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Preface

Mankind lives in an environment where resources are limited. Therefore, since the day he
existed, he has been trying to find the best solution to the problems he has encountered us‐
ing these limited resources.

Like most of the inventions, optimization studies took a long way in the World War II. Line‐
ar programming was developed as a discipline in the 1940s, motivated initially by the need
to solve complex planning problems in wartime operations. 

With the developments of computers and computer programming, complex optimization
problems encountered in the industry have been solved scientifically through modelling
and optimization. These efforts have used classical mathematical solution methods and al‐
gorithms. But it has been seen that the solution time has been increased exponentially with
the number of independent variables of an optimization problem.

Instead of finding the exact solution of a given problem in a long time, finding near-optimal
solution of a given problem in a reasonable solution time has been accepted. So, this type of
solution simulates animal behaviours and intelligence. Since most creatures behave optimal‐
ly using their swarm intelligence, scientific studies on optimization have turned their way to
these algorithms. Starting with ant colony optimization and particle swarm optimization,
optimization algorithms simulating swarm intelligence have increased very much. Today,
nearly all living beings’ behaviours and their intelligence have been simulated for solving
the nonlinear optimization problems.

The intent of this book is to give readers some insights into particle swarm optimization
(PSO), which is one of the most used and cited nature-inspired optimization algorithms.
PSO developed by Kennedy and Eberhart is both fast convergent and a very simple algo‐
rithm requiring very few parameters. So, since 1995, PSO has been popular and preferred
especially in the dynamic optimization. Several hybrid versions of PSO have been im‐
proved.

This book presents some real-world applications of PSO. We intend to give a perspective to
the readers who are planning to use PSO to solve a real-life problem.

Chapter 1 briefs the origins of PSO, improvements in the algorithm, hybrid studies and ap‐
plications in the literature.

PSO with a bio-inspired aging model is introduced in Chapter 2. This model is proposed for
alleviating the premature convergence problem.

“PSO Solution for Power System Operation Problems” is presented in Chapter 3. Two case
studies were handled. The first case study system investigates applicability of PSO on pro‐
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viding proper overcurrent relay settings in the grid. The second case study system, the eco‐
nomic dispatch of a 15-unit system, is solved with PSO.

In Chapter 4, “Stochastic Greedy-Based PSO for Workflow Application in Grid” is presented.

In Chapter 5, “Performance Comparison of PSO and Its New Variants in the Context of VLSI
Global Routing” is presented.

In Chapter 6, one of the most studied problems in electrical engineering “Combined Eco‐
nomic Emission Dispatch Problem with Valve-Point Effect Using Hybrid NSGA II-MOPSO”
is presented.

I hope this book will be helpful to the readers.

Pakize Erdoğmuş
Duzce University

Turkey
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1. Introduction

In order to survive, the main objective of all creatures is foraging. Foraging behavior is coop-
erative in the same species. Each agent in the swarm communicates with others in such a way 
to find the food in the shortest time and way. This capability of all lively beings gives inspira-
tion to the human being in order to find solutions to the optimization problems. Collective 
foraging behaviors of the lively beings are called swarm intelligence.

Most of the animals live as social groups in order to find foods easily and protect from the 
enemies to survive. Each individual lives in their habitat. Looking for food, they use their 
own experiences called cognitive movements as well as the experience of their leaders called 
social movements.

Optimization is to find the best solution to a given problem under some constraints. All dis-
ciplines use optimization for finding the best solution for their problems. Optimization is the 
first and foremost objective for engineers too. So especially in the future engineering applica-
tions, optimization will be an indispensable part of the product.

Optimization is everywhere. In the production of a new device, in a new artificial intelligence 
technique, in a big data application or in a deep learning network, optimization is the most 
important part of the application. To design a device with optimum sizes using minimum 
energy, to train a network, to minimize the error between the desired output and real output 
values, optimization is required.

Because of the difficulties of classical optimization algorithms, scientists have started to find 
an easy way to solve their problems in the last 1960s. The development of the computers 
made the efforts of the scientists easy, and completely new problem solution techniques are 
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Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



viding proper overcurrent relay settings in the grid. The second case study system, the eco‐
nomic dispatch of a 15-unit system, is solved with PSO.

In Chapter 4, “Stochastic Greedy-Based PSO for Workflow Application in Grid” is presented.

In Chapter 5, “Performance Comparison of PSO and Its New Variants in the Context of VLSI
Global Routing” is presented.

In Chapter 6, one of the most studied problems in electrical engineering “Combined Eco‐
nomic Emission Dispatch Problem with Valve-Point Effect Using Hybrid NSGA II-MOPSO”
is presented.

I hope this book will be helpful to the readers.

Pakize Erdoğmuş
Duzce University

Turkey

PrefaceVIII
Chapter 1

Introductory Chapter: Swarm Intelligence and Particle
Swarm Optimization

Pakize Erdogmus

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.74076

Provisional chapter

DOI: 10.5772/intechopen.74076

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons  
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,  
distribution, and reproduction in any medium, provided the original work is properly cited. 

Introductory Chapter: Swarm Intelligence and Particle 
Swarm Optimization

Pakize Erdogmus

Additional information is available at the end of the chapter

1. Introduction

In order to survive, the main objective of all creatures is foraging. Foraging behavior is coop-
erative in the same species. Each agent in the swarm communicates with others in such a way 
to find the food in the shortest time and way. This capability of all lively beings gives inspira-
tion to the human being in order to find solutions to the optimization problems. Collective 
foraging behaviors of the lively beings are called swarm intelligence.

Most of the animals live as social groups in order to find foods easily and protect from the 
enemies to survive. Each individual lives in their habitat. Looking for food, they use their 
own experiences called cognitive movements as well as the experience of their leaders called 
social movements.

Optimization is to find the best solution to a given problem under some constraints. All dis-
ciplines use optimization for finding the best solution for their problems. Optimization is the 
first and foremost objective for engineers too. So especially in the future engineering applica-
tions, optimization will be an indispensable part of the product.

Optimization is everywhere. In the production of a new device, in a new artificial intelligence 
technique, in a big data application or in a deep learning network, optimization is the most 
important part of the application. To design a device with optimum sizes using minimum 
energy, to train a network, to minimize the error between the desired output and real output 
values, optimization is required.

Because of the difficulties of classical optimization algorithms, scientists have started to find 
an easy way to solve their problems in the last 1960s. The development of the computers 
made the efforts of the scientists easy, and completely new problem solution techniques are 

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



studied. These techniques using heuristic information were derivative free, easy to imple-
ment, and shorten the solution time. The first product of these studies is genetic algorithm 
(GA) developed by Holland [1]. The evolutionary idea has been applied to the solution of the 
optimization problems. Instead of the evolving only one solution, a group of solutions called 
population has been used in the algorithm. Each solution is called individual. By this way, 
running such algorithms with multiple processors could be possible. After GA, simulated 
annealing [2] has been generally accepted as the second algorithm, inspired from the anneal-
ing process of physical materials. In high temperatures, particles move randomly in order to 
explore the solution space. While temperature is decreasing, particles try to create a perfect 
crystalline structure, only with local movements.

2. Particle swarm optimization

Particle swarm optimization (PSO) is accepted as the second population-based algorithm 
inspired from animals. Since James Kennedy (a social psychologist) and Russell C. Eberhart 
simulated the bird flocking and fish schooling foraging behaviors, they have used this simula-
tion to the solution of an optimization problem and published their idea in a conference in 1995 
[3] for the optimization of continuous nonlinear functions. There are two main concepts in 
the algorithm: velocity and coordinate for each particle. Each particle has a coordinate and an 
initial velocity in a solution space. As the algorithm progresses, the particles converge toward 
the best solution coordinates. Since PSO is quite simple to implement, it requires less memory
and has no operator. Due to this simplicity, PSO is also a fast algorithm. Different versions of
PSO have been developed, using some operators since the first version of PSO was published.

In the first versions of PSO, the velocity was calculated with a basic formula using current veloc-
ity, personal best and local best values in the formula, multiplying stochastic variables. The cur-
rent particle updates its previous velocity, not only its previous best but also the global best. 
The total probability was distributed between local and global best using stochastic variables.

In the next versions, in order to control the velocity, an inertia weight was introduced by Shi 
and Eberhart in 1998 [4]. Inertia weight balances the local and global search ability of algo-
rithm. Inertia weight specifies the rate of contribution of previous velocity to its current velocity. 
Researchers made different contributions to the inertia weight concept. Linearly, exponential or 
randomly decreasing or adaptive inertia weight was introduced by different researchers [5]. In 
the next version of PSO, a new parameter called constriction factor was introduced by Clerc and 
Kenedy [6, 7]. Constriction factor (K) was introduced in the studies on stability and convergence 
of PSO. Clerc indicates that the use of a constriction factor insured convergence of the PSO. A 
comparison between inertia weight and constriction factor was published by Shi and Eberhart [8].

Nearly all engineering discipline and science problems have been solved with PSO. Some of the 
most studied problems solved with PSO are from Electrical Engineering, Computer Sciences, 
Industrial Engineering, Biomedical Engineering, Mechanical Engineering and Robotics. In 
Electrical Engineering, power distribution problem [9] is solved with PSO. Another most stud-
ied problem in Electrical Engineering is economic dispatch problem [10, 11]. In Computer 
Sciences, face localization [12], edge detection [13], image segmentation [14], image denoising 
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[15], image filtering [16] problems are solved with PSO. In Industrial Engineering, examination
timetabling problems [17], traveling salesman problem [18], and job-shop scheduling problems
[19] are solved with PSO. In Robotics, particle swarm optimization in coconut tree plucking
robot is introduced [20], and path planning problem is solved with PSO [21]. In these studies,
it has been proven PSO success in point of both performance and speed in most of the studies.

After the main PSO algorithm was studied and evolved with some parameters, hybrid algo-
rithms were designed and developed by researchers. The most prominent ones are hybrid 
PSO with genetic algorithm (GA) [22] and particle swarm optimization with chaos [23–25]
and quantum chaotic PSO [26]. In the next section, some of the recent hybrid PSO algorithms 
are presented.

3. Hybrid PSO algorithms using swarm intelligence

Hybrid algorithms are quite successful since they combine both algorithms’ powerful sides. 
Since PSO is quite fast algorithm, nearly all newly developed algorithm combined with 
PSO. Some of the recent studies using swarm intelligence are crow search algorithm (CSA) 
[27], ant lion optimizer (ALO) [28], the whale optimization algorithm (WOA) [29], grey wolf 
optimizer (GWO) [30], monarch butterfly optimization (MBO) [31], moth flame optimization 
[32], selfish herd optimization (SHO) [33], and salp swarm optimization (SSO) [34]. Since the 
algorithms stated in the following paragraph are quite new, according to the Web of Science 
records, there is not any hybrid study combining PSO with them.

Firefly algorithm (FFA) [35], bacterial foraging optimization algorithm (BFOA) [36], ant col-
ony optimization (ACO) [37], artificial bee colony (ABC) [38], and cuckoo search (CS) [39] 
are some of the algorithms using swarm intelligence improved in the last decade. There are 
hybrid versions of these algorithms with PSO.

3.1. Firefly algorithm

FFA is improved by mimicking the flashing activity of fireflies. FFA is similar most of the 
swarm intelligence algorithm. Fireflies are located in a position in the solution space ran-
domly initially. The fitness of the fireflies is calculated according to the light intensity. The 
next location of each firefly is calculated according to the current position, randomness and 
attractiveness. The hybrid algorithm combined PSO with firefly optimization [40] proposes a 
technique for the detection of Bundle Branch Block (BBB), one of the abnormal cardiac beat, 
using hybrid firefly and particle swarm optimization (FFPSO) technique in combination with 
Levenberg Marquardt Neural Network (LMNN) classifier.

3.2. Bacterial foraging optimization algorithm

BFOA is inspired by the social foraging behavior of Escherichia coli. BFOA is an efficient 
algorithm in solving real-world optimization problems. Chemotaxis process simulates the 
movement of an E. coli cell through swimming and tumbling via flagella. E. coli cells like par-
ticles move in solution space and change their location with a formula-dependent previous 
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 location, randomness and chemotactic step size. The big difference between PSO is that not 
only global best, but also global worst is also evaluated in the algorithm. Among E. coli cells, 
the least healthy one, eventually die. Each of the healthier bacteria splits into two bacteria, 
which are then placed in the same location. This keeps the swarm size constant. The hybrid 
algorithm using PSO and BFOA optimized PI controller, for multiobjective load frequency 
[41]. The authors developed a hybrid PSO with firefly, also developed a hybrid PSO with 
BFOA, for the detection of BBB. The same classifier is used in the study [42].

3.3. Ant colony optimization

ACO is inspired from the pheromone trails of ants. The first version improved by Dorigo is 
called ant system [43]. Although most of the ant species are blind, they can find the shortest path 
from their nest to food source using swarm intelligence. Ants are located in random positions in 
the solution space and moves with pheromone trail and randomness. In the first iterations, ants 
move stochastically. Eventually, pheromone increases in the path used most because ants prefer 
the path that contains more pheromone. This means that “Trace me.” In order not to get trapped 
to the local convergence, pheromone evaporates related to time. ACO is generally used for the 
solution of combinatorial optimization problem solution such as travelling salesman problem 
(TSP) and some network problems. Hybrid PSO with ACO [44] solves routing problem.

3.4. Artificial bee colony

ABC optimization is developed by Karaboga in 2005. ABC is also a swarm intelligence algo-
rithm based on the foraging behavior of honey bee swarms. The artificial bee colonies in the 
ABC algorithm consists of three groups: employed bees, onlookers and scouts. Employed 
bees search for food source and sharing this information to recruit onlooker bees. Onlooker 
bees select better food sources from those employed bees and further search around the 
selected food source. If a food source is not improved by some iteration, this employed bee 
will become a scout bee to search randomly for new food sources. In [45], a hybrid algorithm 
is developed combining PSO and ABC. Since PSO is fast convergent algorithm and ABC is 
slow convergent algorithm, hybrid algorithm uses the powerful sides of each algorithm.

3.5. Cuckoo search

CS is also another swarm intelligence algorithm inspired from cuckoos. CS is based on the interest-
ing breeding behavior such as brood parasitism of certain species of cuckoos in combination with 
L’evy flight behavior of some birds. CS is successful for finding optimum values of multimodal 
functions. A hybrid algorithm is proposed finding for optimal design of multiband stop filters [46].

4. Conclusion

After GA, PSO is the first and foremost algorithm which is the most successful algorithm 
especially for the solution of the continuous optimization problems. Subsequent algorithms 
using swarm intelligence nearly have the same ideas. All of them are population based, and 
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all particles are distributed in the solution space. Particles have initial locations and velocities. 
They converge to the optimum solution using their swarm intelligence.

Although there have been improvements in the optimization algorithms using swarm intel-
ligence, there is not a unique algorithm which is successful in all types of optimization prob-
lems. So the efforts trying to simulate the animal behaviors and swarm intelligence will 
continue. At the same time, developing hybrid algorithms will also continue until the best 
combination of the algorithms would be found.
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Abstract

A Particle Swarm Optimization with a Bio-inspired Aging Model (BAM-PSO) algorithm
is proposed to alleviate the premature convergence problem of other PSO algorithms.
Each particle within the swarm is subjected to aging based on the age-related changes
observed in immune system cells. The proposed algorithm is tested with several popular
and well-established benchmark functions and its performance is compared to other
evolutionary algorithms in both low and high dimensional scenarios. Simulation results
reveal that at the cost of computational time, the proposed algorithm has the potential to
solve the premature convergence problem that affects PSO-based algorithms; showing
good results for both low and high dimensional problems. This work suggests that
aging mechanisms do have further implications in computational intelligence.

Keywords: particle swarm optimization, bio-inspired aging model, evolutionary
optimization algorithms

1. Introduction

Bio-inspired optimization algorithms are based on precise observation of natural systems [1–3].
A relevant characteristic of these algorithms is that the biological process had been tested,
validated and proven by means of evolution. The mechanisms of self-adaption, self-organizing
and self-learning in natural inspired optimization approaches provide means to address chal-
lenging problems that cannot be solved by traditional methods [4].

Thus, bio-inspired algorithms become particularly important to tackle complex optimization pro-
blems [6–10]. The outstanding performance of bio-inspired optimization algorithms is attributed
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Abstract

A Particle Swarm Optimization with a Bio-inspired Aging Model (BAM-PSO) algorithm
is proposed to alleviate the premature convergence problem of other PSO algorithms.
Each particle within the swarm is subjected to aging based on the age-related changes
observed in immune system cells. The proposed algorithm is tested with several popular
and well-established benchmark functions and its performance is compared to other
evolutionary algorithms in both low and high dimensional scenarios. Simulation results
reveal that at the cost of computational time, the proposed algorithm has the potential to
solve the premature convergence problem that affects PSO-based algorithms; showing
good results for both low and high dimensional problems. This work suggests that
aging mechanisms do have further implications in computational intelligence.

Keywords: particle swarm optimization, bio-inspired aging model, evolutionary
optimization algorithms

1. Introduction

Bio-inspired optimization algorithms are based on precise observation of natural systems [1–3].
A relevant characteristic of these algorithms is that the biological process had been tested,
validated and proven by means of evolution. The mechanisms of self-adaption, self-organizing
and self-learning in natural inspired optimization approaches provide means to address chal-
lenging problems that cannot be solved by traditional methods [4].

Thus, bio-inspired algorithms become particularly important to tackle complex optimization pro-
blems [6–10]. The outstanding performance of bio-inspired optimization algorithms is attributed
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to their structures which are closely related to one or other features observed in nature [10].
Accuracy and repeatability are the prime objectives of every optimization algorithm. There-
fore, modeling biological mechanisms may impact the outcome of the observed system,
designing more accurate and efficient heuristic algorithms [13, 16].

Problem-solving algorithms inspired by one or more biological features have been developed
after observing the behavior in humans, animals, and cells [10–13]. For instance, Genetic
Algorithms (GA) [4] defined the basis for evolutionary computing using the early works of
Darwin [14] and Mendel [15]; or the Ant Colony System (ACS) [6, 7] which considers the
traveling behavior model of self-organized argentine ants published by Goss [5], solving in a
fashion way travel salesman-type problems; or the Particle Swarm Optimization (PSO) [8]
inspired on feeding behavior of bird flocks becoming a very popular optimizer nowadays [17].

Particle-based optimizers, like those described in [8]; or those presented in [18–22, 28] are very
popular because instead of working with one candidate solution, they offer a subset of indi-
vidual candidate solutions (particles), which are explored, exploited and improved. A relevant
mechanism related to evolution that could play a central role in optimization algorithms is
aging [23, 25]. Aging is a natural characteristic whose inclusion in a particle-based optimizer
could give a mean of individual control over the particle without highly increasing the com-
plexity of algorithms [26].

To the authors’ best knowledge, previous PSO algorithms did not have a measurement to
control individual particle existence within the swarm by evaluating each particle perfor-
mance. In PSO, because of the very nature of the algorithm, an effect called premature
convergence appears when most (or all) of the particles within a swarm compromises their
ability to explore and stay close to a local solution. The Particle Swarm Optimization with an
Aging Leader and Challengers (ALC-PSO) [24] was the first approach to include aging
processes to alleviate this unwanted effect. However, this was only leadership-oriented and
not swarm-related; even more important: the aging dynamics were linear and bounded to
static predefined values. In [29], it is used to design a high speed symmetric switching CMOS
inverter.

Our PSO variant proposal, the Particle Swarm Optimization with Bio-inspired Aging Model
(BAM-PSO) is based on a mathematical model that describes the telomeres shortening
observed in the immune system cells, this model includes a form of aging effect over all the
particles of the swarm; this mechanism provides a mean to control the existence of each
particle within the swarm avoiding the premature convergence effect. Therefore, the PSO
variant with aging model possesses the potential to outperform current optimization algo-
rithms and have further implications in computational intelligence. Finally, optimization
under uncertainty and complex functions is an area of special scientific interest, and many real
problems and applications include some form of uncertainty; it is also known that collective-
intelligence algorithms perform excellent in this type of scenarios [11]; BAMPSO has been
successfully implemented in several optimization applications: in time-series forecasting [30]
it was implemented as a training algorithm for an artificial neural network and in [31] it was
used over a Geometric Algebra (GA) framework in order to compute the rigid movement on
images to improve the accuracy of Structure fromMotion (SfM) algorithms, which comprises a
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family of computer vision algorithms whose paradigm is based on extracting structures when
movement is detected or extracting movement when structures are detected in 2D images.
Therefore, in this work, BAM-PSO is tested with several popular and well-established bench-
mark functions and its performance is compared to well-known evolutionary algorithms in
both low and high dimensional scenarios.

2. Aging mechanisms to alleviate the premature convergence

Aging is the process of becoming older, which consists on the accumulation of changes over
time. This process affects all living systems: humans, cells, unicellular organisms, fruit flies and
mammals like rodents [12, 32, 42]. Since the particles of the PSO optimizer algorithm can be
treated as a living system, aging could represent a relevant mechanism to alleviate the prema-
ture convergence problem in heuristic algorithms. Nowadays, we have better understanding
of the lifespan of human cells, which is determined by homoeostatic properties of the immune
system. Homeostasis refers to the regulation of the lymphocytes pool in an organism. It is
assumed that the number of cells is determined by the capacity of the peripheral immune
system.

In the immune system, it is observed that cell death rate accelerates if the immune cells exceed
the allocated free space [33]. For instance, in the course of a viral infection, immune system
cells can undergo approximately 15–20 divisions. Total proliferative capacity of human T
lymphocyte is about 40–45 divisions and depends on the telomere length [41]. Telomeres are
the end parts of the chromosomes, which become shorter in every cell division; this can be
appreciated in Figure 1. The cell can reach its unresponsiveness state when the telomere length
completes about one half of its initial value.

Telomere dynamics can be interpreted in a mathematical model based on experimental obser-
vations. In this work, we consider the mathematical model proposed by [33] to represent the
telomere dynamics. This model considers the following equation:

dT
dt

¼ α p∗ � Tð ÞN (1)

where T represents the remaining telomere divisions per cell. α defines the telomere consump-
tion rate per iteration. p∗ represents the length of telomere repeats in naive cells produced at
the age t (with initial length p0= 8:3� 103) and N is the number of cells as defined in [33].

Eq. (1) is a differential non-ascending equation that defines the derivative in telomere division
per cell depending on the consumption rate of the cell α, telomere capacity of the cell (p∗) and
number of cells (N). Eq. (1) describes the dynamic of average telomere length T in the pool of
naive cells. The rate of this process depends on p∗ � Tð Þ, where p∗ is the telomere length in the
cells and p0 defines the telomere at initial age. This dynamic describes the self-sustaining
process of regulation of total concentration of the T cells and how the telomere is affected by
T cells concentration and iterations [33].
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The proposed scheme in Eq. (1) can provide PSO the same self-regulation capabilities during
swarm’s concentration around a local minimum (known as premature convergence) if we
consider the swarm as lymphocytes, and particle concentration around a local minimum as
T cells concentration. Finally, senescence of the particle will be translated as a new random-
generated particle, replacing the unresponsive one. For this to be achieved, a given particle
within the swarm will have a limited number of iterations to exist within the swarm, similar to
telomere length at p0, and senescence of this particle will occur when particle’s capacity for
search space-exploitation approaches to 0 and swarm’s concentration around a local minimum
has exceeded a given limit (premature convergence indicator), similar to T cells in human
immune systems [35].

Based on this aging mechanism, it is possible to include senescence to a given particle within
the swarm, and the lifespan of each particle will be adjusted according to the error produced
by its candidate solution and the premature convergence indicator of the swarm.

TELOMERE

TELOMERE SHORTENS AFTER MULTIPLE REPLICATIONS

TELOMERE AT SENESCENCE

Figure 1. Telomere division process in human T cells.
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3. Particle swarm optimization with a bio-inspired aging model
(BAM-PSO)

The ALC-PSO variant [24] suggests an interesting approach using aging factors to define when
to remove non-useful characteristics of the algorithm. However, this variant proposes a simple
aging model with the following characteristics:

• The lifespan exists only for the leader and is controlled by linear means according to
lifespan controller shown in [24].

• There is no lifespan controller for the rest of the particles of the swarm, meaning that the
particles continue offering candidate solutions even if premature convergence has occurred.

• There is no communication between particles within the swarm about premature conver-
gence and no evaluation is performed about particle concentration around local minima.

Consequently, there are several points that can be improved in ALC-PSO. For instance, includ-
ing aging mechanisms to the rest of the particles within the swarm may help exploration
without affecting the convergence. Moreover, in order to alleviate premature convergence in
the PSO, there is an urgent need to include means of measuring the premature convergence in
real time allowing the swarm to discard non-useful particles and to explore new candidate
solutions without losing the convergence inertia toward the global minimum.

Based on previous observations, we propose a variant of the PSO named Particle Swarm
Optimization with a Bio-inspired Aging Model (BAM-PSO). Our proposed algorithm con-
siders the aging leader and challengers in the same fashion as ALC-PSO, but it applies
senescence to each particle within the swarm by using the mathematical model that describes
aging dynamics in Eq. (1).

For BAM-PSO to implement senescence efficiently, it is necessary to implement a mechanism
that allows the algorithm to interpret when the swarm has reached a local minimum; this can
be achieved by means of premature convergence measurement.

In the aging model represented by Eq. (1), the number of cells can be interpreted as a measure
of the particles numbers around the same one-dimensional location. In this sense, measuring
the standard deviation among the swarm in each particle dimension can be computed as
follows:

kj ¼ kminffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1

PD
j¼1

xij�xjð Þ2
D�1ð Þ

vuut
(2)

where D∈R is the dimension of the problem; kmin represents the deviation minimum for all
dimensions; kj is the premature convergence around j-th element of the dimension D. Note that
xij is the particle within the swarm and xj represents the mean value of all j-th elements of the
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swarm. This scheme provides a premature convergence measurement mechanism around each
element of the problem dimension.

