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Preface

The human hypothalamus, a small structure at the base of the brain, has strategic importance
for the harmonic function of the human body. It controls the autonomic nervous system, neu‐
roendocrine function, circadian and circannual rhythms, somatic activities, and behavior, and
is situated at the borders between the brain and the body and the brain and the soul, meeting
points for mind (νους) and body (σώμα).

The Greek pre-Socratic philosopher Anaxagoras of Clazomenae claimed in the sixth century
BC that the mind controls the physical existence of the human being: “...καί όσα γε ψυχήν
έχει...πάντων νους κρατεί” (DΚ Β12.12). Galen, the great Greek neuroscientist from Perga‐
mum (AD 130–200), claimed, on the other hand, that from the base of the brain (the hypothala‐
mus) the animal spirit is transmitted to the body, infiltrating, vitalizing, and activating all the
organs, inducing also the phenomenon of “sympathy,” which means the harmonious coordi‐
nation and cooperation of all the organs of the body.

Today, we know definitely that the hypothalamus, “the very main spring of primitive exis‐
tence” according to Cushing, is the principal regulatory center for autonomic and endocrine
homeostasis. In addition, we know that the hypothalamus is involved in a wide range of higher
mental functions, including attention, learning and memory, reinforcement of mnemonic proc‐
esses, emotional control, mood stability, and cognitive–emotional interactions, since it is a core
structure of the limbic system with connections to the orbitofrontal cortex, amygdala, and thala‐
mus.

It is reasonable that the hypothalamus, as homeostatic regulator, is closely involved in autonomic
and neuroendocrine disorders, disorders of development and growth, disorders of drinking and
eating, disorders of thermoregulation, sleep disorders, and autoimmune dysfunction.

However, it is important that clinical observations, neuroimaging data, and neuropathological
studies plead in favor of hypothalamic involvement in behavioral disorders, such as psychomo‐
tor agitation, aggressive and disruptive behavior, obsessive–compulsive disorder, panic reac‐
tions, pain and addiction, fatigue syndromes, as well as in neurological conditions, such as
cluster headaches, episodes of migraine, hypnic headache, gelastic epilepsy, mental deficiency,
periodic disorders, and in a substantial number of neurodegenerative diseases.

The possible involvement of the hypothalamus in depression, schizophrenia, and autism, a
fact that enlarges greatly the essential contribution of the hypothalamus in controlling psycho‐
somatic equilibrium and retaining the internal unity of the human existence, poses an addi‐
tional reason for attracting the attention of neuroscientists, who by applying modern
neurobiological techniques may proceed to a further clarification of the complex, substantial,
and multidimensional strategic role that the hypothalamus plays in the human brain.



Preface

The human hypothalamus, a small structure at the base of the brain, has strategic importance
for the harmonic function of the human body. It controls the autonomic nervous system, neu‐
roendocrine function, circadian and circannual rhythms, somatic activities, and behavior, and
is situated at the borders between the brain and the body and the brain and the soul, meeting
points for mind (νους) and body (σώμα).

The Greek pre-Socratic philosopher Anaxagoras of Clazomenae claimed in the sixth century
BC that the mind controls the physical existence of the human being: “...καί όσα γε ψυχήν
έχει...πάντων νους κρατεί” (DΚ Β12.12). Galen, the great Greek neuroscientist from Perga‐
mum (AD 130–200), claimed, on the other hand, that from the base of the brain (the hypothala‐
mus) the animal spirit is transmitted to the body, infiltrating, vitalizing, and activating all the
organs, inducing also the phenomenon of “sympathy,” which means the harmonious coordi‐
nation and cooperation of all the organs of the body.

Today, we know definitely that the hypothalamus, “the very main spring of primitive exis‐
tence” according to Cushing, is the principal regulatory center for autonomic and endocrine
homeostasis. In addition, we know that the hypothalamus is involved in a wide range of higher
mental functions, including attention, learning and memory, reinforcement of mnemonic proc‐
esses, emotional control, mood stability, and cognitive–emotional interactions, since it is a core
structure of the limbic system with connections to the orbitofrontal cortex, amygdala, and thala‐
mus.

It is reasonable that the hypothalamus, as homeostatic regulator, is closely involved in autonomic
and neuroendocrine disorders, disorders of development and growth, disorders of drinking and
eating, disorders of thermoregulation, sleep disorders, and autoimmune dysfunction.

However, it is important that clinical observations, neuroimaging data, and neuropathological
studies plead in favor of hypothalamic involvement in behavioral disorders, such as psychomo‐
tor agitation, aggressive and disruptive behavior, obsessive–compulsive disorder, panic reac‐
tions, pain and addiction, fatigue syndromes, as well as in neurological conditions, such as
cluster headaches, episodes of migraine, hypnic headache, gelastic epilepsy, mental deficiency,
periodic disorders, and in a substantial number of neurodegenerative diseases.

The possible involvement of the hypothalamus in depression, schizophrenia, and autism, a
fact that enlarges greatly the essential contribution of the hypothalamus in controlling psycho‐
somatic equilibrium and retaining the internal unity of the human existence, poses an addi‐
tional reason for attracting the attention of neuroscientists, who by applying modern
neurobiological techniques may proceed to a further clarification of the complex, substantial,
and multidimensional strategic role that the hypothalamus plays in the human brain.



I extend my gratitude to the authors and the editorial and secretarial staff who worked with
much devotion and enthusiasm to publish this volume. I wish that it might be one more step
for further fruitful research activity in the immense field of the human hypothalamus.

Stavros J. Baloyannis MD, PhD
Professor Emeritus

Aristotelian University
Thessaloniki, Macedonia, Greece

Dr. Jan Oxholm Gordeladze Ph.D
Department of Biochemistry

Institute of Basic Medical Science
University of Oslo, Norway

XII Preface

Section 1

Neuroanatomy



I extend my gratitude to the authors and the editorial and secretarial staff who worked with
much devotion and enthusiasm to publish this volume. I wish that it might be one more step
for further fruitful research activity in the immense field of the human hypothalamus.

Stavros J. Baloyannis MD, PhD
Professor Emeritus

Aristotelian University
Thessaloniki, Macedonia, Greece

Dr. Jan Oxholm Gordeladze Ph.D
Department of Biochemistry

Institute of Basic Medical Science
University of Oslo, Norway

PrefaceVIII

Section 1

Neuroanatomy



Chapter 1

Anatomy and Function of the Hypothalamus

Miana Gabriela Pop, Carmen Crivii and
Iulian Opincariu

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.80728

Provisional chapter

DOI: 10.5772/intechopen.80728

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons  
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,  
distribution, and reproduction in any medium, provided the original work is properly cited. 

Anatomy and Function of the Hypothalamus

Miana Gabriela Pop, Carmen Crivii and 
Iulian Opincariu

Additional information is available at the end of the chapter

Abstract

The hypothalamus is a small but important area of the brain formed by various nucleus 
and nervous fibers. Through its neuronal connections, it is involved in many complex 
functions of the organism such as vegetative system control, homeostasis of the organ-
ism, thermoregulation, and also in adjusting the emotional behavior. The hypothalamus 
is involved in different daily activities like eating or drinking, in the control of the body’s 
temperature and energy maintenance, and in the process of memorizing. It also modu-
lates the endocrine system through its connections with the pituitary gland. Precise ana-
tomical description along with a correct characterization of the component structures is 
essential for understanding its functions.

Keywords: anatomy, structure, function

1. Embryological development of the hypothalamus

At the end of the fourth week of embryological development, the neural tube is organized in 
primary vesicles: the forebrain vesicle or prosencephalon, the midbrain vesicle or mesenceph-
alon, and the hindbrain vesicle, also called rhombencephalon. Prosencephalon further divides 
into two secondary vesicles, the telencephalon that will form the cerebral hemispheres and 
the diencephalon which gives rise to the diencephalon. Mesencephalon forms the midbrain, 
structure involved in the processes of vision and hearing. The hindbrain vesicle or rhomben-
cephalon divides in metencephalon, which further forms the pons and the cerebellum and the 
myelencephalon that forms the medulla.

Embryological concepts regarding the development of the hypothalamic region are over 
100 years old. Since Herrick [1] first proposed the columnar model of the forebrain organization, 

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.
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the anatomical description was accepted per se and very few research papers have questioned 
its validity.

The columnar morphologic model is based on the division of the forebrain in functional lon-
gitudinal units, placing the telencephalon in the most rostral region and the diencephalon 
caudally, in between the telencephalon and the midbrain, while the hypothalamus if formed 
from the ventral most part of the diencephalic vesicle [2].

In the last decades, mapping of the genes involved in hypothalamic development allowed 
the identification of a disparity between the morphological, classic boundaries of this region 
and the molecular ones. According to Puelles’ Prosomeric model [3], the initially proposed 
longitudinal axis of the brain is bent due to the first mesencephalic flexure of the embryo. This 
condition puts the diencephalon rostrally between the telencephalon cranially and the mid-
brain caudally and sets the hypothalamus independent from the diencephalon as a distinct 
posterior part of the forebrain [2, 3].

An important role in hypothalamic development is assigned also to the presence of specific 
signaling centers (Wingless-Int protein family–Wnt, Hedgehogs family–Hh, and Bone mor-
phogenetic family–FgF) that modulates cell proliferation and neurulation [4].

2. Definition and localization

The hypothalamus is a small, central region of the human brain formed by nervous fibers and 
a conglomerate of nuclear bodies with various functions. The hypothalamus is considered to 
be a link structure between the nervous and the endocrine system, its main function being to 
maintain the homeostasis of the body.

The hypothalamus is located under the thalamus from which it is separated by the hypotha-
lamic sulcus of Monro. The sulcus is located at the lateral wall of the third ventricle and extends 
anteroposteriorly from the interventricular foramen of Monro (that assures the communica-
tion between the third, diencephalic ventricle and the frontal horn of each lateral ventricle) up 
to the level of Sylvius cerebral aqueduct. The hypothalamus is limited anteriorly by the lamina 
terminalis, a gray matter layer of triangular aspect extended above the chiasma optique, in 
between the two anterior horns of the fornix. Lamina terminalis also forms the anterior wall of 
the third ventricle and contains the organum vasculosum, a circumventricular structure char-
acterized by the absence of blood–brain barrier and thus highly sensitive to osmotic variations 
of the blood [5]. The superior wall of the hypothalamic region participates in the formation of 
the inferolateral wall of the third ventricle of the brain and has close relations with the white 
matter structure that surrounds it, called the fornix. The fornix is a C-shaped white cerebral 
structure that connects various parts from the brain (hypothalamic nuclei with hippocampal 
region, thalamic nuclei with hypothalamus’s mammillary bodies). Even if its function is not 
clearly understood, its relation with memory is known, and recent studies are testing its deep 
brain stimulation as a treatment in advanced Alzheimer’s disease [6]. Posteriorly, the hypo-
thalamus extends up to the periaqueductal gray substance and the tegmentum of the superior 
part of the brainstem.

Hypothalamus in Health and Diseases4

Only on the inferior surface of the brain, the hypothalamus can be visualized from the optic 
chiasm and the anterior perforated substance anteriorly to the posterior cerebral peduncles 
of the midbrain and the mammillary bodies, dorsally (Figure 1). The mammillary bodies are 
small, round white-matter structures that belong to the limbic system. They are involved in 
memory due to their connections with the hippocampal region and also in maintaining the 
sense of direction [7]. The hypothalamus is limited laterally by the optic tracts in their direc-
tion toward the lateral geniculate bodies, an important relay of the optical pathway. Inside the 
delimited area on the exterior surface of the brain, a small prominence, called tuber cinereum 
or infundibulum connects the hypothalamus with the posterior lobe of the underneath pitu-
itary gland. The pituitary or the hypophyseal gland is located at the base of the brain, in a 
depression of the sphenoid bone called the sella turcica.

2.1. The hypothalamus—hypophyseal complex

The pituitary gland is a three-lobe structure: anterior, posterior and intermediate lobe, with 
different embryological origin.

The anterior lobe, pars anterior, or adenohypophysis is derived from the anterior wall of 
Rathke’s pouch, an ectodermal structure that also forms the primitive oral cavity and the 
pharynx [8]. The anterior gland contains a heterogeneous cellularity that synthesized and 
secreted hormones in the blood stream: the majority of the cells are somatotrope cells that 
produced the human growth hormone (hGH) or somatotropin hormone (STH), a peptide 
that promotes growth in childhood. The production of the somatotropic hormone is under 
the control of the hypothalamic growth-releasing hormone (GRH) produced by the arcuate 
nucleus. The next hormones produced in high quantity by the anterior gland of the hypophy-
sis are the corticotrope ones (adrenocorticotropic hormone—ACTH, melanocyte-stimulating 
hormone—MSH, and beta-endorphins). This group of hormones is under the control of the 
hypothalamic corticotropin-relasing hormones (CRHs) derived from the paraventricular 
nuclei. In smaller percentages, the adenohypophysis has population of cells that produced 

Figure 1. Inferior surface of the brain with hypothalamic visualization at this level.
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thyrotropes, gonadotropes, and lactotropes. Thyrotropes respond to signals from the hypo-
thalamic thyrotropin-releasing hormone (TRH) produced in the paraventricular nuclei and 
further synthesize the hormone responsible for thyroid hormones production—thyroid 
stimulating hormone (TSH). Luteinizing hormones (LHs) and follicle stimulating hormones 
(FSHs) are secreted by gonadotrope cells of the gland under the influence of pulsatile secre-
tion of gonadotropin-releasing hormone (GRH) produced in hypothalamus preoptic area. The 
secretion of prolactine (PRL) from the lactotropes is stimulated by hypothalamic thyrotropin-
releasing hormone (TRH) and inhibited by the dopamine [9].

Hypothalamic hormones reach the adenohypophysis through a vascular system. Hypothala-
mus exerts its effects over the anterior part of the gland through the hypothalamo-hypophy-
seal portal system, a special vascular system formed by fenestrated capillaries. The proximal 
vascular structure of the portal system is the anterior hypophyseal artery, branch from the 
ophthalmic segment of the internal carotid artery [9]. Through it, hypothalamic hormones 
are transported to the primary plexus, located near the infundibulum of the hypothalamus. 
From this region, hormones are drained into the second vascular venous plexus of the hypo-
thalamo-hypophyseal portal system that surrounds the adenohypophysis [9]. This vascular 
system allows hormones to diffuse through the wall, inside of the gland. The hypophyseal 
vein further drains the blood into the venous sinuses of the dura mater and from here in the 
venous system of the body.

The posterior wall of Rathke’s pouch forms the intermediate lobe of the gland [8]. It is absent or 
of small size in adults. In children, it is the part of the gland responsible for skin pigmentation 
through the secretion of the melanocyte stimulating hormone (MSH) or “intermedins” [9]. Pars 
intermedia also produces corticotrophin-like intermediate lobe peptide (CLIP) and adrenocor-
ticotrophic hormone (ACTH) [9].

The posterior lobe of the gland, pars distalis or neurohypophysis derives from the neuroecto-
derm [9]. It is an inferior extension of the hypothalamus and is mainly from its neural fibers. 
The connection between the hypothalamus and the posterior lobe of the gland forms the 
infundibular stalk. Through this complex, hormones synthetized in the hypothalamus nuclei 
are transported and deposited in the posterior gland where they are stored in presynaptic 
vesicles and then released into the blood stream. The supraoptic nuclei of the hypothalamus 
are responsible for the secretion of antiduretic hormone (ADH) or vasopressin, the hormone 
involved in maintaining the water balance in organism and thus in preventing dehydration. 
The paraventricular nuclei produce oxytocin, a hormone released during labor, in the pres-
ence of uterine contractions.

The hypothalamus intervenes along with the pituitary gland the majority of the endocrine 
and metabolic functions of the body through a double-sense transport of hormones between 
the two structures.

3. Structure of the hypothalamus

The hypothalamus is divided by the anterior horns of the fornix in a lateral, medial, and 
periventricular (median) region and by a coronal plane passing through the infundibulum in 
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an anterior and posterior region. The anterior region is also referred to as the prechiasmatic 
region, due to its location above the chiasma optic, while the posterior region is called the 
mammillary region. The infundibular region is situated between the previous two regions.

From a structural point of view, the hypothalamus is formed by gray matter conglomeration 
of neurons that organize in nuclei and also by white-matter substance formed by myelinated 
nervous fibers.

The anterior region of the hypothalamus is located above the optic chiasm and is referred to 
as the supraoptic area. It contains the following nucleus: supraoptic, preoptic and medial pre-
optic, the suprachiasmatic and the anterior hypothalamic nucleus, alongside with the para-
ventricular one (Figure 2). The supraoptic nucleus produces vasopressin or the antidiuretic 
hormone (ADH) that is stored in the posterior lobe of the pituitary gland and is responsible 
for blood pressure control and water balance of the organism. The preoptic region alongside 
with the anterior hypothalamic nucleus is involved in cooling (thermoregulation) of the body 
through the sweating process. The preoptic nucleus is also involved in the habit of eating and 
in reproduction while the medial preoptic region is involved in cardiovascular control as a 
response to stress [10]. The suprachiasmatic nucleus is situated above the optic chiasm and 
is involved in the circadian rhythm. The paraventricular nucleus (named after its location 
near the third diencephalic ventricle) represents an important autonomic center of the brain 
involved in stress and metabolism control [11].

The central part as the hypothalamus is located above tuber cinereum and is named the tuberal 
area. It is composed of two parts, anterior and lateral, and contains the following nucleus: 
dorsomedial, ventromedial, paraventricular, supraoptic, and arcuate (Figure 2). The ven-
tromedial area is involved in controlling the habits of eating and the feeling of satiety [12]. 
The arcuate or infundibular nucleus is responsible for orexigenic peptides secretion: ghrelin, 
orexin, or neuropeptide Y [11].

Figure 2. Schematic representation of hypothalamic nuclei (sagittal section).
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The posterior region is formed by a medial and, respectively, lateral area. The medial region 
contains the mammillary nucleus alongside with the posterior hypothalamic nucleus, the 
supramammillary and the tuberomammillary ones. The nucleus of the lateral region contains 
the hypocretins (orexin) peptides that control feeding behavior, thermoregulation, gastrointes-
tinal motility [13], and cardiovascular regulation and are also involved in sleep regulation [14]. 
Lesions of the lateral region lead to the refusal to feed or aphagia. The posterior part of the 
hypothalamus is involved overall in energy balance, blood pressure, memory, and learning. 
The posterior hypothalamic nucleus has a major role in controlling the body temperature [12]. 
The tuberomammillar nucleus is involved in memory due to their connection with the hippo-
campus and Papez memory circuit [9].

4. Connections of the hypothalamus

The hypothalamus is a small region of the brain connected with numerous, various cerebral 
structures that allows it to intervene in many regulatory processes of the organism. It has an 
important role in the optimal, normal functioning of the body, and it controls the endocrine 
system, the metabolism, and it is involved in stress control and in other different actions that 
modulates a person’s behavior. More, the hypothalamus is involved in the homeostasis of 
the organism in terms of body temperature, blood pressure, fluid balance, and body weight.

The connections of the hypothalamus are made with the following structures.

4.1. The midbrain

The ascending reticular activating system represents a structure composed by neural fibers 
passing from the reticular formation of the midbrain, through the thalamus, reaching the 
cerebral cortex [15]. The system is responsible for concentration, attention, and for maintain-
ing the awakening state. Through it, the reticular formation is connected with the hypo-
thalamic nuclei: the lateral mammillary bodies [12], the tuberomammillar nuclei, and the 
periventricular ones. The periventricular nuclei receive information about the general visceral 
sensibility [16] while the two others mediate behavior and are involved in consciousness [17]. 
Information from the solitary tract nucleus passing from the reticular substance of the mid-
brain can also reach the hypothalamus. The nucleus of the solitary tract is connected with the 
hypothalamus through either the solitarohypothalamic tract or through colaterales from the 
solitariothalamic tract.

4.2. The thalamus

The anterior hypothalamus has connections with the intralaminar nucleus and the nucleus 
of the median line. Recent studies described that lesions of the intraluminal group of nucleus 
can lead to Parkinson’s disease [18] or even schizophrenia [19]. The mammillothalamic fas-
cicle of Vicq d’Azyr connects both the medial and lateral mammillary nuclei with the anterior 
part of the thalamus [20]; its destruction in case of a cerebral hemorrhage is associated with 
memory loss [17, 20].
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4.3. The amygdala

The amygdala represents a conglomerate of perykarions located in the temporal lobe. Efferent 
fibers from this region project directly to hypothalamus or neural fibers can detach from the 
amygdala-thalamic fascicle and reach the anterior hypothalamus [12]. It is involved in body’s 
response to fear and rewards but also in memory [21]. Direct connections of amygdala with 
the hypothalamus are either through the ventral amygdalofugal pathway or through the stria 
terminalis.

4.4. The hippocampal region

The hippocampus is a curved-shaped cerebral structure located in the temporal lobe. It is 
formed by the dentate gyrus and different regions called Cornus Ammonis (CA): CA1, CA2, 
CA3, and CA4 [22]. CA1 and CA3 are connected with the infundibular and the ventromedial 
nuclei of the hypothalamus [22].

According to a recent study [23] CA2 area lighted that also CA2 area, a small region in the hip-
pocampus composed from pyramidal neurons, is involved in memory and learning through 
its connections with the supramammillary nuclei of the hypothalamus.

4.5. The olfactory bulb

Fibers from the olfactory bulb reach the periamigdalian region (the entorhinal and peria-
mygdaloid cortex) and then the lateral hypothalamus through either the amigdalian or the 
accumbens nucleus [12].

4.6. The retina

Visual information from the retinal neuroepithelium through the lateral geniculate body of 
the mesencephalon and then the superior colliculus reach the suprachiasmatic and supraoptic 
nuclei of the hypothalamus and are involved in circadian rhythm [12]. The hypothalamus 
can receive direct fibers from the retina through a retinohypothalamic tract that reach the 
suprachiasmatic nuclei. The connections are involved in the circadian rhythm.

4.7. Cerebral cortex

There is a double sense connection between the cerebral cortex and the hypothalamus. The 
hypothalamus projects on the surface of the cortex diffuse, in a poorly defined area over the 
cortex and transmits information that maintain the cortical tonus while from the gray mat-
ter of the cerebral cortex, neural fibers projects over the hypothalamus and triggers visceral 
response according to the affective state (sweating in case of fear, intestinal manifestations in 
case of stress). Neural fibers from the lateral hypothalamus project in the prefrontal cortex 
while the frontal lobe also has efferent for all the hypothalamic regions [24]. Through these 
connections, the autonomic control is assured in the organism. More, from the paraorbital 
gyrus, fibers project into the paraventricular and ventromedial nuclei.
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Axons from the spinal cord can project in the hypothalamic region using the path of the spi-
nohypothalamic tract. They carry out pain and temperature information. The hypothalamus 
exerts its effects within two projections: the spinothalamic tract reaching the lateral horn of 
the spinal cord of T1-L2 segments regulates the sympathetic autonomic response; the mam-
millotegmental tract and the dorsal longitudinal fasciculus carry out information from the 
posterior region of the hypothalamus while the anterior one connects with the thalamus 
(mammillothalamic tract) and the above fornix.

5. Functions of the hypothalamus

The hypothalamus is involved in different daily activities like eating or drinking, in the con-
trol of the body’s temperature and energy maintenance, and in the process of memorizing 
and in stress control. It also modulates the endocrine system through its connections with the 
pituitary gland.

5.1. Thermoregulation

Thermoregulation is the process that allows maintenance of the body’s temperature within 
normal ranges. In case of high body temperature, the hypothalamus responds through 
thermoregulatory heat loss behavior (either sweating or vasodilatation). If the body needs 
to be warm up, hypothalamus can determine heat production behavior (vasoconstriction, 
thermogenesis—heat production from muscles, brain or other organs, including the thyroid 
gland) [25].

They are of the hypothalamus responsible for controlling this process is the anterior one, 
more specific the preoptic nucleus.

5.2. Regulation of food intake

The hypothalamus controls appetite and food intake through the ventromedial, dorsomedial, 
paraventricular, and lateral hypothalamus nucleus. The ventromedial nucleus is referred to 
as the appetite-suppressing or anorexigenic center. Destruction of this nucleus leads to hyper-
polyphagia, obesity, and to an aggressive behavior.

Contrary, the appetite-increasing or orexigenic center is considered to be the lateral hypotha-
lamic nucleus that can lead to aphagia and cashexy in case of its destruction and to hyperpha-
gia or polyphagia in case of its stimulation.

Appetite control is modulated by the leptin hormone released by the fatty cells that binds to 
specific hypothalamic receptors.

5.3. Regulation of body water content

Water control in the living organism is assured by the hypothalamus through the antidiuretic 
hormone (ADH) secretion. In cases of blood volume loss and dehydration, the ADH hormone 
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is secreted from the supraoptic nucleus–that have osmoreceptor cells–and released in the cir-
culation. The peptide is directed toward the specific receptor from kidneys and decreases the 
urine production with subsequent water retention in the organism.

5.4. Center for autonomic nervous system

The hypothalamus regulates both sympathetic and parasympathetic systems. The anterior 
region of the thalamus has an excitatory effect over the sympathetic system while the poste-
rior and lateral ones have an excitatory effect over the parasympathetic system.

5.5. Endocrine control

The endocrine control is realized through the pituitary gland or the hypophysis situated 
below the tuberal region of the hypothalamus. The hypothalamus is connected with the 
posterior lobe of the gland through the hypothalamo-hypophyseal tract. Along these fibers, 
the AHD and oxytocin hormones are transported into the neurohypophysis where they are 
stocked in vesicles.

Hormones secretion in the body is regulated by the hypothalamus through the releasing and 
inhibitor factors: thyrotropin-releasing, gonadotropin-releasing, corticotrophin-releasing, 
somatostatin, and dopamine. These hormones are involved in the process of growth, in the 
reproduction, in the metabolism of the body, and also can assure the homeostasis of the 
body.

5.6. Reproduction

The reproduction function of an organism is assured by the hypothalamic-pituitary-gonadal 
axis. The gonadotropin-realizing hormone (GnRH) secreted by the hypothalamus stimulates 
the production of luteinizing hormone (LH) and follicle-stimulating hormone (FSH) in the 
anterior subdivision of the pituitary gland. Action of these two hormones on the gonads 
determines the estrogen and testosterone production.

Behavior in males and females is influenced as well by the sex steroids. The neurons in the 
preoptic are involved in the male sexual behavior while the ones from the tuberal regional 
exert their properties in females [26].

5.7. The circadian rhythm

The photosensible suprachiasmatic nucleus is involved, along with is connections with the 
pituitary gland, in the circadian rhythm. The suprachiasmatic nucleus receives electro-chem-
ical information from the stimulated retina. The circadian rhythm represents the endogenous 
clock of an organism that is involved in the well-being of the body due to keeping within 
normal limits the major functions.

Despite its reduced size, the hypothalamus represents an important, integrative region of the 
brain with complex functions and multiple connections with essential cerebral structures.
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pituitary gland, in the circadian rhythm. The suprachiasmatic nucleus receives electro-chem-
ical information from the stimulated retina. The circadian rhythm represents the endogenous 
clock of an organism that is involved in the well-being of the body due to keeping within 
normal limits the major functions.

