
Advanced Path Planning for 
Mobile Entities
Edited by Rastislav Róka

Edited by Rastislav Róka

The book Advanced Path Planning for Mobile Entities provides a platform for practicing 
researchers, academics, PhD students, and other scientists to design, analyze, evaluate, 
process, and implement diversiform issues of path planning, including algorithms for 

multipath and mobile planning and path planning for mobile robots. The nine chapters 
of the book demonstrate capabilities of advanced path planning for mobile entities to 

solve scientific and engineering problems with varied degree of complexity. 

Published in London, UK 

©  2018 IntechOpen 
©  Joel Filipe / unsplash

ISBN 978-1-78923-578-4

A
dvanced Path Planning for M

obile Entities



ADVANCED PATH
PLANNING FOR MOBILE

ENTITIES

Edited by Rastislav Róka



ADVANCED PATH
PLANNING FOR MOBILE

ENTITIES

Edited by Rastislav Róka



Advanced Path Planning for Mobile Entities
http://dx.doi.org/10.5772/intechopen.69591
Edited by Rastislav Róka

Contributors

Innocent Okoloko, Than Le, An T. Le, Nancy Arana-Daniel, Roberto Valencia-Murillo, Alma Y. Alanis, Carlos Lopez-
Franco, Carlos Villaseñor, Lucía Hilario Pérez, Marta Covadonga Mora, Nicolás Montés Sánchez, Antonio Falcó 
Montesinos, Dora Luz Almanza Ojeda, Perla Lizeth Garza-Barrón, Mario-Alberto Ibarra-Manzano, Carlos Rubin 
Montoro-Sanjose, Xiangrong Xu, Gene Eu (Ching Yuh) Eu Jan, Chaomin Luo, Kai-Chieh Yang, Chi-Chia Sun

© The Editor(s) and the Author(s) 2018
The rights of the editor(s) and the author(s) have been asserted in accordance with the Copyright, Designs and 
Patents Act 1988. All rights to the book as a whole are reserved by INTECHOPEN LIMITED. The book as a whole 
(compilation) cannot be reproduced, distributed or used for commercial or non-commercial purposes without 
INTECHOPEN LIMITED’s written permission. Enquiries concerning the use of the book should be directed to 
INTECHOPEN LIMITED rights and permissions department (permissions@intechopen.com).
Violations are liable to prosecution under the governing Copyright Law.

Individual chapters of this publication are distributed under the terms of the Creative Commons Attribution 3.0 
Unported License which permits commercial use, distribution and reproduction of the individual chapters, provided 
the original author(s) and source publication are appropriately acknowledged. If so indicated, certain images may not 
be included under the Creative Commons license. In such cases users will need to obtain permission from the license 
holder to reproduce the material. More details and guidelines concerning content reuse and adaptation can be 
foundat http://www.intechopen.com/copyright-policy.html.

Notice

Statements and opinions expressed in the chapters are these of the individual contributors and not necessarily those 
of the editors or publisher. No responsibility is accepted for the accuracy of information contained in the published 
chapters. The publisher assumes no responsibility for any damage or injury to persons or property arising out of the 
use of any materials, instructions, methods or ideas contained in the book.

First published in London, United Kingdom, 2018 by IntechOpen
eBook (PDF) Published by IntechOpen, 2019
IntechOpen is the global imprint of INTECHOPEN LIMITED, registered in England and Wales, registration number: 
11086078, The Shard, 25th floor, 32 London Bridge Street  
London, SE19SG – United Kingdom
Printed in Croatia

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library

Additional hard and PDF copies can be obtained from orders@intechopen.com

Advanced Path Planning for Mobile Entities
Edited by Rastislav Róka

p. cm.

Print ISBN 978-1-78923-578-4

Online ISBN 978-1-78923-579-1

eBook (PDF) ISBN 978-1-83881-400-7

http://dx.doi.org/10.5772/intechopen.69591


Selection of our books indexed in the Book Citation Index 
in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 
For more information visit www.intechopen.com

3,700+ 
Open access books available

151
Countries delivered to

12.2%
Contributors from top 500 universities

Our authors are among the

Top 1%
most cited scientists

116,000+
International  authors and editors

119M+ 
Downloads

We are IntechOpen,
the world’s leading publisher of 

Open Access books
Built by scientists, for scientists

 





Meet the editor

Rastislav Róka was born in Šaľa, Slovakia, on Janu-
ary 27, 1972. He received his MSc and PhD degrees 
in Telecommunications from the Slovak University of 
Technology, Bratislava, in 1995 and 2002. Since 1997, he 
has been working as a senior lecturer at the Institute of 
Multimedia Information and Communication Technol-
ogies, Faculty of Electrical Engineering and Information 

Technology, Slovak University of Technology in Bratislava. Since 2009, he 
has been working as an associated professor at this institute. His teaching 
and educational activities are realized in areas of fixed transmission me-
dia, designing, and planning of telecommunication networks and optical 
communication transmission systems. At present, his research activity is 
focused on signal transmission through optical transport and metropolitan 
and access networks using advanced optical signal processing including 
various multiplexing, modulation, and encoding techniques. His main 
effort is dedicated to effective utilization of the optical fiber’s transmission 
capacity in broadband optical networks by means of dynamic bandwidth 
and wavelength allocation algorithms applied in various advanced hybrid 
passive optical network infrastructures. 



Contents

Preface VII

Section 1 Advanced Algorithms for Multi-Path Planning    1

Chapter 1 Consensus-Based Multipath Planning with Collision Avoidance
Using Linear Matrix Inequalities   3
Innocent Okoloko

Chapter 2 Multi-Path Planning on a Sphere with LMI-Based Collision
Avoidance   25
Innocent Okoloko

Chapter 3 Multi-Spacecraft Attitude Path Planning Using Consensus with
LMI-Based Exclusion Constraints   45
Innocent Okoloko

Chapter 4 Search-Based Planning and Replanning in Robotics and
Autonomous Systems   63
An T. Le and Than D. Le

Chapter 5 Path Planning on Quadric Surfaces and Its Application   91
Chi-Chia Sun, Gene Eu Jan, Chaomin Lu and Kai-Chieh Yang

Section 2 Extended Path Planning for Mobile Robots    105

Chapter 6 Path Planning in Rough Terrain Using Neural
Network Memory   107
Nancy Arana-Daniel, Roberto Valencia-Murillo, Alma Y. Alanís,
Carlos Villaseñor and Carlos López-Franco

Chapter 7 Path Planning Based on Parametric Curves   125
Lucía Hilario Pérez, Marta Covadonga Mora Aguilar, Nicolás Montés
Sánchez and Antonio Falcó Montesinos



Contents

Preface XI

Section 1 Advanced Algorithms for Multi-Path Planning    1

Chapter 1 Consensus-Based Multipath Planning with Collision Avoidance
Using Linear Matrix Inequalities   3
Innocent Okoloko

Chapter 2 Multi-Path Planning on a Sphere with LMI-Based Collision
Avoidance   25
Innocent Okoloko

Chapter 3 Multi-Spacecraft Attitude Path Planning Using Consensus with
LMI-Based Exclusion Constraints   45
Innocent Okoloko

Chapter 4 Search-Based Planning and Replanning in Robotics and
Autonomous Systems   63
An T. Le and Than D. Le

Chapter 5 Path Planning on Quadric Surfaces and Its Application   91
Chi-Chia Sun, Gene Eu Jan, Chaomin Lu and Kai-Chieh Yang

Section 2 Extended Path Planning for Mobile Robots    105

Chapter 6 Path Planning in Rough Terrain Using Neural
Network Memory   107
Nancy Arana-Daniel, Roberto Valencia-Murillo, Alma Y. Alanís,
Carlos Villaseñor and Carlos López-Franco

Chapter 7 Path Planning Based on Parametric Curves   125
Lucía Hilario Pérez, Marta Covadonga Mora Aguilar, Nicolás Montés
Sánchez and Antonio Falcó Montesinos



Chapter 8 Motion Planning for Mobile Robots   145
Xiangrong Xu, Yang Yang and Siyu Pan

Chapter 9 Design and Implementation of a Demonstrative Palletizer
Robot with Navigation for Educational Purposes   167
Dora-Luz Almanza-Ojeda, Perla-Lizeth Garza-Barron, Carlos Rubin
Montoro-Sanjose and Mario-Alberto Ibarra-Manzano

X Contents

Preface

The book Advanced Path Planning for Mobile Entities provides a platform for practicing re‐
searchers, academics, PhD students and other scientists to design, analyze, evaluate, process
and implement diversiform issues of path planning, including algorithms for multipath and
mobile planning and path planning for mobile robots. The nine chapters of the book demon‐
strate capabilities of advanced path planning for mobile entities to solve scientific and engi‐
neering problems with varied degree of complexity.

The first five chapters related to advanced algorithms for multipath planning provide de‐
tails of methods for the consensus-based multipath planning with the collision avoidance
applied in various environments and developed algorithms for search-based motion plan‐
ning and path planning on quadric surfaces.

The second four chapters associated with extended path planning for mobile robots demon‐
strate possibilities of new approaches in path planning using neural network memory or
parametric curves, motion planning, and navigation focused on mobile robots.

I hope that beginners and professionals in the field would benefit by going through the de‐
tails given in the chapters of this book.

Rastislav Róka
Slovak University of Technology

Institute of MICT
FEI STU Bratislava, Slovakia



Chapter 8 Motion Planning for Mobile Robots   145
Xiangrong Xu, Yang Yang and Siyu Pan

Chapter 9 Design and Implementation of a Demonstrative Palletizer
Robot with Navigation for Educational Purposes   167
Dora-Luz Almanza-Ojeda, Perla-Lizeth Garza-Barron, Carlos Rubin
Montoro-Sanjose and Mario-Alberto Ibarra-Manzano

ContentsVI

Preface

The book Advanced Path Planning for Mobile Entities provides a platform for practicing re‐
searchers, academics, PhD students and other scientists to design, analyze, evaluate, process
and implement diversiform issues of path planning, including algorithms for multipath and
mobile planning and path planning for mobile robots. The nine chapters of the book demon‐
strate capabilities of advanced path planning for mobile entities to solve scientific and engi‐
neering problems with varied degree of complexity.

The first five chapters related to advanced algorithms for multipath planning provide de‐
tails of methods for the consensus-based multipath planning with the collision avoidance
applied in various environments and developed algorithms for search-based motion plan‐
ning and path planning on quadric surfaces.

The second four chapters associated with extended path planning for mobile robots demon‐
strate possibilities of new approaches in path planning using neural network memory or
parametric curves, motion planning, and navigation focused on mobile robots.

I hope that beginners and professionals in the field would benefit by going through the de‐
tails given in the chapters of this book.

Rastislav Róka
Slovak University of Technology

Institute of MICT
FEI STU Bratislava, Slovakia



Section 1

Advanced Algorithms for Multi-Path Planning



Section 1

Advanced Algorithms for Multi-Path Planning



Chapter 1

Consensus-Based Multipath Planning with Collision
Avoidance Using Linear Matrix Inequalities

Innocent Okoloko

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.71288

Provisional chapter

Consensus-Based Multipath Planning with Collision
Avoidance Using Linear Matrix Inequalities

Innocent Okoloko

Additional information is available at the end of the chapter

Abstract

Consensus theory has been widely applied to collective motion planning related to
coordinated motion. However, when the collective motion is highly irregular and adver-
sarial, the basic consensus theory does not guarantee collision avoidance by default. As
collision avoidance is a central problem of path planning, the incorporation of avoidance
into the consensus algorithm is a subject of research. This work presents a new method
of incorporating collision avoidance into the consensus algorithm, by applying the
concept of constrained orientation control, where orientation constraints are represented
as a set of linear matrix inequalities (LMI) and solved by semidefinite programming
(SDP). The developed algorithm is used to simulate consensus-based multipath plan-
ning with collision avoidance for a team of communicating soccer robots.

Keywords: consensus, path planning, avoidance, optimization, LMI

1. Introduction

Path planning has found practical applications in areas such as entertainment (e.g. robot
soccer) [1]; self-driving vehicles (e.g. Google’s self-driving cars) [2]; intelligent highways [3],
and multiple unmanned space systems [4]. Because of the potential applications, the topic of
multipath planning has been studied extensively, for example in [5–11].

The simplicity and potential of consensus algorithms to generate collective behaviors, such as
flocking, platooning, rendezvous, and other formation configurations, make it an attractive choice
for solving certain problems in multiagent control. However, the basic consensus algorithm
collision avoidance mechanism is not developed for adversarial situations (i.e., opposite or
attacking motion). To extend the power of the algorithm, it is therefore necessary to develop
more powerful collision avoidance capabilities.

© The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons

Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,

distribution, and eproduction in any medium, provided the original work is properly cited.

DOI: 10.5772/intechopen.71288

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



Chapter 1

Consensus-Based Multipath Planning with Collision
Avoidance Using Linear Matrix Inequalities

Innocent Okoloko

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.71288

Provisional chapter

Consensus-Based Multipath Planning with Collision
Avoidance Using Linear Matrix Inequalities

Innocent Okoloko

Additional information is available at the end of the chapter

Abstract

Consensus theory has been widely applied to collective motion planning related to
coordinated motion. However, when the collective motion is highly irregular and adver-
sarial, the basic consensus theory does not guarantee collision avoidance by default. As
collision avoidance is a central problem of path planning, the incorporation of avoidance
into the consensus algorithm is a subject of research. This work presents a new method
of incorporating collision avoidance into the consensus algorithm, by applying the
concept of constrained orientation control, where orientation constraints are represented
as a set of linear matrix inequalities (LMI) and solved by semidefinite programming
(SDP). The developed algorithm is used to simulate consensus-based multipath plan-
ning with collision avoidance for a team of communicating soccer robots.

Keywords: consensus, path planning, avoidance, optimization, LMI

1. Introduction

Path planning has found practical applications in areas such as entertainment (e.g. robot
soccer) [1]; self-driving vehicles (e.g. Google’s self-driving cars) [2]; intelligent highways [3],
and multiple unmanned space systems [4]. Because of the potential applications, the topic of
multipath planning has been studied extensively, for example in [5–11].

The simplicity and potential of consensus algorithms to generate collective behaviors, such as
flocking, platooning, rendezvous, and other formation configurations, make it an attractive choice
for solving certain problems in multiagent control. However, the basic consensus algorithm
collision avoidance mechanism is not developed for adversarial situations (i.e., opposite or
attacking motion). To extend the power of the algorithm, it is therefore necessary to develop
more powerful collision avoidance capabilities.

© The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons

Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,

distribution, and eproduction in any medium, provided the original work is properly cited.

DOI: 10.5772/intechopen.71288

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



Next, we consider the basic approaches to collision avoidance in consensus. Some researchers,
for example, [12, 13], approached the avoidance problem by introducing potential forces such
as attraction and repulsion. However, the potential force algorithms were not developed for
adversarial reconfigurations, for example, vehicles moving in opposite directions. Potential
functions also have a problem of getting into local minima, coupled with slow speed of
convergence. It is observed in [12] that any repulsion based on potential functions alone is not
sufficient to guarantee consensus-based collision avoidance. Moreover, the attitude change
maneuver presented in [12] was not developed for three-dimensional space (see [14] for a
comprehensive literature survey on this topic).

Thus, in this work, we present an approach which we previously developed [5, 9] for incorpo-
rating collision avoidance into the consensus framework by applying quadratically constrained
attitude control (Q-CAC), via semidefinite programming (SDP), using linear matrix inequalities
(LMI). The main benefit of this approach is that it can solve the collision avoidance problem in
adversarial situations and any configurations, and the formulation can be applied to two-
dimensional as well as three-dimensional spaces. Table 1 shows the notation frequently used in
this chapter.

Notation Meaning

xi Position vector of vehicle number i

(xij)off Offset vector of vehicles i and j

x Stacked vector of more than one position vector

xoff Stacked vector of more than one offset vector

ui, _xi Control input of vehicle i

u, _x Stacked vector of control inputs of more than one vehicle

L Laplacian matrix

Sm The set of m�m positive-definite matrices

S Bounding sphere or circle of a vehicle or obstacle

ε Width of safety region

r∗ Radius of S

r r∗ + ε

vi Attitude vector of vehicle i

viobs Obstacle vector of vehicle i

vijobs Obstacle vector of vehicle i emanating from vehicle j

Dij Euclidean distance between vehicles i and j

Lij Line passing through the mid points of vehicles i and j

ρij Perpendicular bisector of Lij separating vehicles i and j

PLi Plane passing through the midpoint of vehicle i

lij Line of intersection of PLi and PLj

dix Distance from xi to lij (for 3D) or pij(for 2D)

Advanced Path Planning for Mobile Entities4

2. Problem statement

The basic consensus problem is that of driving the states of a team of communicating agents
to a common value by distributed protocols based on their communication graph. The agents
(or vehicles) i(i = 1,⋯, n) are represented by vertices of the graph, whereas the edges of the
graph represent communication links between them. Let xi denote the state of a vehicle i and
x is the stacked vector of the states of all vehicles. For systems modeled by first-order
dynamics, the following first-order consensus protocol (or its variants) has been proposed,
for example in [12, 13]

_x tð Þ ¼ �L x tð Þ � xoff
� �

: (1)

Consensus is said to have been achieved when kxi� xjk! (xij)off, as t!∞, ∀i 6¼ j.

The consensus-based multipath planning with collision avoidance problem can be stated as follows:
Given a set of vehicles i, with initial positions xi(t0), desired final positions xid, at time tf, a set of

obstacles with positions xjobs j ¼ 1;⋯;mð Þ, and the Laplacian matrix of their communication

graph L find a sequence of collision-free trajectories from t0 to tf such that xi tf
� � ¼ xid∀i.

Protocol (Eq. (1)) on its own does not solve the collision avoidance problem in adversarial

Notation Meaning

div Distance from vi to lij (for 3D) or pij(for 2D)

zi A point on the Z axis of PLi

pij Point of intersection of the lines passing through xi tð Þvi tð Þ
������!

and xj tð Þvj tð Þ
������!

Ni Normal vector perpendicular to xi, vi, and zi

D Attitude control plant matrix, D∈Sm

⊗ Kronecker multiplication operator

A State or plant matrix for dynamics of x

B Input matrix for dynamics of x for input u

F Feedback controller matrix

K Proportional constant

Ip Identity matrix of size p� p

Γ Γ =L⊗ Ip

Η A vector or matrix in the Schur inequality

R A positive-definite matrix in the Schur inequality

Q A symmetric matrix in the Schur inequality

η Positive real number for scaling the consensus term

β Positive real number for scaling the proportional term

Table 1. Frequently used notation in this chapter.

Consensus-Based Multipath Planning with Collision Avoidance Using Linear Matrix Inequalities
http://dx.doi.org/10.5772/intechopen.71288

5



Next, we consider the basic approaches to collision avoidance in consensus. Some researchers,
for example, [12, 13], approached the avoidance problem by introducing potential forces such
as attraction and repulsion. However, the potential force algorithms were not developed for
adversarial reconfigurations, for example, vehicles moving in opposite directions. Potential
functions also have a problem of getting into local minima, coupled with slow speed of
convergence. It is observed in [12] that any repulsion based on potential functions alone is not
sufficient to guarantee consensus-based collision avoidance. Moreover, the attitude change
maneuver presented in [12] was not developed for three-dimensional space (see [14] for a
comprehensive literature survey on this topic).

Thus, in this work, we present an approach which we previously developed [5, 9] for incorpo-
rating collision avoidance into the consensus framework by applying quadratically constrained
attitude control (Q-CAC), via semidefinite programming (SDP), using linear matrix inequalities
(LMI). The main benefit of this approach is that it can solve the collision avoidance problem in
adversarial situations and any configurations, and the formulation can be applied to two-
dimensional as well as three-dimensional spaces. Table 1 shows the notation frequently used in
this chapter.

Notation Meaning

xi Position vector of vehicle number i

(xij)off Offset vector of vehicles i and j

x Stacked vector of more than one position vector

xoff Stacked vector of more than one offset vector

ui, _xi Control input of vehicle i

u, _x Stacked vector of control inputs of more than one vehicle

L Laplacian matrix

Sm The set of m�m positive-definite matrices

S Bounding sphere or circle of a vehicle or obstacle

ε Width of safety region

r∗ Radius of S

r r∗ + ε

vi Attitude vector of vehicle i

viobs Obstacle vector of vehicle i

vijobs Obstacle vector of vehicle i emanating from vehicle j

Dij Euclidean distance between vehicles i and j

Lij Line passing through the mid points of vehicles i and j

ρij Perpendicular bisector of Lij separating vehicles i and j

PLi Plane passing through the midpoint of vehicle i

lij Line of intersection of PLi and PLj

dix Distance from xi to lij (for 3D) or pij(for 2D)

Advanced Path Planning for Mobile Entities4

2. Problem statement

The basic consensus problem is that of driving the states of a team of communicating agents
to a common value by distributed protocols based on their communication graph. The agents
(or vehicles) i(i = 1,⋯, n) are represented by vertices of the graph, whereas the edges of the
graph represent communication links between them. Let xi denote the state of a vehicle i and
x is the stacked vector of the states of all vehicles. For systems modeled by first-order
dynamics, the following first-order consensus protocol (or its variants) has been proposed,
for example in [12, 13]

_x tð Þ ¼ �L x tð Þ � xoff
� �

: (1)

Consensus is said to have been achieved when kxi� xjk! (xij)off, as t!∞, ∀i 6¼ j.

The consensus-based multipath planning with collision avoidance problem can be stated as follows:
Given a set of vehicles i, with initial positions xi(t0), desired final positions xid, at time tf, a set of

obstacles with positions xjobs j ¼ 1;⋯;mð Þ, and the Laplacian matrix of their communication

graph L find a sequence of collision-free trajectories from t0 to tf such that xi tf
� � ¼ xid∀i.

Protocol (Eq. (1)) on its own does not solve the collision avoidance problem in adversarial

Notation Meaning

div Distance from vi to lij (for 3D) or pij(for 2D)

zi A point on the Z axis of PLi

pij Point of intersection of the lines passing through xi tð Þvi tð Þ
������!

and xj tð Þvj tð Þ
������!

Ni Normal vector perpendicular to xi, vi, and zi

D Attitude control plant matrix, D∈Sm

⊗ Kronecker multiplication operator

A State or plant matrix for dynamics of x

B Input matrix for dynamics of x for input u

F Feedback controller matrix

K Proportional constant

Ip Identity matrix of size p� p

Γ Γ =L⊗ Ip

Η A vector or matrix in the Schur inequality

R A positive-definite matrix in the Schur inequality

Q A symmetric matrix in the Schur inequality

η Positive real number for scaling the consensus term

β Positive real number for scaling the proportional term

Table 1. Frequently used notation in this chapter.

Consensus-Based Multipath Planning with Collision Avoidance Using Linear Matrix Inequalities
http://dx.doi.org/10.5772/intechopen.71288

5



situations. A comprehensive presentation of the necessary mathematical tools for this work
(including graph theory and consensus theory) can be found in [14].

3. Solutions

In this section, we develop solutions to the problem stated in Section 2.

3.1. Consensus-based arbitrary reconfigurations

It was shown that for the dynamic system.

_x ¼ Axþ Bu, (2)

there exists a stabilizing feedback controller F, such that the protocol

_x ¼ Axþ BFu (3)

drives x to xf [15]. Here, x = [x1,⋯, xn] is a stacked vector of the initial positions of the vehicles,
u = �Γ(x� xoff), Γ =L⊗ Ip, Ip is the identity matrix of size p� p, and p is the state dimension of
the vehicles.

To begin, we first consider the reference consensus path planning problem. To this end, the
following protocol is proposed for a leader-follower communication graph architecture

u ¼ �Γ x� xoff
� �þK xoff � x

� �
: (4)

The corresponding protocol for a leaderless architecture is

u ¼ �Γ x� xoff
� �þK xd � xð Þ, (5)

where xd 6¼ xoff is the desired final position and is different from the formation configuration,
K = eIn, (0 < e≪ 1), and n is the dimension of x.

Theorem 1 The time-varying system (Eq. (2)) achieves consensus.

Proof: see [14].

Figure 1 shows a simulation of consensus-based reconfiguration, using the communication
graph in Figure 2, which is an example of a leader-follower graph. Node 1 is the leader, and each
of the other nodes is connected to their adjacent neighbors. In Figure 1, the dots inside small
circles indicate initial positions, whereas the dot in the diamond is the initial position of the
leader. The stars indicate desired final positions. The larger circles with dashed lines are posi-
tions where collisions occurred, and the diameters of the circles indicate the size of intersection of
the safety regions of the vehicles. The simulation proves that for arbitrary reconfigurations, the
basic consensus algorithm does not guarantee collision avoidance.

Advanced Path Planning for Mobile Entities6

Figure 1. Consensus-based reconfiguration in adversarial situation using topology.

Figure 2. Topology: a leader-follower graph.

Consensus-Based Multipath Planning with Collision Avoidance Using Linear Matrix Inequalities
http://dx.doi.org/10.5772/intechopen.71288

7



situations. A comprehensive presentation of the necessary mathematical tools for this work
(including graph theory and consensus theory) can be found in [14].

3. Solutions

In this section, we develop solutions to the problem stated in Section 2.

3.1. Consensus-based arbitrary reconfigurations

It was shown that for the dynamic system.

_x ¼ Axþ Bu, (2)

there exists a stabilizing feedback controller F, such that the protocol

_x ¼ Axþ BFu (3)

drives x to xf [15]. Here, x = [x1,⋯, xn] is a stacked vector of the initial positions of the vehicles,
u = �Γ(x� xoff), Γ =L⊗ Ip, Ip is the identity matrix of size p� p, and p is the state dimension of
the vehicles.

To begin, we first consider the reference consensus path planning problem. To this end, the
following protocol is proposed for a leader-follower communication graph architecture

u ¼ �Γ x� xoff
� �þK xoff � x

� �
: (4)

The corresponding protocol for a leaderless architecture is

u ¼ �Γ x� xoff
� �þK xd � xð Þ, (5)

where xd 6¼ xoff is the desired final position and is different from the formation configuration,
K = eIn, (0 < e≪ 1), and n is the dimension of x.

Theorem 1 The time-varying system (Eq. (2)) achieves consensus.

Proof: see [14].

Figure 1 shows a simulation of consensus-based reconfiguration, using the communication
graph in Figure 2, which is an example of a leader-follower graph. Node 1 is the leader, and each
of the other nodes is connected to their adjacent neighbors. In Figure 1, the dots inside small
circles indicate initial positions, whereas the dot in the diamond is the initial position of the
leader. The stars indicate desired final positions. The larger circles with dashed lines are posi-
tions where collisions occurred, and the diameters of the circles indicate the size of intersection of
the safety regions of the vehicles. The simulation proves that for arbitrary reconfigurations, the
basic consensus algorithm does not guarantee collision avoidance.

Advanced Path Planning for Mobile Entities6

Figure 1. Consensus-based reconfiguration in adversarial situation using topology.

Figure 2. Topology: a leader-follower graph.

Consensus-Based Multipath Planning with Collision Avoidance Using Linear Matrix Inequalities
http://dx.doi.org/10.5772/intechopen.71288

7



3.2. Quadratically constrained attitude control-based collision avoidance

The collision avoidance problem is that of avoiding static obstacles and other moving vehicles
while driving the state of a vehicle from one point to another. For simplicity, we approximate a
vehicle or an obstacle by S, as shown in Figure 3. A nonspherical obstacle may be represented
by a polygon as shown in Figure 4. For the S-type obstacle (or vehicle), let the obstacle be
centered on a point xobs; it is desired that the time evolution of any vehicle state xi(t) from t0 to tf
should avoid the constraint region shown in Figure 3.

The feasible region is thus defined by

xfeas ¼ x∈Rm�mj x� xobsk k > r∗f g, m∈R, (6)

where r∗ is the radius of S, bounded by a safety region of width ε.

There is no direct representation of the nonlinear nonconvex equation (Eq. (6)) as LMI. How-
ever, some non-LMI methods, for example, mixed integer linear programming (MILP) [7],

Figure 3. Constrained control problem for a static spherical obstacle.

Figure 4. Constrained control problem for static nonspherical obstacle.

Advanced Path Planning for Mobile Entities8

have been developed for approximating its solution. In this section, we present an approach,
which we previously developed in [5, 9, 10, 14], based on the principles of quadratically
constrained attitude control (Q-CAC) algorithm [16], initially developed for the spacecraft
attitude control problem.

At any time t, suppose the safety region of vehicle i centered on xi(t) intersects the safety region
of an obstacle, obs, centered on xobs. Let v(t) be the unit vector extending from the centre of xobs
or xi(t) in the direction of the point of intersection. The vectors v(t) will be different for each
vehicle or obstacle. Considering the case shown in Figure 3, assume xobs is known and v(t) is
also known in the frame of obs. Then, to guide vehicle i safely around the obstacle, define a unit
vector vi(t) in the direction of v(t) in the frame of obs. The vector vi(t) will be regarded as an
imaginary vector whose direction can be constrained to change with time. The vector vi(t) can
then be used to find a sequence of trajectories around obs which guides i from xi(t0) to xi(tf)
without violating (Eq. (6)).

The problem reduces to the Q-CAC problem. It is desired that the angle θ between vi(t) and v(t)
should be larger than some given angle ∅, ∀t. The constraint is

vi tð ÞTv tð Þ ≤ cos∅, ∀t∈ t0; tf
� �

: (7)

The idea is to control the angle between the unit vectors vi(t) and v(t). This implies that one of
the vectors vi(t) or v(t) must remain static, whereas the other moves with time. Vector vi(t) is
used to control the position of the vehicle; therefore, vi(t) will move with time. The positions of
vi(t) define a trajectory path for xi(t). Thus, xi(t) is forced to move on the surface of the safety
region bounding S. At some time tk, x

i(t) will arrive close to a point indicated by vi(tk), at which
a translation to xi(tf) is unconstrained. This is shown by the black dots on the boundary of the
safety region in Figure 4. To obtain the unit vector v(t), the actual vector extending from the
centre of xobs or x

i(t) in the direction of the point of intersection is normalized. After the solution
vi(t) is obtained as a unit vector, vi(t) is multiplied by r = r∗ + ε to obtain the actual safe trajectory.

Let v(t) = [vi(t)Tv(t)T]T, then the dynamics of v(t) is defined as

_v tð Þ ¼ D tð Þv tð Þ, (8)

where D∈Spn, p is the dimension of the state vector xi, and n is the number of vehicles. The
above differential equation represents the rotational dynamics of the two vectors contained in
v(t).D is a semidefinite matrix variable whose contents are unknown. Its purpose is to vary the
angle between the two vectors in v(t) with time while also keeping them normalized.

The discrete time equivalent of the above differential equation is

v kþ 1ð Þ ¼ ΔtD kð Þv kð Þ, (9)

where k = 0,⋯,N (NΔt = tf) is the discrete time equivalent of t and Δt is the discretization time-
step. To implement Eq. (9), D is declared in a semidefinite program which chooses the appro-
priate values to rotate the vectors in v(t) while satisfying norm constraints. Note in the above
discretization of the differential equation, the identity matrix cannot be added to the solution;

Consensus-Based Multipath Planning with Collision Avoidance Using Linear Matrix Inequalities
http://dx.doi.org/10.5772/intechopen.71288

9



3.2. Quadratically constrained attitude control-based collision avoidance

The collision avoidance problem is that of avoiding static obstacles and other moving vehicles
while driving the state of a vehicle from one point to another. For simplicity, we approximate a
vehicle or an obstacle by S, as shown in Figure 3. A nonspherical obstacle may be represented
by a polygon as shown in Figure 4. For the S-type obstacle (or vehicle), let the obstacle be
centered on a point xobs; it is desired that the time evolution of any vehicle state xi(t) from t0 to tf
should avoid the constraint region shown in Figure 3.

The feasible region is thus defined by

xfeas ¼ x∈Rm�mj x� xobsk k > r∗f g, m∈R, (6)

where r∗ is the radius of S, bounded by a safety region of width ε.

There is no direct representation of the nonlinear nonconvex equation (Eq. (6)) as LMI. How-
ever, some non-LMI methods, for example, mixed integer linear programming (MILP) [7],

Figure 3. Constrained control problem for a static spherical obstacle.

Figure 4. Constrained control problem for static nonspherical obstacle.

Advanced Path Planning for Mobile Entities8

have been developed for approximating its solution. In this section, we present an approach,
which we previously developed in [5, 9, 10, 14], based on the principles of quadratically
constrained attitude control (Q-CAC) algorithm [16], initially developed for the spacecraft
attitude control problem.

At any time t, suppose the safety region of vehicle i centered on xi(t) intersects the safety region
of an obstacle, obs, centered on xobs. Let v(t) be the unit vector extending from the centre of xobs
or xi(t) in the direction of the point of intersection. The vectors v(t) will be different for each
vehicle or obstacle. Considering the case shown in Figure 3, assume xobs is known and v(t) is
also known in the frame of obs. Then, to guide vehicle i safely around the obstacle, define a unit
vector vi(t) in the direction of v(t) in the frame of obs. The vector vi(t) will be regarded as an
imaginary vector whose direction can be constrained to change with time. The vector vi(t) can
then be used to find a sequence of trajectories around obs which guides i from xi(t0) to xi(tf)
without violating (Eq. (6)).

The problem reduces to the Q-CAC problem. It is desired that the angle θ between vi(t) and v(t)
should be larger than some given angle ∅, ∀t. The constraint is

vi tð ÞTv tð Þ ≤ cos∅, ∀t∈ t0; tf
� �

: (7)

The idea is to control the angle between the unit vectors vi(t) and v(t). This implies that one of
the vectors vi(t) or v(t) must remain static, whereas the other moves with time. Vector vi(t) is
used to control the position of the vehicle; therefore, vi(t) will move with time. The positions of
vi(t) define a trajectory path for xi(t). Thus, xi(t) is forced to move on the surface of the safety
region bounding S. At some time tk, x

i(t) will arrive close to a point indicated by vi(tk), at which
a translation to xi(tf) is unconstrained. This is shown by the black dots on the boundary of the
safety region in Figure 4. To obtain the unit vector v(t), the actual vector extending from the
centre of xobs or x

i(t) in the direction of the point of intersection is normalized. After the solution
vi(t) is obtained as a unit vector, vi(t) is multiplied by r = r∗ + ε to obtain the actual safe trajectory.

Let v(t) = [vi(t)Tv(t)T]T, then the dynamics of v(t) is defined as

_v tð Þ ¼ D tð Þv tð Þ, (8)

where D∈Spn, p is the dimension of the state vector xi, and n is the number of vehicles. The
above differential equation represents the rotational dynamics of the two vectors contained in
v(t).D is a semidefinite matrix variable whose contents are unknown. Its purpose is to vary the
angle between the two vectors in v(t) with time while also keeping them normalized.

The discrete time equivalent of the above differential equation is

v kþ 1ð Þ ¼ ΔtD kð Þv kð Þ, (9)

where k = 0,⋯,N (NΔt = tf) is the discrete time equivalent of t and Δt is the discretization time-
step. To implement Eq. (9), D is declared in a semidefinite program which chooses the appro-
priate values to rotate the vectors in v(t) while satisfying norm constraints. Note in the above
discretization of the differential equation, the identity matrix cannot be added to the solution;

Consensus-Based Multipath Planning with Collision Avoidance Using Linear Matrix Inequalities
http://dx.doi.org/10.5772/intechopen.71288

9



instead, the matrix D is chosen implicitly to satisfy the rotation. The vectors in v(t) are unit
vectors; they are not translating, but they are rotating and must be preserved as unit vectors.

To enforce the attitude constraint (Eq. (7)) in a SDP, it should be represented as a LMI using the
Schur complement formula described in [17]. The Schur complement formula states that the
inequality

HR�1HT �Q ≤ 0, (10)

where Q =QT, R =RT, and R > 0 are equivalent to and can be represented by the linear matrix
inequality

Q H
HT R

� �
≥ 0: (11)

Note that Eq. (7) is equivalent to

vi tð ÞT v tð ÞT
h i
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

v tð ÞT

03
1
2
I3

1
2
I3 03

2
64

3
75 vi tð Þ

v tð Þ

" #
≤ cos∅, (12)

which also implies that

vi tð ÞTv tð ÞT
h i
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

v tð ÞT

03 I3
I3 03

� �

|fflfflfflfflfflffl{zfflfflfflfflfflffl}
G

vi tð Þ
v tð Þ

" #
≤ 2 cos∅, (13)

Note also that some of the eigenvalues of theG in Eq. (13) are nonpositive. To make the matrix
positive definite, one only needs to shift the eigenvalues of G, by choosing a positive real
number μ which is larger than the largest absolute value of the eigenvalues of G, then

vi tð ÞT v tð ÞT
� �
|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

v tð ÞT

μI6 þ
03 I3
I3 03

� �� �
vi tð Þ
v tð Þ

" #

|fflfflfflffl{zfflfflfflffl}
v tð Þ

≤ 2 cos∅þ μ
� �

: (14)

Let M ¼ μI6 þ
03 I3
I3 03

� �� ��1
, then M is positive definite. Therefore, following the Schur

complement formula, the LMI equivalent of Eq. (14) is

2 cos∅þ μ
� �

v tð ÞT
v tð Þ M

" #
≥ 0: (15)

For collision avoidance, the dynamic system (Eq. (8)) is solved whenever it is required, subject
to the attitude constraint (Eq. (15)) and norm constraints kvi(t)k = 1 and kv(t)k = 1. Thus, the

Advanced Path Planning for Mobile Entities10

optimization problem of collision avoidance is essential to find a feasible vi subject to the
following constraints:

vkþ1 ¼ ΔtD tð Þvk, (16)

vTk vkþ1 � vkð Þ ¼ 0, (17)

2 cos∅þ μ
� �

v tð ÞT
v tð Þ M

" #
≥ 0: (18)

Eq. (17) is essentially the discrete time version of v tð ÞT _v tð Þ ¼ 0 which guarantees that v(t)Tv(t)
= 2, ifkvi(0)k = 1 and kv(0)k = 1. This solution works for 2D and 3D spaces. The next step is to
extend the formulation to the case of dynamic obstacles. First, consider two vehicles i and j
with states xi(t), xj(t) and attitude vectors vi(t), vj(t), respectively. Collision avoidance requires
that they must avoid each other always. As shown in Figure 5, any time their safety regions are
violated and the point of their intersection in the coordinate frame of i is viobs tð Þ.
The avoidance requirements are

θi tð Þ ≥∅ � vi tð ÞTviobs tð Þ ≤ cos∅, (19)

θj tð Þ ≥∅ � vj tð ÞTvjobs tð Þ ≤ cos∅, (20)

∀t∈ [t0, tf],

Figure 5. Constrained control problem for dynamic obstacles.

Consensus-Based Multipath Planning with Collision Avoidance Using Linear Matrix Inequalities
http://dx.doi.org/10.5772/intechopen.71288

11



instead, the matrix D is chosen implicitly to satisfy the rotation. The vectors in v(t) are unit
vectors; they are not translating, but they are rotating and must be preserved as unit vectors.

To enforce the attitude constraint (Eq. (7)) in a SDP, it should be represented as a LMI using the
Schur complement formula described in [17]. The Schur complement formula states that the
inequality

HR�1HT �Q ≤ 0, (10)

where Q =QT, R =RT, and R > 0 are equivalent to and can be represented by the linear matrix
inequality

Q H
HT R

� �
≥ 0: (11)

Note that Eq. (7) is equivalent to

vi tð ÞT v tð ÞT
h i
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

v tð ÞT

03
1
2
I3

1
2
I3 03

2
64

3
75 vi tð Þ

v tð Þ

" #
≤ cos∅, (12)

which also implies that

vi tð ÞTv tð ÞT
h i
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

v tð ÞT

03 I3
I3 03

� �

|fflfflfflfflfflffl{zfflfflfflfflfflffl}
G

vi tð Þ
v tð Þ

" #
≤ 2 cos∅, (13)

Note also that some of the eigenvalues of theG in Eq. (13) are nonpositive. To make the matrix
positive definite, one only needs to shift the eigenvalues of G, by choosing a positive real
number μ which is larger than the largest absolute value of the eigenvalues of G, then

vi tð ÞT v tð ÞT
� �
|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

v tð ÞT

μI6 þ
03 I3
I3 03

� �� �
vi tð Þ
v tð Þ

" #

|fflfflfflffl{zfflfflfflffl}
v tð Þ

≤ 2 cos∅þ μ
� �

: (14)

Let M ¼ μI6 þ
03 I3
I3 03

� �� ��1
, then M is positive definite. Therefore, following the Schur

complement formula, the LMI equivalent of Eq. (14) is

2 cos∅þ μ
� �

v tð ÞT
v tð Þ M

" #
≥ 0: (15)

For collision avoidance, the dynamic system (Eq. (8)) is solved whenever it is required, subject
to the attitude constraint (Eq. (15)) and norm constraints kvi(t)k = 1 and kv(t)k = 1. Thus, the

Advanced Path Planning for Mobile Entities10

optimization problem of collision avoidance is essential to find a feasible vi subject to the
following constraints:

vkþ1 ¼ ΔtD tð Þvk, (16)

vTk vkþ1 � vkð Þ ¼ 0, (17)

2 cos∅þ μ
� �

v tð ÞT
v tð Þ M

" #
≥ 0: (18)

Eq. (17) is essentially the discrete time version of v tð ÞT _v tð Þ ¼ 0 which guarantees that v(t)Tv(t)
= 2, ifkvi(0)k = 1 and kv(0)k = 1. This solution works for 2D and 3D spaces. The next step is to
extend the formulation to the case of dynamic obstacles. First, consider two vehicles i and j
with states xi(t), xj(t) and attitude vectors vi(t), vj(t), respectively. Collision avoidance requires
that they must avoid each other always. As shown in Figure 5, any time their safety regions are
violated and the point of their intersection in the coordinate frame of i is viobs tð Þ.
The avoidance requirements are

θi tð Þ ≥∅ � vi tð ÞTviobs tð Þ ≤ cos∅, (19)

θj tð Þ ≥∅ � vj tð ÞTvjobs tð Þ ≤ cos∅, (20)

∀t∈ [t0, tf],

Figure 5. Constrained control problem for dynamic obstacles.

Consensus-Based Multipath Planning with Collision Avoidance Using Linear Matrix Inequalities
http://dx.doi.org/10.5772/intechopen.71288

11



where ∅ ≥π/2. For this dynamic situation, it is sufficient to enforce the following avoidance
constraints:

2 cos∅þ μ
� � vi kþ 2ð Þ

viobs kþ 2ð Þ

2
4

3
5
T

vi kþ 2ð Þ

viobs kþ 2ð Þ

2
4

3
5 M

2
66666664

3
77777775
≥ 0, (21)

2 cos∅þ μ
� � vj kþ 2ð Þ

vjobs kþ 2ð Þ

2
4

3
5
T

vj kþ 2ð Þ

vjobs kþ 2ð Þ

2
4

3
5 M

2
666666664

3
777777775
≥ 0, (22)

i, j ¼ 1,⋯, n, i 6¼ j:

Note that (k + 2) is used because the optimization is performed two steps ahead of time to
ensure that the future trajectories are collision free. However, when this avoidance protocol is
applied to dynamic collision avoidance, some vehicle configurations pose challenges and this
is considered next.

3.3. Conflict resolution for multiple vehicles

A collision between two vehicles i and j is imminent at time t whenever

Dij tð Þ ¼ xi tð Þ � xj tð Þ�� �� ≤ ri þ rj
� �

, (23)

which can be computed using position feedback data determined by onboard or external
sensors or communicated among the vehicles.

There are two aspects of collision problems: (i) collision detection and (ii) collision response.
Collision detection is the computational problem of detecting the intersection of two or more
objects. This can be done either using sensors or numerically using concepts from linear
algebra and computational geometry. Collision response is the initiation of the appropriate
avoidance maneuver. In this section, we present methods to detect different configurations of
collisions and classify them. Then, an appropriate response technique is developed for each of
the collision configurations.

Consider two vehicles i and j, whose current states are xi(t) and xj(t) and the desired final states
are xi(tf) and xj(tf). We identify three different basic collision configurations as: (i) simple
collision; (ii) head-on collision; and (iii) cross-path collision. Solutions will be developed for each
of these configurations, and when combined synergistically, they will provide sufficient colli-
sion avoidance behavior for fast collision-free reconfiguration for the team of vehicles.

Advanced Path Planning for Mobile Entities12

3.3.1. Detecting and resolving a simple collision

A simple collision problem is any configuration in which Dij(t) ≤ (ri + rj) and the current vector
directions (or attitude vectors) vi(t) and vj(t) of vehicles i and j are on different sides of the plane

or infinite line Lij(t) passing through the points xi(t), xj(t); and the attitude vectors xi tð Þvi tð Þ
�����!

and

xj tð Þvj tð Þ
�����!

are not parallel. Note that when xi tð Þvi tð Þ
�����!

and xj tð Þvj tð Þ
�����!

are not parallel, a point or line
of intersection can be computed for both vectors. Examples of simple collision problems are
shown in Figures 5 and 6.

This is the easiest collision problem to solve because the attitude vectors are already on
opposite sides of Lij(t). Considering Figure 6 (b), the plane or line ρij(t) tangent to the
point of intersection of both vehicles constrains the current motion spaces of the vehicles
to either of the two sides of the plane at time t. A pure optimization-based solution will
attempt to search the space on the right side of ρij(t) to seek for a point which is closest to
the goal of i, and this will be used as the next trajectory. The algorithm will also search the
left side of ρij(t) to find the next trajectory for j. Once the positions are updated, a new
ρij(t) is computed.

Indeed, the solution is provided by the basic collision avoidance protocols (Eqs. (21) and (22))
without having to do a set search. It is easy to observe that by expanding the angles θi(t) and

θj(t) and choosing the next feasible trajectories r∗/2 along the new direction vectors xi tð Þvi tð Þ
�����!

and xj tð Þvj tð Þ
�����!

, the new trajectories are bound to satisfy the feasible regions separated by ρij(t),
provided εi > r∗i for any i. The rest of the avoidance strategies developed in the remaining part
of this section are attempts to reduce more complex collision configurations to a simple
collision configuration.

3.3.2. Detecting and resolving a head-on collision

A head-on collision problem is any configuration in which Dij(t) ≤ (ri + rj) and vi(t)Tvj(t) ≈π rad.
Figure 7(a) illustrates the head-on collision problem.

Figure 6. Simple collision problem.

Consensus-Based Multipath Planning with Collision Avoidance Using Linear Matrix Inequalities
http://dx.doi.org/10.5772/intechopen.71288

13



where ∅ ≥π/2. For this dynamic situation, it is sufficient to enforce the following avoidance
constraints:

2 cos∅þ μ
� � vi kþ 2ð Þ

viobs kþ 2ð Þ

2
4

3
5
T

vi kþ 2ð Þ

viobs kþ 2ð Þ

2
4

3
5 M

2
66666664

3
77777775
≥ 0, (21)

2 cos∅þ μ
� � vj kþ 2ð Þ

vjobs kþ 2ð Þ

2
4

3
5
T

vj kþ 2ð Þ

vjobs kþ 2ð Þ

2
4

3
5 M

2
666666664

3
777777775
≥ 0, (22)

i, j ¼ 1,⋯, n, i 6¼ j:

Note that (k + 2) is used because the optimization is performed two steps ahead of time to
ensure that the future trajectories are collision free. However, when this avoidance protocol is
applied to dynamic collision avoidance, some vehicle configurations pose challenges and this
is considered next.

3.3. Conflict resolution for multiple vehicles

A collision between two vehicles i and j is imminent at time t whenever

Dij tð Þ ¼ xi tð Þ � xj tð Þ�� �� ≤ ri þ rj
� �

, (23)

which can be computed using position feedback data determined by onboard or external
sensors or communicated among the vehicles.

There are two aspects of collision problems: (i) collision detection and (ii) collision response.
Collision detection is the computational problem of detecting the intersection of two or more
objects. This can be done either using sensors or numerically using concepts from linear
algebra and computational geometry. Collision response is the initiation of the appropriate
avoidance maneuver. In this section, we present methods to detect different configurations of
collisions and classify them. Then, an appropriate response technique is developed for each of
the collision configurations.

Consider two vehicles i and j, whose current states are xi(t) and xj(t) and the desired final states
are xi(tf) and xj(tf). We identify three different basic collision configurations as: (i) simple
collision; (ii) head-on collision; and (iii) cross-path collision. Solutions will be developed for each
of these configurations, and when combined synergistically, they will provide sufficient colli-
sion avoidance behavior for fast collision-free reconfiguration for the team of vehicles.

Advanced Path Planning for Mobile Entities12

3.3.1. Detecting and resolving a simple collision

A simple collision problem is any configuration in which Dij(t) ≤ (ri + rj) and the current vector
directions (or attitude vectors) vi(t) and vj(t) of vehicles i and j are on different sides of the plane

or infinite line Lij(t) passing through the points xi(t), xj(t); and the attitude vectors xi tð Þvi tð Þ
�����!

and

xj tð Þvj tð Þ
�����!

are not parallel. Note that when xi tð Þvi tð Þ
�����!

and xj tð Þvj tð Þ
�����!

are not parallel, a point or line
of intersection can be computed for both vectors. Examples of simple collision problems are
shown in Figures 5 and 6.

This is the easiest collision problem to solve because the attitude vectors are already on
opposite sides of Lij(t). Considering Figure 6 (b), the plane or line ρij(t) tangent to the
point of intersection of both vehicles constrains the current motion spaces of the vehicles
to either of the two sides of the plane at time t. A pure optimization-based solution will
attempt to search the space on the right side of ρij(t) to seek for a point which is closest to
the goal of i, and this will be used as the next trajectory. The algorithm will also search the
left side of ρij(t) to find the next trajectory for j. Once the positions are updated, a new
ρij(t) is computed.

Indeed, the solution is provided by the basic collision avoidance protocols (Eqs. (21) and (22))
without having to do a set search. It is easy to observe that by expanding the angles θi(t) and

θj(t) and choosing the next feasible trajectories r∗/2 along the new direction vectors xi tð Þvi tð Þ
�����!

and xj tð Þvj tð Þ
�����!

, the new trajectories are bound to satisfy the feasible regions separated by ρij(t),
provided εi > r∗i for any i. The rest of the avoidance strategies developed in the remaining part
of this section are attempts to reduce more complex collision configurations to a simple
collision configuration.

3.3.2. Detecting and resolving a head-on collision

A head-on collision problem is any configuration in which Dij(t) ≤ (ri + rj) and vi(t)Tvj(t) ≈π rad.
Figure 7(a) illustrates the head-on collision problem.

Figure 6. Simple collision problem.

Consensus-Based Multipath Planning with Collision Avoidance Using Linear Matrix Inequalities
http://dx.doi.org/10.5772/intechopen.71288

13



The paths from the current positions xi(t) and xj(t) to the goal positions xi(tf) and xj(tf) lead to a

configuration in which the attitude vectors xi tð Þvi tð Þ
�����!

and xj tð Þvj tð Þ
�����!

are parallel (or close to
parallel) and in opposite directions, in the sense that a point of intersection cannot be com-
puted. Figure 7(b)–(d) shows several examples of head-on collision. Figure 7(b) is a direct head-

on collision because the vectors xi tð Þvi tð Þ
�����!

and xj tð Þvj tð Þ
�����!

are lying directly on Lij(t). Figure 7(c) is
an approximate head-on collision and Figure 7(d) is a head-on collision that can be easily
converted to a simple collision configuration.

For the configurations in Figure 7(b) and (c), the Q-CAC formulation presented earlier easily
solves this problem without any modifications to the algorithm. However, whenever

vi tð ÞTviobs tð Þ ≈ 0 for any i, the optimization algorithm takes some significant time to solve.
Even though the resulting trajectory is desirable, this delay is undesirable for real-time
collision avoidance. Therefore, whenever this configuration is encountered for any two
vehicles, a one-step elementary evasive maneuver is initiated, in which either vi(t) or vj(t) is
rotated by a small angle ψ > 0. This rotation effectively transforms the head-on collision

Figure 7. Head-on collision problem.

Advanced Path Planning for Mobile Entities14

configuration to a simple collision configuration. Once this is done, the avoidance con-
straints defined in Eqs. (21) and (22) solve in real time. The trajectory obtained using this
strategy for two-vehicle reconfiguration with head-on collision avoidance is shown in [14].

3.3.3. Detecting and resolving cross-path collision for two vehicles

A cross-path collision problem is any configuration in which Dij(t) ≤ (ri + rj) and the current

vector directions vi(t) and vj(t) are on the same side of Lij(t), and the attitude vectors xi tð Þvi tð Þ
�����!

and xj tð Þvj tð Þ
�����!

are not parallel. Because the vectors are not parallel, a point (for 2D) or line (for
3D) of intersection can be computed for both vectors. Figure 8 is an example of a cross-path
collision problem.

Note that for the avoidance process, the attitude control algorithm attempts to expand the
angles θi(t) and θj(t) to an angle = π/2. Based on this initial configuration, therefore, vi(t) and
vj(t) will remain parallel or close to parallel, but not in opposite directions. If this continues, the
desired goal positions may never be reached, or may be reached after a great deal of effort. To
resolve this problem, it is required to determine whether the two vehicles are indeed in a cross-
path configuration. The task is therefore to see if there exists a point or line of intersection

between xi tð Þvi tð Þ
�����!

and xj tð Þvj tð Þ
�����!

, and if such an intersection lies on one side of Lij.

Figure 8. Cross-path collision trajectory.

Consensus-Based Multipath Planning with Collision Avoidance Using Linear Matrix Inequalities
http://dx.doi.org/10.5772/intechopen.71288

15



The paths from the current positions xi(t) and xj(t) to the goal positions xi(tf) and xj(tf) lead to a

configuration in which the attitude vectors xi tð Þvi tð Þ
�����!

and xj tð Þvj tð Þ
�����!

are parallel (or close to
parallel) and in opposite directions, in the sense that a point of intersection cannot be com-
puted. Figure 7(b)–(d) shows several examples of head-on collision. Figure 7(b) is a direct head-

on collision because the vectors xi tð Þvi tð Þ
�����!

and xj tð Þvj tð Þ
�����!

are lying directly on Lij(t). Figure 7(c) is
an approximate head-on collision and Figure 7(d) is a head-on collision that can be easily
converted to a simple collision configuration.

For the configurations in Figure 7(b) and (c), the Q-CAC formulation presented earlier easily
solves this problem without any modifications to the algorithm. However, whenever

vi tð ÞTviobs tð Þ ≈ 0 for any i, the optimization algorithm takes some significant time to solve.
Even though the resulting trajectory is desirable, this delay is undesirable for real-time
collision avoidance. Therefore, whenever this configuration is encountered for any two
vehicles, a one-step elementary evasive maneuver is initiated, in which either vi(t) or vj(t) is
rotated by a small angle ψ > 0. This rotation effectively transforms the head-on collision

Figure 7. Head-on collision problem.

Advanced Path Planning for Mobile Entities14

configuration to a simple collision configuration. Once this is done, the avoidance con-
straints defined in Eqs. (21) and (22) solve in real time. The trajectory obtained using this
strategy for two-vehicle reconfiguration with head-on collision avoidance is shown in [14].

3.3.3. Detecting and resolving cross-path collision for two vehicles

A cross-path collision problem is any configuration in which Dij(t) ≤ (ri + rj) and the current

vector directions vi(t) and vj(t) are on the same side of Lij(t), and the attitude vectors xi tð Þvi tð Þ
�����!

and xj tð Þvj tð Þ
�����!

are not parallel. Because the vectors are not parallel, a point (for 2D) or line (for
3D) of intersection can be computed for both vectors. Figure 8 is an example of a cross-path
collision problem.

Note that for the avoidance process, the attitude control algorithm attempts to expand the
angles θi(t) and θj(t) to an angle = π/2. Based on this initial configuration, therefore, vi(t) and
vj(t) will remain parallel or close to parallel, but not in opposite directions. If this continues, the
desired goal positions may never be reached, or may be reached after a great deal of effort. To
resolve this problem, it is required to determine whether the two vehicles are indeed in a cross-
path configuration. The task is therefore to see if there exists a point or line of intersection

between xi tð Þvi tð Þ
�����!

and xj tð Þvj tð Þ
�����!

, and if such an intersection lies on one side of Lij.

Figure 8. Cross-path collision trajectory.

Consensus-Based Multipath Planning with Collision Avoidance Using Linear Matrix Inequalities
http://dx.doi.org/10.5772/intechopen.71288

15



3.3.4. Determining cross-path collision in 3D and 2D.

To determine cross-path collision between i and j in 3D, two planes PLi and PLj are defined,
both parallel to the z axes of the world coordinate frame (Figure 9). Each plane must contain

the vectors xi tð Þvi tð Þ
�����!

and xj tð Þvj tð Þ
�����!

as shown in the figure. Therefore, the plane PLi is defined as
the set (Ni(t), xi(t), vi(t), z(t)), where zi(t) is a point chosen above or below xi(t) or vi(t) on the
z axis and Ni(t) is the normal vector perpendicular to xi(t), vi(t), and zi(t). Once Nj(t) is similarly
defined, the intersection of the two planes can be computed using techniques from computa-
tional geometry. If the two planes are not parallel, the computation of planes’ intersection will
return a line lij. Once this line is determined, the next step is check if it is on one side of the
plane parallel to the z axis and containing the points xi(t) and xj(t).

An easy way to do this is to compute the perpendicular distances from the points xi(t), vi(t),
xj(t), and vj(t), to lij.

Let the corresponding distances be:

dix tð Þ ¼ xi tð Þ � lij
�� ��, (24)

div tð Þ ¼ vi tð Þ � lij
�� ��, (25)

djx tð Þ ¼ xj tð Þ � lij
�� ��, (26)

djv tð Þ ¼ vj tð Þ � lij
�� ��: (27)

If div tð Þ ≤ dix tð Þ and djv tð Þ ≤ djx tð Þ, then the line of intersection is in front of both vehicles, and a
cross-path collision is imminent as shown in Figure 9(a) and (b). Otherwise, there is no cross-
path conflict as shown in Figure 9(c).

Figure 9. Determination of cross-path collision in 3D.

Advanced Path Planning for Mobile Entities16

The analysis is simpler in the 2D case. Instead of lij, we search for a point pij, which is the point

of intersection of the lines passing through xi tð Þvi tð Þ
�����!

and xj tð Þvj tð Þ
�����!

as shown in Figure 10. If
indeed such a point is found, we use pijinstead of lijin the previous set of equations.

Figure 11 shows an illustration of the computation of dix and div for any i.

Figure 12(a) is a cross-path collision configuration, but (b) is a simple collision configuration.

The solution strategy adopted is to convert any cross-path configuration such as Figure 12 (a)
to a simple configuration such as (b). To do this, one only must move either vi(t) or vj(t) to the
other side of Lij(t) (or onto the line Lij(t)). A simple strategy to decide which v(t) should be

Figure 10. The point pij is the point of intersection of the infinite lines passing through direction vectors xi tð Þvi tð Þ
������!

and

xj tð Þvj tð Þ
������!

. The position of pij in relation to both direction vectors determines if a cross-path collision is imminent. If pij is in
front of both vectors as in (a) and (b), then a cross-path collision is imminent; otherwise, no cross-path collision is
imminent as in (c).

Figure 11. Continuing the explanation from Figure 10, dix is the distance from any xi (vehicle i) topij, whereas div is the
distance from vi to pij, that is, the distance of the outer boundary (where vi lies) of the safety region of vehicle i to pij.

Consensus-Based Multipath Planning with Collision Avoidance Using Linear Matrix Inequalities
http://dx.doi.org/10.5772/intechopen.71288

17



3.3.4. Determining cross-path collision in 3D and 2D.

To determine cross-path collision between i and j in 3D, two planes PLi and PLj are defined,
both parallel to the z axes of the world coordinate frame (Figure 9). Each plane must contain

the vectors xi tð Þvi tð Þ
�����!

and xj tð Þvj tð Þ
�����!

as shown in the figure. Therefore, the plane PLi is defined as
the set (Ni(t), xi(t), vi(t), z(t)), where zi(t) is a point chosen above or below xi(t) or vi(t) on the
z axis and Ni(t) is the normal vector perpendicular to xi(t), vi(t), and zi(t). Once Nj(t) is similarly
defined, the intersection of the two planes can be computed using techniques from computa-
tional geometry. If the two planes are not parallel, the computation of planes’ intersection will
return a line lij. Once this line is determined, the next step is check if it is on one side of the
plane parallel to the z axis and containing the points xi(t) and xj(t).

An easy way to do this is to compute the perpendicular distances from the points xi(t), vi(t),
xj(t), and vj(t), to lij.

Let the corresponding distances be:

dix tð Þ ¼ xi tð Þ � lij
�� ��, (24)

div tð Þ ¼ vi tð Þ � lij
�� ��, (25)

djx tð Þ ¼ xj tð Þ � lij
�� ��, (26)

djv tð Þ ¼ vj tð Þ � lij
�� ��: (27)

If div tð Þ ≤ dix tð Þ and djv tð Þ ≤ djx tð Þ, then the line of intersection is in front of both vehicles, and a
cross-path collision is imminent as shown in Figure 9(a) and (b). Otherwise, there is no cross-
path conflict as shown in Figure 9(c).

Figure 9. Determination of cross-path collision in 3D.

Advanced Path Planning for Mobile Entities16

The analysis is simpler in the 2D case. Instead of lij, we search for a point pij, which is the point

of intersection of the lines passing through xi tð Þvi tð Þ
�����!

and xj tð Þvj tð Þ
�����!

as shown in Figure 10. If
indeed such a point is found, we use pijinstead of lijin the previous set of equations.

Figure 11 shows an illustration of the computation of dix and div for any i.

Figure 12(a) is a cross-path collision configuration, but (b) is a simple collision configuration.

The solution strategy adopted is to convert any cross-path configuration such as Figure 12 (a)
to a simple configuration such as (b). To do this, one only must move either vi(t) or vj(t) to the
other side of Lij(t) (or onto the line Lij(t)). A simple strategy to decide which v(t) should be

Figure 10. The point pij is the point of intersection of the infinite lines passing through direction vectors xi tð Þvi tð Þ
������!

and

xj tð Þvj tð Þ
������!

. The position of pij in relation to both direction vectors determines if a cross-path collision is imminent. If pij is in
front of both vectors as in (a) and (b), then a cross-path collision is imminent; otherwise, no cross-path collision is
imminent as in (c).

Figure 11. Continuing the explanation from Figure 10, dix is the distance from any xi (vehicle i) topij, whereas div is the
distance from vi to pij, that is, the distance of the outer boundary (where vi lies) of the safety region of vehicle i to pij.

Consensus-Based Multipath Planning with Collision Avoidance Using Linear Matrix Inequalities
http://dx.doi.org/10.5772/intechopen.71288

17



moved to obtain smoother phase transition is to measure θi(t) and θj(t). If θj(t) <θi(t), then vj(t)

should be moved. This is done by swapping vj(t) and vjobs tð Þ, which immediately results in a
simple collision reconfiguration. Thereafter, when the Q-CAC algorithm expands θj(t), it is the

former vjobs tð Þ (which is now the new vj(t)) that moves, whereas the former vj(t) (which is now

the new vjobs tð Þ) remains static.

Therefore, if a cross-path trajectory is determined, to resolve the problem it is sufficient to swap
the variables in one of the avoidance constraints (Eq. (21) or Eq. (22)). For example, Eq. (21)
may be left as it is and Eq. (22) is rewritten in the form

2 cos∅þ μ
� � vjobs kþ 2ð Þ

vj kþ 2ð Þ

2
4

3
5
T

vjobs kþ 2ð Þ
vj kþ 2ð Þ

2
4

3
5 M

2
66666664

3
77777775
≥ 0: (28)

The trajectories obtained by applying this strategy to cross-path collision avoidance for two
vehicles in 2D and 3D are shown in [14].

3.3.5. Resolving cross-path collision for more than two vehicles

If more than two vehicles are involved as shown in Figure 13, for any vehicle i, whose attitude
vector vi(t) is in a cross-path configuration with vehicles j and k, we are concerned only about

the two bounding obstacle vectors vijobs tð Þ and vikobs tð Þ.
In order not to get into a stalemate situation (undesirable for aircraft), only positive nonzero
velocities are required to be generated. We adopt a counterclockwise avoidance measure to
achieve this, where, for each vehicle, the left bounding obstacle vector is always chosen as the

Figure 12. The effects of cross-path conflict resolution.

Advanced Path Planning for Mobile Entities18

cross-path obstacle vector for avoidance. For example, for k to turn counterclockwise, it

chooses the vector vkiobs tð Þ to avoid instead of vkjobs tð Þ. Thus, for the configuration of Figure 13,
the following set of attitude constraints is enforced:

2 cos∅þ μ
� � vijobs kþ 2ð Þ

vi kþ 2ð Þ

2
4

3
5
T

vijobs kþ 2ð Þ
vi kþ 2ð Þ

2
4

3
5 M

2
66666664

3
77777775
≥ 0, (29)

2 cos∅þ μ
� � vjkobs kþ 2ð Þ

vj kþ 2ð Þ

2
4

3
5
T

vjkobs kþ 2ð Þ
vj kþ 2ð Þ

2
4

3
5 M

2
66666664

3
77777775
≥ 0, (30)

Figure 13. Three-vehicle cross-path trajectory problem.

Consensus-Based Multipath Planning with Collision Avoidance Using Linear Matrix Inequalities
http://dx.doi.org/10.5772/intechopen.71288

19



moved to obtain smoother phase transition is to measure θi(t) and θj(t). If θj(t) <θi(t), then vj(t)

should be moved. This is done by swapping vj(t) and vjobs tð Þ, which immediately results in a
simple collision reconfiguration. Thereafter, when the Q-CAC algorithm expands θj(t), it is the

former vjobs tð Þ (which is now the new vj(t)) that moves, whereas the former vj(t) (which is now

the new vjobs tð Þ) remains static.

Therefore, if a cross-path trajectory is determined, to resolve the problem it is sufficient to swap
the variables in one of the avoidance constraints (Eq. (21) or Eq. (22)). For example, Eq. (21)
may be left as it is and Eq. (22) is rewritten in the form

2 cos∅þ μ
� � vjobs kþ 2ð Þ

vj kþ 2ð Þ

2
4

3
5
T

vjobs kþ 2ð Þ
vj kþ 2ð Þ

2
4

3
5 M

2
66666664

3
77777775
≥ 0: (28)

The trajectories obtained by applying this strategy to cross-path collision avoidance for two
vehicles in 2D and 3D are shown in [14].

3.3.5. Resolving cross-path collision for more than two vehicles

If more than two vehicles are involved as shown in Figure 13, for any vehicle i, whose attitude
vector vi(t) is in a cross-path configuration with vehicles j and k, we are concerned only about

the two bounding obstacle vectors vijobs tð Þ and vikobs tð Þ.
In order not to get into a stalemate situation (undesirable for aircraft), only positive nonzero
velocities are required to be generated. We adopt a counterclockwise avoidance measure to
achieve this, where, for each vehicle, the left bounding obstacle vector is always chosen as the

Figure 12. The effects of cross-path conflict resolution.

Advanced Path Planning for Mobile Entities18

cross-path obstacle vector for avoidance. For example, for k to turn counterclockwise, it

chooses the vector vkiobs tð Þ to avoid instead of vkjobs tð Þ. Thus, for the configuration of Figure 13,
the following set of attitude constraints is enforced:

2 cos∅þ μ
� � vijobs kþ 2ð Þ

vi kþ 2ð Þ

2
4

3
5
T

vijobs kþ 2ð Þ
vi kþ 2ð Þ

2
4

3
5 M

2
66666664

3
77777775
≥ 0, (29)

2 cos∅þ μ
� � vjkobs kþ 2ð Þ

vj kþ 2ð Þ

2
4

3
5
T

vjkobs kþ 2ð Þ
vj kþ 2ð Þ

2
4

3
5 M

2
66666664

3
77777775
≥ 0, (30)

Figure 13. Three-vehicle cross-path trajectory problem.

Consensus-Based Multipath Planning with Collision Avoidance Using Linear Matrix Inequalities
http://dx.doi.org/10.5772/intechopen.71288

19



2 cos∅þ μ
� � vkiobs kþ 2ð Þ

vk kþ 2ð Þ

2
4

3
5
T

vkiobs kþ 2ð Þ

vk kþ 2ð Þ

2
4

3
5 M

2
66666664

3
77777775
≥ 0: (31)

3.4. Consensus with Q-CAC–based avoidance

Once a safe attitude vector vi(k) is computed at time k for any i, the next position xi(k + 1) is
computed as a point a distance r∗i/2 from the current position, along the vector vi(k). Note that
vi(k) is normalized to keep the computed control bounded. Whether there are intersections of
the safety regions or not, one can guarantee the safety of the algorithm by bounding the control
size within the interval 0 <ui ≤ r∗i/2. This means that a vehicle never steps beyond its safety
region at any single time step.

Another important consideration is the size of control computed at each time using Laplacian
matrices, which is directly proportional to the algebraic connectivity of the communication
graph, and inversely proportional to the magnitude of the current time k. This means that,
while the early values of u are large and therefore unsafe for collision avoidance (and must be
bounded), the latter values of u are very small and therefore slow down the rate of conver-
gence. One can observe that collisions are less likely to occur in the latter times when the
vehicles are closer to their goal positions; consequently, convergence is slower at that time.
Therefore, there is need to obtain constantly bounded control u which can guarantee both
collision avoidance and a high speed of convergence. The following modifications to Eq. (4)
and Eq. (5) were proposed in our previous works [5, 9, 14]. For the leader-follower architecture,

u ¼ �η log 10 kþ 1ð Þ Δt
2λ2 Lð Þ Γ x� xoff

� �� β log 10 kþ 1ð Þ Δt
2λ2 Lð ÞK x� xoff

� �
: (32)

And for the leaderless architecture,

u ¼ �η log 10 kþ 1ð Þ Δt
2λ2 Lð Þ Γ x� xoff

� �� β log 10 kþ 1ð Þ Δt
2λ2 Lð ÞK x� xdð Þ, (33)

where λ2(L) is the second smallest eigenvalue of the Laplacian L. The parameter η is for scaling
the consensus term and β is for scaling the proportional term in Eqs. (32) and (33). The
logarithmic term log10(k + 1) and the term Δt

2λ2 Lð Þ are used to reduce kuk when k is small and

increase kukwhen k is large. The choices of parameters η and β should depend on the radius of
S and safety region ε for each vehicle. Alternatively, one may choose to compute an

unbounded u using Eqs. (4) or (5), then for each ui > r∗ i
2 , normalize ui and set ui ¼ r∗ i

2 ui.

The step-by-step procedure for implementing the algorithm including a flowchart can be
found in Ref. [14].

Advanced Path Planning for Mobile Entities20

4. Simulation results

To demonstrate the solutions developed in this chapter, we revisit the experiment presented in
Figure 1. The robots are homogeneous, and S for each robot is 85 mm, ε = 90 mm, whereas the
dimensions of the soccer pitch are 6050 mm x 4050 mm. In Figure 14 (a), Eq. (5) was applied
with the cyclic communication topology with one leader (Figure 2). In Figure 14 (b), Eq. (33)
was applied with a full communication topology (i.e., every vehicle can communicate with
each other). The simulation was done with MATLAB R2009a on an Intel® Core(TM)2 Duo
P8600 @ 2.40 GHz with 2 GB RAM, running Windows 7. For Figure 14(a), the multipath
planning problem took 244 time-steps to solve, resulting in a total computation time of 7.343 s,
in which 203 avoidance attempts were made, and there were no collisions. For Figure 14(b),
using a full communication topology, the computational time was 0.0131 s, and there were
no collisions.

In [14], more simulations and analyses are presented, together with the limitations of this
approach, which remains to be explored for future development.

5. Conclusion

In this chapter, we considered consensus-based multipath planning. An approach to incorpo-
rating collision avoidance in adversarial situations in the consensus algorithm by applying
Q-CAC is presented. Simulation results are presented here to show that for a sizable number of

Figure 14. Collision-free reconfiguration: (a) using topology with Eq. (5) and (b) using fully connected graph with Eq. (33).

Consensus-Based Multipath Planning with Collision Avoidance Using Linear Matrix Inequalities
http://dx.doi.org/10.5772/intechopen.71288

21



2 cos∅þ μ
� � vkiobs kþ 2ð Þ

vk kþ 2ð Þ

2
4

3
5
T

vkiobs kþ 2ð Þ

vk kþ 2ð Þ

2
4

3
5 M

2
66666664

3
77777775
≥ 0: (31)

3.4. Consensus with Q-CAC–based avoidance

Once a safe attitude vector vi(k) is computed at time k for any i, the next position xi(k + 1) is
computed as a point a distance r∗i/2 from the current position, along the vector vi(k). Note that
vi(k) is normalized to keep the computed control bounded. Whether there are intersections of
the safety regions or not, one can guarantee the safety of the algorithm by bounding the control
size within the interval 0 <ui ≤ r∗i/2. This means that a vehicle never steps beyond its safety
region at any single time step.

Another important consideration is the size of control computed at each time using Laplacian
matrices, which is directly proportional to the algebraic connectivity of the communication
graph, and inversely proportional to the magnitude of the current time k. This means that,
while the early values of u are large and therefore unsafe for collision avoidance (and must be
bounded), the latter values of u are very small and therefore slow down the rate of conver-
gence. One can observe that collisions are less likely to occur in the latter times when the
vehicles are closer to their goal positions; consequently, convergence is slower at that time.
Therefore, there is need to obtain constantly bounded control u which can guarantee both
collision avoidance and a high speed of convergence. The following modifications to Eq. (4)
and Eq. (5) were proposed in our previous works [5, 9, 14]. For the leader-follower architecture,

u ¼ �η log 10 kþ 1ð Þ Δt
2λ2 Lð Þ Γ x� xoff

� �� β log 10 kþ 1ð Þ Δt
2λ2 Lð ÞK x� xoff

� �
: (32)

And for the leaderless architecture,

u ¼ �η log 10 kþ 1ð Þ Δt
2λ2 Lð Þ Γ x� xoff

� �� β log 10 kþ 1ð Þ Δt
2λ2 Lð ÞK x� xdð Þ, (33)

where λ2(L) is the second smallest eigenvalue of the Laplacian L. The parameter η is for scaling
the consensus term and β is for scaling the proportional term in Eqs. (32) and (33). The
logarithmic term log10(k + 1) and the term Δt

2λ2 Lð Þ are used to reduce kuk when k is small and

increase kukwhen k is large. The choices of parameters η and β should depend on the radius of
S and safety region ε for each vehicle. Alternatively, one may choose to compute an

unbounded u using Eqs. (4) or (5), then for each ui > r∗ i
2 , normalize ui and set ui ¼ r∗ i

2 ui.

The step-by-step procedure for implementing the algorithm including a flowchart can be
found in Ref. [14].

Advanced Path Planning for Mobile Entities20

4. Simulation results

To demonstrate the solutions developed in this chapter, we revisit the experiment presented in
Figure 1. The robots are homogeneous, and S for each robot is 85 mm, ε = 90 mm, whereas the
dimensions of the soccer pitch are 6050 mm x 4050 mm. In Figure 14 (a), Eq. (5) was applied
with the cyclic communication topology with one leader (Figure 2). In Figure 14 (b), Eq. (33)
was applied with a full communication topology (i.e., every vehicle can communicate with
each other). The simulation was done with MATLAB R2009a on an Intel® Core(TM)2 Duo
P8600 @ 2.40 GHz with 2 GB RAM, running Windows 7. For Figure 14(a), the multipath
planning problem took 244 time-steps to solve, resulting in a total computation time of 7.343 s,
in which 203 avoidance attempts were made, and there were no collisions. For Figure 14(b),
using a full communication topology, the computational time was 0.0131 s, and there were
no collisions.

In [14], more simulations and analyses are presented, together with the limitations of this
approach, which remains to be explored for future development.

5. Conclusion

In this chapter, we considered consensus-based multipath planning. An approach to incorpo-
rating collision avoidance in adversarial situations in the consensus algorithm by applying
Q-CAC is presented. Simulation results are presented here to show that for a sizable number of

Figure 14. Collision-free reconfiguration: (a) using topology with Eq. (5) and (b) using fully connected graph with Eq. (33).

Consensus-Based Multipath Planning with Collision Avoidance Using Linear Matrix Inequalities
http://dx.doi.org/10.5772/intechopen.71288

21



vehicles, collision avoidance and fast convergence are guaranteed. Future work will include
implementation on a team of mobile robots and autonomous aerial vehicles.

Author details

Innocent Okoloko

Address all correspondence to: okoloko@ieee.org

Department of Electrical Engineering, Universidad de Ingenieria y Tecnologia, Lima, Peru

References

[1] Zickler S, Laue T, Birbach O, Wongphati M, Veloso M. SSL-vision: The shared vision
system for the RoboCup small size league. In: RoboCup 2009: Robot Soccer World Cup
XIII. Baltes J, Lagoudakis MG, Naruse T, Shiry S, editors. Lecture Notes in Artificial
Intelligence. Springer; 2010. p. 425-436. ISBN 978-3-642-11876-0

[2] Waymo. Google’s Self-Driving Cars [Internet]. 2016. Available from: https://waymo.com/
[Accessed: August, 2017]

[3] PATH. California Partners for Advanced Transit and Highways [Internet]. 2006. Avail-
able from: http://www.path.berkeley.edu/ [Accessed: December, 2009]

[4] Blackwood G, Lay O, Deininger B, GudimM, Ahmed A, Duren R, Noeckerb C, Barden B.
The StarLight mission: A formation-flying stellar interferometer. In: SPIE 4852, Interfer-
ometry in Space; 22 August; Waikoloa, Hawaii. SPIE Digital Library; 2002. DOI: http://dx.
doi.org/10.1117/12.460942

[5] Okoloko I, Basson A. Consensus with collision avoidance: An LMI approach. In: 5th IEEE
International Conference on Automation, Robotics and Applications; 06–08 December;
Wellington, NZ. IEEE; 2011. ISBN:9781457703287

[6] Chandler PR, Pachter M, Rasmussen S. UAV cooperative control. In: IEEE ACC; 25–27
June; Arlington, VA. IEEExplore; 2001. p. 50-55. DOI: 10.1109/ACC.2001.945512

[7] Richards A, Schouwenaars T, How JP, Feron E. Spacecraft trajectory planning with avoid-
ance constraints using mixed-integer linear programming. AIAA Journal of Guidance
Control and Dynamics. 2002;25:755-764. DOI: https://doi.org/10.2514/2.4943

[8] Okoloko I. Consensus based distributed motion planning on a sphere. In: IEEE ACC; 17–19
June; Washington DC. IEEEXplore; 2013. p. 6132-6137. DOI: 10.1109/ACC.2013.6580799

[9] Okoloko I. Path planning for multiple spacecraft using consensus with LMI avoidance
constraints. In: IEEE Aerospace Conference; 3–10 March; Big Sky, Montana. IEEEXplore;
2012. p. 1-8. DOI:10.1109/AERO.2012.6187118

Advanced Path Planning for Mobile Entities22

[10] Okoloko I, Kim Y. Distributed constrained attitude and position control using graph
Laplacians. In: ASMEDynamic Systems andControl Conference; 13–15 September; Cambridge,
Massachusetts. ASME; 2010. p. 377-383. DOI: 10.1115/DSCC2010-4036

[11] Hwang I, Tomlin C. Protocol-based conflict resolution for finite information horizon. In:
IEEE ACC; 8–10 May; Anchorage, Alaska. IEEExplore; 2002. p. 748-753. DOI: 10.1109/
ACC.2002.1024903

[12] Peng L, Zhao Y, Tian B, Zhang J, Bing-Hong W, Hai-Tao Z, Zhou T. Consensus of self-
driven agents with avoidance of collisions. Physical Review. 2009;79(E). DOI: 10.1103/
PhysRevE.79.026113

[13] Olfati-Saber R. Flocking for multi-agent dynamic systems: Algorithms and theory. IEEE
Transactions on Automatic Control. 2006;51(3):401-420. DOI: 10.1109/TAC.2005.864190

[14] Okoloko I. Multi-Path Planning and Multi-Body Constrained Attitude Control [Disserta-
tion]. Stellenbosch, South Africa: PhD Thesis: Stellenbosch University; 2012. p. 185. Available
from: http://hdl handle.net/10019.1/71905

[15] Fax AJ. Optimal and Cooperative Control of Vehicle Formations [Thesis]. Pasadena, CA:
PhD Thesis, CALTECH; 2002. p. 135. Available from: thesis.library.caltech.edu/4230/1/
Fax_ja_2002.pdf

[16] Kim Y, Mesbahi M. Quadratically constrained attitude control via semidefinite program-
ming. IEEE Transactions on Automatic Control. 2004;49:731-735. DOI: 10.1109/TAC.2004.
825959

[17] Boyd S, Ghaoui LE, Feron E, Balakrishnan V. Linear Matrix Inequalities in System and
Control Theory. Philadelphia, PA: SIAM; 1994. p. 205. ISBN: 0-89871-334-X

Consensus-Based Multipath Planning with Collision Avoidance Using Linear Matrix Inequalities
http://dx.doi.org/10.5772/intechopen.71288

23



vehicles, collision avoidance and fast convergence are guaranteed. Future work will include
implementation on a team of mobile robots and autonomous aerial vehicles.