3.1. Lifespan controller

The BAM-PSO algorithm considers Eq. (2) to evaluate swarm’s efficiency, and to control the
lifespan of each particle, the aging mechanism proposed by [33] is adapted to the algorithm,
satisfying the next criteria:

Lij ¼ Lij � αkj (3)

With : 0 ≤ Lij ≤Lmax

where Lij is the lifespan of the i-th particle with j-th element of dimension D. Lmax represents the
maximum lifespan of any particle within the swarm.

The error improvement of the particle with respect to the iteration t is calculated by:

α ¼ ei tð Þ
ei t� 1ð Þ (4)

The error of the i-th particle ei tð Þ is computed within the swarm at iteration t.

This scheme completes the bio-inspired, population-broad aging mechanism and will allow us
to propose the final algorithm.

The steps involved in the BAM-PSO algorithm are as follows:

Step 1: Initialization. The initial positions of all particles are generated randomly within the
n-dimensional search space, with velocities initialized to 0. The best particle among the swarm
is selected as the leader. The age of the leader and all particles within the swarm is initialized to 0.

Step 2: Velocity and position updating. Every particle follows the velocity update rule and the
position update rule presented in [8]:

vij tþ 1ð Þ ¼ vij tð Þ þ c1R1 pij tð Þ � xij tð Þ
� �

þ c2R2 pgj tð Þ � xij tð Þ
� �

(5)

xij tþ 1ð Þ ¼ xij tð Þ þ vij tþ 1ð Þ (6)

with:

i ¼ 1, 2,…, S j ¼ 1, 2,…, D

where i is the ith particle of a swarm that satisfies S∈RD, and j is the jth element of dimension
problem D. Also t represents the iteration counter, R1 and R2 are random, normalized and
uniformly distributed values. c1, c2 represents the social and cognitive parameter, xij tð Þ is the
particle ij position for t iteration, xij tþ 1ð Þ is the particle ij position for tþ 1 iteration, vij tð Þ is the
particle’s ij velocity for t iteration. pij tð Þ represents the local best position for particle ij in

iteration t and pgj tð Þ represents the global best position for entire swarm in iteration t.
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Step 3: Evaluate the leader or generate new challengers for leadership according to leadership
term according to lifespan controller defined in [24]:

δgBest ¼ f pgj tð Þ
� �

� f pgj t� 1ð Þ
� �

≤ 0 (7)

δlBest ¼
XM

i¼1

f pij tð Þ
� �

�
XM

i¼1

f pij t� 1ð Þ
� �

≤ 0 (8)

δLeader ¼ f leader tð Þð Þ � f leader t� 1ð Þð Þ ≤ 0 (9)

with leadership term: θ ¼ 1, 2,…,Θ:

Figure 2. BAM-PSO flow diagram.
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where f ∗ð Þ represents the objective function value for the best candidate solution, θ the
remaining leadership’s term, Θ represents the maximum leadership term, δg Best defines the
entire swarm improvement factor, δl Best represents the individual particle improvement
factor, leader represents the particle within the swarm that is the acting leader (not necessarily
pgj tð Þ) and whose all particles will follow according to Eqs. (5) and (6); finally, δLeader represents

the leader’s individual improvement factor.

Eqs. (7), (8) and (9) indicate the leading performance of the leader. The lifespan controller
utilizes these performance evaluations to adjust the leading term of leader according to the
following decision tree:

if δgBest < 0: θ ¼ θþ 2 up to Θð Þ, else :
if δlBest < 0: θ ¼ θþ 1 up to Θð Þ:else :

if δLeaderθ < 0: θ ¼ θ no increaseð Þ, else :
θ ¼ θ� 1 leader term0s reductionð Þ:

When the leading term of leader reaches θ ¼ 0 the leader is considered exhausted and replaced
by newly generated challengers as described in [24].

Step 4: Adjust lifespan of all particles within the swarm according to Eqs. (2)–(4) and replace
particles with random ones for every depleted lifespan.

Step 5: Terminal condition check. If the number of iterations is larger than the predefined or
the error has reached a minimum expected value, the algorithm terminates. Otherwise go to
Step 2 for a new round of iteration.

Figure 2 shows the flow chart for BAM-PSO algorithm.

4. Results

The proposed BAM-PSO algorithm is compared with five different biologically inspired algo-
rithms: PSO with inertial vector and boundaries [27], ant colony system (ACS) [6], differential
evolution (DE) [31], simplified swarm optimization (SSO) [20] and particle swarm optimiza-
tion with aging leader and challengers (ALC-PSO) [24]. These algorithms are selected because
of several factors: first, PSO is the base algorithm for BAM-PSO, so it is natural to compare
performance with the original optimizer, SSO and ALC-PSO are other well-known variants of
PSO that in some way, claim to alleviate the premature convergence problem and, specifically,
ALC-PSO is related in many ways to BAM-PSO. Finally, while ACS and DE are not related
closely to BAM-PSO, they are swarm-based and evolution-based optimization algorithms
respectively and thus, were considered as good candidates for performance comparison.

To test optimization performance of these algorithms, well-established benchmark functions
are selected in low and high dimensionality [33]. These selected functions help evaluate
algorithm’s performance over a broad type of problems, because they possess multiple local
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minima, complex non-linear structure, or have bowl-shaped/plate-shaped structure [36, 37];
even some of them have a steep ridge and drops structure. From the literature, a list of 18
functions was considered relevant enough to test BAM-PSO performance. The selected bench-
mark functions are shown in Table 1.

For comparison purposes, all algorithms were configured in similar vein when it was possible,
e.g. the ACS algorithm [6] uses ant-type vectors which can be considered particles in a swarm
like those found in the PSO [8, 21], ALC-PSO [24] and the proposed BAM-PSO algorithms.
Nevertheless, the behavior and setting are very different, since ant-type vectors behavior is
determined by a mathematical model that simulates the pheromone attraction between bio-
logical ants. The DE algorithm [34] does not have a swarm-based mathematical model for the
dynamics of particles, but instead the mathematical model used to simulate evolution is based
on vectors and mutation factors. Finally, SSO algorithm [20] does not consider linear equations
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where f ∗ð Þ represents the objective function value for the best candidate solution, θ the
remaining leadership’s term, Θ represents the maximum leadership term, δg Best defines the
entire swarm improvement factor, δl Best represents the individual particle improvement
factor, leader represents the particle within the swarm that is the acting leader (not necessarily
pgj tð Þ) and whose all particles will follow according to Eqs. (5) and (6); finally, δLeader represents

the leader’s individual improvement factor.

Eqs. (7), (8) and (9) indicate the leading performance of the leader. The lifespan controller
utilizes these performance evaluations to adjust the leading term of leader according to the
following decision tree:

if δgBest < 0: θ ¼ θþ 2 up to Θð Þ, else :
if δlBest < 0: θ ¼ θþ 1 up to Θð Þ:else :

if δLeaderθ < 0: θ ¼ θ no increaseð Þ, else :
θ ¼ θ� 1 leader term0s reductionð Þ:

When the leading term of leader reaches θ ¼ 0 the leader is considered exhausted and replaced
by newly generated challengers as described in [24].

Step 4: Adjust lifespan of all particles within the swarm according to Eqs. (2)–(4) and replace
particles with random ones for every depleted lifespan.

Step 5: Terminal condition check. If the number of iterations is larger than the predefined or
the error has reached a minimum expected value, the algorithm terminates. Otherwise go to
Step 2 for a new round of iteration.

Figure 2 shows the flow chart for BAM-PSO algorithm.

4. Results

The proposed BAM-PSO algorithm is compared with five different biologically inspired algo-
rithms: PSO with inertial vector and boundaries [27], ant colony system (ACS) [6], differential
evolution (DE) [31], simplified swarm optimization (SSO) [20] and particle swarm optimiza-
tion with aging leader and challengers (ALC-PSO) [24]. These algorithms are selected because
of several factors: first, PSO is the base algorithm for BAM-PSO, so it is natural to compare
performance with the original optimizer, SSO and ALC-PSO are other well-known variants of
PSO that in some way, claim to alleviate the premature convergence problem and, specifically,
ALC-PSO is related in many ways to BAM-PSO. Finally, while ACS and DE are not related
closely to BAM-PSO, they are swarm-based and evolution-based optimization algorithms
respectively and thus, were considered as good candidates for performance comparison.

To test optimization performance of these algorithms, well-established benchmark functions
are selected in low and high dimensionality [33]. These selected functions help evaluate
algorithm’s performance over a broad type of problems, because they possess multiple local

Particle Swarm Optimization with Applications16

minima, complex non-linear structure, or have bowl-shaped/plate-shaped structure [36, 37];
even some of them have a steep ridge and drops structure. From the literature, a list of 18
functions was considered relevant enough to test BAM-PSO performance. The selected bench-
mark functions are shown in Table 1.

For comparison purposes, all algorithms were configured in similar vein when it was possible,
e.g. the ACS algorithm [6] uses ant-type vectors which can be considered particles in a swarm
like those found in the PSO [8, 21], ALC-PSO [24] and the proposed BAM-PSO algorithms.
Nevertheless, the behavior and setting are very different, since ant-type vectors behavior is
determined by a mathematical model that simulates the pheromone attraction between bio-
logical ants. The DE algorithm [34] does not have a swarm-based mathematical model for the
dynamics of particles, but instead the mathematical model used to simulate evolution is based
on vectors and mutation factors. Finally, SSO algorithm [20] does not consider linear equations

f 1 Griewank
1þ 1

4000

Pn
i¼1 x

2
i �

Qn
i¼1

cos xiffi
i

p
� �

f 2 Ackley
�20e

�0:2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Pn

i¼1
x2i

p� �
� e

1
n

Pn

i¼1
cos 2πxi

� �
þ 20þ e

f 3 Sphere
Pn

i¼1 x
2
i

f 4 Rastrigin An þ
Pn

i¼1 x2i þ A cos 2πxi
� �

f 5 Zakharov Pn
i¼1 x

2
i þ

Pn
i¼1 0:5ixi

� �2 þ Pn
i¼1 0:5ixi

� �4

f 6 Trid Pn
i¼1 xi � 1ð Þ2 �Pn

i¼1 xixi�1

f 7 Sum of squares
Pn

i¼1 ix
2
i

f 8 Sum of exponential squares Pn
i¼1

Pn
j¼1 x

i
j

� �
� bi

h i2

f 9 Styblinski-Tang 1
2

Pn
i¼1 x4i � 16x2i þ 5xi
� �

f 10 Shifted Rastrigin
Pn

i¼1 AþPn
i¼1 x2i � A cos 2πxi
� ��

f 11 Schwefel 1.2 Pn
i¼1

Pi
j¼1 xj

� �2

f 12 Elliptical Pn
i¼1 10

6 i�1
d�1x

2
i

f 13 Rosenbrock Pn
i¼1 100 xiþ1 � x2i

� �2 þ xi � 1ð Þ2
h i

f 14 Schwefel 418:9829d�Pn
i¼1 xisen

ffiffiffiffiffiffiffi
xij jp� �

f 15 Perm D, 0, β-function Pn
i¼1

Pn
j¼1 ji þ β
� � xi

j

� �i
� 1

� �� �2

f 16 Michalewicz �Pn
i¼1 sen xið Þsen2m ixi

π

� �

f 17 Levy sen2 πω1ð Þ þPn�1
i¼1 ωi � 1ð Þ2 1þ 10sen2 πωi þ 1ð Þ�

þ ωn � 1ð Þ2 1þ sen2πxn½ ��;ω ¼ 1þ xi � 1
4

f 18 Dixon-Price xi � 1ð Þ2 þPn
i¼2 i 2x

2
i � xi � 1

� �2

Table 1. Benchmark functions used in algorithm performance comparison for BAM-PSO.

Particle Swarm Optimization Algorithm with a Bio-Inspired Aging Model
http://dx.doi.org/10.5772/intechopen.71791

17



to update the information of the particles, instead a probability function is considered to
decide the next particle position based on previously defined settings.

4.1. Evaluating the algorithms in low dimensional settings

The swarm size S for every algorithm is set to 20, dimension D for every function is set to 2,
and total iterations are set to 10,000 for each objective function. Table 2 reveals the perfor-
mance for the different selected algorithms in a low dimension, the results show the best
possible solution offered by the algorithm after terminal condition was reached. As we can
see, both BAM-PSO and ALC-PSO algorithms show improved performance in comparison to
the other algorithms. Meaning that BAM-PSO provides good results in low dimensional
problems for all the benchmark functions, outperforming most of the other tested algorithms.
It is important to note, that results marked in Bold are the best solution obtained for each case.

4.2. Evaluating the algorithms in high dimensional settings

Our second simulation scenario consists in evaluating the performance of the BAM-PSO with
high dimensional problems. In this case, the total of 18 benchmark functions from Table 1 was
considered and the function dimension D was configured to 30.

Based on the previous results, ALC-PSO, SSO, and PSO algorithm were selected to compare
results with the BAM-PSO because of their shared origin. However, ACS was also included
due to its swarm nature.

At first glance, the results shown in Table 3 suggest that the BAM-PSO provides the best
performance of all compared algorithms in highly-dimensional problems for several bench-
mark functions. It is important to note, that results marked in Bold are the best solution
obtained for each case.

4.3. Non-parametrical statistical analysis of BAM-PSO performance results

In order to conclude whether or not BAM-PSO outperforms the other selected algorithms, more
accurate means of comparison other than simple observation of benchmark results are required;
for this reason, some of the most popular non-parametric statistical tests were employed.
This type of analysis is widely accepted as a metric of performance comparison between algo-
rithms in a pair-wise configuration [43]. To this end, using the statistical procedures defined by
[38–40], the Signed Test and the Wilcoxon Test statistical analysis were selected.

Dimension = 2 BAM-PSO ALC-PSO DE SSO ACS PSO

f 1 0.000000E + 00 0.000000E + 00 7.800000E-03 4.250000E-02 4.880000E-09 0.000000E + 00

f 2 8.880000E-16 8.880000E-16 2.120000E + 00 4.300000E-02 4.160000E-02 8.880000E-16

f 3 0.000000E + 00 0.000000E + 00 2.800000E-01 5.460000E-06 5.460000E-08 3.550000E-43

f 4 0.000000E + 00 0.000000E + 00 2.610000E + 00 4.300000E-03 7.300000E-01 0.000000E + 00

Table 2. Optimization results comparison for D = 2.
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In Table 4, we can observe that BAM-PSO outperforms the other algorithms with an accepted
level of significance using this procedure. However, this test is a simple first-line procedure
and to uncover more evidence over the results, we rely on a more robust and sensitive
procedure, which is the Wilcoxon Test.

The Wilcoxon test results shown in Table 5 shed light over the fact that BAM-PSO algorithm
can go beyond the results provided by the PSO, SSO and ACS with great statistical significance
(P < 0.001), but the procedure finds not enough evidence to conclude that the BAM-PSO can
outperform the ALC-PSO at this level of statistical significance; however, the results are good
enough to show that BAM-PSO can outperform ALC-PSO with good statistical significance
(P < 0.01), and considering the literature claim that: if the resulting P-value is small enough
(P < 0.05), then it can be accepted that the median of the differences between the paired

BAM-PSO vs. ALC_PSO PSO SSO ACS

Positive results 14 15 18 18

Negative results 4 3 0 0

Significant difference? (P < 0.05) Yes Yes Yes Yes

Table 4. Non-parametrical sign test for benchmark results at D = 30.

Dimension = 30 BAM-PSO ALC_PSO PSO SSO ACS

f 1 3.420000E-01 4.810000E-02 1.664995E-02 1.017972E + 00 1.009513E + 00

f 2 1.710000E + 00 2.950000E + 00 6.179332E-01 1.936833E + 01 1.575243E + 01

f 3 9.720000E-04 1.060000E + 00 1.054778E-05 3.628362E + 02 2.766939E + 02

f 4 3.830000E + 00 1.420000E + 03 2.003442E + 02 1.421872E + 06 4.577661E + 05

f 5 2.701825E-07 1.943493E-01 1.314056E + 01 6.189616E + 02 5.320685E + 05

f 6 1.000012E + 00 1.347625E + 04 5.670018E + 03 2.350724E + 06 3.796814E + 06

f 7 1.838826E-25 1.846162E-01 8.309639E-01 5.267949E + 03 7.131057E + 03

f 8 1.693373E-15 5.924127E-08 2.569830E-10 5.672124E-02 2.042905E-01

f 9 1.591141E + 00 4.989256E-03 1.084663E + 03 6.528900E + 02 4.572974E + 02

f 10 4.265668E-03 2.575325E-01 6.748519E + 01 2.362575E + 01 6.768979E + 01

f 11 1.000007E + 00 0.000000E + 00 8.449218E + 120 3.61590E + 115 1.11140E + 121

f 12 1.00008E + 119 9.432255E + 119 2.858556E + 125 1.96354E + 124 3.06278E + 125

f 13 1.000053E + 00 9.837181E + 00 5.033260E + 01 3.015314E + 03 3.832691E + 03

f 14 1.005478E + 00 2.327770E + 03 9.314781E + 03 8.149385E + 03 1.062061E + 04

f 15 2.039775E-23 0.000000E + 00 8.520128E-06 4.815499E-04 9.508960E + 02

f 16 9.177340E + 00 1.276359E + 01 1.683612E + 02 1.086427E + 02 4.458898E + 01

f 17 1.000155E + 00 6.796335E + 00 1.001832E + 00 1.026017E + 02 1.676198E + 02

f 18 9.112266E-01 2.056725E + 02 4.960351E + 00 7.179904E + 05 8.280520E + 05

Table 3. Optimization results comparison for D = 30.
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to update the information of the particles, instead a probability function is considered to
decide the next particle position based on previously defined settings.
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see, both BAM-PSO and ALC-PSO algorithms show improved performance in comparison to
the other algorithms. Meaning that BAM-PSO provides good results in low dimensional
problems for all the benchmark functions, outperforming most of the other tested algorithms.
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high dimensional problems. In this case, the total of 18 benchmark functions from Table 1 was
considered and the function dimension D was configured to 30.
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results with the BAM-PSO because of their shared origin. However, ACS was also included
due to its swarm nature.

At first glance, the results shown in Table 3 suggest that the BAM-PSO provides the best
performance of all compared algorithms in highly-dimensional problems for several bench-
mark functions. It is important to note, that results marked in Bold are the best solution
obtained for each case.
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In order to conclude whether or not BAM-PSO outperforms the other selected algorithms, more
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This type of analysis is widely accepted as a metric of performance comparison between algo-
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observations is statistically significantly different from 0 [44]. We can conclude then, that BAM-
PSO has a greater performance over a broad set of benchmark functions over all other selected
algorithms with statistical relevance, including ALC-PSO.

The performance of BAM-PSO can be explained by its senescence mechanism: after particles
falls into local minimum, they offer less improvement; then, the senescence mechanism starts
acting by producing senescence on the swarm; then, exhausted particles are replaced with
random ones through the search space. This favors exploration after premature convergence
without completely eliminating exploitation of search space near the local minimum, which in
the end provides better optimization results than other PSO variants.

5. Conclusions

In this chapter, we introduced a PSO variant algorithm called Particle Swarm Optimization
with Bio-inspired Aging Model (BAM-PSO) which was compared with other five popular bio-
inspired optimizers. This test was performed using popular benchmark functions with low
and high dimensionality configuration.

We observed that the BAM-PSO algorithm has the potential to solve the premature conver-
gence problem of PSO showing good results for both low and high dimensional problems with
statistical relevance according to several non-parametric analyses. Furthermore, according to
results shown in Section 4, BAM-PSO performs better than the selected PSO variants.

As shown in results section, BAM-PSO outperforms all other compared swarm-based algo-
rithms with at least a confidence factor as high as P < 0:01. However, the cost of this improved
accuracy is found in computation complexity due to the introduction of Eq. (2) and all the
lifespan control for the particles; which in turn translates to computing time; this time increase
was found to be approximately of at least 9 times the required computation time for the
original PSO on the conducted experiments of section 5 and 1.5 times the required computa-
tion time for ALC-PSO. However, this increase in time is not fixed, as it depends on how early
the premature convergence occurs and how many particles are replaced after senescence.

Finally, these experimental results provide support on the important role of aging mechanisms
during the selection process in bio-inspired optimization algorithms, because the population-broad

BAM-
PSO

(R+) positive ranks
obtained

(R�) negative ranks
obtained

(Rm) maximum negative
ranks

Accepted significance?
(P < 0.05)

vs ALC-
PSO

147.0 24.0 27 for (P < 0.01) Yes

vs PSO 156.0 15.0 17 for (P < 0.001) Yes

vs SSO 171.0 0.0 17 for (P < 0.001) Yes

vs ACS 171.0 0.0 17 for (P < 0.001) Yes

Table 5. Non-parametrical Wilcoxon test for benchmark results at D = 30.
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aging mechanism implemented in BAM-PSO allows the algorithm to provide better results
than some other popular optimizers that does not implement aging.
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observations is statistically significantly different from 0 [44]. We can conclude then, that BAM-
PSO has a greater performance over a broad set of benchmark functions over all other selected
algorithms with statistical relevance, including ALC-PSO.

The performance of BAM-PSO can be explained by its senescence mechanism: after particles
falls into local minimum, they offer less improvement; then, the senescence mechanism starts
acting by producing senescence on the swarm; then, exhausted particles are replaced with
random ones through the search space. This favors exploration after premature convergence
without completely eliminating exploitation of search space near the local minimum, which in
the end provides better optimization results than other PSO variants.

5. Conclusions

In this chapter, we introduced a PSO variant algorithm called Particle Swarm Optimization
with Bio-inspired Aging Model (BAM-PSO) which was compared with other five popular bio-
inspired optimizers. This test was performed using popular benchmark functions with low
and high dimensionality configuration.

We observed that the BAM-PSO algorithm has the potential to solve the premature conver-
gence problem of PSO showing good results for both low and high dimensional problems with
statistical relevance according to several non-parametric analyses. Furthermore, according to
results shown in Section 4, BAM-PSO performs better than the selected PSO variants.

As shown in results section, BAM-PSO outperforms all other compared swarm-based algo-
rithms with at least a confidence factor as high as P < 0:01. However, the cost of this improved
accuracy is found in computation complexity due to the introduction of Eq. (2) and all the
lifespan control for the particles; which in turn translates to computing time; this time increase
was found to be approximately of at least 9 times the required computation time for the
original PSO on the conducted experiments of section 5 and 1.5 times the required computa-
tion time for ALC-PSO. However, this increase in time is not fixed, as it depends on how early
the premature convergence occurs and how many particles are replaced after senescence.

Finally, these experimental results provide support on the important role of aging mechanisms
during the selection process in bio-inspired optimization algorithms, because the population-broad

BAM-
PSO

(R+) positive ranks
obtained

(R�) negative ranks
obtained

(Rm) maximum negative
ranks

Accepted significance?
(P < 0.05)

vs ALC-
PSO

147.0 24.0 27 for (P < 0.01) Yes

vs PSO 156.0 15.0 17 for (P < 0.001) Yes

vs SSO 171.0 0.0 17 for (P < 0.001) Yes

vs ACS 171.0 0.0 17 for (P < 0.001) Yes

Table 5. Non-parametrical Wilcoxon test for benchmark results at D = 30.
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aging mechanism implemented in BAM-PSO allows the algorithm to provide better results
than some other popular optimizers that does not implement aging.
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Abstract

Application of particle swarm optimization (PSO) algorithm on power system operation
is studied in this chapter. Relay protection coordination in distribution networks and
economic dispatch of generators in the grid are defined as two of power system-related
optimization problems where they are solved using PSO. Two case study systems are
conducted. The first case study system investigates applicability of PSO on providing
proper overcurrent relay settings in the grid, while in the second case study system, the
economic dispatch of a 15-unit system is solved where PSO successfully provides the
optimum power output of generators with minimum fuel costs to satisfy the load
demands and operation constraints. The simulation results in comparison with other
methods show the effectiveness of PSO against other algorithms with higher quality of
solution and less fuel costs on the same test system.

Keywords: power system, economic dispatch, relay coordination, particle swarm
optimization

1. Introduction

Electric power system is the most complex man-made system, and the modern society depends
heavily on continuous and reliable operation of this system to supply electricity to commercial,
residential and industrial consumers. Operation of the power grid involves a balanced platform
in generation, transmission and distribution, which costs billions of dollars to run. The reliable
and continuous availability of electricity with minimum costs is the major objective of utility
grids and energy providers. Two of the important complex problems in power system are econ-
omic dispatch and power system protection.

The power plants and utility grids need to allocate the available generation units in an efficient
and economical way to respond to the load demand in order to provide continuous power
supply in stable conditions and with minimum power production costs. This is addressed as
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economic dispatch (ED) [1, 2]. With the practical constraints on the generators, finding opti-
mum power outputs with minimum fuel costs is challenging.

In addition, as the occurrence of failures and faults in the power grid is inevitable, the entire
power system must be protected. The relay protection scheme is designed to detect faults and
isolate the faulty parts of the grid from the healthy sections in order to mitigate the conse-
quences of the faults and maintain continuity of service. If a fault occurs, the nearest
corresponding relays must operate as fast as possible to clear the fault. If due to any reason
these primary relays fail to react, their backup relays must operate and accomplish the task.
Directional overcurrent relays (DOCRs) are a suitable and economical protection scheme for
distribution systems [3]. The protection design of DOCRs is based on two parameters, time
multiplier setting (TMS) and plug setting (PS). Proper settings of TMS and PS allow a primary
relay to clear the faults in its protection zone as fast as possible and in case of failure, its backup
relay operates immediately after a time interval to clear the fault. TMS and PS values of each
relay must be coordinated with other backup relays, where again relays act with different
current settings, which make the coordination a complex task. Each pairs of relays include four
variables (TMS, PS) and the complexity of coordination will be intense in bigger systems with
more relays and constraints. Due to the complex interconnection of the distribution systems
and also nonlinear characteristics of operation time of relays, finding best relay settings could
be very difficult.