Despite its reduced size, the hypothalamus represents an important, integrative region of the 
brain with complex functions and multiple connections with essential cerebral structures.
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Abstract

The hypothalamic-pituitary-gonadal (HPG) axis controls the hormonal network  responsible 
for reproductive functions. In the past, hypothalamic  gonadotropin-releasing hormone 
(GnRH) neurons have been positioned at the highest level in the HPG axis. After the 
 discovery of the indispensable roles of hypothalamic kisspeptin in GnRH neurons, our 
­understanding­of­the­neuroendocrine­regulation­of­the­HPG­axis­was­reconfirmed,­and­it­is­
now recognized that hypothalamic kisspeptin neurons are positioned at the summit of the 
HPG axis. Accumulating evidence shows that kisspeptin neurons are responsible for the 
onset of puberty and sex steroid feedback mechanisms by modulating the activity of GnRH 
neurons.­Furthermore,­the­identification­of­kisspeptin­in­the­hypophyseal­portal­circulation­
suggests that this peptide has some direct roles in the pituitary gland. The detailed mecha-
nisms  underlying the regulation of GnRH by kisspeptin and the  regulatory control of kis-
speptin  neurons are still largely unknown because of the limitations of the  experimental 
models. The  establishment of GnRH-expressing and kisspeptin-expressing cell models has 
enabled us to examine the character of these neuronal cells. In this chapter, we describe 
our in vivo studies examining the character of GnRH neurons and kisspeptin neurons in 
the hypothalamus using hypothalamic GnRH- and/or kisspeptin-expressing cell models.
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1. Introduction

The hypothalamus maintains the homeostasis within the body and controls endocrine 
 functions. The hypothalamic-pituitary-gonadal (HPG) axis is a hormonal network responsible 
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for female reproductive function. After the discovery of inactivating mutations in the gene 
encoding the kisspeptin receptor (Kiss1R) in patients with idiopathic hypogonadotropic hypo-
gonadism [1, 2], a new concept of the HPG axis was established. Now, it is generally agreed 
that­kisspeptin­produced­from­kisspeptin­neurons,­which­are­located­in­different­regions­of­
hypothalamus, stimulates gonadotropin-releasing hormone (GnRH) synthesis and release 
through Kiss1R within the GnRH neurons.

2. Kisspeptin as a regulator of the HPG axis

Kisspeptin is positioned upstream of GnRH in the HPG axis. Kisspeptin, which is encoded 
by­the­Kiss1­gene,­was­first­discovered­as­a­peptide­that­has­potency­to­suppress­­metastasis­
of malignant melanoma and was initially named metastin [3]. The Kiss1 gene product is 
 translated into a 145-amino acid precursor protein and further cleaved into a 54-residue 
 peptide (kisspeptin 54), which can be further cleaved into 14-, 13-, and 10-amino acid pep-
tides [4]. Kiss1R was discovered 4 years after kisspeptin, and it was found that Kiss1R is 
a member of the G protein-coupled receptor superfamily and is structurally similar to the 
galanin receptor [4, 5]. Discovery of loss-of-function mutations in Kiss1R in the family of a 
hypogonadotropic hypogonadism patient [1, 2] clearly linked kisspeptin and reproduction, 
and these observations indicated that kisspeptin acts as a major stimulator of the HPG axis.

Two­different­populations­of­kisspeptin-expressing­neurons­have­been­identified­in­rodents.­
The most predominant population is located in the arcuate nucleus (ARC) of the  hypothalamus, 
where kisspeptin-expressing neurons co-express dynorphin and  neurokinin B (NKB). Another 
kisspeptin-expressing cell population is located in the anteroventral  periventricular nucleus 
(AVPV) of the hypothalamus. In humans and primates, kisspeptin is expressed predominantly 
within the infundibular nucleus, which is equivalent to the ARC in rodent [6]. Kisspeptin neu-
rons in both populations make direct synaptic contacts with GnRH neurons and their termi-
nals in the median eminence [7].

3. GnRH release is influenced by kisspeptin

In rodents, GnRH is released into the portal circulation by GnRH neurons located in the 
 preoptic area and eventually reaches the anterior pituitary. GnRH is released in a pulsatile 
manner, and the pulse frequency and amplitude of GnRH release vary physiologically 
during reproductive cycles in females. Secretion of luteinizing hormone (LH) and follicle-
stimulating hormone (FSH) is maintained by pulsatile, not continuous, release of GnRH 
[8].­Moreover,­ the­ frequency­of­ the­GnRH­pulse­differentially­ regulates­ the­production­
and release of FSH and LH from the anterior pituitary [9]. Administration of high-fre-
quency GnRH pulses increases the secretion of LH, whereas a lower frequency of GnRH 
pulses shifts the gonadotropin  secretion to more FSH dominant [10]. Taken together, these 
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observations show that the  secretory mode of pituitary gonadotropins is controlled by the 
so-called GnRH pulse generator.

The neuronal mechanisms underlying the pulsatile release of GnRH are still not fully 
 understood, but at present it is agreed that kisspeptin neurons located in the ARC of the 
 hypothalamus may be involved. Previous studies recorded the electrical activity of  neurons, 
measured as multiunit activity (MUA), within the ARC region of the hypothalamus and 
reported that MUA correlates with pulsatile secretion of LH in several animal models [11, 12]. 
The neuronal population of kisspeptin-expressing cells is called KNDy neurons because kiss-
peptin-expressing cells located in the ARC region of the hypothalamus co-express  kisspeptin, 
neurokinin B, and dynorphin.­ KNDy­ neurons­ generate­ synchronized­ oscillatory­ patterns­
of neuronal activity by sharing excitatory and inhibitory input from NKB and dynorphin 
 produced within themselves [13, 14]. Selective and synchronized activation of KNDy neurons 
induces pulsatile release of LH in a mouse model [15]. Furthermore, exogenous  kisspeptin 
administration can increase LH pulse frequency and amplitude in healthy women [16]. 
Because kisspeptin antagonism suppresses both mean GnRH and GnRH pulses [17], it is 
natural to think that kisspeptin neurons in the ARC of the hypothalamus (KNDy neurons) 
comprise the GnRH pulse generator.

The­ pattern­ of­GnRH­ release­ and­ subsequent­ LH­ release­ across­ the­ reproductive­ cycle­ is­
modulated by gonadal steroid feedback. In rodents, the estrogen-induced GnRH/LH surge 
is mediated by kisspeptin neurons in the AVPV region (positive feedback). However, KNDy 
neurons in the ARC region of the hypothalamus are sensitive to estradiol (E2) and reduce 
the GnRH/LH secretion (negative feedback). This concept is based on the observations that 
 kisspeptin expression was increased in the AVPV region at the time of the estrogen- and pro-
gesterone-induced LH surge in ovariectomized rats, whereas kisspeptin expression levels in 
the ARC were lowest during this time [18]. Another experiment showing that Kiss1 gene 
expression in the kisspeptin neurons in the AVPV is upregulated by E2, whereas those in 
the ARC are inhibited by E2 [19], also supports the current understanding that kisspeptin 
neurons in the AVPV play a role in the GnRH/LH surge, and kisspeptin neurons in the ARC 
region maintain the pulsatile release of GnRH and also play a pivotal role in the negative 
feedback control by E2.

4. Hypothalamic cell models, GT1-7 and rHypoE8, for investigating 
neuroendocrine mechanisms of the HPG axis

The­hypothalamus­ is­ the­control­center­ for­ the­HPG­axis;­however,­ it­has­been­difficult­ to­
study in detail the GnRH neurons as well as the kisspeptin neurons because of the inherent 
heterogeneity of this brain region. The hypothalamus is composed of a complex network 
of­ neurons,­ and­ there­ are­ different­ neuronal­ phenotypes­ that­ express­ a­ specific­ comple-
ment­of­neuropeptides,­neurotransmitters,­and­receptors­[20]. Immortalized, clonal cell lines 
­represent­a­relatively­homogeneous­population­of­specific­neuronal­cells­and­can­be­used­as­
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The­hypothalamus­ is­ the­control­center­ for­ the­HPG­axis;­however,­ it­has­been­difficult­ to­
study in detail the GnRH neurons as well as the kisspeptin neurons because of the inherent 
heterogeneity of this brain region. The hypothalamus is composed of a complex network 
of­ neurons,­ and­ there­ are­ different­ neuronal­ phenotypes­ that­ express­ a­ specific­ comple-
ment­of­neuropeptides,­neurotransmitters,­and­receptors­[20]. Immortalized, clonal cell lines 
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experimental models. For the study of the character or the functions of hypothalamic GnRH 
neurons, we are using GT1-7 cell lines, which have proven to be a valuable GnRH-expressing 
cell model for GnRH neurons. These cells were created from the hypothalamic tumor cells in 
a transgenic female mouse that expressed the SV40 T-antigen under the control of the GnRH 
promoter [21]. GT1-7 cells display neuronal morphology and secrete GnRH; therefore, these 
cells have become one of the most highly utilized neuronal cell models for studies related to 
GnRH neurons.

The embryonic rat hypothalamic cell line R8 (rHypoE8) consists of hypothalamic neurons 
from rat embryonic day 18 hypothalamic primary cultures immortalized by retroviral 
 transfer of SV40 T-antigen. These cells express neuroendocrine markers such as kisspeptin, 
GnRH, and RF-amide-related peptide-3 (RFRP-3, the mammalian ortholog of the avian 
 gonadotropin-inhibiting hormone, GnIH). Because the expression of kisspeptin or RFRP-3 is 
functionally altered by physiological neuropeptides, these cells serve as tools for the analysis 
of the cellular and molecular mechanisms involved in the hypothalamic control of a number 
of physiological processes [22].

5. Effect of kisspeptin on hypothalamic GT1-7 cells

It is generally agreed that hypothalamic kisspeptin regulates GnRH release from GnRH 
 neurons by kisspeptin binding the Kiss1R that is expressed by GnRH neurons [23]. A 
 previous study by Novaira et al. demonstrated a functional role for kisspeptin in GT1-7 
cells, in which they showed that kisspeptin stimulates the expression and secretion of 
GnRH [24].­ Similarly,­ Terasaka­ et­ al.­ demonstrated­ the­ stimulatory­ effect­ of­ kisspeptin­
on­GnRH­gene­ expression,­ and­ they­also­ found­ that­ this­ stimulatory­ effect­was­ antago-
nized in the presence of bone  morphogenetic protein in these cells [25]. In our study using 
GT1-7­cells,­we­did­not­observe­any­effect­of­kisspeptin­on­GnRH­expression­[26]. Because 
GT1-7 cells express Kiss1R, we  suspected that Kiss1R function was lost or diminished in 
our GT1-7 cells,  probably because of a change in cell character due to cell immortalization 
or multiple passages. On the other hand, when GT1-7 cells overexpressed Kiss1R after 
transfection with a Kiss1R  expression  vector, exogenous Kiss1R was absolutely functional. 
Furthermore, both  extracellular  signal-regulated kinase (ERK) and cAMP/protein kinase A 
(PKA) pathways were activated by kisspeptin in Kiss1R-overexpressing GT1-7 cells. These 
observations suggested that overexpression of exogenous Kiss1R could lead to activation of 
the intracellular signaling pathways mediated by kisspeptin stimulation in these cells. It is 
also noteworthy that, even when GT1-7 cells overexpressed Kiss1R, GnRH expression was 
not stimulated by kisspeptin [26]. It is still unclear why kisspeptin did not increase GnRH 
expression in our GT1-7 cells even when Kiss1R was overexpressed; instead, we clearly 
observed that kisspeptin could stimulate the expression of the GnRH receptor (GnRHR) 
in GT1-7 cells overexpressing Kiss1R [26] (Figure 1).  GnRH-producing cells have been 
reported to respond to GnRH and modify their GnRH expression levels [27]. Furthermore, 
GnRHRs within GnRH neurons were reported to be involved in the pulsatile secretion of 
GnRH by an autocrine or paracrine interaction between GnRH and GnRHR [28, 29]. These 
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observations­implied­that­kisspeptin­could­affect­the­function­of­GnRH­neurons­by­chang-
ing their expression levels of GnRHR.

6. Effect of kisspeptin on primary cultures of fetal rat brain

Although­GT1-7­ cells­ endogenously­ express­Kiss1R,­ kisspeptin­does­not­ affect­ these­ cells.­
When GT1-7 cells overexpress Kiss1R, kisspeptin stimulates intracellular signaling path-
ways and increases GnRHR, but not GnRH expression. To determine the character of kis-
speptin neurons in their original, non-transformed state, we used primary cultures of fetal 
rat brain that contain both GnRH and kisspeptin neurons. GnRH neurons in these cells did 
not respond to E2, which failed to stimulate GnRH mRNA expression. This observation was 
consistent with a previous study that revealed a lack of estrogen receptor immunoreactivity 
in GnRH neurons, raising doubts about the role of E2 in GnRH neuronal function [30]. In 
contrast,  kisspeptin neurons in these primary cultures responded to E2, and Kiss1 mRNA 
expression was upregulated by E2 [31], suggesting that kisspeptin neurons, but not GnRH 
neurons, could be a target of E2 in neuronal cells in the fetal brain. GnRH mRNA expression 
within these  primary cultures of fetal rat brain containing GnRH-producing neurons was 

Figure 1. Schematic summary of the regulation of GnRH in GT1-7 cells. GT1-7 cells express Kiss1R, but endogenous 
Kiss1R does not respond to kisspeptin. Therefore, we used GT1-7 cells overexpressing Kiss1R. GT1-7 cells overexpressing 
Kiss1R did not show an increase in GnRH mRNA expression upon kisspeptin treatment. However, kisspeptin increased 
GnRH­receptor­expression­in­these­cells.­We­also­found­that­a­γ-subunit-containing­GABAA receptor agonist, DS1, as well 
as histone deacetylase inhibitor trichostatin A, reduces GnRH mRNA expression. Retinoic acid also has an inhibitory 
effect­on­GnRH­expression.
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ing their expression levels of GnRHR.
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Although­GT1-7­ cells­ endogenously­ express­Kiss1R,­ kisspeptin­does­not­ affect­ these­ cells.­
When GT1-7 cells overexpress Kiss1R, kisspeptin stimulates intracellular signaling path-
ways and increases GnRHR, but not GnRH expression. To determine the character of kis-
speptin neurons in their original, non-transformed state, we used primary cultures of fetal 
rat brain that contain both GnRH and kisspeptin neurons. GnRH neurons in these cells did 
not respond to E2, which failed to stimulate GnRH mRNA expression. This observation was 
consistent with a previous study that revealed a lack of estrogen receptor immunoreactivity 
in GnRH neurons, raising doubts about the role of E2 in GnRH neuronal function [30]. In 
contrast,  kisspeptin neurons in these primary cultures responded to E2, and Kiss1 mRNA 
expression was upregulated by E2 [31], suggesting that kisspeptin neurons, but not GnRH 
neurons, could be a target of E2 in neuronal cells in the fetal brain. GnRH mRNA expression 
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Figure 1. Schematic summary of the regulation of GnRH in GT1-7 cells. GT1-7 cells express Kiss1R, but endogenous 
Kiss1R does not respond to kisspeptin. Therefore, we used GT1-7 cells overexpressing Kiss1R. GT1-7 cells overexpressing 
Kiss1R did not show an increase in GnRH mRNA expression upon kisspeptin treatment. However, kisspeptin increased 
GnRH­receptor­expression­in­these­cells.­We­also­found­that­a­γ-subunit-containing­GABAA receptor agonist, DS1, as well 
as histone deacetylase inhibitor trichostatin A, reduces GnRH mRNA expression. Retinoic acid also has an inhibitory 
effect­on­GnRH­expression.
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clearly increased by treatment with kisspeptin. Therefore, we could conclude that kisspeptin 
can stimulate GnRH synthesis in GnRH-expressing neurons in vivo. However, kisspeptin 
increased GnRH mRNA expression only up to about 1.5-fold [31]. In addition, we have found 
that GnRH stimulation increased the expression of the Kiss1 gene as well as that of the GnRH 
gene and also found that kisspeptin itself increased the expression of the Kiss1 gene. We 
postulate that GnRH neurons reversibly interact with kisspeptin neurons and also form an 
autocrine interaction with kisspeptin neurons (Figure 2).

7. Trichostatin A, a selective inhibitor of mammalian histone 
deacetylase, reduces GnRH expression in GT1-7 cells

Observations from the studies using GT1-7 cells and primary cultures of fetal rat brain imply 
that­kisspeptin­could­affect­GnRH­neurons­and­increase­GnRH­expression.­In­addition,­kis-
speptin may change the GT1-7 cells’ expression levels of Kiss1R. GnRH synthesis is not only 
regulated by kisspeptin, but several experimental reagents can modify the GnRH synthesis in 
GnRH-producing cells. Trichostatin A (TSA), a selective inhibitor of histone deacetylase, is an 
experimental­reagent­that­modifies­gene­expression­by­opening­chromatin­structure­through­
hyperacetylation of histones [32]. The structural change in chromatin allows transcription 
factors­to­bind­DNA­to­modify­gene­expression.­In­GnRH-producing­GT1-7­cells,­TSA­signifi-
cantly reduced GnRH expression, with a concomitant increase in the gene encoding retinal-
dehyde dehydrogenase, which catalyzes the oxidation of retinol to retinoic acid [33]. Because 
retinoic­acid­also­reduces­GnRH­expression­in­these­cells,­epigenetic­mechanisms­modified­
through­retinaldehyde­dehydrogenase,­and­retinoic­acid­might­have­an­inhibitory­effect­on­
GnRH production (Figure 1).

Figure 2. Schematic summary of the regulation of Kiss1 mRNA and GnRH mRNA expression in primary cultures of 
fetal rat brain and the proposed interaction between kisspeptin neurons and GnRH neurons. In experiments using 
primary cultures of fetal rat neuronal cells, Kiss1 mRNA, but not GnRH mRNA expression, was upregulated by estradiol 
(E2). GnRH mRNA expression was clearly increased by treatment with kisspeptin. GnRH stimulation increased the 
expression of both Kiss1 and GnRH mRNAs, and kisspeptin itself was found to increase the expression of the Kiss1 gene. 
We postulate that GnRH neurons reversibly interact with kisspeptin neurons and also form an autocrine interaction with 
kisspeptin neurons.
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8. DS1, a δ-subunit-containing GABAA receptor agonist, reduces 
GnRH mRNA expression and increases that of GnRHR in GT1-7 cells

It­ is­ well­ documented­ that­ the­ neurotransmitter­ γ-aminobutyric­ acid­ (GABA)­ can­modu-
late the activity of GnRH neurons. GnRH neurons possess functional GABAA receptors 
[34], and GABAergic neurons establish synapses with GnRH neurons [35]. GABA neurons 
­predominantly­exert­ their­ inhibitory­effect­on­GnRH­neurons­ in­rodents­and­sheep.­GT1-7­
cells also express functional GABAA receptors [36]. GABAA receptors are multimeric  proteins 
that­are­composed­of­five­subunits­drawn­from­a­repertoire­of­several­homologous­­protein­
groups­(α1-6,­β1-3,­γ1-3,­δ,­ε,­θ,­and­π);­the­majority­of­GABAA receptors in the central  nervous 
system­ are­ composed­ of­ α,­ β,­ and­ γ­ subunits,­ and­ less­ abundant­ populations­ of­ GABAA 
­receptor­contain­the­δ­subunit­[37].­DS1,­an­α4β3δ­GABAA receptor agonist, reduces GnRH 
mRNA­expression­in­GT1-7­cells,­although­DS1­can­exert­a­stimulatory­effect­on­signal­trans-
duction systems, such as ERK and cAMP/PKA [38].­The­δ-subunit-containing­α4β3δ­GABAA 
receptor was found in extra-synaptic sites and is known to control neuronal excitability [39]. 
Interestingly, although GnRH mRNA expression was decreased, GnRHR expression within 
GT1-7­cells­was­significantly­ increased­by­DS1­stimulation­ [38] (Figure 1). At present, it is 
still­unknown­why­δ-subunit-containing­GABAA receptor agonism decreases the production 
of GnRH in spite of increasing GnRHR expression. We currently speculate that GABA could 
modulate­ GnRH-producing­ neurons­ through­ δ-containing­ GABAA receptors and deplete 
their GnRH content by modulating gene expression and secretory function in association 
with the expression of their GnRHR within the cell (Figure 1).

9. Kisspeptin expression is induced by glucagon-like peptide-1 in 
rHypoE8 cells and GT1-7 cells

As described above, we used GT1-7 cells as a model for GnRH-producing neurons; however, 
GT1-7 cells also express the Kiss1 gene, which encodes kisspeptin [40]. rHypoE8 cells, another 
hypothalamic model that was developed from rat embryonic hypothalamic primary cultures, 
express the Kiss1 gene, and they also express the GnRH gene [22]. Because both rHypoE8 
and GT1-7 are immortalized cell lines derived from heterogeneous hypothalamic cell popula-
tions, they express several types of neuropeptides. Using these hypothalamic cell models, we 
found that Kiss1 mRNA was regulated by several metabolic factors. Glucagon-like peptide-1 
(GLP-1) is a gastrointestinal hormone produced by the small intestine and colon in response 
to food intake [41]. GLP-1 is also expressed in the central nervous system, and its expression 
in the brain is altered during fasting or feeding [42], suggesting that GLP-1 plays a role as a 
satiety factor. We found that GLP-1 increased the expression of Kiss1 mRNA in rHypoE8 cells 
as well as GT1-7 cells [43]. Moreover, leptin, which is an anorexigenic factor that is released 
from adipocytes, can also stimulate Kiss1 mRNA expression in these cells (Figure 3). These 
observations suggest that the levels of metabolic factors such as GLP-1 or leptin, which change 
during­a­state­of­starvation­or­negative­energy­balance,­can­critically­influence­the­HPG­axis­
by changing kisspeptin expression.
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Hypothalamus in Health and Diseases22

8. DS1, a δ-subunit-containing GABAA receptor agonist, reduces 
GnRH mRNA expression and increases that of GnRHR in GT1-7 cells

It­ is­ well­ documented­ that­ the­ neurotransmitter­ γ-aminobutyric­ acid­ (GABA)­ can­modu-
late the activity of GnRH neurons. GnRH neurons possess functional GABAA receptors 
[34], and GABAergic neurons establish synapses with GnRH neurons [35]. GABA neurons 
­predominantly­exert­ their­ inhibitory­effect­on­GnRH­neurons­ in­rodents­and­sheep.­GT1-7­
cells also express functional GABAA receptors [36]. GABAA receptors are multimeric  proteins 
that­are­composed­of­five­subunits­drawn­from­a­repertoire­of­several­homologous­­protein­
groups­(α1-6,­β1-3,­γ1-3,­δ,­ε,­θ,­and­π);­the­majority­of­GABAA receptors in the central  nervous 
system­ are­ composed­ of­ α,­ β,­ and­ γ­ subunits,­ and­ less­ abundant­ populations­ of­ GABAA 
­receptor­contain­the­δ­subunit­[37].­DS1,­an­α4β3δ­GABAA receptor agonist, reduces GnRH 
mRNA­expression­in­GT1-7­cells,­although­DS1­can­exert­a­stimulatory­effect­on­signal­trans-
duction systems, such as ERK and cAMP/PKA [38].­The­δ-subunit-containing­α4β3δ­GABAA 
receptor was found in extra-synaptic sites and is known to control neuronal excitability [39]. 
Interestingly, although GnRH mRNA expression was decreased, GnRHR expression within 
GT1-7­cells­was­significantly­ increased­by­DS1­stimulation­ [38] (Figure 1). At present, it is 
still­unknown­why­δ-subunit-containing­GABAA receptor agonism decreases the production 
of GnRH in spite of increasing GnRHR expression. We currently speculate that GABA could 
modulate­ GnRH-producing­ neurons­ through­ δ-containing­ GABAA receptors and deplete 
their GnRH content by modulating gene expression and secretory function in association 
with the expression of their GnRHR within the cell (Figure 1).

9. Kisspeptin expression is induced by glucagon-like peptide-1 in 
rHypoE8 cells and GT1-7 cells

As described above, we used GT1-7 cells as a model for GnRH-producing neurons; however, 
GT1-7 cells also express the Kiss1 gene, which encodes kisspeptin [40]. rHypoE8 cells, another 
hypothalamic model that was developed from rat embryonic hypothalamic primary cultures, 
express the Kiss1 gene, and they also express the GnRH gene [22]. Because both rHypoE8 
and GT1-7 are immortalized cell lines derived from heterogeneous hypothalamic cell popula-
tions, they express several types of neuropeptides. Using these hypothalamic cell models, we 
found that Kiss1 mRNA was regulated by several metabolic factors. Glucagon-like peptide-1 
(GLP-1) is a gastrointestinal hormone produced by the small intestine and colon in response 
to food intake [41]. GLP-1 is also expressed in the central nervous system, and its expression 
in the brain is altered during fasting or feeding [42], suggesting that GLP-1 plays a role as a 
satiety factor. We found that GLP-1 increased the expression of Kiss1 mRNA in rHypoE8 cells 
as well as GT1-7 cells [43]. Moreover, leptin, which is an anorexigenic factor that is released 
from adipocytes, can also stimulate Kiss1 mRNA expression in these cells (Figure 3). These 
observations suggest that the levels of metabolic factors such as GLP-1 or leptin, which change 
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10. Conclusion

Within the past decade, our understanding of the hypothalamic control of female  reproductive 
function­has­matured­ considerably.­The­ identification­of­hypothalamic­kisspeptin,­ a­ regu-
lator of GnRH, has provided us decisive insight into previously unanswerable questions. 
Kisspeptin neurons within the hypothalamus play a pivotal role in the control of the HPG 
axis, but it is still not entirely clear how kisspeptin release and expression are regulated in 
the brain during the reproductive cycle. Furthermore, the precise biology of kisspeptin and 
GnRH­neurons­remains­unknown­because­of­the­difficulty­of­isolation­of­these­neurons­from­
heterogeneous neuronal populations of the hypothalamus.

In this review, we described our observations concerning the regulation of kisspeptin and GnRH 
neurons­using­hypothalamic­cell­models.­Because­we­believe­these­cell­models­may­reflect­the­
original character of genuine kisspeptin and GnRH neurons, future studies using these cells 
are likely to contribute to our understanding of the mechanisms of regulation of the HPG axis.
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10. Conclusion

Within the past decade, our understanding of the hypothalamic control of female  reproductive 
function­has­matured­ considerably.­The­ identification­of­hypothalamic­kisspeptin,­ a­ regu-
lator of GnRH, has provided us decisive insight into previously unanswerable questions. 
Kisspeptin neurons within the hypothalamus play a pivotal role in the control of the HPG 
axis, but it is still not entirely clear how kisspeptin release and expression are regulated in 
the brain during the reproductive cycle. Furthermore, the precise biology of kisspeptin and 
GnRH­neurons­remains­unknown­because­of­the­difficulty­of­isolation­of­these­neurons­from­
heterogeneous neuronal populations of the hypothalamus.

In this review, we described our observations concerning the regulation of kisspeptin and GnRH 
neurons­using­hypothalamic­cell­models.­Because­we­believe­these­cell­models­may­reflect­the­
original character of genuine kisspeptin and GnRH neurons, future studies using these cells 
are likely to contribute to our understanding of the mechanisms of regulation of the HPG axis.
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Abstract

Sleep-wake cycle is probably the most truthful signature of life. These unavoidable 
interchangeable states are together the matrix for all that occurs in physiology, and its 
rhythms are regulated by homeostatic and circadian processes involving different neu-
ronal structures and distinct neural substrates. Hypothalamic regulation of sleep-wake 
cycle becomes of relevance as several neuropeptide-producing neurons involved in sleep 
and wakefulness regulation are located there. In this chapter, we provide a review of 
the hypothalamic regulation of sleep-wake cycle, focusing on the hypocretin system and 
melanin-concentrating hormone (MCH)-producing neurons located in the lateral hypo-
thalamic area (LHA).
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1. Hypothalamus as a sleep-wake cycle regulator aside the RAS

The invention of the EEG by Hans Berger was a landmark in the history of sleep science. 
Until then, sleep was primarily considered to be a passive state, resulting from an exhaustion-
modulated partial disconnection of sensory-motor circuitry from the higher-level neural 
regulators [1]. When early and after the first recordings of brain electrical activity, Berger 
established the alpha and beta waves as the EEG-dominant oscillations in healthy subjects [2]; 
he was proposing the electrophysiological definition of being awake. Later developments of 
Berger research allowed Frédéric Bremer, who was studying the physiology of the cerebellum 
and the neural control of muscular tone, to further investigate on the side effects of sleepi-
ness after a lesion was produced on the hypothalamus. Although not precisely involved in 
sleep research, Bremer curiosity on exploring the functional effects of lower brain damages 
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further led him to perform cats’ decerebration by which the forebrain was left in situ after 
a mesencephalic transection at intercollicular level. The results of this approach—the “cer-
veau isolé” model—leading to a persistent and indefinite condition with the brain deprived 
from the ascending sensory information, except for olfaction and optical ones, led Bremer to 
consider the hypothesis of sleep being a consequence of a complete deprivation of a sensory 
input arriving from the spinal cord. In this model, the cortical EEG pattern was dominated by 
a high-amplitude, low-frequency activity, like that observed in the slow-wave sleep (SWS). 
The following experiments, where the brain transection was performed at the level of the 
meeting point between the brain stem and the spinal cord, revealed very different results. In 
this “encephale isolé” model, an interchangeable oscillation between the sleep and the wake 
states, with an EEG pattern varying from the spontaneous low-frequency, high-amplitude 
activity usually observed in SWS, and high-frequency, low-amplitude activity, typical of 
wakefulness and rapid eye movement, was observed, not different from what can be noticed 
in a healthy condition. Although, at this time, Bremer was unaware of the reticular activating 
system (RAS), the assumption taken from his work that sleep was derived from a reduction 
in cortical tone while wakefulness resulted from the maintained sensorial flow to the brain 
served as the basis for later developments on sleep-wake cycle neurophysiology [3].