Author details

Innocent Okoloko

Address all correspondence to: okoloko@ieee.org

Department of Electrical Engineering, Universidad de Ingenieria y Tecnologia, Lima, Peru

References

[1] Zickler S, Laue T, Birbach O, Wongphati M, Veloso M. SSL-vision: The shared vision
system for the RoboCup small size league. In: RoboCup 2009: Robot Soccer World Cup
XIII. Baltes J, Lagoudakis MG, Naruse T, Shiry S, editors. Lecture Notes in Artificial
Intelligence. Springer; 2010. p. 425-436. ISBN 978-3-642-11876-0

[2] Waymo. Google’s Self-Driving Cars [Internet]. 2016. Available from: https://waymo.com/
[Accessed: August, 2017]

[3] PATH. California Partners for Advanced Transit and Highways [Internet]. 2006. Avail-
able from: http://www.path.berkeley.edu/ [Accessed: December, 2009]

[4] Blackwood G, Lay O, Deininger B, GudimM, Ahmed A, Duren R, Noeckerb C, Barden B.
The StarLight mission: A formation-flying stellar interferometer. In: SPIE 4852, Interfer-
ometry in Space; 22 August; Waikoloa, Hawaii. SPIE Digital Library; 2002. DOI: http://dx.
doi.org/10.1117/12.460942

[5] Okoloko I, Basson A. Consensus with collision avoidance: An LMI approach. In: 5th IEEE
International Conference on Automation, Robotics and Applications; 06–08 December;
Wellington, NZ. IEEE; 2011. ISBN:9781457703287

[6] Chandler PR, Pachter M, Rasmussen S. UAV cooperative control. In: IEEE ACC; 25–27
June; Arlington, VA. IEEExplore; 2001. p. 50-55. DOI: 10.1109/ACC.2001.945512

[7] Richards A, Schouwenaars T, How JP, Feron E. Spacecraft trajectory planning with avoid-
ance constraints using mixed-integer linear programming. AIAA Journal of Guidance
Control and Dynamics. 2002;25:755-764. DOI: https://doi.org/10.2514/2.4943

[8] Okoloko I. Consensus based distributed motion planning on a sphere. In: IEEE ACC; 17–19
June; Washington DC. IEEEXplore; 2013. p. 6132-6137. DOI: 10.1109/ACC.2013.6580799

[9] Okoloko I. Path planning for multiple spacecraft using consensus with LMI avoidance
constraints. In: IEEE Aerospace Conference; 3–10 March; Big Sky, Montana. IEEEXplore;
2012. p. 1-8. DOI:10.1109/AERO.2012.6187118

Advanced Path Planning for Mobile Entities22

[10] Okoloko I, Kim Y. Distributed constrained attitude and position control using graph
Laplacians. In: ASMEDynamic Systems andControl Conference; 13–15 September; Cambridge,
Massachusetts. ASME; 2010. p. 377-383. DOI: 10.1115/DSCC2010-4036

[11] Hwang I, Tomlin C. Protocol-based conflict resolution for finite information horizon. In:
IEEE ACC; 8–10 May; Anchorage, Alaska. IEEExplore; 2002. p. 748-753. DOI: 10.1109/
ACC.2002.1024903

[12] Peng L, Zhao Y, Tian B, Zhang J, Bing-Hong W, Hai-Tao Z, Zhou T. Consensus of self-
driven agents with avoidance of collisions. Physical Review. 2009;79(E). DOI: 10.1103/
PhysRevE.79.026113

[13] Olfati-Saber R. Flocking for multi-agent dynamic systems: Algorithms and theory. IEEE
Transactions on Automatic Control. 2006;51(3):401-420. DOI: 10.1109/TAC.2005.864190

[14] Okoloko I. Multi-Path Planning and Multi-Body Constrained Attitude Control [Disserta-
tion]. Stellenbosch, South Africa: PhD Thesis: Stellenbosch University; 2012. p. 185. Available
from: http://hdl handle.net/10019.1/71905

[15] Fax AJ. Optimal and Cooperative Control of Vehicle Formations [Thesis]. Pasadena, CA:
PhD Thesis, CALTECH; 2002. p. 135. Available from: thesis.library.caltech.edu/4230/1/
Fax_ja_2002.pdf

[16] Kim Y, Mesbahi M. Quadratically constrained attitude control via semidefinite program-
ming. IEEE Transactions on Automatic Control. 2004;49:731-735. DOI: 10.1109/TAC.2004.
825959

[17] Boyd S, Ghaoui LE, Feron E, Balakrishnan V. Linear Matrix Inequalities in System and
Control Theory. Philadelphia, PA: SIAM; 1994. p. 205. ISBN: 0-89871-334-X

Consensus-Based Multipath Planning with Collision Avoidance Using Linear Matrix Inequalities
http://dx.doi.org/10.5772/intechopen.71288

23



Chapter 2

Multi-Path Planning on a Sphere with LMI-Based
Collision Avoidance

Innocent Okoloko

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.71216

Provisional chapter

Multi-Path Planning on a Sphere with LMI-Based
Collision Avoidance

Innocent Okoloko

Additional information is available at the end of the chapter

Abstract

The problem of path planning with collision avoidance for autonomous flying vehicles
will become more critical as the density of such vehicles increase in the skies. Global
aerial navigation paths can be modeled as a path-planning problem on a unit sphere. In
this work, we apply consensus theory and semidefinite programming to constrained
multi-path planning with collision avoidance for a team of communicating vehicles
navigating on a sphere. Based on their communication graph, each vehicle individually
synthesizes a time-varying Laplacian-like matrix which drives each of them from their
initial positions to consensus positions on the surface of the sphere. The solution trajec-
tories obtained on the unit sphere are transformed back to actual vehicle coordinates.
Formation configurations are realized via consensus theory, while collision avoidance is
realized via semidefinite programming. A Lyapunov-based stability analysis is also
provided, together with simulation results to demonstrate the effectiveness of the
approach.

Keywords: consensus, path planning, avoidance, optimization, LMI

1. Introduction

In this chapter, we present an approach to constrained multi-agent control on the unit sphere;
by applying consensus theory and constrained attitude control (CAC) via semidefinite pro-
gramming. Global navigation can be modeled by control on the unit sphere and such algo-
rithms have applications in: aerial navigation [1]; sea navigation and ocean sampling [2]; space
navigation and satellite cluster positioning [3, 4]. For example, the algorithm presented in this
chapter will find practical application in aircraft horizontal separation.

© The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons

Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,

distribution, and eproduction in any medium, provided the original work is properly cited.

DOI: 10.5772/intechopen.71216

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



Chapter 2

Multi-Path Planning on a Sphere with LMI-Based
Collision Avoidance

Innocent Okoloko

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.71216

Provisional chapter

Multi-Path Planning on a Sphere with LMI-Based
Collision Avoidance

Innocent Okoloko

Additional information is available at the end of the chapter

Abstract

The problem of path planning with collision avoidance for autonomous flying vehicles
will become more critical as the density of such vehicles increase in the skies. Global
aerial navigation paths can be modeled as a path-planning problem on a unit sphere. In
this work, we apply consensus theory and semidefinite programming to constrained
multi-path planning with collision avoidance for a team of communicating vehicles
navigating on a sphere. Based on their communication graph, each vehicle individually
synthesizes a time-varying Laplacian-like matrix which drives each of them from their
initial positions to consensus positions on the surface of the sphere. The solution trajec-
tories obtained on the unit sphere are transformed back to actual vehicle coordinates.
Formation configurations are realized via consensus theory, while collision avoidance is
realized via semidefinite programming. A Lyapunov-based stability analysis is also
provided, together with simulation results to demonstrate the effectiveness of the
approach.

Keywords: consensus, path planning, avoidance, optimization, LMI

1. Introduction

In this chapter, we present an approach to constrained multi-agent control on the unit sphere;
by applying consensus theory and constrained attitude control (CAC) via semidefinite pro-
gramming. Global navigation can be modeled by control on the unit sphere and such algo-
rithms have applications in: aerial navigation [1]; sea navigation and ocean sampling [2]; space
navigation and satellite cluster positioning [3, 4]. For example, the algorithm presented in this
chapter will find practical application in aircraft horizontal separation.

© The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons

Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,

distribution, and eproduction in any medium, provided the original work is properly cited.

DOI: 10.5772/intechopen.71216

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



Most path-planning work generally focus on two-dimensional (2D) [5, 6], and three- dimen-
sional motion planning (3D) [7–10]. However, both path planning models are limited when the
motion is constrained to evolve on a sphere.

Looking at the main works that have been done on control on a sphere, [11] applied Lie
algebra to develop a model of self-propelled particles (as point masses) which move on the
surface of a unit sphere at constant speed. Circular formations of steady motions of the
particles around a fixed small circle on the sphere were identified as relative equilibria of the
model using a Lie group representation. The paper also provided mathematically justified
shape control laws that stabilize the set of circular formations. They also proposed a shape
control to isolate circular formations of particles with symmetric spacing by using Laplacian
control. Further work on this is presented in [12].

The works [11, 12] are based on [5, 13], where a geometric approach to the gyroscopic control
of vehicle motion in planar and three-dimensional particle models was developed for forma-
tion acquisition and control with collision avoidance in free space. They discovered three
possible types of relative equilibria for their unconstrained gyroscopic control system on
SE 3ð Þ: (i) parallel particle motion with arbitrary spacing; (ii) circular particle motion that has a
common radius, axis and direction of rotation, and arbitrary along-axis spacing; (iii) helical
particle motion that has a common radius, axis and direction of rotation, along-axis speed
(pitch) and arbitrary along-axis spacing. This approach is effective in formation control of
multiple systems in unconstrained spaces and for formations that conform to the three types of
relative equilibria described above.

Therefore, it is necessary to consider consensus on a sphere, which can be applied to the more
general motion control problem involving: (i) constrained spaces which contain static obstacles
such as clutter; (ii) speed constrained vehicles; (iii) other arbitrary formations which are
different from the relative equilibria described above. We apply consensus theory to collective
motion of a team of communicating vehicles on the sphere and the concept of constrained
attitude control (CAC) to generate collision avoidance behavior among the vehicles as they
navigate to arbitrary formations [14].

We assume that each individual vehicle can communicate with neighbors within its sensor
view. Each vehicle can therefore use the Laplacian matrix of the communication graph L in a
semidefinite program to plan consensus trajectories on the sphere. Then the concept of CAC is
used to incorporate collision avoidance, by maintaining specified minimum angles between
vectors of vehicle positions. The algorithm presented here is applicable to motion control in
both constrained and unconstrained spaces on the sphere, e.g. for planning consensus trajectories
around static obstacles or adversarial non-cooperative obstacles on the sphere. The approach
can also be applied to constrained vehicle motion of non-constant velocities. It is also possible
to generate formations on the sphere that are different from circular motion.

The rest of this chapter is organized as follows. In Section 2, we present the mathematical basis
of consensus theory, while the problem statement is presented Section 3. In Section 4, the
solution and convergence analysis are presented. This is followed by simulation results in
Section 5 and references in Section 6. Table 1 lists frequently used notation in this chapter.

Advanced Path Planning for Mobile Entities26

Notation Meaning

n Number of vehicles

i Vehicle number i

xi Position vector of vehicle i

bx Unit vector corresponding to vector x

ui, _xi Control input of vehicle i

xjobs Obstacle vector number j

xij
� �off Offset vector between vehicles i and j

wij Angle between vehicle i and obstacle j

θij Angle between vehicles i and j

αi Minimum angular separation from obstacle number i

βij Minimum angular separation between vehicles i and j

x Stacked vector of n position vectors

u, _x Stacked vector of n control inputs

L Laplacian matrix, L ¼ DG �AG

L,Li Laplacian-like stochastic matrix

0 A vector consisting of all zeros

⊗ Kronecker multiplication operator

SE 3ð Þ Special Euclidean group

Sm The set of m�m positive definite matrices

In The n� n identity matrix

Λ A positive definite matrix variable, Λ∈ Sm

C The consensus space for x, C ¼ xjx1 ¼ x2 ¼;⋯;¼ xn
� �

G Graph

V Set of vertices of G

E Set of edges of G

vi Vertex vi ∈V

vi; vj
� �

Endpoint or edge vi; vj
� �

∈ E

Ni Neighbors of vi ; Ni ¼ vj ∈V : vi; vj
� �

∈ E
� �

AG Adjacency matrix of G; AG ¼ aij
� �

DG Out-degree matrix of G; DG ¼ dij
� �

S A vector or matrix in the Schur’s inequality

R A positive definite matrix in the Schur’s inequality

Q A symmetric matrix in the Schur’s inequality

M A positive definite matrix variable

G A positive semidefinite matrix

Table 1. Frequently used notation in this chapter.

Multi-Path Planning on a Sphere with LMI-Based Collision Avoidance
http://dx.doi.org/10.5772/intechopen.71216

27



Most path-planning work generally focus on two-dimensional (2D) [5, 6], and three- dimen-
sional motion planning (3D) [7–10]. However, both path planning models are limited when the
motion is constrained to evolve on a sphere.

Looking at the main works that have been done on control on a sphere, [11] applied Lie
algebra to develop a model of self-propelled particles (as point masses) which move on the
surface of a unit sphere at constant speed. Circular formations of steady motions of the
particles around a fixed small circle on the sphere were identified as relative equilibria of the
model using a Lie group representation. The paper also provided mathematically justified
shape control laws that stabilize the set of circular formations. They also proposed a shape
control to isolate circular formations of particles with symmetric spacing by using Laplacian
control. Further work on this is presented in [12].

The works [11, 12] are based on [5, 13], where a geometric approach to the gyroscopic control
of vehicle motion in planar and three-dimensional particle models was developed for forma-
tion acquisition and control with collision avoidance in free space. They discovered three
possible types of relative equilibria for their unconstrained gyroscopic control system on
SE 3ð Þ: (i) parallel particle motion with arbitrary spacing; (ii) circular particle motion that has a
common radius, axis and direction of rotation, and arbitrary along-axis spacing; (iii) helical
particle motion that has a common radius, axis and direction of rotation, along-axis speed
(pitch) and arbitrary along-axis spacing. This approach is effective in formation control of
multiple systems in unconstrained spaces and for formations that conform to the three types of
relative equilibria described above.

Therefore, it is necessary to consider consensus on a sphere, which can be applied to the more
general motion control problem involving: (i) constrained spaces which contain static obstacles
such as clutter; (ii) speed constrained vehicles; (iii) other arbitrary formations which are
different from the relative equilibria described above. We apply consensus theory to collective
motion of a team of communicating vehicles on the sphere and the concept of constrained
attitude control (CAC) to generate collision avoidance behavior among the vehicles as they
navigate to arbitrary formations [14].

We assume that each individual vehicle can communicate with neighbors within its sensor
view. Each vehicle can therefore use the Laplacian matrix of the communication graph L in a
semidefinite program to plan consensus trajectories on the sphere. Then the concept of CAC is
used to incorporate collision avoidance, by maintaining specified minimum angles between
vectors of vehicle positions. The algorithm presented here is applicable to motion control in
both constrained and unconstrained spaces on the sphere, e.g. for planning consensus trajectories
around static obstacles or adversarial non-cooperative obstacles on the sphere. The approach
can also be applied to constrained vehicle motion of non-constant velocities. It is also possible
to generate formations on the sphere that are different from circular motion.

The rest of this chapter is organized as follows. In Section 2, we present the mathematical basis
of consensus theory, while the problem statement is presented Section 3. In Section 4, the
solution and convergence analysis are presented. This is followed by simulation results in
Section 5 and references in Section 6. Table 1 lists frequently used notation in this chapter.

Advanced Path Planning for Mobile Entities26

Notation Meaning

n Number of vehicles

i Vehicle number i

xi Position vector of vehicle i

bx Unit vector corresponding to vector x

ui, _xi Control input of vehicle i

xjobs Obstacle vector number j

xij
� �off Offset vector between vehicles i and j

wij Angle between vehicle i and obstacle j

θij Angle between vehicles i and j

αi Minimum angular separation from obstacle number i

βij Minimum angular separation between vehicles i and j

x Stacked vector of n position vectors

u, _x Stacked vector of n control inputs

L Laplacian matrix, L ¼ DG �AG

L,Li Laplacian-like stochastic matrix

0 A vector consisting of all zeros

⊗ Kronecker multiplication operator

SE 3ð Þ Special Euclidean group

Sm The set of m�m positive definite matrices

In The n� n identity matrix

Λ A positive definite matrix variable, Λ∈ Sm

C The consensus space for x, C ¼ xjx1 ¼ x2 ¼;⋯;¼ xn
� �

G Graph

V Set of vertices of G

E Set of edges of G

vi Vertex vi ∈V

vi; vj
� �

Endpoint or edge vi; vj
� �

∈ E

Ni Neighbors of vi ; Ni ¼ vj ∈V : vi; vj
� �

∈ E
� �

AG Adjacency matrix of G; AG ¼ aij
� �

DG Out-degree matrix of G; DG ¼ dij
� �

S A vector or matrix in the Schur’s inequality

R A positive definite matrix in the Schur’s inequality

Q A symmetric matrix in the Schur’s inequality

M A positive definite matrix variable

G A positive semidefinite matrix

Table 1. Frequently used notation in this chapter.

Multi-Path Planning on a Sphere with LMI-Based Collision Avoidance
http://dx.doi.org/10.5772/intechopen.71216

27



2. Mathematical background

This section briefly describes the mathematical basis of consensus theory.

2.1. Basic graph theory

We define a graph G as a pair V; Eð Þ consisting of two finite sets having elements; a set of points
called vertices V ¼ 1; 2;⋯; nf g, and a set of connecting lines called edges, E⊆ vi; vj

� �
:

�

vi; vj ∈V; j 6¼ ig or endpoints, E i; jð Þ or vi; vj
� �

, of the vertices [15]. Thus, an edge is incident with
vertices vi and vj. Graph G is said to be undirected if for every edge connecting two vertices,
communication between the vertices is possible in both directions across the edge, i.e.
vi; vj
� �

∈ E implies vj; vi
� �

∈ E; otherwise it is called a directed graph (digraph), and it is symmetric.
The quantity Vj j is called the order, and Ej j the size, respectively, of G. The set of neighbors of
node vi is denoted by Ni ¼ vj ∈V : vi; vj

� �
∈ E

� �
. The number of edges incident with vertex v

is called the degree or valence of v. Furthermore, the number of directed edges incident into v is
called the In-degree of v, while the Out-degree is similarly defined as the number of edges
incident out of the v.

We define the adjacency matrix AG ¼ aij
� �

of G of order n as the n� n matrix

aij ¼
1 if e i; jð Þ∈ E

0 otherwise

�
(1)

For the undirected graph AG is always symmetric, while AG of a digraph G is symmetric if and
only if G is symmetric. The out-degree matrix DG ¼ dij

� �
of G of order n, is an n� n matrix

dii ¼
X
i 6¼j

aij, (2)

which is simply the diagonal matrix with each diagonal element equal to the out-degree of the
corresponding vertex. The in-degree matrix of G is similarly defined.

The Laplacian matrix L ¼ lij
� �

of digraph G of order n, is the n� n matrix

L ¼ DG �AG (3)

An important property of any Laplacian L is that its rows and columns, sum to zero.

2.2. Basic consensus theory

The basic consensus problem is that of driving the states of a team of communicating agents to
an agreed state, using distributed protocols based on their communication graph. In this frame-
work, the agents (or vehicles) i i ¼ 1;⋯; nð Þ are represented by vertices of the graph, while the
edges of the graph represent communication links between them. Let xi denote the state of a
vehicle i and x is the stacked vector of the states all vehicles in the team. For systems modeled

Advanced Path Planning for Mobile Entities28

by first-order dynamics, the following first-order consensus protocol (or its variants) has been
proposed, e.g. [16, 17]

_x tð Þ ¼ �L x tð Þ � xoff
� �

: (4)

We determine that consensus has been achieved when xi � xj
�� ��! xij

� �off as t! ∞, ∀ i 6¼ j. A
more comprehensive presentation of the necessary mathematical tools for this work (including
graph theory and consensus theory), can be found in [18].

3. Problem statement

We state the problem of constrained motion on a unit sphere as follows: given a set of
communicating vehicles randomly positioned on a unit sphere, with initial positions
xi t0ð Þ∈R3, i ¼ 1,⋯, n (referenced to a coordinate frame centered on the centroid of the sphere),

a set of obstacles xjobs ∈R3, j ¼ 1,⋯, m, and the Laplacian matrix of their communication graph
L, find a sequence of collision-free consensus trajectories along the surface of the unit sphere. In
this development, a vehicle is modeled as a point mass.

The problem is illustrated in Figure 1; the unit sphere is centered on 0 which implies that

vectors xi and xjobs are unit vectors and must be kept so throughout the evolution of the

trajectory vectors. The angle between the position vectors of vehicles i and j is θij, while wik is

Figure 1. Constrained position control on a unit sphere.

Multi-Path Planning on a Sphere with LMI-Based Collision Avoidance
http://dx.doi.org/10.5772/intechopen.71216

29



2. Mathematical background

This section briefly describes the mathematical basis of consensus theory.

2.1. Basic graph theory

We define a graph G as a pair V; Eð Þ consisting of two finite sets having elements; a set of points
called vertices V ¼ 1; 2;⋯; nf g, and a set of connecting lines called edges, E⊆ vi; vj

� �
:

�

vi; vj ∈V; j 6¼ ig or endpoints, E i; jð Þ or vi; vj
� �

, of the vertices [15]. Thus, an edge is incident with
vertices vi and vj. Graph G is said to be undirected if for every edge connecting two vertices,
communication between the vertices is possible in both directions across the edge, i.e.
vi; vj
� �

∈ E implies vj; vi
� �

∈ E; otherwise it is called a directed graph (digraph), and it is symmetric.
The quantity Vj j is called the order, and Ej j the size, respectively, of G. The set of neighbors of
node vi is denoted by Ni ¼ vj ∈V : vi; vj

� �
∈ E

� �
. The number of edges incident with vertex v

is called the degree or valence of v. Furthermore, the number of directed edges incident into v is
called the In-degree of v, while the Out-degree is similarly defined as the number of edges
incident out of the v.

We define the adjacency matrix AG ¼ aij
� �

of G of order n as the n� n matrix

aij ¼
1 if e i; jð Þ∈ E

0 otherwise

�
(1)

For the undirected graph AG is always symmetric, while AG of a digraph G is symmetric if and
only if G is symmetric. The out-degree matrix DG ¼ dij

� �
of G of order n, is an n� n matrix

dii ¼
X
i 6¼j

aij, (2)

which is simply the diagonal matrix with each diagonal element equal to the out-degree of the
corresponding vertex. The in-degree matrix of G is similarly defined.

The Laplacian matrix L ¼ lij
� �

of digraph G of order n, is the n� n matrix

L ¼ DG �AG (3)

An important property of any Laplacian L is that its rows and columns, sum to zero.

2.2. Basic consensus theory

The basic consensus problem is that of driving the states of a team of communicating agents to
an agreed state, using distributed protocols based on their communication graph. In this frame-
work, the agents (or vehicles) i i ¼ 1;⋯; nð Þ are represented by vertices of the graph, while the
edges of the graph represent communication links between them. Let xi denote the state of a
vehicle i and x is the stacked vector of the states all vehicles in the team. For systems modeled

Advanced Path Planning for Mobile Entities28

by first-order dynamics, the following first-order consensus protocol (or its variants) has been
proposed, e.g. [16, 17]

_x tð Þ ¼ �L x tð Þ � xoff
� �

: (4)

We determine that consensus has been achieved when xi � xj
�� ��! xij

� �off as t! ∞, ∀ i 6¼ j. A
more comprehensive presentation of the necessary mathematical tools for this work (including
graph theory and consensus theory), can be found in [18].

3. Problem statement

We state the problem of constrained motion on a unit sphere as follows: given a set of
communicating vehicles randomly positioned on a unit sphere, with initial positions
xi t0ð Þ∈R3, i ¼ 1,⋯, n (referenced to a coordinate frame centered on the centroid of the sphere),

a set of obstacles xjobs ∈R3, j ¼ 1,⋯, m, and the Laplacian matrix of their communication graph
L, find a sequence of collision-free consensus trajectories along the surface of the unit sphere. In
this development, a vehicle is modeled as a point mass.

The problem is illustrated in Figure 1; the unit sphere is centered on 0 which implies that

vectors xi and xjobs are unit vectors and must be kept so throughout the evolution of the

trajectory vectors. The angle between the position vectors of vehicles i and j is θij, while wik is

Figure 1. Constrained position control on a unit sphere.

Multi-Path Planning on a Sphere with LMI-Based Collision Avoidance
http://dx.doi.org/10.5772/intechopen.71216

29



the angle between vehicle i and obstacle k. The control problem is to drive all xi to a consensus

position or to a formation while avoiding each other and the xjobs along the way on the unit
sphere. From the solution trajectories, obtained as unit vectors, the actual desired vehicle
trajectories are recovered via scalar multiplication and coordinate transformation.

There are two parts to the problem: consensus and collision avoidance. The consensus part is that
of incorporating consensus behavior into the team on the unit sphere, which can lead to
collective motion such as rendezvous, platooning, swarming and other formations. The second
part which is collision avoidance, is resolved by applying constrained attitude control (CAC).
The solutions are presented in the next section.

4. Solutions

We develop a solution that incorporates four steps: (i) synthesis of position consensus on the
unit sphere; (ii) formulation of CAC based collision avoidance on the unit sphere; (iii) formu-
lation of formation control on the unit sphere; (iv) consensus-based collision-free arbitrary
reconfigurations on the unit sphere.

4.1. Synthesis of position consensus on the unit sphere

The basic consensus protocol Eq. (4) on its own does not solve the consensus problem on a
sphere; neither does it solve the collision avoidance problem in adversarial situations (when
there is opposing motion and static obstacles). To incorporate consensus on a unit sphere, we
follow an optimization approach, by coding requirements as a set of linear matrix inequalities
(LMI) and solving for consensus trajectories on the sphere. The main problem at this stage is to
find a feasible sequence of consensus trajectories for each vehicle on the sphere, which satisfies
norm and avoidance constraints. For this purpose, rather than state the objective function as a
minimization or maximization problem (as usual in optimization problems), we state the
objective function as the discrete time version of a semidefinite consensus dynamics, which will
be augmented with an arbitrary number of constraints.

A basic requirement is that any vehicle i can communicate with at least one other neighboring
vehicle. Given that τ is the number of vehicles in the neighborhood of i that it can communicate
with, then i, i ¼ 1;⋯; nð Þ individually synthesizes a Laplacian-like stochastic matrix Li so that all
xi are driven to consensus on the unit sphere. The synthesis of Li is as follows. A semidefinite
matrix variable, Λi ∈S3 for each i is generated. Then

Li tð Þ ¼ τΛi
1 tð Þ �Λi

2 tð Þ ⋯ Λi
τ tð Þ� �

,

_xi tð Þ ¼ τΛi
1 tð Þ � Λi

2 tð Þ ⋯ Λi
τ tð Þ

� �
xT1 tð Þ xT2 tð Þ ⋯ xTτ tð Þ� �T

¼ �Li tð Þ xT1 tð Þ xT2 tð Þ ⋯ xTτ tð Þ� �T,
(5)

where xTi tð Þ, i ¼ 1,⋯, τ are the position vectors of vehicles that i is communicating with at time
t. For the purpose of analysis, the collective description for n vehicles is given as

Advanced Path Planning for Mobile Entities30

L tð Þ ¼
Λ1 tð Þ ⋯ 0

⋮ ⋱ ⋮

0 ⋯ Λn tð Þ

2
664

3
775

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Λ tð Þ

l11I3 ⋯ l1nI3

⋮ ⋱ ⋮

ln1I3 ⋯ lnnI3

2
664

3
775

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Γ¼L⊗ I3

, (6)

where, L ¼ lij
� �

, i; j ¼ 1;⋯; nð Þ is the collective Laplacian matrix. Note that any Λi is unknown,
we only want it to be positive semidefinite, therefore it is an optimization variable.

We can now define a collective semidefinite consensus protocol on a sphere as

_x tð Þ ¼ �L tð Þx tð Þ: (7)

The Euler’s first-order discrete time equivalents of Eqs. (5) and (7) are

xikþ1 ¼ xik � ΔtLi tð Þxik, (8)

xkþ1 ¼ xk � Δt _xk ¼ xk � ΔtL tð Þxk (9)

Each vehicle builds a SDP in which Eq. (8) is included as the dynamics constraint, augmented
with several required convex constraints. For example, for the solution trajectories to remain
on the unit sphere, norm constraints will be defined for each i as

xi
� �T

k xikþ1 � xik
� � ¼ 0: (10)

Eq. (10) is the discrete time version of xi tð ÞT _xi tð Þ ¼ 0 or x tð ÞT _x tð Þ ¼ 0, which guarantees that

xi tð ÞTxi tð Þ ¼ 1 or x tð ÞTx tð Þ ¼ n for n vehicles, iff xi 0ð Þ�� �� ¼ 1∀ i. Eq. (8) drives the positions xi 0ð Þ
to consensus while the norm constraint Eq. (10) keeps the trajectories on the unit sphere.

Theorem 1: As long as the associated (static) communication graph of L has a spanning tree,
the strategy _x tð Þ ¼ �Lx tð Þ achieves global consensus asymptotically for L [19].

Proof: The proof [19], is essentially that of convergence of the first-order consensus dynamics.

Next, we use the proof of Theorem 1 as a basis to develop the proof convergence of Eq. (7).

Theorem 2: The time varying system Eq. (7) achieves consensus if L is connected. Note that
this proof had already been presented in [20].

Proof: Note that if x belongs to the consensus space C ¼ xjx1 ¼ x2 ¼;⋯;¼ xn
� �

, then _x ¼ 0, (i.e.
all vehicles have stopped moving). Because C is the nullspace of L tð Þ, where L tð Þx ¼ 0 ∀x.
Meaning that once x enters C it stays there since there is no more motion. If consensus has not
been achieved then x∉C, consider a Lyapunov candidate function V ¼ xTΓx; V > 0 unless
x∈ C. Then,

Multi-Path Planning on a Sphere with LMI-Based Collision Avoidance
http://dx.doi.org/10.5772/intechopen.71216

31



the angle between vehicle i and obstacle k. The control problem is to drive all xi to a consensus

position or to a formation while avoiding each other and the xjobs along the way on the unit
sphere. From the solution trajectories, obtained as unit vectors, the actual desired vehicle
trajectories are recovered via scalar multiplication and coordinate transformation.

There are two parts to the problem: consensus and collision avoidance. The consensus part is that
of incorporating consensus behavior into the team on the unit sphere, which can lead to
collective motion such as rendezvous, platooning, swarming and other formations. The second
part which is collision avoidance, is resolved by applying constrained attitude control (CAC).
The solutions are presented in the next section.

4. Solutions

We develop a solution that incorporates four steps: (i) synthesis of position consensus on the
unit sphere; (ii) formulation of CAC based collision avoidance on the unit sphere; (iii) formu-
lation of formation control on the unit sphere; (iv) consensus-based collision-free arbitrary
reconfigurations on the unit sphere.

4.1. Synthesis of position consensus on the unit sphere

The basic consensus protocol Eq. (4) on its own does not solve the consensus problem on a
sphere; neither does it solve the collision avoidance problem in adversarial situations (when
there is opposing motion and static obstacles). To incorporate consensus on a unit sphere, we
follow an optimization approach, by coding requirements as a set of linear matrix inequalities
(LMI) and solving for consensus trajectories on the sphere. The main problem at this stage is to
find a feasible sequence of consensus trajectories for each vehicle on the sphere, which satisfies
norm and avoidance constraints. For this purpose, rather than state the objective function as a
minimization or maximization problem (as usual in optimization problems), we state the
objective function as the discrete time version of a semidefinite consensus dynamics, which will
be augmented with an arbitrary number of constraints.

A basic requirement is that any vehicle i can communicate with at least one other neighboring
vehicle. Given that τ is the number of vehicles in the neighborhood of i that it can communicate
with, then i, i ¼ 1;⋯; nð Þ individually synthesizes a Laplacian-like stochastic matrix Li so that all
xi are driven to consensus on the unit sphere. The synthesis of Li is as follows. A semidefinite
matrix variable, Λi ∈S3 for each i is generated. Then

Li tð Þ ¼ τΛi
1 tð Þ �Λi

2 tð Þ ⋯ Λi
τ tð Þ� �

,

_xi tð Þ ¼ τΛi
1 tð Þ � Λi

2 tð Þ ⋯ Λi
τ tð Þ

� �
xT1 tð Þ xT2 tð Þ ⋯ xTτ tð Þ� �T

¼ �Li tð Þ xT1 tð Þ xT2 tð Þ ⋯ xTτ tð Þ� �T,
(5)

where xTi tð Þ, i ¼ 1,⋯, τ are the position vectors of vehicles that i is communicating with at time
t. For the purpose of analysis, the collective description for n vehicles is given as

Advanced Path Planning for Mobile Entities30

L tð Þ ¼
Λ1 tð Þ ⋯ 0

⋮ ⋱ ⋮

0 ⋯ Λn tð Þ

2
664

3
775

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Λ tð Þ

l11I3 ⋯ l1nI3

⋮ ⋱ ⋮

ln1I3 ⋯ lnnI3

2
664

3
775

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Γ¼L⊗ I3

, (6)

where, L ¼ lij
� �

, i; j ¼ 1;⋯; nð Þ is the collective Laplacian matrix. Note that any Λi is unknown,
we only want it to be positive semidefinite, therefore it is an optimization variable.

We can now define a collective semidefinite consensus protocol on a sphere as

_x tð Þ ¼ �L tð Þx tð Þ: (7)

The Euler’s first-order discrete time equivalents of Eqs. (5) and (7) are

xikþ1 ¼ xik � ΔtLi tð Þxik, (8)

xkþ1 ¼ xk � Δt _xk ¼ xk � ΔtL tð Þxk (9)

Each vehicle builds a SDP in which Eq. (8) is included as the dynamics constraint, augmented
with several required convex constraints. For example, for the solution trajectories to remain
on the unit sphere, norm constraints will be defined for each i as

xi
� �T

k xikþ1 � xik
� � ¼ 0: (10)

Eq. (10) is the discrete time version of xi tð ÞT _xi tð Þ ¼ 0 or x tð ÞT _x tð Þ ¼ 0, which guarantees that

xi tð ÞTxi tð Þ ¼ 1 or x tð ÞTx tð Þ ¼ n for n vehicles, iff xi 0ð Þ�� �� ¼ 1∀ i. Eq. (8) drives the positions xi 0ð Þ
to consensus while the norm constraint Eq. (10) keeps the trajectories on the unit sphere.

Theorem 1: As long as the associated (static) communication graph of L has a spanning tree,
the strategy _x tð Þ ¼ �Lx tð Þ achieves global consensus asymptotically for L [19].

Proof: The proof [19], is essentially that of convergence of the first-order consensus dynamics.

Next, we use the proof of Theorem 1 as a basis to develop the proof convergence of Eq. (7).

Theorem 2: The time varying system Eq. (7) achieves consensus if L is connected. Note that
this proof had already been presented in [20].

Proof: Note that if x belongs to the consensus space C ¼ xjx1 ¼ x2 ¼;⋯;¼ xn
� �

, then _x ¼ 0, (i.e.
all vehicles have stopped moving). Because C is the nullspace of L tð Þ, where L tð Þx ¼ 0 ∀x.
Meaning that once x enters C it stays there since there is no more motion. If consensus has not
been achieved then x∉C, consider a Lyapunov candidate function V ¼ xTΓx; V > 0 unless
x∈ C. Then,

Multi-Path Planning on a Sphere with LMI-Based Collision Avoidance
http://dx.doi.org/10.5772/intechopen.71216

31



_V ¼ xTΓ _x þ _xTΓx,
¼ �xTΓL tð Þx� xTL tð ÞTΓx,
¼ �xTΓΛ tð ÞΓx� xTΓΛ tð ÞΓx,
¼ �2xTΓΛ tð ÞΓx,
¼ �2zTΛ tð Þz,

(11)

where z ¼ Γx 6¼ 0 for x∉C. This implies that x approaches a point in C as t! ∞, which proves
the claim. Eq. (11) is true for as long as L is nonempty, i.e., if some vehicles can sense, see or
communicate with each other at all times.

4.2. Formulation of CAC based collision avoidance on the unit sphere

To incorporate collision avoidance, we apply the concept of constrained attitude control
(CAC), as illustrated in Figure 1. We want the time evolution of the position vectors x1 tð Þ,
x2 tð Þ and x3 tð Þ to avoid two constraint regions around x1obs and x2obs. The obstacle regions are
defined by cones, whose base radii are r1 and r2, respectively. Let the angle between vehicles i
and j be θij, and that between vehicle i and obstacle k be wik. Then the requirements for collision
avoidance are: w11 ≥α1, w21 ≥α1, w31 ≥α1, and w12 ≥α2, w22 ≥α2, w32 ≥α2, ∀t∈ t0; tf

� �
. They have

the following equivalent quadratic constraints:

x1 tð ÞTx1obs ≤ cosα1, (12)

x2 tð ÞTx1obs ≤ cosα1, (13)

x3 tð ÞTx1obs ≤ cosα1, (14)

x1 tð ÞTx2obs ≤ cosα2, (15)

x2 tð ÞTx2obs ≤ cosα2, (16)

x3 tð ÞTx2obs ≤ cosα2: (17)

By using the Schur’s complement formula [21], the above constraints will be converted to the
form of linear matrix inequalities (LMI) in order to include them into the respective SDPs. The
Schur’s complement formula states that the inequality

SR�1ST �Q ≤ 0 (18)

where Q ¼ QT, R ¼ RT, and R > 0, is equivalent to, and can be represented by the linear
matrix inequality

Q S
ST R

� �
≥ 0: (19)

Next, we attempt to make our quadratic constraints to look like the Schur’s inequality. Observe
that Eq. (12) is equivalent to

Advanced Path Planning for Mobile Entities32

x1 tð ÞT x1obs
T

h i
|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

x1 tð ÞT

03
1
2
I3

1
2
I3 03

2
64

3
75 x1 tð Þ

x1obs

" #

|fflfflfflfflffl{zfflfflfflfflffl}
x1 tð Þ

≤ cosα1 (20)

Multiply Eq. (20) by 2 and we have

x1 tð ÞT 03 I3
I3 03

� �

|fflfflfflfflfflffl{zfflfflfflfflfflffl}
G

x1 tð Þ ≤ 2 cosα1: (21)

We desire a positive definite G, i.e. G > 0, or whose eigenvalues are all nonnegative (this is
synonymous with R in the Schur inequality). To make G positive definite, one only needs to
shift the eigenvalues by choosing a positive real number μ which is larger than the largest
absolute value of the eigenvalues of G, then

x1 tð ÞT μI6 þ
03 I3
I3 03

� �� �
x1 tð Þ ≤ 2 cosα1 þ μ

� �
: (22)

Let M ¼ μI6 þ
03 I3
I3 03

� �� ��1
, then M is positive definite. Thus, following the Schur’s com-

plement formula, the LMI equivalent of Eq. (12) becomes

2 cosα1 þ μ
� � x1 tð Þ

x1obs

" #

|fflfflfflfflffl{zfflfflfflfflffl}

T

x1 tð Þ
x1obs

" #
M

2
66666664

3
77777775
≥ 0, (23)

The LMI equivalents of Eqs. (12) to (17) in discrete time can now be written as follows

2 cosα1 þ μ
� � x1 kþ 1ð Þ

x1obs

" #

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

T

x1 kþ 1ð Þ
x1obs

" #

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
M

2
66666664

3
77777775
≥ 0, (24)

2 cosα1 þ μ
� � x2 kþ 1ð Þ

x1obs

" #

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

T

x2 kþ 1ð Þ
x1obs

" #

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
M

2
66666664

3
77777775
≥ 0, (25)

Multi-Path Planning on a Sphere with LMI-Based Collision Avoidance
http://dx.doi.org/10.5772/intechopen.71216

33



_V ¼ xTΓ _x þ _xTΓx,
¼ �xTΓL tð Þx� xTL tð ÞTΓx,
¼ �xTΓΛ tð ÞΓx� xTΓΛ tð ÞΓx,
¼ �2xTΓΛ tð ÞΓx,
¼ �2zTΛ tð Þz,

(11)

where z ¼ Γx 6¼ 0 for x∉C. This implies that x approaches a point in C as t! ∞, which proves
the claim. Eq. (11) is true for as long as L is nonempty, i.e., if some vehicles can sense, see or
communicate with each other at all times.

4.2. Formulation of CAC based collision avoidance on the unit sphere

To incorporate collision avoidance, we apply the concept of constrained attitude control
(CAC), as illustrated in Figure 1. We want the time evolution of the position vectors x1 tð Þ,
x2 tð Þ and x3 tð Þ to avoid two constraint regions around x1obs and x2obs. The obstacle regions are
defined by cones, whose base radii are r1 and r2, respectively. Let the angle between vehicles i
and j be θij, and that between vehicle i and obstacle k be wik. Then the requirements for collision
avoidance are: w11 ≥α1, w21 ≥α1, w31 ≥α1, and w12 ≥α2, w22 ≥α2, w32 ≥α2, ∀t∈ t0; tf

� �
. They have

the following equivalent quadratic constraints:

x1 tð ÞTx1obs ≤ cosα1, (12)

x2 tð ÞTx1obs ≤ cosα1, (13)

x3 tð ÞTx1obs ≤ cosα1, (14)

x1 tð ÞTx2obs ≤ cosα2, (15)

x2 tð ÞTx2obs ≤ cosα2, (16)

x3 tð ÞTx2obs ≤ cosα2: (17)

By using the Schur’s complement formula [21], the above constraints will be converted to the
form of linear matrix inequalities (LMI) in order to include them into the respective SDPs. The
Schur’s complement formula states that the inequality

SR�1ST �Q ≤ 0 (18)

where Q ¼ QT, R ¼ RT, and R > 0, is equivalent to, and can be represented by the linear
matrix inequality

Q S
ST R

� �
≥ 0: (19)

Next, we attempt to make our quadratic constraints to look like the Schur’s inequality. Observe
that Eq. (12) is equivalent to

Advanced Path Planning for Mobile Entities32

x1 tð ÞT x1obs
T

h i
|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

x1 tð ÞT

03
1
2
I3

1
2
I3 03

2
64

3
75 x1 tð Þ

x1obs

" #

|fflfflfflfflffl{zfflfflfflfflffl}
x1 tð Þ

≤ cosα1 (20)

Multiply Eq. (20) by 2 and we have

x1 tð ÞT 03 I3
I3 03

� �

|fflfflfflfflfflffl{zfflfflfflfflfflffl}
G

x1 tð Þ ≤ 2 cosα1: (21)

We desire a positive definite G, i.e. G > 0, or whose eigenvalues are all nonnegative (this is
synonymous with R in the Schur inequality). To make G positive definite, one only needs to
shift the eigenvalues by choosing a positive real number μ which is larger than the largest
absolute value of the eigenvalues of G, then

x1 tð ÞT μI6 þ
03 I3
I3 03

� �� �
x1 tð Þ ≤ 2 cosα1 þ μ

� �
: (22)

Let M ¼ μI6 þ
03 I3
I3 03

� �� ��1
, then M is positive definite. Thus, following the Schur’s com-

plement formula, the LMI equivalent of Eq. (12) becomes

2 cosα1 þ μ
� � x1 tð Þ

x1obs

" #

|fflfflfflfflffl{zfflfflfflfflffl}

T

x1 tð Þ
x1obs

" #
M

2
66666664

3
77777775
≥ 0, (23)

The LMI equivalents of Eqs. (12) to (17) in discrete time can now be written as follows

2 cosα1 þ μ
� � x1 kþ 1ð Þ

x1obs

" #

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

T

x1 kþ 1ð Þ
x1obs

" #

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
M

2
66666664

3
77777775
≥ 0, (24)

2 cosα1 þ μ
� � x2 kþ 1ð Þ

x1obs

" #

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

T

x2 kþ 1ð Þ
x1obs

" #

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
M

2
66666664

3
77777775
≥ 0, (25)

Multi-Path Planning on a Sphere with LMI-Based Collision Avoidance
http://dx.doi.org/10.5772/intechopen.71216

33



2 cosα1 þ μ
� � x3 kþ 1ð Þ

x1obs

" #

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

T

x3 kþ 1ð Þ
x1obs

" #

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
M

2
66666664

3
77777775
≥ 0, (26)

2 cosα2 þ μ
� � x1 kþ 1ð Þ

x2obs

" #

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

T

x1 kþ 1ð Þ
x2obs

" #

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
M

2
66666664

3
77777775
≥ 0, (27)

2 cosα2 þ μ
� � x2 kþ 1ð Þ

x2obs

" #

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

T

x2 kþ 1ð Þ
x2obs

" #

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
M

2
66666664

3
77777775
≥ 0, (28)

2 cosα2 þ μ
� � x3 kþ 1ð Þ

x2obs

" #

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

T

x3 kþ 1ð Þ
x2obs

" #

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
M

2
66666664

3
77777775
≥ 0: (29)

Figure 2 shows the result for applying the above strategy to the rendezvous of 4 vehicles on a
sphere, with avoidance of a static obstacle xobs, with α ¼ 30o.

4.3. Formulation of formation control on the unit sphere

Formation patterns are obtained by specifying a minimum angular separation of βij tð Þ between
any two vehicles i and j thereby defining relative spacing between individual vehicles. Using

the avoidance strategy formerly described, the constraint θij ≥ βij∀ i, j is used to define the set of
avoidance constraints that will result in the desired formation pattern. The relative spacing
results in intervehicle collision avoidance. For n vehicles, the avoidance requirements result in
extra P n� 2ð Þ ¼ n!

n�2ð Þ! constraints, which are included along with the static obstacle avoidance

constraints such as Eqs. (24) to (29). Figure 3 shows the result for applying the above strategy
to the rendezvous with inter-vehicle avoidance and static obstacle avoidance, of four vehicles,
using a fully connected graph Topology 1 in Figure 4. In this experiment α ¼ 30o and the

Advanced Path Planning for Mobile Entities34

minimum angular separations between the vehicles is set at a constant value βij ¼ 20o∀ i, j.
Therefore, in addition to the four static obstacle avoidance constraints (such as Eqs. (24) to
(29), with α1 ¼ α), each vehicle has three more intervehicle collision avoidance constraints
such as

Figure 2. Four-vehicle rendezvous on a unit sphere with collision avoidance of a static obstacle. The figure shows the
evolution of the x, y, z positions of the four vehicles x1, x1, x3, x4 from initial to final positions.

Figure 3. Four-vehicle formation acquisition on a unit sphere with collision avoidance of a static obstacle, and with inter-
vehicle collision avoidance. The figure shows the evolution of the x, y, z positions of the four vehicles x1, x1, x3, x4 from
initial to final positions.

Multi-Path Planning on a Sphere with LMI-Based Collision Avoidance
http://dx.doi.org/10.5772/intechopen.71216

35



2 cosα1 þ μ
� � x3 kþ 1ð Þ

x1obs

" #

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

T

x3 kþ 1ð Þ
x1obs

" #

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
M

2
66666664

3
77777775
≥ 0, (26)

2 cosα2 þ μ
� � x1 kþ 1ð Þ

x2obs

" #

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

T

x1 kþ 1ð Þ
x2obs

" #

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
M

2
66666664

3
77777775
≥ 0, (27)

2 cosα2 þ μ
� � x2 kþ 1ð Þ

x2obs

" #

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

T

x2 kþ 1ð Þ
x2obs

" #

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
M

2
66666664

3
77777775
≥ 0, (28)

2 cosα2 þ μ
� � x3 kþ 1ð Þ

x2obs

" #

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

T

x3 kþ 1ð Þ
x2obs

" #

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
M

2
66666664

3
77777775
≥ 0: (29)

Figure 2 shows the result for applying the above strategy to the rendezvous of 4 vehicles on a
sphere, with avoidance of a static obstacle xobs, with α ¼ 30o.

4.3. Formulation of formation control on the unit sphere

Formation patterns are obtained by specifying a minimum angular separation of βij tð Þ between
any two vehicles i and j thereby defining relative spacing between individual vehicles. Using

the avoidance strategy formerly described, the constraint θij ≥ βij∀ i, j is used to define the set of
avoidance constraints that will result in the desired formation pattern. The relative spacing
results in intervehicle collision avoidance. For n vehicles, the avoidance requirements result in
extra P n� 2ð Þ ¼ n!

n�2ð Þ! constraints, which are included along with the static obstacle avoidance

constraints such as Eqs. (24) to (29). Figure 3 shows the result for applying the above strategy
to the rendezvous with inter-vehicle avoidance and static obstacle avoidance, of four vehicles,
using a fully connected graph Topology 1 in Figure 4. In this experiment α ¼ 30o and the

Advanced Path Planning for Mobile Entities34

minimum angular separations between the vehicles is set at a constant value βij ¼ 20o∀ i, j.
Therefore, in addition to the four static obstacle avoidance constraints (such as Eqs. (24) to
(29), with α1 ¼ α), each vehicle has three more intervehicle collision avoidance constraints
such as

Figure 2. Four-vehicle rendezvous on a unit sphere with collision avoidance of a static obstacle. The figure shows the
evolution of the x, y, z positions of the four vehicles x1, x1, x3, x4 from initial to final positions.

Figure 3. Four-vehicle formation acquisition on a unit sphere with collision avoidance of a static obstacle, and with inter-
vehicle collision avoidance. The figure shows the evolution of the x, y, z positions of the four vehicles x1, x1, x3, x4 from
initial to final positions.

Multi-Path Planning on a Sphere with LMI-Based Collision Avoidance
http://dx.doi.org/10.5772/intechopen.71216

35



2 cos βij þ μ
� � xi kþ 1ð Þ

xj kþ 1ð Þ

" #

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

T

xi kþ 1ð Þ
xj kþ 1ð Þ

" #

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
M

2
66666664

3
77777775
≥ 0, (30)

∀ i, j i 6¼ jð Þ.
Putting it all together, the optimization problem of finding a feasible sequence of consensus
trajectories with collision avoidance on a unit sphere may be posed as a semidefinite program
(SDP) as follows. Given the set of initial positions xi t0ð Þ, i ¼ 1⋯nð Þ and the plant Eq. (5) for each
vehicle, find a feasible sequence of trajectories that satisfies the following constraints:

xikþ1 ¼ xik � ΔtLi tð Þxik, dynamics constraint

xi
� �T

k xikþ1 � xik
� � ¼ 0, norm constraint

2 cosαij þ μ
� � xi kþ 1ð Þ

xjobs

2
4

3
5

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

T

xi kþ 1ð Þ

xjobs

2
4

3
5

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
M

2
66666666664

3
77777777775

≥ 0, static obstacle avoidance constraint

2 cos βij þ μ
� � xi kþ 1ð Þ

xj kþ 1ð Þ

" #

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

T

xi kþ 1ð Þ
xj kþ 1ð Þ

" #

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
M

2
6666666664

3
7777777775

≥ 0, intervehicle avoidance constraint

Figure 4. Topology 1 (left) is a fully connected communication graph with no leader, topology 2 (center) is a cyclic
communication graph with one leader, node 1, and topology 3 (right) is a cyclic communication graph with no leader.

Advanced Path Planning for Mobile Entities36

where xikþ1 and Λi
k (which are components of Li) are the optimization variables. They are

declared as SDP variables where Λi
k shapes the trajectories x

i
kþ1 to satisfy norm and avoidance

constraints.

4.4. Consensus-based collision-free arbitrary reconfigurations on the unit sphere

Consider a more traditional reconfiguration problem that may not require formation control.
For example, in a tracking problem, several vehicles are required to change their positions by
tracking that of a set of virtual leaders, whose positions may be static or time-varying. For this to
be possible, each vehicle must be connected to its corresponding virtual leader via a leader-
follower digraph, see Figure 5 for an example topology for three vehicles. In Figure 5, the
vertices in dashed circles are the states of the virtual leaders, while those with solid circles
correspond to the states of the real vehicles. There are three unconnected separate leader
follower digraphs (edges indicated with arrows). In addition, there is an undirected graph
(edges without arrows) which enables the vehicles to communicate bidirectionally to provide
data for inter-vehicle collision avoidance.

If xiv tð Þ is the state of a virtual leader corresponding to vehicle i, then for each leader-follower

vehicle pair xi tð Þ ¼ xiv tð ÞT xi tð ÞT
h iT

the corresponding leader-follower Laplacian matrix is

Lt tð Þ ¼ 0 0
0 �1

� �
. (31)

Figure 5. Multiple virtual leaders graph topology with an undirected topology.

Multi-Path Planning on a Sphere with LMI-Based Collision Avoidance
http://dx.doi.org/10.5772/intechopen.71216

37



2 cos βij þ μ
� � xi kþ 1ð Þ

xj kþ 1ð Þ

" #

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

T

xi kþ 1ð Þ
xj kþ 1ð Þ

" #

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
M

2
66666664

3
77777775
≥ 0, (30)

∀ i, j i 6¼ jð Þ.
Putting it all together, the optimization problem of finding a feasible sequence of consensus
trajectories with collision avoidance on a unit sphere may be posed as a semidefinite program
(SDP) as follows. Given the set of initial positions xi t0ð Þ, i ¼ 1⋯nð Þ and the plant Eq. (5) for each
vehicle, find a feasible sequence of trajectories that satisfies the following constraints:

xikþ1 ¼ xik � ΔtLi tð Þxik, dynamics constraint

xi
� �T

k xikþ1 � xik
� � ¼ 0, norm constraint

2 cosαij þ μ
� � xi kþ 1ð Þ

xjobs

2
4

3
5

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

T

xi kþ 1ð Þ

xjobs

2
4

3
5

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
M

2
66666666664

3
77777777775

≥ 0, static obstacle avoidance constraint

2 cos βij þ μ
� � xi kþ 1ð Þ

xj kþ 1ð Þ

" #

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

T

xi kþ 1ð Þ
xj kþ 1ð Þ

" #

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
M

2
6666666664

3
7777777775

≥ 0, intervehicle avoidance constraint

Figure 4. Topology 1 (left) is a fully connected communication graph with no leader, topology 2 (center) is a cyclic
communication graph with one leader, node 1, and topology 3 (right) is a cyclic communication graph with no leader.

Advanced Path Planning for Mobile Entities36

where xikþ1 and Λi
k (which are components of Li) are the optimization variables. They are

declared as SDP variables where Λi
k shapes the trajectories x

i
kþ1 to satisfy norm and avoidance

constraints.

4.4. Consensus-based collision-free arbitrary reconfigurations on the unit sphere

Consider a more traditional reconfiguration problem that may not require formation control.
For example, in a tracking problem, several vehicles are required to change their positions by
tracking that of a set of virtual leaders, whose positions may be static or time-varying. For this to
be possible, each vehicle must be connected to its corresponding virtual leader via a leader-
follower digraph, see Figure 5 for an example topology for three vehicles. In Figure 5, the
vertices in dashed circles are the states of the virtual leaders, while those with solid circles
correspond to the states of the real vehicles. There are three unconnected separate leader
follower digraphs (edges indicated with arrows). In addition, there is an undirected graph
(edges without arrows) which enables the vehicles to communicate bidirectionally to provide
data for inter-vehicle collision avoidance.

If xiv tð Þ is the state of a virtual leader corresponding to vehicle i, then for each leader-follower

vehicle pair xi tð Þ ¼ xiv tð ÞT xi tð ÞT
h iT

the corresponding leader-follower Laplacian matrix is

Lt tð Þ ¼ 0 0
0 �1

� �
. (31)

Figure 5. Multiple virtual leaders graph topology with an undirected topology.

Multi-Path Planning on a Sphere with LMI-Based Collision Avoidance
http://dx.doi.org/10.5772/intechopen.71216

37



The corresponding collective dynamics of xi tð Þ is

_x i tð Þ ¼ � Λi tð Þ 0
0 Λi tð Þ

" #
Lt tð Þ⊗ I3
� �

xi tð Þ: (32)

This configuration was applied in the reconfiguration experiment in Section 5.2. Practical appli-
cation of this strategy to the problem of separation in air traffic control is presented in [18, 20].

5. Simulation results

Due to limitation of space, two simulation results are presented for consensus with collision
avoidance on the unit sphere, more simulation results are in [18, 20]. The first experiment is to
test formation acquisition with avoidance on the sphere. The second experiment is to test
arbitrary reconfigurations on the sphere with collision avoidance. Three different communica-
tion topologies used are shown in Figure 4. In Figure 4, Topology 1 (left) is a fully connected
communication graph with no leader, Topology 2 (center) is a cyclic communication graph with
one leader, node 1, and Topology 3 (right) is a cyclic communication graph with no leader.

Optimization software Sedumi [22] and Yalmip [23] running inside Matlab R2009a, were used
for solving all the problems. The simulations were done on an Intel R Core(TM)2 Duo P8600 @
2.40GHz with 2 GB RAM, running Windows 7.

5.1. Formation acquisition on the unit sphere with avoidance

In this experiment, ten vehicles converge to a formation on the sphere, which is realized by
maintaining a relative spacing with each other while also avoiding a static obstacle, with
α ¼ 30o. Angle βij ¼ 20o is set to maintain the relative spacing between the vehicles
∀ i, j ¼ 1⋯10, i 6¼ j. The initial positions are:

x1 0ð Þ ¼ 0:3417 0:5555 0:7581½ �T
x2 0ð Þ ¼ 0:4960 0:1270 0:8589½ �T
x3 0ð Þ ¼ 0:3045 0:9497 0:0730½ �T
x4 0ð Þ ¼ 0:5735 0:7952 0:1967½ �T
x5 0ð Þ ¼ 0:8005 0:3867 0:4580½ �T
x6 0ð Þ ¼ 0:3727 0:7372 0:5637½ �T
x7 0ð Þ ¼ 0:0355 0:5117 0:8585½ �T
x8 0ð Þ ¼ 0:6553 0:7428 0:1371½ �T
x9 0ð Þ ¼ 0:9188 0:2446 0:3094½ �T
x10 0ð Þ ¼ 0:0261 0:8773 0:4792½ �T

The result for Topology 1 is shown in Figure 6 (left), while the right figure shows the result
obtained using Topology 3 – a cyclic graph which produces a circulant Laplacian L, whose
dynamics leads to swirling motion. The proof is in [18].

Advanced Path Planning for Mobile Entities38

When relative spacing are specified between the vehicles, the motion obtained from this
Laplacian is like the result obtained in [11]. However, when there is no relative spacing
specified, the circular motion converges to a point. Using a circulant matrix such as that of
Topology 3, one can vary the radius of the circular formation achieved r ¼ cos θij� �

; by setting

θij equal for all i, j and varying its size with time. If the magnitude of angle θ is reduced, the
radius of the circular formation structure obtained also reduces, and vice versa. Figure 7 (left)
shows the result for setting θij ¼ 30o∀ i, j for four vehicles. The center and right figures show

the results for ten vehicles as θij moves gradually from 20o toward 0o. When θij ¼ 0∀ i, j, the
vehicles rendezvous to a point.

5.2. Collision free reconfiguration on the unit sphere with avoidance of no-fly zones

This is a more traditional reconfiguration problem which we try to solve by using the consen-
sus based protocols presented in this chapter. Three flying vehicles (e.g. UAVs), are required to
fly from their initial positions to given final positions. There are cross-paths (inter-vehicle

Figure 6. Ten-vehicle formation acquisition using topology 1 (left), and using topology 3 (right).

Figure 7. Four-vehicle formation acquisition using topology 3 with βij ¼ 30o (left), and ten-vehicle formation acquisition,
using topology 3, with βij ¼ 20o (center) and βij ¼ 0o (right).

Multi-Path Planning on a Sphere with LMI-Based Collision Avoidance
http://dx.doi.org/10.5772/intechopen.71216

39



The corresponding collective dynamics of xi tð Þ is

_x i tð Þ ¼ � Λi tð Þ 0
0 Λi tð Þ

" #
Lt tð Þ⊗ I3
� �

xi tð Þ: (32)

This configuration was applied in the reconfiguration experiment in Section 5.2. Practical appli-
cation of this strategy to the problem of separation in air traffic control is presented in [18, 20].

5. Simulation results

Due to limitation of space, two simulation results are presented for consensus with collision
avoidance on the unit sphere, more simulation results are in [18, 20]. The first experiment is to
test formation acquisition with avoidance on the sphere. The second experiment is to test
arbitrary reconfigurations on the sphere with collision avoidance. Three different communica-
tion topologies used are shown in Figure 4. In Figure 4, Topology 1 (left) is a fully connected
communication graph with no leader, Topology 2 (center) is a cyclic communication graph with
one leader, node 1, and Topology 3 (right) is a cyclic communication graph with no leader.

Optimization software Sedumi [22] and Yalmip [23] running inside Matlab R2009a, were used
for solving all the problems. The simulations were done on an Intel R Core(TM)2 Duo P8600 @
2.40GHz with 2 GB RAM, running Windows 7.

5.1. Formation acquisition on the unit sphere with avoidance

In this experiment, ten vehicles converge to a formation on the sphere, which is realized by
maintaining a relative spacing with each other while also avoiding a static obstacle, with
α ¼ 30o. Angle βij ¼ 20o is set to maintain the relative spacing between the vehicles
∀ i, j ¼ 1⋯10, i 6¼ j. The initial positions are:

x1 0ð Þ ¼ 0:3417 0:5555 0:7581½ �T
x2 0ð Þ ¼ 0:4960 0:1270 0:8589½ �T
x3 0ð Þ ¼ 0:3045 0:9497 0:0730½ �T
x4 0ð Þ ¼ 0:5735 0:7952 0:1967½ �T
x5 0ð Þ ¼ 0:8005 0:3867 0:4580½ �T
x6 0ð Þ ¼ 0:3727 0:7372 0:5637½ �T
x7 0ð Þ ¼ 0:0355 0:5117 0:8585½ �T
x8 0ð Þ ¼ 0:6553 0:7428 0:1371½ �T
x9 0ð Þ ¼ 0:9188 0:2446 0:3094½ �T
x10 0ð Þ ¼ 0:0261 0:8773 0:4792½ �T

The result for Topology 1 is shown in Figure 6 (left), while the right figure shows the result
obtained using Topology 3 – a cyclic graph which produces a circulant Laplacian L, whose
dynamics leads to swirling motion. The proof is in [18].

Advanced Path Planning for Mobile Entities38

When relative spacing are specified between the vehicles, the motion obtained from this
Laplacian is like the result obtained in [11]. However, when there is no relative spacing
specified, the circular motion converges to a point. Using a circulant matrix such as that of
Topology 3, one can vary the radius of the circular formation achieved r ¼ cos θij� �

; by setting

θij equal for all i, j and varying its size with time. If the magnitude of angle θ is reduced, the
radius of the circular formation structure obtained also reduces, and vice versa. Figure 7 (left)
shows the result for setting θij ¼ 30o∀ i, j for four vehicles. The center and right figures show

the results for ten vehicles as θij moves gradually from 20o toward 0o. When θij ¼ 0∀ i, j, the
vehicles rendezvous to a point.

5.2. Collision free reconfiguration on the unit sphere with avoidance of no-fly zones

This is a more traditional reconfiguration problem which we try to solve by using the consen-
sus based protocols presented in this chapter. Three flying vehicles (e.g. UAVs), are required to
fly from their initial positions to given final positions. There are cross-paths (inter-vehicle

Figure 6. Ten-vehicle formation acquisition using topology 1 (left), and using topology 3 (right).

Figure 7. Four-vehicle formation acquisition using topology 3 with βij ¼ 30o (left), and ten-vehicle formation acquisition,
using topology 3, with βij ¼ 20o (center) and βij ¼ 0o (right).

Multi-Path Planning on a Sphere with LMI-Based Collision Avoidance
http://dx.doi.org/10.5772/intechopen.71216

39



collision constraints) in addition to no-fly zones (static obstacle constraints), between the initial
and final positions. The initial positions are:

x10 0ð Þ ¼ 0:8659 0 � 0:4999½ �T
x20 0ð Þ ¼ 0:4165 � 0:5721 0:7071½ �T
x30 0ð Þ ¼ �0:5878 � 0:809 0½ �T

The desired final positions are:

x1f 0ð Þ ¼ �0:4330 � 0:7499 0:4999½ �T

x2f 0ð Þ ¼ �0:2939 � 0:9045 � 0:309½ �T

x3f 0ð Þ ¼ 0:9393 � 0:3052 0:1564½ �T

For inter-vehicle collision avoidance, they are required to maintain a minimum safety distance
ofr ¼ cos 10o units. Five no-fly zones are imposed on the vehicles at the following positions:

Figure 8. Three-vehicle reconfiguration with collision avoidance and avoidance of no-fly zones.

Advanced Path Planning for Mobile Entities40

x1obs ¼ 0:5237 � 0:7208 0:454½ �T

x2obs ¼ 0:2939 � 0:9045 � 0:309½ �T

x3obs ¼ 0 � 0:9877 0:1564½ �T

x4obs ¼ 0:5878 � 0:809 0½ �T

x5obs ¼ 0 � 0:9511 0:309½ �T

The radii of the no-fly zones are equal to r, therefore βij ¼ αij ¼ 10o∀ i, j i 6¼ jð Þ for this simula-
tion. The result is shown in Figure 8.

On a final note, we have attempted to solve the problem of consensus in a spherical
coordinate system by solving in on the unit sphere. The same unit sphere was used in
[11]. This is convenient because the results are easier to visualize and compute on the unit
sphere. The results presented here can be applied directly to real-life planetary navigation
problems such as horizontal separation of aircraft [18, 20], simply by transforming actual
position vectors into unit vectors in the unit sphere, solving to obtain the solution trajec-
tories, and transforming the solutions back to actual desired trajectories in the real-world
coordinates. The unit of measurement for implementation will therefore depend on the
application at hand.

Author details

Innocent Okoloko

Address all correspondence to: okoloko@ieee.org

Department of Electrical Engineering, Universidad de Ingenieria y Tecnologia, Lima, Peru

References

[1] Beard RW, McLain TW, Nelson DB, Kingston D. Decentralized cooperative aerial surveil-
lance using fixed-wing miniature UAVs. Proceedings of the IEEE. 2006;94(7):1306-1324.
DOI: 10.1109/JPROC.2006.876930

[2] Leonard NE, Paley DA, Lekien F, Sepulchre R, Fratantoni DM, Davis RE. Collective
motion, sensor networks and ocean sampling. Proceedings of the IEEE. 2007;95(1):48-74.
DOI: 10.1109/JPROC.2006.887295

[3] Mesbahi M, Hadaegh H. Formation flying control of multiple spacecraft via graphs, matrix
inequalities, and switching. Journal of Guidance, Control, and Dynamics. 2001;24(2):369-377.
DOI: 10.2514/2.4721

Multi-Path Planning on a Sphere with LMI-Based Collision Avoidance
http://dx.doi.org/10.5772/intechopen.71216

41



collision constraints) in addition to no-fly zones (static obstacle constraints), between the initial
and final positions. The initial positions are:

x10 0ð Þ ¼ 0:8659 0 � 0:4999½ �T
x20 0ð Þ ¼ 0:4165 � 0:5721 0:7071½ �T
x30 0ð Þ ¼ �0:5878 � 0:809 0½ �T

The desired final positions are:

x1f 0ð Þ ¼ �0:4330 � 0:7499 0:4999½ �T

x2f 0ð Þ ¼ �0:2939 � 0:9045 � 0:309½ �T

x3f 0ð Þ ¼ 0:9393 � 0:3052 0:1564½ �T

For inter-vehicle collision avoidance, they are required to maintain a minimum safety distance
ofr ¼ cos 10o units. Five no-fly zones are imposed on the vehicles at the following positions:

Figure 8. Three-vehicle reconfiguration with collision avoidance and avoidance of no-fly zones.

Advanced Path Planning for Mobile Entities40

x1obs ¼ 0:5237 � 0:7208 0:454½ �T

x2obs ¼ 0:2939 � 0:9045 � 0:309½ �T

x3obs ¼ 0 � 0:9877 0:1564½ �T

x4obs ¼ 0:5878 � 0:809 0½ �T

x5obs ¼ 0 � 0:9511 0:309½ �T

The radii of the no-fly zones are equal to r, therefore βij ¼ αij ¼ 10o∀ i, j i 6¼ jð Þ for this simula-
tion. The result is shown in Figure 8.

On a final note, we have attempted to solve the problem of consensus in a spherical
coordinate system by solving in on the unit sphere. The same unit sphere was used in
[11]. This is convenient because the results are easier to visualize and compute on the unit
sphere. The results presented here can be applied directly to real-life planetary navigation
problems such as horizontal separation of aircraft [18, 20], simply by transforming actual
position vectors into unit vectors in the unit sphere, solving to obtain the solution trajec-
tories, and transforming the solutions back to actual desired trajectories in the real-world
coordinates. The unit of measurement for implementation will therefore depend on the
application at hand.

Author details

Innocent Okoloko

Address all correspondence to: okoloko@ieee.org

Department of Electrical Engineering, Universidad de Ingenieria y Tecnologia, Lima, Peru

References

[1] Beard RW, McLain TW, Nelson DB, Kingston D. Decentralized cooperative aerial surveil-
lance using fixed-wing miniature UAVs. Proceedings of the IEEE. 2006;94(7):1306-1324.
DOI: 10.1109/JPROC.2006.876930

[2] Leonard NE, Paley DA, Lekien F, Sepulchre R, Fratantoni DM, Davis RE. Collective
motion, sensor networks and ocean sampling. Proceedings of the IEEE. 2007;95(1):48-74.
DOI: 10.1109/JPROC.2006.887295

[3] Mesbahi M, Hadaegh H. Formation flying control of multiple spacecraft via graphs, matrix
inequalities, and switching. Journal of Guidance, Control, and Dynamics. 2001;24(2):369-377.
DOI: 10.2514/2.4721

Multi-Path Planning on a Sphere with LMI-Based Collision Avoidance
http://dx.doi.org/10.5772/intechopen.71216

41



[4] Blackwood G, Lay O, Deininger B, GudimM, Ahmed A, Duren R, Noeckerb C, Barden B.
The StarLight mission: A formation-flying stellar interferometer. In: SPIE 4852, Interfer-
ometry in Space; 22 August; Waikoloa, Hawaii. SPIE Digital Library; 2002. DOI: 10.1117/
12.460942

[5] Justh EW, Krishnaprasad PS. Equilibria and steering laws for planar formations. Systems
and Control Letters. 2004;52(1):25-38. DOI: 10.1016/j.sysconle.2003.10.004

[6] Sepulchre R, Pale DA, Leonard NE. Stabilization of planar collective motion: All-to-all
communication. IEEE Transactions on Automatic Control. 2007;52(5):811-824. DOI:
10.1109/TAC.2007.898077

[7] Chandler PR, Pachter M, Rasmussen S. UAV cooperative control. In: IEEE ACC; 25–27
June; Arlington, VA. IEEEXplore; 2001. pp. 50-55. DOI: 10.1109/ACC.2001.945512

[8] Richards A, Schouwenaars T, How JP, Feron E. Spacecraft trajectory planning with
avoidance constraints using mixed-integer linear programming. AIAA Journal of Guid-
ance Control and Dynamics. 2002;25:755-764. DOI: https://doi.org/10.2514/2.4943

[9] Okoloko I, Basson A. Consensus with collision avoidance: An LMI approach. In: 5th IEEE
International Conference on Automation, Robotics and Applications; 06–08 December;
Wellington, NZ. IEEE; 2011. ISBN:9781457703287

[10] Okoloko I. Path Planning for Multiple Spacecraft using Consensus with LMI Avoidance
Constraints. In: IEEE Aerospace Conference; 3–10 March; Big Sky, Montana. IEEEXplore;
2012. pp. 1-8. DOI: 10.1109/AERO.2012.6187118

[11] Paley D. Stabilization of collective motion on a sphere. Automatica. 2009;41:212-216. DOI:
10.1016/j.automatica.2008.06.012

[12] Hernandez S, Paley DA. Stabilization of collective motion in a time-invariant flowfield on
a rotating sphere. In: IEEE ACC; St. Louis, MO: IEEEXplore; 2009. pp. 623-628. DOI:
10.1109/ACC.2009.5160631

[13] Justh EW, Krishnaprasad PS. Natural frames and interacting particles in three dimen-
sions. In: Proceedings of Joint 44th IEEE CDC and European control conf.; 12–15 Decem-
ber; Seville, Spain. IEEEXplore; 2005. pp. 2841-2846. DOI: 10.1109/CDC.2005.1582594

[14] Kim Y, Mesbahi M. Quadratically constrained attitude control via semidefinite program-
ming. IEEE Transactions on Automatic Control. 2004;49:731-735. DOI: 10.1109/TAC.2004.
825959

[15] Biggs N. Algebraic Graph Theory, Cambridge Tracks in Mathematics. 2nd ed. Cambridge
University Press; 1974. p. 205. ISBN: 0521458978

[16] Peng L, Zhao Y, Tian B, Zhang J, Bing-Hong W, Hai-Tao Z, Zhou T. Consensus of self-
driven agents with avoidance of collisions. Physical Review. 2009;79(E). DOI: 10.1103/
PhysRevE.79.026113

Advanced Path Planning for Mobile Entities42

[17] Olfati-Saber R. Flocking for multi-agent dynamic systems: Algorithms and theory. IEEE
Transactions on Automatic Control. 2006;51(3):401-420. DOI: 10.1109/TAC.2005.864190

[18] Okoloko I. Multi-path planning and multi-body constrained attitude control [disserta-
tion] PhD Thesis. Stellenbosch, South Africa: Stellenbosch University; 2012. p. 185. Avail-
able from: http://hdl.handle.net/10019.1/71905

[19] Ren W, Beard RW, McLain TW. Coordination variables and consensus building in multiple
vehicle systems. In: Kumar V, LeonardNE,Morse AS, editors. Lecture Notes in Control and
Information Sciences. 309th ed. Berlin: Springer-Verlag; 2005. pp. 171-188 ISSN: 2572-4479

[20] Okoloko I. Consensus Based DistributedMotion Planning on a Sphere. In: IEEE ACC; 17–19
June; Washington DC. IEEEXplore; 2013. pp. 6132-6137. DOI: 10.1109/ACC.2013.6580799

[21] Boyd S, Ghaoui LE, Feron E, Balakrishnan V. Linear Matrix Inequalities in System and
Control Theory. Philadelphia, PA: SIAM; 1994. p. 205. ISBN: 0-89871-334-X

[22] Sturm JF. Using SeDuMi 1.02, a Matlab toolbox for optimization over symmetric cones.
Optimization Methods and Software. 1998;11(12):625-653. DOI: 10.1080/10556789908805766

[23] Yalmip LJ. A toolbox for modelling and optimization in Matlab. In: IEEE CACSD Confer-
ence; 2–4 Sept.; Taipei, Taiwan. IEEEXplore; 2004. pp. 284-289. DOI: 10.1109/CACSD.2004.
1393890

Multi-Path Planning on a Sphere with LMI-Based Collision Avoidance
http://dx.doi.org/10.5772/intechopen.71216

43



[4] Blackwood G, Lay O, Deininger B, GudimM, Ahmed A, Duren R, Noeckerb C, Barden B.
The StarLight mission: A formation-flying stellar interferometer. In: SPIE 4852, Interfer-
ometry in Space; 22 August; Waikoloa, Hawaii. SPIE Digital Library; 2002. DOI: 10.1117/
12.460942

[5] Justh EW, Krishnaprasad PS. Equilibria and steering laws for planar formations. Systems
and Control Letters. 2004;52(1):25-38. DOI: 10.1016/j.sysconle.2003.10.004

[6] Sepulchre R, Pale DA, Leonard NE. Stabilization of planar collective motion: All-to-all
communication. IEEE Transactions on Automatic Control. 2007;52(5):811-824. DOI:
10.1109/TAC.2007.898077

[7] Chandler PR, Pachter M, Rasmussen S. UAV cooperative control. In: IEEE ACC; 25–27
June; Arlington, VA. IEEEXplore; 2001. pp. 50-55. DOI: 10.1109/ACC.2001.945512

[8] Richards A, Schouwenaars T, How JP, Feron E. Spacecraft trajectory planning with
avoidance constraints using mixed-integer linear programming. AIAA Journal of Guid-
ance Control and Dynamics. 2002;25:755-764. DOI: https://doi.org/10.2514/2.4943

[9] Okoloko I, Basson A. Consensus with collision avoidance: An LMI approach. In: 5th IEEE
International Conference on Automation, Robotics and Applications; 06–08 December;
Wellington, NZ. IEEE; 2011. ISBN:9781457703287

[10] Okoloko I. Path Planning for Multiple Spacecraft using Consensus with LMI Avoidance
Constraints. In: IEEE Aerospace Conference; 3–10 March; Big Sky, Montana. IEEEXplore;
2012. pp. 1-8. DOI: 10.1109/AERO.2012.6187118

[11] Paley D. Stabilization of collective motion on a sphere. Automatica. 2009;41:212-216. DOI:
10.1016/j.automatica.2008.06.012

[12] Hernandez S, Paley DA. Stabilization of collective motion in a time-invariant flowfield on
a rotating sphere. In: IEEE ACC; St. Louis, MO: IEEEXplore; 2009. pp. 623-628. DOI:
10.1109/ACC.2009.5160631

[13] Justh EW, Krishnaprasad PS. Natural frames and interacting particles in three dimen-
sions. In: Proceedings of Joint 44th IEEE CDC and European control conf.; 12–15 Decem-
ber; Seville, Spain. IEEEXplore; 2005. pp. 2841-2846. DOI: 10.1109/CDC.2005.1582594

[14] Kim Y, Mesbahi M. Quadratically constrained attitude control via semidefinite program-
ming. IEEE Transactions on Automatic Control. 2004;49:731-735. DOI: 10.1109/TAC.2004.
825959

[15] Biggs N. Algebraic Graph Theory, Cambridge Tracks in Mathematics. 2nd ed. Cambridge
University Press; 1974. p. 205. ISBN: 0521458978

[16] Peng L, Zhao Y, Tian B, Zhang J, Bing-Hong W, Hai-Tao Z, Zhou T. Consensus of self-
driven agents with avoidance of collisions. Physical Review. 2009;79(E). DOI: 10.1103/
PhysRevE.79.026113

Advanced Path Planning for Mobile Entities42

[17] Olfati-Saber R. Flocking for multi-agent dynamic systems: Algorithms and theory. IEEE
Transactions on Automatic Control. 2006;51(3):401-420. DOI: 10.1109/TAC.2005.864190

[18] Okoloko I. Multi-path planning and multi-body constrained attitude control [disserta-
tion] PhD Thesis. Stellenbosch, South Africa: Stellenbosch University; 2012. p. 185. Avail-
able from: http://hdl.handle.net/10019.1/71905

[19] Ren W, Beard RW, McLain TW. Coordination variables and consensus building in multiple
vehicle systems. In: Kumar V, LeonardNE,Morse AS, editors. Lecture Notes in Control and
Information Sciences. 309th ed. Berlin: Springer-Verlag; 2005. pp. 171-188 ISSN: 2572-4479

[20] Okoloko I. Consensus Based DistributedMotion Planning on a Sphere. In: IEEE ACC; 17–19
June; Washington DC. IEEEXplore; 2013. pp. 6132-6137. DOI: 10.1109/ACC.2013.6580799

[21] Boyd S, Ghaoui LE, Feron E, Balakrishnan V. Linear Matrix Inequalities in System and
Control Theory. Philadelphia, PA: SIAM; 1994. p. 205. ISBN: 0-89871-334-X

[22] Sturm JF. Using SeDuMi 1.02, a Matlab toolbox for optimization over symmetric cones.
Optimization Methods and Software. 1998;11(12):625-653. DOI: 10.1080/10556789908805766

[23] Yalmip LJ. A toolbox for modelling and optimization in Matlab. In: IEEE CACSD Confer-
ence; 2–4 Sept.; Taipei, Taiwan. IEEEXplore; 2004. pp. 284-289. DOI: 10.1109/CACSD.2004.
1393890

Multi-Path Planning on a Sphere with LMI-Based Collision Avoidance
http://dx.doi.org/10.5772/intechopen.71216

43



Chapter 3

Multi-Spacecraft Attitude Path Planning Using
Consensus with LMI-Based Exclusion Constraints

Innocent Okoloko

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.71580

Provisional chapter

Multi-Spacecraft Attitude Path Planning Using
Consensus with LMI-Based Exclusion Constraints

Innocent Okoloko

Additional information is available at the end of the chapter

Abstract

Space missions involving multi-vehicle teams require the cooperative navigation and
attitude slewing of the spacecraft or satellites, for such purposes as interferometry and
optimal sensor coverage. This introduces extra constraints of exclusion zones between
the spacecraft, in addition to the default exclusion constraints already introduced by
damaging or blinding celestial objects. In this work, we present a quaternion-based
attitude consensus protocol by using the communication topology of the spacecraft
team. By using the Laplacian matrix of their communication graph and a semidefinite
program, a synthesis of a time-varying optimal stochastic matrix P is done, which is
used to generate various consensus and cooperative attitude trajectories from the initial
attitudes of the spacecraft. The concept of quaternion-based quadratically constrained
attitude control is then employed to satisfy cone avoidance constraints, where exclusion
zones are identified, expressed as linear matrix inequalities (LMI), and solved by
semidefinite programming (SDP).

Keywords: attitude path planning, consensus, exclusion, optimization, LMI

1. Introduction

Attitude control is the process of making a spacecraft, e.g. a satellite to point toward a specific
direction of interest, and attitude path planning is an essential part of space missions. Some
current and future space missions require the deployment of teams of spacecraft for such pur-
poses as interferometry and sensor coverage, e.g. [1, 2]. The general problem of attitude control
(AC) is important, not only in the navigation of satellites but also of other spacecraft [3], aircraft,
and robots. For this reason, the topic has been studied extensively in the literature, e.g. [4–10].

Attitude path planning is a challenging problem and becomes more challenging when it
involves multiple spacecraft. First, they are moving at very high speed in highly dynamic

© The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons

Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,

distribution, and eproduction in any medium, provided the original work is properly cited.

DOI: 10.5772/intechopen.71580

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



Chapter 3

Multi-Spacecraft Attitude Path Planning Using
Consensus with LMI-Based Exclusion Constraints

Innocent Okoloko

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.71580

Provisional chapter

Multi-Spacecraft Attitude Path Planning Using
Consensus with LMI-Based Exclusion Constraints

Innocent Okoloko

Additional information is available at the end of the chapter

Abstract

Space missions involving multi-vehicle teams require the cooperative navigation and
attitude slewing of the spacecraft or satellites, for such purposes as interferometry and
optimal sensor coverage. This introduces extra constraints of exclusion zones between
the spacecraft, in addition to the default exclusion constraints already introduced by
damaging or blinding celestial objects. In this work, we present a quaternion-based
attitude consensus protocol by using the communication topology of the spacecraft
team. By using the Laplacian matrix of their communication graph and a semidefinite
program, a synthesis of a time-varying optimal stochastic matrix P is done, which is
used to generate various consensus and cooperative attitude trajectories from the initial
attitudes of the spacecraft. The concept of quaternion-based quadratically constrained
attitude control is then employed to satisfy cone avoidance constraints, where exclusion
zones are identified, expressed as linear matrix inequalities (LMI), and solved by
semidefinite programming (SDP).

Keywords: attitude path planning, consensus, exclusion, optimization, LMI

1. Introduction

Attitude control is the process of making a spacecraft, e.g. a satellite to point toward a specific
direction of interest, and attitude path planning is an essential part of space missions. Some
current and future space missions require the deployment of teams of spacecraft for such pur-
poses as interferometry and sensor coverage, e.g. [1, 2]. The general problem of attitude control
(AC) is important, not only in the navigation of satellites but also of other spacecraft [3], aircraft,
and robots. For this reason, the topic has been studied extensively in the literature, e.g. [4–10].

Attitude path planning is a challenging problem and becomes more challenging when it
involves multiple spacecraft. First, they are moving at very high speed in highly dynamic

© The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons

Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,

distribution, and eproduction in any medium, provided the original work is properly cited.