Considering the non-convex and nonlinear nature of these problems, traditional methods fail
to feasibly or optimally solve them. Therefore, evolutionary algorithms have gained more
attentions as solutions to such optimization problems. Some of the recent related works on
ED problem have been studied with the metaheuristic methods such as Genetic Algorithm
(GA) [4], Particle Swarm Optimization (PSO) [4], Imperialist Competitive Algorithm (ICA) [5],
Artificial Bee Colony (ABC) [6], Bacterial Foraging Optimization (BF) [7], Hybrid Harmony
Search with Arithmetic Crossover (ACHS) [8], GA with a special class of ant colony optimiza-
tion (GAAPI) [9] and so on. The modified and hybrid models of PSO such as Modified PSO
(MPSO) [10], guaranteed convergence PSO (GCPSO) [10], Species-based Quantum Particle
Swarm Optimization (SQPSO) [11], Iteration PSO (IPSO) [12], Parallel PSO with Modified
Stochastic Acceleration Factors (PSO-MSAF) [13], Distributed Sobol PSO and Tabu Search
Algorithm (DSPSO-TSA) [14], Self-Organizing Hierarchical PSO (SOH-PSO) [15], Passive
Congregation-based PSO (PC-PSO) [15] and Simple PSO (SPSO) [15] have also been employed
to address the ED problem.

Application of metaheuristic algorithms on power system protection and particularly, DOCR
coordination in distribution networks has been introduced in literature such as PSO [3, 16],
Harmony Search Algorithm (HSA) [17], Cuckoo Algorithm [18], chaotic firefly algorithm [19],
differential evolution [20] and so on.

In this chapter, PSO is applied as a solution to the introduced power system operation prob-
lems, namely ED and DOCR coordination. The rest of the chapter is organized as follows: in
Section 2, these power system problems are defined and formulated as optimization problems.
PSO algorithm is explained in Section 3. In Section 4, PSO is applied in two case study systems
to conduct the performance and feasibility of this method. Finally, Section 5 concludes the
chapter with the results in pervious sections.
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2. Problem formulation

In this section, overcurrent relay coordination and economic dispatch problems are formulated
separately as optimization problems.

2.1. Relay coordination problem

In a protection scheme, each primary relay should operate as fast as possible to clear the fault
in a system. If the operation time of the relay takes longer than an acceptable time, the damage
on the faulty equipment would be severe with serious consequences. In other words, minimiz-
ing the total operation time of relays decreases the risk and stress on the protected apparatus,
which can be depicted as an optimization objective function:

OF ¼ min
Xn

i¼1

witi (1)

where ti is the operation time of relay Ri, wi is the probability of the occurrence of fault on
transmission line in the zone of protection, and it is normally set to 1; n is the total number of
relays in the system.

Generally, the operation time of DOCRs is defined in (2):

ti ¼ λ� TMSi
IFi
PSi

� �η
� 1

þ L (2)

where IFi is the fault current seen by the appropriate relay Ri after being transformed through
the secondary winding of corresponding current transformer (CT). Depending on the type of
relays, the characteristic constants λ, L and η are selected [16]. In this chapter, continuous form
of TMS and PS is considered with relay type of standard inverse definite minimum time
(IDMT). Based on that, all the relays in the system are assumed identical with a common
characteristic function approximated by:

ti ¼ 0:14� TMSi
Ii
PSi

� �0:02
� 1

(3)

To ensure that the operation time of an individual relay is proper enough to mitigate the
damage impact of faults on the apparatus, the time must be within an acceptable range:

timin ≤ ti ≤ timax ; i ¼ 1,…, n (4)

where, respectively, timin and timax are the minimum and maximum operating time of the relay
Ri. Each overcurrent relay has a manufactured TMS range to provide controllability of
response to faults with different speeds. As shown in (3), ti is proportional to TMS values.
Also, the PS has nonlinear effect on the operating time. Within a security margin and to avoid
maloperation of an individual relay with normal load or slight overload current, the minimum
pickup current setting is selected bigger than the maximum load current. The maximum plug
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setting is chosen not greater than the minimum fault current [19]. Therefore, there are con-
straints on TMS and PS as follows:

TMSimin ≤TMSi ≤TMSimax; i ¼ 1,…, n (5)

PSimin ≤PSi ≤PSimax; i ¼ 1,…, n (6)

where TMSimax, PSimax, TMSimin and PSimin are the maximum and minimum values of TMS and
PS of relay Ri. Although the constraints in Eqs. (4)–(6) seem to provide satisfactory limits on
performance of each relay, they are not enough to guarantee correct performance of the protec-
tion scheme as the coordination between primary-backup relays has not been considered.

The constraints can only ensure the operation of an individual relay not a primary-backup
pair. To coordinate adjacent relays as primary and backup relays, the primary relay should
operate as fast as possible within its acceptable boundaries. If it fails to act, its backup relay
needs to take over the tripping action with a minimum time. The minimum operating time of
the backup relay must be small but yet bigger than the operating time of primary relay.
Therefore, a coordination time interval (CTI) is added to the constraints to satisfy the proper
coordination scheme.

tj backup � ti primary ≥CTI (7)

where ti and tj are the operation time of primary and backup relays, respectively. CTI depends
upon the relay type, circuit breaker speed, relay over-travel time and the safety factor time for
CT saturation, setting errors, contact gaps and so on. According to the IEEE standard [21], CTI
is set to 0.2 s for the digital relays. Figure 1 shows the backup-primary pair of relays in a radial
network.

2.2. Economic dispatch

How to allocate the available generators in the grid to respond to the load demand with
minimum fuel costs is an economical aspect of power dispatch in the electric power system
that annually costs millions of dollars to operate.

Figure 1. Primary-backup relation between relays in a distribution system.
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In a practical ED optimization, the generator constraints and network limits such as ramp rate
limit, the prohibited zones of operation, generation capacity constraints and valve point effects
are considered. Single quadratic equation is used to formulate the ED optimization problem:

minFt ¼
Xm

i¼1

F Pið Þ ¼
Xm

i¼1

αi þ βiPi þ γiPi
2 (8)

whereαi, βi andγi are the cost equation coefficients of unit i,Pi is the output power inMWand F Pið Þ
is the cost function of that unit in $/h. The indexm denotes the number of generators in a system.

The fuel cost function in (8) as the objective function of ED problem here is associated with
practical constraints. Considering the ramp rate limits, the momentary output power of a
generator cannot exceed its previously generated power more than a certain amount of URi,
the up-ramp rate limit and neither can it be less than that of the previously generated power by
more than a certain amount of DRi, the down-ramp rate limit of the generator. Therefore:

Pi � Pi0 ≤URi (9)

Pi0 � Pi ≤DRi (10)

where Pi is the current power output and Pi0 refers to the previous power output of generator i.
URi and DRi represent the up-ramp limit and down-ramp limit of the generator i, respectively,
in which the current generated power has the following constraint in MW/t:

Pi0 �DRi ≤Pi ≤Pi0 �URi (11)

The input-output curves of the generation units have separate operation zones. The prohibited
zones of operations are due to the operation of steam valve or the shaft bearing vibration of the
generators. Therefore, the generated power is within the feasible zones of operation and
outside the prohibited zones. For a generator i:

Pi ∈

Pmin
i ≤Pi ≤Pl

i,1

Pu
i, j�1 ≤Pi ≤Pl

i, j�1

Pu
i,n ≤Pi ≤Pmax

i

, j ¼ 2, 3,…, n; i ¼ l,…, m

8>><
>>:

(12)

where j is the number of prohibited zones of operation for unit i, Pl
i, j and Pu

i, j are the lower and

upper boundaries, respectively, of prohibited zone j of generator i, Pmin
i and Pmax

i are minimum
and maximum power capacity, respectively, of a generator that produces. From (11) and (12), it
can be deduced that the operational power of a generator must be within the constraint in (13)
and also be out of the prohibited zones in (12):

max Pmin
i ;Pi0 �DRi

� �
≤Pi ≤min Pmax

i ;Pi0 þURi
� �

(13)

Total delivered power from the units needs to meet the power demand and transmission loss
in the grid.
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Xm

i¼1

Pi ¼ PD þ PL; i∈m (14)

where PD and PL represent the demand power and the power loss in the gird, respectively. The
overall power loss of the committed units is based on the output power, which is formulated
by B matrix coefficients known as Kron’s formula:

PL ¼
Xm

i¼1

Xm

j¼1

PiBijPj þ
Xm

i¼1

B0iPi þ B00 (15)

The power loss itself cannot be more than some permissible values:

PLf ,k
�� �� ≤Pmax

Lf , k ; k ¼ j,…, L (16)

where the real power flow of line j is represented with PLf , k and k is the number of transmission
lines in a system. The power loss cannot be more than a maximum value of Pmax

Lf , k .

3. Particle swarm optimization algorithm

PSO algorithm is a nature inspired method from social behavior of bird flocking and fish
schooling, which is first introduced by Erberhart and Kennedy in 1995 [22]. As a population-
based stochastic optimization technique using swarm intellects in the search space, this tech-
nique is based on interaction of swarm of particles. Every particle includes two values of position
and velocity that are updated during the iteration runs by considering each particle’s best
experience (best position) and the best achieved experience (global position) of all particles.

The update of position and velocity of the particles must be processed, and it has to follow
Eqs. (17)–(19) for satisfying the constraint of an optimization problem. Each particle movement
is based on the changes in its position and its velocity:

pkþ1
i ¼ pki þ vkþ1

i (17)

where pkþ1
i and pki are the position of particle i in the iteration kþ 1 and k, respectively, vkþ1

i is
the velocity of the particle in kþ 1 iteration. A particle’s velocity is defined as follows:

vikþ1 ¼ w� vik þ c1 � rand1 � pbesti � pi
k� �þ c2 � rand2 � gbest� pi

k� �
(18)

where pbesti is the best so far position of the particle i as the best experience, while gbest is the
best position among the whole swarm with all the particles in movement as global experience.
c1 and c2 are the weighting factors, while rand1 and rand2 are two random numbers between
zero and one. The parameter w is the inertia factor varying between wmin;wmax½ �, as shown in
(19), which is a linear decreasing inertia weight in this chapter.
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w ¼ wmax � wmax � wmin

itermax
� k (19)

where k and itermax are the current iteration and the maximum number of iteration during
simulations, respectively.

The general steps of PSO on solving an optimization problem are as follows:

1. Set initial parameters wmin, wmax, c1 and c2.

2. Generate initial populations having initial positions p and velocities v.

3. Set iteration k ¼ 1.

4. Calculate fitness of particles Fki ¼ f pki
� �

, ∀i and find the index of the best particle b.

5. Select pbestki ¼ pki , ∀i and set gbestk ¼ pkb.

6. Update inertia factor: w ¼ wmax � wmax�wmin
itermax

� k.

7. Update the velocity and position of particles.

vikþ1 ¼ w� vik þ c1 � rand1 � pbesti � pi
k� �þ c2 � rand2 � gbest� pi

k� �
; ∀i

pi
kþ1 ¼ pi

k þ vikþ1; ∀i

8. Calculate fitness Fkþ1
i ¼ f pkþ1

i

� �
, ∀i and obtain the index of the best particle b1.

9. Update pbest for all particles.

ifFkþ1
i < Fki then pbestkþ1

i ¼ pkþ1
i elsepbestkþ1

i ¼ pbestki

10. Update gbest of the population

ifFkþ1
b1 < Fkb then gbestkþ1 ¼ pbestkþ1

b1 and b ¼ b1 else gbestkþ1 ¼ gbestk

11. If k < Itermax then k ¼ kþ 1 and go to step 6 else go to step 12.

12. Print gbestk as optimum solution.

4. Simulation results

Application of PSO on solving the defined problems in previous sections is validated here. In
the first case study system, the overcurrent relay coordination problem in a distribution
network is solved. The size of population and iteration numbers of PSO are 60 and 100,
respectively. In the second case study system, the ED problem is addressed with population
size of 100 and 500 iterations. c1, c2, wmin and wmax in both case study systems are the same and
set to 2, 2, 0.4 and 0.9, respectively.
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4.1. Case study 1: relay protection coordination

A 15-node radial network system including a total of 13 loads is considered, and PSO is
employed to determine the optimal settings of all 28 digital over-current relays shown in
Figure 2. Identical digital relays are used with same current transformer (CT) ratio 500:1. The
constraint values of the relays are as follows: timin and timax for each relay is set to 0.1 and 4 s,
respectively; TMSmin and TMSmax constraints are 0.1 and 1.1, respectively; PSmin and PSmax are
0.5 and 2.5, respectively [16].

The primary-backup relationships of the relays in the system are shown in Table 1. According
to the objective function in (3), the maximum fault currents sensed by the relays are also
required. Therefore, the case study system in Figure 2 has been modeled in DigSILENT
PowerFactory software with simulating three-phase faults occurring in front of each relay.
The collected data have been shown in Table 2. The load parameters of the radial network are
shown in Table 3.

After data collection in DigSILENT PowerFactory software, the optimal settings (TMS and PS)
of all 28 overcurrent relays are obtained by solving (3) subject to the constraints in (4)–(7) using
the PSO inMATLAB software. The algorithmwas executed 100 times to achieve accurate results.
Table 4 shows the best TMS and PS settings of the relays to provide a reliable protection scheme

Figure 2. A 15-node distribution system as case study one.
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in the distribution system. The total operation time of the relays in this system is 26.189 s. Figure 3
illustrates the convergence curve of PSO in solving the objective function.

4.2. Case study 2: economic dispatch

A 15-unit test system is used to investigate the feasibility of PSO in solving the nonsmooth
economic dispatch considering transmission losses, ramp rate limits and the prohibited

Primary Backup Primary Backup Primary Backup Primary Backup

1 — 8 — 15 13 22 —

2 — 9 1 16 — 23 21

3 1 10 — 17 13 24 —

4 — 11 9 18 — 25 5

5 3 12 — 19 3 26 —

6 — 13 1 20 — 27 5

7 5 14 — 21 19 28 —

Table 1. Primary-backup pair relationship of the relays.

Relay Fault current (kA) Relay Fault current (kA) Relay Fault current (kA) Relay Fault current (kA)

1 22.778 8 4.636 15 7.7 22 4.636

2 11.532 9 11.509 16 5.79 23 4.632

3 11.509 10 7.71 17 7.7 24 3.866

4 7.71 11 7.7 18 5.79 25 5.785

5 7.7 12 5.79 19 7.7 26 4.636

6 5.79 13 11.509 20 5.79 27 5.785

7 5.785 14 7.71 21 5.785 28 4.636

Table 2. Maximum fault currents.

Load Active power (MW) Reactive power (Mvar) Load Active power (MW) Reactive power (Mvar)

1 4 1.5 8 0.5 0.2

2 1 0.2 9 2 0.8

3 2.5 1 10 1 1

4 3 2 11 2.5 0.9

5 1 0.5 12 1 0.5

6 3 0.7 13 3 2

7 1 0.5

Table 3. Load parameters in case study one.
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operation zones of the thermal generators. The cost curves data and operation limits of the
15-unit system are shown in Table 5. The B loss coefficients to calculate the power loss can be
found in [4].

Relay TMS PS Relay TMS PS

1 0.74394 0.54999 15 0.42632 0.79222

2 0.32216 1.2551 16 0.54396 0.67839

3 0.3416 1.5153 17 0.21794 0.61987

4 0.55245 2.4141 18 0.12037 1.1896

5 0.36342 0.60859 19 0.31997 0.66671

6 0.4309 1.0805 20 0.56566 1.1323

7 0.11188 1.2611 21 0.26376 0.60754

8 0.2726 1.822 22 0.14313 1.8741

9 0.45395 1.1148 23 0.12496 0.7978

10 0.15359 1.3933 24 0.55302 1.3848

11 0.32133 0.50089 25 0.22254 0.65529

12 0.26418 2.4727 26 0.2904 1.6316

13 0.32088 1.9075 27 0.13471 0.77885

14 0.73899 2.1497 28 0.10277 2.4925

OF (s) 26.189

Table 4. Obtained TMS and PS values of relays by PSO.

Figure 3. Convergence of PSO solution in case study one.
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This system has many local minima with high dimensionality that draws realistic analysis for
practical applications. PSO is applied on the 15-unit test system, and the results are compared
with best results in literature on the same system: ACHS [8], SQPSO [11], ABC [6], IPSO [12],
PSO-MSAF [13], DSPSO-TSA [14], ICA [5], GAAPI [9], MPSO [10], SOH-PSO [15], GCPSO
[10], PC-PSO [15], BF [7], SPSO [15], PSO [4] and GA [4].

The simulation is tested for 100 times to ensure reliable analysis. Table 6 shows the optimum
results of each method for the 15-unit system. Figure 4 illustrates the convergence of PSO
method in 100 different trials, while the final fuel costs in 100 trials are shown in Figure 5.
Table 7 shows the best economic dispatch of power using PSO for ED optimization in the 15-
unit system.

The optimum cost of 15-unit system with the proposed PSO solution is 32701.282 ($), which
has better result than other methods. GA has the most deviating results compared with other
hybrid and improved methods in this test system. Also, the mean value of final fuel cost of
generators using PSO over 100 trials is less than minimum values obtained by other method,
which indicates higher quality of solution and better performance of PSO compared with other
algorithms on the same test system. The power loss in the grid obtained from PSO is less than
other algorithms, which shows better dispatching scheme using PSO. The best convergence of
PSO to the minimum fuel cost of generators in the grid while satisfying the constraints is
shown in Figure 6.

In case study two, PSO achieves better results when compared with other hybrid or improved
methods. It is worth mentioning that the maximum iteration number is 500 and the population

Unit Pmin
i Pmax

i Pi0 αi βi γi URi DRi Prohibited zones (MW)

1 150 455 400 671 10.1 0.000299 80 120

2 150 455 300 574 10.2 0.000183 80 120 [185 225] [305 335] [420 450]

3 20 130 105 374 8.80 0.001126 130 130

4 20 130 100 374 8.80 0.001126 130 130

5 150 470 90 461 10.40 0.000205 80 120 [180 200] [305 335] [390 420]

6 135 460 400 630 10.10 0.000301 80 120 [230 255] [365 395] [430 455]

7 135 465 350 548 9.8 0.000364 80 120

8 60 300 95 227 11.2 0.000338 65 100

9 25 162 105 173 11.2 0.000807 60 100

10 25 160 110 175 10.7 0.001203 60 100

11 20 80 60 186 10.2 0.003586 80 80

12 20 80 40 230 9.90 0.005513 80 80 [30 40] [55 65]

13 25 85 30 225 13.1 0.000371 80 80

14 15 55 20 309 12.1 0.001929 55 55

15 15 55 20 323 12.4 0.004447 55 55

Table 5. Generation unit characteristics of a 15-unit system in case study two.
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Method Best cost ($/h) Mean ($/h)

PSO 32701.282 32704.10578

ACHS [8] 32706.6500 32706.65

SQPSO [11] 32706.6740 32708.4457

ABC [6] 32707.85 32707.95

IPSO [12] 32709.00 32784.5

PSO-MSAF [13] 32713.09 32759.64

DSPSO-TSA [14] 32715.06 32724.63

ICA [5] 32715.4305 NA

GAAPI [9] 32732.95 NA

MPSO [10] 32738.4177 NA

SOH-PSO [15] 32751.39 32,878

GCPSO [10] 32764.4616 NA

PC-PSO [15] 32775.36 NA

BF [7] 32784.5024 32796.81

SPSO [15] 32798.69 NA

PSO [4] 32,858 33,039

GA [4] 33,113 33,228

Table 6. Comparison of PSO results with other methods in case study two.

Figure 4. Convergence curve of PSO over 100 different trials.
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Figure 5. Cost distribution with PSO over 100 different trials.

Unit (MW) PSO ICA [5] GCPSO [10] MPSO [10] GA [4] PSO [4] ABC [6] SOH-PSO [15]

P1 454.9963 455 449.89252 455 415.3108 439.1162 455 455

P2 379.9998 380 366.99066 380 359.7206 407.9727 380 380

P3 130 130 130 130 104.4250 119.6324 130 130

P4 129.9954 130 130 130 74.9853 129.9925 130 130

P5 169.9999 167.4174 170 170 380.2844 151.0681 169.9997 170

P6 459.9999 460 460 460 426.7902 459.9978 460 459.96

P7 430 430 430 430 341.3164 425.5601 430 430.00

P8 66.1794 113.4737 75.88460 92.7278 124.7867 98.5699 71.9698 117.53

P9 64.9485 25.1555 50.22689 43.0282 133.1445 113.4936 59.1798 77.90

P10 159.2255 155.3478 160 140.1938 89.2567 101.1142 159.8004 119.54

P11 79.9996 80 80 80 60.0572 33.9116 80 54.50

P12 79.9901 80 77.87063 80 49.9998 79.9583 80 80.00

P13 25.0001 25 25 27.6403 38.7713 25.0042 25.0024 25.00

P14 15.0005 15 15.8312 20.7610 41.9425 41.4140 15.0056 17.86

P15 15.0029 15 39.66146 22.2724 22.6445 35.6140 15.0014 15

Total power 2660.338 2661.394 2661.35806 2661.6235 2668.4 2262.4 2735.959 2662.29

Power loss 30.338 31.291 30.86593 29.978 38.2782 32.4306 30.9591 32.28

Cost ($) 32701.282 32715.4305 32764.4616 32738.41778 33113 32858 32707.85 32751.39

Table 7. Optimum solution of PSO compared with other methods in case study two.
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size is 100. In most of the quoted methods, the iteration and population sizes vary that can
affect the final results. For example, the PSO in [4] has population size and iteration number of
100 and 500, respectively. The population size, iteration, crossover rate, mute rate and cross-
over parameter of GA [4] are 100, 200, 0.8, 0.01 and 0.5, respectively.

Different system configuration and programming language frameworks can also influence the
results in which MATLAB 2015Ra was used for programming.

5. Conclusions

Distribution network relay coordination and the economic dispatch of generators in the elec-
tric power system were modeled as optimization problems. Particle swarm optimization (PSO)
was successfully employed to solve the defined problems where two case study systems were
conducted to validate the results. In the first case study system, PSO provided proper relay
settings that allow all the relays in a system to perform with high reliability and accuracy. In
the second case, the optimal power outputs of thermal generators in the grid were scheduled
to satisfy the load demands and other practical constraints on the generators and the grid with
minimum fuel costs. The compared results with other methods demonstrated higher quality of
solution, and less fuel costs obtained by PSO. The general performance of PSO in this chapter
indicates applicability of this method on practical power system-related problems that are
difficult to be handled by conventional methods.

Figure 6. Convergence of PSO with best fuel cost result for ED problem in case study two.
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Abstract

The workflow application is a common grid application. The objective of a workflow
application is to complete all the tasks within the shortest time, i.e., minimal makespan.
A job scheduler with a high-efficient scheduling algorithm is required to solve workflow
scheduling based on grid information. Scheduling problems are NP-complete problems,
which have been well solved by metaheuristic algorithms. To attain effective solutions to
workflow application, an algorithm named the stochastic greedy PSO (SGPSO) is pro-
posed to solve workflow scheduling; a new velocity update rule based on stochastic
greedy is suggested. Restated, a stochastic greedy-driven search guidance is provided to
particles. Meanwhile, a stochastic greedy probability (SGP) parameter is designed to help
control whether the search behavior of particles is exploitation or exploration to improve
search efficiency. The advantages of the proposed scheme are retaining exploration capa-
bility during a search, reducing complexity and computation time, and easy to implement.
Retaining exploration capability during a search prevents particles from getting trapped
on local optimums. Additionally, the diversity of the proposed SGPSO is verified and
analyzed. The experimental results demonstrate that the SGPSO proposed can effectively
solve workflow class problems encountered in the grid environment.

Keywords: scheduling, optimization, stochastic greedy, workflow, particle swarm
optimization

1. Introduction

Grid computing is applied mainly to utilize the heterogeneous computational resources to
execute various applications. The computing ability of the grid is comparable to that of a super
computer, and the grid computing environment consists of heterogeneous computing devices
throughout the world and connected by low-latency and high-bandwidth networks [1]. The
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main application of the grids is the sharing of computing resources. Scholars have already
used the grid in real cases when requiring vast computation and immense storage space [1–3].
The basic scenario of grid computing application is shown in Figure 1. The job scheduler uses
grid information supplied by information server which collects grid information from grid
sensors. When a workflow application comprising numerous tasks with partially ordered
constraint is uploaded to the grid, the job scheduler of the grid platform allocates the tasks to
be processed to the computing resources on the grid. If the tasks and the resources are well
scheduled, the time needed to complete all the tasks of the workflow application can then be
reduced. Otherwise, the time will be extended. Restated, the makespan of workflow applica-
tion on the grid is highly impacted by the quality of task-resource arrangement. Many
workflow application scheduling algorithms have been presented to boost efficiency and make
the resource manager more efficient when matching tasks and resources so that grid perfor-
mance can be upgraded effectively.

Many studies have developed scheduling optimization methods intended to reduce the
makespan of jobs (all tasks) on the grid [4, 5–9]. When restrictions regarding partially ordered
tasks exist between tasks (i.e., dependent tasks), the algorithm applied must meet the needs of
such sequential relationships when scheduling optimization is conducted. Besides solving the
task-resource matching problem, the sequence of execution of independent tasks allocated to
the same resource also has a rather significant effect on the reduction of the makespans of jobs
in workflow scheduling. In other words, workflow scheduling has to simultaneously solve two
subproblems in task-resource matching and those unrelated to tasks’ priorities. Most schedul-
ing problems are NP-complete, and many heuristic and metaheuristic algorithms have been
proposed to solve NP problems, such as the ant colony optimization (ACO) [3], genetic
algorithm (GA) [6], simulated annealing (SA) [5], and particle swarm optimization (PSO) [10].
Among them, PSO carries the advantages of easy implementation, requiring fewer parameters
and having a faster convergence speed; therefore, PSO is often used to solve scheduling
problems in fields aside from a grid or cloud computing, such as course timetabling problems
[11], flowshop problems [12], and vehicle routing problems (VRP) [13]. Also, PSO was applied

Figure 1. Grid application scenario.
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to solve grid scheduling problems; Tao et al. [14] and Chen andWang [15] have all adopted the
PSO to solve grid scheduling problems effectively.