RAS was identified about 14 years later by Moruzzi and Magoun who significantly contributed 
to sleep-wake physiology by showing that brainstem reticular formation stimulation abolished 
EEG low-frequency activity and induced high-frequency activity in the cortical recordings [4]. 
Further experiments using the transection technique concluded that RAS underlies wakeful-
ness, while its absence or its “silence” precipitates sleep [5]. These results were, however, 
obtained in acute experiments when EEG was assessed almost immediately after the brain 
damage. However, Villablanca [6] observed that, in the animals transected and maintained 
alive days or weeks after the surgical procedure, a waking-like EEG activity characterized by 
low-amplitude high-frequency waves was observed, suggesting that the forebrain could be 
involved in this partial recovery of the normal rhythm, in particular, its magnocellular region 
which contains cholinergic, GABAergic, and glutamatergic neurons. This allowed conceptual-
izing that the wake-state modulation may also be dependent regions located rostral to RAS, 
in particular, of the forebrain. Some studies showed that the electrical stimulation of the pos-
terior hypothalamus and the basal forebrain in the isolated cat forebrain induced fast cortical 
EEG rhythms [7]. On the other hand, the cholinergic stimulation of these areas was shown to 
induce arousal, suggesting a role in the modulation of a wakening mechanism.

In a “diencephalic model,” resulting from the removal of the cortex and striatum, leaving the 
thalamus, hypothalamus, and basal forebrain connected to the brain stem, animals became 
hyperactive, hyperreactive to sensory stimuli, and with a low-amplitude, high-frequency activ-
ity in the thalamus. In “athalamic animal” in which the thalamus was removed, they were also 
hyperactive and reactive to sensory stimuli, but they could not localize the stimuli and do not 
show very much awareness with only brief periods of low-amplitude, high-frequency activity.

To evaluate how close is the relationship between the structure and the elicited command to 
develop wake, we can infer using the latency of a stimuli to induce awake EEG. The stimula-
tion of RAS-thalamic pathway is several times faster on inducing a wake-like pattern than 
stimulating basal forebrain or lateral hypothalamic/orexin pathways, thus meaning that for 
both regions, there is a need to project elsewhere to induce such a wake EEG pattern.

Hypothalamus in Health and Diseases32

In the 1920s, during the influenza epidemic, a new type of encephalitis, attacking brain 
regions and regulating sleep and wakefulness, was described by Constantin von Economo. 
This disorder, which was eventually called encephalitis lethargica or von Economo’s sleeping 
sickness, swept through Europe and North America, with some patients exhibiting severe 
insomnia, while others slept for 20 or more hours per day, arising only briefly to eat and 
drink. The postmortem autopsies of these patients indicated that those with an insomnia-like 
phenomenon had a damage in the anterior hypothalamus, whereas those with abnormally 
increased sleep periods showed an abnormal posterior hypothalamus. In view of that, an 
ascending arousal system originating in the brainstem that kept the forebrain awake was 
proposed and later described by Moruzzi and Magoun as the ascending reticular activating 
system. Later studies, during the 1980s, clarified the nature of this pathway.

Although Von Economo’s work represented a crucial achievement for sleep research, 
the seminal studies of the hypothalamic-hypocretin system were performed by Lecea and 
Kilduff who characterized the mRNA-encoding hypocretin and identified that the neurons 
were responsible for its production [8]. Soon after their findings, the relationship between 
hypocretin/orexin neurons and narcolepsy was established with a mutation in the orexin-2/
hypocretin-2 receptor observed in a narcoleptic dog [9]. Symptoms of narcolepsy, a disorder 
characterized by hypersomnolence and muscle weakness (cataplexy) triggered by emotion, 
were also associated to the absence of orexin/hypocretin [10] to the lack of orexinergic/hypo-
cretinergic neurons [11] or orexin/hypocretin 2 receptor [12]. Cell bodies of those neurons are 
in the perifornical area and lateral hypothalamus (LH), responsible for RAS and tuberomam-
millar nucleus (TMN) neurons activation and are active during wake state and rapid eye 
movement (REM) sleep [13].

2. Orexinergic neurons, their receptors, and physio-pharmacological 
aspects of orexinergic system related to the sleep-wake cycle

Prepro-orexin protein is the precursor protein, generating the excitatory neuropeptides orex-
ins A and B (hypocretins 1 and 2). Orexin A (hypocretin 1), with a structure of 33 amino acids 
and 3.5 kDa, is completely conserved among different mammals which reflects its physiologi-
cal relevance. Orexin B (hypocretin 2) is a 28-amino acid peptide with 2.9 kDa with 46% simi-
larity to orexin A [14]. Their neurons, located on the LH, project widely throughout the brain 
and spinal cord [15]. Orexin excites target neurons through two types of expressed G-protein-
coupled receptors. Orexin 1 receptor (OX1R) is dominantly expressed in the locus coeruleus 
(LC) and orexin 2 receptor (OX2R) is dominantly expressed in the arcuate nucleus (Arc), ven-
trolateral hypothalamus (VMH), LH, and TMN. Both OX1R and OX2R are expressed in the 
raphe nucleus and ventral tegmental area (VTA).

Similar to other wake-promoting neurons, orexin neurons fire mainly during active wakeful-
ness when orexin levels are highest and are silenced during NREM and REM sleep, concur-
ring with the lowest levels of orexin [16].

Different neuronal pathways involving orexin and neurotransmitters affecting its activ-
ity were identified. Neuropeptide Y (NPY) and agouti-related peptide (AgRP) in the Arc 
project to orexin neurons [17]. Also, serotoninergic neurons in the median/paramedian 
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raphe nucleus and GABAergic neurons in the ventrolateral preoptic (VLPO) nucleus send 
axons to orexin neurons [18]. VLPO is of major importance on initiating and maintaining 
NREM sleep as their neurons are activated by the somnogens adenosine [19] and prosta-
glandin D2 [20], and VLPO damage reduces NREM and REM sleep [21]. Orexinergic neu-
rons are also targeted by neuronal projections from the bed nucleus of the stria terminalis 
(BST), supraventricular zone, and dorsomedial hypothalamus (DMH) [18] and receive 
neuronal projections from the suprachiasmatic nucleus—the human master circadian 
clock [22]. A direct neuronal pathway between SCN and orexinergic neurons was not 
identified until now.

Since orexinergic neurons in LH are scarce and difficult to distinguish from other neurons 
just by morphology, a slice-path clamp technique, an electrophysiological method based 
on the expression of enhanced green fluorescent protein (EGFP) under the control of 
orexin promoter in transgenic mice, has been used in order to identify substances affect-
ing orexinergic neuron activity [23, 24]. For instance, this allowed to assume the effects 
of distinct neurotransmitters on orexin neurons: glutamate receptor agonists AMPA and 
NMDA depolarize orexin neurons, while GABAA and GABAB receptor agonists musci-
mol and baclofen hyperpolarize those cells. Serotonin and noradrenaline hyperpolarize 
all orexin neurons through two receptors coupled to inhibitory Gi proteins (5HT1A and 
alpha 2A receptors, respectively) and subsequently activate protein-coupled inwardly 
rectifying potassium channels. Recent optogenetic methods allowed to confirm that the 
activation of serotoninergic neuron terminal inhibits orexin neurons either directly (via 
5-HT1A receptor) or indirectly (via facilitation of GABAergic-inhibitory inputs) [25]. 
Dopamine also hyperpolarizes orexin neurons possibly by an indirect action through 
alpha 2A receptor [26], and glycine inhibits the activity of orexin neurons either directly 
and indirectly [27].

One complementary method to study the function of orexinergic neurons is to look for 
the physiological consequences of its ablation. Hara and coworkers generated transgenic 
mice, in which orexin neurons are ablated, and showed a phenotype similar to human 
narcolepsy [11], which also occurred in OX1r and OX2r knockout mice [28]. In transgenic 
mice, experimentally induced gradual ablation of orexin neurons using a specific “time-
controlled death” technique was associated to a fragmentation of the usual sleep-wake 
cycle [29]. The anatomical proximity and the genetic co-localization of the orexin neurons 
regulating sleep-wake state have recently benefitted from optogenetics. Using this kind of 
approach, Adamantidis and collaborators showed that by increasing the activity of orexin 
neurons, there was also an increased probability of transition to wakefulness from either 
NREM or REM sleep [30]. On the other hand, results from Zhang group using the same 
kind of approach indicate that the acute inhibition of orexinergic neurons leads to a time-of-
day-dependent induction of NREM sleep [31]. To overcome some difficulties related to the 
study of neuronal networks located deeper in the brain, several new-generation optogenetic 
tools are being developed with an expected great impact on the near future in the areas of 
chronobiology and sleep physiology.
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3. Melanin-concentrating hormone (MCH) and MCH neurons

The melanin-concentrating hormone is a 19-amino acid peptide predominant in specific 
neurons with the cell body located in the lateral hypothalamus and incerto-hypothalamic 
area of mammals. Apart from the sleep-active neurons in the preoptic area, these groups 
of neurons are also active during sleep, especially in REM sleep [32]. MCH neurons proj-
ect throughout the brain with a dense innervation of the cholinergic and monoaminergic 
arousal centers [33]. MCH decreases cAMP levels in the cell through the MCH receptor 
1(MCHR1), a G-protein-coupled receptor linked to Gq, Gi, and Go subunits which are 
expressed widely in the brain [34], and cellular electrophysiological studies showed that 
MCH has both presynaptic and postsynaptic strong inhibitory effects [35, 36]. The evi-
dence that MCHR1 is expressed in several areas of the brain including those which are 
part of physiological pathways within sleep-wake control mechanisms (hippocampus, 
subiculum, basolateral amygdala, shell of the nucleus accumbens, ventromedial nucleus, 
arcuate nucleus, tuberomammillary nucleus, dorsolateral pons including dorsal raphe, and 
locus coeruleus) [37] supports that MCH neurons must play an essential role on sleep-wake 
physiology.

Furthermore, while intracerebroventricular infusion of MCH peptide facilitates REM and 
NREM sleep [38], knockout of MCH is associated to a more active wakefulness state [39] 
and to a reduction on either REM or NREM sleep. Optogenetically selectively activated 
MCH neurons generally increase REM sleep duration [40–42]. Consistent results have 
shown that MCH neurons are strongly activated on REM sleep and de-activated during 
NREM, suggesting that MCH neurons promote REM sleep [32]. However, studies with 
timing-controlled ablation of MCH neurons revealed an increase in wakefulness and a 
reduction in NREM sleep, showing that MCH is also involved in the regulation of NREM 
sleep.

MCH neurons seem to inhibit some awake center neurons through GABAergic-inhibitory 
synapses onto histaminergic neurons of tuberomammillary nucleus. Recent work showed 
that the acute activation of MCH neurons, at the onset of REM sleep, extended the duration 
of this sleep stage but not that of the NREM sleep [42]. The inhibition of MCH neurons on the 
other hand reduces the frequency of theta rhythms from the hippocampus without interfering 
on REM sleep duration [41].

MCH neurons are excited by orexin, AMPA agonists, NMDA, and cannabinoid type-1 recep-
tor agonists [43–45] and inhibit orexinergic and adjacent GABAergic neurons [46]. It is clear, 
however, that orexin may also inhibit MCH neurons via GABAa receptors [47]. Dopamine is 
also an MCH neuronal inhibitor either via alpha-2 receptor [48] or via D1- and D2-like recep-
tors [49]. Furthermore, MCH neurons are inhibited by MCH itself and by GABA, noradrena-
line, serotonin, acetylcholine, neuropeptide Y, and histamine [50]. This mutual inhibitory 
interaction between orexin neurons and MCH neurons in the LH is crucial for the regulation 
of sleep-wake physiological cycle [51–53].
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axons to orexin neurons [18]. VLPO is of major importance on initiating and maintaining 
NREM sleep as their neurons are activated by the somnogens adenosine [19] and prosta-
glandin D2 [20], and VLPO damage reduces NREM and REM sleep [21]. Orexinergic neu-
rons are also targeted by neuronal projections from the bed nucleus of the stria terminalis 
(BST), supraventricular zone, and dorsomedial hypothalamus (DMH) [18] and receive 
neuronal projections from the suprachiasmatic nucleus—the human master circadian 
clock [22]. A direct neuronal pathway between SCN and orexinergic neurons was not 
identified until now.

Since orexinergic neurons in LH are scarce and difficult to distinguish from other neurons 
just by morphology, a slice-path clamp technique, an electrophysiological method based 
on the expression of enhanced green fluorescent protein (EGFP) under the control of 
orexin promoter in transgenic mice, has been used in order to identify substances affect-
ing orexinergic neuron activity [23, 24]. For instance, this allowed to assume the effects 
of distinct neurotransmitters on orexin neurons: glutamate receptor agonists AMPA and 
NMDA depolarize orexin neurons, while GABAA and GABAB receptor agonists musci-
mol and baclofen hyperpolarize those cells. Serotonin and noradrenaline hyperpolarize 
all orexin neurons through two receptors coupled to inhibitory Gi proteins (5HT1A and 
alpha 2A receptors, respectively) and subsequently activate protein-coupled inwardly 
rectifying potassium channels. Recent optogenetic methods allowed to confirm that the 
activation of serotoninergic neuron terminal inhibits orexin neurons either directly (via 
5-HT1A receptor) or indirectly (via facilitation of GABAergic-inhibitory inputs) [25]. 
Dopamine also hyperpolarizes orexin neurons possibly by an indirect action through 
alpha 2A receptor [26], and glycine inhibits the activity of orexin neurons either directly 
and indirectly [27].

One complementary method to study the function of orexinergic neurons is to look for 
the physiological consequences of its ablation. Hara and coworkers generated transgenic 
mice, in which orexin neurons are ablated, and showed a phenotype similar to human 
narcolepsy [11], which also occurred in OX1r and OX2r knockout mice [28]. In transgenic 
mice, experimentally induced gradual ablation of orexin neurons using a specific “time-
controlled death” technique was associated to a fragmentation of the usual sleep-wake 
cycle [29]. The anatomical proximity and the genetic co-localization of the orexin neurons 
regulating sleep-wake state have recently benefitted from optogenetics. Using this kind of 
approach, Adamantidis and collaborators showed that by increasing the activity of orexin 
neurons, there was also an increased probability of transition to wakefulness from either 
NREM or REM sleep [30]. On the other hand, results from Zhang group using the same 
kind of approach indicate that the acute inhibition of orexinergic neurons leads to a time-of-
day-dependent induction of NREM sleep [31]. To overcome some difficulties related to the 
study of neuronal networks located deeper in the brain, several new-generation optogenetic 
tools are being developed with an expected great impact on the near future in the areas of 
chronobiology and sleep physiology.
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3. Melanin-concentrating hormone (MCH) and MCH neurons
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4. Circadian regulation of sleep-wake cycles and some of its 
disturbances

Sleep disorders are complex phenomena. A detailed correlation of sleep-wake regulation and 
clinical states is beyond the scope of this chapter, but a few examples can help to bridge the 
basic science concepts to everyday clinical scenarios. Since the first description of the hypocre-
tin/orexin system 20 years ago, a body of literature investigating the physiologic and patho-
physiology role of this system, as well as the potential for drug development, has emerged. 
Disruption of this system has been linked to pathological sleep-wake states such as insom-
nia and narcolepsy. A role for the hypocretin/orexin system in other sleep disorders and in 
sleepiness associated with other neurological disorders has also deserved some investigation. 
Recent results indicate that subjects with head trauma or encephalitis may have moderately 
but significantly decreased hypocretin levels. A few selected subjects with Guillain-Barré syn-
drome, Parkinson’s disease (PD), multiple system atrophy, and other neurodegenerative dis-
orders have also been found to have shallow hypocretin levels. Importantly, central actions 
of orexin regulate motivated behaviors, stress response, and energy/glucose metabolism by 
coordinating regions of the central autonomic network and the endocrine system, these mul-
tiple actions of orexin being critical to maintaining life.

Considering these putative clinical targets, there has been an ongoing research in the devel-
opment of selective hypocretin/orexin receptor agonists and antagonists. Recently, suvorexant 
became the first US Food and Drug Administration (FDA)-approved hypocretin/orexin receptor 
antagonist for the treatment of insomnia [54], and Nagahara and coworkers published a work 
on the first hypocretin/orexin agonist with good potency and pharmacological selectivity [55].

4.1. Primary hypersomnias

4.1.1. Narcolepsy

As previously mentioned, narcolepsy has been associated with changes in the orexinergic/
hypocretinergic neurons. It is a disabling neurologic condition affecting around 1 in 2000 
individuals, characterized by excessive daytime sleepiness, frequently running with sudden 
muscle paralysis (cataplectic attacks), and transitions from wakefulness into REM sleep [56]. 
Human narcolepsy is a genetically complex disorder and environmentally influenced. The 
association of HLA with human narcolepsy suggests that it may have an autoimmune origin. 
Available treatment strategies are mainly symptomatic and include amphetamine-like stimu-
lants and antidepressants, being met with unsatisfactory results.

Canines with narcolepsy were found to have a mutation in the orexin-2 (hypocretin-2) recep-
tor [57] while mice lacking the orexin peptide or the neurons containing orexin (hypocretin) 
displayed behavioral and EEG signs of narcolepsy [11, 58]. Human subjects with narcolepsy 
have been found to have a lack or very low levels of hypocretin neurons (with an 85–95% 
reduction in the number of neurons) and orexin-A in the CSF [59]. These findings have 
been corroborated by postmortem examination of brain tissue of subjects with narcolepsy, 
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depicting massive losses of orexin neurons [60]. It is not yet entirely clear what leads to 
this massive loss of the orexin neurons. By contrast, the number of melanin-concentrating 
hormone (MCH) neurons is not reduced in number, indicating that the cell loss is relatively 
specific for hypocretin neurons.

4.1.2. Idiopathic hypersomnia

Idiopathic hypersomnia is characterized by excessive daytime sleepiness, without sudden 
muscle paralysis (cataplectic attacks) nor abrupt transitions from wakefulness into REM sleep 
but with a dopaminergic and overall aminergic impairment associated with this condition. 
Some authors have described low but detectable levels of hypocretin in these patients [61], 
while others reported normal levels [62, 63]. Postmortem studies are not available yet.

4.2. Hypocretin studies in neurodegenerative disorders

4.2.1. Parkinson’s disease

Sleep disturbances often occur in patients with Parkinson’s disease (PD) and can even pre-
cede the motor symptoms, showing, in this way, the close relation at a central level between 
autonomic (non-motor symptoms) and sleep centers. Excessive daytime sleepiness has been 
reported in almost half of the PD patients [64, 65]. In postmortem brain studies, hypocretin-1 
tissue concentrations in the prefrontal cortex were almost 40% lower in these patients, with 
the total number of hypocretin neurons being almost half compared with controls [66, 67]. A 
progressive loss of MCH neurons has also been described, increasing with the disease pro-
gression [67].

4.2.2. Multiple system atrophy

Sleep disturbances occur in 70% of patients with multiple system atrophy (MSA), a progres-
sive neurodegenerative disease of undetermined etiology, characterized by parkinsonian fea-
tures, cerebellar, autonomic, and urogenital dysfunction and corticospinal disorders [68]. The 
clinical features include reduced and fragmented sleep, excessive daytime sleepiness, rapid 
eye movement (REM), sleep behavior disorder (RBD), stridor, and sleep-disordered breathing 
[69, 70]. In these patients, Benarroch and coworkers found up to 70% reduction in the total 
number of hypocretin neurons in these populations of patients and described abundant glial 
cytoplasmic inclusions in the hypocretin distribution area [71].

4.3. Immune-mediated neurological disorders

4.3.1. Guillain-Barré syndrome

Guillain-Barré syndrome is a post-infectious polyradiculopathy affecting mainly the peripheral 
nervous system, frequently presenting also with autonomic nervous system failure symptoms. 
Not infrequently, these patients also show other signs of hypothalamic disturbance. Guillain-
Barré syndrome has been the only disorder besides narcolepsy in which undetectable levels of 
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hypocretin have been consistently observed [63, 72]. Patients with the lowest levels tend to have 
a more severe and rapid disease course, running with tetraplegia and respiratory failure. The 
mechanism underlying the lack or very decreased levels of hypocretin in Guillain-Barré syndrome 
remains unknown, but an immune-mediated hypothalamic dysfunction has been hypothesized.

4.4. Orexin and sleep-related physical disorders: cardiovascular disease

Almost all bodily functions are dependent on the autonomic nervous system (ANS), which 
exerts precise control over visceral functions. Sleep disruption causes an increased activity of 
the sympathetic nervous system in association with an elevated blood pressure, and the risks 
of hypertension and cardiovascular disease are increased as a consequence of either strong 
acute or long-term sleep disruption [73]. The hypocretin/orexin system also contributes to 
the regulation of cardiovascular functions via the autonomic nervous system. Hypocretin/
orexin neurons project to several brain regions involved in the regulation of cardiovascular 
activity, namely the paraventricular nucleus (PVN), nucleus tractus solitarius, and the rostral 
ventrolateral medulla (RVLM), all areas of the central autonomic network [74].

Over-activation of the hypocretin/orexin system has been implicated in the pathogenesis of 
hypertension. It has been shown that the central administration of orexins A and B increases 
arterial blood pressure and elicits tachycardia in animal models [74]. Conversely, orexin/
ataxin-3 transgenic rats, lacking orexin neurons, have a significantly reduced sympathetic 
nervous system tone and a lower systolic blood pressure when compared with controls [75]. 
In addition, spontaneously hypertensive rats (SHRs) have increased levels of hypocretin/
orexin [74] that, when blocked by the oral administration of almorexant or by intracerebro-
ventricular injections of TCSOX229, led to a significant reduction of systolic blood pressure 
while not affecting arterial blood pressure in normotensive animals [76, 77]. These data sug-
gest that hypocretin/orexin may play a significant role in the pathogenesis of hypertension. In 
humans, Dauvilliers and coworkers reported a lower cardiac activation associated with peri-
odic leg movements during sleep in narcoleptic patients which was proposed to be related to 
changes in baroreflex sensitivity [78]. The same group found a large percentage of diastolic 
non-dippers, with 64% failing to achieve the 15% fall point on diastolic blood pressure [79], 
and recent data suggested that narcoleptic patients displayed a nighttime non-dipping blood 
pressure pattern with increased systolic blood pressure during nighttime REM sleep [80].

The blunted cardiac activation and sleep-related blood pressure fall in narcoleptic patients 
may be clinically relevant and may indicate an increased risk for cardiovascular events among 
attributable to a potentially clinically significant hypocretin/orexin deficiency.

5. Conclusion

In summary, despite being present throughout the animal kingdom, the precise sleep function 
is still relatively elusive. However, it is evident that sleep regulation is fundamental for sur-
vival having the hypothalamus a significant role in those modulatory processes through the 
orexin/hypocretin and the MCH neurons. Nevertheless, further studies on sleep physiology 
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are needed to determine the inner mechanisms associated with sleep-wake cycle and their 
regulatory processes.
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Abstract

Stimulation of discrete sites throughout the hypothalamus elicits autonomic and somatic 
responses. This chapter will stand out the cardiorespiratory changes evoked from stimu-
lation of specific areas within the caudal hypothalamus: the perifornical area and the 
dorsomedial nucleus. The stimulation of these regions, known as the hypothalamic 
defense area (HDA), produces a pattern of visceral and somatic changes characteristic 
of the defense reaction, which includes tachypnea, tachycardia and a pressor response. 
A close review of the literature demonstrates that the changes observed during this 
defensive behavioral response are partially mediated by the interactions with pontine 
regions. These include the parabrachial complex, located in the dorsolateral pons, and 
the A5 region, located in the ventrolateral pons. Specific glutamatergic stimulation of 
cell bodies located within the parabrachial complex and A5 region evokes cardiorespira-
tory responses similar to those observed during stimulation of the HDA. This functional 
interaction suggests a possible role of glutamate pontine receptors in the modulation of 
the HDA response. This chapter describes the most important evidences confirming the 
implication of the dorso- and ventrolateral pons in the control of cardiorespiratory auto-
nomic responses evoked from the perifornical and dorsomedial hypothalamus and the 
role of glutamate in this interaction.

Keywords: caudal hypothalamus, parabrachial complex, A5 region, cardiorespiratory 
responses, glutamate receptors, defense response

1. Introduction

Brief alerting stimuli such as an unexpected noise or light will evoke in animals immediate 
cardiovascular and respiratory responses, including strong cutaneous vasoconstriction and 
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respiratory activation [1–5]. Consistent with this, alerting stimuli in humans reliably increase 
cutaneous sympathetic activity [6]. Brief alerting stimuli also evoke variable changes in heart 
rate due to the fact that there is an activation of cardiac sympathetic and vagal parasympa-
thetic activity [5, 7–10].

The initial response to alerting stimuli is a reflex termed “defense reaction” or “visceral alert-
ing reaction” [11]. It is known that alarming stimuli evoke a characteristic autonomic response 
that includes tachypnea, accompanied by an increase in heart rate and blood pressure. A 
vasoconstriction in renal and mesenteric vascular beds with vasodilatation of skeletal muscle 
vessels is also observed in humans [12–22] and animals [23–27]. These cardiovascular changes 
are accompanied by a marked increase in total norepinephrine spillover in humans, indica-
tive of an overall increase in sympathetic activity [28]. Research carried out in both, humans 
and animals, shows that stress elicits a typical pattern of catecholaminergic responses, with 
significant increases in sympathetic activity to the heart, kidney, skin, adrenal medulla and 
mesenteric beds and with a variable effect to the skeletal muscle.

Previous studies, using c-Fos expression, have identified several brain regions that are acti-
vated during stress. These morphological studies show that most of these regions also play a 
crucial role in respiratory and cardiovascular sympathetic regulation. These regions include, 
among others, the dorsomedial hypothalamus (DMH), the perifornical area (PeF), the para-
ventricular nucleus (PVN), the parabrachial complex (PBc), the periaqueductal gray (PAG), 
the nucleus tractus solitarius (NTS) and the ventrolateral medulla (VLM) [29–37].

The stimulation of specific areas within the caudal hypothalamus in rat, such as the PeF and 
DMH, classically known as hypothalamic defense area (HDA) (Figure 1), produces a pattern 
of visceral and somatic changes characteristic of the defense reaction [23]. The cardiorespira-
tory changes observed during the defense response are partially mediated by a facilitation of 
the chemoreceptor reflex and an attenuation of baroreceptor [38, 39] and laryngeal reflexes 
[40, 41] involving a GABAergic mechanism in the NTS [42]. The cardiovascular response is 
also mediated by direct descending projections from the PVN to sympathetic preganglionic 

Figure 1. Semischematic line drawing of the parasagittal section through the rat brain showing the location of the 
hypothalamic defense area (HDA) and periaqueductal gray matter (PAG). The dorso- and ventrolateral pons shows the 
parabrachial complex (PB), Kölliker-Fuse (KF) and A5 region (A5). In the brainstem, nucleus of the solitary tract (NTS), 
rostroventrolateral medulla (RVLM), rostroventromedial medulla (RVMM) and caudalventrolateral medulla (CVLM) 
are shown.
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neurons of the intermediate lateral cell column in the thoracic spinal cord (IML) [43], the ros-
tral ventrolateral medulla (RVLM) [44] and the A5 catecholaminergic region of the pons [45].

