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Preface

The causative agents of type 1 and type 2 diabetes differ, but the main dysfunction by which
they inflict damage to the human body is the same: hyperglycemia. Other systemic factors
such as hypertension, lipid levels, and genetics also contribute to the effects diabetes has on
individuals afflicted with this condition. Our ability in health care to control these factors
has improved, but still those with diabetes too often suffer from kidney disease, neuropathy,
amputation, and diabetic retinopathy. It is expected that in 20 years’ duration nearly all
those with diabetes will exhibit some diabetic retinopathy. In some patients, it will progress
to blindness.

Currently, the only treatment available in the early stages of diagnosis and treatment of dia‐
betes to control diabetic retinopathy is management of the above-listed systemic factors. Di‐
abetic retinopathy is a slow process beginning with early damage to retinal vasculature and
retinal ganglion cells. Often, years of damage to the diabetic retina occurs before it progress‐
es to a level where our current treatments of diabetic retinopathy play a role. Pan-retinal
photocoagulation has stood the test of time helping reduce the risk of blindness, but it leaves
the patient with reduced vision, especially at night. Injections of anti-VEGF agents have
shown to be effective in many cases of diabetic macular edema. In addition, they have dem‐
onstrated effectiveness in treating proliferative diabetic retinopathy; however, many ques‐
tions remain regarding the wisdom of using anti-VEGF agents for extended periods of time
on these relatively young individuals.

The number of those diagnosed with type 2 diabetes in both developed and developing
countries has sky-rocketed. It is expected that the prevalence of individuals with type 2 dia‐
betes will continue to increase. Healthcare systems in these countries struggle to screen
those at risk of diabetic retinopathy who have either type 1 or type 2 diabetes.

This book covers topics addressing imaging processes currently available in the development
stage for screening of diabetic retinopathy. It also covers potential biomarkers that may be
used to identify those at risk. Further, new pathways which can lead to diabetic retinopathy
are identified.

We are grateful to those contributors who have labored to make this book a reality. We
would also like to thank the staff at InTech, especially Marina Dusevic, Publishing Process
Manager, who helped us through this process. It is our hope that this book will serve as a
resource for clinicians, scientists, and public health workers by expanding knowledge on di‐
abetic retinopathy, as well as offering insights into the screening modalities, which might
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help those developing the condition. Further, it is also our hope that this book will offer
illumination into the early mechanisms of diabetes and help us identify targets that, if ad‐
dressed early enough, might prevent us from ever having to use our present treatment pro‐
cedures.

Jeffery G. Grigsby
Vision Health Specialties, Midland, Texas, USA

College of Optometry, University of Houston, Houston, Texas, USA
Texas Tech University Health Science Center, Midland, Texas, USA

Andrew T.C. Tsin
Department of Biomedical Sciences

University of Texas Rio Grande Valley, School of Medicine
Edinberg, Texas, USA

XII Preface

Section 1

Introduction



help those developing the condition. Further, it is also our hope that this book will offer
illumination into the early mechanisms of diabetes and help us identify targets that, if ad‐
dressed early enough, might prevent us from ever having to use our present treatment pro‐
cedures.

Jeffery G. Grigsby
Vision Health Specialties, Midland, Texas, USA

College of Optometry, University of Houston, Houston, Texas, USA
Texas Tech University Health Science Center, Midland, Texas, USA

Andrew T.C. Tsin
Department of Biomedical Sciences

University of Texas Rio Grande Valley, School of Medicine
Edinberg, Texas, USA

PrefaceVIII

Section 1

Introduction



Chapter 1

Introductory Chapter: Diabetes, It is Always Something

Jeffery G. Grigsby and Andrew T.C. Tsin

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.75687

Provisional chapter

DOI: 10.5772/intechopen.75687

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited. 

Introductory Chapter: Diabetes, It is Always Something

Jeffery G. Grigsby and Andrew T.C. Tsin

Additional information is available at the end of the chapter

1. Where we are and how we got there

The diabetes world changed when Banting and Best reported on their success extracting insu-
lin from a dog in 1922. Previous to that, the diagnosis of type 1 diabetes was a death sentence. 
In the 1800s, a 10-year-old diagnosed with type 1 diabetes would wither away and die within 
a year. When the two Canadians extracted insulin, a very dark cloud lifted.

6:00 AM, the alarm goes off. Time to get up and start another day. Shower, dress, and check
blood glucose for the first time that day. A little low this morning. I will have to eat a little
extra or cut back on the insulin some. Cereal, milk, and juice for breakfast. A bowl of cereal, 32 
g of carbohydrate, 20 g of milk, and 30 g of juice. 82 g in total; ratios vary between patients, but 
let us use 1 unit of fast acting insulin for every 10 g of carbohydrate, so normally that would 
be 8.2 units of insulin to cover breakfast. Since we are starting a little low, let us just inject
6 units to cover the meal and the low. On and on all day. Every day. No time off just because
it is Thanksgiving or your first date.

Diabetes is still no piece of cake. It is difficult, but doable. Today we even have a U.S. Supreme
Court Justice with nearly life-long (diagnosis age 7) type 1 diabetes. Maintaining normal lev-
els of blood glucose are a constant challenge to those with type 1 diabetes. In fact, achieving 
blood glucose levels equivalent to those considered normal for those without diabetes, may 
not even be a desirable goal. There are too many lows and then there is the Action to Control 
Cardiovascular Risk in Diabetes Study (ACCORD) which told us those levels may not even
advisable.

Type 2 diabetes is at epidemic levels in both developed and developing countries. Still the
battle to level the highs and lows is difficult, but manageable; however, many do not even
know they have it and many do not have the resources or knowledge to deal with it.

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.
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With longer lives we found there could be complications such as eye, kidney, and extremity 
issues that did not show up when a diabetes life span was less than a year. The problems are 
present in those cells not requiring insulin as the gate keeper into the cell. Nearly every scien-
tific paper written on diabetic retinopathy has an introduction telling the reader that diabetes 
is the leading cause of blindness in the working age population. Most of them maintain their 
vision, but some do not, even in countries with excellent health care systems.

2. Mechanisms, research, screening, and the future

Research into diabetes is also complicated by the lack of a good animal model. There are many 
animals which can simulate human diabetes, but none demonstrate the full blown aberrant 
retinal blood vessel development that can occur in someone with diabetes of many years 
duration. Perhaps the animal models do not live long enough to exhibit this type of damage.

Refractive changes may be one of the presenting signs of increased blood glucose; usually a 
move toward more myopia or less hyperopia. Cataract is also more likely to develop and does 
so earlier in poorly controlled diabetes. Diabetic retinopathy takes years to develop, although 
poorly controlled systemic factors and pregnancy can speed up the process. Blood glucose 
levels, especially A1c, blood pressure, lipid levels, and genetics all play a role in determining 
who will or will not develop retinopathy complications.

Diabetic retinopathy is a gradual process whose mechanism of action is not totally understood. 
It seems to start with damage to retinal ganglion cells and retinal capillaries. Hyperglycemia 
can result in the production of reactive oxygen species, hyperosmolarity of cells, produc-
tion of advanced glycation products, activation of protein kinase C, retinal inflammation, and 
increased production of nitric oxide, which may individually or collectively play a role in the 
development of diabetic retinopathy. Retinal capillaries are lined with endothelial cells and 
pericytes which depend on each other for support. One of the initial steps occurring with 
hyperglycemia in the retina is the damage and loss of pericytes. Without the support supplied 
by pericytes, endothelial cells will eventually die leaving acellular capillaries or those dam-
aged to the point where they no longer bring oxygen and remove carbon dioxide from retinal 
cells. It should be pointed out that the oxygen demand of retinal cells greatly exceeds than 
that of other cells in the body. As a response, cells starved for oxygen accumulate hypoxia 
inducible factor (HIF) which stimulates the production of vascular endothelial growth factor 
(VEGF) that initiates the formation of new blood vessels. One would think this might be a 
positive factor, except these poorly developed vessels leak, hemorrhage, and grow into the 
vitreous. When the vitreous shifts, this can pull the neural retina loose from its attachment to 
the retinal pigment epithelium (RPE) resulting in (a very difficult to fix) retinal detachment. 
At times, this can result in blindness.

Clinically, diabetic retinopathy is broken down into non-proliferative (NPDR) and prolifera-
tive retinopathy (PDR); proliferative indicating the development of new blood vessels. It is 
a continuum, from the initial hyperglycemia to damaged leaky vessels to the production of 
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new blood vessels in response to hypoxia. The early damage of these vessels is visible viewing 
the ocular fundus as the small dots of hemorrhages and microaneursyms. Later on the vessel 
damage progresses to a point where blood, fats, and other fluids from the retina leak into the 
retina. One possible complication of this is diabetic macular edema (DME). The fluid accumu-
lating in the retina can damage an individual’s central vision. For many years, macular laser 
has been the preferred treatment for DME, but newer trials have exhibited the effectiveness of 
anti-VEGF agents in helping control this complication. Sometimes anti-VEGFs are ineffective 
indicating that factors other than VEGF may play a role in the development of DME. DME 
can be a complication of both NPDR and PDR and can result in temporary, and in some cases, 
permanent vision impairment.

For many years, the primary procedure used to prevent blindness once PDR begins has been 
pan-retinal photocoagulation (PRP), which is a series of laser burns scattered over the retina. 
It is effective because it reduces oxygen demand of the retina by eliminating retinal neuro-
nal elements and increases oxygen perfusion from the outer lying choroid. Unfortunately it 
reduces best corrected central vision as well as peripheral and night vision. Currently, the use 
of anti-VEGF injections is being investigated in an attempt to reduce or eliminate PDR, either 
in addition to, or in place of PRP, but many questions remain as to its long-term effects. Is this 
only a short-term treatment? Does the underlying causative hypoxia persist after treatment? 
Some studies have shown destruction of retinal components with long-term use of anti-VEGF 
injections. Are we causing degeneration of the retina in this relatively younger population of 
patients?

The Diabetes Control and Complications Trial (DCCT) told us that the higher the percentage 
of glycated hemoglobin, or A1c, the higher the risk of developing DR. This increase of DR 
with increasing A1c occurs not linearly, but in an exponential fashion. The United Kingdom 
Prospective Diabetes  Study,  done primarily  on  type  2  diabetes  patients,  found  a  positive 
effect  of  intensive  blood pressure  (BP)  control.  Further  evaluation  in  the ACCORD  study 
found no additional benefit of lowering BP below the long-standing limit of 140/90. However, 
more recently, the American College of Cardiology and the American Heart Association, in 
an effort to reduce the risk of heart attack and stroke, have reset the blood pressure desirable 
normal below this to 130/80. In addition, ACCORD demonstrated a decrease in the need for 
focal laser for DME with the use of fenofibrate to reduce triglycerides. Fenofibrate has been 
approved by Australian authorities to treat DR.

As previously mentioned, rates of type 2 diabetes have soared in both developed and devel-
oping countries outnumbering the number of professionals available to screen for DR. Many 
screening programs have been tried or are under investigation, but so far they have been inad-
equate in real world situations. Thus, the attempt to implement better screening modalities in 
underserved urban and rural areas is a much desired goal.

Patients with diabetes are living longer and are able to live full productive lives, but their 
paths are by no means easy. Maintenance of blood glucose levels, blood pressures, and lipids 
are a constant battle. When juggled with busy schedules, this can at times be overwhelming. 
Further fears of blindness, kidney disease and amputation remain definite prospects, espe-
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damage progresses to a point where blood, fats, and other fluids from the retina leak into the 
retina. One possible complication of this is diabetic macular edema (DME). The fluid accumu-
lating in the retina can damage an individual’s central vision. For many years, macular laser 
has been the preferred treatment for DME, but newer trials have exhibited the effectiveness of 
anti-VEGF agents in helping control this complication. Sometimes anti-VEGFs are ineffective 
indicating that factors other than VEGF may play a role in the development of DME. DME 
can be a complication of both NPDR and PDR and can result in temporary, and in some cases, 
permanent vision impairment.

For many years, the primary procedure used to prevent blindness once PDR begins has been 
pan-retinal photocoagulation (PRP), which is a series of laser burns scattered over the retina. 
It is effective because it reduces oxygen demand of the retina by eliminating retinal neuro-
nal elements and increases oxygen perfusion from the outer lying choroid. Unfortunately it 
reduces best corrected central vision as well as peripheral and night vision. Currently, the use 
of anti-VEGF injections is being investigated in an attempt to reduce or eliminate PDR, either 
in addition to, or in place of PRP, but many questions remain as to its long-term effects. Is this 
only a short-term treatment? Does the underlying causative hypoxia persist after treatment? 
Some studies have shown destruction of retinal components with long-term use of anti-VEGF 
injections. Are we causing degeneration of the retina in this relatively younger population of 
patients?

The Diabetes Control and Complications Trial (DCCT) told us that the higher the percentage 
of glycated hemoglobin, or A1c, the higher the risk of developing DR. This increase of DR 
with increasing A1c occurs not linearly, but in an exponential fashion. The United Kingdom 
Prospective Diabetes  Study,  done primarily  on  type  2  diabetes  patients,  found  a  positive 
effect  of  intensive  blood pressure  (BP)  control.  Further  evaluation  in  the ACCORD  study 
found no additional benefit of lowering BP below the long-standing limit of 140/90. However, 
more recently, the American College of Cardiology and the American Heart Association, in 
an effort to reduce the risk of heart attack and stroke, have reset the blood pressure desirable 
normal below this to 130/80. In addition, ACCORD demonstrated a decrease in the need for 
focal laser for DME with the use of fenofibrate to reduce triglycerides. Fenofibrate has been 
approved by Australian authorities to treat DR.

As previously mentioned, rates of type 2 diabetes have soared in both developed and devel-
oping countries outnumbering the number of professionals available to screen for DR. Many 
screening programs have been tried or are under investigation, but so far they have been inad-
equate in real world situations. Thus, the attempt to implement better screening modalities in 
underserved urban and rural areas is a much desired goal.

Patients with diabetes are living longer and are able to live full productive lives, but their 
paths are by no means easy. Maintenance of blood glucose levels, blood pressures, and lipids 
are a constant battle. When juggled with busy schedules, this can at times be overwhelming. 
Further fears of blindness, kidney disease and amputation remain definite prospects, espe-
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cially for those whose control of systemic conditions is less than optimal. Genetics obviously 
also plays a role, but this is still not clearly understood. In this book, we review areas under 
investigation to help us better screen, predict, and understand some mechanisms relating to 
development of DR. Progress has been made, but much work remains because current treat-
ments are available only near the endpoints of DR. Innovative and effective advances allow-
ing the early detection and intervention of DR are especially relevant and urgently needed.
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Abstract

Diabetic retinopathy (DR) is the most prevalent microvascular complication of diabetes 
and a leading cause of preventable blindness in the working-age population. However, 
due to a lack of suitable biomarkers, its prediction in asymptomatic patients is insuffi-
cient. Currently, DR is diagnosed at a stage when typical morphologic lesions become 
fundoscopically visible. Yet, chronically elevated blood glucose levels lead to characteris-
tic alterations in retinal vessel caliber, blood flow, oxygen saturation, and the capillary net-
work, which precede DR lesions. Furthermore, emerging evidence suggests that retinal 
neurodegenerative changes occur early in diabetes, initiating a disintegration of the reti-
nal neurovascular unit prior to the appearance of microvasculopathy in DR. This chapter 
will discuss recent research achievements toward understanding the complexities of DR 
pathophysiology. It will focus on the nomination of potential imaging biomarkers for the 
prediction of DR development and progression using innovative structural, functional, 
and metabolic imaging techniques, including optical coherence tomography angiography 
(OCTA), retinal oximetry, ultra-wide field FA, and corneal confocal microscopy (CCM). 
Validation of these biomarkers would allow the identification of patients at high risk of 
developing DR and might initiate a swift move to early diagnosis and individualized care.

Keywords: diabetic retinopathy, biomarker, retinal blood flow, retinal oxygen 
saturation, retinal neurodegeneration, corneal confocal microscopy, ultra-wide field 
imaging, disorganization of the inner retinal layers, imaging, OCT, OCTA

1. Introduction: the role of biomarkers in disease prediction

The prevalence of diabetes mellitus is increasing worldwide. The International Diabetes 
Federation estimated that 415 million people had diabetes in 2015, 90% of whom were 
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diagnosed with type 2 diabetes. With these trends continuing, 642 million patients with 
diabetes are expected by 2040 [1].

Patients with diabetes are at substantially increased risk of developing complications. In 
light of the cost of interventions implemented throughout the natural history of these com-
plications, diabetes constitutes a tremendous clinical and public health burden that exceeds 
the resources of healthcare systems even in the most affluent countries. The International 
Diabetes Federation has reported that most countries spent 5–20% of their total healthcare 
budget on diabetes in 2015, which amounted to 673 billion US dollars in health expenditure 
worldwide. This figure is expected to increase to about 802 billion US dollars by 2040 [1].

The complications of diabetes are commonly divided into macrovascular complications 
including myocardial infarction, heart failure, and stroke, and microvascular complications 
including diabetic nephropathy, neuropathy, and retinopathy. Diabetic retinopathy (DR) is 
the most common microvascular complication of diabetes. The incidence of DR increases with 
the duration of diabetes. After 20 years, nearly all patients with type 1 diabetes and more than 
60% of those with type 2 diabetes will develop signs of DR [2].

Current treatment guidelines target proliferative disease and macular edema, two sight 
threatening complications. The most common approaches are intravitreal injections of vas-
cular endothelial growth factor (VEGF)-inhibiting agents or corticosteroids, laser treatments, 
and surgical interventions. These treatments are often sight saving, but are invasive and 
cost-prohibitive. Therefore, we need to shift our focus to targeting upstream events at earlier 
stages of non-proliferative DR (NPDR).

The major health economic burden caused by the increasing number of patients diagnosed 
with diabetes raises the need to identify patients at high risk of developing DR and sight 
threatening complications. Reliable biomarkers that help to predict the development and pro-
gression of the disease have to be defined.

A biomarker is traditionally defined as “a characteristic that is objectively measured and eval-
uated as an indicator of normal biological processes, pathogenic processes, or pharmacologi-
cal responses to a therapeutic intervention” [3]. In order to be useful in the prevention of DR, 
a biomarker should (1) non-invasively detect early preclinical disease before the first clinical 
signs of the disease appear, (2) be causally linked or be an indicator of a causal mechanism 
that leads to the development of the disease, and (3) be consistently and strongly associated 
with the disease [3, 4]. Suitable biomarkers should identify patients at low risk to defer DR 
screening intervals facilitating cost-effective management and optimized resource allocation. 
Furthermore, biomarkers should help to predict the progression of DR to the vision-threat-
ening stage, and may forecast the response to different treatment modalities, facilitating indi-
vidualized care [5]. Important factors for valid biomarkers are reproducibility and validity 
in different populations. Furthermore, their measurements must be quick, cost-effective, and 
applicable in daily clinical decision-making [5].

To date, many serum variables have been proposed to be associated with DR incidence 
and progression. According to the Diabetes Control and Complications Trial (DCCT), a 
median glycated hemoglobin (HbA1c) of 7.2% reduced DR incidence by 76% in patients 
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with type 1 diabetes, and DR progression by 54% over a period of 6.5 years [6, 7]. Patients 
with type 2 diabetes had a 25% reduction of DR with good glycemic control [8]. Even 
though HbA1c remains the most widely accepted biomarker nowadays [5], the “Joslin 
50-Year Medalist Study,” which focused on the identification of endogenous protec-
tive factors in patients with a diabetes duration of at least 50 years (therefore named 
“Medalists”) showed that longitudinal glycemic control was unrelated to diabetic com-
plications. However, the presence of specific advanced glycation end products (AGEs) 
(plasma carboxyethyl-lysine and pentosidine) was strongly associated with the develop-
ment of diabetic vasculopathy complications [9].

Cytokines from aqueous humor or vitreous sample have also been considered in the search 
for a DR biomarker. Increased levels of vascular endothelial growth factor (VEGF), platelet-
derived growth factor (PDGF), transforming growth factor beta (TGF-β), and nitric oxide (NO) 
are commonly found in DR. However, these biomarkers can only be assessed using invasive 
methods. As tears are more accessible than serum and intraocular fluids (i.e., vitreous or aque-
ous humor), research has also started to focus on the presence of potential markers in this 
body fluid. Candidate biomarkers in tear fluid include nerve growth factor (NGF), lipocalin-1, 
lactotransferrin, lysozyme C, lacritin, lipophilin A, immunoglobulin lambda chain, heat shock 
protein 27 (HSP 27), and tumor necrosis factor-α (TNF-α) [10].

Ocular imaging biomarkers would offer the advantage of gaining an insight in the actual 
pathologic evolution of DR non-invasively. The most important candidates for such biomark-
ers will be discussed in the following chapter.

2. Microvascular changes in diabetic retinopathy

2.1. Retinal vessel caliber

Diabetic retinopathy is diagnosed clinically by the presence of microaneurysms and small 
hemorrhages visualized during fundoscopy. Assessing the presence and number of micro-
aneurysms as well as their rate of formation and disappearance has been suggested to be an 
appropriate marker of retinal vascular damage and therefore DR progression [11]. However, 
there are microvascular changes that have been shown to antecede fundoscopically visible 
lesions of DR including microaneurysms.

Within the last decades and with the implementation of specialized computer software sys-
tems, grading of retinal vessel diameters to document generalized vessel narrowing or widen-
ing has become increasingly sophisticated, objective, and reliable. Multiple population-based 
studies have used these systems to calculate retinal vascular caliber in terms of the central 
retinal artery and vein equivalent (CRAE, CRVE), which summarizes the average diameter of 
the internal lumen of the vessel, reflecting the visualized erythrocyte column [12]. In sum, the 
results of these studies provide evidence for an association between larger venular caliber and 
DR in patients with type 1 [11, 13] as well as type 2 diabetes [14, 15], therefore being consistent 
with clinical experience. However, reported findings on arteriolar caliber remain contradictory. 
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The population-based Multi-Ethnic Study of Atherosclerosis (MESA) study showed that arte-
riolar calibers are dilated in patients with diabetes [13], whereas other researchers claim that 
arteries tend to constrict in diabetes [14, 16].

The discrepancy between results of different studies may be due to differences between the 
study cohorts in demographic (e.g., distribution in age) and metabolic traits including blood 
glucose levels, duration of diabetes, and cardiovascular risk factors (such as hypertension/
hyperlipidemia) as well as differences in sample size, follow-up period, and the methods 
applied. Before retinal vascular caliber assessment can be used as a biomarker in clinical prac-
tice, age-, sex-, body size-, and blood pressure-specific normative data are required.