Two subproblems have to be dealt with in workflow scheduling: the task-resource mapping
and the execution priorities of tasks without precedence constraint in the same computing
resource. To these two subproblems, two PSO algorithms were designed to find the
corresponding solutions: a discrete-type PSO algorithm to solve the task-resource mapping
subproblem and a constriction-type PSO algorithm to solve the task priority subproblem. In
PSO, the location of each particle represents a solution to the problem to be solved, and each
particle moves with reference to global experience and individual experience, resulting in a
new solution. In this study, a new velocity update rule developed from state transformation
rules used in ant colony optimization (ACO) [16] was proposed rather than the velocity update
rule in the contraction-type PSO, where movement is based on both experiences. This new PSO
is named the stochastic greedy PSO (SGPSO) herein. In ACO, the ant moves by referencing the
highest pheromone. Besides movement guided by the highest pheromone trail, the ant also
references the other trail, determined using the roulette wheel rule to move. In this study, the
global experience of the particle swarm is regarded as the path of ants with the highest
pheromone. Thus, a new velocity update rule was introduced to allow the particles with the
probability to explore on their own in the solution search process and prevent them from
getting trapped on local optimums. Restated, the particle moves in accordance with either the
global experience or individual experience in this work. Moreover, different problem cases
with small-scale and large-scale problems are designed and tested to verify the performance of
the proposed SGPSO. In the end, the workflow scheduling problems in [15] were tested, and
comparative analysis was conducted. Furthermore, the diversity of the proposed SGPSO is
also defined and verified. The remaining parts of this paper are arranged as follows: Section 2
presents the workflow scheduling problems, Section 3 describes the new velocity update rule
applied in the particle swarm optimization algorithm and the concept behind its adoption
from ACO, in Section 4 the experimental results and comparative analysis are provided, and
the conclusions are presented in Section 5.

2. Description of workflow scheduling problems

In the grid environment, distributed computing is conducted with the resources that are
scattered among different places around the world and connected together through networks.
The composition of the grid environment is shown in Figure 2(a). The scattered computational
resources are linked through the Internet. Each resource has its own computing ability and
external bandwidth represented by ABu and BWu, respectively. Moreover, the resources in the
grid environment are heterogeneous resources, meaning that the computing ability and exter-
nal bandwidth of each resource are dissimilar. Generally, the grid environment can be
represented with a schematic G(R, C) composed of nodes and edges. Each node stands for a
resource (R = {Ri}). i = 1 ~N represents the set of all resources.N is the total amount of resources
in the grid environment. The connections between resources are represented by an edge.
C = {Cuv} stands for the set of resource-resource connections. Cuv is the connection between
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resource u and resource v. The grid computing environmental schematic is shown in Figure 2
(b). The workflow application can be represented with a directed acyclic graph (DAG) G(V, T),
as shown in Figure 3, in which V = {Vi}, where i = 1 ~ M is the set of all tasks and M is the total
number of tasks. Precedence exists between certain tasks, and each task has a workload; wi

represents the workload of task i. Figure 3 also indicates the precedence relationship between
tasks such as the following: task 1 is the predecessor of tasks 3 and 4, and tasks 3 and 4 are the
successors of task 1. Meanwhile, task 5 cannot be executed until task 2 is done, and task 6 has
to wait till tasks 3, 4, and 5 are accomplished. Certain required data for execution on successors
have to be transmitted to the successors when the predecessor is completed, i.e., transmission
costs exist. TCij represents the amount of data transmitted between tasks i and j. If the
predecessor and the successors are arranged to be executed with different resources, a trans-
mission cost exists. On the contrary, if the predecessor and the successors are arranged to be
executed with the same resource, there will be no transmission cost. Meanwhile, task 0 and
task 8 in the figure are virtual tasks representing the start and the end, respectively. They have
no workload and involve no data transmission costs.

The goals of workflow scheduling optimization are to appropriately match tasks to resources
and to suitably assign execution priorities to tasks without precedence restriction in the same
computing resource to reduce the makespan of the application execution. The cost includes the
resource processing time of the path and the data transmission time. In Figure 3, for example,

Figure 2. Grid computing environment. (a) The composition of the grid environment. (b) The grid computing environ-
mental schematic.

Figure 3. Directed acyclic graph (DAG) of a workflow application on the grid.
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there are four execution sequence paths: (p1) task 0!task 1!task 4!task 7!task 8, (p2) task
0!task 1!task 5!task 7!task 8, (p3) task 0!task 2!task 6!task 7!task 8, and (p4) task
0!task 3!task 6!task 7!task 8. All the tasks in the four execution sequences must be
executed to complete the job on the grid. The makespan is subject to the time of the longest
execution sequence path. That is, the max(cost(pi)). cost(pi) is the cost of an execution sequence
path (pi) in DAG in the grid environment.

Calculation of cost(pi) is shown in Eq. (1). cost(pi) is the aggregate of the total resource
processing time on execution sequence path pi and the total data transmission time on that
path. In Eq. (1), u(wt) represents the workload of the tasks allocated to resource u, and cost(tf) is
the data transmission cost or time on that execution sequence path, as shown in Eq. (2):

cost pi
� � ¼

P
u∈ pi

u wtð Þ
ABu

þ
X
tf ∈T

cost tfð Þ (1)

cost tfð Þ ¼ TCij

min BWu;BWvf g (2)

If task i and task j are, respectively, allocated to be executed with the resources u and v,
between the two tasks exists the amount of data transmission (TCij). Since resource u and
resource v have different bandwidths, the data transmission time is subject to the smaller
bandwidth (BWuv = min{BWu, BWv}). Hence, the data transmission time or cost is the amount
of data transmitted divided by the smaller resource bandwidth.

Therefore, the makespan is defined as the fitness function to denote the quality of workflow
scheduling. The definition of fitness function (FIT) is shown in Eq. (3). The objective of
workflow scheduling is then to find the shortest makespan (min(FIT)):

FIT ¼ max cos t pi
� �jpi ∈DAG

� �
; (3)

3. The proposed method

Many nature-inspired optimization algorithms have been proposed to find optimal solutions to
workflow scheduling problems and metaheuristic algorithms that imitate the behaviors of bio-
logical creatures. Some that are extensively applied include ACO, GA, bee colony optimization
(BCO), and the PSO adopted in this study. Among them, PSO requires fewer parameters and is
easier to implement. Therefore, it has been well applied to solve diverse NP-complete problems,
and the results have been rather remarkable. Meanwhile, PSO has also been employed to solve
workflow scheduling problems with effectiveness.

As shown in Figure 3, if task 2 and task 6 are allocated to be computed by different resources,
there will be a transmission time, and the makespan will be extended. On the contrary, if they
are arranged to be executed by the same resource, there will be no transmission time, and the
makespan will be shortened. Furthermore, if task 1 and task 2 are arranged to be executed by
the same resource, executing task 1 before task 2 or vice versa will have an effect on the
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makespan of the workflow application on the grid. Hence, the study of minimization of the
makespan in workflow scheduling involves two issues: task-resource matching and task exe-
cution priority determination. Figure 4 illustrates an example with two heterogeneous
resources (R1 and R2) with different abilities in the grid environment; these two subproblems
need to be solved for the studied workflow application scheduling problem. Figure 4(a)
displays the task-resource matching subproblem, and Figure 4(b) indicates some possible
execution priorities of the tasks (tasks 1, 3, 4, and 5) assigned to resource 1 (R1).

To deal with these issues, the constriction PSO is used to solve the task execution priority issue
and the discrete PSO to cope with the task-resource matching issue.

3.1. Used PSOs

PSO was first introduced by Kennedy and Ebrhart in 1995 [17]. After observing birds flying,
fish seeking food, and other social behaviors of animals, they discovered that each particle
would move to their next position according to information (experience) shared among the
members of the swarm. Restated, when particles move, they refer to individual experience
(pbest) and global experience (gbest). At each moving step, a particle will refer to both kinds of
experience to make the next move. The particle represents the solution of the problem to be
solved. Hence, the movement of particles is regarded as a solution search in a solution space.
The position update equation of PSO is as shown in Eq. (4):

Vnew
ij ¼ ωVij þ c1r1 pbestij � Xij

� �
þ c2r2 gbestj � Xij

� �

Xnew
ij ¼ Xij þ Vnew

ij

8<
: (4)

Each particle of a swarm has its own velocity V. The Vij represents the jth velocity component of
the particle i. X is the position of the particle and Xij the jth position component of particle i.
pbestij is the jth component of the best individual experience of the particle i. The gbestj is the jth
component of the best global experience. w is the inertia weight adopted mainly for controlling
the level of influence of the previous velocity on the velocity of the current iteration. c1 and c2
are the learning factors for controlling the influence of individual best experience and global

Figure 4. Two subproblems of a workflow application in grid. (a) The task-resource matching subproblem and (b) the
task execution priority subproblem.
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best experience on the velocity of iteration. r1 and r2 are the random numbers between 0 and 1,
adopted to increase the diversity of particle movement and prevent particles from moving
only toward the individual best experience or the global best experience.

In this work, a constriction PSO is applied to solve the task execution priority problem. Similar
to the inertia weight, a constriction factor χ was introduced into PSO to balance global and
local searches, i.e., the constriction factor used to limit the movement size, and is named
constriction PSO [18]. The velocity update rule used in constriction PSO is indicated in Eq. (5):

Vnew
ij ¼ χ Vij þ c1r1 gbest� Xij

� �þ c2r2 pbestij � Xij

� �h i

Xnew
ij ¼ Xij þ Vnew

ij

8<
: (5)

The discrete PSO (DPSO) was proposed by Kennedy and Ebrhart in 1997 [19]. Unlike in
conventional PSO, the particle position components of the discrete PSO are binary. In other
words, Xij∈(0,1). The velocity update is similar to Eq. (5), but the constriction factor is set to 1.
The position vector Xij is calculated with the sigmoid function S(Vij) in conjunction with
velocity vector Vij, and the real valued velocity is converted into a probability. This probability
is then compared with a random number to update the position component value either 0 or 1.
The position update rule for discrete PSO is displayed in Eq. (6):

Xnew
ij ¼

0, S Vnew
ij

� �
< rand

1, S Vnew
ij

� �
≥ rand

8><
>:

(6)

The sigmoid function is applied to convert the velocity value into a probability between 0 and
1. However, to prevent the value of S(Vij) from becoming too close to 0 or 1, the value of Vij is
normally limited to between [-Vmax and Vmax]. In this study, DPSO is applied to solve the task-
resource matching problem. The particle positions are designed as a two-dimensional matrix
M�N. M represents the number of tasks, and N is the number of binary bits, which is the floor
function of log2(resource quantity) plus 1. If the number of resources is R, N ¼ log 2 Rð Þb c þ 1.
In other words, Xi = [Xipq], p = 1 ~ M, and q = 1 ~ N. The combination of number (N) of binary
numbers (after the binary values are converted to metric values) of the p row is the resource
allocated for the task p. Suppose that the number of resources is 3 (R = 3), then two bits
(N ¼ log 2 3ð Þb c þ 1 ¼ 2) are required.

3.2. Stochastic greedy in ant colony optimization (ACO)

Stochastic greedy is greedy by chance; it has been well applied in constructing the path of ants
in ant colony optimization. Ant colony optimization, which was initially introduced by Dorigo
et al. in 1996 [20], imitates the foraging behavior of ants. The ACOwas first applied to solve the
traveling salesman problem [16, 21]. In ACO, ants lay down pheromones on the foraging
paths. The deposited pheromone is the stigmergy used to communicate with ants. The amount
of pheromone deposited on a particular foraging path increases with the number of ants
traveling along the path. An ant foraging path corresponds to a feasible solution to the studied

Stochastic Greedy-Based Particle Swarm Optimization for Workflow Application in Grid
http://dx.doi.org/10.5772/intechopen.73587

47



makespan of the workflow application on the grid. Hence, the study of minimization of the
makespan in workflow scheduling involves two issues: task-resource matching and task exe-
cution priority determination. Figure 4 illustrates an example with two heterogeneous
resources (R1 and R2) with different abilities in the grid environment; these two subproblems
need to be solved for the studied workflow application scheduling problem. Figure 4(a)
displays the task-resource matching subproblem, and Figure 4(b) indicates some possible
execution priorities of the tasks (tasks 1, 3, 4, and 5) assigned to resource 1 (R1).

To deal with these issues, the constriction PSO is used to solve the task execution priority issue
and the discrete PSO to cope with the task-resource matching issue.

3.1. Used PSOs

PSO was first introduced by Kennedy and Ebrhart in 1995 [17]. After observing birds flying,
fish seeking food, and other social behaviors of animals, they discovered that each particle
would move to their next position according to information (experience) shared among the
members of the swarm. Restated, when particles move, they refer to individual experience
(pbest) and global experience (gbest). At each moving step, a particle will refer to both kinds of
experience to make the next move. The particle represents the solution of the problem to be
solved. Hence, the movement of particles is regarded as a solution search in a solution space.
The position update equation of PSO is as shown in Eq. (4):
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ij ¼ ωVij þ c1r1 pbestij � Xij
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Each particle of a swarm has its own velocity V. The Vij represents the jth velocity component of
the particle i. X is the position of the particle and Xij the jth position component of particle i.
pbestij is the jth component of the best individual experience of the particle i. The gbestj is the jth
component of the best global experience. w is the inertia weight adopted mainly for controlling
the level of influence of the previous velocity on the velocity of the current iteration. c1 and c2
are the learning factors for controlling the influence of individual best experience and global

Figure 4. Two subproblems of a workflow application in grid. (a) The task-resource matching subproblem and (b) the
task execution priority subproblem.
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best experience on the velocity of iteration. r1 and r2 are the random numbers between 0 and 1,
adopted to increase the diversity of particle movement and prevent particles from moving
only toward the individual best experience or the global best experience.

In this work, a constriction PSO is applied to solve the task execution priority problem. Similar
to the inertia weight, a constriction factor χ was introduced into PSO to balance global and
local searches, i.e., the constriction factor used to limit the movement size, and is named
constriction PSO [18]. The velocity update rule used in constriction PSO is indicated in Eq. (5):

Vnew
ij ¼ χ Vij þ c1r1 gbest� Xij

� �þ c2r2 pbestij � Xij

� �h i

Xnew
ij ¼ Xij þ Vnew

ij

8<
: (5)

The discrete PSO (DPSO) was proposed by Kennedy and Ebrhart in 1997 [19]. Unlike in
conventional PSO, the particle position components of the discrete PSO are binary. In other
words, Xij∈(0,1). The velocity update is similar to Eq. (5), but the constriction factor is set to 1.
The position vector Xij is calculated with the sigmoid function S(Vij) in conjunction with
velocity vector Vij, and the real valued velocity is converted into a probability. This probability
is then compared with a random number to update the position component value either 0 or 1.
The position update rule for discrete PSO is displayed in Eq. (6):

Xnew
ij ¼

0, S Vnew
ij
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< rand

1, S Vnew
ij

� �
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(6)

The sigmoid function is applied to convert the velocity value into a probability between 0 and
1. However, to prevent the value of S(Vij) from becoming too close to 0 or 1, the value of Vij is
normally limited to between [-Vmax and Vmax]. In this study, DPSO is applied to solve the task-
resource matching problem. The particle positions are designed as a two-dimensional matrix
M�N.M represents the number of tasks, and N is the number of binary bits, which is the floor
function of log2(resource quantity) plus 1. If the number of resources is R, N ¼ log 2 Rð Þb c þ 1.
In other words, Xi = [Xipq], p = 1 ~ M, and q = 1 ~ N. The combination of number (N) of binary
numbers (after the binary values are converted to metric values) of the p row is the resource
allocated for the task p. Suppose that the number of resources is 3 (R = 3), then two bits
(N ¼ log 2 3ð Þb c þ 1 ¼ 2) are required.

3.2. Stochastic greedy in ant colony optimization (ACO)

Stochastic greedy is greedy by chance; it has been well applied in constructing the path of ants
in ant colony optimization. Ant colony optimization, which was initially introduced by Dorigo
et al. in 1996 [20], imitates the foraging behavior of ants. The ACOwas first applied to solve the
traveling salesman problem [16, 21]. In ACO, ants lay down pheromones on the foraging
paths. The deposited pheromone is the stigmergy used to communicate with ants. The amount
of pheromone deposited on a particular foraging path increases with the number of ants
traveling along the path. An ant foraging path corresponds to a feasible solution to the studied
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scheduling problem; an ant establishes a path by using a transition rule to choose nodes to
visit, i.e., each movement is determined by stochastic greedy rule as displayed in Eq. (7):

j ¼
arg max

l∈ Jk ið Þ
τ i; lð Þ½ �α½ηði; lÞ�β� �

, q ≤ q0

J, q > q0

8<
: (7)

where τ(i, l) denotes the pheromone left on edge (i, l) and η(i, l) is the heuristic value. α and β
are used to determine the relative importance between the pheromone and the heuristic
value. Jk(i) represents the set of neighborhood nodes, which can be visited at node Vi by ant
k. And, q0 is a predefined probability usually set to a higher value, and q is a random number
between 0 and 1. The next node j to be visited is chosen from Jk(i). When q ≤ q0, the node with
the highest pheromone times heuristic value is selected as the next node Vj (exploitation). If
q > q0, Vj is usually determined from Jk(i) by the roulette wheel selection rule. Restated, an ant
has a q0 probability to visit the node with the highest pheromone times the heuristic value
and has a (1 � q0) probability to visit a node other than the node with the highest pheromone
times the heuristic value (exploration).

3.3. Stochastic greedy PSO (SGPSO)

This section will introduce the proposed PSO using a new velocity update rule in this study and
the design philosophy behind it. In PSO, the particles always move and search for optimums in
the solution space in accordance with the best individual experience and the global best experi-
ence. In this work, the global best experience in PSO is similar to the path with the highest
pheromone level in ACO. Restated, gbestj in PSO is regarded as the max{[τ(i,j)]α [η(i,j)]β} in ACO.
Without other guidance, PSO can lead other particles to move toward the current global best
experience. As a result, the particles can achieve local optimums at an early iteration and become
trapped there (local optimum). This indicates that PSO may converge quickly (premature con-
vergence), but trapping on local optimums is likely to happen. The same situation occurs with
ACO, if the ants always choose the path with the highest pheromone times the heuristic value
(exploitation), it can also lead to the path of local optimum. Hence, ACO retains a certain
probability and uses the roulette wheel selection rule (Eq. (7)) to allow ants to explore paths
other than that with the highest pheromone so as to prevent from trapping on local optimum. In
ACO, a default parameter SGP is adopted to determine the relative importance of exploitation
and exploration. When the SGP value is large, exploitation of the global best path tends to occur,
whereas small SGP values are more likely to result in individual exploration. To be with the
adequate diversity during search, it is important for PSO to find the optimal solution. Hence, to
strengthen the exploration capacity of PSO in the solution search process to keep diversity and
avoid getting trapped on local optimums, the search mechanism of ACO based on the stochastic
greedy rule was implemented in PSO, and hence a new velocity update rule was designed to
replace the velocity update rule of referring to both experiences in Eq. (5). Thus, as a stochastic
greedy probability (SGP) for global search, SGP is designed. Meanwhile, the roulette wheel
selection rule used in ACO is modified, i.e., a particle references its own experience rather than
using roulette wheel selection rule to reference other particle’s experiences. The design of the
proposed velocity update rule is as shown in Eq. (8):
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Vnew
ij ¼ χ� Vij þ c1 � r1 � Guidanceij � Xij

� �� �

Xnew
ij ¼ Xij þ Vnew

ij

Guidanceij ¼
gbestj, q ≤SGP exploitation

� �

pbestij, q > SGP exploration
� �

8<
:

(8)

where q is a random number between 0 and 1. When q is larger than SGP, the particle velocity
is updated in accordance with the individual best experience (pbestij); when it is smaller than
SGP, the particle velocity is updated in accordance with the global best experience (gbestj).
Restated, a particle has an SGP probability to search following the global experience (exploita-
tion search) and a (1-SGP) probability to search according to individual experience distributed
in solution space (exploration search). Restated, the search behavior of particles is driven by
the stochastic greedy rule. The PSO using this new velocity update rule is named stochastic
greedy PSO (SGPSO) herein. This SGPSO is applied only in the constriction PSO (Eq. (8)) to
solve the task execution priority problem, not in the DPSO that deals with the task-resource

Figure 5. Operation procedures of the proposed scheme.
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scheduling problem; an ant establishes a path by using a transition rule to choose nodes to
visit, i.e., each movement is determined by stochastic greedy rule as displayed in Eq. (7):

j ¼
arg max

l∈ Jk ið Þ
τ i; lð Þ½ �α½ηði; lÞ�β� �

, q ≤ q0

J, q > q0

8<
: (7)

where τ(i, l) denotes the pheromone left on edge (i, l) and η(i, l) is the heuristic value. α and β
are used to determine the relative importance between the pheromone and the heuristic
value. Jk(i) represents the set of neighborhood nodes, which can be visited at node Vi by ant
k. And, q0 is a predefined probability usually set to a higher value, and q is a random number
between 0 and 1. The next node j to be visited is chosen from Jk(i). When q ≤ q0, the node with
the highest pheromone times heuristic value is selected as the next node Vj (exploitation). If
q > q0, Vj is usually determined from Jk(i) by the roulette wheel selection rule. Restated, an ant
has a q0 probability to visit the node with the highest pheromone times the heuristic value
and has a (1 � q0) probability to visit a node other than the node with the highest pheromone
times the heuristic value (exploration).

3.3. Stochastic greedy PSO (SGPSO)

This section will introduce the proposed PSO using a new velocity update rule in this study and
the design philosophy behind it. In PSO, the particles always move and search for optimums in
the solution space in accordance with the best individual experience and the global best experi-
ence. In this work, the global best experience in PSO is similar to the path with the highest
pheromone level in ACO. Restated, gbestj in PSO is regarded as the max{[τ(i,j)]α [η(i,j)]β} in ACO.
Without other guidance, PSO can lead other particles to move toward the current global best
experience. As a result, the particles can achieve local optimums at an early iteration and become
trapped there (local optimum). This indicates that PSO may converge quickly (premature con-
vergence), but trapping on local optimums is likely to happen. The same situation occurs with
ACO, if the ants always choose the path with the highest pheromone times the heuristic value
(exploitation), it can also lead to the path of local optimum. Hence, ACO retains a certain
probability and uses the roulette wheel selection rule (Eq. (7)) to allow ants to explore paths
other than that with the highest pheromone so as to prevent from trapping on local optimum. In
ACO, a default parameter SGP is adopted to determine the relative importance of exploitation
and exploration. When the SGP value is large, exploitation of the global best path tends to occur,
whereas small SGP values are more likely to result in individual exploration. To be with the
adequate diversity during search, it is important for PSO to find the optimal solution. Hence, to
strengthen the exploration capacity of PSO in the solution search process to keep diversity and
avoid getting trapped on local optimums, the search mechanism of ACO based on the stochastic
greedy rule was implemented in PSO, and hence a new velocity update rule was designed to
replace the velocity update rule of referring to both experiences in Eq. (5). Thus, as a stochastic
greedy probability (SGP) for global search, SGP is designed. Meanwhile, the roulette wheel
selection rule used in ACO is modified, i.e., a particle references its own experience rather than
using roulette wheel selection rule to reference other particle’s experiences. The design of the
proposed velocity update rule is as shown in Eq. (8):
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where q is a random number between 0 and 1. When q is larger than SGP, the particle velocity
is updated in accordance with the individual best experience (pbestij); when it is smaller than
SGP, the particle velocity is updated in accordance with the global best experience (gbestj).
Restated, a particle has an SGP probability to search following the global experience (exploita-
tion search) and a (1-SGP) probability to search according to individual experience distributed
in solution space (exploration search). Restated, the search behavior of particles is driven by
the stochastic greedy rule. The PSO using this new velocity update rule is named stochastic
greedy PSO (SGPSO) herein. This SGPSO is applied only in the constriction PSO (Eq. (8)) to
solve the task execution priority problem, not in the DPSO that deals with the task-resource

Figure 5. Operation procedures of the proposed scheme.
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matching problem. The operation procedures of the proposed scheme of applying SGPSO and
DPSO to solve the interested workflow application scheduling problem in the grid are listed in
Figure 5.

3.4. The diversity of SGPSO

The diversity of the swarm during moving in the solution space impacts the solution quality.
High diversity of the particles in the initial stage is desired for possible most solution space to
find a good seed of search. Conversely, in the latter stage, the particles ought to proceed fine
search for the better solution, i.e., low diversity of the population should be provided. To
analyze the diversity of the SGPSO, the diversity (DIV) of a particle swarm is defined by the
average absolute distance of whole particles as given in Eq. (9) [22]:

DIV ¼
XN�1

i¼1

XN

j¼iþ1

Dis Xi;Xj
� �

CN
2

Dis Xi;Xj
� � ¼

XD

k¼1

∣Xik, Xjk∣

(9)

where Dis(Xi, Xj) is the absolute distance between particles Xi and Xj. D is the dimension of the
particle, and N is the number of particles.

