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Abstract

Trapdoors are a two-face key concept in modern cryptography. They are primarily related
to the concept of trapdoor function used in asymmetric cryptography. A trapdoor function
is a one-to-one mapping that is easy to compute, but for which its inverse function is
difficult to compute without special information, called the trapdoor. It is a necessary
condition to get reversibility between the sender and the receiver for encryption or
between the signer and the verifier for digital signature. The trapdoor mechanism is
always fully public and detailed. The second concept of trapdoor relates to the more subtle
and perverse concept of mathematical backdoor, which is a key issue in symmetric cryp-
tography. In this case, the aim is to insert hidden mathematical weaknesses, which enable
one who knows them to break the cipher. Therefore, the existence of a backdoor is a
strongly undesirable property. This book deals with this second concept and is focused
on block ciphers or, more specifically, on substitution-permutation networks (SPN).
Inserting a backdoor in an encryption algorithm gives an effective cryptanalysis of the
cipher to the designer.

Keywords: cryptography, block ciphers, backdoor, trapdoor, substitution-permutation
network, cryptanalysis
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Preface

1. Introduction

Despite the fact that in the late 90s/early 2000s, citizens have partially obtained the freedom for
using cryptography, the recent years have shown that more than ever, governments and intelli-
gence agencies still try to control and bypass the cryptographic means used for the protection of
data and of private life. Snowden leaks have been a first upheaval. A tremendous number of
secret projects conducted by NSA and GCHQ have been revealed to the public opinion. They
have shed a new light on the permanent attempt to control the use of cryptography by a growing
number of governments.

The recurring approaches and attempts consist in making the implementation of backdoors
mandatory. The simplest and naive approach consists in enforcing key escrowing at the opera-
tors’ level. But point-to-point encryption solutions like telegram, signal or proton mail enable to
prevent it. A number of different backdoor techniques are regularly mentioned or proposed.

The most critical aspect in embedding backdoors lies on the fact that hackers or analysts may
find them more or less easily and worse may exploit them. This is the reason why operators or
developers are very reluctant to accept backdoors until now. In case of leak, they inevitably
lose users’ confidence and favor the development of trusted services abroad. In fact, the
backdoor issue arises due to the fact that only implementation backdoors (at the protocol/
implementation/management level) are generally considered.

In this book, we address the most critical issue of backdoors: mathematical or by-design back-
doors. In other words, the backdoor is put directly in the mathematical design of the encryption
algorithm. While the algorithm is totally public, proving that there is a backdoor, identifying it
and exploiting it, is generally an intractable problem, unless you know the backdoor [1]. To some
extent, the RSA’'s Dual_ EC_DRBG standard case falls within this category [2]. Other nonpublic
examples are known within the military cryptanalysis community and partially revealed to the
public, thanks to the 1995 Hans Buehler case [3]. This kind of backdoor is the most difficult one
to address and there is quite no public work on that topic. It is generally the technical realm of a
few among the most eminent intelligence agencies, namely NSA and GCHQ, which moreover
have the ability and power to step in and to influence the international standardization pro-
cesses. Our objective is to explain that it is probably possible to design and put such backdoors.
In this book, we consider a particular case among many other possibilities of trapdoors.

This book is organized as follows. In the next section, we explore the concept of backdoors and
trapdoors and we identify two main categories. We also present the state-of-the-art, history
and previous work regarding backdoors, mostly in symmetric cryptography. The rest of this
book focuses on substitution-permutation networks (or SPN for short) which are a special class
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of block encryption systems, mapping a partition of the plaintexts to a partition of the cipher-
texts, independently of the round keys used.

Chapter 2 explores the concept of linear partitions and their relationships with substitution-
permutation networks. We show in Section 2 that in our case, the study of the full cipher can be
restricted to the substitution layer without loss of generality. Then in Section 3, we explore this
latter primitive and show that the problem can be restricted further to the study of a single S-box.