Several observations clearly demonstrate the critical importance of the DMH in mediating 
stress-evoked cardiovascular and respiratory responses. The inhibition of neurons within the 
DMH greatly reduces the pressor response and tachycardia evoked by air jet stress [46, 47]. 
In addition, activation of somata of the DMH evokes a pattern of autonomic and respiratory 
effects, including a resetting of the baroreceptor reflex, which are similar to naturally evoked 
stress responses [48–55].

Interestingly, there are also evidences showing that the cardiovascular effects elicited by the 
activation of the pontine parabrachial nucleus are partially generated by a similar control of 
the function of the baroreceptor reflex at the level of the NTS [56–58].

The PBc lies at the junction between the rostral dorsolateral pons and the mesencephalon 
(Figure 1). The PBc contains three main subdivisions: the medial parabrachial nucleus (mPB), 
the lateral parabrachial nucleus (lPB) and Kölliker-Fuse area (KF) [59]. This region has been 
considered the site of the “pneumotaxic center” controlling inspiratory duration and is now 
often referred to as the pontine respiratory group [60]. The PBc modulates respiration in two 
different ways. Neurons located in the mPB and KF are implicated in the increase of expira-
tory time observed during bradypnea. On the contrary, somata located within the lPB elicit 
the classical tachypnea, characterized by a decrease of expiratory duration with an inspiratory 
facilitation [61–63]. The PBc is also related to a topographical organized regulation of bul-
bar laryngeal motoneurons regulating subglottic pressure [63]. Moreover, activation of these 
regions, typically considered as “respiratory areas,” also produces cardiovascular changes 
including an increase of heart rate and arterial blood pressure [63, 64].

Electrical stimulation or microinjections of excitatory amino acids within the PBc [63, 65, 
66] show different modulatory respiratory responses depending on the location of PBc-
stimulated neurons. At all locations where respiratory responses are elicited by stimulation 
of PBc somata, a cardiovascular response is also observed. Similar cardiorespiratory effects 
are observed when glutamate is microinjected within these sites. The response comprises an 
increase in blood pressure with a small increase in heart rate. The cardiovascular response 
evoked by the stimulation of cell bodies located within the PBc resembles the response evoked 
on HDA stimulation [63].

The dorsolateral pontine modulation of the arterial baroreflex primarily originates from ven-
trolateral regions of the lPB and involves descending projections to both the NTS [56, 67] and 
the VRLM [67–69]. In the early 1980s, it was established that electrical stimulation of the PBc 
attenuates baroreflex responses [69]. The functional importance of PBc modulation of barore-
flex function has been linked to the simultaneous pressor response and tachycardia evoked 
during the defense response, which indicates a resetting of the barorreceptor reflex. Chemical 
lesions of the PBc eliminate the descending modulation of the baroreflex control of heart 
rate and mean arterial pressure evoked from at least one “brain defense region,” the dorsal 
PAG [70]. Blockade of neurons located in lPB, using bilateral microinjections of muscimol, 
a GABAA receptor agonist, or kynurenic acid, an unspecific glutamate receptor antagonist, 
decreases but not abolishes the attenuation of the cardiac baroreflex response evoked from the 
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respiratory activation [1–5]. Consistent with this, alerting stimuli in humans reliably increase 
cutaneous sympathetic activity [6]. Brief alerting stimuli also evoke variable changes in heart 
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vessels is also observed in humans [12–22] and animals [23–27]. These cardiovascular changes 
are accompanied by a marked increase in total norepinephrine spillover in humans, indica-
tive of an overall increase in sympathetic activity [28]. Research carried out in both, humans 
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significant increases in sympathetic activity to the heart, kidney, skin, adrenal medulla and 
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Previous studies, using c-Fos expression, have identified several brain regions that are acti-
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among others, the dorsomedial hypothalamus (DMH), the perifornical area (PeF), the para-
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the nucleus tractus solitarius (NTS) and the ventrolateral medulla (VLM) [29–37].

The stimulation of specific areas within the caudal hypothalamus in rat, such as the PeF and 
DMH, classically known as hypothalamic defense area (HDA) (Figure 1), produces a pattern 
of visceral and somatic changes characteristic of the defense reaction [23]. The cardiorespira-
tory changes observed during the defense response are partially mediated by a facilitation of 
the chemoreceptor reflex and an attenuation of baroreceptor [38, 39] and laryngeal reflexes 
[40, 41] involving a GABAergic mechanism in the NTS [42]. The cardiovascular response is 
also mediated by direct descending projections from the PVN to sympathetic preganglionic 

Figure 1. Semischematic line drawing of the parasagittal section through the rat brain showing the location of the 
hypothalamic defense area (HDA) and periaqueductal gray matter (PAG). The dorso- and ventrolateral pons shows the 
parabrachial complex (PB), Kölliker-Fuse (KF) and A5 region (A5). In the brainstem, nucleus of the solitary tract (NTS), 
rostroventrolateral medulla (RVLM), rostroventromedial medulla (RVMM) and caudalventrolateral medulla (CVLM) 
are shown.
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neurons of the intermediate lateral cell column in the thoracic spinal cord (IML) [43], the ros-
tral ventrolateral medulla (RVLM) [44] and the A5 catecholaminergic region of the pons [45].

Several observations clearly demonstrate the critical importance of the DMH in mediating 
stress-evoked cardiovascular and respiratory responses. The inhibition of neurons within the 
DMH greatly reduces the pressor response and tachycardia evoked by air jet stress [46, 47]. 
In addition, activation of somata of the DMH evokes a pattern of autonomic and respiratory 
effects, including a resetting of the baroreceptor reflex, which are similar to naturally evoked 
stress responses [48–55].

Interestingly, there are also evidences showing that the cardiovascular effects elicited by the 
activation of the pontine parabrachial nucleus are partially generated by a similar control of 
the function of the baroreceptor reflex at the level of the NTS [56–58].

The PBc lies at the junction between the rostral dorsolateral pons and the mesencephalon 
(Figure 1). The PBc contains three main subdivisions: the medial parabrachial nucleus (mPB), 
the lateral parabrachial nucleus (lPB) and Kölliker-Fuse area (KF) [59]. This region has been 
considered the site of the “pneumotaxic center” controlling inspiratory duration and is now 
often referred to as the pontine respiratory group [60]. The PBc modulates respiration in two 
different ways. Neurons located in the mPB and KF are implicated in the increase of expira-
tory time observed during bradypnea. On the contrary, somata located within the lPB elicit 
the classical tachypnea, characterized by a decrease of expiratory duration with an inspiratory 
facilitation [61–63]. The PBc is also related to a topographical organized regulation of bul-
bar laryngeal motoneurons regulating subglottic pressure [63]. Moreover, activation of these 
regions, typically considered as “respiratory areas,” also produces cardiovascular changes 
including an increase of heart rate and arterial blood pressure [63, 64].

Electrical stimulation or microinjections of excitatory amino acids within the PBc [63, 65, 
66] show different modulatory respiratory responses depending on the location of PBc-
stimulated neurons. At all locations where respiratory responses are elicited by stimulation 
of PBc somata, a cardiovascular response is also observed. Similar cardiorespiratory effects 
are observed when glutamate is microinjected within these sites. The response comprises an 
increase in blood pressure with a small increase in heart rate. The cardiovascular response 
evoked by the stimulation of cell bodies located within the PBc resembles the response evoked 
on HDA stimulation [63].

The dorsolateral pontine modulation of the arterial baroreflex primarily originates from ven-
trolateral regions of the lPB and involves descending projections to both the NTS [56, 67] and 
the VRLM [67–69]. In the early 1980s, it was established that electrical stimulation of the PBc 
attenuates baroreflex responses [69]. The functional importance of PBc modulation of barore-
flex function has been linked to the simultaneous pressor response and tachycardia evoked 
during the defense response, which indicates a resetting of the barorreceptor reflex. Chemical 
lesions of the PBc eliminate the descending modulation of the baroreflex control of heart 
rate and mean arterial pressure evoked from at least one “brain defense region,” the dorsal 
PAG [70]. Blockade of neurons located in lPB, using bilateral microinjections of muscimol, 
a GABAA receptor agonist, or kynurenic acid, an unspecific glutamate receptor antagonist, 
decreases but not abolishes the attenuation of the cardiac baroreflex response evoked from the 
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dorsal PAG [71]. These data support the hypothesis that lPB is also a crucial pontine region 
implicated in the descending modulation of cardiac brainstem baroreflex function during the 
stress reaction evoked from hypothalamic stimulation.

In addition, the PBc is an important pontine secondary relay from the NTS, because it is 
involved in the modulation of this arising cardiorespiratory information [72]. The PBc, mainly 
its lateral part, is reciprocally connected with forebrain structures involved in cardiorespi-
ratory regulation [59]. The activation of neuronal somata of the lPB with glutamate elicits 
a cardiorespiratory response that includes hypertension, tachycardia and tachypnea, while 
activation of cell bodies located within the mPB and KF produces a similar cardiovascular 
response, increase in blood pressure and heart rate, but on the contrary, accompanied with 
bradypnea [63]. Thus, the integrity of PBc neuronal circuits seems to be essential for the mod-
ulation of baroreflex function and appears to represent an important relay between midbrain 
and medulla for the coordination of autonomic defense responses.

On the other hand, the PBc is connected with another crucial area in cardiovascular control, 
the A5 region [73]. Electrical stimulation of the mPB or lPB produces an increase of c-Fos-like 
protein immunoreactivity within the A5 pontine catecholaminergic region [74].

The A5 group of catecholamine-containing neurons is located in the ventrolateral pons, between 
the root of the facial nerve and the superior caudal olivary nucleus (Figure 1). Classically, the 
A5 has been defined as a catecholaminergic region. It is known to provide the major component 
of the noradrenergic input to the sympathetic preganglionic neurons of IML [75–77], whereby 
it is implicated in cardiovascular control [41, 65, 78–82]. It also contains noncatecholaminergic 
neurons, which are mainly located at the level of the most caudal part of the A5 region [83]. 
These neurons seem to have properties similar to the respiratory chemoreceptors identified in 
the rostral medulla oblongata [84]. The A5 region has connections with the NTS, RVLM, cau-
dal ventrolateral medulla (CVLM), caudal pressor area and the retrotrapezoid nucleus in the 
medulla oblongata; with the mPB, lPB and KF in the pons; and with the PeF, the PVN and the 
amygdala in the hypothalamus [85–90]. These connections with regions of the central nervous 
system involved in cardiorespiratory regulation are indicative for a role of the A5 region in the 
control of both sympathetic activity and cardiorespiratory function [81, 91, 92]. Moreover, A5 
neurons are activated during baroreceptor unloading [81] and stimulation of carotid chemo-
receptors [93, 94]. Thus, it has been proposed that A5 neurons may play an important role in 
the carotid sympathetic chemoreflex triggered by hypoxia [95–97]. Furthermore, the A5 region 
plays an important role in respiratory control, modulating the activity of respiratory neurons 
[98]. These cells are synaptically connected to phrenic motoneurons [99] and contribute to 
the respiratory responses evoked by hypoxia and hypercapnia [96, 97, 100–102]. A5 cells also 
modulate the cardiorespiratory response evoked by activation of the PBc [65], which is a criti-
cal component of the brainstem respiratory network required for eupnea [103].

Stimulation of A5 neurons with glutamate produces cardiorespiratory and laryngeal 
responses similar to those observed with mPB stimulation. That is, an expiratory facilitatory 
response associated with an increase in blood pressure, heart rate [104] and subglottic pres-
sure [41]. In the same way as with PBc stimulation, the cardiovascular response is similar to 
that obtained during electrical stimulation of the HDA.
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The similarity of the responses to stimulation of the mPB and the A5 region suggests a pos-
sible interaction between these two pontine regions. In fact, studies from the literature dem-
onstrate a role for the A5 region in the cardiorespiratory responses evoked on PBc electrical 

Figure 2. Neurophysiological interactions between PBc and A5. Extracellular recording (superimposed sweeps) of three 
A5 putative cells activated from the PBc. Effect of clonidine i.v. injection (10 μg/kg) on the discharge rate of a putative 
A5 neuron. Arrow shows drug injection. Firing rate histogram of a parabrachial-activated A5 putative neuron (bin size 
5 s). Authors´ figure modified from Ref. [65].
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dorsal PAG [71]. These data support the hypothesis that lPB is also a crucial pontine region 
implicated in the descending modulation of cardiac brainstem baroreflex function during the 
stress reaction evoked from hypothalamic stimulation.
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ratory regulation [59]. The activation of neuronal somata of the lPB with glutamate elicits 
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activation of cell bodies located within the mPB and KF produces a similar cardiovascular 
response, increase in blood pressure and heart rate, but on the contrary, accompanied with 
bradypnea [63]. Thus, the integrity of PBc neuronal circuits seems to be essential for the mod-
ulation of baroreflex function and appears to represent an important relay between midbrain 
and medulla for the coordination of autonomic defense responses.

On the other hand, the PBc is connected with another crucial area in cardiovascular control, 
the A5 region [73]. Electrical stimulation of the mPB or lPB produces an increase of c-Fos-like 
protein immunoreactivity within the A5 pontine catecholaminergic region [74].

The A5 group of catecholamine-containing neurons is located in the ventrolateral pons, between 
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A5 has been defined as a catecholaminergic region. It is known to provide the major component 
of the noradrenergic input to the sympathetic preganglionic neurons of IML [75–77], whereby 
it is implicated in cardiovascular control [41, 65, 78–82]. It also contains noncatecholaminergic 
neurons, which are mainly located at the level of the most caudal part of the A5 region [83]. 
These neurons seem to have properties similar to the respiratory chemoreceptors identified in 
the rostral medulla oblongata [84]. The A5 region has connections with the NTS, RVLM, cau-
dal ventrolateral medulla (CVLM), caudal pressor area and the retrotrapezoid nucleus in the 
medulla oblongata; with the mPB, lPB and KF in the pons; and with the PeF, the PVN and the 
amygdala in the hypothalamus [85–90]. These connections with regions of the central nervous 
system involved in cardiorespiratory regulation are indicative for a role of the A5 region in the 
control of both sympathetic activity and cardiorespiratory function [81, 91, 92]. Moreover, A5 
neurons are activated during baroreceptor unloading [81] and stimulation of carotid chemo-
receptors [93, 94]. Thus, it has been proposed that A5 neurons may play an important role in 
the carotid sympathetic chemoreflex triggered by hypoxia [95–97]. Furthermore, the A5 region 
plays an important role in respiratory control, modulating the activity of respiratory neurons 
[98]. These cells are synaptically connected to phrenic motoneurons [99] and contribute to 
the respiratory responses evoked by hypoxia and hypercapnia [96, 97, 100–102]. A5 cells also 
modulate the cardiorespiratory response evoked by activation of the PBc [65], which is a criti-
cal component of the brainstem respiratory network required for eupnea [103].

Stimulation of A5 neurons with glutamate produces cardiorespiratory and laryngeal 
responses similar to those observed with mPB stimulation. That is, an expiratory facilitatory 
response associated with an increase in blood pressure, heart rate [104] and subglottic pres-
sure [41]. In the same way as with PBc stimulation, the cardiovascular response is similar to 
that obtained during electrical stimulation of the HDA.
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The similarity of the responses to stimulation of the mPB and the A5 region suggests a pos-
sible interaction between these two pontine regions. In fact, studies from the literature dem-
onstrate a role for the A5 region in the cardiorespiratory responses evoked on PBc electrical 

Figure 2. Neurophysiological interactions between PBc and A5. Extracellular recording (superimposed sweeps) of three 
A5 putative cells activated from the PBc. Effect of clonidine i.v. injection (10 μg/kg) on the discharge rate of a putative 
A5 neuron. Arrow shows drug injection. Firing rate histogram of a parabrachial-activated A5 putative neuron (bin size 
5 s). Authors´ figure modified from Ref. [65].
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and chemical stimulation [65]. The microinjection of muscimol or lidocaine within the A5 
region modifies the pattern of the cardiorespiratory responses evoked from PBc stimulation 
[65]. The expiratory facilitatory response elicited from mPB-KF activation is reversed to an 
inspiratory facilitatory response. Nevertheless, when the lPB is activated, no changes are 
observed in the inspiratory facilitatory response. The magnitude of the increase of the pres-
sor response and the tachycardia observed during PBc stimulation decreases significantly 
after A5 blocking microinjections. Moreover, a high number of extracellularly recorded neu-
rons in the A5 region are activated on electrical stimulation within the mPB-KF nuclei [65] 
(Figure 2).

These functional connections suggest a possible interaction between PBc and A5 pontine 
regions in mediating the defense response evoked from the HDA. This statement will be dis-
cussed deeply in the following sections.

2. Dorsolateral pons in cardiorespiratory hypothalamic defense 
responses: role of the Parabrachial complex

Recent data show that neurons located within the PBc play a role in the cardiorespiratory 
response evoked from HDA. As previously mentioned, the stimulation of cell bodies located 
within the PBc resembles the cardiovascular response elicited by HDA stimulation, thus 
evoking tachycardia and hypertension [63].

Neuropharmacological studies show that the inhibition with muscimol of somata located 
within the main subdivisions of the PBc, lPB and mPB-KF produces two different patterns of 
cardiorespiratory responses evoked to HDA stimulation [105].

The inhibition with muscimol of neurons located within the mPB-KF reduces the tachycardia 
and the pressure response evoked by HDA stimulation [105] (Figure 3A). It is known that 
neuronal activity of the parabrachial nuclei can modify the effectiveness of the baroreflex in 
rat, rabbit and cat [56, 106] and that the PBc is essential for a full expression of the bradycardia 
that typically accompanies the initial hypotensive response to blood loss and for the normal 
rate of blood pressure recovery [107, 108].

The decrease in the cardiovascular response to HDA stimulation seems to be an indication 
of a resetting of the baroreceptor reflex. The normal cardiovascular response to hypotha-
lamic stimulation, tachycardia and pressor response is due to direct activation of neurons 
from the RVLM, which send direct projections to sympathetic preganglionic neurons of the 
IML. The inhibition or the resetting of the baroreceptor reflex is the origin of the tachycardia 
observed during the activation of the HDA. This inhibition seems to be partially mediated 
by GABAA receptors located within the NTS, which produces a hyperpolarization of baro-
receptor cells [42, 58].

The reset of the baroreceptor response partially explains the decrease of the tachycardia 
observed during the stress reaction evoked from the activation of the HDA. It could also 
explain, through an indirect modulatory pathway, the decrease of the magnitude of the 
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hypertensive response, although, and probably, the most important factor is the inhibi-
tion of the excitatory projections from the PBc to the IML. The most relevant conclusion 
from this data is the suggestion that the reset of the barorreceptor reflex elicited by HDA 
activation could be also mediated though a secondary indirect pathway using the PBc of 
the pons [105].

Therefore, the activity of mPB-KF makes an important contribution to the modulation of the 
intensity of the cardiovascular response evoked on HDA stimulation through an indirect 
pathway to both the IML and the NTS.

On the other hand, the inhibition of neurons located within the lPB with muscimol abolishes 
the respiratory response evoked to HDA stimulation [105]. Similar to mPB-KF inhibition, the 
increase of blood pressure evoked to HDA stimulation decreases after the microinjection of 
muscimol within the lPB; however, no significant changes of the heart rate response were 
observed (Figure 3B).

Figure 3. Neuropharmacological interactions between HDA and PBc. From top to bottom, instantaneous respiratory rate 
(rpm), respiratory flow (ml/s), pleural pressure (cm H2O), instantaneous heart rate (bpm) and blood pressure (mmHg). 
Cardiorespiratory response evoked to HDA stimulation before (left) and after (right) muscimol microinjection within 
the mPB-KF (A) and lPB (B). The arrows show the onset of the HDA electrical stimulation. Authors´ figure modified 
from Ref. [105].
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and chemical stimulation [65]. The microinjection of muscimol or lidocaine within the A5 
region modifies the pattern of the cardiorespiratory responses evoked from PBc stimulation 
[65]. The expiratory facilitatory response elicited from mPB-KF activation is reversed to an 
inspiratory facilitatory response. Nevertheless, when the lPB is activated, no changes are 
observed in the inspiratory facilitatory response. The magnitude of the increase of the pres-
sor response and the tachycardia observed during PBc stimulation decreases significantly 
after A5 blocking microinjections. Moreover, a high number of extracellularly recorded neu-
rons in the A5 region are activated on electrical stimulation within the mPB-KF nuclei [65] 
(Figure 2).

These functional connections suggest a possible interaction between PBc and A5 pontine 
regions in mediating the defense response evoked from the HDA. This statement will be dis-
cussed deeply in the following sections.

2. Dorsolateral pons in cardiorespiratory hypothalamic defense 
responses: role of the Parabrachial complex

Recent data show that neurons located within the PBc play a role in the cardiorespiratory 
response evoked from HDA. As previously mentioned, the stimulation of cell bodies located 
within the PBc resembles the cardiovascular response elicited by HDA stimulation, thus 
evoking tachycardia and hypertension [63].

Neuropharmacological studies show that the inhibition with muscimol of somata located 
within the main subdivisions of the PBc, lPB and mPB-KF produces two different patterns of 
cardiorespiratory responses evoked to HDA stimulation [105].

The inhibition with muscimol of neurons located within the mPB-KF reduces the tachycardia 
and the pressure response evoked by HDA stimulation [105] (Figure 3A). It is known that 
neuronal activity of the parabrachial nuclei can modify the effectiveness of the baroreflex in 
rat, rabbit and cat [56, 106] and that the PBc is essential for a full expression of the bradycardia 
that typically accompanies the initial hypotensive response to blood loss and for the normal 
rate of blood pressure recovery [107, 108].

The decrease in the cardiovascular response to HDA stimulation seems to be an indication 
of a resetting of the baroreceptor reflex. The normal cardiovascular response to hypotha-
lamic stimulation, tachycardia and pressor response is due to direct activation of neurons 
from the RVLM, which send direct projections to sympathetic preganglionic neurons of the 
IML. The inhibition or the resetting of the baroreceptor reflex is the origin of the tachycardia 
observed during the activation of the HDA. This inhibition seems to be partially mediated 
by GABAA receptors located within the NTS, which produces a hyperpolarization of baro-
receptor cells [42, 58].

The reset of the baroreceptor response partially explains the decrease of the tachycardia 
observed during the stress reaction evoked from the activation of the HDA. It could also 
explain, through an indirect modulatory pathway, the decrease of the magnitude of the 
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hypertensive response, although, and probably, the most important factor is the inhibi-
tion of the excitatory projections from the PBc to the IML. The most relevant conclusion 
from this data is the suggestion that the reset of the barorreceptor reflex elicited by HDA 
activation could be also mediated though a secondary indirect pathway using the PBc of 
the pons [105].

Therefore, the activity of mPB-KF makes an important contribution to the modulation of the 
intensity of the cardiovascular response evoked on HDA stimulation through an indirect 
pathway to both the IML and the NTS.

On the other hand, the inhibition of neurons located within the lPB with muscimol abolishes 
the respiratory response evoked to HDA stimulation [105]. Similar to mPB-KF inhibition, the 
increase of blood pressure evoked to HDA stimulation decreases after the microinjection of 
muscimol within the lPB; however, no significant changes of the heart rate response were 
observed (Figure 3B).

Figure 3. Neuropharmacological interactions between HDA and PBc. From top to bottom, instantaneous respiratory rate 
(rpm), respiratory flow (ml/s), pleural pressure (cm H2O), instantaneous heart rate (bpm) and blood pressure (mmHg). 
Cardiorespiratory response evoked to HDA stimulation before (left) and after (right) muscimol microinjection within 
the mPB-KF (A) and lPB (B). The arrows show the onset of the HDA electrical stimulation. Authors´ figure modified 
from Ref. [105].
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Similar results are observed with PAG stimulation, thus indicating that the PBc is also a criti-
cal relay in mediating dorsal PAG-evoked sympathoexcitation and baroreflex modulation 
[109]. In addition, neurons localized in the lPB are involved in mediating the defense-like 
behavior response during the stimulation of the dorsal PAG, modulating the arterial barore-
flex [71]. This inhibitory effect is more evident from the mPB-KF than from lPB.

Therefore, the pressor response evoked during the stimulation of the HDA and PAG may 
involve the recruitment of neurons of both the lPB and mPB-KF subdivisions, which, using an 
indirect pathway, activate the IML.

Morphological studies have confirmed the presence of reciprocal connections between the 
PBc and different hypothalamic regions [110]. It has been also described that the PBc projects 
widely to areas of the forebrain involved in cardiovascular regulation and defense reactions 
[111]. It also projects, via descending fibers, to brainstem nuclei including the A5 region, the 
NTS and the IML of the spinal cord [112].

It is important to stand out the complete abolishment of the respiratory response to HDA 
stimulation after the inhibition of lPB somata with muscimol. The lPB is part of the neuro-
nal pathways involved in the sympathoexcitatory component of the chemoreflex [113]. Fos 
protein expression studies show that the tachypnea evoked on HDA stimulation is produced 
by activation of carotid chemoreceptors within neurons of the lPB [94]. Moreover, neuro-
nal recordings show that during chemoreflex stimulation, neurons of the lPB are activated 
and that this increase in firing precedes the classical hypertensive response to chemoreceptor 
stimulation, thus showing the relevance of lPB neuronal circuits on the central modulation of 
chemoreceptor inputs and reflex [114].

There are also indications that HDA stimulation may facilitate the chemoreceptor reflex by means 
of a group of intrinsic excitatory neurons localized within the NTS [115]. These cells are activated 
or facilitated by HDA-NTS direct excitatory connections. These neurons are also the main targets 
of excitatory inputs from the lPB [56]. The inhibition of these lPB excitatory projections with 
muscimol leads to the abolishment of the tachypneustic response evoked on HDA stimulation.

Electrophysiological studies using neuronal recordings support the above. A significant num-
ber of mPB-KF and lPB neurons are affected from HDA stimulation, confirming the impor-
tance of the functional correlation between the HDA and these pontine regions. The presence 
of anti-/orthodromic activations, short and long latency excitations, and inhibitions and 
excitatory/inhibitory activities gives electrophysiological evidence of reciprocal connections 
between these regions. It is also an index of the complexity of the different types of synaptic 
interactions between both areas (Figure 4) [105].

Studies related to glutamate receptors suggest that this neurotransmitter plays a crucial role 
in mediating the functional relation between the PBc and the HDA [116]. Glutamate activates 
metabotropic and ionotropic (NMDA and non-NMDA) receptors [117]. By employing immu-
nocytochemical and in situ hybridization techniques, studies have demonstrated the presence 
of both metabotropic and ionotropic receptors in different nuclei of the PBc and KF [118–120]. 
Activation of vagal afferent fibers releases glutamate within the PBc [121]. An ascending 
 excitatory pathway involving glutamate from the NTS to the PBc has been described [122]. In 
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Figure 4. HDA and PBc neurophysiological interactions. (A) Shows a rate histogram (bin size 2 s) representing the firing 
of an lPB cell not excited nor inhibited during HDA stimulation that increased the activity during HDA stimulation. 
(B) Shows a rate histogram (bin size 2 s) of an mPB-KF cell not excited nor inhibited during HDA stimulation showing 
a decrease of activity during HDA stimulation (0.1 ms given at 1 Hz). (C) The poststimulus time histogram shows 
spontaneous activity of an lPB neuron and double excitation after HDA stimulation. (D) The poststimulus time histogram 
shows an inhibition of an mPB neuron after HDA stimulation (100 stimuli, 1 Hz). Authors´ figure modified from Ref. [105].
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Similar results are observed with PAG stimulation, thus indicating that the PBc is also a criti-
cal relay in mediating dorsal PAG-evoked sympathoexcitation and baroreflex modulation 
[109]. In addition, neurons localized in the lPB are involved in mediating the defense-like 
behavior response during the stimulation of the dorsal PAG, modulating the arterial barore-
flex [71]. This inhibitory effect is more evident from the mPB-KF than from lPB.