2.2. Autoregulation of retinal vessel diameter

Besides a “static” measurement of retinal vessel diameter, “dynamic” changes in the diabetic 
retinal vasculature can be assessed too. The potential for an efficient diameter change in order 
to adjust blood flow according to changes in arterial blood pressure (pressure autoregula-
tion) and retinal metabolism (metabolic autoregulation) is reduced in the early stages of DR 
[17]. Vasoactive molecules activate pericytes and smooth muscle cells to regulate the capil-
lary diameter [18]. A dysfunction in pressure autoregulation of retinal arterioles implies that 
changes in the arterial blood pressure are directly transmitted to the retinal microcirculation 
[19]. The fact that pressure autoregulation decreases with increasing severity of DR highlights 
the destructive effect of arterial hypertension on the retinal microcirculation [17, 20].

Luminance flicker stimulation is an example to test the capability of retinal vessels to adapt 
perfusion to changes in retinal metabolism. Exposure to flickering light stimulates retinal 
neuronal cells to release local vasodilating metabolites, most importantly nitric oxide [21], 
which consequently leads to retinal vasodilatation. This results in an increase in retinal blood 
flow in healthy individuals [22]. Several studies have reported that the flicker light-induced 
vasodilation is reduced in patients with diabetes [17, 23, 24] and even in patients with predia-
betes [25], being equivalent in magnitude to patients with manifest diabetes. Thus, monitor-
ing retinal vascular reactivity may provide an early marker of autoregulation and endothelial 
dysfunction in the retinal microcirculation that clinicians could follow non-invasively.

2.3. Retinal blood flow

Besides measurement of retinal vessel caliber, numerous other techniques such as laser 
Doppler velocimetry, laser Doppler flowmetry (LDF), fluorescein angiography (FA), color 
Doppler, and Doppler optical coherence tomography (OCT) imaging have been proposed 
for quantifying retinal blood flow in patients with diabetes [26–30]. Contradicting results 
concerning retinal blood flow have been published. This may reflect the complexities of the 
pathological alterations that occur in the diabetic retina.

Most studies suggest that in patients without or with mild non-proliferative DR (NPDR), reti-
nal blood flow is reduced [26, 27]. Evidence from animal studies in streptozotocin-treated rats 
also suggests decreased retinal blood flow in the very early stages of DR [31]. In more severe 
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stages of NPDR, research has provided evidence that retinal blood flow increases above nor-
mal levels [28–30], which may arise from the increased demand caused by tissue hypoxia due 
to capillary basement membrane thickening and capillary occlusion [29, 32]. In proliferative 
disease, retinal blood flow is decreased again as measured with different techniques: Blair 
et al. used the dye dilution technique to measure the mean circulation time (MCT) calculated 
as the difference between the mean venous and arterial retinal passage times, which turned 
out to be statistically significantly longer in the eyes with proliferative DR (PDR) than in 
healthy eyes or eyes with NPDR [33]. Laser Doppler flowmetry (LDF), which measures blood 
flow at the optic nerve head (ONH), and color Doppler imaging, also showed a greater reduc-
tion in total retinal blood flow in patients with PDR than in patients with NPDR or healthy 
individuals [34, 35]. Recently, several groups have demonstrated the potential of Doppler 
OCT for assessing retinal blood flow in the diabetic eye. Doppler OCT can also detect volu-
metric blood flow and provide information about the structural anatomy. As shown with the 
techniques mentioned above, eyes with PDR had statistically significantly decreased retinal 
blood flow compared with normal eyes [36], especially those that had been treated with pan-
retinal photocoagulation [28, 37, 38]. However, acute elevations in blood glucose can still trig-
ger an increase in blood flow [26]. This finding suggests that the chronic hyperglycemic state 
in diabetes mellitus is associated with a reduction in retinal blood flow, but the retina still is 
able to respond to increased metabolic rates associated with acutely raised blood glucose by 
increasing retinal blood flow.

2.4. The capillary network

The structure of the retinal capillary network is unique. It has to feed one of the highest meta-
bolically active tissues while limiting the extent of the vascular beds to a minimum in order 
to prevent optical interference to the photoreceptors [39]. The inner retina is perfused by four 
interconnected capillary plexi that include the peripapillary capillary plexus which is found 
in the retinal nerve fiber layer (RNFL) adjacent to the optic nerve head (ONH), the superfi-
cial capillary plexus in the ganglion cell layer (GCL), as well as an intermediate (ICP) and a 
deep capillary plexus (DCP), which are located at the two borders of the inner nuclear layer 
(INL) [40]. Currently most segmentation algorithms display the ICP and DCP as one capillary 
layer. The three vascular layers unite in the center of the macula to form a terminal capillary 
ring surrounding the foveal avascular zone (FAZ). The outer retina and the photoreceptors 
are dependent on blood supplied by diffusion from the choriocapillaris. The early changes 
in capillary architecture and perfusion in patients with diabetes have not yet been definitely 
established, as assessing the human retinal microvasculature in vivo is very difficult due to its 
small size and low optical contrast.

FA, introduced in 1961, has been the gold standard imaging technique for assessing the reti-
nal capillary network [41]. The value of this imaging modality is undeniable, but so are its 
limitations. First, dye leakage and the superimposition of capillary beds from the different 
retinal layers into a single two-dimensional image hinder a proper differentiation between 
the superficial and deep capillary plexi [42]. Furthermore, FA is a time-consuming and inva-
sive technique which does not render it optimal for DR screening or frequent longitudinal 
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the destructive effect of arterial hypertension on the retinal microcirculation [17, 20].
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betes [25], being equivalent in magnitude to patients with manifest diabetes. Thus, monitor-
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2.3. Retinal blood flow

Besides measurement of retinal vessel caliber, numerous other techniques such as laser 
Doppler velocimetry, laser Doppler flowmetry (LDF), fluorescein angiography (FA), color 
Doppler, and Doppler optical coherence tomography (OCT) imaging have been proposed 
for quantifying retinal blood flow in patients with diabetes [26–30]. Contradicting results 
concerning retinal blood flow have been published. This may reflect the complexities of the 
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Most studies suggest that in patients without or with mild non-proliferative DR (NPDR), reti-
nal blood flow is reduced [26, 27]. Evidence from animal studies in streptozotocin-treated rats 
also suggests decreased retinal blood flow in the very early stages of DR [31]. In more severe 
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stages of NPDR, research has provided evidence that retinal blood flow increases above nor-
mal levels [28–30], which may arise from the increased demand caused by tissue hypoxia due 
to capillary basement membrane thickening and capillary occlusion [29, 32]. In proliferative 
disease, retinal blood flow is decreased again as measured with different techniques: Blair 
et al. used the dye dilution technique to measure the mean circulation time (MCT) calculated 
as the difference between the mean venous and arterial retinal passage times, which turned 
out to be statistically significantly longer in the eyes with proliferative DR (PDR) than in 
healthy eyes or eyes with NPDR [33]. Laser Doppler flowmetry (LDF), which measures blood 
flow at the optic nerve head (ONH), and color Doppler imaging, also showed a greater reduc-
tion in total retinal blood flow in patients with PDR than in patients with NPDR or healthy 
individuals [34, 35]. Recently, several groups have demonstrated the potential of Doppler 
OCT for assessing retinal blood flow in the diabetic eye. Doppler OCT can also detect volu-
metric blood flow and provide information about the structural anatomy. As shown with the 
techniques mentioned above, eyes with PDR had statistically significantly decreased retinal 
blood flow compared with normal eyes [36], especially those that had been treated with pan-
retinal photocoagulation [28, 37, 38]. However, acute elevations in blood glucose can still trig-
ger an increase in blood flow [26]. This finding suggests that the chronic hyperglycemic state 
in diabetes mellitus is associated with a reduction in retinal blood flow, but the retina still is 
able to respond to increased metabolic rates associated with acutely raised blood glucose by 
increasing retinal blood flow.

2.4. The capillary network

The structure of the retinal capillary network is unique. It has to feed one of the highest meta-
bolically active tissues while limiting the extent of the vascular beds to a minimum in order 
to prevent optical interference to the photoreceptors [39]. The inner retina is perfused by four 
interconnected capillary plexi that include the peripapillary capillary plexus which is found 
in the retinal nerve fiber layer (RNFL) adjacent to the optic nerve head (ONH), the superfi-
cial capillary plexus in the ganglion cell layer (GCL), as well as an intermediate (ICP) and a 
deep capillary plexus (DCP), which are located at the two borders of the inner nuclear layer 
(INL) [40]. Currently most segmentation algorithms display the ICP and DCP as one capillary 
layer. The three vascular layers unite in the center of the macula to form a terminal capillary 
ring surrounding the foveal avascular zone (FAZ). The outer retina and the photoreceptors 
are dependent on blood supplied by diffusion from the choriocapillaris. The early changes 
in capillary architecture and perfusion in patients with diabetes have not yet been definitely 
established, as assessing the human retinal microvasculature in vivo is very difficult due to its 
small size and low optical contrast.

FA, introduced in 1961, has been the gold standard imaging technique for assessing the reti-
nal capillary network [41]. The value of this imaging modality is undeniable, but so are its 
limitations. First, dye leakage and the superimposition of capillary beds from the different 
retinal layers into a single two-dimensional image hinder a proper differentiation between 
the superficial and deep capillary plexi [42]. Furthermore, FA is a time-consuming and inva-
sive technique which does not render it optimal for DR screening or frequent longitudinal 
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 evaluation. In addition, intravenous fluorescein dye injections can occasionally cause adverse 
side effects, nausea/vomiting, urticaria and rarely, but critically, anaphylactic reactions in 
healthy people [43].

Optical coherence tomography angiography (OCTA) is a further advance in retinal micro-
vascular evaluation and may represent a significant breakthrough in ophthalmic imaging, 
especially in diabetes care. Intravenous injection of extrinsic fluorescent dye is no longer 
required with this technology, but the perfused capillary architecture is non-invasively visu-
alized with erythrocyte motion as an intrinsic contrast. A recent study has demonstrated that 
shorter acquisition times and a higher number of motion artifact-free images can be achieved 
using swept source technology [42].

Several features of early disruption of microvascular perfusion in the development 
and progression of DR have already been investigated and objectively quantified using 
OCTA. Diabetic macular ischemia, clinically defined as an enlargement and disruption of 
the foveal avascular zone (FAZ) and capillary dropout in adjacent parafoveal areas [44], is 
thought to have predictive potential for DR progression [45]. The considerable inter-subject 
variability in FAZ size even in healthy people and the large overlap in FAZ size between 
healthy individuals and patients with diabetes have to be considered though [46]. Hence, 
FAZ size alone was suggested to be a poor diagnostic variable [47], and qualitative FAZ 
assessment (e.g., with FAZ outline and regularity) may constitute a more reliable biomarker 
for the ischemic state of the macula in the diagnosis of DR, either complementary to or in 
place of a quantitative assessment [48].

OCTA is also reproducible for the measurement of vessel density in healthy eyes and eyes 
with DR. Compared with a healthy control group, patients with diabetes but without DR 
were shown to feature reduced parafoveal and perifoveal vessel density, and intercapillary 
areas increase as DR progresses [47, 49, 50]. A more consistent and severe decrease in vessel 
density has been observed in the superficial capillary network than in the deep plexus in most 
studies [51, 52]. Accordingly, mean vessel density in the superficial retinal layer, being highly 
inversely correlated to best-corrected visual acuity (BCVA), has already been proposed to be 
the best marker for a reliable differentiation between healthy eyes and those with DR [53]. 
Similarly, the total avascular area in the central 5.5-mm-diameter area was shown to distin-
guish eyes with DR from control eyes with 100% sensitivity and specificity. It was, therefore, 
suggested that total avascular area may be an excellent biomarker in the diagnosis of DR [47].

Compared with FA, where the edges of non-perfused areas appear fuzzy or cannot be 
detected at all, OCT angiograms clearly delimit the border between sparse-capillary areas 
and dense-capillary areas in most cases [52, 54]. Choi et al. also found impairment of flow in 
the choriocapillaris at all stages of DR, supporting the concept that choriocapillaris alterations 
may play a role in the pathogenesis of DR [55].

OCTA color-coded perfusion density mapping enhances areas of low capillary perfusion 
density in the SCP, DCP and the choriocapillaris in patients with diabetes. Additional trend 
analysis has shown a statistically significant decrease in capillary perfusion density values as 
DR progressed [56].
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OCTA techniques have also been used to study the development and progression, as well 
as the treatment response of clinically visible signs of DR. Microaneurysms can be identi-
fied in OCTA, but with a significantly lower sensitivity compared with conventional FA 
[52]. Nevertheless, OCTA provides additional information about their originating capillary 
plexus. Significantly, more microaneurysms were found in the intermediate/deep capillary 
plexus than in the superficial one [54, 57]. Additionally, it has been proposed that OCTA is 
more useful to evaluate clinically active microaneurysms, which are a major cause of diabetic 
macular edema (DME) [58]. Intraretinal microvascular abnormalities (IRMA), on the other 
hand, were well detected by both FA and OCTA [54].

The significance of the individual evaluation of the integrity of the deep capillary plexus, 
impossible with FA alone, is further supported as macular outer retinal changes on spectral-
domain OCT (SD-OCT) correspond to areas of capillary non-perfusion at the level of the DCP 
in patients with DR. The spectrum of outer retinal alterations encompassed different degrees 
of thinning of the outer nuclear layer (ONL), disruption of the photoreceptor lines, and focal 
photoreceptor layer thinning [59].

Diagnosis of retinal neovascularization on FA depends on identifying characteristic patho-
logic vessels with profuse leakage in late angiographic phases. With OCTA, spots of neo-
vascularization that were not identified with FA were visualized as an abnormal flow signal 
above the inner limiting membrane, which may further help in the identification of patients 
requiring treatment [47, 55].

Certainly, there are limitations to the OCTA systems in their current state that have to be 
acknowledged including the incidence of motion artifacts and the relatively small field of 
view [41], but these can be improved with future development efforts [60]. In summary, 
OCTA enables the visualization of early microvascular perfusion abnormalities represent-
ing imminent DR development and simultaneous monitoring of the treatment response of 
pathognomonic lesions of DR. It could therefore provide clinicians and scientists in clinical 
trials with valuable and reliable biomarkers, using an imaging technology that is safely toler-
ated by patients.

2.5. Retinal oxygen supply

Capillary non-perfusion and tissue ischemia are well-known hallmarks of diabetic retinopa-
thy. While FA provides information about the anatomic state of retinal vessels, changes in 
retinal oxygenation reflect metabolic dysfunction. Oxygen saturation (SO2) in retinal vessels 
is a direct measure of retinal oxygen metabolism [18].

Using retinal oximetry, retinal SO2 can be measured non-invasively in major retinal arterioles 
and venules. The retinal oximeter records fundus images reflected from the retina at two 
different wavelengths, one being sensitive to oxygen (600 nm), and one being insensitive to 
oxygen (570 nm). An inverse linear relation between the optical density ratio measured at the 
two wavelengths and SO2 is assumed. Retinal oxygen saturation can be presented numeri-
cally and as a color saturation map [61]. Low variability as well as high reproducibility and 
repeatability have been shown for retinal oximetry measurements in healthy individuals and 
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Similarly, the total avascular area in the central 5.5-mm-diameter area was shown to distin-
guish eyes with DR from control eyes with 100% sensitivity and specificity. It was, therefore, 
suggested that total avascular area may be an excellent biomarker in the diagnosis of DR [47].

Compared with FA, where the edges of non-perfused areas appear fuzzy or cannot be 
detected at all, OCT angiograms clearly delimit the border between sparse-capillary areas 
and dense-capillary areas in most cases [52, 54]. Choi et al. also found impairment of flow in 
the choriocapillaris at all stages of DR, supporting the concept that choriocapillaris alterations 
may play a role in the pathogenesis of DR [55].

OCTA color-coded perfusion density mapping enhances areas of low capillary perfusion 
density in the SCP, DCP and the choriocapillaris in patients with diabetes. Additional trend 
analysis has shown a statistically significant decrease in capillary perfusion density values as 
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in patients with DR. The spectrum of outer retinal alterations encompassed different degrees 
of thinning of the outer nuclear layer (ONL), disruption of the photoreceptor lines, and focal 
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Diagnosis of retinal neovascularization on FA depends on identifying characteristic patho-
logic vessels with profuse leakage in late angiographic phases. With OCTA, spots of neo-
vascularization that were not identified with FA were visualized as an abnormal flow signal 
above the inner limiting membrane, which may further help in the identification of patients 
requiring treatment [47, 55].

Certainly, there are limitations to the OCTA systems in their current state that have to be 
acknowledged including the incidence of motion artifacts and the relatively small field of 
view [41], but these can be improved with future development efforts [60]. In summary, 
OCTA enables the visualization of early microvascular perfusion abnormalities represent-
ing imminent DR development and simultaneous monitoring of the treatment response of 
pathognomonic lesions of DR. It could therefore provide clinicians and scientists in clinical 
trials with valuable and reliable biomarkers, using an imaging technology that is safely toler-
ated by patients.

2.5. Retinal oxygen supply

Capillary non-perfusion and tissue ischemia are well-known hallmarks of diabetic retinopa-
thy. While FA provides information about the anatomic state of retinal vessels, changes in 
retinal oxygenation reflect metabolic dysfunction. Oxygen saturation (SO2) in retinal vessels 
is a direct measure of retinal oxygen metabolism [18].

Using retinal oximetry, retinal SO2 can be measured non-invasively in major retinal arterioles 
and venules. The retinal oximeter records fundus images reflected from the retina at two 
different wavelengths, one being sensitive to oxygen (600 nm), and one being insensitive to 
oxygen (570 nm). An inverse linear relation between the optical density ratio measured at the 
two wavelengths and SO2 is assumed. Retinal oxygen saturation can be presented numeri-
cally and as a color saturation map [61]. Low variability as well as high reproducibility and 
repeatability have been shown for retinal oximetry measurements in healthy individuals and 
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in diseased retinas [62–64]. Furthermore, there have already been a number of approaches to 
compile normative databases for retinal oximetry measurements in Caucasian [61] and mul-
tiethnic populations [65], to set a basis for comparability for future clinical trials. Age is the 
most important factor that should be accounted for in the interpretation of retinal oximetry 
measurements. Beside age and ethnicity, other demographic factors do not seem to influence 
retinal oximetry results markedly [61, 65, 66]. Additionally, no statistically significant differ-
ence in SO2 levels between patients with type 1 and type 2 diabetes could be observed [61].

Oxygen saturation levels in retinal vessels seem to steadily increase with progressing sever-
ity of DR, even if it is not fully elucidated if both, arterioles and venules [67, 68], or solely 
venules are affected by this increase [69]. Compared with healthy individuals, the change in 
SO2 levels only becomes statistically significant at more advanced stages of severe NPDR or 
PDR. Some investigators support the concept that in earlier stages of DR, increased levels of 
SO2 are detected in retinal venules only, which stands for a decreasing oxygen extraction in 
these patients, whereas in patients with PDR, SO2 levels are also increased in retinal arteri-
oles, resulting in unchanged levels of oxygen extraction [70].

The metabolic results reflected by retinal oximetry also seem to correlate with the extent of 
retinal ischemia measured in FA [67].

At first, the findings of increased oxygen saturation levels in patients with diabetes with or 
without DR seem to conflict with the traditional concept of DR being an ischemic disease. 
However, this observation can be explained by at least three mechanisms: (1) capillary non-
perfusion and shunting (2) thickening of the basement membrane of capillary vessel walls, 
and (3) greater affinity of hemoglobin for oxygen [71]. Capillary non-perfusion in conjunc-
tion with the formation of shunt vessel is already known from histologic studies in the dia-
betic retina. In capillary shunting, while some vessels dilate, others constrict, leading to blood 
flow bypassing parts of the capillary network. Blood is then transported faster through these 
dilated preferential channels, resulting in a shortened arterio-venous passage time and there-
fore a reduced oxygen extraction time [72]. Further, with thickening of the capillary basement 
membranes, inevitably, oxygen diffusion from the blood to the retinal tissue is hindered as the 
transport distance increases [73]. All these mechanisms lead to a maldistribution of oxygen. 
Oxygen cannot be delivered to the retinal cells in these ischemic areas, which makes venular 
blood relatively hyperoxic and retinal tissue relatively hypoxic. As a compensatory response, 
oxygen demand will increase, and more blood will be directed to the tissue. Therefore, oxy-
genation in arterioles increases too [68].

Intraocular injections of substances inhibiting the production of vascular endothelial growth 
factor (VEGF), as well as laser treatment and vitrectomy are therapeutic for complications in 
advanced DR and all of them influence retinal oxygen metabolism.

The vitreous cavities of patients with PDR who have undergone vitrectomy have lower 
oxygen tension than those who do not have diabetes [74]. Anti-VEGF injections can reduce 
diabetic macular edema and retinal neovascularization leading to a gain in visual acuity in 
patients with diabetic maculopathy and/or PDR. The introduction of this treatment modal-
ity has considerably improved the visual rehabilitation for patients with DR, but still, some 
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patients respond better to the treatment than others. Interestingly, a recent study indicates 
that together with arterial blood pressure, SO2 in retinal arterioles may predict visual acuity 
and central retinal thickness (CRT) in patients with diabetic macular edema after anti-VEGF 
treatment [75]. Retinal laser treatment destroys retinal tissue and therefore reduces oxygen 
consumption in treated retinal areas, which in turn reduces hypoxia and the subsequent pro-
duction of VEGF [76]. The effects of this treatment can be detected with retinal oximetry. A 
slight increase in SO2 in retinal venules and unchanged SO2 in retinal arterioles was mea-
sured immediately after treatment in patients with diabetic maculopathy and patients with 
PDR, resulting in reduced oxygen extraction. Three months after treatment, arteriolar and 
venular SO2 were both increased, but arteriovenous SO2 difference was unchanged compared 
with pretreatment levels [77]. A more recent study in patients with treatment-naive PDR sug-
gested that pre-laser retinal SO2 was not able to predict immediate post-treatment activity of 
neovascularization, but post-treatment changes in SO2 were closely linked to disease activity 
3 months after photocoagulation. Each 1% increase in retinal venular SO2 was independently 
associated with a 30% higher risk of increased PDR activity despite laser treatment. This 
implies that if photocoagulation is successfully performed, the amount of the hypoxic retinal 
tissue is decreased. In the adjacent vital retinal tissue, oxygen is extracted efficiently from reti-
nal arteries, which lowers the venous SO2 and the arteriovenous SO2 levels [78]. Therefore, 
investigation of oxygen supply may be a potential non-invasive marker of angiogenic disease 
activity in the monitoring of the treatment response in DR. Prospective studies are under way 
to further validate retinal oximetry as a biomarker in DR.