DOI: 10.5772/intechopen.71580

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



Notation Meaning

SCi, SCi Spacecraft i

qi Attitude quaternion vector of SCi, SCi, q
i = [q1 q2 q3| q4]

T

q�i or qi
∗

Conjugate of qi

qi Vector part of qi, qi ¼ q1 q2 q3
� �T

qi
� Antisymmetric of qi

q Stacked vector of more than one quaternion vectors

qoff Stacked vector of more than one offset quaternion vectors

Ω,Π Quaternion dynamics plant matrix

P Quaternion dynamics Laplacian-like plant matrix

ω Angular velocity

τ Control torque

J Inertia matrix

L Laplacian matrix

P Laplacian-like stochastic matrix

In Then n�n identity matrix

Sm The set of m�m positive definite matrices

~A Cone avoidance constraint matrix

Ri Rotation matrix corresponding to qi

F I
SCi

Fixed coordinate (Inertial) frame with origin at SCi’s center

FB
SCi

Rotational coordinate (Body) frame with origin at SCi’s center

vBobsi Vector of obstacle in FB
SCi

vIobsi Vector of obstacle in F I
SCi

vIobsi :j Vector of the jth obstacle in F I
SCi

vBcami
Vector of the SCi’s camera in FB

SCi

vIcami
Vector of the SCi’s camera in F I

SCi

⊗ Kronecker multiplication operator

⊙ Quaternion multiplication operator

⊖ Quaternion difference operator

t0 Initial time

tf Final time

xi Position vector of SCi, SCi

x Stacked vector of n position vectors

(xij)off Offset vector between i and j

xoff Stacked vector of n offset vectors

C The consensus space for q, C ¼ qjq1 ¼ q2 ¼;⋯;¼ qn
� �

Table 1. Frequently used notations in this chapter.

Advanced Path Planning for Mobile Entities46

environments, subject to external constraints such as blinding celestial objects, which can
damage onboard sensors. Secondly, because they are in a team, they must be careful with each
other when changing attitude, so as not to collide with each other and damage appendages.
We consider a team of networked spacecraft, which share some common objectives, where
consensus theory based on graph Laplacians can be applied [11, 12].

Spacecraft attitude dynamics is usually represented by unit quaternions because quaternion
dynamics do not encounter the singularities associated with other representations. However,
quaternion dynamics are non-linear, which makes it difficult to apply Laplacian-like dynamics
directly to quaternions.

Next, we consider some previous work on constrained attitude path planning. In [4], attitude
control was formulated as a quadratically constrained optimization problem. Linear matrix
inequalities (LMIs) and semidefinite programming (SDP) were employed to solve it for a
multiple spacecraft scenario in [6]. In [10], spacecraft attitude stabilization on a sphere was
studied. The control torques required for effective attitude stabilization were reduced from
three to two. In [12], a consensus-based approach was applied in distributed attitude align-
ment of a team of communicating spacecraft flying in formation. In [13], a Laplacian-based
protocol implemented using the modified Rodriquez parameters (MRP) was employed in leader
following attitude control of spacecraft.

However, none of these aforementioned works apply consensus theory directly to quaternions,
except our previous works [7–9]. In addition, only [4, 6–9] tackle the important problem of
attitude cone avoidance constraints. Moreover, the works [4, 6, 7] were developed for space-
craft in the same coordinate frame, which does not have a direct practical implementation
unless developed further.

To handle the difficulty of nonlinearity in quaternion kinematics, we cast the Q-CAC
problem as a semidefinite program, which is subject to convex quadratic constraints,
stated as LMI. Then a series of Laplacian-like matrices are synthesized, which satisfy the
constraints and enables the spacecraft achieve consensus with exclusion. We employed
available optimization software tools such as Sedumi [14] and Yalmip [15] running inside
MATLAB®, for simulation.

Moreover, the solution presented here was developed for the realistic scenario of spacecraft in
different coordinate frames, making it practical to implement directly. Therefore, the contribu-
tions of this chapter are aspects of our previous works [7–9], which are: (1) development of a
quaternion consensus protocol; (2) incorporating dynamic cone avoidance constraints into the
consensus framework; (3) providing a mathematical convergence analysis for the quaternion-
based consensus framework; (4) extending the approach to multiple spacecraft in any coordi-
nate frames, thereby making it more suitable for practical implementation.

The rest of the chapter is organized as follows: The problem statement is in Section 2, followed
by brief mathematical preliminaries in Section 3. The solution technique and convergence
analysis are in Section 4, numerical simulations in Section 5, and conclusion in Section 6.
Notations frequently used in this chapter are listed in Table 1. The words obstacle, avoidance,
exclusion, exclusion vector may be used interchangeably in this chapter.

Multi-Spacecraft Attitude Path Planning Using Consensus with LMI-Based Exclusion Constraints
http://dx.doi.org/10.5772/intechopen.71580

47



Notation Meaning

SCi, SCi Spacecraft i

qi Attitude quaternion vector of SCi, SCi, q
i = [q1 q2 q3| q4]

T

q�i or qi
∗

Conjugate of qi

qi Vector part of qi, qi ¼ q1 q2 q3
� �T

qi
� Antisymmetric of qi

q Stacked vector of more than one quaternion vectors

qoff Stacked vector of more than one offset quaternion vectors

Ω,Π Quaternion dynamics plant matrix

P Quaternion dynamics Laplacian-like plant matrix

ω Angular velocity

τ Control torque

J Inertia matrix

L Laplacian matrix

P Laplacian-like stochastic matrix

In Then n�n identity matrix

Sm The set of m�m positive definite matrices

~A Cone avoidance constraint matrix

Ri Rotation matrix corresponding to qi

F I
SCi

Fixed coordinate (Inertial) frame with origin at SCi’s center

FB
SCi

Rotational coordinate (Body) frame with origin at SCi’s center

vBobsi Vector of obstacle in FB
SCi

vIobsi Vector of obstacle in F I
SCi

vIobsi :j Vector of the jth obstacle in F I
SCi

vBcami
Vector of the SCi’s camera in FB

SCi

vIcami
Vector of the SCi’s camera in F I

SCi

⊗ Kronecker multiplication operator

⊙ Quaternion multiplication operator

⊖ Quaternion difference operator

t0 Initial time

tf Final time

xi Position vector of SCi, SCi

x Stacked vector of n position vectors

(xij)off Offset vector between i and j

xoff Stacked vector of n offset vectors

C The consensus space for q, C ¼ qjq1 ¼ q2 ¼;⋯;¼ qn
� �

Table 1. Frequently used notations in this chapter.

Advanced Path Planning for Mobile Entities46

environments, subject to external constraints such as blinding celestial objects, which can
damage onboard sensors. Secondly, because they are in a team, they must be careful with each
other when changing attitude, so as not to collide with each other and damage appendages.
We consider a team of networked spacecraft, which share some common objectives, where
consensus theory based on graph Laplacians can be applied [11, 12].

Spacecraft attitude dynamics is usually represented by unit quaternions because quaternion
dynamics do not encounter the singularities associated with other representations. However,
quaternion dynamics are non-linear, which makes it difficult to apply Laplacian-like dynamics
directly to quaternions.

Next, we consider some previous work on constrained attitude path planning. In [4], attitude
control was formulated as a quadratically constrained optimization problem. Linear matrix
inequalities (LMIs) and semidefinite programming (SDP) were employed to solve it for a
multiple spacecraft scenario in [6]. In [10], spacecraft attitude stabilization on a sphere was
studied. The control torques required for effective attitude stabilization were reduced from
three to two. In [12], a consensus-based approach was applied in distributed attitude align-
ment of a team of communicating spacecraft flying in formation. In [13], a Laplacian-based
protocol implemented using the modified Rodriquez parameters (MRP) was employed in leader
following attitude control of spacecraft.

However, none of these aforementioned works apply consensus theory directly to quaternions,
except our previous works [7–9]. In addition, only [4, 6–9] tackle the important problem of
attitude cone avoidance constraints. Moreover, the works [4, 6, 7] were developed for space-
craft in the same coordinate frame, which does not have a direct practical implementation
unless developed further.

To handle the difficulty of nonlinearity in quaternion kinematics, we cast the Q-CAC
problem as a semidefinite program, which is subject to convex quadratic constraints,
stated as LMI. Then a series of Laplacian-like matrices are synthesized, which satisfy the
constraints and enables the spacecraft achieve consensus with exclusion. We employed
available optimization software tools such as Sedumi [14] and Yalmip [15] running inside
MATLAB®, for simulation.

Moreover, the solution presented here was developed for the realistic scenario of spacecraft in
different coordinate frames, making it practical to implement directly. Therefore, the contribu-
tions of this chapter are aspects of our previous works [7–9], which are: (1) development of a
quaternion consensus protocol; (2) incorporating dynamic cone avoidance constraints into the
consensus framework; (3) providing a mathematical convergence analysis for the quaternion-
based consensus framework; (4) extending the approach to multiple spacecraft in any coordi-
nate frames, thereby making it more suitable for practical implementation.

The rest of the chapter is organized as follows: The problem statement is in Section 2, followed
by brief mathematical preliminaries in Section 3. The solution technique and convergence
analysis are in Section 4, numerical simulations in Section 5, and conclusion in Section 6.
Notations frequently used in this chapter are listed in Table 1. The words obstacle, avoidance,
exclusion, exclusion vector may be used interchangeably in this chapter.

Multi-Spacecraft Attitude Path Planning Using Consensus with LMI-Based Exclusion Constraints
http://dx.doi.org/10.5772/intechopen.71580

47



2. Problem statement

The problem of attitude reconfiguration of a team of communicating spacecraft with avoid-
ance constraints can be stated as follows. Given a set of communicating spacecraft with initial
positions at xi(t0)∈R3 i = 1⋯n, initial attitudes represented by quaternions qi(t0), generate a
sequence of consensus trajectories that drive the team to a consensus attitude q(tf) while
satisfying exclusion, avoidance and norm constraints.

There are two aspects of the problem stated above: the first is a consensus problem, wherein it is
desired to drive the attitudes to a collective consensus attitude, or to various formation atti-
tudes. For bare consensus, the final consensus is that each spacecraft should eventually point
to the average of the initial attitudes. However, relative offset quaternions can be applied so the
consensus attitude can be a desired formation attitude, e.g. each spacecraft can point at 5

�

away from each other about the z axis. The second problem is that of avoidance constraints.
This is also important for the team, because spacecraft usually have appendages, some have
thrusters that emit plumes, and some have instruments that can be damaged by blinding
celestial objects or by the appendage or plume of a team member.

However, the ordinary consensus protocol was not developed for quaternion dynamics. It
violates the non-linearity of quaternion kinematics and the quaternion norm preserving
requirement. Moreover, the ordinary consensus algorithm also does not incorporate collision
avoidance in adversarial situations; this is a Q-CAC problem. Thus, in this paper, we present
aspects of our previous works [7–9, 16], where we combined consensus theory with
constrained optimization to solve the problems stated above. We cast the problems as a
semidefinite program (SDP), which is augmented with some convex quadratic constraints writ-
ten as linear matrix inequalities (LMI).

We present a quaternion consensus protocol that computes a consensus attitude trajectory
each time step, and a Q-CAC optimization procedure, which decides whether it is safe to
follow the computed attitude trajectory or not. When generated trajectories are unsafe, it

Figure 1. Constrained attitude control problem for a single-spacecraft single-exclusion scenario.

Advanced Path Planning for Mobile Entities48

computes a new set of quaternion vectors that avoid collision and the cycle repeats until
consensus is achieved.

To understand the avoidance aspect, we begin with a simpler illustration of the spacecraft Q-
CAC problem with a single spacecraft and a single obstacle (exclusion) vector, as shown in
Figure 1.

Let SCi denote spacecraft i, and vIcami
tð Þ denote the unit camera vector in F I

SCi
corresponding

to the SCi’s attitude qi (see Table 1 for definitions). Also, let vIobsi tð Þ be the attitude quater-

nion representing the obstacle to be avoided (e.g. the Sun, as shown in Figure 1). It is
desired that the time evolution of camera vector vIcami

t0ð Þ to vIcami
tf
� �

should avoid vIobsi tð Þ
always, while maintaining a minimum angular separation of ∅. The requirement can there-
fore be stated as

θ tð Þ ≥∅ (1)

or

vIcami
tð ÞTvIobsi tð Þ ≤ cos∅,

∀t∈ t0; tf
� � (2)

The constraint is non-convex and quadratic and should be convexified for it to be represented as a
LMI. The convexification was provided in [4], using the quaternion attitude constraints formu-
lation developed in [3] for a single-spacecraft single-obstacle scenario. For that solution, vIobs
was static, vIcami

tð Þ was evolving, and both vectors were in the same coordinate frame. This
makes it incomplete for practical implementation because, in reality the obstacle and space-
craft are in different coordinate frames.

In [7–9, 16], we extended the previous avoidance solution to multiple spacecraft. Then we
developed a consensus theory of quaternions and appended the new avoidance protocols. We
further solved the problem for spacecraft and dynamic obstacles in different coordinate frames
to make the solutions more suitable for practical implementation. Next, we present the basic
mathematical preliminaries.

3. Mathematical background

In this section, we consider the two basic mathematical theories relevant to this chapter.

3.1. Quaternion-based rotational dynamics

It is convenient to use unit quaternions to represent the attitude of a rigid body rotating in
three-dimensional space (such as spacecraft or satellite) because quaternions are not suscepti-
ble to the problems of singularities inherent in using Euler angles [17].

Multi-Spacecraft Attitude Path Planning Using Consensus with LMI-Based Exclusion Constraints
http://dx.doi.org/10.5772/intechopen.71580

49



2. Problem statement

The problem of attitude reconfiguration of a team of communicating spacecraft with avoid-
ance constraints can be stated as follows. Given a set of communicating spacecraft with initial
positions at xi(t0)∈R3 i = 1⋯n, initial attitudes represented by quaternions qi(t0), generate a
sequence of consensus trajectories that drive the team to a consensus attitude q(tf) while
satisfying exclusion, avoidance and norm constraints.

There are two aspects of the problem stated above: the first is a consensus problem, wherein it is
desired to drive the attitudes to a collective consensus attitude, or to various formation atti-
tudes. For bare consensus, the final consensus is that each spacecraft should eventually point
to the average of the initial attitudes. However, relative offset quaternions can be applied so the
consensus attitude can be a desired formation attitude, e.g. each spacecraft can point at 5

�

away from each other about the z axis. The second problem is that of avoidance constraints.
This is also important for the team, because spacecraft usually have appendages, some have
thrusters that emit plumes, and some have instruments that can be damaged by blinding
celestial objects or by the appendage or plume of a team member.

However, the ordinary consensus protocol was not developed for quaternion dynamics. It
violates the non-linearity of quaternion kinematics and the quaternion norm preserving
requirement. Moreover, the ordinary consensus algorithm also does not incorporate collision
avoidance in adversarial situations; this is a Q-CAC problem. Thus, in this paper, we present
aspects of our previous works [7–9, 16], where we combined consensus theory with
constrained optimization to solve the problems stated above. We cast the problems as a
semidefinite program (SDP), which is augmented with some convex quadratic constraints writ-
ten as linear matrix inequalities (LMI).

We present a quaternion consensus protocol that computes a consensus attitude trajectory
each time step, and a Q-CAC optimization procedure, which decides whether it is safe to
follow the computed attitude trajectory or not. When generated trajectories are unsafe, it

Figure 1. Constrained attitude control problem for a single-spacecraft single-exclusion scenario.

Advanced Path Planning for Mobile Entities48

computes a new set of quaternion vectors that avoid collision and the cycle repeats until
consensus is achieved.

To understand the avoidance aspect, we begin with a simpler illustration of the spacecraft Q-
CAC problem with a single spacecraft and a single obstacle (exclusion) vector, as shown in
Figure 1.

Let SCi denote spacecraft i, and vIcami
tð Þ denote the unit camera vector in F I

SCi
corresponding

to the SCi’s attitude qi (see Table 1 for definitions). Also, let vIobsi tð Þ be the attitude quater-

nion representing the obstacle to be avoided (e.g. the Sun, as shown in Figure 1). It is
desired that the time evolution of camera vector vIcami

t0ð Þ to vIcami
tf
� �

should avoid vIobsi tð Þ
always, while maintaining a minimum angular separation of ∅. The requirement can there-
fore be stated as

θ tð Þ ≥∅ (1)

or

vIcami
tð ÞTvIobsi tð Þ ≤ cos∅,

∀t∈ t0; tf
� � (2)

The constraint is non-convex and quadratic and should be convexified for it to be represented as a
LMI. The convexification was provided in [4], using the quaternion attitude constraints formu-
lation developed in [3] for a single-spacecraft single-obstacle scenario. For that solution, vIobs
was static, vIcami

tð Þ was evolving, and both vectors were in the same coordinate frame. This
makes it incomplete for practical implementation because, in reality the obstacle and space-
craft are in different coordinate frames.

In [7–9, 16], we extended the previous avoidance solution to multiple spacecraft. Then we
developed a consensus theory of quaternions and appended the new avoidance protocols. We
further solved the problem for spacecraft and dynamic obstacles in different coordinate frames
to make the solutions more suitable for practical implementation. Next, we present the basic
mathematical preliminaries.

3. Mathematical background

In this section, we consider the two basic mathematical theories relevant to this chapter.

3.1. Quaternion-based rotational dynamics

It is convenient to use unit quaternions to represent the attitude of a rigid body rotating in
three-dimensional space (such as spacecraft or satellite) because quaternions are not suscepti-
ble to the problems of singularities inherent in using Euler angles [17].

Multi-Spacecraft Attitude Path Planning Using Consensus with LMI-Based Exclusion Constraints
http://dx.doi.org/10.5772/intechopen.71580

49



The quaternion is a four-element vector

q ¼ q1 q2 q3jq4
� �T

: (3)

Here, [q1 q2 q3]
T is a vector representing the axis of rotation in the Cartesian (x, y, z) coordinates

and q4 is a scalar representing the angle of rotation, of the quaternion. The difference between
two quaternions q1 and q2 can be represented in multiplication terms as

qd ¼ q1⊙ q�2 ¼ q1⊙ �q21 � q22 � q23 � q24
� �T

¼ Q2q1,
(4)

where q�2 is the conjugate of q2 and ⊙ is defined in Table 1. Q2 is defined as

Qi ¼

qi4 qi3 �qi2 �qi1
�qi3 qi4 qi1 �qi2
qi2 �qi1 qi4 �qi3
qi1 qi2 qi3 qi4

2
6664

3
7775 (5)

It follows that the transformation of q1 to q2 was achieved by the rotation quaternion qd.

The rotational dynamics for the ith quaternion is

_qi ¼ 1
2
Ωiqi ¼ 1

2
Πiωi, (6)

where

Ωi ¼

0 ωi
3 �ωi

2 ωi
1

�ωi
3 0 ωi

1 ωi
2

ωi
2 �ωi

1 0 ωi
3

�ωi
1 �ωi

2 �ωi
3 0

2
6664

3
7775 (7)

Πi ¼

�qi4 qi3 �qi2
�qi3 �qi4 qi1
qi2 �qi1 �qi4
qi1 qi2 qi3

2
6664

3
7775 (8)

Euler’s first-order discretization of Eq. (6) gives

qi kþ 1ð Þ ¼ qi kð Þ þ Δt
2
Πi kð Þωi kð Þ: (9)

The dynamics of the rotational velocity ωi is

Advanced Path Planning for Mobile Entities50

_ω i
1

_ω i
2

_ω i
3

2
664

3
775 ¼

Ji2 � Ji3
� �

ωi
2ω

i
3 þ τi1

� �
=Ji1

Ji3 � Ji1
� �

ωi
3ω

i
1 þ τi2

� �
=Ji2

Ji1 � Ji2
� �

ωi
1ω

i
2 þ τi3

� �
=Ji3

2
6664

3
7775

¼

0
Ji2
Ji1
ωi

3 � Ji3
Ji1
ωi

2

Ji3
Ji2
ωi

3 0 � Ji1
Ji2
ωi

1

Ji1
Ji3
ωi

2 � Ji2
Ji3
ωi

1 0

2
66666666664

3
77777777775

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Υ i

ωi
1

ωi
2

ωi
3

2
664

3
775þ

1=Ji1 0 0

0 1=Ji2 0

0 0 1=Ji3

2
6664

3
7775

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Ji

τi1

τi2

τi3

2
664

3
775

(10)

Euler’s first-order discretization of Eq. (10) is

ωi kþ 1ð Þ ¼ I3 þ ΔtΥ i kð Þ� �
ωi kð Þ þ ΔtJτi kð Þ, (11)

where Jij is the moment of inertia, ωi
j is the rotational velocity and τij is the control torque, along

the three principal axes j = 1, 2, 3, for the ith rigid body. Combining Eqs. (9) and (11) in stacked
vector form yields

τi kð Þ
ωi kþ 1ð Þ
qi kþ 1ð Þ

2
64

3
75

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
T kþ1ð Þ

¼
Ξi kð Þ Ψi kð Þ

I3 þ ΔtΥi kð Þ þ ΔtJΞi kð Þ ΔtJΨi kð Þ
Δt
2
Πi kð Þ I4

2
664

3
775

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
F kð Þ

ωi kð Þ
qi kð Þ

" #

|fflfflfflfflffl{zfflfflfflfflffl}
T kð Þ

(12)

It is the task of controller synthesis to determine the Ξi and Ψi to obtain the torque τi that
stabilizes the system.

3.2. Basic consensus theory

The Consensus-based algorithms are distributed protocols based on communication graphs,
which can drive the states of a team of communicating agents to an agreed state or a common
state. The agents (or vehicles) i (i = 1,⋯,n) are represented by vertices of the graph and the
edges of the graph are the communication links between them. Denote the state of a vehicle i as
xi; x is the stacked vector of the states all vehicles in the team, then for systems modeled by
first-order dynamics, the following first-order consensus protocol (or similar protocols) have
been proposed, e.g. [18, 19]

_x tð Þ ¼ �L x tð Þ � xoff
� �

: (13)

Multi-Spacecraft Attitude Path Planning Using Consensus with LMI-Based Exclusion Constraints
http://dx.doi.org/10.5772/intechopen.71580

51



The quaternion is a four-element vector

q ¼ q1 q2 q3jq4
� �T

: (3)

Here, [q1 q2 q3]
T is a vector representing the axis of rotation in the Cartesian (x, y, z) coordinates

and q4 is a scalar representing the angle of rotation, of the quaternion. The difference between
two quaternions q1 and q2 can be represented in multiplication terms as

qd ¼ q1⊙ q�2 ¼ q1⊙ �q21 � q22 � q23 � q24
� �T

¼ Q2q1,
(4)

where q�2 is the conjugate of q2 and ⊙ is defined in Table 1. Q2 is defined as

Qi ¼

qi4 qi3 �qi2 �qi1
�qi3 qi4 qi1 �qi2
qi2 �qi1 qi4 �qi3
qi1 qi2 qi3 qi4

2
6664

3
7775 (5)

It follows that the transformation of q1 to q2 was achieved by the rotation quaternion qd.

The rotational dynamics for the ith quaternion is

_qi ¼ 1
2
Ωiqi ¼ 1

2
Πiωi, (6)

where

Ωi ¼

0 ωi
3 �ωi

2 ωi
1

�ωi
3 0 ωi

1 ωi
2

ωi
2 �ωi

1 0 ωi
3

�ωi
1 �ωi

2 �ωi
3 0

2
6664

3
7775 (7)

Πi ¼

�qi4 qi3 �qi2
�qi3 �qi4 qi1
qi2 �qi1 �qi4
qi1 qi2 qi3

2
6664

3
7775 (8)

Euler’s first-order discretization of Eq. (6) gives

qi kþ 1ð Þ ¼ qi kð Þ þ Δt
2
Πi kð Þωi kð Þ: (9)

The dynamics of the rotational velocity ωi is

Advanced Path Planning for Mobile Entities50

_ω i
1

_ω i
2

_ω i
3

2
664

3
775 ¼

Ji2 � Ji3
� �

ωi
2ω

i
3 þ τi1

� �
=Ji1

Ji3 � Ji1
� �

ωi
3ω

i
1 þ τi2

� �
=Ji2

Ji1 � Ji2
� �

ωi
1ω

i
2 þ τi3

� �
=Ji3

2
6664

3
7775

¼

0
Ji2
Ji1
ωi

3 � Ji3
Ji1
ωi

2

Ji3
Ji2
ωi

3 0 � Ji1
Ji2
ωi

1

Ji1
Ji3
ωi

2 � Ji2
Ji3
ωi

1 0

2
66666666664

3
77777777775

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Υ i

ωi
1

ωi
2

ωi
3

2
664

3
775þ

1=Ji1 0 0

0 1=Ji2 0

0 0 1=Ji3

2
6664

3
7775

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Ji

τi1

τi2

τi3

2
664

3
775

(10)

Euler’s first-order discretization of Eq. (10) is

ωi kþ 1ð Þ ¼ I3 þ ΔtΥ i kð Þ� �
ωi kð Þ þ ΔtJτi kð Þ, (11)

where Jij is the moment of inertia, ωi
j is the rotational velocity and τij is the control torque, along

the three principal axes j = 1, 2, 3, for the ith rigid body. Combining Eqs. (9) and (11) in stacked
vector form yields

τi kð Þ
ωi kþ 1ð Þ
qi kþ 1ð Þ

2
64

3
75

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
T kþ1ð Þ

¼
Ξi kð Þ Ψi kð Þ

I3 þ ΔtΥi kð Þ þ ΔtJΞi kð Þ ΔtJΨi kð Þ
Δt
2
Πi kð Þ I4

2
664

3
775

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
F kð Þ

ωi kð Þ
qi kð Þ

" #

|fflfflfflfflffl{zfflfflfflfflffl}
T kð Þ

(12)

It is the task of controller synthesis to determine the Ξi and Ψi to obtain the torque τi that
stabilizes the system.

3.2. Basic consensus theory

The Consensus-based algorithms are distributed protocols based on communication graphs,
which can drive the states of a team of communicating agents to an agreed state or a common
state. The agents (or vehicles) i (i = 1,⋯,n) are represented by vertices of the graph and the
edges of the graph are the communication links between them. Denote the state of a vehicle i as
xi; x is the stacked vector of the states all vehicles in the team, then for systems modeled by
first-order dynamics, the following first-order consensus protocol (or similar protocols) have
been proposed, e.g. [18, 19]

_x tð Þ ¼ �L x tð Þ � xoff
� �

: (13)

Multi-Spacecraft Attitude Path Planning Using Consensus with LMI-Based Exclusion Constraints
http://dx.doi.org/10.5772/intechopen.71580

51



When kxi� xjk! (xij)off as t!∞, ∀i 6¼ j then consensus has been achieved. A more comprehen-
sive presentation of the mathematical basis of consensus (including graph theory), can be
found in [16].

However, the basic consensus protocol Eq. (13) cannot admit quaternions directly. Thus, to
extend Eq. (13) to attitude quaternions, the following consensus protocol for quaternions was
proposed in [7]

_q tð Þ ¼ �P tð Þ q tð Þ⊝q�off
� �

, (14)

where P(t) is a Laplacian-like matrix and q(t) = [q1(t), q2(t)⋯qn(t)]T. More analysis of P(t) follows
in the next sections.

4. Solutions

We present solutions to the problem statement in Section 2 [7–9, 16]. The solution involves four
steps: (1) synthesis of consensus attitudes for multiple spacecraft; (2) formulation of Q-CAC in
different coordinate frames; (3) determining obstacle vectors in different coordinate frames; (4)
integration for consensus based Q-CAC.

4.1. Synthesis of consensus attitudes for multiple spacecraft

To develop consensus for quaternions, we adopt an optimization approach. The Laplacian-like
stochastic matrix P(t) in Eq. (14) is synthesized (by an optimization process) at each time step to
drive q(t) to consensus while satisfying quaternion kinematics. The components of P(t) are

P tð Þ ¼
Λ1 tð Þ ⋯ 0
⋮ ⋱ ⋮
0 ⋯ Λn tð Þ

2
64

3
75

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Λ tð Þ

l11I4 ⋯ l1nI4
⋮ ⋱ ⋮

ln1I4 ⋯ lnnI4

2
64

3
75

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Γ¼L⊗ I4

, (15)

where Λi(t) > 0 is an unknown positive definite optimization matrix variable, whose compo-
nents are chosen by the optimization process. Matrix Γ is composed of components of the
Laplacian L = [lij] (i, j = 1,⋯, n), which gives P(t) its Laplacian-like behavior.

We shall now prove the stability of P(t), i.e. that Eq. (14) does indeed achieve consensus. Note
that all the theorems, lemmas and proofs in this section had been presented in [7].

Recall the following standard result on a matrix pencil [20].

Theorem1: For a symmetric-definitepencilA�λB, there exists a nonsingularS = [s1,⋯, sn] such that

STAS ¼ diag a1;⋯; anð Þ ¼ DA, (16)

STBS ¼ diag b1;⋯; bnð Þ ¼ DB: (17)

Moreover, Asi =λiBsi for i = 1,⋯, n, where λi = ai/bi.

Advanced Path Planning for Mobile Entities52

Lemma 1: For any time t, the eigenvalues of P(t) are γiηi(t). Here, γi are the eigenvalues of Γ
and ηi(t) the eigenvalues of Λ(t). It can therefore be observed that P(t) has only four zero
eigenvalues, the rest of its eigenvalues are strictly positive.

Proof: To find the eigenvalues of P(t), consider a scalar λ such that for some nonzero vector s

Γs ¼ λΛ�1 tð Þs: (18)

Eq. (18) defines a symmetric-definite generalized eigenvalue problem (SDGEP), where Γ�λΛ�1(t)
defines a matrix pencil. Theorem 1 therefore immediately implies that the eigenvalues of P(t)
are γiηi(t). One can also easily observe that due to the property of the Laplacian matrix L, P(t)
has positive eigenvalues except for four eigenvalues. This proves the claim.

Theorem 2: The time-varying system Eq. (14) achieves consensus.

Proof: for simplicity, let us assume that there are no offsets, i.e. qoff = 0 (or (qoff)i = [0 0 0 1]T ∀ i).
Note, when q has entered the consensus space C ¼ qjq1 ¼ q2 ¼;⋯;¼ qn

� �
, then _q ¼ 0. C is the

nullspace of P(t), i.e. the set of all q such that P(t)q = 0. Therefore, once q enters C it stays there.

Suppose that q has not entered C, then consider a Lyapunov candidate function V =qTΓq; V > 0
unless q∈ C. Then,

_V ¼ qTΓ _q þ _qTΓq,

¼ �qTΓP tð Þq� qTP tð ÞTΓq,
¼ �qTΓΛ tð ÞΓq� qTΓΛ tð ÞΓq,
¼ �2qTΓΛ tð ÞΓq,
¼ �2zTΛ tð Þz,

(19)

where z =Γq 6¼ 0 for q∉C. This implies that q approaches a point in C as t!∞, which proves the
claim. Eq. (19) is true as long as L is nonempty, i.e. if some vehicles can sense, see, or
communicate with each other all the time.

4.2. Formulation of Q-CAC in different coordinate frames

Any rigid appendage attached to the body of the ith spacecraft, e.g. a camera, whose pointing
direction is vIcami

in inertial frame, can be transformed to the spacecraft fixed body frame by the
rotation

vBcami
tð Þ ¼R�1

i tð ÞvIcami
tð Þ, (20)

where

Ri tð Þ ¼ 2qi4 tð Þ� �2 � 1
� �

I3 þ 2qi tð Þqi tð ÞT � 2qi4 tð Þqi tð Þ� (21)

is the rotation matrix corresponding to the qi(t) at time t; qi tð Þ� is the antisymmetric matrix [21].

Multi-Spacecraft Attitude Path Planning Using Consensus with LMI-Based Exclusion Constraints
http://dx.doi.org/10.5772/intechopen.71580

53



When kxi� xjk! (xij)off as t!∞, ∀i 6¼ j then consensus has been achieved. A more comprehen-
sive presentation of the mathematical basis of consensus (including graph theory), can be
found in [16].

However, the basic consensus protocol Eq. (13) cannot admit quaternions directly. Thus, to
extend Eq. (13) to attitude quaternions, the following consensus protocol for quaternions was
proposed in [7]

_q tð Þ ¼ �P tð Þ q tð Þ⊝q�off
� �

, (14)

where P(t) is a Laplacian-like matrix and q(t) = [q1(t), q2(t)⋯qn(t)]T. More analysis of P(t) follows
in the next sections.

4. Solutions

We present solutions to the problem statement in Section 2 [7–9, 16]. The solution involves four
steps: (1) synthesis of consensus attitudes for multiple spacecraft; (2) formulation of Q-CAC in
different coordinate frames; (3) determining obstacle vectors in different coordinate frames; (4)
integration for consensus based Q-CAC.

4.1. Synthesis of consensus attitudes for multiple spacecraft

To develop consensus for quaternions, we adopt an optimization approach. The Laplacian-like
stochastic matrix P(t) in Eq. (14) is synthesized (by an optimization process) at each time step to
drive q(t) to consensus while satisfying quaternion kinematics. The components of P(t) are

P tð Þ ¼
Λ1 tð Þ ⋯ 0
⋮ ⋱ ⋮
0 ⋯ Λn tð Þ

2
64

3
75

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Λ tð Þ

l11I4 ⋯ l1nI4
⋮ ⋱ ⋮

ln1I4 ⋯ lnnI4

2
64

3
75

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Γ¼L⊗ I4

, (15)

where Λi(t) > 0 is an unknown positive definite optimization matrix variable, whose compo-
nents are chosen by the optimization process. Matrix Γ is composed of components of the
Laplacian L = [lij] (i, j = 1,⋯, n), which gives P(t) its Laplacian-like behavior.

We shall now prove the stability of P(t), i.e. that Eq. (14) does indeed achieve consensus. Note
that all the theorems, lemmas and proofs in this section had been presented in [7].

Recall the following standard result on a matrix pencil [20].

Theorem1: For a symmetric-definitepencilA�λB, there exists a nonsingularS = [s1,⋯, sn] such that

STAS ¼ diag a1;⋯; anð Þ ¼ DA, (16)

STBS ¼ diag b1;⋯; bnð Þ ¼ DB: (17)

Moreover, Asi =λiBsi for i = 1,⋯, n, where λi = ai/bi.

Advanced Path Planning for Mobile Entities52

Lemma 1: For any time t, the eigenvalues of P(t) are γiηi(t). Here, γi are the eigenvalues of Γ
and ηi(t) the eigenvalues of Λ(t). It can therefore be observed that P(t) has only four zero
eigenvalues, the rest of its eigenvalues are strictly positive.

Proof: To find the eigenvalues of P(t), consider a scalar λ such that for some nonzero vector s

Γs ¼ λΛ�1 tð Þs: (18)

Eq. (18) defines a symmetric-definite generalized eigenvalue problem (SDGEP), where Γ�λΛ�1(t)
defines a matrix pencil. Theorem 1 therefore immediately implies that the eigenvalues of P(t)
are γiηi(t). One can also easily observe that due to the property of the Laplacian matrix L, P(t)
has positive eigenvalues except for four eigenvalues. This proves the claim.

Theorem 2: The time-varying system Eq. (14) achieves consensus.

Proof: for simplicity, let us assume that there are no offsets, i.e. qoff = 0 (or (qoff)i = [0 0 0 1]T ∀ i).
Note, when q has entered the consensus space C ¼ qjq1 ¼ q2 ¼;⋯;¼ qn

� �
, then _q ¼ 0. C is the

nullspace of P(t), i.e. the set of all q such that P(t)q = 0. Therefore, once q enters C it stays there.

Suppose that q has not entered C, then consider a Lyapunov candidate function V =qTΓq; V > 0
unless q∈ C. Then,

_V ¼ qTΓ _q þ _qTΓq,

¼ �qTΓP tð Þq� qTP tð ÞTΓq,
¼ �qTΓΛ tð ÞΓq� qTΓΛ tð ÞΓq,
¼ �2qTΓΛ tð ÞΓq,
¼ �2zTΛ tð Þz,

(19)

where z =Γq 6¼ 0 for q∉C. This implies that q approaches a point in C as t!∞, which proves the
claim. Eq. (19) is true as long as L is nonempty, i.e. if some vehicles can sense, see, or
communicate with each other all the time.

4.2. Formulation of Q-CAC in different coordinate frames

Any rigid appendage attached to the body of the ith spacecraft, e.g. a camera, whose pointing
direction is vIcami

in inertial frame, can be transformed to the spacecraft fixed body frame by the
rotation

vBcami
tð Þ ¼R�1

i tð ÞvIcami
tð Þ, (20)

where

Ri tð Þ ¼ 2qi4 tð Þ� �2 � 1
� �

I3 þ 2qi tð Þqi tð ÞT � 2qi4 tð Þqi tð Þ� (21)

is the rotation matrix corresponding to the qi(t) at time t; qi tð Þ� is the antisymmetric matrix [21].

Multi-Spacecraft Attitude Path Planning Using Consensus with LMI-Based Exclusion Constraints
http://dx.doi.org/10.5772/intechopen.71580

53



For simplicity let us consider a single SCi with a single camera, vIcami
, and m (possibly, time-

varying) obstacles, vIobsi:j j ¼ 1;⋯;mð Þ, defined in F I
SCi

, to be avoided by vIcami
when SCi is re-

orientating. Then according to [3], the resulting attitude constraint of Eq. (2) can be written as

qi tð ÞT eAi
j tð Þqi tð Þ ≤ 0: (22)

Its LMI equivalent according to [4] is

μ qi tð ÞT

qi tð Þ μI4 þ ~A
i
j tð Þ

� ��1
2
4

3
5 ≥ 0: (23)

In Eq. (23), μ is chosen to ensure μI4 þ ~Aji tð Þ is positive definite, and

eAi
j tð Þ ¼

Aj tð Þ bj tð Þ
bj tð ÞT dj tð Þ

" #
∈R4�4, (24)

where

Aj tð Þ ¼ vBcami
tð ÞvIobsi:j tð Þ

T þ vIobsi:j tð ÞvBcami
tð ÞT � vBcami

tð ÞTvIobsi:j tð Þ þ cosθ
� �

I3, (25)

bj tð Þ ¼ �vBcami
tð Þ � vIobsi:j tð Þ, (26)

dj tð Þ ¼ vBcami
tð ÞTvIobsi :j tð Þ, (27)

for j = 1,⋯,m.

Eq. (22) defines the set of attitude quaternions qi(t) to satisfy the constraint vIcami
tð ÞTvIobsi:j tð Þ ≥∅

∀t∈ [t0, tf], so it is used to find a collision-free vIcami
tð Þ. However, in practical situations, another

SC (SCj) can be near SCi, then another obstacle vector vIobsj tð Þ (e.g. a thruster vector emanating

from SCj) defined in F I
SCj

should be avoided by SCi. To address such a practical issue, we

present a mechanism to calculate vIobsi:j (defined in F I
SCi

) corresponding to vIobsj (defined in F I
SCj

)

(vIobsi:j means the obstacle vector originated from the rotating frame of SCj but defined in F I
SCi

).

Essentially, the mechanism determines the intersection point of vIobsj tð Þ with the sphere of

radius r, centered on SCi. If such an intersection exists, it defines vIobsi :j which can be used to

define an attitude constraint represented as Eq. (22) to be avoided by SCi.

Figure 2 illustrates the scenario. SC1 and SC2 are in their different coordinate frames relative to
Earth. A thruster attached to SC1 body frame is at vIobs1 , while the circles around SC1 and SC2

are spheres representing the coordinate frames from which their attitude evolves. If both
spacecraft are close enough, then vector vIobs1 may intersect a point on the sphere of SC2,

Advanced Path Planning for Mobile Entities54

whereby the intersection defines vIobs2:1 in the frame of SC2. The requirement is that as SC2

changes its attitude from q0 to qf, vIcam2
must avoid the cone created around vIobs2:1∀t∈ t0; tf

� �
.

4.3. Determination of obstacle vectors in different coordinate frames

Given SCi in F I
SCi

and SCj in F I
SCj

, with emanating vectors, one can easily determine an

intersection between a vector emanating from F I
SCj

with the sphere centered on F I
SCi

by

using onboard sensors, or by application of computational geometry. Given a line segment
originating at p1 and terminating at p2, a point p = [px py pz]

Ton [p1, p2] can be tested for
intersection with a sphere centered at p3 with radius r [22]. Thus, for any vIobsj tð Þ in F I

SCj
, if

an intersection point p(t) exists at time t with the sphere centered on F I
SCi

with radius r,

then vIobsi:j tð Þ ¼ p tð Þ; otherwise, one can set vIobsi:j tð Þ ¼ �vIcami
tð Þ, to show that no constraints

violation has occurred. The value of r will therefore depend on the application at hand,
but must be proportional to the urgency of avoiding obstacle vectors originating from
other spacecraft.

The above formulation effectively decentralizes the problem. Therefore, each spacecraft can
solve the problem by communicating with its neighbors and/or using its own sensors. Euler
first order discretization of Eq. (14) is

qkþ1 ¼ qk þ Δt _qk ¼ qk � ΔtP tð Þqk: (28)

The decentralized dynamics for any SCi is therefore

qikþ1 ¼ qik � Δt yΛi
1 tð Þ �Λi

2 tð Þ⋯�Λi
y tð Þ

h i
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Pi tð Þ

qT1 tð Þ qT2 tð Þ⋯qTy tð Þ
h iT

, (29)

Figure 2. Q-CAC problem in different frames.

Multi-Spacecraft Attitude Path Planning Using Consensus with LMI-Based Exclusion Constraints
http://dx.doi.org/10.5772/intechopen.71580

55



For simplicity let us consider a single SCi with a single camera, vIcami
, and m (possibly, time-

varying) obstacles, vIobsi:j j ¼ 1;⋯;mð Þ, defined in F I
SCi

, to be avoided by vIcami
when SCi is re-

orientating. Then according to [3], the resulting attitude constraint of Eq. (2) can be written as

qi tð ÞT eAi
j tð Þqi tð Þ ≤ 0: (22)

Its LMI equivalent according to [4] is

μ qi tð ÞT

qi tð Þ μI4 þ ~A
i
j tð Þ

� ��1
2
4

3
5 ≥ 0: (23)

In Eq. (23), μ is chosen to ensure μI4 þ ~Aji tð Þ is positive definite, and

eAi
j tð Þ ¼

Aj tð Þ bj tð Þ
bj tð ÞT dj tð Þ

" #
∈R4�4, (24)

where

Aj tð Þ ¼ vBcami
tð ÞvIobsi:j tð Þ

T þ vIobsi:j tð ÞvBcami
tð ÞT � vBcami

tð ÞTvIobsi:j tð Þ þ cosθ
� �

I3, (25)

bj tð Þ ¼ �vBcami
tð Þ � vIobsi:j tð Þ, (26)

dj tð Þ ¼ vBcami
tð ÞTvIobsi :j tð Þ, (27)

for j = 1,⋯,m.

Eq. (22) defines the set of attitude quaternions qi(t) to satisfy the constraint vIcami
tð ÞTvIobsi:j tð Þ ≥∅

∀t∈ [t0, tf], so it is used to find a collision-free vIcami
tð Þ. However, in practical situations, another

SC (SCj) can be near SCi, then another obstacle vector vIobsj tð Þ (e.g. a thruster vector emanating

from SCj) defined in F I
SCj

should be avoided by SCi. To address such a practical issue, we

present a mechanism to calculate vIobsi:j (defined in F I
SCi

) corresponding to vIobsj (defined in F I
SCj

)

(vIobsi:j means the obstacle vector originated from the rotating frame of SCj but defined in F I
SCi

).

Essentially, the mechanism determines the intersection point of vIobsj tð Þ with the sphere of

radius r, centered on SCi. If such an intersection exists, it defines vIobsi :j which can be used to

define an attitude constraint represented as Eq. (22) to be avoided by SCi.

Figure 2 illustrates the scenario. SC1 and SC2 are in their different coordinate frames relative to
Earth. A thruster attached to SC1 body frame is at vIobs1 , while the circles around SC1 and SC2

are spheres representing the coordinate frames from which their attitude evolves. If both
spacecraft are close enough, then vector vIobs1 may intersect a point on the sphere of SC2,

Advanced Path Planning for Mobile Entities54

whereby the intersection defines vIobs2:1 in the frame of SC2. The requirement is that as SC2

changes its attitude from q0 to qf, vIcam2
must avoid the cone created around vIobs2:1∀t∈ t0; tf

� �
.

4.3. Determination of obstacle vectors in different coordinate frames

Given SCi in F I
SCi

and SCj in F I
SCj

, with emanating vectors, one can easily determine an

intersection between a vector emanating from F I
SCj

with the sphere centered on F I
SCi

by

using onboard sensors, or by application of computational geometry. Given a line segment
originating at p1 and terminating at p2, a point p = [px py pz]

Ton [p1, p2] can be tested for
intersection with a sphere centered at p3 with radius r [22]. Thus, for any vIobsj tð Þ in F I

SCj
, if

an intersection point p(t) exists at time t with the sphere centered on F I
SCi

with radius r,

then vIobsi:j tð Þ ¼ p tð Þ; otherwise, one can set vIobsi:j tð Þ ¼ �vIcami
tð Þ, to show that no constraints

violation has occurred. The value of r will therefore depend on the application at hand,
but must be proportional to the urgency of avoiding obstacle vectors originating from
other spacecraft.

The above formulation effectively decentralizes the problem. Therefore, each spacecraft can
solve the problem by communicating with its neighbors and/or using its own sensors. Euler
first order discretization of Eq. (14) is

qkþ1 ¼ qk þ Δt _qk ¼ qk � ΔtP tð Þqk: (28)

The decentralized dynamics for any SCi is therefore

qikþ1 ¼ qik � Δt yΛi
1 tð Þ �Λi

2 tð Þ⋯�Λi
y tð Þ

h i
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Pi tð Þ

qT1 tð Þ qT2 tð Þ⋯qTy tð Þ
h iT

, (29)

Figure 2. Q-CAC problem in different frames.

Multi-Spacecraft Attitude Path Planning Using Consensus with LMI-Based Exclusion Constraints
http://dx.doi.org/10.5772/intechopen.71580

55



where qT1 tð Þ qT2 tð Þ⋯qTy tð Þ are the quaternions of the y other neighboring SC, which SCi can

communicate with at time t. Moreover, since we are going to apply consensus quaternion
protocol Eq. (29), norm constraints must be enforced as follows:

qikT qikþ1 � qik
� � ¼ 0 (30)

Eq. (30) is the discrete time version of qi tð ÞT _qi tð Þ ¼ 0 or q tð ÞT _q tð Þ ¼ 0. This guarantees that
qi(t)Tqi(t) = 1 or q(t)Tq(t) =n for SC, iff kqi(0)k = 1 ∀ i.

4.4. Integration for consensus based Q-CAC

Using semidefinite programming, the solutions presented previously be cast as an optimiza-
tion problem, augmented with a set of LMI constraints, and solved for optimal consensus
quaternion trajectories. We consider the algorithm in discrete time. Given the initial attitude
qi(0) of SCi, (i = 1,⋯, n), find a sequence of consensus quaternion trajectories that satisfies the
following constraints:

qikþ1 ¼ qik � ΔtPi tð Þqik, quaternion consensus dynamics constraint (31)

qikT qikþ1 � qik
� � ¼ 0, norm constraint (32)

μ qi tð ÞT

qi tð Þ μI4 þ ~A
i
j tð Þ

� ��1
2
4

3
5 ≥ 0 exclusion constraints (33)

Once the next safe quaternion trajectory qisafe has been determined, the control torque τi and

angular velocity ωi to rotate the SCi optimally to qisafe can be determined by using the normal

quaternion dynamics Eq. (12).

5. Simulation results

Due to limitation of space, we present three results for attitude multi-path planning in different
coordinate frames. More results can be found in [7, 8, 16].

5.1. Dynamic avoidance in different coordinate frames without consensus

In this experiment, SC1 and SC2 are attempting a reconfiguration to Earth (either changing
orientation to Earth or pointing an instrument to Earth). The initial quaternions of SC1 and SC2

are q10 ¼ q20 ¼ 0 0 0 1½ �T . The desired final quaternions are

q1f ¼ 0:2269 0:0421 0:9567 0:1776½ �T

q2f ¼ 0 0 0:9903 0:1387½ �T
(34)

Three thrusters of SC1 in FB
SC1

are

Advanced Path Planning for Mobile Entities56

vBobs1:1 ¼ �0:2132� 0:0181 0:9768½ �T

vBobs1:2 ¼ 0:314 0:283� 0:906½ �T

vBobs1:3 ¼ �0:112� 0:133� 0:985½ �T
(35)

A single thruster of SC2 in FB
SC2

is at

vBobs2 ¼ 0:02981 0:0819 0:9962½ �T (36)

We want vIobs2 to avoid vIobs1:1 by 50
�
, and avoid vIobs1 :2 and vIobs1:3 by 30

�
while both are maneu-

vering to their desired final attitudes. Figure 3(a) shows the avoidance between thrusters of
SC1 and SC2 during reorientation to Earth: SC2 cannot reconfigure to the desired q2f due to the

avoidance constraints. Note that vIobs2:1, v
I
obs2 :2, v

I
obs2:3 are the points of intersections of vIobs1:1,

vIobs1:2, v
I
obs1:3 with SC2. Figure 3(b) satisfaction of avoidance constraints: the sudden jumps to

and from �1 indicate times when any of vIobs1:1, v
I
obs1:2, v

I
obs1 :3 lost intersection with the sphere of

SC2 and therefore was replaced with �vIobs1 :i, i ¼ 1,⋯, 3.

This experiment demonstrates that when both constraints are in conflict the avoidance con-
straint is superior to the desired final quaternion constraint. As seen from (a), SC2 cannot
reconfigure exactly to the desired q2f due to the satisfaction of the avoidance constraints. To

resolve this, it is necessary to change either the position of SC2 or SC1.

5.2. Consensus-based dynamic avoidance in different coordinate frames

In this experiment,SC1,SC2, andSC3willmaneuver to a consensus attitude. The initial positions are

F I
SC1
¼ �2 0 2½ �T

F I
SC2
¼ 0:5 0 2½ �T

F I
SC3
¼ 3 0 2½ �T

(37)

Figure 3. Reconfiguration of two spacecraft with avoidance in different coordinate frames: (a) the trajectories, (b) the
avoidance graph.

Multi-Spacecraft Attitude Path Planning Using Consensus with LMI-Based Exclusion Constraints
http://dx.doi.org/10.5772/intechopen.71580

57



where qT1 tð Þ qT2 tð Þ⋯qTy tð Þ are the quaternions of the y other neighboring SC, which SCi can

communicate with at time t. Moreover, since we are going to apply consensus quaternion
protocol Eq. (29), norm constraints must be enforced as follows:

qikT qikþ1 � qik
� � ¼ 0 (30)

Eq. (30) is the discrete time version of qi tð ÞT _qi tð Þ ¼ 0 or q tð ÞT _q tð Þ ¼ 0. This guarantees that
qi(t)Tqi(t) = 1 or q(t)Tq(t) =n for SC, iff kqi(0)k = 1 ∀ i.

4.4. Integration for consensus based Q-CAC

Using semidefinite programming, the solutions presented previously be cast as an optimiza-
tion problem, augmented with a set of LMI constraints, and solved for optimal consensus
quaternion trajectories. We consider the algorithm in discrete time. Given the initial attitude
qi(0) of SCi, (i = 1,⋯, n), find a sequence of consensus quaternion trajectories that satisfies the
following constraints:

qikþ1 ¼ qik � ΔtPi tð Þqik, quaternion consensus dynamics constraint (31)

qikT qikþ1 � qik
� � ¼ 0, norm constraint (32)

μ qi tð ÞT

qi tð Þ μI4 þ ~A
i
j tð Þ

� ��1
2
4

3
5 ≥ 0 exclusion constraints (33)

Once the next safe quaternion trajectory qisafe has been determined, the control torque τi and

angular velocity ωi to rotate the SCi optimally to qisafe can be determined by using the normal

quaternion dynamics Eq. (12).

5. Simulation results

Due to limitation of space, we present three results for attitude multi-path planning in different
coordinate frames. More results can be found in [7, 8, 16].

5.1. Dynamic avoidance in different coordinate frames without consensus

In this experiment, SC1 and SC2 are attempting a reconfiguration to Earth (either changing
orientation to Earth or pointing an instrument to Earth). The initial quaternions of SC1 and SC2

are q10 ¼ q20 ¼ 0 0 0 1½ �T . The desired final quaternions are

q1f ¼ 0:2269 0:0421 0:9567 0:1776½ �T

q2f ¼ 0 0 0:9903 0:1387½ �T
(34)

Three thrusters of SC1 in FB
SC1

are

Advanced Path Planning for Mobile Entities56

vBobs1:1 ¼ �0:2132� 0:0181 0:9768½ �T

vBobs1:2 ¼ 0:314 0:283� 0:906½ �T

vBobs1:3 ¼ �0:112� 0:133� 0:985½ �T
(35)

A single thruster of SC2 in FB
SC2

is at

vBobs2 ¼ 0:02981 0:0819 0:9962½ �T (36)

We want vIobs2 to avoid vIobs1:1 by 50
�
, and avoid vIobs1 :2 and vIobs1:3 by 30

�
while both are maneu-

vering to their desired final attitudes. Figure 3(a) shows the avoidance between thrusters of
SC1 and SC2 during reorientation to Earth: SC2 cannot reconfigure to the desired q2f due to the

avoidance constraints. Note that vIobs2:1, v
I
obs2 :2, v

I
obs2:3 are the points of intersections of vIobs1:1,

vIobs1:2, v
I
obs1:3 with SC2. Figure 3(b) satisfaction of avoidance constraints: the sudden jumps to

and from �1 indicate times when any of vIobs1:1, v
I
obs1:2, v

I
obs1 :3 lost intersection with the sphere of

SC2 and therefore was replaced with �vIobs1 :i, i ¼ 1,⋯, 3.

This experiment demonstrates that when both constraints are in conflict the avoidance con-
straint is superior to the desired final quaternion constraint. As seen from (a), SC2 cannot
reconfigure exactly to the desired q2f due to the satisfaction of the avoidance constraints. To

resolve this, it is necessary to change either the position of SC2 or SC1.

5.2. Consensus-based dynamic avoidance in different coordinate frames

In this experiment,SC1,SC2, andSC3willmaneuver to a consensus attitude. The initial positions are

F I
SC1
¼ �2 0 2½ �T

F I
SC2
¼ 0:5 0 2½ �T

F I
SC3
¼ 3 0 2½ �T

(37)

Figure 3. Reconfiguration of two spacecraft with avoidance in different coordinate frames: (a) the trajectories, (b) the
avoidance graph.

Multi-Spacecraft Attitude Path Planning Using Consensus with LMI-Based Exclusion Constraints
http://dx.doi.org/10.5772/intechopen.71580

57



A set of initial quaternions were randomly generated, with the following data:

qI0 ¼ �0:5101 0:6112� 0:3187� 0:5145½ �T
q20 ¼ �0:9369 0:2704� 0:1836� 0:124½ �T
q30 ¼ 0:1448� 0:1151 0:1203 0:9753½ �T

(38)

In the direction of the initial attitude qi0 of each SCi, a sensitive instrument vIcami
is attached.

Also, each SCi has a thruster pointing to the opposite of qi0. It is desired that vIcami
avoids the

thruster plumes emanating from each of the two other SC by 30
�
during the entire period of the

maneuvers. From the generated initial quaternions, there is possibility of intersection of the
thrusters of SC1 and SC3, with SC2, and the thruster of SC2 may damage SC1 or SC3 at any time
k. Figure 4(a) shows the solution trajectories; (b) shows the avoidance graph, which shows that
constraints are not violated; (c) shows the consensus graph. The final consensus quaternion is
qf = [�0.8167 0.4807� 0.2396 0.2112]T. This is the normalized average of the initial attitude
quaternions, which proves that consensus is achieved.

5.3. Consensus-based attitude formation acquisition with avoidance

To test the capability of the consensus algorithm in formation acquisition, SC1, SC2, and SC3

will maneuver to a consensus formation attitude. Relative offset quaternions were defined to
enable the sensitive instruments to point at 30

�
offsets from each other about the z-axis. The

previous set of initial data for qi0 and F I
SCi

were used. The relative offsets are

qoff1 ¼ 0 0 0 1½ �T

qoff2 ¼ 0 0 0:2588 0:9659½ �T

qoff3 ¼ 0 0 0:5 0:866½ �T
(39)

Like the previous experiment, we want the sensitive instruments to avoid the thruster plumes
emanating from each of the two other SC by an angle of 30

�
. The trajectories are shown in

Figure 5(a) and (b) shows the avoidance graph; no constraints are violated, and (c) shows the
consensus graph. The final consensus quaternions are

Figure 4. Consensus-based dynamic avoidance in different coordinate frames. (a) Reorientation to consensus attitude
with intervehicle thruster plume avoidance, (b) avoidance constraints graph, (c) attitude consensus graph.

Advanced Path Planning for Mobile Entities58

q1f ¼ �0:6926 0:6468� 0:2798 0:1541½ �T

q2f ¼ �0:8364 0:4455� 0:2303 0:2212½ �T

q3f ¼ �0:9232 0:2138� 0:1652 0:2733½ �T
(40)

The differences of these quaternions are 30
�
apart about the same axis.

6. Conclusion

We presented a solution, which we previously developed, to the problem of attitude path
planning for multiple spacecraft with avoidance of exclusion zones, by combining consensus
theory and Q-CAC optimization theory. Using the solutions, a team of spacecraft can point to
the same direction, or to various formation patterns, while they avoid an arbitrary number of
attitude obstacles or exclusion zones in any coordinate frames. We also provided the proof of
stability of the Laplacian-like matrix used for the attitude synchronization. Simulation results
demonstrated the effectiveness of the algorithm. Current work is underway to implement the
algorithms using rotorcraft.

Author details

Innocent Okoloko

Address all correspondence to: okoloko@ieee.org

Department of Electrical Engineering, Universidad de Ingenieria y Tecnologia, Lima, Peru

References

[1] Blackwood G, Lay O, Deininger B, Gudim M, Ahmed A, Duren R, Noeckerb C,
Barden B. The StarLight mission: A formation-flying stellar interferometer. In: SPIE 4852,

Figure 5. Consensus-based attitude formation acquisition with avoidance. (a) Reorientation to consensus formation
attitude with intervehicle thruster plume avoidance, (b) avoidance constraints graph, (c) attitude consensus graph.

Multi-Spacecraft Attitude Path Planning Using Consensus with LMI-Based Exclusion Constraints
http://dx.doi.org/10.5772/intechopen.71580

59



A set of initial quaternions were randomly generated, with the following data:

qI0 ¼ �0:5101 0:6112� 0:3187� 0:5145½ �T
q20 ¼ �0:9369 0:2704� 0:1836� 0:124½ �T
q30 ¼ 0:1448� 0:1151 0:1203 0:9753½ �T

(38)

In the direction of the initial attitude qi0 of each SCi, a sensitive instrument vIcami
is attached.

Also, each SCi has a thruster pointing to the opposite of qi0. It is desired that vIcami
avoids the

thruster plumes emanating from each of the two other SC by 30
�
during the entire period of the

maneuvers. From the generated initial quaternions, there is possibility of intersection of the
thrusters of SC1 and SC3, with SC2, and the thruster of SC2 may damage SC1 or SC3 at any time
k. Figure 4(a) shows the solution trajectories; (b) shows the avoidance graph, which shows that
constraints are not violated; (c) shows the consensus graph. The final consensus quaternion is
qf = [�0.8167 0.4807� 0.2396 0.2112]T. This is the normalized average of the initial attitude
quaternions, which proves that consensus is achieved.

5.3. Consensus-based attitude formation acquisition with avoidance

To test the capability of the consensus algorithm in formation acquisition, SC1, SC2, and SC3

will maneuver to a consensus formation attitude. Relative offset quaternions were defined to
enable the sensitive instruments to point at 30

�
offsets from each other about the z-axis. The

previous set of initial data for qi0 and F I
SCi

were used. The relative offsets are

qoff1 ¼ 0 0 0 1½ �T

qoff2 ¼ 0 0 0:2588 0:9659½ �T

qoff3 ¼ 0 0 0:5 0:866½ �T
(39)

Like the previous experiment, we want the sensitive instruments to avoid the thruster plumes
emanating from each of the two other SC by an angle of 30

�
. The trajectories are shown in

Figure 5(a) and (b) shows the avoidance graph; no constraints are violated, and (c) shows the
consensus graph. The final consensus quaternions are

Figure 4. Consensus-based dynamic avoidance in different coordinate frames. (a) Reorientation to consensus attitude
with intervehicle thruster plume avoidance, (b) avoidance constraints graph, (c) attitude consensus graph.

Advanced Path Planning for Mobile Entities58

q1f ¼ �0:6926 0:6468� 0:2798 0:1541½ �T

q2f ¼ �0:8364 0:4455� 0:2303 0:2212½ �T

q3f ¼ �0:9232 0:2138� 0:1652 0:2733½ �T
(40)

The differences of these quaternions are 30
�
apart about the same axis.

6. Conclusion

We presented a solution, which we previously developed, to the problem of attitude path
planning for multiple spacecraft with avoidance of exclusion zones, by combining consensus
theory and Q-CAC optimization theory. Using the solutions, a team of spacecraft can point to
the same direction, or to various formation patterns, while they avoid an arbitrary number of
attitude obstacles or exclusion zones in any coordinate frames. We also provided the proof of
stability of the Laplacian-like matrix used for the attitude synchronization. Simulation results
demonstrated the effectiveness of the algorithm. Current work is underway to implement the
algorithms using rotorcraft.

Author details

Innocent Okoloko

Address all correspondence to: okoloko@ieee.org

Department of Electrical Engineering, Universidad de Ingenieria y Tecnologia, Lima, Peru

References

[1] Blackwood G, Lay O, Deininger B, Gudim M, Ahmed A, Duren R, Noeckerb C,
Barden B. The StarLight mission: A formation-flying stellar interferometer. In: SPIE 4852,

Figure 5. Consensus-based attitude formation acquisition with avoidance. (a) Reorientation to consensus formation
attitude with intervehicle thruster plume avoidance, (b) avoidance constraints graph, (c) attitude consensus graph.

Multi-Spacecraft Attitude Path Planning Using Consensus with LMI-Based Exclusion Constraints
http://dx.doi.org/10.5772/intechopen.71580

59



Interferometry in Space; 22 August; Waikoloa, Hawaii. Bellingham WA, USA: SPIE Dig-
ital Library; 2002. DOI: 10.1117/12.460942

[2] Beichman CA. NASA’s Terrestrial Planet Finder. In: Darwin and Astronomy: The Infrared
Space Interferometer; 17-19 November; Stockholm, Sweden. The Netherlands: Noordwijk;
2000. pp. 29-30. DOI: ISSN/ISBN: 03796566

[3] Ahmed A, Alexander J, Boussalis D, Breckenridge W, Macala G, Mesbahi M, Martin MS,
Singh G, Wong E. Cassini Control Analysis Book. Pasadena, CA: Jet Propulsion Labora-
tory, CALTECH Technical Report; 1998. NA p. DOI: NA

[4] Kim Y, Mesbahi M. Quadratically constrained attitude control via semidefinite program-
ming. IEEE Transactions on Automatic Control. 2004;49:731-735. DOI: 10.1109/TAC.2004.
825959

[5] Wen JT, Kreutz-Delgado K. The attitude control problem. IEEE Transactions on Auto-
matic Control. 1991;36(10):1148-1162. DOI: 10.1109/9.90228

[6] Kim Y, Mesbahi M, Singh G, Hadaegh FY. On the convex parameterization of
constrained spacecraft reorientation. IEEE Transactions on Aerospace and Electronic
Systems. 2010;46(3):1097-1109. DOI: 10.1109/TAES.2010.5545176

[7] Okoloko I, Kim Y. Distributed constrained attitude and position control using graph
Laplacians. In: ASME Dynamic Systems and Control Conference; 13-15 September; Cam-
bridge, Massachusetts. NY, USA: ASME; 2010. pp. 377-383. DOI: 10.1115/DSCC2010-4036

[8] Okoloko I, Kim Y. Attitude synchronization of multiple spacecraft with cone avoidance
constraints. In: IEEE Aerospace Conference; 3-10 March; Big Sky, Montana. NY, USA:
IEEEXplore; 2012. pp. 1-10. DOI: 10.1109/AERO.2012.6187119

[9] Okoloko I, Kim Y. Attitude synchronization of multiple spacecraft with cone avoidance
constraints. Systems & Control Letters. 2014;69:73-79. DOI: 10.1016/j.sysconle.2014.04.008

[10] Bullo F, Murray RM, Sarti A. Control on the sphere and reduced attitude stabilization. In:
IFAC Symposium on Nonlinear Control Systems; 25-28 June; Tahoe City, CA. Atlanta
GA, USA: Elsevier; 1995. pp. 495-501. DOI: 10.1016/S1474-6670(17)46878-9

[11] Fax AJ. Optimal and cooperative control of vehicle formations [thesis]. Pasadena, CA:
PhD Thesis, CALTECH; 2002. 135 p. Available from: thesis.library.caltech.edu/4230/1/
Fax_ja_2002.pdf

[12] Ren W. Distributed attitude alignment in spacecraft formation flying. International Jour-
nal of Adaptive Control and Signal Processing. 2006;21(2–3):95-113. DOI: 10.1002/acs.916

[13] Dimarogonas DV, Tsiotras P, Kyriakopoulos KJ. Leader-follower cooperative attitude
control of multiple rigid bodies. Systems and Control Letters. 2009;58(6):429-435. DOI:
10.1016/j.sysconle.2009.02.002

Advanced Path Planning for Mobile Entities60

[14] Sturm JF. Using SeDuMi 1.02, a Matlab toolbox for optimization over symmetric cones.
Optimization Methods and Software. 1998;11(12):625-653. DOI: 10.1080/105567899088
05766

[15] Lofberg J. Yalmip: A toolbox for modelling and optimization in Matlab. In: IEEE CACSD
Conference; 2-4 Sept.; Taipei, Taiwan. NY, USA: IEEEXplore; 2004. pp. 284-289. DOI:
10.1109/CACSD.2004.1393890

[16] Okoloko I. Multi-path planning and multi-body constrained attitude control [disserta-
tion]. Stellenbosch, South Africa: PhD Thesis, Stellenbosch University; 2012. 185 p. Avail-
able from: http://hdl.handle.net/10019.1/71905

[17] Kuipers JB. Quaternions and Rotation Sequences: A Primer with Applications to Orbits,
Aerospace and Virtual Reality. 1st ed. Princeton, NJ: Princeton University Press; 2002. 371
p. ISBN: 13: 978-0691102986

[18] Peng L, Zhao Y, Tian B, Zhang J, Bing-Hong W, Hai-Tao Z, Zhou T. Consensus of self-
driven agents with avoidance of collisions. Physical Review. 2009;79(E):026113. DOI: 10.11
03/PhysRevE.79.026113. Available from: https://journals.aps.org/pre/abstract/10.1103/Phys
RevE.79.026113

[19] Olfati-Saber R. Flocking for multi-agent dynamic systems: Algorithms and theory. IEEE
Transactions on Automatic Control. 2006;51(3):401-420. DOI: 10.1109/TAC.2005.864190

[20] Golub GH, Van Loan CF. Matrix Computations. 3rd ed. Baltimore, MD: Johns Hopkins
University Press; 1996. 699 p. ISBN: 13: 978-0801854149

[21] Hughes PC. Spacecraft Attitude Dynamics. 2nd ed. Mineola, NY: Dover Publications Inc;
2004. 592 p. ISBN: 13: 9780486439259

[22] Eberly DH. 3D Game Engine Design: A Practical Approach to Real-Time Computer
Graphics. 2nd ed. London, UK: Taylor & Francis; 2012. 1015 p. DOI: ISBN: 978-0-12-
229063-3

Multi-Spacecraft Attitude Path Planning Using Consensus with LMI-Based Exclusion Constraints
http://dx.doi.org/10.5772/intechopen.71580

61



Interferometry in Space; 22 August; Waikoloa, Hawaii. Bellingham WA, USA: SPIE Dig-
ital Library; 2002. DOI: 10.1117/12.460942

[2] Beichman CA. NASA’s Terrestrial Planet Finder. In: Darwin and Astronomy: The Infrared
Space Interferometer; 17-19 November; Stockholm, Sweden. The Netherlands: Noordwijk;
2000. pp. 29-30. DOI: ISSN/ISBN: 03796566

[3] Ahmed A, Alexander J, Boussalis D, Breckenridge W, Macala G, Mesbahi M, Martin MS,
Singh G, Wong E. Cassini Control Analysis Book. Pasadena, CA: Jet Propulsion Labora-
tory, CALTECH Technical Report; 1998. NA p. DOI: NA

[4] Kim Y, Mesbahi M. Quadratically constrained attitude control via semidefinite program-
ming. IEEE Transactions on Automatic Control. 2004;49:731-735. DOI: 10.1109/TAC.2004.
825959

[5] Wen JT, Kreutz-Delgado K. The attitude control problem. IEEE Transactions on Auto-
matic Control. 1991;36(10):1148-1162. DOI: 10.1109/9.90228

[6] Kim Y, Mesbahi M, Singh G, Hadaegh FY. On the convex parameterization of
constrained spacecraft reorientation. IEEE Transactions on Aerospace and Electronic
Systems. 2010;46(3):1097-1109. DOI: 10.1109/TAES.2010.5545176

[7] Okoloko I, Kim Y. Distributed constrained attitude and position control using graph
Laplacians. In: ASME Dynamic Systems and Control Conference; 13-15 September; Cam-
bridge, Massachusetts. NY, USA: ASME; 2010. pp. 377-383. DOI: 10.1115/DSCC2010-4036

[8] Okoloko I, Kim Y. Attitude synchronization of multiple spacecraft with cone avoidance
constraints. In: IEEE Aerospace Conference; 3-10 March; Big Sky, Montana. NY, USA:
IEEEXplore; 2012. pp. 1-10. DOI: 10.1109/AERO.2012.6187119

[9] Okoloko I, Kim Y. Attitude synchronization of multiple spacecraft with cone avoidance
constraints. Systems & Control Letters. 2014;69:73-79. DOI: 10.1016/j.sysconle.2014.04.008

[10] Bullo F, Murray RM, Sarti A. Control on the sphere and reduced attitude stabilization. In:
IFAC Symposium on Nonlinear Control Systems; 25-28 June; Tahoe City, CA. Atlanta
GA, USA: Elsevier; 1995. pp. 495-501. DOI: 10.1016/S1474-6670(17)46878-9

[11] Fax AJ. Optimal and cooperative control of vehicle formations [thesis]. Pasadena, CA:
PhD Thesis, CALTECH; 2002. 135 p. Available from: thesis.library.caltech.edu/4230/1/
Fax_ja_2002.pdf

[12] Ren W. Distributed attitude alignment in spacecraft formation flying. International Jour-
nal of Adaptive Control and Signal Processing. 2006;21(2–3):95-113. DOI: 10.1002/acs.916

[13] Dimarogonas DV, Tsiotras P, Kyriakopoulos KJ. Leader-follower cooperative attitude
control of multiple rigid bodies. Systems and Control Letters. 2009;58(6):429-435. DOI:
10.1016/j.sysconle.2009.02.002

Advanced Path Planning for Mobile Entities60

[14] Sturm JF. Using SeDuMi 1.02, a Matlab toolbox for optimization over symmetric cones.
Optimization Methods and Software. 1998;11(12):625-653. DOI: 10.1080/105567899088
05766

[15] Lofberg J. Yalmip: A toolbox for modelling and optimization in Matlab. In: IEEE CACSD
Conference; 2-4 Sept.; Taipei, Taiwan. NY, USA: IEEEXplore; 2004. pp. 284-289. DOI:
10.1109/CACSD.2004.1393890

[16] Okoloko I. Multi-path planning and multi-body constrained attitude control [disserta-
tion]. Stellenbosch, South Africa: PhD Thesis, Stellenbosch University; 2012. 185 p. Avail-
able from: http://hdl.handle.net/10019.1/71905

[17] Kuipers JB. Quaternions and Rotation Sequences: A Primer with Applications to Orbits,
Aerospace and Virtual Reality. 1st ed. Princeton, NJ: Princeton University Press; 2002. 371
p. ISBN: 13: 978-0691102986

[18] Peng L, Zhao Y, Tian B, Zhang J, Bing-Hong W, Hai-Tao Z, Zhou T. Consensus of self-
driven agents with avoidance of collisions. Physical Review. 2009;79(E):026113. DOI: 10.11
03/PhysRevE.79.026113. Available from: https://journals.aps.org/pre/abstract/10.1103/Phys
RevE.79.026113

[19] Olfati-Saber R. Flocking for multi-agent dynamic systems: Algorithms and theory. IEEE
Transactions on Automatic Control. 2006;51(3):401-420. DOI: 10.1109/TAC.2005.864190

[20] Golub GH, Van Loan CF. Matrix Computations. 3rd ed. Baltimore, MD: Johns Hopkins
University Press; 1996. 699 p. ISBN: 13: 978-0801854149

[21] Hughes PC. Spacecraft Attitude Dynamics. 2nd ed. Mineola, NY: Dover Publications Inc;
2004. 592 p. ISBN: 13: 9780486439259

[22] Eberly DH. 3D Game Engine Design: A Practical Approach to Real-Time Computer
Graphics. 2nd ed. London, UK: Taylor & Francis; 2012. 1015 p. DOI: ISBN: 978-0-12-
229063-3

Multi-Spacecraft Attitude Path Planning Using Consensus with LMI-Based Exclusion Constraints
http://dx.doi.org/10.5772/intechopen.71580

61



Chapter 4

Search-Based Planning and Replanning in Robotics and
Autonomous Systems

An T. Le and Than D. Le

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.71663

Provisional chapter

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons  
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, 
and reproduction in any medium, provided the original work is properly cited. 

DOI: 10.5772/intechopen.71663

Search-Based Planning and Replanning in Robotics and 
Autonomous Systems

An T. Le and Than D. Le

Additional information is available at the end of the chapter

Abstract

In this chapter, we present one of the most crucial branches in motion planning: search-
based planning and replanning algorithms. This research branch involves two key 
points: first, representing traverse environment information as discrete graph form, in 
particular, occupancy grid cost map at arbitrary resolution, and, second, path planning 
algorithms calculate paths on these graphs from start to goal by propagating cost associ-
ated with each vertex in graph. The chapter will guide researcher through the foundation 
of motion planning concept, the history of search-based path planning and then focus on 
the evolution of state-of-the-art incremental, heuristic, anytime algorithm families that 
are currently applied on practical robot rover. The comparison experiment between algo-
rithm families is demonstrated in terms of performance and optimality. The future of 
search-based path planning and motion planning in general is also discussed.

Keywords: A*, RRT, holonomic path planning, trajectory planning, occupancy map, 
D* Lite, incremental planning, heuristics planning, ARA*, anytime dynamic A*

1. Introduction

Nowadays, as the rapid advances of computational power together with development of 
state-of-the-art motion planning (MP) algorithms, autonomous robots can now robustly plan 
optimal path in narrow configuration space or wide dynamic complex environment with high 
accuracy and low latency. These recent MP developments have a large impact in medical sur-
gery, animation, expedition and many other disciplines. For instance, RRT [1] algorithm was 
applied for multi-arm surgical robot in [2]. Expedition robot GDRS XUV was implemented 
field D* any-angle path planner [3] that enables the robot to optimally move in harsh environ-
ment. D* [4] is implemented for Mars Rover prototypes and tactical mobile robots in [5]. Bug 
algorithms were implemented in multi-robot cooperation scenarios [6].

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



Chapter 4

Search-Based Planning and Replanning in Robotics and
Autonomous Systems

An T. Le and Than D. Le

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.71663

Provisional chapter

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons  
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, 
and reproduction in any medium, provided the original work is properly cited. 

DOI: 10.5772/intechopen.71663

Search-Based Planning and Replanning in Robotics and 
Autonomous Systems

An T. Le and Than D. Le

Additional information is available at the end of the chapter

Abstract

In this chapter, we present one of the most crucial branches in motion planning: search-
based planning and replanning algorithms. This research branch involves two key 
points: first, representing traverse environment information as discrete graph form, in 
particular, occupancy grid cost map at arbitrary resolution, and, second, path planning 
algorithms calculate paths on these graphs from start to goal by propagating cost associ-
ated with each vertex in graph. The chapter will guide researcher through the foundation 
of motion planning concept, the history of search-based path planning and then focus on 
the evolution of state-of-the-art incremental, heuristic, anytime algorithm families that 
are currently applied on practical robot rover. The comparison experiment between algo-
rithm families is demonstrated in terms of performance and optimality. The future of 
search-based path planning and motion planning in general is also discussed.

Keywords: A*, RRT, holonomic path planning, trajectory planning, occupancy map, 
D* Lite, incremental planning, heuristics planning, ARA*, anytime dynamic A*

1. Introduction

Nowadays, as the rapid advances of computational power together with development of 
state-of-the-art motion planning (MP) algorithms, autonomous robots can now robustly plan 
optimal path in narrow configuration space or wide dynamic complex environment with high 
accuracy and low latency. These recent MP developments have a large impact in medical sur-
gery, animation, expedition and many other disciplines. For instance, RRT [1] algorithm was 
applied for multi-arm surgical robot in [2]. Expedition robot GDRS XUV was implemented 
field D* any-angle path planner [3] that enables the robot to optimally move in harsh environ-
ment. D* [4] is implemented for Mars Rover prototypes and tactical mobile robots in [5]. Bug 
algorithms were implemented in multi-robot cooperation scenarios [6].

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



In general, the problem statement of MP can be generalised as follows: Given the initial 
defined world space and the robot’s configuration space, the MP algorithm must generate a 
series of consecutive collision-free configurations of the robot that connects start configura-
tion and goal configuration. This series configuration must satisfy any inherent motion or 
non-motion constraints of the robot.

To cope with a wide range of environment characteristics, MP can be divided into two catego-
ries: gross MP and fine MP [7]. The gross MP concerns with the scenarios when world space is 
much wider than obstacles’ size and positional error of the robot, whereas the fine MP solves 
the planning problems in narrow space that requires high accuracy.

This manuscript presents the development of gross MP algorithm family, in particular search-
based planning and replanning paradigm. The foundation concepts of MP, configuration 
space representations, and the position of mentioned paradigm in MP big picture is presented 
in Section 2. Section 3 describes historical basis of search-based algorithm family. Section 4 
demonstrates the properties and pitfall of D* Lite, which is one of the most crucial algorithms 
to plan path in dynamic environment. After that, the variants of D* Lite, which improve D* 
Lite’s optimality and performance, are presented. To confirm the improvements, we provide 
experimental results of recent path planning algorithms and their comparisons in terms of 
performance and optimality in Section 5. Section 6 will discuss about the future development 
of MP and provide conclusion.

2. Motion planning concepts

This section will provide an overview of the basic elements that every MP problem must 
involve. These elements are configuration space of robot and obstacles, environment repre-
sentation, MP method and search method. The mentioned factors must be analysed consecu-
tively in order to apply suitable MP algorithm family for each scenario.

2.1. Classification of motion planning problems

There still does not exist unified MP algorithm that can robustly solve MP problems in any 
scenarios such as time optimality, path optimality, moving target, non-holonomic motion, etc. 
However, with the active recent development of MP, a variety of MP algorithm families are 
invented to deal with the mentioned scenarios. We will provide detail MP algorithm family 
classifications based on problem type and therefore demonstrate the location of search-based 
paradigm in MP.

Figure 1 describes the family tree of MP algorithms based on problem-type classification.

As can be seen, MP with non-holonomic (velocity and kinodynamic) constraints, which is han-
dled by sampling-based paradigm, is still an open research area due to the hardness of trans-
forming high DOF robot and surroundings into configuration space. This configuration space 
problem has been proved to be NP hard, and computing configuration space operation has 

Advanced Path Planning for Mobile Entities64

exponential lower bound [7]. Until recently, the mainstream of non-holonomic MP research 
is developed based on random rapidly exploring random tree planner (RRT). For example, 
heuristics property of A* [8] has been applied to RRT for faster trajectory convergence [9]. Fast 
Marching Square method was developed for non-holonomic car-like robot based on RRT that 
produces smoother trajectory than RRT [10].

Unlike sampling-based paradigm, search-based paradigm, which represents for path plan-
ning algorithms, has a long history of evolution, from basic graph searching to dynamic 
motion planner with constraints. In this paradigm, robot is treated as point or scalar robot that 
is able to move in any direction at any time interval. Hence, the configuration obstacle space 
has the same dimension with the environment, and the generated trajectory is just a path 
in operating environment. Search-based paradigm is divided into time-invariant and time- 
variant environment categories. A* is the representative for time-invariant algorithm fam-
ily; its cost function is incorporated with heuristic property for faster optimal path planning. 
When dealing with time-variant problem, although we can ensure the optimality and correct-
ness of path solution, we cannot just rerun A* from the point that the robot detects changes 
in environment due to high latency. To efficiently path replanning in dynamic environment, 
incremental property is combined with heuristic property to develop D* Lite algorithm; this 
algorithm is the basis for future development of search-based replanning. Many variants of 
D* Lite for different MP problems are presented in Table 1.

The development of search-based algorithm family is described detail in Section 3 and Section 4.

Figure 1. Classification of MP algorithm families based on problem type; the deepest leaves of algorithm tree are 
representatives for their families.

Search-Based Planning and Replanning in Robotics and Autonomous Systems
http://dx.doi.org/10.5772/intechopen.71663

65



In general, the problem statement of MP can be generalised as follows: Given the initial 
defined world space and the robot’s configuration space, the MP algorithm must generate a 
series of consecutive collision-free configurations of the robot that connects start configura-
tion and goal configuration. This series configuration must satisfy any inherent motion or 
non-motion constraints of the robot.

To cope with a wide range of environment characteristics, MP can be divided into two catego-
ries: gross MP and fine MP [7]. The gross MP concerns with the scenarios when world space is 
much wider than obstacles’ size and positional error of the robot, whereas the fine MP solves 
the planning problems in narrow space that requires high accuracy.

This manuscript presents the development of gross MP algorithm family, in particular search-
based planning and replanning paradigm. The foundation concepts of MP, configuration 
space representations, and the position of mentioned paradigm in MP big picture is presented 
in Section 2. Section 3 describes historical basis of search-based algorithm family. Section 4 
demonstrates the properties and pitfall of D* Lite, which is one of the most crucial algorithms 
to plan path in dynamic environment. After that, the variants of D* Lite, which improve D* 
Lite’s optimality and performance, are presented. To confirm the improvements, we provide 
experimental results of recent path planning algorithms and their comparisons in terms of 
performance and optimality in Section 5. Section 6 will discuss about the future development 
of MP and provide conclusion.

2. Motion planning concepts

This section will provide an overview of the basic elements that every MP problem must 
involve. These elements are configuration space of robot and obstacles, environment repre-
sentation, MP method and search method. The mentioned factors must be analysed consecu-
tively in order to apply suitable MP algorithm family for each scenario.

2.1. Classification of motion planning problems

There still does not exist unified MP algorithm that can robustly solve MP problems in any 
scenarios such as time optimality, path optimality, moving target, non-holonomic motion, etc. 
However, with the active recent development of MP, a variety of MP algorithm families are 
invented to deal with the mentioned scenarios. We will provide detail MP algorithm family 
classifications based on problem type and therefore demonstrate the location of search-based 
paradigm in MP.

Figure 1 describes the family tree of MP algorithms based on problem-type classification.