In Chapter 3, we discuss how to design a suitable S-box which preserves a linear partition and,
at the same time, which resists linear and differential cryptanalysis. From those theoretical
results, we have designed a full AES-like encryption system, called BEA-1, presented in
Chapter 4. Section 1 gives the full specifications of this cipher. Then Section 2 deals with the
design of its backdoor. In Section 3, we sketch the basic ideas underlying the BEA-1 cryptanal-
ysis while in Section 4, we present our cryptanalysis of BEA-1 under the assumption we have
the full knowledge of the backdoor.

Chapter 5 concludes this book and explore new ideas and trends in encryption backdoors. The
full description of cryptographic primitives used in BEA-1 is given in Appendix.

2. The concept of backdoor

2.1. Definition and classification proposal

Trapdoors are a two-face key concept in modern cryptography. They are primarily related to
the concept of trapdoor function used in asymmetric cryptography. A trapdoor function is a one-
to-one mapping that is easy to compute, but for which its inverse function is difficult to
compute without special information, called the trapdoor. It is a necessary condition to get
reversibility between the sender and the receiver for encryption or between the signer and the
verifier for digital signature. The trapdoor mechanism is always fully public and detailed. The
security and the core principle are based on the existence of a secret information, the private
key, which is essentially part of the trapdoor. In other words, the private key can be seen as the
trapdoor.

The second concept of trapdoor relates to the more subtle and perverse concept of mathematical
backdoor, which is a key issue in symmetric cryptography. In this case, the aim is to insert
hidden mathematical weaknesses which enable one who knows them to break the cipher.
Nonetheless, mathematical backdoors may be extended to asymmetric cryptography, see for
example the case of the DUAL EC_DRBG [2], or the case of trapdoor primes addresses recently
in [4]. Therefore, the existence of a backdoor is a strongly undesirable property.

In the rest of this section, we will oppose the term of trapdoor, the desirable property, to that of
backdoor, the undesirable one. While the term of trapdoor has been already used in the very
few literature covering the second face of this problem, we suggest however to use the term of
backdoor to describe the issue of hidden mathematical weaknesses. This would avoid ambi-
guity and maybe would favor the research work around a topic which is nowadays mostly
addressed by governmental entities in the context of cryptography control and regulations.
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Inserting backdoors in encryption algorithms underlies quite systematically the choice of
cryptographic standards (DES, AES...). The reason is that the testing, validation and selection
processes are always conducted by governmental entities (NIST or equivalent) with the tech-
nical support of secret entities (NSA or equivalent). So an interesting and critical research area
is: “how easy and feasible is it to design and to insert backdoors in encryption algorithms?”. In
this book, we intend to address one very particular case of this question. It is important to keep
in mind that a backdoor may be itself defined in the following two ways.

* Asa “natural weakness” known, but none disclosed, only by the tester, validator or final
decision-maker. The best historic example is that of the differential cryptanalysis. Follow-
ing Biham and Shamir’s seminal work in 1991 [5], NSA acknowledged that it was aware of
that cryptanalysis years ago [6]. Most of experts estimate that it was nearly 20 years ahead.
However a number of non public, commercial block ciphers in the early 90s might have
been be weak with respect to differential cryptanalysis.

* As an intended design weakness put by the author of the algorithm. To the authors
knowledge, there is no known case for public algorithms yet.

As far as symmetric cryptography is concerned, there are two major families of cipher systems
for which the issue of backdoor must be considered differently.

e Stream ciphers. Their design complexity is rather low since they mostly rely on algebraic
primitives: LFSRs and Boolean functions which have intensely been studied in the open
literature Until the late 70s, backdoors relied on the fact that quite all algorithms were propri-
etary and hence secret. It was then easy to hide nonprimitive polynomials, weak-combining
Boolean functions... The Hans Buehler case in 1995 [3] shed light on that particular case.

*  Block ciphers. This class of encryption algorithms is rather recent (end of the 70s for the
public part). They exhibit so a huge combinatorial complexity that it is reasonable to think
to backdoors. As described in [7] for a «k-bit secret key and an m-bit input/output block

cipher there are ((2")!)? possible such block ciphers. For such an algorithm, the number
of possible internal states is so huge that we are condemned to have only a local view of
the system, that is, the round function or the basic cryptographic primitives. We cannot be
sure that there is no degeneration effect at a higher level. This point has been addressed
in [7] when considering linear cryptanalysis. Therefore, it seems reasonable to think that
this combinatorial richness of block ciphers may be used to hide backdoors.