3. The identification of lesions in the retinal periphery

Increasing evidence from research suggests that the first lesions in DR develop in the periph-
ery of the retina and that these lesions are potentially associated with DR progression [79, 
80]. The gold standard for determining the severity of DR is the extended modified Airlie 
House classification, which was first used in the Early Treatment Diabetic Retinopathy Study 
(ETDRS) in 1991 [81]. This rigorously standardized grading scale comprises 13 distinct levels, 
ranging from the absence of DR to the most severe manifestations of the disease localized in 
the central posterior 90° of the retina, representing approximately 30% of the entire retinal 
surface. The ETDRS grading scale is an established measure of disease activity and predic-
tive of the risk of DR progression and visual loss over time [82]. However, due to imaging 
limitations, a systematic assessment of the retinal periphery was not feasible when the origi-
nal ETDRS criteria were created. Therefore, the presence of pathologic features outside the 
7-fields of ETDRS photography was not accounted for in this grading scale. With the advent 
of commercially available high-resolution ultrawide-field (UWF) scanning laser ophthalmo-
scopes, peripheral retinal lesions within and outside the area of the 7-standard ETDRS fields 
can now be evaluated [83]. Instead of 30° captured by a single ETDRS photo, these UWF 
imaging systems cover up to 200° in a single image, representing approximately 82% of the 
retinal area. Combining low-powered green (532 nm) and red (633 nm) laser light, a compos-
ite color image with a resolution of 14 μm can be acquired in just a quarter of a second. The 
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patients respond better to the treatment than others. Interestingly, a recent study indicates 
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and central retinal thickness (CRT) in patients with diabetic macular edema after anti-VEGF 
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duction of VEGF [76]. The effects of this treatment can be detected with retinal oximetry. A 
slight increase in SO2 in retinal venules and unchanged SO2 in retinal arterioles was mea-
sured immediately after treatment in patients with diabetic maculopathy and patients with 
PDR, resulting in reduced oxygen extraction. Three months after treatment, arteriolar and 
venular SO2 were both increased, but arteriovenous SO2 difference was unchanged compared 
with pretreatment levels [77]. A more recent study in patients with treatment-naive PDR sug-
gested that pre-laser retinal SO2 was not able to predict immediate post-treatment activity of 
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to further validate retinal oximetry as a biomarker in DR.
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ery of the retina and that these lesions are potentially associated with DR progression [79, 
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(ETDRS) in 1991 [81]. This rigorously standardized grading scale comprises 13 distinct levels, 
ranging from the absence of DR to the most severe manifestations of the disease localized in 
the central posterior 90° of the retina, representing approximately 30% of the entire retinal 
surface. The ETDRS grading scale is an established measure of disease activity and predic-
tive of the risk of DR progression and visual loss over time [82]. However, due to imaging 
limitations, a systematic assessment of the retinal periphery was not feasible when the origi-
nal ETDRS criteria were created. Therefore, the presence of pathologic features outside the 
7-fields of ETDRS photography was not accounted for in this grading scale. With the advent 
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scopes, peripheral retinal lesions within and outside the area of the 7-standard ETDRS fields 
can now be evaluated [83]. Instead of 30° captured by a single ETDRS photo, these UWF 
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ite color image with a resolution of 14 μm can be acquired in just a quarter of a second. The 

Potential Imaging Biomarkers in the Development and Progression of Diabetic Retinopathy
http://dx.doi.org/10.5772/intechopen.71747

17



high-resolution scanning laser ophthalmoscopy UWF technique allows improved imaging 
through media opacities such as cataracts, and images can even be acquired without pupil-
lary mydriasis.

There are a number of examples in the literature showing that UWF imaging is comparable to 
conventional retinal imaging techniques for DR grading. In these studies, images were evalu-
ated for the presence of predominantly peripheral lesions (PPLs), defined as lesions with 
more than 50% of the lesion located outside one of the ETDRS fields. Compared with eyes 
without PPL, it is estimated that eyes with PPL at baseline have a 3.2-fold increased risk of 
a 2-step or more DR progression and a 4.7-fold increased risk for progression to PDR over 
4 years, independent of baseline DR severity and HbA1c levels [84].

Identification of DR lesions with non-mydriatic UWF imaging has been compared with stan-
dard non-mydriatic multifield fundus photography (NMFP) in large population-based DR 
teleophthalmology programs. Determining the risk for DR progression associated with an 
individual’s retinal findings in imaging is fundamental in such programs for appropriate 
risk assessment as well as timing of screening intervals. Ungradable images generally result 
in referral for comprehensive eye examination because the severity of DR cannot be ascer-
tained. The efficiency of DR teleophthalmology programs could be improved by reducing the 
unnecessary referrals due to ungradable images, which would lead to considerable savings 
in logistical complexities, travel arrangements, and time burdens for patients and the health-
care system [83]. UWF imaging can reduce the ungradable image rate by 71% and image 
evaluation time by 28% compared with NMFP [85]. UWF imaging additionally resulted in 
a more severe DR level in 9–15% of eyes [84, 86]. Non-mydriatic UWF images were shown 
to compare favorably with dilated ETDRS photography in determining DR severity, and 
discrepancies between ETDRS and UWF images were found to be mostly attributable to 
hemorrhages or microaneurysms [83, 87]. Silva et al. suggested that approximately one third 
of lesions including hemorrhages, microaneurysms, IRMA, and neovascularization were 
found predominantly outside the ETDRS fields, being more frequent in temporal than nasal 
fields [83]. Furthermore, UWF imaging substantially increases the identification of periph-
eral non-diabetic lesions such as lattice and other retinal degenerations, retinal tears and 
holes, and choroidal lesions [88]. The utility of UWF imaging has also been demonstrated in 
comparison with conventional slit-lamp biomicroscopy in a “real-life” clinical setting [89], 
and in comparison with the gold standard dilated fundus examination with scleral indenta-
tion, where Optomap showed high specificity and moderate sensitivity for lesions poste-
rior to the equator, but low sensitivity for lesions anterior to the equator [90]. It was even 
proposed that assessing of UWF combined with OCT images allows more eyes with higher 
grades of DR to be detected than in a clinical examination alone or combined with imaging 
in a clinical setting [91].

The ETDRS extensively evaluated FA but did not provide evidence for a substantially 
improved ability to predict subsequent DR progression applying this technique. However, 
due to the limited field of view, traditional FA may miss major areas of peripheral capillary 
non-perfusion and neovascularization. The advent of UWF FA has provided the opportu-
nity to visualize both the central and peripheral retina in a single examination [92]. Sim et al. 
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evaluated the association between peripheral retinal ischemia of UWF FA images and central 
ischemia in DR, and observed a moderate correlation between the peripheral ischemic index 
and FAZ area, as well as peripheral leakage index and FAZ area in eyes which have not been 
treated with laser yet [44]. Similarly, 3.9 times more non-perfusion, 1.9 times more neovascu-
larization, and 3.8 times more panretinal photocoagulation scars could be detected in UWF 
FA compared with the 7-standard field ETDRS images [93]. An increase in retinal non-perfu-
sion was associated with worsening DR [94]. As peripheral non-perfusion probably underlies 
the development of PPL [80], the identification of PPL may be a potential surrogate marker 
for estimating the location and extent of peripheral non-perfusion [94].

Current study results assessing the value of UWF FA in eyes with diabetic macular edema 
(DME) are still contradictory [28, 93, 94].

Besides the paramount advantages of incorporating UWF imaging into the diagnosis and 
management of DR, certain limitations including low portability and the need for extensive 
imager training to obtain high quality images must be acknowledged [95]. UWF imaging sys-
tems are still expensive but their cost is likely to decrease over time with further technological 
innovations and market competitions.

In summary, peripheral lesions identified in UWF imaging may substantially alter the risk 
of DR onset, progression and outcome. Currently a new DR severity grading scale will be 
established combining clinical with imaging information from UWF photographs and angio-
grams. A large longitudinal multicenter study sponsored by the Diabetic Retinopathy Clinical 
Research Network (DRCR.net) has been designed to assess the relation between baseline vari-
ables on UWF color fundus photographs and UWF FA with long-term DR outcomes [95].

4. Disorganization of the retinal inner layers for diabetic macular  
edema prediction

Diabetic macular edema (DME) is one of the most vision-threatening manifestations of DR, 
affecting almost 30% of patients with a duration of diabetes mellitus of more than 20 years [96].

Elevated levels of vascular endothelial growth factor (VEGF) are a major contributor to reti-
nal microvascular dysfunction and the development of DME. VEGF interferes with tight 
junctions of the vascular endothelium, leading to a breakdown of the blood retinal barrier 
and consequently leakage into the retinal tissue [97]. Therefore, repetitive intraocular injec-
tions of anti-VEGF agents are a first-line therapy among the currently available treatments 
for DME. These injections have demonstrated efficiency in reducing macular thickness and 
improving best-corrected visual acuity (BCVA) [98]. However, while beneficial for some 
patients, others do not respond to intraocular drug injections. Furthermore, the resolution 
of DME may not be followed by a recovery in visual function. To date, no reliable methods 
exist to determine which individuals with DME will or will not respond to available treat-
ments. The implementation of predictive biomarkers would guarantee an efficient therapeu-
tic selection to identify patients with a limited prognosis of visual recovery despite ongoing 
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high-resolution scanning laser ophthalmoscopy UWF technique allows improved imaging 
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without PPL, it is estimated that eyes with PPL at baseline have a 3.2-fold increased risk of 
a 2-step or more DR progression and a 4.7-fold increased risk for progression to PDR over 
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teleophthalmology programs. Determining the risk for DR progression associated with an 
individual’s retinal findings in imaging is fundamental in such programs for appropriate 
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in referral for comprehensive eye examination because the severity of DR cannot be ascer-
tained. The efficiency of DR teleophthalmology programs could be improved by reducing the 
unnecessary referrals due to ungradable images, which would lead to considerable savings 
in logistical complexities, travel arrangements, and time burdens for patients and the health-
care system [83]. UWF imaging can reduce the ungradable image rate by 71% and image 
evaluation time by 28% compared with NMFP [85]. UWF imaging additionally resulted in 
a more severe DR level in 9–15% of eyes [84, 86]. Non-mydriatic UWF images were shown 
to compare favorably with dilated ETDRS photography in determining DR severity, and 
discrepancies between ETDRS and UWF images were found to be mostly attributable to 
hemorrhages or microaneurysms [83, 87]. Silva et al. suggested that approximately one third 
of lesions including hemorrhages, microaneurysms, IRMA, and neovascularization were 
found predominantly outside the ETDRS fields, being more frequent in temporal than nasal 
fields [83]. Furthermore, UWF imaging substantially increases the identification of periph-
eral non-diabetic lesions such as lattice and other retinal degenerations, retinal tears and 
holes, and choroidal lesions [88]. The utility of UWF imaging has also been demonstrated in 
comparison with conventional slit-lamp biomicroscopy in a “real-life” clinical setting [89], 
and in comparison with the gold standard dilated fundus examination with scleral indenta-
tion, where Optomap showed high specificity and moderate sensitivity for lesions poste-
rior to the equator, but low sensitivity for lesions anterior to the equator [90]. It was even 
proposed that assessing of UWF combined with OCT images allows more eyes with higher 
grades of DR to be detected than in a clinical examination alone or combined with imaging 
in a clinical setting [91].

The ETDRS extensively evaluated FA but did not provide evidence for a substantially 
improved ability to predict subsequent DR progression applying this technique. However, 
due to the limited field of view, traditional FA may miss major areas of peripheral capillary 
non-perfusion and neovascularization. The advent of UWF FA has provided the opportu-
nity to visualize both the central and peripheral retina in a single examination [92]. Sim et al. 
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evaluated the association between peripheral retinal ischemia of UWF FA images and central 
ischemia in DR, and observed a moderate correlation between the peripheral ischemic index 
and FAZ area, as well as peripheral leakage index and FAZ area in eyes which have not been 
treated with laser yet [44]. Similarly, 3.9 times more non-perfusion, 1.9 times more neovascu-
larization, and 3.8 times more panretinal photocoagulation scars could be detected in UWF 
FA compared with the 7-standard field ETDRS images [93]. An increase in retinal non-perfu-
sion was associated with worsening DR [94]. As peripheral non-perfusion probably underlies 
the development of PPL [80], the identification of PPL may be a potential surrogate marker 
for estimating the location and extent of peripheral non-perfusion [94].

Current study results assessing the value of UWF FA in eyes with diabetic macular edema 
(DME) are still contradictory [28, 93, 94].

Besides the paramount advantages of incorporating UWF imaging into the diagnosis and 
management of DR, certain limitations including low portability and the need for extensive 
imager training to obtain high quality images must be acknowledged [95]. UWF imaging sys-
tems are still expensive but their cost is likely to decrease over time with further technological 
innovations and market competitions.

In summary, peripheral lesions identified in UWF imaging may substantially alter the risk 
of DR onset, progression and outcome. Currently a new DR severity grading scale will be 
established combining clinical with imaging information from UWF photographs and angio-
grams. A large longitudinal multicenter study sponsored by the Diabetic Retinopathy Clinical 
Research Network (DRCR.net) has been designed to assess the relation between baseline vari-
ables on UWF color fundus photographs and UWF FA with long-term DR outcomes [95].

4. Disorganization of the retinal inner layers for diabetic macular  
edema prediction

Diabetic macular edema (DME) is one of the most vision-threatening manifestations of DR, 
affecting almost 30% of patients with a duration of diabetes mellitus of more than 20 years [96].

Elevated levels of vascular endothelial growth factor (VEGF) are a major contributor to reti-
nal microvascular dysfunction and the development of DME. VEGF interferes with tight 
junctions of the vascular endothelium, leading to a breakdown of the blood retinal barrier 
and consequently leakage into the retinal tissue [97]. Therefore, repetitive intraocular injec-
tions of anti-VEGF agents are a first-line therapy among the currently available treatments 
for DME. These injections have demonstrated efficiency in reducing macular thickness and 
improving best-corrected visual acuity (BCVA) [98]. However, while beneficial for some 
patients, others do not respond to intraocular drug injections. Furthermore, the resolution 
of DME may not be followed by a recovery in visual function. To date, no reliable methods 
exist to determine which individuals with DME will or will not respond to available treat-
ments. The implementation of predictive biomarkers would guarantee an efficient therapeu-
tic selection to identify patients with a limited prognosis of visual recovery despite ongoing 
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 therapeutic actions, where early visual disability support instead of burdensome treatment 
schedules may be warranted. SD-OCT provides high-resolution imaging of the retinal struc-
ture and allows insight into the pathogenesis of DME in vivo. Central retinal thickness (CRT) 
measured with OCT is commonly used in the evaluation and management of DME. However, 
CRT only explains 27% of the variation in visual acuity [99]. Various other OCT measures 
have been studied, but none of these measures has been consistently demonstrated to account 
for visual outcomes in patients with DME, and most of these studies were conducted retro-
spectively in mixed treatment cohorts. Examples of these measures include the integrity of the 
ellipsoid zone (EZ) (formerly described as the inner segment/outer segment photoreceptor 
junction) [100, 101], the integrity of the external limiting membrane [101, 102], the visibility of 
the cone outer segment tips (COST) [103], as well as the presence of subretinal fluid [104] and 
hyperreflective foci [105, 106].

Furthermore, intraretinal cystoid fluid has been named as a predictor of poor response to anti-
VEGF treatment in a prospective study [101], as well as in two post hoc analyses [107, 108] 
in large datasets of patients with DME using a machine-learning approach. Recently,  
disorganization of the retinal inner layers (DRIL) has been suggested to be a valid predictive 
biomarker for visual outcomes in patients with DME. DRIL was defined as the inability to 
distinguish boundaries between any two of the inner retinal layers (including the ganglion 
cell-inner plexiform layer (GCIPL) complex, the inner nuclear layer, and the outer plexiform 
layer) in >50% of the foveal 1-mm zone [103]. DRIL in the central millimeter is strongly asso-
ciated with visual acuity in eyes with center-involving DME. Resolving DRIL seemed to be a 
good indicator of subsequent visual improvement [109]. In addition, the presence and extent 
of DRIL before treatment are correlated with BCVA outcomes to anti-VEGF therapy after the 
loading dose of ranibizumab in treatment naive patients with DME [101]. Similarly, patients 
with DME showed gain in visual acuity if DRIL resolved compared with non-resolvers, 
whose visual acuity worsened. This correlation between DRIL and visual acuity could not be 
substantiated for eyes with macular edema due to other causes [110]. Additionally, it is well 
known that approximately 55% of patients with DME have co-existent macular capillary non-
perfusion [111], which may be masked angiographically by leakage from the edema. Macular 
capillary non-perfusion hinders efficient transport of oxygen and nutrients to the inner reti-
nal layers, which in turn compromises inner retinal integrity and may therefore lead to the 
appearance of DRIL in OCT scans. This concept has been substantiated by a recent study 
reporting 84.4% sensitivity and 100% specificity of DRIL in detecting angiographic evidence 
of capillary non-perfusion in the macula [112].

The exact mechanisms of DRIL affecting VA have yet to be determined, but their correlation 
in eyes with DME is plausible as DRIL may represent an interruption in anatomic structures 
within these inner retinal layers including axons and nuclei of bipolar, amacrine, and/or hori-
zontal cells, and therefore a disruption in the visual pathway from photoreceptors to retinal 
ganglion cells.

These data suggest that DRIL is a robust biomarker of visual acuity in eyes with present 
or resolved DME, correlating better with visual acuity than other OCT measures includ-
ing CRT. Future multicenter longitudinal studies have to validate the predictive potential 
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of DRIL by prospectively collecting data on the visual outcome of patients with DME, with 
additional studies to clarify the histologic equivalent accompanying the appearance of DRIL 
in SD-OCT [103].

5. Diabetic retinopathy as a neurodegenerative disease

5.1. The neurovascular unit

Fundoscopic clinical examination of patients with DR reveals pathognomonic features includ-
ing hard exudates, hemorrhages, microaneurysms, and cotton wool spots. However, it does not 
reveal the complex organization of the neurosensory retina. Similar to other tissues through-
out the central nervous system, neurons, glia, microglia, and blood vessels are organized into 
neurovascular units that work interdependently in close coordination in the retina [113].

The complex interconnections in the neurovascular unit prompted early anatomists to call this 
tissue the retina, literally a network of cells [114]. The capillary networks of the inner retina 
are in close contact with neurons of the inner nuclear and ganglion cell layer. These capillaries 
consist of a basal lamina with a single layer of adherent endothelial cells surrounded by peri-
cytes, glial, and microglial cells on the external surface. Microglia interact directly with retinal 
pericytes and are intimately associated with retinal neurons [115].

This intimate physical contact and functional integration are essential for vision and facilitate 
physiologic adaptation in response to varying conditions. Neuronal activity evokes localized 
reactions including vasodilation and increased blood flow to meet the energy demands of 
neuronal signal transduction and transmission [114]. In addition to the coordination of meta-
bolic demand, close signaling interdependence manifests itself in the blood-retinal barrier, 
which controls the flux of fluids and metabolites into the retinal tissue [116].

The diabetic environment causes the neurovascular unit to disintegrate both in early and late 
DR with the physiology of the neurovascular unit being similarly altered as it is in diseases of 
the brain such as stroke [117], Alzheimer’s, and Parkinson’s diseases [118]. Although DR has 
traditionally been considered merely a microvascular diabetic complication, recent studies 
support the concept that retinal neurodegeneration precedes and contributes to the forma-
tion of microvascular abnormalities in DR. These findings suggest that DR should at least be 
considered a combined neuro-vascular degeneration [113].

5.2. Retinal neurodegeneration

Signs of neurodegeneration were not visible in fundus examination in the era of the ETDRS. 
Therefore, these changes did not contribute to the characterization or diagnosis of the disease. 
However, retinal neurodegeneration has widely been accepted as part of DR over the last 
decades.

These abnormalities in retinal neural tissue lead to well-studied functional changes that typi-
cally precede the clinical diagnosis of DR, and in some cases occur even prior to the diagnosis 
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measured with OCT is commonly used in the evaluation and management of DME. However, 
CRT only explains 27% of the variation in visual acuity [99]. Various other OCT measures 
have been studied, but none of these measures has been consistently demonstrated to account 
for visual outcomes in patients with DME, and most of these studies were conducted retro-
spectively in mixed treatment cohorts. Examples of these measures include the integrity of the 
ellipsoid zone (EZ) (formerly described as the inner segment/outer segment photoreceptor 
junction) [100, 101], the integrity of the external limiting membrane [101, 102], the visibility of 
the cone outer segment tips (COST) [103], as well as the presence of subretinal fluid [104] and 
hyperreflective foci [105, 106].

Furthermore, intraretinal cystoid fluid has been named as a predictor of poor response to anti-
VEGF treatment in a prospective study [101], as well as in two post hoc analyses [107, 108] 
in large datasets of patients with DME using a machine-learning approach. Recently,  
disorganization of the retinal inner layers (DRIL) has been suggested to be a valid predictive 
biomarker for visual outcomes in patients with DME. DRIL was defined as the inability to 
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ciated with visual acuity in eyes with center-involving DME. Resolving DRIL seemed to be a 
good indicator of subsequent visual improvement [109]. In addition, the presence and extent 
of DRIL before treatment are correlated with BCVA outcomes to anti-VEGF therapy after the 
loading dose of ranibizumab in treatment naive patients with DME [101]. Similarly, patients 
with DME showed gain in visual acuity if DRIL resolved compared with non-resolvers, 
whose visual acuity worsened. This correlation between DRIL and visual acuity could not be 
substantiated for eyes with macular edema due to other causes [110]. Additionally, it is well 
known that approximately 55% of patients with DME have co-existent macular capillary non-
perfusion [111], which may be masked angiographically by leakage from the edema. Macular 
capillary non-perfusion hinders efficient transport of oxygen and nutrients to the inner reti-
nal layers, which in turn compromises inner retinal integrity and may therefore lead to the 
appearance of DRIL in OCT scans. This concept has been substantiated by a recent study 
reporting 84.4% sensitivity and 100% specificity of DRIL in detecting angiographic evidence 
of capillary non-perfusion in the macula [112].

