obtaining a measurement result from an indica-
tion” [2, 3]. Validation, in the same edition, was defined as “verification, where the specified 
requirements are adequate for an intended use.”

Though validation as an idiom is already well-known, the protocols of its application are not 
clear for many of the analytical chemists. No need to say that validation of an already devel-
oped analytical process must be performed following a clearly written protocol and through 
a series of laboratory experiments. Moreover, different regulatory bodies (e.g., IUPAC, 
ICHQ2R1) do have different nomenclature for such a term (as well as its components) and 
hence dissimilar manuals, an issue that in turn leads to different performance and approval 
criterions [4, 5].

As a component of the validation process, calibration is also a subject of controversy in terms 
of vocabularies, the perception of the calibration procedure starting with method develop-
ment to fitting of results obtained, implementation of the appropriate linearity testing, and 
hence the assessment of goodness-of-fit and deviation from linearity.

It is very important to recognize that though the existence of intrinsic discrepancies between 
chemical (CMPs) and physical (PMPs) measurement processes in terms of uncertainty associ-
ated with the results and the availability of reference materials; both are still treated with the 
same metrological approach. Yet, an imperative difference between both processes must be 
carefully considered which is calibration [6–8].

The purpose of this treatise is to shed light on the “appropriate” definition of calibration as a 
process that encompasses metrological/statistical as well as procedural evaluation of the ana-
lytical measurement. The different types of calibration will be revealed. Analytical calibration, 
across the different guidelines and with respect to definitions and terminologies, schemes, 
metrologies, and methodologies will be discussed.

Though in some sections of this piece complicated terminologies would be used, a reader of 
this chapter, even if not from the scientific community, would be able to understand informa-
tion given with the help of definitions revealed in almost every section.
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2. Calibration in analytical sciences: fundamentals

Several definitions exist in literature for calibration. In addition to the previously mentioned 
definition given by the VIM [2, 3], IUPAC definition of calibration can be viewed as a “gen-
eral” description where it is given as “an operation that relates an output quantity to an input 
quantity” [9]. Unfortunately, these definitions instead of giving a clear-cut understanding of 
the term and the corresponding process have created a kind of confusion where it is common 
to find the wrong term being given to the wrong process or similar names given to different 
types of processes, etc.

However, it is noteworthy to mention that the additional “notes” given by the JCGM [3] on 
the definition of calibration would clarify this misunderstanding where: “A calibration may 
be expressed by a statement, calibration function, calibration diagram, calibration curve, or 
calibration table. In some cases, it may consist of an additive or multiplicative correction of 
the indication with associated measurement uncertainty” and “Calibration should not be con-
fused with adjustment of a measuring system, often mistakenly called ‘self-calibration’, nor 
with verification of calibration.” Furthermore, and according to JCGM, “Often, the first step 
alone in the above definition is perceived as being calibration.”

Yet, and as per these definitions, it is important to distinguish between the different types of 
calibration and whether it is designed for a qualitative or a quantitative purpose. As a rela-
tion between an input quantity and another output quantity, quantitative calibration can be 
performed directly (where the measurement and the reference values are being compared 

Figure 1. Schematic representation of the different approaches for calibration.
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employing the same units) or indirectly (where the measured response is being decoded into 
the corresponding quantity to be determined, i.e., analytical calibration). Both direct and indirect 
calibrations can target the equipment as well as the process itself [10]. More details on these 
subdivisions will be given under the relevant section.

Calibration then can be tackled using different standpoints depending on its implication. 
In other words, is the calibration targeting the system of measurement and its quality so 
it is metrological calibration or it is an analytical calibration that merely describes the relation 
between the analyte and the corresponding response? Distinction of direct from indirect cali-
bration and then process and instrument can be performed using the metrological maneuver. 
Another approach to see the calibration process would be in terms of methodologies and 
schemes followed to achieve such a status. Figure 1 shows a schematic representation of the 
calibration process with the different approaches commonly found in literature. The follow-
ing subsections will be dealing mainly with analytical calibration of a chemical measurement 
processes in terms of steps and guidelines, schemes, manuals and methodologies, and metrological 
considerations.

3. Analytical calibration

3.1. Steps and guidelines

As previously mentioned, the term analytical calibration is used when the calibration process 
cannot be performed directly. In general, the objective of doing calibration is to establish an 
experiential liaison between the instrument response signal “y-variable” and the reaction fac-
tors “x-variable.” The purpose of establishing such a liaison is to be able to assess the influence 
of these variables on the response and hence quantify the analyte.

Surveying the literature shows that different validation strategies proposed by the different 
regulatory institutions usually involve quite different guidelines for analytical calibration. In 
addition to the differences in terminologies used to define analytical calibration and hence 
associated terms, other major differences can be found as follows.

3.1.1. Proposing a strategy for a calibration study

Planning is the preliminary step in conducting the calibration study. The conventional scheme 
for performing calibration is to prepare a set of standards (plus a blank) followed by quan-
tifying the response signal for such a set [11–13]. Common several “How” questions usually 
evolve as the analyst is getting ready to conduct this study:

• How many standards will be used?

• How the target of calibration will affect the composition of calibration standards?

• How the selected number of standards will be patterned and disseminated on the studied 
concentration range?
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• How to select the concentrations that will be measured?

• How the measurement procedure would be like?

• How many times the analysis should be repeated (replications)?

• How the calibration mode will be set? (details will be discussed later)

The elements of calibration hierarchy according to JCGM [3] are one or more measurement stan-
dards and measuring systems operated according to the measurement procedure. Typically, a mini-
mum of 5–6 calibration standards is used for this purpose. Yet, the number of standards used 
might vary according to the performed analytical process as well as the guidelines proposed 
by the supervisory body followed. The calibration standard might be matrix-free if the pur-
pose is to calibrate solvents, for example, or matrix-matched (MMC) if it is expected that the 
presence of matrix would affect the response signal and hence the calibration outcomes. In 
this case, a blank sample (analyte free) should be used.

Careful distribution of the selected concentration levels over the working range is necessary 
for appropriate calibration. In this concern, discrimination between narrow and wide cali-
bration ranges is essential. Attention should be paid for the case where a wide concentra-
tion range is calibrated where keeping the selected levels at very wide distances, a common 
approach in literature, might deteriorate the detecting system of the instrument, an issue that 
produces erroneous readings. The best approach is to keep the data points consistently dis-
persed across the selected range. Moreover, selected concentrations should be independently 
prepared (no serial dilutions) to avoid augmentation of error.

Selection of the concentration range to be covered should be based on the expected content 
of the real samples taking in consideration the matrix and the intended application of the 
proposed procedure [14]. According to ICH guidelines, for example, if the calibration is per-
formed on an active ingredient or a final product, the range is usually 80–120% of the ana-
lyte concentration [4]. In case of using MMC, the blank sample (zero concentration, solvent) 
should be considered.

The appropriate protocol for a measurement will be the one that simulates the actual circum-
stances. In this itinerary, it is recommended that calibration samples are to be unevenly ana-
lyzed instead of being measured in an increasing concentration sequence. Moreover, insertion 
of calibration standards randomly in between the unknown samples within the measurement 
stream is commended.

Every experiment is associated with an error! Diminishing the random error (measurement 
uncertainty) and hence improving the precision is usually one of the goals when analytical 
calibration is performed. Replicate analysis is usually the approach. The number of recom-
mended replicates differs according to the implemented guideline. While EMA, FDA, and 
AOAC indorse five replicates, ICH recommends three replicates or six replicates at a sin-
gle concentration level compared by replication for 2–3 times at 6–10 concentrations evenly 
spaced across the linear range by Eurachem [4, 5, 14–17]. However, and due to economic 
considerations, triplicate analysis is the common approach.
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evolve as the analyst is getting ready to conduct this study:

• How many standards will be used?
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bration ranges is essential. Attention should be paid for the case where a wide concentra-
tion range is calibrated where keeping the selected levels at very wide distances, a common 
approach in literature, might deteriorate the detecting system of the instrument, an issue that 
produces erroneous readings. The best approach is to keep the data points consistently dis-
persed across the selected range. Moreover, selected concentrations should be independently 
prepared (no serial dilutions) to avoid augmentation of error.

Selection of the concentration range to be covered should be based on the expected content 
of the real samples taking in consideration the matrix and the intended application of the 
proposed procedure [14]. According to ICH guidelines, for example, if the calibration is per-
formed on an active ingredient or a final product, the range is usually 80–120% of the ana-
lyte concentration [4]. In case of using MMC, the blank sample (zero concentration, solvent) 
should be considered.

The appropriate protocol for a measurement will be the one that simulates the actual circum-
stances. In this itinerary, it is recommended that calibration samples are to be unevenly ana-
lyzed instead of being measured in an increasing concentration sequence. Moreover, insertion 
of calibration standards randomly in between the unknown samples within the measurement 
stream is commended.

Every experiment is associated with an error! Diminishing the random error (measurement 
uncertainty) and hence improving the precision is usually one of the goals when analytical 
calibration is performed. Replicate analysis is usually the approach. The number of recom-
mended replicates differs according to the implemented guideline. While EMA, FDA, and 
AOAC indorse five replicates, ICH recommends three replicates or six replicates at a sin-
gle concentration level compared by replication for 2–3 times at 6–10 concentrations evenly 
spaced across the linear range by Eurachem [4, 5, 14–17]. However, and due to economic 
considerations, triplicate analysis is the common approach.
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Some guidelines impose more regulations than those previously mentioned. For exam-
ple, FDA for bioanalytical method validation [18] necessitates that at least four concentra-
tions (lower limit of quantification LLOQ, low, medium, and high) measured in six runs in 
duplicate/run.

3.1.2. Assembling and modeling of experimental data

Following the fulfillment of the previous checklist of “How questions,” the subsequent move-
ment will be to corroborate the liaison between the measured concentration and the equip-
ment response. This liaison is usually established via regression analysis and hence calibration 
graphs (commonly described as curves). According to JCGM [3], calibration curve is “expression 
of the relation between indication and corresponding measured quantity value”, and “a cali-
bration curve expresses a one-to-one relation that does not supply a measurement result as it 
bears no information about the measurement uncertainty.”

3.1.2.1. Construction of calibration curve

The calibration curve is generally constructed by plotting the response values (y-axis, depen-
dent variable) against the known standard concentration values (on x-axis, independent vari-
able, predictor) either manually or by operating popular software like Excel®, for example. 
Performing regression analysis and drawing a regression line require a cautious decision on 
a bundle of three main components: model, mode, and fitting technique.

Typically, the number of predictors and so the type of response variable differ between 
various measurements. Accordingly, the regression pattern would be different. A common 
regression model is the linear regression where a best-fit straight line is drawn between x and y 
variables. Other types of regressions include logistic, polynomial, stepwise (forward selection and 
backward removal), and ridge regression.

In the simple linear regression, one independent variable is involved compared to more than 
one in case of multiple linear regression. The best-fit line is usually obtained employing the 
method of least squares (the most popular technique). This regression line is usually pre-
sented by the equation: y = ax + b, where a and b are the slope and the intercept, respectively. 
In this method, the line is calculated by minimizing the sum of squares of the residuals for 
each data point.

Regression analysis based on principle component analysis (PCA) is known as principle compo-
nent regression (PCR), in which the response is regressed against a set of variables and using 
the PCA to find the regression coefficients. Other regression methods such as partial least-
squares (PLS) establish a linear regression model by protruding x and y variables to a new 
space. This technique is mainly used when the number of data points is less than the number 
of variables [19, 20].

The last step after deciding upon the method and the model used is the selection of fitting 
technique. Adopting the case of a linear regression model being generated using the method 
of least squares, two approaches are commonly followed to find the best-fit line: ordinary 
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(linear) least squares (OLS) and weighted least squares (WLS) [21, 22]. As the name implies, OLS 
is the least-squares regression approach used when errors have a constant variance across the 
working range, homoscedasticity. That is of course in addition to the general assumptions of 
the OLS; errors are not correlated, conditional mean of errors is zero, and regressors are not 
linearly dependent (no multicollinearity). In contrary, WLS should be only used when vari-
ances are different, heteroscedasticity, and the working range is wide.

As an example of how to construct a calibration graph, spectrophotometric determination of 
tioconazole (antifungal, electron donor) using chloranilic acid (electron acceptor) via charge 
transfer reaction, and other calculated parameters needed to establish the regression relation-
ship between [drug] and absorbance are shown in Table 1. Equations used to calculate essen-
tial regression parameters, r (correlation coefficient) and hence the coefficient of determination (R2), 
slope (a) and intercept (b), are shown in Figure 2, which is the calibration graph plotted from 
data shown in Table 1.

3.1.2.2. Assessment of performance: model metrics

Evaluation of a linear relationship between concentration and response is usually performed 
by assessing the regression statistics, calibration graphs, and residual plots of the proposed 
model. Inspection of linearity is usually made visually by observing the calibration plot. Again, 
different guidelines do use different terminologies to describe the linearity and range, FDA 
for example uses the term calibration (standard) curve, compared to ICH guidelines which 
clearly defines linearity and Eurachem which uses the term working range [4, 14, 16, 18]. 

xi yi xi – x̄ (xi – x̄)2 yi – ŷ (yi – ŷ)2 (xi – x̄)(yi – ŷ)

40 0.073 −180 32400 −0.4537 0.205844 81.666

80 0.175 −140 19600 −0.3517 0.123693 49.238

120 0.276 −100 10000 −0.2507 0.06285 25.07

160 0.372 −60 3600 −0.1547 0.023932 9.282

200 0.473 −20 400 −0.0537 0.002884 1.074

240 0.582 20 400 0.0553 0.003058 1.106

280 0.677 60 3600 0.1503 0.02259 9.018

320 0.781 100 10000 0.2543 0.064668 25.43

360 0.878 140 19600 0.3513 0.123412 49.182

400 0.98 180 32400 0.4533 0.205481 81.594

Ʃ =

2200 5.267 0 132000 0 0.838412 332.66

x̄ = 220 ŷ = 0.5267

Table 1. Parameters needed for the calibration graph (Figure 1).
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Performing regression analysis and drawing a regression line require a cautious decision on 
a bundle of three main components: model, mode, and fitting technique.

Typically, the number of predictors and so the type of response variable differ between 
various measurements. Accordingly, the regression pattern would be different. A common 
regression model is the linear regression where a best-fit straight line is drawn between x and y 
variables. Other types of regressions include logistic, polynomial, stepwise (forward selection and 
backward removal), and ridge regression.

In the simple linear regression, one independent variable is involved compared to more than 
one in case of multiple linear regression. The best-fit line is usually obtained employing the 
method of least squares (the most popular technique). This regression line is usually pre-
sented by the equation: y = ax + b, where a and b are the slope and the intercept, respectively. 
In this method, the line is calculated by minimizing the sum of squares of the residuals for 
each data point.

Regression analysis based on principle component analysis (PCA) is known as principle compo-
nent regression (PCR), in which the response is regressed against a set of variables and using 
the PCA to find the regression coefficients. Other regression methods such as partial least-
squares (PLS) establish a linear regression model by protruding x and y variables to a new 
space. This technique is mainly used when the number of data points is less than the number 
of variables [19, 20].

The last step after deciding upon the method and the model used is the selection of fitting 
technique. Adopting the case of a linear regression model being generated using the method 
of least squares, two approaches are commonly followed to find the best-fit line: ordinary 
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(linear) least squares (OLS) and weighted least squares (WLS) [21, 22]. As the name implies, OLS 
is the least-squares regression approach used when errors have a constant variance across the 
working range, homoscedasticity. That is of course in addition to the general assumptions of 
the OLS; errors are not correlated, conditional mean of errors is zero, and regressors are not 
linearly dependent (no multicollinearity). In contrary, WLS should be only used when vari-
ances are different, heteroscedasticity, and the working range is wide.

As an example of how to construct a calibration graph, spectrophotometric determination of 
tioconazole (antifungal, electron donor) using chloranilic acid (electron acceptor) via charge 
transfer reaction, and other calculated parameters needed to establish the regression relation-
ship between [drug] and absorbance are shown in Table 1. Equations used to calculate essen-
tial regression parameters, r (correlation coefficient) and hence the coefficient of determination (R2), 
slope (a) and intercept (b), are shown in Figure 2, which is the calibration graph plotted from 
data shown in Table 1.

3.1.2.2. Assessment of performance: model metrics

Evaluation of a linear relationship between concentration and response is usually performed 
by assessing the regression statistics, calibration graphs, and residual plots of the proposed 
model. Inspection of linearity is usually made visually by observing the calibration plot. Again, 
different guidelines do use different terminologies to describe the linearity and range, FDA 
for example uses the term calibration (standard) curve, compared to ICH guidelines which 
clearly defines linearity and Eurachem which uses the term working range [4, 14, 16, 18]. 

xi yi xi – x̄ (xi – x̄)2 yi – ŷ (yi – ŷ)2 (xi – x̄)(yi – ŷ)

40 0.073 −180 32400 −0.4537 0.205844 81.666

80 0.175 −140 19600 −0.3517 0.123693 49.238

120 0.276 −100 10000 −0.2507 0.06285 25.07

160 0.372 −60 3600 −0.1547 0.023932 9.282

200 0.473 −20 400 −0.0537 0.002884 1.074

240 0.582 20 400 0.0553 0.003058 1.106

280 0.677 60 3600 0.1503 0.02259 9.018

320 0.781 100 10000 0.2543 0.064668 25.43

360 0.878 140 19600 0.3513 0.123412 49.182

400 0.98 180 32400 0.4533 0.205481 81.594

Ʃ =

2200 5.267 0 132000 0 0.838412 332.66

x̄ = 220 ŷ = 0.5267

Table 1. Parameters needed for the calibration graph (Figure 1).

Analytical Calibrations: Schemes, Manuals, and Metrological Deliberations
http://dx.doi.org/10.5772/intechopen.72580

23



Figure 3 shows three commonly used terms to describe the range: analytical (dynamic range), 
working (calibration) range, and linear range.

The analytical or the dynamic range is the range in which the equipment is showing a response 
to the tested concentration, and this response is changing as the concentration varies. This 
relationship might be linear or nonlinear. The calibration range, in which the liaison between 
response and analyte concentration has an adequate uncertainty, usually starts with the limit 

Figure 2. Calibration graph plotted from data presented in Table 1.

Figure 3. A demonstration of different ranges: analytical, working, and linear ranges.
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of quantitation (LOQ) and ends where there is an obvious deviation from linearity. Working 
range is usually wider compared to the linear range. Thus, the latter can be defined as the 
range where there is a direct proportionality between concentration and response [14, 23, 24].

Though not being a component of the validation process, sensitivity is mentioned in variety 
of guidelines with the purpose of method evaluation. As a parameter, sensitivity can be easily 
estimated from the linear calibration graph as the function gradient. As per FDA guidelines 
[16], sensitivity is defined as “the lowest analyte concentration that can be measured with 
acceptable accuracy and precision (i.e., LLOQ).” In this itinerary, parameters such as limit of 
detection (LoD) and limit of quantitation (LoQ) need to be distinguished [23].

Once the status of “linearity” is established, statistical analysis is needed. Model metrics 
such as the correlation coefficient, slope of the regression line, and the intercept should be 
included (Figure 2). A comparison between the linearity assessment practices as per the dif-
ferent guidelines will be revealed in the following subsections. Table 2 shows a comparison 

Assessment approach Recommended by Pros Cons Ref.

Graphical inspection

Residuals plot IUPAC, NATA, 
INAB

Helpful together with 
the visual inspection in 
detecting linearity

Not a powerful tool in 
confirming linearity and needs 
a former experience with the 
different residual patterns

[14, 
25–27]

Visual inspection 
(nongraphical)

– Easy and useful in clear-
cut situations

Subjective and cannot be used 
alone to indicate linearity

[16, 18]

Statistical analysis

Analysis of variance 
(ANOVA)

IUPAC Fcalculated value can be easily 
calculated

Not decisive [9]

Lack-of-Fit (LOF) IUPAC, INAB Easy to be implemented 
in many software 
spreadsheets

Greatly dependent on the 
method precision, and usually 
several replicates are needed

[25, 27]

Mandel’s fitting test IUPAC Easy to calculate and 
is mainly used when 
variances of two 
calibration functions are 
similar

Needs more samples compared 
to regular fitting tests and needs 
an estimation of the nonlinear 
model

[9]

Numerical evaluation

Coefficients of 
correlation (r) and 
determination (R2)

ICH, Eurachem, 
IUPAC, INAB, 
NATA

Widely used and 
implemented in almost all 
software

Sometimes deceptive and is 
monotonously getting higher 
as the number of variables 
increases

[4, 14, 
25–27]

Residual standard 
deviation (RESSD)

NATA Easy to understand and 
calculate

Depends on the measurement 
tool and different from one 
equipment to another

[26]

Table 2. A comparison between different linearity assessment approaches.
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between the nongraphical, graphical, statistical, and numerical evaluation approaches for lin-
earity evaluation. Contrast is shown in terms of the pros and cons of each approach as well as 
the recommending guideline(s).

i. Graphical inspection: this approach is recommended by most of validation guidelines. The 
preliminary step is to construct a plot between concentration and response on the x and 
y axes, respectively. The second step involves examining the plot visually. Majority of 
guidelines support using the plot of residuals as a tool to inspect linearity. Residuals can 
be defined as the difference between an observed value for a dependent measurement 
(y) and the estimated value of this measurement. As an approach, plot of residuals is a 
plot where calculated residuals are shown on the y-axis and the independent variable is 
shown on the x-axis. Linearity is confirmed when points are randomly scattered around 
the horizontal x-axis. Some data are not suitable candidates for plotting residuals; e.g., 
heteroscedastic data and outliers [14, 25–28].

ii. Nongraphical approach: visual inspection of data without plotting the graph or using statis-
tical tools cannot be used as a linearity assessment tool by itself [16–18].

iii. Statistical assessment: statistical evaluation of data is a vital tool to confirm linearity when 
visual and residual plots cannot confirm a status of linearity. Generally, tests of signifi-
cance are the methods used to infer whether stated claims about a sample of data ex-
tracted from a certain population are in favor or against the stipulated evidence. In other 
words, the significance tests are testing whether the null hypothesis (H0) is being verified or 
not. Examples for significance tests include the student t-test and the F-test. Significance 
tests reported in literature to test linearity can be summarized as follows:

• Analysis of variance (ANOVA): this test depends on calculation of combined variances 
(S2) between or within a group of data replicates assembled together in a certain way. 
This test is only recommended by IUPAC [9]. As a significance test, Fcalculated is compared 
with Ftabulated. The calculated F-values is found using the following formula: Fcalculated = 
(Sy/x/Sy)2, Sy/x is the standard error for residuals and Sy is the pure error.

• Lack-of-fit (LOF) test: this test is a part of IUPAC validation guidelines [25, 27]. The calcu-
lated F-value is a ratio of mean sum of squares of random error (MSSerror) as a measure for 
divergence of points from the regression line being caused by the haphazard distribu-
tion of the points following replicate measurements to the mean sum of squares due to 
the lack-of-fit (MSSLOF) as a measure for deviation of points caused by incongruity of the 
calibration paradigm. A comparison between the calculated and the tabulated value is 
then performed. Another approach to perform LOF test is to find the probability, p-val-
ue. Having a p-value higher than 0.05 means that the lack of fit is not significant [29, 30].

• Mandel’s fitting test: this test is used to compare between two models (one is linear and 
the other is nonlinear) in terms of linearity when the variances are similar. The first step 
is to calculate the residual standard deviation for both models [9]. Again, if Fcalculated is 
greater than Ftabulated, the linear model cannot be accepted.

iv. Numerical assessment: numerical fitting parameters are used as a measure of goodness-of-
fit (GOF) in regression analysis. The following parameters are commonly used:
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• Correlation coefficient (r) and coefficient of determination (R2): these two parameters are 
commonly used to express the GOF of a model. In general, R2 is now more applicable 
compared to r, where the former measures the proportion of variance of the dependent 
variable being diminished by prediction of the independent variable, while the latter is 
just a measure for the correlation between the two variables. In general, a value of r/R2 
close to 1 is an indication for linearity [31].

• Residual standard deviation (RESSD): the smaller the value of RESSD, the better the ob-
tained fit. RESSD measures the digression of data away from a fitted regression line.

3.2. Schemes

As previously mentioned under steps and guidelines for a successful calibration, the first step 
is to decide on how many standards will be used for calibration? Usually, the most common 
approach is the use of more than one standard “multi-standard calibration.” It is noteworthy 
to mention that the term standard can be described as “realization of the definition of a given 
quantity, with stated quantity value and associated measurement uncertainty, used as a refer-
ence” and in NOTE 1A “realization of the definition of a given quantity can be provided by 
a measuring system, a material measure, or a reference material” and in NOTE 9 “The term 
‘measurement standard’ is sometimes used to denote other metrological tools, e.g., ‘software 
measurement standard’” [3]. Another term is usually used then to describe the measurement 
standard, which is reference materials (RM).

As per JCGM [3], RM is “material, sufficiently homogeneous and stable with reference to 
specified properties, which has been established to be fit for its intended use in measurement 
or in examination of nominal properties.” The composition of RM would vary depending on 
the application. For example, substance RM has an individual pure component in solvent of 
use, compared to matrix RM, which consists of analytes prepared in a matched matrix. When 
RM is “accompanied by documentation issued by an authoritative body and providing one 
or more specified property values with associated uncertainties and traceabilities, using valid 
procedures”, it will be known as certified RM, CRM [3].

Several schemes are usually available to perform calibration depending on the number of 
used standards.

3.2.1. Multi-standard calibration

This is the most popular approach for calibration where a minimum of three standards is usu-
ally used. Different guidelines do have different specifications in this concern and in terms of 
replicates and the measurement levels (please see Section 3.1.1).

3.2.2. Two-standard calibration

This approach is usually used for investigations performed at a narrow concentration range 
and after the linearity of the employed function has been confirmed, probably as a continued 
calibration. It can be also used when the applied procedure has a background. As a condition, 
the analyte concentration needs to be within the range covered by the two standards.
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between the nongraphical, graphical, statistical, and numerical evaluation approaches for lin-
earity evaluation. Contrast is shown in terms of the pros and cons of each approach as well as 
the recommending guideline(s).

i. Graphical inspection: this approach is recommended by most of validation guidelines. The 
preliminary step is to construct a plot between concentration and response on the x and 
y axes, respectively. The second step involves examining the plot visually. Majority of 
guidelines support using the plot of residuals as a tool to inspect linearity. Residuals can 
be defined as the difference between an observed value for a dependent measurement 
(y) and the estimated value of this measurement. As an approach, plot of residuals is a 
plot where calculated residuals are shown on the y-axis and the independent variable is 
shown on the x-axis. Linearity is confirmed when points are randomly scattered around 
the horizontal x-axis. Some data are not suitable candidates for plotting residuals; e.g., 
heteroscedastic data and outliers [14, 25–28].

ii. Nongraphical approach: visual inspection of data without plotting the graph or using statis-
tical tools cannot be used as a linearity assessment tool by itself [16–18].

iii. Statistical assessment: statistical evaluation of data is a vital tool to confirm linearity when 
visual and residual plots cannot confirm a status of linearity. Generally, tests of signifi-
cance are the methods used to infer whether stated claims about a sample of data ex-
tracted from a certain population are in favor or against the stipulated evidence. In other 
words, the significance tests are testing whether the null hypothesis (H0) is being verified or 
not. Examples for significance tests include the student t-test and the F-test. Significance 
tests reported in literature to test linearity can be summarized as follows:

• Analysis of variance (ANOVA): this test depends on calculation of combined variances 
(S2) between or within a group of data replicates assembled together in a certain way. 
This test is only recommended by IUPAC [9]. As a significance test, Fcalculated is compared 
with Ftabulated. The calculated F-values is found using the following formula: Fcalculated = 
(Sy/x/Sy)2, Sy/x is the standard error for residuals and Sy is the pure error.

• Lack-of-fit (LOF) test: this test is a part of IUPAC validation guidelines [25, 27]. The calcu-
lated F-value is a ratio of mean sum of squares of random error (MSSerror) as a measure for 
divergence of points from the regression line being caused by the haphazard distribu-
tion of the points following replicate measurements to the mean sum of squares due to 
the lack-of-fit (MSSLOF) as a measure for deviation of points caused by incongruity of the 
calibration paradigm. A comparison between the calculated and the tabulated value is 
then performed. Another approach to perform LOF test is to find the probability, p-val-
ue. Having a p-value higher than 0.05 means that the lack of fit is not significant [29, 30].

• Mandel’s fitting test: this test is used to compare between two models (one is linear and 
the other is nonlinear) in terms of linearity when the variances are similar. The first step 
is to calculate the residual standard deviation for both models [9]. Again, if Fcalculated is 
greater than Ftabulated, the linear model cannot be accepted.

iv. Numerical assessment: numerical fitting parameters are used as a measure of goodness-of-
fit (GOF) in regression analysis. The following parameters are commonly used:
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• Correlation coefficient (r) and coefficient of determination (R2): these two parameters are 
commonly used to express the GOF of a model. In general, R2 is now more applicable 
compared to r, where the former measures the proportion of variance of the dependent 
variable being diminished by prediction of the independent variable, while the latter is 
just a measure for the correlation between the two variables. In general, a value of r/R2 
close to 1 is an indication for linearity [31].

• Residual standard deviation (RESSD): the smaller the value of RESSD, the better the ob-
tained fit. RESSD measures the digression of data away from a fitted regression line.

3.2. Schemes

As previously mentioned under steps and guidelines for a successful calibration, the first step 
is to decide on how many standards will be used for calibration? Usually, the most common 
approach is the use of more than one standard “multi-standard calibration.” It is noteworthy 
to mention that the term standard can be described as “realization of the definition of a given 
quantity, with stated quantity value and associated measurement uncertainty, used as a refer-
ence” and in NOTE 1A “realization of the definition of a given quantity can be provided by 
a measuring system, a material measure, or a reference material” and in NOTE 9 “The term 
‘measurement standard’ is sometimes used to denote other metrological tools, e.g., ‘software 
measurement standard’” [3]. Another term is usually used then to describe the measurement 
standard, which is reference materials (RM).

As per JCGM [3], RM is “material, sufficiently homogeneous and stable with reference to 
specified properties, which has been established to be fit for its intended use in measurement 
or in examination of nominal properties.” The composition of RM would vary depending on 
the application. For example, substance RM has an individual pure component in solvent of 
use, compared to matrix RM, which consists of analytes prepared in a matched matrix. When 
RM is “accompanied by documentation issued by an authoritative body and providing one 
or more specified property values with associated uncertainties and traceabilities, using valid 
procedures”, it will be known as certified RM, CRM [3].

Several schemes are usually available to perform calibration depending on the number of 
used standards.

3.2.1. Multi-standard calibration

This is the most popular approach for calibration where a minimum of three standards is usu-
ally used. Different guidelines do have different specifications in this concern and in terms of 
replicates and the measurement levels (please see Section 3.1.1).

3.2.2. Two-standard calibration

This approach is usually used for investigations performed at a narrow concentration range 
and after the linearity of the employed function has been confirmed, probably as a continued 
calibration. It can be also used when the applied procedure has a background. As a condition, 
the analyte concentration needs to be within the range covered by the two standards.
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The real [analyte] can be calculated using the formula: [anal] = [std1 or 2] + k (yunknown – ystd 1or2), 
where the brackets express concentrations, k is the reciprocal of slope (sensitivity), and y is 
the response for the unknown and the standard, respectively [11, 12, 32]. Examples for this 
calibration are the pH meter and temperature sensor calibrations. A special scheme of a two-
point calibration is known as bracketing calibration. In this approach, the [anal] is bracketed 
between the two standards assuming that a linear arithmetical interpolation can be proposed 
based on the knowledge of [std1 and 2]. The uncertainty associated with this approach is thus 
small if compared to the overall uncertainty [33, 34].

3.2.3. Single-standard calibration

As a direct calibration technique, this approach is applicable only when the calibration func-
tion linearity is established (especially in the region covering the [anal] and between the 
selected [std] and the origin) and if the graph intercept is zero [11, 12]. In this case, [anal] can 
be calculated using the calibration factor CF (which is the ratio between [std] and the average 
analytical response for the standard), where the unknown [anal] = CF*yunknown. This simple 
calibration is generally used to test the drift from the response.

Multi-standard application then seems to be the most feasible and accurate scheme for cali-
bration. However, this is not the case when, for example, the detector response varies with the 
time. In this case, the one-standard calibration is advantageous assuming that the unknown 
signal is within ±10–50% of the standard signal depending on whether the maximum ana-
lyte concentration limit has been surpassed or not [11, 12]. Depending on the analyte, avail-
ability of the standard, nature of the process, presence of concomitant analytes/interferences, 
and matrix effect, the procedure of calibration significantly varies and any of the previously 
reported schemes can be chosen.

3.3. Methodologies and manuals

While external and internal calibrations are the major themes, standard addition method (AC) 
and matrix-matched calibration (MMC) are also employed when required. Therefore, differ-
ent methodologies for calibration can be proposed depending on how the RM will be applied 
within the course of calibration process. Through this section, emphasis will be basically on 
the CMPs, and the common methodologies usually followed to calibrate such a process.

3.3.1. External calibration (EC)

This approach is commonly known as “solvent/ standard calibration.” As the name implies, 
EC is performed externally applied, i.e., the known standard solution, which is a substance 
RM prepared in the working solvent, is prepared and then analyzed distinctly from target 
samples. This approach can be applied using any of the previously mentioned schemes for 
calibration. The analysis protocol involves comparing the response for the unknown sample 
to the response for the target in the standard solution. One of the drawbacks of this meth-
odology is the postulation that the impact of the difference between the matrices (standard 
and sample) can be ignored, an issue that leads to incorporation and propagation of a matrix 
systematic error. Nonetheless, this approach can be used when there is a minor or no contri-
bution from the matrix effect and the instrumental drift can be ignored [11].
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3.3.2. Matrix-matched calibration (MMC)

In contrast to the EC, MMC is used when the matrix has an impact on the response to the 
analyte. Both matrix RMs or substance RMs (together with an analyte-free matrix) can be 
employed for this approach. Attention should be paid that the matrix should be carefully 
matched. Again, the presence of analytes other than the target in the matrix could produce a 
matrix effect [11, 35].

3.3.3. Standard addition calibration (AC)

In this approach, known amounts of the analyte are added to aliquots of the test solution. 
Measurement is then performed by extrapolation of the calibration line to the zero response 
(no analyte). This approach can explain only certain types of the matrix effect; however; it 
cannot account for the effect of instrumental drift. Before the implementation of this method, 
the linearity of the calibration line should be confirmed over the whole concentration range. 
Moreover, the added concentration should be at least five times as high as the [anal] but 
within the linearity limits.

The actual [anal] is calculated using the equation: [anal] = CF ((yunknown/yspiked – yunknown)), where 
yspiked and yunknown are the responses for the spiked and the unknown sample, respectively  
[11, 36].

3.3.4. Internal standard calibration (IC)

This approach is used to correct for both matrix effect and the drift over time. This technique 
is not the opposite to the previously mentioned EC; however, they can be used together. The 
matrix RM or as commonly known, internal standard (IS), which is structurally analogous to 
the analyte, is added for both unknown samples as well as the standards. The IS is selected in 
such a way that it can be distinguishably measured from the analyte. Moreover, there should 
be no interference between the IS and the analyte from one hand, and between the IS and the 
matrix of the unknown from the other hand. In addition to saving time and effort, the pres-
ence of the IS serves to compensate for sample loss during the preparation process [11]. The 
only limitation of this procedure is the availability of the ideal IS that can satisfy the previous 
conditions and emulate the matrix effect and the instrumental drift.

3.4. Metrological considerations

The product of the calibration scheme is usually portrayed as a mathematical model after per-
forming the appropriate regression. Assessment of the proposed model depends on estima-
tion of the experimental error which in turn affects linearity. Moreover, an important feature 
of the validation process which can be viewed as a direct calibration is the recovery studies. 
The concentration in the coming subsections will be on the metrological features of calibration 
in terms of error associated with the measurement and the recovery studies.

3.4.1. Uncertainty

As previously mentioned, the product of calibration is an experiential formula that relates the 
instrumental response to the analyte concentration. Thus, in other words, the actual value of 
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The real [analyte] can be calculated using the formula: [anal] = [std1 or 2] + k (yunknown – ystd 1or2), 
where the brackets express concentrations, k is the reciprocal of slope (sensitivity), and y is 
the response for the unknown and the standard, respectively [11, 12, 32]. Examples for this 
calibration are the pH meter and temperature sensor calibrations. A special scheme of a two-
point calibration is known as bracketing calibration. In this approach, the [anal] is bracketed 
between the two standards assuming that a linear arithmetical interpolation can be proposed 
based on the knowledge of [std1 and 2]. The uncertainty associated with this approach is thus 
small if compared to the overall uncertainty [33, 34].

3.2.3. Single-standard calibration

As a direct calibration technique, this approach is applicable only when the calibration func-
tion linearity is established (especially in the region covering the [anal] and between the 
selected [std] and the origin) and if the graph intercept is zero [11, 12]. In this case, [anal] can 
be calculated using the calibration factor CF (which is the ratio between [std] and the average 
analytical response for the standard), where the unknown [anal] = CF*yunknown. This simple 
calibration is generally used to test the drift from the response.

Multi-standard application then seems to be the most feasible and accurate scheme for cali-
bration. However, this is not the case when, for example, the detector response varies with the 
time. In this case, the one-standard calibration is advantageous assuming that the unknown 
signal is within ±10–50% of the standard signal depending on whether the maximum ana-
lyte concentration limit has been surpassed or not [11, 12]. Depending on the analyte, avail-
ability of the standard, nature of the process, presence of concomitant analytes/interferences, 
and matrix effect, the procedure of calibration significantly varies and any of the previously 
reported schemes can be chosen.

3.3. Methodologies and manuals

While external and internal calibrations are the major themes, standard addition method (AC) 
and matrix-matched calibration (MMC) are also employed when required. Therefore, differ-
ent methodologies for calibration can be proposed depending on how the RM will be applied 
within the course of calibration process. Through this section, emphasis will be basically on 
the CMPs, and the common methodologies usually followed to calibrate such a process.

3.3.1. External calibration (EC)

This approach is commonly known as “solvent/ standard calibration.” As the name implies, 
EC is performed externally applied, i.e., the known standard solution, which is a substance 
RM prepared in the working solvent, is prepared and then analyzed distinctly from target 
samples. This approach can be applied using any of the previously mentioned schemes for 
calibration. The analysis protocol involves comparing the response for the unknown sample 
to the response for the target in the standard solution. One of the drawbacks of this meth-
odology is the postulation that the impact of the difference between the matrices (standard 
and sample) can be ignored, an issue that leads to incorporation and propagation of a matrix 
systematic error. Nonetheless, this approach can be used when there is a minor or no contri-
bution from the matrix effect and the instrumental drift can be ignored [11].
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3.3.2. Matrix-matched calibration (MMC)

In contrast to the EC, MMC is used when the matrix has an impact on the response to the 
analyte. Both matrix RMs or substance RMs (together with an analyte-free matrix) can be 
employed for this approach. Attention should be paid that the matrix should be carefully 
matched. Again, the presence of analytes other than the target in the matrix could produce a 
matrix effect [11, 35].

3.3.3. Standard addition calibration (AC)

In this approach, known amounts of the analyte are added to aliquots of the test solution. 
Measurement is then performed by extrapolation of the calibration line to the zero response 
(no analyte). This approach can explain only certain types of the matrix effect; however; it 
cannot account for the effect of instrumental drift. Before the implementation of this method, 
the linearity of the calibration line should be confirmed over the whole concentration range. 
Moreover, the added concentration should be at least five times as high as the [anal] but 
within the linearity limits.

The actual [anal] is calculated using the equation: [anal] = CF ((yunknown/yspiked – yunknown)), where 
yspiked and yunknown are the responses for the spiked and the unknown sample, respectively  
[11, 36].

3.3.4. Internal standard calibration (IC)

This approach is used to correct for both matrix effect and the drift over time. This technique 
is not the opposite to the previously mentioned EC; however, they can be used together. The 
matrix RM or as commonly known, internal standard (IS), which is structurally analogous to 
the analyte, is added for both unknown samples as well as the standards. The IS is selected in 
such a way that it can be distinguishably measured from the analyte. Moreover, there should 
be no interference between the IS and the analyte from one hand, and between the IS and the 
matrix of the unknown from the other hand. In addition to saving time and effort, the pres-
ence of the IS serves to compensate for sample loss during the preparation process [11]. The 
only limitation of this procedure is the availability of the ideal IS that can satisfy the previous 
conditions and emulate the matrix effect and the instrumental drift.

3.4. Metrological considerations

The product of the calibration scheme is usually portrayed as a mathematical model after per-
forming the appropriate regression. Assessment of the proposed model depends on estima-
tion of the experimental error which in turn affects linearity. Moreover, an important feature 
of the validation process which can be viewed as a direct calibration is the recovery studies. 
The concentration in the coming subsections will be on the metrological features of calibration 
in terms of error associated with the measurement and the recovery studies.

3.4.1. Uncertainty

As previously mentioned, the product of calibration is an experiential formula that relates the 
instrumental response to the analyte concentration. Thus, in other words, the actual value of 
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a measurement is equated with the experimental value. As a result, the uncertainty associ-
ated with the measurement needs to be determined. Principally talking about the system-
atic error of a measurement, and according to JCGM [3], it can be defined as “component of 
measurement error that in replicate measurements remains constant or varies in a predict-
able manner.” NOTE 1 “A reference quantity value for a systematic measurement error is a 
true quantity value, or a measured quantity value of a measurement standard of negligible 
measurement uncertainty, or a conventional quantity value.” As per NOTE 2 “Systematic 
measurement error, and its causes, can be known or unknown. A correction can be applied to 
compensate for a known systematic measurement error” and NOTE 3 “Systematic measure-
ment error equals measurement error minus random measurement error.”

For a linear calibration function generated from a multi-standard calibration approach using 
any of the methodologies of EC or IC, the linear regression line can be described by the equa-
tion: y = ax + b. This straight-line equation can be used to find an unknown concentration 
assuming that the response for this concentration is known. As the location of the regres-
sion line varies with the uncertainties associated with the regression parameters, a and b, 
the predicted concentration of the unknown would also be associated to uncertainty [37]. 
Metrologically, uncertainty of calibration is estimated using the following formula:

  u ( x  0  )  =   
 S  y/x   ___ b    √ 

______________

    
  ( x  0   −  x ̄  )    2 

 _________  ∑ i=1  n    ( x  0   −  x ̄  )    +   1 __ m   +   1 __ n      (1)

where u(x0) is the uncertainty associated with the unknown measurement, Sy/x is the residual 
standard deviation, m is the number of replicates, n is the number of calibration points, x̄ is the 
mean of x data points. It is noteworthy to mention that uncertainty associated with a measure-
ment would be also sourced from the random error.