4. Experimental results and discussion

Since there is not any specific library providing grid task scheduling problems for workflow
applications, workflow scheduling problems involving larger numbers of tasks were also
designed for this study to test whether the proposed method can also perform well on large-
scale problems. Intrinsically, the workflow scheduling problem can be regarded as a derivative
of the multimode resource-constrained project scheduling problem (MRCPSP). Therefore, the
task precedence constraints of the designed workflow scheduling problems in this work are
generated based on the problem cases (J10, J12, J14, J16, J18, J20, and J30) of the MRCPSP in the
PSPLIB library; each problem case has 50 different instances generated. The workload of an
activity is a randomly produced number with 1000 as the base unit. The data transmission
between predecessors and successors is created by using random numbers with 10 as the base
unit. The processing ability and the external bandwidth of computing resources in the grid
were generated as those in the problem designed by [15] as listed in Table 1. Table 2 illustrates
the workflow application example of a J14 instance including workload, number of successors,
precedence (successor), and communication cost. In Table 2, the tasks 0 and 15 are pseudo
tasks representing the start and end. The corresponding DAG of the workflow application
instance is displayed in Figure 6. The settings of the parameters in constriction and discrete
PSOs are χ = 0.72984, χ = 1, and c1 = c2 = 2. The values of different SGP parameters SGP = {0, 0.1,
0.2, …, 0.9, 1} were tested on the all designed problems (J10, J12, J14, J16, J18, J20, and J30) to
understand their influence on the SGPSO performance. To evaluate the performance of the
workflow application scheduling on the grid, Avg.Dev(%) is used and defined as in Eq. (10):

Particle Swarm Optimization with Applications50

Dev %ð Þ ¼
X

i∈ instances

FITi � besti
besti

� 100%
� �

=∣instances∣

Avg:Dev %ð Þ ¼

X
t¼1�T

Dev %ð Þ

T

(10)

Resources MIPS Bandwidth

R1 450 8

R2 1000 2

R3 650 10

R4 1500 8

R5 800 10

R6 4000 2

R7 2000 15

R8 1250 6

R9 250 20

R10 750 5

Table 1. Grid environment example.

Task No. Workload No. of successors Successors Communication cost

0 0 3 1 2 3 0 0 0

1 35,000 2 4 5 14 12

2 7000 2 5 9 5 3

3 5000 2 9 13 7 2

4 28,000 3 6 7 11 11 17 6

5 20,000 3 8 11 14 13 11 13

6 18,000 3 9 10 14 11 16 13

7 4000 2 8 14 7 13

8 27,000 2 10 12 3 3

9 4000 1 12 17

10 19,000 1 13 3

11 32,000 2 12 13 4 4

12 31,000 1 15 13

13 16,000 1 15 11

14 22,000 1 15 3

15 0 0

Table 2. A workflow application example of J14.
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matching problem. The operation procedures of the proposed scheme of applying SGPSO and
DPSO to solve the interested workflow application scheduling problem in the grid are listed in
Figure 5.

3.4. The diversity of SGPSO

The diversity of the swarm during moving in the solution space impacts the solution quality.
High diversity of the particles in the initial stage is desired for possible most solution space to
find a good seed of search. Conversely, in the latter stage, the particles ought to proceed fine
search for the better solution, i.e., low diversity of the population should be provided. To
analyze the diversity of the SGPSO, the diversity (DIV) of a particle swarm is defined by the
average absolute distance of whole particles as given in Eq. (9) [22]:
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where Dis(Xi, Xj) is the absolute distance between particles Xi and Xj. D is the dimension of the
particle, and N is the number of particles.

4. Experimental results and discussion

Since there is not any specific library providing grid task scheduling problems for workflow
applications, workflow scheduling problems involving larger numbers of tasks were also
designed for this study to test whether the proposed method can also perform well on large-
scale problems. Intrinsically, the workflow scheduling problem can be regarded as a derivative
of the multimode resource-constrained project scheduling problem (MRCPSP). Therefore, the
task precedence constraints of the designed workflow scheduling problems in this work are
generated based on the problem cases (J10, J12, J14, J16, J18, J20, and J30) of the MRCPSP in the
PSPLIB library; each problem case has 50 different instances generated. The workload of an
activity is a randomly produced number with 1000 as the base unit. The data transmission
between predecessors and successors is created by using random numbers with 10 as the base
unit. The processing ability and the external bandwidth of computing resources in the grid
were generated as those in the problem designed by [15] as listed in Table 1. Table 2 illustrates
the workflow application example of a J14 instance including workload, number of successors,
precedence (successor), and communication cost. In Table 2, the tasks 0 and 15 are pseudo
tasks representing the start and end. The corresponding DAG of the workflow application
instance is displayed in Figure 6. The settings of the parameters in constriction and discrete
PSOs are χ = 0.72984, χ = 1, and c1 = c2 = 2. The values of different SGP parameters SGP = {0, 0.1,
0.2, …, 0.9, 1} were tested on the all designed problems (J10, J12, J14, J16, J18, J20, and J30) to
understand their influence on the SGPSO performance. To evaluate the performance of the
workflow application scheduling on the grid, Avg.Dev(%) is used and defined as in Eq. (10):

Particle Swarm Optimization with Applications50

Dev %ð Þ ¼
X

i∈ instances

FITi � besti
besti

� 100%
� �

=∣instances∣

Avg:Dev %ð Þ ¼

X
t¼1�T

Dev %ð Þ

T

(10)

Resources MIPS Bandwidth
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R2 1000 2

R3 650 10

R4 1500 8

R5 800 10

R6 4000 2

R7 2000 15

R8 1250 6

R9 250 20

R10 750 5

Table 1. Grid environment example.

Task No. Workload No. of successors Successors Communication cost

0 0 3 1 2 3 0 0 0

1 35,000 2 4 5 14 12

2 7000 2 5 9 5 3

3 5000 2 9 13 7 2

4 28,000 3 6 7 11 11 17 6

5 20,000 3 8 11 14 13 11 13

6 18,000 3 9 10 14 11 16 13

7 4000 2 8 14 7 13

8 27,000 2 10 12 3 3

9 4000 1 12 17

10 19,000 1 13 3

11 32,000 2 12 13 4 4

12 31,000 1 15 13

13 16,000 1 15 11
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Table 2. A workflow application example of J14.
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where FITi indicates the fitness of instance i and besti is the best known solution of instance i.
The |instances| denotes the number of instances of a problem case; it is 50 in this study. Hence,
the Dev(%) represents the average deviation from the best known solutions which is the best
solution found so far. The Avg.Dev(%) is the average of T trials; in this work, 10 trials (T = 10)
were conducted.

The performance evaluation on J10 to J30 associates with different SGP values is displayed in
Table 3. When the SGPs are 0 and 1, the averages of all problem cases’ Avg.Dev are 12.43 and
12.05%; they are higher than other Avg.Dev results via other SGPs. This is because only global
experience is referred to when SGP = 1 (exploitation only), and convergence of the algorithm in
the process of searching in the vast solution space is premature; it is easy to get trapped on
local optimums and impossible to obtain the global optimum. When SGP = 0 (exploration

Figure 6. DAG of J14 example in Table 2.

SGP J10 J12 J14 J16 J18 J20 J30 Avg.

0 3.86 6.61 7.87 15.55 13.11 16.28 23.70 12.43

0.1 3.88 6.58 7.32 15.43 12.14 14.31 17.27 10.99

0.2 4.44 6.87 7.67 15.95 12.39 14.03 15.93 11.04

0.3 4.18 6.74 8.11 15.93 12.46 14.62 15.13 11.02

0.4 4.27 7.27 8.63 16.49 12.54 15.25 14.92 11.34

0.5 4.55 7.26 8.36 16.52 12.49 14.73 15.22 11.30

0.6 4.69 7.82 8.68 16.74 12.72 14.88 15.62 11.59

0.7 4.60 7.39 8.55 17.35 13.21 14.92 15.41 11.63

0.8 4.93 7.50 8.68 17.40 13.13 15.40 14.61 11.66

0.9 4.97 7.77 8.94 16.78 13.38 15.63 15.53 11.86

1 4.79 7.66 9.06 17.36 13.63 16.13 15.72 12.05

Table 3. Performance evaluation on J10 to J30.
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only), only local experience is referred to, and slow convergence exhibits while searching in a
vast solution space, i.e., obtained optimal solution demands much more iterations.

Meanwhile, the obtained minimum Avg.Dev corresponding to the SGP for each problem case
is shown in Table 4. The SGP of minimum Avg.Dev for J10 is zero, which is because the best
solution in small solution space can be found by exploration search only. The SGPs of mini-
mum Avg.Dev for J12 to J18 and J20 are 0.1 and 0.2, respectively. That is, more exploration
search is adequate for small- and medium-scale problems. Since J30 is much more complex
than J20, the solution space is vast. Thus, the SGP of the minimum Avg.Dev for J30 is 0.8
indicating that more exploitation search for large-scale problems is desired. Restated, the
small-scale problem requires smaller SGP, and the large-scale problem needs larger SGP to
obtain optimal solution.

Moreover, the comparisons between conventional PSO (ω = 0.8) and the proposed SGPSO
(χ = 0.72984, SGP = 0.1) are provided in Table 5. Table 5 indicates that SGPSO outperforms
conventional PSO; SGPSO obtains the minimum Avg.Dev for most problem cases except the
largest-scale problem (J30). The particle of conventional PSO swarm refers both global and
individual experiences to move, i.e., involving both exploitation and exploration during solu-
tion search. However, the particle of the SGPSO swarm with SGP = 0.1 mostly refers to
individual experience to be the moving guidance, i.e., exploration is carried out during solu-
tion search. As concluded above, larger SGP is required to obtain the optimal solution for
large-scale problems; hence, SGP = 0.1 conducting more exploration would cause slow conver-
gence. Therefore, when SGP = 0.8 is applied for solving J30, the resulting Avg.Dev (14.61%) is
lower than that (15.92%) by using the conventional PSO as shown in Table 5.

A resulting schedule of the corresponding DAG of the workflow application scheduling
instance with 14 tasks (Figure 6) is displayed in Figure 7. The fitness evolution of the J14
instance with different SGPs is displayed in Figure 8.

Additionally, to further realize the search behavior of the proposed scheme, the diversity
evolution of the proposed SGPSO is checked. Figure 9 displays the diversity evolution of a
J14 instance with SGP = 0, SGP = 0.1, SGP = 0.8, and SGP = 1. The diversity to be checked in this
study is defined as in Eq. (9).

J10 J12 J14 J16 J18 J20 J30

SGP 0.0 0.1 0.1 0.1 0.1 0.2 0.8

Avg.Dev 3.86 6.58 7.32 15.43 12.14 14.03 14.61

Table 4. Minimum Avg.Dev corresponds to the SGP.

J10 J12 J14 J16 J18 J20 J30 Avg.

SGPSO 3.88 6.58 7.32 15.43 12.14 14.31 17.27 10.99

PSO 4.52 7.42 8.72 20.55 13.12 15.12 15.92 12.20

Table 5. Comparisons between conventional PSO and SGPSO (SGP = 0.1).
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lower than that (15.92%) by using the conventional PSO as shown in Table 5.

A resulting schedule of the corresponding DAG of the workflow application scheduling
instance with 14 tasks (Figure 6) is displayed in Figure 7. The fitness evolution of the J14
instance with different SGPs is displayed in Figure 8.

Additionally, to further realize the search behavior of the proposed scheme, the diversity
evolution of the proposed SGPSO is checked. Figure 9 displays the diversity evolution of a
J14 instance with SGP = 0, SGP = 0.1, SGP = 0.8, and SGP = 1. The diversity to be checked in this
study is defined as in Eq. (9).
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In Figure 9, the diversity remains high until the end of the operation when SGP = 0 without
referencing global experience. Restated, particle search behavior keeps exploration until the
end and hence suffers slow convergence. Conversely, the diversity quickly drops to none for
SGP = 1, i.e., the particles go to exploitation search and therefore lead to premature conver-
gence and trap on local optima. When SGP = 0.8, the behavior is similar to that of SGP = 1 but
provides some exploration ability. Hence, SGP = 0.8 has the higher diversity than that of
SGP = 1. With the setting of SGP = 0.1, high diversity in the early stage and diversity gradually
lowered after the middle stage to the end are provided. Therefore, giving global search in the
early stage gradually shrinks the search area in the later stage, hence providing an ideal search
process from exploration to exploitation for finding the optimal schedule.

Figure 7. Workflow schedule of the J14 instance.

Figure 8. Fitness evolutions on J14 with different SGPs.
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Finally, this work tested the workflow application problems examined in [15] to verify the
proposed method. The comparison is made mainly with the largest-scale case in [15] which
involves 15 tasks (represented here as J15).

The settings of the parameters in constriction and discrete PSOs are χ = 0.72984, ω = 1, and
c1 = c2 = 2. The values of different SGP parameters SGP = {0, 0.1, 0.2,…, 0.9, 1} were tested. The
minimum average fitness of the simulation results of iteration = 300 is shown in Figure 10.

Figure 9. The diversity evolutions of the swarm of a J14 instance with different SGPs.

Figure 10. The minimum average fitness of J15.
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Figure 10 shows that the minimal fitness (44.5) can be obtained when SGP = 0.1 and SGP = 0.8.
However, the minimum average fitness (45.88) is obtained when SGP = 0.1. The results coin-
cide with the above experiment consequences. The comparison between this work and [15] is
listed in Table 6.

According to Table 6, with a small SGP value, the task scheduling outcomes of J15 will become
better as the number of iterations increases (100 iterations ! 300 iterations). This is because
small SGP values tend to lead to the use of individual experience. In other words, the particles
perform exploration search in solution space. In consequence, to obtain the optimums in the
vast solution space will consume much time, and the convergence is delayed.

5. Conclusions

Workflow application is the most common application in the grid. However, the workflow
scheduling heavily affects the performance of workflow execution application. Two PSOs were
used to solve task-resource matching and task execution priority subproblems of the workflow
scheduling. A new and simplified velocity update rule extended from the ACO state transition
rule is designed in constriction PSO for solving the task execution priority subproblem.
Restated, the search control is based on a suggested SGP inspired by the ACO’s transition rule.
This constriction PSO-based algorithm is named stochastic greedy PSO (SGPSO), which pro-
vides both exploration and exploitation abilities during search. The main purpose is to
strengthen the exploration capacity of the PSO in the solution search process while providing
certain exploitation capability to avoid getting trapped in local optimums.

According to experimental results as indicated in Table 3, high SGP provides global experi-
ence guidance and causes premature convergence, hence easy to trap on local optimal such as
only exploitation applied in SGP = 1.0 and Avg.Dev = 12.05% yielded. When SGP = 0, the
algorithm would conduct self-search such that only exploration is enabled that causes slow
convergence and Avg.Dev = 12.43% obtained. Better solutions can be found while providing
enough exploration and certain exploitation capabilities such as SGP = 0.1; the lowest Avg.
Dev = 10.99% can be obtained.

Chen [15] Chen [15] This work

χ = 0.75 χ = 0.5 χ = 0.72984, SGP = 0.1

100 iter. Min. 45.50 44.50 46.75

Avg. 60.15 54.26 47.71

300 iter. Min. 44.50 44.50 44.50

Avg. 55.45 50.36 45.88

Table 6. Performance comparison on J15 in [15].
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By using the SGP to control the search behavior, either exploitation or exploration would make
the algorithm simplified and also reduce the execution time.

Meanwhile, high diversity in the early stage and low diversity in the later stage are preferred for
searching in the solution space provided as indicated in Figure 9. Therefore, the proposed
SGPSO with lower SGP is suggested for solving workflow class scheduling problem in the grid.

Unlike in [15], using heuristics to find initial solutions is not adopted in this work. Therefore,
there is no need to consider which heuristic should be designed to increase performance, and
hence the algorithm is thus easier to implement. In [15], the best result comes with the
constriction factor χ = 0.5 which was obtained after thorough testing. However, the best result
can be yielded with the commonly suggested value χ = 0.72984. Hence, the laborious work of
finding the best constriction factor value is eliminated.

The experimental results show that the proposed method can effectively solve grid task sched-
uling problems and boost grid performance. In reality, there are many problems similar to grid
task scheduling problems, such as the multimode resource-constrained project scheduling prob-
lems (MRCPSPs). In the future, the method proposed in this study will be applied to find
solutions to MRCPSP-type problems.
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Abstract

Substantial reduction of gate delay occurred in recent times owing to radical decrement
of transistor size. The interconnect length and delay are accordingly increased owing to
the exponential escalation of packaging density with additional transistors being fabri-
cated on the same chip area. The function of VLSI routing that seems to be more defying
to the scholars, is categorized in global routing and detailed routing phase. In global
routing phase, the prevalent method to lessen the wire length for reducing interconnect
delay is to adjust the cost of the Steiner tree, devised by the terminal nodes to be
interconnected. Nevertheless, Steiner tree problem is a NP-complete problem in classical
graph theory where meta-heuristics might impart beneficial elucidations. Particle
swarm optimization (PSO) is a robust algorithm concerning VLSI routing field. This
chapter is regarding the proposal of a self-adaptive mechanism for monitoring acceler-
ation coefficient of PSO and evaluating its functionalities with the existing acceleration
coefficient controlled PSO in numerous allocation topologies of terminal nodes within
definite VLSI layout. The outcomes of PSO variant with constriction factor in context to
VLSI route reduction ability and robustness are also inspected. Additionally, a new
effort in adapting the PSO with embracement of genetic algorithm is established.

Keywords: VLSI, global routing, Steiner tree, meta heuristics, PSO

1. Introduction

Stating optimization as a usual phenomenon is a bit of exaggeration, which includes economic
development to engineering strategy as well as job scheduling to resource allocation. The
intention of optimization is certainly to produce comparable outcomes under specified condi-
tions bearing some parametric minimization or maximization. In VLSI physical design context
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numerous parameters are needed to be optimized like transistor count, power delay product,
interconnect delay.

Conferring to Moore’s Law, the transistor count doubles up in every 18 months [1]. Since the
dimensions of the transistors are radically diminishing by the contemporary ages as a result of
massive development in technologies, additional transistors are getting assimilated in that
single chip region than before by means of cutting-edge assembling techniques. Therefore the
length of interconnect has also been considerably amplified. Previously it was sufficient to
overhaul the gate delay but interconnect delay has been more noticeable after the 130 nm
technological node was pioneered.

The objective of VLSI physical design is to optimize the devices arrangements and intercon-
nection schemes among these devices for desired performance.

Wire-length approximation of interconnects is considered in the routing phase of VLSI physi-
cal design process, which is largely categorized into Global Routing and Detailed Routing. In
Global routing phase the circuit interconnections in shortest possible wavelength and mini-
mum interconnect delay is required to be achieved. The complexities of global routing prob-
lem is solved to some extent with sequential approach where VLSI nets are sequenced
according to their criticality and practical routers employs improvement phase. Technique of
rerouting after ripping interfering wires [2] and ‘shove-aside’ technique [3] and also introduc-
ing concurrent approach where parallel integer programming concept are tried for enhance-
ment of global routing but with limitations.

The Routing problem of VLSI physical design can also be mapped in classical Graph Theory
where wire-length minimization of interconnected nodes rests in solving the Rectilinear Min-
imal Steiner Tree Problem (RMST) [4], a renowned NP Complete problem of Graph Theory.
Such NP complete problems can be aimed to solve by a division of Artificial Intelligence
known as Swarm Intelligence. Swarms interact among themselves to persist in any situation.
It has been observed that these social agents have restricted competences of their own as an
individual, however as an assemblage they are capable of accomplishing an assignment,
somewhat perceptively for their existence. Scientists and engineers were ardent to mimic these
activities of these natural swarm systems. Swarm intelligence was maidenly commenced in
1989 by G Beni and J Wang [5] to crack some practical problems associated to global optimiza-
tion. These algorithms are heuristics and meta-heuristics in character. Heuristic infers “to
ascertain by trial and error”. These approaches are fairly beneficial in obtaining optimal
solution or near optimal solution aimed at a complex optimization problem (like NP-complete
problems) within a judicious time frame. Meta-heuristics (“meta” means “beyond” or “higher
level”) conversely execute even better than heuristic algorithms herein because they comprise
of precise compromises related to randomization & local search. One such prevalent meta-
heuristics algorithm is PSO (Particle Swarm Optimization) [6].

In VLSI system for solving the Routing problem the researcher Dong et al. [7] used PSO in
2009. The proposal by the authors was mainly novel encoding and updating schemes for a
discrete or binary version of PSO where Interconnect delay is one of the most important
disadvantage. A routing scheme based on PSO combined with buffer insertion at suitable
intervals, was taken into consideration for overcoming the disadvantage, as proposed by Ayob
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et al. [8]. Again a PSO algorithm was proposed by Liu et al. [9] to reduce binding during
routing where this version of PSO algorithm was successful in reducing the binding problem
but in turn it increased the cost of the wire lengths. Among many other proposed algorithm,
the one proposed by Shen et al. [10] has some important significance which dealt with the self-
adaptive technique of inertia weight update. Many other technique based on SI has been used
for escalation of VLSI routing, among them the one proposed by Arora and Moses is impor-
tant. Both Manhattan as well as a non- Manhattan routing scheme based on Ant Colony
Optimization (ACO) [11] were proposed by the duo. A proposal was introduced by Ayob
et al to evade VLSI routing scheme by using Firefly optimization [12].

Two algorithms centered on inertia weighted PSO (PSO-W) [13] are presented in here. In the prior
one, named as Self-Adaptive acceleration coefficient PSO (PSO-SAAC), the acceleration coeffi-
cients are adjusted by the means of an adaptive procedure of local search and global search to
heighten the property of the searching technique composed with efficient converging rate. Addi-
tional new tactic is implemented where the perception of the genetic algorithm is hybridized with
PSO-W by comprising a component related with a breading factor in the position update charac-
teristic equation of PSO-W. In supplement to the above two alternatives of PSO, PSO with
constriction factor (PSO-C) [14] are evaluated with these algorithms, most lately familiarized, on
a mutual platform of optimization of VLSI global routing. Further all the algorithms are verified
in several distribution topologies of VLSI terminal nodes in a definite search area.

The remaining chapter is arranged accordingly. Section 2 portrays the elementary theory of
VLSI Global routing, RMSTand PSO. In Section 3 algorithms variants on PSO-Ware illustrated
in specifics shadowed by the implementation of modified PSO algorithms in Section 4. Section 5
confers the experimental results acquired in context to VSLI global routing and lastly the chapter
gets concluded with Section 6.

2. Preliminaries

2.1. Global routing in VLSI physical design

VLSI routing in Physical Design context initiates with the procedure of interconnections
amongst the circuit blocks and pins, specified according to the net list, generate results in the
phase of placement. The inputs to the general routing problem are as follows:

• Net list.

• Timing budget for the critical nets.

• RC delay of per unit length of metal layers and vias.

Conventionally, the routing fashion can be broadly cleft into twomain stages: the initial stage, also
called as the “Global Routing” allocates a list of routing areas for individual net, putting aside the
absolute geometrical blueprint of wires; whereas, the secondary stage, called as “Detailed
Routing”, finds the absolute geometrical blueprint of any net within the allocated routing areas.

The purpose of the routing problem is to curtail the wire length, at the same time accommo-
dating the timing budget for the critical nets. Global routing is the initial phase of routing
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where a catalogue of routing regions are essentially allocated for a net, in default of stipulat-
ing the tangible geometric layout of interconnects, acknowledging that no net could be
crisscrossing each other.

Now, the complications related to global routing can be overcome using two basic approaches-
the sequential approach and the concurrent approach.

The term ‘sequential’ in sequential approach refers to something which occurs in a sequence of
steps; and here as the name indicates, nets are connected in succession. This approach of routing
is very susceptible to the order in which the nets are considered for routing, because a net once
routed may hinder other nets. The parameters based on which the nets are ordered includes half
of the total area of the confining polygon, their criticality, and the number of terminals. High
criticality number is assigned to the net on the critical path as the performance of the circuit is
dependent on them to a great extent. But nonetheless these techniques of sequencing are not
impeccable. As a blunt aftermath of this, a factual router engages a development or improve-
ment phase besides the sequencing phase to do away with the jam when no more routing is
possible. But still this may not conquer the frailty of the sequential approach. ‘Rip-up and
reroute’ [2] and ‘shove-aside’ techniques [3] are examples of improvement phase like this. As
the name indicates, in case of the ‘rip-up and reroute’, the intrusive cables are ripped up and
rerouted; but in case of the ‘shove aside’ technique, cables which make is viable to outright the
failed connections are put aside without curbing the extant connections in any way.

In Concurrent approach, by simultaneously considering all the nets, the complications related to
ordering can be evaded. There is no compelling polynomial algorithm (not even for nets with
only two terminals) and as a consequence this approach is computationally tougher. Ergo, it was
proposed to use integer programming; nonetheless as a consequence of the very large size of the
resulting program, it can’t be utilized efficiently. So, to overcome this problem, the program is
fragmented into smaller sub programs using hierarchical method (which follows top down
approach), which can be then readily dealt with by integer programming. A sequence of routing
channels is accredited to each net by global routing without contravening the capacity of chan-
nels. At the same time, the total length of the wire is also occasionally revamped.

The intention of the routing problem is reliant on the attributes of IC which is to be fabricated.
Nowadays, VLSI chips contain up to billions of transistors which makes it possible to complete
a layout to route millions of nets. In turn there may be several thousands of routes in each net.
It comprises the trade-off between routability of all nets and minimization of the wire length in
interconnects. The objective function of this routing puzzle is an eminent NP-complete prob-
lem. All these attributes results the routing problem to be a computationally tough one which
furnishes the scope for metaheuristic algorithm, like for resolving the problem, SI based
algorithm are to be used.

2.2. Rectilinear Steiner tree problem

Rectilinear Steiner Tree (RST) is the resulting of Minimum Spanning Tree (MST) for a specified
grid graph. For a certain set of vertices of a graph, minimum spanning tree is shaped by
interconnecting them where MST is the maximal sub graph and the MST cost is the sum of the
weights of all edges in the tree. Certain additional intermediate vertices are appended with MST
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to create Steiner tree in turn to lessen the entire length of the MSTwhere intermediate vertices are
Steiner points. The challenges remain in selecting the number and position of Steiner vertices in
the Gird layout. Steiner tree with restricted edge to be in rectilinear in rectangular grid graph
originates RST. This tool is utilized to acquire the least possible length of the inter connections for
a specified set of nodes in the grid graph. RST, although NP complete problem [15], is an efficient
method in improving the length of interconnects in VLSI circuits.

Nonetheless some other constraints for instance noise, power, electro-migration, signal integ-
rity, packaging density, skew, inductance, reliability etc., frequently have vast impact on the
objective function in deep-submicron VLSI design, the length of the non-critical nets however
preserves its significance in wire length minimization.