The exact mechanisms of DRIL affecting VA have yet to be determined, but their correlation 
in eyes with DME is plausible as DRIL may represent an interruption in anatomic structures 
within these inner retinal layers including axons and nuclei of bipolar, amacrine, and/or hori-
zontal cells, and therefore a disruption in the visual pathway from photoreceptors to retinal 
ganglion cells.

These data suggest that DRIL is a robust biomarker of visual acuity in eyes with present 
or resolved DME, correlating better with visual acuity than other OCT measures includ-
ing CRT. Future multicenter longitudinal studies have to validate the predictive potential 
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of DRIL by prospectively collecting data on the visual outcome of patients with DME, with 
additional studies to clarify the histologic equivalent accompanying the appearance of DRIL 
in SD-OCT [103].

5. Diabetic retinopathy as a neurodegenerative disease

5.1. The neurovascular unit

Fundoscopic clinical examination of patients with DR reveals pathognomonic features includ-
ing hard exudates, hemorrhages, microaneurysms, and cotton wool spots. However, it does not 
reveal the complex organization of the neurosensory retina. Similar to other tissues through-
out the central nervous system, neurons, glia, microglia, and blood vessels are organized into 
neurovascular units that work interdependently in close coordination in the retina [113].

The complex interconnections in the neurovascular unit prompted early anatomists to call this 
tissue the retina, literally a network of cells [114]. The capillary networks of the inner retina 
are in close contact with neurons of the inner nuclear and ganglion cell layer. These capillaries 
consist of a basal lamina with a single layer of adherent endothelial cells surrounded by peri-
cytes, glial, and microglial cells on the external surface. Microglia interact directly with retinal 
pericytes and are intimately associated with retinal neurons [115].

This intimate physical contact and functional integration are essential for vision and facilitate 
physiologic adaptation in response to varying conditions. Neuronal activity evokes localized 
reactions including vasodilation and increased blood flow to meet the energy demands of 
neuronal signal transduction and transmission [114]. In addition to the coordination of meta-
bolic demand, close signaling interdependence manifests itself in the blood-retinal barrier, 
which controls the flux of fluids and metabolites into the retinal tissue [116].

The diabetic environment causes the neurovascular unit to disintegrate both in early and late 
DR with the physiology of the neurovascular unit being similarly altered as it is in diseases of 
the brain such as stroke [117], Alzheimer’s, and Parkinson’s diseases [118]. Although DR has 
traditionally been considered merely a microvascular diabetic complication, recent studies 
support the concept that retinal neurodegeneration precedes and contributes to the forma-
tion of microvascular abnormalities in DR. These findings suggest that DR should at least be 
considered a combined neuro-vascular degeneration [113].

5.2. Retinal neurodegeneration

Signs of neurodegeneration were not visible in fundus examination in the era of the ETDRS. 
Therefore, these changes did not contribute to the characterization or diagnosis of the disease. 
However, retinal neurodegeneration has widely been accepted as part of DR over the last 
decades.

These abnormalities in retinal neural tissue lead to well-studied functional changes that typi-
cally precede the clinical diagnosis of DR, and in some cases occur even prior to the diagnosis 
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of diabetes. Neurofunctional impairment becomes apparent as a dysfunction in dark adap-
tion [119], abnormal contrast sensitivity [120], and altered microperimetry [105], as well as 
electroretinogram (ERG) results. The electroretinogram (ERG) is one of the most effective 
diagnostic tools in this context, with the oscillatory potential implicit time being the most 
consistent and widely reported aspect of the ERG that changes early in DR [121]. A delay in 
implicit time in multifocal ERG (mfERG) has been shown to be highly predictive (86% sensi-
tivity and 84% specificity) of new retinopathy development at specific locations over 3 years 
in patients with early stages of DR at baseline [122, 123]. The European Consortium for the 
Early Treatment of Diabetic Retinopathy (EUROCONDOR) trial currently tests mfERG 
for its use and potential in DR prediction. However, while ERG is a very sensitive tech-
nique to detect neurofunctional deficits, it is also a quite burdensome and time-consuming 
examination.

Anatomical evaluation of retinal neurodegeneration has become possible with the imple-
mentation of SD-OCT. In OCT, the most useful measure for identifying diabetes-induced 
neurodegeneration is the thickness-reduction of the retinal nerve fiber layer (RNFL) and the 
ganglion cell complex, consisting of the ganglion cell layer (GCL) and the inner plexiform 
layer (IPL). Retinal ganglion cells (RGCs) are the retinal neurons in which the apoptotic 
process related to diabetes is first detected [124]. An impaired integrity of these cells com-
promises information processing and the transmission of visual signals to the brain. The 
damage primarily affects the RGC’s nuclei and dendrites, as shown by a diffuse thinning of 
the combined retinal ganglion cell-inner plexiform layer (GCIPL). Secondarily, their axons 
are affected too, as indicated by a reduction of the retinal nerve fiber layer (RNFL) thick-
ness [125]. A significant thinning of the GCIPL complex alone [126] or in combination with 
thinning of the RNFL has already been shown in patients with type 1 diabetes even without 
any fundoscopically manifest signs of DR [127, 128]. A longitudinal analysis in patients with 
type 1 diabetes depicted an average progressive thickness loss of 0.25 μm/year and 0.29 μm/
year in the RNFL and the GCL + IPL, respectively, over a 4-year follow-up period in patients 
with no or minimal DR, independent of age, sex and even Hb1Ac. Intriguingly, the extent 
of thickness loss was similar to that of patients with severe glaucoma [129]. Research results 
are also consistent in finding reduced RNFL and GCIPL thicknesses in patients with type 2 
diabetes [130–132].

Further, relation between structural signs of diabetic retinal neurodegeneration and func-
tional deficits has been investigated thoroughly. Reduced GCIPL complex thickness has been 
shown to significantly correlate with impaired visual function assessed by contrast sensitiv-
ity and pattern ERG amplitudes in patients with diabetes without DR [131]. In patients with 
type 1 diabetes and no or minimal DR, GCL thickness was an important predictor of loss of 
macular visual function measured by the Rarebit perimetry [133].

Research has also started to focus on the temporal and causal relationship of neurogenic 
and vascular changes in DR. Preliminary results of the EUROCONDOR study suggest that 
in patients with no or mild DR, retinal vessel caliber is independently associated with struc-
tural changes of the neuroretina. Specifically, CRAE was statistically significantly associated 
with macular GCL thickness and CRVE with RNFL thickness at the optic disc [134]. An 
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association of venular dilatation and thinning of the RNFL along with deficits in the ERG 
was detected in adolescents with type 2 diabetes, showing that the structural changes are 
accompanied by early vascular dysfunction [135].

The mechanisms behind this neurodegeneration are not completely clear. Increased apoptosis 
in neuronal tissue may be caused by chronic hyperglycemia, when neuronal cells experience 
up to 4-fold increase in glucose uptake. If hyperglycemia is prolonged, nerves are damaged 
[136]. Additionally, glucose and glutamate accumulation in the extracellular space, increased 
oxidative stress, inflammation and imbalance in the production of neuroprotective factors 
are other factors thought to be involved in the development of neurodegeneration in the set-
ting of DR [137]. Apoptosis of the retinal ganglion cells also tends to be accompanied by 
reactive changes in macroglial cells, known as “reactive gliosis.” Apart from astrocytes, the 
predominant type of macroglia is the Müller cell, which is unique to the retina. One of the 
most prominent characteristics of reactive gliosis is that Müller cells overexpress glial acidic 
fibrillary protein (GFAP), which is considered a sensitive indicator of central nervous system 
injury, and is normally only expressed by retinal astrocytes [138]. Müller cells span the entire 
retina, surround all blood vessels, and produce molecules that contribute to the modulation 
of blood flow and vascular permeability. In addition, they are essential for the survival of 
neurons. Therefore, glial cells, and especially Müller cells, are thought to play a key role in the 
pathogenesis of both retinal microangiopathy and neurodegeneration. Unfortunately, Müller 
cells can currently not be imaged in vivo.

Because neurons cannot be replaced, DR becomes irreversible with continuous disease pro-
gression. The identification of biomarkers that predict the development of neurodegeneration 
as well as mediators in the cross talk between neurodegeneration and microangiopathy is 
crucial for the development of new therapeutic strategies in DR. Safe and effective neuropro-
tective agents could possibly prevent neuronal apoptosis and vision loss but also impede the 
impairment of neurovascular coupling. Consequently, microvascular impairment and clini-
cally apparent DR could be delayed. Evidence from the numerous studies mentioned above 
suggests that diabetic retinal neurodegeneration most likely precedes the microvasculopa-
thy of DR. Functional examinations, like mfERG as well as structural evaluation of the inner 
retinal layers with SD-OCT may permit an early detection of the disease. However, further 
longitudinal studies are required to clarify the precise temporal relation between neurode-
generation and the microvascular alterations of DR.

5.3. Neurodegeneration outside the retina

Neurodegenerative changes occur outside the retina too. The cornea is one of the most densely 
innervated structures of the human body. A rich network of sensory nerves, known as the 
subbasal nerve plexus (SNP), derives from the ophthalmic division of the trigeminal nerve 
and lies between the corneal epithelium and Bowman’s membrane [139]. This layer can be 
visualized with corneal confocal microscopy (CCM), a highly reproducible [140] in vivo 
imaging technique that provides diagnostic efficiency comparable to that of intra-epider-
mal nerve fiber density (IENFD) assessment [141, 142]. IENFD is the current gold stan-
dard for evaluating small nerve fiber damage, but is invasive, time-consuming and requires 
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of diabetes. Neurofunctional impairment becomes apparent as a dysfunction in dark adap-
tion [119], abnormal contrast sensitivity [120], and altered microperimetry [105], as well as 
electroretinogram (ERG) results. The electroretinogram (ERG) is one of the most effective 
diagnostic tools in this context, with the oscillatory potential implicit time being the most 
consistent and widely reported aspect of the ERG that changes early in DR [121]. A delay in 
implicit time in multifocal ERG (mfERG) has been shown to be highly predictive (86% sensi-
tivity and 84% specificity) of new retinopathy development at specific locations over 3 years 
in patients with early stages of DR at baseline [122, 123]. The European Consortium for the 
Early Treatment of Diabetic Retinopathy (EUROCONDOR) trial currently tests mfERG 
for its use and potential in DR prediction. However, while ERG is a very sensitive tech-
nique to detect neurofunctional deficits, it is also a quite burdensome and time-consuming 
examination.

Anatomical evaluation of retinal neurodegeneration has become possible with the imple-
mentation of SD-OCT. In OCT, the most useful measure for identifying diabetes-induced 
neurodegeneration is the thickness-reduction of the retinal nerve fiber layer (RNFL) and the 
ganglion cell complex, consisting of the ganglion cell layer (GCL) and the inner plexiform 
layer (IPL). Retinal ganglion cells (RGCs) are the retinal neurons in which the apoptotic 
process related to diabetes is first detected [124]. An impaired integrity of these cells com-
promises information processing and the transmission of visual signals to the brain. The 
damage primarily affects the RGC’s nuclei and dendrites, as shown by a diffuse thinning of 
the combined retinal ganglion cell-inner plexiform layer (GCIPL). Secondarily, their axons 
are affected too, as indicated by a reduction of the retinal nerve fiber layer (RNFL) thick-
ness [125]. A significant thinning of the GCIPL complex alone [126] or in combination with 
thinning of the RNFL has already been shown in patients with type 1 diabetes even without 
any fundoscopically manifest signs of DR [127, 128]. A longitudinal analysis in patients with 
type 1 diabetes depicted an average progressive thickness loss of 0.25 μm/year and 0.29 μm/
year in the RNFL and the GCL + IPL, respectively, over a 4-year follow-up period in patients 
with no or minimal DR, independent of age, sex and even Hb1Ac. Intriguingly, the extent 
of thickness loss was similar to that of patients with severe glaucoma [129]. Research results 
are also consistent in finding reduced RNFL and GCIPL thicknesses in patients with type 2 
diabetes [130–132].

Further, relation between structural signs of diabetic retinal neurodegeneration and func-
tional deficits has been investigated thoroughly. Reduced GCIPL complex thickness has been 
shown to significantly correlate with impaired visual function assessed by contrast sensitiv-
ity and pattern ERG amplitudes in patients with diabetes without DR [131]. In patients with 
type 1 diabetes and no or minimal DR, GCL thickness was an important predictor of loss of 
macular visual function measured by the Rarebit perimetry [133].

Research has also started to focus on the temporal and causal relationship of neurogenic 
and vascular changes in DR. Preliminary results of the EUROCONDOR study suggest that 
in patients with no or mild DR, retinal vessel caliber is independently associated with struc-
tural changes of the neuroretina. Specifically, CRAE was statistically significantly associated 
with macular GCL thickness and CRVE with RNFL thickness at the optic disc [134]. An 
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association of venular dilatation and thinning of the RNFL along with deficits in the ERG 
was detected in adolescents with type 2 diabetes, showing that the structural changes are 
accompanied by early vascular dysfunction [135].

The mechanisms behind this neurodegeneration are not completely clear. Increased apoptosis 
in neuronal tissue may be caused by chronic hyperglycemia, when neuronal cells experience 
up to 4-fold increase in glucose uptake. If hyperglycemia is prolonged, nerves are damaged 
[136]. Additionally, glucose and glutamate accumulation in the extracellular space, increased 
oxidative stress, inflammation and imbalance in the production of neuroprotective factors 
are other factors thought to be involved in the development of neurodegeneration in the set-
ting of DR [137]. Apoptosis of the retinal ganglion cells also tends to be accompanied by 
reactive changes in macroglial cells, known as “reactive gliosis.” Apart from astrocytes, the 
predominant type of macroglia is the Müller cell, which is unique to the retina. One of the 
most prominent characteristics of reactive gliosis is that Müller cells overexpress glial acidic 
fibrillary protein (GFAP), which is considered a sensitive indicator of central nervous system 
injury, and is normally only expressed by retinal astrocytes [138]. Müller cells span the entire 
retina, surround all blood vessels, and produce molecules that contribute to the modulation 
of blood flow and vascular permeability. In addition, they are essential for the survival of 
neurons. Therefore, glial cells, and especially Müller cells, are thought to play a key role in the 
pathogenesis of both retinal microangiopathy and neurodegeneration. Unfortunately, Müller 
cells can currently not be imaged in vivo.

Because neurons cannot be replaced, DR becomes irreversible with continuous disease pro-
gression. The identification of biomarkers that predict the development of neurodegeneration 
as well as mediators in the cross talk between neurodegeneration and microangiopathy is 
crucial for the development of new therapeutic strategies in DR. Safe and effective neuropro-
tective agents could possibly prevent neuronal apoptosis and vision loss but also impede the 
impairment of neurovascular coupling. Consequently, microvascular impairment and clini-
cally apparent DR could be delayed. Evidence from the numerous studies mentioned above 
suggests that diabetic retinal neurodegeneration most likely precedes the microvasculopa-
thy of DR. Functional examinations, like mfERG as well as structural evaluation of the inner 
retinal layers with SD-OCT may permit an early detection of the disease. However, further 
longitudinal studies are required to clarify the precise temporal relation between neurode-
generation and the microvascular alterations of DR.

5.3. Neurodegeneration outside the retina

Neurodegenerative changes occur outside the retina too. The cornea is one of the most densely 
innervated structures of the human body. A rich network of sensory nerves, known as the 
subbasal nerve plexus (SNP), derives from the ophthalmic division of the trigeminal nerve 
and lies between the corneal epithelium and Bowman’s membrane [139]. This layer can be 
visualized with corneal confocal microscopy (CCM), a highly reproducible [140] in vivo 
imaging technique that provides diagnostic efficiency comparable to that of intra-epider-
mal nerve fiber density (IENFD) assessment [141, 142]. IENFD is the current gold stan-
dard for evaluating small nerve fiber damage, but is invasive, time-consuming and requires 
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significant laboratory expertise. Evaluation of small fiber neuropathy is essential, as they 
constitute 70–90% of peripheral nerves and are preferentially involved in the development 
of diabetic peripheral neuropathy (DPN). DPN affects at least 50% of patients with diabetes 
mellitus and is the main initiating factor for foot ulceration and subsequent lower extremity 
amputation [143]. Unfortunately, to date, the guidelines for DPN mainly advocate electro-
physiology besides clinical symptom testing, which is sensitive only for the detection of 
large fiber damage [144]. CCM could potentially serve as a non-invasive, objective bio-
marker for identifying small fiber damage and making an early diagnosis of DPN. The 
main changes in SNP morphology detected in patients with diabetes include a decrease 
in corneal nerve fiber density (CNFD), defined as the total number of major nerves per 
mm2; corneal nerve fiber length (CNFL), defined as the total length of all nerve fibers and 
branches (mm/mm2); and corneal nerve branch density (CNBD), defined as the number of 
branches emanating from major nerves per mm2 [145]. Previous studies have evaluated the 
relationship between SNP morphology and the development and progression of DR. SNP 
impairment appears to progress in parallel with DR and could even be demonstrated in 
patients with diabetes without DR [146–149]. This finding would support the concept that 
besides neuronal loss in the retina, corneal neurodegeneration might precede the develop-
ment of visible microangiopathy in DR too.

Even though recent studies indicate that inner retinal layer thinning representing retinal neuro-
degeneration is associated with DPN, the direct relation between SNP morphology and variables 
of retinal neurodegeneration has not yet been clarified. Eventually, CCM has the potential to be 
a surrogate for an early diagnosis of and an early biomarker for DR and DPN that could identify 
those at risk.

6. Conclusions

Diabetes mellitus is clearly a major health problem in an increasingly aging population 
worldwide. Diabetic retinopathy is a complex complication of this disease, which is influ-
enced by a range of local and systemic factors. Potential non-invasive biomarkers derived 
from innovative imaging modalities as introduced above offer precious information about 
the morphologic as well as functional state of the diabetic retina, which is not detectable on 
routine clinical examination. These promising biomarkers may allow personalized medi-
cine with treatment schedules tailored to patients’ individual needs. Furthermore, as the 
population principally affected by DR comprises working-age individuals, understanding 
of the pathophysiology of the disease and developing appropriate therapy are essential to 
halt decrease in productivity and an increasing need for social support. Besides this sig-
nificant economic benefit, the final validation of these biomarkers in prospective studies 
is expected to contribute decisively to the designing of clinical trials to identify new drug 
candidates that may prevent DR in the initial disease stages. Finally, and most importantly, 
this could result in a dramatic quality-of-life improvement for patients with diabetes and 
their families.
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Abstract

The interphotoreceptor retinoid-binding protein (IRBP) is the most abundant protein in the 
interphotoreceptor matrix (IPM) and its levels decrease beginning in the early stages of dia-
betes. IRBP participates in the delivery of retinoids between retinal cells to carry out the 
visual cycle and also protects those retinoids against degradation in the IPM. IRBP deficiency 
is related to several conditions such as retinitis pigmentosa, cone-rod dystrophy, increased 
oxidative stress in the photoreceptors, and myopia. Decreased IRBP levels in diabetes could 
be due to the secretion of inflammatory cytokines and a direct effect of hyperglycemia on 
the photoreceptors. It is known that prior to the occurrence of vascular changes in diabetic 
retina, electrophysiological alterations occur on early potentials. Alterations on the photore-
ceptor outer segments and increased oxidative stress indicate an important affliction of the 
photoreceptors from early stages. Due to the importance of IRBP in photoreceptor wellness, 
its decreased levels may be linked to early photoreceptor affection. More studies are required 
to describe in detail the whole impact that decreased levels of IRBP in diabetes may have.
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1. Introduction

Typically, the pathological changes described in diabetic retina involve neovascularization 
and increased blood vessel permeability, a condition known as diabetic retinopathy (DR). 
Early changes that occur prior to the vascular affection have been acquiring more interest by 
the scientific community. Retinal proteomic analysis, functional and histopathological studies 
have revealed alteration in the levels of some proteins and a neurodegeneration state mainly 
involving ganglion and photoreceptor cells accompanied by reactive gliosis [1–5].
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The interphotoreceptor retinoid-binding protein (IRBP), which is the most abundant protein 
in the interphotoreceptor matrix (IPM) [6–10], is one of the principal elements altered in early 
stages of diabetes. This protein is expressed mainly by the cone and rod photoreceptor cells 
[11–13]. It binds to the retinoids in the interphotoreceptor matrix and facilitates their exchange 
between the IPM and the cells that carry out the visual cycle [14–16].

Aside from the retinoid delivery, IRBP protects retinoids against degradation [17], the retinal cells 
from oxidative stress and light-induced injury [18, 19], and is important for eye development [20].

2. Pathologies associated with IRBP deficiency

In pathological conditions in which a deficiency of IRBP exists, an important anomaly of the 
photoreceptor cells and the visual cycle can be detected which leads in some cases to the devel-
opment of retinitis pigmentosa, accumulation of the cytotoxic bis-retinoid A2E, cone-rod pho-
toreceptor dystrophy and an elongated myopic eye shape [20–25].

IRBP is linked to an autosomal recessive form of retinitis pigmentosa. A heterozygous T-C tran-
sition at the position 3024 [26] and a missense mutation of D1080N [22] have been identified. In 
vitro studies of this mutation have shown that it produces a non-secreted protein that induces 
endoplasmic reticular (ER) stress [27].

Other studies correlate the presence of IRBP gene mutations and the occurrence of high myopia 
in humans. This myopia was accompanied with retinal dystrophy observed by ocular coherence 
tomography (OCT) and electroretinography (ERG). The ERG showed a delay and reduction in 
the amplitude of the waves corresponding to the cone response. The IRPB gene mutations were 
c.3454G > T;p.E1152 and c.1530 T > A;p.Y510 which were predicted to lead to a nonsense medi-
ated decay with a complete loss of IRBP function [21]. These findings correlate with animal 
studies in which IRBP−/− mice have shown ERG alterations and histological findings affecting 
cones [25]. This animal model has also shown alterations in eye shape and visual acuity [20].

The relationship between IRBP deficiency and accumulation of the lipofuscin precursor A2E has 
only be demonstrated experimentally on two different animal models. IRBP−/− mice have been 
shown by HPLC a retinal A2E increase of 2.7-fold [25]. Another study using an animal model 
with Müller cell dysfunction found a decreased expression of IRBP which was also accompanied 
with accumulation of A2E [24].

3. Diabetes and IRBP levels

Considering visual cycle components, decreased IRBP expression is one of the most charac-
teristic changes in diabetes. Many studies have evaluated the changes in protein levels and 
IRBP expression and also attempted to explain the reasons for its depletion.