As can be seen, MP with non-holonomic (velocity and kinodynamic) constraints, which is han-
dled by sampling-based paradigm, is still an open research area due to the hardness of trans-
forming high DOF robot and surroundings into configuration space. This configuration space 
problem has been proved to be NP hard, and computing configuration space operation has 

Advanced Path Planning for Mobile Entities64

exponential lower bound [7]. Until recently, the mainstream of non-holonomic MP research 
is developed based on random rapidly exploring random tree planner (RRT). For example, 
heuristics property of A* [8] has been applied to RRT for faster trajectory convergence [9]. Fast 
Marching Square method was developed for non-holonomic car-like robot based on RRT that 
produces smoother trajectory than RRT [10].

Unlike sampling-based paradigm, search-based paradigm, which represents for path plan-
ning algorithms, has a long history of evolution, from basic graph searching to dynamic 
motion planner with constraints. In this paradigm, robot is treated as point or scalar robot that 
is able to move in any direction at any time interval. Hence, the configuration obstacle space 
has the same dimension with the environment, and the generated trajectory is just a path 
in operating environment. Search-based paradigm is divided into time-invariant and time- 
variant environment categories. A* is the representative for time-invariant algorithm fam-
ily; its cost function is incorporated with heuristic property for faster optimal path planning. 
When dealing with time-variant problem, although we can ensure the optimality and correct-
ness of path solution, we cannot just rerun A* from the point that the robot detects changes 
in environment due to high latency. To efficiently path replanning in dynamic environment, 
incremental property is combined with heuristic property to develop D* Lite algorithm; this 
algorithm is the basis for future development of search-based replanning. Many variants of 
D* Lite for different MP problems are presented in Table 1.

The development of search-based algorithm family is described detail in Section 3 and Section 4.

Figure 1. Classification of MP algorithm families based on problem type; the deepest leaves of algorithm tree are 
representatives for their families.

Search-Based Planning and Replanning in Robotics and Autonomous Systems
http://dx.doi.org/10.5772/intechopen.71663

65



2.2. Problem statement formulation

The general MP problem can be formulated as the following six terms:

1. State space: the configuration space of the robot transformed from physical space, W.

2. Boundary values:   x  init   ∈ W  and   X  goal   ⊂ W .

3. Collision detector:  D : W →  {true,  false}   the function to detect whether the global con-
straints are satisfied from robot state  x ; it can output binary or real values.

4. Input space: a set U of input, which specifies a complete set of robot operation that affects 
the state  x .

5. Incremental rules: a set of rules to transition state  x (t)   to state  x (t + Δt)   when an operation is 
input over time interval,    {u ( t  c  ) |  t <  t  c   < t + Δt }    .

6. Metric: a real-valued function  ρ : W × W →  [0, +∞)   that defines the distance between two 
points in state space W.

General MP is viewed as a search for path (a series of configuration) in state space W that con-
nects start configuration   x  init    to goal configuration region   X  goal   . The robot is incorporated with 
a set of global constraints (small discrete headings, velocity, balancing, etc.). We denote   W  free    
as a set of configuration that satisfies global constraints, and the generated path must be in   
W  free   . The incremental rules can be considered as discrete-time response system, and together 
with input space, it defines possible robot state transitions. Metric can affect heavily to the 
algorithm’s optimality and performance; it indicates the distance between pair of points in 
topological space. One can construct MP algorithm to deal with specific constraints in certain 
environment by following these basic terms.

2.3. Environment representation

This section will describe the transformation of world space to state space. This is the first step 
to formulate a MP algorithm; it creates an operation environment for MP algorithm and a way 
to represent physical world information as data structure in computer.

2.3.1. Configuration space (C-space) transformation

The world space (physical space) is where the robot and obstacles exist; it is a map of the 
practical world. However, we cannot apply directly MP algorithm to this space due to the 

Problem scenarios Algorithms

Moving target MTD* Lite [11]

Fast/suboptimal Anytime D* [12], truncated D* Lite [13], anytime Truncated D* [14]

Any-angle movement Field D* [3], incremental Phi* [15]

Performance improvement D* Lite with Reset [16]

Table 1. Different families of D* Lite variants.

Advanced Path Planning for Mobile Entities66

hardness of representing orientation dimension and other parameters such as motion con-
straints on computer. Therefore, a C-space is needed, which incorporates all independent 
parameters that completely define the position of all points on the robot and specifies global 
constraints of the robot as Cartesian space. Figure 2 [17] shows a mapping between an effec-
tor of 2DOF robot arm and a set of possible two angle parameters that constitutes C-space 
of the effector.

After computing the C-space, all MP problems are basically reduced to finding a series of 
configuration that connects start configuration and goal configuration. In other word, the 
problem is reduced to finding a path for a point robot from start to goal. The number of 
parameters that defines robot position is the dimension of C-space. The method to compute 
C-space is mentioned in [7].

For simplicity, to follow the scope of this chapter, we will treat C-space of point robot the 
same as world space; the reason is that search-based paradigm deals with holonomic MP 
problem in which the size of robot is neglected compared to operating environment.

2.3.2. Continuous to discrete approximation

After transforming world space to C-space, we still cannot apply search-based algorithms 
to C-space. The problem is that search-based algorithms like A* or D* Lite work on graph-
like structures; hence, applying search-based algorithms on continuous C-space is intractable. 
However, other MP algorithm families such as sampling based can apply directly to C-space. 
Unfortunately, the path optimality and performance of sampling-based algorithms are cur-
rently worse than state-of-the-art search-based algorithms.

Figure 2. Configuration space of 2DOF robot arm that represents a set of  collision-free angles in white and specific object 
collided in colours (a) Workspace, (b) C-space.

Search-Based Planning and Replanning in Robotics and Autonomous Systems
http://dx.doi.org/10.5772/intechopen.71663

67



2.2. Problem statement formulation

The general MP problem can be formulated as the following six terms:

1. State space: the configuration space of the robot transformed from physical space, W.

2. Boundary values:   x  init   ∈ W  and   X  goal   ⊂ W .

3. Collision detector:  D : W →  {true,  false}   the function to detect whether the global con-
straints are satisfied from robot state  x ; it can output binary or real values.

4. Input space: a set U of input, which specifies a complete set of robot operation that affects 
the state  x .

5. Incremental rules: a set of rules to transition state  x (t)   to state  x (t + Δt)   when an operation is 
input over time interval,    {u ( t  c  ) |  t <  t  c   < t + Δt }    .

6. Metric: a real-valued function  ρ : W × W →  [0, +∞)   that defines the distance between two 
points in state space W.

General MP is viewed as a search for path (a series of configuration) in state space W that con-
nects start configuration   x  init    to goal configuration region   X  goal   . The robot is incorporated with 
a set of global constraints (small discrete headings, velocity, balancing, etc.). We denote   W  free    
as a set of configuration that satisfies global constraints, and the generated path must be in   
W  free   . The incremental rules can be considered as discrete-time response system, and together 
with input space, it defines possible robot state transitions. Metric can affect heavily to the 
algorithm’s optimality and performance; it indicates the distance between pair of points in 
topological space. One can construct MP algorithm to deal with specific constraints in certain 
environment by following these basic terms.

2.3. Environment representation

This section will describe the transformation of world space to state space. This is the first step 
to formulate a MP algorithm; it creates an operation environment for MP algorithm and a way 
to represent physical world information as data structure in computer.

2.3.1. Configuration space (C-space) transformation

The world space (physical space) is where the robot and obstacles exist; it is a map of the 
practical world. However, we cannot apply directly MP algorithm to this space due to the 

Problem scenarios Algorithms

Moving target MTD* Lite [11]

Fast/suboptimal Anytime D* [12], truncated D* Lite [13], anytime Truncated D* [14]

Any-angle movement Field D* [3], incremental Phi* [15]

Performance improvement D* Lite with Reset [16]

Table 1. Different families of D* Lite variants.

Advanced Path Planning for Mobile Entities66

hardness of representing orientation dimension and other parameters such as motion con-
straints on computer. Therefore, a C-space is needed, which incorporates all independent 
parameters that completely define the position of all points on the robot and specifies global 
constraints of the robot as Cartesian space. Figure 2 [17] shows a mapping between an effec-
tor of 2DOF robot arm and a set of possible two angle parameters that constitutes C-space 
of the effector.

After computing the C-space, all MP problems are basically reduced to finding a series of 
configuration that connects start configuration and goal configuration. In other word, the 
problem is reduced to finding a path for a point robot from start to goal. The number of 
parameters that defines robot position is the dimension of C-space. The method to compute 
C-space is mentioned in [7].

For simplicity, to follow the scope of this chapter, we will treat C-space of point robot the 
same as world space; the reason is that search-based paradigm deals with holonomic MP 
problem in which the size of robot is neglected compared to operating environment.

2.3.2. Continuous to discrete approximation

After transforming world space to C-space, we still cannot apply search-based algorithms 
to C-space. The problem is that search-based algorithms like A* or D* Lite work on graph-
like structures; hence, applying search-based algorithms on continuous C-space is intractable. 
However, other MP algorithm families such as sampling based can apply directly to C-space. 
Unfortunately, the path optimality and performance of sampling-based algorithms are cur-
rently worse than state-of-the-art search-based algorithms.

Figure 2. Configuration space of 2DOF robot arm that represents a set of  collision-free angles in white and specific object 
collided in colours (a) Workspace, (b) C-space.

Search-Based Planning and Replanning in Robotics and Autonomous Systems
http://dx.doi.org/10.5772/intechopen.71663

67



There are two main approaches to discretize C-space into graph-like structure:

• Cell decomposition

• Roadmap

In cell decomposition approach, we divide C-space into eight-connected square grid environ-
ment with arbitrary resolution. Then we colour all cells that intersect with obstacle configura-
tion with black, and other free cells are white. Figure 3 illustrates this approach.

This approximation has limited assumptions on obstacle configuration. Therefore, the 
approach is used widely in practice. However, there is no concept of path optimality, because 
we can infinitely divide C-space into smaller squares. It is a trade-off between optimality and 
computation. Cell decomposition in high dimensions is also expensive; it has exponential 
growth in PSPACE.

In roadmaps approach, the idea is avoiding scanning the entire C-space by computing an 
undirected graph with “road” edges that are guaranteed to be collision-free. The main meth-
ods of this approach are visibility graph [17] and Voronoi diagrams. The examples of the two 
methods are demonstrated in Figure 4.

As can be seen, this approach generates fewer vertices than cell decomposition approach. 
Visibility graph method tends to generate with vertices that are the vertices of obstacles; this 
property leads to finding shortest path. However, the visibility graph’s roadmaps are close 
to obstacles; collision is inevitable due to some movement error. Voronoi diagram solves the 
problem by generating roadmaps that keep robot as far away as possible from obstacles.

Despite this approach constructs efficiently graph representation for search-based algorithm; 
it is difficult to compute in higher dimension or non-polygonal environment. The approach 

Figure 3. Cell decomposition approach (a) Original Objects, (b) Encoded Objects into cells.

Advanced Path Planning for Mobile Entities68

also can be unstable in dynamic scenarios; small changes in obstacles can lead to large changes 
in graph.

In the following sections, we use cell decomposition approach for search-based algorithms 
due to its clarity to describe the operation of search-based algorithms and its feasibility to 
apply in practice.

3. Search-based planning on time-invariant environment

This section demonstrates one of the most well-known algorithms in graph search family: A*. 
The A* algorithm’s properties are also examined and utilised to use in different cases.

3.1. A* algorithm

There are three main properties of A* [8] that are inherited from historical graph search 
algorithms:

• Search tree: a search tree  T , which root is the starting cell, stores expanded cells as branches. 
This tree is capable to extract path to starting cell from any expanded cell  s  in the map. A* 
inherits this tree from breadth-first search algorithm.

• Uniform cost search: This property includes a data structure  g (s)   that stores the cost to 
travel from starting cell to any cell  s  in the map, which is formulated as

  f (s)  = g (s) ,  (1)

Figure 4. Path topologies of visibility graph and Voronoi diagram methods in roadmap approach (a) Visibility Graph 
method, (b) Voronoi method.

Search-Based Planning and Replanning in Robotics and Autonomous Systems
http://dx.doi.org/10.5772/intechopen.71663

69



There are two main approaches to discretize C-space into graph-like structure:

• Cell decomposition

• Roadmap

In cell decomposition approach, we divide C-space into eight-connected square grid environ-
ment with arbitrary resolution. Then we colour all cells that intersect with obstacle configura-
tion with black, and other free cells are white. Figure 3 illustrates this approach.

This approximation has limited assumptions on obstacle configuration. Therefore, the 
approach is used widely in practice. However, there is no concept of path optimality, because 
we can infinitely divide C-space into smaller squares. It is a trade-off between optimality and 
computation. Cell decomposition in high dimensions is also expensive; it has exponential 
growth in PSPACE.

In roadmaps approach, the idea is avoiding scanning the entire C-space by computing an 
undirected graph with “road” edges that are guaranteed to be collision-free. The main meth-
ods of this approach are visibility graph [17] and Voronoi diagrams. The examples of the two 
methods are demonstrated in Figure 4.

As can be seen, this approach generates fewer vertices than cell decomposition approach. 
Visibility graph method tends to generate with vertices that are the vertices of obstacles; this 
property leads to finding shortest path. However, the visibility graph’s roadmaps are close 
to obstacles; collision is inevitable due to some movement error. Voronoi diagram solves the 
problem by generating roadmaps that keep robot as far away as possible from obstacles.

Despite this approach constructs efficiently graph representation for search-based algorithm; 
it is difficult to compute in higher dimension or non-polygonal environment. The approach 

Figure 3. Cell decomposition approach (a) Original Objects, (b) Encoded Objects into cells.

Advanced Path Planning for Mobile Entities68

also can be unstable in dynamic scenarios; small changes in obstacles can lead to large changes 
in graph.

In the following sections, we use cell decomposition approach for search-based algorithms 
due to its clarity to describe the operation of search-based algorithms and its feasibility to 
apply in practice.

3. Search-based planning on time-invariant environment

This section demonstrates one of the most well-known algorithms in graph search family: A*. 
The A* algorithm’s properties are also examined and utilised to use in different cases.

3.1. A* algorithm

There are three main properties of A* [8] that are inherited from historical graph search 
algorithms:

• Search tree: a search tree  T , which root is the starting cell, stores expanded cells as branches. 
This tree is capable to extract path to starting cell from any expanded cell  s  in the map. A* 
inherits this tree from breadth-first search algorithm.

• Uniform cost search: This property includes a data structure  g (s)   that stores the cost to 
travel from starting cell to any cell  s  in the map, which is formulated as

  f (s)  = g (s) ,  (1)

Figure 4. Path topologies of visibility graph and Voronoi diagram methods in roadmap approach (a) Visibility Graph 
method, (b) Voronoi method.

Search-Based Planning and Replanning in Robotics and Autonomous Systems
http://dx.doi.org/10.5772/intechopen.71663

69



where  f (s)   is the priority of cell in open list  O ; the smaller the  f (s)  , the higher the priority. 
The open list  O  handles processing expanding cells, and therefore this property prioritises 
expanding cells with less cost to travel. A* inherits this property from Dijkstra’s algorithm.

• Heuristic: a rule to guide expanding search towards goal cell. This rule is formulated:

  f (s)  = h (s) ,  (2)

where  h (s)   is the heuristics function for each cell s that indicates the closeness from cell s to 
goal.  h (s)   can be Euclidean distance or Manhattan distance function in this case. In addition,  
 h (s)   must satisfy admissible property:

  h (s)  ≤ cost (s,  s   ′ )  + h ( s   ′ ) ,  (3)

for any successor   s   ′   of  s  to ensure path optimality. A* inherits this property from greedy best-
first search.

Figure 5 illustrates each property of A* when they are applied to search for goal:

The total expanded cells in each algorithm constitutes for their performance (e.g. how many 
cells are processed before path is found). As can be seen, Dijkstra’s algorithm has the worst 
performance due to lack of guidance to expand search; it just expands uniformly to all direc-
tions. Greedy best-first search has the best computation; however, it does not guarantee the 
shortest path like Dijkstra’s algorithm, because its search is trap in local minima shown in the 
picture. A* has both computation and optimality advantages over these old algorithms by 
combining uniform cost search rule to guarantee path optimality and heuristic rule of greedy 
best-first search to guide search process towards goal. Both rules can be combined and for-
mulated as priority function:

   f (s)  = g (s)  + h (s)  . (4)

Intuitively, one could think  f (s)   is an estimated cost to travel from start cell to goal through 
concerning cell s. Hence, A* expands towards cells that have least cost travel (Figure 6, line 11).

The pseudo code for A* is shown in Figure 6.

Figure 5. Operation demonstration of properties of A* and A* itself (a) Map, (b) Uniform cost search, (c) Greedy Best-
First Search and (d) A*.

Advanced Path Planning for Mobile Entities70

3.2. Anytime A*: path suboptimal bound (ARA*) algorithm

In practice, the performance issue is more critical; time for robot to “think” before making 
decision is limited. Therefore, a path planner, which has these properties, is essential:

• Quickly producing a suboptimal solution and then gradually improving its solution as 
time allowed by reusing its previous search effort as much as possible

• Having control over the suboptimal bound and hence indicating a bound of processing 
time of each search iteration

We introduce the algorithm that is well-suited for this scenario: ARA* [18].

Basically, ARA* is developed from A*; it inherits all intrinsic properties of A*. The idea to 
quickly plan suboptimal path is derived from inflated heuristics function [18] by a factor  ε .  
The search is greedier to provide solution faster, and the solution is proven to be bounded:

   g   ∗  (s)  ≤ g (s)  ≤ ε ∗  g   ∗  (s) ,  (5)

where   g   ∗  (s)   is the optimal path cost from start to  s .

The pseudo code for ARA* is shown in Figure 7.

To understand the behaviours of ARA*, we must keep in mind that ARA* violates admissible 
property— h (s)  ≤ cost (s,  s   ′ )  + h ( s   ′ )  —for any successor   s   ′   of  s . ARA* modifies A*  f (s)   function by 
inflating heuristics function  h (s)  :

Figure 6. Pseudo code of A* algorithm.

Search-Based Planning and Replanning in Robotics and Autonomous Systems
http://dx.doi.org/10.5772/intechopen.71663

71



where  f (s)   is the priority of cell in open list  O ; the smaller the  f (s)  , the higher the priority. 
The open list  O  handles processing expanding cells, and therefore this property prioritises 
expanding cells with less cost to travel. A* inherits this property from Dijkstra’s algorithm.

• Heuristic: a rule to guide expanding search towards goal cell. This rule is formulated:

  f (s)  = h (s) ,  (2)

where  h (s)   is the heuristics function for each cell s that indicates the closeness from cell s to 
goal.  h (s)   can be Euclidean distance or Manhattan distance function in this case. In addition,  
 h (s)   must satisfy admissible property:

  h (s)  ≤ cost (s,  s   ′ )  + h ( s   ′ ) ,  (3)

for any successor   s   ′   of  s  to ensure path optimality. A* inherits this property from greedy best-
first search.

Figure 5 illustrates each property of A* when they are applied to search for goal:

The total expanded cells in each algorithm constitutes for their performance (e.g. how many 
cells are processed before path is found). As can be seen, Dijkstra’s algorithm has the worst 
performance due to lack of guidance to expand search; it just expands uniformly to all direc-
tions. Greedy best-first search has the best computation; however, it does not guarantee the 
shortest path like Dijkstra’s algorithm, because its search is trap in local minima shown in the 
picture. A* has both computation and optimality advantages over these old algorithms by 
combining uniform cost search rule to guarantee path optimality and heuristic rule of greedy 
best-first search to guide search process towards goal. Both rules can be combined and for-
mulated as priority function:

   f (s)  = g (s)  + h (s)  . (4)

Intuitively, one could think  f (s)   is an estimated cost to travel from start cell to goal through 
concerning cell s. Hence, A* expands towards cells that have least cost travel (Figure 6, line 11).

The pseudo code for A* is shown in Figure 6.

Figure 5. Operation demonstration of properties of A* and A* itself (a) Map, (b) Uniform cost search, (c) Greedy Best-
First Search and (d) A*.

Advanced Path Planning for Mobile Entities70

3.2. Anytime A*: path suboptimal bound (ARA*) algorithm

In practice, the performance issue is more critical; time for robot to “think” before making 
decision is limited. Therefore, a path planner, which has these properties, is essential:

• Quickly producing a suboptimal solution and then gradually improving its solution as 
time allowed by reusing its previous search effort as much as possible

• Having control over the suboptimal bound and hence indicating a bound of processing 
time of each search iteration

We introduce the algorithm that is well-suited for this scenario: ARA* [18].

Basically, ARA* is developed from A*; it inherits all intrinsic properties of A*. The idea to 
quickly plan suboptimal path is derived from inflated heuristics function [18] by a factor  ε .  
The search is greedier to provide solution faster, and the solution is proven to be bounded:

   g   ∗  (s)  ≤ g (s)  ≤ ε ∗  g   ∗  (s) ,  (5)

where   g   ∗  (s)   is the optimal path cost from start to  s .

The pseudo code for ARA* is shown in Figure 7.

To understand the behaviours of ARA*, we must keep in mind that ARA* violates admissible 
property— h (s)  ≤ cost (s,  s   ′ )  + h ( s   ′ )  —for any successor   s   ′   of  s . ARA* modifies A*  f (s)   function by 
inflating heuristics function  h (s)  :

Figure 6. Pseudo code of A* algorithm.

Search-Based Planning and Replanning in Robotics and Autonomous Systems
http://dx.doi.org/10.5772/intechopen.71663

71



  f (s)  = g (s)  + ε ∗ h (s)  . (6)

Hence, the computed path is no longer optimal. Moreover, each search iteration is no longer 
guaranteed to expand searching each cell at most once like A* due to decreasing  ε . However, 
to maintain efficiency and ensure suboptimal bound, ARA* introduces INCONS list to store 
local inconsistent cells as specified function:

  g ( s   ′ )  >  min   s   ′′ ∈pred ( s   ′ )    (cost ( s   ′ ,  s   ′′ )  + g ( s   ′′ ) ) ,  (7)

Figure 7. Pseudo code of ARA* algorithm.

Advanced Path Planning for Mobile Entities72

(Figure 7, line 13) that already are expanded once and processes these cells in the next search 
iteration.

In general, ARA* executes consecutive search iterations with decreasing suboptimal bound; 
each search does not recalculate consistent cells from previous search. Therefore, the path 
improvement process is efficient. Theoretical properties of ARA* is described in [18].

4. Search-based replanning on time-varying environment

In real-world application, there is often a scenario that the robot initially does not know a pri-
ori information about its surroundings. We cannot encode the world space information each 
time the robot runs, because it is expensive, tedious, and infeasible due to rapid changes in 
practice. To maintain collision-free path, one can naively rerun A* to replan the shortest path 
from the point that the robot detects changes. However, this naïve approach will waste com-
putation by reprocessing cells that are irrelevant to compute a new path and hence increase 
idle time between each search. This section will demonstrate search-based algorithms to solve 
mentioned problem in time-variant environment.

4.1. Incremental heuristic algorithm: D* Lite algorithm

4.1.1. D* Lite algorithm

In goal-directed navigation task, with cell decomposition approximation, the robot always 
observes a limited range of eight connected grids. The robot is able to move in eight directions 
with cost one, and it assumes that unknown cells are traversable. The robot follows the initial 
calculated path to goal and encounters blockage cells; it must be able to process only cells that 
are relevant to compute the new path. The challenge is to find these relevant cells. Figure 8 
illustrates this idea.

Note that grey cells (in Figure 8) are expanded cells to compute initial path or new path when 
robot detects blockage cell in purple at position yellow cell. Darker grey cells are processed 
multiple times. As can be seen, total expanded cells in replanning process of D* Lite is 61, 
whereas expanded cells of rerunning A* are 75.

D* Lite [19] is developed directly from Lifelong Planning A* (LPA*) [20] for applying on 
mobile robot, which is a combination of Dynamic SWSF-FP [21] and A* [8]. Therefore, D* Lite 
possesses these properties:

• Reverse search: Unlike A*, D* Lite expands its search from goal;  h (s)   now indicates the 
closeness from cell s to start cell.  g (s)   now also stores estimated distance from goal. After 
searching is finished, the path from start to goal is generated by iteratively moving from 
cell  s  towards neighbour cells   s   ′   that have the lowest sum  g (s)  + cost (s,  s   ′ )   in greedy style.

• Heuristics: D* Lite inherits this property from A* with admissible rule. Thus, D* Lite main-
tains path optimality by expanding heuristically towards start cell.

Search-Based Planning and Replanning in Robotics and Autonomous Systems
http://dx.doi.org/10.5772/intechopen.71663

73



  f (s)  = g (s)  + ε ∗ h (s)  . (6)

Hence, the computed path is no longer optimal. Moreover, each search iteration is no longer 
guaranteed to expand searching each cell at most once like A* due to decreasing  ε . However, 
to maintain efficiency and ensure suboptimal bound, ARA* introduces INCONS list to store 
local inconsistent cells as specified function:

  g ( s   ′ )  >  min   s   ′′ ∈pred ( s   ′ )    (cost ( s   ′ ,  s   ′′ )  + g ( s   ′′ ) ) ,  (7)

Figure 7. Pseudo code of ARA* algorithm.

Advanced Path Planning for Mobile Entities72

(Figure 7, line 13) that already are expanded once and processes these cells in the next search 
iteration.

In general, ARA* executes consecutive search iterations with decreasing suboptimal bound; 
each search does not recalculate consistent cells from previous search. Therefore, the path 
improvement process is efficient. Theoretical properties of ARA* is described in [18].

4. Search-based replanning on time-varying environment

In real-world application, there is often a scenario that the robot initially does not know a pri-
ori information about its surroundings. We cannot encode the world space information each 
time the robot runs, because it is expensive, tedious, and infeasible due to rapid changes in 
practice. To maintain collision-free path, one can naively rerun A* to replan the shortest path 
from the point that the robot detects changes. However, this naïve approach will waste com-
putation by reprocessing cells that are irrelevant to compute a new path and hence increase 
idle time between each search. This section will demonstrate search-based algorithms to solve 
mentioned problem in time-variant environment.

4.1. Incremental heuristic algorithm: D* Lite algorithm

4.1.1. D* Lite algorithm

In goal-directed navigation task, with cell decomposition approximation, the robot always 
observes a limited range of eight connected grids. The robot is able to move in eight directions 
with cost one, and it assumes that unknown cells are traversable. The robot follows the initial 
calculated path to goal and encounters blockage cells; it must be able to process only cells that 
are relevant to compute the new path. The challenge is to find these relevant cells. Figure 8 
illustrates this idea.

Note that grey cells (in Figure 8) are expanded cells to compute initial path or new path when 
robot detects blockage cell in purple at position yellow cell. Darker grey cells are processed 
multiple times. As can be seen, total expanded cells in replanning process of D* Lite is 61, 
whereas expanded cells of rerunning A* are 75.

D* Lite [19] is developed directly from Lifelong Planning A* (LPA*) [20] for applying on 
mobile robot, which is a combination of Dynamic SWSF-FP [21] and A* [8]. Therefore, D* Lite 
possesses these properties:

• Reverse search: Unlike A*, D* Lite expands its search from goal;  h (s)   now indicates the 
closeness from cell s to start cell.  g (s)   now also stores estimated distance from goal. After 
searching is finished, the path from start to goal is generated by iteratively moving from 
cell  s  towards neighbour cells   s   ′   that have the lowest sum  g (s)  + cost (s,  s   ′ )   in greedy style.

• Heuristics: D* Lite inherits this property from A* with admissible rule. Thus, D* Lite main-
tains path optimality by expanding heuristically towards start cell.

Search-Based Planning and Replanning in Robotics and Autonomous Systems
http://dx.doi.org/10.5772/intechopen.71663

73



• Incremental: D* Lite inherits incremental search property from Dynamic SWSF-FP; it re-
uses information from previous search to repair path in a series of similar searches, which 
is much efficient than calculating path from scratch.

The pseudo code for D* Lite is shown in Figure 9.

In general, the pseudo code of D* Lite maintains three invariants:

• Invariant 1:  rhs (s)  =  { 
0           if s =  s  start       min   s   ′ ∈Pred (s)    (g ( s   ′ )  + cost (s,  s   ′ ) )  otherwise    .

• Invariant 2: OPEN list contains exactly only local inconsistent cells  g (s)  ≠ rhs (s)  .

• Invariant 3: Priority value of cells in OPEN list is equal to its  Key (s)  .

At the first run, D* Lite is exactly like A*. It guarantees to expand cells at most twice in each 
search routine due to the concept of one-step look-ahead estimated goal distance r  hs (s)   that 
is inherited from LPA*. r  hs (s)   leads to the terms of over-consistent cell  g (s)  > rhs (s)   and 
under-consistent cell  g (s)  < rhs (s)  . Intuitively, these concepts help propagating the inconsis-
tency of cells to their neighbours. To maintain Invariants 1 and 2, ComputePath() function 
updates rhs-values of changed cells, checks their consistency and decides their membership 
of OPEN list accordingly. Invariant 3 is maintained by updating the OPEN list keys while 
expanding (Figure 9, lines 17–18). ComputePath() stops when the smallest key of OPEN list 
is less than  Key ( s  start  )   or   s  start    is consistent; this criteria indicates that cell expansion has reached 
target   s  start   . Theorems of D* Lite are described detail in [19].

4.1.2. Pitfall of D* Lite

Despite being an effective replanner for dynamic environment, D* Lite does have a big pitfall 
for certain circumstances. In fact, D* Lite is designed to be implemented in mobile robot with 
range sensors, in which the environment changes are perceived near the robot (the starting 
cell). In other word, the changes occurred at the perimeter of expansion. Therefore, D* Lite 
just propagates inconsistencies in a small area near the search front; the replanning process 
is efficient. However, the problem arises when we combine other sensors (e.g. UAV, satellite, 

Figure 8. MP simulation on grid environment (a) Initial path, (b) Reset A* and (c) D* Lite.

Advanced Path Planning for Mobile Entities74

etc.) to detect environment changes in further area near the goal. Intuitively, we can imagine 
a valley where  g (s)   of each cell substitutes for its height; the goal cell has the lowest height (the 
bottom of the valley), and robot position (start cell) is always at valley’s edge. Suddenly, there 
is a change in height near the goal; D* Lite has to give enormous effort to correct the conti-
nuity of the valley slope from the bottom to the surface. Because of the overhead of storing 

Figure 9. Pseudo code of D* Lite algorithm.

Search-Based Planning and Replanning in Robotics and Autonomous Systems
http://dx.doi.org/10.5772/intechopen.71663

75



• Incremental: D* Lite inherits incremental search property from Dynamic SWSF-FP; it re-
uses information from previous search to repair path in a series of similar searches, which 
is much efficient than calculating path from scratch.

The pseudo code for D* Lite is shown in Figure 9.

In general, the pseudo code of D* Lite maintains three invariants:

• Invariant 1:  rhs (s)  =  { 
0           if s =  s  start       min   s   ′ ∈Pred (s)    (g ( s   ′ )  + cost (s,  s   ′ ) )  otherwise    .

• Invariant 2: OPEN list contains exactly only local inconsistent cells  g (s)  ≠ rhs (s)  .

• Invariant 3: Priority value of cells in OPEN list is equal to its  Key (s)  .

At the first run, D* Lite is exactly like A*. It guarantees to expand cells at most twice in each 
search routine due to the concept of one-step look-ahead estimated goal distance r  hs (s)   that 
is inherited from LPA*. r  hs (s)   leads to the terms of over-consistent cell  g (s)  > rhs (s)   and 
under-consistent cell  g (s)  < rhs (s)  . Intuitively, these concepts help propagating the inconsis-
tency of cells to their neighbours. To maintain Invariants 1 and 2, ComputePath() function 
updates rhs-values of changed cells, checks their consistency and decides their membership 
of OPEN list accordingly. Invariant 3 is maintained by updating the OPEN list keys while 
expanding (Figure 9, lines 17–18). ComputePath() stops when the smallest key of OPEN list 
is less than  Key ( s  start  )   or   s  start    is consistent; this criteria indicates that cell expansion has reached 
target   s  start   . Theorems of D* Lite are described detail in [19].

4.1.2. Pitfall of D* Lite

Despite being an effective replanner for dynamic environment, D* Lite does have a big pitfall 
for certain circumstances. In fact, D* Lite is designed to be implemented in mobile robot with 
range sensors, in which the environment changes are perceived near the robot (the starting 
cell). In other word, the changes occurred at the perimeter of expansion. Therefore, D* Lite 
just propagates inconsistencies in a small area near the search front; the replanning process 
is efficient. However, the problem arises when we combine other sensors (e.g. UAV, satellite, 

Figure 8. MP simulation on grid environment (a) Initial path, (b) Reset A* and (c) D* Lite.

Advanced Path Planning for Mobile Entities74

etc.) to detect environment changes in further area near the goal. Intuitively, we can imagine 
a valley where  g (s)   of each cell substitutes for its height; the goal cell has the lowest height (the 
bottom of the valley), and robot position (start cell) is always at valley’s edge. Suddenly, there 
is a change in height near the goal; D* Lite has to give enormous effort to correct the conti-
nuity of the valley slope from the bottom to the surface. Because of the overhead of storing 

Figure 9. Pseudo code of D* Lite algorithm.

Search-Based Planning and Replanning in Robotics and Autonomous Systems
http://dx.doi.org/10.5772/intechopen.71663

75



g-value information, the correction effort now is more expensive than starting the search from 
scratch. This is a big limitation for multi-sensor-based robot system; the problem also makes 
D* Lite unreliable in high-dimensional state space.

This behaviour leads us to a problem statement: The location of environment changes with 
respect to goal position makes an enormous difference to efficiency of D* Lite. This problem is 
also addressed by the author of D* Lite in [12] as open question. In other papers, mathemati-
cal approach is used to study this pitfall in [16]. Unfortunately, the problem is still not solved 
thoroughly; however, there are approaches to partly overcome this pitfall in certain situation 
that will be presented in the following section.

4.2. Performance improvements

This section describes variants of D* Lite that partially solves the mentioned pitfall of D* Lite. 
Hence, these state-of-the-art algorithms improve the computation factor of D* Lite.

4.2.1. Anytime dynamic A* (AD*) algorithm

As one of the prominent properties of D* Lite, it maintains the optimality of solution paths. 
However, in real-world application, optimal paths are difficult to calculate due to the com-
plexity and uncertainty of environment within available time; the paths are also quickly 
to become out of date because of dynamic surroundings. Moreover, the state space, which 
encodes global motion constraints of the robot, tends to be high dimensions. With these dif-
ficulties, D* Lite becomes unreliable when implementing in real robot.

Anytime Dynamic A* (AD*) [12], which is a combination of D* Lite and ARA* algorithm, is a 
trade-off between computation and path optimality. It sacrifices the shortest path to quickly 
generate suboptimal solution to cope with imperfect information and dynamic environment. 
AD* inherits these properties from its parent algorithms:

• Anytime: AD* uses inflated heuristic function to increase the greedy factor that expands 
aggressively towards goal while still maintaining path suboptimal bounds  ε . In addition, 
AD* also is capable to reuse information from previous search to improve its path. This 
property is inherited from ARA* to cope with complex planning scenario.

• Incremental heuristic: AD* has the ability to efficiently identify relevant cells that contrib-
ute to replan a new path when environment changes are detected. However, the heuristic 
function in this property is not inflated to guarantee the suboptimal bound in replanning 
process. This property is inherited from D* Lite to cope with dynamic environment.

In general, AD* executes a series of similar searches with decreasing suboptimal bounds to 
generate a series of paths with improved bounds. As environment changes are detected, the 
locally inconsistent cells are placed in OPEN list with uninflated heuristic keys, and AD* 
processes these cells to correct the outdated path. The pseudo code for AD* is shown in 
Figure 10.

Advanced Path Planning for Mobile Entities76

Figure 10. Pseudo code of AD* algorithm.

Search-Based Planning and Replanning in Robotics and Autonomous Systems
http://dx.doi.org/10.5772/intechopen.71663

77



g-value information, the correction effort now is more expensive than starting the search from 
scratch. This is a big limitation for multi-sensor-based robot system; the problem also makes 
D* Lite unreliable in high-dimensional state space.

This behaviour leads us to a problem statement: The location of environment changes with 
respect to goal position makes an enormous difference to efficiency of D* Lite. This problem is 
also addressed by the author of D* Lite in [12] as open question. In other papers, mathemati-
cal approach is used to study this pitfall in [16]. Unfortunately, the problem is still not solved 
thoroughly; however, there are approaches to partly overcome this pitfall in certain situation 
that will be presented in the following section.

4.2. Performance improvements

This section describes variants of D* Lite that partially solves the mentioned pitfall of D* Lite. 
Hence, these state-of-the-art algorithms improve the computation factor of D* Lite.

4.2.1. Anytime dynamic A* (AD*) algorithm

As one of the prominent properties of D* Lite, it maintains the optimality of solution paths. 
However, in real-world application, optimal paths are difficult to calculate due to the com-
plexity and uncertainty of environment within available time; the paths are also quickly 
to become out of date because of dynamic surroundings. Moreover, the state space, which 
encodes global motion constraints of the robot, tends to be high dimensions. With these dif-
ficulties, D* Lite becomes unreliable when implementing in real robot.

Anytime Dynamic A* (AD*) [12], which is a combination of D* Lite and ARA* algorithm, is a 
trade-off between computation and path optimality. It sacrifices the shortest path to quickly 
generate suboptimal solution to cope with imperfect information and dynamic environment. 
AD* inherits these properties from its parent algorithms:

• Anytime: AD* uses inflated heuristic function to increase the greedy factor that expands 
aggressively towards goal while still maintaining path suboptimal bounds  ε . In addition, 
AD* also is capable to reuse information from previous search to improve its path. This 
property is inherited from ARA* to cope with complex planning scenario.

• Incremental heuristic: AD* has the ability to efficiently identify relevant cells that contrib-
ute to replan a new path when environment changes are detected. However, the heuristic 
function in this property is not inflated to guarantee the suboptimal bound in replanning 
process. This property is inherited from D* Lite to cope with dynamic environment.

In general, AD* executes a series of similar searches with decreasing suboptimal bounds to 
generate a series of paths with improved bounds. As environment changes are detected, the 
locally inconsistent cells are placed in OPEN list with uninflated heuristic keys, and AD* 
processes these cells to correct the outdated path. The pseudo code for AD* is shown in 
Figure 10.

Advanced Path Planning for Mobile Entities76

Figure 10. Pseudo code of AD* algorithm.

Search-Based Planning and Replanning in Robotics and Autonomous Systems
http://dx.doi.org/10.5772/intechopen.71663

77



At first, we set the suboptimal bound  ε  to be large enough in order to generate solution quickly 
(Figure 10, line 42). Unless environment changes are detected, AD* iteratively decrease sub-
optimal bound  ε  to improve the solution as time allowed (Figure 10, lines 55–60); this phase 
is exactly the same with ARA*.

When changes are perceived, the suboptimal bound of solution is no longer guaranteed, 
especially the under-consistent cells, due to the fact that there could have shorter paths 
exist. Therefore, these under-consistent cells are placed in OPEN list with uninflated 
heuristic to ensure these cells propagate their inconsistences to neighbours first when 
ComputeOrImprovePath() function is called (Figure 10, lines 5 and 45–50). However, because 
of this effect, many under-consistent cells quickly rise to the top of OPEN list; they usually do 
not contribute to calculate new path in practice (e.g. objects cause under-consistent changes 
like human movement, etc.). Hence, AD* tends to slow down when the path is near optimal. 
Theorems of AD* are described in detail in [12].

When “significant cell changes are detected” (Figure 10, line 53), there is a high chance that 
the problem of D* Lite occurs and the search tree may be corrupted heavily; the replanning 
process now is expensive; we can increase suboptimal bound  ε  to speed up the correction 
effort or start a new search from scratch. The problem is how to estimate “significant cell 
changes”. This algorithm does not solve the mentioned problem of D* Lite completely; it is 
just a trade-off between performance and path optimality. However, AD* performs quickly 
in large-scaled map compared to other algorithms, in which the robot has significant time to 
iteratively repair its path, and thus overall path is near optimal.

4.2.2. D* Lite with reset algorithm

Unlike AD*, D* Lite with Reset (D*LR) [16] partially solves the problem D* Lite while still 
maintaining path optimality. The idea of D*LR is simple; it decides flushing previous search 
data and starts searching from scratch when the replanning process is expensive.

D*LR is a variant of D* Lite; it inherits all the properties of D* Lite. The main contribution of 
D*LR is that it proposes two criteria to decide whether to incrementally replan path or calculate 
a fresh path using A* at the position the robot detects changes. Let total traversed cell is   N  T   ; total 
cell of path that exists between consecutive detection incidents is   N  P   , and the remaining path 
count is   N  R   =  N  P   −  N  T   ; the criteria are:

• Ratio of traversed length: The criteria measure how many percentages of the path the 
robot has moved between two consecutive positions that the robot detects environment 
changes. The ratio    

 N  T  
 ___  N  P      is then compared with a threshold:

     
 N  T  

 ___  N  P     < ∝ .  (8)

If the ratio is greater than threshold  ∝  when the robot perceives changes, it triggers the reset 
routine and starts searching from scratch. Intuitively, the position that robot detects changes 
is nearer the goal, the more likely replanning process is expensive.

Advanced Path Planning for Mobile Entities78

• Linear heuristic distance: The criteria measure the complexity of the remaining path count   
N  

R
    between consecutive detection incidents. The method to measure the complexity is to 

use inflated heuristic function:

    N  R   > ε ∗ h (s,   s  goal  ) ,  (9)

where s is the current position of the robot. If   N  R   ≤ ε ∗ h (s,   s  goal  )  , then the remaining path is 
simple enough; there is a chance that the new path is much more complex. Hence, the algo-
rithm must plan over from scratch.

As can be seen, these criteria use only path information between consecutive detection inci-
dents in order to estimate the amount of computation of replanning process comparing with 
planning over from scratch. The reason is that it is hard to predict propagation behaviour of 
OPEN list, because the state space is only partially known. Moreover, these criteria only work 
in high cluttered and complex environment, where environment changes usually block initial 
path and the new path is likely to be much longer than initial path. The pseudo code of D*LR 
is presented in Figure 11.

The proposed criteria of D*LR are not robust due to extensively replying on environmental 
assumptions. However, the algorithm can be improved if criteria that can robustly estimate 
computation of replanning process in any kind of environment are applied. If criteria are 
robust, D*LR performance of each iteration is bounded by the complexity of A*:

  O ( |V| )  = O ( |E| )  = O ( b   d )   (10)

4.3. Optimality improvements: Field D* algorithm

Although cell decomposition approximation is widely used to discretize C-space for search-
based algorithms due to its robustness (no prior environmental assumptions), this approxima-
tion intrinsically prevents search-based algorithm to produce optimal path. The search-based 
algorithms just allow to transition between cell centres, thus restricting robot traverse direc-
tions to increment of    π __ 4   . Moreover, the produced path involves many sharp turns and jerky 
segments in large map that makes robot difficult to move.

There were many approaches to cope with this problem. For instance, post-processing method 
that finds the furthest point P along the solution path for which a straight line path from P 
to robot position is collision-free and replaces the original path to P with this straight line. 
However, this method sometimes does not work and increases the path cost. Another approach 
is fast marching method [22]; this method incorporates interpolation step in planning step 
to produce low-cost interpolated path. Nonetheless, this method assumes that transition cost 
between grid cells is constant and does not have heuristic property like A*; hence it is not appli-
cable to outdoor environment, which requires fast path generating and non-uniform cost grid.

To incorporate incremental heuristic property of D* Lite, the authors of Field D* [3] embed 
linear interpolation method to the replanning process to generate “any-angle” optimal path 

Search-Based Planning and Replanning in Robotics and Autonomous Systems
http://dx.doi.org/10.5772/intechopen.71663

79



At first, we set the suboptimal bound  ε  to be large enough in order to generate solution quickly 
(Figure 10, line 42). Unless environment changes are detected, AD* iteratively decrease sub-
optimal bound  ε  to improve the solution as time allowed (Figure 10, lines 55–60); this phase 
is exactly the same with ARA*.

When changes are perceived, the suboptimal bound of solution is no longer guaranteed, 
especially the under-consistent cells, due to the fact that there could have shorter paths 
exist. Therefore, these under-consistent cells are placed in OPEN list with uninflated 
heuristic to ensure these cells propagate their inconsistences to neighbours first when 
ComputeOrImprovePath() function is called (Figure 10, lines 5 and 45–50). However, because 
of this effect, many under-consistent cells quickly rise to the top of OPEN list; they usually do 
not contribute to calculate new path in practice (e.g. objects cause under-consistent changes 
like human movement, etc.). Hence, AD* tends to slow down when the path is near optimal. 
Theorems of AD* are described in detail in [12].

When “significant cell changes are detected” (Figure 10, line 53), there is a high chance that 
the problem of D* Lite occurs and the search tree may be corrupted heavily; the replanning 
process now is expensive; we can increase suboptimal bound  ε  to speed up the correction 
effort or start a new search from scratch. The problem is how to estimate “significant cell 
changes”. This algorithm does not solve the mentioned problem of D* Lite completely; it is 
just a trade-off between performance and path optimality. However, AD* performs quickly 
in large-scaled map compared to other algorithms, in which the robot has significant time to 
iteratively repair its path, and thus overall path is near optimal.

4.2.2. D* Lite with reset algorithm

Unlike AD*, D* Lite with Reset (D*LR) [16] partially solves the problem D* Lite while still 
maintaining path optimality. The idea of D*LR is simple; it decides flushing previous search 
data and starts searching from scratch when the replanning process is expensive.

D*LR is a variant of D* Lite; it inherits all the properties of D* Lite. The main contribution of 
D*LR is that it proposes two criteria to decide whether to incrementally replan path or calculate 
a fresh path using A* at the position the robot detects changes. Let total traversed cell is   N  T   ; total 
cell of path that exists between consecutive detection incidents is   N  P   , and the remaining path 
count is   N  R   =  N  P   −  N  T   ; the criteria are:

• Ratio of traversed length: The criteria measure how many percentages of the path the 
robot has moved between two consecutive positions that the robot detects environment 
changes. The ratio    

 N  T  
 ___  N  P      is then compared with a threshold:

     
 N  T  

 ___  N  P     < ∝ .  (8)

If the ratio is greater than threshold  ∝  when the robot perceives changes, it triggers the reset 
routine and starts searching from scratch. Intuitively, the position that robot detects changes 
is nearer the goal, the more likely replanning process is expensive.

Advanced Path Planning for Mobile Entities78

• Linear heuristic distance: The criteria measure the complexity of the remaining path count   
N  

R
    between consecutive detection incidents. The method to measure the complexity is to 

use inflated heuristic function:

    N  R   > ε ∗ h (s,   s  goal  ) ,  (9)

where s is the current position of the robot. If   N  R   ≤ ε ∗ h (s,   s  goal  )  , then the remaining path is 
simple enough; there is a chance that the new path is much more complex. Hence, the algo-
rithm must plan over from scratch.

As can be seen, these criteria use only path information between consecutive detection inci-
dents in order to estimate the amount of computation of replanning process comparing with 
planning over from scratch. The reason is that it is hard to predict propagation behaviour of 
OPEN list, because the state space is only partially known. Moreover, these criteria only work 
in high cluttered and complex environment, where environment changes usually block initial 
path and the new path is likely to be much longer than initial path. The pseudo code of D*LR 
is presented in Figure 11.

The proposed criteria of D*LR are not robust due to extensively replying on environmental 
assumptions. However, the algorithm can be improved if criteria that can robustly estimate 
computation of replanning process in any kind of environment are applied. If criteria are 
robust, D*LR performance of each iteration is bounded by the complexity of A*:

  O ( |V| )  = O ( |E| )  = O ( b   d )   (10)

4.3. Optimality improvements: Field D* algorithm

Although cell decomposition approximation is widely used to discretize C-space for search-
based algorithms due to its robustness (no prior environmental assumptions), this approxima-
tion intrinsically prevents search-based algorithm to produce optimal path. The search-based 
algorithms just allow to transition between cell centres, thus restricting robot traverse direc-
tions to increment of    π __ 4   . Moreover, the produced path involves many sharp turns and jerky 
segments in large map that makes robot difficult to move.

There were many approaches to cope with this problem. For instance, post-processing method 
that finds the furthest point P along the solution path for which a straight line path from P 
to robot position is collision-free and replaces the original path to P with this straight line. 
However, this method sometimes does not work and increases the path cost. Another approach 
is fast marching method [22]; this method incorporates interpolation step in planning step 
to produce low-cost interpolated path. Nonetheless, this method assumes that transition cost 
between grid cells is constant and does not have heuristic property like A*; hence it is not appli-
cable to outdoor environment, which requires fast path generating and non-uniform cost grid.

To incorporate incremental heuristic property of D* Lite, the authors of Field D* [3] embed 
linear interpolation method to the replanning process to generate “any-angle” optimal path 

Search-Based Planning and Replanning in Robotics and Autonomous Systems
http://dx.doi.org/10.5772/intechopen.71663

79



that overcomes grid limitation in dynamic environment. The root cause of restriction of path 
optimality is the rule to transition between cell centres; the idea of Field D* to solve this prob-
lem is to remap state space graph vertices to the corner of each cell (see Figure 12). The nodes  s  
can be considered as sample points of continuous cost field, where the optimal path must pass 
one of the edges   {   ⟶  s  1    s  2   ,   

⟶  s  2    s  3   ,   
⟶  s  3    s  4   ,   

⟶  s  4    s  5   ,   
⟶  s  5    s  6   ,   

⟶  s  6    s  7   ,   
⟶  s  7    s  8   ,   

⟶  s  8    s  1   }   that connects consecutive neighbours 
of  s ; the edge is    ⟶  s  1    s  2     in the picture’s case.

Figure 11. Pseudo code of D*LR. Other functions such as Key(), UpdateVertex() and ComputePath() are the same with 
D* Lite and thus are not presented.

Advanced Path Planning for Mobile Entities80

In this case, the edge, which resides on the boundary of two cells, has the edge cost equal to 
the minimum of cost of the two cells. Field D* use linear interpolation to compute approxi-
mately the cost of any point   s  y    on the edge    ⟶  s  1    s  2     by using the path cost (cost from the node to 
goal)  g ( s  1  )   and  g ( s  2  )  :

  g ( s  y  )  = yg ( s  2  )  +  (1 − y) g ( s  1  ) ,  (11)

where  y  is the distance from   s  1    to   s  y    (Figure 13). Given the centre cell cost  c  and bottom cell cost  
b , we can compute the path cost of  s  using edge    ⟶  s  1    s  2     as

  g (s)  =  min  x,y    (bx + c  √ 
_________

  (1 − x)   2  +  y   2    + g ( s  2  ) y + g ( s  1  )  (1 − y) )   (12)

where  x  is the distance travel along the bottom edge from  s  before cutting through the centre 
cell to reach the right edge at the point   s  y    a distance  y  from   s  1   . (see Figure 13).

The interpretation from formulas (4) into ComputeCost() function is described in detail in [3]. 
This optimization approach can be plugged in any dynamic planner by replacing standard 
cost function between cell centres by function ComputeCost(). In addition, due to remapping 

Figure 12. Remapping state space graph vertices from cell centres to cell corners (a) Center Vertices, (b) Corner Vertices 
and (c) Optimal Path intersected ⟶ s1 s2.

Figure 13. Linear interpolation process to compute path cost of s using edge ⟶ s1 s2. The subfigures illustrate possible 
optimal path cost (a) Calculate g(s) based on s1, s2 (b) Case g(𝑠𝑠1) < g(𝑠𝑠2) (c) Case g(𝑠𝑠1) > g(𝑠𝑠2) and (d) Case path costs that 
pass arbitrary point.

Search-Based Planning and Replanning in Robotics and Autonomous Systems
http://dx.doi.org/10.5772/intechopen.71663

81



that overcomes grid limitation in dynamic environment. The root cause of restriction of path 
optimality is the rule to transition between cell centres; the idea of Field D* to solve this prob-
lem is to remap state space graph vertices to the corner of each cell (see Figure 12). The nodes  s  
can be considered as sample points of continuous cost field, where the optimal path must pass 
one of the edges   {   ⟶  s  1    s  2   ,   

⟶  s  2    s  3   ,   
⟶  s  3    s  4   ,   

⟶  s  4    s  5   ,   
⟶  s  5    s  6   ,   

⟶  s  6    s  7   ,   
⟶  s  7    s  8   ,   

⟶  s  8    s  1   }   that connects consecutive neighbours 
of  s ; the edge is    ⟶  s  1    s  2     in the picture’s case.

Figure 11. Pseudo code of D*LR. Other functions such as Key(), UpdateVertex() and ComputePath() are the same with 
D* Lite and thus are not presented.

Advanced Path Planning for Mobile Entities80

In this case, the edge, which resides on the boundary of two cells, has the edge cost equal to 
the minimum of cost of the two cells. Field D* use linear interpolation to compute approxi-
mately the cost of any point   s  y    on the edge    ⟶  s  1    s  2     by using the path cost (cost from the node to 
goal)  g ( s  1  )   and  g ( s  2  )  :

  g ( s  y  )  = yg ( s  2  )  +  (1 − y) g ( s  1  ) ,  (11)

where  y  is the distance from   s  1    to   s  y    (Figure 13). Given the centre cell cost  c  and bottom cell cost  
b , we can compute the path cost of  s  using edge    ⟶  s  1    s  2     as

  g (s)  =  min  x,y    (bx + c  √ 
_________

  (1 − x)   2  +  y   2    + g ( s  2  ) y + g ( s  1  )  (1 − y) )   (12)

where  x  is the distance travel along the bottom edge from  s  before cutting through the centre 
cell to reach the right edge at the point   s  y    a distance  y  from   s  1   . (see Figure 13).

The interpretation from formulas (4) into ComputeCost() function is described in detail in [3]. 
This optimization approach can be plugged in any dynamic planner by replacing standard 
cost function between cell centres by function ComputeCost(). In addition, due to remapping 

Figure 12. Remapping state space graph vertices from cell centres to cell corners (a) Center Vertices, (b) Corner Vertices 
and (c) Optimal Path intersected ⟶ s1 s2.

Figure 13. Linear interpolation process to compute path cost of s using edge ⟶ s1 s2. The subfigures illustrate possible 
optimal path cost (a) Calculate g(s) based on s1, s2 (b) Case g(𝑠𝑠1) < g(𝑠𝑠2) (c) Case g(𝑠𝑠1) > g(𝑠𝑠2) and (d) Case path costs that 
pass arbitrary point.

Search-Based Planning and Replanning in Robotics and Autonomous Systems
http://dx.doi.org/10.5772/intechopen.71663

81



graph vertices into cell corners, we also need to change finding cell centre neighbours to a pair 
of corner nodes as illustrated in Figure 13. Once the path costs of necessary nodes are com-
puted, the path is generated by starting from the initial node and iteratively finds, using linear 
interpolation, the optimal node on the neighbor cell boundary to move next. The pseudo code 
of Field D* and modifications in red colour are shown in Figure 14. Note that the differences 

Figure 14. Pseudo code of Field D*.

Advanced Path Planning for Mobile Entities82

between D* Lite and Field D* are highlighted in red. The function Key(), ComputePath() are 
the same as D* Lite and thus is not presented. This pseudo code is a basic version of Field D*; 
optimised versions are presented in [3].

Field D* inherits all properties of D* Lite; it combines linear interpolation method to compute 
path from any point inside cell, not just corners or cell edges. This feature is crucial for robot 
to get back on track if the actuator execution is faulty. Moreover, Field D* is not subjected to 
direction restriction; hence, it produces much shorter and smoother path.

5. Experimentation

In this section, using our path planning framework, we demonstrate the evaluation com-
parison between algorithms in search-based family in terms of performance and path 
optimality.

5.1. Evaluation method

To visualise the evolution in computation of search-based algorithms, we compare the replan-
ning computation of D* Lite, Anytime Dynamic A* and D* Lite with Reset. The purpose of the 
comparison is to demonstrate the performance improvements of D* Lite variants in order to 
apply on robot that operates in complex and dynamic environment. However, since the plan-
ning time depends on the implementation and machine configuration, we therefore choose 
the amount of cell expansion in each replanning iteration of search-based algorithm to be 
standard performance measurement of the mentioned algorithms. This method is indepen-
dent on machine specifics and actual implementation and therefore firmly accurately shows 
the enhancement of this evaluation. The path solution ratio between AD* with different  ε  
suboptimal bound and optimal path of other algorithms is also measured to visualise the 
trade-off between optimality and computation.

The experiments are conducted on our 2D simulation engine. The state space is a 2D grid cell 
with uniform resolution [23]. The conceptual robot in this simulation has two-cell-unit range 
and its own known grid map to detect environment changes (unblocked cell to blocked cell 
and vice versa) as it moves along the initial path (see Figure 15).

5.2. Evaluation results

We evaluate the performance and path solution of search-based algorithms in two sce-
narios: partially known and unknown 2D grid environment with uniform resolution. The 
total expanded cells are averaged based on total replanning processes on each simulation 
instance, with 95% confident. The path solution of each algorithm is counted as the total 
cells that the robot has traversed from corner to corner of the map. We decrease the subop-
timal bound of AD* for 0.1 per step the robot travels until the suboptimal bound reaches 1.0 
(optimal path).

Search-Based Planning and Replanning in Robotics and Autonomous Systems
http://dx.doi.org/10.5772/intechopen.71663

83



graph vertices into cell corners, we also need to change finding cell centre neighbours to a pair 
of corner nodes as illustrated in Figure 13. Once the path costs of necessary nodes are com-
puted, the path is generated by starting from the initial node and iteratively finds, using linear 
interpolation, the optimal node on the neighbor cell boundary to move next. The pseudo code 
of Field D* and modifications in red colour are shown in Figure 14. Note that the differences 

Figure 14. Pseudo code of Field D*.

Advanced Path Planning for Mobile Entities82

between D* Lite and Field D* are highlighted in red. The function Key(), ComputePath() are 
the same as D* Lite and thus is not presented. This pseudo code is a basic version of Field D*; 
optimised versions are presented in [3].

Field D* inherits all properties of D* Lite; it combines linear interpolation method to compute 
path from any point inside cell, not just corners or cell edges. This feature is crucial for robot 
to get back on track if the actuator execution is faulty. Moreover, Field D* is not subjected to 
direction restriction; hence, it produces much shorter and smoother path.

5. Experimentation

In this section, using our path planning framework, we demonstrate the evaluation com-
parison between algorithms in search-based family in terms of performance and path 
optimality.

5.1. Evaluation method

To visualise the evolution in computation of search-based algorithms, we compare the replan-
ning computation of D* Lite, Anytime Dynamic A* and D* Lite with Reset. The purpose of the 
comparison is to demonstrate the performance improvements of D* Lite variants in order to 
apply on robot that operates in complex and dynamic environment. However, since the plan-
ning time depends on the implementation and machine configuration, we therefore choose 
the amount of cell expansion in each replanning iteration of search-based algorithm to be 
standard performance measurement of the mentioned algorithms. This method is indepen-
dent on machine specifics and actual implementation and therefore firmly accurately shows 
the enhancement of this evaluation. The path solution ratio between AD* with different  ε  
suboptimal bound and optimal path of other algorithms is also measured to visualise the 
trade-off between optimality and computation.

The experiments are conducted on our 2D simulation engine. The state space is a 2D grid cell 
with uniform resolution [23]. The conceptual robot in this simulation has two-cell-unit range 
and its own known grid map to detect environment changes (unblocked cell to blocked cell 
and vice versa) as it moves along the initial path (see Figure 15).

5.2. Evaluation results

We evaluate the performance and path solution of search-based algorithms in two sce-
narios: partially known and unknown 2D grid environment with uniform resolution. The 
total expanded cells are averaged based on total replanning processes on each simulation 
instance, with 95% confident. The path solution of each algorithm is counted as the total 
cells that the robot has traversed from corner to corner of the map. We decrease the subop-
timal bound of AD* for 0.1 per step the robot travels until the suboptimal bound reaches 1.0 
(optimal path).

Search-Based Planning and Replanning in Robotics and Autonomous Systems
http://dx.doi.org/10.5772/intechopen.71663

83



Figure 16. Comparison between search-based algorithms on partially known environment with increasing map scale in 
terms of computation and path solution.

Figure 15. Simulated environment on our framework.

Advanced Path Planning for Mobile Entities84

Figure 16 shows the speedup result throughout the evolution from Replanning A* to AD* 
with different  ε  suboptimal bounds as well as the trade-off of AD*. The environment is ini-
tially generated randomly obstacles that occupy 25% of the map. The initial map is then 
input to the robot. While the robot is moving, we randomly change the cell states that are 
15% of the map, thus forcing the robot to replan its path whenever it detects environmental 
changes.

As can be seen, AD* has the highest performance that has least total expanded cells in replan-
ning process; the higher the suboptimal bound, the better the performance. The reason is 
AD* is inflated its heuristic function to make it greedier in expanding cells towards goal. It 
is interesting that path solution of AD* is not much longer than optimal path. As the scale of 
map is increasing, the path between map corner is longer to travel, and thus, the robot is given 
enough time to improve its solution (path ratio with  ε = 6.0  is gradually converged to the one 
 ε = 3.0  at 1.016).

D*LR slightly improves the performance of D* Lite; it is because D*LR relies on computation 
differences between Replanning A* and D* Lite. In fact, the pitfall of D* Lite rarely happens 
in scenarios that the robot detects changes near its position. Replanning A* does not have 
incremental property and thus uses the highest computation.

The data confirms the fact that AD*, in average throughout the increasing map scale, improves 
125% and 194% performance compared to D* Lite with  ε = 3.0  and  ε = 6.0 , respectively. The 
path produces by AD* only 1% longer than optimal path in average.

Figure 17. Comparison between search-based algorithms on unknown environment with increasing map scale in terms 
of computation and path solution.

Search-Based Planning and Replanning in Robotics and Autonomous Systems
http://dx.doi.org/10.5772/intechopen.71663

85



Figure 16. Comparison between search-based algorithms on partially known environment with increasing map scale in 
terms of computation and path solution.

Figure 15. Simulated environment on our framework.

Advanced Path Planning for Mobile Entities84

Figure 16 shows the speedup result throughout the evolution from Replanning A* to AD* 
with different  ε  suboptimal bounds as well as the trade-off of AD*. The environment is ini-
tially generated randomly obstacles that occupy 25% of the map. The initial map is then 
input to the robot. While the robot is moving, we randomly change the cell states that are 
15% of the map, thus forcing the robot to replan its path whenever it detects environmental 
changes.

As can be seen, AD* has the highest performance that has least total expanded cells in replan-
ning process; the higher the suboptimal bound, the better the performance. The reason is 
AD* is inflated its heuristic function to make it greedier in expanding cells towards goal. It 
is interesting that path solution of AD* is not much longer than optimal path. As the scale of 
map is increasing, the path between map corner is longer to travel, and thus, the robot is given 
enough time to improve its solution (path ratio with  ε = 6.0  is gradually converged to the one 
 ε = 3.0  at 1.016).

D*LR slightly improves the performance of D* Lite; it is because D*LR relies on computation 
differences between Replanning A* and D* Lite. In fact, the pitfall of D* Lite rarely happens 
in scenarios that the robot detects changes near its position. Replanning A* does not have 
incremental property and thus uses the highest computation.

The data confirms the fact that AD*, in average throughout the increasing map scale, improves 
125% and 194% performance compared to D* Lite with  ε = 3.0  and  ε = 6.0 , respectively. The 
path produces by AD* only 1% longer than optimal path in average.

Figure 17. Comparison between search-based algorithms on unknown environment with increasing map scale in terms 
of computation and path solution.

Search-Based Planning and Replanning in Robotics and Autonomous Systems
http://dx.doi.org/10.5772/intechopen.71663

85



Figure 17 describes the evaluation case on unknown environment. The environment is ini-
tially generated with random obstacles that occupy 15% of the map. The robot does not know 
the initial conditions; it will replan its path whenever it detects obstacles that do not exist in 
its map.

For unknown environment scenario, D*LR performs significantly better than D* Lite as 
increasing map scale. The reason is that if the replanned path is much longer than the initial 
path, which is the common case in unknown environment, the replanning process of D* Lite 
is also expensive. AD* still has the least computation compared to old search-based algorithm; 
it reduces drastically the computation of D* Lite with 845% better performance, in the case  
ε = 10.0 , while still maintains good path solution.

6. Conclusion

In practice, motion planning algorithms can be implemented on top of navigation layer such 
as simultaneous localization and mapping (SLAM) for autonomous robot. While navigation 
layer enables the robot to perceive surrounding information and its position relative to the 
surroundings, motion planning layer gives the robot abilities to plan a path in surround-
ing environment and make decision to avoid obstacles. Because of that fact, navigation and 
motion planning are always paired up to enable autonomous robot to operate in dynamic and 
complex environment.

This chapter is a guide to comprehend the foundation of motion planning, in particular, 
search-based path planning algorithms. In this chapter, we present the steps to develop and 
formulate a motion planning problem. We also describe the evolution branches of motion 
planning and then focus on the development of search-based algorithm family. Each algo-
rithm in search-based family is invented to cope with increasing demands in performance 
or solution quality, for the robot to operate in more complex scenarios. To reinforce the 
revolution statement of state-of-the-art search-based algorithms, we provide a computa-
tion and optimality comparison between search-based algorithms on partially known and 
unknown environment. Based on the data, we conclude that Anytime Dynamic A* is the 
most suitable algorithm that enables the robot to operate in cluttered and fast changing 
scenario.

Until recently, the mainstream of motion planning development is to enhance the perfor-
mance of search-based algorithm and their solution optimality by modifying cell decomposi-
tion method. There are signals that the trajectory planning paradigm is starting to be active 
research field after being frozen for a decade. We expect that the future development of trajec-
tory planning will robustly incorporate motion constraints with higher optimality and better 
computation. The ultimate goal of motion planning field is giving robot spatial decision plan-
ning converging to human ability.

Advanced Path Planning for Mobile Entities86

Author details

An T. Le1* and Than D. Le2

*Address all correspondence to: eeit2015_an.lt@student.vgu.edu.vn

1 Department of Electrical Engineering and Information Technology, Vietnamese-German 
University, Hồ Chí Minh, Vietnam

2 Faculty of Engineering, Bristol Robotics Laboratory, Bristol University, Bristol, 
United Kingdom

References

[1] Lavalle SM, Kuffner JJ Jr. Rapidly-exploring random trees: Progress and prospects. 
In: Algorithmic and Computational Robotics: New Directions. 2000. pp. 293-308. DOI: 
10.1.1.38.1387

[2] N. Preda, A. Manurung, O. Lambercy, R. Gassert and M. Bonfè. Motion planning for a 
multi-arm surgical robot using both sampling-based algorithms and motion primitives. 
In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS); 
Hamburg. 2015. pp. 1422-1427. DOI: 10.1109/IROS.2015.7353554

[3] Ferguson D, Stentz A. Field D*: An interpolation-based path planner and replanner. 
Journal of Robotics Research. 2007:239-253. DOI: 10.1007/978-3-540-48113-3_22

[4] Stentz A. Optimal and efficient path planning for partially-known environments. In: 
Proceedings of the 1994 IEEE International Conference on Robotics and Automation; 
San Diego, CA. 1994. pp. 3310-3317. DOI: 10.1109/ROBOT.1994.351061

[5] Matthies L, Xiong Y, Hogg R, Zhu D, Rankin A, Kennedy B, Hebert M, Maclaehlan R, 
Won C, Frost T, Sukhatme G, Mchenry M, Goldberg S. A portable, autonomous, urban 
reconnaissance robot. In: Proceedings of the International Conference on Intelligent 
Autonomous Systems; 2000. DOI: 10.1.1.98.9353

[6] Doan KN, Le AT, Le TD, Peter N. Swarm robots’ communication and cooperation in 
motion planning. In: Zhang D, Wei B, editors. Mechatronics and Robotics Engineering 
for Advanced and Intelligent Manufacturing. Cham: Springer; 2016. pp. 191-205. DOI: 
10.1007/978-3-319-33581-0_15

[7] Hwang YK, Ahuja N. Gross motion planning—A survey. ACM Computing Survey. 
1992;24(3):219-291. DOI: 10.1145/136035.136037

[8] Dechter R, Pearl J. Generalized best-first search strategies and the optimality of a*. 
Journal of the ACM (JACM). 1985;32(3):505-536. DOI: 10.1145/3828.3830

Search-Based Planning and Replanning in Robotics and Autonomous Systems
http://dx.doi.org/10.5772/intechopen.71663

87



Figure 17 describes the evaluation case on unknown environment. The environment is ini-
tially generated with random obstacles that occupy 15% of the map. The robot does not know 
the initial conditions; it will replan its path whenever it detects obstacles that do not exist in 
its map.

For unknown environment scenario, D*LR performs significantly better than D* Lite as 
increasing map scale. The reason is that if the replanned path is much longer than the initial 
path, which is the common case in unknown environment, the replanning process of D* Lite 
is also expensive. AD* still has the least computation compared to old search-based algorithm; 
it reduces drastically the computation of D* Lite with 845% better performance, in the case  
ε = 10.0 , while still maintains good path solution.

6. Conclusion

In practice, motion planning algorithms can be implemented on top of navigation layer such 
as simultaneous localization and mapping (SLAM) for autonomous robot. While navigation 
layer enables the robot to perceive surrounding information and its position relative to the 
surroundings, motion planning layer gives the robot abilities to plan a path in surround-
ing environment and make decision to avoid obstacles. Because of that fact, navigation and 
motion planning are always paired up to enable autonomous robot to operate in dynamic and 
complex environment.

This chapter is a guide to comprehend the foundation of motion planning, in particular, 
search-based path planning algorithms. In this chapter, we present the steps to develop and 
formulate a motion planning problem. We also describe the evolution branches of motion 
planning and then focus on the development of search-based algorithm family. Each algo-
rithm in search-based family is invented to cope with increasing demands in performance 
or solution quality, for the robot to operate in more complex scenarios. To reinforce the 
revolution statement of state-of-the-art search-based algorithms, we provide a computa-
tion and optimality comparison between search-based algorithms on partially known and 
unknown environment. Based on the data, we conclude that Anytime Dynamic A* is the 
most suitable algorithm that enables the robot to operate in cluttered and fast changing 
scenario.

Until recently, the mainstream of motion planning development is to enhance the perfor-
mance of search-based algorithm and their solution optimality by modifying cell decomposi-
tion method. There are signals that the trajectory planning paradigm is starting to be active 
research field after being frozen for a decade. We expect that the future development of trajec-
tory planning will robustly incorporate motion constraints with higher optimality and better 
computation. The ultimate goal of motion planning field is giving robot spatial decision plan-
ning converging to human ability.

Advanced Path Planning for Mobile Entities86

Author details

An T. Le1* and Than D. Le2

*Address all correspondence to: eeit2015_an.lt@student.vgu.edu.vn

1 Department of Electrical Engineering and Information Technology, Vietnamese-German 
University, Hồ Chí Minh, Vietnam

2 Faculty of Engineering, Bristol Robotics Laboratory, Bristol University, Bristol, 
United Kingdom

References

[1] Lavalle SM, Kuffner JJ Jr. Rapidly-exploring random trees: Progress and prospects. 
In: Algorithmic and Computational Robotics: New Directions. 2000. pp. 293-308. DOI: 
10.1.1.38.1387

[2] N. Preda, A. Manurung, O. Lambercy, R. Gassert and M. Bonfè. Motion planning for a 
multi-arm surgical robot using both sampling-based algorithms and motion primitives. 
In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS); 
Hamburg. 2015. pp. 1422-1427. DOI: 10.1109/IROS.2015.7353554

[3] Ferguson D, Stentz A. Field D*: An interpolation-based path planner and replanner. 
Journal of Robotics Research. 2007:239-253. DOI: 10.1007/978-3-540-48113-3_22

[4] Stentz A. Optimal and efficient path planning for partially-known environments. In: 
Proceedings of the 1994 IEEE International Conference on Robotics and Automation; 
San Diego, CA. 1994. pp. 3310-3317. DOI: 10.1109/ROBOT.1994.351061

[5] Matthies L, Xiong Y, Hogg R, Zhu D, Rankin A, Kennedy B, Hebert M, Maclaehlan R, 
Won C, Frost T, Sukhatme G, Mchenry M, Goldberg S. A portable, autonomous, urban 
reconnaissance robot. In: Proceedings of the International Conference on Intelligent 
Autonomous Systems; 2000. DOI: 10.1.1.98.9353

[6] Doan KN, Le AT, Le TD, Peter N. Swarm robots’ communication and cooperation in 
motion planning. In: Zhang D, Wei B, editors. Mechatronics and Robotics Engineering 
for Advanced and Intelligent Manufacturing. Cham: Springer; 2016. pp. 191-205. DOI: 
10.1007/978-3-319-33581-0_15

[7] Hwang YK, Ahuja N. Gross motion planning—A survey. ACM Computing Survey. 
1992;24(3):219-291. DOI: 10.1145/136035.136037

[8] Dechter R, Pearl J. Generalized best-first search strategies and the optimality of a*. 
Journal of the ACM (JACM). 1985;32(3):505-536. DOI: 10.1145/3828.3830

Search-Based Planning and Replanning in Robotics and Autonomous Systems
http://dx.doi.org/10.5772/intechopen.71663

87



[9] Li J, Liu S, Zhang B, Zhao X. RRT-A* motion planning algorithm for non-holonomic 
mobile robot. In: 2014 Proceedings of the SICE Annual Conference (SICE); Sapporo. 
2014. pp. 1833-1838. DOI: 10.1109/SICE.2014.6935304

[10] Arismendi C, Álvarez D, Garrido S, Moreno L. Nonholonomic motion planning using 
the fast marching square method. International Journal of Advanced Robotic Systems. 
2015;12:5. DOI: 10.5772/60129

[11] Sun X, Yeoh W, Koenig S. Moving target D* Lite. In: Proceedings of the 9th International 
Conference on Autonomous Agents and Multiagent Systems (AAMAS '10); Toronto, 
Canada. Richland, SC: International Foundation for Autonomous Agents and Multiagent 
Systems; p. 67-74. ISBN: 978-0-9826571-1-9

[12] Likhachev M, Ferguson D, Gordon G, Stentz A, Thrun S. Anytime dynamic A*: An any-
time, replanning algorithm. In: Biundo S, Myers KL, Rajan K, editors. Proceedings of the 
Fifteenth International Conference on International Conference on Automated Planning 
and Scheduling (ICAPS'05); Monterey, California, USA. AAAI Press; 2005. p. 262-271. 
ISBN:1-57735-220-3

[13] Aine S, Likhachev M. Truncated incremental search. Journal of Artificial Intelligence. 
2016;234(C):49-77. DOI: 10.1016/j.artint.2016.01.009

[14] Aine S, Likhachev M. Anytime truncated D*: Anytime replanning with truncation. In: 
Sixth Annual Symposium on Combinatorial Search; AAAI Publications. 2013

[15] Nash A, Koenig S, Likhachev M. Incremental Phi*: Incremental any-angle path planning 
on grids. In: Kitano H, editor. Proceedings of the 21st International Joint Conference 
on Artificial intelligence (IJCAI'09); 2009; San Francisco, CA, USA: Morgan Kaufmann 
Publishers Inc.; 2009. p. 1824-1830

[16] Le AT, Bui MQ, Le TD, Peter N. D* Lite with reset: Improved version of D* Lite for com-
plex environment. In: First IEEE International Conference on Robotic Computing (IRC); 
Taichung, Taiwan. IEEE; 2017. pp. 160-163. DOI: 10.1109/IRC.2017.52

[17] Miao H, Tian YC. Robot path planning in dynamic environments using a simulated 
annealing based approach. In: 2008 10th International Conference on Control, Automation, 
Robotics and Vision; Hanoi. 2008. pp. 1253-1258. DOI: 10.1109/ICARCV.2008.4795701

[18] Likhachev M, Gordon G, Thrun S. ARA*: Anytime A* with Provable Bounds on Sub-
Optimality. In: Proceedings of the 2003 Conference Advances in Neural Information 
Processing Systems 16 (NIPS-03); MIT Press; 2004. DOI: 10.1.1.3.9449

[19] Sven Koenig and Maxim Likhachev. D*lite. In: Rina Dechter, Michael Kearns, and Rich 
Sutton, editors. In Eighteenth National Conference on Artificial Intelligence; Edmonton, 
Alberta, Canada. Menlo Park, CA, USA: American Association for Artificial Intelligence; 
2002. p. 476-483. ISBN:0-262-51129-0

[20] Sven Koenig, Maxim Likhachev, David Furcy. Lifelong Planning A∗. Artificial Intelligence. 
2004;155(1):93-146. DOI: http://dx.doi.org/10.1016/j.artint.2003.12.001

Advanced Path Planning for Mobile Entities88

[21] Daniele Frigioni, Alberto Marchetti-Spaccamela, and Umberto Nanni. Fully dynamic 
algorithms for maintaining shortest paths trees. Journal of Algorithms. 2000;34(2):251-281.  
DOI: http://dx.doi.org/10.1006/jagm.1999.1048

[22] Sethian JA. A fast marching level set method for monotonically advancing fronts. 
Proceedings of the National Academy of Sciences. 1996;93(4):1591-1595

[23] Prof. Ron Alterovitz. Configuration Space Visualization of 2-D Robotic Manipulator 
[Internet]. Available from: https://www.cs.unc.edu/~jeffi/c-space/robot.xhtml [Accessed: 
8/18/2017]

Search-Based Planning and Replanning in Robotics and Autonomous Systems
http://dx.doi.org/10.5772/intechopen.71663

89



[9] Li J, Liu S, Zhang B, Zhao X. RRT-A* motion planning algorithm for non-holonomic 
mobile robot. In: 2014 Proceedings of the SICE Annual Conference (SICE); Sapporo. 
2014. pp. 1833-1838. DOI: 10.1109/SICE.2014.6935304

[10] Arismendi C, Álvarez D, Garrido S, Moreno L. Nonholonomic motion planning using 
the fast marching square method. International Journal of Advanced Robotic Systems. 
2015;12:5. DOI: 10.5772/60129

[11] Sun X, Yeoh W, Koenig S. Moving target D* Lite. In: Proceedings of the 9th International 
Conference on Autonomous Agents and Multiagent Systems (AAMAS '10); Toronto, 
Canada. Richland, SC: International Foundation for Autonomous Agents and Multiagent 
Systems; p. 67-74. ISBN: 978-0-9826571-1-9

[12] Likhachev M, Ferguson D, Gordon G, Stentz A, Thrun S. Anytime dynamic A*: An any-
time, replanning algorithm. In: Biundo S, Myers KL, Rajan K, editors. Proceedings of the 
Fifteenth International Conference on International Conference on Automated Planning 
and Scheduling (ICAPS'05); Monterey, California, USA. AAAI Press; 2005. p. 262-271. 
ISBN:1-57735-220-3

[13] Aine S, Likhachev M. Truncated incremental search. Journal of Artificial Intelligence. 
2016;234(C):49-77. DOI: 10.1016/j.artint.2016.01.009

[14] Aine S, Likhachev M. Anytime truncated D*: Anytime replanning with truncation. In: 
Sixth Annual Symposium on Combinatorial Search; AAAI Publications. 2013

[15] Nash A, Koenig S, Likhachev M. Incremental Phi*: Incremental any-angle path planning 
on grids. In: Kitano H, editor. Proceedings of the 21st International Joint Conference 
on Artificial intelligence (IJCAI'09); 2009; San Francisco, CA, USA: Morgan Kaufmann 
Publishers Inc.; 2009. p. 1824-1830

[16] Le AT, Bui MQ, Le TD, Peter N. D* Lite with reset: Improved version of D* Lite for com-
plex environment. In: First IEEE International Conference on Robotic Computing (IRC); 
Taichung, Taiwan. IEEE; 2017. pp. 160-163. DOI: 10.1109/IRC.2017.52

[17] Miao H, Tian YC. Robot path planning in dynamic environments using a simulated 
annealing based approach. In: 2008 10th International Conference on Control, Automation, 
Robotics and Vision; Hanoi. 2008. pp. 1253-1258. DOI: 10.1109/ICARCV.2008.4795701

[18] Likhachev M, Gordon G, Thrun S. ARA*: Anytime A* with Provable Bounds on Sub-
Optimality. In: Proceedings of the 2003 Conference Advances in Neural Information 
Processing Systems 16 (NIPS-03); MIT Press; 2004. DOI: 10.1.1.3.9449

[19] Sven Koenig and Maxim Likhachev. D*lite. In: Rina Dechter, Michael Kearns, and Rich 
Sutton, editors. In Eighteenth National Conference on Artificial Intelligence; Edmonton, 
Alberta, Canada. Menlo Park, CA, USA: American Association for Artificial Intelligence; 
2002. p. 476-483. ISBN:0-262-51129-0

[20] Sven Koenig, Maxim Likhachev, David Furcy. Lifelong Planning A∗. Artificial Intelligence. 
2004;155(1):93-146. DOI: http://dx.doi.org/10.1016/j.artint.2003.12.001

Advanced Path Planning for Mobile Entities88

[21] Daniele Frigioni, Alberto Marchetti-Spaccamela, and Umberto Nanni. Fully dynamic 
algorithms for maintaining shortest paths trees. Journal of Algorithms. 2000;34(2):251-281.  
DOI: http://dx.doi.org/10.1006/jagm.1999.1048

[22] Sethian JA. A fast marching level set method for monotonically advancing fronts. 
Proceedings of the National Academy of Sciences. 1996;93(4):1591-1595

[23] Prof. Ron Alterovitz. Configuration Space Visualization of 2-D Robotic Manipulator 
[Internet]. Available from: https://www.cs.unc.edu/~jeffi/c-space/robot.xhtml [Accessed: 
8/18/2017]

Search-Based Planning and Replanning in Robotics and Autonomous Systems
http://dx.doi.org/10.5772/intechopen.71663

89



Chapter 5

Path Planning on Quadric Surfaces and Its Application

Chi-Chia Sun, Gene Eu Jan, Chaomin Lu and
Kai-Chieh Yang

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.72573

Provisional chapter

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons  
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, 
and reproduction in any medium, provided the original work is properly cited. 

DOI: 10.5772/intechopen.72573

Path Planning on Quadric Surfaces and Its Application

Chi-Chia Sun, Gene Eu Jan, Chaomin Lu and 
Kai-Chieh Yang

Additional information is available at the end of the chapter

Abstract

In this chapter, recent near-shortest path-planning algorithms with O(nlog n) in the 
quadric plane based on the Delaunay triangulation, Ahuja-Dijkstra algorithm, and ridge 
points are reviewed. The shortest path planning in the general three-dimensional situa-
tion is an NP-hard problem. The optimal solution can be approached under the assump-
tion that the number of Steiner points is infinite. The state-the-art method has at most 
2.81% difference on the shortest path length, but the computation time is 4216 times 
faster. Compared to the other O(nlog n) time near-shortest path approach (Kanai and 
Suzuki, KS’s algorithm), the path length of the Delaunay triangulation method is 0.28% 
longer than the KS’s algorithm with three Steiner points, but the computation is about 
31.71 times faster. This, however, has only a few path length differences, which promises 
a good result, but the best computing time. Notably, these methods based on Delaunay 
triangulation concept are ideal for being extended to solve the path-planning problem on 
the Quadric surface or even the cruise missile mission planning and Mars rover.