The accuracy and trueness are the terms used by majority of guidelines [1–5, 15–18]. However, 
there is a metrological difference between both terms. The term accuracy expresses how close 
an individual measurement to the real value of this measurement; however, trueness mea-
sures how close the mean of large number of values to the true value [3]. Thus, method true-
ness is measured as absolute bias or relative bias, which is expressed as % error and % relative 
error (%RE), respectively. Random error, however, affects the precision, which is calculated 
from the formula of standard deviation and in turn it affects the method accuracy [38]. Thus, 
uncertainty is affected by both bias as well as standard deviation.

3.4.2. Recovery

Generally, recovery investigations performed within the course of validation and following 
the calibration process can be treated as direct calibration of the proposed methods. Simply, 
the recovery is equal to = [found]/[actual]. It is important to declare that recovery outcome 
would differ per data point investigated and that the recovery value obtained at a certain 
value cannot be extrapolated to find the recovery at another data point.

For a linear function, the relation between recovered and actual analyte can be given as: 
[actual] = a [found]+ b, where a and b are the slope and the intercept, or the proportional and 
the additive errors, respectively [39].
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4. Conclusion

Thousands of analyses and so validations are being performed every day. Calibration is a fun-
damental module of any analytical validation procedure. Different regulatory bodies propose 
different idioms and hence procedures for putting calibration in effect. Existence of a well-
defined terminology for calibration and therefore a harmonized procedure would significantly 
improve the outcome of the analytical measurement. Appropriate selection of the calibration 
scheme and the subsequent methodology are the key factors for the success of analytical cali-
bration. This chapter has outlined the process of analytical calibration in terms of appropri-
ate designation (and considering the different releases by different documentary agencies), 
schemes (multi-, one-, and two-standard calibrations), and the operating manuals. Moreover, 
the metrological aspects of the calibration process have been revealed throughout the discus-
sion with a focus on the recovery and uncertainties associated with analytical measurement.
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a measurement is equated with the experimental value. As a result, the uncertainty associ-
ated with the measurement needs to be determined. Principally talking about the system-
atic error of a measurement, and according to JCGM [3], it can be defined as “component of 
measurement error that in replicate measurements remains constant or varies in a predict-
able manner.” NOTE 1 “A reference quantity value for a systematic measurement error is a 
true quantity value, or a measured quantity value of a measurement standard of negligible 
measurement uncertainty, or a conventional quantity value.” As per NOTE 2 “Systematic 
measurement error, and its causes, can be known or unknown. A correction can be applied to 
compensate for a known systematic measurement error” and NOTE 3 “Systematic measure-
ment error equals measurement error minus random measurement error.”

For a linear calibration function generated from a multi-standard calibration approach using 
any of the methodologies of EC or IC, the linear regression line can be described by the equa-
tion: y = ax + b. This straight-line equation can be used to find an unknown concentration 
assuming that the response for this concentration is known. As the location of the regres-
sion line varies with the uncertainties associated with the regression parameters, a and b, 
the predicted concentration of the unknown would also be associated to uncertainty [37]. 
Metrologically, uncertainty of calibration is estimated using the following formula:

  u ( x  0  )  =   
 S  y/x   ___ b    √ 

______________

    
  ( x  0   −  x ̄  )    2 

 _________  ∑ i=1  n    ( x  0   −  x ̄  )    +   1 __ m   +   1 __ n      (1)

where u(x0) is the uncertainty associated with the unknown measurement, Sy/x is the residual 
standard deviation, m is the number of replicates, n is the number of calibration points, x̄ is the 
mean of x data points. It is noteworthy to mention that uncertainty associated with a measure-
ment would be also sourced from the random error.

The accuracy and trueness are the terms used by majority of guidelines [1–5, 15–18]. However, 
there is a metrological difference between both terms. The term accuracy expresses how close 
an individual measurement to the real value of this measurement; however, trueness mea-
sures how close the mean of large number of values to the true value [3]. Thus, method true-
ness is measured as absolute bias or relative bias, which is expressed as % error and % relative 
error (%RE), respectively. Random error, however, affects the precision, which is calculated 
from the formula of standard deviation and in turn it affects the method accuracy [38]. Thus, 
uncertainty is affected by both bias as well as standard deviation.

3.4.2. Recovery

Generally, recovery investigations performed within the course of validation and following 
the calibration process can be treated as direct calibration of the proposed methods. Simply, 
the recovery is equal to = [found]/[actual]. It is important to declare that recovery outcome 
would differ per data point investigated and that the recovery value obtained at a certain 
value cannot be extrapolated to find the recovery at another data point.

For a linear function, the relation between recovered and actual analyte can be given as: 
[actual] = a [found]+ b, where a and b are the slope and the intercept, or the proportional and 
the additive errors, respectively [39].
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4. Conclusion

Thousands of analyses and so validations are being performed every day. Calibration is a fun-
damental module of any analytical validation procedure. Different regulatory bodies propose 
different idioms and hence procedures for putting calibration in effect. Existence of a well-
defined terminology for calibration and therefore a harmonized procedure would significantly 
improve the outcome of the analytical measurement. Appropriate selection of the calibration 
scheme and the subsequent methodology are the key factors for the success of analytical cali-
bration. This chapter has outlined the process of analytical calibration in terms of appropri-
ate designation (and considering the different releases by different documentary agencies), 
schemes (multi-, one-, and two-standard calibrations), and the operating manuals. Moreover, 
the metrological aspects of the calibration process have been revealed throughout the discus-
sion with a focus on the recovery and uncertainties associated with analytical measurement.
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Abstract

Vibrational spectroscopy, namely near infrared (NIR) and Raman spectroscopy, is based
on the interaction between the electromagnetic radiation and matter. The technique is
sensitive to chemical and physical properties and delivers a wide range of information
about the analyzed sample, but in order to extract the information, multivariate calibra-
tion of the spectral data is required. The main goal of this work will be to present in
detail the available multivariate calibration strategy for development of NIR and Raman
spectroscopic methods, which was successfully applied in pharmaceutics.
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1. Introduction

The development and implementation of vibrational spectroscopic methods such as near infra-
red (NIR) or Raman spectroscopy has increased significantly as the use of computer techno-
logy and chemometric methods has become more available. Considering the pharmaceutical
domain, these methods have been extensively applied to quantify active pharmaceutical ingre-
dients, excipients, or physical properties either as offline method for intermediate/final product
characterization [1] or as real-time-monitoring methods implemented within blending [2],
granulation [3], extrusion [4], tableting [5], coating [6], or freeze-drying processes [7].

The high-throughput analysis associated with vibrational spectroscopy favored its application
to gain better process understanding, sustaining the pharmaceutical product development from
a Quality by Design and Process Analytical Technology point of view [8], thus enhancing the
opportunity to develop well-understood, well-controlled, and continuously optimized manu-
facturing processes and products [5]. The nondestructive nature of vibrational spectroscopic
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methods is of great importance in the quality evaluation of production batches, as they allow
the testing of a high number of samples or the entire process, depending on the type of method.
Using classical methods, such as chromatography the quality of a 1–3 million tablet batch
is certified on 20–30 tablets, and many functional excipients that directly influence product
performance are not quantified. These limitations are exceeded by implementing process
analytical instruments, such as NIR or Raman [9].

Near infrared spectra are generated by molecular vibrations that imply a change of the dipole
moment (dCH, dNH, dOH, dSH) and are further complicated by overtones and combina-
tion bands that reduce the specificity of spectra. In case of Raman spectroscopy, the spectra are
generated by inelastic scattering, caused by chemical groups that undergo a change in polar-
izability when excited with an incident light beam. These differences in molecular contribution
to the generation of spectral data make the two methods complementary [10].

NIR and Raman spectra are considered a source of multivariate data, as they contain informa-
tion related to physical and chemical properties of the analyzed sample. Thus, the application
of chemometric methods for extracting predictive spectral variability and reducing orthogonal
sources of variation is indispensable [11]. The sensitivity to both physical and chemical prop-
erties of the sample can be considered an advantage, if the analyst wants to predict several
quality attributes of a drug product, such as content uniformity and crystalline structure.
However, if only active content characterization is desired and polymorphism is not consid-
ered to be a critical attribute, but it is present, the calibration phase still has to include both
aspects to ensure the accuracy of prediction for active content. The main disadvantage of
vibrational spectroscopic methods relates to the need of an extensive calibration set that needs
to include chemical, physical, instrumental, and environmental variability that is expected in
future prediction sets and analysis conditions.

Vibrational spectroscopy iswell suited to themeans ofmultivariate calibration, as each observation
is characterized by analytical signal/absorbance recorded at multiple wavelengths. Using multiple
predictor variables instead of one wavelength overcomes some univariate calibration problems
related to selectivity, precision, and diagnosis, resulting in a more robust calibration model [12].

2. Calibration set development strategies

The milestone in the development of a vibrational spectroscopic method is the chemometric
model that is able to accurately predict the sample properties considered in calibration phase.
Before building a model, there are several key steps that need to be considered, as they directly
influence its quality and predictive performance. The first step would be the specification of
responses along with variation ranges, followed by the selection of instrumental method and
configuration, building a representative calibration set, recording of spectral data, data pre-
processing, and developing the multivariate regression model that is further tested using
external prediction sets. Each step plays an important role; however, a well-built calibration
set is the best starting point to a well-performing model, as it is the source of spectral data that
is used for further processing and model development.

Calibration and Validation of Analytical Methods - A Sampling of Current Approaches36

In the calibration set development phase, the analyst has to incorporate the expected variabil-
ity of future prediction sets, to ensure the representativeness of the samples. This expected
variability is given first by the quality attributes that are to be predicted, for example, the
concentration ranges of important formulation constituents. Frequently, this is not enough for
a robust model, and other type of variability has to be included in the calibration process, such
as process-induced variability or environmental variability. Production samples contain
process-induced variability; however, constructing a calibration set solely on production sam-
ples is not appropriate as the factor ranges do not cover the required interval. A first option
would be to prepare pilot-plant samples reproducing full-scale conditions. As the number of
responses increases, the calibration set becomes larger and quickly becomes unfeasible due to
the high costs of production. The second option would be to prepare laboratory samples in
which the concentration ranges of desired components are varied simultaneously within
appropriate ranges to avoid correlations [13].

The calibration set development strategy applied for the development of quantitative spectro-
scopic methods depends on the sample complexity (the number of responses and the number
of interfering factors included in the calibration) and on the type of method that is developed,
here considering off-line or real-time-monitoring methods. In the following section, a descrip-
tion of calibration opportunities will be provided starting from the simplest cases and heading
toward more complex situations.

2.1. Different levels of the investigated property

The most simple calibration situations include a low number of responses, one or two, here
considering a chemical and a physical property of a sample. In this case, the calibration set
development strategy simply resumes to the preparation of a sample with different levels of
the investigated property. Mbinze et al. developed quantitative NIR and Raman methods for
the assay of antimalarial oral drops and prepared a calibration set by diluting a stock solution
of quinine to obtain three concentration levels. For each level, three series with three replicates
were prepared resulting in a calibration set with 27 samples [14]. Tomuta et al. used NIR to
characterize meloxicam tablets by evaluating content uniformity, tablet hardness, disintegra-
tion, and friability. For content uniformity assay, the calibration set included active ingredient
concentration range (five levels), days (three), and batches (three) as a source of variation,
whereas in the case of physical properties assay the middle formulation was compressed on
seven levels of compression force, ranging from 5 to 42 kN. Compressing the powder mixture
with different forces yielded tablets with different hardness, disintegration, and friability.
Different settings of a one-process factor were enough to induce variability in physical proper-
ties of the samples [15]. In a similar study, Tomuta et al. developed NIR method for physico-
chemical characterization of low active content indapamide tablets (2%, w/w) [1]. Virtanen
et al. evaluated the crushing strength of theophylline tablets through Raman spectroscopy by
considering both a process factor and a formulation factor to generate variability in tablet
surface roughness. In this case, the tablets were prepared considering two particle sizes of
theophylline, as raw material for the granulation phase, followed by mixing with lubricants
and by compressing each granulate on five different compression forces [16].
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The impact of polymorphism is a well-recognized phenomenon in the pharmaceutical indus-
try, as the differences in crystalline structure of the same active ingredient generate different
physical properties that get reflected in the quality of the final medicinal product. Croker et al.
developed NIR and Raman methods to quantify FII and FIII of nootropic drug-piracetam from
binary mixtures using a calibration set of 15 formulations with FII ranging from 0 to 100% [17].

Gómez et al. calibrated a Raman method for the content uniformity control of low-dosebreak-
scored acenocumarol tablets by under and overdosing the powdered commercial medicinal
product, by adding either lactose or the active pharmaceutical ingredient to the mixture. Two
commercial products with different content uniformity were considered and the two calibra-
tion sets included 7 samples in the range of 1–3% (w/w) and 12 samples in the range of 0.35–
1.50% [18]. Creating calibration sets by under-overdosing samples can result in correlated
concentrations between API and excipients [19]. Collinearity between concentrations leads to
spurious predictions by attributing changes to the correlated formulation component instead
of the real contributor [20].

Changing the production scale generates samples that incorporate different types of variability
from the primary conditions through which the calibration set was prepared. As laboratory-
prepared samples lack manufacturing variability, the accuracy of prediction may be affected
for production prediction sets. This limitation has been exceeded by extending the calibration
set with production samples [13], adjusting the sampling strategy, pre-conditioning the cali-
bration set to future expected environmental conditions [21], or by mathematically adding
process variability to laboratory samples [20].

Blanco et al. developed NIR methods to control individual steps of paracetamol tablet
manufacturing, resuming to an intermediate granulation step and tableting. Prior to building a
calibration model, both laboratory-prepared samples and industrial production samples were
taken into account to evaluate the eventual spectral differences. In case of the granule-active
content assay, the calibration set was built solely on laboratory-prepared samples, whereas in the
case of tablet assay the differences between laboratory and production samples made the cali-
bration set include both, in order to ensure representativeness. For granule particle size charac-
terization, samples collected over a period of 2 years ensured the presence of future expected
variability in prediction set [22].

Blanco et al. used NIR to characterize mirtazapine tablets in terms of content uniformity and
tablet hardness. For active ingredient content, the calibration set included production tablets
from 20 batches and 34 laboratory-prepared samples, whereas for tablet hardness the laboratory
samples were compacted in the range of 300–740 MPa. Including production samples for both
responses reduced the systematic errors and gave better predictions [13]. By adding spectra from
different manufacturing scales to the calibration set, the spectral variability becomes more
representative, an important aspect for prediction accuracy. As the number of manufacturing
samples is lower compared to the initial calibration set, proper weighting is necessary to avoid
the dominating tendency of the larger dataset. To this regard, Farrel et al. applied Tikhonov
regularization as a multi-criterion-based weighting selection method to augment the perfor-
mance of NIR models regarding their ability to predict production scale products [23].

Blanco et al. proposed a method to incorporate physical variability that originates from pro-
duction into the calibration. The concept relies on calculating a process spectrum, which added
to the laboratory sample spectra incorporates process-related physical changes. The process
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spectrum represents the difference between the laboratory sample spectrum and the interme-
diate/final product spectra of an identical composition prepared on a different scale. The vari-
ability given by the process spectra can be further increased by multiplying the data with
different coefficients [20, 24].

In situations where solid-state transformations occur within the manufacturing process, it is
frequently desired to construct the calibration set with components obtained through the same
method to have more representative formulations. Netchacovitch et al. used Raman spectros-
copy to determine crystalline itraconazole in amorphous solid dispersions prepared by hot-
melt extrusion. Calibration set included three levels of concentration and was built by using
crystalline API powder, six batches of grinded extrudates with amorphous API, and placebo-
grinded extrudate [25].

Pan et al. calibrated NIR method for the quantification of low-level Irbesartan Form B from
pharmaceutical tablets. Form B is known to have a limited solubility and is formed from Form
A via a solution-mediated process. To incorporate physical variability into the calibration set,
the sample preparation procedure supposed the use of specifications similar to the manu-
facturing process. The robustness of the method to process induced physical variability, the
effect of tablet hardness, granule size, and atmospheric humidity was evaluated. It was dem-
onstrated that the prediction accuracy was influenced only by relative humidity, generating a
positive bias in samples stored at 50%RH. Therefore, the entire calibration and validation was
reconsidered by pre-conditioning the samples at 25�C and 50%RH for 20 h, prior to recording
the spectra and building the model. This way, the robustness of the method was increased to
future expected variations in environmental conditions [21].

2.2. Design of experiment strategy

As the number of factors increases, the calibration set becomes more complex and different
strategies have to be applied to avoid correlated responses. If two formulation components C1
and C2 are correlated, a change in the concentration of C1 can be spuriously predicted as a
change in C2. In DoE, factors are varied simultaneously in a systematic manner, providing
orthogonality, an essential condition for estimating regression coefficients [26]. There are
several design types that can be used for calibration purposes, starting from the classic full
factorials down to central composite, mixture, or D-optimal designs. Considering more com-
plex formulations, NIR spectroscopy has been applied to determine the amount of amoxicillin
in the presence of seven other excipients. By applying a three-factor (API, saccharose, and
other excipients) experimental design, the concentration of factors was varied orthogonally
[27]. Ferreira et al. used a calibration set prepared according to a DoE with three factors:
hydrochlorothyazide, cellulose, and other excipients to train a NIR method for the quantifica-
tion of the active ingredient in pharmaceutical samples [28].

Li et al. calibrated Raman method to quantify active ingredient content considering the pres-
ence of different sources of variability: degradation compound, relative humidity, change of
scales, and compression force. Laboratory samples were prepared based on a 32 full-factorial
design where the active ingredient ranged between 80 and 120%, from which a subset of
samples were spiked with the degradation product, added in two molar ratios. Each powder
mixture was compacted at 8 and 30 kN in laboratory scale and three design points were
compacted at manufacturing scale [29]. Casian et al. developed NIR and Raman methods for
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The impact of polymorphism is a well-recognized phenomenon in the pharmaceutical indus-
try, as the differences in crystalline structure of the same active ingredient generate different
physical properties that get reflected in the quality of the final medicinal product. Croker et al.
developed NIR and Raman methods to quantify FII and FIII of nootropic drug-piracetam from
binary mixtures using a calibration set of 15 formulations with FII ranging from 0 to 100% [17].

Gómez et al. calibrated a Raman method for the content uniformity control of low-dosebreak-
scored acenocumarol tablets by under and overdosing the powdered commercial medicinal
product, by adding either lactose or the active pharmaceutical ingredient to the mixture. Two
commercial products with different content uniformity were considered and the two calibra-
tion sets included 7 samples in the range of 1–3% (w/w) and 12 samples in the range of 0.35–
1.50% [18]. Creating calibration sets by under-overdosing samples can result in correlated
concentrations between API and excipients [19]. Collinearity between concentrations leads to
spurious predictions by attributing changes to the correlated formulation component instead
of the real contributor [20].

Changing the production scale generates samples that incorporate different types of variability
from the primary conditions through which the calibration set was prepared. As laboratory-
prepared samples lack manufacturing variability, the accuracy of prediction may be affected
for production prediction sets. This limitation has been exceeded by extending the calibration
set with production samples [13], adjusting the sampling strategy, pre-conditioning the cali-
bration set to future expected environmental conditions [21], or by mathematically adding
process variability to laboratory samples [20].

Blanco et al. developed NIR methods to control individual steps of paracetamol tablet
manufacturing, resuming to an intermediate granulation step and tableting. Prior to building a
calibration model, both laboratory-prepared samples and industrial production samples were
taken into account to evaluate the eventual spectral differences. In case of the granule-active
content assay, the calibration set was built solely on laboratory-prepared samples, whereas in the
case of tablet assay the differences between laboratory and production samples made the cali-
bration set include both, in order to ensure representativeness. For granule particle size charac-
terization, samples collected over a period of 2 years ensured the presence of future expected
variability in prediction set [22].

Blanco et al. used NIR to characterize mirtazapine tablets in terms of content uniformity and
tablet hardness. For active ingredient content, the calibration set included production tablets
from 20 batches and 34 laboratory-prepared samples, whereas for tablet hardness the laboratory
samples were compacted in the range of 300–740 MPa. Including production samples for both
responses reduced the systematic errors and gave better predictions [13]. By adding spectra from
different manufacturing scales to the calibration set, the spectral variability becomes more
representative, an important aspect for prediction accuracy. As the number of manufacturing
samples is lower compared to the initial calibration set, proper weighting is necessary to avoid
the dominating tendency of the larger dataset. To this regard, Farrel et al. applied Tikhonov
regularization as a multi-criterion-based weighting selection method to augment the perfor-
mance of NIR models regarding their ability to predict production scale products [23].

Blanco et al. proposed a method to incorporate physical variability that originates from pro-
duction into the calibration. The concept relies on calculating a process spectrum, which added
to the laboratory sample spectra incorporates process-related physical changes. The process
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spectrum represents the difference between the laboratory sample spectrum and the interme-
diate/final product spectra of an identical composition prepared on a different scale. The vari-
ability given by the process spectra can be further increased by multiplying the data with
different coefficients [20, 24].

In situations where solid-state transformations occur within the manufacturing process, it is
frequently desired to construct the calibration set with components obtained through the same
method to have more representative formulations. Netchacovitch et al. used Raman spectros-
copy to determine crystalline itraconazole in amorphous solid dispersions prepared by hot-
melt extrusion. Calibration set included three levels of concentration and was built by using
crystalline API powder, six batches of grinded extrudates with amorphous API, and placebo-
grinded extrudate [25].

Pan et al. calibrated NIR method for the quantification of low-level Irbesartan Form B from
pharmaceutical tablets. Form B is known to have a limited solubility and is formed from Form
A via a solution-mediated process. To incorporate physical variability into the calibration set,
the sample preparation procedure supposed the use of specifications similar to the manu-
facturing process. The robustness of the method to process induced physical variability, the
effect of tablet hardness, granule size, and atmospheric humidity was evaluated. It was dem-
onstrated that the prediction accuracy was influenced only by relative humidity, generating a
positive bias in samples stored at 50%RH. Therefore, the entire calibration and validation was
reconsidered by pre-conditioning the samples at 25�C and 50%RH for 20 h, prior to recording
the spectra and building the model. This way, the robustness of the method was increased to
future expected variations in environmental conditions [21].

2.2. Design of experiment strategy

As the number of factors increases, the calibration set becomes more complex and different
strategies have to be applied to avoid correlated responses. If two formulation components C1
and C2 are correlated, a change in the concentration of C1 can be spuriously predicted as a
change in C2. In DoE, factors are varied simultaneously in a systematic manner, providing
orthogonality, an essential condition for estimating regression coefficients [26]. There are
several design types that can be used for calibration purposes, starting from the classic full
factorials down to central composite, mixture, or D-optimal designs. Considering more com-
plex formulations, NIR spectroscopy has been applied to determine the amount of amoxicillin
in the presence of seven other excipients. By applying a three-factor (API, saccharose, and
other excipients) experimental design, the concentration of factors was varied orthogonally
[27]. Ferreira et al. used a calibration set prepared according to a DoE with three factors:
hydrochlorothyazide, cellulose, and other excipients to train a NIR method for the quantifica-
tion of the active ingredient in pharmaceutical samples [28].

Li et al. calibrated Raman method to quantify active ingredient content considering the pres-
ence of different sources of variability: degradation compound, relative humidity, change of
scales, and compression force. Laboratory samples were prepared based on a 32 full-factorial
design where the active ingredient ranged between 80 and 120%, from which a subset of
samples were spiked with the degradation product, added in two molar ratios. Each powder
mixture was compacted at 8 and 30 kN in laboratory scale and three design points were
compacted at manufacturing scale [29]. Casian et al. developed NIR and Raman methods for
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the quantification of two APIs found in significantly different concentrations from immediate
release tablets. The calibration set was built on a full-factorial design with two factors and five
levels with a total of 25 formulations [10]. The use of full-factorial designs is feasible with two
factors if five levels of variation are used [52]. Adding one more factor will generate 125
experimental runs that are impractical [26, 53].

Netchacovitch et al. calibrated a Raman method to quantify low-level polymorphic impurities
in a pharmaceutical formulation through a 12-run central-composite experimental design [25].
Central composite designs are extensions of the two-level full-factorial designs that are built by
adding symmetrically axial points. Dependent on the position of axial points, factors can be
varied on three levels (central composite face-centered design) or five levels (central composite
circumscribed) [26].

Short et al. used NIR to evaluate relative density and crushing strength of four component
tablets. Compared to other studies, where only the compaction pressure was considered as a
factor to induce variability in the investigated response, in this case formulation composition
was varied also. The calibration set consisted of 29 formulations (mixture design) with each
formulation being compressed at different pressures [30]. Lyndgaard et al. developed a Raman
method to quantify paracetamol content from tablets through blisters. The calibration set
included 18 formulations, selected on the basis of a ternary mixture design (paracetamol,
starch, and sucrose) with each factor being varied on six levels [31]. Igne et al. evaluated the
effect of API physical form, excipient particle size, different manufacturer, and changes in
environmental conditions on the performance of a NIR model. The calibration samples were
prepared according to a 29-run quaternary mixture design with every formulation being
compressed at two of five different forces. Only changes in the particle size of lactose produced
biased predictions in both ambient and chamber conditions. The authors tested variable-
selection methods to increase method robustness to raw material variability [32].

Griffen et al. used Raman spectroscopy to quantify all tablet constituents, three active ingredients
and two excipients. In this case, the calibration set was built on a first-order (linear) five-level,
five-factor mixture design that uniformly covered the concentration ranges of the components.
The concentration of individual components ranged from 1 to 85% (w/w) [33]. Mixture designs
are well suited for formulation application, where the sum of all ingredients adds up to 100%
and where factors cannot be manipulated independently one from another. Porfire et al. used a
D-optimal design with three variables and five levels to build a calibration set with 63 formula-
tions with the purpose of quantifying encapsulated simvastatin and two functional excipients L-
α-phosphatidylcholine and cholesterol from liposomes [34]. Saraguca et al. developed an NIR
method to simultaneously quantify paracetamol and three other excipients from powder blends
using a calibration set constructed on a 40-run D-optimal mixture design [19].

A D-optimal design is frequently applied for a high number of factors as it gives a lower number
of runs compared to factorial designs. The D-letter originates from its criterion of selecting the
best subset of factor combinations from a pool of theoretically possible combinations, which relies
on maximizing the X’X matrix Determinant [26]. In another study, Heinz et al. trained NIR and
Raman to quantify ternary mixtures of alpha, gamma, and amorphous forms of indomethacin
from ternary mixtures using a 13-sample calibration set built on a cubic model experimental
design [35]. Lin et al. developed an at-line blend uniformity NIR method for simultaneous
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quantification of four active ingredients with structural similarity, found in different concentra-
tions. Calibration was built on six formulations, where five factors (four APIs and one diluent)
were varied on six levels while avoiding correlations. The performance of the model was
improved by adding a set of spectral data from a different production scale [43].

When DoE is used, correlations are significantly reduced dependent on the type of design,
number of factors, and experimental runs. However, an increased number of factors will
require a high number of experimental runs to avoid collinearity, which rapidly increases the
costs. Several papers have addressed the question of how many samples are needed to ensure
a robust calibration [19]. The fact that models with similar performance were developed on a
reduced design compared to its full-factorial counterpart suggests the presence of redundant
information in full-factorial designs [36].

Saraguca proposed a method that relies on building the model on a limited number of samples
and uses the remaining formulations to test the predictive performance in terms of RMSECV
and RMSEP. In the following steps, the calibration set was extended by transferring one formu-
lation at a time from the test set until the calculated cross-validation and prediction errors
stabilized. The sample selection procedure focused on maximizing the concentration variability
of all components [19].

Alam et al. proposed a method for calibration set development in spectral space instead of
concentration space. Orthogonality in spectral response will yield a better estimation of coeffi-
cients with a minimum number of samples, while orthogonality in concentration space will not
necessarily translate into spectral orthogonality, as the contribution of each component to the
sample spectrum is different. The method is based on decomposing the pure component
spectra of a formulation into orthogonal directions (scores), which will be varied around a
model tablet score through DoE. The model tablet score represents the score of the spectra
recorded on a target formulation projected onto the orthonormal basis vector of the pure
components spectra. After designing the spectral space calibration set, the composition of each
spectra is retrieved by mathematical means [37].

2.3. Calibration strategy for calibration in-line monitoring methods

The application of vibrational spectroscopy for in-line monitoring implies the use of fiber optic
probes mounted at the interface of the process itself to acquire spectral data with a defined
rate. The simplest way to calibrate an in-linemethod is to acquire real-time spectra through the
entire process length along with collecting samples at regular intervals. The response values
obtained through reference methods are correlated with the spectral data, considering the
process time as a link between the two [38–40]. More extensive calibrations also evaluate the
effect of sample presentation, changing process, and formulation parameters, to challenge the
robustness of the methods.

For coating application, the calibration strategy relies on the linear variation of spectral
response as the contribution of the coating material increases and the tablet core contribution
decreases [41]. Moes et al. developed quantitative NIR method using three batches of tablets
by varying the tablet core weight (240–200–160 g) and the amount of coating suspension
resulting in different coating thicknesses [42]. Möltgen et al. used five full-scale experimental
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the quantification of two APIs found in significantly different concentrations from immediate
release tablets. The calibration set was built on a full-factorial design with two factors and five
levels with a total of 25 formulations [10]. The use of full-factorial designs is feasible with two
factors if five levels of variation are used [52]. Adding one more factor will generate 125
experimental runs that are impractical [26, 53].

Netchacovitch et al. calibrated a Raman method to quantify low-level polymorphic impurities
in a pharmaceutical formulation through a 12-run central-composite experimental design [25].
Central composite designs are extensions of the two-level full-factorial designs that are built by
adding symmetrically axial points. Dependent on the position of axial points, factors can be
varied on three levels (central composite face-centered design) or five levels (central composite
circumscribed) [26].

Short et al. used NIR to evaluate relative density and crushing strength of four component
tablets. Compared to other studies, where only the compaction pressure was considered as a
factor to induce variability in the investigated response, in this case formulation composition
was varied also. The calibration set consisted of 29 formulations (mixture design) with each
formulation being compressed at different pressures [30]. Lyndgaard et al. developed a Raman
method to quantify paracetamol content from tablets through blisters. The calibration set
included 18 formulations, selected on the basis of a ternary mixture design (paracetamol,
starch, and sucrose) with each factor being varied on six levels [31]. Igne et al. evaluated the
effect of API physical form, excipient particle size, different manufacturer, and changes in
environmental conditions on the performance of a NIR model. The calibration samples were
prepared according to a 29-run quaternary mixture design with every formulation being
compressed at two of five different forces. Only changes in the particle size of lactose produced
biased predictions in both ambient and chamber conditions. The authors tested variable-
selection methods to increase method robustness to raw material variability [32].

Griffen et al. used Raman spectroscopy to quantify all tablet constituents, three active ingredients
and two excipients. In this case, the calibration set was built on a first-order (linear) five-level,
five-factor mixture design that uniformly covered the concentration ranges of the components.
The concentration of individual components ranged from 1 to 85% (w/w) [33]. Mixture designs
are well suited for formulation application, where the sum of all ingredients adds up to 100%
and where factors cannot be manipulated independently one from another. Porfire et al. used a
D-optimal design with three variables and five levels to build a calibration set with 63 formula-
tions with the purpose of quantifying encapsulated simvastatin and two functional excipients L-
α-phosphatidylcholine and cholesterol from liposomes [34]. Saraguca et al. developed an NIR
method to simultaneously quantify paracetamol and three other excipients from powder blends
using a calibration set constructed on a 40-run D-optimal mixture design [19].

A D-optimal design is frequently applied for a high number of factors as it gives a lower number
of runs compared to factorial designs. The D-letter originates from its criterion of selecting the
best subset of factor combinations from a pool of theoretically possible combinations, which relies
on maximizing the X’X matrix Determinant [26]. In another study, Heinz et al. trained NIR and
Raman to quantify ternary mixtures of alpha, gamma, and amorphous forms of indomethacin
from ternary mixtures using a 13-sample calibration set built on a cubic model experimental
design [35]. Lin et al. developed an at-line blend uniformity NIR method for simultaneous
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quantification of four active ingredients with structural similarity, found in different concentra-
tions. Calibration was built on six formulations, where five factors (four APIs and one diluent)
were varied on six levels while avoiding correlations. The performance of the model was
improved by adding a set of spectral data from a different production scale [43].

When DoE is used, correlations are significantly reduced dependent on the type of design,
number of factors, and experimental runs. However, an increased number of factors will
require a high number of experimental runs to avoid collinearity, which rapidly increases the
costs. Several papers have addressed the question of how many samples are needed to ensure
a robust calibration [19]. The fact that models with similar performance were developed on a
reduced design compared to its full-factorial counterpart suggests the presence of redundant
information in full-factorial designs [36].

Saraguca proposed a method that relies on building the model on a limited number of samples
and uses the remaining formulations to test the predictive performance in terms of RMSECV
and RMSEP. In the following steps, the calibration set was extended by transferring one formu-
lation at a time from the test set until the calculated cross-validation and prediction errors
stabilized. The sample selection procedure focused on maximizing the concentration variability
of all components [19].

Alam et al. proposed a method for calibration set development in spectral space instead of
concentration space. Orthogonality in spectral response will yield a better estimation of coeffi-
cients with a minimum number of samples, while orthogonality in concentration space will not
necessarily translate into spectral orthogonality, as the contribution of each component to the
sample spectrum is different. The method is based on decomposing the pure component
spectra of a formulation into orthogonal directions (scores), which will be varied around a
model tablet score through DoE. The model tablet score represents the score of the spectra
recorded on a target formulation projected onto the orthonormal basis vector of the pure
components spectra. After designing the spectral space calibration set, the composition of each
spectra is retrieved by mathematical means [37].

2.3. Calibration strategy for calibration in-line monitoring methods

The application of vibrational spectroscopy for in-line monitoring implies the use of fiber optic
probes mounted at the interface of the process itself to acquire spectral data with a defined
rate. The simplest way to calibrate an in-linemethod is to acquire real-time spectra through the
entire process length along with collecting samples at regular intervals. The response values
obtained through reference methods are correlated with the spectral data, considering the
process time as a link between the two [38–40]. More extensive calibrations also evaluate the
effect of sample presentation, changing process, and formulation parameters, to challenge the
robustness of the methods.

For coating application, the calibration strategy relies on the linear variation of spectral
response as the contribution of the coating material increases and the tablet core contribution
decreases [41]. Moes et al. developed quantitative NIR method using three batches of tablets
by varying the tablet core weight (240–200–160 g) and the amount of coating suspension
resulting in different coating thicknesses [42]. Möltgen et al. used five full-scale experimental
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runs to develop a quantitative NIR method (one run) and to evaluate the effect of changing
exhaust air temperature and spray rate (two runs) and the effect of tablet density and flow
motion in the coater (two runs). For quantitative calibration, samples were collected through
the entire process and analyzed using reference methods [6]. For the quantification of coating
thickness by means of Raman spectroscopy, Kauffman et al. calibrated the method by consid-
ering film thickness and film composition variables. Tablets were coated on five levels ranging
0.5–6%weight gain by varying their residence time in the coater. As for film composition, three
different TiO2 levels were evaluated due to the strong Raman signal of this component offering
the potential for an indirect measure [41]. In the case of thin coatings, the generation of a
calibration set can become a difficult task and can become limited due to the lack of reference
methods. In this situation, an alternative to classical regression methods would be the Science-
Based Calibration (SBC) approach, which allows the calibration without a reference method by
separating spectral variability into orthogonal (covariance matrix) and predictive parts (related
to the coating). Möltgen et al. applied SBC to develop quantitative NIR method for in-line
evaluation of thin hydroxypropyl methylcellulose (HPMC) coatings through four experimen-
tal runs. For calibration, the pure HPMC spectrum was used as the coating response spectrum
and the covariance matrix included hardware, core, water, and process-related noise. The
method developed without reference samples predicted accurately coating thickness values
in the range of 8–28 μm demonstrating the value of SBC [43].

In order to predict granule moisture content in a six-segmented fluid bed dryer through NIR
spectroscopy, a calibration set of 20 experiments was applied. Granules were prepared with
five moisture levels by varying the drying air temperature and drying time. Each moisture
level had four replicates prepared on two different days [3].

Clavaud et al. developed a global regression model for moisture content estimation from freeze-
dried medicine. As expected, the calibration set was extensive, including three types of active
ingredient with different concentrations, different vial diameters, and excipient amounts. To
include intra- and inter-product variability, 5 batches and 100 samples were used for each product
[44]. Martinez et al. calibrated NIR method for in-line quantification of two active ingredients in a
batch-blending process by investigating the influence of sample presentation. With regard to this,
the high-loading API was used either in the form of a cohesive powder or in a granular form
prepared by melt-extrusion. The observed spectral differences were resumed to the polymer
wavelength absorption band that coincided with the water region. The offline calibration of the
method was built on 13 samples which included both forms of the high-loading API [2].

Wahl et al. evaluated in-line the content uniformity of ternary mixtures with an NIR mounted
on the feed frame of a tablet press. For calibration, the active ingredient and two excipients
concentrations were varied through eight experiments selected by means of a D-optimal
design and two extra runs added to ensure equidistant steps in the content of each component.
Spectral data were recorded in a dynamic acquisition mode, simulating real conditions [5].

Karande et al. developed NIR method for real-time monitoring of tableting based on a 105-
sample calibration set generated through a simplex lattice design with four factors (chlorphen-
iramine maleate, lactose, microcrystalline cellulose, and magnesium stearate). Prior to building
the calibration, the effect of sampling was evaluated by recording NIR spectra in both static
and dynamic conditions. The differences between measurements revealed the importance of
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ensuring similar sampling conditions for calibration as for actual real-time monitoring [9]. For
another application, Karande et al. evaluated the effect of different spectral-sampling strategies
on the performance of an NIR model, to accurately predict blend components in quaternary
mixtures. Calibration samples (24 formulations-D-optimal mixture design) were recorded in
three ways: laboratory mixing and static spectral acquisition; IBC (intermediate bulk con-
tainer) mixing and static spectral acquisition; IBC mixing and dynamic spectral acquisition.
Dynamic sampling yielded the best calibration model with highest accuracy, demonstrating
the importance of selecting similar sampling conditions to the actual testing [45].

Based on the presented examples found in literature, the most frequently applied methods to
design a calibration set were as follows:

• One chemical/physical property: formulations with three to five levels of variation for the
response that span the desired range of concentration/physical property.

• One chemical and one physical property: formulations with three to five levels of varia-
tion for the chemical response and for the physical property calibration are considered
only for target formulation (five levels).

• Two chemical/physical properties: any type of DoE (full-factorial, central composite, mix-
ture design, D-optimal) to avoid collinearity and spurious predictions.

• Three chemical/physical properties: simple lattice mixture designs or D-optimal designs.

• In-line methods: models built by correlating sampled product properties with in-line
collected spectra. Most rigorous studies also investigated the effect of process parameters
on the NIR spectra.

3. Handling chemical, physical, and environmental interferences

The dependence of the NIR spectra on the sample’s chemical and physical properties caused
by absorption and scatter effects can be an advantage of this type of spectroscopy, but at the
same time, the scatter effects caused by sample variations or even by environmental phenom-
ena can create a series of analytical problems. In such cases, each type of interferences has to be
considered in the calibration model development. In the following section, the importance of
chemical, physical, and environmental interferences will be described, providing insights on
specific spectral variations produced by each category and highlighting how to handle them in
order to increase model robustness [1, 2].

Generally, a quality NIR analysis should provide a model that manages a correct interconnec-
tion of the spectral variables with the samples properties of interest. At the same time, an ideal
calibration model will not react to instrument variation, environmental changes, background
interferences, and will be mostly focused on the information of interest. Chemometrics is the
science that enables the extraction of relevant information, as well as the reduction of unrelated
information as well as interfering parameters.

Spectral interferences resulting from variable physico-chemical sample properties (e.g., parti-
cle size variation and moisture content) or instrumental effects (e.g., path-length variation,
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runs to develop a quantitative NIR method (one run) and to evaluate the effect of changing
exhaust air temperature and spray rate (two runs) and the effect of tablet density and flow
motion in the coater (two runs). For quantitative calibration, samples were collected through
the entire process and analyzed using reference methods [6]. For the quantification of coating
thickness by means of Raman spectroscopy, Kauffman et al. calibrated the method by consid-
ering film thickness and film composition variables. Tablets were coated on five levels ranging
0.5–6%weight gain by varying their residence time in the coater. As for film composition, three
different TiO2 levels were evaluated due to the strong Raman signal of this component offering
the potential for an indirect measure [41]. In the case of thin coatings, the generation of a
calibration set can become a difficult task and can become limited due to the lack of reference
methods. In this situation, an alternative to classical regression methods would be the Science-
Based Calibration (SBC) approach, which allows the calibration without a reference method by
separating spectral variability into orthogonal (covariance matrix) and predictive parts (related
to the coating). Möltgen et al. applied SBC to develop quantitative NIR method for in-line
evaluation of thin hydroxypropyl methylcellulose (HPMC) coatings through four experimen-
tal runs. For calibration, the pure HPMC spectrum was used as the coating response spectrum
and the covariance matrix included hardware, core, water, and process-related noise. The
method developed without reference samples predicted accurately coating thickness values
in the range of 8–28 μm demonstrating the value of SBC [43].

In order to predict granule moisture content in a six-segmented fluid bed dryer through NIR
spectroscopy, a calibration set of 20 experiments was applied. Granules were prepared with
five moisture levels by varying the drying air temperature and drying time. Each moisture
level had four replicates prepared on two different days [3].

Clavaud et al. developed a global regression model for moisture content estimation from freeze-
dried medicine. As expected, the calibration set was extensive, including three types of active
ingredient with different concentrations, different vial diameters, and excipient amounts. To
include intra- and inter-product variability, 5 batches and 100 samples were used for each product
[44]. Martinez et al. calibrated NIR method for in-line quantification of two active ingredients in a
batch-blending process by investigating the influence of sample presentation. With regard to this,
the high-loading API was used either in the form of a cohesive powder or in a granular form
prepared by melt-extrusion. The observed spectral differences were resumed to the polymer
wavelength absorption band that coincided with the water region. The offline calibration of the
method was built on 13 samples which included both forms of the high-loading API [2].

Wahl et al. evaluated in-line the content uniformity of ternary mixtures with an NIR mounted
on the feed frame of a tablet press. For calibration, the active ingredient and two excipients
concentrations were varied through eight experiments selected by means of a D-optimal
design and two extra runs added to ensure equidistant steps in the content of each component.
Spectral data were recorded in a dynamic acquisition mode, simulating real conditions [5].