Since block ciphers are now the most widely used encryption algorithms by the general public
and the industry, we will focus on them in the rest of this book. Backdoors in stream ciphers
have quite never been exposed to the public.

2.2. Previous work

Regarding the previous work, we can consider two aspects. The first one relates to authors
who have considered structures on the input and output spaces of round functions to build
key distinguishing or key recovery attacks. In this case, it is possible to suppose that those
structures are “natural” structures. The second case is directly linked to the topic covered in
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this book. It relates to the design of backdoors based on such structures. Exploiting these
hidden structures then leads to a tractable cryptanalysis. In this respect, we can see those
structures as “intended” and no longer “natural”.

2.2.1. Attacks using space structures

Among the very first previous works that have considered structures in the plaintext and
ciphertext spaces is the contribution of Evertse [8]. This paper introduced the linear structures
for block ciphers, which map a subspace of IF;' x 5 (the product of the plaintext and ciphertext
spaces) onto a subspace of F' (the ciphertext space). Then, the author showed that if such a
linear structure exists, then known-plaintext and chosen-plaintext attacks faster than exhaus-
tive search are possible.

Later, Leander et al. [9] developed a new cryptanalysis, called invariant subspace attack, breaking
the PRINTCirrHeR [10] for a significant fraction of its keys. The general idea of this attack can be
outlined as follows. Let F denote the SP-layer of a substitution-permutation network, that is, the
round function without the key addition. Then, assume that F maps a coset of a given subspace V'
to another coset of V. In other words, there exist 4 and b such that F(a + V) = b + V. Here, the
addition is made in F; and hence corresponds with the XOR operation. The round function
associated with the round key k is then defined by Fy : x — F(x + k). If the round key k belongs to
the coset a + b + V, then it holds that

F(b+V)=Fb+k+V)=Fa+V)=b+V,

hence the name of invariant subspace. Therefore, if every round key lies in this particular coset, the
affine subspace b + V is preserved by the full encryption process. Such a property enables a very
efficient distinguisher. As additional results, they also showed that the invariant subspace attack

e implies a truncated differential attack to be possible (the probability of the truncated
differential characteristic is however highly key-dependent);

e implies the existence of strongly biased linear approximations for weak keys (indepen-
dently of the number of rounds).

This attack has been generalized in 2015 by Leander et al. [11]. They proposed a generic
algorithm that is able to detect invariant subspaces. Indeed, their initial invariant subspaces
on PRINTCipHER were found empirically.

Following the idea of the invariant subspace attack, Grassi et al. [12] introduced the subspace

trail cryptanalysis. Given r + 1 subspaces V[O], e, V[’], it is assumed that the image of any coset of
Vi1 under the SP-network is included in a coset of V¥**!l. That is to say, for each al’}, there exists
™! such the following inclusion holds

Fal + vy c gt i),

In this case, it is easy to see the all round functions Fj inherit such a property. The family of
subspaces (V). _, is said to be a subspace trail. Naturally, the dimension of V! must be lower

5
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Work Structure Key dependence
Evertse [8] Linear structure (if any) Key independent
Leander et al. [9, 11] Exact coset Round key dependent
Grassi et al. [12] Coset independent Round key independent
Our approach Coset independent Round key independent

Table 1.1. Comparison of existing work with respect to input and output space structures.

than or equal to the dimension of V!, In contrast to the invariant subspace attack, Grassi
et al. relaxed the assumption that the coset has to be invariant. Here, the considered subset
becomes the coset of possibly different increasingly dimensional subspaces throughout the
encryption. However, the authors also required this property to hold for each coset of V!°!
instead of one. Therefore, this cryptanalysis is not a generalization but a variation of the
invariant subspace attack. As will become clear in Section 2 of Chapter 2, the family of
backdoors covered in this book is closely related to constant-dimensional subspace trails.