2.3. Particle swarm optimization

PSO is a multi-agent equivalent search technique which engages incorporates an iterative
method to obtain the ideal solution in a multi-dimensional search space. Assume that there
exists a d dimensional search space, where the number of agents arbitrarily allocated are n. The
agents are primed with certain position and velocity vectors as Xi ¼ X1;X3;……;Xnf g and
Vi ¼ V1;V2;……;Vnf g respectively. These vectors are periodically updated rendering to the
characteristic equations of PSO as given in Eqs. (1) and (2).

Vi, tþ1 ¼ Vi, t þ c1∗r1∗ pbest � Xi, t
� �þ c2∗r2 gbest � Xi, t

� �
(1)

Xi, tþ1 ¼ Xi, t þ Vi, tþi (2)

Where the constants c1 and c2 are accountable for the impact of the distinctive particle’s
individual information and so as of the group information correspondingly. The variables
r1 and r2are unvaryingly distributed random numbers [16]. All particles are adjusted ran-
domly and keep on promoting the fitness value influenced by the pbest value (best position
value of the individual) and gbest value (best position value of the entire swarm) correspond-
ingly in anticipation of the optimal solution to be accomplished.

2.4. PSO parameters

2.4.1. Swarm size

Swarm size infers the number of particles existing in the swarm. A huge number of particles
can exploit a huge extent of a search space; therefore fewer iterations are required so as to
achieve the optimal solution. Contrariwise an enormous swarm size upsurges the computa-
tional complexity and time complexity likewise.

2.4.2. Iteration number

Number of iterations is a problem contingent parameter related to swarm size. An inadequate
number of iterations can terminate the program precipitately earlier to the conjunction
whereas huge number of iterations generates a redundant computational and time complexity.
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2.4.3. Velocity component

The velocity update factor in Eq. (1) comprises of three terms. The first term is the preceding
velocity vector i.e. the former direction & the magnitude of the velocity of a particle. This
component averts a particle from a radical alteration in velocity in current iteration. The
following component is the cognitive one. It is centered on the memory of an agent in agree-
ment with its proficiency. The cognitive component continuously inspire a particle to reappear
to its position, suitable for it in local. The subsequent component is the social component. This
is the knowledge to an individual by social communication, which constantly encourage the
particle to travel in the direction of the best position, knowledgeable by its vicinity.

2.4.4. Acceleration coefficients

The variables c1 and c2 are known as acceleration coefficients, which attempt to generate an
equilibrium amid the cognitive component and social component of the velocity.

• If c1 ¼ c2 ¼ 0, Eq. (1) will be Vi, t þ 1 ¼ Vi, t. This implies that all the particles retain to
hover with their initial velocity, ensuing no search condition.

• If c1 > 0 and c2 ¼ 0, Eq. (1) resolves to Vi, tþ1 ¼ Vt þ c1∗r1∗ pbest � Xi, t
� �þ 0. This implies

that all the particles revolve around their searching space autonomously. Since they are
not interacting with the neighbours, they are incapable to obtain the global optimal
solution whatsoever.

• If c1 ¼ 0 and c2 > 0, Eq. (1) resolves to Vi, tþ1 ¼ Vt þ 0þ c2∗r2∗ gbest � Xi, t
� �

. It infers that
all particles are fascinated to a single point, which is not revised in each time step.

• If c1 ¼ c2, all particles will travel towards average pbest and gbest values.

• If c1 ≫ c2, it results in manipulating the particles in the direction of pbest position and
c2 ≫ c1, resulting the particles to be enticed towards the gbest position and in both circum-
stances the particles sprint precipitately to the optimum solution.

Usually c1 and c2 are considered as equal, constant values and various intellectual articles
propose their values as 2 for getting decent optimal results [14].

3. Analysis of PSO characteristics & modification

3.1. Velocity clamping

Particle’s velocity, a significant parameter of PSO algorithm, is the step size of swarm in every
iteration. With all time step, the particles alter their velocity & travel in all direction in the
problem space. If the velocity is extreme, the assessment attribute of the particle turn out to be
high and simultaneously the particle might hastily vacant the periphery of the search space
and swerve. On a converse if velocity is low, the movement of particles is limited upon a small
boundary and it happens confined in a local optima. Therefore, it is required to preserve an
equilibrium amidst exploration & exploitation by situating a parameter Vmax, assumed as

Vmax ¼ Xmax�Xminð Þ
k . The empirical value of k is set as 2 [14].
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3.2. Inertia weight

Inertia Weight (w) was additionally familiarized [13] progressing PSO-W to substitute Vmax, to
regulate the momentum of the particle in assessing the updated velocity. It is presented to
regulate the exploration and exploitation aptitudes of the swarm with the intention of the
algorithm to converge more efficiently upon time. Therefore Eq. (1) is adapted as Eq. (3).

Vi, tþ1 ¼ w∗Vi, t þ c1∗r1∗ pbest � Xi, t
� �þ c2∗r2 gbest � Xi, t

� �
(3)

• If w ¼ 1: then Eq. (3) is similar to the original Eq. (1).

• If w > 1: then the velocity will increase over time and the particles will barely be capable
of altering their direction.

• If w < 1: particles can rapidly alter their route subjective to pbest and gbest values.

• If w ¼ 0: particles travel lack of any acquaintance of the preceding velocity.

Typically the inertia weight w is selected dependent to the size of the search space. A high
value of w is essential for complex high dimensional problem space and trivial value for small
dimensional search space.

The inertia weight can be differed by Eq. (4), where s is the population size, D is the Dimension
size and R is relative quality of corresponding solution standardized to [0,1].

w 3� exp
�s
200

� �
þ R

8
∗D

� �2
" #�1

(4)

3.3. Constriction factor

The PSO algorithm is reorganized to substitute the inertia weight w & max velocity Vmax by a
fresh parameter χ, known as constriction factor given in Eq. (6). Clerc [17] pioneered this factor,
which proved to be exceptionally significant in regulating the exploration & exploitation trade-
off, thus guaranteeing an efficient conjunction of algorithm. Eq. (1) gets amended as Eq. (5).

Vi, tþ1 ¼ χ∗ Vi, t þΦ1∗ pbest � Xi, t
� �þΦ2∗ gbest � Xi, t

� �� �
(5)

χ ¼ 2

2� ɸ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ɸ2 � 4ɸ

ph i (6)

Here, ɸ ¼ ɸ1 þ ɸ2, ɸ1 ¼ c1∗r1 and ɸ2 ¼ c2∗r2. Characteristically applying the value of ɸ as 4.1
the value of χ results to 0.729. Therefore, χ∗w ¼ 0:729∗w < w, infers that the particles rapidly
alter their course manipulated by pbest and gbest with assured convergence. Both

pbest � Xi, t
� �

and gbest � Xi, t
� �

are multiplied by 2∗0:729 ¼ 1:458 [18]. Generally these values are
preferred for improved stability and convergence.

3.4. Acceleration coefficient

Acceleration coefficient as a PSO parameter has previously been explained in the preceding
segment. Usually both the values of c1 and c2 are applied to be 2 [19]. The equilibrium concerning
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these parameters can be monitored in two distinct ways, mentioned underneath, to accomplish
superior result in perspective of path minimization of VLSI global routing.

3.4.1. Self-tuned

In this algorithm PSO-ST [20], the acceleration constants both c1 and c2 are reduced linearly
throughout the time steps in the range of 2 to 1.49. At the beginning, the algorithm is primed
with c1=c2 =2. By this changing of linear decrement, both exploration and exploitation abilities
of the swarm can be preserved efficiently for velocities updating and can deliver a swift
convergence to the algorithm. This algorithm turns out to be competent to obtain optimal
result with lofty convergence rate.

3.4.2. Self-adaptation

An algorithm PSO-SAAC is introduced where the two acceleration constant parameters c1 and c2
have been assorted in such a style that they got enhanced influence over the trade-off in between
global exploration and local exploitation. The algorithm commences with highest exploration and
lowest exploitation aptitudes of swarm, which have eventually been altered in every time step
over the entire iteration process. Therefore the particles of the swarm are capable of dispersing all
over the search space consistently, motivated by the social component of the velocity vector at the
first phase of experiment. Since the cognitive component outpace the social component in the
subsequent phase of the experiment, the swarm accomplish the local search process entered on
the assessed results of the Global search process with the intention of obtaining the finest local
optima. Throughout the whole searching process this self-adaptive procedure can be effectual in
producing most significant gbest value and thus in this manner heightening the optimization rate.

3.5. PSO with mutation

A fresh algorithm is presented where the principle of Genetic Algorithm is featured in PSO
[21]. The algorithm after utilizing some time steps initiates with selection of swarms from
existing generation in the first phase. The swarms with high fitness probability get selected

where the probability of selection factor is
f jPN

j¼1
f j
, where N is the population size. The high

fitness factor is extracted from the selected pool generating a mutant in the second phase. This
enhanced knowledge of high fitness property is induced in the position vector Eq. (2) to evolve
a new generation of swarms causing mutation in PSO [22]. The proposed position vector in
Eq. (7) is given below.

Xi, tþ1 ¼ ψ∗Xi, t þ ξð Þ þ Vi, tþ1 (7)

where, ψ is the randomization factor and ξ is the mutant fitness factor.

4. Problem formulation and implementation

The challenge of global routing problem of a VLSI Physical design rests in two objectives. First
in minimizing power dissipation and secondly increase the speed of signaling among the
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partitions or blocks in VLSI layout which can be achieved by reducing the complete wire
length of interconnected terminals or blocks. The Global routing problem can be formally
stated where N={N1,N2,N3…Nm} be the set of nets denoting interconnections among blocks in
the VLSI layout and the estimated wirelength of net Ni, 1< i < m is denoted by Di. The problem
function can be expressed such that overall total wirelength

Pm
i¼1 Diis minimized. Global

routing formulation is done by mapping the required VLSI layout in classical graph theory as
Grid Graph model. Here the grid graph model is regarded as to execute the above proposed
algorithms. The grid graph, G ¼), is an exemplification of a routing region layout where region
is carved into a number of unit square cells as shown in Figure 1. Each cell representing
routing areas between blocks as empty area is signified by vertex a vi and the edge eij, linking
the two neighboring vertices vi and vj. The vertices resemble to the nodes and edges resemble
to the routing paths between blocks in a VLSI layout.

To obtain the solution of the VLSI routing problem for a multi-terminal net, the primary
assignment is to articulate it as the problem of obtaining an RMST (Rectilinear Minimum
Spanning Tree) from a Graph. The Minimum spanning tree of the interconnected terminal
nodes is generated using graph algorithms results in measuring the minimum cost of
interconnected length. With introduction of random Steiner nodes along with the terminal
nodes of multi-terminal VLSI layout the cost or the overall wirelength is further reduced
generating the minimum Steiner tree cost (length) in the graph. Depending on the position
and the number of Steiner nodes the cost or overall length can be further minimized. With
large number of terminal nodes the probability of determining the number of Steiner nodes
and desired positioning of these Steiner node become computationally hard and hence the
PSO algorithm is used to select probable number of Steiner nodes and generate these random
position in order to optimize the Steiner cost.

The algorithm commenced with random generation of swarms size of z particles and they are
placed in required graph of n x n dimension. Each of the swarm consists at most (p-2)
randomly generated Steiner points drawn from Steiner set S with njj2–pð Þpoints where p is

Figure 1. Routing region layout in grid graph.
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the number of terminal nodes with designated vertex Vi, i = {1,2,3,…r} and thereby Steiner
subset Qj⊆S, where j = {1, 2, 3……, z} is formed. 100 � 100 search space is used. The defined
destination nodes or terminal nodes are represented by 1 to generate the problem matrix.
Rows & Columns without the destination nodes are eliminated to reduce computational
complexity generating the reduced matrix Steiner points are introduced in a randomly in the
problem space, is denoted by 1. The reduced matrix and the corresponding Steiner matrix, are
shown in Figure 2.

For implementation of PSO, mapping is done with the creation of swarm particles where each
these Steiner matrix is considered as a particle. One such particle with the destination nodes is
shown is Figure 3. Fitness Fi for each particle seed is calculated by evaluating Minimum Recti-
linear Steiner Tree (MRST) cost using objective functionMST(Gi) and alsoMIN (MST(Gi)) which

Figure 2. Matrix generated from reduced graph and corresponding Steiner matrix.

Figure 3. Flow chart of PSO algorithm and its variants.
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is minimum among all MST(Gi) is calculated. PSO parameter are initialized and maximum
iterations are fixed. Evaluation of pbest and gbest values are made using PSO velocity equations
with acceleration coefficient tuned either in linear decreasing or in self-adaptive mode as
described earlier and the corresponding position equation either in classical mode or with
mutation factor is evaluated. When maximum iteration is reached the corresponding gbest value
generated or the best swarm particle, is the optimized RMST cost. The optimized RMST cost on
termination of the PSO algorithm is the minimum overall length of the interconnected terminal
nodes in the VLSI system and thereby minimum wire length routing path of VLSI layout is
achieved. The flow chart of the PSO algorithms and its variants are shown in Figure 3.

The pseudo code of the PSO algorithm and modifications for implementation is given below.

Input:

Search space and terminal nodes are defined

Swarm size and Max-iterations are defined

Initialization:

Generate an initial population of particles Xi ¼ X1;X3;……;Xnf g
Calculation of f Xj□jið Þ and MIN f Xj□jið Þð Þ

Output:

Optimized result of MIN f Xj□jið Þð Þ
Begin:

While (t < max iter)
Evaluate c1 and c2 according to any of the variants mentioned in this chapter.

Evaluate Inertia Weight (w) as in Eq. (4) or evaluate Constriction Factor (χ) as in Eq. (6)

Set pbest = f Xj□jið Þand gbest =MIN f Xj□jið Þð Þ
for i=1: n (for particles)

Calculate particle velocity Vi, tþ1 according to the velocity equation as in Eq. (3) or Eq. (5)

Update the particle position Xi, tþ1 in accordance to position equation as in Eq. (2) or

Update the particle position as in Eq. (7)

Evaluate f Xj□jið Þ and MIN f Xj□jið Þð Þ
Update pbest and gbest

end for n
t ¼ tþ 1

end while

Post processing the results and visualization
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5. Experimental results and discussion

Two coordinate sets of 15 terminal nodes are randomly created based on varied distribution
topology of terminal nodes in VLSI system on a defined two dimensional 100 � 100 search
space. Coordinate sets for nearly Uniform distribution and Bivariate distribution are graphi-
cally represented in Figures 4 and 5 respectively.

Experiments on all the algorithms are performed 25 times for each of these coordinate sets of
varied distribution topologies in VLSI system. The population size of the swarms has been set
as 100 and maximum iteration of 75 is used for all the algorithms.

Figure 4. Nearly uniform distribution of terminal nodes on 100 � 100 search space.

Figure 5. Bivariate distribution of terminal nodes on 100 � 100 search space.
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5.1. Experiment A

Experiments on PSO-Was well as on the modified algorithms PSO-ST [20] and PSO-SAAC are
performed separately for two said coordinate sets to interconnect the terminal points for each
set and to return the minimum cost of interconnection correspondingly. The minimum inter-
connection VLSI global routing cost, the average interconnection VLSI global routing cost over
the 25 simulations of the algorithms and the corresponding standard deviations are recorded.
The results of average gbest and minimum gbest are summarized in Table 1.

For nearly uniform distribution of terminal nodes in VLSI layout, PSO-SAAC works best in
compared to the other two algorithms. In SET 1 ‘338’ is achieved as the minimum interconnec-
tion global cost value for PSO-SAAC, given in Figure 6. From Table 1 it can be analyzed that
for bivariate distribution of terminal nodes in VLSI layout, self-tuned acceleration constant
controlling mechanism for PSO-ST outruns the other two algorithms. In random uniform
distribution environment, PSO-ST generates lowest minimum interconnection cost as 253,

Test case gbest value PSO-W PSO-ST PSO-SAAC

SET 1 Average 354.5 348.4 341.7

Minimum 350 343 338

SET 2 Average 256.7 254.9 257.3

Minimum 253 253 255

Table 1. Comparison of PSO-W with PSO-ST and PSO-SAAC.

Figure 6. Minimum ‘cost’ Steiner tree obtained for PSO-SACC in SET 1.
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performed separately for two said coordinate sets to interconnect the terminal points for each
set and to return the minimum cost of interconnection correspondingly. The minimum inter-
connection VLSI global routing cost, the average interconnection VLSI global routing cost over
the 25 simulations of the algorithms and the corresponding standard deviations are recorded.
The results of average gbest and minimum gbest are summarized in Table 1.

For nearly uniform distribution of terminal nodes in VLSI layout, PSO-SAAC works best in
compared to the other two algorithms. In SET 1 ‘338’ is achieved as the minimum interconnec-
tion global cost value for PSO-SAAC, given in Figure 6. From Table 1 it can be analyzed that
for bivariate distribution of terminal nodes in VLSI layout, self-tuned acceleration constant
controlling mechanism for PSO-ST outruns the other two algorithms. In random uniform
distribution environment, PSO-ST generates lowest minimum interconnection cost as 253,

Test case gbest value PSO-W PSO-ST PSO-SAAC

SET 1 Average 354.5 348.4 341.7

Minimum 350 343 338

SET 2 Average 256.7 254.9 257.3

Minimum 253 253 255

Table 1. Comparison of PSO-W with PSO-ST and PSO-SAAC.

Figure 6. Minimum ‘cost’ Steiner tree obtained for PSO-SACC in SET 1.
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given in Figure 7. It is also seen that acceleration constant tuning mechanism of PSO improves
the average interconnection cost of the VLSI global best parameter.

So, it can be safely stated that for nearly uniform distribution PSO-SAAC and for increased
random bivariate distributions PSO-ST reduces the cost of RMST, constructed by
interconnecting the terminal nodes. So RSMT problem of graphs can be effectively managed
and thereby the VLSI interconnect length is reduced to a great extent.

It is also observed that from Table 2, that standard deviation value for PSO-SAAC is lowest for
SET 1 whereas PSO-ST achieves lowest standard deviation value for SET 2. This implies that
for nearly uniform and less random distribution, self-adaptive mechanism of PSO ensures
more consistency while self-tuned mechanism of PSO is more consistent in case of highly
random distribution of terminal nodes in the defined search space.

5.2. Experiment B

The experiments are performed first on weighted PSO (PSO-W) and then on PSO with con-
striction factor (PSO-C) and lastly on PSO with mutation algorithm (PSO-MU) for all two

Figure 7. Minimum ‘cost’ Steiner tree obtained for PSO-ST in SET 2.

Test case PSO-W PSO-ST PSO-SAAC

SET 1 7.77 0.71 5.41

SET 2 1.94 1.88 4.12

Table 2. Standard deviation of gbest values.
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coordinate set which have been considered. The results of minimum interconnect cost, average
cost and average execution time of all algorithms are recorded on Table 3.

The Minimum Rectilinear Spanning Tree (RMST) for minimum interconnect cost generated for
the said VLSI topologies in case of all algorithms are shown in Figures 8, 9, and 10. It reveals
that the algorithm PSO-MU generate lowest minimum global best value as well as minimum
mean value in all two coordinate sets. This indicates that this algorithm PSO-MU, in compar-
ison to PSO-W and PSO-C, ensure efficient VLSI global routing cost minimization and better
convergence.

It is observed from Table 3 that for Coordinate Set 1, gbest value of PSO –MU is found to be 329
where execution time of this algorithm is much greater than PSO-W. Runtime of PSO-C is
found to be 101.51 compared to 85.48 for PSO-MU algorithm. This implies that PSO-MU

Test case gbest value PSO-W PSO-C PSO-MU

SET 1 Average 354.5 350.4 336.8

Minimum 350 345 329

System time 52.825 101.51 85.48

SET 2 Average 256.7 256 250.4

Minimum 253 254 248

System time 49.05 86.01 66.96

Table 3. Comparison of PSO variants over average, minimum gbest value and system time.

Figure 8. Minimum ‘interconnection cost’ Steiner Tree obtained for PSO-W in SET 1.
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Figure 9. Minimum ‘interconnection cost’ Steiner Tree obtained for PSO-C in SET 1.

Figure 10. Minimum ‘interconnection cost’ Steiner Tree obtained for PSO-MU in SET 1.
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algorithm outperforms the performance of conventional PSO-W and PSO-C algorithm while
reducing the Timing budget with respect to PSO-C algorithm in context to VLSI global routing.

In order to analyze the consistency of these algorithms, the standard deviation (SD) values are
calculated for all algorithms on each of the two coordinate sets and are recorded in the Table 4.
SD value of PSO-C is found to be 0.71 and 2.25 for the two coordinate sets. These values are
much lower compared to all other SD values of PSO-W and PSO-MU ensuring robustness
although sacrificing system execution time of the algorithm independent of the distribution
complexities of the search space in VLSI layout. This implies that PSO-C although generates
higher value of global routing interconnection cost as well as system execution time compared
to PSO-W and PSO-MU, it exhibits robustness of the algorithm throughout all varied distribu-
tion topologies of the terminal nodes in the said VLSI layout.

6. Conclusion

This chapter intends variants developed on Particle Swarm Optimization algorithm to resolve
the global routing problem in VLSI domain. Simultaneously the controlling of acceleration
constant in PSO has been verified for the VLSI routing problem. Lastly, a proportional analysis
is done amongst the pre mentioned algorithms beside three variants of PSO, which have been
recognized as decent routing algorithms in VLSI design. Researches are piloted to inspect the
optimization property, rate of convergence, computational time and robustness of the algo-
rithms including the ways by which algorithms work proficiently in problem space with
dissimilar distributive topologies of VLSI layout.

The outcomes demonstrates that from the standpoint of topologically dissimilar problem
spaces of VLSI domain, the general performance of PSO-ST [20] is very agreeable, however
PSO-SAAC executes finest in an approximately uniform distributed problem space. It has also
been observed that the performance of PSO-C and PSO-MU are unhampered of the diverse
distribution of VLSI global routing problem space. The performance of the algorithm PSO-MU
preserves a balance between the optimization and convergence rate. Although PSO-MU is
realized to be steady in random problem space [22], PSO-C is appeared to be the best algo-
rithm in the perspective of robustness.

Therefore the chapter indicated the exclusive merits and demerits of the PSO algorithm and its
variants, well-matched for solving the wire-length minimization problem of global routing in
VLSI physical design. It is projected that in the situation of VLSI global routing optimization,
the paradigm of hybridization with essence of genetics can contest with the functioning of PSO
conventional ones and can exhibit enhanced performance. Hence the global routing problem

Test case PSO-W PSO-C PSO-MU

SET 1 7.77 0.71 5.65

SET 2 1.94 1.88 3.83

Table 4. Standard deviation of gbest values.
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Figure 9. Minimum ‘interconnection cost’ Steiner Tree obtained for PSO-C in SET 1.

Figure 10. Minimum ‘interconnection cost’ Steiner Tree obtained for PSO-MU in SET 1.
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algorithm outperforms the performance of conventional PSO-W and PSO-C algorithm while
reducing the Timing budget with respect to PSO-C algorithm in context to VLSI global routing.

In order to analyze the consistency of these algorithms, the standard deviation (SD) values are
calculated for all algorithms on each of the two coordinate sets and are recorded in the Table 4.
SD value of PSO-C is found to be 0.71 and 2.25 for the two coordinate sets. These values are
much lower compared to all other SD values of PSO-W and PSO-MU ensuring robustness
although sacrificing system execution time of the algorithm independent of the distribution
complexities of the search space in VLSI layout. This implies that PSO-C although generates
higher value of global routing interconnection cost as well as system execution time compared
to PSO-W and PSO-MU, it exhibits robustness of the algorithm throughout all varied distribu-
tion topologies of the terminal nodes in the said VLSI layout.

6. Conclusion

This chapter intends variants developed on Particle Swarm Optimization algorithm to resolve
the global routing problem in VLSI domain. Simultaneously the controlling of acceleration
constant in PSO has been verified for the VLSI routing problem. Lastly, a proportional analysis
is done amongst the pre mentioned algorithms beside three variants of PSO, which have been
recognized as decent routing algorithms in VLSI design. Researches are piloted to inspect the
optimization property, rate of convergence, computational time and robustness of the algo-
rithms including the ways by which algorithms work proficiently in problem space with
dissimilar distributive topologies of VLSI layout.

The outcomes demonstrates that from the standpoint of topologically dissimilar problem
spaces of VLSI domain, the general performance of PSO-ST [20] is very agreeable, however
PSO-SAAC executes finest in an approximately uniform distributed problem space. It has also
been observed that the performance of PSO-C and PSO-MU are unhampered of the diverse
distribution of VLSI global routing problem space. The performance of the algorithm PSO-MU
preserves a balance between the optimization and convergence rate. Although PSO-MU is
realized to be steady in random problem space [22], PSO-C is appeared to be the best algo-
rithm in the perspective of robustness.

Therefore the chapter indicated the exclusive merits and demerits of the PSO algorithm and its
variants, well-matched for solving the wire-length minimization problem of global routing in
VLSI physical design. It is projected that in the situation of VLSI global routing optimization,
the paradigm of hybridization with essence of genetics can contest with the functioning of PSO
conventional ones and can exhibit enhanced performance. Hence the global routing problem
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Table 4. Standard deviation of gbest values.
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in VLSI can be competently managed by contemporary PSO meta-heuristics and by hybridi-
zation of distinct swarm intelligence.
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Abstract

This chapter formulates a multi-objective optimization problem to simultaneously mini-
mize the objectives of fuel cost and emissions from the power plants to meet the power
demand subject to linear and nonlinear system constraints. These conflicting objectives are
formulated as a combined economic emission dispatch (CEED) problem. Various meta-
heuristic optimization algorithms have been developed and successfully implemented to
solve this complex, highly nonlinear, non-convex problem. To overcome the shortcomings
of the evolutionary multi-objective algorithms like slow convergence to Pareto-optimal
front, premature convergence, local trapping, it is very natural to think of integrating
various algorithms to overcome the shortcomings. This chapter proposes a hybrid evolu-
tionary multi-objective optimization framework using Non-Dominated Sorting Genetic
Algorithm II and Multi-Objective Particle Swarm Optimization to solve the CEED prob-
lem. The hybrid method along with the proposed constraint handling mechanism is able
to balance the exploration and exploitation tasks. This hybrid method is tested on IEEE 30
bus system with quadratic cost function considering transmission loss and valve point
effect. The Pareto front obtained using hybrid approach demonstrates that the approach
converges to the true Pareto front, finds the diverse set of solutions along the Pareto front
and confirms its potential to solve the CEED problem.