Karande et al. developed NIR method for real-time monitoring of tableting based on a 105-
sample calibration set generated through a simplex lattice design with four factors (chlorphen-
iramine maleate, lactose, microcrystalline cellulose, and magnesium stearate). Prior to building
the calibration, the effect of sampling was evaluated by recording NIR spectra in both static
and dynamic conditions. The differences between measurements revealed the importance of

Calibration and Validation of Analytical Methods - A Sampling of Current Approaches42

ensuring similar sampling conditions for calibration as for actual real-time monitoring [9]. For
another application, Karande et al. evaluated the effect of different spectral-sampling strategies
on the performance of an NIR model, to accurately predict blend components in quaternary
mixtures. Calibration samples (24 formulations-D-optimal mixture design) were recorded in
three ways: laboratory mixing and static spectral acquisition; IBC (intermediate bulk con-
tainer) mixing and static spectral acquisition; IBC mixing and dynamic spectral acquisition.
Dynamic sampling yielded the best calibration model with highest accuracy, demonstrating
the importance of selecting similar sampling conditions to the actual testing [45].

Based on the presented examples found in literature, the most frequently applied methods to
design a calibration set were as follows:

• One chemical/physical property: formulations with three to five levels of variation for the
response that span the desired range of concentration/physical property.

• One chemical and one physical property: formulations with three to five levels of varia-
tion for the chemical response and for the physical property calibration are considered
only for target formulation (five levels).

• Two chemical/physical properties: any type of DoE (full-factorial, central composite, mix-
ture design, D-optimal) to avoid collinearity and spurious predictions.

• Three chemical/physical properties: simple lattice mixture designs or D-optimal designs.

• In-line methods: models built by correlating sampled product properties with in-line
collected spectra. Most rigorous studies also investigated the effect of process parameters
on the NIR spectra.

3. Handling chemical, physical, and environmental interferences

The dependence of the NIR spectra on the sample’s chemical and physical properties caused
by absorption and scatter effects can be an advantage of this type of spectroscopy, but at the
same time, the scatter effects caused by sample variations or even by environmental phenom-
ena can create a series of analytical problems. In such cases, each type of interferences has to be
considered in the calibration model development. In the following section, the importance of
chemical, physical, and environmental interferences will be described, providing insights on
specific spectral variations produced by each category and highlighting how to handle them in
order to increase model robustness [1, 2].

Generally, a quality NIR analysis should provide a model that manages a correct interconnec-
tion of the spectral variables with the samples properties of interest. At the same time, an ideal
calibration model will not react to instrument variation, environmental changes, background
interferences, and will be mostly focused on the information of interest. Chemometrics is the
science that enables the extraction of relevant information, as well as the reduction of unrelated
information as well as interfering parameters.

Spectral interferences resulting from variable physico-chemical sample properties (e.g., parti-
cle size variation and moisture content) or instrumental effects (e.g., path-length variation,
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light scattering, and random noise) can be reduced, eliminated, or standardized by using
spectral pretreatments, prior to the multivariate data analysis [3]. Since the correct selection of
spectral pretreatment can significantly improve the reliability of the model, this topic will be
discussed in the following paragraphs. The most common pre-processing techniques can be
divided into two groups: pretreatments for spectral normalization and for smoothing/differ-
entiation. The first group achieves spectral normalization through scatter-correction methods.
Scatter effects are common for all spectroscopic techniques and the phenomenon appears
mostly because of the physical variabilities between samples or path-length variations. Two
of those pre-processing concepts are standard normal variate (SNV) and multiplicative scatter
correction (MSC) which also normalize the baseline shifts of different samples [4, 5]. The
second set of pre-processing methods has the capacity to reduce or remove the noise by
smoothing and differentiating the spectral values. The most common spectral derivatives are
based on the Savitzky-Golay (SG) [6] and the Norris-Williams algorithms [7].

In most cases, in order to obtain best results, there is the need to apply both types of
pretreatment techniques one after the other. Peeters et al. tested both types of pre-processings
not only to reduce light scattering effects but also to minimize peak shifts of Raman and NIR
spectra. They applied SNV, MSC, and first and second derivatives obtained by calculating 15-
point quadratic Savitzky-Golay filters, in order to develop a method for the off-line prediction
of tablet properties [8]. Sylvester et al. developed an in-line NIR-monitoring method for a
freeze-drying process using the SNV pre-processing in order to remove multiplicative interfer-
ences caused by scatter and particle size variations and the first Savitzky-Golay derivative to
reduce baseline shifts and to improve the spectral resolution [9]. The successful development
of a real-time method for monitoring continuous powder flow from a tableting machine feeder
was described by Alam et al. Savitzky-Golay derivatization was first applied for smoothing,
followed by SNV for scatter correction [10]. Environmental interferences can be caused by
sample, instrument, or even laboratory variations; this type of interferences causes misalign-
ments or shifts of the spectra and is commonly overcome by applying alignment/warping
techniques to the data [3]. Those methods stretch or compress the signal in order to match it
in the best way possible with a given reference spectra [11, 12].

All pre-processing methods have the purpose to reduce the undesirable variability and inter-
ferences from the data, but there is always a risk of choosing an inappropriate type or applying
a severe pre-processing that would also remove valuable information. Because of this, choos-
ing the correct technique is one of the most important steps in data pre-processing and model
development.

A last useful solution to deal with problems caused by interferences is wavelength selection
method. The model development can be done based on the specific spectral domain that
contains the information of interest. In order to select the domain of interest or to eliminate
irrelevant wavelength domains, principal component analysis (PCA) can be performed. Prior
to the PCA, the collected spectra should be pre-processed and column centered, then the
analysis can be performed on the data matrix. Finally, the variables should be selected
according to high peak loadings obtained for all relevant principal components (PCs), and the
position of the resulting features should be compared with the original spectrum to validate
the selection.
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4. Data pre-processing

During the development of a multivariate calibration model, systematic variation such as
baseline shifts and scatter effects, not relevant for the prediction of the response variables (Y),
is present in predictor variables (X). Pre-processing methods are used in order to remove the
systematic variation not related to the Y-matrix, which might impair the interpretation or
predictive ability of the developed model.

The main goals of data-pre-processing are the following:

a. improvement of the robustness and accuracy of subsequent analyses;

b. improved interpretability: raw data are transformed into a format that will be better
understandable by both humans and machines;

c. detection and removal of outliers and trends; and

d. reduction of the dimensionality of the data mining task and removal of irrelevant and
redundant information [46].

The methods generally used for data pre-processing are divided into two categories. The first
consists of classical pre-processing methods, used for normalization, smoothing, and differen-
tiation. The second is represented by methods for variable selection and dimensionality reduc-
tion [47]. Among these methods, the most appropriate has to be chosen, such as to only remove
unwanted variation, without excluding or altering chemically relevant information [48].

When used in an inappropriate way, pre-processing may introduce artifacts or cause loss of
information. Thus, the purpose of the analysis is important for the selection of the most
appropriate pre-processing method, because scattering is disruptive for compound identifica-
tion and quantitation, but is useful to study the physical properties of the sample. As a
consequence, the best pre-processing method, ensuring a correct data analysis and robust
results, has to be chosen by testing and comparing the results of different methods [48].

4.1. Pre-processing methods

4.1.1. Spectral normalization

In many analytical methods, the variables measured for a given sample are increased or
decreased from their true value by a multiplicative factor, which is called the scaling or gain
effect. In spectroscopic methods, the scaling effect arises from path-length effects, scattering
effects, source or detector variations, so the relative value of variables should be used during
multivariate modeling rather than the absolute measured value. The sample normalization is
one of the most important pre-processing methods, which is applied in an attempt to correct
for multiplicative scaling effects, the shifts and the trends in baseline and curvilinearity, by
identifying some aspect for each sample which should be essentially constant from one sample
to the next, and correcting the scaling of all variables based on this characteristic [48].

Normalization methods can be subdivided into two main groups: simple normalization
methods (min-max normalization, one-norm, vector normalization, standard normal variate),

Multivariate Calibration for the Development of Vibrational Spectroscopic Methods
http://dx.doi.org/10.5772/intechopen.72598

45



light scattering, and random noise) can be reduced, eliminated, or standardized by using
spectral pretreatments, prior to the multivariate data analysis [3]. Since the correct selection of
spectral pretreatment can significantly improve the reliability of the model, this topic will be
discussed in the following paragraphs. The most common pre-processing techniques can be
divided into two groups: pretreatments for spectral normalization and for smoothing/differ-
entiation. The first group achieves spectral normalization through scatter-correction methods.
Scatter effects are common for all spectroscopic techniques and the phenomenon appears
mostly because of the physical variabilities between samples or path-length variations. Two
of those pre-processing concepts are standard normal variate (SNV) and multiplicative scatter
correction (MSC) which also normalize the baseline shifts of different samples [4, 5]. The
second set of pre-processing methods has the capacity to reduce or remove the noise by
smoothing and differentiating the spectral values. The most common spectral derivatives are
based on the Savitzky-Golay (SG) [6] and the Norris-Williams algorithms [7].

In most cases, in order to obtain best results, there is the need to apply both types of
pretreatment techniques one after the other. Peeters et al. tested both types of pre-processings
not only to reduce light scattering effects but also to minimize peak shifts of Raman and NIR
spectra. They applied SNV, MSC, and first and second derivatives obtained by calculating 15-
point quadratic Savitzky-Golay filters, in order to develop a method for the off-line prediction
of tablet properties [8]. Sylvester et al. developed an in-line NIR-monitoring method for a
freeze-drying process using the SNV pre-processing in order to remove multiplicative interfer-
ences caused by scatter and particle size variations and the first Savitzky-Golay derivative to
reduce baseline shifts and to improve the spectral resolution [9]. The successful development
of a real-time method for monitoring continuous powder flow from a tableting machine feeder
was described by Alam et al. Savitzky-Golay derivatization was first applied for smoothing,
followed by SNV for scatter correction [10]. Environmental interferences can be caused by
sample, instrument, or even laboratory variations; this type of interferences causes misalign-
ments or shifts of the spectra and is commonly overcome by applying alignment/warping
techniques to the data [3]. Those methods stretch or compress the signal in order to match it
in the best way possible with a given reference spectra [11, 12].

All pre-processing methods have the purpose to reduce the undesirable variability and inter-
ferences from the data, but there is always a risk of choosing an inappropriate type or applying
a severe pre-processing that would also remove valuable information. Because of this, choos-
ing the correct technique is one of the most important steps in data pre-processing and model
development.

A last useful solution to deal with problems caused by interferences is wavelength selection
method. The model development can be done based on the specific spectral domain that
contains the information of interest. In order to select the domain of interest or to eliminate
irrelevant wavelength domains, principal component analysis (PCA) can be performed. Prior
to the PCA, the collected spectra should be pre-processed and column centered, then the
analysis can be performed on the data matrix. Finally, the variables should be selected
according to high peak loadings obtained for all relevant principal components (PCs), and the
position of the resulting features should be compared with the original spectrum to validate
the selection.
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4. Data pre-processing

During the development of a multivariate calibration model, systematic variation such as
baseline shifts and scatter effects, not relevant for the prediction of the response variables (Y),
is present in predictor variables (X). Pre-processing methods are used in order to remove the
systematic variation not related to the Y-matrix, which might impair the interpretation or
predictive ability of the developed model.

The main goals of data-pre-processing are the following:

a. improvement of the robustness and accuracy of subsequent analyses;

b. improved interpretability: raw data are transformed into a format that will be better
understandable by both humans and machines;

c. detection and removal of outliers and trends; and

d. reduction of the dimensionality of the data mining task and removal of irrelevant and
redundant information [46].

The methods generally used for data pre-processing are divided into two categories. The first
consists of classical pre-processing methods, used for normalization, smoothing, and differen-
tiation. The second is represented by methods for variable selection and dimensionality reduc-
tion [47]. Among these methods, the most appropriate has to be chosen, such as to only remove
unwanted variation, without excluding or altering chemically relevant information [48].

When used in an inappropriate way, pre-processing may introduce artifacts or cause loss of
information. Thus, the purpose of the analysis is important for the selection of the most
appropriate pre-processing method, because scattering is disruptive for compound identifica-
tion and quantitation, but is useful to study the physical properties of the sample. As a
consequence, the best pre-processing method, ensuring a correct data analysis and robust
results, has to be chosen by testing and comparing the results of different methods [48].

4.1. Pre-processing methods

4.1.1. Spectral normalization

In many analytical methods, the variables measured for a given sample are increased or
decreased from their true value by a multiplicative factor, which is called the scaling or gain
effect. In spectroscopic methods, the scaling effect arises from path-length effects, scattering
effects, source or detector variations, so the relative value of variables should be used during
multivariate modeling rather than the absolute measured value. The sample normalization is
one of the most important pre-processing methods, which is applied in an attempt to correct
for multiplicative scaling effects, the shifts and the trends in baseline and curvilinearity, by
identifying some aspect for each sample which should be essentially constant from one sample
to the next, and correcting the scaling of all variables based on this characteristic [48].

Normalization methods can be subdivided into two main groups: simple normalization
methods (min-max normalization, one-norm, vector normalization, standard normal variate),
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requiring only the information from the spectrum to be normalized, and normalization
methods requiring the presence of collective spectral data matrices or of reference spectra
(multiplicative scatter correction and extended multiplicative signal correction (EMSC) [46].
Among these, the most used scattering correction algorithms include the SNV and MSC. The
two pretreatments give similar results, being considered exchangeable, but the results
obtained through both algorithms are compared usually, since they may be different [49].
SNV was proposed to reduce multiplicative effects of scattering, particle size, and multicol-
linearity changes over the NIR spectra. This approach starts with mean centering and consists
of dividing mean-centered spectra by the standard deviation over the spectral intensities [50].
SNV normalizes each spectrum returning a mean of 0 and a variance of 1 spectra dataset [48].
The disadvantage is the assumption that multiplicative effects are uniform over the whole
spectral range, so artifacts may be introduced by this transformation.

The de-trend method is another approach to correct for baseline shift, which removes the
baseline curvature by expressing it as a quadratic function of the wavelengths. The modeled
baseline is subtracted from the spectrum, so de-trend can be used after SNV to circumvent any
curvilinear trend, where the baseline drift is a function of wavelength [50]. The MSC
pretreatment performs a linear regression of each spectrum on a reference spectrum, which is
usually the mean of all available spectra, for example, the average spectra of the calibration set,
or a generic reference spectrum can also be applied [49].

4.1.2. Smoothing and differentiation

The smoothing algorithms are used in order to correct the spectral noise, while differentiation
is used to enhance spectral resolution and to eliminate background absorption. The most
common ways to achieve smoothing are the use of noise filters for de-noising and smoothing
and Savitzky-Golay smoothing/derivative filters for smoothing/resolution enhancement.
Noise filters are specific low-pass filters which can be used to reduce random noise. Their
drawback is that the signal-to-noise ratio is increased at the expenses of distorting the signal.
The most popular smoothing filters are the zeroth-order SG-smoothing/derivative filter, the
binomial filter, and the moving average filter [46].

Derivatives are used for their capability to remove both additive and multiplicative effects in
the spectra. The first derivative removes only the baseline; the second derivative removes both
baseline and linear trend. The first derivative is estimated as the difference between two
subsequent spectral measurement points, while the second-order derivative is estimated as
the difference between two successive points of the first-order derivative spectra [51]. The most
popular derivation method is SG algorithm, proposed by Golay and Savitzky in 1962 [52]. The
method has the advantage that computation of the derivatives and smoothing are carried out
in a single step. The algorithm used in this method is based on fitting a polynomial in a
symmetric window on the raw data, in order to find the derivative at the center point. The
parameters of the polynomial are calculated and the derivative of this function is found, this
value being used as the derivative estimate for this center point. The same operation is
subsequently applied to all points in the spectra. Two decisions are important to be made
in this algorithm, i.e., the window width (width of the subset of the data) and the fitted
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polynomial order. The highest derivative that can be determined depends on the degree of the
polynomial used during the fitting [51].

4.1.3. Dimensionality-reduction methods

These methods rely on reducing the dimension of the predictor space spanned by a number of
variables or wavelengths, in order to find the subspace mainly containing variations related to
the response matrix. The orthogonal projection and the variable-selection methods are in this
group. Orthogonal signal correction (OSC) and its modified version direct orthogonal signal
correction ((D)OSC) are the most common among this group, developed to remove systematic
variation in the descriptor matrix, that is not correlated to the response matrix. In other words,
the pre-processing is performed in such a way that the removed parts are orthogonal (not
linearly related) to the response matrix [53, 54]. The method has the advantage of correcting at
once multiple artifacts.

An alternative OSC algorithm was developed by Trygg and Wold and is called orthogonal
projection to latent structures (OPLS). The objective of OPLS is the same as of OSC, but the
approach is different, i.e., the OPLS method analyzes the variation explained in each PLS
component. The non-correlated systematic variation in descriptor matrix is removed, making
interpretation of the resulting PLS model easier, and the non-correlated variation can be
analyzed further [55].

Variable-selection techniques consist of selecting particular variables related to the response,
instead of removing the interference modeled as a spectrum, the aim being to identify a subset
of wavelengths that produces the smallest possible error [56]. Selecting the most correlated
wavelengths may lead to better performance in PLS and PCR, but, on the other hand, selection
of the most correlated wavelengths may eliminate those that correct for the influence of
interfering compounds or factors [56].

4.2. Pre-processing strategy

In practical applications, combinations of pre-processing methods are usually employed in
search for the best algorithm, involving more than one pre-processing step. According to
Rinnan et al., several rules may serve as guidelines: scatter correction (except of normalization)
should always be performed prior to differentiation; normalization can be used at both ends of
the correction, but usually is easier to be assessed if it is done prior to any other strategy; MSC
gives a smaller baseline correction than SNV with subsequent de-trending; it is not
recommended to perform de-trending followed by SNV [51].

The ideal pre-processing strategy should only remove artifacts present in the data, without
introducing any unwanted artifacts or variability in the data. When physical properties, that is,
tablets’ crushing strength, are evaluated through vibrational spectroscopy, typical pre-
processing methods such as SNV, MSC, and the derivatives cannot be used, because they lose
the baseline-shifting information, which is relevant for the physical properties. The data in this
case should be modeled as such or after normalization [16]. Three approaches are described in
the literature, for the selection of the most appropriate strategy: the trial-and-error approach;
visual inspection and the use of data-quality parameters [57].
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requiring only the information from the spectrum to be normalized, and normalization
methods requiring the presence of collective spectral data matrices or of reference spectra
(multiplicative scatter correction and extended multiplicative signal correction (EMSC) [46].
Among these, the most used scattering correction algorithms include the SNV and MSC. The
two pretreatments give similar results, being considered exchangeable, but the results
obtained through both algorithms are compared usually, since they may be different [49].
SNV was proposed to reduce multiplicative effects of scattering, particle size, and multicol-
linearity changes over the NIR spectra. This approach starts with mean centering and consists
of dividing mean-centered spectra by the standard deviation over the spectral intensities [50].
SNV normalizes each spectrum returning a mean of 0 and a variance of 1 spectra dataset [48].
The disadvantage is the assumption that multiplicative effects are uniform over the whole
spectral range, so artifacts may be introduced by this transformation.

The de-trend method is another approach to correct for baseline shift, which removes the
baseline curvature by expressing it as a quadratic function of the wavelengths. The modeled
baseline is subtracted from the spectrum, so de-trend can be used after SNV to circumvent any
curvilinear trend, where the baseline drift is a function of wavelength [50]. The MSC
pretreatment performs a linear regression of each spectrum on a reference spectrum, which is
usually the mean of all available spectra, for example, the average spectra of the calibration set,
or a generic reference spectrum can also be applied [49].

4.1.2. Smoothing and differentiation

The smoothing algorithms are used in order to correct the spectral noise, while differentiation
is used to enhance spectral resolution and to eliminate background absorption. The most
common ways to achieve smoothing are the use of noise filters for de-noising and smoothing
and Savitzky-Golay smoothing/derivative filters for smoothing/resolution enhancement.
Noise filters are specific low-pass filters which can be used to reduce random noise. Their
drawback is that the signal-to-noise ratio is increased at the expenses of distorting the signal.
The most popular smoothing filters are the zeroth-order SG-smoothing/derivative filter, the
binomial filter, and the moving average filter [46].

Derivatives are used for their capability to remove both additive and multiplicative effects in
the spectra. The first derivative removes only the baseline; the second derivative removes both
baseline and linear trend. The first derivative is estimated as the difference between two
subsequent spectral measurement points, while the second-order derivative is estimated as
the difference between two successive points of the first-order derivative spectra [51]. The most
popular derivation method is SG algorithm, proposed by Golay and Savitzky in 1962 [52]. The
method has the advantage that computation of the derivatives and smoothing are carried out
in a single step. The algorithm used in this method is based on fitting a polynomial in a
symmetric window on the raw data, in order to find the derivative at the center point. The
parameters of the polynomial are calculated and the derivative of this function is found, this
value being used as the derivative estimate for this center point. The same operation is
subsequently applied to all points in the spectra. Two decisions are important to be made
in this algorithm, i.e., the window width (width of the subset of the data) and the fitted
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polynomial order. The highest derivative that can be determined depends on the degree of the
polynomial used during the fitting [51].

4.1.3. Dimensionality-reduction methods

These methods rely on reducing the dimension of the predictor space spanned by a number of
variables or wavelengths, in order to find the subspace mainly containing variations related to
the response matrix. The orthogonal projection and the variable-selection methods are in this
group. Orthogonal signal correction (OSC) and its modified version direct orthogonal signal
correction ((D)OSC) are the most common among this group, developed to remove systematic
variation in the descriptor matrix, that is not correlated to the response matrix. In other words,
the pre-processing is performed in such a way that the removed parts are orthogonal (not
linearly related) to the response matrix [53, 54]. The method has the advantage of correcting at
once multiple artifacts.

An alternative OSC algorithm was developed by Trygg and Wold and is called orthogonal
projection to latent structures (OPLS). The objective of OPLS is the same as of OSC, but the
approach is different, i.e., the OPLS method analyzes the variation explained in each PLS
component. The non-correlated systematic variation in descriptor matrix is removed, making
interpretation of the resulting PLS model easier, and the non-correlated variation can be
analyzed further [55].

Variable-selection techniques consist of selecting particular variables related to the response,
instead of removing the interference modeled as a spectrum, the aim being to identify a subset
of wavelengths that produces the smallest possible error [56]. Selecting the most correlated
wavelengths may lead to better performance in PLS and PCR, but, on the other hand, selection
of the most correlated wavelengths may eliminate those that correct for the influence of
interfering compounds or factors [56].

4.2. Pre-processing strategy

In practical applications, combinations of pre-processing methods are usually employed in
search for the best algorithm, involving more than one pre-processing step. According to
Rinnan et al., several rules may serve as guidelines: scatter correction (except of normalization)
should always be performed prior to differentiation; normalization can be used at both ends of
the correction, but usually is easier to be assessed if it is done prior to any other strategy; MSC
gives a smaller baseline correction than SNV with subsequent de-trending; it is not
recommended to perform de-trending followed by SNV [51].

The ideal pre-processing strategy should only remove artifacts present in the data, without
introducing any unwanted artifacts or variability in the data. When physical properties, that is,
tablets’ crushing strength, are evaluated through vibrational spectroscopy, typical pre-
processing methods such as SNV, MSC, and the derivatives cannot be used, because they lose
the baseline-shifting information, which is relevant for the physical properties. The data in this
case should be modeled as such or after normalization [16]. Three approaches are described in
the literature, for the selection of the most appropriate strategy: the trial-and-error approach;
visual inspection and the use of data-quality parameters [57].
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In the trial-and-error approach, all pre-processing methods are applied to the data and the pre-
processed data are used as an input to a calibration model, which is further used to assess the
quality of the pre-processing strategy by an internal measure, such as RMSEP or RMSECV [57].
For example, Karande et al. chose among various pre-processing methods through comparing
the figures of merit (explained variance, R2, RMSEC, and RMSECV) of the developed partial
least-squares (PLS1) regression models, for the quantification of micronized drug and excipi-
ents in tablets by NIR spectroscopy. The raw calibration spectra were pretreated with SNV
followed by first derivative and SNV followed by second derivative pre-processing. All
models were developed using the entire spectral range or narrow spectral ranges. The best
performance of the calibration method (highest explained variance, lowest RMSEC and
RMSECV) was obtained using the whole spectral range, pretreated with SNV followed by first
derivative spectral pre-processing [9] . The same approach has been used by Porfire et al. in the
attempt to select the best pretreatment method in the development of calibration models for
prediction of chemical composition and crushing strength of sustained-release tablets with
indapamide. PLS regression was performed for non-processed spectra as well as for spectra
treated by various pre-processing methods (i.e., FD, SD, SNV, MSC, FD + SNV, FD + MSC), and
the most suitable pretreatment algorithm was chosen based on the results obtained for PLS
model validation through cross-validation, i.e., based on its RMSECV and bias [58].

In visual inspection method, the effect of pre-processing is assessed before a model is
constructed. Thus, because artifacts have been removed during pre-processing, samples
should show more spectral overlap after pre-processing in visual inspection, and differences
between groups of samples should be more pronounced. However, as visual inspection may
be very difficult and not objective, the data are not usually inspected in “spectral mode” but in
a lower dimensional space, obtained usually through principal component analysis [57]. PCA
reduces the dimensionality of the problem by generating linear combinations of the original
variables returning new “latent” variables. Each original variable is weighted by a loading
representing the importance of the considered variable on the variance of the data. The
variability of the data is expressed by new dimensions called principal components, and the
projection of a pixel onto the PCs is called its score. The result of PCA is the decomposition of
the pre-processed matrix in a score matrix and a loading matrix [48]. PCA is used for data
overview, for example, for detecting outliers, groups, and trends among observations, for
evaluating relationships among variables, and between observations and variables. In PCA,
data in the matrix X are transferred into a new coordinate system defined by principal
components. The direction in variable space occupied by the most varying data points will
define the location of the first PC, and the second PC will be given by the largest variation
orthogonal to the first component. PCs are extracted until only minor variation is left
unexplained by the PC model, each component consisting of a score vector and a loading
vector. Observations close to each other in a score plot have similar properties, and variables
close to each other in a loading plot are correlated. Thus, the score plot is useful for the
detection of strong outliers, clustering, and time trends [59] .

The detection of strong outliers through PCA is done by analyzing the score plot. The strong
outliers are removed, as they may have a degrading impact on model quality. A statistic tool
called Hotteling’s T2 may be used in conjunction with the score plot for the detection of
strong outliers. This tool is a multivariate generalization of Student’s t-test, defining the
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normal area corresponding to 95 or 99% confidence. Subsequently, for a better understand-
ing of the properties of grouped data, a splitting of data into smaller groups according to the
nature of the clustering is done, and separate PCA models may be fitted. For the detection of
weakly deviating observations (moderate outliers), which are not strong enough to show up
as outliers in score plots, the residuals of each observation are used. The detection tool is
called DmodX (a notation for distance to the model in X-space). A value of Dmodx is
calculated for each observation, and the values are plotted in a control chart where the
maximum tolerable distance (Dcrit) for the dataset is given. The plot of DmodX enables an
overview of the unsystematic process variation, as moderate outliers have DmodX values
higher than Dcrit [59].

Before PCA, scaling of data is usually performed, because variables have different numerical
ranges so they will have different variance and they will weight differently in the data
analysis. The most common approach is the unit variance (UV) scaling, consisting in divid-
ing each variable by its standard deviation. The result is that each variable has equal vari-
ance, meaning that the “length” of each variable is identical, although the mean values still
remain different [59].

Tôrres et al. used Hotelling’s T2 chart to analyze the NIR spectra of a training (calibration) set
for the development of a monitoring method for the stability of captopril in tablets. Before
being analyzed by PCA, NIR spectra were smoothed as described by Savitzky-Golay with a
21-point window and second-order polynomial and were processed by MSC for the correction
of baseline variation due to non-homogeneity of particle’s distribution [60]. The Hotelling’s T2

chart measures the distance from an observation to the center of the samples under normal
operating conditions and evaluates whether a particular sample has a systematic deviation
from the samples considered to be under statistical control [61]. As all samples from the
training set were assumed to be normal, the training chart was not expected to identify
systematic deviations in these samples in the training phase, so the number of PC retained in
the model was selected to minimize the number of false alarms (false positives and false
negatives) during the training phase of the control charts [60].

5. Regression methods

Regression analysis is a modeling technique used to investigate the relationship between
dependent variables (responses or y’s variables) and independent variables (predictor, factors
or x’s variables). According to the number of variable, three cases can be distinguished:

1. Simple linear regression—one y and one x variable.

2. Univariate linear regression—one y and several x’s variables.

3. Multivariate linear regression—several y’s and several x’s variables [62].

The objective of a regression method can be achieved by means of a model where the observed
result (dependent variables, response, y’s variables) is described as a function of independent
variables (x’s variables) and the noise is left as residual.
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In the trial-and-error approach, all pre-processing methods are applied to the data and the pre-
processed data are used as an input to a calibration model, which is further used to assess the
quality of the pre-processing strategy by an internal measure, such as RMSEP or RMSECV [57].
For example, Karande et al. chose among various pre-processing methods through comparing
the figures of merit (explained variance, R2, RMSEC, and RMSECV) of the developed partial
least-squares (PLS1) regression models, for the quantification of micronized drug and excipi-
ents in tablets by NIR spectroscopy. The raw calibration spectra were pretreated with SNV
followed by first derivative and SNV followed by second derivative pre-processing. All
models were developed using the entire spectral range or narrow spectral ranges. The best
performance of the calibration method (highest explained variance, lowest RMSEC and
RMSECV) was obtained using the whole spectral range, pretreated with SNV followed by first
derivative spectral pre-processing [9] . The same approach has been used by Porfire et al. in the
attempt to select the best pretreatment method in the development of calibration models for
prediction of chemical composition and crushing strength of sustained-release tablets with
indapamide. PLS regression was performed for non-processed spectra as well as for spectra
treated by various pre-processing methods (i.e., FD, SD, SNV, MSC, FD + SNV, FD + MSC), and
the most suitable pretreatment algorithm was chosen based on the results obtained for PLS
model validation through cross-validation, i.e., based on its RMSECV and bias [58].

In visual inspection method, the effect of pre-processing is assessed before a model is
constructed. Thus, because artifacts have been removed during pre-processing, samples
should show more spectral overlap after pre-processing in visual inspection, and differences
between groups of samples should be more pronounced. However, as visual inspection may
be very difficult and not objective, the data are not usually inspected in “spectral mode” but in
a lower dimensional space, obtained usually through principal component analysis [57]. PCA
reduces the dimensionality of the problem by generating linear combinations of the original
variables returning new “latent” variables. Each original variable is weighted by a loading
representing the importance of the considered variable on the variance of the data. The
variability of the data is expressed by new dimensions called principal components, and the
projection of a pixel onto the PCs is called its score. The result of PCA is the decomposition of
the pre-processed matrix in a score matrix and a loading matrix [48]. PCA is used for data
overview, for example, for detecting outliers, groups, and trends among observations, for
evaluating relationships among variables, and between observations and variables. In PCA,
data in the matrix X are transferred into a new coordinate system defined by principal
components. The direction in variable space occupied by the most varying data points will
define the location of the first PC, and the second PC will be given by the largest variation
orthogonal to the first component. PCs are extracted until only minor variation is left
unexplained by the PC model, each component consisting of a score vector and a loading
vector. Observations close to each other in a score plot have similar properties, and variables
close to each other in a loading plot are correlated. Thus, the score plot is useful for the
detection of strong outliers, clustering, and time trends [59] .

The detection of strong outliers through PCA is done by analyzing the score plot. The strong
outliers are removed, as they may have a degrading impact on model quality. A statistic tool
called Hotteling’s T2 may be used in conjunction with the score plot for the detection of
strong outliers. This tool is a multivariate generalization of Student’s t-test, defining the

Calibration and Validation of Analytical Methods - A Sampling of Current Approaches48

normal area corresponding to 95 or 99% confidence. Subsequently, for a better understand-
ing of the properties of grouped data, a splitting of data into smaller groups according to the
nature of the clustering is done, and separate PCA models may be fitted. For the detection of
weakly deviating observations (moderate outliers), which are not strong enough to show up
as outliers in score plots, the residuals of each observation are used. The detection tool is
called DmodX (a notation for distance to the model in X-space). A value of Dmodx is
calculated for each observation, and the values are plotted in a control chart where the
maximum tolerable distance (Dcrit) for the dataset is given. The plot of DmodX enables an
overview of the unsystematic process variation, as moderate outliers have DmodX values
higher than Dcrit [59].

Before PCA, scaling of data is usually performed, because variables have different numerical
ranges so they will have different variance and they will weight differently in the data
analysis. The most common approach is the unit variance (UV) scaling, consisting in divid-
ing each variable by its standard deviation. The result is that each variable has equal vari-
ance, meaning that the “length” of each variable is identical, although the mean values still
remain different [59].

Tôrres et al. used Hotelling’s T2 chart to analyze the NIR spectra of a training (calibration) set
for the development of a monitoring method for the stability of captopril in tablets. Before
being analyzed by PCA, NIR spectra were smoothed as described by Savitzky-Golay with a
21-point window and second-order polynomial and were processed by MSC for the correction
of baseline variation due to non-homogeneity of particle’s distribution [60]. The Hotelling’s T2

chart measures the distance from an observation to the center of the samples under normal
operating conditions and evaluates whether a particular sample has a systematic deviation
from the samples considered to be under statistical control [61]. As all samples from the
training set were assumed to be normal, the training chart was not expected to identify
systematic deviations in these samples in the training phase, so the number of PC retained in
the model was selected to minimize the number of false alarms (false positives and false
negatives) during the training phase of the control charts [60].

5. Regression methods

Regression analysis is a modeling technique used to investigate the relationship between
dependent variables (responses or y’s variables) and independent variables (predictor, factors
or x’s variables). According to the number of variable, three cases can be distinguished:

1. Simple linear regression—one y and one x variable.

2. Univariate linear regression—one y and several x’s variables.

3. Multivariate linear regression—several y’s and several x’s variables [62].

The objective of a regression method can be achieved by means of a model where the observed
result (dependent variables, response, y’s variables) is described as a function of independent
variables (x’s variables) and the noise is left as residual.
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In a regression analysis, the relationship between two data matrix X (BxK) and Y (NxM) are
related to each other. A regression model can be written as in a matrix form as

Y ¼ XB (1)

where Y is the matrix of x’s variables; X is the matrix of y’s variables; B is the matrix of
regression coefficient, B(KxM).

A good estimate of regression coefficient (B matrix) provides a good fit to Y and good
prediction of future unknown parameters yT. More, the regression coefficient vector should be
of mechanistic understanding and interpretable [59, 63, 64].

A large number of regression methods were developed, all with the goal of finding the best
estimation of B. In the calibration of spectroscopic methods, only multivariate regression
techniques can be applied, and the most used are (1) multiple linear regression (MLR), (2)
principal component regression, (3) partial least-squares regression, and (4) orthogonal partial
least-squares regression (O-PLS). In the last years, some advanced regression methods as (5)
Bayesian ridge regression (Bayes-RR) (6) support vector regression (SVR) or (7) decision tree
regression (DTR) have started to be used.

5.1. Multiple linear regression

Multiple linear regression is an extension of simple linear regression model. In the case of MLR
determination, the relationship between x’s—variables and y’s—variables is achieved by
means of a model where the responses (y’s—variables) are described as a function of analyzed
factors (x’s—variables) and the noise is left in the residual (ε) (Eq. (1)) [65]

y ¼ f x1; x2; x3…:; xnð Þ þ ε (2)

The function f is approximated by a polynomial equation (Eq. (3)),

y ¼ b0 þ b1x0 þ b0x2 þ…þ b0xn þ ε (3)

where bi (i = 1, 2, 3, …,n) are the regression coefficients and describe the effect of each term on
the response y.

The polynomial equation (Eq. (3)) can be written in matrix way as follows:

y ¼ Xbþ ε (4)

where X are the matrix of x’s variables and b the vector, and the multiple linear regression is
used to determinate vector b.

If there are orthogonalities between x’s variables, Eq. (4) can be written as

b ¼ XTX
� ��1

XTy (5)

In this equation, matrix XTX become a diagonal matrix and b is easily calculated.
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If not all the x’s variables can be controlled, the number of x’s variables extends the number of
experimental runs or the number of experimental runs is larger than the number of x’s vari-
ables, the co-linearity between x’s variables arises and the orthogonality no longer exists, so the
inverse of XTX cannot be applied.

Except the cases when the calibration of spectroscopic methods is performed following the
design of experiment strategy in the other multivariate calibration, the orthogonalities do not
exist and the MLR cannot be applied. That is the reason why other regression methods based
on latent variables as partial last squares are preferred and become popular. When the calibra-
tions are performed based on latent variables, inside of using the original variables in the
regression, a new set of orthogonal (latent) variables is calculated and leads to reduction of
the original dimension of x’s variables matrix and performs the least-square estimation.

5.2. Principal component regression

Principal component regression is a regression method based on principal component analysis
and it is used when datasets are highly collinear. In a PCA regression, the original set of
collinear variables is transformed to a new set of correlated variables. So, the principal compo-
nent analysis is used to decompose the x’s variables into a principal component (orthogonal
basis) and a subset of components in order to predict y’s variables. The basic idea of the
principal component regression is to calculate the principal components and then use some of
these components as predictors in a linear regression model fitted using the typical least-
squares procedure [66, 67].

In the case of PCR determination, the relationship between x’s variables and y’s variables is
achieved by means of a matrix of lower dimension (TPT), called principal components, and a
matrix of residuals (E).

X ¼ 1Xþ TPT þ E (6)

where X contains X average; T is a matrix of scores that summarizes the X variables; P is a
matrix of loadings showing the influence of the X variables; E is a matrix of residuals (the
deviations between the original and the predicted values) [66].

The main idea of principal regression is to replace Xmatrix of row date to a smaller orthogonal
score—loading matrix (TPT matrix) that summarized the original X matrix, and then to relate
the T-scores to y’s variables.

The core of PCR is that a small number of principal components is enough to explain the
variability into the data. In most of the cases, it might be found out that four to six principal
components are enough to explain more that 90% of the variance into the data.

5.3. Partial least squares

The partial least-squares regression is the most popular method for the creation of models used
in the development of NIR and Raman spectrometric methods and is used to develop a linear
link between two matrices, the NIR/Raman spectral data and the reference values.
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In a regression analysis, the relationship between two data matrix X (BxK) and Y (NxM) are
related to each other. A regression model can be written as in a matrix form as

Y ¼ XB (1)

where Y is the matrix of x’s variables; X is the matrix of y’s variables; B is the matrix of
regression coefficient, B(KxM).

A good estimate of regression coefficient (B matrix) provides a good fit to Y and good
prediction of future unknown parameters yT. More, the regression coefficient vector should be
of mechanistic understanding and interpretable [59, 63, 64].

A large number of regression methods were developed, all with the goal of finding the best
estimation of B. In the calibration of spectroscopic methods, only multivariate regression
techniques can be applied, and the most used are (1) multiple linear regression (MLR), (2)
principal component regression, (3) partial least-squares regression, and (4) orthogonal partial
least-squares regression (O-PLS). In the last years, some advanced regression methods as (5)
Bayesian ridge regression (Bayes-RR) (6) support vector regression (SVR) or (7) decision tree
regression (DTR) have started to be used.

5.1. Multiple linear regression

Multiple linear regression is an extension of simple linear regression model. In the case of MLR
determination, the relationship between x’s—variables and y’s—variables is achieved by
means of a model where the responses (y’s—variables) are described as a function of analyzed
factors (x’s—variables) and the noise is left in the residual (ε) (Eq. (1)) [65]

y ¼ f x1; x2; x3…:; xnð Þ þ ε (2)

The function f is approximated by a polynomial equation (Eq. (3)),

y ¼ b0 þ b1x0 þ b0x2 þ…þ b0xn þ ε (3)

where bi (i = 1, 2, 3, …,n) are the regression coefficients and describe the effect of each term on
the response y.

The polynomial equation (Eq. (3)) can be written in matrix way as follows:

y ¼ Xbþ ε (4)

where X are the matrix of x’s variables and b the vector, and the multiple linear regression is
used to determinate vector b.

If there are orthogonalities between x’s variables, Eq. (4) can be written as

b ¼ XTX
� ��1

XTy (5)

In this equation, matrix XTX become a diagonal matrix and b is easily calculated.
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If not all the x’s variables can be controlled, the number of x’s variables extends the number of
experimental runs or the number of experimental runs is larger than the number of x’s vari-
ables, the co-linearity between x’s variables arises and the orthogonality no longer exists, so the
inverse of XTX cannot be applied.

Except the cases when the calibration of spectroscopic methods is performed following the
design of experiment strategy in the other multivariate calibration, the orthogonalities do not
exist and the MLR cannot be applied. That is the reason why other regression methods based
on latent variables as partial last squares are preferred and become popular. When the calibra-
tions are performed based on latent variables, inside of using the original variables in the
regression, a new set of orthogonal (latent) variables is calculated and leads to reduction of
the original dimension of x’s variables matrix and performs the least-square estimation.

5.2. Principal component regression

Principal component regression is a regression method based on principal component analysis
and it is used when datasets are highly collinear. In a PCA regression, the original set of
collinear variables is transformed to a new set of correlated variables. So, the principal compo-
nent analysis is used to decompose the x’s variables into a principal component (orthogonal
basis) and a subset of components in order to predict y’s variables. The basic idea of the
principal component regression is to calculate the principal components and then use some of
these components as predictors in a linear regression model fitted using the typical least-
squares procedure [66, 67].

In the case of PCR determination, the relationship between x’s variables and y’s variables is
achieved by means of a matrix of lower dimension (TPT), called principal components, and a
matrix of residuals (E).

X ¼ 1Xþ TPT þ E (6)

where X contains X average; T is a matrix of scores that summarizes the X variables; P is a
matrix of loadings showing the influence of the X variables; E is a matrix of residuals (the
deviations between the original and the predicted values) [66].

The main idea of principal regression is to replace Xmatrix of row date to a smaller orthogonal
score—loading matrix (TPT matrix) that summarized the original X matrix, and then to relate
the T-scores to y’s variables.

The core of PCR is that a small number of principal components is enough to explain the
variability into the data. In most of the cases, it might be found out that four to six principal
components are enough to explain more that 90% of the variance into the data.

5.3. Partial least squares

The partial least-squares regression is the most popular method for the creation of models used
in the development of NIR and Raman spectrometric methods and is used to develop a linear
link between two matrices, the NIR/Raman spectral data and the reference values.
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The PLS approach was first proposed by Herman Wold around 1975 for the modeling of
complicated datasets in terms of chains of matrices, the so-called path models. PLS regression
is preferable to develop calibration models because unlike MLR, it can analyze data with
strongly collinear, noisy, and numerous X-variables, and also simultaneously model several
response variables [68]. PLS was developed for situation in which the data have more inde-
pendent variables than observations (the “small n, large p”) or/and where collinearity is
present among dataset [69].