Let us mention that in [13], the authors introduced nonlinear invariant subspaces by consider-
ing a general Boolean function g such that g(F(x)) @ g(x) is constant. Finally, Table 1.1 summa-
rized the structures considered by the attacks presented in this section and compared it with
our work.

2.2.2. Backdoor design and structures

One of the first trapdoor ciphers was created in 1997 by Rijmen and Preneel [14]. Their S-boxes
are constructed to have one high correlation between the zero mapping and a sum of certain
output bits. The knowledge of this correlation yields a high potential linear trail which is used
to recover a part of the key with linear cryptanalysis. Such a weakness is generally pointed out
by the first line of the S-boxes’ correlation matrices. Yet, if the output size of the S-boxes is large
enough, their computation is too expensive. Relying on this fact, the authors claimed that their
trapdoor is undetectable, even if one knows its global design. Nevertheless, Wu et al. [15]
disproved this by discovering a way to recover the trapdoor. It is worthwhile to mention that
in practice, if a real cipher containing a trapdoor is given, the presence of the trapdoor will
certainly not be revealed.

More recently in [16], the authors created non-surjective S-boxes embedding a parity check to
create a trapdoor cipher. The message space is thus divided into cosets and leads to create an
attack on this DES-like cipher in less than 2% operations. The security of the whole algorithm,
particularly against linear and differential cryptanalysis is not given and the authors admit
that their attack is dependent on the first and last permutation of the cipher. Finally, the non-
surjective S-boxes may lead to detect easily the trapdoor by simply calculating the image of
each input vector. This problem is naturally avoided in a substitution-permutation network in
which S-boxes are bijective by definition.

Our approach is mainly a generalization of the ideas presented by Paterson in [17]. In this
article, a DES-like trapdoor cipher exploiting a weakness induced by the round functions is
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presented. The group generated by the round functions acts imprimitively on the message
space. In other words, the round function preserves a partition of the message space no matter
the round key used, and hence, the same applies to the full cipher. This partition forms the
trapdoor. Paterson then introduced a trapdoor cipher composed of 32 rounds and using an 80-
bit key. The trapdoor enables recovery of the key using 2*' operations and 2** chosen plain-
texts. Even if the mathematical material to build the trapdoor is given, no general algorithm
details the S-boxes” construction. Furthermore, as the author says, S-boxes using these princi-
ples are incomplete: half of the ciphertext bits are independent of half of the plaintext bits.
Finally, the security against a differential attack is said to be not as high as one might expect.
Moreover, the author wondered whether the partition of the message space had to be linear,
that is to say, made up with every coset of a linear subspace. Caranti et al. [18] provided a first
answer to Paterson’s question, by proving that if the group generated by the round functions is
imprimitive, then the partition of the message space must be linear. In his thesis [19], Harpes
considered trapdoor ciphers mapping a partition of the plaintexts to a partition of the cipher-
texts. As these partitions are not necessarily equal, this family generalizes Paterson’s one.
Harpes suggested using this trapdoor with its partitioning cryptanalysis.
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Partition-Based Trapdoor Cipher

This chapter intends to study Substitution-Permutation Networks mapping a partition of the
plaintexts to a partition of the ciphertexts, independently of the round keys used. All the
results of this and the following chapters comes from [20].

1. Linear partitions

Let us begin with some notations and conventions.

Notation 2.1. Let m and n denote positive integers. For two maps f and g, the composition g f
(or simply gf) denotes the evaluation of f followed by g. For any set E, let #E denotes its
cardinality. If F is a subset of E, F* denotes its complement.

Let us denote the Galois field of order two by F, and 0, = (0,...,0) the zero vector of F;. All the
vector spaces considered in this chapter are over the finite field F,. It is worthwhile to mention
that (F5)™ will be often identified with IF}". The concatenation of two vectors x and y is denoted
by (x Il y).