Keywords: Delaunay triangulation, Dijkstra algorithm, ridge point, near-shortest path, 
mission planning, NP-hard

1. Introduction

In the Euclidean plane with obstacles, the shortest path problem is to find an optimal path 
between source and destination. Shortest path algorithms have already been applied to motion 
planning of robots and path planning of navigation. Furthermore, it can be applied to electronic 
design automation (EDA), biological cell transportation and operation research (OR) [1–3].

In [4–6], Jan et al. proposed two O(nlog n) time path-planning algorithms to obtain the 
near-shortest path in the Euclidian and quadric planes, respectively. Compared to the other 

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



Chapter 5

Path Planning on Quadric Surfaces and Its Application

Chi-Chia Sun, Gene Eu Jan, Chaomin Lu and
Kai-Chieh Yang

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.72573

Provisional chapter

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons  
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, 
and reproduction in any medium, provided the original work is properly cited. 

DOI: 10.5772/intechopen.72573

Path Planning on Quadric Surfaces and Its Application

Chi-Chia Sun, Gene Eu Jan, Chaomin Lu and 
Kai-Chieh Yang

Additional information is available at the end of the chapter

Abstract

In this chapter, recent near-shortest path-planning algorithms with O(nlog n) in the 
quadric plane based on the Delaunay triangulation, Ahuja-Dijkstra algorithm, and ridge 
points are reviewed. The shortest path planning in the general three-dimensional situa-
tion is an NP-hard problem. The optimal solution can be approached under the assump-
tion that the number of Steiner points is infinite. The state-the-art method has at most 
2.81% difference on the shortest path length, but the computation time is 4216 times 
faster. Compared to the other O(nlog n) time near-shortest path approach (Kanai and 
Suzuki, KS’s algorithm), the path length of the Delaunay triangulation method is 0.28% 
longer than the KS’s algorithm with three Steiner points, but the computation is about 
31.71 times faster. This, however, has only a few path length differences, which promises 
a good result, but the best computing time. Notably, these methods based on Delaunay 
triangulation concept are ideal for being extended to solve the path-planning problem on 
the Quadric surface or even the cruise missile mission planning and Mars rover.

Keywords: Delaunay triangulation, Dijkstra algorithm, ridge point, near-shortest path, 
mission planning, NP-hard

1. Introduction

In the Euclidean plane with obstacles, the shortest path problem is to find an optimal path 
between source and destination. Shortest path algorithms have already been applied to motion 
planning of robots and path planning of navigation. Furthermore, it can be applied to electronic 
design automation (EDA), biological cell transportation and operation research (OR) [1–3].

In [4–6], Jan et al. proposed two O(nlog n) time path-planning algorithms to obtain the 
near-shortest path in the Euclidian and quadric planes, respectively. Compared to the other 

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



approaches of reduced visibility graph, this fast method outperforms the rest of O(nlog n) 
algorithms in the general two-dimensional situation, except the path length compared to the 
shortest O(n2) time shortest algorithm of visibility graph.

In the quadratic plane, a survey of the shortest path problem concerning a two or higher dimen-
sional geometric object (e.g. a surface, a polyhedron, space, network) can be found in [7]. The short-
est path problem in the general three-dimensional situation is non-deterministic polynomial-time 
hard (NP-hard) problem [8], and only exponential time algorithms are known. In [9], the shortest 
path on a polyhedron is its local, which has an important property called unfolding, where the 
path must enter and leave at the same angle to the intersecting edge.

It follows that any locally optimal shortest path joining two consecutive obstacle vertices can 
be unfolded at each edge along its edge sequence, thus obtaining a straight segment. Sharir 
and Schorr [10] proposed an O(n3log n) algorithm, which first applied this property to find the 
exact shortest path on a convex surface, where n is the number of edges. Later, Mitchell et al. 
[11] proposed an O(n2log n) algorithm for propagating the shortest path map over a surface 
by a continuous Dijkstra method for general polyhedron. Chen and Han [12] improved it to 
an O(n2) algorithm. Faster algorithms than these cannot be found by far.

Kimmel and Sethian [13] presented a fast searching method for solving the Eikonal equation 
on a rectangular orthogonal mesh in O(Mlog M) steps, where M is the total number of grid 
points. They extended the fast marching method to triangulated domains with the same com-
putational complexity. As an application, they provide an optimal time algorithm for comput-
ing the geodesic distances and thereby extracting shortest paths on triangulated manifolds.

Helgason et al. [14] presented a heuristic algorithm based on geometric concepts for the prob-
lem of finding a path composed of line segments from a given destination in the presence of 
polygonal obstacles. The basic idea involves constructing circumscribing triangles around the 
obstacles to be avoided. Their heuristic algorithm considers paths composed primarily of line 
segments corresponding to partial edges of these circumscribing triangles and uses a simple 
branch-and-bound procedure to find a relatively short path of this type.

Kanai and Suzuki proposed a near-shortest path approach (Kanai and Suzuki, KS’s algorithm 
[9]) based on the Delaunay triangulation, the Dijkstra algorithm, and Steiner points, with compu-
tational complexity of O(k2nlog k2n), where k is the number of Steiner points and n is the number 
of the triangles. Although KS’s algorithm is an approximation, it has the significant advantages 
of easy implementation, high approximation accuracy, and numerical robustness. However, to 
obtain a shorter path, the computation time required by the path planning will increase rapidly 
when the Steiner points increases. A detailed comparison can be found in Table 1.

In this chapter, an O(n log n) time near-shortest path planning is introduced. It combined with 
the Delaunay triangulation, Ahuja-Dijkstra algorithm, and ridge points for path planning on 
a quadratic surface. Experimental results show that the average path length of the Delaunay 
triangulation-based algorithm is 0.28% longer than the KS’s algorithm; however, the speed 
is 31.71 times faster. Furthermore, when performing KS’s algorithm with 29 Steiner points, 
the NP-hard shortest path will be found (extremely close approximation of the shortest path 
planning). Although the length is 2.81% longer than the shortest, the computation time is 

Advanced Path Planning for Mobile Entities92

4216 times faster. Therefore, it can not only obtain a good near-shortest path length on the 
quadratic surface, but also improve the computation time. Furthermore, it is worth noting 
that Delaunay triangulation-based fast algorithms are ideal for being extended to solve the 
path planning in the polyhedron plane or be applied to cruise missile mission planning in the 
quadratic plane.

This chapter is organised as follows. Section II briefly introduces the concept of shortest path 
algorithms. In Section III, we will describe the idea of the triangulation-based near-shortest 
path algorithm, the performance of which is analysed in Section IV. The experimental results 
are shown in Section V. Section VI explains a possible application for cruise missile mission 
planning, and Section VII concludes the chapter.

2. Algorithm backgrounds

In this section, basic concepts of the Delaunay triangulation algorithm on the quadratic sur-
face will be introduced, such as Euclidean plane, Delaunay triangulation, ridge points, and 
Dijkstra’s single-source shortest path algorithm. Euclidean space is the Euclidean plane and 
three-dimensional space of Euclidean geometry [15], as well as the generalisations of these 
notions to higher dimensions. It can be used to distinguish these spaces from the curved 
spaces of non-Euclidean geometry and Einstein’s general theory of relativity [16].

For the quadratic surface, there is essentially only one Euclidean space with three real number 
coordinates from the modern viewpoint.

A Quadric surface is the locus of the points (x, y, z), which satisfy a second-degree equation 
in three variables, Ax2 + By2 + Cz2 + 2Dxy + 2Exy + 2Fyz + Gx + Hy + Iz + J = 0, and the different 
types of Quadric surfaces, a total of 15, are obtained by varying the coefficients of it [17].

The classification of the different types of Quadric surfaces is made, first, on the basis of the 
matrix of the quadratic from determining by the symmetric matrix:

   A  Q   =  
(

  
A

  
D

  
E

  D  B  F  
E

  
F

  
C

 
)

   (1)

Euclidean Algorithms

Polyhedron Polyhedron or quadric

Sharir [10] Mitchell [11] Chen [12] KS’s [9] Delaunay method

Connection No No No 6k2n 9n

Time complexity O(n3log n) O(n2log n) O(n2) O(knlog k2n) O(nlog n)

Is the path shortest? N/A N/A N/A Near-shortest Near-shortest

Table 1. Comparison of different shortest path algorithms in the three-dimensional space, n denotes the number of 
triangle mesh.

Path Planning on Quadric Surfaces and Its Application
http://dx.doi.org/10.5772/intechopen.72573

93



approaches of reduced visibility graph, this fast method outperforms the rest of O(nlog n) 
algorithms in the general two-dimensional situation, except the path length compared to the 
shortest O(n2) time shortest algorithm of visibility graph.

In the quadratic plane, a survey of the shortest path problem concerning a two or higher dimen-
sional geometric object (e.g. a surface, a polyhedron, space, network) can be found in [7]. The short-
est path problem in the general three-dimensional situation is non-deterministic polynomial-time 
hard (NP-hard) problem [8], and only exponential time algorithms are known. In [9], the shortest 
path on a polyhedron is its local, which has an important property called unfolding, where the 
path must enter and leave at the same angle to the intersecting edge.

It follows that any locally optimal shortest path joining two consecutive obstacle vertices can 
be unfolded at each edge along its edge sequence, thus obtaining a straight segment. Sharir 
and Schorr [10] proposed an O(n3log n) algorithm, which first applied this property to find the 
exact shortest path on a convex surface, where n is the number of edges. Later, Mitchell et al. 
[11] proposed an O(n2log n) algorithm for propagating the shortest path map over a surface 
by a continuous Dijkstra method for general polyhedron. Chen and Han [12] improved it to 
an O(n2) algorithm. Faster algorithms than these cannot be found by far.

Kimmel and Sethian [13] presented a fast searching method for solving the Eikonal equation 
on a rectangular orthogonal mesh in O(Mlog M) steps, where M is the total number of grid 
points. They extended the fast marching method to triangulated domains with the same com-
putational complexity. As an application, they provide an optimal time algorithm for comput-
ing the geodesic distances and thereby extracting shortest paths on triangulated manifolds.

Helgason et al. [14] presented a heuristic algorithm based on geometric concepts for the prob-
lem of finding a path composed of line segments from a given destination in the presence of 
polygonal obstacles. The basic idea involves constructing circumscribing triangles around the 
obstacles to be avoided. Their heuristic algorithm considers paths composed primarily of line 
segments corresponding to partial edges of these circumscribing triangles and uses a simple 
branch-and-bound procedure to find a relatively short path of this type.

Kanai and Suzuki proposed a near-shortest path approach (Kanai and Suzuki, KS’s algorithm 
[9]) based on the Delaunay triangulation, the Dijkstra algorithm, and Steiner points, with compu-
tational complexity of O(k2nlog k2n), where k is the number of Steiner points and n is the number 
of the triangles. Although KS’s algorithm is an approximation, it has the significant advantages 
of easy implementation, high approximation accuracy, and numerical robustness. However, to 
obtain a shorter path, the computation time required by the path planning will increase rapidly 
when the Steiner points increases. A detailed comparison can be found in Table 1.

In this chapter, an O(n log n) time near-shortest path planning is introduced. It combined with 
the Delaunay triangulation, Ahuja-Dijkstra algorithm, and ridge points for path planning on 
a quadratic surface. Experimental results show that the average path length of the Delaunay 
triangulation-based algorithm is 0.28% longer than the KS’s algorithm; however, the speed 
is 31.71 times faster. Furthermore, when performing KS’s algorithm with 29 Steiner points, 
the NP-hard shortest path will be found (extremely close approximation of the shortest path 
planning). Although the length is 2.81% longer than the shortest, the computation time is 

Advanced Path Planning for Mobile Entities92

4216 times faster. Therefore, it can not only obtain a good near-shortest path length on the 
quadratic surface, but also improve the computation time. Furthermore, it is worth noting 
that Delaunay triangulation-based fast algorithms are ideal for being extended to solve the 
path planning in the polyhedron plane or be applied to cruise missile mission planning in the 
quadratic plane.

This chapter is organised as follows. Section II briefly introduces the concept of shortest path 
algorithms. In Section III, we will describe the idea of the triangulation-based near-shortest 
path algorithm, the performance of which is analysed in Section IV. The experimental results 
are shown in Section V. Section VI explains a possible application for cruise missile mission 
planning, and Section VII concludes the chapter.

2. Algorithm backgrounds

In this section, basic concepts of the Delaunay triangulation algorithm on the quadratic sur-
face will be introduced, such as Euclidean plane, Delaunay triangulation, ridge points, and 
Dijkstra’s single-source shortest path algorithm. Euclidean space is the Euclidean plane and 
three-dimensional space of Euclidean geometry [15], as well as the generalisations of these 
notions to higher dimensions. It can be used to distinguish these spaces from the curved 
spaces of non-Euclidean geometry and Einstein’s general theory of relativity [16].

For the quadratic surface, there is essentially only one Euclidean space with three real number 
coordinates from the modern viewpoint.

A Quadric surface is the locus of the points (x, y, z), which satisfy a second-degree equation 
in three variables, Ax2 + By2 + Cz2 + 2Dxy + 2Exy + 2Fyz + Gx + Hy + Iz + J = 0, and the different 
types of Quadric surfaces, a total of 15, are obtained by varying the coefficients of it [17].

The classification of the different types of Quadric surfaces is made, first, on the basis of the 
matrix of the quadratic from determining by the symmetric matrix:

   A  Q   =  
(

  
A

  
D

  
E

  D  B  F  
E

  
F

  
C

 
)

   (1)

Euclidean Algorithms

Polyhedron Polyhedron or quadric

Sharir [10] Mitchell [11] Chen [12] KS’s [9] Delaunay method

Connection No No No 6k2n 9n

Time complexity O(n3log n) O(n2log n) O(n2) O(knlog k2n) O(nlog n)

Is the path shortest? N/A N/A N/A Near-shortest Near-shortest

Table 1. Comparison of different shortest path algorithms in the three-dimensional space, n denotes the number of 
triangle mesh.

Path Planning on Quadric Surfaces and Its Application
http://dx.doi.org/10.5772/intechopen.72573

93



A triangle mesh is a type of polygon mesh in computer graphics. It comprises a set of triangles 
(typically in three dimensions) that are connected by their common edges or corners [18]. 
With individual triangles, the system has to operate on three vertices for every triangle. In 
mathematics and computational geometry, the triangle mesh can be expressed in a Delaunay 
triangulation for a set V of vertices in the plane is a triangulation DT(V) such that no vertex in 
V is inside the circle of any triangle in DT(V) [19].

A path that interconnects the two vertices v and v’ of a graph G with minimal length for all 
paths is called the shortest path. Finding a shortest path in a graph G can be done in O(nlog n) 
with Ahuja-Dijkstra’s single-source shortest path algorithm by using Fibonacci heaps (F-heaps) 
and radix heaps [20].

A ridge is a curve consisting of ridge point: A point lies on a ridge if its neighbourhood can be 
subdivided by a line passing through it, and such that the surface in each half-neighbourhood 
is monotonically decreasing when moving away from the line [21].

3. Algorithm and illustration

In this section, a Delaunay triangulation-based method will combine the concepts of Ahuja-
Dijkstra algorithm and ridge points to construct a directed graph and to obtain the shortest 
possible path length on the quadratic surfaces. Compared to another Delaunay triangulation 
method [4], Fermat points are replaced by the ridge points; this is mainly due to the fact that 
Fermat points cannot connect the shortest line between two neighbour triangles on the quadratic 
surface. The initial step of the algorithm is to build a triangle mesh G to simulate the earth’s sur-
face (the GIS map). Next, a source point and a destination point are spotted, then three ridge 
points in the same triangle will be connected together to generate an extra small triangle and 
three extra path segments between the vertices and neighbour triangles diagonal vertices.

These extra connections as shown in Figure 1(b) will be used to search for the near-shortest path 
by using the Ahuja-Dijkstras algorithm (expressed by Ef). As we have constructed the directed 
connected graph G′ = G ∪ Ef, we can obtain the near-shortest path P in graph G′ if it exists.

Function 1: FindingExtraConections():

Step 1. Create a ridge point between two neighbouring triangles as shown in Figure 1(a).

Step 2. Obtain the shortest path by connecting these two vertices E, F with the ridge point.

END {Function of FindingExtraConections}.

Function 2: PathShortening(P):

Step 1. Generate the shortcuts of any two consecutive segments by performing the Function 1.

Step 2. Sort the shortcuts by their corresponding length improvements in a descending order.

Step 3. Shorten the original path in a descending order.

END {Function of PathShortening}.

Advanced Path Planning for Mobile Entities94

Algorithm: The triangle mesh-based shortest path on the quadric surfaces.

Init Load the data from a GIS map.

Step 1. Construct a triangle mesh G by the Delaunay triangulation on the data, locate a 
source point and a destination point.

Step 2. Compute the shortest path between the neighbouring vertices based on the ridge 
points on the quadric surface by performing Function 1.

Step 3. Construct the directed connected graph G′ with the extra connections.

Step 4. Obtain the shortest path in graph G′ if it exists by Ahuja-Dijkstras algorithm.

Step 5. Call the Function 2 PathShortening(P).

END {Algorithm of the triangle mesh-based shortest path}.

Figure 2 illustrates the detailed process. Figure 2(a) shows the initiation of a triangle mesh 
G, then a source point S and a destination point D are depicted in Figure 2(b). Next, ridge 
points will be inserted into the triangle mesh in order to generate extra path connections 

Figure 1. Illustration of the ridge points. (a) A ridge point of ∆ABC and ∆ACD. (b) The connections between the ∆ABC 
and neighbour triangles vertices and ridge points.

Path Planning on Quadric Surfaces and Its Application
http://dx.doi.org/10.5772/intechopen.72573

95



A triangle mesh is a type of polygon mesh in computer graphics. It comprises a set of triangles 
(typically in three dimensions) that are connected by their common edges or corners [18]. 
With individual triangles, the system has to operate on three vertices for every triangle. In 
mathematics and computational geometry, the triangle mesh can be expressed in a Delaunay 
triangulation for a set V of vertices in the plane is a triangulation DT(V) such that no vertex in 
V is inside the circle of any triangle in DT(V) [19].

A path that interconnects the two vertices v and v’ of a graph G with minimal length for all 
paths is called the shortest path. Finding a shortest path in a graph G can be done in O(nlog n) 
with Ahuja-Dijkstra’s single-source shortest path algorithm by using Fibonacci heaps (F-heaps) 
and radix heaps [20].

A ridge is a curve consisting of ridge point: A point lies on a ridge if its neighbourhood can be 
subdivided by a line passing through it, and such that the surface in each half-neighbourhood 
is monotonically decreasing when moving away from the line [21].

3. Algorithm and illustration

In this section, a Delaunay triangulation-based method will combine the concepts of Ahuja-
Dijkstra algorithm and ridge points to construct a directed graph and to obtain the shortest 
possible path length on the quadratic surfaces. Compared to another Delaunay triangulation 
method [4], Fermat points are replaced by the ridge points; this is mainly due to the fact that 
Fermat points cannot connect the shortest line between two neighbour triangles on the quadratic 
surface. The initial step of the algorithm is to build a triangle mesh G to simulate the earth’s sur-
face (the GIS map). Next, a source point and a destination point are spotted, then three ridge 
points in the same triangle will be connected together to generate an extra small triangle and 
three extra path segments between the vertices and neighbour triangles diagonal vertices.

These extra connections as shown in Figure 1(b) will be used to search for the near-shortest path 
by using the Ahuja-Dijkstras algorithm (expressed by Ef). As we have constructed the directed 
connected graph G′ = G ∪ Ef, we can obtain the near-shortest path P in graph G′ if it exists.

Function 1: FindingExtraConections():

Step 1. Create a ridge point between two neighbouring triangles as shown in Figure 1(a).

Step 2. Obtain the shortest path by connecting these two vertices E, F with the ridge point.

END {Function of FindingExtraConections}.

Function 2: PathShortening(P):

Step 1. Generate the shortcuts of any two consecutive segments by performing the Function 1.

Step 2. Sort the shortcuts by their corresponding length improvements in a descending order.

Step 3. Shorten the original path in a descending order.

END {Function of PathShortening}.

Advanced Path Planning for Mobile Entities94

Algorithm: The triangle mesh-based shortest path on the quadric surfaces.

Init Load the data from a GIS map.

Step 1. Construct a triangle mesh G by the Delaunay triangulation on the data, locate a 
source point and a destination point.

Step 2. Compute the shortest path between the neighbouring vertices based on the ridge 
points on the quadric surface by performing Function 1.

Step 3. Construct the directed connected graph G′ with the extra connections.

Step 4. Obtain the shortest path in graph G′ if it exists by Ahuja-Dijkstras algorithm.

Step 5. Call the Function 2 PathShortening(P).

END {Algorithm of the triangle mesh-based shortest path}.

Figure 2 illustrates the detailed process. Figure 2(a) shows the initiation of a triangle mesh 
G, then a source point S and a destination point D are depicted in Figure 2(b). Next, ridge 
points will be inserted into the triangle mesh in order to generate extra path connections 

Figure 1. Illustration of the ridge points. (a) A ridge point of ∆ABC and ∆ACD. (b) The connections between the ∆ABC 
and neighbour triangles vertices and ridge points.

Path Planning on Quadric Surfaces and Its Application
http://dx.doi.org/10.5772/intechopen.72573

95



as shown in Figure 2(c). Figure 2(d) shows that each ridge point will connect with the oth-
ers in the same triangle and three extra path segments between the vertices and neighbour 
triangles diagonal vertices. Thereafter, the shortest path can be obtained in the graph G′ by 
Ahuja-Dijkstras algorithm presented as a red line shown in Figure 2(e). Finally, Figure 2(f) 
shows the final result after the PathShortening.

4. Performance analysis

A near-shortest path algorithm on the Quadratic surface is the fastest in the literature.

Theorem 1. The time complexity of the algorithm in the triangle mesh G is O(nlog n), where 
n denotes the number of triangles.

Figure 2. Illustration of the Delaunay triangulation algorithm. (a) Initialise (aerial view). (b) Spot source point and 
destination point (top view). (c) Insert ridge points (top view). (d) Extra connections (aerial view). (e) Obtain the shortest 
path (aerial view). (f) PathShortening (top view).

Advanced Path Planning for Mobile Entities96

Proof: We can generate Delaunay triangulation as a triangle mesh with time of O(nlog n) [22], 
as a result, time complexity in Step 1 is O(nlog n) [23].

The number of the ridge points is bounded by O(n); thus, the number of connections in Step 3 
is also bounded by 9 × O(n). We therefore know that all the time complexity for Steps 2 and 3 
are O(n). In Step 4, the time complexity of the Ahuja-Dijkatras algorithm using Fibonacci heaps 
and radix heaps is O(n + nlog n) = O(nlog n) [20]. In Step 5, as the number of points are n − 3, the 
time complexity will be dominated by O[(n − 3)log(n − 3)] = O(n log n). Therefore, the overall 
time complexity for PathShortening is O(nlog n).

In conclusion, the time complexity is 9 × O(n) + O(n log n) = O(n log n) from Steps 1–5.

Theorem 2. The space complexity of constructing the triangle mesh in the quadratic surface is 
O(n), where n is the number of triangles.

Proof: According to Euler characteristic, the number of triangles is less than T = 2 × (kC × n) − h – 2 
once the triangle mesh is generated, where h is the number of corners of the triangles. Therefore, 
the space complexity is bounded by O(n). Furthermore, the number of edges including the origi-
nal edges of triangles, edges connecting ridge points to the vertices of triangles, and connection 
between ridge points is also bounded by (6 + 3/2) × T = 7.5 T. Hence, the space complexity is O(n).

5. Experimental result

The performance of Delaunay triangulation-based path algorithm has been analysed for 
evaluating the near-shortest path with several real GIS maps in the Matlab Language. The 
analysis was performed on an Intel Core2 Quad CPU Q9550@2.83 GHz processor with 8 GB 
memory. Figure 3 shows one of the experimental results with a GIS map, where the solid line 
is the near-shortest path and dashed lines are the shortcuts.

Next, we have compared this algorithm to the KS’s algorithm with 1, 3, 5, 7, 9, 19 and 29 
Steiner points and summarised the comparison results on the average path length and the 
average runtime in Table 2. In KS’s algorithm, each edge of the triangle has been divided into 
multiple segments to generate more connections for path searching. Figure 4(a) and (b) illus-
trates the average running time and path length between two algorithms.

When compared to one Steiner point, the average path length difference of the Delaunay 
triangulation-based algorithm is 6.14% better than the KS’s algorithm, and computation time 
between the Delaunay triangulation-based algorithm and the KS’s algorithm is same. When 
it increased three Steiner points, the length difference is only 0.28%, but the computation 
time is 31.71 times faster. When 29 Steiner points for the KS’s algorithm are applied, the KS’s 
results can be assumed as the shortest path; however, the length difference is 2.81% longer 
and computation time is 4216 times faster. This proves that the Delaunay triangulation-based 
algorithm can solve the NP-hard problem and also obtain fast computing features. From the 
statistical view, Figure 5 shows the prediction of the average computation time and length 
difference if the number of KS’s Steiner points is infinity.

Path Planning on Quadric Surfaces and Its Application
http://dx.doi.org/10.5772/intechopen.72573

97



as shown in Figure 2(c). Figure 2(d) shows that each ridge point will connect with the oth-
ers in the same triangle and three extra path segments between the vertices and neighbour 
triangles diagonal vertices. Thereafter, the shortest path can be obtained in the graph G′ by 
Ahuja-Dijkstras algorithm presented as a red line shown in Figure 2(e). Finally, Figure 2(f) 
shows the final result after the PathShortening.

4. Performance analysis

A near-shortest path algorithm on the Quadratic surface is the fastest in the literature.

Theorem 1. The time complexity of the algorithm in the triangle mesh G is O(nlog n), where 
n denotes the number of triangles.

Figure 2. Illustration of the Delaunay triangulation algorithm. (a) Initialise (aerial view). (b) Spot source point and 
destination point (top view). (c) Insert ridge points (top view). (d) Extra connections (aerial view). (e) Obtain the shortest 
path (aerial view). (f) PathShortening (top view).

Advanced Path Planning for Mobile Entities96

Proof: We can generate Delaunay triangulation as a triangle mesh with time of O(nlog n) [22], 
as a result, time complexity in Step 1 is O(nlog n) [23].

The number of the ridge points is bounded by O(n); thus, the number of connections in Step 3 
is also bounded by 9 × O(n). We therefore know that all the time complexity for Steps 2 and 3 
are O(n). In Step 4, the time complexity of the Ahuja-Dijkatras algorithm using Fibonacci heaps 
and radix heaps is O(n + nlog n) = O(nlog n) [20]. In Step 5, as the number of points are n − 3, the 
time complexity will be dominated by O[(n − 3)log(n − 3)] = O(n log n). Therefore, the overall 
time complexity for PathShortening is O(nlog n).

In conclusion, the time complexity is 9 × O(n) + O(n log n) = O(n log n) from Steps 1–5.

Theorem 2. The space complexity of constructing the triangle mesh in the quadratic surface is 
O(n), where n is the number of triangles.

Proof: According to Euler characteristic, the number of triangles is less than T = 2 × (kC × n) − h – 2 
once the triangle mesh is generated, where h is the number of corners of the triangles. Therefore, 
the space complexity is bounded by O(n). Furthermore, the number of edges including the origi-
nal edges of triangles, edges connecting ridge points to the vertices of triangles, and connection 
between ridge points is also bounded by (6 + 3/2) × T = 7.5 T. Hence, the space complexity is O(n).

5. Experimental result

The performance of Delaunay triangulation-based path algorithm has been analysed for 
evaluating the near-shortest path with several real GIS maps in the Matlab Language. The 
analysis was performed on an Intel Core2 Quad CPU Q9550@2.83 GHz processor with 8 GB 
memory. Figure 3 shows one of the experimental results with a GIS map, where the solid line 
is the near-shortest path and dashed lines are the shortcuts.

Next, we have compared this algorithm to the KS’s algorithm with 1, 3, 5, 7, 9, 19 and 29 
Steiner points and summarised the comparison results on the average path length and the 
average runtime in Table 2. In KS’s algorithm, each edge of the triangle has been divided into 
multiple segments to generate more connections for path searching. Figure 4(a) and (b) illus-
trates the average running time and path length between two algorithms.

When compared to one Steiner point, the average path length difference of the Delaunay 
triangulation-based algorithm is 6.14% better than the KS’s algorithm, and computation time 
between the Delaunay triangulation-based algorithm and the KS’s algorithm is same. When 
it increased three Steiner points, the length difference is only 0.28%, but the computation 
time is 31.71 times faster. When 29 Steiner points for the KS’s algorithm are applied, the KS’s 
results can be assumed as the shortest path; however, the length difference is 2.81% longer 
and computation time is 4216 times faster. This proves that the Delaunay triangulation-based 
algorithm can solve the NP-hard problem and also obtain fast computing features. From the 
statistical view, Figure 5 shows the prediction of the average computation time and length 
difference if the number of KS’s Steiner points is infinity.

Path Planning on Quadric Surfaces and Its Application
http://dx.doi.org/10.5772/intechopen.72573

97



Figure 3. Near-shortest path searching with a GIS map. (a) Initialise (aerial view) and (b) result (aerial view).

Advanced Path Planning for Mobile Entities98

SPs Length difference (%) Runtime difference (X) (%)

1 −6.14 0.97

3 0.28 31.71

5 1.66 86.40

7 2.26 162.94

9 2.68 414.55

19 2.79 1968.62

29 2.81 4215.75

999 ≅ ∞ 5.3 3.0E + 10

Table 2. Comparisons between our algorithm and KS’s algorithm on average running time and length difference when 
the Steiner points are 1, 3, 5, 7, 9, 19, 29, …, ∞

Figure 4. Comparison between Delaunay triangulation-based algorithm and KS’s algorithm on average running time 
and path length. (a) Average computation time and (b) average length difference.

Path Planning on Quadric Surfaces and Its Application
http://dx.doi.org/10.5772/intechopen.72573

99



Figure 3. Near-shortest path searching with a GIS map. (a) Initialise (aerial view) and (b) result (aerial view).

Advanced Path Planning for Mobile Entities98

SPs Length difference (%) Runtime difference (X) (%)

1 −6.14 0.97

3 0.28 31.71

5 1.66 86.40

7 2.26 162.94

9 2.68 414.55

19 2.79 1968.62

29 2.81 4215.75

999 ≅ ∞ 5.3 3.0E + 10

Table 2. Comparisons between our algorithm and KS’s algorithm on average running time and length difference when 
the Steiner points are 1, 3, 5, 7, 9, 19, 29, …, ∞

Figure 4. Comparison between Delaunay triangulation-based algorithm and KS’s algorithm on average running time 
and path length. (a) Average computation time and (b) average length difference.

Path Planning on Quadric Surfaces and Its Application
http://dx.doi.org/10.5772/intechopen.72573

99



6. The shortest path application on the quadric surface

This section explains an application that benefits from the Delaunay triangulation-based 
algorithm. Actually, it can be applied to shortest path planning for Mars rover and mission 
planning for cruise missiles in the quadric surface. For cruise missile mission planning, we 
steady up with the angle θ1 at source point and down with the angle θ2 at destination point, 
respectively. Furthermore, the z-coordinate is limited by the l altitude units to avoid the 
radar’s scan as well as crash prevention, where l is a constant, as shown in Figure 6(a). To 
verify the correctness and performance, we assume a cruise missile needs to move from the 
source position S to the destination position D, as shown in Figure 6(b). In order to keep 
the safety margin between the cruise missile and quadric surface, virtual l altitude units are 
added up to the graph G′ (e.g. 20 meters above the G). Once the virtual altitude and thresh-
olds are applied, a shortest path is obtained. Apparently, Figure 6 shows that this shortest 
path algorithm can be also applied to intelligently guide the cruise missile to pass a narrow 
passage and avoid radar’s scan.

Figure 5. The prediction of the average computation time and length difference if the number of KS’s Steiner points is 
infinity. (a) Average computation time and (b) average length difference.

Advanced Path Planning for Mobile Entities100

Figure 6. An illustration of the shortest path for planning a cruise missile on the landscape. (a) Cruise missile planning; 
(b) land scope (top view); (c) result (aerial view 1) and (d) result (aerial view 2).

Path Planning on Quadric Surfaces and Its Application
http://dx.doi.org/10.5772/intechopen.72573

101



6. The shortest path application on the quadric surface

This section explains an application that benefits from the Delaunay triangulation-based 
algorithm. Actually, it can be applied to shortest path planning for Mars rover and mission 
planning for cruise missiles in the quadric surface. For cruise missile mission planning, we 
steady up with the angle θ1 at source point and down with the angle θ2 at destination point, 
respectively. Furthermore, the z-coordinate is limited by the l altitude units to avoid the 
radar’s scan as well as crash prevention, where l is a constant, as shown in Figure 6(a). To 
verify the correctness and performance, we assume a cruise missile needs to move from the 
source position S to the destination position D, as shown in Figure 6(b). In order to keep 
the safety margin between the cruise missile and quadric surface, virtual l altitude units are 
added up to the graph G′ (e.g. 20 meters above the G). Once the virtual altitude and thresh-
olds are applied, a shortest path is obtained. Apparently, Figure 6 shows that this shortest 
path algorithm can be also applied to intelligently guide the cruise missile to pass a narrow 
passage and avoid radar’s scan.

Figure 5. The prediction of the average computation time and length difference if the number of KS’s Steiner points is 
infinity. (a) Average computation time and (b) average length difference.

Advanced Path Planning for Mobile Entities100

Figure 6. An illustration of the shortest path for planning a cruise missile on the landscape. (a) Cruise missile planning; 
(b) land scope (top view); (c) result (aerial view 1) and (d) result (aerial view 2).

Path Planning on Quadric Surfaces and Its Application
http://dx.doi.org/10.5772/intechopen.72573

101



7. Conclusion

In this chapter, an O(nlog n) time near-shortest path planning based on the Delaunay triangu-
lation, the Ahuja-Dijkstra algorithm, and ridge points on the quadric surface are introduced. 
Although the length of path obtained by Delaunay triangulation-based algorithm is 0.28% 
longer than another O(nlog n) time KS’s algorithm, the average computation time is 31.71 
times faster. Furthermore, when the KS’s Steiner point is 29, which means that the shortest 
path in the NP-hard problem will be obtained, the Delaunay triangulation-based algorithm 
has at most a 2.81% difference on the path searching, but the computation time is 4216 times 
faster approximately. Therefore, the Delaunay triangulation-based algorithm presents a good 
near-shortest path searching solution in the quadric surface with a very short amount of 
computation time.

Author details

Chi-Chia Sun1, Gene Eu Jan2*, Chaomin Lu3 and Kai-Chieh Yang4

*Address all correspondence to: geneeujan@gmail.com

1 Department of Electrical Engineering, National Formosa University, Taiwan, ROC

2 Tainan National University of the Arts, Taiwan, ROC

3 Department of Electrical and Computer Engineering, University of Detroit Mercy, USA

4 Department of Electrical Engineering, National Taiwan Ocean University, Taiwan, ROC

References

[1] Wu Y, Sun D, Huang W, Xi N. Dynamics analysis and motion planning for automated 
cell transportation with optical tweezers. IEEE/ASME Transactions on Mechatronics. 
2012;18(2):706-713. DOI: http://dx.doi.org/10.1109/TMECH.2011. 2181856

[2] Harada K, Hattori S, Hirukawa H, Morisawa M, Kajita S, Yoshida E. Two-stage time-param-
etrized gait planning for humanoid robots. IEEE/ASME Transactions on Mechatronics. 
Oct 2010;15(5):694-703. DOI: http://dx.doi.org/10.1109/TMECH.2009.2032180

[3] Jan GE, Chang KY, Parberry I. Optimal path planning for mobile robot navigation. 
IEEE/ASME Transactions on Mechatronics. Aug 2008;13(4):451-460. DOI: http://dx.doi.
org/10.1109/TMECH.2008.2000822

[4] Jan GE, Sun CC, Tsai WC, Lin TH. An O(nlog n) shortest path algorithm based on Delaunay 
triangulation. IEEE/ASME Transactions on Mechatronics. Apr 2014;19(2):660-666. DOI: 
http://dx.doi.org/10.1109/TMECH.2013.2252076

Advanced Path Planning for Mobile Entities102

[5] Sun CC, Jan GE, Leu SW, Yang KC, Chen YC. Near-shortest path planning on a quadratic 
surface with O(nlog n) time. IEEE Sensors Journal. Nov 2015;15(11):6079-6080. DOI: 
http://dx.doi.org/10.1109/JSEN.2015.2464271

[6] Jan GE, Fung K, Wu PY, Leu SW. Shortest path-planning on polygonal surfaces with 
O(nlog n) time. In: IEEE International Conference on Control and Robotics Engineering. 
IEEEXplore. Apr 2016. pp. 1-5. DOI: http://dx.doi.org/10.1109/ICCRE.2016. 7476149

[7] Mitchell JSB. The Geometric Shortest Paths and Network Optimization in the Handbook 
of Computational Geometry. North Holland: Elsevier Science; 1998

[8] Canny J, Reif J. New lower bound techniques for robot motion planning problems. In: 
Annual Symposium on Foundations of Computer Science. IEEEXplore. 1987. pp. 49-60. 
DOI: http://dx.doi.org/10.1109/SFCS.1987.42

[9] Kanaia T, Suzuki H. Approximate shortest path on a polyhedral surface and its appli-
cations. Computer-Aided Design. Sep 2001;33(11):801-811. DOI: https://doi.org/10.1016/
S0010-4485(01)00097-5

[10] Sharir M, Schorr A. On shortest paths in polyhedral spaces. SIAM Journal of Computing. 
1986;15:193-215. DOI: http://dx.doi.org/10.1137/0215014

[11] Mitchell JSB, Mount DM, Papadimitriou CH. The discrete geodesic problem. SIAM 
Journal on Computing. 1987;16(4):647-668. DOI: https://doi.org/10.1137/0216045

[12] Chen J, Han Y. Shortest paths on a polyhedron. In: ACM Symposium on Computational 
Geometry. ACM Digital Library. 1990. pp. 360-369. DOI: http://dx.doi.org/10.1145/ 
98524.98601

[13] Kimmel R, Sethian JA. Computing geodesic paths on manifolds. In: Proceedings of the 
National Academy of Sciences on Applied Mathematics. PNAS Online. July 1998;95: 
8431-8435

[14] Helgason R, Kennington J, Lewis K. Cruise missile mission planning: A heuristic algo-
rithm for automatic path generation. Journal of Heuristics. Sep 2001;7(5):473-494. DOI: 
http://dx.doi.org/10.1023/A:1011325912346

[15] Byer O, Lazebnik F, Smeltzer DL. Methods for Euclidean Geometry. Washington D.C. 
USA: Mathematical Asso-ciation of America; 2010

[16] Einstein A. Die Feldgleichungen der Gravitation. Sitzungsberichte der Preussischen 
Akademie der Wissenschaften zu Berlin. 1915;48:844-847. DOI: http://dx.doi.org/10. 
1002/3527608958.ch5

[17] Galarza R, Irene A, Seade J. Introduction to Classical Geometries. Berlin, Germany:  
Springer; 2007. DOI: http://dx.doi.org/10.1007/ 978-3-7643-7518-8

[18] Jin J. Three Novel Algorithms for Triangle Mesh Processing: Progressive Delaunay 
Refinement Mesh Generation, MLS-based Scattered Data Interpolation and Constrained 
Centroid Voronoi-based Quadrangulation. IL, USA: UMI Dissertation Publishing; 2011

Path Planning on Quadric Surfaces and Its Application
http://dx.doi.org/10.5772/intechopen.72573

103



7. Conclusion

In this chapter, an O(nlog n) time near-shortest path planning based on the Delaunay triangu-
lation, the Ahuja-Dijkstra algorithm, and ridge points on the quadric surface are introduced. 
Although the length of path obtained by Delaunay triangulation-based algorithm is 0.28% 
longer than another O(nlog n) time KS’s algorithm, the average computation time is 31.71 
times faster. Furthermore, when the KS’s Steiner point is 29, which means that the shortest 
path in the NP-hard problem will be obtained, the Delaunay triangulation-based algorithm 
has at most a 2.81% difference on the path searching, but the computation time is 4216 times 
faster approximately. Therefore, the Delaunay triangulation-based algorithm presents a good 
near-shortest path searching solution in the quadric surface with a very short amount of 
computation time.

Author details

Chi-Chia Sun1, Gene Eu Jan2*, Chaomin Lu3 and Kai-Chieh Yang4

*Address all correspondence to: geneeujan@gmail.com

1 Department of Electrical Engineering, National Formosa University, Taiwan, ROC

2 Tainan National University of the Arts, Taiwan, ROC

3 Department of Electrical and Computer Engineering, University of Detroit Mercy, USA

4 Department of Electrical Engineering, National Taiwan Ocean University, Taiwan, ROC

References

[1] Wu Y, Sun D, Huang W, Xi N. Dynamics analysis and motion planning for automated 
cell transportation with optical tweezers. IEEE/ASME Transactions on Mechatronics. 
2012;18(2):706-713. DOI: http://dx.doi.org/10.1109/TMECH.2011. 2181856

[2] Harada K, Hattori S, Hirukawa H, Morisawa M, Kajita S, Yoshida E. Two-stage time-param-
etrized gait planning for humanoid robots. IEEE/ASME Transactions on Mechatronics. 
Oct 2010;15(5):694-703. DOI: http://dx.doi.org/10.1109/TMECH.2009.2032180

[3] Jan GE, Chang KY, Parberry I. Optimal path planning for mobile robot navigation. 
IEEE/ASME Transactions on Mechatronics. Aug 2008;13(4):451-460. DOI: http://dx.doi.
org/10.1109/TMECH.2008.2000822

[4] Jan GE, Sun CC, Tsai WC, Lin TH. An O(nlog n) shortest path algorithm based on Delaunay 
triangulation. IEEE/ASME Transactions on Mechatronics. Apr 2014;19(2):660-666. DOI: 
http://dx.doi.org/10.1109/TMECH.2013.2252076

Advanced Path Planning for Mobile Entities102

[5] Sun CC, Jan GE, Leu SW, Yang KC, Chen YC. Near-shortest path planning on a quadratic 
surface with O(nlog n) time. IEEE Sensors Journal. Nov 2015;15(11):6079-6080. DOI: 
http://dx.doi.org/10.1109/JSEN.2015.2464271

[6] Jan GE, Fung K, Wu PY, Leu SW. Shortest path-planning on polygonal surfaces with 
O(nlog n) time. In: IEEE International Conference on Control and Robotics Engineering. 
IEEEXplore. Apr 2016. pp. 1-5. DOI: http://dx.doi.org/10.1109/ICCRE.2016. 7476149

[7] Mitchell JSB. The Geometric Shortest Paths and Network Optimization in the Handbook 
of Computational Geometry. North Holland: Elsevier Science; 1998

[8] Canny J, Reif J. New lower bound techniques for robot motion planning problems. In: 
Annual Symposium on Foundations of Computer Science. IEEEXplore. 1987. pp. 49-60. 
DOI: http://dx.doi.org/10.1109/SFCS.1987.42

[9] Kanaia T, Suzuki H. Approximate shortest path on a polyhedral surface and its appli-
cations. Computer-Aided Design. Sep 2001;33(11):801-811. DOI: https://doi.org/10.1016/
S0010-4485(01)00097-5

[10] Sharir M, Schorr A. On shortest paths in polyhedral spaces. SIAM Journal of Computing. 
1986;15:193-215. DOI: http://dx.doi.org/10.1137/0215014

[11] Mitchell JSB, Mount DM, Papadimitriou CH. The discrete geodesic problem. SIAM 
Journal on Computing. 1987;16(4):647-668. DOI: https://doi.org/10.1137/0216045

[12] Chen J, Han Y. Shortest paths on a polyhedron. In: ACM Symposium on Computational 
Geometry. ACM Digital Library. 1990. pp. 360-369. DOI: http://dx.doi.org/10.1145/ 
98524.98601

[13] Kimmel R, Sethian JA. Computing geodesic paths on manifolds. In: Proceedings of the 
National Academy of Sciences on Applied Mathematics. PNAS Online. July 1998;95: 
8431-8435

[14] Helgason R, Kennington J, Lewis K. Cruise missile mission planning: A heuristic algo-
rithm for automatic path generation. Journal of Heuristics. Sep 2001;7(5):473-494. DOI: 
http://dx.doi.org/10.1023/A:1011325912346

[15] Byer O, Lazebnik F, Smeltzer DL. Methods for Euclidean Geometry. Washington D.C. 
USA: Mathematical Asso-ciation of America; 2010

[16] Einstein A. Die Feldgleichungen der Gravitation. Sitzungsberichte der Preussischen 
Akademie der Wissenschaften zu Berlin. 1915;48:844-847. DOI: http://dx.doi.org/10. 
1002/3527608958.ch5

[17] Galarza R, Irene A, Seade J. Introduction to Classical Geometries. Berlin, Germany:  
Springer; 2007. DOI: http://dx.doi.org/10.1007/ 978-3-7643-7518-8

[18] Jin J. Three Novel Algorithms for Triangle Mesh Processing: Progressive Delaunay 
Refinement Mesh Generation, MLS-based Scattered Data Interpolation and Constrained 
Centroid Voronoi-based Quadrangulation. IL, USA: UMI Dissertation Publishing; 2011

Path Planning on Quadric Surfaces and Its Application
http://dx.doi.org/10.5772/intechopen.72573

103



[19] Cheng S-W, Dey TK, Shewchuk J. Delaunay Mesh Generation. UK: Chapman and Hall/
CRC; 2012

[20] Ahuja R, Mehlhorn K, Orlin J, Tarjan R. Faster algorithms for the shortest path problem. 
Journal of the ACM. Apr 1990;37:213-223. DOI: http://dx.doi.org/10.1145/77600.77615

[21] Sack J, Urrutia J. Handbook of Computational Geometry. North Holland: Elsevier; 1999

[22] Fortune S. A sweepline algorithm for voronoi diagrams. In: Proceedings of the Second 
Annual ACM Symposium on Computational Geometry. Berlin, Germany: Springer-Verlag; 
1986. pp. 313-322. DOI: https://doi.org/10.1007/BF01840357

[23] Rohnert H. Shortest paths in the plane with convex polygonal obstacles. Information 
Processing Letters. 1986:23(2):71-76. DOI: http://dx.doi.org/10.1016/0020-0190(86)90045-1

Advanced Path Planning for Mobile Entities104

Section 2

Extended Path Planning for Mobile Robots



[19] Cheng S-W, Dey TK, Shewchuk J. Delaunay Mesh Generation. UK: Chapman and Hall/
CRC; 2012

[20] Ahuja R, Mehlhorn K, Orlin J, Tarjan R. Faster algorithms for the shortest path problem. 
Journal of the ACM. Apr 1990;37:213-223. DOI: http://dx.doi.org/10.1145/77600.77615

[21] Sack J, Urrutia J. Handbook of Computational Geometry. North Holland: Elsevier; 1999

[22] Fortune S. A sweepline algorithm for voronoi diagrams. In: Proceedings of the Second 
Annual ACM Symposium on Computational Geometry. Berlin, Germany: Springer-Verlag; 
1986. pp. 313-322. DOI: https://doi.org/10.1007/BF01840357

[23] Rohnert H. Shortest paths in the plane with convex polygonal obstacles. Information 
Processing Letters. 1986:23(2):71-76. DOI: http://dx.doi.org/10.1016/0020-0190(86)90045-1

Advanced Path Planning for Mobile Entities104

Section 2

Extended Path Planning for Mobile Robots



Chapter 6

Path Planning in Rough Terrain Using Neural Network
Memory

Nancy Arana-Daniel, Roberto Valencia-Murillo,
Alma Y. Alanís, Carlos Villaseñor and
Carlos López-Franco

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.71486

Provisional chapter

Path Planning in Rough Terrain Using Neural Network
Memory

Nancy Arana-Daniel, Roberto Valencia-Murillo,

Alma Y. Alanís, Carlos Villaseñor and

Carlos López-Franco

Additional information is available at the end of the chapter

Abstract

Learning navigation policies in an unstructured terrain is a complex task. The Learning
to Search (LEARCH) algorithm constructs cost functions that map environmental fea-
tures to a certain cost for traversing a patch of terrain. These features are abstractions of
the environment, in which trees, vegetation, slopes, water and rocks can be found,
and the traversal costs are scalar values that represent the difficulty for a robot to cross
given the patches of terrain. However, LEARCH tends to forget knowledge after new
policies are learned. The study demonstrates that reinforcement learning and long-short-
term memory (LSTM) neural networks can be used to provide a memory for LEARCH.
Further, they allow the navigation agent to recognize hidden states of the state space it
navigates. This new approach allows the knowledge learned in the previous training to
be used to navigate new environments and, also, for retraining. Herein, navigation
episodes are designed to confirm the memory, learning policy and hidden-state recogni-
tion capabilities, acquired by the navigation agent through the use of LSTM.

Keywords: robot navigation, learning to search, reinforcement learning, LSTM
unstructured terrain, rough terrain, cost function

1. Introduction

Autonomous robot navigation in unstructured terrain allows a robot to move through an
environment for which the selection of traversable terrain is not a deterministic decision [1]. A
mobile robot must make decisions of when to traverse patches of terrain that could be dangerous
or that might consume too many resources.

Several approaches have been developed in order to solve this problem; some of them are
focused on classifying traversable terrain [2, 3], and others in coupling the perceptual and

© The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons

Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,

distribution, and eproduction in any medium, provided the original work is properly cited.

DOI: 10.5772/intechopen.71486

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



Chapter 6

Path Planning in Rough Terrain Using Neural Network
Memory

Nancy Arana-Daniel, Roberto Valencia-Murillo,
Alma Y. Alanís, Carlos Villaseñor and
Carlos López-Franco

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.71486

Provisional chapter

Path Planning in Rough Terrain Using Neural Network
Memory

Nancy Arana-Daniel, Roberto Valencia-Murillo,

Alma Y. Alanís, Carlos Villaseñor and

Carlos López-Franco

Additional information is available at the end of the chapter

Abstract

Learning navigation policies in an unstructured terrain is a complex task. The Learning
to Search (LEARCH) algorithm constructs cost functions that map environmental fea-
tures to a certain cost for traversing a patch of terrain. These features are abstractions of
the environment, in which trees, vegetation, slopes, water and rocks can be found,
and the traversal costs are scalar values that represent the difficulty for a robot to cross
given the patches of terrain. However, LEARCH tends to forget knowledge after new
policies are learned. The study demonstrates that reinforcement learning and long-short-
term memory (LSTM) neural networks can be used to provide a memory for LEARCH.
Further, they allow the navigation agent to recognize hidden states of the state space it
navigates. This new approach allows the knowledge learned in the previous training to
be used to navigate new environments and, also, for retraining. Herein, navigation
episodes are designed to confirm the memory, learning policy and hidden-state recogni-
tion capabilities, acquired by the navigation agent through the use of LSTM.

Keywords: robot navigation, learning to search, reinforcement learning, LSTM
unstructured terrain, rough terrain, cost function

1. Introduction

Autonomous robot navigation in unstructured terrain allows a robot to move through an
environment for which the selection of traversable terrain is not a deterministic decision [1]. A
mobile robot must make decisions of when to traverse patches of terrain that could be dangerous
or that might consume too many resources.

Several approaches have been developed in order to solve this problem; some of them are
focused on classifying traversable terrain [2, 3], and others in coupling the perceptual and

© The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons

Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,

distribution, and eproduction in any medium, provided the original work is properly cited.

DOI: 10.5772/intechopen.71486

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



planning systems of the robot using functions that map features of the environment to scalar
values that represent the traversability of the terrain [1, 4, 5]. These works try to resolve the
task of autonomous robot navigation in unstructured terrain; however, these approaches do
not address the issue as an integrated system.

In most cases, a human expert provides information for cost map constructions heuristically. In
other cases, this information is then used to construct a cost function that automatically maps
features to costs; however, note that this cost function is established heuristically. The problem
with this methodology is that the traversability of a given feature for a robot is difficult to
quantify. In contrast, humans can determine traversal trajectories relatively easily.

An alternative to establishing cost functions is to use an algorithm that automatically con-
structs and tunes a cost function. Learning to Search (LEARCH) [1] is an algorithm that uses
learning from demonstration in order to construct a cost function. In this approach, a human
expert exhibits a desirable behavior (a sample path) over certain terrain; then, LEARCH
adjusts a cost function in order to match the behavior exhibited by the expert.

LEARCH has the advantage that the cost function to be constructed can be chosen from among
linear functions, parametric functions, neural networks and decision trees, to name a few [1].
In particular, neural networks and other learning machines such as support vector machines
(SVM) have exhibited considerable generalization capability in different scenarios [6].

However, as will be demonstrated in this paper, the LEARCH generalization capability
decreases as the number of sample paths increases; this is because the error decays over time
during training.

In this study, this problem with the LEARCH algorithm is addressed using a long-short-term
memory (LSTM) neural network and reinforcement learning (RL). Recurrent neural networks
are capable of finding hidden states, as shown in [7]. Therefore, we propose a complex learning
system that allows a navigation agent to learn navigation policies and determine complex
traversability cost functions. Furthermore, this system can retain the knowledge learned in
past navigation episodes in memory and generalize this knowledge for use in new episodes.

2. Learning to Search

This section presents an overview of the LEARCH algorithm, along with the results of gener-
alization tests conducted using LEARCH. The objective is to explain the need for memory for
this algorithm in order to improve its performance.

TheLEARCHalgorithm is based on the concept of inverse optimal control [8],which addresses the
problem of finding a cost map such that a known trajectory through an environment is optimally
navigated using thismap. In addition, non-linearmaximummargin planning [1]with the support
vector regressionmachine [9] is used to learn behavior from an expert, that is, human expert.

Let S be a state space operated by a path planner. F is a feature space defined over S. Then, for
every x∈ S a corresponding feature vector Fx∈S exists. The Fx vectors are inputs for the cost

Advanced Path Planning for Mobile Entities108

function C, which maps F to scalar values. C is defined as the weighted sums of functions Ri∈R ,
whereR is a space of limited complexity that maps from the feature space to a scalar [1].

We define a path P as a sequence of states x∈S that lead from the start s point to the goal g. The
cost of each state is C(Fx); thus, the cost of the entire path is defined as

C Pð Þ ¼
X
x∈P

C Fxð Þ (1)

Consider a path provided by an expert, i.e. sample path Pe, which runs from a start state se to a
goal state ge. In order to learn from the expert demonstration, a cost function such that Pe is the
optimal path from se to ge is required. This task can be expressed as the following optimization
problem [1]:

MinO C½ � ¼ λREG Cð Þ þ
X
x∈P

C Fxð Þ �minbP
X

x∈bP
C Fxð Þ � Le xð Þð Þ

2
4

3
5 (2)

where λ is a term that scales the regularization term REG(C). bP is a path computed by a
planner over the cost space, and Le is a loss function that encodes the similarity between paths.
The latter is defined as

Le ¼
1 if x∈Pe,

0 otherwise

(
(3)

The sub-gradient is used to minimize O[C]. In the cost function space, the sub-gradient is

∇OF C½ � ¼ λ∇REGF C½ � þ
X
x∈Pe

δF Fxð Þ �
X
x∈P∗

δF Fxð Þ, (4)

where δ is the Dirac delta and P∗ is the optimal path for the actual cost map.

In order to avoid overfitting, a cost function space is considered. C is now defined as the space
of weighted sums of functions Ri∈R , where R is a space of functions of limited complexity,
which maps from the feature space to a scalar. The possible choices for R include linear
functions, parametric functions, neural networks and decision trees. Thus,

C ¼ CjC ¼
X
i

ηiRi Fð Þ, Ri ∈R , ηi ∈R
( )

R ¼ RjR : F ! R ∧REG Rð Þ < vf g
(5)

The functional gradient is projected onto the direction set by finding the element Ri∈R that
maximizes the inner product 〈�∇OF[C],R∗〉. This maximization can be regarded as a learning
problem. Here,

Path Planning in Rough Terrain Using Neural Network Memory
http://dx.doi.org/10.5772/intechopen.71486

109



planning systems of the robot using functions that map features of the environment to scalar
values that represent the traversability of the terrain [1, 4, 5]. These works try to resolve the
task of autonomous robot navigation in unstructured terrain; however, these approaches do
not address the issue as an integrated system.

In most cases, a human expert provides information for cost map constructions heuristically. In
other cases, this information is then used to construct a cost function that automatically maps
features to costs; however, note that this cost function is established heuristically. The problem
with this methodology is that the traversability of a given feature for a robot is difficult to
quantify. In contrast, humans can determine traversal trajectories relatively easily.

An alternative to establishing cost functions is to use an algorithm that automatically con-
structs and tunes a cost function. Learning to Search (LEARCH) [1] is an algorithm that uses
learning from demonstration in order to construct a cost function. In this approach, a human
expert exhibits a desirable behavior (a sample path) over certain terrain; then, LEARCH
adjusts a cost function in order to match the behavior exhibited by the expert.

LEARCH has the advantage that the cost function to be constructed can be chosen from among
linear functions, parametric functions, neural networks and decision trees, to name a few [1].
In particular, neural networks and other learning machines such as support vector machines
(SVM) have exhibited considerable generalization capability in different scenarios [6].

However, as will be demonstrated in this paper, the LEARCH generalization capability
decreases as the number of sample paths increases; this is because the error decays over time
during training.

In this study, this problem with the LEARCH algorithm is addressed using a long-short-term
memory (LSTM) neural network and reinforcement learning (RL). Recurrent neural networks
are capable of finding hidden states, as shown in [7]. Therefore, we propose a complex learning
system that allows a navigation agent to learn navigation policies and determine complex
traversability cost functions. Furthermore, this system can retain the knowledge learned in
past navigation episodes in memory and generalize this knowledge for use in new episodes.

2. Learning to Search

This section presents an overview of the LEARCH algorithm, along with the results of gener-
alization tests conducted using LEARCH. The objective is to explain the need for memory for
this algorithm in order to improve its performance.

TheLEARCHalgorithm is basedon the concept of inverse optimal control [8],which addresses the
problem of finding a cost map such that a known trajectory through an environment is optimally
navigated using thismap. In addition, non-linearmaximummargin planning [1]with the support
vector regressionmachine [9] is used to learn behavior from an expert, that is, human expert.

Let S be a state space operated by a path planner. F is a feature space defined over S. Then, for
every x∈ S a corresponding feature vector Fx∈S exists. The Fx vectors are inputs for the cost

Advanced Path Planning for Mobile Entities108

function C, which maps F to scalar values. C is defined as the weighted sums of functions Ri∈R ,
whereR is a space of limited complexity that maps from the feature space to a scalar [1].

We define a path P as a sequence of states x∈S that lead from the start s point to the goal g. The
cost of each state is C(Fx); thus, the cost of the entire path is defined as

C Pð Þ ¼
X
x∈P

C Fxð Þ (1)

Consider a path provided by an expert, i.e. sample path Pe, which runs from a start state se to a
goal state ge. In order to learn from the expert demonstration, a cost function such that Pe is the
optimal path from se to ge is required. This task can be expressed as the following optimization
problem [1]:

MinO C½ � ¼ λREG Cð Þ þ
X
x∈P

C Fxð Þ �minbP
X

x∈bP
C Fxð Þ � Le xð Þð Þ

2
4

3
5 (2)

where λ is a term that scales the regularization term REG(C). bP is a path computed by a
planner over the cost space, and Le is a loss function that encodes the similarity between paths.
The latter is defined as

Le ¼
1 if x∈Pe,

0 otherwise

(
(3)

The sub-gradient is used to minimize O[C]. In the cost function space, the sub-gradient is

∇OF C½ � ¼ λ∇REGF C½ � þ
X
x∈Pe

δF Fxð Þ �
X
x∈P∗

δF Fxð Þ, (4)

where δ is the Dirac delta and P∗ is the optimal path for the actual cost map.

In order to avoid overfitting, a cost function space is considered. C is now defined as the space
of weighted sums of functions Ri∈R , where R is a space of functions of limited complexity,
which maps from the feature space to a scalar. The possible choices for R include linear
functions, parametric functions, neural networks and decision trees. Thus,

C ¼ CjC ¼
X
i

ηiRi Fð Þ, Ri ∈R , ηi ∈R
( )

R ¼ RjR : F ! R ∧REG Rð Þ < vf g
(5)

The functional gradient is projected onto the direction set by finding the element Ri∈R that
maximizes the inner product 〈�∇OF[C],R∗〉. This maximization can be regarded as a learning
problem. Here,

Path Planning in Rough Terrain Using Neural Network Memory
http://dx.doi.org/10.5772/intechopen.71486

109



R∗ ¼ arg maxR �∇OF C½ �;R∗h i
¼ arg maxR

X
x∈Pe ∩P∗

αxyxR Fxð Þ (6)

where

αx ¼ ∇OFx C½ �j jyx ¼ � sgn ∇OFx C½ �ð Þ

As in [1] the projection of the functional gradient can be regarded as a weighted classification
problem. It can be seen that the regression targets yx are positive in regions of the feature space
for which the planned path visits more than the sample path and negative in the opposite case.
Here, this approach is viewed as minimizing the error induced by visiting states that are not in
the sample path. Then, the visitation count U is the cumulative count of the number of states
x∈P such that Fx =F. The visitation counts can be split into positive and negative components,
depending on whether they correspond to the current planned path or the sample path:

Uþ Fð Þ ¼
X
x∈P∗

δF Fxð Þ

U� Fð Þ ¼
X
x∈Pe

δF Fxð Þ
(7)

U Fð Þ ¼ Uþ Fð Þ �U� Fð Þ ¼
X
x∈P∗

δF Fxð Þ �
X
x∈Pe

δF Fxð Þ (8)

Ignoring the regularization term of Eq. (4), the regression targets and weights can be computed
as functions of the visitation counts. Then, the regressor targets can be obtained using these
visitation counts. Further, with this regressor, the cost function can be expressed as

Cj ¼ Cj�1∗enjRj (9)

where j = {1, 2, 3,…, n}, with n being the number of iterations; R is the regressor; and η is the
learning rate.

2.1. Learning to Search experiments

This section describes the experiment conducted to test the LEARCH generalization capabilities.
Satellite-like images were selected for feature extraction. Further, patches of terrain were divided
into grid cells, with a vector being created for each cell. These vectors represented a value for each
of the following features of the environment in each dimension: the vegetation density, slope, the
presence of gravel or rocks and the presence of water; each scalar value represents an abstraction
of the feature; for example, the scalar value for vegetation represents its density, a patch of terrain
with grass would be represented with a low value, and a patch of terrain with a tree would be
represented with a high value of vegetation. In these experiments vectors of dimension 4 were
used, that is, for the patch of terrain with grass, the vector [0, 2, 0, 0] would be its representation.
A human expert-traced sample paths over the terrain, as shown in Figure 1.

Advanced Path Planning for Mobile Entities110

With this information a support vector regressor (SVR) was used to learn the cost function Ri of
Eq. (5). Note that, after LEARCH is executed, the trained SVR can map the features of the terrain
directly into traversal costs. Figure 2 shows a diagram of the algorithm used for training.

The procedure is explained as follows:

• A cost map M is constructed using a feature map and a cost function (C(F)).

• The path planner D∗ computes an optimal path P∗ from start point se to the goal point ge
over M.

• Using the sample path from the expert path Pe and P∗, the vector U indicating the
visitation counts is constructed as shown in Eq. (8).

• Using U, the regressor targets are computed, and this regressor is trained.

• The cost function is updated using Eq. (9).

• This process is repeated until Pe and P∗ are equal.

Figure 1. Left: Satellite like image. Right: Grid cells and lines with different colours representing sample paths.

Figure 2. LEARCH diagram. F is the feature map, M is the cost map, se and ge represent the start and the goal points,
respectively, P* is the optimal path, Pe is the sample path, T is the vector of regressor targets values for training a regressor
R, C (F is the cost function and j = {1,2,3,…, n}, where n is the number of iterations needed to train the cost function.

Path Planning in Rough Terrain Using Neural Network Memory
http://dx.doi.org/10.5772/intechopen.71486

111



R∗ ¼ arg maxR �∇OF C½ �;R∗h i
¼ arg maxR

X
x∈Pe ∩P∗

αxyxR Fxð Þ (6)

where

αx ¼ ∇OFx C½ �j jyx ¼ � sgn ∇OFx C½ �ð Þ

As in [1] the projection of the functional gradient can be regarded as a weighted classification
problem. It can be seen that the regression targets yx are positive in regions of the feature space
for which the planned path visits more than the sample path and negative in the opposite case.
Here, this approach is viewed as minimizing the error induced by visiting states that are not in
the sample path. Then, the visitation count U is the cumulative count of the number of states
x∈P such that Fx =F. The visitation counts can be split into positive and negative components,
depending on whether they correspond to the current planned path or the sample path:

Uþ Fð Þ ¼
X
x∈P∗

δF Fxð Þ

U� Fð Þ ¼
X
x∈Pe

δF Fxð Þ
(7)

U Fð Þ ¼ Uþ Fð Þ �U� Fð Þ ¼
X
x∈P∗

δF Fxð Þ �
X
x∈Pe

δF Fxð Þ (8)

Ignoring the regularization term of Eq. (4), the regression targets and weights can be computed
as functions of the visitation counts. Then, the regressor targets can be obtained using these
visitation counts. Further, with this regressor, the cost function can be expressed as

Cj ¼ Cj�1∗enjRj (9)

where j = {1, 2, 3,…, n}, with n being the number of iterations; R is the regressor; and η is the
learning rate.

2.1. Learning to Search experiments

This section describes the experiment conducted to test the LEARCH generalization capabilities.
Satellite-like images were selected for feature extraction. Further, patches of terrain were divided
into grid cells, with a vector being created for each cell. These vectors represented a value for each
of the following features of the environment in each dimension: the vegetation density, slope, the
presence of gravel or rocks and the presence of water; each scalar value represents an abstraction
of the feature; for example, the scalar value for vegetation represents its density, a patch of terrain
with grass would be represented with a low value, and a patch of terrain with a tree would be
represented with a high value of vegetation. In these experiments vectors of dimension 4 were
used, that is, for the patch of terrain with grass, the vector [0, 2, 0, 0] would be its representation.
A human expert-traced sample paths over the terrain, as shown in Figure 1.

Advanced Path Planning for Mobile Entities110

With this information a support vector regressor (SVR) was used to learn the cost function Ri of
Eq. (5). Note that, after LEARCH is executed, the trained SVR can map the features of the terrain
directly into traversal costs. Figure 2 shows a diagram of the algorithm used for training.

The procedure is explained as follows:

• A cost map M is constructed using a feature map and a cost function (C(F)).

• The path planner D∗ computes an optimal path P∗ from start point se to the goal point ge
over M.

• Using the sample path from the expert path Pe and P∗, the vector U indicating the
visitation counts is constructed as shown in Eq. (8).

• Using U, the regressor targets are computed, and this regressor is trained.

• The cost function is updated using Eq. (9).

• This process is repeated until Pe and P∗ are equal.

Figure 1. Left: Satellite like image. Right: Grid cells and lines with different colours representing sample paths.

Figure 2. LEARCH diagram. F is the feature map, M is the cost map, se and ge represent the start and the goal points,
respectively, P* is the optimal path, Pe is the sample path, T is the vector of regressor targets values for training a regressor
R, C (F is the cost function and j = {1,2,3,…, n}, where n is the number of iterations needed to train the cost function.

Path Planning in Rough Terrain Using Neural Network Memory
http://dx.doi.org/10.5772/intechopen.71486

111



The traversal costs can be color coded for demonstration purposes, as shown in Figure 3,
where values near 20 represent the patches with the highest crossing difficulty and those near
zero represent terrain that is easy to traverse.

In this experiment, in order to prove the generalization capabilities of LEARCH (i.e. its ability
to use policies learned in past navigation episodes during new episodes), we employed the
following methodology. First, we trained the LEARCH system described in Figure 1 using an
initial map and one sample path. Then, we incrementally added to this learned knowledge
(using the same initial map) by incorporating more paths to be learned by LEARCH (one by
one). The results of these experiments are shown in Figure 4, where the image (a) of the figure
shows the cost map obtained with a cost function trained using one sample path and the image
(b) shows the results obtained by adding a path to the training, and so on until five sample
paths are used. The image (f) of Figure 4 shows the cost map obtained with a cost function
trained using eight sample paths.

From the cost map (e) of Figure 4, in comparison with the cost map (f), it is apparent that
information from the environment is missing after the cost function is trained with more
sample paths. That is, some states are no longer recognized as states with a high traversal cost.
It is important to note that the costs that are most affected are those furthest from the sample
paths, in comparison with the costs of the corresponding states on the original path; therefore,
the generalization capability of the LEARCH system is very poor. This problem renders the
task of finding the optimal path difficult. In addition, the path planner could compute a path
that traverses dangerous terrain. Further, note that, the use of only a few sample paths is not a
solution to the problem of obtaining a systemwith knowledge of a greater number of area costs
than those attached to the sample paths. This is because such sample paths cannot contain all
the information necessary for a good and complete representation of the environment.

Figure 3. Example of a cost map which belongs to the real map shown in Figure 1.

Advanced Path Planning for Mobile Entities112

Figure 4. Costs maps obtained using different numbers of paths of terrain.

Path Planning in Rough Terrain Using Neural Network Memory
http://dx.doi.org/10.5772/intechopen.71486

113



The traversal costs can be color coded for demonstration purposes, as shown in Figure 3,
where values near 20 represent the patches with the highest crossing difficulty and those near
zero represent terrain that is easy to traverse.

In this experiment, in order to prove the generalization capabilities of LEARCH (i.e. its ability
to use policies learned in past navigation episodes during new episodes), we employed the
following methodology. First, we trained the LEARCH system described in Figure 1 using an
initial map and one sample path. Then, we incrementally added to this learned knowledge
(using the same initial map) by incorporating more paths to be learned by LEARCH (one by
one). The results of these experiments are shown in Figure 4, where the image (a) of the figure
shows the cost map obtained with a cost function trained using one sample path and the image
(b) shows the results obtained by adding a path to the training, and so on until five sample
paths are used. The image (f) of Figure 4 shows the cost map obtained with a cost function
trained using eight sample paths.

From the cost map (e) of Figure 4, in comparison with the cost map (f), it is apparent that
information from the environment is missing after the cost function is trained with more
sample paths. That is, some states are no longer recognized as states with a high traversal cost.
It is important to note that the costs that are most affected are those furthest from the sample
paths, in comparison with the costs of the corresponding states on the original path; therefore,
the generalization capability of the LEARCH system is very poor. This problem renders the
task of finding the optimal path difficult. In addition, the path planner could compute a path
that traverses dangerous terrain. Further, note that, the use of only a few sample paths is not a
solution to the problem of obtaining a systemwith knowledge of a greater number of area costs
than those attached to the sample paths. This is because such sample paths cannot contain all
the information necessary for a good and complete representation of the environment.

Figure 3. Example of a cost map which belongs to the real map shown in Figure 1.

Advanced Path Planning for Mobile Entities112

Figure 4. Costs maps obtained using different numbers of paths of terrain.

Path Planning in Rough Terrain Using Neural Network Memory
http://dx.doi.org/10.5772/intechopen.71486

113



In this study, other experiments to prove the limitations of LEARCHwere performed, in which
we trained the system using nonrepresentative environment paths. That is, the paths taught by
the expert traversed many cells of the environment that did not contain sufficient representa-
tive features of the environment or cells that did not have significant differences in cost.
Figure 5 shows examples of these paths, which allowed the LEARCH system to acquire
nonrepresentative knowledge that was then generalized over the cost map. The cost map at
the left of Figure 5 is less generalized compared with the more descriptive costs shown on the
map at the right of Figure 5.

Therefore, in order to address the problems with the LEARCH system, we propose the use of
an LSTM as part of the system. Inclusion of an LSTM allows the navigation agent to learn
navigation policies and complex traversability cost functions and, furthermore, to retain mem-
ory of the knowledge learned in the past navigation episodes for reuse during new episodes.
The latter capability allows expensive retraining to be avoided when the navigation environ-
ment is similar to those already explored by the agent and allows hidden states of the
extremely large state space represented by a nonstructured or rough terrain to be recognized.
We present the LSTM in the next section.

3. Long-short-term memory neural network

LSTM is a recurrent neural network architecture originally designed for supervised time-series
learning. It addresses the problem that errors propagated back in time tend to vanish in
multilayer neural networks (MLPs). Enforcing a constant error flow in constant error carousels
(CEC) is a solution for vanishing errors [7].

These CECs are processing units having linear activation functions that do not decay over
time. CECs can become filled with useless information if access to them is not regulated;
therefore, specialized multiplicative units called input gates regulate access to the CECs.
Further, their access to activation of other network units is regulated by multiplicative units
called output gates. In addition, forget gates are added to CECs in order to reset information

Figure 5. Left: cost map computed with five representative paths. Right: cost map computed with five non representative
paths.

Advanced Path Planning for Mobile Entities114

that is no longer useful. A combination of a CEC and its input, output and forget gates is called
a memory cell (Figure 6).

The activation updates at each time step t in this type of neural network are computed as
follows. For the hidden unit activation yh, the output unit activation yk, the input gate activa-
tion yin, the output gate activation yout and the forget gate activation yφ, we have

yi tð Þ ¼ f i
X
m

wimym t� 1ð Þ
 !

(10)

where wim is the weight of the connection from unit m to unit i. For the activation function fi, the
standard logistic sigmoid function for all units is chosen, except for output units, for which it is
the identity function [7]. The CEC activation, also known asmemory cell state, is calculated using

scvj tð Þ ¼ yφj tð Þscvj t� 1ð Þ þ yinj tð Þg
X
m

wcvj my
m t� 1ð Þ

 !
(11)

where g is a logistic sigmoid function scaled to the [�2, 2] range and scvj 0ð Þ. Finally, the
activation update for the memory cell output is calculated from

Figure 6. Graphic representation of a memory cell.

Path Planning in Rough Terrain Using Neural Network Memory
http://dx.doi.org/10.5772/intechopen.71486

115



In this study, other experiments to prove the limitations of LEARCHwere performed, in which
we trained the system using nonrepresentative environment paths. That is, the paths taught by
the expert traversed many cells of the environment that did not contain sufficient representa-
tive features of the environment or cells that did not have significant differences in cost.
Figure 5 shows examples of these paths, which allowed the LEARCH system to acquire
nonrepresentative knowledge that was then generalized over the cost map. The cost map at
the left of Figure 5 is less generalized compared with the more descriptive costs shown on the
map at the right of Figure 5.

Therefore, in order to address the problems with the LEARCH system, we propose the use of
an LSTM as part of the system. Inclusion of an LSTM allows the navigation agent to learn
navigation policies and complex traversability cost functions and, furthermore, to retain mem-
ory of the knowledge learned in the past navigation episodes for reuse during new episodes.
The latter capability allows expensive retraining to be avoided when the navigation environ-
ment is similar to those already explored by the agent and allows hidden states of the
extremely large state space represented by a nonstructured or rough terrain to be recognized.
We present the LSTM in the next section.

3. Long-short-term memory neural network

LSTM is a recurrent neural network architecture originally designed for supervised time-series
learning. It addresses the problem that errors propagated back in time tend to vanish in
multilayer neural networks (MLPs). Enforcing a constant error flow in constant error carousels
(CEC) is a solution for vanishing errors [7].

These CECs are processing units having linear activation functions that do not decay over
time. CECs can become filled with useless information if access to them is not regulated;
therefore, specialized multiplicative units called input gates regulate access to the CECs.
Further, their access to activation of other network units is regulated by multiplicative units
called output gates. In addition, forget gates are added to CECs in order to reset information

Figure 5. Left: cost map computed with five representative paths. Right: cost map computed with five non representative
paths.

Advanced Path Planning for Mobile Entities114

that is no longer useful. A combination of a CEC and its input, output and forget gates is called
a memory cell (Figure 6).

The activation updates at each time step t in this type of neural network are computed as
follows. For the hidden unit activation yh, the output unit activation yk, the input gate activa-
tion yin, the output gate activation yout and the forget gate activation yφ, we have

yi tð Þ ¼ f i
X
m

wimym t� 1ð Þ
 !

(10)

where wim is the weight of the connection from unit m to unit i. For the activation function fi, the
standard logistic sigmoid function for all units is chosen, except for output units, for which it is
the identity function [7]. The CEC activation, also known asmemory cell state, is calculated using

scvj tð Þ ¼ yφj tð Þscvj t� 1ð Þ þ yinj tð Þg
X
m

wcvj my
m t� 1ð Þ

 !
(11)

where g is a logistic sigmoid function scaled to the [�2, 2] range and scvj 0ð Þ. Finally, the
activation update for the memory cell output is calculated from

Figure 6. Graphic representation of a memory cell.

Path Planning in Rough Terrain Using Neural Network Memory
http://dx.doi.org/10.5772/intechopen.71486

115



yc
v
j tð Þ ¼ yout tð Þh scvj tð Þ

� �
(12)

The learning process implemented for LSTM in this paper is a variation of real-time recurrent
learning (RTRL), as described in Ref. [7] which is a variation of [9]. In this variant, when the
error arrives at a cell, it stops propagation further back in time. However, the error is used to
update incoming weights when it leaves the memory cell through the input gate.

4. Reinforcement learning y long-short-term memory neural network

In order to teach the LSTM to navigate an unstructured terrain, RL was implemented as
described in Ref. [7]. In this approach, an LSTM approximates the value function V of the RL
algorithm, which teaches a robotic agent how to navigate a T-shaped maze environment.

This problem is a partially observable Markov decision process, in which the agent is unaware
of the full state of the environment and must infer this information using current observations.
In this study, these observations are the same feature vectors of the environment that were
used for previous LEARCH experiments, and these vectors are the input for the LSTM.

The LSTM outputs represent the advantage values A(s, a) of each action, where a is the action
taken in state s. They are used to compute the value of the state V sð Þ ¼ maxa A s; að Þ, which
represents the action with the higher advantage value.

To perform weight updates, truncated backpropagation through time was implemented with
RL. A function approximator’s prediction error at time step t, ETD(t), is computed using
Eq. (13) and is propagated one step back in time through all the units of the network, except
for the CECs, for which the error is backpropagated for an indefinite amount of time [7]. Thus,

ETD tð Þ ¼ V s tð Þ þ r tð Þ þ γV s tþ 1ð Þð Þ � V s tð Þð Þ
k

� A s tð Þ; a tð Þð Þ
� �

(13)

where r is the immediate reward, γ is a discount factor in the [0, 1] range and k scales the
difference between the values of the optimal and suboptimal actions. It is worth mentioning
that only the output associated with the executed action receives the error signal.

During the learning process, the agent can explore the environment using the state values;
however, directed exploration (i.e. exploration for which a predictor is used to direct the
exploration stage, so as to avoid clueless exploration of the entire state space) is important in
order to learn complex terrain navigation. When an undirected exploration is conducted, RL
tries every action in the same way over all states; however, in unstructured terrain, some states
provide ambiguous information about the environment rendering it difficult for the agent to
determine the state of the environment. Other states provide clear information; therefore, the
agent must direct its exploration to discover the ambiguous states. In order to explore the
environment, an MLP was implemented for directed exploration. This MLP input was the
same as the LSTM, and the MLP objective was to predict the absolute value of the current
temporal difference error, i.e. ETD(t). This aided prediction of which observations were

Advanced Path Planning for Mobile Entities116

associated with a larger error. The desired MLP output was obtained using Eq. (14), and
backpropagation was employed to train the MLP:

yvd tð Þ ¼ ETD tð Þ�� ��þ βyv tþ 1ð Þ (14)

The MLP output yv(t) is used as the temperature of the Boltzmann action selection rule, which
has the form

eAðs; aÞ=y
v tð Þ

Pn
b¼1

eAðs; aÞ=yv tð Þ
(15)

where n is the number of actions available to the agent.

The complete learning process and the manner in which the LEARCH and RL-LSTM systems
are connected is shown in Figure 7. The entire process occurs offline. First, the LEARCH

,

F
computes ∗

computes
∗

∗

Visitation 

count

Compute 

reg. target

Train 

regressor

Update cost

function

+1( )

LSTM

Obsrve

environment

Compute ( )

MLP
Compute 

action

Compute action’s

rewardCompute cost

to reward

Compute

Compute ∆ LSTM∆ MLP

∆ LSTM
Compute ∆ MLP

( )
( , )

( , )

( )

( )( )

( )

Currents Advantage

values to Navigation

Policy

Current cost map to

costs of the

environment

F

Figure 7. LEARCH-RL-LSTM system showing the manner in which the two systems are connected to train the LSTM.
The entire process occurs offline. First, the LEARCH algorithm iterates until the required cost map M is obtained. Then,
the RL-LSTM algorithm begins the process of training the LSTM using the costs converted into rewards r. The feature map
F is obtained from the robotic agent and used by both systems.

Path Planning in Rough Terrain Using Neural Network Memory
http://dx.doi.org/10.5772/intechopen.71486

117



yc
v
j tð Þ ¼ yout tð Þh scvj tð Þ

� �
(12)

The learning process implemented for LSTM in this paper is a variation of real-time recurrent
learning (RTRL), as described in Ref. [7] which is a variation of [9]. In this variant, when the
error arrives at a cell, it stops propagation further back in time. However, the error is used to
update incoming weights when it leaves the memory cell through the input gate.

4. Reinforcement learning y long-short-term memory neural network

In order to teach the LSTM to navigate an unstructured terrain, RL was implemented as
described in Ref. [7]. In this approach, an LSTM approximates the value function V of the RL
algorithm, which teaches a robotic agent how to navigate a T-shaped maze environment.

This problem is a partially observable Markov decision process, in which the agent is unaware
of the full state of the environment and must infer this information using current observations.
In this study, these observations are the same feature vectors of the environment that were
used for previous LEARCH experiments, and these vectors are the input for the LSTM.

The LSTM outputs represent the advantage values A(s, a) of each action, where a is the action
taken in state s. They are used to compute the value of the state V sð Þ ¼ maxa A s; að Þ, which
represents the action with the higher advantage value.

To perform weight updates, truncated backpropagation through time was implemented with
RL. A function approximator’s prediction error at time step t, ETD(t), is computed using
Eq. (13) and is propagated one step back in time through all the units of the network, except
for the CECs, for which the error is backpropagated for an indefinite amount of time [7]. Thus,

ETD tð Þ ¼ V s tð Þ þ r tð Þ þ γV s tþ 1ð Þð Þ � V s tð Þð Þ
k

� A s tð Þ; a tð Þð Þ
� �

(13)

where r is the immediate reward, γ is a discount factor in the [0, 1] range and k scales the
difference between the values of the optimal and suboptimal actions. It is worth mentioning
that only the output associated with the executed action receives the error signal.