Therefore, the pressor response evoked during the stimulation of the HDA and PAG may 
involve the recruitment of neurons of both the lPB and mPB-KF subdivisions, which, using an 
indirect pathway, activate the IML.

Morphological studies have confirmed the presence of reciprocal connections between the 
PBc and different hypothalamic regions [110]. It has been also described that the PBc projects 
widely to areas of the forebrain involved in cardiovascular regulation and defense reactions 
[111]. It also projects, via descending fibers, to brainstem nuclei including the A5 region, the 
NTS and the IML of the spinal cord [112].

It is important to stand out the complete abolishment of the respiratory response to HDA 
stimulation after the inhibition of lPB somata with muscimol. The lPB is part of the neuro-
nal pathways involved in the sympathoexcitatory component of the chemoreflex [113]. Fos 
protein expression studies show that the tachypnea evoked on HDA stimulation is produced 
by activation of carotid chemoreceptors within neurons of the lPB [94]. Moreover, neuro-
nal recordings show that during chemoreflex stimulation, neurons of the lPB are activated 
and that this increase in firing precedes the classical hypertensive response to chemoreceptor 
stimulation, thus showing the relevance of lPB neuronal circuits on the central modulation of 
chemoreceptor inputs and reflex [114].

There are also indications that HDA stimulation may facilitate the chemoreceptor reflex by means 
of a group of intrinsic excitatory neurons localized within the NTS [115]. These cells are activated 
or facilitated by HDA-NTS direct excitatory connections. These neurons are also the main targets 
of excitatory inputs from the lPB [56]. The inhibition of these lPB excitatory projections with 
muscimol leads to the abolishment of the tachypneustic response evoked on HDA stimulation.

Electrophysiological studies using neuronal recordings support the above. A significant num-
ber of mPB-KF and lPB neurons are affected from HDA stimulation, confirming the impor-
tance of the functional correlation between the HDA and these pontine regions. The presence 
of anti-/orthodromic activations, short and long latency excitations, and inhibitions and 
excitatory/inhibitory activities gives electrophysiological evidence of reciprocal connections 
between these regions. It is also an index of the complexity of the different types of synaptic 
interactions between both areas (Figure 4) [105].

Studies related to glutamate receptors suggest that this neurotransmitter plays a crucial role 
in mediating the functional relation between the PBc and the HDA [116]. Glutamate activates 
metabotropic and ionotropic (NMDA and non-NMDA) receptors [117]. By employing immu-
nocytochemical and in situ hybridization techniques, studies have demonstrated the presence 
of both metabotropic and ionotropic receptors in different nuclei of the PBc and KF [118–120]. 
Activation of vagal afferent fibers releases glutamate within the PBc [121]. An ascending 
 excitatory pathway involving glutamate from the NTS to the PBc has been described [122]. In 
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Figure 4. HDA and PBc neurophysiological interactions. (A) Shows a rate histogram (bin size 2 s) representing the firing 
of an lPB cell not excited nor inhibited during HDA stimulation that increased the activity during HDA stimulation. 
(B) Shows a rate histogram (bin size 2 s) of an mPB-KF cell not excited nor inhibited during HDA stimulation showing 
a decrease of activity during HDA stimulation (0.1 ms given at 1 Hz). (C) The poststimulus time histogram shows 
spontaneous activity of an lPB neuron and double excitation after HDA stimulation. (D) The poststimulus time histogram 
shows an inhibition of an mPB neuron after HDA stimulation (100 stimuli, 1 Hz). Authors´ figure modified from Ref. [105].
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vitro studies also show that glutamate agonists depolarize neurons of the PBc [123], and lPB 
stimulation causes local glutamate release, which depolarizes lPB neurons through NMDA 
and non-NMDA receptors [124].

Moreover, the blockade of glutamate receptors and the microinjections of glutamate into 
the PBc and KF elicit a variety of cardiovascular and respiratory responses indicating that 
this amino acid is an important neurotransmitter for mediating autonomic functions in these 
regions [61, 63, 64, 122–127].

The pattern of the cardiorespiratory response evoked from HDA is modified by the microinjec-
tion of different glutamate antagonists into the PBc [116]. Kynurenic acid, a nonspecific ionotropic 
glutamate receptor antagonist, microinjected into the lPB and mPB abolishes the tachycardia and 
decreased the pressor response to HDA electrical stimulation (Figure 5A and B). The respira-
tory response is only abolished when kynurenic acid is microinjected into the lPB (Figure 5A) 
[116]. These results suggest that ionotropic glutamate receptors located within the lPB region 
are involved in both the respiratory- and the cardiovascular-evoked responses from the HDA, 
whereas ionotropic glutamate receptors located in mPB seem to be only involved in the modula-
tion of the cardiovascular response.

The effectiveness of the modulation is depending on the distribution of these receptors within 
the PBc and these findings suggest that lPB appears to exert a more efficient modulation on the 
cardiovascular response to HDA stimulation compared with mPB. This cardiovascular response 
seems to be mediated by a direct activation of neurons located within the RVLM, which send 
direct efferences to sympathetic preganglionic neurons of the IML [128–130]. The activity of the 
RVLM can be also modulated via indirect projections. The changes in heart rate and blood pres-
sure evoked from “defense” regions of the brain may use separate efferent pathways [51]. The 
blockade of the PBc attenuates the dorsal PAG-evoked changes in blood pressure [109], thus 
indicating that the cardiovascular changes observed during the stimulation of the HDA could 
be partially modulated by “direct” efferences to the RVLM but also by indirect projections, 
which involve the activation of ionotropic glutamate receptors located in the PBc [116].

It is known that the PBc is crucial mediating the changes of heart rate appearing during baro-
receptor reflex activation [105]. The fall in the magnitude of the cardiovascular changes to 
HDA stimulation observed after the microinjection of kynurenic acid could indicate that neu-
rons of the lPB and mPB exert an inhibition of tonic excitatory inputs, at the level of the NTS, 
on inhibitory mechanism of the baroreceptor reflex [40]. This hypothesis is also supported by 
the observation that the blood pressure response also tends to disappear with the decrease 
and/or the abolishment of tachycardia.

Another fact that could explain the more efficient modulation exerted from lPB on the cardio-
vascular response elicited by HDA stimulation is the specific expression of glutamate subtype 
receptors located within this region. A very different profile is observed when compared with 
the mPB or with other subnuclei of the PBc. GluR4 non-NMDA receptor subunits predomi-
nate in the internal lPB [118]. These subunits are characterized by a high sensitivity for glu-
tamate. There is also evidence that the external and internal lPB express specific subunits of 
NMDA receptors, which are different to that of the mPB [119]. NMDA receptors can be quite 
different with respect to their physiological and pharmacological channel properties, such 
as differences in glutamate affinity and glycine sensitivity, crucial coagonist for glutamate 
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efficacy [131], in calcium currents and deactivation kinetics as well as other single channel 
characteristics [132]. NMDA receptors of lPB are composed of NR2A and NR2B subunits, 
which are characterized by high affinity for glutamate and long mean open time. NMDA 
receptors located within the mPB are composed of NR2D subunits, which exhibit low affinity 
for glutamate [119, 132].

In summary, the arterial blood pressor response observed during HDA stimulation could be 
mediated by the activation of neuronal glutamate ionotropic receptors located in both lPB and 
mPB somata, which exert an indirect excitation to sympathetic preganglionic neurons at the 
level of the IML. The inhibitory mechanism of the baroreceptor reflex seems to depend more 
on the activation of lPB glutamate ionotropic receptors than mPB receptors, because tachy-
cardia associated to the pressor response is only suppressed after lPB microinjections [116].

With respect to the changes of respiratory rate observed during the stimulation of the HDA, we 
have to highlight that are only abolished when the microinjection of kynurenic acid is delivered 
within the lPB (Figure 5A). Nevertheless, the respiratory response remains unchanged when 

Figure 5. Neuropharmacological interactions between HDA and PBc, role of glutamate. From top to bottom, 
instantaneous respiratory rate (rpm), respiratory flow (ml/s), pleural pressure (cm H2O), instantaneous heart rate (bpm) 
and blood pressure (mmHg). The cardiorespiratory responses evoked on HDA stimulation before (left) and after (right) 
kynurenic acid microinjection within the lPB (A) and mPB-KF (B) are shown. The arrows show the onset of the HDA 
electrical stimulation. Authors´ figure modified from Ref. [116].
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vitro studies also show that glutamate agonists depolarize neurons of the PBc [123], and lPB 
stimulation causes local glutamate release, which depolarizes lPB neurons through NMDA 
and non-NMDA receptors [124].

Moreover, the blockade of glutamate receptors and the microinjections of glutamate into 
the PBc and KF elicit a variety of cardiovascular and respiratory responses indicating that 
this amino acid is an important neurotransmitter for mediating autonomic functions in these 
regions [61, 63, 64, 122–127].

The pattern of the cardiorespiratory response evoked from HDA is modified by the microinjec-
tion of different glutamate antagonists into the PBc [116]. Kynurenic acid, a nonspecific ionotropic 
glutamate receptor antagonist, microinjected into the lPB and mPB abolishes the tachycardia and 
decreased the pressor response to HDA electrical stimulation (Figure 5A and B). The respira-
tory response is only abolished when kynurenic acid is microinjected into the lPB (Figure 5A) 
[116]. These results suggest that ionotropic glutamate receptors located within the lPB region 
are involved in both the respiratory- and the cardiovascular-evoked responses from the HDA, 
whereas ionotropic glutamate receptors located in mPB seem to be only involved in the modula-
tion of the cardiovascular response.

The effectiveness of the modulation is depending on the distribution of these receptors within 
the PBc and these findings suggest that lPB appears to exert a more efficient modulation on the 
cardiovascular response to HDA stimulation compared with mPB. This cardiovascular response 
seems to be mediated by a direct activation of neurons located within the RVLM, which send 
direct efferences to sympathetic preganglionic neurons of the IML [128–130]. The activity of the 
RVLM can be also modulated via indirect projections. The changes in heart rate and blood pres-
sure evoked from “defense” regions of the brain may use separate efferent pathways [51]. The 
blockade of the PBc attenuates the dorsal PAG-evoked changes in blood pressure [109], thus 
indicating that the cardiovascular changes observed during the stimulation of the HDA could 
be partially modulated by “direct” efferences to the RVLM but also by indirect projections, 
which involve the activation of ionotropic glutamate receptors located in the PBc [116].

It is known that the PBc is crucial mediating the changes of heart rate appearing during baro-
receptor reflex activation [105]. The fall in the magnitude of the cardiovascular changes to 
HDA stimulation observed after the microinjection of kynurenic acid could indicate that neu-
rons of the lPB and mPB exert an inhibition of tonic excitatory inputs, at the level of the NTS, 
on inhibitory mechanism of the baroreceptor reflex [40]. This hypothesis is also supported by 
the observation that the blood pressure response also tends to disappear with the decrease 
and/or the abolishment of tachycardia.

Another fact that could explain the more efficient modulation exerted from lPB on the cardio-
vascular response elicited by HDA stimulation is the specific expression of glutamate subtype 
receptors located within this region. A very different profile is observed when compared with 
the mPB or with other subnuclei of the PBc. GluR4 non-NMDA receptor subunits predomi-
nate in the internal lPB [118]. These subunits are characterized by a high sensitivity for glu-
tamate. There is also evidence that the external and internal lPB express specific subunits of 
NMDA receptors, which are different to that of the mPB [119]. NMDA receptors can be quite 
different with respect to their physiological and pharmacological channel properties, such 
as differences in glutamate affinity and glycine sensitivity, crucial coagonist for glutamate 
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efficacy [131], in calcium currents and deactivation kinetics as well as other single channel 
characteristics [132]. NMDA receptors of lPB are composed of NR2A and NR2B subunits, 
which are characterized by high affinity for glutamate and long mean open time. NMDA 
receptors located within the mPB are composed of NR2D subunits, which exhibit low affinity 
for glutamate [119, 132].

In summary, the arterial blood pressor response observed during HDA stimulation could be 
mediated by the activation of neuronal glutamate ionotropic receptors located in both lPB and 
mPB somata, which exert an indirect excitation to sympathetic preganglionic neurons at the 
level of the IML. The inhibitory mechanism of the baroreceptor reflex seems to depend more 
on the activation of lPB glutamate ionotropic receptors than mPB receptors, because tachy-
cardia associated to the pressor response is only suppressed after lPB microinjections [116].

With respect to the changes of respiratory rate observed during the stimulation of the HDA, we 
have to highlight that are only abolished when the microinjection of kynurenic acid is delivered 
within the lPB (Figure 5A). Nevertheless, the respiratory response remains unchanged when 

Figure 5. Neuropharmacological interactions between HDA and PBc, role of glutamate. From top to bottom, 
instantaneous respiratory rate (rpm), respiratory flow (ml/s), pleural pressure (cm H2O), instantaneous heart rate (bpm) 
and blood pressure (mmHg). The cardiorespiratory responses evoked on HDA stimulation before (left) and after (right) 
kynurenic acid microinjection within the lPB (A) and mPB-KF (B) are shown. The arrows show the onset of the HDA 
electrical stimulation. Authors´ figure modified from Ref. [116].
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kynurenic acid is microinjected into the mPB (Figure 5B) [116]. The result suggests that only 
glutamate receptors of the lPB modulate the respiratory response to HDA stimulation.

It has been shown that the lPB is an important part of the neuronal pathways for the mod-
ulation of the respiratory response evoked on HDA stimulation. Muscimol microinjections 
within the lPB have similar effects to kynurenic microinjections [105]; tachypnea observed 
during HDA stimulation is abolished. This observation gives a role for the described lPB 
afferent connections from several hypothalamic nuclei involved in the defense reaction [110].

Hayward et al. obtained similar results with the blockade of glutamate receptors with the 
microinjection of kynurenic acid into the lPB during the dorsal PAG stimulation, one of the 
so-called secondary brain defense regions, confirming the importance of lPB in the integration 
of tachypneic responses from supraencephalic regions [133].

There are indications that HDA stimulation may facilitate the chemoreceptor reflex at specific 
cells located within the NTS [115]. These neurons are activated by HDA-NTS direct excitatory 
connections and are also the main targets of excitatory inputs from the lPB [56]. Glutamate 
seems to activate these excitatory inputs. The inhibition of the activation of these lPB projections 
with kynurenic acid leads to the abolishment of tachypnea evoked on HDA stimulation [116].

According to these observations, the cardiovascular component of the response to HDA stimu-
lation seems to be modulated by glutamatergic neurons located in both the lPB and the mPB, 
whereas the respiratory component seems to be only mediated by glutamate receptors of the 
mPB. Moreover, different subnuclei within the lPB are involved in this cardiorespiratory mod-
ulation, which includes the crescent, ventral, central and external subnuclei. It is interesting to 
note that microinjections into the internal subnucleus of the lPB have no effects on this cardio-
respiratory response. This result is an indication of the specificity and complexity of this region. 
Nearby areas, separated only by microns, such as the external and internal subnuclei of the lPB, 
show very different effects in the cardiorespiratory response to HDA stimulation. In contrast, 
all mPB microinjections, including external mPB, have an effect. These results give us clear evi-
dence that glutamatergic neurons of the PBc are essential intermediaries for the modulation of 
the descending pathways for cardiovascular sympathetic and respiratory control mechanisms 
[116]. The impact of these projections on overall cardiorespiratory function is highly dependent 
on convergent inputs from specific subnuclei of the lPB region and from alternate pathways 
outside the PBc. Direct projections to the RVLM are also involved in HDA-evoked changes in 
arterial pressure [128–130], thus supporting those changes in heart rate and blood pressure 
evoked from “defense” regions of the brain that may travel via separate pathways [51].

3. Ventrolateral pons in cardiorespiratory hypothalamic defense 
responses: role of the A5 region

As previously mentioned, there are data suggesting the functional connections between the 
HDA and the A5 region. Fos protein expression studies, neuronal recording and neurophar-
macological experiments confirm this hypothesis [23, 65, 104].
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Some studies in rats have used HDA electrical stimulation to map methodically populations 
of neurons within the brainstem and other areas, which are excitated by changes in arterial 
blood pressure [134, 135]. In the A5 region, blood pressure changes cause a specific and con-
sistent pattern of c-Fos expression.

A c-Fos-ir expression is induced during HDA stimulation in both A5 noncatecholaminergic 
(TH-negative) and A5 catecholaminergic (TH-positive) cells of the pons [136]. This increase in 
c-Fos expression is higher in noncatecholaminergic than in catecholaminergic neurons [136]. 
In addition, in both populations of neurons of the A5 region, this activation seems probably to 
be due to a direct activation from the HDA and not due to a secondary activation to the pres-
sure response elicited during stimulation of the HDA.

This result is further confirmed with neuronal recordings. It is described as the possible 
role of A5 neurons in respiratory modulation [65, 93]. Moreover, there are electrophysi-
ological evidences of interactions between HDA and A5 catecholaminergic neurons. The 
importance of the connections between both regions is confirmed with the observation that 
a significant number of these A5 neurons are activated from HDA stimulation [136]. In the 
same way as with PBc, antidromic and orthodromic activation are observed in A5 neurons. 
Cells that are antidromically activated are spontaneously active, while cells orthodromi-
cally activated are silent, indicating the origin of the somata (Figure 6). After clonidine, A5 
cells are active and decrease their frequency of discharge while, in all cases, hypothalamic 
fibers are silent [136]. The presence of activations or facilitations indicates the existence of 
polysynaptic pathways acting on the A5 region. The complexity of the different types of 
synaptic connections is illustrated by the association of these activations with inhibitions 
or disfacilitations.

On the other hand, as previously mentioned, the stimulation of cell bodies located within the 
A5 region resembles the cardiovascular response elicited by HDA electrical stimulation, thus 
eliciting an increase in heart rate and blood pressure [104] and suggesting the possible inter-
action between both cardiorespiratory regions. In order to evaluate this possible modulation, 
microinjection of muscimol also has been made into the A5 region [136].

Muscimol microinjection within the A5 region does not produce changes in the respira-
tory response to HDA electrical stimulation; however, a clear decrease is observed in the 
cardiovascular response (Figure 7). The increase in heart rate and the hypertension evoked 
to HDA activation involve a direct excitation of neurons located in the RVLM, which send 
direct projections to the preganglionic neurons of the IML that are responsible for the acute 
pressor response [137]. Also, the release of adrenaline by a direct activation of the adrenal 
medulla provides a secondary increase of blood pressure contributing to the hypertensive 
response.

Indirect forebrain projections can also modulate the activity of the RVLM. Furthermore, 
HDA stimulation activates the chemoreceptor reflex by means of the excitation or facilita-
tion of chemoreceptor neurons located in the NTS, in a parallel circuit to the activation of 
the RVLM and the preganglionic neurons in the IML [38]. An inhibition of the baroreceptor 
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to HDA activation involve a direct excitation of neurons located in the RVLM, which send 
direct projections to the preganglionic neurons of the IML that are responsible for the acute 
pressor response [137]. Also, the release of adrenaline by a direct activation of the adrenal 
medulla provides a secondary increase of blood pressure contributing to the hypertensive 
response.

Indirect forebrain projections can also modulate the activity of the RVLM. Furthermore, 
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response is also produced, in another parallel pathway, by the inhibition or disfacilitation of 
baroreceptor neurons located within the NTS [42, 58], inhibition that seems to be mediated 
through GABAergic interneurons in the NTS [42].

In conscious rats, stress produces tachycardia and hypertension together with a resetting, 
rather than an inhibition, of the baroreceptor reflex. Thus, heart rate control is reset to higher 
levels of blood pressure without decrease in the gain of the reflex [54, 138].

The activation of A5 somata with glutamate also produces tachycardia and hypertension 
[104]. The increase in heart rate, blood pressure and sympathetic vasomotor activity at the 
same time indicates a baroreceptor reflex reset but without reduction in sensitivity of the 
reflex.

Figure 6. HDA and A5 neurophysiological interactions. Extracellular recordings (superimposed sweeps) of four putative 
cells recorded form the A5 region. (A) Silent neuron (upper trace) with constant latency responses to the HDA (lower 
trace). The cell was demonstrated to be orthodromically activated from the HDA. (B) Spontaneously active cell (upper 
trace) excitated with short and long latency responses from HDA stimulation (lower trace). (C) Spontaneously active 
cell (upper trace) inhibited from HDA stimulation (lower trace). (D) Recording of respiratory flow, pleural pressure, 
neuronal activity and blood pressure of a putative respiratory-modulated A5 cell with respiratory flow (ml/s, inspiration 
downwards) and HDA-triggered histograms (lower trace). This respiratory putative A5 neuron shows no modulation 
from the HDA. Authors´ figure from Ref. [136].
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The inhibition of A5 neurons with muscimol microinjections attenuates the cardiovascular 
response elicited by the stimulation of the HDA (Figure 7) [136]. This attenuation can be an 
 indication of an incomplete resetting of the baroreceptor reflex. This effect can explain the 
decrease in the magnitude of the tachycardia and the hypertension, through an indirect path-
way. But the most relevant aspect of this response is probably the inhibition of the excitatory 
projections from the A5 region to the IML. These findings suggest that an indirect pathway 
through the A5 region could also mediate the resetting of the baroreceptor reflex evoked by 
HDA stimulation. The activity of neurons of the A5 region modulates the intensity of the 
cardiovascular response evoked on HDA stimulation through an indirect pathway to both 
the IML and the NTS.

In summary, the A5 region seems to be an important component of those brainstem pathways 
known to be involved in mediating autonomic changes associated with the defense response 
elicited from the PeF and the DMH. This response involves also the integrity of the circuits 
located within the PBc. It is not possible to separate the activity of the PBc and the A5 region; 
thus, dorso- and ventrolateral pons act together to mediate the cardiorespiratory response 
evoked on HDA stimulation.
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Figure 7. Neuropharmacological interactions between HDA and A5 region. Instantaneous respiratory rate (upper trace, 
rpm), respiratory flow (ml/s), pleural pressure (cm H2O), instantaneous heart rate (bpm) and blood pressure (mmHg) 
showing the cardiorespiratory response evoked on HDA stimulation before (left) and after (right) the microinjection of 
muscimol in the A5 region. Authors´ figure from Ref. [136].
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Abstract

Alzheimer’s disease is a progressive, irreversible neurodegenerative disorder, charac-
terized by gradual decline of mental faculties, including learning capacity, emotional 
and behavioral alterations, serious decline of motor skills, and dysfunction of the 
autonomic nervous system with disruption of circadian rhythms. Among the potential 
modifiable risk factors, diabetes and obesity may play a considerable role in the patho-
genetic background of the disease. We describe some of the morphological alterations 
of the hypothalamic nuclei in early cases of Alzheimer’s disease, using silver impreg-
nation techniques and electron microscopy. The morphological and morphometric 
study revealed substantial decrease of the neuronal population, which was particularly 
marked in the suprachiasmatic, the supraoptic, and the paraventricular nuclei of the 
hypothalamus. The silver staining demonstrated an obvious shortage of the dendritic 
arborization of neurons, associated with marked spinal pathology and axonal dys-
trophy. It must be underlined that Alzheimer’s pathology, such as neuritic plaques 
and neurofibrillary degeneration, was minimal in the hypothalamus in comparison 
with other cortical and subcortical areas of the brain. Mitochondrial alterations and 
fragmentation of Golgi complex were observed by electron microscopy in a substan-
tial number of neurons and astrocytes in the hypothalamic nuclei. The hypothalamic 
pathology may be related to instability of autonomic regulation which occurs gradually 
in Alzheimer’s disease.

Keywords: Alzheimer’s disease, hypothalamus, Golgi staining, electron microscopy, 
autonomic dysfunction
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Abstract

Alzheimer’s disease is a progressive, irreversible neurodegenerative disorder, charac-
terized by gradual decline of mental faculties, including learning capacity, emotional 
and behavioral alterations, serious decline of motor skills, and dysfunction of the 
autonomic nervous system with disruption of circadian rhythms. Among the potential 
modifiable risk factors, diabetes and obesity may play a considerable role in the patho-
genetic background of the disease. We describe some of the morphological alterations 
of the hypothalamic nuclei in early cases of Alzheimer’s disease, using silver impreg-
nation techniques and electron microscopy. The morphological and morphometric 
study revealed substantial decrease of the neuronal population, which was particularly 
marked in the suprachiasmatic, the supraoptic, and the paraventricular nuclei of the 
hypothalamus. The silver staining demonstrated an obvious shortage of the dendritic 
arborization of neurons, associated with marked spinal pathology and axonal dys-
trophy. It must be underlined that Alzheimer’s pathology, such as neuritic plaques 
and neurofibrillary degeneration, was minimal in the hypothalamus in comparison 
with other cortical and subcortical areas of the brain. Mitochondrial alterations and 
fragmentation of Golgi complex were observed by electron microscopy in a substan-
tial number of neurons and astrocytes in the hypothalamic nuclei. The hypothalamic 
pathology may be related to instability of autonomic regulation which occurs gradually 
in Alzheimer’s disease.
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autonomic dysfunction
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1. Introduction

Alzheimer’s disease (AD) is a progressive, devastating, irreversible neurodegenerative disorder 
of the central nervous system, which has been recognized as the most common cause of serious 
cognitive decline in elderly people, resulting in profound dementia [1, 2] with no effective thera-
peutic intervention [3]. It is reasonable that AD induces a huge social burden and has a serious 
economic impact, since it starts frequently as mild cognitive impairment, resulting eventually in 
dementia, as the time advances [4, 5], affecting over 26 million people worldwide [6, 7].

The pathogenesis of AD involves a considerable number of cellular and molecular underlying 
mechanisms, as well as many genetic or acquired overlapping risk factors [8], such as diabetes, 
obesity, and psychosocial stress, which although are among the modifiable factors, may con-
tribute substantially in the rapid mental deterioration, aggravating the clinical phenomenology 
of the disease [9].

A substantial number of clinical observations and laboratory investigations plead in favor of 
brain injury [8], stress [10–12], or stress-related psychiatric disorders [13, 14], type 2 diabetes 
[15, 16], insulin resistance [17, 18], inflammation [19] and depression [20] which may be consid-
ered, as probable predisposing factors for AD [21].

The neuropathological findings in AD are numerous. Among them, the amyloid containing 
neuritic plaques, the neurofibrillary tangles, which consist of intraneuronal aggregation of 
highly phosphorylated tau proteins, the morphological alterations of dendrites and spines, 
the synaptic pathology, and the increased neuronal loss in limbic structures and the cortex of 
the brain hemispheres are considered as hallmarks of the disease [22–24]. The gradual accu-
mulation of Aβ peptide in the brain may induce inflammatory reactions, in which activated 
microglial cells are mostly involved [24]. It is important that the aggregation of Aβ amyloid 
peptide may promote selective degeneration of neurons, which are particularly vulnerable to 
age-related procedures, to oxidative stress, and any other type of energy deficiency [25]. The 
disruption of the blood brain barrier and the pathology of capillaries play a substantial role in 
shaping the neuropathological pattern of AD [26, 27], since they can facilitate the infiltration 
of immune cells promoting the exacerbation of inflammatory reactions in the brain.

The initial clinical manifestations of AD are subtle. However, as the time advances, progres-
sive memory and learning impairment [28]; language disturbances; visuospatial disorienta-
tion; ideomotor apraxia; behavioral disturbances; depressive symptoms [29–32]; personality 
changes [33–35]; and a multitude of non-cognitive symptoms, such as sleep disruption, cir-
cadian dysrhythmia, changes in body weight, and autonomic dysfunction, are progressively 
established as dominant deficits in AD [36]. Sleep disturbances, on the other hand, might have 
a negative impact on the amyloid burden and the cognitive capacity of the patients, though the 
entire pathogenetic mechanism in sporadic cases remains unclear and is only approached by 
various hypotheses. The study of familial cases of AD, on the other hand, advocates in favor of 
the heterogeneity of the disease, and suggests that the morphological alterations in AD follow 
an eventual common pathway with many other degenerative conditions of the CNS [37, 38].