One study revealed decreased expression of IRBP determined by both qPCR and protein 
quantification on post-mortem samples of diabetic patients [28]. Another study showed that 
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this decreased expression directly correlated with the evolution of the DR, and also tested the 
effect of glucose and inflammatory cytokines on IRBP expression in vitro. They found that high 
glucose, TNF-α and IL-1β were able to reduce IRBP’s expression [29]. A recent study found 
decreased IRBP levels in diabetic rats and this finding was accompanied by decreased levels of 
11-cRAL and rhodopsin synthesis [30].

The precise mechanisms responsible for the decreased IRBP levels remain unclear. It is known 
that high glucose and some circulating fatty acids can induce the secretion of inflammatory 
cytokines by Müller cells [31, 32]. Despite evidence that high levels of glucose and inflamma-
tory cytokines are able to decrease the expression of IRBP [24, 29], other mechanisms may be 
involved. With the early onset of diabetes, photoreceptors undergo oxidative stress resulting 
in increased nitrosative-oxidative stress [33, 34]. This biochemical stress can induce damage 
to proteins promoting their degradation [35]. The unfolded protein response (UPR) has been 
detected to be active in photoreceptor cells in animal studies [36]; however no studies have 
linked this process to decreased IRBP levels.

Disruption of the external limiting membrane (ELM) and the outer retinal barrier (ORB) may 
play a role in leaking of IRBP into the outer nuclear layer or Bruch’s membrane. Studies of 
animals in diabetic conditions have shown decreased occluding abilities in the Müller cell 
tight junctions compromising the external limiting membrane [37]. Also retinal pigment epi-
thelium (RPE) dysfunction in early stage diabetes has been described in animal models [38]. 
It is still unclear the impact of these mechanisms over the IRBP levels.

4. Outcomes of IRBP’s decreased levels in diabetes

Due to its importance on the visual cycle, it is expected that decreased levels of IRBP produce 
electrophysiological and morphological changes that manifest itself in the damage to the pho-
toreceptors and the impaired visual cycle.

Deficit of blue-flicker discrimination has been observed in the early stages of diabetes [39]. 
ERGs have revealed lower oscillatory potential amplitudes suggesting alterations in the photo-
receptors and the vision cycle [40–42]. Additionally, color vision has been shown to be altered 
in these early diabetes stages. Adaptometry studies have also shown alteration in diabetes; 
even with transient hyperglycemia a patient can have a delay in dark adaptation [43–45].

One study in Meriones shawi, an animal model with a human-like macula, after streptozotocin-
induced diabetes showed alterations in the morphology of the photoreceptor outer segments. 
Interestingly, the foveal cones appear to be mostly affected revealing a loss of approximately 
30% of the M-cones 7 weeks after type 2 diabetes was induced in the animals [46]. Studies in 
rats also have shown alterations in the photoreceptor outer segments with the S-cones and the 
M-cones most severely affected [47].

It has been found that glucose levels can influence the vision cycle rhodopsin regeneration ratio 
[48, 49]. Recently, one research group found depletion of rhodopsin regeneration with an accom-
panying decrease in STRA6, IRBP, and 11-cis retinal (11-cRAL) in a diabetic animal model [30].
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5. Future directions

IRBP deficiency in diabetes could importantly impact DR progression although the relation-
ship between its levels and the complications in diabetes remain unclear. Previous evidence 
suggest that it potentially impacts DR outcomes. In addition, some retinoid analogues have 
shown to be beneficial in the prevention of early stage DR due to their antioxidant properties 
[50, 51]. IRBP has been shown to have these anti-oxidant properties against some vision cycle 
retinoid sub-products [18].

IRBP deficiency can promote the accumulation of the cytotoxic bis-retinoid A2E. This molecule 
has been described to be involved in the pathogenesis of age-related macular degeneration (AMD) 
[52, 53] and Stargardt disease [54]. A2E is known to be able to produce cytotoxicity by destabi-
lizing membranes, generating reactive oxygen species and producing photo-oxidation [55–58]. 
Since A2E is a lipofuscin precursor, fundus autofluorescence can be clinically used to detect its 
presence [59, 60]. However, hard exudates can decrease autofluorescence interfering with the 
evaluation of lipofuscin [61]. It would be expected that this accumulation of lipofuscin precursors 
in diabetes would increase the risk for developing AMD. Many studies have shown contradic-
tory results and this relationship has not been established [62–65]. The actual accumulation, as 
well as the role of A2E in diabetes complications, is unclear and require further investigation.

It is important to reveal the mechanisms responsible for decreased IRBP in diabetes and to 
establish its role in DR in order to establish novel approaches for the prevention of these vision 
threatening events.
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Abstract

Retinal tissue hypoxia is a key mediator in the pathogenesis of many leading causes of irre-
versible vision loss, including diabetic retinopathy. Retinal hypoxia in diabetic retinopathy 
has been shown to drive the production of pro-inflammatory cytokines and pro-angiogenic 
growth factors. Together, these factors contribute to disease progression by causing unregu-
lated growth of new blood vessels, increased vascular permeability and cell death within the 
retina. Studies have shown that retinal hypoxia precedes many of the pathologic events that 
occur during the progression of diabetic retinopathy such as angiopathy, microaneurysms, 
and capillary dropout. Therefore, early detection of hypoxia in the retinas of diabetic patients 
could help clinicians identify problems in patients before irreversible damage has occurred. 
Currently, oxygen sensitive electrodes remain the gold standard for direct measurement of 
oxygen tension within the retinal tissue; however the procedure is highly invasive and is 
therefore limited in its applicability towards preclinical models. Less invasive techniques 
such as retinal oximetry, phosphorescence-lifetime imaging, and hypoxia-sensitive fluores-
cent probes have shown promising diagnostic value in facilitating detection of oxygen imbal-
ance correlated with neurovascular dysfunction in DR patients. This review highlights the 
current progress and potential of these minimally invasive hypoxia-imaging techniques in 
diabetic retinopathy.

Keywords: diabetic retinopathy, hypoxia, angiogenesis, neovascularization, imaging 
techniques

1. Introduction

1.1. Oxygen supply and consumption in the healthy retina

The retina is one of the most metabolically active sites of the entire body and is therefore depen-
dent on a consistent supply of oxygen and other nutrients. In order to meet these metabolic 
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demands, the retina requires two distinct blood supplies, the inner retinal circulation and 
choroidal circulation. The inner retinal circulation stems from the central retinal artery which 
enters the retina near the optic disc. From there, it branches to form the deep and superficial 
retinal capillary plexuses. In a healthy individual, these blood vessels are found only in the 
peripheral retina and do not enter into the avascular fovea. The central retinal artery is respon-
sible for supplying the inner retina with oxygen and nutrients and receives about 20–30% of 
the blood flow to the retina [1]. The second blood supply is the choroidal circulation. The cho-
roidal circulation is a dense network of capillaries located just posterior to the retinal pigment 
epithelium (RPE) cell layer and is responsible for supplying the outer retina (RPE and photo-
receptors) with oxygen. Due to the high metabolic demand of the photoreceptors the choroid 
receives the majority (65–85%) of the blood that is supplied to the retina [1].

Studies in cats have used oxygen sensitive microelectrodes to measure oxygen tension (PO2) in 
the various layers of the healthy retina. These studies have shown that oxygen levels are highest 
(≈60 mmHg) in the rod outer segment layer due to their close proximity to the oxygen saturated 
choroid (Figure 1) [2]. Oxygen tension drops to nearly 0 mmHg in the outer nuclear layer, 
indicating that the oxygen that is perfused from the choroidal circulation is consumed almost 
entirely by the photoreceptors during visual phototransduction [2]. Moving inward, PO2 climbs 
gradually in the inner retina due to the inner retinal circulation, with two small spikes in PO2 
occurring in the deep (≈20 mmHg) and superficial (≈25 mmHg) retinal capillary plexuses [2]. 
Therefore, any vascular changes, especially in the inner retinal circulation can lead to tissue 
hypoxia since the choroidal circulation cannot adequately supply oxygen to the inner retina. 
Because of this, perturbations in oxygen supply play a significant role in many of the most 
common vision threating diseases including age-related macular degeneration (AMD) [3–6], 
glaucoma [7, 8], retinopathy of prematurity [9–11], and diabetic retinopathy (DR) [2, 12–15].

1.2. Hypoxia in diabetic retinopathy

Hypoxia has been implicated as a potential key contributor to the pathogenesis of many 
retinal diseases, including diabetic retinopathy (DR). The cellular hypoxia response is tran-
scriptionally regulated by hypoxia inducible factors (HIFs) [16, 17], heterodimeric complexes 
comprising oxygen-sensing HIF1/2/3α subunits and HIFβ. The HIF alpha subunits share 
common features, although HIF3α has a distinct structure and is found in multiple variants 
which exert different transcriptional outcomes [18, 19]. Under normoxic conditions, proline 
residues in the oxygen-dependent degradation domain of HIFα are modified by oxygen-
dependent prolyl hydroxylases (PHD) [20], creating a binding site for the von Hippel-Lindau 
(VHL) E3 ubiquitin ligase complex [21, 22]. HIFα bound by VHL is targeted for proteasomal 
destruction [23, 24], thus preventing transcriptional activity. However, during hypoxia HIFα 
proline hydroxylation is abrogated, stabilizing the protein. Transcriptional activity of HIF1α 
and HIF2α is also promoted during hypoxia, as hydroxylation of a key asparagine residue 
located in the transactivation domain is prevented, promoting interaction between HIF and 
the p300/ CBP transcriptional co-activator complex [25]. HIF3α, which lacks the key aspara-
gine residue, is not subject to this regulatory mechanism [18]. The HIFα-HIFβ complex can 
activate transcription of genes with promoters featuring hypoxia response elements (HRE) 
including VEGF and erythropoietin (EPO).

Early Events in Diabetic Retinopathy and Intervention Strategies48

Although regulatory mechanisms are similar between HIF1α and HIF2α, expression of the pro-
teins has been suggested to be confined to distinct cellular populations in the ischemic inner retina 
[26]. Expression of both HIF1α and HIF2α is temporally correlated with VEGF expression during 
retina ischemia [26, 27], and HIF2α haploinsufficiency has been shown to reduce pro-angiogenic 
factor expression and neovascularization in the oxygen-induced retinopathy (OIR) model [28]. 
Interestingly, PHD-dependent HIF1α degradation is also regulated by citric acid cycle intermedi-
ates such as succinate [29], which accumulate during hypoxia as oxygen tension is insufficient to 
support oxidative phosphorylation, leading to feedback inhibition of citric acid cycle enzymes 
[30]. Succinate inhibits PHD activity, further stabilizing HIF1α when cellular oxidative metabo-
lism is compromised [29]. Succinate is also thought to have an addition role in the hypoxic retina, 
binding and signaling through the G protein coupled receptor 91 (GPR91) [31]. GPR91 regulates 
VEGF production in retinal ganglion cells via mitogen-activated protein kinase and prostaglan-
din signaling [32, 33] which contributes to the neovascular response following hypoxia [34].

Some of the hallmarks of DR progression which include the formation of acellular capillaries, 
capillary occlusion and associated nonperfusion could lead to this cellular hypoxia response 

Figure 1. PO2 gradient across the retinal layers in a healthy (60 W2) and diabetic (all other tracings) cat. The tracing of 
the healthy cat shows normal oxygen perfusion in the choriocapillaris and inner retina. The diabetic cats show evidence 
of decreased oxygen perfusion in the inner retina and inadequate compensation by the choriocapillaris. Disclaimer: This 
figure has been reproduced with permission from original article by Linsenmeier et al. [2].
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in the diabetic retina [35–40]. Studies point toward an increase in the number of leukocytes 
and increased leukocyte adhesion as a source of capillary occlusion and tissue nonperfusion 
[36, 41, 42]. Furthermore, it has been shown that there is tissue hypoxia in the diabetic retina 
since the choriocapillaris cannot adequately provide the inner retina with oxygen. Linsenmeier 
et al. used oxygen-sensitive microelectrodes to directly measure PO2 in the retinas of long term 
diabetic and non-diabetic cats (> 6 years) and showed that mean PO2 was significantly lower 
in inner retina of diabetic (7.66 mmHg) compared to normal cats (16.42 mmHg) (Figure 1) [2]. 
These studies showed that hypoxia was evident early in disease progression, prior to obser-
vation of angiopathy, microaneurysms, hemorrhages and capillary dropout. Studies using 
magnetic resonance imaging (MRI) have also shown that there is a decrease in oxygen levels 
in galactosemic rats before retinal lesions appear [43]. These studies support the hypothesis 
that hypoxia may be a driving force in DR progression, rather than an outcome of other fac-
tors. Consistent with this hypothesis, hypoxia itself has been shown to stimulate production 
of a number of proangiogenic factors such as vascular endothelial growth factor (VEGF), one 
of the predominant targets of many therapeutic interventions in DR [44–48]. Steffanson et al. 
provided further evidence that oxygen delivery plays a crucial role in DR progression when 
they observed increased oxygen tension in the areas of the retina that had undergone pan-
retinal photocoagulation compared to untreated areas [15]. This finding supports therapeutic 
strategies in DR which aim to restore normal oxygen supply in order to normalize disease.

Interestingly, although hypoxia has long been hypothesized as a potential driver of DR, it must 
be noted that there are a number of studies that were unable to detect the presence of hypoxia in 
the diabetic retina. Some studies in diabetic mice show that there is an initial decrease in retinal 
blood flow between three to 4 weeks due to arteriolar constriction, however arteriolar diameter 
and blood flow return to normal measurements at later time points of diabetes (12 weeks) [49–52]. 
Despite the initial decrease in blood flow these studies did not find any evidence of hypoxia in 
these animals at either 3 or 12 weeks of diabetes [53–55]. This may indeed be accounted for by 
compensatory vascular mechanisms in the rodent retina, such as autoregulation which may coun-
teract early hypoxia in these species, and that onset of hypoxia may only occur at very late time 
points (>1.5 years) that are beyond typical published experimental endpoints in these models.

We are therefore in concurrence with a number of investigators in the ophthalmic and clinical 
research who identify retinal hypoxia as a significant mediator of initiation and progression 
of DR. Along with other researchers, we have sought to develop and translate strategies for 
optical detection of early retinal oxygen imbalance in patients to facilitate earlier clinical inter-
ventions and improved outcomes to reduce risk of future vision loss.

2. In vivo imaging of hypoxia in diabetic retinopathy

2.1. Overview of hypoxia sensing and imaging technologies

Oxygen-sensitive microelectrodes have long been considered the gold standard for measure-
ment of PO2 in tissues including the retina [2, 56–60]. While this technique gives an accurate 
and direct measurement of retinal tissue PO2, there are many drawbacks, most importantly the 
highly invasive nature of the measurement, as it requires a direct puncture of the retinal tissue 
which prevents its use in clinics. Furthermore, oxygen imbalances in retinal vascular diseases 
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such as DR originate largely from capillary occlusion and local changes in the retinal vascula-
ture. These occlusions are likely to create small areas of regional hypoxia rather than an entirely 
hypoxic retinal tissue. Since oxygen sensitive microelectrodes provide point measurements that 
depend on the placement of the electrode this method will likely miss areas of focal hypoxia 
that are surrounded by large areas of normoxic tissue unless multiple measurements are made.

Other methods such as MRI have been used to provide insight into oxygen distribution within 
the retina and are less invasive than oxygen-sensitive microelectrodes. The advantages of MRI 
are that it is minimally invasive, offers a large field of view, and has no depth limitation. These 
MRI techniques are often based on the blood oxygenation level-dependent (BOLD) contrast 
that was first described by Ogawa et al. which rely on natural differences in MR signal between 
deoxygenated hemoglobin versus oxygenated hemoglobin [61–63], but can also utilize exog-
enous contrast agents for increased sensitivity as seen in Dynamic Contrast-Enhanced MRI 
(DCE-MRI) [64]. The use of MRI to detect changes in oxygen levels was first used in the brain but 
has since been adapted to visualize oxygen fluctuations in the diabetic retina. Berkowitz et al. 
have used MRI to show increases in blood retinal barrier permeability in rats after 8 months 
of diabetes [64] and changes in retinal oxygenation in galactosemia-induced diabetic-like reti-
nopathy [43]. The primary limitation of MRI is that the information is typically displayed as 
either a cross section of the eye or single slice heat maps which are then pieced together to give 
an overview of the retina [43, 64–67]. This severely limits the techniques ability to provide the 
adequate resolution required to identify small regions of focal hypoxia in the diabetic retina.

Laser Doppler is another method that has been established to determine blood flow within 
the retinal vasculature but does not provide information on oxygen PO2 within the retinal 
vasculature or tissue [68–70]. More recently however, a number of minimally invasive tech-
niques have been established and adapted to measure oxygen tension optically and identify 
areas of regional hypoxia in the retina. These techniques take full advantage of the unique 
anatomy of the eye, which unlike other organs is readily accessible and easy to image due to 
the naturally transparent front of the eye. Methods such as dual wavelength and full spectral 
retinal oximetry, and also phosphorescence lifetime imaging all provide information on oxy-
gen levels in the retinal vasculature. Other techniques such as hypoxia sensitive fluorescent 
probes can help to image hypoxic regions within the retinal tissue itself. These techniques are 
prime candidates for use in a clinical setting due to their minimally invasive nature and their 
ability to detect areas of focal hypoxia in the diseased retina.

This review will examine the advantages and disadvantages of the imaging techniques that 
have emerged as potential diagnostic tools for early detection of DR.

2.2. Dual wavelength retinal oximetry

Retinal oximetry is a non-invasive technique used to measure the percent of hemoglobin 
oxygen saturation (SO2) in the retinal vasculature. Oximetry is based on the principle that 
oxygenated (HbO2) and deoxygenated hemoglobin (Hb) have a different light absorption 
spectra. The use of spectrophotometric measurements to determine oxygen levels in large 
retinal vessels was first described by Hickam et al. in 1963, however their method required an 
independent arteriolar SO2 measurement for external calibration [71]. Since this initial work, 
Delori [72], Beach [73], and Hardason et al. [74] have expanded the field by developing new 
techniques that decrease the invasiveness of retinal oximetry by eliminating the need for an 
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external calibration measurement, while at the same time increasing sensitivity, accuracy, and 
reproducibility. More recently investigators have advanced this technology to develop new 
systems such as the Flow Oximetry System (FOS) that are able to measure oxygen saturation 
and blood flow within the retinal vasculature [75, 76].

Most studies have measured SO2 by using dual wavelength oximetry. Here, two images at dis-
tinct wavelengths are taken simultaneously. A traditional fundus camera is attached to a beam 
splitter and digital camera in order to obtain digital images at multiple distinct wavelengths. 
One image is taken at an isobestic wavelength that is insensitive to differences in hemoglobin 
oxygen saturation. This is required for compensation against variables such as hematocrit, path 
length and light intensity that will not differ between the two images. In the image obtained 
from the isobestic wavelength there is no visual difference between oxygen saturated arteries 
compared to oxygen depleted veins. Simultaneously, a second image is taken at a wavelength 
that is sensitive to hemoglobin oxygenation. In this image there are clear differences between 
the oxygen saturated arteries and oxygen depleted veins. Software has now been developed 
to automatically detect blood vessels in order to help minimize other factors that contribute to 
optical density. This has led to highly reproducible measurements of SO2 in large retinal ves-
sels that can be depicted numerically or as a color map on the fundus image [74].

Since diabetes has been linked to abnormal oxygen distribution in the diabetic retina, retinal 
oximetry serves as a useful tool to examine changes in oxygen saturation in the retinal vascu-
lature of diabetic patients. A number of studies have measured changes in venous (SvO2) and 
arterial (SaO2) oxygen saturation in patients with mild, moderate, or severe non-proliferative 
DR, and also proliferative DR. These studies consistently report increased SvO2 values as the 
severity of DR increases [77–83]. Interestingly, the results on whether arterial oxygen satura-
tion changes during DR progression differ between studies. A number of studies have found 
that SaO2 increases with increased disease severity and these changes may not be present until 
the patient develops proliferative diabetic retinopathy [78–83], while others saw no difference 
in arterial oxygen saturation between DR patients in any stage compared to healthy individu-
als [77]. Studies using FOS saw no significant difference in either SaO2 or SvO2 between healthy 
individuals and DR patients, however identified significant changes in arteriovenous differ-
ence [75]. Together, these data indicate that there is increased venous oxygen saturation in DR 
patients; however due to the conflicting reports on SaO2 levels in DR patients, the cause of this 
SvO2 increase remains to be confirmed. This increase in venous oxygen saturation could be a 
result of decreased oxygen perfusion into the tissue which could lead to tissue hypoxia, but 
could also be a result of increased arterial oxygen saturation as observed in some reports, which 
could lead to subsequent increases in venous oxygen saturation with the same level of perfusion.

The advantages of retinal oximetry are that it is a non-invasive procedure that easily be per-
formed in patients. This technique gives accurate and reliable measurements of SO2 in the 
retinal vasculature to help provide insight into the dynamics of oxygen perfusion and con-
sumption in these patients. Furthermore, retinal oximetry has shown that laser photocoagula-
tion helps to improve oxygen delivery to the retina, and has therefore proven to be a useful 
tool in identifying the mechanisms of current DR treatments [15]. Another advantage of retinal 
oximetry is that systems are commercially available. However, since the use of retinal oxim-
etry is restricted to the large retinal vessels, this technique might not adequately detect many 
of the changes seen in DR progression such as microaneurysms and acellular capillaries that 
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occur in the small capillary beds of the retinal microvasculature. Furthermore, retinal oxim-
etry provides a measurement of SO2 levels within the vasculature, but does not give a direct 
measurement of what is happening within the retinal tissue itself. Whether the changes in 
vascular SO2 observed in diabetic patients actually correlates to regions of hypoxia within the 
retina itself cannot be confirmed with retinal oximetry alone. This has been shown in studies 
examining the correlation between regional differences in oxygen saturation versus lesion for-
mation in patients with proliferative diabetic retinopathy and diabetic maculopathy [84]. The 
study found that total SO2 was increased in diabetic patients compared to healthy individuals 
indicating that there was decreased oxygen perfusion from the retinal vasculature, however 
the regional differences in SO2 in the large retinal vessels did not correlate with the areas of 
retinal lesions [84]. This implies that other factors such as local changes in the microcircula-
tion and within the tissue itself play a significant role in lesion formation and DR progression.