During the learning process, the agent can explore the environment using the state values;
however, directed exploration (i.e. exploration for which a predictor is used to direct the
exploration stage, so as to avoid clueless exploration of the entire state space) is important in
order to learn complex terrain navigation. When an undirected exploration is conducted, RL
tries every action in the same way over all states; however, in unstructured terrain, some states
provide ambiguous information about the environment rendering it difficult for the agent to
determine the state of the environment. Other states provide clear information; therefore, the
agent must direct its exploration to discover the ambiguous states. In order to explore the
environment, an MLP was implemented for directed exploration. This MLP input was the
same as the LSTM, and the MLP objective was to predict the absolute value of the current
temporal difference error, i.e. ETD(t). This aided prediction of which observations were

Advanced Path Planning for Mobile Entities116

associated with a larger error. The desired MLP output was obtained using Eq. (14), and
backpropagation was employed to train the MLP:

yvd tð Þ ¼ ETD tð Þ�� ��þ βyv tþ 1ð Þ (14)

The MLP output yv(t) is used as the temperature of the Boltzmann action selection rule, which
has the form

eAðs; aÞ=y
v tð Þ

Pn
b¼1

eAðs; aÞ=yv tð Þ
(15)

where n is the number of actions available to the agent.

The complete learning process and the manner in which the LEARCH and RL-LSTM systems
are connected is shown in Figure 7. The entire process occurs offline. First, the LEARCH

,

F
computes ∗

computes
∗

∗

Visitation 

count

Compute 

reg. target

Train 

regressor

Update cost

function

+1( )

LSTM

Obsrve

environment

Compute ( )

MLP
Compute 

action

Compute action’s

rewardCompute cost

to reward

Compute

Compute ∆ LSTM∆ MLP

∆ LSTM
Compute ∆ MLP

( )
( , )

( , )

( )

( )( )

( )

Currents Advantage

values to Navigation

Policy

Current cost map to

costs of the

environment

F

Figure 7. LEARCH-RL-LSTM system showing the manner in which the two systems are connected to train the LSTM.
The entire process occurs offline. First, the LEARCH algorithm iterates until the required cost map M is obtained. Then,
the RL-LSTM algorithm begins the process of training the LSTM using the costs converted into rewards r. The feature map
F is obtained from the robotic agent and used by both systems.

Path Planning in Rough Terrain Using Neural Network Memory
http://dx.doi.org/10.5772/intechopen.71486

117



algorithm iterates until the required cost map M is obtained. Then, the RL-LSTM algorithm
begins the process of training the LSTM using the costs converted into rewards r. The feature
map F is obtained from the robotic agent and used by both systems.

In order to prove the generalization and long-term memory capabilities of LSTM, training was
performed using patches of terrain containing representative features of rough terrain. That is,
an entire map is not used to train the LSTM (Figure 8). In this way, an efficient training phase is
achieved by taking advantage of the above-mentioned capabilities. In the next section, we
show the results of the experiments conducted to confirm these capabilities. In addition, we
prove the efficacy of the LSTM for mapping tasks that require inference of hidden states, i.e.
smoothing or noise recognition.

The LEARCH algorithm builds a cost function; however, as noted in Section 2, the cost
function capability for generalization is limited and decays as the number of training paths
grows. As the motivation for employing a cost function is to obtain the cost of traversing a
patch of terrain so that the path planning system can compute the optimal path with the
minimal traversal cost, we propose the extraction of terrain patches having descriptive charac-
teristics of rough terrain for navigation. Hence, the traversal costs for these environment
features can be determined using LEARCH, and the costs can be transformed to rewards for a
RL algorithm [10].

5. Results

In this section, the results of the experimental tests are presented. Five environments were
designed for navigation policy learning using the LEARCH-RL-LSTM system shown in Figure 7.
Here, each environment was modeled as a grid, and each model was referred to as a map. Each
map was a grid having dimensions of 20� 20 cells. Further, each cell represented a patch of
terrain, and this patch was represented by a vector of dimension 4, where each dimension was a
scalar value representing the vegetation density, terrain slope, rock size or the presence of water.

Figure 8. (a) Example of a real environment modelled as a grid map. (b) Patches of terrain used for training are marked
with an orange box.

Advanced Path Planning for Mobile Entities118

Figure 9 shows in the lower right corner the color code used to illustrate the manner in which
this environment was designed. Each environment differed by 5% from the previous one, i.e.
20% of the states in map 5 differed from those of map 1. These maps are shown in Figure 9.

Table 1 lists the results of experiments conducted using the LEARCH system alone to learn the
navigation policies and cost functions of the five maps. In order to test the capability of
LEARCH to reuse knowledge learned in previous navigation episodes, the following process
was employed. Once LEARCH learned the navigation policies and cost function of map 1, this
knowledge was used as initial knowledge to start navigation episodes involving the remaining
maps. As is apparent from the first row of Table 2, it was not necessary to retrain the LEARCH
row shows, and it was not necessary to retrain the LEARCH system to learn the demonstrated
behavior and cost function of map 2. In other words, the LEARCH system could apply the
knowledge learned from map 1 to map 2. However, this behavior did not occur for the other
maps. For maps 3, 4 and 5, and when attempting to reuse the knowledge learned from map 1,
it was necessary to retrain the LEARCH system. In these learning episodes, an increased
number of iterations were necessary in order to acquire the new knowledge (as is apparent
when Table 1 is compared with row one on Table 2, it can be concluded that the previous
knowledge learned using map 1 is even detrimental to the system performance when new

Start

Goal Goal

Start

Goal

Start

Start

Goal Goal

Start

Plain terrain

Grass

Low slope

Gravel

Trees

Water

High slope

Low slope with grass

High slope with rocks

Figure 9. Maps used in experiments. Lower right corner of the second row: colour code used to represent environment
features.

Path Planning in Rough Terrain Using Neural Network Memory
http://dx.doi.org/10.5772/intechopen.71486

119



algorithm iterates until the required cost map M is obtained. Then, the RL-LSTM algorithm
begins the process of training the LSTM using the costs converted into rewards r. The feature
map F is obtained from the robotic agent and used by both systems.

In order to prove the generalization and long-term memory capabilities of LSTM, training was
performed using patches of terrain containing representative features of rough terrain. That is,
an entire map is not used to train the LSTM (Figure 8). In this way, an efficient training phase is
achieved by taking advantage of the above-mentioned capabilities. In the next section, we
show the results of the experiments conducted to confirm these capabilities. In addition, we
prove the efficacy of the LSTM for mapping tasks that require inference of hidden states, i.e.
smoothing or noise recognition.

The LEARCH algorithm builds a cost function; however, as noted in Section 2, the cost
function capability for generalization is limited and decays as the number of training paths
grows. As the motivation for employing a cost function is to obtain the cost of traversing a
patch of terrain so that the path planning system can compute the optimal path with the
minimal traversal cost, we propose the extraction of terrain patches having descriptive charac-
teristics of rough terrain for navigation. Hence, the traversal costs for these environment
features can be determined using LEARCH, and the costs can be transformed to rewards for a
RL algorithm [10].

5. Results

In this section, the results of the experimental tests are presented. Five environments were
designed for navigation policy learning using the LEARCH-RL-LSTM system shown in Figure 7.
Here, each environment was modeled as a grid, and each model was referred to as a map. Each
map was a grid having dimensions of 20� 20 cells. Further, each cell represented a patch of
terrain, and this patch was represented by a vector of dimension 4, where each dimension was a
scalar value representing the vegetation density, terrain slope, rock size or the presence of water.

Figure 8. (a) Example of a real environment modelled as a grid map. (b) Patches of terrain used for training are marked
with an orange box.

Advanced Path Planning for Mobile Entities118

Figure 9 shows in the lower right corner the color code used to illustrate the manner in which
this environment was designed. Each environment differed by 5% from the previous one, i.e.
20% of the states in map 5 differed from those of map 1. These maps are shown in Figure 9.

Table 1 lists the results of experiments conducted using the LEARCH system alone to learn the
navigation policies and cost functions of the five maps. In order to test the capability of
LEARCH to reuse knowledge learned in previous navigation episodes, the following process
was employed. Once LEARCH learned the navigation policies and cost function of map 1, this
knowledge was used as initial knowledge to start navigation episodes involving the remaining
maps. As is apparent from the first row of Table 2, it was not necessary to retrain the LEARCH
row shows, and it was not necessary to retrain the LEARCH system to learn the demonstrated
behavior and cost function of map 2. In other words, the LEARCH system could apply the
knowledge learned from map 1 to map 2. However, this behavior did not occur for the other
maps. For maps 3, 4 and 5, and when attempting to reuse the knowledge learned from map 1,
it was necessary to retrain the LEARCH system. In these learning episodes, an increased
number of iterations were necessary in order to acquire the new knowledge (as is apparent
when Table 1 is compared with row one on Table 2, it can be concluded that the previous
knowledge learned using map 1 is even detrimental to the system performance when new

Start

Goal Goal

Start

Goal

Start

Start

Goal Goal

Start

Plain terrain

Grass

Low slope

Gravel

Trees

Water

High slope

Low slope with grass

High slope with rocks

Figure 9. Maps used in experiments. Lower right corner of the second row: colour code used to represent environment
features.

Path Planning in Rough Terrain Using Neural Network Memory
http://dx.doi.org/10.5772/intechopen.71486

119



maps are processed, even if the new maps are very similar to map 1. Therefore, the LEARCH
system was shown to have a very poor generalization capability.

When RL-LSTM was integrated with LEARCH to improve the capability for reusing knowl-
edge learned from previous navigation episodes, there was no need to retrain the system. This
is apparent from the second row of Table 2, where all the demonstrated behavior for maps 2 to
5 could be learned using the knowledge learned from map 1 only. It is important to note that,
although the results were obtained from relatively small maps, it was necessary to retrain the
cost function using LEARCH in each of these cases. Further, when LEARCH-RL-LSTM was
employed, retraining was unnecessary when the patches of terrain were similar, because this
system can generalize knowledge from previous navigation episodes. Note that, when the
agent navigates in real time, even small retraining episodes are computationally expensive.
Further, the agent is required to stop navigating until the retraining episode ends. However,
for LEARCH-RL-LSTM, retraining is unnecessary when the environment is similar to those
already known from previous navigation episodes.

Another set of environment maps was also used to test both algorithms. For these new
environments, features that were not observed in previous scenarios were included. In this
experiment, map 6 was the base of knowledge, and two new features were included in maps 7,
8 and 9. The states differed in the same way as in the previous experiment, with 5% of the
states in each map being different from those of the previous maps. However, these differences
included new features in order to simulate a dynamic environment, i.e. we simulate that the
terrain of the map 6 suddenly changed when the agent navigates again on this map introduc-
ing new features on some cells of the grid of map 6. The maps used for this experiment are
shown in Figure 10.

The LSTM used in these experiments was trained offline. During agent navigation, an efficient
training episode was only executed if necessary, i.e. only if the action that LSTM learned to take
is dangerous for the agent. These training episodes were efficient, because only a fraction of
the environment was used (such as the patch of terrain shown in the lower right corner of
Figure 10 each time the robot encountered a new state or required navigation assistance.

Environment Map 1 Map 2 Map 3 Map 4 Map 5

Iterations 7 3 3 3 4

Table 1. Iterations needed to learn demonstrated behavior using LEARCH system.

Environment Map 2 Map 3 Map 4 Map 5

Iterations LEARCH 0 5 4 7

Iterations LEARCH-RL-LSTM 0 0 0 0

Table 2. Iterations needed to learn demonstrated behavior using knowledge of map 1, for LEARCH and LEARCH-
RL-LSTM system.

Advanced Path Planning for Mobile Entities120

5.1. Noise tests

In the previous experiments, we assumed that the agent could infer the current state of the
environment model based on the features observed by the agent. However, in a real scenario,
the agent must infer the actual state via a perceptual system based on data obtained through
noisy sensors such as cameras, a Global Positioning System (GPS) or LiDAR. In outdoor
environments, two states (patches of terrain) can be very similar; however, the same action in
these similar states could lead to different resultant actions. In case of noisy signals, one state
could be interpreted as another similar state or, alternatively, as a new state that is not
explicitly represented in the environment model, i.e. a hidden state.

To test these two systems in more realistic environment, a noise signal was induced to the
inputs of both systems. A real uniform distribution bounded to a maximum of [�1, 1] (20% of
noise) was used. Then, several runs of each system were conducted with an initial limit of
[�0.1, 0.1] (2% of noise) and increments of [�0.1, 0.1] in the noise signal, until the maxi-
mum limits where both systems failed to infer the real state for the agent were determined.
Tables 3 and 4 show the test results for both systems with noise; the noise range values are

Goal

Start

Goal

Start

Start

Goal

Start

Goal

Goal

Start

Figure 10. Maps used in second set of experiments to simulate dynamic environments. Lower right corner of the second
row: sample of a map with the patch of terrain used for retraining marked by an orange box.

Path Planning in Rough Terrain Using Neural Network Memory
http://dx.doi.org/10.5772/intechopen.71486

121



maps are processed, even if the new maps are very similar to map 1. Therefore, the LEARCH
system was shown to have a very poor generalization capability.

When RL-LSTM was integrated with LEARCH to improve the capability for reusing knowl-
edge learned from previous navigation episodes, there was no need to retrain the system. This
is apparent from the second row of Table 2, where all the demonstrated behavior for maps 2 to
5 could be learned using the knowledge learned from map 1 only. It is important to note that,
although the results were obtained from relatively small maps, it was necessary to retrain the
cost function using LEARCH in each of these cases. Further, when LEARCH-RL-LSTM was
employed, retraining was unnecessary when the patches of terrain were similar, because this
system can generalize knowledge from previous navigation episodes. Note that, when the
agent navigates in real time, even small retraining episodes are computationally expensive.
Further, the agent is required to stop navigating until the retraining episode ends. However,
for LEARCH-RL-LSTM, retraining is unnecessary when the environment is similar to those
already known from previous navigation episodes.

Another set of environment maps was also used to test both algorithms. For these new
environments, features that were not observed in previous scenarios were included. In this
experiment, map 6 was the base of knowledge, and two new features were included in maps 7,
8 and 9. The states differed in the same way as in the previous experiment, with 5% of the
states in each map being different from those of the previous maps. However, these differences
included new features in order to simulate a dynamic environment, i.e. we simulate that the
terrain of the map 6 suddenly changed when the agent navigates again on this map introduc-
ing new features on some cells of the grid of map 6. The maps used for this experiment are
shown in Figure 10.

The LSTM used in these experiments was trained offline. During agent navigation, an efficient
training episode was only executed if necessary, i.e. only if the action that LSTM learned to take
is dangerous for the agent. These training episodes were efficient, because only a fraction of
the environment was used (such as the patch of terrain shown in the lower right corner of
Figure 10 each time the robot encountered a new state or required navigation assistance.

Environment Map 1 Map 2 Map 3 Map 4 Map 5

Iterations 7 3 3 3 4

Table 1. Iterations needed to learn demonstrated behavior using LEARCH system.

Environment Map 2 Map 3 Map 4 Map 5

Iterations LEARCH 0 5 4 7

Iterations LEARCH-RL-LSTM 0 0 0 0

Table 2. Iterations needed to learn demonstrated behavior using knowledge of map 1, for LEARCH and LEARCH-
RL-LSTM system.

Advanced Path Planning for Mobile Entities120

5.1. Noise tests

In the previous experiments, we assumed that the agent could infer the current state of the
environment model based on the features observed by the agent. However, in a real scenario,
the agent must infer the actual state via a perceptual system based on data obtained through
noisy sensors such as cameras, a Global Positioning System (GPS) or LiDAR. In outdoor
environments, two states (patches of terrain) can be very similar; however, the same action in
these similar states could lead to different resultant actions. In case of noisy signals, one state
could be interpreted as another similar state or, alternatively, as a new state that is not
explicitly represented in the environment model, i.e. a hidden state.

To test these two systems in more realistic environment, a noise signal was induced to the
inputs of both systems. A real uniform distribution bounded to a maximum of [�1, 1] (20% of
noise) was used. Then, several runs of each system were conducted with an initial limit of
[�0.1, 0.1] (2% of noise) and increments of [�0.1, 0.1] in the noise signal, until the maxi-
mum limits where both systems failed to infer the real state for the agent were determined.
Tables 3 and 4 show the test results for both systems with noise; the noise range values are

Goal

Start

Goal

Start

Start

Goal

Start

Goal

Goal

Start

Figure 10. Maps used in second set of experiments to simulate dynamic environments. Lower right corner of the second
row: sample of a map with the patch of terrain used for retraining marked by an orange box.

Path Planning in Rough Terrain Using Neural Network Memory
http://dx.doi.org/10.5772/intechopen.71486

121



the maximum limits of the noise supported by the system using that map. Note that the
results of the maps 6–9 yielded by the LEARCH system are omitted, because this system
could not reproduce the desired behavior on these maps under the supplied noise levels.

6. Conclusion

LEARCH is an efficient method for learning a cost function that maps environment features to
traversal costs and can then be used to navigate an unstructured terrain. However, as demon-
strated by the experiments conducted in this work, this algorithm is incapable of reusing
knowledge in an efficient manner. Indeed, zero knowledge is sometimes preferable to reusing
previously learned knowledge.

We concluded that LEARCH cannot reuse knowledge because of a lack of memory; because of
this lack of memory, the cost function cannot correlate knowledge learned in earlier training
episodes with the new information provided by new environments; therefore, an LSTM was
proposed. The LSTM can relate knowledge using memory cells, and this knowledge can be
used to manage dynamic environments. This performance was demonstrated in experiment,
where a dynamic environment was simulated through addition of new features that were not
included in previous training episodes.

In addition, we implemented these two approaches to manage real scenarios in which noisy
signals were present. The experiments showed that LEARCH-RL-LSTM can reproduce the
desired behavior and navigate through the environment.

Author details

Nancy Arana-Daniel*, Roberto Valencia-Murillo, Alma Y. Alanís, Carlos Villaseñor and
Carlos López-Franco

*Address all correspondence to: nancyaranad@gmail.com

Department of Computer Science, Universidad de Guadalajara, Guadalajara, Jalisco, México

Environment Map 1 Map 2 Map 3 Map 4 Map 5

Noise-supported LEARCH 2% 2% 2% 2% 6%

Noise-supported LEARCH-RL-LSTM 10% 8% 10% 8% 12%

Table 3. Maximumnoise supported byboth systems in testswhere the desired behavior could be reproducedwithmaps 1–5.

Environment Map 6 Map 7 Map 8 Map 9

Noise-supported LEARCH 0% 0% 0% 0%

Noise-supported LEARCH-RL-LSTM 10% 8% 8% 8%

Table 4. Maximumnoise supportedbyboth systems in testswhere thedesiredbehavior couldbe reproducedwithmaps6–9.

Advanced Path Planning for Mobile Entities122

References

[1] Silver D, Bagnell JA, Stentz A. Learning from demonstration for autonomous navigation
in complex unstructured terrain. The International Journal of Robotics Research. 2010;29
(12):1565-1592. DOI: 10.1177/0278364910369715

[2] Surger B, Steder B, Burgard W. Traversability analysis for mobile robots in outdoor
environments: A semi-supervised learning approach based on 3D-lidar data. In: 2015
IEEE International Conference on Robotics and Automation (ICRA); 26–30 May 2015;
Seattle, WA, USA. IEEE; 2015. p. 3941-3946. DOI: 10.1109/ICRA.2015.7139749

[3] Häselich M, Jöbgen B, Neuhaus F, Lang D, Paulus D. Markov random field terrain
classification of large-scale 3D maps. In: 2014 IEEE International Conference on Robotics
and Biomimetics (ROBIO 2014); 5–10 Dec 2014; Bali, Indonesia. IEEE; 2014. p. 1970-1975.
DOI: 10.1109/ROBIO.2014.7090625

[4] KondoM, Sunaga K, Kobayashi Y, Kaneko T, Hiramatsu Y, Fuji H, Kamiya T. Path selection
based on local terrain feature for unmanned ground vehicle in unknown rough terrain
environment. In: 2013 IEEE International Conference on Robotics and Biomimetics (ROBIO);
12–14 Dec 2013; Shenzhen, China. IEEE; 2013. p. 1977-1982. DOI: 10.1109/ROBIO.2013.
6739759

[5] Murphy L, Newman P. Risky planning on probabilistic Costmaps for path planning in
outdoor environments. IEEE Transactions on Robotics. 2013;29(2):445-457. DOI: 10.1109/
TRO.2012.2227216

[6] Valencia-Murillo R, Arana-Daniel N, López-Franco C, Alanís A. Rough terrain perception
through geometric entities for robot navigation. In: 2nd International Conference on
Advances in Computer Science and Engineering (CSE 2013); 1–2 Jul 2013; Los Angeles,
CA, USA. Atlantis Press; 2013. DOI: 10.2991/cse.2013.69

[7] Bakker B. Reinforcement learning with long short-term memory. In: Advances in Neural
Information Processing Systems 14. Cambridge: MIT Press; 2002. p. 1475-1482

[8] Kalman R.When is a linear control system optimal. Journal of Basic Engineering. 1964;86(1):
51-60

[9] Cortes C, Vapnik V. Support-vector networks. Machine Learning. 1995;20(3):273-297.
DOI: 10.1007/BF00994018

[10] Sutton R, Barto A. Reinforcement Learning: An Introduction. Cambridge: MIT Press; 1998

Path Planning in Rough Terrain Using Neural Network Memory
http://dx.doi.org/10.5772/intechopen.71486

123



the maximum limits of the noise supported by the system using that map. Note that the
results of the maps 6–9 yielded by the LEARCH system are omitted, because this system
could not reproduce the desired behavior on these maps under the supplied noise levels.

6. Conclusion

LEARCH is an efficient method for learning a cost function that maps environment features to
traversal costs and can then be used to navigate an unstructured terrain. However, as demon-
strated by the experiments conducted in this work, this algorithm is incapable of reusing
knowledge in an efficient manner. Indeed, zero knowledge is sometimes preferable to reusing
previously learned knowledge.

We concluded that LEARCH cannot reuse knowledge because of a lack of memory; because of
this lack of memory, the cost function cannot correlate knowledge learned in earlier training
episodes with the new information provided by new environments; therefore, an LSTM was
proposed. The LSTM can relate knowledge using memory cells, and this knowledge can be
used to manage dynamic environments. This performance was demonstrated in experiment,
where a dynamic environment was simulated through addition of new features that were not
included in previous training episodes.

In addition, we implemented these two approaches to manage real scenarios in which noisy
signals were present. The experiments showed that LEARCH-RL-LSTM can reproduce the
desired behavior and navigate through the environment.

Author details

Nancy Arana-Daniel*, Roberto Valencia-Murillo, Alma Y. Alanís, Carlos Villaseñor and
Carlos López-Franco

*Address all correspondence to: nancyaranad@gmail.com

Department of Computer Science, Universidad de Guadalajara, Guadalajara, Jalisco, México

Environment Map 1 Map 2 Map 3 Map 4 Map 5

Noise-supported LEARCH 2% 2% 2% 2% 6%

Noise-supported LEARCH-RL-LSTM 10% 8% 10% 8% 12%

Table 3. Maximumnoise supported byboth systems in testswhere the desired behavior could be reproducedwithmaps 1–5.

Environment Map 6 Map 7 Map 8 Map 9

Noise-supported LEARCH 0% 0% 0% 0%

Noise-supported LEARCH-RL-LSTM 10% 8% 8% 8%

Table 4. Maximumnoise supportedbyboth systems in testswhere thedesiredbehavior couldbe reproducedwithmaps6–9.

Advanced Path Planning for Mobile Entities122

References

[1] Silver D, Bagnell JA, Stentz A. Learning from demonstration for autonomous navigation
in complex unstructured terrain. The International Journal of Robotics Research. 2010;29
(12):1565-1592. DOI: 10.1177/0278364910369715

[2] Surger B, Steder B, Burgard W. Traversability analysis for mobile robots in outdoor
environments: A semi-supervised learning approach based on 3D-lidar data. In: 2015
IEEE International Conference on Robotics and Automation (ICRA); 26–30 May 2015;
Seattle, WA, USA. IEEE; 2015. p. 3941-3946. DOI: 10.1109/ICRA.2015.7139749

[3] Häselich M, Jöbgen B, Neuhaus F, Lang D, Paulus D. Markov random field terrain
classification of large-scale 3D maps. In: 2014 IEEE International Conference on Robotics
and Biomimetics (ROBIO 2014); 5–10 Dec 2014; Bali, Indonesia. IEEE; 2014. p. 1970-1975.
DOI: 10.1109/ROBIO.2014.7090625

[4] KondoM, Sunaga K, Kobayashi Y, Kaneko T, Hiramatsu Y, Fuji H, Kamiya T. Path selection
based on local terrain feature for unmanned ground vehicle in unknown rough terrain
environment. In: 2013 IEEE International Conference on Robotics and Biomimetics (ROBIO);
12–14 Dec 2013; Shenzhen, China. IEEE; 2013. p. 1977-1982. DOI: 10.1109/ROBIO.2013.
6739759

[5] Murphy L, Newman P. Risky planning on probabilistic Costmaps for path planning in
outdoor environments. IEEE Transactions on Robotics. 2013;29(2):445-457. DOI: 10.1109/
TRO.2012.2227216

[6] Valencia-Murillo R, Arana-Daniel N, López-Franco C, Alanís A. Rough terrain perception
through geometric entities for robot navigation. In: 2nd International Conference on
Advances in Computer Science and Engineering (CSE 2013); 1–2 Jul 2013; Los Angeles,
CA, USA. Atlantis Press; 2013. DOI: 10.2991/cse.2013.69

[7] Bakker B. Reinforcement learning with long short-term memory. In: Advances in Neural
Information Processing Systems 14. Cambridge: MIT Press; 2002. p. 1475-1482

[8] Kalman R.When is a linear control system optimal. Journal of Basic Engineering. 1964;86(1):
51-60

[9] Cortes C, Vapnik V. Support-vector networks. Machine Learning. 1995;20(3):273-297.
DOI: 10.1007/BF00994018

[10] Sutton R, Barto A. Reinforcement Learning: An Introduction. Cambridge: MIT Press; 1998

Path Planning in Rough Terrain Using Neural Network Memory
http://dx.doi.org/10.5772/intechopen.71486

123



Chapter 7

Path Planning Based on Parametric Curves

Lucía Hilario Pérez, Marta Covadonga Mora Aguilar,
Nicolás Montés Sánchez and
Antonio Falcó Montesinos

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.72574

Provisional chapter

Path Planning Based on Parametric Curves

Lucía Hilario Pérez,

Marta Covadonga Mora Aguilar,

Nicolás Montés Sánchez and

Antonio Falcó Montesinos

Additional information is available at the end of the chapter

Abstract

Parametric curves are extensively used in engineering. The most commonly used para-
metric curves are, Bézier, B-splines, (NURBSs), and rational Bézier. Each and every one
of them has special features, being the main difference between them the complexity of
their mathematical definition. While Bézier curves are the simplest ones, B-splines or
NURBSs are more complex. In mobile robotics, two main problems have been addressed
with parametric curves. The first one is the definition of an initial trajectory for a mobile
robot from a start location to a goal. The path has to be a continuous curve, smooth and
easy to manipulate, and the properties of the parametric curves meet these require-
ments. The second one is the modification of the initial trajectory in real time attending
to the dynamic properties of the environment. Parametric curves are capable of enhanc-
ing the trajectories produced by path planning algorithms adapting them to the kine-
matic properties of the robot. In order to avoid obstacles, the shape modification of
parametric curves is required. In this chapter, an algorithm is proposed for computing
an initial Bézier trajectory of a mobile robot and subsequently modifies it in real time in
order to avoid obstacles in a dynamic environment.

Keywords: path planning, mobile robots, parametric curves, Bézier curves

1. Introduction

In the last years, intelligent vehicles have increased their capacity up to the point of being able
to navigate autonomously in structured environments. Implementations, such as Google [1]
(with more than 700,000 hours of autonomous navigation in different scenarios), are an exam-
ple of the effort made in this area. However, there is still a long way to go until we found real

© The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons

Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,

distribution, and eproduction in any medium, provided the original work is properly cited.

DOI: 10.5772/intechopen.72574

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



Chapter 7

Path Planning Based on Parametric Curves

Lucía Hilario Pérez, Marta Covadonga Mora Aguilar,
Nicolás Montés Sánchez and
Antonio Falcó Montesinos

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.72574

Provisional chapter

Path Planning Based on Parametric Curves

Lucía Hilario Pérez,

Marta Covadonga Mora Aguilar,

Nicolás Montés Sánchez and

Antonio Falcó Montesinos

Additional information is available at the end of the chapter

Abstract

Parametric curves are extensively used in engineering. The most commonly used para-
metric curves are, Bézier, B-splines, (NURBSs), and rational Bézier. Each and every one
of them has special features, being the main difference between them the complexity of
their mathematical definition. While Bézier curves are the simplest ones, B-splines or
NURBSs are more complex. In mobile robotics, two main problems have been addressed
with parametric curves. The first one is the definition of an initial trajectory for a mobile
robot from a start location to a goal. The path has to be a continuous curve, smooth and
easy to manipulate, and the properties of the parametric curves meet these require-
ments. The second one is the modification of the initial trajectory in real time attending
to the dynamic properties of the environment. Parametric curves are capable of enhanc-
ing the trajectories produced by path planning algorithms adapting them to the kine-
matic properties of the robot. In order to avoid obstacles, the shape modification of
parametric curves is required. In this chapter, an algorithm is proposed for computing
an initial Bézier trajectory of a mobile robot and subsequently modifies it in real time in
order to avoid obstacles in a dynamic environment.

Keywords: path planning, mobile robots, parametric curves, Bézier curves

1. Introduction

In the last years, intelligent vehicles have increased their capacity up to the point of being able
to navigate autonomously in structured environments. Implementations, such as Google [1]
(with more than 700,000 hours of autonomous navigation in different scenarios), are an exam-
ple of the effort made in this area. However, there is still a long way to go until we found real

© The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons

Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,

distribution, and eproduction in any medium, provided the original work is properly cited.

DOI: 10.5772/intechopen.72574

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



autonomous cars on the roads, as there are both technical and legal problems involved [2, 3].
The intelligent system is composed of three different groups and subgroups: acquisition and
perception, decision and actuation-control.

Although the vast majority of the literature often depicted the problems by focusing mainly on
these groups or subgroups of processes, functionality in intelligent vehicles, or in mobile
robots in general, cannot be conceived as composed of separate blocks, and therefore, a
sufficiently efficient system can only be achieved if all the systems work in unison.

This chapter is devoted to the use of parametric curves in the field of robotics. Parametric
curves are mainly used in the decision block when the path is defined. However, they are also
employed in other blocks, and some of their properties are beneficial for other processes.

Focusing on the decision-making block, the “path planning” or the design of the path to follow
has been the subject of study in the last decades, where many authors divide the problem into
global and local path planning. On the one hand, the global path planning generates an overall
path composed of a set of points to be followed, covering large distances and considering static
obstacles in the environment. On the other hand, the local path planning constructs a short
path with much more precision, even in continuous form, taking into account unexpected
obstacles that may appear.

In general, path planning techniques can be grouped into four large groups: graph search,
sampling, interpolating and numerical optimization, see [3]:

• Graph search-based planners search a grid for the optimal way to go from a start point to a
goal point. Algorithms, such as Dijkstra, A-Start (A *) and its variants Dynamic A* (D*),
field D*, Theta*, etc., have been extensively studied in the literature.

• Sampling-based planners try to solve the search problem restricting the computational time.
The idea is to randomly explore/sample the configuration space, looking for connections
between source and destination. The main problem is that the solution is suboptimal. The
most common techniques are the probabilistic roadmap method (PRM) and the rapidly
exploring random tree (RRT).

• Interpolating curve planners try to insert a new group of data within the previously defined
data group. In other words, both graph search and sampling-based planners are global
planners that provide a rough approximation of the solution. In this case, it is a matter of
interpolating this group of points. At this stage, the design of the trajectory is when the
properties of continuity, smoothness and geometrical restrictions of the vehicle, among
others, intervene. Computer-aided geometric design (CAGD) techniques are generally used
to smooth the gross path provided by the global planner. The use of lines and circles is usually
employed as a first solution, with Dubin’s curves defined when the vehicle moves forward
and Reed and Sheep’s curves when the vehicle moves backward. The clothoid appears as a
solution to the discontinuity in curvature between the line and the circle since, by definition, it
has a constant relationship between the length of the arc and its curvature. The polynomial
curves are another alternative to the previous ones. Themodification of its coefficients allows
taking into account, among others, the adjustment of positions, curvature restrictions, etc.

Advanced Path Planning for Mobile Entities126

• Numerical optimization is generally used to minimize or maximize a numerical function
that depends on different variables such as smoothness, continuity, velocity, acceleration,
jerk, curvature, etc.

In [3], the use of parametric curves is included in the category of interpolating curve planners.
The most commonly used parametric curves in robotics are Béziers, B-splines, rational Bézier
curves (RBCs), and non-uniform rational B-splines (NURBSs). A summary of their properties
can be low computational cost, intrinsic softness, easy malleability through control points, and
universal approximation. For these reasons, parametric curves are not only relevant as inter-
polators, but also recently they are being used in combination with many other algorithms that
have effects on all the other blocks of an intelligent system [3].

The chapter is organized as follows. Section 2 provides a mathematical definition of the most
used parametric curves as well as a description of their properties (Bézier, B-spline, RBC, and
NURBS). Section 3 offers a state of the art of the use of parametric curves in robotics and an
overview of current trends. Along the lines of the new trends in the use of these curves, Section
5 proposes a method of deformation of parametric curves aimed at modifying the trajectory in
real time in order to avoid collisions. Section 6 presents the reader the conclusions.

2. Definitions: parametric curves

Curves in both space and plane are a part of the geometry necessary to represent certain
shapes in different areas. Curves arise in many applications, such as art, industrial design,
mathematics, architecture, engineering, etc.

2.1. Different ways of defining a curve. Advantages and disadvantages

There are different ways of defining a curve: implicit, explicit, and parametric.

2.1.1. Implicit and explicit expression of a curve

The coordinates (x, y) of the points of an implicitly defined plane curve verify that:

ð1Þ

for some function F. If the curve is in R3, then the curve must satisfy these two conditions
simultaneously:

ð2Þ

The explicit representation of a curve clears one of the variables as a function of the other. In
the plane, the coordinates (x,y) of the points in the curve explicitly defined satisfy either.

Path Planning Based on Parametric Curves
http://dx.doi.org/10.5772/intechopen.72574

127



autonomous cars on the roads, as there are both technical and legal problems involved [2, 3].
The intelligent system is composed of three different groups and subgroups: acquisition and
perception, decision and actuation-control.

Although the vast majority of the literature often depicted the problems by focusing mainly on
these groups or subgroups of processes, functionality in intelligent vehicles, or in mobile
robots in general, cannot be conceived as composed of separate blocks, and therefore, a
sufficiently efficient system can only be achieved if all the systems work in unison.

This chapter is devoted to the use of parametric curves in the field of robotics. Parametric
curves are mainly used in the decision block when the path is defined. However, they are also
employed in other blocks, and some of their properties are beneficial for other processes.

Focusing on the decision-making block, the “path planning” or the design of the path to follow
has been the subject of study in the last decades, where many authors divide the problem into
global and local path planning. On the one hand, the global path planning generates an overall
path composed of a set of points to be followed, covering large distances and considering static
obstacles in the environment. On the other hand, the local path planning constructs a short
path with much more precision, even in continuous form, taking into account unexpected
obstacles that may appear.

In general, path planning techniques can be grouped into four large groups: graph search,
sampling, interpolating and numerical optimization, see [3]:

• Graph search-based planners search a grid for the optimal way to go from a start point to a
goal point. Algorithms, such as Dijkstra, A-Start (A *) and its variants Dynamic A* (D*),
field D*, Theta*, etc., have been extensively studied in the literature.

• Sampling-based planners try to solve the search problem restricting the computational time.
The idea is to randomly explore/sample the configuration space, looking for connections
between source and destination. The main problem is that the solution is suboptimal. The
most common techniques are the probabilistic roadmap method (PRM) and the rapidly
exploring random tree (RRT).

• Interpolating curve planners try to insert a new group of data within the previously defined
data group. In other words, both graph search and sampling-based planners are global
planners that provide a rough approximation of the solution. In this case, it is a matter of
interpolating this group of points. At this stage, the design of the trajectory is when the
properties of continuity, smoothness and geometrical restrictions of the vehicle, among
others, intervene. Computer-aided geometric design (CAGD) techniques are generally used
to smooth the gross path provided by the global planner. The use of lines and circles is usually
employed as a first solution, with Dubin’s curves defined when the vehicle moves forward
and Reed and Sheep’s curves when the vehicle moves backward. The clothoid appears as a
solution to the discontinuity in curvature between the line and the circle since, by definition, it
has a constant relationship between the length of the arc and its curvature. The polynomial
curves are another alternative to the previous ones. Themodification of its coefficients allows
taking into account, among others, the adjustment of positions, curvature restrictions, etc.

Advanced Path Planning for Mobile Entities126

• Numerical optimization is generally used to minimize or maximize a numerical function
that depends on different variables such as smoothness, continuity, velocity, acceleration,
jerk, curvature, etc.

In [3], the use of parametric curves is included in the category of interpolating curve planners.
The most commonly used parametric curves in robotics are Béziers, B-splines, rational Bézier
curves (RBCs), and non-uniform rational B-splines (NURBSs). A summary of their properties
can be low computational cost, intrinsic softness, easy malleability through control points, and
universal approximation. For these reasons, parametric curves are not only relevant as inter-
polators, but also recently they are being used in combination with many other algorithms that
have effects on all the other blocks of an intelligent system [3].

The chapter is organized as follows. Section 2 provides a mathematical definition of the most
used parametric curves as well as a description of their properties (Bézier, B-spline, RBC, and
NURBS). Section 3 offers a state of the art of the use of parametric curves in robotics and an
overview of current trends. Along the lines of the new trends in the use of these curves, Section
5 proposes a method of deformation of parametric curves aimed at modifying the trajectory in
real time in order to avoid collisions. Section 6 presents the reader the conclusions.

2. Definitions: parametric curves

Curves in both space and plane are a part of the geometry necessary to represent certain
shapes in different areas. Curves arise in many applications, such as art, industrial design,
mathematics, architecture, engineering, etc.

2.1. Different ways of defining a curve. Advantages and disadvantages

There are different ways of defining a curve: implicit, explicit, and parametric.

2.1.1. Implicit and explicit expression of a curve

The coordinates (x, y) of the points of an implicitly defined plane curve verify that:

ð1Þ

for some function F. If the curve is in R3, then the curve must satisfy these two conditions
simultaneously:

ð2Þ

The explicit representation of a curve clears one of the variables as a function of the other. In
the plane, the coordinates (x,y) of the points in the curve explicitly defined satisfy either.

Path Planning Based on Parametric Curves
http://dx.doi.org/10.5772/intechopen.72574

127



ð3Þ

In the case of a curve in the space, its explicit form could be defined as:

ð4Þ

2.1.2. Parametric expression of a curve

In this case, the coordinates of a parametric curve are expressed as a function of a parameter,
for example, u. The definition of a curve defined in Rn could be done as in (5), where functions
αi are the coordinate functions or component functions. The image of α(u) is called the trace of
α and α(u) is the parametrization of α.

ð5Þ

Parametric curves are the most used in computer graphics and geometric modeling because
the curve points are calculated in a simple way. In contrast, the calculation of the points
through the implicit expression is much more complex.

Within the parametric curves, it is possible to differentiate between polynomial curves and
rational curves. Polynomial curves are those whose component functions are polynomials, and
rational curves are those expressed as the quotient of polynomials. The representation in the
form of parametric curves allows a great variety of curves, some known, some strange, some
complex and others surprising for their symmetry and beauty.

The advantageous properties of the parametric curves that make them widely used are
intuitivity, flexibility, affine-invariant, fast computation, and numerical stability.

In order to model complicated shapes or surfaces, it is necessary to introduce a way of
representing curves based on a polygon. From this idea, the most used parametric curves arise
in computer-aided geometric design (CAGD): Bézier, B-splines, RBC, and NURBS. Figure 1
shows a schematic of the most important curves in CAGD. It can be seen how NURBS are the
most general curves, and Bézier are the most particular ones. Among them, Bézier is the
simplest, possessing properties that make them be the most extensively used.

2.2. Most common parametric curves: Bézier, B-spline, NURBS, and RBC

2.2.1. Bézier curves

Bézier curves arose as a result of the car modeling in both Renault and Citroën companies, by
the engineers Pierre Bézier and Casteljau. The simplicity in the manipulation of these curves
makes their use and application widespread.

The popularity of the Bézier curves is due to their numerous mathematical properties that
facilitate their manipulation and analysis. Moreover, their use does not require great mathe-
matical knowledge, which is very interesting for designers who shape objects.

Advanced Path Planning for Mobile Entities128

A Bézier curve of degree n is specified by a sequence of (n + 1) control points, and its explicit
expression is (6). The polygon that joins the control points is called the control polygon, and
the functions or bases used are the Bernstein polynomials Bi,n(u), defined in (7).

ð6Þ

ð7Þ

The dimension of the vector containing the control points is related to the dimension of the
space where the curve is represented.

2.2.2. Rational Bézier curves

A conic is a curve obtained as the intersection of a plane with the surface of a double cone.
There are three types of irreducible conics: hyperbola, parabola, and ellipse. Parabolas can be
parameterized by polynomial functions, but hyperbolas and ellipses need rational functions
such as RBC. The explicit definition of an RBC is (8), where Pi are the control points, Bi,n(u) are
the Bernstein bases, and ωi are weights associated with each control point. These weights allow
a new way of modifying the curve.

ð8Þ

Figure 1. Classification of the most important curves in CAGD.

Path Planning Based on Parametric Curves
http://dx.doi.org/10.5772/intechopen.72574

129



ð3Þ

In the case of a curve in the space, its explicit form could be defined as:

ð4Þ

2.1.2. Parametric expression of a curve

In this case, the coordinates of a parametric curve are expressed as a function of a parameter,
for example, u. The definition of a curve defined in Rn could be done as in (5), where functions
αi are the coordinate functions or component functions. The image of α(u) is called the trace of
α and α(u) is the parametrization of α.

ð5Þ

Parametric curves are the most used in computer graphics and geometric modeling because
the curve points are calculated in a simple way. In contrast, the calculation of the points
through the implicit expression is much more complex.

Within the parametric curves, it is possible to differentiate between polynomial curves and
rational curves. Polynomial curves are those whose component functions are polynomials, and
rational curves are those expressed as the quotient of polynomials. The representation in the
form of parametric curves allows a great variety of curves, some known, some strange, some
complex and others surprising for their symmetry and beauty.

The advantageous properties of the parametric curves that make them widely used are
intuitivity, flexibility, affine-invariant, fast computation, and numerical stability.

In order to model complicated shapes or surfaces, it is necessary to introduce a way of
representing curves based on a polygon. From this idea, the most used parametric curves arise
in computer-aided geometric design (CAGD): Bézier, B-splines, RBC, and NURBS. Figure 1
shows a schematic of the most important curves in CAGD. It can be seen how NURBS are the
most general curves, and Bézier are the most particular ones. Among them, Bézier is the
simplest, possessing properties that make them be the most extensively used.

2.2. Most common parametric curves: Bézier, B-spline, NURBS, and RBC

2.2.1. Bézier curves

Bézier curves arose as a result of the car modeling in both Renault and Citroën companies, by
the engineers Pierre Bézier and Casteljau. The simplicity in the manipulation of these curves
makes their use and application widespread.

The popularity of the Bézier curves is due to their numerous mathematical properties that
facilitate their manipulation and analysis. Moreover, their use does not require great mathe-
matical knowledge, which is very interesting for designers who shape objects.

Advanced Path Planning for Mobile Entities128

A Bézier curve of degree n is specified by a sequence of (n + 1) control points, and its explicit
expression is (6). The polygon that joins the control points is called the control polygon, and
the functions or bases used are the Bernstein polynomials Bi,n(u), defined in (7).

ð6Þ

ð7Þ

The dimension of the vector containing the control points is related to the dimension of the
space where the curve is represented.

2.2.2. Rational Bézier curves

A conic is a curve obtained as the intersection of a plane with the surface of a double cone.
There are three types of irreducible conics: hyperbola, parabola, and ellipse. Parabolas can be
parameterized by polynomial functions, but hyperbolas and ellipses need rational functions
such as RBC. The explicit definition of an RBC is (8), where Pi are the control points, Bi,n(u) are
the Bernstein bases, and ωi are weights associated with each control point. These weights allow
a new way of modifying the curve.

ð8Þ

Figure 1. Classification of the most important curves in CAGD.

Path Planning Based on Parametric Curves
http://dx.doi.org/10.5772/intechopen.72574

129



2.2.3. B-spline curves

B-splines are polynomial curves defined in pieces, continuously differentiable up to a pre-
scribed order. The name spline is a word that means “elastic slats”. These slats were used by
craftsmen to create curves describing the surfaces to be built, such as boat hulls and aircraft
fuselages. Constrained by weights, these elastic slats or splines assume a shape that minimizes
their elastic energy.

B-spline curves were developed to overcome the limitations of Bézier curves: the need for a
local control of the curve, the difficulty in imposing C2 continuity and the fact that a number of
control points of a Bézier curve imposes its degree.

Analogous to the definition of a Bézier curve, a B-spline curve of degree k (or k + 1 order) is
expressed in (9) as an affine combination of certain control points Pi, where Ni,k are polynomial
functions by pieces with finite support of order k (degree k-1, meaning that they are zero out of
a finite interval) that satisfy certain conditions of continuity. Each of these functions can be
calculated using the Cox-de-Boor recursive formulas.

ð9Þ

B-splines can be defined by a recurrence relationship; simplicity is considered a double infinite
sequence of simple nodes such that for all i. B-splines are then defined through the following
recurrence relationship.

For the sake of simplicity, a double infinite sequence of simple nodes ai is considered such that
ai < ai + 1 for all i. Then, the B-splines Ni,k are then defined through the recurrence relationships
(10) and (11).

ð10Þ

ð11Þ

2.2.4. Non-uniform rational B-spline curves

Rational B-spline curves are obtained in a similar way as the RBCs from Bézier curves. The
definition of a NURBS curve is:

ð12Þ

Advanced Path Planning for Mobile Entities130

2.3. Comparison of properties

When dealing with curves, their representation is important, but their shape manipulation is a
key factor in their usability. The object to be modeled will determine the type of parametric
curve chosen, depending on the properties required. In Table 1, we can see a comparison of the
properties of the parametric curves in CAGD. In the following section, some of the most
relevant works in mobile robots using parametric curves are described.

3. Use of parametric curves in robotics: state of the art

3.1. Generation of trajectories of mobile robots through parametric curves

Predicting the movement of a robot is important as it implies the computation of a proper path
that meets the kinematic and dynamic properties of the robot. Simply moving a mobile robot
from an initial position (xi,yi,θi) to a final position (xg,yg,θg) safely implicates many research
fields, which are involved in the generation of efficient path planning algorithms.

Table 1. Comparison of the properties of parametric curves.

Path Planning Based on Parametric Curves
http://dx.doi.org/10.5772/intechopen.72574

131



2.2.3. B-spline curves

B-splines are polynomial curves defined in pieces, continuously differentiable up to a pre-
scribed order. The name spline is a word that means “elastic slats”. These slats were used by
craftsmen to create curves describing the surfaces to be built, such as boat hulls and aircraft
fuselages. Constrained by weights, these elastic slats or splines assume a shape that minimizes
their elastic energy.

B-spline curves were developed to overcome the limitations of Bézier curves: the need for a
local control of the curve, the difficulty in imposing C2 continuity and the fact that a number of
control points of a Bézier curve imposes its degree.

Analogous to the definition of a Bézier curve, a B-spline curve of degree k (or k + 1 order) is
expressed in (9) as an affine combination of certain control points Pi, where Ni,k are polynomial
functions by pieces with finite support of order k (degree k-1, meaning that they are zero out of
a finite interval) that satisfy certain conditions of continuity. Each of these functions can be
calculated using the Cox-de-Boor recursive formulas.

ð9Þ

B-splines can be defined by a recurrence relationship; simplicity is considered a double infinite
sequence of simple nodes such that for all i. B-splines are then defined through the following
recurrence relationship.

For the sake of simplicity, a double infinite sequence of simple nodes ai is considered such that
ai < ai + 1 for all i. Then, the B-splines Ni,k are then defined through the recurrence relationships
(10) and (11).

ð10Þ

ð11Þ

2.2.4. Non-uniform rational B-spline curves

Rational B-spline curves are obtained in a similar way as the RBCs from Bézier curves. The
definition of a NURBS curve is:

ð12Þ

Advanced Path Planning for Mobile Entities130

2.3. Comparison of properties

When dealing with curves, their representation is important, but their shape manipulation is a
key factor in their usability. The object to be modeled will determine the type of parametric
curve chosen, depending on the properties required. In Table 1, we can see a comparison of the
properties of the parametric curves in CAGD. In the following section, some of the most
relevant works in mobile robots using parametric curves are described.

3. Use of parametric curves in robotics: state of the art

3.1. Generation of trajectories of mobile robots through parametric curves

Predicting the movement of a robot is important as it implies the computation of a proper path
that meets the kinematic and dynamic properties of the robot. Simply moving a mobile robot
from an initial position (xi,yi,θi) to a final position (xg,yg,θg) safely implicates many research
fields, which are involved in the generation of efficient path planning algorithms.

Table 1. Comparison of the properties of parametric curves.

Path Planning Based on Parametric Curves
http://dx.doi.org/10.5772/intechopen.72574

131



Many researchers consider parametric curves very useful in the construction of trajectories of
wheeled robots, due to their advantageous properties able to improve trajectories produced by
path planning techniques.

3.2. Trajectories of mobile robots defined by Bézier curves

The first relevant publications in robotics using Bézier curves are published in 1997 and 1998
[29, 30]. These works combine path planning and reactive control for a non-holonomic mobile
robot introducing the concept of “Bubble Band” (bubble path). With an appropriate metric,
bubbles are connected with Bézier curves, generating a path. These bubbles are the maximum
free space reachable in any direction without risk of collision. This is due to the property of the
convex hull and implies that if the control points are within the bubble, then the path approx-
imation remains within the bubble. The planner, using a model of the environment, generates
an initial path connecting the start and goal positions that may not be adequate. Next, the
proposed algorithm generates a sequence of bubbles connecting both ends and replacing the
original path, the bubble band. This band is exposed to the forces in the environment, and as a
consequence, the band is modified.

In 2001, the concept of “bubble band” is used in [31]. In this case, dynamic obstacles are
introduced in the environment. Simultaneously, in [32], also Bézier curves are used for local
path planning. An initial path is computed using the generalized Voronoi graph (GVG) theory,
which is mildly deformed maximizing the evaluation of a function. Candidates obtained as
smooth paths are expressed with Bézier curves.

In 2003, a touchscreen was introduced in [33] to control a mobile robot, avoiding obstacles in
real time. In this work, two algorithms are developed: the first one extracts a succession of
important points, and the second one generates a path using cubic Bézier curves.

In 2007, the work in [34] introduces Bézier curves in cooperative collision avoidance for several
mobile non-holonomic robots and is based on the previous contributions [35, 36]. Two tasks are
developed: first, path planning based on Bézier curves for each individual robot in order to obtain
its final position and, second, computation of an optimal path that minimizes a “penalty” function
that accounts for the sum of the maximum times subject to the distances between the robots.

In 2008, [37] presents a preliminary framework that generates space trajectories for multiple
unmanned aerial vehicles (UAVs) using 3D Bézier curves. The algorithm solves a constrained
optimization problem in order to generate the trajectories. In this case, the optimization
function penalizes an excessive length, as the shortest path is required, and the restrictions
are the distances between the multiple UAVs. The system is non-linear, and numerical
methods are applied to solve it.

It is worth mentioning the work of Choi et al. [38–46] related to the computation of trajectories of
mobile robots designed from Bézier curves. In many of the publications, a constrained optimi-
zation problem is raised, where the function to be optimized is the curvature of a Bézier curve.

Finally, [47] presents a methodology based on the variation of the RRT that generates suitable
trajectories for autonomous vehicles with holonomic constraints in environments with

Advanced Path Planning for Mobile Entities132

obstacles. This algorithm is based on the use of seventh-order Bézier curves that connect the
vertices of the tree. In this way, the generated paths meet the main kinematic constraint of
the vehicle: the smoothness of the acceleration is guaranteed for the entire path by controlling
the values of the curvature of the endpoints of each Bézier curve composing the tree. The
proposed algorithm provides a rapid convergence to the final result. In addition, the number
of vertices of the tree is reduced because the method allows the connections between the
vertices of the tree with an unlimited range. The properties of seventh-order Bézier curves are
also used to avoid static obstacles in the environment. This method was simulated with a small
UAV. Since then, B-splines and Beziers curves have been used to generate search trees by a
large number of researchers, see [7].

Recent efforts are being made to merge Bézier curves with numerical optimization, [4, 5]. In
these works, a teleoperation is carried out where the operator indicates some points. The
proposed algorithm calculates the path to continuity of curvature C1 and C2. In [6], something
similar is proposed: nodes/points are initially generated between the start and the goal
(collision-free) and then are joined by cubic Bézier curves with curvature constraints. Finally,
cubic Bézier curves are used in [8] to solve the problem of roundabouts for automated vehicles:
entry, departure, and crossing.

3.3. Trajectories of mobile robots defined by B-spline

In 1989, B-spline curves were incorporated in the design of robot trajectories. In [13], segments
were added with the aim of generating the entire path near the desired one. This new trajec-
tory did not go through the exact points. Later, in 1994, the work in [14] used B-splines for path
planning but adding a temporal variable. In this case, the speed of the robot was controlled by
the same B-spline. The same year, in [15], a fuzzy controller is designed to emulate spline
curves for generating smooth motion trajectories. In 1999, the work [16] also used a B-spline
curve to calculate the trajectory of a mobile robot by generating many points from a spline for
the robot to follow them in the form of succession. Additionally, in [17], kinematic constraints
were introduced in the path planning using B-spline curves to find the optimal temporal
trajectory in a static environment.

Lately, in 2007, the works [18–20] developed a method to solve the path planning problem
using cubic splines to avoid the obstacles. This method iteratively refined the path to be
followed in order to obtain in real time a collision-free feasible path in unstructured environ-
ments. In [20], the path planning implementation based on B-spline is detailed. The use of
splines allows to restrict the polynomials since the first derivative of P1,…, Pn-1 is continuous
across the entire boundary. In addition, some constraints can be introduced on the first and last
points to force a particular value of the derivative. These characteristics of the splines offer
many advantageous properties to plan a suitable path. If a value of the derivative is imposed, a
path can be generated starting from a specific position and having a direction imposed by the
value of the derivative. Therefore, they can be generated and initialized from the current
position and direction of the vehicle. The first derivative is proportional to the direction of the
vehicle, then a non-continuous derivative could be obtained and, as a consequence, a non-
feasible path for that type of vehicle. As the second derivative is proportional to the direction

Path Planning Based on Parametric Curves
http://dx.doi.org/10.5772/intechopen.72574

133



Many researchers consider parametric curves very useful in the construction of trajectories of
wheeled robots, due to their advantageous properties able to improve trajectories produced by
path planning techniques.

3.2. Trajectories of mobile robots defined by Bézier curves

The first relevant publications in robotics using Bézier curves are published in 1997 and 1998
[29, 30]. These works combine path planning and reactive control for a non-holonomic mobile
robot introducing the concept of “Bubble Band” (bubble path). With an appropriate metric,
bubbles are connected with Bézier curves, generating a path. These bubbles are the maximum
free space reachable in any direction without risk of collision. This is due to the property of the
convex hull and implies that if the control points are within the bubble, then the path approx-
imation remains within the bubble. The planner, using a model of the environment, generates
an initial path connecting the start and goal positions that may not be adequate. Next, the
proposed algorithm generates a sequence of bubbles connecting both ends and replacing the
original path, the bubble band. This band is exposed to the forces in the environment, and as a
consequence, the band is modified.

In 2001, the concept of “bubble band” is used in [31]. In this case, dynamic obstacles are
introduced in the environment. Simultaneously, in [32], also Bézier curves are used for local
path planning. An initial path is computed using the generalized Voronoi graph (GVG) theory,
which is mildly deformed maximizing the evaluation of a function. Candidates obtained as
smooth paths are expressed with Bézier curves.

In 2003, a touchscreen was introduced in [33] to control a mobile robot, avoiding obstacles in
real time. In this work, two algorithms are developed: the first one extracts a succession of
important points, and the second one generates a path using cubic Bézier curves.

In 2007, the work in [34] introduces Bézier curves in cooperative collision avoidance for several
mobile non-holonomic robots and is based on the previous contributions [35, 36]. Two tasks are
developed: first, path planning based on Bézier curves for each individual robot in order to obtain
its final position and, second, computation of an optimal path that minimizes a “penalty” function
that accounts for the sum of the maximum times subject to the distances between the robots.

In 2008, [37] presents a preliminary framework that generates space trajectories for multiple
unmanned aerial vehicles (UAVs) using 3D Bézier curves. The algorithm solves a constrained
optimization problem in order to generate the trajectories. In this case, the optimization
function penalizes an excessive length, as the shortest path is required, and the restrictions
are the distances between the multiple UAVs. The system is non-linear, and numerical
methods are applied to solve it.

It is worth mentioning the work of Choi et al. [38–46] related to the computation of trajectories of
mobile robots designed from Bézier curves. In many of the publications, a constrained optimi-
zation problem is raised, where the function to be optimized is the curvature of a Bézier curve.

Finally, [47] presents a methodology based on the variation of the RRT that generates suitable
trajectories for autonomous vehicles with holonomic constraints in environments with

Advanced Path Planning for Mobile Entities132

obstacles. This algorithm is based on the use of seventh-order Bézier curves that connect the
vertices of the tree. In this way, the generated paths meet the main kinematic constraint of
the vehicle: the smoothness of the acceleration is guaranteed for the entire path by controlling
the values of the curvature of the endpoints of each Bézier curve composing the tree. The
proposed algorithm provides a rapid convergence to the final result. In addition, the number
of vertices of the tree is reduced because the method allows the connections between the
vertices of the tree with an unlimited range. The properties of seventh-order Bézier curves are
also used to avoid static obstacles in the environment. This method was simulated with a small
UAV. Since then, B-splines and Beziers curves have been used to generate search trees by a
large number of researchers, see [7].

Recent efforts are being made to merge Bézier curves with numerical optimization, [4, 5]. In
these works, a teleoperation is carried out where the operator indicates some points. The
proposed algorithm calculates the path to continuity of curvature C1 and C2. In [6], something
similar is proposed: nodes/points are initially generated between the start and the goal
(collision-free) and then are joined by cubic Bézier curves with curvature constraints. Finally,
cubic Bézier curves are used in [8] to solve the problem of roundabouts for automated vehicles:
entry, departure, and crossing.

3.3. Trajectories of mobile robots defined by B-spline

In 1989, B-spline curves were incorporated in the design of robot trajectories. In [13], segments
were added with the aim of generating the entire path near the desired one. This new trajec-
tory did not go through the exact points. Later, in 1994, the work in [14] used B-splines for path
planning but adding a temporal variable. In this case, the speed of the robot was controlled by
the same B-spline. The same year, in [15], a fuzzy controller is designed to emulate spline
curves for generating smooth motion trajectories. In 1999, the work [16] also used a B-spline
curve to calculate the trajectory of a mobile robot by generating many points from a spline for
the robot to follow them in the form of succession. Additionally, in [17], kinematic constraints
were introduced in the path planning using B-spline curves to find the optimal temporal
trajectory in a static environment.

Lately, in 2007, the works [18–20] developed a method to solve the path planning problem
using cubic splines to avoid the obstacles. This method iteratively refined the path to be
followed in order to obtain in real time a collision-free feasible path in unstructured environ-
ments. In [20], the path planning implementation based on B-spline is detailed. The use of
splines allows to restrict the polynomials since the first derivative of P1,…, Pn-1 is continuous
across the entire boundary. In addition, some constraints can be introduced on the first and last
points to force a particular value of the derivative. These characteristics of the splines offer
many advantageous properties to plan a suitable path. If a value of the derivative is imposed, a
path can be generated starting from a specific position and having a direction imposed by the
value of the derivative. Therefore, they can be generated and initialized from the current
position and direction of the vehicle. The first derivative is proportional to the direction of the
vehicle, then a non-continuous derivative could be obtained and, as a consequence, a non-
feasible path for that type of vehicle. As the second derivative is proportional to the direction

Path Planning Based on Parametric Curves
http://dx.doi.org/10.5772/intechopen.72574

133



of the angle, some discontinuities could force the vehicle to stop at each control point to adjust
its direction.

B-splines curves allow an easy construction of smooth paths through control points. In order to
avoid obstacles, control points are introduced near them, and methods are developed to move
these control points away from the obstacles and move them to the free space.

Earlier methods also worked with splines to generate smooth paths also avoiding the sur-
rounding obstacles [20, 21]. Nevertheless, these previous methods had a high computational
cost when evaluating the overall path. In [18], the computational time and the viability of one
of these algorithms are analyzed, since it is executed with an iterative method. Monte Carlo
simulations indicate a high degree of success for complex environments. The running time is
also measured and increases with the complexity of the environment. Finally, in [19], experi-
mental results are provided. The main disadvantage of this algorithm is that the obstacle-free
path is computed by means of an iterative method. Thus, the computational time will always
increase with respect to other non-iterative methods.

A large number of researchers have also used parametric curves, and particularly B-splines
and Béziers, to generate search trees as in [7].

3.4. Trajectories of mobile robots defined by NURBS

This type of parametric curve is used in the reconstruction of trajectories with the aim of
generating smooth paths that approximate the real movement of the robot. In [22], the advan-
tages and disadvantages of the NURBS curves are highlighted, providing a detailed study of
their properties. In the field of robotics, the work [23] highlights advantageous properties of
NURBS for path planning in both 2D and 3D.

In other works, such as [24–26], NURBS curves approximate or describe the path described by
a robot arm PUMA 560. Programming by Demonstration is used to program the behavior of
the robot, a good solution to automatically transfer the human knowledge to a robot. How-
ever, the NURBS trajectory does not guarantee the obstacle avoidance.

More recently, in [9–12] a predefined NURBS curve is used to improve its properties adjusting
the weights.

3.5. Trajectories of mobile robots defined by RBC

In [27], an off-line methodology is presented to approximate a Clothoid (Fresnel integrals) to
an RBC. Subsequently, [28] presents a method to obtain trajectories in real time with Clothoids.
To do this, two steps are involved: the off-line definition of approximations of Clothoids with
RBCs and the generation of online paths by scaling, rotating and moving the previous off-line
curves. One of the advantages of this method is the off-line calculation since it considerably
reduces the computational time. Throughout the process, the weight coefficients and control
points remain invariant. In this work, it is guaranteed that an RBC has the same behavior as a
Clothoid using a low order for the curve.

Advanced Path Planning for Mobile Entities134

3.6. Current trends in the use of parametric curves in robotics

This comprehensive study of the use of the parametric curves evidences its importance in the
design of trajectories of a mobile robot. They are not only used for interpolating points in the
global map but also being integrated into global planners and in numerical optimizations.
Although non-rational curves have a lower approximation capacity, researchers prefer them
for their simplicity and easy manipulation. Among them, we must highlight the Bézier curves,
which are the most used.

However, when the parametric curve is used as an approximation, the use of rational curves
is significantly greater, as in the approximation to the clothoid and the circle. Recently, pre-
defined rational curves are being used, where only the weights are modified. This can trans-
form rational curves into manageable curves in comparison to non-rational curves.

Along the lines of merging the use of parametric curves with other types of algorithms in an
intelligent navigation system, it is not only important to define the path of the robot, but also to
avoid obstacles in the environment. Consequently, the initial trajectory must be modified in
real time so that the mobile robot avoids the possible dynamic obstacles that may appear. In
this sense, the Bézier trajectory deformation (BTD) algorithm, described in the next section,
introduces the possibility of deforming a Bézier curve through a vector field, which can be
used in mobile robotics. The temporal parameter is introduced in the Bézier curve to transform
it into a path and a vector field is needed to modify the initial path.

4. Properties of parametric curves and its applications in robotics

In mobile robotics, two main needs have arisen when dealing with path planning of a mobile
robot: definition of the initial path to follow and the possibility of modifying it in the presence
of dynamic obstacles.

In the next paragraphs, the BTD algorithm is described [48, 49], which solves the abovementioned
needs. It offers the possibility of defining the trajectory of a mobile robot through a Bézier curve
and thenmodifies it by means of the repulsive forces derived from a predictive potential field (PF)
method. Reactive methods or potential field methods generate obstacle-free paths for the robot. In
these methods, the movement of the robot is determined by repulsive forces associated with
obstacles and attractive forces associated to the goal position of the mobile robot. In this work,
the potential field projection method (PFP) has been used [50, 51].

The set of discrete points provided by the posture prediction of the mobile robot is considered
as initial points Si of the original Bézier curve. These points belong to a reference path in the
BTD algorithm. Subsequently, the set of repulsive forces obtained by the PFP is transformed
into displacements by a dynamic particle model, which generates endpoints Ti that determines
the modification of the original Bézier trajectory with the BTD. A modified Bezier trajectory
free of obstacles is obtained that passes through the endpoints, as displayed in Figure 2.

The definition of the BTD algorithm requires two steps:

Path Planning Based on Parametric Curves
http://dx.doi.org/10.5772/intechopen.72574

135



of the angle, some discontinuities could force the vehicle to stop at each control point to adjust
its direction.

B-splines curves allow an easy construction of smooth paths through control points. In order to
avoid obstacles, control points are introduced near them, and methods are developed to move
these control points away from the obstacles and move them to the free space.

Earlier methods also worked with splines to generate smooth paths also avoiding the sur-
rounding obstacles [20, 21]. Nevertheless, these previous methods had a high computational
cost when evaluating the overall path. In [18], the computational time and the viability of one
of these algorithms are analyzed, since it is executed with an iterative method. Monte Carlo
simulations indicate a high degree of success for complex environments. The running time is
also measured and increases with the complexity of the environment. Finally, in [19], experi-
mental results are provided. The main disadvantage of this algorithm is that the obstacle-free
path is computed by means of an iterative method. Thus, the computational time will always
increase with respect to other non-iterative methods.

A large number of researchers have also used parametric curves, and particularly B-splines
and Béziers, to generate search trees as in [7].

3.4. Trajectories of mobile robots defined by NURBS

This type of parametric curve is used in the reconstruction of trajectories with the aim of
generating smooth paths that approximate the real movement of the robot. In [22], the advan-
tages and disadvantages of the NURBS curves are highlighted, providing a detailed study of
their properties. In the field of robotics, the work [23] highlights advantageous properties of
NURBS for path planning in both 2D and 3D.

In other works, such as [24–26], NURBS curves approximate or describe the path described by
a robot arm PUMA 560. Programming by Demonstration is used to program the behavior of
the robot, a good solution to automatically transfer the human knowledge to a robot. How-
ever, the NURBS trajectory does not guarantee the obstacle avoidance.

More recently, in [9–12] a predefined NURBS curve is used to improve its properties adjusting
the weights.

3.5. Trajectories of mobile robots defined by RBC

In [27], an off-line methodology is presented to approximate a Clothoid (Fresnel integrals) to
an RBC. Subsequently, [28] presents a method to obtain trajectories in real time with Clothoids.
To do this, two steps are involved: the off-line definition of approximations of Clothoids with
RBCs and the generation of online paths by scaling, rotating and moving the previous off-line
curves. One of the advantages of this method is the off-line calculation since it considerably
reduces the computational time. Throughout the process, the weight coefficients and control
points remain invariant. In this work, it is guaranteed that an RBC has the same behavior as a
Clothoid using a low order for the curve.

Advanced Path Planning for Mobile Entities134

3.6. Current trends in the use of parametric curves in robotics

This comprehensive study of the use of the parametric curves evidences its importance in the
design of trajectories of a mobile robot. They are not only used for interpolating points in the
global map but also being integrated into global planners and in numerical optimizations.
Although non-rational curves have a lower approximation capacity, researchers prefer them
for their simplicity and easy manipulation. Among them, we must highlight the Bézier curves,
which are the most used.

However, when the parametric curve is used as an approximation, the use of rational curves
is significantly greater, as in the approximation to the clothoid and the circle. Recently, pre-
defined rational curves are being used, where only the weights are modified. This can trans-
form rational curves into manageable curves in comparison to non-rational curves.

Along the lines of merging the use of parametric curves with other types of algorithms in an
intelligent navigation system, it is not only important to define the path of the robot, but also to
avoid obstacles in the environment. Consequently, the initial trajectory must be modified in
real time so that the mobile robot avoids the possible dynamic obstacles that may appear. In
this sense, the Bézier trajectory deformation (BTD) algorithm, described in the next section,
introduces the possibility of deforming a Bézier curve through a vector field, which can be
used in mobile robotics. The temporal parameter is introduced in the Bézier curve to transform
it into a path and a vector field is needed to modify the initial path.

4. Properties of parametric curves and its applications in robotics

In mobile robotics, two main needs have arisen when dealing with path planning of a mobile
robot: definition of the initial path to follow and the possibility of modifying it in the presence
of dynamic obstacles.

In the next paragraphs, the BTD algorithm is described [48, 49], which solves the abovementioned
needs. It offers the possibility of defining the trajectory of a mobile robot through a Bézier curve
and thenmodifies it by means of the repulsive forces derived from a predictive potential field (PF)
method. Reactive methods or potential field methods generate obstacle-free paths for the robot. In
these methods, the movement of the robot is determined by repulsive forces associated with
obstacles and attractive forces associated to the goal position of the mobile robot. In this work,
the potential field projection method (PFP) has been used [50, 51].

The set of discrete points provided by the posture prediction of the mobile robot is considered
as initial points Si of the original Bézier curve. These points belong to a reference path in the
BTD algorithm. Subsequently, the set of repulsive forces obtained by the PFP is transformed
into displacements by a dynamic particle model, which generates endpoints Ti that determines
the modification of the original Bézier trajectory with the BTD. A modified Bezier trajectory
free of obstacles is obtained that passes through the endpoints, as displayed in Figure 2.

The definition of the BTD algorithm requires two steps:

Path Planning Based on Parametric Curves
http://dx.doi.org/10.5772/intechopen.72574

135



a. Definition of the trajectory using a Bézier curve

A Bézier curve has a non-dimensional intrinsic parameter, u, as defined in (5). Since the Bézier
curve represents the path of the robot, the intrinsic parameter must be defined as a temporal
variable so that the position of each curve (robot position) is associated with an instant of time
t∈ t0, tf
� �

, where t0 and tf represent the initial and final times of the trajectory, respectively. The
definition of the initial Bézier trajectory is (13), where n is the order, Pi are the control points
and Bi,n tð Þ are the Bernstein bases defined in (14). To avoid loops in the Bézier curve, second-
order curves are used.

ð13Þ

ð14Þ

The initial Bézier trajectory will be deformed in order to avoid the surrounding obstacles, by
modifying the position of the control points from the initial position to the new one imposed
by the PFP obstacle avoidance algorithm. The displacement of each control point Piis denoted
as εi, so that the vector ε ¼ ε0;⋯; εn½ � is the displacement of all the control points defining the
Bézier trajectory, also known as the perturbation vector of the deformed curve. The new
modified Bézier trajectory Sε α tð Þð Þ is defined in (15) and, consequently, the optimizing function
used to solve the problem is defined as (16), where the vector ε is computed as in [49].

ð15Þ

ð16Þ

Figure 2. Deformation of a Bézier trajectory through a field of vectors.

Advanced Path Planning for Mobile Entities136

This objective function minimizes changes in the shape of the initial Bézier trajectory as it
minimizes the distance between the original Bézier trajectory and the modified one. This
definition is suitable for holonomic mobile robots since the original path has been generated
by a global path planner, and the original path is assumed to be already optimal.

b. Number of Bézier curves

High order Bézier curves are numerically unstable and, for that reason, in order to generate a
complete Bézier trajectory the concatenation of k curves is required. Therefore, the optimiza-
tion function (16) is replaced by (17), where 1 ≤ l ≤ k, αl is every Bézier trajectory (l), Sε αlð Þ is the
modified Bézier trajectory, t lð Þ

0 ; t lð Þ
f

h i
are the initial and end instants of the Bézier trajectory lð Þ,

and ε lð Þ is the perturbation vector of the modified curve (l).

ð17Þ

The number of repulsive forces depends on the order of the Bézier trajectory: n lð Þ � 1.

c. The constraints of the optimization problem are:

i. The mobile robot must follow a collision-free path: The modified Bézier path must pass
through the endpoints, so the robot does not collide with the obstacles the environment.
The vectors joining the initial and end points are the repulsive forces obtained by the PFP
method. The equation of this constraint is (18).

ð18Þ

ii. The robot trajectory must be smooth: this constraint implies imposing continuity and
derivability in the joint points of two curves, expressed by Eq. (19).

ð19Þ

iii. Continuity between the present and future positions must be ensured: tangency must be
maintained between the original Bézier trajectory and the deformed Bézier trajectory at the
initial and end points of the trajectory. The equation is (20).

ð20Þ

Path Planning Based on Parametric Curves
http://dx.doi.org/10.5772/intechopen.72574

137



a. Definition of the trajectory using a Bézier curve

A Bézier curve has a non-dimensional intrinsic parameter, u, as defined in (5). Since the Bézier
curve represents the path of the robot, the intrinsic parameter must be defined as a temporal
variable so that the position of each curve (robot position) is associated with an instant of time
t∈ t0, tf
� �

, where t0 and tf represent the initial and final times of the trajectory, respectively. The
definition of the initial Bézier trajectory is (13), where n is the order, Pi are the control points
and Bi,n tð Þ are the Bernstein bases defined in (14). To avoid loops in the Bézier curve, second-
order curves are used.

ð13Þ

ð14Þ

The initial Bézier trajectory will be deformed in order to avoid the surrounding obstacles, by
modifying the position of the control points from the initial position to the new one imposed
by the PFP obstacle avoidance algorithm. The displacement of each control point Piis denoted
as εi, so that the vector ε ¼ ε0;⋯; εn½ � is the displacement of all the control points defining the
Bézier trajectory, also known as the perturbation vector of the deformed curve. The new
modified Bézier trajectory Sε α tð Þð Þ is defined in (15) and, consequently, the optimizing function
used to solve the problem is defined as (16), where the vector ε is computed as in [49].

ð15Þ

ð16Þ

Figure 2. Deformation of a Bézier trajectory through a field of vectors.

Advanced Path Planning for Mobile Entities136

This objective function minimizes changes in the shape of the initial Bézier trajectory as it
minimizes the distance between the original Bézier trajectory and the modified one. This
definition is suitable for holonomic mobile robots since the original path has been generated
by a global path planner, and the original path is assumed to be already optimal.

b. Number of Bézier curves

High order Bézier curves are numerically unstable and, for that reason, in order to generate a
complete Bézier trajectory the concatenation of k curves is required. Therefore, the optimiza-
tion function (16) is replaced by (17), where 1 ≤ l ≤ k, αl is every Bézier trajectory (l), Sε αlð Þ is the
modified Bézier trajectory, t lð Þ

0 ; t lð Þ
f

h i
are the initial and end instants of the Bézier trajectory lð Þ,

and ε lð Þ is the perturbation vector of the modified curve (l).

ð17Þ

The number of repulsive forces depends on the order of the Bézier trajectory: n lð Þ � 1.

c. The constraints of the optimization problem are:

i. The mobile robot must follow a collision-free path: The modified Bézier path must pass
through the endpoints, so the robot does not collide with the obstacles the environment.
The vectors joining the initial and end points are the repulsive forces obtained by the PFP
method. The equation of this constraint is (18).

ð18Þ

ii. The robot trajectory must be smooth: this constraint implies imposing continuity and
derivability in the joint points of two curves, expressed by Eq. (19).

ð19Þ

iii. Continuity between the present and future positions must be ensured: tangency must be
maintained between the original Bézier trajectory and the deformed Bézier trajectory at the
initial and end points of the trajectory. The equation is (20).

ð20Þ

Path Planning Based on Parametric Curves
http://dx.doi.org/10.5772/intechopen.72574

137



With the objective function and the constraints, the Lagrangian function (21) is defined. In
order to calculate the stationary points, the partial derivatives of the Lagrangian function are
calculated and canceled, and a system of linear equations is obtained. The solution of this
linear system is the perturbation vector of each control point in order to obtain the Bézier
trajectory. In-depth information about the linear system obtained is described in [48].

ð21Þ

4.1. Numerical simulation

In our numerical example, it is used Bézier trajectories of second order to avoid loops in the
trajectory. For that reason, the number of Bézier curves will be equal to the number of repulsive
forces generated with the selected predictive PF technique. One vector is placed per Bézier
curve. To develop, the BTD algorithm is necessary to follow these two steps:

1. Calculation of the control points from the prediction horizon generated with the PFP

The control points are uniformly distributed throughout the prediction horizon generated by
the PFP method. The model has been developed for holonomic robots, and therefore, the
prediction of future positions provides a straight line. In this case, the control points calculated
through the formulation are obtained in Table 2.

2. Location of the repulsion forces on the Bézier curve

The control points of the Bézier curve are uniformly distributed, and the repulsion forces
obtained with the PFP method are placed at the midpoint of each curve, except for the first
and the last curves where they are placed at the first and last points, respectively.

Table 2. Calculation of control points from the prediction horizon: bx is the vector containing the future trajectory and P jð Þ
i

is the i-th control point of the j-th curve.

Advanced Path Planning for Mobile Entities138

In Figure 3(a), an example is shown, where a straight line represents the predicted optimal
trajectory for a mobile robot obtained with the PFP algorithm. The control points needed to
obtain the Bézier curves are displayed with red circles. The repulsive forces are placed in the
proper positions of the predicted path. In this graphic example, there are eight points in the
prediction horizon, and consequently, eight Bézier curves are concatenated in a straight line.
The time devoted to perform trajectory is defined by the PFP prediction and has to be of
14 seconds. The time intervals corresponding to each curve, respectively, are [0,1.33], [1.33,3],
[3,5], [5,7], [7,9], [9,11], [11,12.66], [12.66,14]. The representation of the resampling for the
concatenation of eight Bézier curves is represented in Figure 3(b).

5. Conclusion

This chapter details a comprehensive study of the use of parametric curves in the design of
trajectories for holonomic and non-holonomic mobile robots. First, a brief introduction of the
mathematical formulation and properties of the different curves is presented. Second, an
exhaustive revision of literature regarding the use of parametric curves in path planning for
mobile robots is developed. Third, a detailed description of the available techniques for path
planning with parametric curves is presented, thoroughly describing the most important ones.
Finally, an in-depth comparison is carried out between the different techniques of path defor-
mation using Bézier curves, with their advantages and drawbacks. The Bézier curves are
extensively used in these applications due to the simplicity of its definition and its easy
handling and manipulation. The last section describes how to merge artificial potential field
methods with Bézier curves as a solution for modifying a predefined trajectory in real time.
Future works are related to the inclusion of other parametric curves, such as B-splines, RBC,
and NURBS, in the proposed algorithm.

Figure 3. (a) Control points and future predictions of Bézier trajectory and (b) deformation of eight concatenated Bézier
curves.

Path Planning Based on Parametric Curves
http://dx.doi.org/10.5772/intechopen.72574

139



With the objective function and the constraints, the Lagrangian function (21) is defined. In
order to calculate the stationary points, the partial derivatives of the Lagrangian function are
calculated and canceled, and a system of linear equations is obtained. The solution of this
linear system is the perturbation vector of each control point in order to obtain the Bézier
trajectory. In-depth information about the linear system obtained is described in [48].

ð21Þ

4.1. Numerical simulation

In our numerical example, it is used Bézier trajectories of second order to avoid loops in the
trajectory. For that reason, the number of Bézier curves will be equal to the number of repulsive
forces generated with the selected predictive PF technique. One vector is placed per Bézier
curve. To develop, the BTD algorithm is necessary to follow these two steps:

1. Calculation of the control points from the prediction horizon generated with the PFP

The control points are uniformly distributed throughout the prediction horizon generated by
the PFP method. The model has been developed for holonomic robots, and therefore, the
prediction of future positions provides a straight line. In this case, the control points calculated
through the formulation are obtained in Table 2.

2. Location of the repulsion forces on the Bézier curve

The control points of the Bézier curve are uniformly distributed, and the repulsion forces
obtained with the PFP method are placed at the midpoint of each curve, except for the first
and the last curves where they are placed at the first and last points, respectively.

Table 2. Calculation of control points from the prediction horizon: bx is the vector containing the future trajectory and P jð Þ
i

is the i-th control point of the j-th curve.

Advanced Path Planning for Mobile Entities138

In Figure 3(a), an example is shown, where a straight line represents the predicted optimal
trajectory for a mobile robot obtained with the PFP algorithm. The control points needed to
obtain the Bézier curves are displayed with red circles. The repulsive forces are placed in the
proper positions of the predicted path. In this graphic example, there are eight points in the
prediction horizon, and consequently, eight Bézier curves are concatenated in a straight line.
The time devoted to perform trajectory is defined by the PFP prediction and has to be of
14 seconds. The time intervals corresponding to each curve, respectively, are [0,1.33], [1.33,3],
[3,5], [5,7], [7,9], [9,11], [11,12.66], [12.66,14]. The representation of the resampling for the
concatenation of eight Bézier curves is represented in Figure 3(b).

5. Conclusion

This chapter details a comprehensive study of the use of parametric curves in the design of
trajectories for holonomic and non-holonomic mobile robots. First, a brief introduction of the
mathematical formulation and properties of the different curves is presented. Second, an
exhaustive revision of literature regarding the use of parametric curves in path planning for
mobile robots is developed. Third, a detailed description of the available techniques for path
planning with parametric curves is presented, thoroughly describing the most important ones.
Finally, an in-depth comparison is carried out between the different techniques of path defor-
mation using Bézier curves, with their advantages and drawbacks. The Bézier curves are
extensively used in these applications due to the simplicity of its definition and its easy
handling and manipulation. The last section describes how to merge artificial potential field
methods with Bézier curves as a solution for modifying a predefined trajectory in real time.
Future works are related to the inclusion of other parametric curves, such as B-splines, RBC,
and NURBS, in the proposed algorithm.

Figure 3. (a) Control points and future predictions of Bézier trajectory and (b) deformation of eight concatenated Bézier
curves.