Oxidative stress seems to contribute substantially in the pathogenesis of AD [39, 40]. In addi-
tion, electron microscopy revealed serious morphological alterations of mitochondria in nerve 
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cells, astrocytes, and endothelial cells in various brain structures, including the cerebellum 
[40, 41], which are associated with tremendous spinal loss and loss of dendritic branches. It 
is important that morphological changes of the Golgi complex [42] have been observed in 
early cases of AD, in areas of the brain with minimal Alzheimer’s pathology, suggesting that 
the protein trafficking might be impaired from the initial stages of AD, since Golgi apparatus 
plays a crucial role in trafficking and targeting of the plasma membrane proteins [43, 44].

Autonomic disorders have frequently been observed in patients who suffer from AD. Particularly, 
autonomic failure frequently occurs under strong emotional or cognitive stimuli during the 
disease, since the hypothalamus may be seriously involved even in the early stages of the neu-
rodegenerative diseases, including AD [45–49], whereas the suprachiasmatic nucleus (SCN), 
the main circadian pacemaker, undergoes several continuous alterations during the course of 
the disease [50].

Stress, which is presumably a potential risk factor, mediated via the hypothalamic-pituitary-
adrenal (HPA) pathway, may induce a substantial increase of glucocorticoids [49, 50], affect-
ing seriously the homoeostatic equilibrium of the patients.

An evidence of the involvement of the hypothalamus in cases of AD is the increased volume of 
the third ventricle, seen in neuroimaging. In addition, there are substantial molecular and cel-
lular differences in the morphological elements in the hypothalamus in cases of AD [51, 52], in 
correlation with the hippocampus and the involved cortical structures [53]. In addition, they do 
not contain tau-, neurofilament-, or microtubule-associated protein-reactive epitopes, and do 
not disrupt the neuropil or induce gliosis [53]. Numerous diffuse neuritic plaques in the hypo-
thalamus in cases of AD are labeled with an antiserum to the Aβ peptide, of the beta-amyloid 
precursor proteins (beta APPs), whereas Aβ peptide-immunoreactive plaques were uncom-
mon in the hypothalamus of non-AD patients [54]. It was also noticed that the neurofibrillary 
degeneration in the hypothalamus involves primarily those neurons, which are associated with 
cortical areas seriously affected by Alzheimer’s pathology [55].

We proceeded in studying the morphological changes of the neurons and the neuronal net-
works of the hypothalamus in early cases of Alzheimer’s disease, focusing our observations 
mainly on the suprachiasmatic (SCN), the supraoptic (SON), and the paraventricular nuclei 
(PVN) of the hypothalamus.

We described the alterations of dendrites, spines, and dendritic arbors in specimens impreg-
nated by silver nitrate, using light microscope, whereas the mitochondrial alterations as well 
as the morphological and morphometric changes of Golgi apparatus have been studied and 
described in electron microscopy.

2. Material and methods

2.1. Material

Our morphological observations are based on the study of 14 brains of patients, aged 
54–82 years, who suffered from AD. The brains were excised at autopsy, performed between 
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4 and 8 hours post mortem at a room temperature of 4°C. All of the patients fulfilled the clini-
cal, neurological, neuropsychological, and neuropsychiatric criteria of AD. All of them died 
24–46 months following the clinical diagnosis of the disease (Table 1).

Twelve additional macroscopically intact brains of apparently healthy individuals, aged 
50–80 years, who died accidentally, were used as normal controls. The definite diagnosis of 
AD was based on NINCDS-ADRDA criteria [54].

2.2. Methods

Samples from the hypothalamus were excised and processed for electron microscopy and 
silver impregnation techniques, including rapid Golgi’s method, Golgi-Nissl method, and Rio 
Hortega and Bodian techniques [55, 56].

2.2.1. Electron microscopy

For proceeding to electron microscopy, the specimens were immediately immersed in Sotelo’s 
fixing solution, composed of 1% paraformaldehyde, 2.5% glutaraldehyde in 0.1 M cacodylate 
buffer adjusted at pH 7.35. Then, they were post fixed in 1% osmium tetroxide for 30 minutes at 
room temperature. After fixation, the specimens were dehydrated in graded alcohol solutions 

Gender Age at death 
(years)

Duration of the  
disease

Length of brain fixation  
in months

Braak and braak stage

M 55 3 years 1 II/III

F 62 28 months 1 II/III

M 63 37 months 1 II

F 66 40 months 1 II/III

M 72 3 years 1 III

M 74 38 months 1 II/III

F 75 42 months 1 II/III

F 76 46 months 1 III

M 78 42 months 1 II/III

F 80 2 years 1 II/III

M 78 42 months 1 II/III

F 76 36 months 1 III

M 54 2 years 1 III

M 65 37 months 1 II/III

The hypothalamus was excised and studied from 1974 to 2011.
AD, Alzheimer’s disease; F, female; M, male. Fixation for silver impregnation techniques.

Table 1. List of the AD brains.
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and twice in propylene oxide. Thin sections were cut in a Reichert ultratome, which were 
contrasted with uranyl acetate and lead citrate and studied in a Zeiss 9aS electron microscope.

2.2.2. Light microscope

2.2.2.1. Silver impregnation techniques

The hypothalamus was processed for silver impregnation techniques, according to rapid 
Golgi method and Golgi-Nissl method. After a 4-week fixation in solution of 10% fresh for-
malin, the specimens were immersed in potassium dichromate (7 g potassium dichromate in 
300 mL water) for 10 days at room temperature. Then, they were immersed in a solution of 
1% silver nitrate for 10 days in a dark environment at a temperature of 16°C. Following rapid 
dehydration in graded alcohol solutions, the specimens were embedded in paraffin and cut, 
some of them at 100 μ and some at 25 μ, alternatively. Many sections of 25 μ were stained also 
with methylene blue, according to Golgi-Nissl technique [57, 58]. Then, the sections were 
mounted in Entellan (Merck-Millipore, Darmstadt, Germany), between two cover slips and 
studied in a Zeiss Axiolab Photomicroscope, equipped with digital camera and computer.

We studied extensively, mostly, the suprachiasmatic (SCN), the supraoptic (SON), and the 
paraventricular nuclei (PVN) of the hypothalamus [45]. For the calculation of the volume of 
the nuclei, we applied the Cavalieri principle [59, 60]. We estimated the dendritic arborization 
as a whole and subsequently we described the morphology and calculated the number of the 
dendritic branches. We studied, in a detailed way, the morphology of the dendritic spines in 
light microscope, on sections stained according to rapid Golgi and Golgi-Nissl methods.

2.2.3. Morphometry

Morphometric studies were performed with an image analyzer (Image J program). The sur-
face of the neurons and the dendritic arbors of the hypothalamic nuclei were calculated in 
specimens stained with silver nitrate, according to rapid Golgi method [61].

The morphology and the morphometry of the neurons, the dendrites, and the dendritic spines 
were estimated, according to Jacobs et al. [62] principles, which concern: (a) the quality of 
silver impregnation of neurons and dendrites and (b) the sufficient contrast between stained 
neurons and neuropile space.

Dendritic arbores were quantitatively estimated in a centrifugal way, according to Uylings 
et al. [63]. The diameter of the neurons was precisely measured, as well as the total length 
of the apical and basal dendrites. The number of dendritic bifurcations was enumerated as 
well as the length and number of dendritic segments per dendritic order, and the density of 
spines on each one of dendritic segments. The dendrites that arise from the neuronal body 
up to their first symmetrical bifurcation are considered as first-order branches. Subsequently, 
the dentritic branches, which are located distantly, are considered as second-order segments, 
third-order segments, and so on. For the morphometric analysis, we applied Image J program 
after a calibration for the specific types of microscope (Carl Zeiss Axiolab Photomicroscope) and 
we counted the number and estimated the order of the dendritic branches according to Sholl’s 
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method of concentric circles [64], which were drawn, at intervals of 15 μm, centered on the soma 
of the neuron. The dendritic spines were counted on three segments of the dendritic field. Thus, 
we calculated those, which were located: (a) on primary dendrite, 20–30 μm in length; (b) on 
the secondary dendrite, 20–30 μm in length; and (c) on the tertiary dendrite, 40–50 μm in length.

In electron microscopy, we performed stereological analysis following the Nyengaard [65] 
and West [66, 67] principles. The number, the length, the total surface area, the volume, the 
circulatory ratio, and the spatial distribution of mitochondria [68] were precisely counted and 
estimated as well as the cisternae and vesicles of the Golgi apparatus [69].

We also estimated the mean nuclear area, the dendritic profiles [70], the total number of the 
dendritic spines per dendritic segment, the pre- and post-synaptic components [71–73], and 
the number of synaptic vesicles per presynaptic terminal [73].

The statistical analysis of the data was evaluated by Student t tests. p-Values below 0.05 were 
considered statistically significant, and those below 0.01 were considered as highly significant.

3. Results

3.1. Silver impregnation technique

Topographically, the human hypothalamus is located between the lamina terminalis ante-
riorly and the posterior commissure and the posterior edge of the mammillary bodies, pos-
teriorly. By rapid Golgi staining, the Golgi-Nissl method, and the other silver impregnation 
techniques, we could visualize the hypothalamic nuclei entirely and clearly. However, we 
focused our detailed description and measurement mostly on the suprachiasmatic (SCN), the 
supraoptic (SON), and the paraventricular nuclei (PVN).

The morphological and morphometric study of the hypothalamic nuclei revealed a substan-
tial decrease of the number of neurons and an impressive loss of dendritic branches in the 
brains of the patients who suffered from AD (Figures 1 and 2), as compared with normal 
controls (Figures 3 and 4). Abbreviation of the dendritic arborization was prominent mostly 
in the neurons of suprachiasmatic nucleus (SCN). The dendritic alterations were associated 
with marked decrease in the number of dendritic spines (Figures 5 and 6) in comparison 
with the normal control brains (Figure 7). The same morphological alterations concerning the 
dendritic branches and the spines were also observed in the supraoptic (SON) and paraven-
tricular nuclei (PVN) of the hypothalamus in AD (Figure 8).

The morphometric estimation of the dendritic spines of neurons of the SCN and SON revealed 
a dramatic decrease of spines in AD brains, in comparison with normal controls (Table 2).

3.2. Electron microscopy

Detailed study on electron microscope demonstrated substantial morphological changes 
of the dendritic arbors, concerning mostly the secondary and tertiary dendritic branches, 
in a substantial number of neurons of the suprachiasmatic (SCN), supraoptic (SON), and 
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paraventricular nuclei (PVN) of the hypothalamus in AD brains, in correlation with normal 
controls. Considerable decrease in spine density was mainly noticed in the secondary and ter-
tiary dendritic branches, which was particularly prominent in the suprachiasmatic nucleus. 
Small spines and giant spines were also observed in a large number of neurons of the supra-
chiasmatic nucleus. Many giant spines included large multivesicular bodies.

In a considerable number of dendritic profiles, in the suprachiasmatic and the paraventricular 
nuclei, the mitochondria demonstrated marked morphological alterations, consisted of wide 
size diversity, disruption of the cristae, and accumulation of fibrillary material (Figure 8).

Figure 1. Neuron of the SCN in AD brain. Golgi staining, 1200×.

Figure 2. Neuron of SCN of the hypothalamus in a case of AD. The loss of the dendritic branches is obvious. Golgi 
staining Mag. 1200×.
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Figure 1. Neuron of the SCN in AD brain. Golgi staining, 1200×.

Figure 2. Neuron of SCN of the hypothalamus in a case of AD. The loss of the dendritic branches is obvious. Golgi 
staining Mag. 1200×.
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Figure 4. Neuron of the SON of the hypothalamus of a normal brain aged 80 years. The dendritic branches have 
numerous spines. Golgi staining. Mag. 1200×.

Figure 3. Neuron of the SCN of the hypothalamus of a normal brain aged 75 years.
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In a morphometric estimation of the mitochondria in dendrites, dendritic spines, and 
cell body of neurons of the suprachiasmatic nucleus in normal control brains, we con-
cluded that the ellipsoid mitochondria of the spines appear to have an average diameter 
of 650 ± 250 nm and a mean axial ratio of 1.9 ± 0.2. In addition, the round mitochondria 
appeared to have a mean diameter of 350 nm. In AD brains, the mitochondria in neurons of 

Figure 5. Abbreviations of the dendritic arborization is prominent in the neurons of suprachiasmatic nucleus (SCN) 
which is associated with marked decrease in the number of dendritic spines. Golgi staining. Mag. 1200×.

Figure 6. Neuron of the SCN of the hypothalamus of a case of AD. The abbreviation of the dendritic arborization and the 
poverty of dendritic spines are obvious. Golgi-Nissl staining. Mag. 1200x.
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the suprachiasmatic nucleus were estimated as having an average diameter of 440 ± 250 nm 
and a mean axial ratio of 1.7 ± 0.2 (Table 3). The round mitochondria appear to have a 
mean radius of 235 nm. The changes in the morphology of the cristae were also frequent 
in the mitochondria of hypothalamic neurons in AD, in comparison with normal controls. 
Morphological alterations of the mitochondria were also seen in a considerable number of 
astrocytes and pericytes in AD brains.

In a substantial number of neurons of the suprachiasmatic and paraventricular nuclei of the 
hypothalamus, the Golgi apparatus appeared to be fragmented and atrophic (Figure 9). It 

Figure 8. Mitochondrial alterations of a dendritic profile of a neuron of SCN of the hypothalamus of a case of AD. Electron 
micrograph Mag. 124,000×.

Figure 7. Neuron of the SCN of the hypothalamus of a normal brain aged 80 years. The dendritic branches are covered 
by spines. Golgi staining. Mag. 1200×.
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was noticed, that the atrophy and fragmentation of Golgi apparatus (Table 4) and the mito-
chondrial alterations coexisted frequently with dendritic and spinal pathology in the majority 
of neurons.

Table 2. Average dendritic spines per dendritic arbor in SCN and SO neurons, based on measurements of 100 neurons 
(p < 0.005).

Table 3. Mean diameter (in nm) of mitochondria in neurons of mammillary bodies, based on estimation of 500 
mitochondria (p < 0.05).
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Figure 9. Alteration of Golgi apparatus of a neuron of the SCN of the hypothalamus of a case of AD. Electron micrograph. 
Mag. 124,000×.

4. Discussion

Hypothalamus is a crucial brain structure for the regulation and control of essential 
homeostatic functions, including the circadian rhythms (CRs) and the sleep-wake cycle. In 
Alzheimer’s disease and other neurodegenerative disorders [74–76], several hypothalamic 
nuclei are affected. It seems that the hypothalamic nuclei are not involved simultaneously at 

Table 4. The volume of Golgi apparatus in nm3 based on measurements of 100 neurons of SCN (p < 0.005).
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the early stages of AD. The suprachiasmatic nucleus seems to be more seriously affected than 
the others in aging [76] and degenerative disorders. In previous studies, it was clearly revealed 
that the total cell population of the suprachiasmatic nucleus is decreased both in aging and in 
AD [76], in which the hypothalamic dysfunction is closely related to sleep disturbances [77].

The hypothalamic nuclei seems to be involved in those neurodegenerative alterations, which 
would progressively result in AD. In addition, the comparison of the morphological and mor-
phometric alterations of the dendrites in the hypothalamic nuclei with those observed in the 
cortex of the brain hemispheres and the cerebellum disclosed that the alterations in the hypo-
thalamus were rather modest, in correlation with those of the acoustic and visual cortices, the 
prefrontal areas of the brain, and the cerebellar cortex [78–81].

The fact that the hypothalamus is the principal subcortical center for the homeostatic and auto-
nomic processes may explain the reason that the supraoptic and the periventricular nuclei, 
among others, reserve substantial synaptic density, even at the advanced stages of AD.

However, the suprachiasmatic nucleus demonstrated more severe dendritic alterations and syn-
aptic loss than the supraoptic and paraventricular ones, a fact which might explain the phenom-
enon of desynchronization of circadian rhythms in the majority of the patients, who suffer from 
AD [82] and cognitive decline [83] in the spectrum of other degenerative brain disorders [84], 
given that the suprachiasmatic nucleus is indispensable for the generation and synchronization 
of circadian rhythms in man [85, 86]. It is reported that changes of the circadian rhythm (CR), 
arterial blood pressure, and body temperature may occur in AD patients [87] especially during 
the night time [88–90]. Changes also of the melatonin levels are not an unusual phenomenon in 
advanced senility and AD [91–93]. Sundown syndrome, on the other hand, frequently associ-
ated with increased motor activity, is a rather common phenomenon in advanced AD cases [93].

In the majority of neurons of hypothalamic nuclei, mitochondrial alterations were prominent in the 
cell body as well as in dendrites and synaptic components. As the mitochondria play an essential 
role in the energy supply of the cell, as ATP-generating organelles, their role is of utmost importance 
in the alteration of reduction-oxidation potential of the cell, in the free radical formation and scav-
enging, in the intracellular calcium control and the eventual activation of apoptotic chain [94–96]. 
Normally, the number of dendritic, axonic, and synaptic mitochondria is very high, especially in pre- 
and post-synaptic components, since they are the major energy contributor for the synaptic activity.

Mitochondrial dysfunction might induce Aβ peptide neurotoxicity, whereas enhancing mito-
chondrial proteostasis may reduce amyloid-β proteotoxicity [97]. In addition, impaired mitochon-
drial biogenesis contributes to mitochondrial dysfunction [98], which is directly associated with 
oxidative stress, activating furthermore the pathogenic cascade of AD [99–101]. Mitochondrial 
motility and accumulation are related to the functional state of the neuron, since mitochondria 
are transported to regions where the necessity for energy is particularly high, as it occurs in the 
dendritic and axonal profiles and the synapses [102–104]. The shape and size of mitochondria 
are not stable, since they undergo continual fission and fusion, which are necessary both for 
the survival of the cell and the harmonious adaptation to changing conditions.

Recent studies reported increased mitochondrial fission and decreased fusion, due to 
increased Aβ peptide interaction with the mitochondrial fission protein Drp 1, inducing 
increased mitochondrial fragmentation, impaired axonal transport of mitochondria, and 
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synaptic degeneration in AD [99]. The consequence of the dynamic fusion and fission pro-
cesses is the eventual mitophagy of the damaged mitochondria.

A prominent decrease of the size of the mitochondria is observed in aging-related neuro-
degenerative diseases [95, 96], as well as at the early stages of AD, prior to the onset of a 
noticeable cognitive dysfunction [105]. Normally, a limited number of dendritic spines con-
tain small and round mitochondria, which are increased in number in the dendritic profiles 
during the synaptogenesis and hormonal instability [102, 104]. It is important to underline 
that mitochondrial alterations are mostly associated with synaptic loss in AD patients, due to 
impairment of mitochondrial energy production [106], seen even before the typical genera-
tion of the neuritic plaques and tau pathology [105, 107].

The morphological alteration of the mitochondria, seen in the hypothalamic nuclei in early 
cases of Alzheimer’s disease, pleads in favor of a generalized mitochondrial dysfunction in 
AD, which may be associated with the dendritic pathology, the tremendous loss of spines, 
and the marked synaptic alterations [108–110].

The density of the spines on the dendritic branches of a considerable number of neurons of the 
suprachiasmatic nucleus was decreased. The loss of the dendritic spines causes substantial 
impairment in neuronal communication and also induces reasonable dysfunction of the neu-
ronal circuits in AD. Previous observations revealed that the loss of dendritic spines coincides 
with the morphological alterations of the mitochondria and the fragmentation of the cisternae 
of Golgi apparatus [25, 102, 109, 110]. In an experimental mouse model of Aβ peptide deposi-
tion, it was revealed that nonfibrillar Aβ peptide may exert toxicity on the spines, resulting in 
dramatic decrease of spine density [108, 111].

The role of the hypothalamus in the harmonization of circadian rhythms is crucial for the 
maintenance of energy homeostasis [25]. The feeding behavior [111–113] and the thermo-
regulation of the body become gradually unstable during the clinical course of AD [114–116], 
a fact which was also noticed in experimental models of AD [117] as well as in the behavioral 
variant of fronto-temporal dementia [118].

In conclusion, the hypothalamic nuclei are involved in AD, inducing autonomic dysfunction 
and homeostatic disequilibrium, phenomena which are clearly noticeable at the advanced 
stages of AD.

5. Conclusions

In Alzheimer’s disease, silver impregnation technique and electron microscopy revealed a 
substantial decrease of the neuronal population, which is particularly obvious in the supra-
chiasmatic nucleus of the hypothalamus.

The silver staining technique demonstrated a marked shortage of the dendritic arborization of 
neurons, associated with spinal pathology and axonal dystrophy.

It must be underlined that Alzheimer’s pathology, such as neuritic plaques and neurofibril-
lary degeneration, is minimal in hypothalamus in comparison with other areas of the brain.
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Mitochondrial alterations and fragmentation of Golgi complex are observed by electron 
microscopy in a substantial number of neurons and astrocytes in the hypothalamic nuclei.

The hypothalamic pathology may be related to instability of autonomic regulation and homeo-
static disequilibrium, which are gradually established in Alzheimer’s disease.
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Abstract

This study reveals the molecular regulation mechanisms of neurosecretory cell apopto-
sis in physiological and pathological (oncogene human epidermal growth factor recep-
tor (HER)-2/Neu overexpression) aging. As we have shown previously, apoptosis level 
in hypothalamic neurosecretory centers increases in aging, and a low level of apoptosis 
in aged HER-2/Neu transgenic mice is associated with p53-dependent cascade suppres-
sion. In this chapter, we consider the participation of p53-regulating genes and p53 
target genes in activation of this cascade during physiological aging, as well as suppres-
sion under HER-2/Neu overexpression. However, cell resistance to apoptosis may also 
be due to the activity of cytokine-dependent STAT-signaling pathway, including the 
high expression of survivin belonging to the family of inhibitors of apoptosis proteins 
(IAP). Also, another cytokine-dependent signaling, an extrinsic apoptosis pathway 
associated with the family of tumor necrosis factor (TNF) receptors, has been investi-
gated. Thus, in the present work, three signaling cascades are considered: p53-depen-
dent (the expression and interaction of apoptosis-associated proteins p53, WRN, pin1, 
p21, and caspase-3), STAT-mediated (STAT1, 3, 5, 6, and survivin), and TNF-dependent 
(CD95 (FAS), Fas-associated death domain (FADD), TNF receptor–associated death 
domain (TRADD), and caspase-8). These cascades are involved in both the activation 
of apoptosis and its suppression. This will reveal the general trends of regulation of 
neurosecretory cell apoptosis during aging.
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1. Introduction

This study reveals the molecular regulation mechanisms of neurosecretory cell apoptosis in 
physiological and pathological (oncogene human epidermal growth factor receptor (HER)-2/
Neu overexpression) aging. In this chapter, we consider the participation of p53-regulating 
genes and p53 target genes in activation of this cascade during physiological aging, as well as 
suppression under HER-2/Neu overexpression. In addition, we consider cytokine-dependent 
pathways of apoptosis regulation (STAT-signaling pathway and tumor necrosis factor (TNF)-
dependent pathway).

As shown at present, the process of apoptosis is an integral part of involutional tissue changes [1].  
However, the mechanisms of senile apoptosis differ from the mechanisms of cell death in the 
early stages of ontogenesis. P53-mediated pathway of apoptosis plays a special role in aging, 
and its changes (excessive activation or suppression) cause severe pathologies, including neu-
rodegenerative diseases and carcinogenesis. This is especially important for neurons and neu-
rosecretory cells, which, as is known, are not capable of proliferation in the mass, so apoptosis 
is the only way to regulate their amount. Since the hypothalamic neurosecretory system is one 
of the main regulatory systems, the decrease in the amount of neurosecretory cells significantly 
changes the function of the hypothalamus and, consequently, of the target organs. Thus, the 
study of regulation of the p53-signaling path upon aging has particular importance.

DNA damage leads to the phosphorylation of p53 at the Ser/Thr-Pro sites, so the interac-
tion of p53 with Ser/Thr-Pro sites of peptidyl-prolyl isomerase pin1 becomes possible [2–4]. 
Several studies have shown the suppressive role of prolyl isomerase pin1 in oxidative stress-
induced apoptosis [5]. Pin1 involves in the stabilization of Mcl-1 and, further, in the preven-
tion of apoptosis [6]. However, most authors report a high proapoptotic activity of pin1. Pin1 
is necessary for the timely activation of p53, leading to apoptosis or cell arrest [4, 7–9]. It is 
known that pin1 participates in the realization of the cell cycle and mitosis in mammalian 
cells, transcription, and differentiation [10, 11]. In addition, overexpression of pin1 in various 
types of cancer tissue has been demonstrated [12, 13]. Pin1 plays an important role in cellular 
response to DNA damage [14], by conformational transformations participating in the trans-
fer of the apoptotic stimulus and further initiation of the apoptotic cascade [15]. Pin1 isom-
erizes the bonds between molecules that are important for a variety of oncogenic and other 
signaling pathways in the cell, including Bcl-2, p53, c-Jun, beta-catenin, nuclear factor-kappa 
B (NF-kappaB), cyclin D1, c-Myc, and Raf-1. This can cause conformation changes leading to 
damage to catalytic activity, protein-protein interactions, subcellular localization, and pro-
tein stability. Similar changes have been shown to be associated with cell transformation and 
cancer development [3, 12, 13]. In addition, the absence of pin1 affects embryonic fibroblasts, 
leading to rapid genomic instability and the so-called immortality due to inactivation of p53 
and further to aggressive transformation and carcinogenesis [16].

After attachment to pin1, p53 changes its transcriptional activity and increases the p21 transcrip-
tion, which facilitates the cell arrest [3, 17]. Moreover, pin1 regulates the stability and transcrip-
tional activity of p53 in relation to the p21 gene promoter [17]. P21 is known to be an inhibitor 
of cyclin-dependent kinases. Regulation of the cell cycle is an important part of development, 
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differentiation, DNA repair, and apoptosis. P53-dependent expression of p21 due to DNA dam-
age causes the arrest of the cell cycle in the late G1 phase [3, 18, 19]. In addition, p21 participates 
in cell aging [20, 21]. Besides, one of the genes, which play an important role in pathological 
involution process and take part in p53 regulation, is WRN, gene of Werner’s syndrome.

However, neuron resistance to apoptosis may also be due to the activity of cytokine-dependent 
STAT-signaling pathway. Various molecules, including hormones, cytokines, and so on, par-
ticipate in the regulation of apoptosis. As it is known, a significant change in the level of cell 
death is an important biological problem. Thus, a decrease in the level of apoptosis leads to 
oncogenesis, and an increase in the proportion of dying cells is the cause of diseases associated 
with tissue degeneration. Currently, it is considered a proven close connection between apop-
tosis and aging. To study the mechanisms of apoptosis associated with the aging, we used a 
line of transgenic mice with overexpression of the oncogene HER-2/Neu.

HER2, or ERBB2, belongs to the family of transmembrane tyrosine kinase receptors. After con-
necting to the ligand, members of this family form homo- or heterodimers and transmit the 
signal forward for activating a significant amount of cascades. Normally, ERBB receptors are 
involved in the processes of growth, differentiation, migration, and apoptosis. The extracel-
lular domain of ERBB2 (HER2), unlike the HER1, 3, and 4 domains, has an open conformation 
and is normally capable of forming functionally active heterodimers with other HER recep-
tors by carrying out and amplifying the signal, without preliminary binding to the ligand.

The HER-2/Neu overexpression in pathology promotes the formation of functionally active 
homo- and heterodimers, and, so, uncontrolled signal transduction [22] and it is characteristic 
of a number of tumors. The signal network, initiated by the interaction of ERBB family recep-
tors with ligands, and its key elements regulating the direction and speed of signal transmis-
sion play an important role in the pathogenesis of tumor diseases [22].

We have previously shown that a low level of apoptosis of neurons upon aging in HER-2/Neu 
transgenic mice is associated with the suppression of the p53-dependent cascade. However, cell 
resistance to apoptosis may also be due to the activity of cytokine-dependent apoptosis-limit-
ing systems (STAT-signaling pathway); these members are synthesized in various cell types, 
including neurons. At present, there is a report on the presence of a pro-inflammatory com-
ponent in involutional changes of various tissues, including the brain tissues. It is shown that 
cellular stress and an inflammatory environment can trigger an immune response and provoke 
cell aging through epigenetic regulation involving STAT signaling [23]. However, there are 
almost no data characterizing age-related changes in the expression and activity of cytokines, 
the main mediators of inflammation. Some authors reported an increased pro-inflammatory 
reaction accompanying the involution processes, and other ones reported suppression of the 
inflammatory response at the cellular level, and about a decrease in neuroimmune interactions.