The PLS finds a multivariate model (linear or polynomial) that describes the relationship
between Y matrix (dependent variables) and X matrix (predictor variables) expressed as

Y ¼ fðXÞ þ E (7)

PLS may be easily understood geometrically if we imagine the matrices X and Y as N points in
two spaces. The X-space with K axes, and the Y-space with M axes, where K is the number of
columns in Xmatrix andM the number of columns in Ymatrix. The objectives of PLS is to find
a latent variable so that the best approximate X-space, the best approximate Y–space, and the
greatest possible correlation between X-space and Y space.

A PLS model can be written as

X ¼ 1Xþ TPT þ E (8)

Y ¼ 1Y þUCT þ F (9)

T ¼ U þH (10)

where X contains the X average; Y contains the Y average; T is a matrix of scores that summa-
rizes theX variables;U is a matrix of scores that summarizes the Y variables; E, F, H is a matrix of
residuals (the deviations between the original and the predicted values) [12].

In a PLS algorithm, there are additional loading called weight. P is the matrix of weigh
expressing the correlation between X and U and is used to calculate T. C is the matrix of weigh
expressing the correlation between Y and T and is used to calculate U [12, 70].

5.4. Orthogonal partial least squares

OPLS has been developed in order to separate information in the X matrix that is correlated
with Y matrix form Y-uncorrelated information. The idea of O-PLS algorithm was to remove
systematic variation uncorrelated with the response with the goal and to reduce the number of
components in order to increase interpretability of the model [55, 69, 71].

The main idea of O-PLS is to separate the systematic variation in X into two parts, one which is
related to both X and Y (co-varying noise) and one which is orthogonal to Y (structured noise).
Two O-PLS algorithms were developed, the first (O1-PLS) is unidirectional X ) Y and the
second (O2-PLS) is bi-directional X⇔Y and is able to separate these different types of varia-
tions in both X and Ymatrices [63, 64]. The practical result of using O-PLS algorithms inside of
PLS is cleaner models that are easier to display and interpret.
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An O2-PLS model can be written as

X ¼ 1X0 þ TPT þ ToPT
o þ E (11)

Y ¼ 1Y0 þUCT þUoCT
O þ F (12)

T ¼ UBu þHTU (13)

U ¼ TBT þHUT (14)

where X is a contain de X average; Y is a contain de Y average; T is a matrix of scores that
summarizes the X variables; U is a matrix of scores that summarizes the Y variables; P is a
matrix of weigh that express the correlation between X and U; C is a matrix of weigh that
express the correlation between Y and T; E, F, HTU, HUT are the matrixes of residuals.

The matrixes TPT and UCT hold the joint X/Y information overlap [12, 63, 64].

In the last years, O2-PLS has become the preferred regression technique for the development of
calibration models in NIR and Raman spectroscopy.

5.5. Bayesian ridge regression

Another regression method recently proposed for multivariate calibration of spectroscopic
methods is Bayesian ridge regression. The method presents similarities with least squares,
and the estimated coefficients tend toward zero in order to avoid collinearity [44].

In a Bayes-RR regression model, higher-level prior Gaussian distributions can be introduced
over α2 and α, and the prediction can be performed by integrating over α2, α, and the regression
parameters w. Since this prior distribution is conjugate to the likelihood function, the predictive
distribution is also Gaussian [72]

p yjα,α2� � ¼
ð
p yjw,α2� �

p wjαð Þdw (15)

The Bayes-RR is a widely used regression technique in machine learning based on the ridge
regression [73], and in the last years its performance for the development of excellent models
for spectroscopic calibration has been proved [72, 74, 75].

5.6. Support vector regression (SVR)

The support vector machines (SVMs) are a set of learning methods mostly used for classifica-
tion that can be used as a regression technique which is called the support vector regression. In
the last years, SVM started to be used in chemometrics for NIR spectra classification and
multivariate calibration. The SVR uses the same principles as the SVM and is based on finding
the hyperplane maximizing the margin between classes. The hyperplane maximizing the
margin is justified by statistical learning theory endowed with a probabilistic test error bound
that is minimized when the margin is maximized. The regression is performed using kernel
functions that transform the data into a higher dimensional feature space to make a linear
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The PLS approach was first proposed by Herman Wold around 1975 for the modeling of
complicated datasets in terms of chains of matrices, the so-called path models. PLS regression
is preferable to develop calibration models because unlike MLR, it can analyze data with
strongly collinear, noisy, and numerous X-variables, and also simultaneously model several
response variables [68]. PLS was developed for situation in which the data have more inde-
pendent variables than observations (the “small n, large p”) or/and where collinearity is
present among dataset [69].

The PLS finds a multivariate model (linear or polynomial) that describes the relationship
between Y matrix (dependent variables) and X matrix (predictor variables) expressed as

Y ¼ fðXÞ þ E (7)

PLS may be easily understood geometrically if we imagine the matrices X and Y as N points in
two spaces. The X-space with K axes, and the Y-space with M axes, where K is the number of
columns in Xmatrix andM the number of columns in Ymatrix. The objectives of PLS is to find
a latent variable so that the best approximate X-space, the best approximate Y–space, and the
greatest possible correlation between X-space and Y space.

A PLS model can be written as

X ¼ 1Xþ TPT þ E (8)

Y ¼ 1Y þUCT þ F (9)

T ¼ U þH (10)

where X contains the X average; Y contains the Y average; T is a matrix of scores that summa-
rizes theX variables;U is a matrix of scores that summarizes the Y variables; E, F, H is a matrix of
residuals (the deviations between the original and the predicted values) [12].

In a PLS algorithm, there are additional loading called weight. P is the matrix of weigh
expressing the correlation between X and U and is used to calculate T. C is the matrix of weigh
expressing the correlation between Y and T and is used to calculate U [12, 70].

5.4. Orthogonal partial least squares

OPLS has been developed in order to separate information in the X matrix that is correlated
with Y matrix form Y-uncorrelated information. The idea of O-PLS algorithm was to remove
systematic variation uncorrelated with the response with the goal and to reduce the number of
components in order to increase interpretability of the model [55, 69, 71].

The main idea of O-PLS is to separate the systematic variation in X into two parts, one which is
related to both X and Y (co-varying noise) and one which is orthogonal to Y (structured noise).
Two O-PLS algorithms were developed, the first (O1-PLS) is unidirectional X ) Y and the
second (O2-PLS) is bi-directional X⇔Y and is able to separate these different types of varia-
tions in both X and Ymatrices [63, 64]. The practical result of using O-PLS algorithms inside of
PLS is cleaner models that are easier to display and interpret.
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An O2-PLS model can be written as

X ¼ 1X0 þ TPT þ ToPT
o þ E (11)

Y ¼ 1Y0 þUCT þUoCT
O þ F (12)

T ¼ UBu þHTU (13)

U ¼ TBT þHUT (14)

where X is a contain de X average; Y is a contain de Y average; T is a matrix of scores that
summarizes the X variables; U is a matrix of scores that summarizes the Y variables; P is a
matrix of weigh that express the correlation between X and U; C is a matrix of weigh that
express the correlation between Y and T; E, F, HTU, HUT are the matrixes of residuals.

The matrixes TPT and UCT hold the joint X/Y information overlap [12, 63, 64].

In the last years, O2-PLS has become the preferred regression technique for the development of
calibration models in NIR and Raman spectroscopy.

5.5. Bayesian ridge regression

Another regression method recently proposed for multivariate calibration of spectroscopic
methods is Bayesian ridge regression. The method presents similarities with least squares,
and the estimated coefficients tend toward zero in order to avoid collinearity [44].

In a Bayes-RR regression model, higher-level prior Gaussian distributions can be introduced
over α2 and α, and the prediction can be performed by integrating over α2, α, and the regression
parameters w. Since this prior distribution is conjugate to the likelihood function, the predictive
distribution is also Gaussian [72]

p yjα,α2� � ¼
ð
p yjw,α2� �

p wjαð Þdw (15)

The Bayes-RR is a widely used regression technique in machine learning based on the ridge
regression [73], and in the last years its performance for the development of excellent models
for spectroscopic calibration has been proved [72, 74, 75].

5.6. Support vector regression (SVR)

The support vector machines (SVMs) are a set of learning methods mostly used for classifica-
tion that can be used as a regression technique which is called the support vector regression. In
the last years, SVM started to be used in chemometrics for NIR spectra classification and
multivariate calibration. The SVR uses the same principles as the SVM and is based on finding
the hyperplane maximizing the margin between classes. The hyperplane maximizing the
margin is justified by statistical learning theory endowed with a probabilistic test error bound
that is minimized when the margin is maximized. The regression is performed using kernel
functions that transform the data into a higher dimensional feature space to make a linear
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separation possible. The models obtained by SVR are more complex and difficult to interpret
in comparison with those obtained by other regression techniques [44, 76, 77].

5.7. Decision tree regression

Decision tree regression is a type of decision tree algorithm that can be applied to solve regres-
sion problems. Decision trees represent one of the main techniques used for discriminant analy-
sis, classification, and prediction in knowledge discovery. It is widely used because it closely
resembles human reasoning and is easy to understand. The principle is to compute a regression
in a tree structure from breaking down a dataset into smaller and smaller subsets. Recently, some
applications in multivariate calibration of spectroscopic methods have been proposed [44, 77–79].
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separation possible. The models obtained by SVR are more complex and difficult to interpret
in comparison with those obtained by other regression techniques [44, 76, 77].

5.7. Decision tree regression

Decision tree regression is a type of decision tree algorithm that can be applied to solve regres-
sion problems. Decision trees represent one of the main techniques used for discriminant analy-
sis, classification, and prediction in knowledge discovery. It is widely used because it closely
resembles human reasoning and is easy to understand. The principle is to compute a regression
in a tree structure from breaking down a dataset into smaller and smaller subsets. Recently, some
applications in multivariate calibration of spectroscopic methods have been proposed [44, 77–79].
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Abstract

Internal standardization plays a critical role in the performance of a bioanalytical method.
There has been a tremendous increase in the popularity of using liquid chromatography
tandem mass spectrometry (LC-MS/MS) methods for quantitative bioanalysis of protein
molecules. Protein, being too large to be directly analyzed by LC-MS/MS, is proteolyzed
and a characteristic peptide is used as a surrogate analyte for quantification. Internal
standardization in small molecules’ analysis is straightforward, i.e., either a stable labeled
isotope (SIL) form of the analyte or a structural analogue is used. As protein quantification
involves protein digestion to yield peptides, there are more options for internal standard-
ization. Currently, internal standard selection is based on the availability of the internal
standards and the sample preparation workflow. A SIL-form of the analyte protein is the
ideal internal standard. However, its use is limited due to cost and commercial availabil-
ity. Alternatively, a SIL form the surrogate peptide analyte or a cleavable SIL-peptide can
be used as an IS. For preclinical bioanalysis of humanized IgG antibody-based drugs, a
universal SIL analogue protein has been effectively used as an internal standard. This
chapter focuses on internal standardization for the quantitative analysis of proteins, such
as biotherapeutics and biomarkers, using LC-MS/MS.

Keywords: internal standards, protein bioanalysis, LC-MS/MS

1. Introduction

Mass spectrometry, as a quantitative tool, was largely restricted to the evaluation of small
molecules until the 1990s. This was due to the lack of good-soft ionization techniques that are
required for large molecule quantification. The development of soft ionization techniques such
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as electrospray ionization (ESI) and matrix-assisted laser desorption ionization (MALDI) facil-
itated the use of mass spectrometry for analysis of peptides and proteins [1, 2]. At the begin-
ning of the twenty-first century, large molecule quantification was restricted to immunoassays.
The advancements in mass spectrometric instrumentation and better quantification strategies
have resulted in a shift of large molecule analysis from immunoassays to mass spectrometry [1,
2]. In the last decade, several methods have been reported for quantification of protein bio-
markers and protein biotherapeutics. This popularity of LC-MS/MS methods can be attributed
to its inherent selectivity, high dynamic range, shorter development time, and multiplexing
capabilities.

Protein quantification using targeted mass spectrometry-based quantification from biological
matrices is challenging owing to the high molecular mass and high protein background in
biological matrices. Direct LC-MS/MS analysis of an intact protein analyte can be performed
on proteins having molecular weights below 10 kDa. Proteins tend to ionize with multiple
charges during electrospray ionization resulting in a complex spectrum with many precursor
ion peaks corresponding to each charged state. Because of the complex precursor ion spectra,
any single chosen precursor ion signal for quantitation will only represent a very small fraction
of the total ionized analyte signal. This will result in lower signal response and reduce the
sensitivity of the method. The complex ion spectrum also impacts the method specificity due
to the presence of many overlapping signals arising from naturally occurring isotopes. In
addition, larger protein analytes tend to be undergoing inefficient or non-existent collision-
induced dissociation, in turn, impacting targeted mass spectrometric analysis. These chal-
lenges are overcome by enzymatic proteolysis of the analyte protein to yield one or more
characteristic peptide fragments (i.e., signature peptides), which can be used as surrogate
analyte(s) for quantification. In some methods, immunoaffinity enrichment is used for sample
clean particularly for methods requiring detection limits below 100 ng/ml. These enzymatic
digestions and immunoaffinity isolations are a potential source of variation and need to be
controlled.

An internal standard is added to the sample during absolute quantification to compensate for
variability encountered in sample processing and instrumental analysis. For mass spectromet-
ric assays, a stable isotope labeled (SIL)-form of the analyte is an ideal internal standard it
mimics the analyte throughout the method. However, SIL-proteins are difficult to produce
with sufficient purity, and hence substitute internal standards such as SIL-peptides or protein
structural analogues are used. In this chapter, we discuss the commonly used strategies for
protein quantification using appropriate internal standards.

2. Overview of mass spectrometric-based protein quantification

Before we evaluate the different internal standardization options for protein quantification, it is
essential to understand the various sources of variability during protein bioanalysis. Method
variability arises during sample preparation or instrumental analysis. Protein bioanalytical quan-
tification can encompass complex sample preparation steps such as protein analyte enrichment,
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protein analyte proteolysis, and surrogate peptide analyte enrichment. Instrumental analysis
comprises of chromatographic separation and mass spectrometric ionization. This section briefly
summarizes various process encountered in protein quantification by LC-MS/MS.

2.1. Signature peptide selection

Selection of a signature peptide is a critical part of method development for protein
bioanalysis. Peptides containing amino acid residues with potential post-translational modifi-
cation (PTM) sites are usually avoided due to a potential change in peptide mass that would
affect reproducible quantification. However, if the intended purpose is to quantify a post-
translational modification, a tryptic peptide containing the specific PTM is selected [3–5].
Tryptic peptides containing amino acids susceptible to oxidation such as methionine and
tryptophan are avoided as chemical modifications of these molecules can result in a change in
its mass and thus can affect method reproducibility. Usually, tryptic peptides containing
cysteine residues are avoided as they undergo iodoacetamidation. However, methods using
signature peptide containing a cysteine residue have been reported after accounting for any
mass change occurring prior to mass spectrometric detection [6, 7]. Missed cleavages can result
inconsistent production of the signature peptide in turn impacting quantitation. Peptides
containing ragged ends or dibasic ends next to each other (such as in Arg-Arg, Lys-Lys, or
Arg-Lys) should be avoided as they are known to result in missed cleavages [8–10].

2.2. Sample preparation techniques for protein quantification LC-MS/MS

Biological samples, especially plasma and serum, are complex mixtures comprising of pro-
teins, lipids, and salts in addition to the analyte molecule. Biological samples require pre-
treatment such as analyte enrichment or proteolysis prior to protein LC-MS/MS analysis.
Sample preparation depends on the analyte physiochemical properties as well as the required
level of selectivity and sensitivity. For example, proteins having a low molecular weight
(<10 kDa), can be analyzed without proteolysis using protein precipitation and/or solid phase
extraction. High molecular weight proteins (>10 kDa) require proteolysis to yield peptide
fragments compatible for mass spectrometric analysis. These samples may require enrichment
before and/or after proteolysis to achieve required detection limits. Routinely used sample
preparation techniques are described below.

2.2.1. Non-selective protein enrichment techniques

For proteins smaller than 10 kDa, various non-selective protein enrichment techniques can be
employed. Partial protein precipitation, using organic solvents along with surfactants, is used
as a simple sample purification technique to deplete the endogenous plasma proteins. Partial
protein precipitation eliminates larger proteins but leave smaller ones in solution [11–13].
Protein precipitation could have low recovery due to losses as a result co-precipitation, which
would be a drawback. As it is simple but a crude clean-up technique, the resulting extracts are
usually complex containing high concentration of salts and lipids. Matrix effects are commonly
observed with these extracts, which can be a source of variability.
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Solid phase extraction (SPE) is another purification technique that is employed solely or along
with other purification techniques for sample clean up wherein the analyte is a smaller protein
or peptide [12, 14–17]. Several mixed mode SPE cartridges, combining reversed phase station-
ary phase along with strong cation exchange or weak anion exchange, are commercially
available for peptide analysis. These are usually available in 96-well microelution plate format.
Microelution SPE offers many advantages including increased sensitivity due to low elution
volumes, analysis of limited volume samples, significantly cleaner samples compared to
extracts obtained after protein precipitation and higher reproducibility. The low elution vol-
ume avoids the need for sample extract evaporation and reconstitution, which can result in
peptide instability.

2.2.2. Abundant protein depletion

Several commercial kits are available which use immunoaffinity depletion to selectively
remove serum albumin, immunoglobulins, and other high abundant proteins from biological
matrices [18–21]. These kits have shown to reduce protein content by up to 85% [22]. The
enrichment technique is best suited for methods that have multiple protein analytes typically
seen in biomarker research. The high costs of these kits and recovery issues have been the
major drawback of this approach [23, 24]. Abundant protein depletion has been used in several
biomarker quantification methods [23, 25, 26]. Liu et al. showed that isopropanol with 1.0%
trichloroacetic acid was effective in removing 95% of the total albumin in human plasma
samples while retaining 60–100% of the three analyte proteins that were evaluated. The
recovery using this approach was found to be better than commercially available albumin
depletion kits [27].

2.2.3. Immunoaffinity enrichment

Use of immuno (or affinity) capture for isolation of the analyte protein or its signature peptide
is a highly selective enrichment technique. Combing the selectivity of an immunoaffinity
capture with the selectivity of a LC-MS/MS system can allow a 1000-fold enrichment in
comparison to conventional techniques [24]. Although this technique requires specialized
antibodies, it provides sufficient purification to achieve quantification of low abundance pro-
teins from plasma [24, 28–31]. Low recoveries and cross reactivities are some of the issues seen
during immunocapture enrichment [32, 33]. Immunoaffinity isolations may be carried out
with single or multiple antibodies depending on the availability of analyte-specific antibodies
and the desired detection limits. The capture antibodies are immobilized in a 96-well plate or
on to the surface of magnetic beads prior to the immunocapture. This immobilization is
achieved using biotinylated antibodies and streptavidin-coated plates or magnetic beads.
Alternatively, Protein A or G coated supports may be used for immobilizing the antibody
using the Fc region of the antibody. The wide variety of immunocapture techniques can
roughly be categorized into three categories based on the type of capture reagent.

2.2.3.1. Immunocatpture using protein-specific antibodies

The simplest approach is to use monoclonal or polyclonal antibody that is specific to the target
analyte for immunocapture enrichment. Most of the protein biomarkers will have commercially
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available antibodies while biotherapeutic drug molecules have specific antibodies developed
for immuno-purification or screening during early pharmaceutical discovery and development.
Due to the high specificity of this enrichment process, only a SIL-protein internal standard can be
used an internal standard. However, in methods using a capture antibody, that has an epitope
present on or near the signature peptide region of the analyte protein, an external SIL-peptide
can be used as an internal standard [34].

2.2.3.2. Immunocapture using peptide-specific antibodies

Anderson et al. introduced the stable isotope standards with capture by anti-peptide anti-
bodies (SISCAPA) strategy wherein immunocapture enrichment is directed toward a signature
peptide after digestion using anti-peptide antibodies [35]. This technique allows high sensitiv-
ity and precision. However, these signature peptide-specific antibodies may not be commer-
cially available and require inhouse development increasing method development cost and
time. Some methods have employed this type of immunocapture online using specialized
columns containing analyte-specific antibodies [29, 36–38]. This workflow is extensively used
for multiplexed biomarker assays [24, 39]. Methods using dual enrichment, i.e., analyte protein
enrichment and surrogate peptide enrichment post digestion, have also been reported. Multi-
ple enrichment steps require the selection of an appropriate internal standard to compensate
for method variability arising within each enrichment step.

2.2.3.3. Non-antibody capture of antibody-based biotherapeutic drugs

The majority of the biotherapeutic drugs are monoclonal antibodies or antibody-based mole-
cules such as antibody drug conjugates. Antibodies have a constant tail region also known as
the fragment crystallizable region (Fc region) and a variable region also referred to as antigen-
binding region (Fab) region. The Fab region contains the complementarity determining region.
Antibody-based drugs can be isolated using Protein A or G coated supports to bind to the Fc.
This technique requires minimum time and resources for development and can achieve high
throughput with adequate sensitivity. If additional selectivity is required, anti-Fc antibodies
may be used depending on the analyte and the biological matrix. This technique is useful for
the quantitation of humanized biotherapeutic drugs in animal models. Quantitation of human-
ized biotherapeutic drugs in human biological matrices requires the use of anti-idiotypic
antibodies as capture agents to achieve significant detection limits. In some methods, the target
antigen is used as a binding agent for the selective capture. Dubios et al. described an
immunoaffinity coupled LC-MS/MS method wherein the analyte Cetuximab was isolated
using its target antigen (soluble epidermal growth factor) as a capture reagent [40].

2.2.4. Enzymatic proteolysis

Most protein quantitative LC-MS/MS methods involve enzymatic digestion of the proteins to
yield smaller peptides which can be easily quantified by commercially available quantitative
mass spectrometers. A typical protein digestion procedure involves denaturation, reduction,
and alkylation followed by proteolysis. Denaturation is carried out to unfold the protein so
that it can be easily accessible to the proteolytic enzyme. Urea is the most commonly used for
denaturation during protein quantification. Alternatively, denaturation has been achieved using
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Solid phase extraction (SPE) is another purification technique that is employed solely or along
with other purification techniques for sample clean up wherein the analyte is a smaller protein
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on to the surface of magnetic beads prior to the immunocapture. This immobilization is
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using the Fc region of the antibody. The wide variety of immunocapture techniques can
roughly be categorized into three categories based on the type of capture reagent.

2.2.3.1. Immunocatpture using protein-specific antibodies

The simplest approach is to use monoclonal or polyclonal antibody that is specific to the target
analyte for immunocapture enrichment. Most of the protein biomarkers will have commercially
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available antibodies while biotherapeutic drug molecules have specific antibodies developed
for immuno-purification or screening during early pharmaceutical discovery and development.
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antigen is used as a binding agent for the selective capture. Dubios et al. described an
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other chaotropic agents such as guanidine HCl, surfactants such as sodium deoxycholate,
organic solvents such as methanol and heat (95�C) [13, 17, 26, 41, 42]. RapiGest SF, an acid-
labile surfactant, is a Waters proprietary product that has gained high popularity for protein
bioanalysis due to its compatibility with mass spectrometric detectors. This detergent is easily
precipitated out by lowering the pH during the termination step of the enzymatic digestions.
Reduction of the protein is carried out using dithiothreitol or TCEP (tris(2-carboxyethyl)phos-
phine) to break the disulfide linkages between cysteine residues. The resulting free thiol
groups are then derivatized using an alkylating agent such as iodoacetamide or iodoacetic
acid in order to prevent reformation of disulfide linkages.

Trypsin is the most commonly used enzyme for protein digestions primarily as tryptic pep-
tides have a c-terminal basic residue that favors ionization. In addition, average tryptic pep-
tides have lengths suitable for detection on commonly used quantitative mass spectrometers.
However, other enzymes such Lys-C, Arg-C, pepsin, chymotrypsin have been used when a
specific cleavage is required [43–46]. To improve digestion efficiency, different approaches
have been illustrated including high temperature, microwave-assisted digestion, and use of
organic solvents [31, 47].

The “pellet digestion” method is a simplified method in which the proteins are precipitated
using an organic solvent like acetonitrile to form a pellet and the supernatant containing
interfering molecules such as phospholipids are discarded. This method provides an easy,
efficient way of performing a fast clean-up and has resulted in improved digestion efficiency
in comparison to direct digestions [48–51].

2.3. Chromatographic separation

Liquid chromatography is used for separation of the protein or peptide mixture prior to mass
spectrometric detection. For most peptide and protein analytes, reversed-phase column chem-
istry, typically C18 columns, allows separation of structurally and chemically similar mole-
cules using mobile phases that are compatible with ESI. Hydrophilic interaction liquid
chromatography (HILIC) has also been used to separate hydrophilic peptides. The mechanism
of separation for small molecules is based on partitioning between the mobile and stationary
phases. However, proteins and large peptides are not able to fully penetrate the pores and
instead adsorb to the surface, and are desorbed at a critical concentration of organic solvent.
Columns with larger pore stationary phases (�300 Å) allow improved penetration of larger
molecules as well as the use of higher flow rates with reduced band broadening, and therefore
provide greater selectivity for some peptides and proteins.

Two-dimensional chromatographic separations, such as ion-exchange chromatography (IEC)-
RPLC or RPLC-HILIC, have been utilized to fractionate and clean up samples, thus improving
sensitivity of detection [16, 24, 46, 52, 53]. Additionally, many reported methods have used
column trapping prior to analytical separation. The trap column retains the analytes and
removes salts and other highly hydrophilic peptides [25, 28–31, 39, 54]. Some methods have
used columns with antibodies for online immunoaffinity LC has been reported to achieve
exceptional selectivity with minimal sample clean-up [31, 37, 38].
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2.4. Mass spectrometric detection

Triple quadrupole (QQQ) and Quadrapole Ion Trap (QTrap) using the multiple reaction mon-
itoring (MRM) mode are the most widely used mass analyzers for protein quantification.
Proteins and peptides under electrospray conditions generally ionize to several charge states.
For smaller peptides and proteins, [M + 2H]2+ is usually the most abundant species, however,
for larger molecules, [M + 3H]3+, [M + 4H]4+, and so on may also form, distributing the signal
over several charge states and reducing the achievable limits of quantification. It is essential
that the charge distribution across multiple samples is reproducible or will introduce method
variability.

MRM mode allows measurement of multiple transitions and can be used for quantification of
multiple analytes. Besides the signature peptide used for quantitative evaluation, additional
characteristic peptides maybe monitored as monitoring peptides or qualitative peptides. Based
on their location in the protein amino acid sequence, these monitoring peptides can provide
valuable insights about the integrity of the analyte protein.

Mass spectrometric detection using electrospray ionization is highly susceptible to matrix
effects. Samples with elevated concentrations of phospholipids, such as glycerophospho-
cholines and lysophosphatidylcholines, exhibit increase in ionization suppression when com-
pared to normal plasma [55]. Lipid-related interference is generally not an issue with
immunocapture-based methods, but it can be source of concern with methods that use non-
selective isolations such as partial protein precipitation.

3. Internal standardization for protein bioanalytical methods

Internal standards need to track the analyte during all stages of sample analysis that includes
sample preparation, chromatographic separation, and detection. Immunoaffinity capture, enzy-
matic proteolysis, and mass spectrometric ionization are the three major steps that are suscepti-
ble to variability during protein bioanalysis by LC-MS/MS. The internal standard may be added
at different step(s) of the extraction process depending on the availability of the internal stan-
dards and the sample extraction workflow. Figure 1 describes various commonly used
workflows for protein quantification and the internal standard (IS) options. Protein internal
standards are added prior to analyte protein enrichment. Protein analyte enrichment can be
immunoaffinity isolations or a non-selective process such as partial protein precipitation, SPE,
and abundant protein removal. Smaller proteins can be directly analyzed after protein analyte
enrichment. Larger proteins are proteolyzed to yield signature peptide(s) that can be used as
surrogate analytes. Peptide internal standards when added prior to enzymatic proteolysis can
only track peptide instability and volume recovery during the proteolytic process as we well
mass spectrometric ionization during analysis. Additionally, cleavable internal standard pep-
tides may be able to track the digestion variability when added prior to proteolytic incubations.
Methods requiring low detection limits utilize peptide enrichment post enzymatic proteolysis.
SIL-peptides are required to track immunoaffinity-based peptide enrichment processes. Cur-
rently used internal standards for protein bioanalysis are described below.
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ble to variability during protein bioanalysis by LC-MS/MS. The internal standard may be added
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3.1. Protein internal standards

3.1.1. Stable isotope labeled protein internal standard

A stable isotope labeled (SIL) form of the analyte protein is the most ideal IS for absolute
quantification of proteins. As the analyte protein and SIL-protein internal standards have the
same physiochemical behavior, this IS will be able to track the analyte protein throughout the
entire analytical procedure. SIL-proteins are added at the start of the sample extraction and can
account for immunoaffinity isolation(s), enzymatic digestion, pre-analytical treatments as well
as the mass spectrometric ionization.

The EMA guidelines recommend the use of a SIL-protein IS whenever possible for LC-MS/MS
methods. However, a major restriction in the use of SIL-proteins as internal standards for protein
quantification is their commercial unavailability or the high cost of production. The complex
structure consisting of specific intramolecular folding of amino acid chains as well as intramo-
lecular di-sulfide linkages and presence of post translational modifications makes it difficult to
synthesize these proteins in a reproducible manner. If the analyte protein is small, a SIL form of
the protein can be chemically synthesized using solid-phase synthesis [16, 56]. However, for most
protein analytes, the production of its isotopic labeled form requires a cellular environment. Two
methods are described below for the generation of isotopically labeled proteins: metabolic
labeling using whole cells and the cell-free approach using cell lysates.

3.1.1.1. Cell culture production

All cell-based labeling approaches rely on the metabolic conversion of labeled precursors into a
protein. The labeled precursors used in cell-based systems may be amino acids or they may be

Figure 1. Internal standardization strategies for different LC-MS/MS protein quantification workflows.
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more fundamental precursors which serve as carbon or nitrogen sources for the synthesis of
amino acids prior to their incorporation into protein.

SILAC is a popular technique for production of SIL-proteins by incorporation of SIL-amino
acids into the target protein. This technique is popularly known as stable isotope labeling by
amino acids in cell culture (SILAC) [57] or stable isotope labeling with amino acids (SILAA)
[58]. SILAC is a straightforward procedure in which essential amino acids are left out of
culture media and replaced by deuterated, carbon-13, and/or nitrogen-15 labeled variants of
these amino acids. After multiple cell duplication cycles, these SIL amino acids get incorpo-
rated in the entire proteome. Heavy labeled variants of lysine and arginine that provide ample
spacing between isotopic envelopes of light and heavy tryptic peptides (e.g., 10 Da using 13C6
15N4-Arg and 8 Da using 13C6

15N2-Lys) are the most commonly used amino acids for produc-
tion of SIL-proteins using SILAC. Arginine and lysine on an average they occur at every tenth
position in a protein sequence. Trypsin, the major proteolytic enzyme used in protein quanti-
fication assays, cleaves at lysine and arginine ensuring that at least one of the labeled amino is
present on each tryptic peptide.

Cell culture production is highly useful for generating SIL-labeled proteins for biothereapeutics.
Biotherapeutics are produced by genetically modified cell lines, yeast or bacteria. To obtain a
SIL-protein, the cells producing the biotherapeutic protein are grown in a medium containing
labeled precursors for the desired protein. The stable isotope labeled amino acids gets incorpo-
rated in the proteins, thus resulting in production of a SIL-protein. These SIL-proteins are then
purified and can be used as internal standards.

The cell culture method is an easy process of producing labeled proteins, but requires a cell
culture equipment and a sterile laboratory. A major disadvantage is that in cell culture other
endogenous proteins will be simultaneously produced having the incorporated label, and
hence a more elaborate purification is required. Also, incomplete labeling can occur when the
pools of labeled amino acids are diluted with amino acids newly synthesized by the cell.

3.1.1.2. Cell-free production

SIL-proteins can also be made by in vitro protein synthesis in a cell free system [59]. Cell-free
translation systems are largely supernatants obtained by centrifugation of the crude lysate of
either E. coli, wheat germ, or rabbit reticulocytes at 30,000 g. The cell lysate supernatants, also
referred to as S30 fraction, contain the cell’s protein synthetic machinery consisting of ribo-
somes, translation factors, aminoacyl-tRNA synthetases, and tRNAs.

Cell-free systems can be operated in three different modes: batch mode, continuous flow cell-
free (CFCF) mode, and CECF mode. In batch mode, the reaction is carried out in a tube to
which all components of the reaction are added. It is easy to step-up and can be useful for fast
and easy production of small amounts of protein. Its disadvantage is it is a closed system and
hence has limited capacity.

The CFCF mode is an open system which requires the continuous supply of fresh substrates
and removal of by-products by a continuous flow of a feeding solution into a reaction chamber.
The CFCF mode was first developed by Spirin and co-workers [60]. The total volume of the
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more fundamental precursors which serve as carbon or nitrogen sources for the synthesis of
amino acids prior to their incorporation into protein.

SILAC is a popular technique for production of SIL-proteins by incorporation of SIL-amino
acids into the target protein. This technique is popularly known as stable isotope labeling by
amino acids in cell culture (SILAC) [57] or stable isotope labeling with amino acids (SILAA)
[58]. SILAC is a straightforward procedure in which essential amino acids are left out of
culture media and replaced by deuterated, carbon-13, and/or nitrogen-15 labeled variants of
these amino acids. After multiple cell duplication cycles, these SIL amino acids get incorpo-
rated in the entire proteome. Heavy labeled variants of lysine and arginine that provide ample
spacing between isotopic envelopes of light and heavy tryptic peptides (e.g., 10 Da using 13C6
15N4-Arg and 8 Da using 13C6

15N2-Lys) are the most commonly used amino acids for produc-
tion of SIL-proteins using SILAC. Arginine and lysine on an average they occur at every tenth
position in a protein sequence. Trypsin, the major proteolytic enzyme used in protein quanti-
fication assays, cleaves at lysine and arginine ensuring that at least one of the labeled amino is
present on each tryptic peptide.

Cell culture production is highly useful for generating SIL-labeled proteins for biothereapeutics.
Biotherapeutics are produced by genetically modified cell lines, yeast or bacteria. To obtain a
SIL-protein, the cells producing the biotherapeutic protein are grown in a medium containing
labeled precursors for the desired protein. The stable isotope labeled amino acids gets incorpo-
rated in the proteins, thus resulting in production of a SIL-protein. These SIL-proteins are then
purified and can be used as internal standards.

The cell culture method is an easy process of producing labeled proteins, but requires a cell
culture equipment and a sterile laboratory. A major disadvantage is that in cell culture other
endogenous proteins will be simultaneously produced having the incorporated label, and
hence a more elaborate purification is required. Also, incomplete labeling can occur when the
pools of labeled amino acids are diluted with amino acids newly synthesized by the cell.

3.1.1.2. Cell-free production

SIL-proteins can also be made by in vitro protein synthesis in a cell free system [59]. Cell-free
translation systems are largely supernatants obtained by centrifugation of the crude lysate of
either E. coli, wheat germ, or rabbit reticulocytes at 30,000 g. The cell lysate supernatants, also
referred to as S30 fraction, contain the cell’s protein synthetic machinery consisting of ribo-
somes, translation factors, aminoacyl-tRNA synthetases, and tRNAs.

Cell-free systems can be operated in three different modes: batch mode, continuous flow cell-
free (CFCF) mode, and CECF mode. In batch mode, the reaction is carried out in a tube to
which all components of the reaction are added. It is easy to step-up and can be useful for fast
and easy production of small amounts of protein. Its disadvantage is it is a closed system and
hence has limited capacity.

The CFCF mode is an open system which requires the continuous supply of fresh substrates
and removal of by-products by a continuous flow of a feeding solution into a reaction chamber.
The CFCF mode was first developed by Spirin and co-workers [60]. The total volume of the
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reaction is maintained constant by having the volume flowing out of the chamber equal to the
volume flowing in. This system can be used for continuous production of labeled proteins.

The CECF mode is an open system with two chambers separated by a semi-permeable mem-
brane. The first chamber is the feeding chamber and contains the substrates and the energy
system. The second chamber is the reaction chamber and contains the enzymes and DNA. The
substrates permeate through the semipermeable membrane and are converted to proteins in
the reaction chamber. This can be easily set-up using a simple dialysis bag as the reaction
chamber. The bag can be immersed in a feeding solution inside of a tube larger than the
dialysis bag creating a simple two-chamber device.

3.1.2. Derivatized protein internal standard

Derivatization allows one to easily generate a protein internal standard that is physiochemically
like the analyte protein. Winther et al. reported an LC-MS/MS method for quantification of pro-
gastrin-releasing peptide (ProGRP), a small cell lung cancer biomarker, in human serum using an
acetylated form of the protein as an internal standard [30]. The IS was made in-house by specific
acetylation of the lysine side chains in ProGRP (31–98) by using N-hydroxysuccinimide-based
ester acetic acid N-hydroxysuccinimide (AA-NHS) as the acetylating reactant. The acetylated
ProGRP (31–98) signature peptide NLLGLIEAK gets converted to NLLGLIEAKacENR, which
was used as a peptide internal standard. The extraction procedure involved protein precipitation
with acetonitrile followed by pellet digestion with trypsin prior to analysis.

This acetylated ProGRP internal standard mimicked the analyte ProGRP through extraction
steps including tryptic digestion and hence compensated for any variations during extraction.
However, acetylation of the IS-peptide, results in chromatographic differences between the
signature peptide and IS-peptide. Differences in retention time can result differences in ioniza-
tion due to co-eluting matrix interferences. The derivatization also caused ionization differ-
ences in the precursor ion charge states. NLLGLIEAK had +2 as the most dominant charge
state while NLLGLIEAKacENR had +3 as the most dominant charge state of the precursor ion.
The addition of IS to the samples improved the coefficient for both the linear and the polyno-
mial calibration curve and the intra- and inter-day accuracy. However, the high intra-day
precision values (%CV of 12–25.2%) displayed some unaccounted variability in turn
questioning the performance of the internal standard in this method. An important consider-
ation while using derivatized internal standards is to ensure that impurities of underivatized
analyte protein or derivatizing reagent are not present in the purified internal standard.

3.1.3. Universal stable isotope label protein internal standard for quantification of antibody-based
biotherapeutics in non-human matrix

Drug development involves bioanalytical testing in non-human species. During bioanalysis of
humanized IgG antibody based biotherapeutics in animals, selected peptides from the con-
stant region (Fc) of the antibody can be used as signature peptides. These peptides will be
present in the humanized immunoglobulin (IgG)-based biotherapeutic drugs, but will not be
present in antibodies found in the animal biological fluids. In methods using signature pep-
tides obtained from the constant region, a stable labeled analogue monoclonal antibody (mAb)
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can be used as an internal standard. SILu™Mab internal standard is a commercially available
stable labeled IgG1 monoclonal antibody and has been metabolically labeled with 13C6

15N4–
Arginine and 13C6

15N2-Lysine was expressed in CHO cells. SILu™Mab is used as a universal
internal standard in quantitation of humanized biotherapeutics in non-human biological
matrices. Table 1 lists out the various characteristic SIL-peptides that can be generated after
proteolysis of SILu™Mab with trypsin.

The universal applicability of SILu™Mab is exemplified in an immunoaffinity coupled LC-MS/
MS method reported by Kaur et al. [61]. A generic method was developed for mAb-1 and its
universal applicability was demonstrated with the additional six mAbs. SILu™Mab was used
as the common internal standard in all seven methods. The extraction involved immunoaffinity
enrichment followed by tryptic digestion. For three mAbs, the immunoaffinity capture was
carried out using anti-human Fc antibody attached to magnetic beads. This immunoaffinity
capture allows selective binding to a humanized mAb in nonclinical matrices. Alternatively, for
remaining four mAbs, the affinity enrichment was performed using a less selective reagent,
Protein A/G. After immunocapture, the analyte and IS bound to the magnetic beads were
denatured, reduced, and alkylated. The isolated analyte mAb and IS were digested with trypsin
prior to LC-MS/MS analysis. The method for mAb-1 in cynomolgus serum was found to have a
linear response over the nominal concentration range of 0.100 to 25.0 μg/ml with high precision
(%CV < 3%) and good accuracy (%DFN � 9%). The high precision and accuracy of the method
validates the effectiveness of the internal standard to compensate for any variability during
extraction and analysis. The method performance was evaluated with additional six mAb as
well as in rat and mouse sera. All the assays showed good precision (%CV < 20%) and accuracy
(%DFN � 20%).

The generic method, using a universal internal standard that tracks the analyte throughout
extraction and instrumental analysis, circumvents the method development challenges for
biotherapeutic mAbs. This internal standard use is restricted to non-human biological matrices.
In human matrices, the signature peptide will lose its selectivity due to the presence of high
concentrations of endogenous mAbs.

Universal SIL-peptide Antibody isotype Peptide location

DTLMISR* IgG1, IgG2, IgG3, IgG4 Heavy chain

FNWYVDGVEVHNAK* IgG1 Heavy chain

VVSVLTVLHQDWLNGK IgG1, IgG3, IgG4 Heavy chain

NQVSLTCLVK* IgG1, IgG2, IgG3, IgG4 Heavy chain

GFYPSDIAVEWESNGQPENNYK* IgG1, IgG4 Heavy chain

AGVETTTPSK* IgG1, IgG2, IgG3, IgG4 Light chain (Lamda)

YAASSYLSLTPEQWK* IgG1, IgG2, IgG3, IgG4 Light chain (Lamda)

*Stable isotope labeled amino acid (13C6
15N4–Arginine or 13C6

15N2–Lysine).

Table 1. Tryptic SIL-peptides of SILu™Mab.
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precision values (%CV of 12–25.2%) displayed some unaccounted variability in turn
questioning the performance of the internal standard in this method. An important consider-
ation while using derivatized internal standards is to ensure that impurities of underivatized
analyte protein or derivatizing reagent are not present in the purified internal standard.

3.1.3. Universal stable isotope label protein internal standard for quantification of antibody-based
biotherapeutics in non-human matrix

Drug development involves bioanalytical testing in non-human species. During bioanalysis of
humanized IgG antibody based biotherapeutics in animals, selected peptides from the con-
stant region (Fc) of the antibody can be used as signature peptides. These peptides will be
present in the humanized immunoglobulin (IgG)-based biotherapeutic drugs, but will not be
present in antibodies found in the animal biological fluids. In methods using signature pep-
tides obtained from the constant region, a stable labeled analogue monoclonal antibody (mAb)
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proteolysis of SILu™Mab with trypsin.