Path Planning Based on Parametric Curves
http://dx.doi.org/10.5772/intechopen.72574

139



Author details

Lucía Hilario Pérez1*, Marta Covadonga Mora Aguilar2, Nicolás Montés Sánchez1 and
Antonio Falcó Montesinos1

*Address all correspondence to: luciah@uchceu.es

1 Departamento Matemáticas, Físicas y Ciencias Tecnológicas, Universidad Cardenal
Herrera-CEU, CEU Universities, Alfara del Patriarca, Spain

2 Department of Mechanical Engineering and Construction, Universitat Jaume I, Castellón,
Spain

References

[1] https://www.google.com/selfdrivingcar/

[2] Van Schijndel-de Noóij M, et al. Definition of neccesary vehicle in infraestructure systems
for automated driving. European Commission, Brusels, Belgium. SMART 2010/0064, 2011

[3] Gonzalez D, Perez J, Milanes V, Nashashibi F. A review of motion planning techniques for
automated vehicles. IEEE Transactions on Intelligent Transportation Systems. 2016;17(4).
DOI: 10.1109/TITS.2015.2498841

[4] Simba KR, Uchiyama N, Sano S. Real-time smooth trajectory generation for non-
holonomic mobile robots using Bézier curves. Robotics and Computer-Integrated
Manufacturing. 2016;41:31-42. doi.org/10.1016/j.rcim.2016.02.002

[5] Simba KR, Uchiyama N, Sano S. Real-time trajectory generation for mobile robots in a
corridor-like space using Bézier curves, In: IEEE/SICE International Symposium on System
Integration (SII). 2013. pp. 37-41. http://dx.doi.org/10.1109/SII.2013.6776639

[6] Cimurs R, Hwang J, II.H.Suh. Bézier curve-based smoothing for path planner with
curvature constraints. IEEE International conference on Robotic computing. 2017. DOI:
10.1109/IRC.2017.13

[7] Elbanhawi M, Simic M, Jazar R. Randomized bidirectional B-spline parameterization
motion planning. IEEE Transactions on Intelligent Transportation Systems. 2016;17
(2):406-419. DOI: 10.1109/TITS.2015.2477355

[8] Gonzalez D, Perez J, Milanes V. Parametric-based path generation for automated vehicles at
roundabouts. Expert Systems with Applications. 2017;71:332-341. DOI: 10.1016/j.eswa.2016.
11.023

[9] Singh AK, Aggarwal A, Vashisht M, Siddavatam R. Robot motion planning in a dynamic
environment using offset NURBS. IEEE ICIT. 2011:312-317. DOI: 10.1109/ICIT.2011.5754393

[10] Xidias EK, Aspragathos NA. Continuous curvature constrained shortest path for a car-
like robot using S-Roadmaps. IEEE MED. 2013:13-18. DOI: 10.1109/MED.2013.6608692

Advanced Path Planning for Mobile Entities140

[11] Jalel S, Marthon P, Hamouda A. NURBS based multi-objective path planning. In: Carrasco-
Ochoa J, Martínez-Trinidad J, Sossa-Azuela J, Olvera López J, Famili F. eds. Pattern Recog-
nition. MCPR 2015. Lecture notes in computer science, vol. 9116. Springer, Cham. 2015. doi.
org/10.1007/978-3-319-19264-2_19

[12] Jalel S, Marthon P, Hamouda A. A new path generation based on accurate NURBS
curves. International Journal of advanced Robotic systems. 2017;13(2), DOI:10.5772/63072

[13] Komoriya K, Tanie K. Trajectory design and control of a wheel-type mobile robot using
B-spline curve. In Int. Workshop on Intelligence Robots&Systems. pp. 389-405. 1989. DOI:
10.1109/IROS.1989.637937

[14] Vázquez GB, Sossa AH, and Diaz de Leon S. Auto guided vehicle control using expanded
time B-spline. In: IEEE International Conference on Systems, Man and Cybernetics.
1994;3:2786-2791. DOI: 10.1109/ICSMC.1994.400295

[15] Zhang J, Raczkowsky J, Herp A. Emulation of spline curve and its applications in robot
motion control. In IEEE Int. Conference on Fuzzy Systems. 1994;2:831-836. DOI: 10.1109/
FUZZY.1994.343843

[16] Eren H, Fung CC, Evans J. Implementation of the spline method for mobile robot path
control. In IEEE Instrumentation and Measurement Technology Conference. 1999;2:739-
744. DOI: 10.1109/IMTC.1999.776966

[17] Yamamoto M, Iwamura M, Mohri. Quasi time-optimal motion planning of mobile plat-
forms in the presence of obstacles. In: International Conference on Robotics and Automa-
tion. ICRA. pp. 2958-2963. 1999. DOI: 10.1109/ROBOT.1999.774046

[18] Connors J, Elkaim G. Analysis of a Spline Based, Obstacle Avoding Path Planning Algo-
rithm. IEEE Vehicle Technology Conference 2007. DOI: 10.1109/VETECS.2007.528

[19] Connors, Elkaim G. Experimental results of spline based obstacle avoidance of an off–
road ground vehicle. ION Global Navigation Satellite Systems Conference. 2007. DOI:
10.1.1.154.2012

[20] Berglund T, Jonsson H, Sderkvist I. An obstacle-avoiding minimum variation B-spline
problem. In: International Conference on Geometric Modeling and Graphics. 2003. DOI:
10.1109/GMAG.2003.1219681

[21] Shiller Z, Gwo YR. Dynamic motion planning of autonomous vehicles. IEEE Transactions
on Robotics and Automation. 1991;7:241. DOI: 10.1109/70.75906

[22] Piegl L. On NURBS: A survey. In IEEE Computer Graphics and Applications. 1991;11(1):
55-71. DOI: 10.1109/38.67702

[23] Tatematsu N, Ohnishi K. Tracking motion of mobile robot for moving target using NURBS
curve. In Int. Conference on Industrial Technology. 2003;1:245-249. DOI: 10.1109/ICIT.2003.
1290283

[24] Aleotti J, Caselli S. Trajectory clustering and stochastic approximation for robot program-
ming by demonstration. In: IEEE/RSJ Intelligent Robots and Systems. pp. 1029-1034.
2005. DOI: 10.1109/IROS.2005.1545365

Path Planning Based on Parametric Curves
http://dx.doi.org/10.5772/intechopen.72574

141



Author details

Lucía Hilario Pérez1*, Marta Covadonga Mora Aguilar2, Nicolás Montés Sánchez1 and
Antonio Falcó Montesinos1

*Address all correspondence to: luciah@uchceu.es

1 Departamento Matemáticas, Físicas y Ciencias Tecnológicas, Universidad Cardenal
Herrera-CEU, CEU Universities, Alfara del Patriarca, Spain

2 Department of Mechanical Engineering and Construction, Universitat Jaume I, Castellón,
Spain

References

[1] https://www.google.com/selfdrivingcar/

[2] Van Schijndel-de Noóij M, et al. Definition of neccesary vehicle in infraestructure systems
for automated driving. European Commission, Brusels, Belgium. SMART 2010/0064, 2011

[3] Gonzalez D, Perez J, Milanes V, Nashashibi F. A review of motion planning techniques for
automated vehicles. IEEE Transactions on Intelligent Transportation Systems. 2016;17(4).
DOI: 10.1109/TITS.2015.2498841

[4] Simba KR, Uchiyama N, Sano S. Real-time smooth trajectory generation for non-
holonomic mobile robots using Bézier curves. Robotics and Computer-Integrated
Manufacturing. 2016;41:31-42. doi.org/10.1016/j.rcim.2016.02.002

[5] Simba KR, Uchiyama N, Sano S. Real-time trajectory generation for mobile robots in a
corridor-like space using Bézier curves, In: IEEE/SICE International Symposium on System
Integration (SII). 2013. pp. 37-41. http://dx.doi.org/10.1109/SII.2013.6776639

[6] Cimurs R, Hwang J, II.H.Suh. Bézier curve-based smoothing for path planner with
curvature constraints. IEEE International conference on Robotic computing. 2017. DOI:
10.1109/IRC.2017.13

[7] Elbanhawi M, Simic M, Jazar R. Randomized bidirectional B-spline parameterization
motion planning. IEEE Transactions on Intelligent Transportation Systems. 2016;17
(2):406-419. DOI: 10.1109/TITS.2015.2477355

[8] Gonzalez D, Perez J, Milanes V. Parametric-based path generation for automated vehicles at
roundabouts. Expert Systems with Applications. 2017;71:332-341. DOI: 10.1016/j.eswa.2016.
11.023

[9] Singh AK, Aggarwal A, Vashisht M, Siddavatam R. Robot motion planning in a dynamic
environment using offset NURBS. IEEE ICIT. 2011:312-317. DOI: 10.1109/ICIT.2011.5754393

[10] Xidias EK, Aspragathos NA. Continuous curvature constrained shortest path for a car-
like robot using S-Roadmaps. IEEE MED. 2013:13-18. DOI: 10.1109/MED.2013.6608692

Advanced Path Planning for Mobile Entities140

[11] Jalel S, Marthon P, Hamouda A. NURBS based multi-objective path planning. In: Carrasco-
Ochoa J, Martínez-Trinidad J, Sossa-Azuela J, Olvera López J, Famili F. eds. Pattern Recog-
nition. MCPR 2015. Lecture notes in computer science, vol. 9116. Springer, Cham. 2015. doi.
org/10.1007/978-3-319-19264-2_19

[12] Jalel S, Marthon P, Hamouda A. A new path generation based on accurate NURBS
curves. International Journal of advanced Robotic systems. 2017;13(2), DOI:10.5772/63072

[13] Komoriya K, Tanie K. Trajectory design and control of a wheel-type mobile robot using
B-spline curve. In Int. Workshop on Intelligence Robots&Systems. pp. 389-405. 1989. DOI:
10.1109/IROS.1989.637937

[14] Vázquez GB, Sossa AH, and Diaz de Leon S. Auto guided vehicle control using expanded
time B-spline. In: IEEE International Conference on Systems, Man and Cybernetics.
1994;3:2786-2791. DOI: 10.1109/ICSMC.1994.400295

[15] Zhang J, Raczkowsky J, Herp A. Emulation of spline curve and its applications in robot
motion control. In IEEE Int. Conference on Fuzzy Systems. 1994;2:831-836. DOI: 10.1109/
FUZZY.1994.343843

[16] Eren H, Fung CC, Evans J. Implementation of the spline method for mobile robot path
control. In IEEE Instrumentation and Measurement Technology Conference. 1999;2:739-
744. DOI: 10.1109/IMTC.1999.776966

[17] Yamamoto M, Iwamura M, Mohri. Quasi time-optimal motion planning of mobile plat-
forms in the presence of obstacles. In: International Conference on Robotics and Automa-
tion. ICRA. pp. 2958-2963. 1999. DOI: 10.1109/ROBOT.1999.774046

[18] Connors J, Elkaim G. Analysis of a Spline Based, Obstacle Avoding Path Planning Algo-
rithm. IEEE Vehicle Technology Conference 2007. DOI: 10.1109/VETECS.2007.528

[19] Connors, Elkaim G. Experimental results of spline based obstacle avoidance of an off–
road ground vehicle. ION Global Navigation Satellite Systems Conference. 2007. DOI:
10.1.1.154.2012

[20] Berglund T, Jonsson H, Sderkvist I. An obstacle-avoiding minimum variation B-spline
problem. In: International Conference on Geometric Modeling and Graphics. 2003. DOI:
10.1109/GMAG.2003.1219681

[21] Shiller Z, Gwo YR. Dynamic motion planning of autonomous vehicles. IEEE Transactions
on Robotics and Automation. 1991;7:241. DOI: 10.1109/70.75906

[22] Piegl L. On NURBS: A survey. In IEEE Computer Graphics and Applications. 1991;11(1):
55-71. DOI: 10.1109/38.67702

[23] Tatematsu N, Ohnishi K. Tracking motion of mobile robot for moving target using NURBS
curve. In Int. Conference on Industrial Technology. 2003;1:245-249. DOI: 10.1109/ICIT.2003.
1290283

[24] Aleotti J, Caselli S. Trajectory clustering and stochastic approximation for robot program-
ming by demonstration. In: IEEE/RSJ Intelligent Robots and Systems. pp. 1029-1034.
2005. DOI: 10.1109/IROS.2005.1545365

Path Planning Based on Parametric Curves
http://dx.doi.org/10.5772/intechopen.72574

141



[25] Aleotti J, Caselli S. Trajectory reconstruction with NURBS curves for robot programming
by demonstration. In: IEEE International Symposium on Computational Intelligence in
Robotics and Automation. pp 73-78. 2005. DOI: 10.1109/CIRA.2005.1554257

[26] Aleotti J, Caselli S. Grasp recognition in virtual reality for robot pregrasp planning by
demonstration. In: IEEE International Conference on Robotics and Automation, ICRA.
pp. 2801-2806. 2006. DOI: 10.1109/ROBOT.2006.1642125

[27] Montés N, Mora MC, Tornero J. Trajectory generation based on rational Bézier curves as
clothoids. In: IEEE Intelligent Vehicles Symp., Istambul, Turkey. 2007;505:505-510. DOI:
10.1109/IVS.2007.4290165

[28] Montés N, Herraez A, Armesto L, Tornero J. Real-time clothoid approximation by ratio-
nal bézier curves. In: International Conference on Robotics and Automation. Pasadena,
CA, USA: ICRA. pp 2246-2251. 2008. DOI: 10.1109/ROBOT.2008.4543548

[29] Jaouni H, Khatib M, Laumond JP. Elastic bands for nonholonomic car-like robots: Algo-
rithms and combinatorial issues. In: 3rd International Workshop on the Algorithmic
Foundantions of Robotics (WAFR’98). 1998. ISBN:1-56881-081-4

[30] Khatib M, Jaouni H, Chatila R, Laumond JP. Dynamic path modification for car–like
nonholonomic mobile robots. IEEE International Conference on Robotics and Automa-
tion, ICRA. 1997;4:2920-2925. DOI: 10.1109/ROBOT.1997.606730

[31] Graf B, Hostalet JM, Schaeffer C. Flexible path planning for nonholonomic mobile robots.
In: 4th European workshop on advanced mobile robots (EUROBOT 01). pp. 199-206,
Lund, Sweden, 2001. ISBN: 91-631-1464-X

[32] Nagatani K, Iwai Y, Tanaka Y. Sensor based navigation for car–like mobile robots using
generalized voroni graph. In: IEEE/RSJ International Conference on Intelligent Robots
and Systems, IROS, 2. 2001, pp 1017-1022. DOI: 10.1109/IROS.2001.976302

[33] Hwang JH, Arkin RC, Know DS. Mobile robots atyour fingertrip: Bézier curve on–line
trajectory generation for supervisory control. IEEE/RSJ International Conference on Intel-
ligent Robots and Systems, IROS, vol. 2003;2:1444-1449. DOI: 10.1109/IROS.2003.1248847

[34] Skrjanc I, Klancar G. Cooperative collision avoidance between multiple robots based on
Bézier curves. In: Int. Conf. Information Technology Interfaces, pp. 451-455. 2007. DOI:
10.1109/ITI.2007.4283813

[35] Fujimori A, Teramoto M, Nikiforunk PN, Gupta MM. Cooperative collision avoidance
between multiple robots. Journal of Robotic Systems. 2000;17(7):347-363. DOI: 10.1002/
1097-4563(200007)17:7<347::AID-ROB1>3.0.CO;2-A

[36] Lamiraux F, Bonnafous D, Lefebvre O. Reactive path deformation for non- holonomic
mobile robots. IEEE Transactions on Robotics and Automation. 2004;20:967-977. DOI:
10.1109/TRO.2004.829459

[37] Lizarraga M, Elklaim G. Spatially deconflicted path generation for multiple UAVs in a
bounded airspace. In: IEEE/ION Position, Location & Navigation Symp. 2008. pp. 633-
640. DOI: 10.1109/PLANS.2008.4570041

Advanced Path Planning for Mobile Entities142

[38] Choi J. Real-time obstacle avoiding planning for autonomous ground vehicles. PhD
thesis. California: University of California. December 2010. UMI Number:3442811

[39] Choi J, Curry R, Elkaim G. Path Planning Based on Bézier Curve for Autonomous Ground
Vehicles. vol. 1. 158-166. IEEE Computer Society. 2008. DOI: 10.1109/WCECS.2008.27

[40] Choi J, Curry R, Elkaim G. Collision Free Real-Time Motion Planning for Omnidirectional
Vehicles. In: European Control Conference. August 2009. ISBN: 978-3-9524173-9-3

[41] Choi J, Curry R, Elkaim G. Obstacle avoiding real-time trajectory generation and control
of omnidirectional vehicles. In: American Control Conference (ACC). pp 5510-5515. St
Louis, Missouri. 2009. DOI: 10.1109/ACC.2009.5160683

[42] Choi J, Curry R, Elkaim G. Smooth path generation based on Bézier curves for autono-
mous vehicles. In: World Congress on Engineering and Computer Sciences, WCECS.
2009. pp 668-673. DOI: 10.1.1.294.4485

[43] Choi J, Curry R, Elkaim G. Continuous curvature path generation based on Bézier curves
for autonomous vehicles. International Journal of Applied Mathematics. 2010;40(2). DOI:
10.1.1.294.6438

[44] Choi J, Curry R, Elkaim G. Curvature-continuous trajectory generation with corridor
constraint for autonomous ground vehicles. 49th IEEE Conference on Decision and
Control, CDC. 2010. DOI: 10.1109/CDC.2010.5718154

[45] Choi J, Curry R, Elkaim G. Real-Time Obstacle-Avoiding Path Planning for Mobile
Robots. In: AIAA Guidance, Navigation and Control, AIAA GNC, Toronto. 2010. DOI:
10.2514/6.2010-8411

[46] Choi J, Elkaim G. Bézier curves for trajectory guidance. In: World Congress on Engineering
and Computer Sciences. pp. 625-630. San Francisco, CA, 2008. ISBN: 978-988-98671-0-2

[47] Neto A, Macharet DG, Campos MFM. Feasible RRT-based path planning using seventh
order Bézier curves. In IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). pp 1445-1450. 2010. DOI: 10.1109/IROS.2010.5649145

[48] Hilario L, Montés N, Falcó A, Mora MC. Real-time trajectory deformation for potential
fields planning methos. In: IEEE/RSJ International Conference on Intelligent Robots and
Systems. IROS. pp 1567-1572. San Francisco, CA, 2011. DOI: 10.1109/IROS.2011.6094560

[49] Wu OB, Xia FH. Shape modification of Bézier curves by constrained optimization. Jour-
nal of Zhejiang University Science. pp. 124-127. 2005. ISSN: 1009-3095

[50] Mora MC, Tornero J. Path planning and trajectory generation using multi-rate predictive
artificial potential fields. Proc. IEEE/RSJ IROS. 2008:2990-2995. DOI: 10.1109/IROS.2008.
4651091

[51] Mora MC, Tornero J. Predictive and multirate sensor-based planning under uncertainty.
IEEE Trans. on Intelligent Transportation Systems. 2015;16(3):1493-1504. DOI: 10.1109/
TITS.2014.2366974

Path Planning Based on Parametric Curves
http://dx.doi.org/10.5772/intechopen.72574

143



[25] Aleotti J, Caselli S. Trajectory reconstruction with NURBS curves for robot programming
by demonstration. In: IEEE International Symposium on Computational Intelligence in
Robotics and Automation. pp 73-78. 2005. DOI: 10.1109/CIRA.2005.1554257

[26] Aleotti J, Caselli S. Grasp recognition in virtual reality for robot pregrasp planning by
demonstration. In: IEEE International Conference on Robotics and Automation, ICRA.
pp. 2801-2806. 2006. DOI: 10.1109/ROBOT.2006.1642125

[27] Montés N, Mora MC, Tornero J. Trajectory generation based on rational Bézier curves as
clothoids. In: IEEE Intelligent Vehicles Symp., Istambul, Turkey. 2007;505:505-510. DOI:
10.1109/IVS.2007.4290165

[28] Montés N, Herraez A, Armesto L, Tornero J. Real-time clothoid approximation by ratio-
nal bézier curves. In: International Conference on Robotics and Automation. Pasadena,
CA, USA: ICRA. pp 2246-2251. 2008. DOI: 10.1109/ROBOT.2008.4543548

[29] Jaouni H, Khatib M, Laumond JP. Elastic bands for nonholonomic car-like robots: Algo-
rithms and combinatorial issues. In: 3rd International Workshop on the Algorithmic
Foundantions of Robotics (WAFR’98). 1998. ISBN:1-56881-081-4

[30] Khatib M, Jaouni H, Chatila R, Laumond JP. Dynamic path modification for car–like
nonholonomic mobile robots. IEEE International Conference on Robotics and Automa-
tion, ICRA. 1997;4:2920-2925. DOI: 10.1109/ROBOT.1997.606730

[31] Graf B, Hostalet JM, Schaeffer C. Flexible path planning for nonholonomic mobile robots.
In: 4th European workshop on advanced mobile robots (EUROBOT 01). pp. 199-206,
Lund, Sweden, 2001. ISBN: 91-631-1464-X

[32] Nagatani K, Iwai Y, Tanaka Y. Sensor based navigation for car–like mobile robots using
generalized voroni graph. In: IEEE/RSJ International Conference on Intelligent Robots
and Systems, IROS, 2. 2001, pp 1017-1022. DOI: 10.1109/IROS.2001.976302

[33] Hwang JH, Arkin RC, Know DS. Mobile robots atyour fingertrip: Bézier curve on–line
trajectory generation for supervisory control. IEEE/RSJ International Conference on Intel-
ligent Robots and Systems, IROS, vol. 2003;2:1444-1449. DOI: 10.1109/IROS.2003.1248847

[34] Skrjanc I, Klancar G. Cooperative collision avoidance between multiple robots based on
Bézier curves. In: Int. Conf. Information Technology Interfaces, pp. 451-455. 2007. DOI:
10.1109/ITI.2007.4283813

[35] Fujimori A, Teramoto M, Nikiforunk PN, Gupta MM. Cooperative collision avoidance
between multiple robots. Journal of Robotic Systems. 2000;17(7):347-363. DOI: 10.1002/
1097-4563(200007)17:7<347::AID-ROB1>3.0.CO;2-A

[36] Lamiraux F, Bonnafous D, Lefebvre O. Reactive path deformation for non- holonomic
mobile robots. IEEE Transactions on Robotics and Automation. 2004;20:967-977. DOI:
10.1109/TRO.2004.829459

[37] Lizarraga M, Elklaim G. Spatially deconflicted path generation for multiple UAVs in a
bounded airspace. In: IEEE/ION Position, Location & Navigation Symp. 2008. pp. 633-
640. DOI: 10.1109/PLANS.2008.4570041

Advanced Path Planning for Mobile Entities142

[38] Choi J. Real-time obstacle avoiding planning for autonomous ground vehicles. PhD
thesis. California: University of California. December 2010. UMI Number:3442811

[39] Choi J, Curry R, Elkaim G. Path Planning Based on Bézier Curve for Autonomous Ground
Vehicles. vol. 1. 158-166. IEEE Computer Society. 2008. DOI: 10.1109/WCECS.2008.27

[40] Choi J, Curry R, Elkaim G. Collision Free Real-Time Motion Planning for Omnidirectional
Vehicles. In: European Control Conference. August 2009. ISBN: 978-3-9524173-9-3

[41] Choi J, Curry R, Elkaim G. Obstacle avoiding real-time trajectory generation and control
of omnidirectional vehicles. In: American Control Conference (ACC). pp 5510-5515. St
Louis, Missouri. 2009. DOI: 10.1109/ACC.2009.5160683

[42] Choi J, Curry R, Elkaim G. Smooth path generation based on Bézier curves for autono-
mous vehicles. In: World Congress on Engineering and Computer Sciences, WCECS.
2009. pp 668-673. DOI: 10.1.1.294.4485

[43] Choi J, Curry R, Elkaim G. Continuous curvature path generation based on Bézier curves
for autonomous vehicles. International Journal of Applied Mathematics. 2010;40(2). DOI:
10.1.1.294.6438

[44] Choi J, Curry R, Elkaim G. Curvature-continuous trajectory generation with corridor
constraint for autonomous ground vehicles. 49th IEEE Conference on Decision and
Control, CDC. 2010. DOI: 10.1109/CDC.2010.5718154

[45] Choi J, Curry R, Elkaim G. Real-Time Obstacle-Avoiding Path Planning for Mobile
Robots. In: AIAA Guidance, Navigation and Control, AIAA GNC, Toronto. 2010. DOI:
10.2514/6.2010-8411

[46] Choi J, Elkaim G. Bézier curves for trajectory guidance. In: World Congress on Engineering
and Computer Sciences. pp. 625-630. San Francisco, CA, 2008. ISBN: 978-988-98671-0-2

[47] Neto A, Macharet DG, Campos MFM. Feasible RRT-based path planning using seventh
order Bézier curves. In IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). pp 1445-1450. 2010. DOI: 10.1109/IROS.2010.5649145

[48] Hilario L, Montés N, Falcó A, Mora MC. Real-time trajectory deformation for potential
fields planning methos. In: IEEE/RSJ International Conference on Intelligent Robots and
Systems. IROS. pp 1567-1572. San Francisco, CA, 2011. DOI: 10.1109/IROS.2011.6094560

[49] Wu OB, Xia FH. Shape modification of Bézier curves by constrained optimization. Jour-
nal of Zhejiang University Science. pp. 124-127. 2005. ISSN: 1009-3095

[50] Mora MC, Tornero J. Path planning and trajectory generation using multi-rate predictive
artificial potential fields. Proc. IEEE/RSJ IROS. 2008:2990-2995. DOI: 10.1109/IROS.2008.
4651091

[51] Mora MC, Tornero J. Predictive and multirate sensor-based planning under uncertainty.
IEEE Trans. on Intelligent Transportation Systems. 2015;16(3):1493-1504. DOI: 10.1109/
TITS.2014.2366974

Path Planning Based on Parametric Curves
http://dx.doi.org/10.5772/intechopen.72574

143



Chapter 8

Motion Planning for Mobile Robots

Xiangrong Xu, Yang Yang and Siyu Pan

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.76895

Provisional chapter

Motion Planning for Mobile Robots

Xiangrong Xu, Yang Yang and Siyu Pan

Additional information is available at the end of the chapter

Abstract

This chapter introduces two kinds of motion path planning algorithms for mobile robots
or unmanned ground vehicles (UGV). First, we present an approach of trajectory planning
for UGV or mobile robot under the existence of moving obstacles by using improved
artificial potential field method. Then, we propose an I-RRT* algorithm for motion plan-
ning, which combines the environment with obstacle constraints, vehicle constraints, and
kinematic constraints. All the simulation results and the experiments show that two kinds
of algorithm are effective for practical use.

Keywords: path planning, trajectory planning, mobile robots, unmanned ground vehicles
(UGV)

1. Introduction

In recent years, the intelligent mobile robots have played an important role in industry,
agriculture, aerospace, and space exploration, and it becomes a hotspot issue in many research
fields. The robot is divided into two categories from the application environment, named
industrial robots and special robots. The industrial robot is industrial oriented multi-joint
manipulator or multi-degree of freedom robot, while the special robot is opposite to industrial
robots, which is used for non-manufacturing environment or service including service robots,
underwater robot, entertainment robot, military robots, agricultural robots, and robotic
machines. If we want the robot autonomous mobile in configuration space, the very first thing
we will do is the path planning, which can be defined as the process of finding a collision-free
path for a robot from its initial position to the goal or target point by avoiding collisions with
any static obstacles or other agents present in its environment. In order to solve these prob-
lems, many domestic and foreign scholars researched and put forward many theories and
methods of the path planning [1–4]. The traditional path planning algorithms, such as ant

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons

Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,

distribution, and eproduction in any medium, provided the original work is properly cited.

DOI: 10.5772/intechopen.76895

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



Chapter 8

Motion Planning for Mobile Robots

Xiangrong Xu, Yang Yang and Siyu Pan

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.76895

Provisional chapter

Motion Planning for Mobile Robots

Xiangrong Xu, Yang Yang and Siyu Pan

Additional information is available at the end of the chapter

Abstract

This chapter introduces two kinds of motion path planning algorithms for mobile robots
or unmanned ground vehicles (UGV). First, we present an approach of trajectory planning
for UGV or mobile robot under the existence of moving obstacles by using improved
artificial potential field method. Then, we propose an I-RRT* algorithm for motion plan-
ning, which combines the environment with obstacle constraints, vehicle constraints, and
kinematic constraints. All the simulation results and the experiments show that two kinds
of algorithm are effective for practical use.

Keywords: path planning, trajectory planning, mobile robots, unmanned ground vehicles
(UGV)

1. Introduction

In recent years, the intelligent mobile robots have played an important role in industry,
agriculture, aerospace, and space exploration, and it becomes a hotspot issue in many research
fields. The robot is divided into two categories from the application environment, named
industrial robots and special robots. The industrial robot is industrial oriented multi-joint
manipulator or multi-degree of freedom robot, while the special robot is opposite to industrial
robots, which is used for non-manufacturing environment or service including service robots,
underwater robot, entertainment robot, military robots, agricultural robots, and robotic
machines. If we want the robot autonomous mobile in configuration space, the very first thing
we will do is the path planning, which can be defined as the process of finding a collision-free
path for a robot from its initial position to the goal or target point by avoiding collisions with
any static obstacles or other agents present in its environment. In order to solve these prob-
lems, many domestic and foreign scholars researched and put forward many theories and
methods of the path planning [1–4]. The traditional path planning algorithms, such as ant

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons

Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,

distribution, and eproduction in any medium, provided the original work is properly cited.

DOI: 10.5772/intechopen.76895

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



colony algorithm, genetic algorithm, and artificial potential field algorithm, dealing with some
motion planning have its unique superiority. In addition, the algorithm based on potential
field or heuristic function, such as A*, D*, and artificial potential field method, in addressing
the problem of planning can meet the requirements of real-time and the optimality. This
chapter introduces two kinds of path planning algorithm of the robot, including mobile robots
and unmanned ground vehicles (UGV).

2. Path planning for robots with existence of moving obstacles

In this chapter, we present an approach of the ground mobile vehicle or robot trajectory
planning under the existence of moving obstacles by using improved artificial potential field
method. The potential field intensity and strength instead of force vectors was adopted in the
planning. Considering the speed effect of mobile obstacles and mobile robot, the velocity
information was introduced into potential field function and an “added potential field” was
also applied to guide the mobile robot to be free of collision with local obstacles. Based on the
new method, all the potential field intensity was considered and summed by algebraic style,
then the genetic trust region algorithm was used to search the minimum sum points of
potential field intensity within the motion space and scope, which the mobile robot can reach
target during a sampling period, and the global optimization trajectory was consisted of all the
minimum points. Simulation and experiment results show that better results of path planning
for a mobile robot in a complex environment with the existence of moving obstacles can be
achieved using this new approach.

The problem of mobile robot path planning under a dynamic environment in mobile robot
domain is hot and difficult. Its task is to find a path, which is from the initial state to goal state.
Currently, common path planning methods are artificial potential field method, grid method,
neural network method, chaos genetic algorithm, aand so on [5, 6]. Artificial potential field
method in the algorithm of path planning is relatively mature and efficient, because of the
simplicity of the mathematical calculation, it is widely used. However, there are the issues of
local minimum point and destination unreachable in traditional artificial potential field
method. There are a variety of ways to escape from the local minimum point, such as random
fleeing method, heuristic search, walking along the wall, Tangent bug’s method, and so on [7,
8], These methods need to apply an additional control force to the robot, which could not
fundamentally solve problems. An improved artificial potential field method based on genetic
algorithm was proposed in [8] to solve the problem of goal unreachable and local minimum,
but the convergent speed of the algorithm still needs to be improved.

In this chapter, aimed at the shortcoming of traditional artificial potential field method, an
improved artificial potential field applied in a dynamic environment is proposed. Firstly, an
improved artificial potential field model is established; then the genetic trust region algorithm
is applied to solve the sub-target point problem of the improved artificial potential field model
and then the optimal path is planned.

Advanced Path Planning for Mobile Entities146

2.1. Artificial potential field model

2.1.1. The shortcoming of traditional potential field model

There are some problems when this method is applied to robot path planning:

1. Because the traditional artificial potential field method applies virtual force to control the
movement of the robot, it is possible for a robot that it cannot go through a narrow passage
when two obstacles are near to each other. Moreover, if robot, obstacles and target point
are on the same straight line, the robot controlled by force can only move on the straight
line repeatedly, but it cannot reach to the target point.

2. If obstacles are near to target point, it will be possible that repulsive force is greater than
attractive force, leading to the problem of goal unreachable (GNRON).

3. The robot has not yet arrived at target point nearly, however, the summation of suffered
forces is zero, consequently, it will fall in local minimum point and stop moving.

2.1.2. Improved measures

Aimed at the defects of traditional artificial potential field model, improved measures are
proposed as below:

1. Turning the attractive force of target to the robot and the repulsive force of obstacles to the
robot into a kind of potential field intensity, a method of calculating potential field is
applied to replace traditional vector force control.

2. Adding a coefficient entry ∥X� Xμ∥2 in the gravitational potential of obstacles, when the
robot is close to the target point, gravitational potential is reducing as well as repulsion
potential. Finally, they are zero until the robot arrives at the target point, so the problem of
obstacles and target point being too close causing goal unreachable.

3. For a “deadlock” issue caused by local minimum point, the “added potential field” is
introduced to guide the robot to walk out the local minimum point, that is, adding an
extra potential field Uadd.

2.1.3. Improved potential model

According to above improved measures, the improved artificial potential field model is pro-
posed. The attractive force model of the target to a full range of vehicle’s body is:

Uatt Xð Þ ¼ 0:5kr2 X;Xg
� �

(1)

where r X;Xg
� �

is the distance between the current location of the central point of mobile

vehicle’s body and target point; k is a proportional gain coefficient; X is the position x; y½ �T of

robot’s central point in movement space; and Xg is the target point position xg; yg
h iT

.

Motion Planning for Mobile Robots
http://dx.doi.org/10.5772/intechopen.76895

147



colony algorithm, genetic algorithm, and artificial potential field algorithm, dealing with some
motion planning have its unique superiority. In addition, the algorithm based on potential
field or heuristic function, such as A*, D*, and artificial potential field method, in addressing
the problem of planning can meet the requirements of real-time and the optimality. This
chapter introduces two kinds of path planning algorithm of the robot, including mobile robots
and unmanned ground vehicles (UGV).

2. Path planning for robots with existence of moving obstacles

In this chapter, we present an approach of the ground mobile vehicle or robot trajectory
planning under the existence of moving obstacles by using improved artificial potential field
method. The potential field intensity and strength instead of force vectors was adopted in the
planning. Considering the speed effect of mobile obstacles and mobile robot, the velocity
information was introduced into potential field function and an “added potential field” was
also applied to guide the mobile robot to be free of collision with local obstacles. Based on the
new method, all the potential field intensity was considered and summed by algebraic style,
then the genetic trust region algorithm was used to search the minimum sum points of
potential field intensity within the motion space and scope, which the mobile robot can reach
target during a sampling period, and the global optimization trajectory was consisted of all the
minimum points. Simulation and experiment results show that better results of path planning
for a mobile robot in a complex environment with the existence of moving obstacles can be
achieved using this new approach.

The problem of mobile robot path planning under a dynamic environment in mobile robot
domain is hot and difficult. Its task is to find a path, which is from the initial state to goal state.
Currently, common path planning methods are artificial potential field method, grid method,
neural network method, chaos genetic algorithm, aand so on [5, 6]. Artificial potential field
method in the algorithm of path planning is relatively mature and efficient, because of the
simplicity of the mathematical calculation, it is widely used. However, there are the issues of
local minimum point and destination unreachable in traditional artificial potential field
method. There are a variety of ways to escape from the local minimum point, such as random
fleeing method, heuristic search, walking along the wall, Tangent bug’s method, and so on [7,
8], These methods need to apply an additional control force to the robot, which could not
fundamentally solve problems. An improved artificial potential field method based on genetic
algorithm was proposed in [8] to solve the problem of goal unreachable and local minimum,
but the convergent speed of the algorithm still needs to be improved.

In this chapter, aimed at the shortcoming of traditional artificial potential field method, an
improved artificial potential field applied in a dynamic environment is proposed. Firstly, an
improved artificial potential field model is established; then the genetic trust region algorithm
is applied to solve the sub-target point problem of the improved artificial potential field model
and then the optimal path is planned.

Advanced Path Planning for Mobile Entities146

2.1. Artificial potential field model

2.1.1. The shortcoming of traditional potential field model

There are some problems when this method is applied to robot path planning:

1. Because the traditional artificial potential field method applies virtual force to control the
movement of the robot, it is possible for a robot that it cannot go through a narrow passage
when two obstacles are near to each other. Moreover, if robot, obstacles and target point
are on the same straight line, the robot controlled by force can only move on the straight
line repeatedly, but it cannot reach to the target point.

2. If obstacles are near to target point, it will be possible that repulsive force is greater than
attractive force, leading to the problem of goal unreachable (GNRON).

3. The robot has not yet arrived at target point nearly, however, the summation of suffered
forces is zero, consequently, it will fall in local minimum point and stop moving.

2.1.2. Improved measures

Aimed at the defects of traditional artificial potential field model, improved measures are
proposed as below:

1. Turning the attractive force of target to the robot and the repulsive force of obstacles to the
robot into a kind of potential field intensity, a method of calculating potential field is
applied to replace traditional vector force control.

2. Adding a coefficient entry ∥X� Xμ∥2 in the gravitational potential of obstacles, when the
robot is close to the target point, gravitational potential is reducing as well as repulsion
potential. Finally, they are zero until the robot arrives at the target point, so the problem of
obstacles and target point being too close causing goal unreachable.

3. For a “deadlock” issue caused by local minimum point, the “added potential field” is
introduced to guide the robot to walk out the local minimum point, that is, adding an
extra potential field Uadd.

2.1.3. Improved potential model

According to above improved measures, the improved artificial potential field model is pro-
posed. The attractive force model of the target to a full range of vehicle’s body is:

Uatt Xð Þ ¼ 0:5kr2 X;Xg
� �

(1)

where r X;Xg
� �

is the distance between the current location of the central point of mobile

vehicle’s body and target point; k is a proportional gain coefficient; X is the position x; y½ �T of

robot’s central point in movement space; and Xg is the target point position xg; yg
h iT

.

Motion Planning for Mobile Robots
http://dx.doi.org/10.5772/intechopen.76895

147



Repulsive potential model of the i-th static obstacles on the full range of movement of the
body is:

where i∈ 1; 2
000
; n

� �
, n is the summation of static obstacles; r X;Xið Þ is the shortest distance of

between current location of the center of mobile vehicle’s body and the i-th obstacle; r0 the
effective effect distance of obstacle; and η is proportional position gain coefficient.

Dynamic obstacles are in motion, and it cannot reflect environment information completely if
only taking location into consideration. Bring the relative speed of dynamic obstacles and
robots into potential field function, Repulsive potential model of the i-th static obstacles on
the full range of movement of the body is got:

where r∈ 1; 2;…;mð Þ, m is the summation of mobile obstacles; ζ is proportional coefficient; V
is the current speed of the mobile body, v∈ 2vmax=3; vmaxð Þ; vmaxt0 is the current speed of the r-
th dynamic obstacles; ϕ is the current movement direction of the mobile body; and φ is the
current movement direction of the r-th dynamic obstacle.

When the robot is in local minimum point, the “added potential” is brought to figure the
problem of local minimum out, the added potential model is:

Uadd Xð Þ ¼
sr2 X;Xg
� �

, r X;Xg
� �

> ra;

0, r X;Xg
� �

≤ ra

8<
:

where ra judgment distance of whether the mobile body reaches to a target point; s is a
proportional coefficient.

Therefore, the whole potential field intensity of a range of mobile body is shown in (2). When
the robot is in local minimum point, taking (2) plus the added potential as the total potential
field value (as shown in (2)).

Advanced Path Planning for Mobile Entities148

U ¼ Uatt Xð Þ þ
Xn

i¼1
Ureps Xið Þ þ

Xm
r¼1

Urepm Xrð Þ: (2)

U ¼ Uatt Xð Þ þ
Xn

i¼1
Ureps Xið Þ þ

Xm
r¼1

Urepm Xrð Þ þUadd Xð Þ: (3)

Based on above model, every sampling period all regard the minimum point of potential field
sum as a sub-goal point, and multiple sub-target is consisted of global optimization path. The
sum of potential field is shown in (2). In order to avoid the case of target vibrating in the
vicinity of local minimum point, vector synthesis method is used to judge whether the robot is
in local minimum point, if in the local minimum point, potential field sum contains added
potential, as shown in (3). Assuming the maximum speed of robot is vmax, the sampling period
is t0, so when robot in the reachable range of every sampling period, it takes current location as
a center, and vmaxt0 is a radius of the circle. The speed of robot movement should not too big or
too small in order to ensure the stability of robot movement and performing efficiency, so a
sub-goal point can be chosen from an annular region, R∈ 2Vmaxt0=3;Vmaxt0ð Þ,θ∈ 0; 2πð Þ.
As Figure 1 shows, the shaded part of the annular region is the optional region of the sub-
target point. Therefore, solving the sub-target issue is the key to improve artificial potential
field method.

2.2. Solving target point based on genetic trust region

In order to improve the efficiency of path planning, below two situations will be considered:

(1) When the robots move in the free space far away from obstacle ( ≤ r0), that solving the
minimum point of the sum of annular region potential field intensity shown in Figure 1. The
trust region method in optimal search algorithm has good reliability and fast convergence,
which offers a new idea to solve the sub-target. However, its iteration speed sometimes is
affected by the radial trust. When the iteration speed is affected by the radius of trust region,
using genetic algorithms to solve a point, which is better than one in the current iteration point,
then, based on the point the trust region is restarted until the optimized point is found, which
can greatly improve the convergence speed of algorithm [9–11].

The points of the shaded part can show as x
0 ¼ xþ R cosθ, y

0 ¼ yþ R sinθ. Therefore, Eqs. (2)
and (3) are the function about variables R and θ, R∈ 2Vmaxt0=3;Vmaxt0ð Þ,θ∈ 0; 2∗3:14ð Þ:
assuming Uadd zð Þz1 0 ¼ xþ R cosθ, z2

0 ¼ yþ R sinθ, z ¼ z1; z2ð Þ. Using genetic trust region
algorithm to solve the target function of sub-goal point as (4) shows, in other words, that
solving a class of linear constrained optimized problem, when that the robot is located in local
minimum point, (4) and added potential Uadd zð Þ are regarded as the target function.

minU zð Þ ¼ Uatt zð Þ þ
Xn

i¼1
Ureps zið Þ þ

Xn
r¼1

Urepm zrð Þ (4)

Using quadratic approximation and constructing constrained trust region sub-problem:

Motion Planning for Mobile Robots
http://dx.doi.org/10.5772/intechopen.76895

149



Repulsive potential model of the i-th static obstacles on the full range of movement of the
body is:

where i∈ 1; 2
000
; n

� �
, n is the summation of static obstacles; r X;Xið Þ is the shortest distance of

between current location of the center of mobile vehicle’s body and the i-th obstacle; r0 the
effective effect distance of obstacle; and η is proportional position gain coefficient.

Dynamic obstacles are in motion, and it cannot reflect environment information completely if
only taking location into consideration. Bring the relative speed of dynamic obstacles and
robots into potential field function, Repulsive potential model of the i-th static obstacles on
the full range of movement of the body is got:

where r∈ 1; 2;…;mð Þ, m is the summation of mobile obstacles; ζ is proportional coefficient; V
is the current speed of the mobile body, v∈ 2vmax=3; vmaxð Þ; vmaxt0 is the current speed of the r-
th dynamic obstacles; ϕ is the current movement direction of the mobile body; and φ is the
current movement direction of the r-th dynamic obstacle.

When the robot is in local minimum point, the “added potential” is brought to figure the
problem of local minimum out, the added potential model is:

Uadd Xð Þ ¼
sr2 X;Xg
� �

, r X;Xg
� �

> ra;

0, r X;Xg
� �

≤ ra

8<
:

where ra judgment distance of whether the mobile body reaches to a target point; s is a
proportional coefficient.

Therefore, the whole potential field intensity of a range of mobile body is shown in (2). When
the robot is in local minimum point, taking (2) plus the added potential as the total potential
field value (as shown in (2)).

Advanced Path Planning for Mobile Entities148

U ¼ Uatt Xð Þ þ
Xn

i¼1
Ureps Xið Þ þ

Xm
r¼1

Urepm Xrð Þ: (2)

U ¼ Uatt Xð Þ þ
Xn

i¼1
Ureps Xið Þ þ

Xm
r¼1

Urepm Xrð Þ þUadd Xð Þ: (3)

Based on above model, every sampling period all regard the minimum point of potential field
sum as a sub-goal point, and multiple sub-target is consisted of global optimization path. The
sum of potential field is shown in (2). In order to avoid the case of target vibrating in the
vicinity of local minimum point, vector synthesis method is used to judge whether the robot is
in local minimum point, if in the local minimum point, potential field sum contains added
potential, as shown in (3). Assuming the maximum speed of robot is vmax, the sampling period
is t0, so when robot in the reachable range of every sampling period, it takes current location as
a center, and vmaxt0 is a radius of the circle. The speed of robot movement should not too big or
too small in order to ensure the stability of robot movement and performing efficiency, so a
sub-goal point can be chosen from an annular region, R∈ 2Vmaxt0=3;Vmaxt0ð Þ,θ∈ 0; 2πð Þ.
As Figure 1 shows, the shaded part of the annular region is the optional region of the sub-
target point. Therefore, solving the sub-target issue is the key to improve artificial potential
field method.

2.2. Solving target point based on genetic trust region

In order to improve the efficiency of path planning, below two situations will be considered:

(1) When the robots move in the free space far away from obstacle ( ≤ r0), that solving the
minimum point of the sum of annular region potential field intensity shown in Figure 1. The
trust region method in optimal search algorithm has good reliability and fast convergence,
which offers a new idea to solve the sub-target. However, its iteration speed sometimes is
affected by the radial trust. When the iteration speed is affected by the radius of trust region,
using genetic algorithms to solve a point, which is better than one in the current iteration point,
then, based on the point the trust region is restarted until the optimized point is found, which
can greatly improve the convergence speed of algorithm [9–11].

The points of the shaded part can show as x
0 ¼ xþ R cosθ, y

0 ¼ yþ R sinθ. Therefore, Eqs. (2)
and (3) are the function about variables R and θ, R∈ 2Vmaxt0=3;Vmaxt0ð Þ,θ∈ 0; 2∗3:14ð Þ:
assuming Uadd zð Þz1 0 ¼ xþ R cosθ, z2

0 ¼ yþ R sinθ, z ¼ z1; z2ð Þ. Using genetic trust region
algorithm to solve the target function of sub-goal point as (4) shows, in other words, that
solving a class of linear constrained optimized problem, when that the robot is located in local
minimum point, (4) and added potential Uadd zð Þ are regarded as the target function.

minU zð Þ ¼ Uatt zð Þ þ
Xn

i¼1
Ureps zið Þ þ

Xn
r¼1

Urepm zrð Þ (4)

Using quadratic approximation and constructing constrained trust region sub-problem:

Motion Planning for Mobile Robots
http://dx.doi.org/10.5772/intechopen.76895

149



minqk dð Þ ¼ gTk dþ 0:5dTGkd
s:t: dk k2 ≤Δk, zk þ dk ∈Ω

(5)

where gk ¼ ∇U zkð Þ; Δk is the radius of trust region; Gk ¼ ∇2U zkð Þ: solving Gk is very compli-
cated, and using BFGS formula of quasi-Newton to structure Hessian matrix Bk, which is
approximate to Gk. dk is the decline tentative step. Ω is the range of R and θ.

The algorithm contains, and remark shows: z∈R2, zk ¼ zk1; zk2ð Þ, zkþ1 ¼ z kþ1ð Þ1; z kþ1ð Þ2
� �

, zekþ1 ¼
ze kþ1ð Þ1; ze kþ1ð Þ2
� �

, yk ¼ gkþ1 � gk, := value assignment, BBFGS
kþ1 ¼ Bk þ yky

T
k =y

T
k dk � BkdkBT

k =d
T
k Bkdk,

the amount of actual decline in the ratio of the amount of pre-estimated decline is:

rk ¼ ΔUk=Δqk ¼
U zkð Þ �U zk þ dkð Þ

qk 0ð Þ � qk dkð Þ :

The first step in the algorithm.

Step 1: Initialization, given: z0, Δ0 > 0, ε1 > 0, ε2 > 0, ε3 > 0, a > 0, b > 0M > 1.

0 < η1 < η2 < 1, B0 ≕ I2x2, 0 < β1 < β2 < 1 ≤ β3, k≔ 0

Step 2: Calculating gk, if gk
�� ��

2 < ε1, stop calculating, and output the result.

Step 3: Solving sub-problem in Eq. (5), and get the decline tentative step d1.

Step 4: Calculating rk, if rk > η1 meanwhile zk þ dk ∈Ω, so, zkþ1 ≔ zk þ dk rectifies Bkþ1, or
zkþ1 ≔ zk, Bkþ1 ≔Bk.

Figure 1. The optional range of sub-target point.

Advanced Path Planning for Mobile Entities150

Step 5: Choosing Δkþ1, let it meet:

Δkþ1

Δk; β3Δk
� ��

, rk > η2;

β2Δk;Δk
� �

, rk ∈ η1; η2
� �

;

β1Δk; β2Δk
� �

, rk < η1:

8>><
>>:

Step 6: If Δkþ1 < ε2, Ukþ1 �Ukk k < ε3, and using genetic algorithm to quickly solve min
U zekþ1
� �

so that an iteration point which is better than the current point, go to step 7, Or back
to step 8.

Step 7: If Ukþ1 �Ukk k > M Ukþ1 �Ukk k, so order zkþ1 ≔ zekþ1Gkþ1 ≔Δ0, back to step 2; or back
to step 8.

Step 8: Using BFGS formula to modify Bk and gets Bkþ1, k≔ kþ 1, back to step 2.

ε2, ε3,M values can be adjusted to control the number of times the call number of sub-issues of
a genetic algorithm to achieve the optimization algorithm speed, regulating ε1 also can regu-
late the speed of convergence of the algorithm, but there are trade-offs to optimize the value
obtained, need to be considered in accordance with the actual situation.

When the convergence speed is influenced by the radius of the trust region in step 6 of
algorithm 1, using a genetic algorithm to figure minU zekþ1

� �
out must meet:

zekþ1 ∈Ω, c < z2kþ1, l < zekþ1 < n:

where

c ¼ zek1 � a, f ¼ zek1 þ a, l ¼ zek2 � b, n ¼ zek2 þ b,

when solving zekþ1ð Þ1, z
e
kþ1ð Þ2, c, f , l, n are all known quantity.

Fitness function: establishing the mapping relationship between the objective function and the

function of moderate: G zð Þ ¼ 0:618U zð Þ; adopting the binary code to encode; replication strat-
egy to preserve the best individual mixed roulette selection; crossover operator is single point
crossover; and mutation operator for the basic bit mutation.

The procedure of algorithm 2:

Step 1: Parameter initialization: population size N, crossover probability Pc, mutation proba-
bility Pm, current algebraic Tc ¼ 0, maximum algebraic Tmax, and 0 < k < 0:618. The coding
initial solution produces a unit corresponding to the initial solution. And it randomly produces
two l-bit binary string working as one unit, and it does not stop until it generates N units.

Step 2: Solving adaption value of every individual in the current group, to get the optimization
z1b, z2b: described as:

If

Tc ≤Tmax

Motion Planning for Mobile Robots
http://dx.doi.org/10.5772/intechopen.76895

151



minqk dð Þ ¼ gTk dþ 0:5dTGkd
s:t: dk k2 ≤Δk, zk þ dk ∈Ω

(5)

where gk ¼ ∇U zkð Þ; Δk is the radius of trust region; Gk ¼ ∇2U zkð Þ: solving Gk is very compli-
cated, and using BFGS formula of quasi-Newton to structure Hessian matrix Bk, which is
approximate to Gk. dk is the decline tentative step. Ω is the range of R and θ.

The algorithm contains, and remark shows: z∈R2, zk ¼ zk1; zk2ð Þ, zkþ1 ¼ z kþ1ð Þ1; z kþ1ð Þ2
� �

, zekþ1 ¼
ze kþ1ð Þ1; ze kþ1ð Þ2
� �

, yk ¼ gkþ1 � gk, := value assignment, BBFGS
kþ1 ¼ Bk þ yky

T
k =y

T
k dk � BkdkBT

k =d
T
k Bkdk,

the amount of actual decline in the ratio of the amount of pre-estimated decline is:

rk ¼ ΔUk=Δqk ¼
U zkð Þ �U zk þ dkð Þ

qk 0ð Þ � qk dkð Þ :

The first step in the algorithm.

Step 1: Initialization, given: z0, Δ0 > 0, ε1 > 0, ε2 > 0, ε3 > 0, a > 0, b > 0M > 1.

0 < η1 < η2 < 1, B0 ≕ I2x2, 0 < β1 < β2 < 1 ≤ β3, k≔ 0

Step 2: Calculating gk, if gk
�� ��

2 < ε1, stop calculating, and output the result.

Step 3: Solving sub-problem in Eq. (5), and get the decline tentative step d1.

Step 4: Calculating rk, if rk > η1 meanwhile zk þ dk ∈Ω, so, zkþ1 ≔ zk þ dk rectifies Bkþ1, or
zkþ1 ≔ zk, Bkþ1 ≔Bk.

Figure 1. The optional range of sub-target point.

Advanced Path Planning for Mobile Entities150

Step 5: Choosing Δkþ1, let it meet:

Δkþ1

Δk; β3Δk
� ��

, rk > η2;

β2Δk;Δk
� �

, rk ∈ η1; η2
� �

;

β1Δk; β2Δk
� �

, rk < η1:

8>><
>>:

Step 6: If Δkþ1 < ε2, Ukþ1 �Ukk k < ε3, and using genetic algorithm to quickly solve min
U zekþ1
� �

so that an iteration point which is better than the current point, go to step 7, Or back
to step 8.

Step 7: If Ukþ1 �Ukk k > M Ukþ1 �Ukk k, so order zkþ1 ≔ zekþ1Gkþ1 ≔Δ0, back to step 2; or back
to step 8.

Step 8: Using BFGS formula to modify Bk and gets Bkþ1, k≔ kþ 1, back to step 2.

ε2, ε3,M values can be adjusted to control the number of times the call number of sub-issues of
a genetic algorithm to achieve the optimization algorithm speed, regulating ε1 also can regu-
late the speed of convergence of the algorithm, but there are trade-offs to optimize the value
obtained, need to be considered in accordance with the actual situation.

When the convergence speed is influenced by the radius of the trust region in step 6 of
algorithm 1, using a genetic algorithm to figure minU zekþ1

� �
out must meet:

zekþ1 ∈Ω, c < z2kþ1, l < zekþ1 < n:

where

c ¼ zek1 � a, f ¼ zek1 þ a, l ¼ zek2 � b, n ¼ zek2 þ b,

when solving zekþ1ð Þ1, z
e
kþ1ð Þ2, c, f , l, n are all known quantity.

Fitness function: establishing the mapping relationship between the objective function and the

function of moderate: G zð Þ ¼ 0:618U zð Þ; adopting the binary code to encode; replication strat-
egy to preserve the best individual mixed roulette selection; crossover operator is single point
crossover; and mutation operator for the basic bit mutation.

The procedure of algorithm 2:

Step 1: Parameter initialization: population size N, crossover probability Pc, mutation proba-
bility Pm, current algebraic Tc ¼ 0, maximum algebraic Tmax, and 0 < k < 0:618. The coding
initial solution produces a unit corresponding to the initial solution. And it randomly produces
two l-bit binary string working as one unit, and it does not stop until it generates N units.

Step 2: Solving adaption value of every individual in the current group, to get the optimization
z1b, z2b: described as:

If

Tc ≤Tmax

Motion Planning for Mobile Robots
http://dx.doi.org/10.5772/intechopen.76895

151



If

G zbð Þ � G zkð Þ > k and z∈Ω, then zekþ1ð Þ1 ≔ z1b,

zekþ1ð Þ2 ≔ z2b, stopping calculating, and backing to the step1 of algorithm 1.

ELSE backing to step 3.

ELSE updating initial parameters, baking to step 1.

Step 3: Replacing the two worst individuals in the two optimizations of the current generation,
then selecting N individuals by using roulette selection.

Step 4: Manipulating cross mutation to produces a new population. Backing to step 2.

2.3. Simulation and experiment

We select the initial parameters of the algorithm:

△0 ¼ 0:05∥U z0ð Þ∥, ε1 ¼ 0:1, ε2 ¼ 0:03, ε3 ¼ 0:05, a ¼ b ¼ 0:5,M ¼ 1:5, η1 ¼ 0:15, η2 ¼ 0:3, B0 ¼ I2x2,
β1 ¼ 0:35, β2 ¼ 0:75, β3 ¼ 1:25, :

N ¼ 20, Pc ¼ 0:99, Pm ¼ 0:05, Tmax ¼ 100, k ¼ 0:1, coding lengthl ¼ 32:vmax ¼ 0:3m=s, t0 ¼ 3s,
z0 ¼ 5vmaxt0=6:0ð Þ, k ¼ 1, η ¼ 2, ζ ¼ 0:1, n ¼ 4, m ¼ 1, :

s ¼ 0:3. The speed of mobile obstacles.

vr ¼ 0.2(0.5) + r and (m)/s,

φ ¼ π=2, r0 ¼ 2m, ra ¼ 0:15m

The original point of robots is (0, 0), the target point is (20, 24), and the unit is m (meter).

The simulation results are shown in Figures 4 and 5. It can be seen from simulation, that to
combine trust region algorithm and the improved artificial potential field method can optimize
mobile robot path planning, and get a better solution to local minima and the unreachable
target problem. Under the same conditions, a pure genetic algorithm for solving the sub-goal
problem, the average convergence time comes to the second level, and the individual points
solvers need more than 30 s, therefore, the proposed algorithm is much fast.

Robot trajectory simulation resulting potential field on a typical point 1 seen from Table 1, the
optimal path in the intensity values obtained are shown in table potential field strength decreases
rapidly, and the strong field in the times to reach the target point, the basic value to 30 s.

To verify the validity of the path planning algorithm, an experiment was made based on the
current conditions as shown in Figures 2 and 3. The equipment used in the experiment include
mobile robot, laser tracker sensor, distance detector sensor, digital compass, dynamics obsta-
cles, and still obstacles.

Advanced Path Planning for Mobile Entities152

The laser tracker can precisely measure the center point of the coordinate (x, y) when mobile
robot is in motion. Then it can send the distance information to the robot controller through a
local network and get the location of the robot in the space. The mobile robot is shaped like a
cylinder, with 0.6 m in diameter, 12 ultrasonic distance detect sensors with 0.1–6.0 m detect
distance, and 32 infrared distance sensors with 0.1–0.8 m detect distance. The angle between
two adjacent sensors is 30�. The measurement time is 0.015 s. The initial position of the robot is
(1.375, �2.328), and the target position is (1.248, 1.353), the velocity of moving obstacle is
Vr = 0.08 m/s, and φ ¼ π=6. The velocity of the mobile robot is V = 0.05 m/s, the moving
direction can be measured in real-time by the digital compass.

The initial parameters of the experiment are k = 1, n = 2, m = 1 η ¼ 2, ζ ¼ 0:1, r0 ¼ 1m,
ra ¼ 0:15m. The laser tracker recorded many points of the mobile robot, and the approximated
trajectory can be obtained from these points as shown in Figures 4 and 5. And the relationship
between the field strength and algorithm implementation time was listed in Table 2. From the
experiment, we can see that the algorithm has some advantages compared with those tradi-
tional methods. It is faster in implementation and computation.

2.4. Commits

We presented an approach of mobile robot trajectory planning under the existence of moving
obstacles by using improved artificial potential field method. To further verify the improved
artificial potential field method for moving machines effectiveness of robots path planning, the
use of the existing conditions, design path planning experiment = experimental scene shown in
“laboratory equipment including full orientation of the mobile robot laser tracker digital

Table 1. Magnitude of field of the point at the trajectory.

Motion Planning for Mobile Robots
http://dx.doi.org/10.5772/intechopen.76895

153



If

G zbð Þ � G zkð Þ > k and z∈Ω, then zekþ1ð Þ1 ≔ z1b,

zekþ1ð Þ2 ≔ z2b, stopping calculating, and backing to the step1 of algorithm 1.

ELSE backing to step 3.

ELSE updating initial parameters, baking to step 1.

Step 3: Replacing the two worst individuals in the two optimizations of the current generation,
then selecting N individuals by using roulette selection.

Step 4: Manipulating cross mutation to produces a new population. Backing to step 2.

2.3. Simulation and experiment

We select the initial parameters of the algorithm:

△0 ¼ 0:05∥U z0ð Þ∥, ε1 ¼ 0:1, ε2 ¼ 0:03, ε3 ¼ 0:05, a ¼ b ¼ 0:5,M ¼ 1:5, η1 ¼ 0:15, η2 ¼ 0:3, B0 ¼ I2x2,
β1 ¼ 0:35, β2 ¼ 0:75, β3 ¼ 1:25, :

N ¼ 20, Pc ¼ 0:99, Pm ¼ 0:05, Tmax ¼ 100, k ¼ 0:1, coding lengthl ¼ 32:vmax ¼ 0:3m=s, t0 ¼ 3s,
z0 ¼ 5vmaxt0=6:0ð Þ, k ¼ 1, η ¼ 2, ζ ¼ 0:1, n ¼ 4, m ¼ 1, :

s ¼ 0:3. The speed of mobile obstacles.

vr ¼ 0.2(0.5) + r and (m)/s,

φ ¼ π=2, r0 ¼ 2m, ra ¼ 0:15m

The original point of robots is (0, 0), the target point is (20, 24), and the unit is m (meter).

The simulation results are shown in Figures 4 and 5. It can be seen from simulation, that to
combine trust region algorithm and the improved artificial potential field method can optimize
mobile robot path planning, and get a better solution to local minima and the unreachable
target problem. Under the same conditions, a pure genetic algorithm for solving the sub-goal
problem, the average convergence time comes to the second level, and the individual points
solvers need more than 30 s, therefore, the proposed algorithm is much fast.

Robot trajectory simulation resulting potential field on a typical point 1 seen from Table 1, the
optimal path in the intensity values obtained are shown in table potential field strength decreases
rapidly, and the strong field in the times to reach the target point, the basic value to 30 s.

To verify the validity of the path planning algorithm, an experiment was made based on the
current conditions as shown in Figures 2 and 3. The equipment used in the experiment include
mobile robot, laser tracker sensor, distance detector sensor, digital compass, dynamics obsta-
cles, and still obstacles.

Advanced Path Planning for Mobile Entities152

The laser tracker can precisely measure the center point of the coordinate (x, y) when mobile
robot is in motion. Then it can send the distance information to the robot controller through a
local network and get the location of the robot in the space. The mobile robot is shaped like a
cylinder, with 0.6 m in diameter, 12 ultrasonic distance detect sensors with 0.1–6.0 m detect
distance, and 32 infrared distance sensors with 0.1–0.8 m detect distance. The angle between
two adjacent sensors is 30�. The measurement time is 0.015 s. The initial position of the robot is
(1.375, �2.328), and the target position is (1.248, 1.353), the velocity of moving obstacle is
Vr = 0.08 m/s, and φ ¼ π=6. The velocity of the mobile robot is V = 0.05 m/s, the moving
direction can be measured in real-time by the digital compass.

The initial parameters of the experiment are k = 1, n = 2, m = 1 η ¼ 2, ζ ¼ 0:1, r0 ¼ 1m,
ra ¼ 0:15m. The laser tracker recorded many points of the mobile robot, and the approximated
trajectory can be obtained from these points as shown in Figures 4 and 5. And the relationship
between the field strength and algorithm implementation time was listed in Table 2. From the
experiment, we can see that the algorithm has some advantages compared with those tradi-
tional methods. It is faster in implementation and computation.

2.4. Commits

We presented an approach of mobile robot trajectory planning under the existence of moving
obstacles by using improved artificial potential field method. To further verify the improved
artificial potential field method for moving machines effectiveness of robots path planning, the
use of the existing conditions, design path planning experiment = experimental scene shown in
“laboratory equipment including full orientation of the mobile robot laser tracker digital

Table 1. Magnitude of field of the point at the trajectory.

Motion Planning for Mobile Robots
http://dx.doi.org/10.5772/intechopen.76895

153



distance sensor compass static obstacles and dynamic obstacles. Laser tracker can accurately
measure mobile robot motion moving the coordinate value of the center point of the process
(x, y), through a wireless local area network location information measured in real-time sent to
the robot controller, robot positioning cylindrical omnidirectional mobile robot structure with
a diameter 0.6 m, and surrounded by 12 uniform ultrasonic ranging.

Figure 2. The simulation result of improved artificial potential field method.

Figure 3. Geometric representation for computing target potion.

Advanced Path Planning for Mobile Entities154

Figure 4. Trajectory of the mobile robot.

Figure 5. Trajectory planning and simulation (1–3).

Motion Planning for Mobile Robots
http://dx.doi.org/10.5772/intechopen.76895

155



distance sensor compass static obstacles and dynamic obstacles. Laser tracker can accurately
measure mobile robot motion moving the coordinate value of the center point of the process
(x, y), through a wireless local area network location information measured in real-time sent to
the robot controller, robot positioning cylindrical omnidirectional mobile robot structure with
a diameter 0.6 m, and surrounded by 12 uniform ultrasonic ranging.

Figure 2. The simulation result of improved artificial potential field method.

Figure 3. Geometric representation for computing target potion.

Advanced Path Planning for Mobile Entities154

Figure 4. Trajectory of the mobile robot.

Figure 5. Trajectory planning and simulation (1–3).

Motion Planning for Mobile Robots
http://dx.doi.org/10.5772/intechopen.76895

155



3. Improved RRT* motion planning algorithm for mobile robot

Some path planning algorithms such as ant colony algorithm, genetic algorithm, artificial
potential field algorithm, and dealing with some planning have its unique superiority. How-
ever, in the complex environment and high-dimensional space, the complex of the algorithm
will increase sharply, which lead the convergence time too long to solve the problem. Because
the algorithm based on potential field or heuristic function does not consider the kinematic
and dynamic constraints, its result cannot be executed by the real case [12–17].

In order to solve the problem of high-dimensional path planning, the sampling algorithms
have been introduced [18]. Compared with another advanced algorithm, the main advantage
of the algorithm based on sampling is avoiding constructing the explicit configuration space,
and it has been shown to be an effective solution to the path planning [19]. RRT algorithm
based on sampling with rapid convergence rate can be used in unknown obstacle environment
[20]. However, there are still some shortcomings in RRT algorithm [21–23]:

1. Its convergence rate is very slow in achieving the optimal solution;

2. Its memory requirements are significantly large due to a large number of iterations used to
calculate the optimal path;

3. The rejection of samples, which might not be connectable directly with the existing nodes
in the tree, but may lie closer to the goal region and hence could aid the algorithm in
determining an optimal path much more rapid.

The domestic and foreign scholars have been studied on these deficiencies and proposed
various RRT algorithms to adapt to different application scenarios. In order to improve the
efficiency of the expansion of the node, Kuffner and La Valle proposed the RRT-connect [24].
Karaman and Frazzoli first proposed RRT* algorithm, which convergence to the optimal
solution [25]. A.H. Qureshi and S. Mumtaz proposed the TG-RRT*, using triangular geometry
to select node, in order to reduce the number of iterations required for the optimal solution, so
as to make the algorithm rapid convergence [26]. C. Wouter Bac and Tim Roorda proposed by

Table 2. Algorithm implementation time and field strength.

Advanced Path Planning for Mobile Entities156

RRT algorithm on ROS platform for mobile robot path planning research and applied to the
motion planning problem in the dense obstacles environment [27].

3.1. Nonholonomic constraints for mobile robot

The integrity constraints include a system of generalized coordinates derivative and integral
constraints. The mobile robot is a typical nonholonomic constraint system. The mobile robot’s
simplified moving model is shown in the Figure 6.

Mobile robot’s state variables in configuration space x; y;θ; v;ϕ
� �

, let x; yð Þ represent the center
of mobile robot rear axle in the system coordinates, θ represent the angle between the forward
direction of the mobile robot and the x-axis, φ represent the angle between the forward
direction of the mobile robot and the front wheel direction, v as the speed of the mobile robot,
due to the nonholonomic constraints, the wheel is point contact with the ground, and only
pure roll no relative sliding at contact.

_x ¼ v cosθ
_y ¼ v sinθ
_θ ¼ v tanϕ=L
_v ¼ u0
_ϕ ¼ u1

8>>>>><
>>>>>:

(4.1)

And the constraint equations:

dx dt=

dy dt=

dθ dt=

dv dt=

dϕ dt=

0
BBBBBB@

1
CCCCCCA
¼

v cosθ
v sinθ
v tan ϕ=L

0
0

0
BBBBBB@

1
CCCCCCA
þ

0
0
0
1
0

0
BBBBBB@

1
CCCCCCA
u0 þ

0
0
0
0
1

0
BBBBBB@

1
CCCCCCA
u1 (4.2)

Figure 6. Geometrics of the mobile robot.

Motion Planning for Mobile Robots
http://dx.doi.org/10.5772/intechopen.76895

157



3. Improved RRT* motion planning algorithm for mobile robot

Some path planning algorithms such as ant colony algorithm, genetic algorithm, artificial
potential field algorithm, and dealing with some planning have its unique superiority. How-
ever, in the complex environment and high-dimensional space, the complex of the algorithm
will increase sharply, which lead the convergence time too long to solve the problem. Because
the algorithm based on potential field or heuristic function does not consider the kinematic
and dynamic constraints, its result cannot be executed by the real case [12–17].

In order to solve the problem of high-dimensional path planning, the sampling algorithms
have been introduced [18]. Compared with another advanced algorithm, the main advantage
of the algorithm based on sampling is avoiding constructing the explicit configuration space,
and it has been shown to be an effective solution to the path planning [19]. RRT algorithm
based on sampling with rapid convergence rate can be used in unknown obstacle environment
[20]. However, there are still some shortcomings in RRT algorithm [21–23]:

1. Its convergence rate is very slow in achieving the optimal solution;

2. Its memory requirements are significantly large due to a large number of iterations used to
calculate the optimal path;

3. The rejection of samples, which might not be connectable directly with the existing nodes
in the tree, but may lie closer to the goal region and hence could aid the algorithm in
determining an optimal path much more rapid.

The domestic and foreign scholars have been studied on these deficiencies and proposed
various RRT algorithms to adapt to different application scenarios. In order to improve the
efficiency of the expansion of the node, Kuffner and La Valle proposed the RRT-connect [24].
Karaman and Frazzoli first proposed RRT* algorithm, which convergence to the optimal
solution [25]. A.H. Qureshi and S. Mumtaz proposed the TG-RRT*, using triangular geometry
to select node, in order to reduce the number of iterations required for the optimal solution, so
as to make the algorithm rapid convergence [26]. C. Wouter Bac and Tim Roorda proposed by

Table 2. Algorithm implementation time and field strength.

Advanced Path Planning for Mobile Entities156

RRT algorithm on ROS platform for mobile robot path planning research and applied to the
motion planning problem in the dense obstacles environment [27].

3.1. Nonholonomic constraints for mobile robot

The integrity constraints include a system of generalized coordinates derivative and integral
constraints. The mobile robot is a typical nonholonomic constraint system. The mobile robot’s
simplified moving model is shown in the Figure 6.

Mobile robot’s state variables in configuration space x; y;θ; v;ϕ
� �

, let x; yð Þ represent the center
of mobile robot rear axle in the system coordinates, θ represent the angle between the forward
direction of the mobile robot and the x-axis, φ represent the angle between the forward
direction of the mobile robot and the front wheel direction, v as the speed of the mobile robot,
due to the nonholonomic constraints, the wheel is point contact with the ground, and only
pure roll no relative sliding at contact.

_x ¼ v cosθ
_y ¼ v sinθ
_θ ¼ v tanϕ=L
_v ¼ u0
_ϕ ¼ u1

8>>>>><
>>>>>:

(4.1)

And the constraint equations:

dx dt=

dy dt=

dθ dt=

dv dt=

dϕ dt=

0
BBBBBB@

1
CCCCCCA
¼

v cosθ
v sinθ
v tan ϕ=L

0
0

0
BBBBBB@

1
CCCCCCA
þ

0
0
0
1
0

0
BBBBBB@

1
CCCCCCA
u0 þ

0
0
0
0
1

0
BBBBBB@

1
CCCCCCA
u1 (4.2)

Figure 6. Geometrics of the mobile robot.

Motion Planning for Mobile Robots
http://dx.doi.org/10.5772/intechopen.76895

157



u0 (acceleration) and u1 (angular acceleration) of the mobile robot control variables. The
minimum turning radius (maximum curvature) of the mobile robot is:

Kmax ¼
tanϕmax

L
¼ 1

Rmin
(4.3)

Therefore, it is unreasonable without considering the nonholonomic constraints of the robot
planning algorithm.

3.2. Description and implementation of the I-RRT*

I-RRT* algorithm showed in Table 3 is specifically designed for motion planning in complex,
cluttered environments where exploration of configuration space is difficult. Let the sets of
near vertices from the tree Ta and Tb be denoted by Xa

near and Xb
near, respectively. The path is

connecting Pa
init and Prand is denoted by σa0 : 0; sa½ �, while the path is connecting Pb

init and Prand is
denoted by σb0 : 0; sb½ �.
It starts by picking a random sample Prand from the obstacle-free configuration space Xfree that

is, xrand ∈Xfree. It then populates the set of near vertices, Xb
near for both trees using the

NearVertices procedure. It should be noted that a ball region centered at Prand of radius r is
formed, and the sets of the near vertices from both trees are computed that is:

1. Va  xainit
� �

; Ea  ϕ; Ta  Va;Eað Þ;
2. Vb  xbinit

� �
; Eb  ϕ; Tb  Vb;Ebð Þ;

3. σf  ∞; E ϕ;
4. Connection True
5. for i 0 to N do
6. xrand  Sample ið Þ
7. Xa

near;X
b
near

� � NearVertices xrand;Ta;Tbð Þ
8. if Xa

near ¼ φ && Xb
near ¼ φ then

9. Xa
near;X

b
near

� � NearestVertex xrand;Ta;Tbð Þ
10. Connection False
11. Las  GetSortedList xrand;Xa

near

� �

12. Lbs  GetSortedList xrand;Xb
near

� �

13. xmin; flag;σf
� � GetBestTreeParent Las ;L

b
s ;Connection

� �
14. if flagð Þthen
15. Ta  InsertVertex xrand; xmin;Tað Þ
16. Ta  RewireVertex xrand; xmin;Tað Þ
17. else
18. Tb  InsertVertex xrand; xmin;Tbð Þ
19. Tb  RewireVertex xrand; xmin;Tbð Þ
20. E Ea∪Eb

21. V  Va∪Vb

22. return Ta;Tbf g ¼ V;Eð Þ

Table 3. The algorithm of I-RRT*.

Advanced Path Planning for Mobile Entities158

Xa
near ≔ v Va : v∈Βxrand, r

� �
(4.4)

Xb
near ≔ v Vb : v∈Βxrand, r

� �
(4.5)

In the case of both sets of near vertices being found empty, these sets are filled with the closest
vertex from their respective trees instead. The procedure Best Selected Tree returns the nearest
vertex on the Best Selected Tree, which is eligible to become the parent of the random sample.

Hence, unlike the connect heuristic, the I-RRT* is not greedy since the connection is only made
inside the ball region. Finally, the tree connection generates the end-to-end global path.

3.3. Experimental results

3.3.1. The algorithm simulation

This section presents simulations performed on a 2.4 GHz Intel Core i5 processor with 4 GB
RAM. Here, performance results of our I-RRT* algorithm are compared with RRT* and B-
RRT*. For proper comparison, experimental conditions and size of the configuration space
were kept constant for all algorithms. Since randomized sampling-based algorithms exhibit
large variations in results, the algorithms were run up to 50 times with different seed values for
each type of environment. Maximum, minimum, and an average number of iterations i as well
as time t utilized by each algorithm to reach the optimal path solution is presented in Table 4.

In the second environment simulation, chooses some representative to verify the algorithm
performance.

Figures 7–9 are three kinds of the optimization algorithm for the same problems. And we can
see the I-RRT* is better than the others.

In the third environment model simulation test, using the three different kinds of obstacle
environment simulation experiment, we tested the performance of the algorithm in Figure 10.

Environment ALG imin imax iavg tmin tmax tavg C fail

3D-Random obstacles RRT* 107,810 110,851 108,965 17.8 19.3 18.8 ** 6

B-RRT* 30,901 38,086 36,128 6.4 8.1 7.4 ** 4

I-RRT* 19,507 22,525 21,290 4.4 5.3 5.1 ** 1

3D-Multiple barriers RRT* 1,430,381 1,440,619 1,437,342 242.1 247.4 244.1 205.6 14

B-RRT* 495,961 503,240 498,972 102.1 106.5 105.1 205.6 6

I-RRT* 97,885 112,857 111,139 22.3 27.3 26.2 205.6 3

3D-Narrow passage RRT* 1,277,376 1,301,698 1,290,674 216.9 221.9 218.5 345.1 9

B-RRT* 533,276 561,347 551,771 110 117.1 115.9 345.1 3

I-RRT* 127,363 143,806 134,421 30.3 35.2 31.4 345.1 0

Table 4. Experimental results for computing optimal path solution.

Motion Planning for Mobile Robots
http://dx.doi.org/10.5772/intechopen.76895

159



u0 (acceleration) and u1 (angular acceleration) of the mobile robot control variables. The
minimum turning radius (maximum curvature) of the mobile robot is:

Kmax ¼
tanϕmax

L
¼ 1

Rmin
(4.3)

Therefore, it is unreasonable without considering the nonholonomic constraints of the robot
planning algorithm.

3.2. Description and implementation of the I-RRT*

I-RRT* algorithm showed in Table 3 is specifically designed for motion planning in complex,
cluttered environments where exploration of configuration space is difficult. Let the sets of
near vertices from the tree Ta and Tb be denoted by Xa

near and Xb
near, respectively. The path is

connecting Pa
init and Prand is denoted by σa0 : 0; sa½ �, while the path is connecting Pb

init and Prand is
denoted by σb0 : 0; sb½ �.
It starts by picking a random sample Prand from the obstacle-free configuration space Xfree that

is, xrand ∈Xfree. It then populates the set of near vertices, Xb
near for both trees using the

NearVertices procedure. It should be noted that a ball region centered at Prand of radius r is
formed, and the sets of the near vertices from both trees are computed that is:

1. Va  xainit
� �

; Ea  ϕ; Ta  Va;Eað Þ;
2. Vb  xbinit

� �
; Eb  ϕ; Tb  Vb;Ebð Þ;

3. σf  ∞; E ϕ;
4. Connection True
5. for i 0 to N do
6. xrand  Sample ið Þ
7. Xa

near;X
b
near

� � NearVertices xrand;Ta;Tbð Þ
8. if Xa

near ¼ φ && Xb
near ¼ φ then

9. Xa
near;X

b
near

� � NearestVertex xrand;Ta;Tbð Þ
10. Connection False
11. Las  GetSortedList xrand;Xa

near

� �

12. Lbs  GetSortedList xrand;Xb
near

� �

13. xmin; flag;σf
� � GetBestTreeParent Las ;L

b
s ;Connection

� �
14. if flagð Þthen
15. Ta  InsertVertex xrand; xmin;Tað Þ
16. Ta  RewireVertex xrand; xmin;Tað Þ
17. else
18. Tb  InsertVertex xrand; xmin;Tbð Þ
19. Tb  RewireVertex xrand; xmin;Tbð Þ
20. E Ea∪Eb

21. V  Va∪Vb

22. return Ta;Tbf g ¼ V;Eð Þ

Table 3. The algorithm of I-RRT*.

Advanced Path Planning for Mobile Entities158

Xa
near ≔ v Va : v∈Βxrand, r

� �
(4.4)

Xb
near ≔ v Vb : v∈Βxrand, r

� �
(4.5)

In the case of both sets of near vertices being found empty, these sets are filled with the closest
vertex from their respective trees instead. The procedure Best Selected Tree returns the nearest
vertex on the Best Selected Tree, which is eligible to become the parent of the random sample.

Hence, unlike the connect heuristic, the I-RRT* is not greedy since the connection is only made
inside the ball region. Finally, the tree connection generates the end-to-end global path.

3.3. Experimental results

3.3.1. The algorithm simulation

This section presents simulations performed on a 2.4 GHz Intel Core i5 processor with 4 GB
RAM. Here, performance results of our I-RRT* algorithm are compared with RRT* and B-
RRT*. For proper comparison, experimental conditions and size of the configuration space
were kept constant for all algorithms. Since randomized sampling-based algorithms exhibit
large variations in results, the algorithms were run up to 50 times with different seed values for
each type of environment. Maximum, minimum, and an average number of iterations i as well
as time t utilized by each algorithm to reach the optimal path solution is presented in Table 4.

In the second environment simulation, chooses some representative to verify the algorithm
performance.

Figures 7–9 are three kinds of the optimization algorithm for the same problems. And we can
see the I-RRT* is better than the others.

In the third environment model simulation test, using the three different kinds of obstacle
environment simulation experiment, we tested the performance of the algorithm in Figure 10.

Environment ALG imin imax iavg tmin tmax tavg C fail

3D-Random obstacles RRT* 107,810 110,851 108,965 17.8 19.3 18.8 ** 6

B-RRT* 30,901 38,086 36,128 6.4 8.1 7.4 ** 4

I-RRT* 19,507 22,525 21,290 4.4 5.3 5.1 ** 1

3D-Multiple barriers RRT* 1,430,381 1,440,619 1,437,342 242.1 247.4 244.1 205.6 14

B-RRT* 495,961 503,240 498,972 102.1 106.5 105.1 205.6 6

I-RRT* 97,885 112,857 111,139 22.3 27.3 26.2 205.6 3

3D-Narrow passage RRT* 1,277,376 1,301,698 1,290,674 216.9 221.9 218.5 345.1 9

B-RRT* 533,276 561,347 551,771 110 117.1 115.9 345.1 3

I-RRT* 127,363 143,806 134,421 30.3 35.2 31.4 345.1 0

Table 4. Experimental results for computing optimal path solution.

Motion Planning for Mobile Robots
http://dx.doi.org/10.5772/intechopen.76895

159



To restrain the computational time within reasonable limits, the maximum limit for the num-
ber of tree nodes was kept at 3 million.

Although both I-RRT* and B-RRT* were successful in finding the optimal solution, B-RRT*
took an extremely large number of iterations to converge in comparison with I-RRT*. B-RRT*

Figure 7. RRT* performance in 2-D environment.

Figure 8. B-RRT* performance in 2-D environment.

Figure 9. I-RRT* performance in a 2-D environment.

Figure 10. I-RRT* performance in 3-D environment.

Advanced Path Planning for Mobile Entities160

utilizes the partial greedy heuristic approach as discussed earlier, which significantly reduces
its ability of convergence to the optimal path solution. Table 4 shows the convergence from the
initial path solution to the optimal path solution by I-RRT* and RRT*, respectively. For deter-
mination of the optimal path, the I-RRT* algorithm takes the least number of average iterations
(iavg = 111,139) as compared to B-RRT*(iavg = 498,972) and the extraordinarily large number
of iterations taken up by RRT*(iavg = 1,437,342).

3.4. Mobile robot simulation experiment on ROS

The simulation of the environment was established under the gazebo. In building a model, a
mobile robot called ROSmapping packages build implementation scenariomap in Figures 11–13.

Figure 11. The process of SLAM. (a) SLAM show under gazebo (b) SLAM show under RVIZ.