Keywords: multi-objective optimization, economic emission dispatch, Pareto
optimality, NSGAII, MOPSO, B-loss coefficients

1. Introduction

In order to operate the power system economically and also to protect the environment from
pollution the power system operator has to carry out optimal scheduling of active power to
simultaneously minimize the fuel cost and the emissions from the fossil fuel-fired power plants.
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demand subject to linear and nonlinear system constraints. These conflicting objectives are
formulated as a combined economic emission dispatch (CEED) problem. Various meta-
heuristic optimization algorithms have been developed and successfully implemented to
solve this complex, highly nonlinear, non-convex problem. To overcome the shortcomings
of the evolutionary multi-objective algorithms like slow convergence to Pareto-optimal
front, premature convergence, local trapping, it is very natural to think of integrating
various algorithms to overcome the shortcomings. This chapter proposes a hybrid evolu-
tionary multi-objective optimization framework using Non-Dominated Sorting Genetic
Algorithm II and Multi-Objective Particle Swarm Optimization to solve the CEED prob-
lem. The hybrid method along with the proposed constraint handling mechanism is able
to balance the exploration and exploitation tasks. This hybrid method is tested on IEEE 30
bus system with quadratic cost function considering transmission loss and valve point
effect. The Pareto front obtained using hybrid approach demonstrates that the approach
converges to the true Pareto front, finds the diverse set of solutions along the Pareto front
and confirms its potential to solve the CEED problem.

Keywords: multi-objective optimization, economic emission dispatch, Pareto
optimality, NSGAII, MOPSO, B-loss coefficients

1. Introduction

In order to operate the power system economically and also to protect the environment from
pollution the power system operator has to carry out optimal scheduling of active power to
simultaneously minimize the fuel cost and the emissions from the fossil fuel-fired power plants.
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These objectives are desirable to obtain great economic benefit [1] and to reduce the nitrogen
oxide (NOx), sulfur oxide (SOx) and carbon dioxide (CO2) pollutants which cause harmful effect
on human beings [2]. These conflicting objectives can be formulated as a multi-objective com-
bined economic emission dispatch (CEED) problem. This CEED problem can be solved using
traditional mathematical programming techniques such as lambda iteration, gradient search [1]
and can also be solved using modern heuristics optimization techniques. The numerous advan-
tages of solving the CEED problem using heuristic optimization methods compared to the
traditional mathematical programming techniques are they are population-based, do not require
any derivative information, do not use gradient information in search process, use stochastic
operators in search process, they are simple to implement and flexible, have inbuilt parallel
architecture and they are scalable and are also computationally quick.

A single optimal solution cannot be obtained for a multi-objective CEED problem which
simultaneously minimizes the conflicting objectives of fuel cost and emission. Thus the simul-
taneous minimization of conflicting objectives in a multi-objective optimization problem
(MOP) gives rise to a set of tradeoff solution called as Pareto-optimal (PO) solutions [3] which
needs further processing to arrive at a single preferred solution. In literature domination based
framework using multi-objective evolutionary algorithms (MOEA) which simultaneously min-
imizes the fuel cost and emission have been employed to solve the CEED problem. These
population-based approaches can obtain the multiple non dominated solutions in a single
simulation run. These non-dominated solutions portray the tradeoff between fuel cost and
emission objectives of CEED problem. Modern meta-heuristic optimization algorithms like
Genetic Algorithm [4, 5], Biogeography Based Optimization [6], Particle Swarm Optimization
[7], Bacterial Foraging Algorithm [8], Scatter Search [9], Teaching Learning Based Optimization
[10], Differential Evolution [11] and Harmony Search Algorithm [12] have been developed and
successfully implemented to solve this complex, highly nonlinear, non-convex CEED problem.

The multiple objective CEED problem can also be transformed into a single objective problem
using a weighted sum approach and h parameter values. The h parameters are used to overcome
the dimensionality problem when combining multi-objectives and the converted single objective
problem is then solved using evolutionary algorithms [13–15]. Another technique to solve CEED
problem without the h parameter is to normalize the fuel cost and emission components [6] and
solve the single objective function using evolutionary algorithms (EA). In these approaches for
the chosen value of weights will give one particular PO solution at a time. However, the
disadvantage of these methods is that it requires multiple runs to find the set of PO solutions.

Each evolutionary algorithm has its own characteristics and merits; therefore it is natural to
think of integrating these different algorithms to handle a complex problem like CEED. In the
research field of Evolutionary Algorithms merging of two or more optimization algorithms
into a single framework is called hybridization. In [16–21] hybrid multi-objective optimization
algorithms have been successfully applied to solve CEED, various complex engineering prob-
lems, and standard test functions. The results indicate that the hybrid algorithms are effective,
can exchange elite knowledge within the hybrid framework, can do parallel processing, can
improve the exploration and exploitation capabilities and can yield more favorable perfor-
mance than any single algorithm.
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In order to obtain a globally optimal solution without being trapped in local optima requires a
tradeoff between exploration and exploitation task in the search process. Exploration phase in
any algorithm is important to search every part of the solution domain to provide an estimate
of the global optimal solution. On the other hand exploitation phase in any algorithm is
important to improve the best solutions found so far by searching in their neighborhood. In
this chapter, a hybrid framework using Non-Dominated Sorting Genetic Algorithm II (NSGA
II) [22] and Multi-objective Particle Swarm Optimization (MOPSO) [23] is used to solve the
CEED problem. This hybrid framework integrates the desirable features of the NSGA II and
MOPSO while curbing their individual flaws. These population-based approaches use differ-
ent techniques for exploring the search space and when they are combined will improve the
tradeoff between the exploration and exploitation tasks to converge around the best possible
solutions. The main purpose of this hybridization technique is to obtain a well-spread and
well-diverse PO solution. When the proposed hybrid algorithm is used to solve the highly
complex CEED problem the PO solution is obtained in less number of iteration and is also
computationally fast when compared to MOPSO.

The rest of the chapter is organized as follows. The next section formulates the CEED problem.
In Section 3, the transmission loss handling procedure and the constraint handling procedure
is explained. In Section 4 the short review of NSGA II and MOPSO is provided. Section 5 is
devoted to explaining the hybrid algorithm. In Section 6 the hybrid algorithm is applied on
standard IEEE 30 bus systems and it also discusses the simulation results. Finally, the conclu-
sion is drawn in Section 7.

2. Formulation of combined economic emission dispatch (CEED) problem

The combined economic emission dispatch problem has two conflicting objectives. The first
objective can be stated as determining the optimal power generation schedule from a set of
online generating units to satisfy the load demand subject to several physical and operational
constraints to minimize the fuel cost. The second objective can be stated as determining the
optimal power generation schedule from a set of online generating units to satisfy the load
demand to minimize the pollutant emissions produced by the generating units. Both the
conflicting objectives have to be minimized at the same time because operating the system with
minimum cost will result in higher emission and considering only the minimum environmental
impact is not practical which results in high production cost of the system. This section formu-
lates the objective functions of the CEED problem along with equality and inequality constraints
to maintain rigorous standards to meet the practical requirements of the power system. The goal
of this chapter is to find the Pareto-optimal solutions of the CEED problem which minimize both
these objectives subject to constraints. The mathematical formulation is as follows.

2.1. Objective functions of CEED problem

The general formulation for a multi-objective optimization problem (MOOP) is to minimize the
number of objective functions simultaneously. A general mathematical model is represented as
follows [21]:
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minimum cost will result in higher emission and considering only the minimum environmental
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Minimize f xð Þ ¼ f 1 xð Þ; f 2 xð Þ;⋯f m xð Þ� �
, x∈D (1)

where f xð Þ represents the vector of objectives and f i xð Þ, i ¼ 1, 2,⋯, m is a scalar decision
variable which maps decision variable x into objective space f i ¼ Rn ! R: The n-dimensional
variable x is restricted to lie in a feasible region D which is constrained by j in-equality
constraint and k equality constraint, i.e.

D ¼ x : gj xð Þ ≤ 0; hk xð Þ ¼ 0; j ¼ 1; 2;⋯J; k ¼ 1; 2;⋯;K
n o

(2)

The decision variable x can be written more suitably as

x ¼ x1; x2; x3;⋯; xn½ �T (3)

where T is the transposition of the column vector to the row vector. The decision variables are

restricted to take a value within a lower x minð Þ
i and upper x maxð Þ

i bounds. These bounds are
called the decision space [3].

In MO CEED problem the number of objectives m ¼ 2.The mathematical model of CEED is
represented as follows:

Minimize f xð Þ ¼ f 1 xð Þ; f 2 xð Þ� �
, x∈D (4)

subject to power balance equality constraints h xð Þ and bounds. The function f 1 xð Þ represents
the minimization of total fuel cost function and the function f 2 xð Þ represents the minimization
of the emissions from the fossil fuel fired plants. The decision variable x consists of the real
power generation of the n generating units and can be written as

x ¼ Pg1;Pg2;Pg3;⋯;Pgn
� �T (5)

where Pgi is the real power output of the ith generator.

Power plants commonly have multiple valves that are used to control the power output of the
units. In a practical generating unit, when steam admission valves in thermal units are first
opened, a sudden increase in losses is registered which results in ripples in the cost function. In
order to model these ripples accurately, sinusoidal functions are added to the quadratic cost
function [24]. The resulting cost function contains higher order nonlinearity and makes the
problem non-differentiable and non-convex. Hence there are two versions of the fuel cost
function, the quadratic function represented by f 1 xð Þ and the combination of quadratic and a
sinusoidal (valve-point) function represented by f 1,V xð Þ . The two versions of the fuel cost
functions are given below

f 1 Pgð Þ ¼
Xn

i¼1

aiPg2i þ biPgi þ ci (6)

f 1,V Pgð Þ ¼
Xn

i¼1

aiPg2i þ biPgi þ ci þ ei sin f i Pg
min
i � Pgi

� �� ��� �� (7)

Particle Swarm Optimization with Applications84

where ai, bi, ci represent the cost coefficients of the generator i. ei and f i are coefficients to model
the effect of valve point of the generator i.

The second objective function f 2 xð Þ is an emission function which takes into account the major
pollutants caused by the fossil fuel fired power plants. The main pollutants from the power
plants are the sulfur oxides and nitrogen oxides. The sulfur oxide emissions are proportional to
the fuel consumed by the power plants and have the same form as that of the fuel cost function
given by (6). The sulfur oxide emission function can be stated as follows [7].

f 2, so Pgð Þ ¼
Xn

i¼1

Si,1 þ Si,2Pgi þ Si,3Pg2i (8)

The nitrogen oxides emissions are difficult to evaluate as the nitrogen is available in air and
also in the fuel. The production of nitrogen gas is related to boiler temperature and air content.
The modeling of the nitrogen oxides consists of straight lines and exponential terms. The
nitrogen oxides emission function can be stated as follows

f 2,No Pgð Þ ¼
Xn

i¼1

Ni,1 þNi,2Pgi þNi,3eNi,4Pgi (9)

The total emission function is obtained by adding the coefficients of (8) and (9) which gives the
combination of the mixture of sulfur oxides and nitrogen oxides pollutants [7]. The total
emission function can be stated as follows

f 2 Pgð Þ ¼
Xn

i¼1

10�2 αi þ βiPgi þ γiPg
2
i

� �þ ηie
δiPgi

� �
(10)

The total emission function given by (10) has a quadratic term and an exponential term which
makes the function highly nonlinear. In (10) αi, βi,γi, ηi, δi are the emission coefficients of the
generator i. The modeling of the emission function is very important because according to the
Amendments of the Clean Air Act regulatory agencies might decide to limit power plant
emission in the areas where there are high concentrations of harmful contaminants.

2.2. Active power balance equality constraint and bounds

In order ensure that the total real power generation exactly match with the total load demand Pd
and transmission loss Pl in the system a power balance equality constraint given in (11) should
be satisfied.

h xð Þ ¼
Xn

i¼1

Pgi � Pd� Pl ¼ 0 (11)

The transmission losses in the power network are function of Pg and can be represented using
B-matrix coefficients (Kron’s loss formula [1]) as follows

Pl Pgð Þ ¼
Xn

i¼1

Xn

j¼1

PgiBijPgj þ
Xn

i¼1

B0iPgi þ B00 (12)
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� �
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generator i. The modeling of the emission function is very important because according to the
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and transmission loss Pl in the system a power balance equality constraint given in (11) should
be satisfied.
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where Bij, B0i, B00 are transmission loss coefficients. There are instances in literature where the
power losses in the system is neglected and the power balance equation given by (11) is
curtailed as follows

h xð Þ ¼
Xn

i¼1

Pgi � Pd ¼ 0 (13)

The above equations given by (11) and (13) are most common form of power balance equation
found in the literature.

The power output of each generator i should lie within its minimum limit (Pgmin
i ) and maxi-

mum limit (Pgmax
i ) given by

Pgmin
i ≤Pgi ≤Pg

max
i ; i ¼ 1, 2, 3⋯, n (14)

2.3. Combined economic emission dispatch

The purpose of the CEED problem is to determine the Pareto-optimal real power generation

vector x∗ ¼ Pg∗1;Pg
∗
2;Pg

∗
3;⋯;Pg∗n

� �T that minimize the two conflicting objective given by (7)
and (10) while satisfying the real power equality constraint given by (11) and the bounds given
by (14). The bi-objective CEED problem can be formulated as

Minimize f ¼ f 1,V Pgð Þ; f 2 Pgð Þ
h i

(15)

In MO CEED problem, the economic and emission objectives will conflict with each other and
is not possible to satisfy them simultaneously. There is no way of improving these objectives
without degrading at least one of these objectives and the resulting set of non-dominated
solutions thus obtained are called Pareto-optimal set. The objective function values of all
elements in the PO set in the objective space constitute the Pareto front. When the sufficient
number of PO solutions is available for the CEED problem then it is possible to find a convex
curve containing these solutions to produce the Pareto front. The two main goals of MO CEED
problem:

1. Find a set of non-dominated solutions which lie on the Pareto-optimal front

2. Find a wide spread of non-dominated solutions to represent the entire range of the Pareto-
optimal front.

3. Constraint handling mechanism

At any stage of the algorithm whenever a new population is being generated it is very
important to make sure that the population lies within the decision space. While solving
the CEED problem this implies that the population should satisfy the equality constraints

and bounds. If the transmission losses are neglected than the kth variable of the candidate
solution Pgk can be calculated by subtracting the sum of the power generations (excluding the
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kth variable)
Pn�1

i¼1
Pgifrom the power demand Pd. If the power transmission losses are consid-

ered, to determine Pgk and to maintain the equality constraint becomes hard. It is done using
the following steps.

Step 1. Update the variables belonging to the set αn by normal optimization process of an
evolutionary algorithm.

Pgi ¼ Pgmin
i � rand∗ Pgmin

i � Pgmax
i

� �
; i∈αn (16)

Here rand is a uniformly distributed random number in the range of 0; 1½ �. The set αn

contains all the integers in the range 1; n½ � except k, where k is a randomly generated
integer which lies in the range of 1; n½ �

Step 2. If updating of the variables is carried out using any other technique then regulate the
updated variables which violate the lower bounds as Pgi ¼ Pgmin

i ; i∈αn. Regulate the
updated variables which violate the upper bounds as Pgi ¼ Pgmax

i ; i∈αn.

Step 3. Obtain the value of the kth variable of the candidate solution Pgk by solving the
following quadratic equation (17) whose coefficients are associated with the variables
belonging to the set αn and the transmission loss coefficients [7]. To improve the
potential candidate solution and also to improve the flexibility and diversity of the
optimization algorithm the value of k is randomly generated integer between 1 and n.

BkkPg2k þ 2
X
i∈αn

BkiPgi þ B0k � 1

 !
Pgkþ

Pdþ
X
i∈αn

X
j∈αn

PgiBijPgj þ
X
i∈αn

B0iPgi �
X
i∈αn

Pgi þ B00

0
@

1
A ¼ 0

(17)

Out of the two roots of the quadratic equation (17), one root will be selected as the
value of the variable Pgk using the following procedure. If both the roots of the qua-
dratic equation lie within the bounds then the root which has the minimum value is
selected. If only one root lies within the bounds, this root is selected as the value of Pgk
and the other root which lies outside the bounds is neglected. If both the roots lay
outside the bounds the value of Pgk is set equal to Pgmin

k .

Step 4. Calculate the residue PRD by subtracting the total system demand Pd and the total

system transmission loss Pl from the sum of the total power generation
Pn
i¼1

Pgi.

If PRDj j < tol, then go to step 7; otherwise go to step 5. Here, tol is the demand tolerance
usually set as 0:001 p:u:

Step 5. Recalculate Pgi using Eq. (16).

Step 6. Repeat step 3, step 4 and step 5 until PRDj j < tol. This step will ensure that the
candidate solution will always lie within the decision space.

Step 7. Stop the constraint handling procedure.
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The above equations given by (11) and (13) are most common form of power balance equation
found in the literature.

The power output of each generator i should lie within its minimum limit (Pgmin
i ) and maxi-

mum limit (Pgmax
i ) given by

Pgmin
i ≤Pgi ≤Pg

max
i ; i ¼ 1, 2, 3⋯, n (14)

2.3. Combined economic emission dispatch

The purpose of the CEED problem is to determine the Pareto-optimal real power generation

vector x∗ ¼ Pg∗1;Pg
∗
2;Pg

∗
3;⋯;Pg∗n

� �T that minimize the two conflicting objective given by (7)
and (10) while satisfying the real power equality constraint given by (11) and the bounds given
by (14). The bi-objective CEED problem can be formulated as

Minimize f ¼ f 1,V Pgð Þ; f 2 Pgð Þ
h i

(15)

In MO CEED problem, the economic and emission objectives will conflict with each other and
is not possible to satisfy them simultaneously. There is no way of improving these objectives
without degrading at least one of these objectives and the resulting set of non-dominated
solutions thus obtained are called Pareto-optimal set. The objective function values of all
elements in the PO set in the objective space constitute the Pareto front. When the sufficient
number of PO solutions is available for the CEED problem then it is possible to find a convex
curve containing these solutions to produce the Pareto front. The two main goals of MO CEED
problem:

1. Find a set of non-dominated solutions which lie on the Pareto-optimal front

2. Find a wide spread of non-dominated solutions to represent the entire range of the Pareto-
optimal front.

3. Constraint handling mechanism

At any stage of the algorithm whenever a new population is being generated it is very
important to make sure that the population lies within the decision space. While solving
the CEED problem this implies that the population should satisfy the equality constraints

and bounds. If the transmission losses are neglected than the kth variable of the candidate
solution Pgk can be calculated by subtracting the sum of the power generations (excluding the
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kth variable)
Pn�1

i¼1
Pgifrom the power demand Pd. If the power transmission losses are consid-

ered, to determine Pgk and to maintain the equality constraint becomes hard. It is done using
the following steps.

Step 1. Update the variables belonging to the set αn by normal optimization process of an
evolutionary algorithm.

Pgi ¼ Pgmin
i � rand∗ Pgmin

i � Pgmax
i

� �
; i∈αn (16)

Here rand is a uniformly distributed random number in the range of 0; 1½ �. The set αn

contains all the integers in the range 1; n½ � except k, where k is a randomly generated
integer which lies in the range of 1; n½ �

Step 2. If updating of the variables is carried out using any other technique then regulate the
updated variables which violate the lower bounds as Pgi ¼ Pgmin

i ; i∈αn. Regulate the
updated variables which violate the upper bounds as Pgi ¼ Pgmax

i ; i∈αn.

Step 3. Obtain the value of the kth variable of the candidate solution Pgk by solving the
following quadratic equation (17) whose coefficients are associated with the variables
belonging to the set αn and the transmission loss coefficients [7]. To improve the
potential candidate solution and also to improve the flexibility and diversity of the
optimization algorithm the value of k is randomly generated integer between 1 and n.

BkkPg2k þ 2
X
i∈αn

BkiPgi þ B0k � 1

 !
Pgkþ

Pdþ
X
i∈αn

X
j∈αn

PgiBijPgj þ
X
i∈αn

B0iPgi �
X
i∈αn

Pgi þ B00

0
@

1
A ¼ 0

(17)

Out of the two roots of the quadratic equation (17), one root will be selected as the
value of the variable Pgk using the following procedure. If both the roots of the qua-
dratic equation lie within the bounds then the root which has the minimum value is
selected. If only one root lies within the bounds, this root is selected as the value of Pgk
and the other root which lies outside the bounds is neglected. If both the roots lay
outside the bounds the value of Pgk is set equal to Pgmin

k .

Step 4. Calculate the residue PRD by subtracting the total system demand Pd and the total

system transmission loss Pl from the sum of the total power generation
Pn
i¼1

Pgi.

If PRDj j < tol, then go to step 7; otherwise go to step 5. Here, tol is the demand tolerance
usually set as 0:001 p:u:

Step 5. Recalculate Pgi using Eq. (16).

Step 6. Repeat step 3, step 4 and step 5 until PRDj j < tol. This step will ensure that the
candidate solution will always lie within the decision space.

Step 7. Stop the constraint handling procedure.

Solution of Combined Economic Emission Dispatch Problem with Valve-Point Effect Using Hybrid NSGA II-MOPSO
http://dx.doi.org/10.5772/intechopen.72807

87



The main purpose of this constraint handling mechanism is to increase the flexibility and
diversity of the algorithm and to make sure that the candidate solution generated at any point
of the algorithm always lies within the decision space.

4. NSGA II and MOPSO algorithms for solving CEED problem

Several Evolutionary Multi-objective (EMO) algorithms like NSGAII, MOPSO, SPEA 2 (Strength
Pareto Evolutionary Algorithm), GDE 3 (Generalized Differential Equation) have been designed
and used in solving numerous complex real word problems involving two or more objectives.
All these algorithms can find the multiple Pareto-optimal solutions in a single run. Out of all
these available algorithms, two of the widely used reliable methods for solving bi-objective
optimization problems are the NSGA II and MOPSO. This section provides the review of these
two EMO algorithms.

NSGA II was proposed in [22] as an improvement of the NSGA proposed in [25]. This NSGA II
algorithm was the revised version of NSGA to overcome the following criticisms:

• Computational complexity associated with non-dominated sorting.

• Lack of elite-preserving strategy.

• Lack of maintaining diversity among obtained solutions.

The NSGA II algorithm is very efficient for solving multi-objective optimization problems
since it incorporates an efficient elitism preserving technique using non-domination sorting.
The population is ranked based on non-domination sorting before the selection is performed.
All non-dominated individuals are classified into one category. Another layer of non-dominated
individuals are considered after the group of classified individuals are ignored. This process is
continued until all individuals in the population are classified. NSGA II also uses a mechanism
for preserving the diversity and spread of the solutions without specifying any additional
parameters (NSGA uses fitness sharing). This crowding distance operator guides the selection
process towards a uniformly spread out Pareto-optimal front. The NSGA II algorithm for
solving the CEED problem is stated below:

• Specify the parameters for the CEED problem

• The total demand of the power system Pd

• Fuel cost and emission coefficients for each generating unit

• B matrix coefficients for transmission loss calculations

• Number of decision variables nVar

• Lower bounds of the decision variables VarMin

• Upper bounds of the decision variables VarMax

• Specify the parameters for NSGA II Algorithm

• Population Size nPop
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• Maximum number of iteration MaxIt

• Crossover Percentage pCrossover

• Mutation Percentage pMutation

• Mutation rate mu

• Mutation step size sigma

• Initialize Population

• Generate a random nPop size population

• Once the random population is initialized the Constraint Handling Mechanism pro-
posed in Section 3 is carried out.

• Evaluate the objective functions

• Evaluate the fuel cost objective function E and emission objective function F

• Perform Non Domination Sorting

• Calculate Crowding Distance and rank the population based on Non Dominated fronts

• For each generation do

• Create offspring population

• Selection, Crossover and Mutation

• Apply Constraint Handling Mechanism

• Evaluate the fuel cost objective function E and emission objective function F

• Merge the parent and offspring population

• Perform non domination sorting

• Calculate crowding distance and rank based on non-domination fronts

• Select solutions

• Each front is filled in ascending order

• Last front-descending order of crowding distance

• Store the non-dominated solutions in list Ϝ1

• Plot the non-dominated solutions in list Ϝ1

• Increment generation count

• End for

In order to handle multiple objectives Pareto dominance is incorporated into PSO algorithm
and the MOPSO algorithm is proposed in [23]. The algorithm proposed in [23] uses an external
repository of particles to keep a record of the non-dominated vectors found along the search
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The main purpose of this constraint handling mechanism is to increase the flexibility and
diversity of the algorithm and to make sure that the candidate solution generated at any point
of the algorithm always lies within the decision space.

4. NSGA II and MOPSO algorithms for solving CEED problem

Several Evolutionary Multi-objective (EMO) algorithms like NSGAII, MOPSO, SPEA 2 (Strength
Pareto Evolutionary Algorithm), GDE 3 (Generalized Differential Equation) have been designed
and used in solving numerous complex real word problems involving two or more objectives.
All these algorithms can find the multiple Pareto-optimal solutions in a single run. Out of all
these available algorithms, two of the widely used reliable methods for solving bi-objective
optimization problems are the NSGA II and MOPSO. This section provides the review of these
two EMO algorithms.

NSGA II was proposed in [22] as an improvement of the NSGA proposed in [25]. This NSGA II
algorithm was the revised version of NSGA to overcome the following criticisms:

• Computational complexity associated with non-dominated sorting.

• Lack of elite-preserving strategy.

• Lack of maintaining diversity among obtained solutions.