The universal applicability of SILu™Mab is exemplified in an immunoaffinity coupled LC-MS/
MS method reported by Kaur et al. [61]. A generic method was developed for mAb-1 and its
universal applicability was demonstrated with the additional six mAbs. SILu™Mab was used
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denatured, reduced, and alkylated. The isolated analyte mAb and IS were digested with trypsin
prior to LC-MS/MS analysis. The method for mAb-1 in cynomolgus serum was found to have a
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validates the effectiveness of the internal standard to compensate for any variability during
extraction and analysis. The method performance was evaluated with additional six mAb as
well as in rat and mouse sera. All the assays showed good precision (%CV < 20%) and accuracy
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extraction and instrumental analysis, circumvents the method development challenges for
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3.1.4. Analogue proteins as internal standards

A structural protein analogue can also be used as an internal standard. This internal standard is
the least favorable as it may not truly mimic the protein analyte during proteolysis or the
signature peptide during mass spectrometric ionization. The advantage of using an analogue
protein is ease of availability and low cost. As it accounts for volume loses, it can be an appro-
priate IS for methods that involve simple sample preparation such as partial protein precipita-
tion. An unlabeled analogue protein is chosen based on the similarities in physiochemical
properties, such as size, hydrophobicity, and isoelectric point, with the analyte protein and its
surrogate peptides obtained after proteolysis. Some methods have been reported wherein the
chosen internal standard was able to track the analyte efficiently throughout the method.

Halquist et al. reported an LC-MS/MS method for quantification of Alefacept, a therapeutic
protein for treatment of psoriasis, in human plasma using horse heart myoglobin a protein
analogue internal standard [11]. The method used partial protein precipitation to selectively
precipitate background proteins while retaining the analyte protein and the internal standard
protein in solution. The isolated proteins were proteolyzed using trypsin. A 20-h-incubation
was chosen for proteolysis to ensure least digestion variability for both proteins. The signature
peptides from analyte and IS were then separated using reversed phase chromatography and
detected using tandem mass spectrometry with electrospray ionization. The chromatographic
gradient conditions were adjusted to ensure the surrogate analyte peptide and the IS-peptide
had the same retention time. This enabled the IS-peptide to compensate for any matrix effects
during ionization.

3.2. Peptide internal standards

3.2.1. Stable isotope labeled peptide internal standard

When a SIL-protein is unavailable for use as an internal standard, a stable isotope labeled form
of the signature peptide can be used. A SIL form of the signature peptide (SIL-peptide) is the
most commonly used internal standard during protein quantification. SIL-IS peptides are
variants of the signature peptides having one or more stable isotope labeled amino acids.
Stable isotope labeled amino acids are obtained by substitution of certain atoms (N,C,H) with
their heavy variants. The most frequently used stable isotopes are 13C (carbon-13), 15N (nitro-
gen-15), and 2H (deuterium). A SIL-peptide can be created by using solid-phase peptide
synthesis [56, 62]. Due to the widespread use of SIL-peptides for protein bioanalysis, several
laboratories provide commercial services for production of customized SIL-peptides at reason-
able prices.

SIL-peptides are physiochemically identical to the signature peptide but can be easily distin-
guished on a mass spectrometer due to the mass shift from the heavier isotopes. A minimum
mass difference of at least 6 Da between SIL-peptides and the signature peptide is
recommended. This will ensure an adequate resolution between the mass of SIL-peptide and
signature peptide even for peptides having a dominant charge state of +2. SIL peptides can
effectively compensate for extraction recovery, peptide instability and LC-MS/MS variability.
However, unlike a SIL-protein it does not track immunoaffinity and proteolytic digestion
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steps. The major advantage of using a SIL-peptide is that these can be synthetized at relatively
low cost.

A SIL-peptide internal standard can be added before and after proteolysis. However, if the
signature peptide is suspected to undergo degradation, it is recommended to add the SIL-
peptide prior to digestion. Also, if a recombinant form of the protein is not available, protein
concentrations are calculated stoichiometrically, solely based on the known molar concentra-
tion of the SIL-peptide used. In such instances, the internal standard is added post digestion to
obtain reproducible peptide quantification [24, 63].

3.2.2. Extended stable isotope labeled peptide internal standard

Variation in digestion efficiency can be accounted for with the use of an extended SIL-peptide
which has cleavable groups flanking either side of side of a SIL-peptide [29, 64, 65]. Generally,
the cleavable groups consist of three to six amino acids residues from the original protein
sequence at both the N- and C- terminus [29, 65, 66]. The addition of an extended SIL-peptide
IS prior to digestion provides a more cost-effective alternative to compensate for variability in
digestion efficiency, peptide stability, volume recovery, and mass spectrometric ionization.

Barnindge et al. were first to report the comparison between SIL-peptide/non-cleavable pep-
tide (NCP) and a dual cleavable peptide (DCP) or “extended SIL-peptide” as internal stan-
dards to track protein digestions [64]. They synthesized two peptides each containing a
signature peptide sequence from amino acids 318 to 323 in human serum albumin (HSA). The
non-cleavable peptide (NCP) was labeled with a stable isotope labeled alanine residue, i.e.,
NYA*EAK, whereas the other peptide had two tryptic cleavage sites and two stable isotope
labeled alanine residues, i.e., DVAK-NYA*EA*K-DVFLG. Different concentrations of HSA
were digested along with equimolar concentrations of NCP and DCP. Prior to digestion the
samples were reduced for 30 min at 30�C using 10 mM dithiothreitol (DTT) followed by
alkylation using a concentration of 30 mM iodoacetamide (IAA) with the reaction going to
completion in the dark at room temperature for 30 min. Each sample was then digested with
trypsin for 12 h at 30�C in a shaking water bath using an enzyme-to-substrate ratio of 1:10. The
reaction is terminated after 12 h with trifluoroacetic acid. The samples were analyzed using
LC-MS/MS. The results showed that a cleavable internal standard peptide could give similar
results to a non-cleavable internal standard peptide. Timed digest experiments showed that
the digestion rates for dual cleavable peptide and analyte protein, i.e., HSA were different with
the DCP proteolysis coming to completion faster (approximately 1 min) than HSA (approxi-
mately 20 min). From these results, they concluded that although an internal standard with a
cleavage site provides understanding of the digestion process, a SIL-peptide truly cannot
replicate the proteolysis conditions experienced by the analyte protein.

In another study, Faria et al. compared the performance of a SIL-peptide and extended SIL-
peptide as internal standards for quantification of human osteopontin [67]. Digestion studies
showed that the signature peptide production had a biphasic pattern. This pattern was attrib-
uted to the degradation of the signature peptide during digestion with trypsin due to
suspected chymotrypsin-like activity. The digestion profile of the protein analyte had three
phases, i.e., the “formation phase,” the “transition phase,” and the “degradation phase.” The
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of the signature peptide can be used. A SIL form of the signature peptide (SIL-peptide) is the
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variants of the signature peptides having one or more stable isotope labeled amino acids.
Stable isotope labeled amino acids are obtained by substitution of certain atoms (N,C,H) with
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laboratories provide commercial services for production of customized SIL-peptides at reason-
able prices.

SIL-peptides are physiochemically identical to the signature peptide but can be easily distin-
guished on a mass spectrometer due to the mass shift from the heavier isotopes. A minimum
mass difference of at least 6 Da between SIL-peptides and the signature peptide is
recommended. This will ensure an adequate resolution between the mass of SIL-peptide and
signature peptide even for peptides having a dominant charge state of +2. SIL peptides can
effectively compensate for extraction recovery, peptide instability and LC-MS/MS variability.
However, unlike a SIL-protein it does not track immunoaffinity and proteolytic digestion
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samples were reduced for 30 min at 30�C using 10 mM dithiothreitol (DTT) followed by
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trypsin for 12 h at 30�C in a shaking water bath using an enzyme-to-substrate ratio of 1:10. The
reaction is terminated after 12 h with trifluoroacetic acid. The samples were analyzed using
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results to a non-cleavable internal standard peptide. Timed digest experiments showed that
the digestion rates for dual cleavable peptide and analyte protein, i.e., HSA were different with
the DCP proteolysis coming to completion faster (approximately 1 min) than HSA (approxi-
mately 20 min). From these results, they concluded that although an internal standard with a
cleavage site provides understanding of the digestion process, a SIL-peptide truly cannot
replicate the proteolysis conditions experienced by the analyte protein.
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uted to the degradation of the signature peptide during digestion with trypsin due to
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formation phase was between 0 and 5 h which was dominant in the formation of signature
peptide. The transition phase was between 5 and 10 h where signature peptide formation and
degradation processes occur at similar rates. The degradation phase was beyond 10 h in which
the degradation of the signature peptide was the most dominant phenomenon. In order to
track the analyte protein digestion profile, a SIL-peptide IS and extended SIL-peptide IS were
added. From Figure 2, we can see that the recombinant protein and the extended SIL-peptide
internal standard had similar digestion profiles as they both undergo formation and degrada-
tion. SIL-peptide only undergoes degradation and hence only mimics the analyte protein
digestion profile during the degradation phase. Validation studies showed that under con-
trolled conditions and long digestion time there was no significant difference in precision
when either of the internal standards was used for quantification. However, when trypsin
activity was forcibly varied, the extended SIL peptide had higher precision. This difference
was more pronounced when digestion was carried out at shorter time intervals.

3.3. Comparison of protein SIL-IS versus peptides IS

Li et al. evaluated the use of SIL-protein, SIL-peptide, and extended SIL-peptide as internal
standard for quantification of monoclonal antibodies in preclinical biological matrix by LC-MS/
MS [68]. The evaluation was carried out with four mAbs of the same IgG2 isotype as the SIL-IS:
αDA-G2, (KLH)-120.6-G2 (αK-G2), 827-435-G2 (827-G2), and anti-DNP-3B1-G2 (αDB-G2). In
addition, the test was extended to four more mAbs of a different isotype IgG1: anti-DNP-
3A4-F-G1 (αDAG1), anti-KLH-120.6-G1 (αK-G1), 655-341-G1 (655-G1), and anti-DNP-3B1-G1
(αDB-G1). Stable isotope labeled human antidinitrophenol (DNP) IgG2 mAb was used as the IS
as it is unlikely to be present endogenously in preclinical species. The whole molecule SIL-IS of
clone anti-DNP-3A4-F-G2 (αDA-G2) was produced in cell culture, purified, and characterized

Figure 2. Comparison of digestion profiles of recombinant OPN along with internal standards, i.e., SIL-peptide and
extended SIL-peptide. Reprinted from [67]. Copyright (2015) with permission from Elsevier.
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prior to use. Synthetic IS peptides with stable isotopic labeled antikeyhole limpet hemocyanin
leucine (L*), NQVSL*TCL*VK and REEMTKNQVSL*TCL*VKGFYPSD (six flanking amino
acids), were commercially obtained and used as SIL-IS peptide and extended SIL-IS peptide,
respectively. The evaluation was carried out in rat plasma and cynomolgus monkey serum.

SIL-protein IS was added to each sample prior to extraction. The analyte mAb and SIL-protein
mAb were immunocaptured using an antihuman crystallizable fragment (anti-Fc) that recog-
nizes human mAb biotherapeutics but not the endogenous immunoglobulins in the preclinical
sample. After immunocapture, the analytes were eluted with 200 μL of 50% MeOH and 3%
formic acid in water. Samples with IS-peptides were spiked either with SIL-peptide or
extended SIL-peptide. The eluate was evaporated to dryness. SIL-peptide and extended SIL-
peptide were added to samples with IS-peptides. The samples were reconstituted for reduction
and alkylation. The samples were then digested with trypsin. After termination of the proteo-
lytic reaction, the extracts were analyzed using LC-MS/MS.

For the comparison experiment, three sets of QCs each from αDA-G2, αDA-G1, or αK-G2 were
analyzed in three replicates along with the three internal standards. The results can be seen in
Figure 3. Overall, all three mAb were quantified accurately (Bias within �20%) and precisely
(%CV within 20%) using the SIL-protein IS. For the extended peptide SIL-IS, the αDA-G2 QCs
were also well within �20%. The mid and high QC values of the αDA-G1 were near the �20%
threshold but not the LQC or the QCs of the αK-G2. For the peptide SIL-IS, the QC values of
αDA-G2 were marginally acceptable, with higher variability and imprecision for αDA-G1 and
the worst results for αK-G2. In addition, the whole molecule IS peak response within the runs
was more precise (15.5% CV) than those of the extended SIL-peptide IS (28.1% CV) or the
peptide IS (27.7% CV), N = 32. From this data, we can be seen that the whole Ab IS can
effectively compensate for any variability during extraction and LC-MS/MS analysis. If the
immunocapture and digestion steps were optimized to have high reproducibility, then the
synthetic peptide ISs may be adequate for quantification.

In another study, Bronsema et al. evaluated different internal standardization strategies for
quantification of a small protein, salmon calcitonin, which could be analyzed both with and
without and digestion [69]. Salmon calcitonin comprises of 32 amino acid and has a molecular
weight of 3431.9 Da. Eight internal standardization approaches were compared with respect to
accuracy and precision in work flows with and without digestion. Both analogue IS standard
proteins (eel and human calcitonin), SIL-salmon calcitonin, SIL-salmon calcitonin signature
peptide [1–11], and the cleavable SIL-salmon calcitonin peptide [1–11] were commercially
obtained. 18O-labeled form of the signature peptide was synthesized in-house by isotope
exchange with18 O-labeled water.

The samples were extracted using three different workflows. In work flow A, the samples were
extracted using only SPE prior to LC-MS/MS analysis. In workflow B, the samples were either
extracted using SPE and the extracts were digested with trypsin prior to analysis. In workflow
C, the samples were enriched using SPE, digested with trypsin and then derivatized prior to
analysis. Derivatization was performed with a solution containing 10% of deuterated or
unlabeled formaldehyde and 10% pyridine-borane complex in methanol. Waters Oasis MCX
SPE cartridges were used post derivatization the clean-up prior to LC-MS/MS analysis in work
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formation phase was between 0 and 5 h which was dominant in the formation of signature
peptide. The transition phase was between 5 and 10 h where signature peptide formation and
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added. From Figure 2, we can see that the recombinant protein and the extended SIL-peptide
internal standard had similar digestion profiles as they both undergo formation and degrada-
tion. SIL-peptide only undergoes degradation and hence only mimics the analyte protein
digestion profile during the degradation phase. Validation studies showed that under con-
trolled conditions and long digestion time there was no significant difference in precision
when either of the internal standards was used for quantification. However, when trypsin
activity was forcibly varied, the extended SIL peptide had higher precision. This difference
was more pronounced when digestion was carried out at shorter time intervals.

3.3. Comparison of protein SIL-IS versus peptides IS

Li et al. evaluated the use of SIL-protein, SIL-peptide, and extended SIL-peptide as internal
standard for quantification of monoclonal antibodies in preclinical biological matrix by LC-MS/
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as it is unlikely to be present endogenously in preclinical species. The whole molecule SIL-IS of
clone anti-DNP-3A4-F-G2 (αDA-G2) was produced in cell culture, purified, and characterized

Figure 2. Comparison of digestion profiles of recombinant OPN along with internal standards, i.e., SIL-peptide and
extended SIL-peptide. Reprinted from [67]. Copyright (2015) with permission from Elsevier.
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prior to use. Synthetic IS peptides with stable isotopic labeled antikeyhole limpet hemocyanin
leucine (L*), NQVSL*TCL*VK and REEMTKNQVSL*TCL*VKGFYPSD (six flanking amino
acids), were commercially obtained and used as SIL-IS peptide and extended SIL-IS peptide,
respectively. The evaluation was carried out in rat plasma and cynomolgus monkey serum.

SIL-protein IS was added to each sample prior to extraction. The analyte mAb and SIL-protein
mAb were immunocaptured using an antihuman crystallizable fragment (anti-Fc) that recog-
nizes human mAb biotherapeutics but not the endogenous immunoglobulins in the preclinical
sample. After immunocapture, the analytes were eluted with 200 μL of 50% MeOH and 3%
formic acid in water. Samples with IS-peptides were spiked either with SIL-peptide or
extended SIL-peptide. The eluate was evaporated to dryness. SIL-peptide and extended SIL-
peptide were added to samples with IS-peptides. The samples were reconstituted for reduction
and alkylation. The samples were then digested with trypsin. After termination of the proteo-
lytic reaction, the extracts were analyzed using LC-MS/MS.

For the comparison experiment, three sets of QCs each from αDA-G2, αDA-G1, or αK-G2 were
analyzed in three replicates along with the three internal standards. The results can be seen in
Figure 3. Overall, all three mAb were quantified accurately (Bias within �20%) and precisely
(%CV within 20%) using the SIL-protein IS. For the extended peptide SIL-IS, the αDA-G2 QCs
were also well within �20%. The mid and high QC values of the αDA-G1 were near the �20%
threshold but not the LQC or the QCs of the αK-G2. For the peptide SIL-IS, the QC values of
αDA-G2 were marginally acceptable, with higher variability and imprecision for αDA-G1 and
the worst results for αK-G2. In addition, the whole molecule IS peak response within the runs
was more precise (15.5% CV) than those of the extended SIL-peptide IS (28.1% CV) or the
peptide IS (27.7% CV), N = 32. From this data, we can be seen that the whole Ab IS can
effectively compensate for any variability during extraction and LC-MS/MS analysis. If the
immunocapture and digestion steps were optimized to have high reproducibility, then the
synthetic peptide ISs may be adequate for quantification.

In another study, Bronsema et al. evaluated different internal standardization strategies for
quantification of a small protein, salmon calcitonin, which could be analyzed both with and
without and digestion [69]. Salmon calcitonin comprises of 32 amino acid and has a molecular
weight of 3431.9 Da. Eight internal standardization approaches were compared with respect to
accuracy and precision in work flows with and without digestion. Both analogue IS standard
proteins (eel and human calcitonin), SIL-salmon calcitonin, SIL-salmon calcitonin signature
peptide [1–11], and the cleavable SIL-salmon calcitonin peptide [1–11] were commercially
obtained. 18O-labeled form of the signature peptide was synthesized in-house by isotope
exchange with18 O-labeled water.

The samples were extracted using three different workflows. In work flow A, the samples were
extracted using only SPE prior to LC-MS/MS analysis. In workflow B, the samples were either
extracted using SPE and the extracts were digested with trypsin prior to analysis. In workflow
C, the samples were enriched using SPE, digested with trypsin and then derivatized prior to
analysis. Derivatization was performed with a solution containing 10% of deuterated or
unlabeled formaldehyde and 10% pyridine-borane complex in methanol. Waters Oasis MCX
SPE cartridges were used post derivatization the clean-up prior to LC-MS/MS analysis in work
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flow C. Internal standards were added at different stages depending on the workflow and
internal standard characteristics. The results of precision and accuracy studies using a series of
internal standardization routes as per workflows A through C, compared to the same
workflows without internal standard, are illustrated in Figure 4.

Using workflow A (quantification of the intact analyte) without an internal standard had too
much variability at 100 pg/mL, resulting in a bias outside the acceptance criterion of �15%.
When SIL-salmon calcitonin was used as internal standard, accuracy, and precision improved
significantly at both high and low concentrations. This finding was consistent with the
expected performance of SIL-protein IS. The first analogue protein IS, i.e., eel calcitonin (90%
sequence homology) introduced high variability at the lower level. When human calcitonin
(50% sequence homology) was used as an internal standard, the method performance was
severely hampered. Both precision and accuracy were inferior to the results obtained without
any internal standard. This illustrates that this internal standard did not correct for variability
but rather introduced it into the assay.

In workflow B (quantification of the digested analyte), two internal standardization processes
were used, i.e., (1) B-before referring to internal standards that are added prior to digestion

Figure 3. Accuracy and precision of QCs from 3 mAbs obtained with three different SIL-IS’s. (a)–(c): Accuracy of whole
SIL-IS, flanking SIL-IS, and peptide SIL-IS, respectively. (d)–(f): Precision of whole SIL-IS, flanking SIL-IS, and peptide
SIL-IS, respectively. The dashed lines of 20% are the thresholds of acceptance commonly used by LBAs. αDA-G2, αK-G2,
and αDA-G1 QCs are represented by blue, red, and green color bars, respectively. Reprinted with permission from [68].
Copyright (2013) American Chemical Society.
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and are expected to cover the digestion step, and (2) B-after referring to internal standards that
are SIL or structural analogue forms of the signature peptide and will only cover the post-
digestion part of the analysis (B-after). Eel calcitonin was not used in this workflow as an
internal standard as it yields a signature peptide same as salmon calcitonin. Besides human
calcitonin (added before and after digestion), all other approaches tested in workflow B,
including the omission of an internal standard, generated acceptable results, which shows that
in this workflow all steps were well under control. Again, the best results in terms of precision
and accuracy were obtained when SIL-salmon calcitonin [1–32], cleavable SIL peptide internal
standard and SIL peptide [1–11] were used as internal standards. Since there was no difference
between the performance of a SIL-calcitonin, cleavable SIL-peptide and that of a SIL-peptide
for workflow B, it was concluded that the digestion step did not negatively impact method
performance. This observation possibly can be attributed to the small size of the analyte
protein and absence of any tertiary or quaternary structure. The commercially obtained SIL
peptide internal standard and the in-house prepared 18O-labeled form performed comparably
in workflow, thus indicating that the 18O-labeled peptide can be used as an economical
alternative to a chemically synthesized SIL peptide.

In workflow C (quantification of digested and derivatized analyte), it was seen that using a
differentially labeled internal standard slightly improved assay performance compared to the
results without internal standard. Precision and accuracy of this internal standardization

Figure 4. Precision (expressed as error bars) and accuracy for 10 different internal standardization approaches according
to workflows A–C as compared to the same workflow without internal standard. The results were obtained by 6-fold
analysis of the 100 and 1000 pg/mL samples. The dotted lines indicate the acceptable 15% accuracy limits as set by the
FDA-guidance. In workflow B, internal standards were either added before or after the digestion step. Reprinted with
permission from [69]. Copyright (2013) American Chemical Society.
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and are expected to cover the digestion step, and (2) B-after referring to internal standards that
are SIL or structural analogue forms of the signature peptide and will only cover the post-
digestion part of the analysis (B-after). Eel calcitonin was not used in this workflow as an
internal standard as it yields a signature peptide same as salmon calcitonin. Besides human
calcitonin (added before and after digestion), all other approaches tested in workflow B,
including the omission of an internal standard, generated acceptable results, which shows that
in this workflow all steps were well under control. Again, the best results in terms of precision
and accuracy were obtained when SIL-salmon calcitonin [1–32], cleavable SIL peptide internal
standard and SIL peptide [1–11] were used as internal standards. Since there was no difference
between the performance of a SIL-calcitonin, cleavable SIL-peptide and that of a SIL-peptide
for workflow B, it was concluded that the digestion step did not negatively impact method
performance. This observation possibly can be attributed to the small size of the analyte
protein and absence of any tertiary or quaternary structure. The commercially obtained SIL
peptide internal standard and the in-house prepared 18O-labeled form performed comparably
in workflow, thus indicating that the 18O-labeled peptide can be used as an economical
alternative to a chemically synthesized SIL peptide.

In workflow C (quantification of digested and derivatized analyte), it was seen that using a
differentially labeled internal standard slightly improved assay performance compared to the
results without internal standard. Precision and accuracy of this internal standardization

Figure 4. Precision (expressed as error bars) and accuracy for 10 different internal standardization approaches according
to workflows A–C as compared to the same workflow without internal standard. The results were obtained by 6-fold
analysis of the 100 and 1000 pg/mL samples. The dotted lines indicate the acceptable 15% accuracy limits as set by the
FDA-guidance. In workflow B, internal standards were either added before or after the digestion step. Reprinted with
permission from [69]. Copyright (2013) American Chemical Society.
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approach were comparable to the SIL peptide and 18O-labeled peptide approaches for
workflow B, which do not include a derivatization and second SPE step. Workflow C is more
laborious and has multiple steps without any internal standards, and therefore will have a
higher risk of experimental variability.

4. Conclusions

Precision and accuracy of bioanalysis is ultimately improved through internal standardization.
The selection of an internal standard is often dictated based upon availability, time, and cost.
While SIL-proteins are considered the ideal internal standard, their availability often limits
their use. SIL-peptides and extended SIL-peptides are readily available, and serve as good
alternatives to SIL-proteins. When using SIL-peptide, it is essential that sample preparation
steps, i.e., enrichment and enzymatic digestions that are not tracked by the peptide internal
standards are optimized to limit their variability. In the absence of SIL-IS standard, an ana-
logue protein or peptide may be used as an internal standard. The use of stable isotope labeled
analogue monoclonal antibody as a universal internal standard has enabled rapid develop-
ment of accurate and precise methods for quantitative bioanalysis of biotherapeutics in non-
human species.
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Abstract

Laser-induced breakdown spectroscopy (LIBS) has gained great attention over the past
two decades due to its many advantages, such as needless sample preparation, capabil-
ity of remote measurement and fast multielement simultaneous analysis. However,
because of its inherent uncertainty features of plasma, it is still a big challenge for LIBS
community worldwide to realize high sensitivity and accurate quantitative analysis.
Currently, many chemometric analytical methods have been applied to LIBS calibration
analysis, including univariate regression, multivariate regression, principal component
regression (PCR), partial least squares regression (PLSR) and so on. In addition, appro-
priate sample and spectral pretreatment can effectively improve the analytical perfor-
mance (i.e., limit of detection (LOD), accuracy and repeatability) of LIBS. In this chapter,
we briefly summarize the progress of these calibration methods and their applications
on LIBS and provide our recommendations.

Keywords: laser-induced breakdown spectroscopy, sample and spectral pretreatment,
calibration methods, chemometrics, calibration-free laser-induced breakdown
spectroscopy

1. Introduction

Laser-induced breakdown spectroscopy (LIBS), also sometimes called laser-induced plasma
spectroscopy (LIPS), has developed rapidly as an analytical technique over the past two decades.
LIBS is a kind of atomic emission spectroscopy, which uses a high-energy pulsed laser as the
excitation source. The laser is focused on the sample surface, thereby evaporating and atomizing
the sample and generating a plasma. The light emitted by the plasma is detected by a spectrom-
eter. One can obtain sample composition and concentration information by analyzing the plasma
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emission spectra. LIBS most commonly used experimental instruments such as mainly lasers,
spectrometers, detectors and computers, as shown in Figure 1.

The laser which is the most widely used in LIBS is the Nd:YAG solid-state lasers operated in the
Q-switchmode. Typically, it is operated at the fundamental wavelength of 1064 nm, pulse energy
is 30–100 mJ, pulse width is 5~15 ns and repetition rate is 1~10 Hz. In addition, the researchers
tested the effects of lasers of different types and parameters on the LIBS. Trautner et al. [1]
investigated polyethylene (PE) and a rubber material from tire production by employing
157 nm F2 laser and 532 nm Nd:YAG laser ablation in nitrogen and argon gas background or in
air. The effects of laser wavelength on depth resolution of thin-film solar cell are investigated by
Choi et al. [2] using an ultraviolet (λ = 266 nm) and a visible (λ = 532 nm) nanosecond Nd:YAG
lasers. Labutin et al. [3] summarize nearly two decades of studies on femtosecond laser-induced
breakdown spectrometry (fs-LIBS). Picosecond pulse train and nanosecond pulse were com-
pared for laser ablation and LIBS measurements by Lednev et al. [4].

Spectrometers disperse the emitted radiation of the laser-induced plasma to get a spectrum in
terms of intensity as a function of the wavelength. The dominant spectrometer types used for
LIBS are multichannel fiber spectrometer and echelle spectrometer coupled with an intensified
CCD. The echelle spectrometer offers a wide spectral range, a high spectral resolution, and the
possibility of time-resolved. The plasma parameters (plasma temperature and electron den-
sity) are constantly changing with respect to the delay time, and an echelle spectrometer with
time resolution is needed when calculating these parameters. However, time-resolved broad-
band spectrometers are expensive and strongly dependent on external circumstances. The
multichannel fiber spectrometer is robust and reliable for the use in mobile and portable LIBS
instruments, providing an accredited spectral resolution, but their integration time is typically
much longer than the plasma lifetime.

In recent years, with the rapid development of lasers, spectrometers and detectors and the
urgent demand of in situ and online analysis, LIBS has developed rapidly. Compared with
many other types of elemental analysis techniques, LIBS has obvious advantages:

Figure 1. Aschematic of a general apparatus for laser-induced breakdown spectroscopy illustrating the principal components.
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1. Simple equipment: few instruments, low cost and easy integration.

2. Noncontact analysis: LIBS uses pulsed laser as the excitation source, which makes it
noncontact analysis, especially in the dangerous environment or space exploration field,
has broad application prospects.

3. No sample preparation: LIBS directly focused pulsed laser bombardment of the sample
without processing the sample.

4. Various samples: samples can be gas, aerosols, liquids and solids.

5. Nondestructive analysis: The laser converges to the surface of the sample, and only a small
amount of the sample is excited. It canbe consideredasnondestructive ornearnondestructive.

6. Three-dimensional analysis: LIBS can collect laser at different positions on the sample
surface or repeat measurements at the same location to analyze the sample surface and
its different depths of the sample composition and content.

7. Total element analysis: The laser energy can simultaneously excite all the elements in the
sample, so all elements in the sample can be analyzed simultaneously.

8. Remote analysis: The long-distance analysis of the LIBS can be achieved by remotely
transmitting the laser energy and collecting the plasma emission spectrum through the fiber.

9. Online analysis: LIBS is a very fast technology that provides analytical results in seconds,
making it particularly suitable for rapid analysis or online industrial monitoring.

Figure 2. The number of articles published in the Web of Science search by laser-induced breakdown spectroscopy (LIBS)
in 1963–2016.
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In recent years, with the rapid development of lasers, spectrometers and detectors and the
urgent demand of in situ and online analysis, LIBS has developed rapidly. Compared with
many other types of elemental analysis techniques, LIBS has obvious advantages:

Figure 1. Aschematic of a general apparatus for laser-induced breakdown spectroscopy illustrating the principal components.
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1. Simple equipment: few instruments, low cost and easy integration.

2. Noncontact analysis: LIBS uses pulsed laser as the excitation source, which makes it
noncontact analysis, especially in the dangerous environment or space exploration field,
has broad application prospects.

3. No sample preparation: LIBS directly focused pulsed laser bombardment of the sample
without processing the sample.

4. Various samples: samples can be gas, aerosols, liquids and solids.

5. Nondestructive analysis: The laser converges to the surface of the sample, and only a small
amount of the sample is excited. It canbe consideredasnondestructive ornearnondestructive.

6. Three-dimensional analysis: LIBS can collect laser at different positions on the sample
surface or repeat measurements at the same location to analyze the sample surface and
its different depths of the sample composition and content.

7. Total element analysis: The laser energy can simultaneously excite all the elements in the
sample, so all elements in the sample can be analyzed simultaneously.

8. Remote analysis: The long-distance analysis of the LIBS can be achieved by remotely
transmitting the laser energy and collecting the plasma emission spectrum through the fiber.

9. Online analysis: LIBS is a very fast technology that provides analytical results in seconds,
making it particularly suitable for rapid analysis or online industrial monitoring.

Figure 2. The number of articles published in the Web of Science search by laser-induced breakdown spectroscopy (LIBS)
in 1963–2016.
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Because of many advantages of LIBS, it has been applied to a number of analytical domains, for
example, various alloys [5–7], slags [8, 9], soil [10], rocks [11, 12] and isotopes [13]. We searched
for all scientific papers from 1963 to 2016 on Web of Science with laser-induced breakdown
spectroscopy (LIBS). The statistical results are presented in Figure 2. It can be seen that LIBS has
developed rapidly since 1990.

2. Pretreatment of samples and spectra

2.1. Sample pretreatment

One of the most widely cited advantages of LIBS is that it does not require sample prepara-
tion, but this may also be the biggest limitation for improving its consistancy. In general,
LIBS performance may be enhanced using two main approaches: pretreatment of samples
and spectra. Many homogeneous solid samples require no sample preparation, for example,
glass, alloy and plastic. For powder samples (e.g., cement [14], soil [10] and coal [15]) which
can press the cake directly, it must be consistent with the standard sample preparation
process used for calibration during the pressing process. Comparing with solid samples,
the direct analysis of liquid samples by using LIBS has many disadvantages: splash, less
excitation and fluctuation of liquid level. The simplest way to change a liquid sample into a
solid sample is to freeze it [16, 17]. Sobral et al. [18] investigated the detection sensitivity of
Cu, Mg, Pb, Hg, Cd, Cr and Fe traces in water and ice samples under the same experimental
conditions by using LIBS. Another effective way that can be used for liquid analysis in a
solid matrix configuration consists of using an absorbent substrate, for example, plant fiber
spunlace nonwoven [19], absorbent paper [20], thin wood sample [21, 22] and membrane-
based filter paper [23]. Now LIBS analysis of aerosols is mainly of two categories: direct
analysis and enrichment. However, the detection limit and the statistical results of the direct
analysis are still relatively poor. On the other hand, the substrate-based collection does not
provide as instantaneous information and does allow one to achieve lower detection limits
by increasing the sample flow rates and sampling times.

2.2. Correction and removal of continuum background

The detected plasma emission spectrum at a given wavelength in a spectrum is the sum of the
analyte signal and the continuum background. The analyte signal is often overwhelmed by the
continuum background, which interferes the true intensity of signal and compromises spectral
clarity and hence reduces the accuracy of quantitative analysis. Zou et al. [24] developed a
modified algorithm of background removal based on wavelet transform for spectrum correc-
tion and applied to low-alloy steel samples. This method can effectively improve the quality of
the signals and the accuracy of the regression model. Sun et al. [25] presented a method that
can automatically estimate and correct varying continuum background emission. Simulations
and experiments were made to successfully prove the efficiency of the method. The proposed
method scarcely needs people’s intervention and can automatically and flexibly estimate
varying continuum backgrounds over a very wide spectrum range. Another way to deduct a
continuous background is to add a polarizer to the collected light path. Penczak et al.’s [26]

Calibration and Validation of Analytical Methods - A Sampling of Current Approaches88

research results show that the continuous background of the Al plasma emission spectra
induced by 800 nm femtosecond pulse laser is strongly polarized. The use of a polarizer can
effectively filter the continuous spectrum, thus improving the signal-to-noise ratio and the
signal-to-back ratio of the characteristic spectrum.

2.3. Spectral normalization

In order to increase the stability of the signal, the analyte signal intensity can be normalized
using a parameter representative of the actual plasma conditions. In general, there are three
main standardized methods [27]: (1) normalization by using the intensity of an internal
standard line; (2) normalization by using a reference signal; and (3) compensation for the
plasma conditions. Castro et al. [28] used 12 different types of data normalization to reduce
the interference matrix and to improve the calibration models. Their findings show that the
application of normalization modes was useful to compensate for the differences among
sample matrices. Models without normalization presented two- to fivefold higher errors.
Karki et al. [29] studied the analytical performance of six different spectrum normalization
techniques, namely internal normalization, normalization with total light, normalization
with background along with their three-point smoothing methods for quantification of Cr,
Mn and Ni in stainless steel. The final results show the superiority of internal normalization
technique over normalization with total light and normalization with background tech-
niques irrespective of whether it is Cr, Ni or Mn analysis. Wang et al. presented three
spectrum standardized methods in order to improve the reproducibility of LIBS measure-
ments which are named the spectrum standardization approach [30], the sampled spectrum
standardization approach [31] and the multivariate spectrum standardization method,
respectively. In spectral standardization, a particular example is the use of acoustic signals
[32, 33] or laser-induced plasma image [34].

2.4. Automatic identification of emission lines

LIBS can excite all the elements of the spectrum of the sample, so reliable and fast identifica-
tion of emission lines in laser ablation of multicomponent samples is crucial. Labutin et al.
[35] applied an algorithm to automatically identify emission lines in LIBS. The algorithm is
implemented by three parts: simulation of the set of spectra corresponding to different
temperature and electron density, searching the best correlated pair of a model spectrum
and an experimental one, and attributing the peaks with certain lines. Ukwatta et al. [36]
consider the problem of element detection as a multilabel classification problem, using
support vector machines (SVMs) and artificial neural networks (ANNs) for multielement
classification. The proposed algorithm is evaluated by using the LIBS image obtained from
the experiment. The accuracy of the machine learning method to identify the elements
correctly can reach 99%. Mateo et al. [37] developed the software package SALIPS, which
can quickly and semiautomatically identify the spectrum peak and give the element compo-
sition of the analytical sample. The software package simulates the spectrum by using the
relative intensity of the atomic line in the NIST database. In order to facilitate visual compar-
ison, it can present both the simulated and experimental spectra on the same plot.
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provide as instantaneous information and does allow one to achieve lower detection limits
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The detected plasma emission spectrum at a given wavelength in a spectrum is the sum of the
analyte signal and the continuum background. The analyte signal is often overwhelmed by the
continuum background, which interferes the true intensity of signal and compromises spectral
clarity and hence reduces the accuracy of quantitative analysis. Zou et al. [24] developed a
modified algorithm of background removal based on wavelet transform for spectrum correc-
tion and applied to low-alloy steel samples. This method can effectively improve the quality of
the signals and the accuracy of the regression model. Sun et al. [25] presented a method that
can automatically estimate and correct varying continuum background emission. Simulations
and experiments were made to successfully prove the efficiency of the method. The proposed
method scarcely needs people’s intervention and can automatically and flexibly estimate
varying continuum backgrounds over a very wide spectrum range. Another way to deduct a
continuous background is to add a polarizer to the collected light path. Penczak et al.’s [26]
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standard line; (2) normalization by using a reference signal; and (3) compensation for the
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respectively. In spectral standardization, a particular example is the use of acoustic signals
[32, 33] or laser-induced plasma image [34].

2.4. Automatic identification of emission lines

LIBS can excite all the elements of the spectrum of the sample, so reliable and fast identifica-
tion of emission lines in laser ablation of multicomponent samples is crucial. Labutin et al.
[35] applied an algorithm to automatically identify emission lines in LIBS. The algorithm is
implemented by three parts: simulation of the set of spectra corresponding to different
temperature and electron density, searching the best correlated pair of a model spectrum
and an experimental one, and attributing the peaks with certain lines. Ukwatta et al. [36]
consider the problem of element detection as a multilabel classification problem, using
support vector machines (SVMs) and artificial neural networks (ANNs) for multielement
classification. The proposed algorithm is evaluated by using the LIBS image obtained from
the experiment. The accuracy of the machine learning method to identify the elements
correctly can reach 99%. Mateo et al. [37] developed the software package SALIPS, which
can quickly and semiautomatically identify the spectrum peak and give the element compo-
sition of the analytical sample. The software package simulates the spectrum by using the
relative intensity of the atomic line in the NIST database. In order to facilitate visual compar-
ison, it can present both the simulated and experimental spectra on the same plot.
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3. Calibration methods of LIBS

A number of calibration methods have been applied to various research fields and physical
state samples of LIBS quantitative analysis. We cannot involve all published research articles,
and only a few of the most commonly used calibration methods are reviewed.

3.1. Univariate analysis

The fitting area intensity I corresponding to the transition between lower level El and upper
level Eu of an atomic species α can be expressed as:

I ¼ FNI
αAul

gu
UI

α Tð Þ exp � Eu

kBT

� �
(1)

where F is the experimental parameter, NI
α is the atomic number density, Aul is the transition

probability, gu is the upper-level degeneracy and UI
α Tð Þ is the partition function at the temper-

ature T. For the same sample, if the temperature and density of each laser-induced plasma are
constant, then I is proportional to the elemental concentration C. If there are a series of samples
with different C, one can establish a calibration line between spectral intensity and element
concentration.

Ci ¼ b0 þ b1Ii þ ei (2)

where b0 and b1 are model parameters, ei is the random error and i is the number of samples.

The parameter bCi is the estimate value of Ci, namely

bCi ¼ b0 þ b1Ii (3)

and

ei ¼ bCi � Ci (4)

In the regression analysis, the best estimate of b0 and b1 is obtained based on a set of I and C,

which makes the bC and C to the nearest degree. For example, Bhatt et al. [38] choose Ce II 413.38,
418.65, and 439.16 nm to establish a univariate linear calibration curve, as shown in Figure 3.

Correlation coefficient R, also called the Pearson coefficient, is often used to denote the corre-
lation between I and C, which is defined as:

R ¼

Pn
i¼1

Ii � I
� �

Ci � C
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn
i¼1

Ii � I
� �2

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn
i¼1

Ci � C
� �2

s (5)

Correlation coefficient Rj j ≤ 1, and it is closer to 1, indicating the better relevance. Most of
the LIBS papers report R2 which provides fast information about the correlation of the
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data and consequently a fast first knowledge about the prediction ability of the model
since poor correlation necessarily implies poor predictive ability. However, it should be
noticed that a model with a value of R2 close to 1 may indeed have a poor accuracy for
prediction [39].

Precision is described by the standard deviation (SD), the relative standard deviation (RSD in %)
and the root-mean-square error (RMSE), which can be expressed as:

SD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn
i¼1

Ci � C
� �2

N

vuuut
(6)

RSD %ð Þ ¼ SD
C

� 100 (7)

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn
i¼1

bCi � Ci

� �2

n

vuuut
(8)

In order to describe the lower limits of a quantitative model, the limit of detection (LOD) can
be calculated by the following equation:

LOD ¼ 3
σC
I

(9)

where σ is the standard deviation of the background and C=I is the reciprocal of the slope of
the calibration curve. The calculated values of LOD for different elements are presented in
Table 1.

3.2. Multivariate analysis

3.2.1. Multiple linear regression

For LIBS, the line of an element is not one. If there are m variables and n samples, then

Figure 3. Simple linear regression calibration curves for Ce [38].
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Ci ¼ b0 þ b1Ii1 þ…þ bmIim þ ei i ¼ 1; 2;…; nð Þ, (10)

Q ¼
Xn

i¼1

e2i ¼
Xn

i¼1

Ci � bCi

� �2
(11)

where I is the intensity of different spectral lines from the same element, ei is residual, Q is the

sum of squares of the residuals and bCi is the estimate value of Ci. One can get b0, b1,…,bm when
Q value achieves the minimum value.

For example, Chen et al. [40] used the multiple linear regression method to quantitatively
analyze chromium in potatoes. The characteristic line of Cr can be considered that the concen-
tration of Cr (Ci) has a relationship with the intensity of Cr and/or the other corresponding
elements. They normalize the quantitative analysis of Cr by considering the influence of the Ca
matrix. Four independent variables (ICr, IPCr, ICa and IPCa) are used to test the performance

of different linear regression methods, where ICr is the intensity of Cr I 425.43 nm, IPCr is the

sum of three Cr lines (Cr I:425.43, Cr I 427.48 and Cr I 428.97 nm), ICa is the intensity of Ca I
431.86 nm and IPCa is the sum of five Ca lines (Ca I 422.67, Ca I 428.30, Ca I 430.25, Ca I

430.77, and Ca I 431.86 nm). Different combinations of the four independent variables were
selected for unary, binary, ternary and quaternary linear regression analyses. The results of
quantitative analysis of Cr element by the linear regression method with different variables are
indicated in Table 2.