An n-bit S-box is any permutation of FZ. If x and y are two elements of F%, then (x, y) = 3/} XY

If L:F} —F) is a linear map, define LT:F} —F; by (L'(x),y)=(x,L(y)) for every
(%, y) € Fy x F3'. In other words, LT is the transpose of L for the bilinear form ( -, - ).

Finally, we will denote the elements of F; using the hexadecimal notation. For instance, the
element (1,0,1,1,1) of F; is denoted by 17.

Since we are concerned with ciphers that associate a partition of the ciphertext space to another
partition of the plaintext space, let us introduce the following definition.

Definition 2.2. Let fbe a permutation of E and A, B be two partitions of E. Let f (A) denote the
set {f(A)|A € A}. We say that f maps A to B if f(A) = B. If A= B, we says that f preserves the
partition A.

The two partitions {{x} | x € E} and {E} are called the trivial partitions of E. Observe that, for any
permutation f of E,

f(lix}[x€E}) = {{x}|x€E} and f({E}) = {E}.

That is, every permutation preserves the two trivial partitions. Moreover it should be
highlighted that if f maps A to B and if A is nontrivial, then so is B.

Example 2.3. Let E denote the set [0, 8] and consider the two partitions A, B of E defined by
A=1{{0,1,4},{2,6},{3,7}, {5}} and B = {{0,2,7}, {1}, {3,5}, {4, 6}}. Let f be the permutation of E
defined by



Partition-Based Trapdoor Ciphers
http://dx.doi.org/10.5772/intechopen.70420

07, 10, 203, 36, 42, 501, 65, 704.

By definition,
fA) =1f(A)lae Al = {f({0,1,4) f({2 6}) f(13, 7)), F({5)}
= { 02, 85, {64 ({1}
The equality f(.A) = B holds, and thus f maps the partition A to 5. A

Lemma 2.4. Let fbe a permutation of E and 4, BB be two partitions of E. If for any part A of 4,
f(A) is a part of B, then f maps A to .

In this chapter, we will consider a special kind of partitions that is composed of all the cosets of
a linear subspace. Such partitions have already been introduced by [19, Definition 4.4] and are
recalled below.

Definition 2.5 (linear partition). Let A be a partition of ;. Let V denote its part containing 0.
The partition A is said to be linear if Vis a subspace of ; and if every part of A is a coset of Vin
F%, in other words, if

A={x+VxeF!} =F!/V.

We denote L(V) such a partition.

Remark 2.6. It turns out that the linear partitions associated with the two trivial subspaces of
F%, that is {0,} and F}, correspond with the two trivial partitions of F5. Moreover, if V is a
nontrivial subspace of Fj, then the linear partition £(V) is also nontrivial.

Example 2.7. Consider the subspaces Vand W of I defined by

V =span(07, 1a) ={00,07, 13,10} and W = span(OE, 12) = {00, OE, 12, 1C}.

Since both Vand W are two-dimensional subspaces of I3, the quotient spaces £(V) = F5/V and
L(W) = TF5/W are three-dimensional. In other words, the two linear partitions £(V) and £(W)
have 2° = 8 parts. It can be verified that

LV)={V,01+V,02+V,03+V,08+V,09+V,0A+V,0B + V),
L(W) ={W,01+W,02+W,03+W,04+W,05+W,06+W,07+W).

For instance, the part 0B + V of the linear partition £(V) is the coset of V with respect to 0B.
Explicitly, it is equal to

OB +V = {0B + 00,0B + 07, 0B + 1A, 0B + 1D} = {0B, 0C, 11, 16}.

Now, consider the permutation f of 5 given in Figure 2.1. The image of 0B + V under fis

f(0B 4 V) =f({0B, 0C, 11, 16}) = {0D, 03, 11, 1F}
= {03 +0E,03+00,03+4 12,03+ 1F} =03+ W.
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.

£() 1E 08 04 13 OF 18 14 10 19 15 OE 0D 03 1C 07 17
' .12 11 0B 1B 09 05 1F 00 OA 01 02 1A 06 OC 1D 16

Figure 2.1. The permutation f of Example 2.7.