2.3. Full spectral imaging

In addition to dual wavelength oximetry, full spectral methods have also taken advantage 
of the differences between Hb and HbO2 absorption spectra. Here, rather than using distinct 
isobestic and non-isobestic wavelengths to measure SO2, a continuous range of wavelengths 
between visible and near-infrared spectrum are transmitted for measurement. Schweitzer et al. 
first described the technique by illuminating the retina with a narrow slit (1.5 × 40 mm) of 
light and capturing the image using an imaging ophthalmospectrometer, which consisted of a 
fundus camera adapted with a spectrograph coupled to an intensified CCD camera for detec-
tion [85, 86]. This allowed for collection of the full spectral data in a narrow band in a single 
dimension. Since then, full spectral imaging has developed into hyperspectral imaging (HSI) 
with algorithms used to construct a two dimensional image in order to visualize the data as an 
oxygen map [87–89]. Whereas this process originally took several seconds due to sequential 
acquisition of many single-dimension images, new technology allows for enough images to 
be taken to cover a 15 degree field with good spatial resolution in only a few milliseconds [90]. 
Today, HSI has been further developed into hyperspectral computed tomographic imaging 
spectroscopy (HCTIS), which in addition to giving detailed oxygen saturation maps, can give 
information about changes in the retina such as lesions, perfusion, and pigment density [90, 91].

Full spectral imaging has been used to examine oxygen imbalances in a number of vascular 
diseases including age-related macular degeneration [85], arteriovenous occlusion [88], and 
glaucoma [87, 89]. A limited number of studies have utilized full spectral imaging to examine 
changes in oxygen saturation in diabetic retinopathy. Kashani et al. used HCTIS to examine 
changes in SaO2 and SvO2 between healthy individuals and patients with DR and determined 
that SaO2 was significantly lower, while SvO2 was significantly higher in patients with prolif-
erative DR [91]. This was confirmed by a significant difference in the arteriovenous difference 
between the two groups [91].

2.4. Phosphorescence-lifetime imaging

Phosphorescence-lifetime imaging is another minimally invasive technique that can be used 
to image PO2 within the retina. The use of oxygen-dependent quenching of phosphorescence 
as a method of optical measurement of O2 concentration was first described by Vanderkooi 
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external calibration measurement, while at the same time increasing sensitivity, accuracy, and 
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tion changes during DR progression differ between studies. A number of studies have found 
that SaO2 increases with increased disease severity and these changes may not be present until 
the patient develops proliferative diabetic retinopathy [78–83], while others saw no difference 
in arterial oxygen saturation between DR patients in any stage compared to healthy individu-
als [77]. Studies using FOS saw no significant difference in either SaO2 or SvO2 between healthy 
individuals and DR patients, however identified significant changes in arteriovenous differ-
ence [75]. Together, these data indicate that there is increased venous oxygen saturation in DR 
patients; however due to the conflicting reports on SaO2 levels in DR patients, the cause of this 
SvO2 increase remains to be confirmed. This increase in venous oxygen saturation could be a 
result of decreased oxygen perfusion into the tissue which could lead to tissue hypoxia, but 
could also be a result of increased arterial oxygen saturation as observed in some reports, which 
could lead to subsequent increases in venous oxygen saturation with the same level of perfusion.

The advantages of retinal oximetry are that it is a non-invasive procedure that easily be per-
formed in patients. This technique gives accurate and reliable measurements of SO2 in the 
retinal vasculature to help provide insight into the dynamics of oxygen perfusion and con-
sumption in these patients. Furthermore, retinal oximetry has shown that laser photocoagula-
tion helps to improve oxygen delivery to the retina, and has therefore proven to be a useful 
tool in identifying the mechanisms of current DR treatments [15]. Another advantage of retinal 
oximetry is that systems are commercially available. However, since the use of retinal oxim-
etry is restricted to the large retinal vessels, this technique might not adequately detect many 
of the changes seen in DR progression such as microaneurysms and acellular capillaries that 
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vascular SO2 observed in diabetic patients actually correlates to regions of hypoxia within the 
retina itself cannot be confirmed with retinal oximetry alone. This has been shown in studies 
examining the correlation between regional differences in oxygen saturation versus lesion for-
mation in patients with proliferative diabetic retinopathy and diabetic maculopathy [84]. The 
study found that total SO2 was increased in diabetic patients compared to healthy individuals 
indicating that there was decreased oxygen perfusion from the retinal vasculature, however 
the regional differences in SO2 in the large retinal vessels did not correlate with the areas of 
retinal lesions [84]. This implies that other factors such as local changes in the microcircula-
tion and within the tissue itself play a significant role in lesion formation and DR progression.

2.3. Full spectral imaging

In addition to dual wavelength oximetry, full spectral methods have also taken advantage 
of the differences between Hb and HbO2 absorption spectra. Here, rather than using distinct 
isobestic and non-isobestic wavelengths to measure SO2, a continuous range of wavelengths 
between visible and near-infrared spectrum are transmitted for measurement. Schweitzer et al. 
first described the technique by illuminating the retina with a narrow slit (1.5 × 40 mm) of 
light and capturing the image using an imaging ophthalmospectrometer, which consisted of a 
fundus camera adapted with a spectrograph coupled to an intensified CCD camera for detec-
tion [85, 86]. This allowed for collection of the full spectral data in a narrow band in a single 
dimension. Since then, full spectral imaging has developed into hyperspectral imaging (HSI) 
with algorithms used to construct a two dimensional image in order to visualize the data as an 
oxygen map [87–89]. Whereas this process originally took several seconds due to sequential 
acquisition of many single-dimension images, new technology allows for enough images to 
be taken to cover a 15 degree field with good spatial resolution in only a few milliseconds [90]. 
Today, HSI has been further developed into hyperspectral computed tomographic imaging 
spectroscopy (HCTIS), which in addition to giving detailed oxygen saturation maps, can give 
information about changes in the retina such as lesions, perfusion, and pigment density [90, 91].

Full spectral imaging has been used to examine oxygen imbalances in a number of vascular 
diseases including age-related macular degeneration [85], arteriovenous occlusion [88], and 
glaucoma [87, 89]. A limited number of studies have utilized full spectral imaging to examine 
changes in oxygen saturation in diabetic retinopathy. Kashani et al. used HCTIS to examine 
changes in SaO2 and SvO2 between healthy individuals and patients with DR and determined 
that SaO2 was significantly lower, while SvO2 was significantly higher in patients with prolif-
erative DR [91]. This was confirmed by a significant difference in the arteriovenous difference 
between the two groups [91].

2.4. Phosphorescence-lifetime imaging

Phosphorescence-lifetime imaging is another minimally invasive technique that can be used 
to image PO2 within the retina. The use of oxygen-dependent quenching of phosphorescence 
as a method of optical measurement of O2 concentration was first described by Vanderkooi 
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et al. [92, 93]. At the time, a similar method using oxygen-dependent quenching of fluores-
cence, rather than phosphorescence, had already been established [94]. The use of fluores-
cence however, was limited by low sensitivity to oxygen and by the fact that the decay in 
fluorescence brightness is rapid, which meant that only fluorescence intensity and not lifetime 
could be measured. Intensity measurements are complicated by variables such as solution 
composition and absorption in the tissue. By using phosphorescence, Vanderkooi et al. were 
able to measure lifetime, rather than intensity, due to the much slower decay in brightness of 
phosphorescence compared to fluorescence [92, 93]. It was observed that phosphorescence-
lifetimes were directly dependent on oxygen concentration, with an increase in phospho-
rescence signal as PO2 decreased, as described by a Stern-Volmer relationship [92, 93]. This 
technique was modified for use in vivo to measure PO2 in the retinal and choroidal vascu-
lature of large animals such as cats and pigs [95–97], and later for smaller animals such as 
mice and rats [98–104]. More recently Shahidi et al. have made significant advances by using 
phosphorescence-lifetime to image oxygen tension within the retinal tissue itself [105, 106]. 
This minimally invasive technique requires an intravenous injection of a phosphor that can 
be imaged using an intensified CCD camera to provide a clear image of retinal arteries, veins 
and even some capillaries with good spatial resolution.

To date, many of the studies utilizing phosphorescence-lifetime have sought to establish the 
technique and examine changes in oxygen tension during normal physiologic processes such 
as retinal response to light stimulation [68, 104]. A limited number of studies have utilized 
phosphorescence-lifetime to study oxygen imbalances in ischemic retinal diseases. Studies in 
a mouse model of oxygen-induced retinopathy (OIR) have shown that although there was no 
significant difference in arterial or venous PO2 between control and OIR mice, the arteriove-
nous difference was significantly higher in OIR mice [107]. This was attributed to a decreased 
vascular network in these OIR mice resulting in greater oxygen extraction from the larger 
vessels [107]. Other investigators have examined whether phosphorescence-lifetime imaging 
can be used to detect regions of local hypoxia created by laser photocoagulation. In these 
studies, a laser was used to create small (75 μm) focal lesions within the capillary network of 
the mouse retina [100]. Upon imaging and analysis using an oxygen map of the laser burn and 
surrounding area they observed a circular lesion with a central area of hypoxia (< 7 mmHg) 
that extended approximately 150–200 μm outward from the initial laser injury [100]. After 
imaging the lesion again 1 hour later there was no evidence of leakage of the phosphor into 
the tissue [100]. This study indicates that phosphorescence-lifetime imaging is a useful tool 
for identifying focal areas of regional hypoxia. Further experiments are needed to confirm 
whether these results translate into animal models of diabetic retinopathy.

The primary advantage of phosphorescence-lifetime imaging is that it is minimally invasive, 
requiring only an intravenous injection of a phosphor. These phosphors are readily available 
as nontoxic, water soluble forms so they can be easily dissolved in blood, providing further 
potential for use in a clinic. Furthermore, studies have shown that this technique is capable 
of identifying small areas of regional hypoxia created by focal lesions similar to those seen in 
DR [100]. This can be combined with traditional fundus photographs and fluorescein angiog-
raphy to determine whether the areas of regional hypoxia correlate with the location of retinal 
lesions or leakage during the progression of DR. Finally, the information gathered can be dis-
played as an easy to read oxygen map showing retinal vascular function. The disadvantage of 
phosphorescence-lifetime imaging is similar to retinal oximetry in that it is a measurement of 
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oxygen levels within the retinal vasculature rather than the retinal tissue itself. It must be noted 
however, that a number of studies have compared PO2 measurements between the vasculature 
(using phosphorescence-lifetime) and a variety of tissues including the retina (using O2 micro-
electrodes) and found comparable results, with only slight decreases in PO2 within the tissue 
[95, 108]. The second disadvantage to phosphorescence-lifetime imaging is primarily due to 
the lack of evidence in animal models of DR. Although it has been proven useful in a num-
ber of vascular ischemic diseases that share commonalities with DR it would be necessary to 
confirm the applicability of phosphorescence-lifetime imaging in animal models of DR before 
proposing the technique as a potentially useful tool for determining PO2 levels in DR patients.

2.5. Hypoxia-sensitive fluorescent probes

Another technique for imaging oxygen imbalances in the diabetic retina is the use of hypoxia-
sensitive fluorescent probes. Hypoxia-sensitive compounds such as 2-nitroimidazoles are 
bioreduced by nitroreductases in hypoxic tissues (PO2 < 10 mmHg) which leads to the for-
mation of adducts with thiol containing proteins [109–113]. These compounds were origi-
nally discovered and used for detecting hypoxic areas within tumors and were imaged by 
autoradiography [112, 114]. Shortly after, immunohistochemical analysis was made possible 
by the production of antibodies that recognized the adducts formed by the reduced 2-nitro-
imidazoles and showed that the fluorescence intensity correlated with the severity of hypoxia 
[110, 111, 115]. More recently, 2-nitroimidazoles, such as pimonidazole, have been used to 
detect areas of hypoxia in a number of retinal vascular diseases, including extensive studies 
in diabetic retinopathy. Ex-vivo studies in non-diabetic and diabetic mice and rats have found 
significantly increased pimonidazole labeling in the retinas of even short-term diabetic mice 
and rats compared to their non-diabetic counterparts [53, 116–119]. Furthermore, the pimoni-
dazole labeling was confirmed by increased staining of hypoxia inducible factor-1α (HIF-1α) 
and decreased ganglion cell function measured by electroretinogram (ERG) [53, 116].

Work by our group has sought to develop clinically useful hypoxia sensitive imaging agents by 
conjugating FDA-approved fluorescein dyes to adduct forming 2-nitroimidazoles. In prelimi-
nary studies, fluorescein isothiocyanate (FITC) was conjugated to a 2-nitroimidazole contain-
ing reagent to create the HYPOX-1 probe, and also to pimonidazole to create HYPOX-2. Both 
HYPOX-1 and HYPOX-2 formed adducts leading to accumulation in a variety of hypoxic retinal 
cells and allowed for imaging with excellent signal-to-noise ratio in vitro [120]. Furthermore, these 
imaging agents were capable of detecting hypoxic areas ex vivo in the retinas oxygen induced ret-
inopathy (OIR) mice with no apparent toxicity [120]. Following the success of these fluorescent 
imaging agents, a new probe, HYPOX-3, was developed in order to create an “on-off” imaging 
agent for hypoxia [121]. Here, a near-infrared (NIR) imaging agent was coupled to Black Hole 
Quencher 3 (BHQ3), which had been shown to quench NIR dyes by Fӧrster resonance energy 
transfer (FRET) [122]. Interestingly, BHQ3 features a hypoxia-sensitive azo-bond that is cleav-
able by azoreductases under hypoxic conditions [122, 123]. HYPOX-3 displayed high sensitivity 
and specificity in forming adducts in a variety of hypoxic retinal cells in vitro with no detectable 
toxicity [121]. The ability to detect hypoxia in retinal vascular disease animal models was exam-
ined using a laser-induced choroidal neovascularization (LCNV) mouse model. In RPE-choroid 
flatmounts, HYPOX-3 clearly identified hypoxic regions in LCNV mice and showed increased 
fluorescence around the lesion, with minimal fluorescence in control animals [121].
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et al. [92, 93]. At the time, a similar method using oxygen-dependent quenching of fluores-
cence, rather than phosphorescence, had already been established [94]. The use of fluores-
cence however, was limited by low sensitivity to oxygen and by the fact that the decay in 
fluorescence brightness is rapid, which meant that only fluorescence intensity and not lifetime 
could be measured. Intensity measurements are complicated by variables such as solution 
composition and absorption in the tissue. By using phosphorescence, Vanderkooi et al. were 
able to measure lifetime, rather than intensity, due to the much slower decay in brightness of 
phosphorescence compared to fluorescence [92, 93]. It was observed that phosphorescence-
lifetimes were directly dependent on oxygen concentration, with an increase in phospho-
rescence signal as PO2 decreased, as described by a Stern-Volmer relationship [92, 93]. This 
technique was modified for use in vivo to measure PO2 in the retinal and choroidal vascu-
lature of large animals such as cats and pigs [95–97], and later for smaller animals such as 
mice and rats [98–104]. More recently Shahidi et al. have made significant advances by using 
phosphorescence-lifetime to image oxygen tension within the retinal tissue itself [105, 106]. 
This minimally invasive technique requires an intravenous injection of a phosphor that can 
be imaged using an intensified CCD camera to provide a clear image of retinal arteries, veins 
and even some capillaries with good spatial resolution.

To date, many of the studies utilizing phosphorescence-lifetime have sought to establish the 
technique and examine changes in oxygen tension during normal physiologic processes such 
as retinal response to light stimulation [68, 104]. A limited number of studies have utilized 
phosphorescence-lifetime to study oxygen imbalances in ischemic retinal diseases. Studies in 
a mouse model of oxygen-induced retinopathy (OIR) have shown that although there was no 
significant difference in arterial or venous PO2 between control and OIR mice, the arteriove-
nous difference was significantly higher in OIR mice [107]. This was attributed to a decreased 
vascular network in these OIR mice resulting in greater oxygen extraction from the larger 
vessels [107]. Other investigators have examined whether phosphorescence-lifetime imaging 
can be used to detect regions of local hypoxia created by laser photocoagulation. In these 
studies, a laser was used to create small (75 μm) focal lesions within the capillary network of 
the mouse retina [100]. Upon imaging and analysis using an oxygen map of the laser burn and 
surrounding area they observed a circular lesion with a central area of hypoxia (< 7 mmHg) 
that extended approximately 150–200 μm outward from the initial laser injury [100]. After 
imaging the lesion again 1 hour later there was no evidence of leakage of the phosphor into 
the tissue [100]. This study indicates that phosphorescence-lifetime imaging is a useful tool 
for identifying focal areas of regional hypoxia. Further experiments are needed to confirm 
whether these results translate into animal models of diabetic retinopathy.

The primary advantage of phosphorescence-lifetime imaging is that it is minimally invasive, 
requiring only an intravenous injection of a phosphor. These phosphors are readily available 
as nontoxic, water soluble forms so they can be easily dissolved in blood, providing further 
potential for use in a clinic. Furthermore, studies have shown that this technique is capable 
of identifying small areas of regional hypoxia created by focal lesions similar to those seen in 
DR [100]. This can be combined with traditional fundus photographs and fluorescein angiog-
raphy to determine whether the areas of regional hypoxia correlate with the location of retinal 
lesions or leakage during the progression of DR. Finally, the information gathered can be dis-
played as an easy to read oxygen map showing retinal vascular function. The disadvantage of 
phosphorescence-lifetime imaging is similar to retinal oximetry in that it is a measurement of 
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oxygen levels within the retinal vasculature rather than the retinal tissue itself. It must be noted 
however, that a number of studies have compared PO2 measurements between the vasculature 
(using phosphorescence-lifetime) and a variety of tissues including the retina (using O2 micro-
electrodes) and found comparable results, with only slight decreases in PO2 within the tissue 
[95, 108]. The second disadvantage to phosphorescence-lifetime imaging is primarily due to 
the lack of evidence in animal models of DR. Although it has been proven useful in a num-
ber of vascular ischemic diseases that share commonalities with DR it would be necessary to 
confirm the applicability of phosphorescence-lifetime imaging in animal models of DR before 
proposing the technique as a potentially useful tool for determining PO2 levels in DR patients.

2.5. Hypoxia-sensitive fluorescent probes

Another technique for imaging oxygen imbalances in the diabetic retina is the use of hypoxia-
sensitive fluorescent probes. Hypoxia-sensitive compounds such as 2-nitroimidazoles are 
bioreduced by nitroreductases in hypoxic tissues (PO2 < 10 mmHg) which leads to the for-
mation of adducts with thiol containing proteins [109–113]. These compounds were origi-
nally discovered and used for detecting hypoxic areas within tumors and were imaged by 
autoradiography [112, 114]. Shortly after, immunohistochemical analysis was made possible 
by the production of antibodies that recognized the adducts formed by the reduced 2-nitro-
imidazoles and showed that the fluorescence intensity correlated with the severity of hypoxia 
[110, 111, 115]. More recently, 2-nitroimidazoles, such as pimonidazole, have been used to 
detect areas of hypoxia in a number of retinal vascular diseases, including extensive studies 
in diabetic retinopathy. Ex-vivo studies in non-diabetic and diabetic mice and rats have found 
significantly increased pimonidazole labeling in the retinas of even short-term diabetic mice 
and rats compared to their non-diabetic counterparts [53, 116–119]. Furthermore, the pimoni-
dazole labeling was confirmed by increased staining of hypoxia inducible factor-1α (HIF-1α) 
and decreased ganglion cell function measured by electroretinogram (ERG) [53, 116].

Work by our group has sought to develop clinically useful hypoxia sensitive imaging agents by 
conjugating FDA-approved fluorescein dyes to adduct forming 2-nitroimidazoles. In prelimi-
nary studies, fluorescein isothiocyanate (FITC) was conjugated to a 2-nitroimidazole contain-
ing reagent to create the HYPOX-1 probe, and also to pimonidazole to create HYPOX-2. Both 
HYPOX-1 and HYPOX-2 formed adducts leading to accumulation in a variety of hypoxic retinal 
cells and allowed for imaging with excellent signal-to-noise ratio in vitro [120]. Furthermore, these 
imaging agents were capable of detecting hypoxic areas ex vivo in the retinas oxygen induced ret-
inopathy (OIR) mice with no apparent toxicity [120]. Following the success of these fluorescent 
imaging agents, a new probe, HYPOX-3, was developed in order to create an “on-off” imaging 
agent for hypoxia [121]. Here, a near-infrared (NIR) imaging agent was coupled to Black Hole 
Quencher 3 (BHQ3), which had been shown to quench NIR dyes by Fӧrster resonance energy 
transfer (FRET) [122]. Interestingly, BHQ3 features a hypoxia-sensitive azo-bond that is cleav-
able by azoreductases under hypoxic conditions [122, 123]. HYPOX-3 displayed high sensitivity 
and specificity in forming adducts in a variety of hypoxic retinal cells in vitro with no detectable 
toxicity [121]. The ability to detect hypoxia in retinal vascular disease animal models was exam-
ined using a laser-induced choroidal neovascularization (LCNV) mouse model. In RPE-choroid 
flatmounts, HYPOX-3 clearly identified hypoxic regions in LCNV mice and showed increased 
fluorescence around the lesion, with minimal fluorescence in control animals [121].
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Figure 2. Imaging of HYPOX-4 in a mouse model of oxygen-induced retinopathy (OIR). Fundus and fluorescein channel 
in vivo images in OIR mice at P13 indicate accumulation of imaging probe in central, avascular hypoxic regions (A, B), 
which was not reflected by imaging in room air-reared age-matched controls (C, D). Findings in the OIR model correlated 
with microscopic imaging of retinal flatmounts (E, F, merged in G). Likewise, ex vivo analysis of room air control retinal 
flatmounts confirmed lack of HYPOX-4 accumulation in healthy, fully vascularized retinas (H). Disclaimer: This figure has 
been adapted from the original article by Uddin et al. [124] under Creative Commons Attribution 4.0 International License.

Due to the pharmacokinetics of HYPOX-1, -2, and -3, a new probe was designed with goal of 
creating an imaging agent for use in vivo with a potential for clinical application. This new 
probe, HYPOX-4, was characterized for in vitro and in vivo use and compared to immunos-
taining of pimonidazole-adducts [124, 125]. In vitro, HYPOX-4 displayed increasing fluores-
cence with decreasing oxygen concentration in a variety of different retinal cell lines [124]. Ex 
vivo, HYPOX-4 successfully identified avascular regions in the retinal flatmounts of OIR mice 
[124] (Figure 2) and hypoxic regions downstream of the occluded vein in the retinas of laser-
induced retinal vein occluded (RVO) mice [125] (Figure 3). Using a micron IV imaging system, 
HYPOX-4 was then used for in vivo imaging of hypoxia in both the OIR and RVO mice. In both 
models, HYPOX-4 clearly identified areas of hypoxia in vivo [124, 125]. HYPOX-4 had no effect 
on proliferation (as measured by BrdU assay), toxicity (TUNEL), or function (ERG) [124].