3.2.2. Principal component regression

In the LIBS quantitative analysis, the calculated concentration is affected by the lines of
objective elements and other elements. In the study of empirical questions, in order to analyze
the problem comprehensively and systematically, one must consider many spectral lines of
many elements. Because each line reflects the information of the element concentration in
varying degrees, and the lines have a certain correlation with each other, the information
reflected in the calculation overlaps to some extent. In the study of multivariate problems
by statistical methods, too many variables will increase the amount of calculation and increase
the complexity of the problem. It is hoped that the variables involved in the process of
quantitative analysis are less and the amount of information is more. Principal component
analysis (PCA) is adapted to this requirement and is an ideal tool for solving such problems.

Elements LOD (%)

Ce 0.098

Eu 0.052

Gd 0.077

Nd 0.047

Sm 0.25

Y 0.036

Table 1. Limit of detection (LOD) estimated for different elements.
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Principal component analysis can transform a set of variables that may have correlation into a
set of linearly uncorrelated variables by orthogonal transformation. The variable after the
conversion is called the principal component. Principal component regression (PCR) is a
regression analysis method for analyzing multiple regression and is based on PCA. In general,
predicting the concentration by PCR can be divided into three steps: first, the PCA is
performed on the data (spectral) matrix of the original independent variables, and the appro-
priate number of principal components is selected by finding the eigenvalue, eigenvector,
variance contribution rate and cumulative contribution rate. Second, the selected principal
component is analyzed by the ordinary least-squares method. Finally, the strongest possible
correlations between the orthogonal PC scores and elemental composition are established.
When selecting principal components by PCR, only the independent variables are taken into
account, and the dependent variables are ignored. It can reduce the dimension of variables and
address the problem of multiple collinearity but cannot distinguish noise when there is a lot of
noise in the independent variable (signal) and lose some information of the original variables,
so a better regression model will not be obtained.

Death et al. [41] applied PCR to determine the elemental composition of a series of run-of-mine
(ROM) iron ore samples. LIBS spectral data were recorded in three separate spectral regions
(250 nm, 400 nm and 750 nm) to measure major, minor and trace components of the iron ore
sample pellets. Background stripping, normalization and spectral cleaning were applied to
minimize RSD of the LIBS data. PCR analysis was used to produce calibration models of Fe,
Al, Si, Mn, K and P. Independent LIBS measurement data are used to verify these calibration
models. The model R2 for Fe, Al, Si and K is 0.99, 0.98, 0.99 and 0.84, respectively. As an
example, PCR calibration model of Fe is shown in Figure 4 [41].

3.2.3. Partial least squares regression

The main purpose of PCR is to extract relevant information hidden in the spectral line and
then used to predict the concentration. This approach allows one to use only those indepen-
dent variables, and the noise will be eliminated, so as to improve the quality of the predictive
model. However, PCR still has some defects, and some useful variables whose correlation
is very small are easily missed when the principal component is selected. If we choose for

Calibrate method Input variables R2 Predicted value (μg/g) Relative error (%)

Unary ICr 0.007 S1:138.208 7.674

S2:140.308 7.771

Binary ICr,IPCr 0.887 S1:143.649 11.913

S2:132.129 13.147

Ternary ICr,IPCr ,ICa 0.890 S1:142.413 10.950

S2:132.687 12.780

Quaternary ICr,IPCr ,ICa,I
P

Ca 0.987 S1:133.659 4.130

S2:159.965 5.151

Table 2. Quantitative results of Cr by different linear regression methods.
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Calibrate method Input variables R2 Predicted value (μg/g) Relative error (%)

Unary ICr 0.007 S1:138.208 7.674

S2:140.308 7.771

Binary ICr,IPCr 0.887 S1:143.649 11.913

S2:132.129 13.147

Ternary ICr,IPCr ,ICa 0.890 S1:142.413 10.950

S2:132.687 12.780

Quaternary ICr,IPCr ,ICa,I
P

Ca 0.987 S1:133.659 4.130

S2:159.965 5.151

Table 2. Quantitative results of Cr by different linear regression methods.
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each component, it is too difficult. Partial least squares regression (PLSR) is a new multivar-
iate statistical data analysis method. It mainly studies the regression modeling of multiple
dependent variables to multiple independent variables. PLSR is more effective, especially
when the variables are highly linearly correlated. In addition, PLSR solves the problem that
the number of samples is less than the number of variables. Partial least squares (PLS) is the
advantage of three analytical methods, which are PCA, canonical correlation analysis and

Figure 4. PCR calibration model determined for iron using the 250-nm LIBS data.

Region I Region II Region III

8 mJ 3 mJ 8 mJ 3 mJ 8 mJ 3 mJ

Integrated spectra WBC 3.47 3.27 3.27 2.74 (2) 2.72 (2) 2.63 (2)

4 3.67 3.76 3.36 2.92 2.85

BC 1.97 2.27 2.56 2.27 2.58 (2) 2.09 (2)

2.22 2.54 2.03 2.67 2.78 2.57

Time-resolved spectra WBC 3.11 2.27 3 2.02 2.73 (2) 3.96 (2)

3.46 2.51 3.4 2.22 3.09 4.36

BC 3.07 2.32 3.13 2.23 2.47 (2) 3.73 (2)

3.36 2.56 3.57 3.31 2.9 4.57

Values in brackets correspond to number of factors if different from three.
WBC = without background correction. BC = with background correction

Table 3. Standard error of calibration (SEP) and prediction (SEV, in italics) estimated during the determination of silver
for autoscaled data.
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multiple linear regression analysis. Both PLS and PCA try to extract the maximum informa-
tion reflecting the data variation, but PCA only considers one independent variable matrix,
while PLS has a response matrix, so it has predictive function. PLS avoids potential problems
such as nonnormal distribution of data, factor indeterminacy and unidentifiable models.
PLS has two types (PLS-1 and PLS-2), and PLS-1 corresponds to the case where there is only
one dependent variable. PLS-2 corresponds to the case where there are several dependent
variables. Although PLSR is more complex than PCR, and the tendency of overfitting is
stronger, better results can be obtained by using PLS to analyze low-precision data or high-
complexity systems.

The input variable of PLS can be characteristic spectral lines [42], partial spectral region [43] or
full spectrum [44]. Amador-Hernandez et al. [45] used PLS-1 to quantify gold and silver gold
and silver in Au-Ag-Cu alloys. The influence of spectral region (266–340 nm, 266–269/326–
340 nm and 269–313 nm), laser energy (3 mJ, 8 mJ), background correction and integration
time on the quantitative analysis of PLS was studied, respectively (Table 3).

3.2.4. Artificial neural network

To overcome the poor precision of the calibration curve methods and the limitations of nonlinear
problems, scholars have proposed the use of statistical methods for the quantitative analysis by
LIBS. Artificial neural networks (ANNs) are computing systems inspired by the biological neural
networks that constitute animal brains. Such systems learn (progressively improve performance)
to do tasks by considering examples, generally without task-specific programming. The follow-
ing outstanding advantages of artificial neural networks have attracted great attention in recent
years: (1) it can fully approximate any complex nonlinear relationship; (2) all the quantitative or
qualitative information is stored in the neurons in the network, so it has strong robustness and
fault tolerance; (3) ANNS adopts the parallel distribution processing method, so that it can
perform a large number of operations quickly; (4) ANNS can learn and adapt to unknown or
uncertain system; and (5) it can handle both quantitative and qualitative information at the same
time. An artificial neuron network (ANN) is a computational model based on the structure and
functions of biological neural networks. Artificial neural networks usually contain input layer,
hidden layer (competitive layer) and output layer, as shown in Figure 5.

Figure 5. Schematic of the three-layer artificial neural network [46].
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For example, El Haddad et al. [46] used an artificial neuron network to analyze the heavy
metals in soil and predict the concentration of element. They used average relative error of
calibration REC (%) and the average relative error of prediction REP (%) to evaluate the
predictive quality of the ANN models. REC and REP were preferred to RMSE because they
provide percentage instead of absolute values. Before using the artificial neural network, it is
necessary to optimize the parameters such as the number of neurons and training times.

REC %ð Þ ¼ 100
Nc

XNc

i¼1

∣ci �bci∣
ci

(12)

REP %ð Þ ¼ 100
Np

XNp

i¼1

∣ci �bci∣
ci

(13)

where Nc is the number of samples in the calibration and Np is the number of samples in the
prediction sets, respectively (Table 4).

3.2.5. Support vector regression

The neural network structure design depends on the designer’s experience and prior knowl-
edge, while support vector machine (SVM) is based on statistical theory, which has a strict
theoretical and mathematical basis. The neural network learning algorithm lacks quantitative
analysis and complete theoretical support, and it also needs a lot of samples to learn. SVM is
often used to pattern recognition, classification and regression analysis of small samples,
nonlinear and high-dimensional data and can achieve very good results. SVM is based on the
principle of structural risk minimization, which can ensure that the learning machine has a
good generalization ability. SVM for regression prediction is called support vector regression
(SVR). SVR also can guarantee the global optimality of the algorithm and avoid the local
minimum problem that the neural network cannot solve. Therefore, when there are a small
number of samples, it is better to use SVR instead of neural network. It is important to note
that the selection of optimized significant penalty parameter C and the kernel parameter of
RBF-δ is more sensitive for the SVR model.

For example, Gu et al. [47] used three segmental spectra of 393–397 nm, 422–423 nm and 425–
427 nm as the input variables of SVR model to predict the content of Cr in soil samples. They
got better predictive results that R2 ¼ 0:999 and the absolute relative error is 2.61% and the
slope of the calibration curve is closer to 1, as shown in Figure 6.

Output Input element REC (%) REP (%)

Al Al, Ca, Ba, Fe, Ti 18.7 � 0.8 19.3 � 2.1

Ca Ca, Ba, Fe, Ti 9.4 � 0.4 15.2 � 0.8

Fe Fe, Ba, Ca, Ti 15.5 � 0.6 16.8 � 0.9

Table 4. Average relative errors of calibration (REC) and prediction (REP).
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3.3. Calibration-free laser-induced breakdown spectroscopy

LIBS offers a strong potential for analysis in situ and in real time, not requiring complex
sample preparation. This allows it to be applied quickly and extensively to qualitative analysis,
but quantitative analysis is very difficult. Even with a given experimental configuration, the
laser-induced breakdown spectrum is not only dependent on the concentration of the analyte
but also dependent on the composition of the matrix and their polymerization state. Matrix
effects play an important role in quantitative analysis of LIBS. In order to overcome the matrix

Figure 6. The calibration curve of Cr by the SVR model with segmental spectra input.

Figure 7. Boltzmann plot containing some data resulting from the analysis of an aluminum alloy. The three lines
represent the results of a linear best fit of the Al(I), Mn(II) and Mg(II) data [48].
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effect, Ciucci et al. [48] proposed the calibration-free laser-induced breakdown spectroscopy
(CF-LIBS) approach which takes the matrix into account as a part of the analytical problem. In
local thermodynamic equilibrium (LTE), excited levels are populated according to the
Boltzmann distribution and ionization states are populated according to the Saha-Boltzmann
equilibrium equation. Each spectral line is represented as a point in a Boltzmann plane where
the slope and intercept correspond to the plasma temperature and the concentration of the
corresponding element, respectively (Figure 7).

Ciucci et al. [48] proposed CF-LIBS for the first time and used it for quantitative analysis of the
composition of metallic alloys and quantitative determination of the composition of the atmo-
sphere. CF-LIBS has been applied to many samples, such as aluminum alloys, steel and iron
alloys, precious alloys for jewelry, copper alloys, archeological copper artifacts, glasses, pig-
ments on roman frescoes and on parchments, soils and rocks, meteorites, coral skeletons and
human hair. However, the accuracy of CF-LIBS is still not high.

4. The comparison of calibration methods

LIBS is an analytical technique that can inspire all the elements in the sample. Univariate analysis
uses only partial spectral information and suffers from the strong effects of plasma instability.
More importantly, strong matrix effects prevented to apply simple calibration curves. There is no
doubt that the multivariate analysis is superior to univariate analysis. This has been proven by
numerous researchers, for instance, the analysis of rocks [49], rare earth elements [38], glass [50],
cerium oxide [51], alloy steel [52], liquid steel [53], soil [54, 55], soybean oil [56], PZT (Lead
Zirconate Titanate) ceramics [57], Pb in navel orange [58], Marcellus Shale [59], tailing cores
[60], geologically diverse samples [49], steel melt [61], slurry [62], iron ore [63] and pellets of
plant materials [64].

Many multivariate analysis methods have been applied to the quantitative analysis of LIBS,
especially chemometric. Generally, the most common chemometric technique applied to
concentration measurement by LIBS is PLS. It has been applied to many fields of analysis,
such as soil [55, 65, 66], steel [67–69], glass [50], rock [70], iron ore [63] and coal [71, 72]. The
rest of the analysis methods are PCR [50, 73, 74], LASSO [75, 76], kNN [77], ANN [78–81],
SVM [82, 83] and so on. PLS has been implemented either to calculate the concentrations of
a single element (PLS-1) or to simultaneously calculate the concentrations of more than one
element (PLS-2). In addition to PLS, other linear (MLR [84, 85], PCR [50, 73] and LASSO
[75–77]) and nonlinear regression methods (ANN [86, 87]) have been applied to LIBS
quantitative analysis. In order to discern the most effective models for interpreting chemical
abundances from LIBS spectra of geological samples, Boucher et al. [77] had studied nine
kinds of linear and nonlinear regression methods. The advantages and disadvantages of
various methods are introduced, as shown in Table 5. The final results show that nonlinear
methods tend to overfit the data and predict less accurately, while the linear methods
proved to be more generalizable with better predictive performance. The performance of
different models for different oxides is different. At present, multivariate analysis, especially
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PLS, is our best choice. But it should be pointed out that multivariate quantitative analyses
present a high risk of overfitting.

CF-LIBS can overcome the influence of matrix effect, but the poor analysis accuracy has been
the fatal shortcoming of CF-LIBS. This is mainly due to the fact that the laser-induced plasma is
a very complex object and its realistic description is not attainable with simple mathematical
models [88]. A number of researchers have made some modifications to the CF-LIBS algo-
rithm, such as self-absorption [89, 90]. In recent years, several research groups [91–94] began
using standard samples to improve the accuracy of the nonstandard analysis. Cavalcanti et al.
[92] presented and used one-point-calibration CF-LIBS to analyze a set of copper-based sam-
ples. The results show that the new method achieves similar or even higher accuracy than the
calibration curve.
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Method Advantage(s) Disadvantage(s) Other

PLS Used when X has many collinear features
and when p > > N. Provides a stable
multivariate model that can account for all
oxides (PLS-2).

Provides a complex model in which all
coefficients are linear combinations of the
original channels. Involves a complex
optimization problem with no simple,
closed-form representation.

Linear, uses all
channels (not
sparse)

LASSO Provides an interpretable model, selects
subset of predictors with the strongest
effects on the response variable. Can be used
for feature selection when less data are
available.

Arbitrarily chooses one covariate from a
group of highly collinear covariates to use
in the model and discards the rest.

Linear, sparse,
eliminates noisy
channels

Elastic
net

Performs well in the p > > N case. Provides
an interpretable model that is more stable
than the lasso. Useful for feature selection.

Cannot be used for feature selection in
situations when less data are available
because it overwhelms the data with too
many model variables.

Linear, sparse,
eliminates noisy
channels

PCR Decorrelates the data and reduces its
dimensionality, combating the “curse of
dimensionality”

Higher-order polynomial kernels tend to
overfit the training set and poorly predict
the testing set in this application.

May be linear or
nonlinear; both
use all channels

SVR Performs well with a linear kernel. Can be
either linear or nonlinear depending on the
kernel.

As above, polynomial kernels tend to
overfit the training set and poorly predict
the testing set in this application.

May be linear or
nonlinear; either
uses all channels

kNN Requires no model training other than
choosing the number of neighbors, reducing
run time and making it scale well to large
data sets.

Tends to overfit the training data and is
only as effective as the distance metric used
to compare samples.

Nonlinear, uses all
channels

Table 5. Comparison of various regression methods.
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Abstract

Calibration curve is a regression model used to predict the unknown concentrations of ana-
lytes of interest based on the response of the instrument to the known standards. Some 
statistical analyses are required to choose the best model fitting to the experimental data and 
also evaluate the linearity and homoscedasticity of the calibration curve. Using an internal 
standard corrects for the loss of analyte during sample preparation and analysis provided 
that it is selected appropriately. After the best regression model is selected, the analytical 
method needs to be validated using quality control (QC) samples prepared and stored in the 
same temperature as intended for the study samples. Most of the international guidelines 
require that the parameters, including linearity, specificity, selectivity, accuracy, precision, 
lower limit of quantification (LLOQ), matrix effect and stability, be assessed during valida-
tion. Despite the highly regulated area, some challenges still exist regarding the validation 
of some analytical methods including methods when no analyte-free matrix is available.

Keywords: analytical method, calibration, linearity, regression analysis, validation

1. Introduction

Calibration curve in bioanalytical method is a linear relationship between concentration (inde-
pendent variable) and response (dependent variable) using a least squares method. This relation-
ship is built to predict the unknown concentrations of the analyte in a complicated matrix. The 
unknown samples can be from a wide range of sources: food and agricultural, pharmaceutical 
formulations, forensic and the clinical pharmacology studies. This chapter is more focused on 
the bioanalytical methods in which an analyte is measured in blood, plasma, urine or other bio-
logical matrices. However, the main concepts are applicable to the other analytical approaches.
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The quality of a bioanalytical method is highly dependent on the linearity of the calibra-
tion curve [1]. A linear calibration curve is a positive indication of assay performance in a 
validated analytical range. Other characteristics of the calibration curve, including regression 
model, slope of the line, weighting and correlation coefficient, need to be carefully evaluated. 
In the following sections, each of those parameters is explained, and few practical examples 
have been used to further discuss the concepts.

After the calibration model is chosen, it is required to demonstrate that all future measure-
ments will be close to the true values of the content of the analyte in the sample. This will 
be achieved during validation of the analytical method. There are international guidelines 
for the validation of the analytical methods, which need to be followed closely in order to 
have more consistent data throughout different laboratories and increase the chance of their 
acceptability by the regulatory authorities.

2. Aims

The aim of this chapter is to discuss different aspects of linearity and relevant assumption as 
a practical guide to develop a robust analytical method in order to predict true concentrations 
of the analytes in samples.

3. Calibration curve: definitions and characteristics

3.1. Regression analysis

Regression analysis is a deterministic model, which allows predicting of the values for a 
dependent variable (Y) when an independent variable (X) is known. The model determines 
the kind of relationship between X and Y. The experimental values rarely fit the mathemati-
cal model, and there are differences between the observed and the predicted values provided 
by the model, which are called residuals (Figure 1). The sum of squared residuals needs to 
be minimised to have the best estimate of the model parameters, and it can be done using 
the “method of least squares.” The simplest regression model is the linear one in which the 
relationship between X (known without error) and Y (known with error) is a straight line, 
Y = a + bX, where a is the y-intercept and b is the slope of the line [1].

The relationship between an instrument response and the known concentrations of an analyte 
(standards), which is used as the calibration curve can be explained by a similar regression 
model. To have a robust calibration line (or curve), a series of replicates of each standard (at 
least three replicates of 6–8 expected range of concentration values) are recommended. The 
assumption for this model is that the measurement error is the same and normally distributed 
for each sample. If this assumption is not applicable, an extended or weighted least squares 
analysis will be required. The assumption regarding the measurement error must be verified 
to validate the results found. The distribution properties of the residuals are expected to be 
normal and centred on zero (Kolmogorov–Smirnov test). If the results found cannot support 
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this assumption, the estimated parameters using the model cannot be used, and the model 
needs to be modified, e.g. using a non-linear model which requires more standard concen-
trations compared with having a linear relationship between concentrations and instrument 
response. A linear regression model between calculated standard points and the nominal 
ones used to evaluate the quality of the fit should have a unit slope and a zero intercept. In 
case of linear calibration method, the slope should be statistically different from 0, the inter-
cept should not be statistically different from 0 and the regression coefficient should not be 
statistically different from 1. In case of having a significant non-zero intercept, the accuracy of 
the method must be demonstrated [2].

A standard 0 must be included in the calibration curve because the instrumental signal is sub-
jected to the same kind of error for all points. The signal for the standard zero should not be 
subtracted from the response values for other standards before calculating the equation of the 
regression line because it can cause imprecision during the determination of the concentration 
values for unknown samples [3].

If one of the standard points deviates greatly from the calibration curve (outlier), it can be 
removed from the equation provided that six non-zero standards remain after removing the 
outlier and inclusion of that point can cause the loss of sensitivity or it clearly biases the 
quality control (QC) results, and the back-calculated standard concentrations deviate from its 
nominal value. The poor chromatography can also be considered as a justification for remov-
ing the outlier standard [4].

In order to verify the accuracy and precision of the analytical method during the period of 
sample analysis, quality control (QC) samples are prepared and stored frozen at the same 
temperature as is intended for the storage of the study samples. The calibration curve stan-
dards are prepared by spiking the reference standard solutions to the matrix (e.g. plasma or 
urine) either freshly or by freezing and storage with QC samples [4].

Figure 1. Linear regression model in which the differences between observed and predicted values (residuals) have been 
shown.
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3.2. Weighting in linear regression

When the range in x-values is large, e.g. more than one order of magnitude, the variance of 
each data point might be quite different. However, the simple least squares method considers 
that all the y-values have equal variances. Larger deviations at larger concentrations tend to 
influence the regression line more than smaller deviations associated with smaller concentra-
tions (heteroscedasticity) leading to the inaccuracy in the lower end of the calibration range 
(see the practical example 1). A simple and effective way to counteract this situation is to use 
weighted least squares linear regression (WLSLR) [1]. WLSLR is able to reduce the lower limit 
of quantification (LLOQ) and enables a broader linear calibration range with higher accuracy 
and precision especially for bioanalytical methods.

Two most commonly used regression models, particularly for liquid chromatography tan-
dem mass spectrometry (LC-MS/MS) calibration curves, are linear and quadratic regres-
sion models using non-weighted or weighted least squares regression algorithm. To select 
the type of calibration curve and weighting, “Test and Fit” strategy is widely used due to 
its simplicity and lack of statistical analysis and causes inaccuracy in the regression model 
based on the limited set of test results. The Food and Drug Administration (FDA) guideline 
suggests that “the simplest model that adequately describes the concentration-response 
relationship should be used and selection of weighting and use of a complex regression 
equation should be justified” [5]. However, other experts suggested that a weighting should 
be used if homoscedasticity was not met for the analytical data. By neglecting the weight-
ing for analysing data with heteroscedastic distribution, a precision loss as big as one order 
of magnitude in the low concentration region of the calibration curve could happen [4].

For most immunoassay methods, the response is a non-linear function of the analyte concen-
tration, and the standard deviations (SD) of the calculated concentrations are not a constant 
function of the mean response; therefore, a weighted, non-linear least squares method is gen-
erally recommended for fitting dose-response data. The nonevidence-based weights (e.g. 1/Y 
or 1/X) are not recommended without assessment of the response-error relationship. A refer-
ence model for immunoassay data employs the four-parameter logistic (4PL) equation to fit 
the concentration-response relationship and a power-of-the-mean (POM) equation to fit the 
response-error relationship [6].

3.3. Correlation coefficient

Linearity of the calibration curve is usually expressed through the coefficient of correlation, r, 
or coefficient of determination, r2. A correlation coefficient close to unity (r = 1) is considered 
by some authors’ sufficient evidence to conclude that the calibration curve is linear. However, 
r is not an appropriate measure for the linearity. The FDA guidance for validation of ana-
lytical procedures [5] recommends that the r should be submitted when evaluating a linear 
relationship and that the linearity should be evaluated by appropriate statistical methods, e.g. 
analysis of variance (ANOVA). This guidance does not suggest that the numerical value of r 
can be used as a degree of deviation from linearity.

Other mathematical measures, including slope standard relative deviation or goodness of 
fit, can be used to evaluate the linearity [3]. Using residual plots is a simple way to check the 
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linearity. The residuals are expected to be normally distributed for a linear model, so a plot 
of them on a normal probability graph may be useful. Any curvature suggests a lack of fit 
(LOF) due to a non-linear effect. A segmented pattern indicates heteroscedasticity in data, so 
weighted regression model should be used to find the straight line for calibration [7].

A clear curved relationship between concentration and response may also have an r value close 
to one. Two statistical tests, including the lack-of-fit and Mandel’s fitting tests, are suitable for 
the validation of the linear calibration model (practical example 2 [8]). A straight-line model 
with r close to 1, but with a lack of fit, can produce significantly less accurate results than its 
curvilinear alternative. A straight-line calibration curve should always be preferred over cur-
vilinear or non-linear calibration models if equivalent results can be obtained and is easier to 
implement [8].

3.4. Slope of the curve and application in matrix effect and detection limit

Slope of the calibration curve can be used to estimate the detection limit of the assay [9]. Three 
times the standard deviation value of the response corresponding to the blank according to 
Eq. (1), obtained for seven determinations, divided by the slope of the calibration line (note 
that we are calculating the standard deviation of the concentration corresponding to the blank 
equation, and again the imprecision of the value of the slope is not taken into account) [3]:

  LOD = 3.3 ×  ( S  Y   / a)  . (1)

SY denotes the SD of responses, Y, for blanks or around expected LOD (limit of detection) and 
“a” for the slope of a linear calibration line. If the calibration curve is linear, “a” is constant, 
and the estimation of LOD is easy to calculate. However, when the calibration curve is not 
linear, e.g. in enzyme-linked immunosorbent assay (ELISA), the definition needs to be modi-
fied. In the case of ELISA, when there is a semilogarithmic calibration curve over a wide range 
of concentrations, the detection limit is calculated using a differential coefficient which is 
obtained using a computer programme [9].

It is assumed that a validated analytical method should have constant slope over the period 
of sample analysis. Variation in the slope might be due to the laboratory errors during sample 
preparations, change in the internal standard (IS) of working solution concentrations between 
preparations, instrument variations such as changes in mass spectrum (MS) calibrations, MS 
signal cross contributions between analyte and IS and matrix effect (ME) [10]. Although there 
is no criteria in the international guidelines to report the slope, monitoring the slope can pro-
vide valuable information regarding the quality of the sample analysis.

ME can also affect the slope of the calibration curve. Coeluting of the matrix components 
escaped during extraction may reduce the signal intensity and affect the accuracy and pre-
cision of the MS-based assays. The phenomenon is called ion suppression, and it has been 
shown that the electrospray ionisation responses of organic bases decrease with an increase 
in concentrations of other organic bases present in the matrix. The ME is especially depen-
dent on the degree of sample clean-up and chromatographic separation of the analyte. When 
developing high-throughput assays using a short run time, a careful assessment of the ME 
and ion suppression is necessary [11].
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3.5. Internal standard (IS)

IS is a chemical substance that is added in equal amounts to all samples, and it changes the 
way that calibration curve is prepared. Instead of analyte response, the ratio of the analyte 
to the IS signal versus the analyte concentration is plotted. The benefits of adding the IS are 
to correct or compensate analyte losses during sample preparation including transfer loss, 
adsorption loss, evaporation loss and variation in injection volume and in MS response due to 
ion suppression or enhancement (ME).

The IS must have similar physicochemical properties and show similar behaviour to the ana-
lyte when extracted or run through the analytical column or detection in the analytical system. 
An external standard also behaves similarly with the analyte, but it is run alone at different 
concentrations, so a standard curve can be generated. External standards do not correct for 
losses that may occur during preparation of the sample. Using IS is usually more effective due 
to lower measurement uncertainty and therefore is more common in analytical chemistry [12].

Two common types of ISs are used: structural analogues and stable isotope-labelled (SIL) ISs 
or isotope dilution mass spectrometry (IDMS). SIL ISs are more effective. To reduce the inter-
ferences between IS and analyte, SIL IS molecular weight is preferred to be ideally 4 or 5 Da 
higher than that of the analyte. Labelled SIL ISs with 13C and/or 15N are usually superior to 
those labelled with deuterium (2H, D or d) in terms of performance; however, the synthesis of 
deuterated ISs is easier and cheaper. The location of stable isotope atoms should be in a way 
that deuterium-hydrogen exchange is minimised during sample preparation.

A structural analogue of the analyte can be used if SIL ISs are not available or expensive. 
In this case, the IS should preferably have key structure and functionalities (e.g. –COOH,  
–SO2, NH2, halogen and heteroatoms) of the analyte with difference only being C–H moieties 
(length and/or position). Modifications in key chemical structure and/or functionalities cause 
significant differences in ionisation pattern and even extraction recovery. The IS should not 
be similar or converted to any in vivo biotransformed products of the analyte (e.g. hydroxyl-
ated or N-dealkylation metabolites). An appropriate structural analogue IS can be selected 
from the same therapeutic class as the analyte or by key chemical structure and preferably a 
compound that is not very commonly prescribed because those compounds may be present in 
pooled blank plasmas used for preparation of the calibrators and QCs. Other parameters for 
choosing a right structure analogue IS are physicochemical properties, such as log D (hydro-
phobicity), pKa and water solubility. For selection of the IS, it may be difficult to have a com-
pound to track the analyte of interest in all the three distinctive stages of LC-MS bioanalysis, 
sample preparation (extraction), chromatographic separation and mass spectrometric detec-
tion. The IS should be chosen depending on which step is more critical. For example, when 
the extracts of samples contain coeluting matrix components that cause ion suppression, then 
tracking the analyte during MS detection to avoid or minimise ME becomes more important. 
The choice of IS is also depending on the extraction method. Tracking an analyte during 
a simple protein precipitation procedure would be less stringent than that for liquid-liquid 
extraction (LLE) or solid-phase extraction (SPE) method [13].

It is possible to develop an assay without using any IS, for example, in early drug discovery 
stage or when clean extracts are used. In this case, ECHO peak technique can be used where 
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the analyte is used as its own IS. In this method, after the injection of the sample contain-
ing the analyte of interest, a standard solution is also injected, which result in two peaks for 
the analyte, one from the sample and the other from the standard solution with constant 
concentration (an echo peak). By using their response ratio for quantitation, the ME might 
be compensated for because the two peaks are affected by the coeluted matrix components 
similarly [13].

There is no general rule for choosing the IS concentrations. However, the accuracy and precision 
of the method may be affected if an inappropriate IS concentration is used. As shown in practical 
example 3, reducing the concentration of IS can lead to the increasingly non-linear calibration 
curve due to chemical impurity in the reference standard or because of isotope interferences.

When choosing the IS and its concentration, the magnitude of the cross signal contribution 
between the analyte and IS should be considered. The IS interference signal due to its impu-
rity or isotope interferences should be equal or less than 20% of the LLOQ response and 
5% of the IS response for IS-to-analyte and analyte-to-IS contributions, respectively [14]. The 
minimum IS concentration required (CIS-Min) and the maximum IS concentration allowed 
(CIS-Max) can be calculated using Eqs. (2 and 3):

  CIS-Min = m × ULOQ / 5 . (2)

  CIS-Max = 20 × LLOQ / n . (3)

where m and n represent the % of cross signal contributions from analyte to IS and IS to ana-
lyte, respectively. As an example, if the cross signal contribution from analyte to IS is 2.5%, the 
minimum IS concentration calculated accordingly is 50% of the ULOQ. A high IS concentra-
tion might be useful in reducing a systemic error in the analysis of unknown samples. If the IS 
coelutes more closely to the analyte, it will be more effective in minimising ME.

In some cases, the analyte signal might be suppressed by the coeluting IS signal, and therefore 
the IS concentration must be kept low to maintain a low detection limit. However, it might be 
required to increase the IS concentration when the analyte suppresses the IS signal.

IS should be added as early as possible to compensate for the variabilities during sample 
preparation and analysis; however, if the IS structure is not very close to the analyte, it can 
be used to reduce the variabilities due to the ion suppression or enhancement only and not 
sample extraction [13].

3.6. Linearity when no analyte-free matrix exists

For making calibrators and QCs, an analyte-free matrix is required. The presence of unknown 
amount of the analyte in the matrix makes the quantification difficult, and different approaches 
have been used to overcome the problem including using stripped matrices (filtration on acti-
vated charcoal-dextran or dialysis), substitute matrices (e.g. neat solutions, artificial matrices, 
human serum albumin or 0.9% sodium chloride) or diluted matrices. If the actual matrix is 
used, various methods are followed including, background subtraction, or the standard addi-
tion method [3, 15].
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sample preparation (extraction), chromatographic separation and mass spectrometric detec-
tion. The IS should be chosen depending on which step is more critical. For example, when 
the extracts of samples contain coeluting matrix components that cause ion suppression, then 
tracking the analyte during MS detection to avoid or minimise ME becomes more important. 
The choice of IS is also depending on the extraction method. Tracking an analyte during 
a simple protein precipitation procedure would be less stringent than that for liquid-liquid 
extraction (LLE) or solid-phase extraction (SPE) method [13].

It is possible to develop an assay without using any IS, for example, in early drug discovery 
stage or when clean extracts are used. In this case, ECHO peak technique can be used where 
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the analyte is used as its own IS. In this method, after the injection of the sample contain-
ing the analyte of interest, a standard solution is also injected, which result in two peaks for 
the analyte, one from the sample and the other from the standard solution with constant 
concentration (an echo peak). By using their response ratio for quantitation, the ME might 
be compensated for because the two peaks are affected by the coeluted matrix components 
similarly [13].

There is no general rule for choosing the IS concentrations. However, the accuracy and precision 
of the method may be affected if an inappropriate IS concentration is used. As shown in practical 
example 3, reducing the concentration of IS can lead to the increasingly non-linear calibration 
curve due to chemical impurity in the reference standard or because of isotope interferences.

When choosing the IS and its concentration, the magnitude of the cross signal contribution 
between the analyte and IS should be considered. The IS interference signal due to its impu-
rity or isotope interferences should be equal or less than 20% of the LLOQ response and 
5% of the IS response for IS-to-analyte and analyte-to-IS contributions, respectively [14]. The 
minimum IS concentration required (CIS-Min) and the maximum IS concentration allowed 
(CIS-Max) can be calculated using Eqs. (2 and 3):

  CIS-Min = m × ULOQ / 5 . (2)

  CIS-Max = 20 × LLOQ / n . (3)

where m and n represent the % of cross signal contributions from analyte to IS and IS to ana-
lyte, respectively. As an example, if the cross signal contribution from analyte to IS is 2.5%, the 
minimum IS concentration calculated accordingly is 50% of the ULOQ. A high IS concentra-
tion might be useful in reducing a systemic error in the analysis of unknown samples. If the IS 
coelutes more closely to the analyte, it will be more effective in minimising ME.

In some cases, the analyte signal might be suppressed by the coeluting IS signal, and therefore 
the IS concentration must be kept low to maintain a low detection limit. However, it might be 
required to increase the IS concentration when the analyte suppresses the IS signal.

IS should be added as early as possible to compensate for the variabilities during sample 
preparation and analysis; however, if the IS structure is not very close to the analyte, it can 
be used to reduce the variabilities due to the ion suppression or enhancement only and not 
sample extraction [13].

3.6. Linearity when no analyte-free matrix exists

For making calibrators and QCs, an analyte-free matrix is required. The presence of unknown 
amount of the analyte in the matrix makes the quantification difficult, and different approaches 
have been used to overcome the problem including using stripped matrices (filtration on acti-
vated charcoal-dextran or dialysis), substitute matrices (e.g. neat solutions, artificial matrices, 
human serum albumin or 0.9% sodium chloride) or diluted matrices. If the actual matrix is 
used, various methods are followed including, background subtraction, or the standard addi-
tion method [3, 15].
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One of the approaches for validation of the assay is to determine the accuracy throughout the 
validation step, using the biological matrix containing the endogenous compound to prepare 
the standard curves and all pools of six or more assays of each QC sample [3]. The amount of 
the analyte in the matrix (Cbasal) can be computed using a calibration curve in the substitute 
matrix, and the concentration of the analyte in the QC can be calculated by subtracting the 
Cbasal from the calculated one as follows, Creal = Cfound – Cbasal, in which Cfound is the concentration 
of the analyte in the QCs calculated against a calibration curve in the substitute matrix and 
Creal is the corrected concentration [3]. When using this approach, the LLOQ of the method 
cannot be smaller than the endogenous concentrations of the analyte in the matrix, and there-
fore a lot of blank matrices need to be screened to find the suitable one.

Alternatively, the endogenous concentration of the analyte in the matrix can be subtracted from 
the added concentrations and uses the subtracted concentrations to build the calibration curve. 
Using the actual biological matrix for making the calibrators and QCs reduces the recovery and 
matrix effects between samples and calibrators. Again, the limitation of this method is that the 
increase in background peak area after spiking with standards has to be at least 15–20% of the 
background peak area, and the LLOQ is limited by the endogenous background concentration 
even if much lower concentrations can be detected by the method. Another difficulty is when 
multiple analytes with different endogenous compounds need to be quantified [15].

Alternatively, the background concentration in the blank matrices can be lowered by dilution 
of the blank matrices before spiking with standards. However, by diluting the matrix, the 
composition of the matrices in the study samples versus calibration curve is different leading 
to different recoveries of the analytes. Therefore, the extraction recoveries of analytes between 
the matrix and diluted matrix should be determined before using this method [15].

3.6.1. Surrogate matrices

Surrogate matrices can vary widely from a simplest form, mobile-phase solvents (neat) or 
pure water to a synthetic polymer-based solution. Some biological matrices, e.g. cerebrospi-
nal fluid or tears, are difficult to obtain. The surrogate matrix should simulate the authentic 
matrix in terms of composition, salt content, analyte solubility, recovery and ME. For exam-
ple, phosphate-buffered saline (PBS) or bovine serum albumin (BSA) in PBS (20–80 g/L) has 
the similar protein and ionic strength as human plasma.

To use neat solutions as surrogate matrices, extraction recovery and ME are required to be com 
parable with the original matrix. For example, thromboxane B2 and 12(S)-hydroxyeicosatetrae- 
noic acid were quantified in human serum using mixture of water/methanol/acetonitrile 
(80:10:10, v/v/v) as a surrogate matrix, and the ME and recoveries of the analytes were dem-
onstrated to be comparable.

3.6.2. Stripped matrices

Biological matrices can be stripped from particular endogenous components to generate ana-
lyte-free surrogate matrices. Adding activated charcoal, for example, can adsorb and remove 
the analyte from the matrix, but the charcoal must effectively remove from the matrix before 

Calibration and Validation of Analytical Methods - A Sampling of Current Approaches116

spiking the analyte. Some analytes, e.g. homocysteine, cannot be removed by the charcoal and 
also the composition of the matrix may change or cause batch-to-batch variation after adding 
the charcoal leading to the altered analyte recovery and ME. Some light-sensitive analytes 
can be decomposed by heat or exposing to the light and therefore removed from the matrix.

3.6.3. Method of standard addition

In the standard addition method, every study sample is divided into aliquots of equal vol-
umes, and the aliquots are spiked with known and varying amounts of the analyte to build the 
calibration curve. The sample concentration is then calculated as the negative x-intercept of the 
calibration line. This method is very accurate because it allows direct quantitation of endog-
enous analytes without manual subtraction of background peak areas. The disadvantage of 
the method is that it requires a large amount of sample and is very time-consuming and labour 
intensive. Examples of using this method when the analyte-free matrices are not available 
include measuring abscisic acid, a phytohormone from plant leaves and the emission of poly-
cyclic aromatic hydrocarbons from petroleum refineries. Standard addition can also be used 
when some matrix components produce MS signals that interfere with the analytes of interest.

We have used this method by some modifications to measure homocysteine and pyridoxal 
5-phosphate in samples of human serum and whole blood, respectively [16, 17]. The matrix 
was first spiked with different concentrations of the analytes, and the endogenous concen-
trations of the analytes were estimated using the negative x-intercept of the calibration line. 
Then, the endogenous concentrations were added to the spiked concentrations, and new cali-
bration curves with real concentrations were constructed (practical example 4). QCs were pre-
pared in both actual and surrogate matrices, and the sample volume reduced to only 20 μL to 
minimise the matrix effect.

3.7. Validation

All the developed analytical methods need to be validated to make sure that each mea-
surement of the content of the analyte in the sample in routine analysis is close to the true 
values [7]. There are international guidelines for validation of the analytical methods includ-
ing FDA [6], European Medicines Agency (EMA) [14], International Union of the Pure and 
Applied Chemistry (IUPAC) [18] and Association of Official Analytical Chemists (AOAC) 
International. The major parameters need to be validated including linearity, accuracy, preci-
sion, specificity, selectivity, sensitivity, ME and stability testing.

3.7.1. Selectivity and specificity

Selectivity is the ability of a method to determine a particular analyte in a complex matrix 
without interference from other ingredients of the matrix. Specificity, however, is the ultimate 
in selectivity, and it means that no interference is expected to occur, but these two terms are 
used interchangeably in the literature. If a method has specificity for an analyte, it means that 
either you have it or you do not. Selectivity can be graded as low, high, partial, good or bad, 
but the selectivity refers to 100% selectivity (or 0% interference) [19].
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One of the approaches for validation of the assay is to determine the accuracy throughout the 
validation step, using the biological matrix containing the endogenous compound to prepare 
the standard curves and all pools of six or more assays of each QC sample [3]. The amount of 
the analyte in the matrix (Cbasal) can be computed using a calibration curve in the substitute 
matrix, and the concentration of the analyte in the QC can be calculated by subtracting the 
Cbasal from the calculated one as follows, Creal = Cfound – Cbasal, in which Cfound is the concentration 
of the analyte in the QCs calculated against a calibration curve in the substitute matrix and 
Creal is the corrected concentration [3]. When using this approach, the LLOQ of the method 
cannot be smaller than the endogenous concentrations of the analyte in the matrix, and there-
fore a lot of blank matrices need to be screened to find the suitable one.

Alternatively, the endogenous concentration of the analyte in the matrix can be subtracted from 
the added concentrations and uses the subtracted concentrations to build the calibration curve. 
Using the actual biological matrix for making the calibrators and QCs reduces the recovery and 
matrix effects between samples and calibrators. Again, the limitation of this method is that the 
increase in background peak area after spiking with standards has to be at least 15–20% of the 
background peak area, and the LLOQ is limited by the endogenous background concentration 
even if much lower concentrations can be detected by the method. Another difficulty is when 
multiple analytes with different endogenous compounds need to be quantified [15].

Alternatively, the background concentration in the blank matrices can be lowered by dilution 
of the blank matrices before spiking with standards. However, by diluting the matrix, the 
composition of the matrices in the study samples versus calibration curve is different leading 
to different recoveries of the analytes. Therefore, the extraction recoveries of analytes between 
the matrix and diluted matrix should be determined before using this method [15].

3.6.1. Surrogate matrices

Surrogate matrices can vary widely from a simplest form, mobile-phase solvents (neat) or 
pure water to a synthetic polymer-based solution. Some biological matrices, e.g. cerebrospi-
nal fluid or tears, are difficult to obtain. The surrogate matrix should simulate the authentic 
matrix in terms of composition, salt content, analyte solubility, recovery and ME. For exam-
ple, phosphate-buffered saline (PBS) or bovine serum albumin (BSA) in PBS (20–80 g/L) has 
the similar protein and ionic strength as human plasma.