00+V  01+V 02+V 03+V 08+V  09+1 OA +1 0B +1
007 1A1D 01061B1C 020518 1F 0304191E 0B OF 1215 00OE1314 OAOD 1017 0B OC1116
1 ' '\ 1 1 ! 1
Q,\/ £ Nk \f’ ,’ 5 / \,~ } NV
,'/ {‘H AN P o \(‘/ \1" I\ P
¥ ¥V 44 { TN Yoy 4y 4 %34
¥ l

OEDC:I.'SI:I.E 06 08 14 14 MMIGIS 01'3!!'1310 05 0B 1T 19 O?WIEIB 00 0E 12 1C 03 0D 11 IF

FH 06+ M 04+ H +H 05+ N ar+ M oo+ K 13+ W
Figure 2.2. The permutation f mapping £(V) to L(W) where V = span(07, 1A) and W = span(0E, 12).

Observe that (0B + V) is a coset of W so a part of £L(W). The images of all cosets of V under f
are displayed in Figure 2.2. Since any of them is a part of L(W), the permutation f maps L(V)
to L(W). It is worthwhile to observe that a permutation mapping a linear partition to another
one does not need to be itself linear or even affine. Indeed, f is certainly not linear as
£(00) = 1E # 00. By contradiction, suppose that fis an affine transformation. Then, there exist
a linear mapping L : F; — I and an element ¢ of F5 such that f(x) = L(x) + ¢ holds for all x in
FF5. Therefore,

f@)+fy)+fz)=L(x)+c+L(y)+c+Lz)+c=Lx+y+z)+c=f(x+y+2z)

for all x, y and z in IF‘; Observe that

f(00)+f(01)+f(02) =1E+08+04=12 # 13=f(00+01+02).

Thus, fis not an affine transformation. A

Lemma 2.8. Let V, W be two subspaces of F; and fbe a permutation of F;, which maps £(V) to
L(W). For any x in 5, f maps x + V to f{x) + W.

Example 2.9. In Example 2.7, we have seen that f(0B + V) = 03 + W. Since f maps L(V) to
L(W), the previous lemma states that f(0B 4+ V) = f(0B) + W = 0D + W. There is however no
contradiction here because 0D belongs to 03 + W. Consequently, the cosets 03 + Wand 0D + W
are equal. A

The following two propositions are interesting properties of linear partitions, which will be
used in the rest of this chapter.

Proposition 2.10. Let V1, V,, Wi, W, be four subspaces of F5 and f be a permutation of F5,
which maps £(V7) to £L(W;) and £(V3) to L(W;). Then f maps L(V1nV;) to LIW1nW5).
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Proposition 2.11. Let V, W be two subspaces of F; and f be a permutation of I, which maps
L(V) to L(W). There exists an automorphism L of F5 such that L(V) = W. In particular, V and
W are isomorphic.

Example 2.12. Consider again the permutation f of F; defined in Figure 2.8. As seen in the
previous example, the permutation maps the linear partition £(V) to £(W). Then, Proposition
2.11 ensures that there exists a linear permutation L of F such that L(V) = W. Consider the bases
(07, 12) and (0E, 12) of Vand Wrespectively and complete them into the following bases of

By = (vi),.5 = (07,14,01,02,08) and Bw = (w;),.; = (OF, 12,01,02,04).

Then, the mapping L can be defined by L(v;) = w; for each i < 5. This linear transformation will
be used in the next chapter. A

2. Substitution-permutation networks and partitions

This section aims at studying an SPN, which maps a partition of the plaintexts to a partition of
the ciphertexts. When the cipher key K is fixed, the encryption function Eg is just a permutation
of the message space. Therefore, any partition A of the plaintexts is mapped to the partition
Ex(A) of the ciphertexts. Nonetheless, to exploit the trapdoor, the designer needs to know the
pair of partitions (A, Ex(A)). The problem is that the output partition Ex(.A) depends a priori
on the cipher key K, which is unknown to the attacker. The simplest way to solve this problem
is to require the partition Ex(.A) to be independent of the cipher key K. In other words, we
want all the partitions Ex(A) to be equal to a fixed partition B.