The advantages to these hypoxia sensitive fluorescent probes are that they can be conjugated 
to already FDA approved fluorescent dyes and they allow for direct imaging of hypoxia 
within the retinal tissue, rather than the microvasculature. Furthermore, studies in the OIR 
mice have shown they are capable of detecting hypoxia in diseases where there is oxygen 
imbalance in the entire retina, while the RVO model has shown that they are also capable 
of detecting regional, focal hypoxia downstream of either a single or double vein occlusion. 
This alone makes these probes particularly useful in diseases such as DR where there is likely 
capillary occlusion leading to localized hypoxia within the retinal tissue. A disadvantage of 
these hypoxia sensitive fluorescent probes are that they only give an image of hypoxic areas 
without providing actual values for PO2, although the PO2 threshold for bioreduction and 
adduct formation is well characterized. Furthermore, these probes have been used in OIR and 
LCNV models to show their ability to identify focal hypoxia; however their use in models of 
diabetic retinopathy needs to be examined.
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3. Summary

Hypoxia has been shown to play a significant role in DR progression. Hypoxia stimulates the 
production of a number of different pro-inflammatory cytokines (IL-1beta, TNF-a, ICAM-1) [7, 
126, 127] and growth factors (VEGF and PDGF) [45, 47, 128, 129]that lead to neovasculariza-
tion, increased vascular permeability and cell death. Studies have found that treatments such 
as laser photocoagulation provide benefits by restoring oxygen tension in the diabetic retina 
[15]. Furthermore, studies have indicated that oxygen imbalance actually precedes many of the 
pathological events that occur throughout the progression of diabetic retinopathy [2, 43, 130]. 
Therefore, early detection of hypoxic regions in the diabetic retina can potentially help clini-
cians choose appropriate treatment strategies before irreversible damage has already occurred.

New advances in imaging strategies allow for optical measurement the of oxygen levels in 
vivo. Oxygen sensitive microelectrodes have been the gold standard for direct measurement of 
oxygen levels in the retinal tissue, however the measurement is highly invasive and unable to 
consistently identify small areas of focal hypoxia. Together these factors prevent oxygen sen-
sitive microelectrodes from being used in DR patients. More recently, less invasive techniques 
such as retinal oximetry, phosphorescence-lifetime imaging and hypoxia sensitive fluorescent 
probes have been developed in an effort to detect oxygen imbalances and allow for optical 
identification of hypoxic regions in vivo. Retinal oximetry and phosphorescence-lifetime have 

Figure 3. HYPOX-4 mediated retinal imaging of laser-induced retinal vein occlusion (RVO) in the mouse. HYPOX-4 
injected 2 hours post vein occlusion with an argon photocoagulator in tandem with rose Bengal photosensitization. 
The imaging agent accumulated within the venous occlusion site (A, arrowhead) and downstream capillary bed (B). 
Disclaimer: this figure has been adapted from the original article by Uddin et al. [125] under Creative Commons 
Attribution 4.0 International License.
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Figure 2. Imaging of HYPOX-4 in a mouse model of oxygen-induced retinopathy (OIR). Fundus and fluorescein channel 
in vivo images in OIR mice at P13 indicate accumulation of imaging probe in central, avascular hypoxic regions (A, B), 
which was not reflected by imaging in room air-reared age-matched controls (C, D). Findings in the OIR model correlated 
with microscopic imaging of retinal flatmounts (E, F, merged in G). Likewise, ex vivo analysis of room air control retinal 
flatmounts confirmed lack of HYPOX-4 accumulation in healthy, fully vascularized retinas (H). Disclaimer: This figure has 
been adapted from the original article by Uddin et al. [124] under Creative Commons Attribution 4.0 International License.

Due to the pharmacokinetics of HYPOX-1, -2, and -3, a new probe was designed with goal of 
creating an imaging agent for use in vivo with a potential for clinical application. This new 
probe, HYPOX-4, was characterized for in vitro and in vivo use and compared to immunos-
taining of pimonidazole-adducts [124, 125]. In vitro, HYPOX-4 displayed increasing fluores-
cence with decreasing oxygen concentration in a variety of different retinal cell lines [124]. Ex 
vivo, HYPOX-4 successfully identified avascular regions in the retinal flatmounts of OIR mice 
[124] (Figure 2) and hypoxic regions downstream of the occluded vein in the retinas of laser-
induced retinal vein occluded (RVO) mice [125] (Figure 3). Using a micron IV imaging system, 
HYPOX-4 was then used for in vivo imaging of hypoxia in both the OIR and RVO mice. In both 
models, HYPOX-4 clearly identified areas of hypoxia in vivo [124, 125]. HYPOX-4 had no effect 
on proliferation (as measured by BrdU assay), toxicity (TUNEL), or function (ERG) [124].

The advantages to these hypoxia sensitive fluorescent probes are that they can be conjugated 
to already FDA approved fluorescent dyes and they allow for direct imaging of hypoxia 
within the retinal tissue, rather than the microvasculature. Furthermore, studies in the OIR 
mice have shown they are capable of detecting hypoxia in diseases where there is oxygen 
imbalance in the entire retina, while the RVO model has shown that they are also capable 
of detecting regional, focal hypoxia downstream of either a single or double vein occlusion. 
This alone makes these probes particularly useful in diseases such as DR where there is likely 
capillary occlusion leading to localized hypoxia within the retinal tissue. A disadvantage of 
these hypoxia sensitive fluorescent probes are that they only give an image of hypoxic areas 
without providing actual values for PO2, although the PO2 threshold for bioreduction and 
adduct formation is well characterized. Furthermore, these probes have been used in OIR and 
LCNV models to show their ability to identify focal hypoxia; however their use in models of 
diabetic retinopathy needs to be examined.
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3. Summary

Hypoxia has been shown to play a significant role in DR progression. Hypoxia stimulates the 
production of a number of different pro-inflammatory cytokines (IL-1beta, TNF-a, ICAM-1) [7, 
126, 127] and growth factors (VEGF and PDGF) [45, 47, 128, 129]that lead to neovasculariza-
tion, increased vascular permeability and cell death. Studies have found that treatments such 
as laser photocoagulation provide benefits by restoring oxygen tension in the diabetic retina 
[15]. Furthermore, studies have indicated that oxygen imbalance actually precedes many of the 
pathological events that occur throughout the progression of diabetic retinopathy [2, 43, 130]. 
Therefore, early detection of hypoxic regions in the diabetic retina can potentially help clini-
cians choose appropriate treatment strategies before irreversible damage has already occurred.

New advances in imaging strategies allow for optical measurement the of oxygen levels in 
vivo. Oxygen sensitive microelectrodes have been the gold standard for direct measurement of 
oxygen levels in the retinal tissue, however the measurement is highly invasive and unable to 
consistently identify small areas of focal hypoxia. Together these factors prevent oxygen sen-
sitive microelectrodes from being used in DR patients. More recently, less invasive techniques 
such as retinal oximetry, phosphorescence-lifetime imaging and hypoxia sensitive fluorescent 
probes have been developed in an effort to detect oxygen imbalances and allow for optical 
identification of hypoxic regions in vivo. Retinal oximetry and phosphorescence-lifetime have 

Figure 3. HYPOX-4 mediated retinal imaging of laser-induced retinal vein occlusion (RVO) in the mouse. HYPOX-4 
injected 2 hours post vein occlusion with an argon photocoagulator in tandem with rose Bengal photosensitization. 
The imaging agent accumulated within the venous occlusion site (A, arrowhead) and downstream capillary bed (B). 
Disclaimer: this figure has been adapted from the original article by Uddin et al. [125] under Creative Commons 
Attribution 4.0 International License.
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been used primarily to measure oxygen saturation in the retinal vasculature. These methods 
have been used in a number of different animal models and have shown that they can suc-
cessfully identify regions of focal hypoxia surrounded by predominantly normoxic tissue, 
similar to what is hypothesized in DR. Hypoxia sensitive fluorescent probes differ from these 
techniques in that they detect hypoxic regions within the retina itself, rather than the micro-
vasculature. These probes have been developed by the conjugation of fluorescein dyes, such 
as FITC, to 2-nitroimidazoles. These 2-nitroimidazoles are bioreduced by nitroreductases in 
under hypoxic conditions, causing them to aggregate within the hypoxic cells. A number of 
these hypoxia sensitive fluorescent probes have been developed and characterized for in vitro, 
ex vivo, and in vivo use with low toxicity.

The imaging techniques reviewed here have all been shown to optically identify regions of 
focal hypoxia in vivo. Clinically, these techniques can help to give an accurate depiction of 
oxygen imbalances within the diabetic retina before retinal pathologies are detectable and 
may therefore guide future treatment strategies in DR patients.
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similar to what is hypothesized in DR. Hypoxia sensitive fluorescent probes differ from these 
techniques in that they detect hypoxic regions within the retina itself, rather than the micro-
vasculature. These probes have been developed by the conjugation of fluorescein dyes, such 
as FITC, to 2-nitroimidazoles. These 2-nitroimidazoles are bioreduced by nitroreductases in 
under hypoxic conditions, causing them to aggregate within the hypoxic cells. A number of 
these hypoxia sensitive fluorescent probes have been developed and characterized for in vitro, 
ex vivo, and in vivo use with low toxicity.

The imaging techniques reviewed here have all been shown to optically identify regions of 
focal hypoxia in vivo. Clinically, these techniques can help to give an accurate depiction of 
oxygen imbalances within the diabetic retina before retinal pathologies are detectable and 
may therefore guide future treatment strategies in DR patients.
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Abstract

This chapter discusses about the effect of vitreous immune system and biomarkers on the 
progression of proliferative diabetic retinopathy. Immune system and biomarkers have 
been believed to have an important role in the progression of diabetic retinopathy (DR) 
severity. Hyperglycemic will influence immune cells resulting in chronic inflammation 
on the retina. This condition progressively disrupts the blood-retinal barrier in retina 
causing those inflammatory molecules and immune cells to transfer from circulation. 
The transfer of these molecules plays an important part in the progression of prolifera-
tive diabetic retinopathy. In addition, biomarkers are indicators for some complex pro-
cesses happened in our body, and are measured to determine diagnosis and prognosis 
of some treatment. There are several biomarkers that have been identified in DR patients 
including biomarkers of oxidative stress, hypoxia-inducible factors, angiogenic factors, 
pro-inflammatory cytokines, chemokines, cell adhesion molecules, and soluble CD200. 
The value of these biomarkers will tell us their possible role in the progression of DR. By 
improving the knowledge of molecular pathway in DR pathophysiology, the advance-
ment of selective therapy approaches could be discovered and the management of DR 
could be more efficient.

Keywords: biomarker, diabetic retinopathy, hyperglycemia, immune system, 
inflammation

1. Introduction

Diabetic retinopathy (DR) is the most common chronic microvascular complication of uncon-
trolled diabetes mellitus leading to preventable blindness. Diabetic retinopathy is often clas-
sified based on its severity into mild non-proliferative diabetic retinopathy (NPDR), moderate 
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NPDR, severe NPDR, and proliferative diabetic retinopathy (PDR) [1–3]. The major risk fac-
tors for developing DR are the duration of diabetes, hyperglycemia, hypertension, and dys-
lipidemia [4]. Glucose concentration increases in retinal cells leading to saccular capillary 
microaneurysms, pericyte deficient capillaries, and degenerate capillaries that decrease the 
retinal perfusion and contribute to the progression of DR [4]. Several types of evidence prove 
the benefits of tight glycemic and blood pressure control in decelerating the progression of 
DR. Nevertheless, the numbers of DR patients and the development of DR complications are 
still increasing, while therapeutic approaches are limited [1, 2].

For the last several decades, many studies have been performed in order to better understand 
DR progression from a molecular viewpoint. The biochemical mechanisms implicated in DR 
progression have been shown in various animal models and patients with diabetes [1]. It is 
believed that the involvement of hyperglycemia and hormonal factors in diabetic patients 
could disturb hemostasis in the retina and change the balance of some mediators including 
growth factors, cytokines, inflammatory, and adhesion molecules [5]. These changes result in 
altered capillary permeability, apoptosis of capillary cells, and angiogenesis, leading to DR 
complications [3]. With improved clarity of molecular pathways in DR pathophysiology, the 
advancement of selective therapeutic approaches could be discovered and the management 
of DR could be more effective [1, 5]. This chapter focuses on the inflammatory molecules and 
biomarkers involved in the pathophysiology of DR.

2. The immune system in proliferative diabetic retinopathy

The immune system protects the body from both exogenous pathogens called pathogen-
associated molecular patterns (PAMPs) and endogenous harmful molecules known as dam-
age-associated molecular patterns (DAMPs). DAMPs include oxidized or glycated proteins, 
mislocated proteins/antigens, and intracellular contents released by necrotic cells. In normal 
conditions, the immune system regulates the inflammatory process and prevents uncon-
trolled inflammation that damages cells. In hyperglycemic conditions, the accumulation of 
DAMPs induces chronic inflammation in various tissues, which in turn manifests into the 
various complications of diabetes, including diabetic retinopathy [6].

The retina is one of few tissues in the human body that has immune privilege. It is protected 
from the attack of the systemic immune system by a series of complex defense mechanisms. 
This protection is afforded by a physical barrier formed between endothelial cells of retinal 
vasculature as the inner blood-retinal barrier (BRB) and retinal pigmented epithelial cells as 
the outer BRB. This barrier limits the movement of cells and molecules from the systemic 
circulation into the retinal parenchyma. The BRB also separates retinal antigens within the 
intraocular compartment, avoiding activation of T cells. This phenomenon is known as immu-
nological ignorance. In addition, there is no lymphatic system in the retina. This inhibits sys-
temic immune cells from detecting damage-associated molecular patterns in the retina thus 
preventing an overt systemic inflammatory response. Retinal cells (retinal neurons and RPE 
cells) express immune modulators that can suppress immune cells and complement system 
activation. The retina is protected by the local innate immune system (microglia, perivascular 
macrophages, and the complement system) whose activation is tightly controlled [6].
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The immune system plays an important role in the progression of DR. Under hyperglycemic 
conditions, over activation of the innate immune system takes place, resulting in chronic inflam-
mation of the retina. A study by Urbančič et al. showed the presence of T lymphocytes in the vit-
reous of patients with PDR. They found that the CD4/CD8 lymphocyte ratio in vitreous is higher 
compared to the blood ratio in these PDR patients, demonstrating the presence of a local inflam-
matory process [7]. Prolonged local inflammation in hyperglycemic conditions in the retina may 
develop into a chronic inflammatory response that is detrimental to the integrity of BRB [6, 8–10]. 
The destruction of the barrier shifts the retina from its “privileged state” when the BRB functions 
normally to “compromised state” when the BRB has broken down. Complement system activa-
tion also increases in diabetic conditions and this dysregulated activation is known to be involved 
in the degeneration of retinal vessels. Dysfunctional barriers permit inflammatory molecules and 
immune cells from systemic circulation to enter the retina and cause further deterioration of the 
tissue [6, 11]. Cytological examination of the vitreous samples from PDR patients were found to 
contain significant amounts of macrophages suggesting the infiltration of systemic immune cells 
into the retina [12, 13]. In addition, there was an increase in adhesion molecule expression and 
pro-inflammatory cytokine production, suggesting the role of defective neutrophil activity in the 
development of chronic inflammation in diabetic retinopathy [14, 15] (Figure 1).

3. Vitreous biomarkers in proliferative diabetic retinopathy

A biomarker is an objective measurement that is evaluated as an indicator for some com-
plex processes happening in our body [16]. Biomarkers are usually measured to determine 
the diagnosis and prognosis of some treatments [17]. There are several biomarkers that can 
be found in diabetic retinopathy patients including biomarkers of oxidative stress, hypoxia-
inducible factors, angiogenic factors, pro-inflammatory cytokines, chemokines, cell adhesion 
molecules, and CD200. The value of these biomarkers tells us their possible role in the pro-
gression of diabetic retinopathy [5, 6, 18–21] (Figure 2).

3.1. Biomarkers of oxidative stress

The presence of oxidative stress biomarkers indicate an imbalance of reactive oxygen species 
(ROS) and the functional capabilities of cellular antioxidants [18, 22]. This imbalance can cause 

Figure 1. Immune system role in progression of diabetic retinopathy.
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The immune system plays an important role in the progression of DR. Under hyperglycemic 
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3.1. Biomarkers of oxidative stress

The presence of oxidative stress biomarkers indicate an imbalance of reactive oxygen species 
(ROS) and the functional capabilities of cellular antioxidants [18, 22]. This imbalance can cause 

Figure 1. Immune system role in progression of diabetic retinopathy.

Proliferative Diabetic Retinopathy: An Overview of Vitreous Immune and Biomarkers
http://dx.doi.org/10.5772/intechopen.74366

73



cell instability and contribute to the development of many diseases, including diabetic retinop-
athy [18, 23]. Oxidative stress will remain high even after the patient reaches a normoglycemic 
state. This phenomenon is called “metabolic memory” and can lead to the accumulation of ROS 
in diabetic patients [24]. The biological markers of oxidative stress can include changes in mol-
ecules of the antioxidant system and molecules modified by ROS. Antioxidant enzymes like the 
superoxide dismutases are an example of changes in molecules of the antioxidant system, and 
malondialdehyde is the best known oxidative stress marker [18].

3.1.1. Superoxide dismutases

Superoxide dismutases (SODs) are a group of enzymes found in our cells, which function as 
major antioxidant defense systems against ROS in the body. SODs consist of three isoforms: 
the cytoplasmic Cu/ZnSOD (SOD1), the mitochondrial MnSOD (SOD2), and the extracellular 
Cu/ZnSOD (SOD3), all of which require catalytic metal (Cu or Mn) to activate. SOD activi-
ties will increase due to the presence of oxidative stress in the body. Vitreous SOD activity 
can also be used to measure oxidative stress levels inside the eye, allowing it to be a viable 
biomarker of oxidative stress in patients with PDR. Brzović-Šarić et al. state that PDR patients 
serum oxidative stress markers were higher than non-diabetic patients with an eye disorders 
(NDED) serum. Brzović-Šarić et al. found a mean activity level of SODs in the vitreous of male 
diabetic patients at 30.5 ± 2.5 U/mL, and 28.5 ± 3.8 U/mL in vitreous of female patients with 
diabetes [25]. Our previous study found a mean activity level of SODs in vitreous of patients 
with PDR at 0.403 + 0.50 U/mL [26].

3.1.2. Malondialdehyde

Malondialdehyde (MDA) is a highly reactive compound produced by lipid peroxidation of 
polyunsaturated lipid found in cell membranes. MDA exerts its oxidative stress effect inside 

Figure 2. Vitreous biomarkers involved in proliferative diabetic retinopathy.
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cells and forms molecules called advanced lipoxidation end-products (ALE). MDA levels in 
specific tissues can be measured to represent oxidative damage induced by physical or chemi-
cal oxidative stress in the corresponding tissues [24, 25, 27]. Brzović-Šarić et al. found a signifi-
cant difference between vitreous MDA values in non-diabetic patients with an eye disorder 
and PDR patients [25]. On the other hand, several studies found an increase in MDA serum of 
diabetic patients compared to control patients, but there was no significant difference in MDA 
serum level between non-proliferative DR and proliferative DR patients [24, 27]. Our study 
found a mean activity level of MDA in the vitreous of patients with PDR at 1.661 ± 1.21 nmol/mL  
[26]. Another study about oxidative stress levels with PDR by Mancino et al. found a mean 
activity level of MDA in vitreous of patients with PDR at 520 ± 210 nmol/mL [24]. What causes 
these differences in vitreous MDA levels still needs to be explored.

3.2. Hypoxia-inducible factors

HIF-1α is a DNA-binding protein complex that is continuously expressed and degraded by 
cells in the body. Under hypoxic conditions, the HIF-1α degradation rate decreases, causing 
increased concentration of HIF-1α which then translocates into the nucleus and dimerizes 
with HIF-1β. The HIF-1 complex then regulates the expression of genes responsible for the 
hypoxic response of the cell by binding into the hypoxia response element (HRE) [28]. The 
HIF-1 complex is known to cause angiogenic effects on these hypoxic tissues [29]. Previous 
studies by Arden et al. on patients with diabetic retinopathy shows that hypoxia is present in 
retinal tissues suffering from oxidative damage [30]. Accordingly, Wang and co-workers found 
increased levels of HIF-1α protein in vitreous samples of PDR patients compared to levels in 
non-diabetic subjects [28]. Furthermore, the vitreous levels of vascular endothelial growth fac-
tor (VEGF) and HIF-1α were highly correlated in PDR patients. Several studies demonstrated 
positive immunohistochemical staining for HIF-1α and VEGF proteins in epiretinal neurovas-
cular membranes. This evidence shows that HIF might play an important role in regulating 
the neovascularization of retina in PDR [31, 32].

3.3. Angiogenic factors

Angiogenesis is a complex multistep process that involves angiogenic factors and is induced by 
various cytokines and growth factors [33]. These factors have been suggested to be correlated 
with the development of diabetic retinopathy [5, 33–35]. These are also known to be hypoxia-
responsive factors [5, 35]. Pro-angiogenic factors, like VEGF, angiopoientin, and erythropoietin 
are well-known factors contributing to neovascularization and whose levels increase in dia-
betic retinopathy patients [3, 5, 33–35]. Several therapies designed to target these factors have 
been proven effective in decreasing the progression of the disease [5].

3.3.1. Vascular endothelial growth factor

Vascular endothelial growth factor (VEGF) is a signaling molecule that promotes devel-
opment of new blood vessels. It is released by cells in response to hypoxic conditions. 
Abcouwer stated that VEGF increases vascular permeability by promoting the disassem-
bly of junctions between endothelial cells. This leakage can cause diabetic macular edema 
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(DME) [5]. Several studies have shown marked increases of VEGF in vitreous and vitreous 
compared to plasma concentration in DME and PDR patients [19, 36–46]. Treatments that 
target VEGF have been proven highly effective in treating DR. VEGF antibodies, which 
were originally used for cancer treatments, such as bevacizumab and its correlate ranibi-
zumab have been used effectively. These have also been tested in several small trials which 
showed improved vision in DR patients, demonstrating the involvement of VEGF in the 
pathophysiology of PDR [5, 36].