Figure 12. Map information in RVIZ.

Motion Planning for Mobile Robots
http://dx.doi.org/10.5772/intechopen.76895

161



To restrain the computational time within reasonable limits, the maximum limit for the num-
ber of tree nodes was kept at 3 million.

Although both I-RRT* and B-RRT* were successful in finding the optimal solution, B-RRT*
took an extremely large number of iterations to converge in comparison with I-RRT*. B-RRT*

Figure 7. RRT* performance in 2-D environment.

Figure 8. B-RRT* performance in 2-D environment.

Figure 9. I-RRT* performance in a 2-D environment.

Figure 10. I-RRT* performance in 3-D environment.

Advanced Path Planning for Mobile Entities160

utilizes the partial greedy heuristic approach as discussed earlier, which significantly reduces
its ability of convergence to the optimal path solution. Table 4 shows the convergence from the
initial path solution to the optimal path solution by I-RRT* and RRT*, respectively. For deter-
mination of the optimal path, the I-RRT* algorithm takes the least number of average iterations
(iavg = 111,139) as compared to B-RRT*(iavg = 498,972) and the extraordinarily large number
of iterations taken up by RRT*(iavg = 1,437,342).

3.4. Mobile robot simulation experiment on ROS

The simulation of the environment was established under the gazebo. In building a model, a
mobile robot called ROSmapping packages build implementation scenariomap in Figures 11–13.

Figure 11. The process of SLAM. (a) SLAM show under gazebo (b) SLAM show under RVIZ.

Figure 12. Map information in RVIZ.

Motion Planning for Mobile Robots
http://dx.doi.org/10.5772/intechopen.76895

161



3.5. Static environment experiment

Using the I-RRT* algorithm for mobile robot path planning, we choose a random target on the
map and set the position and posture in Figure 13. I-RRT* algorithm can generate a barrier-free
path, as shown in the green feed, where the trajectory planning algorithm.

Figures show the I-RRT* dynamic planning process, which is real-time planning. I-RRT*
algorithm programming device receives the message, if there are new obstacles, in order to
avoid obstacles, I-RRT* real-time planning. In this picture perceived color area for mobile robot
around obstacles of information, the green line is the initial path planning, the red line for real-
time planning path. As a result, the algorithm can be applied to the dynamic environment of
the path planning problem.

4. Conclusion

Solving the path planning problems of the ground robot and mobile robot are the premise of
more efficient use of the robot. Due to the different types of robots, the problems in the path
planning need to be considered, from 2D to 3D. Three path planning algorithms for different
types of robots are proposed in this chapter. The problem of path planning for existing
industrial robots and mobile robots, including unmanned vehicles and unmanned aerial vehi-
cles, are solved. All the simulations results show that the algorithms proposed in this paper are
feasible.

Acknowledgements

This research is supported in part by Natural Science Foundation of China (NSFC) No.
51405001 and 31300125.

Figure 13. The process of planning. (a) Start planning, (b) the process of planning, and (c) planning complete.

Advanced Path Planning for Mobile Entities162

Author details

Xiangrong Xu*, Yang Yang and Siyu Pan

*Address all correspondence to: xuxr88@yahoo.com

School of Mechanical Engineering, Anhui University of Technology, Ma’anshan, Anhui, China

References

[1] Fu KS, Gonzales RC, Lee CS. Robotics: Control, Sensing, Vision, and Intelligence. Singa-
pore: McGrawHill. Inc; 1987. ISBN:0070226253

[2] Jung D, Tsiotras P. On-line path generation for small unmanned aerial vehicles using
B-spline path templates. AIAA Guidance, Navigation and Control Conference, AIAA.
2008, Vol. 7135. DOI: 10.2514/6.2008–7135

[3] Chandler P, Rasmussen S, Pachter M. UAV cooperative path planning. AIAA Guidance,
Navigation, and Control Conference and Exhibit. 2000. pp. 1255-1265. DOI: 10.2514/
6.2000-4370

[4] Oscar M, Ulises O, Roberto S. Path planning for mobile robots using bacterial potential
field for avoiding static and dynamic obstacles. Expert Systems with Applications. July
2015;42(12):5177-5191

[5] Park M, Jeon J, Lee M. Obstacle avoidance for mobile robots using artificial potential field
approach with simulated annealing. Proceedings of the 2001 IEEE International Sympo-
sium on Industrial Electronics, Pusan. 2001. pp. 1530-1535

[6] Kitamura Y, Tanaka T, Kishino F. 3-D path planning in a dynamic environment using an
octree and an artificial potential field. Proceedings of the 1995 IEEE International Confer-
ence on Intelligent Robots and Systems. Piscataway: IEEE; 1995. 2474-2481

[7] Janabi S, Vinke D. Integration of the artificial potential field approach with simulated
annealing for robot path planning. Proceedings of the 1993 IEEE International Symposium
on Intelligent Control Piscataway: IEEE. 1993. 536-541

[8] Hsu CK. Variable structure control design for uncertain dynamic systems with sector
nonlinearities. Automatica. 1998;34(4):505-508

[9] Ashiru I, Czarnecki C, Routen T. Characteristics of a genetic based approach to path plan-
ning for mobile robots. Journal of Network and Computer Applications, 1996;19(2):149-169

[10] Chen L, You B. Dynamic robot motion tracking and obstacle avoidance based on artificial
potential field method. Control Theory and Application. 2007;26(4):8-10

Motion Planning for Mobile Robots
http://dx.doi.org/10.5772/intechopen.76895

163



3.5. Static environment experiment

Using the I-RRT* algorithm for mobile robot path planning, we choose a random target on the
map and set the position and posture in Figure 13. I-RRT* algorithm can generate a barrier-free
path, as shown in the green feed, where the trajectory planning algorithm.

Figures show the I-RRT* dynamic planning process, which is real-time planning. I-RRT*
algorithm programming device receives the message, if there are new obstacles, in order to
avoid obstacles, I-RRT* real-time planning. In this picture perceived color area for mobile robot
around obstacles of information, the green line is the initial path planning, the red line for real-
time planning path. As a result, the algorithm can be applied to the dynamic environment of
the path planning problem.

4. Conclusion

Solving the path planning problems of the ground robot and mobile robot are the premise of
more efficient use of the robot. Due to the different types of robots, the problems in the path
planning need to be considered, from 2D to 3D. Three path planning algorithms for different
types of robots are proposed in this chapter. The problem of path planning for existing
industrial robots and mobile robots, including unmanned vehicles and unmanned aerial vehi-
cles, are solved. All the simulations results show that the algorithms proposed in this paper are
feasible.

Acknowledgements

This research is supported in part by Natural Science Foundation of China (NSFC) No.
51405001 and 31300125.

Figure 13. The process of planning. (a) Start planning, (b) the process of planning, and (c) planning complete.

Advanced Path Planning for Mobile Entities162

Author details

Xiangrong Xu*, Yang Yang and Siyu Pan

*Address all correspondence to: xuxr88@yahoo.com

School of Mechanical Engineering, Anhui University of Technology, Ma’anshan, Anhui, China

References

[1] Fu KS, Gonzales RC, Lee CS. Robotics: Control, Sensing, Vision, and Intelligence. Singa-
pore: McGrawHill. Inc; 1987. ISBN:0070226253

[2] Jung D, Tsiotras P. On-line path generation for small unmanned aerial vehicles using
B-spline path templates. AIAA Guidance, Navigation and Control Conference, AIAA.
2008, Vol. 7135. DOI: 10.2514/6.2008–7135

[3] Chandler P, Rasmussen S, Pachter M. UAV cooperative path planning. AIAA Guidance,
Navigation, and Control Conference and Exhibit. 2000. pp. 1255-1265. DOI: 10.2514/
6.2000-4370

[4] Oscar M, Ulises O, Roberto S. Path planning for mobile robots using bacterial potential
field for avoiding static and dynamic obstacles. Expert Systems with Applications. July
2015;42(12):5177-5191

[5] Park M, Jeon J, Lee M. Obstacle avoidance for mobile robots using artificial potential field
approach with simulated annealing. Proceedings of the 2001 IEEE International Sympo-
sium on Industrial Electronics, Pusan. 2001. pp. 1530-1535

[6] Kitamura Y, Tanaka T, Kishino F. 3-D path planning in a dynamic environment using an
octree and an artificial potential field. Proceedings of the 1995 IEEE International Confer-
ence on Intelligent Robots and Systems. Piscataway: IEEE; 1995. 2474-2481

[7] Janabi S, Vinke D. Integration of the artificial potential field approach with simulated
annealing for robot path planning. Proceedings of the 1993 IEEE International Symposium
on Intelligent Control Piscataway: IEEE. 1993. 536-541

[8] Hsu CK. Variable structure control design for uncertain dynamic systems with sector
nonlinearities. Automatica. 1998;34(4):505-508

[9] Ashiru I, Czarnecki C, Routen T. Characteristics of a genetic based approach to path plan-
ning for mobile robots. Journal of Network and Computer Applications, 1996;19(2):149-169

[10] Chen L, You B. Dynamic robot motion tracking and obstacle avoidance based on artificial
potential field method. Control Theory and Application. 2007;26(4):8-10

Motion Planning for Mobile Robots
http://dx.doi.org/10.5772/intechopen.76895

163



[11] Vadakkepat P, TanWK. Evolutionary artificial potential fields and their application in real
time robot path. Proceedings of the 2000 IEEE Conference on Evolutionary Computation
Evolutionary Computation. Piscataway: IEEE. 2000. 256-263

[12] Xu X, Shi DQ, Lu M, et al. Study on mechanical mechanics with a method for minimum-
time path planning of robots in cartesian space. Advanced Materials Research. 2013;703:
181-185. DOI: 10.4028/www.scientific.net/AMR.703.181

[13] Pellazar MB. Vehicle route planning with constraints using genetic algorithms. Aerospace
and Electronics Conference, 1994. NAECON 1994. Proceedings of the IEEE 1994 National.
IEEE, 1994: 111-118. DOI: 10.1109/NAECON.1994.333010

[14] Duan H, Yu Y, Zhang X, et al. Three-dimension path planning for UCAV using hybrid
meta-heuristic ACO-DE algorithm. Simulation Modelling Practice and Theory. 2010;18(8):
1104-1115. DOI: 10.1016/j.simpat.2009.10.006

[15] Wang H, Liu YH, Chen W. Visual tracking of robots in uncalibrated environments.
Mechatronics. 2012;22(4):390-397. DOI: 10.1016/j.mechatronics.2011.09.006

[16] He J, Hou Z. Ant colony algorithm for traffic signal timing optimization. Advances in
Engineering Software. 2012;43(1):14-18. DOI: 10.1016/j.advengsoft.2011.09.002

[17] Xu X, Li Y, Yang Y, et al. A method of trajectory planning for GroundMobile Robot based
on ant colony algorithm. IEEE International Conference on Robotics and Biomimetics.
IEEE, 2017:2117–2121. DOI: 10.1109/ROBIO.2016.7866642

[18] Elbanhawi M, Simic M. Sampling-based robot motion planning: A review. IEEE Access.
2014;2(1):56-77. DOI: 10.1109/ACCESS.2014.2302442

[19] Qureshi AH, Ayaz Y. Intelligent bidirectional rapidly exploring random trees for optimal
motion planning in complex cluttered environments. Robotics and Autonomous Systems.
2015;68:1-11. DOI: 10.1016/j.robot.2015.02.007

[20] Kavraki L, Latombe JC. Randomized preprocessing of configuration for fast path plan-
ning. IEEE International Conference on Robotics and Automation, 1994. Proceedings 3,
2138-2145. IEEE. 1994. DOI: 10.1109/ROBOT.1994.350966

[21] Vonásek V, Saska M, Winkler L, Přeučil L. High-level motion planning for cpg-driven
modular robots. Robotics & Autonomous Systems. 2015;68:116-128. DOI: 10.1016/j.
robot.2015.01.006

[22] Doshi AA, Postula AJ, Fletcher A, Singh SPN. Development of micro-uav with integrated
motion planning for open-cut mining surveillance. Microprocessors and Microsystems.
2015;39(8):829-835. DOI: 10.1016/j.micpro.2015.07.008

[23] Park KJ, Won M. People tracking and accompanying algorithm for mobile robot using
kinect sensor and extended kalman filter. Transactions of the Korean Society of Mechani-
cal Engineers A. 2014;38(4):345-354. DOI : 10.3795/KSME-A.2014.38.4.345

Advanced Path Planning for Mobile Entities164

[24] Kuffner JJ, Lavalle SM. RRT-connect: An efficient approach to single-query path planning.
IEEE International Conference on Robotics and Automation, 2000. Proceedings. ICRA
(Vol. 2, pp. 995-1001). 2000. IEEE. DOI: 10.1109/ROBOT.2000.844730

[25] Karaman S, Frazzoli E. Sampling-based algorithms for optimal motion planning. Interna-
tional Journal of Robotics Research. 2011;30(7):846-894. DOI: 10.1177/0278364911406761

[26] Qureshi AH, Mumtaz S, Iqbal KF, Ayaz Y. Triangular geometry based optimal motion
planning using RRT*-motion planner. IEEE, International Workshop on Advanced
Motion Control. 2014:380-385. DOI: 10.1109/AMC.2014.6823312

[27] Bac CW, Roorda T, Reshef R, Berman S, Hemming J, Henten EJV. Analysis of a motion
planning problem for sweet-pepper harvesting in a dense obstacle environment.
Biosystems Engineering. 2016;146:85-97. DOI: 10.1016/j.biosystemseng.2015.07.004

Motion Planning for Mobile Robots
http://dx.doi.org/10.5772/intechopen.76895

165



[11] Vadakkepat P, TanWK. Evolutionary artificial potential fields and their application in real
time robot path. Proceedings of the 2000 IEEE Conference on Evolutionary Computation
Evolutionary Computation. Piscataway: IEEE. 2000. 256-263

[12] Xu X, Shi DQ, Lu M, et al. Study on mechanical mechanics with a method for minimum-
time path planning of robots in cartesian space. Advanced Materials Research. 2013;703:
181-185. DOI: 10.4028/www.scientific.net/AMR.703.181

[13] Pellazar MB. Vehicle route planning with constraints using genetic algorithms. Aerospace
and Electronics Conference, 1994. NAECON 1994. Proceedings of the IEEE 1994 National.
IEEE, 1994: 111-118. DOI: 10.1109/NAECON.1994.333010

[14] Duan H, Yu Y, Zhang X, et al. Three-dimension path planning for UCAV using hybrid
meta-heuristic ACO-DE algorithm. Simulation Modelling Practice and Theory. 2010;18(8):
1104-1115. DOI: 10.1016/j.simpat.2009.10.006

[15] Wang H, Liu YH, Chen W. Visual tracking of robots in uncalibrated environments.
Mechatronics. 2012;22(4):390-397. DOI: 10.1016/j.mechatronics.2011.09.006

[16] He J, Hou Z. Ant colony algorithm for traffic signal timing optimization. Advances in
Engineering Software. 2012;43(1):14-18. DOI: 10.1016/j.advengsoft.2011.09.002

[17] Xu X, Li Y, Yang Y, et al. A method of trajectory planning for GroundMobile Robot based
on ant colony algorithm. IEEE International Conference on Robotics and Biomimetics.
IEEE, 2017:2117–2121. DOI: 10.1109/ROBIO.2016.7866642

[18] Elbanhawi M, Simic M. Sampling-based robot motion planning: A review. IEEE Access.
2014;2(1):56-77. DOI: 10.1109/ACCESS.2014.2302442

[19] Qureshi AH, Ayaz Y. Intelligent bidirectional rapidly exploring random trees for optimal
motion planning in complex cluttered environments. Robotics and Autonomous Systems.
2015;68:1-11. DOI: 10.1016/j.robot.2015.02.007

[20] Kavraki L, Latombe JC. Randomized preprocessing of configuration for fast path plan-
ning. IEEE International Conference on Robotics and Automation, 1994. Proceedings 3,
2138-2145. IEEE. 1994. DOI: 10.1109/ROBOT.1994.350966

[21] Vonásek V, Saska M, Winkler L, Přeučil L. High-level motion planning for cpg-driven
modular robots. Robotics & Autonomous Systems. 2015;68:116-128. DOI: 10.1016/j.
robot.2015.01.006

[22] Doshi AA, Postula AJ, Fletcher A, Singh SPN. Development of micro-uav with integrated
motion planning for open-cut mining surveillance. Microprocessors and Microsystems.
2015;39(8):829-835. DOI: 10.1016/j.micpro.2015.07.008

[23] Park KJ, Won M. People tracking and accompanying algorithm for mobile robot using
kinect sensor and extended kalman filter. Transactions of the Korean Society of Mechani-
cal Engineers A. 2014;38(4):345-354. DOI : 10.3795/KSME-A.2014.38.4.345

Advanced Path Planning for Mobile Entities164

[24] Kuffner JJ, Lavalle SM. RRT-connect: An efficient approach to single-query path planning.
IEEE International Conference on Robotics and Automation, 2000. Proceedings. ICRA
(Vol. 2, pp. 995-1001). 2000. IEEE. DOI: 10.1109/ROBOT.2000.844730

[25] Karaman S, Frazzoli E. Sampling-based algorithms for optimal motion planning. Interna-
tional Journal of Robotics Research. 2011;30(7):846-894. DOI: 10.1177/0278364911406761

[26] Qureshi AH, Mumtaz S, Iqbal KF, Ayaz Y. Triangular geometry based optimal motion
planning using RRT*-motion planner. IEEE, International Workshop on Advanced
Motion Control. 2014:380-385. DOI: 10.1109/AMC.2014.6823312

[27] Bac CW, Roorda T, Reshef R, Berman S, Hemming J, Henten EJV. Analysis of a motion
planning problem for sweet-pepper harvesting in a dense obstacle environment.
Biosystems Engineering. 2016;146:85-97. DOI: 10.1016/j.biosystemseng.2015.07.004

Motion Planning for Mobile Robots
http://dx.doi.org/10.5772/intechopen.76895

165



Chapter 9

Design and Implementation of a Demonstrative
Palletizer Robot with Navigation for Educational
Purposes

Dora-Luz Almanza-Ojeda,
Perla-Lizeth Garza-Barron,
Carlos Rubin Montoro-Sanjose and
Mario-Alberto Ibarra-Manzano

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.72872

Provisional chapter

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons  
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, 
and reproduction in any medium, provided the original work is properly cited. 

DOI: 10.5772/intechopen.72872

Design and Implementation of a Demonstrative 
Palletizer Robot with Navigation for Educational 
Purposes

Dora-Luz Almanza-Ojeda, Perla-Lizeth Garza-Barron, 
Carlos Rubin Montoro-Sanjose  
and Mario-Alberto Ibarra-Manzano

Additional information is available at the end of the chapter

Abstract

Nowadays, many kinds of robots are used in industries to help in manufacturing or 
placing objects. However, teaching young people and children about robot design and 
work can be difficult, turning this into a complicated area for them. This chapter pro-
vides a detailed description of the design and implementation of a robotic arm mounted 
on a mobile robot using the LEGO Mindstorms NXT kit® and the starter kit DaNI 2.0, 
designed by National Instruments®. The mobile palletizer robot takes a box from place 
A and navigates in the indoor environment until it reaches a predefined place B. The 
characterization of the robotic arm is based on a parallel structure considering that the 
end-effector has only two points to hold the object; the gripper is also built using LEGO®. 
The robot performs the path computed using an A-star algorithm; moreover, actions like 
moving up and down, opening and closing the gripper and picking up the box and put-
ting it down are executed by the robotic arm using the central unit of the NXT kit. Each 
stage of the robot design and implementation is explained in detail using diagrams and 
3D graphical views with the aim of illustrating the implementation step by step for edu-
cational purposes (mainly for young people or children).

Keywords: mobile robot, robotic arm, parallel structure, path planning

1. Introduction

Robots have been used in applications such as industry, medicine, agriculture, space, educa-
tion, underwater exploration and many others. Manufacturing processes in industries have 

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



Chapter 9

Design and Implementation of a Demonstrative
Palletizer Robot with Navigation for Educational
Purposes

Dora-Luz Almanza-Ojeda,
Perla-Lizeth Garza-Barron,
Carlos Rubin Montoro-Sanjose and
Mario-Alberto Ibarra-Manzano

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.72872

Provisional chapter

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons  
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, 
and reproduction in any medium, provided the original work is properly cited. 

DOI: 10.5772/intechopen.72872

Design and Implementation of a Demonstrative 
Palletizer Robot with Navigation for Educational 
Purposes

Dora-Luz Almanza-Ojeda, Perla-Lizeth Garza-Barron, 
Carlos Rubin Montoro-Sanjose  
and Mario-Alberto Ibarra-Manzano

Additional information is available at the end of the chapter

Abstract

Nowadays, many kinds of robots are used in industries to help in manufacturing or 
placing objects. However, teaching young people and children about robot design and 
work can be difficult, turning this into a complicated area for them. This chapter pro-
vides a detailed description of the design and implementation of a robotic arm mounted 
on a mobile robot using the LEGO Mindstorms NXT kit® and the starter kit DaNI 2.0, 
designed by National Instruments®. The mobile palletizer robot takes a box from place 
A and navigates in the indoor environment until it reaches a predefined place B. The 
characterization of the robotic arm is based on a parallel structure considering that the 
end-effector has only two points to hold the object; the gripper is also built using LEGO®. 
The robot performs the path computed using an A-star algorithm; moreover, actions like 
moving up and down, opening and closing the gripper and picking up the box and put-
ting it down are executed by the robotic arm using the central unit of the NXT kit. Each 
stage of the robot design and implementation is explained in detail using diagrams and 
3D graphical views with the aim of illustrating the implementation step by step for edu-
cational purposes (mainly for young people or children).

Keywords: mobile robot, robotic arm, parallel structure, path planning

1. Introduction

Robots have been used in applications such as industry, medicine, agriculture, space, educa-
tion, underwater exploration and many others. Manufacturing processes in industries have 

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



increased considerably the use of robotic arms to automate repetitive and tedious tasks per-
formed under difficult conditions for workers. Moreover, the use of mobile robots in indus-
tries also improves the efficiency and accelerates the production process. Mobile robots are 
equipped with sensors to analyze and interpret information about the environment during 
navigation [1]. Some applications of mobile robots in industry are as follows:

1. inspection,

2. production control,

3. transport of different kinds of objects by means of palletizing tasks [2].

The palletizing of objects (essentially boxes) in the industry is the process to accommodate 
boxes on a pallet that is usually performed by fixed robotic arms [3, 4]. In cases when the des-
tination is not fixed, mobile robots are also used to place boxes to a destination. For instance, 
magnetic strip-guided robots transport the merchandise successfully, albeit only following 
a linear path. Therefore, one of the best solutions for palletizing objects from an origin to a 
destination involves the use of robotic arms mounted on mobile robots.

The palletizing task requires a path planning strategy which consists in finding an obsta-
cle-free path for mobile robot navigation from one place to another. Many path planning 
strategies can be found in the literature for various applications, ranging from video game 
programming to outdoor autonomous navigation of robots. Path planning methods are based 
on simplifying the searching area to a 2D matrix in which each element represents a reduced 
square area of the navigation area (that will be interpreted as a cell) [5]. Thus, each cell can be 
navigable or not depending on the obstacles on it, and a resulting path is obtained if a set of 
adjacent navigable cells from the origin to destination is found.

The aim of implementing a Box Palletizing Robot is to encourage young people to explore 
robotic issues as modular tasks that require design, mathematical modeling, programming 
and some interest and creativity. In this context, many robotic kits and prototypes have been 
introduced by different companies such as Vex [6], Arduino, Lego, Zowi from BQ [7], to 
name but a few. However, in this chapter, we present a palletizer robot that combines two 
robotic kits: the mobile robot platform Dani from National Instruments (NI) and the Lego 
Mindstorms NXT 2.0 8547 model used to build the robotic arm. Both robotic kits require basic, 
medium and high levels of knowledge in line with the final purposes. In our case, we will 
describe the design, programming and synchronization of both kits.

Additionally, the path planning strategy used in this project is based on the A-star algorithm 
and basic strategies to control the robotic arm. The characterization of the robotic arm is 
based on a parallel structure, and it has been built using the LEGO NXT kit. To improve the 
compatibility between the robotic arm and the robot mobile, the LEGO NXT is programmed 
on LabVIEW [8], a trademark software of NI, to use the starter kit, which is a robot also 
distributed by NI. An Ethernet connection is used for communication between the PC and 
the mobile robot, while a Bluetooth connection is used for communication with the robotic 
arm [9].

Advanced Path Planning for Mobile Entities168

This chapter describes, in Section 2, the global strategy used to design, implement and pro-
gram the palletizer robot. The robot implementation and the A-start algorithm are explained 
in Section 3. Experimental results are presented in Section 4. Finally, Section 5 includes the 
conclusion and outlines future work.

2. Global strategy for palletizer robot navigation

The palletizer robot proposed here moves a box from place A to place B while navigating 
and avoiding collisions. To attain this goal, the main tasks involved and tackled here are as 
follows:

1. Perception of the environment by using sonar and contact sensors

2. Path planning strategy based on an A-star algorithm

3. Performing the robot trajectory and robot interacting with the dynamic obstacles

In general, the strategy programmed and performed by the palletizer robot is described in 
the block diagram of Figure 1. Both programming strategies DaNI and NXT are combined, 
but the control of the overall task is programmed on the mobile robot DaNI. The action 
“compute trajectory to the box” in the diagram uses the A-star algorithm and receives a pre-
defined map of the environment with all static obstacles on it. This action is programmed 
on the DaNI robot, and it is performed in two stages; first, the robot moves to the box posi-
tion and, second, the robot moves to the final pallet. Once the robot performs the first stage 
and arrives to the box position, the action “set gripper ready” involves the configuration and 
positioning of the gripper to take the box. This action was programmed on the NXT Lego. 
Once sensors indicate that the gripper has taken the box, the second stage of the trajectory is 
performed and the robot moves to the “go to final pallet” action. The robot locates the gripper 
and leaves the box carefully on the pallet. Then, the robot goes back to the initial position 
and the same process starts again if more boxes must be moved. Finally, dynamic obstacles 
are detected using the sonar sensor during robot mobile navigation and the robot stops if an 
obstacle is found in its path, and it continues its trajectory when the obstacle is not detected 
anymore.

2.1. Robot model description

The mobile robot used in this project is the robotic platform called NI LabVIEW robotics 
Starter Kit®, described in [8], also known as DaNI 2.0, developed by NI. This mobile robot 
was designed to develop and run algorithms in real time for autonomous system applications 
and can be programmed on two different languages: LabView or C.

Each wheel of the robot is connected to a DC motor which provides the traction force and 
stabilization wheel for balancing the robot; the kinematic model and the representation of 
robot position used in this work is the same as the one presented in [5]. The sbRIO-9632 card 

Design and Implementation of a Demonstrative Palletizer Robot with Navigation…
http://dx.doi.org/10.5772/intechopen.72872

169



increased considerably the use of robotic arms to automate repetitive and tedious tasks per-
formed under difficult conditions for workers. Moreover, the use of mobile robots in indus-
tries also improves the efficiency and accelerates the production process. Mobile robots are 
equipped with sensors to analyze and interpret information about the environment during 
navigation [1]. Some applications of mobile robots in industry are as follows:

1. inspection,

2. production control,

3. transport of different kinds of objects by means of palletizing tasks [2].

The palletizing of objects (essentially boxes) in the industry is the process to accommodate 
boxes on a pallet that is usually performed by fixed robotic arms [3, 4]. In cases when the des-
tination is not fixed, mobile robots are also used to place boxes to a destination. For instance, 
magnetic strip-guided robots transport the merchandise successfully, albeit only following 
a linear path. Therefore, one of the best solutions for palletizing objects from an origin to a 
destination involves the use of robotic arms mounted on mobile robots.

The palletizing task requires a path planning strategy which consists in finding an obsta-
cle-free path for mobile robot navigation from one place to another. Many path planning 
strategies can be found in the literature for various applications, ranging from video game 
programming to outdoor autonomous navigation of robots. Path planning methods are based 
on simplifying the searching area to a 2D matrix in which each element represents a reduced 
square area of the navigation area (that will be interpreted as a cell) [5]. Thus, each cell can be 
navigable or not depending on the obstacles on it, and a resulting path is obtained if a set of 
adjacent navigable cells from the origin to destination is found.

The aim of implementing a Box Palletizing Robot is to encourage young people to explore 
robotic issues as modular tasks that require design, mathematical modeling, programming 
and some interest and creativity. In this context, many robotic kits and prototypes have been 
introduced by different companies such as Vex [6], Arduino, Lego, Zowi from BQ [7], to 
name but a few. However, in this chapter, we present a palletizer robot that combines two 
robotic kits: the mobile robot platform Dani from National Instruments (NI) and the Lego 
Mindstorms NXT 2.0 8547 model used to build the robotic arm. Both robotic kits require basic, 
medium and high levels of knowledge in line with the final purposes. In our case, we will 
describe the design, programming and synchronization of both kits.

Additionally, the path planning strategy used in this project is based on the A-star algorithm 
and basic strategies to control the robotic arm. The characterization of the robotic arm is 
based on a parallel structure, and it has been built using the LEGO NXT kit. To improve the 
compatibility between the robotic arm and the robot mobile, the LEGO NXT is programmed 
on LabVIEW [8], a trademark software of NI, to use the starter kit, which is a robot also 
distributed by NI. An Ethernet connection is used for communication between the PC and 
the mobile robot, while a Bluetooth connection is used for communication with the robotic 
arm [9].

Advanced Path Planning for Mobile Entities168

This chapter describes, in Section 2, the global strategy used to design, implement and pro-
gram the palletizer robot. The robot implementation and the A-start algorithm are explained 
in Section 3. Experimental results are presented in Section 4. Finally, Section 5 includes the 
conclusion and outlines future work.

2. Global strategy for palletizer robot navigation

The palletizer robot proposed here moves a box from place A to place B while navigating 
and avoiding collisions. To attain this goal, the main tasks involved and tackled here are as 
follows:

1. Perception of the environment by using sonar and contact sensors

2. Path planning strategy based on an A-star algorithm

3. Performing the robot trajectory and robot interacting with the dynamic obstacles

In general, the strategy programmed and performed by the palletizer robot is described in 
the block diagram of Figure 1. Both programming strategies DaNI and NXT are combined, 
but the control of the overall task is programmed on the mobile robot DaNI. The action 
“compute trajectory to the box” in the diagram uses the A-star algorithm and receives a pre-
defined map of the environment with all static obstacles on it. This action is programmed 
on the DaNI robot, and it is performed in two stages; first, the robot moves to the box posi-
tion and, second, the robot moves to the final pallet. Once the robot performs the first stage 
and arrives to the box position, the action “set gripper ready” involves the configuration and 
positioning of the gripper to take the box. This action was programmed on the NXT Lego. 
Once sensors indicate that the gripper has taken the box, the second stage of the trajectory is 
performed and the robot moves to the “go to final pallet” action. The robot locates the gripper 
and leaves the box carefully on the pallet. Then, the robot goes back to the initial position 
and the same process starts again if more boxes must be moved. Finally, dynamic obstacles 
are detected using the sonar sensor during robot mobile navigation and the robot stops if an 
obstacle is found in its path, and it continues its trajectory when the obstacle is not detected 
anymore.

2.1. Robot model description

The mobile robot used in this project is the robotic platform called NI LabVIEW robotics 
Starter Kit®, described in [8], also known as DaNI 2.0, developed by NI. This mobile robot 
was designed to develop and run algorithms in real time for autonomous system applications 
and can be programmed on two different languages: LabView or C.

Each wheel of the robot is connected to a DC motor which provides the traction force and 
stabilization wheel for balancing the robot; the kinematic model and the representation of 
robot position used in this work is the same as the one presented in [5]. The sbRIO-9632 card 

Design and Implementation of a Demonstrative Palletizer Robot with Navigation…
http://dx.doi.org/10.5772/intechopen.72872

169



was developed by NI and contains a real-time processor which serves as a main control unit 
for the robot [10]. In addition, this platform includes a field-programmable gate array (FPGA) 
Xilinx Spartan-3 which is a reconfigurable device that executes programmed tasks in real 
time, that is, the active response of the system to external events. For this FPGA, a higher level 
of programming is possible using the NI LabVIEW® robotics software, which is a graphical 
language. Programming languages like C, C++ or Java could also be used.

This mobile robot is programmed using an efficient algorithm to cover a trajectory that takes it 
to the box that needs palletizing. The aim is to illustrate the function of a box palletizer robot 
in industry. Yet, at this stage, it is only a prototype to show basic functions not involving 
heavy weights as those handled by an industrial robot.

Figure 1. Global strategy for palletizer robot moves a box from place A to place B.

Advanced Path Planning for Mobile Entities170

2.2. Robotic arm with LEGO MINDSTORM NXT 2.0

The Lego Mindstorm is a programmable robotic kit developed by Lego® and introduced for 
the first time in September 1998. The kit Lego Mindstorm NXT 2.0 provides basic pieces to 
construct mini-prototypes of robots by means of the assembly of mechanic plastic parts such 
as wheels, gears and bricks, among others, and electromechanic parts such as motors and dif-
ferent kind of sensors; finally, the robot prototype is programmed in an interactive way. The 
robots constructed using the Lego Mindstorm kit can simulate the same functionalities as real 
robots of this kind.

The robotic arm assembled for this project has a degree of freedom; its design is based on a 
parallel mechanism, and its motion is restricted only to vertical movements (up and down). 
The NXT brick is the central unit processing for programming robot task using LabVIEW 
Robotics which is the same graphical language used for programming the mobile robot 
DaNI. The communication between the NXT module and the PC is via Bluetooth.

2.3. Analysis of the gearbox

The mechanical design of the robotic arm is based on a parallelogram arm (four bars) [11] and 
an arrangement of gear wheels (called gear train) [12] to transmit turning force and to provide 
a degree of freedom. The four-bar mechanism consists of two vertical bars of 8 cm in height 
and two horizontal bars of 6 cm in length. To implement our parallelogram arm, the four-bar 
mechanism is implemented twice, one for each servomotor used to move the arm up and 
down. Each motor is finally fixed to the gear train.

A 3D model in Solidworks® [13] of the different ratios of used gears is shown in Figure 2. 
Note that different ratios are used for drive transmission and for the moving arm in accor-
dance with the desired speed ratios, which will be explained below.

The number of teeth on the gear is the most important parameter during gearbox design, 
because the speed of a final gear train only depends on this parameter, with 24 and 36 teeth 
being the most common sizes used. With n and Z being the desired angular velocity and the 
number of teeth of a gear, respectively, both parameters are directly related as:

   n  1    Z  1   =  n  2    Z  2    (1)

where index i represents the motor (i = 1) and the driven (i = 2) gear. This equation provides 
the number of teeth required to provide a given angular velocity. If the rate Z1/Z2 is less than 
1, the speed will be reduced. In our case, the gearbox uses eight gears, and we consider Z1 = 8 
teeth for gears 1, 3 and 5, and Z2 = 24 for gears 2, 4 and 6, yielding a ratio of 1/3. The last two 
gears 7 and 8 are considered as Z1 = 16 and Z2 = 36, respectively, with a ratio of 4/9. Figure 3 
shows the 3D design of the gear train implemented.

Another important parameter during gear train design is the relation between power 
supply and torque of the servomotor. The Lego servomotor datasheet establishes that 

Design and Implementation of a Demonstrative Palletizer Robot with Navigation…
http://dx.doi.org/10.5772/intechopen.72872

171



was developed by NI and contains a real-time processor which serves as a main control unit 
for the robot [10]. In addition, this platform includes a field-programmable gate array (FPGA) 
Xilinx Spartan-3 which is a reconfigurable device that executes programmed tasks in real 
time, that is, the active response of the system to external events. For this FPGA, a higher level 
of programming is possible using the NI LabVIEW® robotics software, which is a graphical 
language. Programming languages like C, C++ or Java could also be used.

This mobile robot is programmed using an efficient algorithm to cover a trajectory that takes it 
to the box that needs palletizing. The aim is to illustrate the function of a box palletizer robot 
in industry. Yet, at this stage, it is only a prototype to show basic functions not involving 
heavy weights as those handled by an industrial robot.

Figure 1. Global strategy for palletizer robot moves a box from place A to place B.

Advanced Path Planning for Mobile Entities170

2.2. Robotic arm with LEGO MINDSTORM NXT 2.0

The Lego Mindstorm is a programmable robotic kit developed by Lego® and introduced for 
the first time in September 1998. The kit Lego Mindstorm NXT 2.0 provides basic pieces to 
construct mini-prototypes of robots by means of the assembly of mechanic plastic parts such 
as wheels, gears and bricks, among others, and electromechanic parts such as motors and dif-
ferent kind of sensors; finally, the robot prototype is programmed in an interactive way. The 
robots constructed using the Lego Mindstorm kit can simulate the same functionalities as real 
robots of this kind.

The robotic arm assembled for this project has a degree of freedom; its design is based on a 
parallel mechanism, and its motion is restricted only to vertical movements (up and down). 
The NXT brick is the central unit processing for programming robot task using LabVIEW 
Robotics which is the same graphical language used for programming the mobile robot 
DaNI. The communication between the NXT module and the PC is via Bluetooth.

2.3. Analysis of the gearbox

The mechanical design of the robotic arm is based on a parallelogram arm (four bars) [11] and 
an arrangement of gear wheels (called gear train) [12] to transmit turning force and to provide 
a degree of freedom. The four-bar mechanism consists of two vertical bars of 8 cm in height 
and two horizontal bars of 6 cm in length. To implement our parallelogram arm, the four-bar 
mechanism is implemented twice, one for each servomotor used to move the arm up and 
down. Each motor is finally fixed to the gear train.

A 3D model in Solidworks® [13] of the different ratios of used gears is shown in Figure 2. 
Note that different ratios are used for drive transmission and for the moving arm in accor-
dance with the desired speed ratios, which will be explained below.

The number of teeth on the gear is the most important parameter during gearbox design, 
because the speed of a final gear train only depends on this parameter, with 24 and 36 teeth 
being the most common sizes used. With n and Z being the desired angular velocity and the 
number of teeth of a gear, respectively, both parameters are directly related as:

   n  1    Z  1   =  n  2    Z  2    (1)

where index i represents the motor (i = 1) and the driven (i = 2) gear. This equation provides 
the number of teeth required to provide a given angular velocity. If the rate Z1/Z2 is less than 
1, the speed will be reduced. In our case, the gearbox uses eight gears, and we consider Z1 = 8 
teeth for gears 1, 3 and 5, and Z2 = 24 for gears 2, 4 and 6, yielding a ratio of 1/3. The last two 
gears 7 and 8 are considered as Z1 = 16 and Z2 = 36, respectively, with a ratio of 4/9. Figure 3 
shows the 3D design of the gear train implemented.

Another important parameter during gear train design is the relation between power 
supply and torque of the servomotor. The Lego servomotor datasheet establishes that 

Design and Implementation of a Demonstrative Palletizer Robot with Navigation…
http://dx.doi.org/10.5772/intechopen.72872

171



for a power supply of 9 V (i.e., using 100%) the corresponding torque is 19 Ncm, and 
for 7.2 V (using only 75%) the torque is 16 Ncm [14]. For security reasons, we consider 
15 Ncm as the maximal torque value provided by the robotic arm. In addition, Table 1 
shows experimental values of the angular velocity obtained at different values of power 
supply. Thus, considering a power supply of 75%, the angular velocity of the gearbox 
is around 95 rpm.

Figure 2. Ratios of the gearbox: three pairs of gears with a ratio of 1/3 are illustrated in (a), (b) and (c); in (d) the final pair 
of gears 7 and 8 has a ratio of 4/9.

Advanced Path Planning for Mobile Entities172

On the other hand, with T1 as the torque of the gearbox, then the power of the robotic arm is 
obtained by:

  P =  T  1    n  1    (2)

Figure 3. 3D design of the gearbox.

Design and Implementation of a Demonstrative Palletizer Robot with Navigation…
http://dx.doi.org/10.5772/intechopen.72872

173



for a power supply of 9 V (i.e., using 100%) the corresponding torque is 19 Ncm, and 
for 7.2 V (using only 75%) the torque is 16 Ncm [14]. For security reasons, we consider 
15 Ncm as the maximal torque value provided by the robotic arm. In addition, Table 1 
shows experimental values of the angular velocity obtained at different values of power 
supply. Thus, considering a power supply of 75%, the angular velocity of the gearbox 
is around 95 rpm.

Figure 2. Ratios of the gearbox: three pairs of gears with a ratio of 1/3 are illustrated in (a), (b) and (c); in (d) the final pair 
of gears 7 and 8 has a ratio of 4/9.

Advanced Path Planning for Mobile Entities172

On the other hand, with T1 as the torque of the gearbox, then the power of the robotic arm is 
obtained by:

  P =  T  1    n  1    (2)

Figure 3. 3D design of the gearbox.

Design and Implementation of a Demonstrative Palletizer Robot with Navigation…
http://dx.doi.org/10.5772/intechopen.72872

173



considering T1 = 0.15 Nm and angular velocity of the motor as n1 = 9.9835 rad/s; thus, the 
driven power of the gearbox is 1.4975 W.

To obtain the internal velocities along the gear train, we use the torque equation defined as:

   T  2   =  T  1   ∙   
 n  1   __  n  2      (3)

As the angular velocity n1 is the same as the motor velocity, n2 is given by:

   n  2   =  n  1   ∙   
 Z  1   __  Z  2  

   = 95.335 ∙  ( 8 ⁄ 24 )  = 31.7783 rmp  (4)

Then, the torque of gear 2 is obtained using Eq. (3), yielding

   T  2   =  T  1   ∙   
 n  1   __  n  2     = 0.15 ∙  ( 95.335 ⁄ 31.7783 )  = 0.45 Nm  (5)

Following this procedure, Table 2 shows the torque values for 3–8 gears.

Therefore, torque and angular velocity at the output gear train are 9.1124 Nm and 1.5693 rpm, 
respectively. If the final torque is divided by the gravity force (g = 9.81 m/s2), then we obtain the 
mass in kg that the gripper can carry if the robotic arm length were 1 m. In our case, the robotic 
arm length is 0.20 m, a value that represents one-fifth of the reference value 1 m. By consid-
ering that, torque increases in the same factor as the orthogonal length to the applied force 
decreases, and the final mass that our robotic arm of 0.20 m in length can carry is as follows:

  0.20 m → 5 (0.9289 kg)  = 4.6445 kg  (6)

#Gear Torque (Nm) Angular velocity (rpm)

3 0.45 31.7783

4 1.35 10.5928

5 1.35 10.5928

6 4.050 3.5309

7 4.050 3.5309

8 9.1124 1.5693

Table 2. Torque and angular velocity of gearbox.

% Power supply Angular velocity (rpm)

100 135.490

75 95.335

50 61.183

25 25.207

Table 1. Relation between power supply and torque of the servomotor (Lego datasheet [14]).

Advanced Path Planning for Mobile Entities174

3. Implementation of the palletizer robot

The robotic arm assembly requires bricks, girders, angle brackets, gearwheels, three servo-
motors and four touch sensors included in the Lego kit. Two of the servomotors move the 
mechanical part of the arm up and down, providing a degree of freedom. The third servomo-
tor is used for closing and opening the griper. One of the touch sensors is at the base of the 
arm with the aim of sensing the lower position of the arm; similarly, a second touch sensor is 
located for sensing the higher position that can be reached by the arm. Third and fourth sen-
sors are located on the gripper for measuring the opening and closing degrees controlled by 
the servomotor. A 3D model of the final robotic arm designed on Google SketchUP® [15] is 
illustrated on Figure 4, and the real robotic arm is shown in Figure 5; the gripper consists of 
four jaws to guarantee that object will be securely held.

The gearbox was designed in line with the required force and velocity to take and move an 
object from one place to another, without forcing the servomotors. The gearbox uses 8 gears: 
3 of 16 teeth, 4 of 24 teeth and 1 of 36 teeth; it was designed following the analysis described 
in Section 2.3).

Once the robotic arm was built, we slightly modified the DaNI robot structure with the aim 
of mounting the robotic arm on it. In general, we replaced the rear omnidirectional wheel of 

Figure 4. 3D model of the robotic arm designed on Google SketchUP®.

Design and Implementation of a Demonstrative Palletizer Robot with Navigation…
http://dx.doi.org/10.5772/intechopen.72872

175



considering T1 = 0.15 Nm and angular velocity of the motor as n1 = 9.9835 rad/s; thus, the 
driven power of the gearbox is 1.4975 W.

To obtain the internal velocities along the gear train, we use the torque equation defined as:

   T  2   =  T  1   ∙   
 n  1   __  n  2      (3)

As the angular velocity n1 is the same as the motor velocity, n2 is given by:

   n  2   =  n  1   ∙   
 Z  1   __  Z  2  

   = 95.335 ∙  ( 8 ⁄ 24 )  = 31.7783 rmp  (4)

Then, the torque of gear 2 is obtained using Eq. (3), yielding

   T  2   =  T  1   ∙   
 n  1   __  n  2     = 0.15 ∙  ( 95.335 ⁄ 31.7783 )  = 0.45 Nm  (5)

Following this procedure, Table 2 shows the torque values for 3–8 gears.

Therefore, torque and angular velocity at the output gear train are 9.1124 Nm and 1.5693 rpm, 
respectively. If the final torque is divided by the gravity force (g = 9.81 m/s2), then we obtain the 
mass in kg that the gripper can carry if the robotic arm length were 1 m. In our case, the robotic 
arm length is 0.20 m, a value that represents one-fifth of the reference value 1 m. By consid-
ering that, torque increases in the same factor as the orthogonal length to the applied force 
decreases, and the final mass that our robotic arm of 0.20 m in length can carry is as follows:

  0.20 m → 5 (0.9289 kg)  = 4.6445 kg  (6)

#Gear Torque (Nm) Angular velocity (rpm)

3 0.45 31.7783

4 1.35 10.5928

5 1.35 10.5928

6 4.050 3.5309

7 4.050 3.5309

8 9.1124 1.5693

Table 2. Torque and angular velocity of gearbox.

% Power supply Angular velocity (rpm)

100 135.490

75 95.335

50 61.183

25 25.207

Table 1. Relation between power supply and torque of the servomotor (Lego datasheet [14]).

Advanced Path Planning for Mobile Entities174

3. Implementation of the palletizer robot

The robotic arm assembly requires bricks, girders, angle brackets, gearwheels, three servo-
motors and four touch sensors included in the Lego kit. Two of the servomotors move the 
mechanical part of the arm up and down, providing a degree of freedom. The third servomo-
tor is used for closing and opening the griper. One of the touch sensors is at the base of the 
arm with the aim of sensing the lower position of the arm; similarly, a second touch sensor is 
located for sensing the higher position that can be reached by the arm. Third and fourth sen-
sors are located on the gripper for measuring the opening and closing degrees controlled by 
the servomotor. A 3D model of the final robotic arm designed on Google SketchUP® [15] is 
illustrated on Figure 4, and the real robotic arm is shown in Figure 5; the gripper consists of 
four jaws to guarantee that object will be securely held.

The gearbox was designed in line with the required force and velocity to take and move an 
object from one place to another, without forcing the servomotors. The gearbox uses 8 gears: 
3 of 16 teeth, 4 of 24 teeth and 1 of 36 teeth; it was designed following the analysis described 
in Section 2.3).

Once the robotic arm was built, we slightly modified the DaNI robot structure with the aim 
of mounting the robotic arm on it. In general, we replaced the rear omnidirectional wheel of 

Figure 4. 3D model of the robotic arm designed on Google SketchUP®.

Design and Implementation of a Demonstrative Palletizer Robot with Navigation…
http://dx.doi.org/10.5772/intechopen.72872

175



Figure 6. 3D model of the DaNI robot designed on Google SketchUP®.

DaNI for a caster wheel of 1 inch. The wheel was fixed onto the chassis of DaNI creating free 
space to mount and fix the robotic arm. A 3D model of the mobile robot designed on Google 
SketchUP is shown in Figure 6 and the real palletizer robot is shown in Figure 7.

3.1. A-star algorithm

The robot trajectory starts in an initial position from which the robot moves to the object location, 
then it goes to the pallet and, finally, it moves back to the initial position. The final path estab-
lishes horizontal and diagonal trajectories that represent the minimal costs to achieve the goal.

Figure 5. Robotic arm designed using Lego kit.

Advanced Path Planning for Mobile Entities176

The planning technique used was the so-called A-star algorithm [16], which basically consists 
in the research of the best first trajectory that provides the shortest path from all possible 
roads. The final path is the union of partial movements that the robot must perform to get to 
the final position, that is, intermediate points before reaching the goal. Here, we use the term 
of nodes to refer these intermediate points that can be seen also as neighboring or adjacent 
points to the actual robot position. For each intermediate point, the A-star algorithm evalu-
ates the next trajectories that could be reached based on minimal cost [17]. Thus, a final path 
guides the robot to a goal position warranting safe navigation.

Figure 8 illustrates a scene that we will use as an example of how to get from position A to B 
using the A-star algorithm. It is important to point out that two lists are needed to save the 
adjacent nodes: (1) open list for adjacent nodes that will be compared and (2) close list for 
nodes that cannot be considered anymore.

The first step to the A-star algorithm is to include the initial node position A to the close 
list. Thus, the iterative search starts including to the open list all reachable nodes from the 
initial node A, while unreachable nodes are, for instance, the occupied nodes. In accor-
dance with Figure 8, eight nodes were included, depicted as squares and the arrows inside 
point to their parent node.

Eq. (7) computes the shortest path possible to the goal node B in the fewest moves.

  F (x)  = G (x)  + H (x)   (7)

Figure 7. Final palletizer robot.

Design and Implementation of a Demonstrative Palletizer Robot with Navigation…
http://dx.doi.org/10.5772/intechopen.72872

177



Figure 6. 3D model of the DaNI robot designed on Google SketchUP®.

DaNI for a caster wheel of 1 inch. The wheel was fixed onto the chassis of DaNI creating free 
space to mount and fix the robotic arm. A 3D model of the mobile robot designed on Google 
SketchUP is shown in Figure 6 and the real palletizer robot is shown in Figure 7.

3.1. A-star algorithm

The robot trajectory starts in an initial position from which the robot moves to the object location, 
then it goes to the pallet and, finally, it moves back to the initial position. The final path estab-
lishes horizontal and diagonal trajectories that represent the minimal costs to achieve the goal.

Figure 5. Robotic arm designed using Lego kit.

Advanced Path Planning for Mobile Entities176

The planning technique used was the so-called A-star algorithm [16], which basically consists 
in the research of the best first trajectory that provides the shortest path from all possible 
roads. The final path is the union of partial movements that the robot must perform to get to 
the final position, that is, intermediate points before reaching the goal. Here, we use the term 
of nodes to refer these intermediate points that can be seen also as neighboring or adjacent 
points to the actual robot position. For each intermediate point, the A-star algorithm evalu-
ates the next trajectories that could be reached based on minimal cost [17]. Thus, a final path 
guides the robot to a goal position warranting safe navigation.

Figure 8 illustrates a scene that we will use as an example of how to get from position A to B 
using the A-star algorithm. It is important to point out that two lists are needed to save the 
adjacent nodes: (1) open list for adjacent nodes that will be compared and (2) close list for 
nodes that cannot be considered anymore.

The first step to the A-star algorithm is to include the initial node position A to the close 
list. Thus, the iterative search starts including to the open list all reachable nodes from the 
initial node A, while unreachable nodes are, for instance, the occupied nodes. In accor-
dance with Figure 8, eight nodes were included, depicted as squares and the arrows inside 
point to their parent node.

Eq. (7) computes the shortest path possible to the goal node B in the fewest moves.

  F (x)  = G (x)  + H (x)   (7)

Figure 7. Final palletizer robot.

Design and Implementation of a Demonstrative Palletizer Robot with Navigation…
http://dx.doi.org/10.5772/intechopen.72872

177



where F(x) = cost of the shortest path to the goal, G(x) = cost of the movement from A node to 
an intermediate node and H(x) = cost of the possible movement to go from an intermediate 
node to the goal.

Every node on the open list is evaluated using this equation, and the node with the lowest F(x) 
value is chosen. The value G(x) represents the costs involved in reaching the neighbor nodes. 
Horizontal or vertical nodes are weighted as 10 (because there is one node to get there). Then, 
diagonal moves are weighted as 14 because this is the closest without choosing a diagonal. 
H(x) value is estimated using the Manhattan distance, but many other distances can be used as 
well. Such distance considers only vertical or horizontal moves to get to the final goal from any 
intermediate node, ignoring diagonal moves and obstacles on the way. This does not imply 
that all the environment must be free of moving or static obstacles; it is just the real physical 
distance between two nodes, after a second weighted value excludes possible paths with occu-
pied intermediate nodes. The punctuation after computing Eq. (7) in our example is shown in 
Figure 9(a). As the method does not consider obstacles, the shortest distance from B to right 
node of A is H = 30 because this node is reachable in three nodes. Similarly, the upper right 

Figure 9. A-star algorithm. (a) First iteration of the algorithm and (b) the lowest cost node.

Figure 8. Environment to go from A to B.

Advanced Path Planning for Mobile Entities178

corner node of A is H = 40 because four nodes are required to get there from B. Thus, the low-
est value of F is 40 being the right node chosen as the first move that must be performed by the 
robot (see Figure 9(b)). Also, this node is added to the close list to avoid considering it again.

During the next iterations of the algorithm, the new initial position is the node resulting from the 
last iteration; so all previous nodes in the open list are moved to close list, and the open list will 
contain the neighbor nodes to such initial node. In addition, the values of F(x), G(x) and H(x) are 
updated to search for the next low cost node. In our example, only four nodes are added to the 
open list corresponding to up, down and diagonal nodes to the node under evaluation. Thus, 
the next node added is the lower right corner node, as it throws the lowest value of F(x) = 54.

Once again, the iterative process starts by adding new neighbor nodes to the open list and com-
putes the cost function to find the closest node in the open list with the lowest cost. This recursive 
process ends when the final node is added to the close list. Figure 10(a) shows the nodes added to 
the close list after five iterations of the A-star algorithm in blue. On the same figure, image b shows 
the final shortest path possible, starting from the goal B and going to the parent node backwards.

3.2. Programming the palletizer robot

As mentioned before, the NXT brick can be programmed in LabVIEW code to perform the 
robotic arm movements:

1. Move up and down the arm.

2. Open and close the gripper to take the box.

3. Open and close the gripper to leave the box on the pallet.

Moreover, to perform a safe and coherent navigation, the path planning algorithm is programmed 
on the sb-RIO reprogrammable card of the robot, that is, following the abovementioned A-star 
technique. In this chapter, we explain robotic arm motion and pathfinder algorithm.

The LabVIEW Robotics software provides a module of the A-star algorithm which computes an 
optimal path to get to goal position [18]. The path includes horizontal and vertical trajectories of 
the robot, left or right rotations and diagonal displacements. However, our mobile robot can only 

Figure 10. (a) Nodes computed by the A-star algorithm at each iteration and (b) path to get from node A to node B.

Design and Implementation of a Demonstrative Palletizer Robot with Navigation…
http://dx.doi.org/10.5772/intechopen.72872

179



where F(x) = cost of the shortest path to the goal, G(x) = cost of the movement from A node to 
an intermediate node and H(x) = cost of the possible movement to go from an intermediate 
node to the goal.

Every node on the open list is evaluated using this equation, and the node with the lowest F(x) 
value is chosen. The value G(x) represents the costs involved in reaching the neighbor nodes. 
Horizontal or vertical nodes are weighted as 10 (because there is one node to get there). Then, 
diagonal moves are weighted as 14 because this is the closest without choosing a diagonal. 
H(x) value is estimated using the Manhattan distance, but many other distances can be used as 
well. Such distance considers only vertical or horizontal moves to get to the final goal from any 
intermediate node, ignoring diagonal moves and obstacles on the way. This does not imply 
that all the environment must be free of moving or static obstacles; it is just the real physical 
distance between two nodes, after a second weighted value excludes possible paths with occu-
pied intermediate nodes. The punctuation after computing Eq. (7) in our example is shown in 
Figure 9(a). As the method does not consider obstacles, the shortest distance from B to right 
node of A is H = 30 because this node is reachable in three nodes. Similarly, the upper right 

Figure 9. A-star algorithm. (a) First iteration of the algorithm and (b) the lowest cost node.

Figure 8. Environment to go from A to B.

Advanced Path Planning for Mobile Entities178

corner node of A is H = 40 because four nodes are required to get there from B. Thus, the low-
est value of F is 40 being the right node chosen as the first move that must be performed by the 
robot (see Figure 9(b)). Also, this node is added to the close list to avoid considering it again.

During the next iterations of the algorithm, the new initial position is the node resulting from the 
last iteration; so all previous nodes in the open list are moved to close list, and the open list will 
contain the neighbor nodes to such initial node. In addition, the values of F(x), G(x) and H(x) are 
updated to search for the next low cost node. In our example, only four nodes are added to the 
open list corresponding to up, down and diagonal nodes to the node under evaluation. Thus, 
the next node added is the lower right corner node, as it throws the lowest value of F(x) = 54.

Once again, the iterative process starts by adding new neighbor nodes to the open list and com-
putes the cost function to find the closest node in the open list with the lowest cost. This recursive 
process ends when the final node is added to the close list. Figure 10(a) shows the nodes added to 
the close list after five iterations of the A-star algorithm in blue. On the same figure, image b shows 
the final shortest path possible, starting from the goal B and going to the parent node backwards.

3.2. Programming the palletizer robot

As mentioned before, the NXT brick can be programmed in LabVIEW code to perform the 
robotic arm movements:

1. Move up and down the arm.

2. Open and close the gripper to take the box.

3. Open and close the gripper to leave the box on the pallet.

Moreover, to perform a safe and coherent navigation, the path planning algorithm is programmed 
on the sb-RIO reprogrammable card of the robot, that is, following the abovementioned A-star 
technique. In this chapter, we explain robotic arm motion and pathfinder algorithm.

The LabVIEW Robotics software provides a module of the A-star algorithm which computes an 
optimal path to get to goal position [18]. The path includes horizontal and vertical trajectories of 
the robot, left or right rotations and diagonal displacements. However, our mobile robot can only 

Figure 10. (a) Nodes computed by the A-star algorithm at each iteration and (b) path to get from node A to node B.

Design and Implementation of a Demonstrative Palletizer Robot with Navigation…
http://dx.doi.org/10.5772/intechopen.72872

179



perform horizontal and vertical trajectories and left or right rotations. Diagonal movements can-
not be performed, because the robot size is not considered for the final path computation, and, 
consequently, it is more important to avoid possible robot collisions than to get an optimal travers-
ing path. For this reason, the virtual instrument (VI module) provided on the software is modi-
fied to exclude all diagonal nodes that could be included in the path. The modified class is called 
“GetNeighbours” of the library “OccupancyGridWorldMap,” and only we establish a fixed threshold 
value for the cost function of the diagonal nodes, such that it will always be higher than other pos-
sible nodes. Figure 11(a) illustrates simulation results of the A-star algorithm, and Figure 11(b) 
the modified version for the same environment before programming the mobile robot DaNI. Note 
that there are diagonal displacements on the path, yet they are not too close to the obstacles, so the 
risk of collision is minimal. Real tests of the final palletizer robot are presented in the next section.

4. Experimental results

A 3D model of the palletizer robot designed on Google SketchUp® is shown in Figure 12.

The experimental tests were performed on room with natural light, without any kind of obstacles 
around. The robot moves on a rectangular wood base sized 2 × 1.2 m, and the pallet is a square 
wood base of 30 cm located on the upper right corner of the base. Initially, the robot is located 
at the lower left corner as its start point. This information about the environment is registered 
as a matrix in a text file, with values ‘0’ and ‘1’ representing free and occupied cells in the envi-
ronment, respectively. The size of the matrix is related to the navigable space, and in our case, 
the matrix is 20 × 12; therefore, each cell is 10 cm big, representing an environment of 2 × 1.2 m.

Some images of the robot arriving at the object location and picking it up with the gripper are 
included in Figure 13. Many orders are carried out during this first routine of the robotic arm: 
set, down, open, close and up gripper to take the object. The second routine of the robotic arm 
consists in placing the object on the final pallet. This routine starts with the arm up, and then, 
it goes down slowly. Once the gripper is located over the pallet, it opens, goes up and finally 
closes the gripper (Figure 14).

Figure 11. (a) Simulation results of the A-star algorithm and (b) results of modified A-star algorithm.

Advanced Path Planning for Mobile Entities180

Figure 12. 3D model of the assembled palletizer robot.

Figure 13. Images illustrate the first routine performed by the robotic arm: picking up an object.

Design and Implementation of a Demonstrative Palletizer Robot with Navigation…
http://dx.doi.org/10.5772/intechopen.72872

181



perform horizontal and vertical trajectories and left or right rotations. Diagonal movements can-
not be performed, because the robot size is not considered for the final path computation, and, 
consequently, it is more important to avoid possible robot collisions than to get an optimal travers-
ing path. For this reason, the virtual instrument (VI module) provided on the software is modi-
fied to exclude all diagonal nodes that could be included in the path. The modified class is called 
“GetNeighbours” of the library “OccupancyGridWorldMap,” and only we establish a fixed threshold 
value for the cost function of the diagonal nodes, such that it will always be higher than other pos-
sible nodes. Figure 11(a) illustrates simulation results of the A-star algorithm, and Figure 11(b) 
the modified version for the same environment before programming the mobile robot DaNI. Note 
that there are diagonal displacements on the path, yet they are not too close to the obstacles, so the 
risk of collision is minimal. Real tests of the final palletizer robot are presented in the next section.

4. Experimental results

A 3D model of the palletizer robot designed on Google SketchUp® is shown in Figure 12.

The experimental tests were performed on room with natural light, without any kind of obstacles 
around. The robot moves on a rectangular wood base sized 2 × 1.2 m, and the pallet is a square 
wood base of 30 cm located on the upper right corner of the base. Initially, the robot is located 
at the lower left corner as its start point. This information about the environment is registered 
as a matrix in a text file, with values ‘0’ and ‘1’ representing free and occupied cells in the envi-
ronment, respectively. The size of the matrix is related to the navigable space, and in our case, 
the matrix is 20 × 12; therefore, each cell is 10 cm big, representing an environment of 2 × 1.2 m.

Some images of the robot arriving at the object location and picking it up with the gripper are 
included in Figure 13. Many orders are carried out during this first routine of the robotic arm: 
set, down, open, close and up gripper to take the object. The second routine of the robotic arm 
consists in placing the object on the final pallet. This routine starts with the arm up, and then, 
it goes down slowly. Once the gripper is located over the pallet, it opens, goes up and finally 
closes the gripper (Figure 14).

Figure 11. (a) Simulation results of the A-star algorithm and (b) results of modified A-star algorithm.

Advanced Path Planning for Mobile Entities180

Figure 12. 3D model of the assembled palletizer robot.

Figure 13. Images illustrate the first routine performed by the robotic arm: picking up an object.

Design and Implementation of a Demonstrative Palletizer Robot with Navigation…
http://dx.doi.org/10.5772/intechopen.72872

181



The robotic arm motion is a program synchronized with the path planning strategy in the 
mobile robot; in contrast, the A-star algorithm was established as the main routine of the 
palletizer robot. That is, rather DaNI robot or NXT Lego performs their programmed tasks 
sequentially and the mobile robot has the master control. The path planning module on the 
robot consists of three stages: initial, intermediate and final. The first stage involves the A-star 
algorithm: it receives the initial map of the environment (the text file explained above), the 
start and end positions of the robot, and then, the module calculates the navigable path of the 
robot. In addition, this stage calculates an occupation map, indicating the cells that the robot 
must “visit” during navigation to get to the goal position.

In the intermediate stage, the occupation map with the resulted trajectory is analyzed and 
adequate in accordance with the robot dimensions and motor power: set velocity param-
eters, rotation angles, and warranty that all the movements could be performed by the 
DaNI robot. The interpretation and adequacy of the path in the robot consists in setting 
up when the robot moves straight, turns left or right or when the goal is reached. Thus, a 
straight motion is included (represented as ‘0’) when the coordinates (x,y) of any pair of 
consecutive cells in the path change only in the ‘x’ or ‘y’ value. If both coordinates change, 
then a left or right motion (‘1’) is included depending on the change in the coordinates. As 
the cells in the path are evaluated in pairs of cells, the robot stops when the second (x,y) 
cell coordinates is the goal, represented as ‘2’. In this way, at the end of the intermediate 
stage, a chain of instructions that includes numbers ‘0’, ‘1’, ‘2’ codes the physical move-
ments that the robot must perform.

During the final stage, the movements and rotations planned for the robot are carried out 
in accordance with the chain of instructions provided by the intermediate stage. Figure 15 
illustrates a graphical interface that simulates robot navigation in an environment of 36 × 36 
cells with obstacles, for an initial point and final point of (1,1) and (20,20), respectively. The 
output path is shown in the left graph, while the output data of initial, intermediate and final 
stages, including the chain of instructions, are illustrated at the top of the graphical interface.

Figure 14. Images illustrate the second routine performed by the robotic arm: placing object on the pallet.

Advanced Path Planning for Mobile Entities182

In our real environment, the first test carried out was to move the robot from (1,1) cell (initial 
robot position) to (2,2) cell (box location), without obstacles on the map (Figure 16). Figure 17 
shows the first part of the proposed routine, when the robot takes the box.

The second path performed consists of getting to a second final point, that is, the pallet loca-
tion for leaving the box. Here the initial position will be the object location which corresponds 
to the final coordinate performed in the first stage. Thus, considering the pallet location as cell 
(8, 3), the second path performed to get the pallet is illustrated in Figures 18 and 19: graphical 
interface results and the second part of the real robot performance.

Figure 15. Graphical interface of the robot navigation.

Figure 16. First path to move the robot from (1,1) initial position to (2,2) box location, without obstacles in the 
environment.

Design and Implementation of a Demonstrative Palletizer Robot with Navigation…
http://dx.doi.org/10.5772/intechopen.72872

183



The robotic arm motion is a program synchronized with the path planning strategy in the 
mobile robot; in contrast, the A-star algorithm was established as the main routine of the 
palletizer robot. That is, rather DaNI robot or NXT Lego performs their programmed tasks 
sequentially and the mobile robot has the master control. The path planning module on the 
robot consists of three stages: initial, intermediate and final. The first stage involves the A-star 
algorithm: it receives the initial map of the environment (the text file explained above), the 
start and end positions of the robot, and then, the module calculates the navigable path of the 
robot. In addition, this stage calculates an occupation map, indicating the cells that the robot 
must “visit” during navigation to get to the goal position.

In the intermediate stage, the occupation map with the resulted trajectory is analyzed and 
adequate in accordance with the robot dimensions and motor power: set velocity param-
eters, rotation angles, and warranty that all the movements could be performed by the 
DaNI robot. The interpretation and adequacy of the path in the robot consists in setting 
up when the robot moves straight, turns left or right or when the goal is reached. Thus, a 
straight motion is included (represented as ‘0’) when the coordinates (x,y) of any pair of 
consecutive cells in the path change only in the ‘x’ or ‘y’ value. If both coordinates change, 
then a left or right motion (‘1’) is included depending on the change in the coordinates. As 
the cells in the path are evaluated in pairs of cells, the robot stops when the second (x,y) 
cell coordinates is the goal, represented as ‘2’. In this way, at the end of the intermediate 
stage, a chain of instructions that includes numbers ‘0’, ‘1’, ‘2’ codes the physical move-
ments that the robot must perform.

During the final stage, the movements and rotations planned for the robot are carried out 
in accordance with the chain of instructions provided by the intermediate stage. Figure 15 
illustrates a graphical interface that simulates robot navigation in an environment of 36 × 36 
cells with obstacles, for an initial point and final point of (1,1) and (20,20), respectively. The 
output path is shown in the left graph, while the output data of initial, intermediate and final 
stages, including the chain of instructions, are illustrated at the top of the graphical interface.

Figure 14. Images illustrate the second routine performed by the robotic arm: placing object on the pallet.

Advanced Path Planning for Mobile Entities182

In our real environment, the first test carried out was to move the robot from (1,1) cell (initial 
robot position) to (2,2) cell (box location), without obstacles on the map (Figure 16). Figure 17 
shows the first part of the proposed routine, when the robot takes the box.

The second path performed consists of getting to a second final point, that is, the pallet loca-
tion for leaving the box. Here the initial position will be the object location which corresponds 
to the final coordinate performed in the first stage. Thus, considering the pallet location as cell 
(8, 3), the second path performed to get the pallet is illustrated in Figures 18 and 19: graphical 
interface results and the second part of the real robot performance.

Figure 15. Graphical interface of the robot navigation.

Figure 16. First path to move the robot from (1,1) initial position to (2,2) box location, without obstacles in the 
environment.

Design and Implementation of a Demonstrative Palletizer Robot with Navigation…
http://dx.doi.org/10.5772/intechopen.72872

183



Figure 17. Real robot performance. (a) Robot path to the box location and (b) robot takes the box.

Figure 18. Path to move the robot from (2,2) to (8,3) cells, without obstacles in the environment.

Advanced Path Planning for Mobile Entities184

If no more boxes must be palletized, the robot performs a third path to reach the initial position 
again, in our example cell (1,1).

5. Conclusions and perspectives

The task of moving an object from one place to another in an autonomous way requires many 
considerations: the mobile robot, the mechanism used to carry the object, the path planning 
strategy, and synchronization of all the systems involved in the task. In this chapter, the 
robotic NXT arm can be programmed at a maximal distance of 10 m. and some of the consid-
erations to implement this kind of project are:

1. Validate ultrasonic sensor values when executing the trajectory.

2. Execute the trajectory in two stages: to reach the box and to place it in the pallet.

An appropriate space must be found for robot navigation purposes to avoid excessive or defi-
cient friction of the wheels against the floor, to establish speeds and distances.

The overall strategy programmed on the mobile robot should encourage beginners or young 
people interested in robotic developments. We are currently working on the integration of a 
method to verify if the second phase of the trajectory can be performed as initially established. 
In addition, we are also correcting odometric mistakes at a mechanical level. On both plat-
forms, DaNI robot and NXT, LabView and LabView robotic modules are used respectively  to 

Figure 19. Final part of the routine. (a) By rows: robot moves from initial position to the pallet carry on the box and (b) 
by rows: robot leaves carefully the box on the pallet.

Design and Implementation of a Demonstrative Palletizer Robot with Navigation…
http://dx.doi.org/10.5772/intechopen.72872

185



Figure 17. Real robot performance. (a) Robot path to the box location and (b) robot takes the box.

Figure 18. Path to move the robot from (2,2) to (8,3) cells, without obstacles in the environment.

Advanced Path Planning for Mobile Entities184

If no more boxes must be palletized, the robot performs a third path to reach the initial position 
again, in our example cell (1,1).

5. Conclusions and perspectives

The task of moving an object from one place to another in an autonomous way requires many 
considerations: the mobile robot, the mechanism used to carry the object, the path planning 
strategy, and synchronization of all the systems involved in the task. In this chapter, the 
robotic NXT arm can be programmed at a maximal distance of 10 m. and some of the consid-
erations to implement this kind of project are:

1. Validate ultrasonic sensor values when executing the trajectory.

2. Execute the trajectory in two stages: to reach the box and to place it in the pallet.

An appropriate space must be found for robot navigation purposes to avoid excessive or defi-
cient friction of the wheels against the floor, to establish speeds and distances.

The overall strategy programmed on the mobile robot should encourage beginners or young 
people interested in robotic developments. We are currently working on the integration of a 
method to verify if the second phase of the trajectory can be performed as initially established. 
In addition, we are also correcting odometric mistakes at a mechanical level. On both plat-
forms, DaNI robot and NXT, LabView and LabView robotic modules are used respectively  to 

Figure 19. Final part of the routine. (a) By rows: robot moves from initial position to the pallet carry on the box and (b) 
by rows: robot leaves carefully the box on the pallet.

Design and Implementation of a Demonstrative Palletizer Robot with Navigation…
http://dx.doi.org/10.5772/intechopen.72872

185



program communication between the robotic arm and the mobile robot using the same rules 
of code. Finally, a perspective to increase the accuracy of the navigation consists in adding a 
video camera to monitor the palletizing process.

Author details

Dora-Luz Almanza-Ojeda*, Perla-Lizeth Garza-Barron, Carlos Rubin Montoro-Sanjose and 
Mario-Alberto Ibarra-Manzano

*Address all correspondence to: luzdora@ieee.org

Electronics Engineering Department, DICIS, University of Guanajuato, Salamanca, 
Guanajuato, Mexico

References

[1] Spong MW, Vidyasagar M. Robot Dynamics and Control. India: Wiley India Pvt. Limited; 
2008. https://books.google.com.mx/books?id=PtxYAv7ZUYMC ISBN: 9788126517800

[2] Iocchi L, Ruiz-Del-Solar J, Zant T. Advances in domestic service robots in the real world. 
Journal of Intelligent and Robotics Systems. 2014;76(1):3-4. DOI: 10.1007/s10846-014-0021-1

[3] Zavadskas EK. Automation and Robotics in Construction: International Research and 
Achievements. Universidad de Alicante; 2012. pp. 2-5. DOI: 10.1016/j.autcon.2009.12.011

[4] Lopez BL. Distribuciones hibridas: Los sistemas de fabricacion flexible [Internet]. 
Available from: http://www.academia.edu/10375825/DISTRIBUCIONES_HIBRIDAS 
[Accessed: 02-08-2017]

[5] Almanza-Ojeda DL, Gomar-Vera Y, Ibarra-Manzano MA. Occupancy Map Construction 
for Indoor Robot Navigation. In: Hurtado EG, editor. Robot Control. Croatia: Intech; 
ch. 4. pp. 69-87. ISBN: 978-953-51-2684-3, September 2016. http://www.intechopen.com

[6] “VexRobotics” [Internet]. Available from: http://www.vexrobotics.com.mx/ [Accessed: 
09-08-2017]

[7] Zowi robot in Europe [Internet]. Available from: http://zowi.bq.com/fr/ [Accessed: 
09-08-2017]

[8] National Instruments Corporation. Introduction to the LabVIEW Plataform [Internet]. 
Available from: http://www.ni.com/webcast/439/es/ [Accessed: 29-09-2017]

[9] Hopkins B, Antony R. Bluetooth for JAVA. USA: Apress; 2003. ISBN: 978-1-59059-078-2

[10] National Instruments Corporation. NI Single-Board RIO Embedded Control and Acq-
uisition [Internet]. October 2012. pp. 1-3. Available from: ftp://ftp.ni.com/pub/branches/
northern_region/fpga_kit_feb14/what_is_ni_singleboardrio.pdf [Accessed: 29-09-2017]

Advanced Path Planning for Mobile Entities186

[11] Rico JM. Analisis dinamico de un mecanismo plano de cuatro barras. Analisys of 
Mechanisms, undergraduate course. Division de Ingenierias Campus Irapuato-Salamanca, 
Universidad de Guanajuato; Mexico. 2014. pp. 2-6

[12] Lent D. Analysis and Design of Mechanisms. USA: Prentice Hall; 1970. ISBN: 978-0- 
13032-797-0

[13] SolidWorks Corporation. Student’s Guide to Learning SolidWorks® Software. France: 
D’assault Systemes SolidWorks Corporation, PMS0119-ENG; 2011. Available from: https://
www.solidworks.com/sw/docs/Student_WB_2011_ENG.pdf [Accessed: 23-06-2017]

[14] Lego Mindstorm NXT Datasheet. Lego Mindstorm Education; Denmark. 2008. 66 p. Available 
from: https://www.generationrobots.com/media/Lego-Mindstorms-NXT-Education-Kit.pdf

[15] Trimble: How to use Google-sketchup, Trimble Corporate and SketchUp developers. 
Available from: https://www.sketchup.com/learn/videos/826 [Accessed: 14-08-2017]

[16] Dechter R, Judea P. Generalized best-first search strategies and the optimality of A*. 
Journal of the ACM. 1985;32(3):505-536. DOI: 10.1145/3828.3830

[17] Ferguson D, Likhachev M, Stentz A. A guide to heuristic-based path planning. Proceedings 
of ICAPS Workshop on Planning under Uncertainty for Autonomous Systems; 2005. 
www.cs.cmu.edu/afs/cs.cmu.edu/Web/People/maxim/files/hsplanguide_icaps05ws.pdf

[18] Gretlein S. Presentando labview robotics: de la fantasia a la realidad. Instrumentation 
Newsletter. 2010;22(2):3-5. Available from: ftp://ftp.ni.com/pub/gdc/tut/abril-junio_2010.
pdf

Design and Implementation of a Demonstrative Palletizer Robot with Navigation…
http://dx.doi.org/10.5772/intechopen.72872

187



program communication between the robotic arm and the mobile robot using the same rules 
of code. Finally, a perspective to increase the accuracy of the navigation consists in adding a 
video camera to monitor the palletizing process.

Author details

Dora-Luz Almanza-Ojeda*, Perla-Lizeth Garza-Barron, Carlos Rubin Montoro-Sanjose and 
Mario-Alberto Ibarra-Manzano

*Address all correspondence to: luzdora@ieee.org

Electronics Engineering Department, DICIS, University of Guanajuato, Salamanca, 
Guanajuato, Mexico

References

[1] Spong MW, Vidyasagar M. Robot Dynamics and Control. India: Wiley India Pvt. Limited; 
2008. https://books.google.com.mx/books?id=PtxYAv7ZUYMC ISBN: 9788126517800

[2] Iocchi L, Ruiz-Del-Solar J, Zant T. Advances in domestic service robots in the real world. 
Journal of Intelligent and Robotics Systems. 2014;76(1):3-4. DOI: 10.1007/s10846-014-0021-1

[3] Zavadskas EK. Automation and Robotics in Construction: International Research and 
Achievements. Universidad de Alicante; 2012. pp. 2-5. DOI: 10.1016/j.autcon.2009.12.011

[4] Lopez BL. Distribuciones hibridas: Los sistemas de fabricacion flexible [Internet]. 
Available from: http://www.academia.edu/10375825/DISTRIBUCIONES_HIBRIDAS 
[Accessed: 02-08-2017]

[5] Almanza-Ojeda DL, Gomar-Vera Y, Ibarra-Manzano MA. Occupancy Map Construction 
for Indoor Robot Navigation. In: Hurtado EG, editor. Robot Control. Croatia: Intech; 
ch. 4. pp. 69-87. ISBN: 978-953-51-2684-3, September 2016. http://www.intechopen.com

[6] “VexRobotics” [Internet]. Available from: http://www.vexrobotics.com.mx/ [Accessed: 
09-08-2017]

[7] Zowi robot in Europe [Internet]. Available from: http://zowi.bq.com/fr/ [Accessed: 
09-08-2017]

[8] National Instruments Corporation. Introduction to the LabVIEW Plataform [Internet]. 
Available from: http://www.ni.com/webcast/439/es/ [Accessed: 29-09-2017]

[9] Hopkins B, Antony R. Bluetooth for JAVA. USA: Apress; 2003. ISBN: 978-1-59059-078-2

[10] National Instruments Corporation. NI Single-Board RIO Embedded Control and Acq-
uisition [Internet]. October 2012. pp. 1-3. Available from: ftp://ftp.ni.com/pub/branches/
northern_region/fpga_kit_feb14/what_is_ni_singleboardrio.pdf [Accessed: 29-09-2017]

Advanced Path Planning for Mobile Entities186

[11] Rico JM. Analisis dinamico de un mecanismo plano de cuatro barras. Analisys of 
Mechanisms, undergraduate course. Division de Ingenierias Campus Irapuato-Salamanca, 
Universidad de Guanajuato; Mexico. 2014. pp. 2-6

[12] Lent D. Analysis and Design of Mechanisms. USA: Prentice Hall; 1970. ISBN: 978-0- 
13032-797-0

[13] SolidWorks Corporation. Student’s Guide to Learning SolidWorks® Software. France: 
D’assault Systemes SolidWorks Corporation, PMS0119-ENG; 2011. Available from: https://
www.solidworks.com/sw/docs/Student_WB_2011_ENG.pdf [Accessed: 23-06-2017]

[14] Lego Mindstorm NXT Datasheet. Lego Mindstorm Education; Denmark. 2008. 66 p. Available 
from: https://www.generationrobots.com/media/Lego-Mindstorms-NXT-Education-Kit.pdf

[15] Trimble: How to use Google-sketchup, Trimble Corporate and SketchUp developers. 
Available from: https://www.sketchup.com/learn/videos/826 [Accessed: 14-08-2017]

[16] Dechter R, Judea P. Generalized best-first search strategies and the optimality of A*. 
Journal of the ACM. 1985;32(3):505-536. DOI: 10.1145/3828.3830

[17] Ferguson D, Likhachev M, Stentz A. A guide to heuristic-based path planning. Proceedings 
of ICAPS Workshop on Planning under Uncertainty for Autonomous Systems; 2005. 
www.cs.cmu.edu/afs/cs.cmu.edu/Web/People/maxim/files/hsplanguide_icaps05ws.pdf

[18] Gretlein S. Presentando labview robotics: de la fantasia a la realidad. Instrumentation 
Newsletter. 2010;22(2):3-5. Available from: ftp://ftp.ni.com/pub/gdc/tut/abril-junio_2010.
pdf

Design and Implementation of a Demonstrative Palletizer Robot with Navigation…
http://dx.doi.org/10.5772/intechopen.72872

187



Advanced Path Planning for 
Mobile Entities
Edited by Rastislav Róka

Edited by Rastislav Róka

The book Advanced Path Planning for Mobile Entities provides a platform for practicing 
researchers, academics, PhD students, and other scientists to design, analyze, evaluate, 
process, and implement diversiform issues of path planning, including algorithms for 

multipath and mobile planning and path planning for mobile robots. The nine chapters 
of the book demonstrate capabilities of advanced path planning for mobile entities to 

solve scientific and engineering problems with varied degree of complexity. 

Published in London, UK 

©  2018 IntechOpen 
©  Joel Filipe / unsplash

ISBN 978-1-78923-578-4

A
dvanced Path Planning for M

obile Entities

ISBN 978-1-83881-400-7


	Advanced Path Planning for Mobile Entities
	Contents
	Preface
	Section 1
Advanced Algorithms for Multi-Path Planning
	Chapter 1
Consensus-Based Multipath Planning with Collision Avoidance Using Linear Matrix Inequalities
	Chapter 2
Multi-Path Planning on a Sphere with LMI-Based Collision Avoidance
	Chapter 3
Multi-Spacecraft Attitude Path Planning Using Consensus with LMI-Based Exclusion Constraints
	Chapter 4
Search-Based Planning and Replanning in Robotics and Autonomous Systems
	Chapter 5
Path Planning on Quadric Surfaces and Its Application

	Section 2
Extended Path Planning for Mobile Robots
	Chapter 6
Path Planning in Rough Terrain Using Neural Network Memory
	Chapter 7
Path Planning Based on Parametric Curves
	Chapter 8
Motion Planning for Mobile Robots
	Chapter 9
Design and Implementation of a Demonstrative Palletizer Robot with Navigation for Educational Purposes