STAT proteins (signal transducers and activators of transcription) are transcription factors that 
conduct a signal from the cytoplasm to the nucleus. For the first time, proteins of this family 
were described in the 1990s of the twentieth century. Their usual ligands are cytokines, includ-
ing interferons. In addition to cytokines, STAT are also activated by growth factors and growth 
factor receptors (a family of tyrosine kinase receptors, including HER-2) that stimulate STAT 
factors directly or indirectly through JAK kinases.
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1. Introduction

This study reveals the molecular regulation mechanisms of neurosecretory cell apoptosis in 
physiological and pathological (oncogene human epidermal growth factor receptor (HER)-2/
Neu overexpression) aging. In this chapter, we consider the participation of p53-regulating 
genes and p53 target genes in activation of this cascade during physiological aging, as well as 
suppression under HER-2/Neu overexpression. In addition, we consider cytokine-dependent 
pathways of apoptosis regulation (STAT-signaling pathway and tumor necrosis factor (TNF)-
dependent pathway).

As shown at present, the process of apoptosis is an integral part of involutional tissue changes [1].  
However, the mechanisms of senile apoptosis differ from the mechanisms of cell death in the 
early stages of ontogenesis. P53-mediated pathway of apoptosis plays a special role in aging, 
and its changes (excessive activation or suppression) cause severe pathologies, including neu-
rodegenerative diseases and carcinogenesis. This is especially important for neurons and neu-
rosecretory cells, which, as is known, are not capable of proliferation in the mass, so apoptosis 
is the only way to regulate their amount. Since the hypothalamic neurosecretory system is one 
of the main regulatory systems, the decrease in the amount of neurosecretory cells significantly 
changes the function of the hypothalamus and, consequently, of the target organs. Thus, the 
study of regulation of the p53-signaling path upon aging has particular importance.

DNA damage leads to the phosphorylation of p53 at the Ser/Thr-Pro sites, so the interac-
tion of p53 with Ser/Thr-Pro sites of peptidyl-prolyl isomerase pin1 becomes possible [2–4]. 
Several studies have shown the suppressive role of prolyl isomerase pin1 in oxidative stress-
induced apoptosis [5]. Pin1 involves in the stabilization of Mcl-1 and, further, in the preven-
tion of apoptosis [6]. However, most authors report a high proapoptotic activity of pin1. Pin1 
is necessary for the timely activation of p53, leading to apoptosis or cell arrest [4, 7–9]. It is 
known that pin1 participates in the realization of the cell cycle and mitosis in mammalian 
cells, transcription, and differentiation [10, 11]. In addition, overexpression of pin1 in various 
types of cancer tissue has been demonstrated [12, 13]. Pin1 plays an important role in cellular 
response to DNA damage [14], by conformational transformations participating in the trans-
fer of the apoptotic stimulus and further initiation of the apoptotic cascade [15]. Pin1 isom-
erizes the bonds between molecules that are important for a variety of oncogenic and other 
signaling pathways in the cell, including Bcl-2, p53, c-Jun, beta-catenin, nuclear factor-kappa 
B (NF-kappaB), cyclin D1, c-Myc, and Raf-1. This can cause conformation changes leading to 
damage to catalytic activity, protein-protein interactions, subcellular localization, and pro-
tein stability. Similar changes have been shown to be associated with cell transformation and 
cancer development [3, 12, 13]. In addition, the absence of pin1 affects embryonic fibroblasts, 
leading to rapid genomic instability and the so-called immortality due to inactivation of p53 
and further to aggressive transformation and carcinogenesis [16].

After attachment to pin1, p53 changes its transcriptional activity and increases the p21 transcrip-
tion, which facilitates the cell arrest [3, 17]. Moreover, pin1 regulates the stability and transcrip-
tional activity of p53 in relation to the p21 gene promoter [17]. P21 is known to be an inhibitor 
of cyclin-dependent kinases. Regulation of the cell cycle is an important part of development, 
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differentiation, DNA repair, and apoptosis. P53-dependent expression of p21 due to DNA dam-
age causes the arrest of the cell cycle in the late G1 phase [3, 18, 19]. In addition, p21 participates 
in cell aging [20, 21]. Besides, one of the genes, which play an important role in pathological 
involution process and take part in p53 regulation, is WRN, gene of Werner’s syndrome.
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After activation, phosphorylation of the C-terminal domain of the STAT factors occurs, the 
homo- or heterodimers form, translocate into the nucleus, and activate DNA regions [24]. It 
is shown that STAT signaling is negatively regulated by two groups of proteins, one of them 
is suppressors of cytokine signaling (SOCs) and STAT-induced STAT inhibitors [25], or “pro-
teins that inhibit activated STAT” [26]. The STAT family includes at least seven members—
STAT1, 2, 3, 4, 5a, 5b, and 6 [27].

Although all members of the STAT family are structurally similar, they perform various biolog-
ical roles, participating in such processes as embryonic development, inflammation, organo-
genesis, cell differentiation and control of cell growth [28, 29], regulation of immune processes, 
control of proliferation, and apoptosis (STAT3, 5) [30–32]. In many studies, it has been estab-
lished that STAT proteins play a critical role in the activation of pro-inflammatory and antipro-
liferative processes (primarily, by the factor STAT1). Members of this family participate in the 
interferon gamma-induced response [33–35]. Information on the important role of STAT factors 
in the regulation of cell proliferation, differentiation, and survival suggests the active role of 
these proteins in malignancy.

However, most studies report about the participation of STAT factors in oncogenesis, but there 
are almost no data concerning the expression of STAT proteins in neurons with aging and their 
participation in the regulation of apoptosis. So, the purpose of the next part of the work was to 
reveal the role and molecular mechanisms of cytokine-dependent signaling in the mechanism 
of p53-dependent apoptosis suppression in the physiological and pathological (overexpression 
of the HER-2/Neu oncogene, epidermal growth factor receptor (EGFR)) aging and to investi-
gate the causes of neuronal resistance to apoptosis with aging, possibly due to overexpression 
of HER-2/Neu.

Also, another cytokine-dependent signaling, an extrinsic apoptosis pathway associated with 
the family of tumor necrosis factor receptors, has been investigated.

Changes in cytokine expression are observed in various pathological conditions, so, TNF-
alpha, a protein that plays a role in apoptosis, increases with oxidative stress [36].

As is known, tumor necrosis factor has a high antitumor and pro-inflammatory activity. 
Expression of the tnf gene activates the synthesis of the cytokine TNF-alpha (TNF-α), which 
regulates the processes of proliferation, apoptosis, immune cell activity, inflammation, 
embryo-, and carcinogenesis. Binding of TNF-α to cell death receptors leads to the activation 
of caspase-8, which initiates an apoptosis program. One of the receptors is the Fas-receptor 
(CD95, APO-1), whose main function is signaling to the development of apoptosis. In the case 
of Fas-dependent apoptosis, binding of the Fas ligand to the Fas receptor leads to conforma-
tional changes in the cytoplasmic domain of Fas receptor. This makes it possible to bind it to 
FADD-adapter molecule (Fas-associated death domain), and then to the same domain of the 
RIP protein (receptor-interacting protein). This complex activates caspase-8 (FLICE protease 
(FADD-like IL-1b-converting enzyme)), which means the development of apoptosis.

We supposed that the activity of a cytokine-dependent pathway associated with a family of 
tumor necrosis factor—the TNF-signaling pathway—can also be altered by aging. Only a few 
authors associate the TNF-dependent apoptotic pathway with aging or with the pathological 
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processes accompanying aging [37, 38]. So, it is reported that Fas signaling is activated in aged 
oocytes [39]; the extrinsic apoptotic pathway plays an important role in the development of 
macular degeneration in accelerated aged OXYS rats while the synthesis of proteins such as 
Fas, caspase-8, TRAIL increased [40], and in neurodegeneration in ischemia-reperfusion [41]. 
Apoptosis of the heart cells upon aging is induced via the Fas-FADD pathway, with a signifi-
cantly suppressed survival signaling pathway which is associated with the insulin-like growth 
factor receptor (IGF1R), PI3K, and AKT kinases [42]. The senile neurodegeneration is an impor-
tant clinical pathology, but there are almost no works devoted to the role of Fas-FADD and TNF-
receptor-associated death domain (TRADD) pathway in neurons during physiological aging.

Thus, the aim of the present work is investigation of age-related changes of three signal-
ing cascades, which are involved in both the activation of apoptosis and its suppression—
p53-dependent (p53, WRN, pin1, p21, caspase-3), STAT-mediated (STAT1, 3, 5, 6, survivin), 
and TNF-dependent (FAS, FADD, TRADD, caspase-8). This will reveal the general trends of 
regulation of neurosecretory cell apoptosis during physiological and pathological aging.

2. Mechanisms of apoptosis regulation in ontogenesis: apoptosis 
signaling cascades in hypothalamic neurons in physiological and 
pathological (overexpression of oncogene HER-2/Neu) aging

2.1. Research methods

2.1.1. Animals

We studied a mouse model of accelerated aging, namely transgenic HER-2/Neu female mice, at 
the age of 2 and 10 months [43], obtained from the Italian National Research Center of Aging; 
the breeding is maintained at the Petrov Research Institute of Oncology (St. Petersburg, Russia). 
Outbred FVB/N female mice, descending from mice of the Swiss line (Rappolovo Nursery, 
Russian Academy of Medical Sciences, St. Petersburg, Russia), were 2 and 18 months of age 
(four to five mice in each group). The animal room was equipped with a 24-h light-dark cycle 
with 12:12 period.

The model of our study is transgenic mice with the overexpression of the transmembrane 
tyrosine kinase receptor HER-2/Neu, the wild type is the FVB/N line. The FVB/N line mice are 
often used to produce models of transgenic mice, since this line is characterized by high fertil-
ity and good survival of the embryo after injection. Overexpression of activated HER-2/Neu 
oncogene in transgenic female FVB/N mice leads to malignant transformation of mammary 
epithelial cells, followed by development of several breast adenocarcinomas, as well as hyper-
insulinemia, hyperglycemia, and a decrease in the activity of the antioxidant system, which 
are biomarkers of the premature aging of transgenic mice (Figure 1). The lifespan of these 
mice is about 11–12 months. Thus, overexpression of HER-2/Neu causes hormone-metabolic 
changes, which are characteristic of accelerated aging, simultaneously with carcinogenesis, in 
this line of mice.
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2.1.2. Sample preparation

The brains from animals were fixed in 4% paraformaldehyde for morphological and immuno-
histochemical assays. Fresh-frozen brain sections containing supraoptic and paraventricular 
nuclei (SON and PVN) of the hypothalamus were prepared.

The fresh-frozen brain region containing SON and PVN were homogenized separately for 
further biochemical analysis.

2.1.3. TUNEL

The terminal deoxynucleotidyl transferase-biotin dUTP-nick end labeling (TUNEL) assay was 
used to detect 3′ hydroxyl ends in fragmented DNA in the hypothalamic neurosecretory cells. 
In brief, after rehydration, cryo-sections (5–7 mkm) were processed according to the manu-
facturer’s instructions for the TUNEL assay using the detection kit (Sileks, Russia) and then 
stained with diaminobenzidine (DAB).

2.1.4. In situ hybridization

We identified the transcripts of genes involved in the signaling cascade of p53 protein (p53, 
WRN, pin1, p21) in fresh-frozen brain sections containing neurosecretory nuclei (SON and PVN) 
(in situ hybridization using a riboprobe labeled with digoxigenin). Riboprobes for the detection 
of mouse p53, WRN, pin1, and p21 mRNA were prepared by in vitro transcription method using 
a synthetic template, as recommended in the DIG-11-UTP guide. To mark the riboprobes, we 

Figure 1. HER-2/Neu transgenic old mice.
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used modified NTP, DIG-11-UTP (Roche Applied Science, USA), which can be combined with 
growing T7 RNA polymerase transcripts and serve as a highly specific antigen with subsequent 
immunohistochemistry coloration [44]. We used a standard protocol published earlier [45] fol-
lowed by densitometry to determine the level of expression of apoptosis-associated molecules 
(VideoTest Morphology).

2.1.5. Immunohistochemistry

The expression of WRN and survivin was examined immunohistochemically. WRN expres-
sion was detected for the determination of protein proportion in the nucleus or in the cyto-
plasm of cell (standard streptavidin-biotin-peroxidase method) [46]. The fresh-frozen brain 
sections containing SON and PVN of the hypothalamus cut sections were incubated with 
primary rabbit polyclonal antibody to WRN (NBP-23002, 1:100; Novus Biologicals, Inc., USA) 
and rabbit monoclonal antibody to survivin ([EPR17358], 1:500; Abcam, USA), and then with 
ABC elite complex (Vector Laboratories Inc., Peterborough, Cambridgeshire, UK). The peroxi-
dase reaction of the avidin-biotin complex was revealed in the buffer containing 3,30 diami-
nobenzidine (0.05%) and hydrogen peroxide (0.01%). Additionally, reactions lacking primary 
antibodies were performed to ensure the specificity of the observed staining.

2.1.6. Western blot analysis

Tissues were homogenized in lysis buffer containing protease inhibitors and phosphatase inhib-
itor cocktail (both from Sigma-Aldrich, St. Louis, MO, USA). The total protein concentrations 
were determined by Bio-Rad protein assay (Bio-Rad Laboratories Inc., Hercules, CA, USA). 
Equal amounts of protein (15 lg per line) in sample buffer (Bio-Rad Laboratories Inc.) were dena-
tured at 95°C for 5 min and separated on 10% acrylamide gel. The proteins from the gel were 
transferred to a nitrocellulose membrane. The membranes were incubated in 3% non-fat milk 
in Tris buffer (0.1% Tween 20, 0.2 mM Tris, 137 mM NaCl) for 30 min and then incubated over-
night with primary antibodies against STAT1 (9172, 1:1000; Cell Signaling, USA); STAT3 (4904, 
1:2000; Cell Signaling, USA); STAT5 (9363, 1:1000; Cell Signaling, USA); STAT6 (5397, 1:1000; Cell 
Signaling, USA); caspase-3 (4904, 1:2000; Cell Signaling, USA); FAS (ab82419, 1:1000; Abcam, 
USA), FADD (24,533, 4 mkg/ml; Abcam, USA), TRADD ([EPR3604] ab110644, 1:500; Abcam, 
USA), caspase-8 (25,901, 0.5 mkg/ml; Abcam, USA), (Abcam); p53 ([PAb 240] (ab26), 5 mkg/ml;  
Abcam, USA), and GAPDH (glyceraldehyde 3-phosphate dehydrogenase) (1:2000; Abcam, 
USA) or actin (1:1000; Abcam, USA). Subsequently, the membranes were incubated with sec-
ondary anti-rabbit (1:8000; Sigma-Aldrich, USA) or anti-mouse (1:80,000; Sigma-Aldrich, USA), 
followed by chemiluminescent detection by enhanced chemiluminescenceplus (Amersham, GE 
Healthcare, Little Chalfont, Buckinghamshire, UK).

2.1.7. Evaluation of sections and statistical analysis

The positive TUNEL staining cells in hypothalamic SON and PVN were counted under a high-
power magnification (20×) field of light microscope (Zeiss Axiolab, Carl Zeiss Inc., Germany) 
[47–49]. At least five fields were sampled in a section and data were expressed as the number 
of TUNEL-positive counts.
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of TUNEL-positive counts.
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The semi-quantitative analysis of protein amount in the histological slices was processed by 
measurement of optical density [50]. Five sections at the same level of the studied zones were 
analyzed from each animal. The relative optical density of immuno-positive substances in 
the SON and PVN of the hypothalamus was estimated, and the average and standard devia-
tion were calculated. Optical density reflecting the content of immuno-positive substance 
was calculated as the ‘gray level’ (GL) of immunoreactive field of tissue minus background 
GL. Optical density of the background was estimated at the same slice in non-immunoreac-
tive brain tissue field. Results are presented in relative units of optical density per lm2.

Immunohistochemical study showed that in the neurosecretory centers there are three types of 
cells—with WRN-immuno-positive cytoplasm, with WRN-immuno-positive nucleus, and cells 
where the immune reaction took place in the nucleus and cytoplasm simultaneously, and each 
type of cells was counted under a high-power magnification (20×) field of light microscope. At 
least five fields were sampled in a section.

The optical density of the bands (Western blotting) was measured and quantified by ImageJ.

Statistical analysis was carried out by Student’s t-test (p ≤ 0.05) (Microsoft Excel 5.0a), and val-
ues are expressed as mean SE for immunohistochemistry, TUNEL, in situ hybridization, and 
for Western blot analysis.

2.2. Expression of Werner syndrome genes in hypothalamic neurons in 
physiological and pathological (HER-2/Neu overexpression) aging

It is known that changes in the p53-mediated pathway of apoptosis with aging cause severe 
pathologies, including neurodegenerative diseases and cancer. DNA damage leads to the 
phosphorylation of the p53 protein and allows the interaction of p53 with the peptidylpropyl 
isomerase pin1. After being connected to pin1, the tumor suppressor p53 increases the expres-
sion of p21 (a cyclin-dependent kinase inhibitor), which helps stop the cell cycle [18, 19].

It was shown that p21 limits proliferation in cell culture and also this protein is an internal 
suppressor of neuronal regeneration in brain damage [51]. The process of differentiation of 
neuroendocrine cells is associated with up-regulation of the p21, p53, and activation of MAPK 
and STAT pathways [52]. Stable expression of p53 leads to the onset of p21 synthesis [53], and 
the role of p21 in p53-dependent cancer protection is shown. The absence of p21 significantly 
impairs the p53-mediated arrest of the cell cycle, without affecting apoptosis [19]. Other studies 
report an increase in p21 expression preceding TNF-induced necrosis-like cell death [54]. Most 
authors consider p21 (Waf1/Cip1) as one of the main mediators of p53 tumor suppressor [55].

According to other data, p21 acts as an oncogene, reducing the level of apoptosis in various 
tissues, including tumors [56]. Thus, a decrease in the level or the absence of p21 results in a sig-
nificant increase in the lifespan of p53-deficient mice due to a decrease in the number of sponta-
neously occurring or induced tumors. It was shown that the reason for this is a higher apoptotic 
tissue index during the absence of p21 [55, 57]. The involvement of p21 in apoptosis depends 
on its interaction with the PCNA protein (proliferating cell nuclear antigen, the nuclear antigen 
of proliferating cells), which is an auxiliary factor in reparative DNA polymerase delta [58, 59]. 
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According to the data of other authors, the p53-p21-dependent pathway determines the choice 
between apoptosis and cell aging [20]. As is known, the suppression of apoptosis significantly 
increases the number of aging cells.

In addition, other genes participate in the aging process. Thus, the Werner syndrome gene 
(WRN) encodes DNA-helicases and endonucleases. WRN mutation causes Werner’s syndrome, 
a progeria, when the characteristic signs of aging appear at an early age. It is known that aging 
triggers by two mechanisms—telomere shortening and DNA damage. These mechanisms are 
interrelated, shortening telomeres and their dysfunction can lead to DNA damage; accumula-
tion of DNA damages leads to genomic instability and accelerated cellular aging. Both of these 
mechanisms are mainly dependent on p53 status [6]. The function of WRN is closely related 
to the p53 protein and its participation in apoptosis [60]. The destruction of the WRN gene or 
its mutation leads to spontaneous carcinogenesis, which is also characteristic of Werner’s syn-
drome [61, 62]. Deficiency of the WRN protein reduces the phosphorylation of p53, as shown 
on the cell lines of normal fibroblasts and osteosarcoma cells [63]. The effects of p53 and WRN 
on each other are mutual. The absence of p53-WRN interaction can disrupt the signal for apop-
tosis and lead to genomic instability and carcinogenesis [64]. Many authors show depletion of 
p53-dependent apoptosis in the cell lines from patients with Werner’s syndrome. The physical 
interaction between p53 and WRN was identified, that suggests functional interaction [65–68]. 
In addition, overexpression of WRN induces p53 expression, and further, p21, which indicates 
their overall involvement in premature aging and cancer processes [69]. However, the role of 
the WRN gene in the regulation of physiological aging is still unknown.

So, one of the aims of this study was determining the role of the WRN gene in the apoptosis in 
the physiological and pathological (HER-2/Neu overexpression) aging. One of the important 
regulatory systems of organism, the neuroendocrine system of the hypothalamus, was used 
as a model of the investigation.

The results of our studies showed that the level of apoptosis of the hypothalamus neurons in 
transgenic animals is low and does not increase with aging, in contrast to mice FVB/N (Figure 2a 
and b). Expression of p53 in young FVB/N mice is low and increases with aging (Figure 2a). In 
HER-2/Neu mice, the amount of p53 mRNA is significantly lower in both neurosecretory centers 
and does not change with aging (Figure 2a). Obviously, a decrease in p53 expression is the main 
reason for the low level of apoptosis in older transgenic mice.

According to our data, WRN is synthesized in the neurosecretory cells of the hypothalamus at 
a sufficiently low level, and there are no differences in the young animals FVB/N and HER-2/
Neu (Figure 3a). With aging, WRN expression increases in SON and PVN in wild-type mice 
(Figure 3b and c), while overexpression of HER-2/Neu suppresses WRN expression (Figure 3a). 
A low level of WRN does not lead to the activation of p53 and thus suppresses the subsequent 
cascade of apoptosis. In addition, the WRN protein, which is synthesized in the neurosecretory 
cells of transgenic mice, is not functionally complete, as revealed in our experiments by immu-
nohistochemistry (a cytoplasmic localization is characteristic of the defective protein [70]).

Immunohistochemical study showed that in the neurosecretory centers, there are three types of 
cells—with WRN-immuno-positive cytoplasm, with WRN-immuno-positive nucleus, and cells 
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their overall involvement in premature aging and cancer processes [69]. However, the role of 
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as a model of the investigation.
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transgenic animals is low and does not increase with aging, in contrast to mice FVB/N (Figure 2a 
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A low level of WRN does not lead to the activation of p53 and thus suppresses the subsequent 
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nohistochemistry (a cytoplasmic localization is characteristic of the defective protein [70]).
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where the immune reaction took place in the nucleus and cytoplasm simultaneously. With aging, 
there are significant changes in the composition of immuno-positive cells. Thus, in the SON of 
FVB/N old mice the amount of cells with colored nuclei decreases with a simultaneous increase 
in the amount of cells with cytoplasmic coloring; in PVN, the amount of all three cell types 
increases. In old transgenic mice, the amount of neurosecretory cells with a nuclear-cytoplasmic 

Figure 2. (a) The level of apoptosis and expression of p53 in neurosecretory centers (supraoptic (SON) and paraventricular 
(PVN) nuclei) in FVB/N and HER-2/Neu mice. The left ordinate axis shows the number of TUNEL-positive (apoptotic) 
cells (М ± m, n = 6) in neurosecretory cells of SON and PVN of FVB/N and HER-2/Neu mice. Designations: (y)—young 
mice, (o)—old mouse. The right ordinate axis shows the content of p53 mRNA (М ± m, n = 6) in the neurosecretory cells 
of SON and PVN of FVB/N and HER-2/Neu mice. Here and in other figures: optical density presented in arbitrary units. 
(o) is the significance of differences between the indices for young and old mice of the same group (p ≤ 0.05), and (*) is 
the significance of differences between the indices of FVB/N and HER2/Neu mice of the same age (p ≤ 0.05). (b) PVN of 
old FVB/N mice, cells with dark-stained nuclei are apoptotic (TUNEL).
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color increases, with an increase in the amount of cells with nuclear localization WRN. There 
were significant differences between wild-type mice and transgenic mice—a smaller amount of 
all types of cells in the HER-2/Neu mice, both young and old.

Thus, the results showed the activation of the p53-dependent pathway of apoptosis upon aging 
in the hypothalamic neurons of wild-type mice. Werner’s syndrome gene was found to be 
involved in physiological aging. Previously, fibroblast culture showed that cell aging is associ-
ated with a decrease in the WRN protein [71]. The increase in WRN expression in the late stages 
of ontogenesis plays a decisive role in the induction of p53-mediated apoptosis of neurosecre-
tory cells (Figures 2a and 3a). The functional relationship of p53 and WRN found in our experi-
ments can confirm the data obtained by other authors on cell cultures and on a model of mice 
with Werner’s syndrome [66, 68, 72]. Increased expression of WRN in wild-type animals leads 

Figure 3. (a) Content of WRN mRNA in neurosecretory cells of the SON and PVN of FVB/N and HER-2/Neu mice of 
different ages. (b) SON of young FVB/N mice, immunostaining with antibody to WRN. (c) SON of old FVB/N mice, 
immunostaining with antibody to WRN.
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where the immune reaction took place in the nucleus and cytoplasm simultaneously. With aging, 
there are significant changes in the composition of immuno-positive cells. Thus, in the SON of 
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color increases, with an increase in the amount of cells with nuclear localization WRN. There 
were significant differences between wild-type mice and transgenic mice—a smaller amount of 
all types of cells in the HER-2/Neu mice, both young and old.

Thus, the results showed the activation of the p53-dependent pathway of apoptosis upon aging 
in the hypothalamic neurons of wild-type mice. Werner’s syndrome gene was found to be 
involved in physiological aging. Previously, fibroblast culture showed that cell aging is associ-
ated with a decrease in the WRN protein [71]. The increase in WRN expression in the late stages 
of ontogenesis plays a decisive role in the induction of p53-mediated apoptosis of neurosecre-
tory cells (Figures 2a and 3a). The functional relationship of p53 and WRN found in our experi-
ments can confirm the data obtained by other authors on cell cultures and on a model of mice 
with Werner’s syndrome [66, 68, 72]. Increased expression of WRN in wild-type animals leads 

Figure 3. (a) Content of WRN mRNA in neurosecretory cells of the SON and PVN of FVB/N and HER-2/Neu mice of 
different ages. (b) SON of young FVB/N mice, immunostaining with antibody to WRN. (c) SON of old FVB/N mice, 
immunostaining with antibody to WRN.
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to an increase not only in the synthesis of p53 but also in an increase in p53-dependent tran-
scriptional activity and induction of pin1 expression [69], which is shown in our experiments.

It is known that p21 is the transcriptional target of the tumor suppressor p53, but these pro-
teins mutually affect each other. There is evidence that p21 can induce cell arrest irrespective 
of the involvement of p53 [21]. In addition, p53 can act on the p21-independent mechanism 
[73]. P21 can both activate apoptosis and inhibit this process, depending on the involvement 
of other proteins, in particular PCNA [59]. In the works of many authors, the enhancement 
of the synthesis of p21 is shown in rest cells, that is, in highly differentiated cells, due to the 
ability of p21 to reduce proliferation and to participate in cellular aging [20, 51].

In our experiments, the level of the studied genes was higher in both age groups in FVB/N 
mice (p53, pin1, and p21) or only in older animals (WRN) compared to transgenic mice 
(Figures 2a–4). The high level of expression of p21 in young wild-type mice and its decrease 
in aging correlates with the level of apoptosis of neurosecretory cells.

The decrease in p21 synthesis in HER-2/Neu mice (as a result of low p53 level in these mice) 
indicates the possibility of maintaining a balance of cell death survival with the p53-p21 path-
way; however, overexpression of the HER-2/Neu oncogene results in the suppression of the 
apoptotic cascade. Dynamics of the synthesis of pin1 corresponds to a change in the synthesis 
of p53, a significant level of pin1 expression in young FVB/N mice, increasing with aging, and 
a decreased content of pin1 mRNA without response to aging in HER-2/Neu mice. Increasing 
WRN expression leads to not only increased synthesis of p53 but also the induction of pin1 
expression in FVB/N animals [69], as shown in our experiments.