To use neat solutions as surrogate matrices, extraction recovery and ME are required to be com 
parable with the original matrix. For example, thromboxane B2 and 12(S)-hydroxyeicosatetrae- 
noic acid were quantified in human serum using mixture of water/methanol/acetonitrile 
(80:10:10, v/v/v) as a surrogate matrix, and the ME and recoveries of the analytes were dem-
onstrated to be comparable.

3.6.2. Stripped matrices

Biological matrices can be stripped from particular endogenous components to generate ana-
lyte-free surrogate matrices. Adding activated charcoal, for example, can adsorb and remove 
the analyte from the matrix, but the charcoal must effectively remove from the matrix before 
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spiking the analyte. Some analytes, e.g. homocysteine, cannot be removed by the charcoal and 
also the composition of the matrix may change or cause batch-to-batch variation after adding 
the charcoal leading to the altered analyte recovery and ME. Some light-sensitive analytes 
can be decomposed by heat or exposing to the light and therefore removed from the matrix.

3.6.3. Method of standard addition

In the standard addition method, every study sample is divided into aliquots of equal vol-
umes, and the aliquots are spiked with known and varying amounts of the analyte to build the 
calibration curve. The sample concentration is then calculated as the negative x-intercept of the 
calibration line. This method is very accurate because it allows direct quantitation of endog-
enous analytes without manual subtraction of background peak areas. The disadvantage of 
the method is that it requires a large amount of sample and is very time-consuming and labour 
intensive. Examples of using this method when the analyte-free matrices are not available 
include measuring abscisic acid, a phytohormone from plant leaves and the emission of poly-
cyclic aromatic hydrocarbons from petroleum refineries. Standard addition can also be used 
when some matrix components produce MS signals that interfere with the analytes of interest.

We have used this method by some modifications to measure homocysteine and pyridoxal 
5-phosphate in samples of human serum and whole blood, respectively [16, 17]. The matrix 
was first spiked with different concentrations of the analytes, and the endogenous concen-
trations of the analytes were estimated using the negative x-intercept of the calibration line. 
Then, the endogenous concentrations were added to the spiked concentrations, and new cali-
bration curves with real concentrations were constructed (practical example 4). QCs were pre-
pared in both actual and surrogate matrices, and the sample volume reduced to only 20 μL to 
minimise the matrix effect.

3.7. Validation

All the developed analytical methods need to be validated to make sure that each mea-
surement of the content of the analyte in the sample in routine analysis is close to the true 
values [7]. There are international guidelines for validation of the analytical methods includ-
ing FDA [6], European Medicines Agency (EMA) [14], International Union of the Pure and 
Applied Chemistry (IUPAC) [18] and Association of Official Analytical Chemists (AOAC) 
International. The major parameters need to be validated including linearity, accuracy, preci-
sion, specificity, selectivity, sensitivity, ME and stability testing.

3.7.1. Selectivity and specificity

Selectivity is the ability of a method to determine a particular analyte in a complex matrix 
without interference from other ingredients of the matrix. Specificity, however, is the ultimate 
in selectivity, and it means that no interference is expected to occur, but these two terms are 
used interchangeably in the literature. If a method has specificity for an analyte, it means that 
either you have it or you do not. Selectivity can be graded as low, high, partial, good or bad, 
but the selectivity refers to 100% selectivity (or 0% interference) [19].
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Selectivity can be calculated by comparing the chromatograms obtained after injection of a 
blank sample with and without the analyte or analytical solutions and with and without the 
matrix components.

3.7.2. Accuracy

Accuracy (or trueness or bias) is the most important aspect of validation and should be 
addressed in any analytical method. Accuracy shows the extent of agreement between the 
experimental value (calculated from replicate measurements) and the nominal (reference) 
values. Accuracy is a measurement of the systematic errors affecting the method. To estimate 
the accuracy of a method, the analyte is measured in comparison with a reference material or 
by spiking known amount of analyte in the blank matrix (QC samples) and calculating the 
percentage of recovery from the matrix. It can also be estimated using the comparison of the 
results from the method by a reference method [19].

The guideline for validation of analytical methods by the EMA [14] recommends checking the 
accuracy within run and between runs by analysing a minimum of five samples per four QC 
levels (LLOQ, low, medium and high) as a representative of the whole analytical range in at 
least two different days. The accuracy needs to be reported as the percentage of the nominal 
concentrations and the mean concentration should be within 15% of the nominal values for all 
QC levels, except LLOQ, which should be within 20% of the nominal values [14].

3.7.3. Precision

The term precision is defined as the closeness of repeated individual measurements of an 
analyte under specified conditions. This term is demonstrating the repeatability and repro-
ducibility of the method and expressed as the coefficient of variation (CV). Precision should 
be measured for LLOQ, low, medium and high QC samples in the same run that accuracy is 
testing. The acceptance criteria are also similar to the accuracy evaluation [14, 19].

3.7.4. Uncertainty

To make sure that a method is correctly fit for the purpose of measurement, “uncertainty” of 
the method is required to be evaluated [7].

A detailed list of all possible sources of uncertainty needs to be prepared. A preliminary study 
may identify the most significant sources of uncertainty. Typically, the two sources of uncer-
tainties are Type A or random error and Type B or systematic error. Random error is caused 
by unpredictable variations and gives rise to variations in repeated observations. The random 
error can generally be minimised by increasing the number of observations. Systematic error, 
however, is a type of errors, which remain constant, or its variation is predictable and therefore 
independent of the number of observations. The result should be corrected for all recognised 
significant systematic errors. The steps involved in uncertainty estimation are identification 
of uncertainty sources, quantification of uncertainty components and calculation of combined 
and expanded uncertainty. The main sources of uncertainity are sampling, environmental 
conditions, method validation, instruments, weighting and dilutions, reference materials, 
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chemicals and in high-performance liquid chromatography (HPLC) are repeatability of peak 
area, dilutions factors, reference materials and sampling. Sampling, calibration and repeat-
ability were the most significant sources, which affect combined uncertainty [20].

3.7.5. LOD and LLOQ

The LOD is generally defined as the lowest amount of an analyte in a sample that can be 
detected by a particular analytical method. LOD is usually evaluated using the calculation of 
the signal/noise relationship considering the assumption that data normality, homoscedastic-
ity and independency of residuals are met. The signal-to-noise ratio is determined by compar-
ing the analytical signals at known low concentrations compared with those of blank sample 
up to a concentration that produces a signal equivalent to three times the standard deviation 
of the blank sample [19]. Determination of the LOD is not necessary during the validation, 
because the assay may have high variability in that level.

On the other hand, the lowest concentration of an analyte in a sample, which can be reliably 
quantified is defined as the LLOQ. The analyte signal at the LLOQ level should be at least five 
times the signal of blank sample and the accuracy and precision within 20% of the nominal 
concentrations. The LLOQ should be selected based on the expected concentrations in the 
study. For example, for bioequivalence studies the LLOQ should not be higher than 5% of the 
maximum concentration of the analyte in the samples (Cmax) [14].

3.7.6. Matrix effect (ME)

ME measurement is necessary for validation when the analytical method uses mass spectrom-
etry as the detector due to the ion suppression or induction caused by the matrix components. 
The ME evaluation required spiking the analyte (at low and high concentrations) in six lots 
of matrix obtained from individual donors. First, the ratio of the peak area in the presence of 
matrix to the peak area in the absence of the matrix is calculated to achieve the matrix factor 
(MF), followed by the calculation of the IS normalised MF by dividing the MF of the analyte 
of interests by the MF of the IS. The CV of the IS-normalised MF is calculated from the six lots 
of the matrix and should be ≤15% (practical example 5). In some cases that this method is not 
practical (e.g. online sample preparation), the variability of the response should be assessed 
by analysing at least six lots of matrix spiked at low and high levels. The overall CV should 
not be greater than 15%. The ME is also recommended to be tested in haemolysed, hyperlipi-
daemic matrices or plasma collected from renally or hepatically impaired patients depending 
on the target population of the study [14].

3.7.7. Stability

Stability testing must be planned based on the conditions applied to the samples during pro-
cessing. The stability is tested using spiked concentrations of the analyte to the matrix at low 
and high QC levels (six replicates at two levels are generally sufficient). Short-term stabil-
ity at room temperature (2–8 h depending on the latest period of time required for sample 
 processing), long-term stability at storage temperature (e.g. at −20°C or −80°C), freeze and 

Linearity of Calibration Curves for Analytical Methods: A Review of Criteria for Assessment…
http://dx.doi.org/10.5772/intechopen.72932

119



Selectivity can be calculated by comparing the chromatograms obtained after injection of a 
blank sample with and without the analyte or analytical solutions and with and without the 
matrix components.

3.7.2. Accuracy

Accuracy (or trueness or bias) is the most important aspect of validation and should be 
addressed in any analytical method. Accuracy shows the extent of agreement between the 
experimental value (calculated from replicate measurements) and the nominal (reference) 
values. Accuracy is a measurement of the systematic errors affecting the method. To estimate 
the accuracy of a method, the analyte is measured in comparison with a reference material or 
by spiking known amount of analyte in the blank matrix (QC samples) and calculating the 
percentage of recovery from the matrix. It can also be estimated using the comparison of the 
results from the method by a reference method [19].

The guideline for validation of analytical methods by the EMA [14] recommends checking the 
accuracy within run and between runs by analysing a minimum of five samples per four QC 
levels (LLOQ, low, medium and high) as a representative of the whole analytical range in at 
least two different days. The accuracy needs to be reported as the percentage of the nominal 
concentrations and the mean concentration should be within 15% of the nominal values for all 
QC levels, except LLOQ, which should be within 20% of the nominal values [14].

3.7.3. Precision

The term precision is defined as the closeness of repeated individual measurements of an 
analyte under specified conditions. This term is demonstrating the repeatability and repro-
ducibility of the method and expressed as the coefficient of variation (CV). Precision should 
be measured for LLOQ, low, medium and high QC samples in the same run that accuracy is 
testing. The acceptance criteria are also similar to the accuracy evaluation [14, 19].

3.7.4. Uncertainty

To make sure that a method is correctly fit for the purpose of measurement, “uncertainty” of 
the method is required to be evaluated [7].

A detailed list of all possible sources of uncertainty needs to be prepared. A preliminary study 
may identify the most significant sources of uncertainty. Typically, the two sources of uncer-
tainties are Type A or random error and Type B or systematic error. Random error is caused 
by unpredictable variations and gives rise to variations in repeated observations. The random 
error can generally be minimised by increasing the number of observations. Systematic error, 
however, is a type of errors, which remain constant, or its variation is predictable and therefore 
independent of the number of observations. The result should be corrected for all recognised 
significant systematic errors. The steps involved in uncertainty estimation are identification 
of uncertainty sources, quantification of uncertainty components and calculation of combined 
and expanded uncertainty. The main sources of uncertainity are sampling, environmental 
conditions, method validation, instruments, weighting and dilutions, reference materials, 

Calibration and Validation of Analytical Methods - A Sampling of Current Approaches118

chemicals and in high-performance liquid chromatography (HPLC) are repeatability of peak 
area, dilutions factors, reference materials and sampling. Sampling, calibration and repeat-
ability were the most significant sources, which affect combined uncertainty [20].

3.7.5. LOD and LLOQ

The LOD is generally defined as the lowest amount of an analyte in a sample that can be 
detected by a particular analytical method. LOD is usually evaluated using the calculation of 
the signal/noise relationship considering the assumption that data normality, homoscedastic-
ity and independency of residuals are met. The signal-to-noise ratio is determined by compar-
ing the analytical signals at known low concentrations compared with those of blank sample 
up to a concentration that produces a signal equivalent to three times the standard deviation 
of the blank sample [19]. Determination of the LOD is not necessary during the validation, 
because the assay may have high variability in that level.

On the other hand, the lowest concentration of an analyte in a sample, which can be reliably 
quantified is defined as the LLOQ. The analyte signal at the LLOQ level should be at least five 
times the signal of blank sample and the accuracy and precision within 20% of the nominal 
concentrations. The LLOQ should be selected based on the expected concentrations in the 
study. For example, for bioequivalence studies the LLOQ should not be higher than 5% of the 
maximum concentration of the analyte in the samples (Cmax) [14].

3.7.6. Matrix effect (ME)

ME measurement is necessary for validation when the analytical method uses mass spectrom-
etry as the detector due to the ion suppression or induction caused by the matrix components. 
The ME evaluation required spiking the analyte (at low and high concentrations) in six lots 
of matrix obtained from individual donors. First, the ratio of the peak area in the presence of 
matrix to the peak area in the absence of the matrix is calculated to achieve the matrix factor 
(MF), followed by the calculation of the IS normalised MF by dividing the MF of the analyte 
of interests by the MF of the IS. The CV of the IS-normalised MF is calculated from the six lots 
of the matrix and should be ≤15% (practical example 5). In some cases that this method is not 
practical (e.g. online sample preparation), the variability of the response should be assessed 
by analysing at least six lots of matrix spiked at low and high levels. The overall CV should 
not be greater than 15%. The ME is also recommended to be tested in haemolysed, hyperlipi-
daemic matrices or plasma collected from renally or hepatically impaired patients depending 
on the target population of the study [14].

3.7.7. Stability

Stability testing must be planned based on the conditions applied to the samples during pro-
cessing. The stability is tested using spiked concentrations of the analyte to the matrix at low 
and high QC levels (six replicates at two levels are generally sufficient). Short-term stabil-
ity at room temperature (2–8 h depending on the latest period of time required for sample 
 processing), long-term stability at storage temperature (e.g. at −20°C or −80°C), freeze and 
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Concentration (ng/mL) Area ratio Accuracy

(no weighting)

Accuracy

(1/x weighting)

0 0.002 0 0

6 0.006 125 92.3

18 0.019 104 94.1

37.5 0.400 98.5 94.1

75 0.836 101 99.3

300 3.320 98.5 98.9

480 5.290 97.8 98.5

600 6.890 102 103

Table 1. Increasing the accuracy of the lower end of the calibration curve by applying the weighing.

thaw and stock solution stabilities are the most common tests. The stability of QC samples 
are analysed against a freshly prepared calibration curve, and the calculated concentrations 
should be within 15% of the nominal concentrations. The stability of processed samples in the 
autosampler temperature also determines how long samples can be stored in the autosampler 
without the analyte been degraded [14]. Any other variation during sample processing which 
can potentially affect the stability of the analyte of interest needs to be tested during validation.

4. Practical examples

4.1. Practical example 1: impact of weighting

See Table 1.

4.2. Practical example 2: linearity assessment

In Table 2, it shows that the linear regression model (LRM) must systemically be rejected at the 
95% confidence level (Fcrit,95% = 4.53) for lack-of-fit test and at 99% confidence level (Fcrit,99% = 10.56) 
for Mandel’s fitting test. Thus, despite the fact that r and quality coefficient (QC) are greater 
than 0.997 and lower than 5%, respectively, the linearity of the calibration lines was rejected 
based on the F-tests. So, the r is not a good measure of the linearity assessment. Even with a QC 
value less than 3%, the LRM is rejected at the 95% confidence level (Table 2). Alternatively, the 
residual plots give useful information to validate the chosen regression model.

The residual plot can be used to check if the principle assumptions, i.e. normality of the 
residuals and homoscedasticity, are met when evaluating the goodness of fit of the regres-
sion model. The U-shaped residual plot usually shows that a curvilinear regression model is 
a better fit than an LRM. In order to correct the non-linearity, a quadratic curvilinear function 
(f(x) = a + bx + cx2) can be chosen. The “lack of fit” tests for the quadratic regression model 
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(QRM) are summarised in Table 2. The test for lack of fit indicates that this QRM fits the 
calibration data at 99% confidence level in all cases except one. To check the suitability of the 
order of polynomial regression model, the significance of the second-order coefficient needs 
to be estimated. The P-value on the second-order coefficient, shown in Table 2, is systemically 
smaller than 1%, and therefore a lower order model should not be considered. Moreover, 
residual plots (Figure 2) were constructed for the QRM, and the residuals were randomly scat-
tered within a horizontal band around the centre line. Therefore, the QRM was selected as the 
reference model. It is noted that an increase of the variance is observed at higher concentra-
tions [8].

As a summary, in this example, a linear model with r > 0.997 and QC < 5% but with lack of fit 
(LOF) yielded predicted values for a mid-scale calibration standard that significantly differ 
from the nominal ones. The accuracy was overestimated, while the precision on the results 
was comparable in both LRM and QRM [8].

4.3. Practical example 3: IS concentration and the linearity

The role of IS concentration on the linearity of the calibration curve has been demonstrated by 
Tan et al. [13]. They presented a case in which decreasing concentration of the IS from 100% 

Linear regression model Quadratic regression model

LOF Mandel’s test value QC (%) r LOF P-value on second-order coefficient

11.08 51.46 3.93 0.9982 0.63 0.0000

19.42 56.84 4.23 0.9978 1.58 0.0000

7.13 26.29 3.67 0.9985 0.94 0.0006

6.99 37.73 3.79 0.9984 0.18 0.0002

11.43 58.21 4.03 0.9981 0.31 0.0000

29.91 53.02 3.53 0.9986 4.08 0.0000

49.80 71.07 3.76 0.9984 5.69 0.0000

23.77 73.86 3.19 0.9989 1.66 0.0000

31.95 63.37 3.24 0.9988 3.55 0.0000

7.49 33.50 2.92 0.9991 0.54 0.0003

9.99 55.19 3.95 0.9983 0.15 0.0000

10.71 28.65 4.70 0.9975 1.89 0.0005

25.21 79.60 3.34 0.9987 1.62 0.0000

13.16 35.74 3.37 0.9987 1.93 0.0002

For the quadratic regression model, the F-value of the lack-of-fit test and the P-value for testing significance of the 
second-order coefficient for the quadratic regression model are represented. The significance value at the 95% confidence 
level is underlined (reproduced from Van Loco et al. [8] with permission from Springer-Verlag).

Table 2. The F-value of the lack-of-fit (LOF) test and Mandel’s fitting test is compared with the quality coefficient for 
several linear calibration lines of Cd.
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Concentration (ng/mL) Area ratio Accuracy

(no weighting)

Accuracy

(1/x weighting)

0 0.002 0 0

6 0.006 125 92.3

18 0.019 104 94.1

37.5 0.400 98.5 94.1

75 0.836 101 99.3

300 3.320 98.5 98.9

480 5.290 97.8 98.5

600 6.890 102 103

Table 1. Increasing the accuracy of the lower end of the calibration curve by applying the weighing.

thaw and stock solution stabilities are the most common tests. The stability of QC samples 
are analysed against a freshly prepared calibration curve, and the calculated concentrations 
should be within 15% of the nominal concentrations. The stability of processed samples in the 
autosampler temperature also determines how long samples can be stored in the autosampler 
without the analyte been degraded [14]. Any other variation during sample processing which 
can potentially affect the stability of the analyte of interest needs to be tested during validation.

4. Practical examples
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See Table 1.

4.2. Practical example 2: linearity assessment
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a better fit than an LRM. In order to correct the non-linearity, a quadratic curvilinear function 
(f(x) = a + bx + cx2) can be chosen. The “lack of fit” tests for the quadratic regression model 

Calibration and Validation of Analytical Methods - A Sampling of Current Approaches120

(QRM) are summarised in Table 2. The test for lack of fit indicates that this QRM fits the 
calibration data at 99% confidence level in all cases except one. To check the suitability of the 
order of polynomial regression model, the significance of the second-order coefficient needs 
to be estimated. The P-value on the second-order coefficient, shown in Table 2, is systemically 
smaller than 1%, and therefore a lower order model should not be considered. Moreover, 
residual plots (Figure 2) were constructed for the QRM, and the residuals were randomly scat-
tered within a horizontal band around the centre line. Therefore, the QRM was selected as the 
reference model. It is noted that an increase of the variance is observed at higher concentra-
tions [8].

As a summary, in this example, a linear model with r > 0.997 and QC < 5% but with lack of fit 
(LOF) yielded predicted values for a mid-scale calibration standard that significantly differ 
from the nominal ones. The accuracy was overestimated, while the precision on the results 
was comparable in both LRM and QRM [8].

4.3. Practical example 3: IS concentration and the linearity

The role of IS concentration on the linearity of the calibration curve has been demonstrated by 
Tan et al. [13]. They presented a case in which decreasing concentration of the IS from 100% 

Linear regression model Quadratic regression model

LOF Mandel’s test value QC (%) r LOF P-value on second-order coefficient

11.08 51.46 3.93 0.9982 0.63 0.0000

19.42 56.84 4.23 0.9978 1.58 0.0000

7.13 26.29 3.67 0.9985 0.94 0.0006

6.99 37.73 3.79 0.9984 0.18 0.0002

11.43 58.21 4.03 0.9981 0.31 0.0000

29.91 53.02 3.53 0.9986 4.08 0.0000

49.80 71.07 3.76 0.9984 5.69 0.0000

23.77 73.86 3.19 0.9989 1.66 0.0000

31.95 63.37 3.24 0.9988 3.55 0.0000

7.49 33.50 2.92 0.9991 0.54 0.0003

9.99 55.19 3.95 0.9983 0.15 0.0000

10.71 28.65 4.70 0.9975 1.89 0.0005

25.21 79.60 3.34 0.9987 1.62 0.0000

13.16 35.74 3.37 0.9987 1.93 0.0002

For the quadratic regression model, the F-value of the lack-of-fit test and the P-value for testing significance of the 
second-order coefficient for the quadratic regression model are represented. The significance value at the 95% confidence 
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to 5% ULOQ made the calibration curve non-linear. In that case, the cross-contribution from 
the analyte to the IS is equivalent to 5% of the concentration of the analyte. The cross-signal 
contribution from the analyte to the IS is either due to the isotope interference or chemical 
impurity in reference standard [13].

4.4. Practical example 4: method of standard addition for homocysteine calibration 
curve

Table 3 shows the calculated calibration curve data for homocysteine standard solutions 
spiked into a pooled human serum.

To estimate the endogenous concentrations of homocysteine in the sample of pooled human 
serum, the negative x-intercept of the curve is calculated:

  x =   − 0.262 _______ 0.000598   = 438 ng / mL . (4)

Figure 2. Plots of residuals for (a) the linear regression model (LRM) and (b) the quadratic regression model (QRM) 
versus predicted values (adopted from Van Loco et al. [8] with permission from Springer-Verlag).

Spiked concentrations (ng/mL) Calculated concentration (ng/mL)

0 N/A

50 30.87

600 632.76

1100 1107.05

1600 1652.48

2100 2167.02

2600 2584.02

3100 3031.75

Regression equation: y = 0.000598 x + 0.262.

Table 3. Homocysteine calibration curve: the x-axis is representing the spiked concentrations.
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Then, the nominated concentration is changed to the spiked + endogenous concentrations, 
and a new calibration is constructed (Table 4).

Now, by comparing the detector response for the unknown samples with the second calibra-
tion curve, the unknown sample concentrations can be calculated.

4.5. Practical example 5: ME calculations

Table 5 is representing the analyte peak area spiked in six different lots of human plasma. The 
MF has been calculated by dividing the area of analyte (or IS) in each matrix to the average peak 
area of the analyte (or IS) in the pure solutions. The IS-normalised MF is the ratio of the MF for the 

Spiked + endogenous concentration (ng/mL) Calculated concentration (ng/mL)

0 + 438 = 438 381.51

50 + 438 = 488 469.28

600 + 438 = 1038 1071.34

1100 + 438 = 1538 1545.77

1600 + 438 = 2038 2091.35

2100 + 438 = 2538 2606.98

2600 + 438 = 3038 3023.15

3100 + 438 = 3538 3471.01

Regression equation: y = 0.000598 x – 0.000762.

Table 4. Homocysteine calibration curve: The x-axis is representing the spiked + endogenous concentrations.

Analyte of interest IS IS-normalised MF

Peak area Matrix 
factor

Peak area Matrix 
factor

Spiked Pure (mean of 
three replicates)

Spiked Pure (mean of three 
replicates)

1,095,000 1,210,000 0.905 4,320,000 6,343,333 0.681 1.33

1,050,000 0.868 6,240,000 0.984 0.882

1,110,000 0.917 5,780,000 0.911 1.01

1,120,000 0.926 5,660,000 0.892 1.04

1,100,000 0.909 5,770,000 0.910 0.999

1,130,000 0.934 5,170,000 0.815 1.15

Mean 1.07

SD 0.154

CV% 14.4

Table 5. Calculation of ME.
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analyte to the MF for the IS. The CV% in this example was 14.4%, which is within the acceptance 
limit for the matrix effect by the EMA guideline for validation of bioanalytical methods [14].

5. Key results

• Calibration curve is a regression model between an known concentration of an analyte and 
the response from an instrument enabling the estimation of the concentration of the analyte 
in an unknown sample.

• Weighted least squares linear regression (WLSLR) is necessary when the standard devia-
tions across the standard range are not consistent. Weighting improves the sensitivity and 
accuracy of the lower end of the calibration range.

• Coefficient of correlation is not a suitable measure for the linearity of the calibration curve, 
and the linearity should be evaluated using an appropriate statistical analysis.

• Stable isotope-labelled compounds are the most preferable internal standards. However, 
carefully chosen structural analogues with similar functional groups and physicochemical 
properties can contribute to generation of comparable analytical methods.

• The concentration of the internal standard may affect the linearity of the calibration curve 
due to the cross signal contribution between the analyte and the internal standards.

• When an analyte-free matrix does not exist, the amount of endogenous analyte in the matrix can 
be estimated using the negative x-intercept of the regression equation and adding this value to 
the spiked concentrations of the analyte to calculate the actual concentrations of each standard.

• During validation of an analytical method, selectivity, specificity, accuracy, precision, un-
certainty, LLOQ, matrix effect and stability are the minimum criteria to be evaluated.

Abbreviations

4PL Four-parameter logistic

ANOVA Analysis of variance

BSA Bovine serum albumin

CIS-Max Maximum IS concentration

CIS-Min Minimum IS concentration

CV Coefficient of variation

ELISA Enzyme-linked immunosorbent assay
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FDA Food and Drug Administration
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Abstract

Method validation is a key element in the establishment of reference methods and
within the assessment of a laboratory’s competence in generating dependable analytical
records. Validation has been placed within the context of the procedure, generating
chemical data. Analytical method validation, thinking about the maximum relevant
processes for checking the best parameters of analytical methods, using numerous
relevant overall performance indicators inclusive of selectivity, specificity, accuracy,
precision, linearity, range, limit of detection (LOD), limit of quantification (LOQ), rug-
gedness, and robustness are severely discussed in an effort to prevent their misguided
utilization and ensure scientific correctness and consistency among publications.
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1. Introduction

Analytical method validation is an essential requirement to perform the chemical evaluation
[1–3]. Method validation is a procedure of performing numerous assessments designed to
verify that an analytical test system is suitable for its intended reason and is capable of
providing beneficial and legitimate analytical data [4–8]. A validation examine includes testing
multiple attributes of a method to determine that it may provide useful and valid facts whilst
used robotically [9–11]. To accurately investigate method parameters, the validation test ought
to consist of normal test conditions, which includes product excipients [11–14]. Therefore, a
method validation examine is product-specific.

2. Procedure

2.1. Parameters to be checked for method validation

• Selectivity/Specificity

• Precision
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• Accuracy

• Linearity

• Range

• Stability

• Limit of Detection (LOD) and Limit of Quantitation (LOQ)

2.1.1. Selectivity/specificity

Selectivity of an analytical method is its ability to measure accurately an analyte in the
presence of interferences that may be expected to be present in the sample matrix.

Selectivity is checked by examining chromatographic blanks (from a sample that is known to
contain no analyte) in the expected time window of the analyte peak. And the raw data for
selectivity will be recorded in the raw data in approved formats.

2.1.2. Precision

Precision of a method is the degree of agreement among individual test results when the
procedure is applied repeatedly to multiple samplings.

Precision is measured by injecting a series of standards or analyzing series of samples from
multiple samplings from a homogeneous lot. From the measured standard deviation (SD) and
Mean values, precision as relative standard deviation (% rsd) is calculated.

%rsdorCV ¼ SD
Mean

� 100 (1)

The raw data for precision will be recorded in the approved format and the acceptance criteria
for precision will be given in the respective study plan or amendment to the study plan.

OR

Precision can be also calculated by using Horwitz equation:

The acceptable percent of relative standard deviation results for precision may be based on the
Horwitz equation, an exponential relationship between the among-laboratory relative stan-
dard deviation (RSDR) and Concentration (C): [15]

%RSDR ¼ 2 1�0:5logCð Þ (2)

For estimation of repeatability (RSDr), is modified to:

%RSDr ¼ %RSDR � 0:67 (3)

The Horwitz curve has been empirically derived and has been proven to be more or less
independent of analyte, matrix and method of evaluation over the concentration range C = 1
(100%) to C = 10�9 by the evaluation of vast numbers of method precision studies. The
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modified Horwitz values for repeatability CV given under may be used for guidance. If
measured repeatability is outside those values, suggested explanation must be submitted for
consideration. The details were presented in Table 1.

2.1.3. Accuracy

The accuracy of an analytical method is the degree of agreement of test results generated by
the method to the true value.

Accuracy is measured by spiking the sample matrix of interest with a known concentration of
analyte standard and analyzing the sample using the “method being validated.” The proce-
dure and calculation for Accuracy (as% recovery) will be varied from matrix to matrix and it
will be given in respective study plan or amendment to the study plan.

2.1.4. Linearity

The linearity of an analytical method is its capability to elicit check consequences which might
be at once, or with the aid of well described mathematical adjustments, proportional to the
concentration of analytes in within a given range.

Linearity is determined by injecting a series of standards of stock solution/diluted stock
solution using the solvent/mobile phase, at a minimum of five different concentrations in the
range of 50–150% of the expected working range. The linearity graph will be plotted manually/
using Microsoft Excel or software of the computer (Concentration vs. Peak Area Response) and
which will be attached to respective study files.

2.1.5. Range

The range of an analytical method is the interval between the upper and lower levels that have
been demonstrated to be determined with precision, accuracy and linearity using the set
method. This range will be the concentration range in which the Linearity test is done.

Percent of analyte Proposed acceptable % RSDr

(Horwitz value � 0.67)

100.00 1.340

50.00 1.490

20.00 1.710

10.00 1.900

5.00 2.100

2.00 2.410

1.00 2.680

0.25 3.300

Note: The unmodified Horwitz equation is used as a criterion of acceptability for methods collaboratively tested by
CIPAC.

Table 1. Details of Horwitz values.
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2.1.6. Stability

Many analytes readily decompose prior to chromatography investigations, for example during
the preparation of the sample solutions, during extraction, clean-up, phase transfer, and
during storage of prepared vials. Under these circumstances, method development should
investigate the stability of the analyte. Accuracy test takes care of stability. It is required to
mention in the method how long a sample after extraction can be stored before final analysis,
based on the duration taken for accuracy test.

2.1.7. Limit of detection and limit of quantitation

The term LOD is defined as the lowest concentration at which the instrument is able to detect
but not quantify and the noise to signal ratio for LOD should be 1:3. The term LOQ is defined
as the lowest concentration at which the instrument is able to detect and quantify. The noise to
signal ratio for LOQ should be 1:10.

Determination of Limit of Detection (LOD) and Limit of Quantitation (LOQ) from Detector
Linearity experiments (applicable to only instrument sensitivity).

LOD and LOQ values are calculated manually by taking Noise to signal ratio of a lowest/
known concentration of linearity samples and it will be expressed in μg/ml or ppm. To
calculate in %, values of LOD and LOQ will be multiplied by 100/lowest or known concentra-
tion of test item (mg/L) taken for analysis of that particular a.i. or impurity analysis.

Calculations of LOD and LOQ values for instrument sensitivity:

LOD mg=Lð Þ ¼ 3� Noise
Signal

� Lowest concentration of the linearity samples

LOQ mg=Lð Þ ¼ 10� Noise
Signal

� Lowest concentration of the linearity samples

Calculations of LOD and LOQ values for method:

LOD %ð Þ ¼ LOD mg=Lð Þ
Test item conc:used for quantification

� 100

LOQ %ð Þ ¼ LOD mg=Lð Þ
Test item conc:used for quantification

� 100

OR

2.1.8. Mathematical derivations

2.1.8.1. Determination of limit of detection (LOD) and limit of quantitation (LOQ)

Prepare a series of standard solutions (minimum five concentrations covering working con-
centrations used for routine analysis) and analyze each solution minimum twice and record
the instruments response.
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• Using the concentrations and corresponding instrument response, LOD and LOQ can be
calculated as follows:

Let the linear regression equation be Y ¼ aþ bX.

Where, X and Y are the variables (data of two parameters). Generally, X is called the indepen-
dent variable and Y, the dependent variable.

Take concentration on X-axis and instrument response on Y-axis.

“a” and “b” are the regression constants. Further, “a” is known as the intercept and “b,” the
slope of the line.

Let (X1, Y1), (X2, Y2), (X3, Y3)…(Xn, Yn) be the set of values required to be fit in the linear
equation.

a. Method of arriving at “a” and “b” y

i. Tabulate as given below:

X1 Y1

X2 Y2

. .

. .

. .

Xn Yn

____________________________________

Mean, ¼ X ¼ ΣX=n Y ¼ ΣX=n
____________________________________

ii. Calculate the following parameters:

Σxx ¼ Σ X� X
� �2 ¼ ΣX2 � ΣXð Þ2=n

Σyy ¼ Σ Y � Y
� �2 ¼ ΣY2 � ΣYð Þ2=n

Σxy ¼ ΣXY � ΣXð Þ ΣYð Þ=n

iii. Calculate the slope “b,” and intercept “a” as given below:

b ¼
P

xyP
xx

a ¼ Y � bX

b. Method of calculation r (correlation coefficient)
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r ¼
P

xyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
xx:

P
yy

p

c. Method of calculation standard deviation for “a” and “b”

The standard deviation of the individual deviations of measured values in Y, above and below
the linear line (fitted line) is:

Sy:x ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
yy� P

xyð Þ2=P xx
n o� �

n� 2

vuut

From this, the standard deviation for “a” and “b” are calculated.

Standard deviation

for “a,” represented = Sy:x
ffiffiffiffiffiffiffiffiffiffiffiffiP

X2

n
P

xx

r

as Sa

Standard deviation.

For “b,” represented = Sy:x
ffiffiffiffiffiffiffiffiffiffiffiffi

1
n
P

xx

q

as Sb

2.1.8.2. Application of a, b, and Sa to obtain limit of detection and limit of quantitation

When Sa is obtained for a linear calibration line, then it provides a clear information on the
standard deviation of the “Blank” (or Control) response from the instruments.

The LOD and LOQ can be worked out, as given below:

LOD ¼ aj j þ 3Sa
b

LOQ ¼ aj j þ 10Sa
b

Note:

• The above calculations can be programmed in a computer but before every use, the
computer program must be validated using the example given in section

• The above procedure can also be used for obtaining LOD and LOQ of the method from
recovery test results by taking fortified concentration on X-axis and obtained concentra-
tions on Y-axis.
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3. Example

In this example, the linear regression equation is employed to find out the extent of linear
response of an Detector to a reference analytical standard in the concentration range of about
0.2–3.0 ppm.

Each of these working standards is injected thrice (1 μl per injection), and the peak area counts
corresponding to the active ingredient peak are given below.

From the peak areas corresponding to each concentration level, the mean, standard deviation
(SD) and coefficient of variation (%CV) are also calculated. The details were presented in
Table 2.

Fitting the data of concentration of standard solution and mean detector response (peak
area counts) in a linear equation

Let the equation be Y ¼ aþ bX.

Where, Y = Mean peak area counts and X = Concentration of standard solution, μg/ml.

The calculations were presented in Table 3.

Conc. of standard solution (μg/ml) Peak area Mean SD
(n � 1)

%CV

1 2 3

0.1956 32,827 33,299 32,731 32,952 304 0.923

0.4890 87,783 88,480 87,446 87,903 527 0.600

0.9780 176,037 174,675 177,203 175,972 1265 0.719

1.467 246,212 250,786 246,849 247,949 2477 0.999

1.956 319,143 319,615 315,316 318,025 2358 0.741

2.934 415,059 410,773 418,407 414,746 3827 0.923

%CV = SD � 100/Mean: The coefficient of variation (CV) shows that the Injection variation is less than 1%.

Table 2. Calculation details of mean, SD, and %CV.

Sl. no. Y X

1. 32952 0.1956

2. 87903 0.4890

3. 175972 0.9780

4. 247949 1.4670

5. 318025 1.9560

6. 414746 2.9340

Table 3. Calculation details of additional parameters.
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P
Y ¼ 1277547

P
X ¼ 8:0196

P
XY ¼ 2424193:441

Y ¼ 212924:5 X ¼ 1:3366 n ¼ 6P
Y2 ¼ 3:7441177� 1011

P
X2 ¼ 15:820245

Using the above parameters, calculate the following

P
xx ¼ P

X2 � P
Xð Þ2=n

¼ 15:820245� 8:0196ð Þ2=6
¼ 5:101248

P
yy ¼ P

Y2 � P
Yð Þ2=n

¼ 3:7441176� 1011 � 1277547ð Þ2=6
¼ 1:0239070� 1011

P
xy ¼ P

XY� P
Xð Þ P

Yð Þ=n
¼ 2424193:441� 1277547ð Þ 8:0196ð Þ=6
¼ 716624:12

Calculation of a, b, and r

b ¼
P

xyP
xx

¼ 716624:12
5:101248

¼ 140480:16

b ¼
P

xyP
xx

¼ 716624:12
5:101248

¼ 140480:16

a ¼ Y� bX
¼ 212924:5� 140480:16� 1:3366
¼ 25158:718

r ¼
P

xyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
xx �P yy

p

r ¼ 716624:12ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:0239070X1011X5:101248

p ¼ 0:99157

Note: Sometimes r2 is also used to express the goodness of fit.

Calculation of standard deviation for a and b:
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Sy:x ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
yy� P

xyð Þ2=P xx
n o

n� 2

s

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:0239070X1011
� �� 716624:12ð Þ2= 5:101248ð Þ

n o

6� 2

s

¼ 20731:806

The standard deviation for a is calculated as:

Sa ¼ Sy:x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
X2

n
P

xx

s

¼ 20731:806

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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Note: Assay procedures vary from highly exacting analytical determinations to subjective
evaluations of attributes. Therefore different test methods require different validation schemes.

Category I

Analytical methods for quantitation of major excipients and/or active ingredients, and pre-
servatives in finished goods.

Category II

Analytical methods for determination of impurities or degradation compounds in finished
goods. These methods include quantitative assays and limit tests, titrimetric and bacterial
endotoxin tests.

Category III

Analytical methods for determination of performance characteristics, e.g., sterility testing,
dissolution and drug release for pharmaceutical products.

Data Elements Required for Assay Validation.

Details of required validation parameters of assay presented in Table 4.
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4. Conclusions

Analytical validation data playing a fundamental role in pharmaceutical industry, pesticide
industry for releasing the economic batch and long term stability information consequently,
the records must be produced to suited regulatory authority requirements.
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Abstract

Method validation is an important activity for pharmaceutical evaluations to ensure that
analytical methods are suitable for their intended use. With particular focus on active
ingredient and impurities, the implementation of different categories of method valida-
tion are explained for qualitative and quantitative methods. Detailed explanations with
example approaches are provided for the key aspects of method validation, namely
specificity, accuracy, linearity, limits of detection/quantitation, precision, robustness,
and method range. While all of the sections outlined for method validation are generally
applicable for a variety of techniques commonly used in pharmaceutical analysis (i.e.,
UV and HPLC instrumentation), focused attention is provided for examples that have
been implemented using high performance thin layer chromatographic techniques.

Keywords: method validation, pharmaceuticals, HPTLC, assay, active pharmaceutical
ingredient, impurities

1. Introduction

Method Validation (MV) is a development process undertaken to establish, within acceptable
statistical bounds, that an assessment procedure or method consistently yields a “true” result
both in “within laboratory” and “among laboratories” testing. Pharmaceutical product quality
assessments are focused on methods for the active pharmaceutical ingredient (API) and related
impurities. Being able to perform methods of analysis to assess product quality is critical in
law enforcement and regulating commerce. In addition, for new drug products, these quality
determinations are surrogate performance indicators for assuring the safety and efficacy of a
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pharmaceutical product. The safety and efficacy of a pharmaceutical product are established
with a “pivotal lot” production of the product and the characterization of this lot with well
validated methods with acceptable performance characteristics is critical to assure that future
production lots have the same quality characteristics as the “pivotal lot”, thereby assuring they
have equivalent safety and efficacy.

In the United States of America (USA), there are both private and public standards; the private
standards are created through a USA Food and Drug Administration (FDA) approval process
of industry method submissions that can be used for law enforcement, and public standards,
which are promulgated in the monographs of the United States Pharmacopeia (USP) [1], that
may be used in law enforcement or to support commercial agreements. The private standards,
which are not publicly available, are private agreements between the approving government
body and the submitting industry on the methods and standards to be used in law enforce-
ment. The method validation protocols for the establishment of private standards are provided
in the guidance of the “International Conference On Harmonisation Of Technical Require-
ments For Registration Of Pharmaceuticals For Human Use” (ICH) which have been incorpo-
rated into the laws and regulations in the European Union, Japan and the USA; these
procedures are required for the assessments of new drug entities [2]. The method validation
protocols for the establishment of monographs to support public standards are provided in
USP <1225> [3] and ICH Q2 [4]. Both protocols cite the same analytical performance character-
istics and test procedures except that the public standard must be able to be applied to all
legally marketed products containing the specific API whereas the private standard applies
only to the approved API in the specific product.

The analytical performance characteristics which must be assessed in both the ICH and USP
are Accuracy, Precision (both Repeatability and Intermediate in ICH), and Specificity. Detec-
tion Limit, Quantitation Limit, Linearity and Range depending on which attributes are to be
assessed. The USP presents the characteristics as noted below [3]:

“Category I — Analytical procedures for quantitation of major components of bulk drug
substances or active ingredients (including preservatives) in finished pharmaceutical products.

Category II — Analytical procedures for determination of impurities in bulk drug substances
or degradation compounds in finished pharmaceutical products. These procedures include
quantitative assays and limit tests.

Category III — Analytical procedures for determination of performance characteristics (e.g.,
dissolution, drug release, etc.).

Category IV — Identification tests.”

These can be categorized further into Assay procedures for Category I, Category II, impurity
determinations, and Category III (dissolution and drug release are different procedures for
preparing a solution of the API), all performance characteristics except Detection Limit must
be validated. For the Category II limit tests only the Specificity and Detection Limits must be
validated and for Category IV, Identification Tests, only the Specificity needs to be validated.
The following sections will provide approaches toward the various aspects of method
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validation. Although the approaches are generally applicable to common techniques used in
pharmaceutical analysis (such UV-VIS and HPLC quantifications), particular emphasis will be
placed on high performance thin layer chromatography (HPTLC) techniques.