The NSGA II algorithm is very efficient for solving multi-objective optimization problems
since it incorporates an efficient elitism preserving technique using non-domination sorting.
The population is ranked based on non-domination sorting before the selection is performed.
All non-dominated individuals are classified into one category. Another layer of non-dominated
individuals are considered after the group of classified individuals are ignored. This process is
continued until all individuals in the population are classified. NSGA II also uses a mechanism
for preserving the diversity and spread of the solutions without specifying any additional
parameters (NSGA uses fitness sharing). This crowding distance operator guides the selection
process towards a uniformly spread out Pareto-optimal front. The NSGA II algorithm for
solving the CEED problem is stated below:

• Specify the parameters for the CEED problem

• The total demand of the power system Pd

• Fuel cost and emission coefficients for each generating unit

• B matrix coefficients for transmission loss calculations

• Number of decision variables nVar

• Lower bounds of the decision variables VarMin

• Upper bounds of the decision variables VarMax

• Specify the parameters for NSGA II Algorithm

• Population Size nPop
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• Maximum number of iteration MaxIt

• Crossover Percentage pCrossover

• Mutation Percentage pMutation

• Mutation rate mu

• Mutation step size sigma

• Initialize Population

• Generate a random nPop size population

• Once the random population is initialized the Constraint Handling Mechanism pro-
posed in Section 3 is carried out.

• Evaluate the objective functions

• Evaluate the fuel cost objective function E and emission objective function F

• Perform Non Domination Sorting

• Calculate Crowding Distance and rank the population based on Non Dominated fronts

• For each generation do

• Create offspring population

• Selection, Crossover and Mutation

• Apply Constraint Handling Mechanism

• Evaluate the fuel cost objective function E and emission objective function F

• Merge the parent and offspring population

• Perform non domination sorting

• Calculate crowding distance and rank based on non-domination fronts

• Select solutions

• Each front is filled in ascending order

• Last front-descending order of crowding distance

• Store the non-dominated solutions in list Ϝ1

• Plot the non-dominated solutions in list Ϝ1

• Increment generation count

• End for

In order to handle multiple objectives Pareto dominance is incorporated into PSO algorithm
and the MOPSO algorithm is proposed in [23]. The algorithm proposed in [23] uses an external
repository of particles to keep a record of the non-dominated vectors found along the search
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process. At each generation, for each particle in the swarm, by using Roulette wheel selection,
a leader is selected from the external repository. This leader then guides other particles towards
better regions of the search space by modifying the flight of the particles. A special mutation
operator is applied to the particles of the swarm and also to the range of each design variable of
the problem to be solved to improve the explorative behavior of the algorithm. The value of the
mutation operator is decreased during the iteration. To produce well spread Pareto fronts the
MOPSO algorithm in [23] uses an adaptive grid. The MOPSO algorithm for solving the CEED
problem is stated below:

• Specify the parameters for the CEED problem

• The total demand of the power system Pd

• Fuel cost and emission coefficients for each generating unit

• B matrix coefficients for transmission loss calculations

• Number of decision variables nVar

• Lower bounds of the decision variables VarMin

• Upper bounds of the decision variables VarMax

• Specify the parameters for MOPSO Algorithm

• Maximum number of iteration MaxIt

• Population Size nPop

• Repository size nRep

• Inertia Weight w and Inertia Weight damping rate wdamp

• Personal learning coefficient c1 and Global learning coefficient c2

• Number of grids per dimension nGrid

• Inflation Rate alpha, leader selection pressure beta, Deletion selection pressure
gamma

• Mutation rate mu

• Initialize Swarm Population

• Generate a random swarm particles

• Once the random particles are initialized the Constraint Handling Mechanism (Sec-
tion 3) is carried out.

• Store the values of the particles as their personal best pBest

• Determine Domination

• Initialize external repository rep

• Create grid and find grid index
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• For each generation do

• For each particle do

• Select leader from external repository

• Update particle position and velocity

• Apply Constraint Handling Mechanism

• Evaluate the fuel cost objective function E and emission objective function F

• Apply Mutation and calculate new solutions

• Apply Constraint Handling Mechanism

• Determine Domination

• Update pBest

• End for

• Add non dominated particles to the repository

• Determine domination of new repository members

• Keep only the non-dominated members in the repository

• Update grid and grid index

• If repository is full delete members

• Plot the members in the external repository

• Modify inertia weight

• End for

5. Hybrid NSGA II and MOPSO algorithm for solving CEED problem

The mechanism of the proposed hybrid approach for solving the CEED problem is to
integrate the desirable features of NSGA II (retaining the elitism feature) and MOPSO
(exploitation capability) while curbing the individual flaws (NSGAII––does not have an
efficient feedback mechanism, PSO overutilization of resources). The mechanism to explore
the search space differs in both the algorithms. GA uses mutation and crossover operators
which will enhance the exploration task of the hybrid algorithm. The particles in PSO are
influenced by their own knowledge and information shared among swarm members. PSO
enhances the exploitation task of the hybrid algorithm by finding better solutions from the
good ones by searching the neighborhood of good solutions. In this hybrid algorithm at
every generation, the Pareto dominance of the population is computed and based on these
values non dominated sorting is performed [19]. In order to avoid premature convergence,
the elite upper half of the population are enhanced by NSGA II algorithm while the lower
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process. At each generation, for each particle in the swarm, by using Roulette wheel selection,
a leader is selected from the external repository. This leader then guides other particles towards
better regions of the search space by modifying the flight of the particles. A special mutation
operator is applied to the particles of the swarm and also to the range of each design variable of
the problem to be solved to improve the explorative behavior of the algorithm. The value of the
mutation operator is decreased during the iteration. To produce well spread Pareto fronts the
MOPSO algorithm in [23] uses an adaptive grid. The MOPSO algorithm for solving the CEED
problem is stated below:

• Specify the parameters for the CEED problem

• The total demand of the power system Pd

• Fuel cost and emission coefficients for each generating unit

• B matrix coefficients for transmission loss calculations

• Number of decision variables nVar

• Lower bounds of the decision variables VarMin

• Upper bounds of the decision variables VarMax

• Specify the parameters for MOPSO Algorithm

• Maximum number of iteration MaxIt

• Population Size nPop

• Repository size nRep

• Inertia Weight w and Inertia Weight damping rate wdamp

• Personal learning coefficient c1 and Global learning coefficient c2

• Number of grids per dimension nGrid

• Inflation Rate alpha, leader selection pressure beta, Deletion selection pressure
gamma

• Mutation rate mu

• Initialize Swarm Population

• Generate a random swarm particles

• Once the random particles are initialized the Constraint Handling Mechanism (Sec-
tion 3) is carried out.

• Store the values of the particles as their personal best pBest

• Determine Domination

• Initialize external repository rep

• Create grid and find grid index
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• For each generation do

• For each particle do

• Select leader from external repository

• Update particle position and velocity

• Apply Constraint Handling Mechanism

• Evaluate the fuel cost objective function E and emission objective function F

• Apply Mutation and calculate new solutions

• Apply Constraint Handling Mechanism

• Determine Domination

• Update pBest

• End for

• Add non dominated particles to the repository

• Determine domination of new repository members

• Keep only the non-dominated members in the repository

• Update grid and grid index

• If repository is full delete members

• Plot the members in the external repository

• Modify inertia weight

• End for

5. Hybrid NSGA II and MOPSO algorithm for solving CEED problem

The mechanism of the proposed hybrid approach for solving the CEED problem is to
integrate the desirable features of NSGA II (retaining the elitism feature) and MOPSO
(exploitation capability) while curbing the individual flaws (NSGAII––does not have an
efficient feedback mechanism, PSO overutilization of resources). The mechanism to explore
the search space differs in both the algorithms. GA uses mutation and crossover operators
which will enhance the exploration task of the hybrid algorithm. The particles in PSO are
influenced by their own knowledge and information shared among swarm members. PSO
enhances the exploitation task of the hybrid algorithm by finding better solutions from the
good ones by searching the neighborhood of good solutions. In this hybrid algorithm at
every generation, the Pareto dominance of the population is computed and based on these
values non dominated sorting is performed [19]. In order to avoid premature convergence,
the elite upper half of the population are enhanced by NSGA II algorithm while the lower
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half of the population are considered as swarm particles and are optimized by MOPSO to
make them converge around the best possible solutions. The hybrid NSGA II-MOPSO
algorithm for solving the CEED problem is stated below:

• Specify the parameters for the CEED problem

• Specify the parameters for NSGA II Algorithm

• Population Size nPop

• Maximum number of iteration MaxIt

• Crossover Percentage pCrossover

• Mutation Percentage pMutation

• Mutation rate mu

• Mutation step size sigma

• Specify the parameters for MOPSO Algorithm
• Repository size nRep

• Inertia Weight w and Inertia Weight damping rate wdamp

• Personal learning coefficient c1 and Global learning coefficient c2

• Number of grids per dimension nGrid

• Inflation Rate alpha, leader selection pressure beta, Deletion selection pressure gamma

• Mutation rate mu

• Initialize Population
• Generate a random nPop size population

• Once the random population is initialized the Constraint Handling Mechanism pro-
posed in Section 3 is carried out.

• Evaluate the objective functions

• Evaluate the fuel cost objective function E and emission objective function F

• For each generation do

• Perform Non Domination Sorting

• Calculate Crowding Distance and rank the population based on Non Dominated
fronts

• Truncate and divide the population into two halves.

• Using the upper half of the population create offspring population

• Selection, Crossover and Mutation
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• Perform Constraint Handling Mechanism

• Evaluate the fuel cost objective function E and emission objective function F

• Merge the parent and offspring population

• Perform non domination sorting

• Calculate crowding distance and rank based on non-domination fronts

• Select solutions

• Each front is filled in ascending order

• Last front- descending order of crowding distance

• Store the non-dominated solutions in list Ϝ1

• Plot the non-dominated solutions in list Ϝ1

• Position and cost of the particle are initialized from the lower half of the population

• Store the values of the particles as their personal best pBest

• Determine Domination

• Initialize external repository rep

• Create grid and find grid index

• For each particle do

• Select leader from external repository

• Update particle position and velocity

• Constraint Handling Mechanism

• Evaluate the fuel cost objective function E and emission objective function F

• Apply Mutation and calculate new solutions

• Apply Constraint Handling Mechanism

• Determine Domination pBest

• End for

• Add non dominated particles to the repository

• Determine domination of new repository members

• Keep only the non-dominated members in the repository

• Update grid and grid index

• Modify inertia weight
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half of the population are considered as swarm particles and are optimized by MOPSO to
make them converge around the best possible solutions. The hybrid NSGA II-MOPSO
algorithm for solving the CEED problem is stated below:

• Specify the parameters for the CEED problem

• Specify the parameters for NSGA II Algorithm

• Population Size nPop

• Maximum number of iteration MaxIt

• Crossover Percentage pCrossover

• Mutation Percentage pMutation

• Mutation rate mu

• Mutation step size sigma

• Specify the parameters for MOPSO Algorithm
• Repository size nRep

• Inertia Weight w and Inertia Weight damping rate wdamp

• Personal learning coefficient c1 and Global learning coefficient c2

• Number of grids per dimension nGrid

• Inflation Rate alpha, leader selection pressure beta, Deletion selection pressure gamma

• Mutation rate mu

• Initialize Population
• Generate a random nPop size population

• Once the random population is initialized the Constraint Handling Mechanism pro-
posed in Section 3 is carried out.

• Evaluate the objective functions

• Evaluate the fuel cost objective function E and emission objective function F

• For each generation do

• Perform Non Domination Sorting

• Calculate Crowding Distance and rank the population based on Non Dominated
fronts

• Truncate and divide the population into two halves.

• Using the upper half of the population create offspring population

• Selection, Crossover and Mutation
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• Perform Constraint Handling Mechanism

• Evaluate the fuel cost objective function E and emission objective function F

• Merge the parent and offspring population

• Perform non domination sorting

• Calculate crowding distance and rank based on non-domination fronts

• Select solutions

• Each front is filled in ascending order

• Last front- descending order of crowding distance

• Store the non-dominated solutions in list Ϝ1

• Plot the non-dominated solutions in list Ϝ1

• Position and cost of the particle are initialized from the lower half of the population

• Store the values of the particles as their personal best pBest

• Determine Domination

• Initialize external repository rep

• Create grid and find grid index

• For each particle do

• Select leader from external repository

• Update particle position and velocity

• Constraint Handling Mechanism

• Evaluate the fuel cost objective function E and emission objective function F

• Apply Mutation and calculate new solutions

• Apply Constraint Handling Mechanism

• Determine Domination pBest

• End for

• Add non dominated particles to the repository

• Determine domination of new repository members

• Keep only the non-dominated members in the repository

• Update grid and grid index

• Modify inertia weight
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• Create a new set of particles half the size nPop and fill it with the non-dominated
solutions in the repository followed by the pBest

• Combine the populations of NSGA II and the new set of particles of the MOPSO

• Increment generation count

• End for

6. Numerical tests

In order to validate the proposed hybrid algorithm, the CEED problem was solved for IEEE 30-
bus system and the results are presented in this section. The fuel cost coefficients with valve-
point loading, emission coefficients, and generator limits are adapted from [26] and is given in
Table 1. The transmission loss B-matrix coefficients are obtained by running a load flow
program and is in [26] is adapted here and given in Table 2. The total power demand in the
system is 2:834 p:u: to the base of 100 MVA. Program in MATLAB was developed for the
Hybrid Algorithm to perform CEED and executed on 1:60 GHz, Intel T2050 processor, 1:5 GB
RAM HP Pavilion Laptop with WINDOWS 7 operating system. Various test cases are consid-
ered to compute the Pareto front of the multi-objective CEED problem. The Pareto-optimal
front is obtained using the NSGA II algorithm and also using the MOPSO algorithm given in
Section 4. The Pareto front obtained from the hybrid approach given in Section 5 is then
compared with the Pareto front obtained using NSGAII and MOPSO algorithm.

In case 1 the fuel cost function is modeled as a quadratic function with sine term to incorporate
the valve-point effect. The transmission losses are also considered in this case. The Pareto front
obtained using NSGA II, MOPSO, and Hybrid NSGAII-MOPSO is shown in Figures 1, 2 and 3
respectively. In all these figures there is a discontinuity in the Pareto front due to modeling of
the valve point loading effect of generators.

The parameter settings for NSGA II are obtained using trial and error is as follows: M ¼ 2;
Population Size nPop ¼ 100; Maximum number of iteration MaxIt ¼ 100; Crossover Percentage

Unit i Generation Limits Fuel Cost Coefficients with valve point loading Emission Coefficients

Pɡmin
i Pɡmax

i ai bi ci ei f i αi βi γi ηi δi

1 0.05 0.5 10 200 100 15 6.283 4.091 �5.554 6.490 2e�4 2.857

2 0.05 0.60 10 150 120 10 8.976 2.543 �6.047 5.638 5e�4 3.333

3 0.05 1.00 20 180 40 10 14.784 4.258 �5.094 4.586 1e�6 8.000

4 0.05 1.20 10 100 60 5 20.944 5.326 �3.550 3.380 2e�3 2.000

5 0.05 1.00 20 180 40 5 25.133 4.258 �5.094 4.586 1e�6 8.000

6 0.05 0.60 10 150 100 5 18.480 6.131 �5.555 5.151 1e�5 6.667

Table 1. Fuel costs Coefficients with valve point loading, Emission Coefficients, Generator limits of IEEE 30 bus system.
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pCrossover ¼ 0:7; Mutation Percentage pMutation ¼ 0:4; Mutation rate mu ¼ 0:02. The
extreme points of the Pareto front and time for execution of NSGAII algorithm are provided
in Table 3.

B 0.02180 0.01070 �0.00036 �0.00110 0.00055 0.00330

0.01070 0.01704 �0.00010 �0.00179 0.00026 0.00280

�0.00040 �0.00020 0.02459 �0.01328 �0.01180 �0.00790

�0.00110 �0.00179 �0.01328 0.02650 0.00980 0.00450

0.00055 0.00026 �0.01180 0.00980 0.02160 �0.00010

0.00330 0.00280 �0.00792 0.00450 �0.00012 0.02978

B0 1.0731e�05 0.0017704 �0.0040645 0.0038453 0.0013832 0.0055503

B00 0.0014

Table 2. B�Loss Coefficients for IEEE 30 bus test system.

Figure 1. Pareto-optimal curve for IEEE 30 bus system obtained using NSGA II.

Figure 2. Pareto-optimal curve for IEEE 30 bus system obtained using MOPSO.
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• Create a new set of particles half the size nPop and fill it with the non-dominated
solutions in the repository followed by the pBest

• Combine the populations of NSGA II and the new set of particles of the MOPSO

• Increment generation count

• End for

6. Numerical tests

In order to validate the proposed hybrid algorithm, the CEED problem was solved for IEEE 30-
bus system and the results are presented in this section. The fuel cost coefficients with valve-
point loading, emission coefficients, and generator limits are adapted from [26] and is given in
Table 1. The transmission loss B-matrix coefficients are obtained by running a load flow
program and is in [26] is adapted here and given in Table 2. The total power demand in the
system is 2:834 p:u: to the base of 100 MVA. Program in MATLAB was developed for the
Hybrid Algorithm to perform CEED and executed on 1:60 GHz, Intel T2050 processor, 1:5 GB
RAM HP Pavilion Laptop with WINDOWS 7 operating system. Various test cases are consid-
ered to compute the Pareto front of the multi-objective CEED problem. The Pareto-optimal
front is obtained using the NSGA II algorithm and also using the MOPSO algorithm given in
Section 4. The Pareto front obtained from the hybrid approach given in Section 5 is then
compared with the Pareto front obtained using NSGAII and MOPSO algorithm.

In case 1 the fuel cost function is modeled as a quadratic function with sine term to incorporate
the valve-point effect. The transmission losses are also considered in this case. The Pareto front
obtained using NSGA II, MOPSO, and Hybrid NSGAII-MOPSO is shown in Figures 1, 2 and 3
respectively. In all these figures there is a discontinuity in the Pareto front due to modeling of
the valve point loading effect of generators.

The parameter settings for NSGA II are obtained using trial and error is as follows: M ¼ 2;
Population Size nPop ¼ 100; Maximum number of iteration MaxIt ¼ 100; Crossover Percentage

Unit i Generation Limits Fuel Cost Coefficients with valve point loading Emission Coefficients

Pɡmin
i Pɡmax

i ai bi ci ei f i αi βi γi ηi δi

1 0.05 0.5 10 200 100 15 6.283 4.091 �5.554 6.490 2e�4 2.857

2 0.05 0.60 10 150 120 10 8.976 2.543 �6.047 5.638 5e�4 3.333

3 0.05 1.00 20 180 40 10 14.784 4.258 �5.094 4.586 1e�6 8.000

4 0.05 1.20 10 100 60 5 20.944 5.326 �3.550 3.380 2e�3 2.000

5 0.05 1.00 20 180 40 5 25.133 4.258 �5.094 4.586 1e�6 8.000

6 0.05 0.60 10 150 100 5 18.480 6.131 �5.555 5.151 1e�5 6.667

Table 1. Fuel costs Coefficients with valve point loading, Emission Coefficients, Generator limits of IEEE 30 bus system.
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pCrossover ¼ 0:7; Mutation Percentage pMutation ¼ 0:4; Mutation rate mu ¼ 0:02. The
extreme points of the Pareto front and time for execution of NSGAII algorithm are provided
in Table 3.

B 0.02180 0.01070 �0.00036 �0.00110 0.00055 0.00330

0.01070 0.01704 �0.00010 �0.00179 0.00026 0.00280

�0.00040 �0.00020 0.02459 �0.01328 �0.01180 �0.00790

�0.00110 �0.00179 �0.01328 0.02650 0.00980 0.00450

0.00055 0.00026 �0.01180 0.00980 0.02160 �0.00010

0.00330 0.00280 �0.00792 0.00450 �0.00012 0.02978

B0 1.0731e�05 0.0017704 �0.0040645 0.0038453 0.0013832 0.0055503

B00 0.0014

Table 2. B�Loss Coefficients for IEEE 30 bus test system.

Figure 1. Pareto-optimal curve for IEEE 30 bus system obtained using NSGA II.

Figure 2. Pareto-optimal curve for IEEE 30 bus system obtained using MOPSO.
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The parameter settings for MOPSO is obtained using trial and error is as follows: M ¼ 2;
Maximum number of iteration MaxIt ¼ 500; Population Size nPop ¼ 250; Repository size
nRep ¼ 100; Inertia Weight w ¼ 0:5; Inertia Weight damping rate wdamp ¼ 0:99; Personal
learning coefficient c1 ¼ 1; Global learning coefficient c2 ¼ 2; Number of grids per dimension
nGrid ¼ 10; Inflation Rate alpha ¼ 0:1, leader selection pressure beta ¼ 2, Deletion selection
pressure gamma ¼ 2; Mutation rate mu ¼ 0:1. The extreme points of the Pareto front and time
for execution of MOPSO algorithm are provided in Table 3. We can observe from Figure 2 and
Table 3 that there are difficulties in MOPSO algorithm in obtaining well spread Pareto front
and also very slow convergence to the Pareto front when compared to NSGA II. This can be
improved if the proposed hybrid approach is used to solve the CEED problem.

The Parameter setting for the hybrid algorithm is same as those given above expect for the
settings provided here Population Size nPop ¼ 200; Maximum number of iteration MaxIt ¼ 50;
Repository size nRep ¼ 20. The extreme points of the Pareto front and time for execution of the
proposed NSGAII-MOPSO hybrid algorithm are provided in Table 3. From Table 3 it is clear
that the extreme points found by the hybrid algorithm are better than NSGA II and MOPSO

Figure 3. Pareto-optimal curve for IEEE 30 bus system obtained using Hybrid NSGAII and MOPSO Algorithm.

Method Pɡ1 Pɡ2 Pɡ3 Pɡ4 Pɡ5 Pɡ6 Pl Fuel Cost
($/h)

Emission
(Tons/h)

Time
Taken (s)

NSGA II 0.0649 0.3866 0.6851 0.7999 0.5399 0.3886 0.03126 616.426 0.2121 367

0.4070 0.4528 0.5416 0.4198 0.5365 0.5087 0.03279 677.941 0.1942

MOPSO 0.0626 0.4106 0.6885 0.7994 0.5472 0.3564 0.03090 618.211 0.2125 1507

0.4412 0.4574 0.5501 0.3821 0.5523 0.4832 0.03242 678.702 0.1943

Hybrid NSGAII-
MOPSO

0.0500 0.3893 0.6861 0.8001 0.5490 0.3911 0.03178 613.85 0.2127 662

0.4109 0.4563 0.5429 0.4002 0.5435 0.5128 0.03279 678.30 0.1942

Table 3. Comparison of extreme points (shown in bold) and time taken for convergence using NSGAII, MOPSO and
Hybrid NSGA II-MOPSO for IEEE30 bus system with valve point loading.
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algorithm. Even though the time of execution of the Hybrid algorithm is slower than NSGA II it
is able to find well spread Pareto front compared to NSGA II. The hybrid algorithm is far
superior to MOPSO in terms of converge speed and also in finding well spread Pareto-optimal
front.

In case II the valve point effect is neglected from the fuel cost curve and is solved using the
proposed hybrid approach using the same parameters. The Pareto front obtained is shown in
Figure 4 and is a continuous curve when compared to the Pareto front shown in Figure 3. In
Figure 3 the Pareto front is discontinuous due to the effect of the Valve point loading in the cost
curve. Both these case studies indicate that the hybrid approach is effective to solve the CEED
problem.

7. Conclusion

In this chapter, a hybrid multi-objective optimization algorithm based on NSGA II and
MOPSO have been proposed to solve the highly nonlinear, highly constrained combined
economic emission dispatch problem. At any stage of the algorithm, only feasible solution is
created because of the incorporation of the proposed constraint handling mechanism. During
every iteration of the hybrid algorithm new population is created and NSGA II is applied on
best performing individuals whereas MOPSO is applied on the lower ranked individuals to
strengthen the exploration and exploitation capability of the algorithm. This hybrid approach
is tested on an IEEE 30 bus system. The results obtained shows that the hybrid approach is
efficient for solving CEED problem and is also able to quickly converge to a better Pareto-
optimal front when compared to MOPSO algorithm. The result obtained by the hybrid
approach also demonstrates it is able to yield a wide spread of solutions and convergence to
true Pareto-optimal fronts.

Figure 4. Pareto-optimal curve for IEEE 30 bus system without valve point effect obtained using hybrid NSGAII and
MOPSO algorithm.

Solution of Combined Economic Emission Dispatch Problem with Valve-Point Effect Using Hybrid NSGA II-MOPSO
http://dx.doi.org/10.5772/intechopen.72807

97
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algorithm. Even though the time of execution of the Hybrid algorithm is slower than NSGA II it
is able to find well spread Pareto front compared to NSGA II. The hybrid algorithm is far
superior to MOPSO in terms of converge speed and also in finding well spread Pareto-optimal
front.

In case II the valve point effect is neglected from the fuel cost curve and is solved using the
proposed hybrid approach using the same parameters. The Pareto front obtained is shown in
Figure 4 and is a continuous curve when compared to the Pareto front shown in Figure 3. In
Figure 3 the Pareto front is discontinuous due to the effect of the Valve point loading in the cost
curve. Both these case studies indicate that the hybrid approach is effective to solve the CEED
problem.

7. Conclusion

In this chapter, a hybrid multi-objective optimization algorithm based on NSGA II and
MOPSO have been proposed to solve the highly nonlinear, highly constrained combined
economic emission dispatch problem. At any stage of the algorithm, only feasible solution is
created because of the incorporation of the proposed constraint handling mechanism. During
every iteration of the hybrid algorithm new population is created and NSGA II is applied on
best performing individuals whereas MOPSO is applied on the lower ranked individuals to
strengthen the exploration and exploitation capability of the algorithm. This hybrid approach
is tested on an IEEE 30 bus system. The results obtained shows that the hybrid approach is
efficient for solving CEED problem and is also able to quickly converge to a better Pareto-
optimal front when compared to MOPSO algorithm. The result obtained by the hybrid
approach also demonstrates it is able to yield a wide spread of solutions and convergence to
true Pareto-optimal fronts.
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