Brzović-Šarić also demonstrated a significant difference between vitreous VEGF values in non-
diabetic patients with eye disorders and PDR patients [25]. Loukovaara et al. state that VEGF is 
a major factor in PDR development and found significant increases of VEGF levels in the vitre-
ous of DR patients (465.1 ± 1470.2 pg/mL) compared to control patients (40.3 ± 165.8 pg/mL) [37]. 
Our study found a mean level of VEGF in vitreous of patients with PDR of 0.356 + 0.60 pg/mL  
[26]. Yoshimura et al. found that there was significantly elevated VEGF in PDR patients, but 
not in DME patients [47]. The increased levels of VEGF expression in patients with diabetic 
retinopathy was mainly produced by Muller glial cells. Experiments in diabetic mice, demon-
strated that conditional knockout of VEGF in Muller cells effectively blocked the increase in 
retinal VEGF expression [48]. Lange and co-workers suggest that oxygen tension levels were 
positively correlated with vitreous VEGF levels, and oxygen tension levels at the posterior pole 
were increased in PDR patients [49]. The vitreous levels of VEGF will decrease in the most 
severe stage of PDR, when there is a transition from angiogenesis to fibrosis [50].

3.3.2. Angiopoietin

Angiopoietins are a group of proteins with the role of regulating vascular development and 
angiogenesis. Two types of angiopoietins, angiopoietin-1 and angiopoietin-2, contribute to 
the maintenance of retinal vasculature. The former exerts a stabilizing effect on vessels, orga-
nizing and limiting the angiogenesis response, while the latter exhibits angiogenic activity if 
VEGF is present, but promotes endothelial cell death and vascular regression in the absence 
of VEGF. The ratio between these two angiopoietins represents the inflammatory process 
in the cell. Fiedler et al. state that hypoxia/ischemia activates endothelial cells upregu-
lating angiopoientin-2 thus lowering the angiopoientin-1/angiopoientin-2 ratio [37, 51].  
A recent publication by Loukovaara et al. demonstrates significant correlation between 
intravitreal concentrations of Ang-2 with MMP-9, VEGF, EPO and TGFb1 levels in dia-
betic eyes undergoing vitrectomy, indicating its role in retinal tissue neovascularization in 
PDR patients. The study shows a slight increase in angiopoietin-1 from the control group 
(19.1 ± 25.4 pg/mL) to the study group (25.6 ± 27.1 pg/mL), and a great increase in angiopoi-
etin-2 from the control group (43.0 ± 60.9 pg/mL) to the study group (317.1 ± 419.1 pg/mL),  
thus lowering the angiopoietin-1/angiopoietin-2 ratio in study group. The plasma value 
of angiopoietin-1 is similar in both groups, but the plasma value of angiopoietin-2 is 
increased from the control group (2623.4 ± 2142.0 pg/mL) compared to the study group 
(5690.4 ± 8064.7 pg/mL) [36, 37, 52]. Several studies state that angiopoietin-1 can be used 
for the prevention and treatment of diabetic retinopathy by its ability to suppress VEGF 
expression in diabetic retina [53].
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3.3.3. Erythropoietin

Erythropoietin (EPO) is a glycoprotein cytokine that acts as a major regulator of erythropoi-
esis. Besides erythropoiesis, several studies state that erythropoietin has a neuroprotective 
and angiogenic effect in brain and retina. Production of EPO in serum and vitreous is mainly 
caused by hypoxia [54–57]. EPO is found in many organs, including kidney, liver, brain, and 
retina [55]. The angiogenic effect of EPO is a potential equivalent to VEGF, and has been 
suspected as an important factor in the angiogenesis of PDR [56]. Watanabe et al. showed 
that vitreous EPO levels of PDR patients are significantly higher (464.0 mlU/mL) compared to 
non-diabetic patients (36.5 mlU/mL). They also found that EPO levels are higher with active 
as compared to quiescent PDR [54]. These are consistent with Katsura et al., who also reported 
increases of vitreous EPO levels in PDR patients compared to controls [55]. Cristina et al. 
found that EPO levels in vitreous fluid are significantly higher (326 mU/mL) compared to 
serum EPO (11.2 mU/mL) in PDR patients [56]. This shows that intraocular production is 
responsible for the high concentration of erythropoietin found in the vitreous fluid of retinal 
degeneration patients [54, 56, 57]. Garci et al. found increased vitreous EPO concentrations in 
DME patients (430 mU/mL) compared to control patients (25 mU/mL) [57]. Treatment involv-
ing the erythropoietin blockade is likely to be beneficial, but may worsen the disease due to 
the decrease of its neuroprotective function [54].

3.3.4. Matrix metalloproteinases 9

Matrix metalloproteinases (MMPs) are a family of zinc ion-binding endopeptidases that degrade 
most of the extracellular matrix (ECM). MMPs regulate many cellular functions including apop-
tosis, wound healing, and angiogenesis. In angiogenesis, MMPs increase VEGF production and 
remove physical barriers to new vessel growth [58, 59]. MMPs are produced as a response 
to increased oxidative stress. Diabetic patients often have increased MMP, mainly MMP-9 
and MMP-2 in the retina and vitreous. These are controlled by endogenous tissue inhibitors 
of metalloproteinases (TIMPs). TIMP-1 regulates MMP-9 and TIMP-2 regulates MMP-2 [59]. 
Several studies suggest that MMPs are responsible for many diabetic complications, includ-
ing cardiomyopathy, nephropathy, and retinopathy. MMPs are suspected to facilitate apop-
tosis of retinal capillary cells during early stages leading to disruption of blood-retinal barrier 
integrity [58–60]. Kowluru et al. found an increase in MMP-9 and a decrease in TIMP-1 in the 
retina of DR patients [58]. Abu et al. found significant increases in vitreous zymography levels 
of MMP-9 in PDR patients (392.3 ± 253.6 scanning units) compared to non-diabetic control 
patients (168.2 ± 65.0 scanning units). However, the levels of vitreous MMP-2 in PDR patients 
(540.9 ± 185.6 scanning units) did not differ significantly from non-diabetic control patients 
(505.4 ± 216.1 scanning units) [60]. Inhibitors of MMPs have been used to treat several diseases, 
however, there have been no studies using these inhibitors to treat DR patients [59].

3.3.5. Transforming growth factor β

Transforming growth factor β (TGF-β) is a polypeptide responsible for controlling cell pro-
liferation and differentiation. It is usually secreted in a latent phase and must be transformed 
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to become a mature active form. In the human eye, there are three known TGF-β isoforms 
(TGF-β1, TGF-β2, and TGF-β3), where the posterior segment of the eye mainly contains TGF-β2 
as the dominant form [61–63]. Hirase et al. found an increase in total vitreous TGF-β2 levels in 
PDR patients (2634 ± 1652 pg/mL) compared to control patients (1305 ± 972 pg/mL) [61]. This 
result is also consistent with a McAuley et al. study about vitreous biomarkers in diabetic reti-
nopathy [62]. The mature active form of TGF-β2 levels are also increased in PDR patients. This 
increase correlates with the disease severity, suggesting that TGF-β2 angiogenesis properties 
play a role in the progression of PDR [61].

3.4. Pro-inflammatory cytokines

Pro-inflammatory cytokines are usually secreted by inflammatory cells in response to hypoxia or 
hyperglycemia [64]. Well-known pro-inflammatory cytokines, such as tumor necrosis factor, inter-
leukin, interferon, and receptor tyrosine kinase are found to be elevated in the vitreous of diabetic 
retinopathy patients, suggesting their important role in the pathogenesis of this disease [5, 64, 65]. 
Cytokines can induce the progression of diabetic retinopathy directly and indirectly. Direct mech-
anisms include the direct engagement with target cells to induce neovascularization [64]. While 
indirect mechanisms induce leukocytes and endothelial cells to produce pro- angiogenic media-
tors, which in turn induce neovascularization [64, 65]. Therapy targeting these cytokines may be 
beneficial, but we need better understanding about the cytokine roles to do so [5].

3.4.1. Tumor necrosis factor-α

Tumor necrosis factors-α (TNF-α), a pro-inflammatory cytokine, is primarily synthesized by 
macrophages and T cells. Its expression is regulated by NF-κβ and it has been associated with 
the pathogenesis of several chronic inflammatory diseases including type 2 diabetes. Its func-
tion is primarily as an immune-modulator and it also plays a role in neovascularization and 
fibroplasia [3]. Costagliola et al. suggest that TNF-α is a potent mediator of leukostasis and 
contributes to blood-retinal barrier breakdown [3, 66]. TNF-α concentration is found elevated 
in the vitreous of PDR patients and the vitreous/serum ratio of TNF-α is also found higher 
compared to non-diabetic patients. Costagliola et al. found that TNF-α levels were lower in 
controls (1.9 pg/mL) than the PDR group (13.5 pg/mL) and increased with the severity of the 
disease [3, 66]. TNF-α has a short half-life (∼4 min), making its analyzation prone to produc-
ing false negative results. Soluble TNF-α receptors (sTNF-α-Rs) have a longer half-life, mak-
ing it a more reliable marker of the activation of TNF-α system [29, 31, 67–71].

3.4.2. Interleukin

Several studies have shown that there is involvement of interleukins in the development of 
PDR. The most common interleukins found in DR patients are IL-6 and IL-8, where their con-
centrations were found increased in the vitreous of patients with PDR and prolonged hyper-
glycemia [3, 42, 47, 72–82]. Their role in the pathogenesis of PDR is still under investigation 
but evidence suggests the possibility of a rather direct contribution. IL-6 controls immune cells 
responses by shifting T-helper cell populations, inhibiting the production of Th1 cells, promot-
ing the differentiation of Th2 and Th17 cells, and infiltration of monocytes and T cells [9, 10, 83]. 
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In vitro study of IL-6 reports its ability to increase endothelial cell and vascular cell permeability 
by rearranging actin filaments and by changing the shape of endothelial cells [3, 65]. Several 
studies state that IL-6 also plays an important role in angiogenesis by activating VEGF, and reg-
ulating expression of metalloproteinases [3, 64]. IL-8 is known to be a potent angiogenic factor 
and also a potent chemoattractant and activator of neutrophils and T lymphocytes [64, 84, 85]. 
Increase of IL-8 concentrations in PDR patients, suggest that they are upregulated in response 
to oxygen stress and contribute to triggering inflammatory reactions. Study by Takahashi et al. 
shows that there is a significant increase in IL-6 and IL-8 values in PDR patients (918.0 and 
2168.0 ng/mL) compared to control patient (517.0 and 343.0 ng/mL) [85]. Elner et al. also found 
increased levels of IL-8 in active PDR patients (24.7 ± 4.5 ng/mL) compared to control patients 
(7.5 ± 2.3 ng/mL), however inactive PDR patients (11.6 ± 5.2 ng/mL) did not differ significantly 
from controls [79]. It is most likely that VEGF expression causes an increase of IL-8 [86]. On the 
other hand, IL-10 concentration is not increased in the vitreous of patients with PDR. IL-10 is 
another important immunoregulatory cytokine that is induced by cell hypoxia. IL-10 activates 
nitric oxide and increases vascular permeability during the development of PDR [3, 65, 84, 85].

3.4.3. Monokine induced by interferon-γ

Monokine induced by interferon-γ (Mig) attracts activated T cells and has potent angiostatic 
activity. Several studies suggest that Mig correlates with VEGF and contributes to the progres-
sion of neovascularization in DR patients. The main function of Mig in the progression of DR 
might be related to its leukostasis function [88, 89]. Wakabayashi et al. found significant increases 
in vitreous concentration of Mig in active (148 pg/mL) and inactive (82.3 pg/mL) DR patients 
compared with non-diabetic patients who had macular disease (21 pg/mL). However, there 
was no significant difference in serum Mig concentration between DR patients (85.9 pg/mL)  
and control subjects (70.4 pg/mL) [87]. Takeuchi et al. also found an increase in Mig vitreous 
concentration in PDR patients compared to epiretinal membrane patients, idiopathic macular 
hole patients, and uveitis patients [88].

3.4.4. Receptor tyrosine kinase

Receptor tyrosine kinase (c-kit) is expressed by bone marrow and involved in intracellular 
signaling. It plays an important role in cell proliferation, cell adhesion, cell survival, and neo-
vascularization [89]. Several studies have shown that C-kit plays an important role in the 
angiogenic process of PDR. C-kit has a soluble form called s-kit that can be generated by 
proteolytic cleavage [90]. Abu et al. found an increase of c-kit expression in membranes from 
patients with active neovascularization (697.4 ± 1528.1 pg/mL) compared to patients with 
inactive PDR (205.3 ± 106.4 pg/mL) and control patients (87.5 ± 91.5 pg/mL). This demonstrates 
that an increase of c-kit expression is correlated to the progression of PDR [90]. However, Lee 
et al. found a slight decrease of c-kit values in the PDR group compared to NPDR group [91].

3.5. Chemokine

Chemokines are low molecular weight proteins that have many functions, including enhanced  
immune responses, regulation of homeostasis, and controlling angiogenesis [20, 92, 93]. 
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Chemokines are often referred to as secondary pro-inflammatory mediators, whose activa-
tion is induced by pro-inflammatory cytokines or primary pro-inflammatory mediators. 
Chemokines induce a specific leukocyte type and can bind to chemokine-receptors on target 
cells [20, 92]. Chemokines are usually categorized into two groups, the CXC group is che-
motactic for neutrophils and the CC group is chemotactic for monocytes and lymphocytes 
[20, 92]. Several studies show an increase of chemokines in vitreous of PDR patients, suggest-
ing that they have roles in mediating angiogenesis and fibrosis in PDR patients [20, 93, 94]. 
Struyf et al. stated that chemokines have different roles based on disease progression. In the 
early phase, chemokines can induce leukocyte attraction and in late phase, they can induce 
neovascularization [93]. Das et al. introduced a new therapy targeting chemokines in patients 
with DME [94].

3.5.1. Monocyte chemotactic protein-1

Monocyte chemotactic protein-1 (MCP-1) is a member of the chemokine group which is 
responsible for regulating migration and infiltration of monocyte/macrophages to the site of 
inflammation, making MCP-1 a pro-inflammatory cytokine that plays a central role in CNS 
inflammation [2]. Hyun et al. stated that MCP-1 is a major cause of vascular complications in 
diabetes [95]. It is also a potent inducer of angiogenesis and fibrosis. MCP-1 levels were found 
elevated in the vitreous of diabetic patients and their levels are higher than serum [2, 97]. 
Ning et al. stated that advanced glycation end product (AGE) stimulation activates retinal 
neurons to release MCP-1 activating retinal microglial cells. Their study also shows a progres-
sive increase of MCP-1 along with the progression of disease, indicating it may be an impor-
tant link in diabetic retinopathy pathogenesis [2, 96]. Hyperglycemia also has been shown to 
increase MCP-1 expression from retinal vascular endothelial cells, RPE cells, and Muller glial 
cells [2, 97]. Reddy et al. demonstrated significantly higher levels of MCP-1 in PDR patients 
compared to normal glucose tolerance (NGT) patients. MCP-1 is also steadily increased along 
with the progression of PDR [97].

3.5.2. Interferon gamma-induced protein-10

Interferon gamma-induced protein-10 (IP-10), also known as CXCL10, is one of the CXC che-
mokine members. CXC chemokine has unique properties in which it can act as either an angio-
genic or angiostatic factor, depending on the protein configuration of the molecule. IP-10 is 
inducible directly or through activation of IFN-γ, TNF-α, NFkB, viruses, or microbial products. 
Boulday et al. reported that VEGF induced the expression of IP-10 [1]. IP-10 binds CXCR3 
receptors inducing apoptosis, angiostasis, and chemotaxis. It has been suggested that IP-10 is 
associated with inflammatory diseases including immune dysfunction and infectious disease. 
This protein has also been proposed to be involved in the pathophysiology of diabetic reti-
nopathy, especially in the development of neovascularization. Elner et al. found a significant 
increase in the level of IP-10 in patients with PDR compared to the patients with non-diabetic 
eye diseases (NDED; 11.7 ± 1.1 ng/mL and 4.6 ± 0.9 ng/mL; p < 0.001, CI 95%). They also assumed 
that pan-retinal laser photocoagulation (PRP) might influence elevated IP-10 levels. The exact 
mechanism of the PRP-induced IP-10 involution of PDR remains to be elucidated [79].
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3.5.3. Stromal cell-derived factor-1

Stromal cell-derived factor-1 (SDF-1) is a chemokine with a major role in the ischemic dam-
age repair process. It recruits endothelial progenitor cells (EPCs) from the bone marrow to the 
site of repair and upregulates expression of VEGF, increasing the angiogenic process. This 
pro-angiogenic factor is categorized as being hypoxia-responsive and is found to be upregu-
lated in PDR [98–100]. Chen et al. found that vitreous concentrations of SDF-1 and VEGF are 
correlated in eyes with PDR. They also found that vitreous levels of SDF-1 are significantly 
higher in PDR patients (306.37 ± 134.25 pg/mL) than in patients with idiopathic macular hole 
(86.91 ± 55.05 pg/mL) [101]. Butler et al. demonstrate an increase of SDF-1 concentration in the 
vitreous of patients with PDR and this increase correlates directly with disease severity. They 
also demonstrated that intravitreal injection of triamcinolone dramatically decreased the con-
centration of vitreal VEGF and SDF-1, suggesting it as another possible treatment for PDR [98].

3.5.4. High-mobility group box-1

High-mobility group box-1 (HMGB1) is a nonhistone DNA-binding protein that facilitates 
transcription. HMGB1 can be released into the extracellular space by active secretion from 
certain cells such as activated monocytes and macrophages, mature dendritic cells, natural 
killer cells, and endothelial cells. Necrotic cell death can also cause passive leakage of HMGB1 
from the nucleus as the protein is no longer bound to DNA. HMGB1 can bind to the receptor 
for advanced glycation end products (RAGE) and toll-like receptor 2 (TLR-2), where it acts as 
a pro-inflammatory cytokine, activating NF-κβ resulting in the overexpression of other pro-
inflammatory molecules such as TNF-α, MCP-1, and ICAM-1 [41, 102, 103]. El-Asrar et al. dem-
onstrated a significant correlation between neovascularization levels in epiretinal membranes 
of patients with PDR and the expression of HMGB1 and RAGE [41]. Yao Yu et al. also found 
an increase of HMGB1 concentration in the vitreous of PDR patients. This increase in vitreous 
happens in the later phases of DR, and differs from other inflammatory cytokines. They also 
found increases of RAGE protein and decreases of TLR-2 protein in DR rats, suggesting that 
the involvement of HMGB-1 is mainly through its binding with RAGE [102].

3.6. Cell adhesion molecules

Adhesion molecules have many roles in our body, including embryology, immunology, and 
malignancy [21]. Several studies show increases of these molecules in PDR patients, suggest-
ing that cell to cell interaction plays a major role in the development of PDR [79, 104–106]. 
These molecules regulate lymphocyte recruitment to vascular endothelium. Well-known 
adhesion molecules found in PDR patients are intercellular adhesion molecule-1 (ICAM-1) 
and vascular cell adhesion molecules-1 (VCAM-1), which are required for initiation of adhe-
sion-dependent immune response [21, 106].

3.6.1. Intercellular adhesion molecule-1

Intercellular adhesion molecule-1 (ICAM-1), also known as CD54, is a cell surface glycopro-
tein encoded by the ICAM1 gene. ICAM-1 is usually expressed on the surface of endothelial 
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cells and cells of the immune system. It works as a cell adhesion molecule that recruits nearby 
circulating leukocytes to the inflamed location. In PDR patients, ICAM-1 is suspected as one 
of the deteriorating factors, promoting leukostasis and inflammation on nearby retinal tissue. 
Several experiments show leukostasis as a possible mechanism in diabetic retinal vasculature 
injury. Cells which are attached, mainly granulocytes and monocytes cause microvascular 
occlusion and capillary injury [106]. Leukostasis in DR is mainly caused by endothelial acti-
vation and increased surface expression of intercellular adhesion molecules (ICAM-1) [107]. 
Hillier et al. stated that increases in ICAM-1 correlate with the severity of DR in patients [108]. 
Our study on ICAM-1 showed an increase of ICAM-1 expression in PDR patients with more 
than 10 years of diabetes history [103]. Yan et al. in their study about the effects of intravitreal 
ranibizumab injection on ICAM-1 levels in PDR patients, demonstrated a decrease of ICAM-1 
levels a week after intravitreal injection [109].

3.6.2. Vascular cell adhesion molecule-1

Vascular cell adhesion molecule-1 (VCAM-1) is an immunoglobulin supergene family of 
cellular adhesion molecules that are involved in the transmigration of monocytes, eosino-
phils, and lymphocytes [105, 110–112]. Oxidative stress, VEGF, and hypercholesterolemia 
increase the expression of VCAM-1 in the brain and retina [111, 113, 114]. It is released 
by endothelial cells and is present as an early feature of inflammatory disease [111, 113]. 
Several studies state that VCAM-1 promotes angiogenesis in PDR patients [105, 112–114]. 
Burgos et al. demonstrated increases in vitreous concentration of VCAM-1 in PDR patients 
(26 ng/mL) compared to non-diabetic patients in whom a vitrectomy was performed 
(22 ng/mL) [104]. These results are also consistent with Mroczek et al. in their study about 
the influence of glucose control on the activation of the intraocular molecular system [114]. 
There are also reports of increase VCAM-1 concentration in the retinal vessels and serum 
of PDR patients [111, 112].

3.7. Soluble CD200

CD200 is a novel immunosuppressive molecule found in neuronal cells. CD200 exists in 
a cell membrane-bound form and a soluble form. It exerts inhibitory effects on microglia/
macrophages via interaction with the CD200 receptor (CD200R) [115]. DR-related neuro-
nal degeneration also reduces CD200 concentration and further induces microglial activa-
tion [6]. Recent study on CD200 revealed that levels of sCD200 in vitreous of patients with 
PDR are significantly higher compared to that in the vitreous of patients without PDR. Xu 
et al. showed increases in mean sCD200 levels in the PDR group (182 ± 17.63 pg/mL) com-
pared to non- diabetic patients with other conditions who requires pars plana vitrectomy 
(56.86 ± 6.573 pg/mL). This study also showed that vitreous levels of sCD200 are higher 
in PDR patients with DME (266.9 ± 28.82 pg/mL) or traction retinal detachment (TRD) 
(256.9 ± 34.50 pg/mL) compared to PDR patients without DME (136.9 ± 15.13 pg/mL) or TRD 
(146.9 ± 15.97 pg/mL). sCD200 level increases also have significant statistical correlations 
with the increase of several angiogenic and inflammatory molecules such as VEGF, IL-6, IL-8 
and IL-10 [115].
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