2. Specificity

Specificity is the ability of a method to distinguish an analyte from all substances that are present
or likely to be present in test samples [3, 4]. When possible, these substances should include
future degradation products and other ingredients (i.e., excipients). An analytical procedure is
specific when placebo and impurity spots do not overlap partially with and are not buried under
the analyte spot. In addition, the calculated amount of analyte does not depend on the quantity
of other substances.

Various approaches are possible when evaluating method specificity [5–8]. Ideal demonstra-
tion of specificity for an HPTLC analytical procedure requires chromatographing simulta-
neously three types of samples: sample type 1 is the pure analyte or its reference standard,
sample type 2 is the analyte mixed with a representative blank and all likely impurities, and
sample type 3 is the representative blank mixed with all likely impurities. Likely impurities
include degradation products, reagents, intermediates, excipients, side products, and analyte
isomers. The mixtures can be created by spiking test samples (API substances or finished
products) or placebos with likely impurities.

In practice, the unavailability of one or more of these types of samples can pose a significant
challenge. In some cases, it is often difficult to know all likely impurities. There can be several
sample deficiency scenarios. If the pure analyte or its reference standard is not available,
demonstration of specificity can be quite challenging if not impossible. If a representative blank
is available, but some or all likely impurities are missing, the typical test sample is subjected to
stress testing environments. It should be noted however that stress testing is unlikely to
produce some analyte isomers, reagents, intermediates and side products. If a representative
blank is unavailable, but some likely impurities are available, spiking the typical test sample
with impurities can show that increasing impurities will not change analyte signal. In addition,
efforts should be made (perhaps by contacting the manufacturer), whenever possible, to create
a representative blank even if it’s not exactly in the same dosage form as the test sample. If
neither a representative blank nor impurity standards are available, the typical test sample is
subjected to stress testing to alleviate some of the deficiencies. Once again, the limitations of
stress testing should be acknowledged because it may not produce all likely impurities, it may
not account for impurities that are completely buried under the analyte signal, and it may not
indicate whether some excipients or impurities can react with the analyte.

In general, stress testing, impurity spiking, and peak-purity analysis are the common tools
used to address certain sample deficiencies. To demonstrate method specificity, validation
reports typically discuss several measures of performance. One measure of specificity is reso-
lution of the analyte spot relative to the closest non-analyte spot. For HPTLC, the resolution
should be a least 1 [5].
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Analyte peak purity is another measure of specificity that is typically reported. Often, analyte
peak purity in the analyte reference standard is compared to analyte peak purity in the other
test samples mentioned above. The analysis is performed by comparison of peak spectra at the
start, apex, and end of the analyte peak. Some authors use correlation coefficients [9] as a
measure of peak purity, and others rely on software algorithms that may involve Matrix
Algebra. It should be noted that while peak purity can detect the presence of some impurities
in the analyte peak, it does have some limitations. For example, peak-purity analysis does not
account for missing impurities that could overlap with the analyte peak, and it does not
account for impurities having a spectrum that is similar to that of the analyte. In addition,
peak-purity analysis is not applicable for detectors that do not register the entire analyte
spectrum for each time point.

A third measure of peak purity is an overlay of chromatograms. This measure is especially
useful for showing the analyte peak stability during impurity spiking or stress testing. For
example, the chromatograms of a finished pharmaceutical product, before and after acceler-
ated aging, can be overlaid to support method specificity.

3. Accuracy

A succinct definition of accuracy is “nearness to truth”. The ICH guidelines [4] provide the
following definition:

“The accuracy of an analytical procedure expresses the closeness of agreement between the
value which is accepted either as a conventional true value or an accepted reference value and
the value found.”

In other words, accuracy of a method represents the agreement between an expected value and
the value generated by the candidate method (the method value). Therefore, accuracy deter-
mination involves determining the expected value, finding the method value and calculating
the agreement between the two values [3, 4].

In pharmaceutical testing, accuracy is mainly relevant to quantitative methods, such as assay,
content uniformity, dissolution, and impurity quantitation. To determine the accuracy of a
quantitative HPTLC method, there are typically four major options, which differ mainly on
how the expected value is determined. Unfortunately, the most preferable options are not
always feasible due to the non-availability of appropriate reference standards or placebo
samples. For each option, we will explain how to determine the expected value and the
method value. Agreement between the two values will be addressed later.

3.1. Options for determining the expected value and the method value

3.1.1. Option 1 (using a certified reference standard)

The first option involves using a representative, certified reference standard. We say represen-
tative because the certified reference standard needs to have a chemical matrix that is the same
as the matrix of a typical unknown sample. So, if the method is intended for API quantitation
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in an API substance, the reference standard could contain only the API. However, if the
method is intended for finished product testing or for impurity quantitation in API substance,
the reference standard should contain the appropriate amount of all the substances typically
found in the finished product or API substance. The reference standard should be prepared by
an ISO certified reference material manufacturer.

3.1.1.1. Determining the accepted value

If a representative certified reference standard is available, the accepted value is the certified
amount of analyte (e.g. API) per given sample of the reference standard.

3.1.1.2. Determining the method value

To obtain the method value, at least nine reference standard solutions are prepared and tested
as if they were unknown samples, using the candidate HPTLC method. The average and
standard deviations of the results will represent the method value. The standard solutions
should contain the following analyte concentrations:

• The first three standard solutions should contain analyte concentrations between 50 and
90% of the analyte’s label claim (or quantitation limit for an impurity).

• The next three standard solutions should contain analyte concentrations between 90 and
110% of the analyte’s label claim.

• The last three standard solutions should contain analyte concentrations between 110 and
150% of the label.

• Due to the unavailability of representative certified reference standards for most pharma-
ceutical products, option 1 is rarely used in method validation.

3.1.2. Option 2 (Using a representative blank)

The second option involves using a representative blank, which means a substance or mixture
that contains all the chemical components of a typical unknown sample except the analyte. It is
important to note that the chemical composition of a representative blank depends on both the
analyte and the composition of a typical unknown. For assay, or content uniformity, the
representative blank is a placebo. For API quantitation in the API substance, the representative
blank is typically the solvent used to dissolve the standard. For impurity quantitation in an
API substance, the representative blank is typically the API substance. For impurity quantita-
tion in the finished product, the representative blank is a mixture of the placebo plus all the
APIs plus all the typical impurities. During testing, the representative blank should be treated
the same way as an unknown sample would be. Care must be taken so that only the absence of
analyte distinguishes the representative blank from a typical unknown sample.

3.1.2.1. Determining the accepted value

If a representative blank is available, at least nine samples are prepared by spiking the blank
with various amounts of analyte. The accepted value can be represented as the average and
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Analyte peak purity is another measure of specificity that is typically reported. Often, analyte
peak purity in the analyte reference standard is compared to analyte peak purity in the other
test samples mentioned above. The analysis is performed by comparison of peak spectra at the
start, apex, and end of the analyte peak. Some authors use correlation coefficients [9] as a
measure of peak purity, and others rely on software algorithms that may involve Matrix
Algebra. It should be noted that while peak purity can detect the presence of some impurities
in the analyte peak, it does have some limitations. For example, peak-purity analysis does not
account for missing impurities that could overlap with the analyte peak, and it does not
account for impurities having a spectrum that is similar to that of the analyte. In addition,
peak-purity analysis is not applicable for detectors that do not register the entire analyte
spectrum for each time point.

A third measure of peak purity is an overlay of chromatograms. This measure is especially
useful for showing the analyte peak stability during impurity spiking or stress testing. For
example, the chromatograms of a finished pharmaceutical product, before and after acceler-
ated aging, can be overlaid to support method specificity.

3. Accuracy

A succinct definition of accuracy is “nearness to truth”. The ICH guidelines [4] provide the
following definition:

“The accuracy of an analytical procedure expresses the closeness of agreement between the
value which is accepted either as a conventional true value or an accepted reference value and
the value found.”

In other words, accuracy of a method represents the agreement between an expected value and
the value generated by the candidate method (the method value). Therefore, accuracy deter-
mination involves determining the expected value, finding the method value and calculating
the agreement between the two values [3, 4].

In pharmaceutical testing, accuracy is mainly relevant to quantitative methods, such as assay,
content uniformity, dissolution, and impurity quantitation. To determine the accuracy of a
quantitative HPTLC method, there are typically four major options, which differ mainly on
how the expected value is determined. Unfortunately, the most preferable options are not
always feasible due to the non-availability of appropriate reference standards or placebo
samples. For each option, we will explain how to determine the expected value and the
method value. Agreement between the two values will be addressed later.

3.1. Options for determining the expected value and the method value

3.1.1. Option 1 (using a certified reference standard)

The first option involves using a representative, certified reference standard. We say represen-
tative because the certified reference standard needs to have a chemical matrix that is the same
as the matrix of a typical unknown sample. So, if the method is intended for API quantitation
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in an API substance, the reference standard could contain only the API. However, if the
method is intended for finished product testing or for impurity quantitation in API substance,
the reference standard should contain the appropriate amount of all the substances typically
found in the finished product or API substance. The reference standard should be prepared by
an ISO certified reference material manufacturer.

3.1.1.1. Determining the accepted value

If a representative certified reference standard is available, the accepted value is the certified
amount of analyte (e.g. API) per given sample of the reference standard.

3.1.1.2. Determining the method value

To obtain the method value, at least nine reference standard solutions are prepared and tested
as if they were unknown samples, using the candidate HPTLC method. The average and
standard deviations of the results will represent the method value. The standard solutions
should contain the following analyte concentrations:

• The first three standard solutions should contain analyte concentrations between 50 and
90% of the analyte’s label claim (or quantitation limit for an impurity).

• The next three standard solutions should contain analyte concentrations between 90 and
110% of the analyte’s label claim.

• The last three standard solutions should contain analyte concentrations between 110 and
150% of the label.

• Due to the unavailability of representative certified reference standards for most pharma-
ceutical products, option 1 is rarely used in method validation.

3.1.2. Option 2 (Using a representative blank)

The second option involves using a representative blank, which means a substance or mixture
that contains all the chemical components of a typical unknown sample except the analyte. It is
important to note that the chemical composition of a representative blank depends on both the
analyte and the composition of a typical unknown. For assay, or content uniformity, the
representative blank is a placebo. For API quantitation in the API substance, the representative
blank is typically the solvent used to dissolve the standard. For impurity quantitation in an
API substance, the representative blank is typically the API substance. For impurity quantita-
tion in the finished product, the representative blank is a mixture of the placebo plus all the
APIs plus all the typical impurities. During testing, the representative blank should be treated
the same way as an unknown sample would be. Care must be taken so that only the absence of
analyte distinguishes the representative blank from a typical unknown sample.

3.1.2.1. Determining the accepted value

If a representative blank is available, at least nine samples are prepared by spiking the blank
with various amounts of analyte. The accepted value can be represented as the average and
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standard deviation of all the amounts of analyte spiked to the representative blank samples.
At least nine difference samples should be tested covering a minimum of three different
concentrations across the expected range of analyte concentration (50–150% of label claim or
impurity limit).

3.1.2.2. Determining the method value

Once the spiked blank samples are prepared, they can be analyzed in parallel using the
candidate HPTLC method. The average and standard deviation of the results (expressed in
the same unit as the accepted value) can represent the method value.

3.1.3. Option 3 (Using a reference method)

If options 1 and 2 are not feasible, a reference method can be used to determine the accuracy of
a candidate method. The reference method must be independent of the candidate method,
have been well validated with a stated accuracy, and have the same intended use as the
candidate method.

3.1.3.1. Determining the accepted value

To obtain the accepted value for option 3, the reference method can be used to test 6 or more
unknown samples. The average and standard deviation of the results will represent the
accepted value.

3.1.3.2. Determining the method value

To obtain the method value, each of the samples used to determine the accepted value is tested
using the candidate method. The average and standard deviation of the results will represent
the method value.

3.1.4. Option 4 (Using standard addition to unknown)

In lieu of option 3, method accuracy can be estimated using the standard addition method [10].
In this case the test sample is an unknown finished product or an API substance, whose
analyte amount has been predetermined using the candidate method.

3.1.4.1. Determining the accepted value

To obtain the accepted value for option 4, at least 6 or more stock solutions of unknown
samples should be prepared and tested per the candidate method. The average and standard
deviation of the results will represent the accepted value.

3.1.4.2. Determining the method value

To obtain the method value, each of the stock solutions used to determine the accepted value is
tested once again using the standard addition method [10]. So, each stock solution should have
its own standard addition curve with 5 or more data points. The average and standard
deviations of the absolute values of the x-intercepts will represent the method value.
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3.2. Agreement between expected and method values

Several calculation methods are used to determine the agreement between the expected and
method values. The percent recovery method is the simplest. It involves dividing the average
method value by the average expected value and multiplying the result by 100. Although this
method is considered acceptable in the ICH guidelines [3, 4], and it is found in many publica-
tions, it does not take the standard deviations into account.

One method that takes variation into account is the expanded uncertainty interval method
[11]. It involves combining the expected and method uncertainties to obtain the expanded
uncertainty, which is then compared to the difference between the average expected value
and the average method value. If the expanded uncertainty is greater or equal to the difference,
the candidate method is considered accurate.

A more statistically rigorous method to calculate accuracy is the t-test for two equal means
[12]. It can be performed using MS Excel or other statistical software, but it requires an
understanding of hypothesis testing. Interested readers can consult any general Statistics book
for more details on t-test and hypothesis testing.

The concept of accuracy profile, which is different from the concept of accuracy described herein,
is described by Shewiyo et al. It aims to describe method performance using a single statistic [13].

4. Linearity

Linearity evaluations demonstrate measurements from a test method are proportional to the
amount of analyte within a particular concentration range [3, 4]. Responses from samples
containing different amounts of analyte are obtained from the test method. Generally, a
minimum of five different concentrations should be used where multiple (i.e., ≥3) responses
are obtained at each analyte level. The method response (y-axis) is plotted as a function of the
analyte concentration (x-axis) for subsequent analysis with linear regression techniques, where
slope, intercept, and correlation coefficient are reported. The concentration range should cover
the upper and lower levels anticipated during an analysis.

In the following example, a graphical representation of a linear calibration model is demon-
strated, where the raw data is provided in Table 1 and Figure 1 shows the corresponding
linear regression curve.

[Concentration], w/v [Response], Instrument reading (triplicate results)

2 0.06, 0.06, 0.06

4 0.12, 0.12, 0.11

6 0.17, 0.17, 0.16

8 0.22, 0.23, 0.22

10 0.28, 0.28, 0.28

Table 1. Data to demonstrate a linear calibration model.
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standard deviation of all the amounts of analyte spiked to the representative blank samples.
At least nine difference samples should be tested covering a minimum of three different
concentrations across the expected range of analyte concentration (50–150% of label claim or
impurity limit).

3.1.2.2. Determining the method value

Once the spiked blank samples are prepared, they can be analyzed in parallel using the
candidate HPTLC method. The average and standard deviation of the results (expressed in
the same unit as the accepted value) can represent the method value.

3.1.3. Option 3 (Using a reference method)

If options 1 and 2 are not feasible, a reference method can be used to determine the accuracy of
a candidate method. The reference method must be independent of the candidate method,
have been well validated with a stated accuracy, and have the same intended use as the
candidate method.

3.1.3.1. Determining the accepted value

To obtain the accepted value for option 3, the reference method can be used to test 6 or more
unknown samples. The average and standard deviation of the results will represent the
accepted value.

3.1.3.2. Determining the method value

To obtain the method value, each of the samples used to determine the accepted value is tested
using the candidate method. The average and standard deviation of the results will represent
the method value.

3.1.4. Option 4 (Using standard addition to unknown)

In lieu of option 3, method accuracy can be estimated using the standard addition method [10].
In this case the test sample is an unknown finished product or an API substance, whose
analyte amount has been predetermined using the candidate method.

3.1.4.1. Determining the accepted value

To obtain the accepted value for option 4, at least 6 or more stock solutions of unknown
samples should be prepared and tested per the candidate method. The average and standard
deviation of the results will represent the accepted value.

3.1.4.2. Determining the method value

To obtain the method value, each of the stock solutions used to determine the accepted value is
tested once again using the standard addition method [10]. So, each stock solution should have
its own standard addition curve with 5 or more data points. The average and standard
deviations of the absolute values of the x-intercepts will represent the method value.
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3.2. Agreement between expected and method values

Several calculation methods are used to determine the agreement between the expected and
method values. The percent recovery method is the simplest. It involves dividing the average
method value by the average expected value and multiplying the result by 100. Although this
method is considered acceptable in the ICH guidelines [3, 4], and it is found in many publica-
tions, it does not take the standard deviations into account.

One method that takes variation into account is the expanded uncertainty interval method
[11]. It involves combining the expected and method uncertainties to obtain the expanded
uncertainty, which is then compared to the difference between the average expected value
and the average method value. If the expanded uncertainty is greater or equal to the difference,
the candidate method is considered accurate.

A more statistically rigorous method to calculate accuracy is the t-test for two equal means
[12]. It can be performed using MS Excel or other statistical software, but it requires an
understanding of hypothesis testing. Interested readers can consult any general Statistics book
for more details on t-test and hypothesis testing.

The concept of accuracy profile, which is different from the concept of accuracy described herein,
is described by Shewiyo et al. It aims to describe method performance using a single statistic [13].

4. Linearity

Linearity evaluations demonstrate measurements from a test method are proportional to the
amount of analyte within a particular concentration range [3, 4]. Responses from samples
containing different amounts of analyte are obtained from the test method. Generally, a
minimum of five different concentrations should be used where multiple (i.e., ≥3) responses
are obtained at each analyte level. The method response (y-axis) is plotted as a function of the
analyte concentration (x-axis) for subsequent analysis with linear regression techniques, where
slope, intercept, and correlation coefficient are reported. The concentration range should cover
the upper and lower levels anticipated during an analysis.

In the following example, a graphical representation of a linear calibration model is demon-
strated, where the raw data is provided in Table 1 and Figure 1 shows the corresponding
linear regression curve.

[Concentration], w/v [Response], Instrument reading (triplicate results)

2 0.06, 0.06, 0.06

4 0.12, 0.12, 0.11

6 0.17, 0.17, 0.16

8 0.22, 0.23, 0.22

10 0.28, 0.28, 0.28

Table 1. Data to demonstrate a linear calibration model.
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However, a linear model may not be the best calibration fit for the data as is the case of the data
listed in Table 2, and plotted in Figure 2. When the linear model is applied to the data, the
resulting correlation coefficient (R2 = 0.98) is less than ideal.

Further examination of the data indicates that a polynomial fit can provide a better calibration
model from the data (Figure 3). It should be noted that most pharmaceutical analysis methods
commonly use a one-point standard during routine use of the method (after validation has
been established).
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Figure 1. Graphical representation of linear calibration model data.

Variable Data

[Concentration], w/v 1 2 3 4 5 6 7 8

[Response], Instrument reading 10 20 30 41 46 55 60 65

Table 2. Data to demonstrate a non-linear calibration model.
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Figure 2. Graphical representation of a less than ideal linear calibration model.
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If the analysis range for the method only requires concentrations from 1 to 4 (w/v), a linear
model for just that concentration range provides a r2 of 0.9994 (Figure 4) and would be easier
to implement in future analysis (note-an additional standard should be added within that
range during final validation).

5. Limits of detection/quantitation

Various options are possible for determining limits of detection (LOD) and limits of quantita-
tion (LOQ) [3, 4, 14, 15]. The section below will provide some key example approaches for tests
that generate instrument based responses.
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Figure 3. Graphical representation of polynomial approach to calibration model.
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Figure 4. Graphical representation of the more linear range of the preceding polynomial calibration model.
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However, a linear model may not be the best calibration fit for the data as is the case of the data
listed in Table 2, and plotted in Figure 2. When the linear model is applied to the data, the
resulting correlation coefficient (R2 = 0.98) is less than ideal.

Further examination of the data indicates that a polynomial fit can provide a better calibration
model from the data (Figure 3). It should be noted that most pharmaceutical analysis methods
commonly use a one-point standard during routine use of the method (after validation has
been established).
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If the analysis range for the method only requires concentrations from 1 to 4 (w/v), a linear
model for just that concentration range provides a r2 of 0.9994 (Figure 4) and would be easier
to implement in future analysis (note-an additional standard should be added within that
range during final validation).

5. Limits of detection/quantitation

Various options are possible for determining limits of detection (LOD) and limits of quantita-
tion (LOQ) [3, 4, 14, 15]. The section below will provide some key example approaches for tests
that generate instrument based responses.
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The signal to noise ratio can be used to determine both the LOD and LOQ, where responses are
obtained from blank and from an array of samples at lower concentrations. A ratio of signal
(from analyte samples) to noise (from blank) of 3 is an accepted concentration level for the LOD.
Likewise, a concentration level that provides a signal to noise of 10 can be used as the LOQ.

Another approach first involves the determination of the standard deviation of the response
and the slope of calibration (linearity) curve. Although other options are possible [3, 4, 14, 15],
the standard deviation of the response can be estimated from replicate injections from blank
samples or from the standard deviation of y-intercepts from multiple regression lines. Multi-
plying the ratio of the standard deviation of the responses to the slope of the curve by 3.3 or 10
provides the LOD or LOQ, respectively.

6. Precision

For an analytical method, precision is an assessment of the consistency of results obtained with
multiple measurements from the same sample [3, 4, 16]. There are three categories of precision
for an analytical method, namely repeatability, intermediate precision, and reproducibility,
which can be assessed through variations with different equipment, testing times (conducted
on different days), analysts, and/or laboratories.

Repeatability is often evaluated with replicate measurements of a sample on the same day in
the same laboratory, where the analyst and equipment are not changed. Intermediate precision
can be evaluated from replicate measurements of a sample within the same laboratory, but
with systematic variations with different analysts, times of analysis, and equipment (such as
different instruments). Reproducibility is commonly determined from replicate measurements
of the same sample but within different labs, which will inherently incorporate different
analysts, equipment, and time of analysis.

ICH Q2 provides several recommendations for number of replicates and concentration levels
for each of the three types of precision [4]. Recommended approaches for repeatability are at
least nine measurements that span the method’s range (such as three replicates for each of
three analyte levels) or at least six measurements at the target analyte level. ICH Q2 does not
specify a minimum number of samples for intermediate precision and reproducibility but
encourages that the effects of variables (i.e., analysts, days, instruments) be systematically
evaluated. The following section will provide possible approaches for evaluating repeatability
and intermediate precision, followed by references for examples for reproducibility will be
provided.

To perform the appropriate precision assessments, the following equations are indicated [16]
and will be used for further development of subsequent examples. The average (x) of n
replicates is provided in Eq. (1),

x ¼

Pn
i¼1

xi

n
(1)
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where xi represents the individual replicates measurements. The standard deviation (s) of a
data set can be determined through Eq. (2),

s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

xi � xð Þ2

n� 1ð Þ

vuuut
(2)

and the % relative standard deviation (%RSD) is provided in Eq. (3).

%RSD ¼ 100� s
x

� �
(3)

The %RSD is often used in method validation assessments because it normalizes the standard
deviation to the average.

From Eqs. (1)–(3), an evaluation of repeatability can be determined. In the following example,
assume that an analyst has performed six replicate analysis (within the same laboratory) from
a method capable of quantifying the amount of active ingredient in a pharmaceutical product
in units of % label claim (assay) and obtained the following results (102.1%, 100.5%, 98.2%,
99.1%, 101.8%, 99.8%). Using Eqs. (1)–(3), the average (x), standard deviation (s), and %RSD
would be 100.25%, 1.52%, and 1.52%, respectively, where s (or more commonly %RSD), is a
measure of method repeatability.

Intermediate precision involves an evaluation of variations “within runs” and “between runs”
[17]. Consider the data in Table 3 containing replicate runs (n = 3, indexed with j) obtained on
each of multiple days (p = 5, indexed with i), where each day used a different analyst with
separate solution preparations but using the samemethod as above for the repeatability analysis.

With each entry in the data representing a separate xij, the repeatability or within-run standard
deviation (days) can be determined using Eq. (4), where xi is provided in Eq. (5).

sr ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pp
i¼1

Pn
j¼1

xij � xi
� �2

p n� 1ð Þ

vuuuut (4)

n = 3(j)/p = 5(i) Day 1 Day 2 Day 3 Day 4 Day 5

Replicate 1 102.2 98.7 99.3 101.9 102.1

Replicate 2 100.3 101.8 98.1 100.1 101.4

Replicate 3 99.9 102.3 98.7 99.1 101.2

xi 100.8 100.9 98.7 100.4 101.6

x 100.5

Table 3. Example data for intermediate precision determination.
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The signal to noise ratio can be used to determine both the LOD and LOQ, where responses are
obtained from blank and from an array of samples at lower concentrations. A ratio of signal
(from analyte samples) to noise (from blank) of 3 is an accepted concentration level for the LOD.
Likewise, a concentration level that provides a signal to noise of 10 can be used as the LOQ.

Another approach first involves the determination of the standard deviation of the response
and the slope of calibration (linearity) curve. Although other options are possible [3, 4, 14, 15],
the standard deviation of the response can be estimated from replicate injections from blank
samples or from the standard deviation of y-intercepts from multiple regression lines. Multi-
plying the ratio of the standard deviation of the responses to the slope of the curve by 3.3 or 10
provides the LOD or LOQ, respectively.

6. Precision

For an analytical method, precision is an assessment of the consistency of results obtained with
multiple measurements from the same sample [3, 4, 16]. There are three categories of precision
for an analytical method, namely repeatability, intermediate precision, and reproducibility,
which can be assessed through variations with different equipment, testing times (conducted
on different days), analysts, and/or laboratories.

Repeatability is often evaluated with replicate measurements of a sample on the same day in
the same laboratory, where the analyst and equipment are not changed. Intermediate precision
can be evaluated from replicate measurements of a sample within the same laboratory, but
with systematic variations with different analysts, times of analysis, and equipment (such as
different instruments). Reproducibility is commonly determined from replicate measurements
of the same sample but within different labs, which will inherently incorporate different
analysts, equipment, and time of analysis.

ICH Q2 provides several recommendations for number of replicates and concentration levels
for each of the three types of precision [4]. Recommended approaches for repeatability are at
least nine measurements that span the method’s range (such as three replicates for each of
three analyte levels) or at least six measurements at the target analyte level. ICH Q2 does not
specify a minimum number of samples for intermediate precision and reproducibility but
encourages that the effects of variables (i.e., analysts, days, instruments) be systematically
evaluated. The following section will provide possible approaches for evaluating repeatability
and intermediate precision, followed by references for examples for reproducibility will be
provided.

To perform the appropriate precision assessments, the following equations are indicated [16]
and will be used for further development of subsequent examples. The average (x) of n
replicates is provided in Eq. (1),

x ¼

Pn
i¼1

xi

n
(1)

Calibration and Validation of Analytical Methods - A Sampling of Current Approaches152

where xi represents the individual replicates measurements. The standard deviation (s) of a
data set can be determined through Eq. (2),

s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

xi � xð Þ2

n� 1ð Þ

vuuut
(2)

and the % relative standard deviation (%RSD) is provided in Eq. (3).

%RSD ¼ 100� s
x

� �
(3)

The %RSD is often used in method validation assessments because it normalizes the standard
deviation to the average.

From Eqs. (1)–(3), an evaluation of repeatability can be determined. In the following example,
assume that an analyst has performed six replicate analysis (within the same laboratory) from
a method capable of quantifying the amount of active ingredient in a pharmaceutical product
in units of % label claim (assay) and obtained the following results (102.1%, 100.5%, 98.2%,
99.1%, 101.8%, 99.8%). Using Eqs. (1)–(3), the average (x), standard deviation (s), and %RSD
would be 100.25%, 1.52%, and 1.52%, respectively, where s (or more commonly %RSD), is a
measure of method repeatability.

Intermediate precision involves an evaluation of variations “within runs” and “between runs”
[17]. Consider the data in Table 3 containing replicate runs (n = 3, indexed with j) obtained on
each of multiple days (p = 5, indexed with i), where each day used a different analyst with
separate solution preparations but using the samemethod as above for the repeatability analysis.

With each entry in the data representing a separate xij, the repeatability or within-run standard
deviation (days) can be determined using Eq. (4), where xi is provided in Eq. (5).

sr ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pp
i¼1

Pn
j¼1

xij � xi
� �2

p n� 1ð Þ

vuuuut (4)

n = 3(j)/p = 5(i) Day 1 Day 2 Day 3 Day 4 Day 5

Replicate 1 102.2 98.7 99.3 101.9 102.1

Replicate 2 100.3 101.8 98.1 100.1 101.4

Replicate 3 99.9 102.3 98.7 99.1 101.2

xi 100.8 100.9 98.7 100.4 101.6

x 100.5

Table 3. Example data for intermediate precision determination.
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xi ¼

Pn
j¼1

xij

n
(5)

The between-run standard deviation (days) can be calculated with Eq. (6), where x is provided
in Eq. (7).

sB ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pp
i¼1

xi � x
� �2

p� 1
� s2r

n

vuuut
(6)

x ¼

Pp
i¼1

Pn
j¼1

xij

pn
(7)

Subsequently, the intermediate precision standard deviation can be calculated with Eq. (8).

sIP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2r � s2B

q
(8)

From the data presented in Table 3 and using Eqs. (4)–(8) [17], the standard deviations for
repeatability (within-run), between-run, and intermediate precision are calculated as 1.26, 0.80,
and 1.49, respectively.

Evaluations for reproducibility utilize interlaboratory trials, and are commonly employed
when a procedure requires further standardization for use among a more extended array of
laboratories. ISO 5725 [18] provides the necessary approach andmanagement structure needed
to properly plan, conduct, and interpret the results of an interlaboratory trial that will involve
multiple laboratories conducting replicate analysis of a sample(s) at a particular analyte level(s).
Approaches are provided to graphically (Mandel’s statistics) and quantitatively (Cochran/
Grubb) identify outliers so that the most accurate assessments of repeatability and reproducibil-
ity variance (standard deviations) are possible. The calculations involved in these types of trials
are fairly extensive. Several examples are provided within ISO 5725, and Vander Heyden et al.
provides a detailed example for an interlaboratory trial for an HPLC procedure [19].

Overall, desired levels for precision for pharmaceutical analysis are commonly on the order of
~2%RSD.However, different ranges can be necessary depending on the concentration level of the
analyte (i.e., higher levels of %RSD can be allowed as the analyte concentration decreases) [17].

7. Robustness

Robustness is a measure of how much a method is impacted by deliberate (small) changes in
method conditions [3, 4]. The following are a listing of the types of parameters that can be
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evaluated to assess method robustness; solution stability (to heat and or time), extraction
conditions during sample preparation (time, temperature, mechanical shaking time, sonication
time), type of filters used during final standard/sample preparation, minor adjustments in
mobile phase composition, and adjustments in other chromatographic conditions (flow rate,
different suppliers of columns, temperature). Commonly, robustness is evaluated during the
development stages of the method.

An approach for evaluating robustness could be to compare an analysis using the primary
method compared to an analysis where a certain parameter is adjusted. Depending on the
method and sample type, adjustments in parameters that generate less than ~2% difference
relative to the primary method can provide a reasonable measure of how sensitive the method
is to various types of adjustments. During the development of the method for example, a study
could be conducted to evaluate the sensitivity of the method on the type of filter by comparing
the results from a sample solution that was centrifuged (without filtration) to those filtered
with different filter types (PTFE, PVDF, nylon) from different manufacturers. Solution stability
could be evaluated by comparing results from freshly prepared solutions compared to the
same solutions stored at room temperature over several days.

There are a variety of approaches that can be incorporated to evaluate method robustness.
Dejaegher and Vander Heyden provide an extensive review for a variety of approaches to
systematically evaluate method robustness (ruggedness) [20].

8. Range

The range of the method corresponds to the lower and upper analyte concentration where
satisfactory levels of linearity, precision, and accuracy have been achieved during the method
validation process. The range is indicated in the same units as that of the results obtained from
the method.

For analysis of pharmaceutical products [3, 4], the following ranges (in percentage relative to
the target level) are often required for the respective types of tests; assay (80–120%), content
uniformity (approximately 70–130%), impurities (approximately 50–120% of the acceptance
limit), dissolution (� 20% of the required range).

9. Application with HPTLC techniques

High-performance thin layer chromatography (HPTLC), an extension of TLC, is a robust,
simple, rapid, and efficient tool in quantitative and qualitative analysis of compounds [21],
and a variety of applications can be found in the literature [22–29]. In this section an overview
of applications of HPTLC in typical pharmaceutical testing protocol is highlighted with exam-
ples. HPTLC is one of the sophisticated instrumental techniques based on the full capabilities
of thin layer chromatography. The advantages of automation, scanning, full optimization,
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xi ¼

Pn
j¼1

xij

n
(5)
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Pp
i¼1
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� �2
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� s2r

n

vuuut
(6)

x ¼

Pp
i¼1

Pn
j¼1

xij

pn
(7)

Subsequently, the intermediate precision standard deviation can be calculated with Eq. (8).
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q
(8)

From the data presented in Table 3 and using Eqs. (4)–(8) [17], the standard deviations for
repeatability (within-run), between-run, and intermediate precision are calculated as 1.26, 0.80,
and 1.49, respectively.

Evaluations for reproducibility utilize interlaboratory trials, and are commonly employed
when a procedure requires further standardization for use among a more extended array of
laboratories. ISO 5725 [18] provides the necessary approach andmanagement structure needed
to properly plan, conduct, and interpret the results of an interlaboratory trial that will involve
multiple laboratories conducting replicate analysis of a sample(s) at a particular analyte level(s).
Approaches are provided to graphically (Mandel’s statistics) and quantitatively (Cochran/
Grubb) identify outliers so that the most accurate assessments of repeatability and reproducibil-
ity variance (standard deviations) are possible. The calculations involved in these types of trials
are fairly extensive. Several examples are provided within ISO 5725, and Vander Heyden et al.
provides a detailed example for an interlaboratory trial for an HPLC procedure [19].

Overall, desired levels for precision for pharmaceutical analysis are commonly on the order of
~2%RSD.However, different ranges can be necessary depending on the concentration level of the
analyte (i.e., higher levels of %RSD can be allowed as the analyte concentration decreases) [17].

7. Robustness

Robustness is a measure of how much a method is impacted by deliberate (small) changes in
method conditions [3, 4]. The following are a listing of the types of parameters that can be
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different suppliers of columns, temperature). Commonly, robustness is evaluated during the
development stages of the method.

An approach for evaluating robustness could be to compare an analysis using the primary
method compared to an analysis where a certain parameter is adjusted. Depending on the
method and sample type, adjustments in parameters that generate less than ~2% difference
relative to the primary method can provide a reasonable measure of how sensitive the method
is to various types of adjustments. During the development of the method for example, a study
could be conducted to evaluate the sensitivity of the method on the type of filter by comparing
the results from a sample solution that was centrifuged (without filtration) to those filtered
with different filter types (PTFE, PVDF, nylon) from different manufacturers. Solution stability
could be evaluated by comparing results from freshly prepared solutions compared to the
same solutions stored at room temperature over several days.

There are a variety of approaches that can be incorporated to evaluate method robustness.
Dejaegher and Vander Heyden provide an extensive review for a variety of approaches to
systematically evaluate method robustness (ruggedness) [20].

8. Range

The range of the method corresponds to the lower and upper analyte concentration where
satisfactory levels of linearity, precision, and accuracy have been achieved during the method
validation process. The range is indicated in the same units as that of the results obtained from
the method.

For analysis of pharmaceutical products [3, 4], the following ranges (in percentage relative to
the target level) are often required for the respective types of tests; assay (80–120%), content
uniformity (approximately 70–130%), impurities (approximately 50–120% of the acceptance
limit), dissolution (� 20% of the required range).

9. Application with HPTLC techniques

High-performance thin layer chromatography (HPTLC), an extension of TLC, is a robust,
simple, rapid, and efficient tool in quantitative and qualitative analysis of compounds [21],
and a variety of applications can be found in the literature [22–29]. In this section an overview
of applications of HPTLC in typical pharmaceutical testing protocol is highlighted with exam-
ples. HPTLC is one of the sophisticated instrumental techniques based on the full capabilities
of thin layer chromatography. The advantages of automation, scanning, full optimization,
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selective detection principle, minimum sample preparation, hyphenation, and so on enable it
to be a powerful analytical tool for chromatographic information of complex mixtures of
pharmaceuticals, natural products, clinical samples, and food stuffs [21]. HPTLC is one of the
ideal TLC technique for the analytical purposes because of its increased accuracy, reproduc-
ibility, and ability to document the results, compared with standard TLC. Because of this,
HPTLC technologies are also the most appropriate TLC technique for conformity with GMPs
[30].

9.1. Identification test

In a pharmaceutical testing protocol, identification tests are intended to ensure the identity of
an analyte in an API or finished pharmaceutical product sample. This is normally achieved by
comparison of a chromatographic behavior of unknown sample to that of a reference standard.
The identity of the test substance is confirmed if the migration distance of the test substance
matches that of the reference substance. Thin layer chromatography experiments are among
the key identity tests in most pharmacopeia monographs. Pharmacopeia standards are typi-
cally used by industry as a basis for meeting QC requirements and current good manufactur-
ing practices (cGMPs). Many identification tests in the major pharmacopeia (e.g., USP, Ph. Int.,
and Ph. Eur. [1, 31, 32]) use planar chromatography (TLC), however HPTLC is a superior
technology. Figure 5 below represent a typical densitogram obtained in the identification of
sulfamethoxazole (SMX) and trimethoprim (TPM). In this example, the migration distances are
0.35 and 0.90 for TMP and SMX respectively.

Figure 5. An example of overlaid densitogram for identification of sample 1 and a reference 2 containing sulfamethoxa-
zole (SMX) and trimethoprim (TPM). Conditions Mobile Phase: (Methanol: Ethyl Acetate: Toluene 6: 9:15 v/v) Detection
Wavelength: 275 nm and Application Volume: 5 μl and aluminum plates precoated with silica gel 60 F254 as the
stationary phase.
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9.2. Assay content determination

A secondmost important critical quality attribute for pharmaceutical products testing is assay or
determination of content. The procedure intended to measure the analyte present in a sample. In
this context, the assay represents a quantitative measurement of the major component(s) in the
drug substance. This is done by comparing the area under the peak of test substance to that of
reference standard material. For a drug product, containing paracetamol an overlaid
densitogram is presented in Figure 6. Similar validation characteristics also apply when assaying
for the active or other selected component(s). The same validation characteristics may also apply
to assays associated with other analytical procedures (e.g., dissolution) [33].

9.3. Impurities and related substances

The principal requirement is that an analytical method for assessing impurities should be a
stability indicating and meeting specificity criteria described in Section 2 above. Stability indicat-
ing method (SIM) is defined as a validated analytical procedure that accurately and precisely
measures the active ingredients (drug substance or drug product) free from process impurities,
excipients and degradation products. This can be demonstrated by forced degradation study of
the drug substance and subjecting the resultant solution to the chromatographic conditions [34].

Testing for impurities can be either a quantitative test or a limit test for the impurity in a
sample. Either test is intended to accurately reflect the purity characteristics of the sample.
Quantitative tests for impurities are meant to quantify the exact amount of impurity. This is

Figure 6. An example of overlaid densitograms for assay of paracetamol in sample tracks 2, 3, 5, 8 and 9, and a reference
in tracks 1, 4 and 7. Conditions: Mobile Phase: Acetone; Methanol; Toluene: 6:6:16 v/v/v acidified with three drops of
Glacial Acetic Acid, Detection Wavelength: 274 nm, Application Volume: 5 μl and aluminum plates precoated with silica
gel 60 F254 as the stationary phase.
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HPTLC technologies are also the most appropriate TLC technique for conformity with GMPs
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technology. Figure 5 below represent a typical densitogram obtained in the identification of
sulfamethoxazole (SMX) and trimethoprim (TPM). In this example, the migration distances are
0.35 and 0.90 for TMP and SMX respectively.
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measures the active ingredients (drug substance or drug product) free from process impurities,
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sample. Either test is intended to accurately reflect the purity characteristics of the sample.
Quantitative tests for impurities are meant to quantify the exact amount of impurity. This is
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done by comparing the response from a single or multi-level calibration curve. Whereas the
limit test is an estimative test where the impurity is controlled not to exceed certain limit. In
this case an impurity standard is prepared at the control level and compared to the response
from the sample (which should not exceed this level).

With the improved resolution powers of HPTLC (enhanced by reduced particle sizes), it is
possible to perform both tests by using HPTLC. In the literature, there are many stability
indicating method for various drug substances for example pseudoephedrine and cetirizine
in pharmaceutical formulations [35], clopidogrel bisulphate [36] timolol maleate [37] simulta-
neous determination of ezetimibe and simvastatin [38], piroxicam [39], and estradiol [40].

9.4. Dissolution testing

Dissolution testing is a performance characterizing test and a requirement for all solid oral
dosage forms and is used in all phases of development for product release and stability testing
[41–43]. It is a key analytical test used for detecting physical changes in an active pharmaceu-
tical ingredient (API) and in the formulated product. It is a multi-unit test and multi-point
sampling, making it very tedious. HPTLC offers a multi-channel capability where a total of 18–
25 samples can be applied on one plate in form of bands and analyzed simultaneously. One lot
of a product will require 6 units (tested in duplicate), plus calibrators (in triplicates at single or
multiple levels). HPTLC methods have been successfully deployed for monitoring dissolution
profile of diclofenac and acetaminophen [44], and the stability of rifampicin in dissolution
medium in presence of isoniazid [45].

9.5. Content uniformity

The test for Content Uniformity (CU) is the assay of the individual content of drug substance(s)
in a number of individual dosage units to determine whether the individual contents are
within the set limits [46]. Multiple capsules or tablets are selected at random and each are
analyzed to determine the active ingredient in each capsule or tablet. The performance effi-
ciency of this method can benefit from the HPTLC multi-channel capabilities. HPTLC has been
successful applied in content uniformity of atorvastatin calcium tablets [47], diazepam tablets
[48], diosgenin and levodopa [49], nicorandil tablets [50] and rosiglitazone in tablets [51]. All of
these HPTLC method examples provide a faster, more cost efficient approach to quantitative
testing for routine analysis.

10. Conclusions

Classic method validations for pharmaceuticals involve techniques such as UV-VIS, TLC, and
HPLC. This chapter highlights different examples with High Performance Thin Layer Chro-
matography (HPTLC). General approaches are provided for method validation, as applicable
to pharmaceutical assessments, outlined for each of the key aspects (i.e., specificity, accuracy,
linearity, limits of detection/quantitation, precision, robustness, and range). Although classical
application of pharmaceutical method validation uses techniques such as UV-VIS or HPLC,
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important examples are provided using HPTLC techniques that provide high accuracy/preci-
sion with minimal use of reagents and other resources.
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