Thus, the relatively high level of p21 mRNA that we detected in young wild-type mice is con-
sistent with data of some investigators [55]. The simultaneous enhancement of p53 and p21 
expression in aging in various tissues has been reported. The activation of the p53-mediated 

Figure 4. Content of pin1 mRNA and p21 mRNA in neurosecretory cells of the supraoptic and paraventricular nuclei of 
FVB/N and HER-2/Neu mice of different ages.
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transcriptional program may be a common symptom of aging of different tissue types, but 
the expression pattern of p53-dependent genes is tissue-specific [74]. In our experiments, the 
level of the p21 protein, an inhibitor of cyclin-dependent kinases, necessary to lower the level 
of apoptosis [56], is high in neurons of the hypothalamus of young FVB/N mice and decreases 
with aging, inversely correlating with the expression of p53 and the level of apoptosis.

The data obtained in our experiments showed significant damage to the regulation of the 
p53-dependent cascade of apoptosis during overexpression of the HER-2/Neu oncogene. The 
expression of the studied p53-signaling genes (p53, p21, WRN, and pin1) in the hypothalamic 
neurons is significantly lower in HER-2/Neu transgenic mice, regardless of the ontogenesis stage, 
compared to wild-type mice (Figures 2a–4). An insufficient increase in WRN expression in trans-
genic mice results in a low synthesis of p53 and, correspondingly, a low level of programmed 
cellular cell death in aging. In addition, it was found that in HER-2/Neu mice irrespective of 
the ontogeny stage, the functionally defective WRN protein is synthesized, which is confirmed 
by immunohistochemistry. Changes in pin1 expression in transgenic mice correspond to the 
dynamics of p53 synthesis; it is a low level of p53 expression and no response to aging. It confirms 
the functional relationship of these genes, shown in the works of other authors [9], and supports 
the suppressive effect of the HER-2/Neu oncogene on various links of p53-mediated signaling.

P21 plays an important role in tumor suppression [19]. The decrease in p21 synthesis in 
HER-2/Neu mice (as a result of low p53 level in these mice) indicates attempts to maintain a 
balance of cell death survival with p53-p21 pathway; however, the expression of the HER-2/
Neu oncogene results in the suppression of the apoptotic cascade.

2.2.1. Conclusion

This study for the first time revealed the involvement of the Werner syndrome gene in the 
physiological aging of neurons. The age-related increase in WRN expression promotes the 
activation of p53-dependent apoptosis of hypothalamic neurosecretory cells in wild-type 
mice (an increase in the expression of members in this cascade—pin1, p53, and, indirectly, 
p21). In transgenic animals with overexpression of the oncogene HER-2/Neu, the synthesis of 
pin1, p53, and p21 is low and there is no reaction to aging. The result of suppression of apop-
tosis in HER-2/Neu mice is increased carcinogenesis and reduced life expectancy.

Thus, it is shown that the WRN gene not only determines the pathological premature aging 
(Werner’s syndrome) but also plays an important role in the mechanisms of physiological aging.

2.3. The role of STAT transcription factors in apoptosis regulation of hypothalamic 
neurons in aging in wild-type FVB/N mice and HER-2/neu transgenic mice

The interferon gamma is the main potential activator of STAT1, but STAT1 is also activated by 
growth factors and their receptors [75, 76]. According to some data, induction of STAT1 leads 
to a decrease in proliferation and an increase in p53-dependent apoptosis of cells of hepatocel-
lular carcinoma [77]. The protein-protein interaction between p53 and STAT1 is shown. This 
interaction occurs via the C-terminal domain of STAT1, which is critical for the stress-induced 
apoptotic response. It was shown that the induction of expression of p53 and its target genes 
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to an increase not only in the synthesis of p53 but also in an increase in p53-dependent tran-
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WRN expression leads to not only increased synthesis of p53 but also the induction of pin1 
expression in FVB/N animals [69], as shown in our experiments.
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FVB/N and HER-2/Neu mice of different ages.

Hypothalamus in Health and Diseases110

transcriptional program may be a common symptom of aging of different tissue types, but 
the expression pattern of p53-dependent genes is tissue-specific [74]. In our experiments, the 
level of the p21 protein, an inhibitor of cyclin-dependent kinases, necessary to lower the level 
of apoptosis [56], is high in neurons of the hypothalamus of young FVB/N mice and decreases 
with aging, inversely correlating with the expression of p53 and the level of apoptosis.

The data obtained in our experiments showed significant damage to the regulation of the 
p53-dependent cascade of apoptosis during overexpression of the HER-2/Neu oncogene. The 
expression of the studied p53-signaling genes (p53, p21, WRN, and pin1) in the hypothalamic 
neurons is significantly lower in HER-2/Neu transgenic mice, regardless of the ontogenesis stage, 
compared to wild-type mice (Figures 2a–4). An insufficient increase in WRN expression in trans-
genic mice results in a low synthesis of p53 and, correspondingly, a low level of programmed 
cellular cell death in aging. In addition, it was found that in HER-2/Neu mice irrespective of 
the ontogeny stage, the functionally defective WRN protein is synthesized, which is confirmed 
by immunohistochemistry. Changes in pin1 expression in transgenic mice correspond to the 
dynamics of p53 synthesis; it is a low level of p53 expression and no response to aging. It confirms 
the functional relationship of these genes, shown in the works of other authors [9], and supports 
the suppressive effect of the HER-2/Neu oncogene on various links of p53-mediated signaling.

P21 plays an important role in tumor suppression [19]. The decrease in p21 synthesis in 
HER-2/Neu mice (as a result of low p53 level in these mice) indicates attempts to maintain a 
balance of cell death survival with p53-p21 pathway; however, the expression of the HER-2/
Neu oncogene results in the suppression of the apoptotic cascade.

2.2.1. Conclusion

This study for the first time revealed the involvement of the Werner syndrome gene in the 
physiological aging of neurons. The age-related increase in WRN expression promotes the 
activation of p53-dependent apoptosis of hypothalamic neurosecretory cells in wild-type 
mice (an increase in the expression of members in this cascade—pin1, p53, and, indirectly, 
p21). In transgenic animals with overexpression of the oncogene HER-2/Neu, the synthesis of 
pin1, p53, and p21 is low and there is no reaction to aging. The result of suppression of apop-
tosis in HER-2/Neu mice is increased carcinogenesis and reduced life expectancy.

Thus, it is shown that the WRN gene not only determines the pathological premature aging 
(Werner’s syndrome) but also plays an important role in the mechanisms of physiological aging.

2.3. The role of STAT transcription factors in apoptosis regulation of hypothalamic 
neurons in aging in wild-type FVB/N mice and HER-2/neu transgenic mice

The interferon gamma is the main potential activator of STAT1, but STAT1 is also activated by 
growth factors and their receptors [75, 76]. According to some data, induction of STAT1 leads 
to a decrease in proliferation and an increase in p53-dependent apoptosis of cells of hepatocel-
lular carcinoma [77]. The protein-protein interaction between p53 and STAT1 is shown. This 
interaction occurs via the C-terminal domain of STAT1, which is critical for the stress-induced 
apoptotic response. It was shown that the induction of expression of p53 and its target genes 
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in response to DNA damage is significantly reduced in STAT1-deficient cells [75]. As is known, 
Mdm2 is a key regulator of p53 expression. The stabilization of the p53 protein level is regu-
lated by the Mdm2 protein, which interacts with the p53 protein and promotes its degradation 
by ubiquitination [78]. It is shown that the level of Mdm2 expression is increased in STAT1-
deficient cells, and STAT1 represses the promoter of the gene encoding the Mdm2 factor, and 
STAT1 inhibits the p53-mediated activity of the Mdm2 promoter. Therefore, an elevated level 
of Mdm2 in STAT1-deficient cells may be responsible for a low level of p53 after DNA damage. 
These data indicate that STAT1-p53 interaction can have both positive and negative effects on 
various gene promoters. Evidence of this relationship is also the fact that tumors develop sig-
nificantly faster in p53-STAT1-knockout mice than in mice knocked out by one of these genes 
[79]. In many tumors, the p53 function is reduced by 50%, in most cases due to overexpression 
of Mdm2 [80]. In experiments, it has been shown that the administration of interferon gamma 
restores p53-induced apoptosis by inhibiting the expression of Mdm2 via the STAT1-mediated 
mechanism, which is of great importance for the therapy of cancer. Thus, STAT1 is a check-
point protein and also acts as an oncosuppressor.

Figure 5. (a) The expression level of STAT1 and STAT3 in the neurosecretory cells of SON and PVN of FVB/N and 
HER-2/Neu mice of different ages. (b) STAT1 expression in SON of young and old HER-2/Neu mice (Western blotting). 
(c) STAT3 expression in SON of young FVB/N and HER-2/Neu mice (Western blotting).
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In our experiment, the STAT1 level in young FVB/N mice is low, approximately the same in the 
SON and PVN (Figure 5). With aging, an increase in the expression of STAT1 in wild-type mice 
was found, which correlates with an increased level of neuronal apoptosis and  overexpression 
of p53, caspase-3, and -8 (Figures 2a, 5a, and 6). The levels of expression of caspase-8 and 
 caspase-3 are similar. The expression of caspases is low and the same in hypothalamic neu-
rons in young mice of both lines (Figure 8b). In aging, we obtained the increase of caspases 
synthesis only in hypothalamus in wild-type mice (Figure 6). Some authors too reveal the pro-
apoptotic function of this transcription factor. In young HER-2/Neu mice, STAT1 expression 
is high in SON and decreases with aging (Figure 5b), although some activation of synthesis is 
observed in the PVN (Figure 5a).

In young mice of both lines, STAT3 expression is approximately at the same level. With aging, 
the synthesis of this factor decreases only in mice FVB/N. In transgenic animals, there is no 
change in the synthesis of STAT3 in the late stages of ontogenesis (Figure 5a).

It was previously shown that STAT1 and STAT3 have the opposite effect on the apoptotic death 
of various cells [81]. STAT1-deficient cells are resistant to TNF-alpha-induced apoptotic death 
[82]. By contrast, STAT3 has oncogenic characteristics; its overexpression is observed in many 
types of tumors [83]. Significant activation of STAT3 is often observed in different types of can-
cer, including breast cancer. STAT3 plays a role in the progression of tumors and their resistance 
to anti-cancer treatment by regulating the survival of cancer cells [84]. Activation of STAT3 in 
glioblastoma multiforme correlates with malignancy and poor prognosis. The phosphorylat-
ing signal transducer JAK2 activates STAT3 in response to cytokines and growth factors [85].

It is known that overexpression of STAT1 induces the induction of apoptosis, for example, of 
cardiomyocytes in ischemia-reperfusion, while overexpression of STAT3 decreases STAT1-
induced cell death [86].

One of the targets of STAT3 is survivin, an antiapoptotic protein belonging to the family of IAP 
(inhibitors of apoptotic proteins) [87]. It is known that HER-2 initiates oncogenic cascades. It 
has now been shown that HER-2 promotes the activation of STAT3 and, further, survivin [88]. 
Thus, it is obvious that members of the STAT family are involved in modulating the expression 
of apoptotic genes.

The problems of neuronal survival or death during aging are very important, since the regula-
tion of the amount of neurons is carried out unilaterally (by cell death). The role of survivin and 
STAT factors in the regulation of apoptosis in aging is currently unclear. Survivin is almost not 
expressed in normal differentiated tissues. It is known that overexpression of survivin leads 
to an increase in proliferation in the hippocampus [89]. Recently, it has been shown that the 
synthesis of survivin decreases with aging and neurogenesis decreases. In addition, increased 
expression of survivin induces a significant reduction in β-galactosidase activity; thus, survivin 
allows cells to avoid aging [90].

It should be noted that in our experiment, STAT3 expression is the same in neurosecre-
tory cells in FVB/N and HER-2/Neu mice (Figure 5a and b). The age-related changes in 
the expression of STAT1 and STAT3 are opposite—overexpression of STAT1 with a simul-
taneous decrease in the synthesis of proapoptotic factor STAT3 in aging in wild-type  
mice (Figure 5a). According to other investigations, STAT1-activated apoptosis proceeds via 
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TNF- and p53-signaling pathways, with activation of caspase-3. Our results also showed an 
increase in the synthesis of p53 and caspase-3 (Figures 2a and 6). Some authors report a sup-
pression of STAT3 expression in an increased synthesis of STAT1; probably, this mechanism 
is present in our experience.

The level of survivin in hypothalamic neurons in young FVB/N mice was quite high in com-
parison with transgenic mice. With aging, survivin expression decreased in both nuclei in wild-
type mice. In old HER-2/Neu mice, survivin synthesis did not change in SON and increased in 
PVN (Figure 7). These changes correspond to the dynamics of STAT3 expression (Figure 5a).

Figure 6. The expression level of caspase-3 and caspase-8 in the neurosecretory cells of SON and PVN of FVB/N and 
HER-2/Neu mice of different ages.

Figure 7. The expression level of survivin in the neurosecretory cells of SON and PVN of FVB/N and HER-2/Neu mice 
of different ages.
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Other members of this family, STAT5 and 6, are involved in differentiation and cell sur-
vival process [91, 92]. STAT5 has pleiotropic functions for the regulation of cell prolifera-
tion, differentiation, and apoptosis. There is evidence of a pro-apoptotic activity of the JAK/
STAT5 pathway in neurons [93], but most of the work reports an antiapoptotic orientation of 
STAT5 [94]. The STAT5 transcription factors are essential for both lymphocyte development 
and acute immune responses [95]. STAT5 is a regulator of cyclin D, Myc, and Bcl-2 in non-
neuronal cells and thus is involved in the prevention of apoptosis [92]. It has been shown 
that STAT5 and STAT6 antiapoptotic cascades [91, 94], and antiapoptotic activity of the JAK/
STAT5 pathway are carried out through Bcl-2 [96]. The problem of survival and death of 
neurons is especially important in aging. According to some studies, the Jak/STAT pathway 
is involved in the regulation of cytokine-dependent apoptosis and the activity of growth 
factors and their receptors.

Expression of STAT5 is approximately the same in young HER-2/Neu and FVB/N mice. With 
aging in FVB/N mice, this factor decreases in both neurosecretory centers (Figure 8a). In 
transgenic mice, in SON, there is no change in aging, and in PVN, age-dependent overexpres-
sion of STAT5 is observed (Figure 8a and b).

Figure 8. (a) The expression level of STAT5 and STAT6 in the neurosecretory cells of SON and PVN of FVB/N and HER-2/Neu 
mice of different ages. (b) STAT5 and caspase-3 expression in PVN of old FVB/N and HER-2/Neu mice (Western blotting).
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Expression of STAT6 is almost the same in SON and PVN of young FVB/N mice. With aging in 
FVB/N mice, there are no changes in the SON, and a decrease in STAT6 synthesis is observed 
in the PVN (Figure 8a). In SON in transgenic mice there are no age-related changes, and the 
age-dependent overexpression of STAT6 is observed in the PVN (Figure 8a).

2.3.1. Conclusion

Thus, the synthesis of the studied transcription factors, which show antiapoptotic activity—
STAT3, 5, 6, survivin—decreased in the late stages of ontogeny in the hypothalamic neurose-
cretory centers of wild-type mice. It can be concluded that the suppression of antiapoptotic 
factors STAT3, 5, and 6 and overexpression of the proapoptotic factor STAT1 is one of the 
reasons for the increase of the amount of dying neurons during physiological aging.

In young HER-2/Neu mice, the antiapoptotic factors STAT3, 5, and 6 are synthesized at a suf-
ficiently high level. With aging, there is no change in the synthesis of STAT3 and an increase in 
STAT5, and 6 and survivin expression is observed. These factors are activated, in addition to 
cytokines, by growth factors and their receptors. Accordingly, overexpression of the HER-2/
Neu receptor tyrosine kinase receptor results in cell survival by activating the STAT-signaling 
pathway, while suppressing the proapoptotic factor STAT1.

Thus, in this study, the participation of the STAT pathway in the regulation of neuronal apop-
tosis in physiological aging and in old mice with overexpression of the HER-2/Neu oncogene 
was studied for the first time. Active participation of this signaling pathway in the regulation 
of neuronal apoptosis during aging was observed.

2.4. The role of TNF-dependent way in apoptosis regulation of hypothalamic 
neurons in physiological and pathological (HER-2/Neu overexpression) aging

Most of the works is associated HER-2- and TNF-signaling in malignancy tissues [97, 98]. 
But some investigations demonstrate that HER-2 and TNF can interrelate in normal tissues. 
TNF-α, a pro-inflammatory and apoptosis-inducing cytokine, stimulates several intracellular 
signaling pathways. TNF-α can promote cell survival using activation of TAK1 kinase, which 
is especially important for cancer cells. As is shown, on the other hand, TNF-α induces apop-
tosis via formation of the death-inducing signaling complex (DISC), which consists of trimer-
ized receptors, the death domain-containing adaptor protein FADD and caspase-8 [99]. HER 
is a member of the receptor tyrosine kinase family and plays a critical role in a wide variety 
of cellular functions, including proliferation, differentiation, and apoptosis. At present, the 
interaction of these factors (HER-2 and TNF) at various pathological conditions is described 
[100]. However, there is almost no data on the involvement of the TNF-signaling pathway in 
the regulation of age-related neuronal apoptosis during overexpression HER-2 in vivo.

So, we studied the role of a cytokine-dependent cascade—the TNF-mediated pathway in the 
regulation of apoptosis of neurosecretory cells of the hypothalamus in physiological aging and 
in old HER-2/Neu transgenic mice. Expression of the members of the TNF-dependent cascade 
was assessed at different levels: receptor perception of the apoptotic signal—expression of the 
Fas receptor (CD95), signaling—adapter expression: FADD and TRADD, and implementation: 
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the level of caspase-8 expression and, further, the level of neuronal apoptosis in the nuclei of 
young and old mice.

Fas (CD95) expression was increased significantly in both hypothalamic nuclei in old wild-type 
mice compared to young ones (Figure 9a and b). A high level of Fas is correlated with an increase 
of the synthesis of adapter proteins FADD and TRADD (Figures 9a, b and 10). The expression of 
caspase-8 and -3 and the level of apoptosis were also increased in old wild-type mice (Figures 2a  
and 6). Thus, in this case (in wild-type mice, i.e., in physiological aging), TNF signaling is an 
apoptosis-activating pathway and plays an important role in the mechanism of neuronal death.

Expression of the tyrosine kinase receptor HER-2/Neu causes significant changes in intracellular 
regulatory mechanisms, which is developed in the increased survival of cells, and it is the basis 
for possible oncogenesis. Our results show that HER-2/Neu expression at late stages of ontogen-
esis suppresses the main apoptotic cascades—p53- and TNF-dependent (Figures 2a, 9a, and 10). 
It was found that in young transgenic mice, the synthesis of the Fas receptor, the adapter proteins 
FADD and TRADD, is at the same level as in the young wild-type mice (Figure 9c) or exceeds 
it (in case of Fas and TRADD expression in SON). With aging, the expression of these proteins 
either decreases (Fas) or does not change (FADD, TRADD) in the SON and PVN in hypothalamic 
nuclei in transgenic mice. Accordingly, significant differences are noted between the studied 

Figure 9. (a) The expression level of Fas and FADD in the neurosecretory cells of SON and PVN of FVB/N and HER-2/
Neu mice of different ages. (b) Fas and FADD expression of SON in young and old FVB/N mice (Western blotting). (c) 
Fas expression in PVN of young FVB/N and HER-2/Neu mice (Western blotting).
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Expression of STAT6 is almost the same in SON and PVN of young FVB/N mice. With aging in 
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protein levels in old wild-type and in old transgenic mice (Figures 2a, 9a, and 10). We show any 
age-related dynamics in the expression of initiator caspase-8 and effector caspase-3 in neurose-
cretory cells in young and old HER-2/Neu mice (Figure 6).

It can be concluded that one of the ways to ensure increased cell survival in aging in trans-
genic HER2 animals is the suppression of the TNF-dependent apoptotic cascade.

TNF was previously considered a proapoptotic factor. Recently, it has now been shown that 
the role of the TNF pathway in apoptosis is ambiguous—first, the canonical pathway of 
apoptosis activation involving caspase-8 and -3 [36, 99, 101–104] and the second, the anti-
apoptotic effect of TNF are associated with the activation of independent survival ways—IkB 
(inhibitor of kappa-beta kinase-nuclear factor kappa B) pathway (signaling cascade asso-
ciated with NF-kB) [103, 104] and MAPK-EGFR pathway [99, 100, 105], or the PI3K-AKT 
pathway [105].

These signaling pathways (PI3K-AKT and MAPK/ERK) are well known as survival. It is known 
that the main function of transcription factor NF-kB is the coordination of immune and pro-
inflammatory cellular responses. However, it has now been shown that, in addition, members 
of the NF-kB family are factors in cell survival, and some data indicate the importance of NF-kB 
as a survival factor in the central nervous system. One of the key kinases that activate both 
NF-kB and MAPK pathways is the TAK1 kinase, which is capable of regulating the phosphory-
lation and endocytosis of EGFR, regardless of its tyrosine kinase activity. Some authors consider 
that the TRAIL factor (TNF-related apoptosis-inducing ligand), Fas ligand, Fas, and FADD are 
proapoptotic factors, whereas TNF-receptor 1 and TRADD may have an antiapoptotic effect, 
acting through the survival pathway is the NF-kB and the p38-MAPK-EGFR pathway [106].

A high level of Fas in hypothalamic neurons in young HER-2/Neu mice does not lead to an 
increase in the level of apoptosis, since FADD expression is low (Figure 9a). At the same time, 
increased expression of TRADD may further activate any of the above-mentioned survival 

Figure 10. The expression level of TRADD in the neurosecretory cells of SON and PVN of FVB/N and HER-2/Neu mice 
of different ages.
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ways—NF-kB, MAPK/ERK, or PI3K-AKT cascade (Figure 10). Perhaps, HER-2/Neu expres-
sion and TNF receptor 1 and TRADD factors stimulate the phosphorylation of ERK and 
AKT cascades, which leads to an increase of cell survival. Possibly, these signaling pathways 
prevent proapoptotic cleavage of caspases mediated by the DISC [99]. A similar mechanism 
exists in epithelial non-transformed breast cells, when inhibition of EGFR signaling causes 
up-regulation of the inhibitor of caspase-8 FLICE-inhibiting protein (FLIP(L)) and makes cells 
more sensitive to TRAIL-induced apoptosis, and the ERK cascade played an important role 
[107]. In addition, it is known that TNF-α induces the formation of membrane-bound com-
plexes, which include, among other components, IAP, which are triggers of the NF-kB cas-
cade [104]. We have shown an increase of the expression of the antiapoptotic protein survivin, 
a member of the IAP family, in hypothalamic neurons in aged HER-2/Neu mice (Figure 7). We 
can suppose that the increase of survivin expression is caused by a high content of TNF-alpha 
in transgenic mice, and this probability will be investigated.

2.4.1. Conclusions

Thus, we showed the participation of the pro-inflammatory component in the aging process 
(Figure 11). Fas expression, adapter proteins associated with the death domain (FADD and 
TRADD), and caspase-8 expression are activated in the hypothalamic neurons in FVB/N line 
mice (wild type) during aging. It correlates with an increase of caspase-3 expression and an 
increase of the apoptosis level of the hypothalamic neurons (Figure 11). It can be assumed that 
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protein levels in old wild-type and in old transgenic mice (Figures 2a, 9a, and 10). We show any 
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Figure 10. The expression level of TRADD in the neurosecretory cells of SON and PVN of FVB/N and HER-2/Neu mice 
of different ages.
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ways—NF-kB, MAPK/ERK, or PI3K-AKT cascade (Figure 10). Perhaps, HER-2/Neu expres-
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cade [104]. We have shown an increase of the expression of the antiapoptotic protein survivin, 
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one of the reasons for this is a possible suppression of the survival ways (AKT and ERK cas-
cades) or an increased content of proapoptotic factors, for example, FasL in physiological aging.

HER-2/Neu expression causes suppression of the extrinsic pathway of apoptosis (TNF-
dependent). In this case, both the reception of an apoptotic signal (Fas receptor expression) and its 
further carrying out (FADD and TRADD expression) are suppressed. However, in young trans-
genic mice, the increased TRADD expression may activate one of the survival ways—NF-kB,  
MAPK/ERK, or PI3K-AKT cascade (Figure 11). Thus, HER-2/Neu tyrosine kinase receptor 
plays an important role in the mechanism of cell resistance to age-dependent apoptosis, and 
TNF-signaling pathway is one of the targets of HER-2/Neu.

3. Conclusions

The aging process remains one of the most intriguing problems of biology and medicine. 
Recent advances in molecular biology make it possible to achieve an understanding of the 
fundamental foundations of this complex process. An intensive study of time- and tissue-
specific gene expression is a tool that should lead us to a tangible control over age-dependent 
lesions.

Hypothalamic neurosecretory centers have been an object of deep interest since its role in 
the regulation of many body functions: adaptation, stress response, food and sexual behav-
ior, emotions, thermoregulation, cognitive processes, and circadian rhythms have been 
discovered.

Aging disrupts vital activity, as noted in many cases. The first sign of aging, discovered by 
those who studied aging in vivo, is a disruption in the regulation of functions in almost all 
body systems. We know that the regulation of all processes is at least duplicated, so, the 
cell has not only an internal genome-dependent development program but also a subject to 
the influence of the nervous and endocrine systems. So, it can be concluded that the age- 
dependent changes are found in the central part of endocrine system, that is, in the hypotha-
lamic neurosecretory centers. Indeed, our preliminary study showed that in old mice there is 
a significant loss of hypothalamic neurosecretory cells by apoptosis [1]. Obviously, a reduced 
amount of neurosecretory cells cannot maintain the previous level of functional regulation for 
a long time. This functional stress in the hypothalamic neurosecretory cells can be the cause of 
avalanche-like morphofunctional changes in the body caused by aging.

So, the results obtained in our studies allow to propose a possible scheme of apoptosis regulation 
of the hypothalamus neurons in physiological aging and in aged transgenic mice with HER-2/
Neu overexpression (Figure 12). Thus, in the late stages of ontogeny, we observe an increase in 
the synthesis of proteins involved in the induction of apoptosis, only in a group of wild-type 
mice. At physiological aging, we observed increased level of hypothalamic neuron apoptosis 
mediated by the p53- and Fas-dependent pathways, with caspase-8 and -3 activation. As we have 
shown, the WRN gene also participates in the regulation of physiological aging. The synthesis of 
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WRN and pin1 proteins increases and stimulates the expression of p53. The p21 protein requires 
for stable low level of apoptosis. The level of p21 protein is high in young FVB/N mice and 
decreases with aging. In transgenic animals with overexpression of the oncogene HER-2/Neu, 
the synthesis of these proteins is low, and there is no reaction to aging (Figure 12).

Thus, overexpression of HER2 blocks the signal pathway of p53, affecting both the p53 regu-
lating proteins and the targets of p53.

In addition, we investigated age-related changes of STAT-signaling pathway. We revealed that 
in hypothalamus of wild-type mice, the synthesis of STAT1 increases and activates p53-mediated 
way. The expression of antiapoptotic factors STAT3, 5, 6, and survivin decreases in the studied 
neurosecretory centers. By contrast, in aged HER-2/Neu mice the expression of these factors 
increases, and STAT1 synthesis was low (Figure 12).

We showed the involvement of cytokine-dependent pathways in the mechanisms of apop-
tosis during aging. The realization of TNF-dependent apoptosis in hypothalamic neurons 
during physiological aging shows an increase of Fas receptor expression and expression of 
adapter proteins associated with the death domain (FADD and TRADD). In older transgenic 
animals, the expression of HER-2/Neu causes suppression of the extrinsic pathway of apop-
tosis—the TNF-dependent pathway (Figure 12). In other side, in the hypothalamus of young 
transgenic mice, the high TRADD expression may activate one of the survival ways (NF-kB, 
MAPK/ERK, or PI3K-AKT). So, HER-2/Neu tyrosine kinase receptor plays an important role 
in the mechanism of cell resistance to apoptosis in aging, and one of the targets of HER-2/Neu 
is TNF-signaling cascade.

Figure 12. The apoptosis regulation in neurons in aging. (A) Signal cascade of apoptosis in physiological aging; (B) signal 
cascade of apoptosis in aged HER-2/Neu transgenic mice.
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The result of such suppression of the apoptotic cascade in transgenic mice is increased carcino-
genesis and a half-reduced life expectancy, compared to the control.
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