As with differential and linear cryptanalysis, taking account of the exact effect of the key
schedule seems to be a challenging problem. Therefore, the key schedule will deliberately be
omitted throughout this chapter. This amounts to consider an SPN mapping a partition A to a
fixed partition B, independently of the round keys used.

2.1. The key addition and diffusion layer

Substitution-permutation networks belong to the class of iterated block ciphers. As every
iterated block cipher, the encryption function consists in applying a simple keyed operation
called round function several times. A different round key is used for each iteration of the round
function. In practice, these rounds keys are extracted from a master key using an algorithm
called key schedule. In an SPN, the round function is made up of three distinct stages: a key
addition, a substitution layer and a permutation or diffusion layer. The substitution layer consists of
the parallel evaluation of several S-boxes and is the only part of the cipher, which is not linear
or affine. Then, the diffusion layer is the evaluation of some linear mappings (generally one).

Before tackling the full cipher, we look at its basic operations and primitives. The attacker
knows the specifications of the substitution and diffusion layers, but he does not know the

11
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round key used in the key addition. Therefore, the key addition should not be considered as
one operation but rather as a family of permutations. To get back to the subject at hand, we
must first determine the partitions .A, which are mapped to a unique partition under the action
of all round keys.

The next proposition explains the fundamental property of linear partitions according to the
key addition. This result was introduced by Harpes in [19]. Later, Caranti et al. gave a similar
result expressed for imprimitive groups in [18]. For convenience, we restate this result with our
own notations.

Proposition 2.13. Let 1 be a positive integer. Let .A and B be two partitions of ;. For each k in
F3, let i denote the permutation of F, defined by ax(x) = x + k Then, the permutation ay
maps A to B for any k in I} if and only if A = B and A is a linear partition.

Even if this result was easily obtained, it has maybe the most important impact on our study.
Due to this result and its generalization given later in the next section, only linear partitions
will be considered. By definition, the linear partitions are quotient spaces and hence highly
structured algebraic objects. Consequently, the apparent combinatorial aspect of our study is
reduced to an algebraic problem. This result is indeed quite restrictive since the linear parti-
tions account for a small proportion of all partitions.

Example 2.14. Let n and k be nonnegative integers and g be a prime power. The g-binomial (or
Gaussian) coefficient is defined by

It can be proved that this coefficient counts the number of d-dimensional subspaces of an n-
dimensional vector space over the finite field F,. Therefore, the number of subspaces of F; is
given by

31 L, 1-22 (1-21-2%) (1-2%)(1-2)(1-2Y
Z[dk_”lﬁ(l—z)(l—?) (1-2)(1-2%)(1 -2
=1+7+7+1=16.

3
d=0

Since a linear partition of IF; is uniquely determined by a subspace of F, there are exactly 16
linear partitions. All these partitions are represented graphically at the top of Figure 2.3. For
instance, the linear partition associated with the subspace span(2,4)=1{0,2,4,6} is
L(span(2,4)) =1{{0, 2,4,6},{1, 3,5, 7}}.

Proposition 2.13 states that among the set of all the partitions of I}, only the linear ones yield a
unique output partition for every key. The Bell number B,, counts the number of partitions of a
set of size m. Thus, the number of partitions of I} is By:. For n =3, there are Bg = 4140 partitions
in all. Hence, the linear partitions represent a fraction of 16/Bg = 2. This ratio falls greatly as
n increases. In fact, for n =4, only 67/B1¢ = 27272 are linear and for 1 = 5, this ratio becomes 374/
B, = 27782, This underlines how Proposition 2.13 is restrictive.
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£L({o}) L(span(1)) L(span(2)) L(span(3))
2 1 2 1 2 1 2 1
3 3 3 0 3 0
4 4 4 7 4 7
5 6 5 6 5 6 5 6
L(span(4)) L(span(s)) L(span(6)) L(span(T))
A A B 4 B 4 A £
3 3 3 0 3 0
4 4 4 T 4 T
5 6 5 6 5 6 5 6
Lspan(1,2)) L(span(1,4}) L(span{1,6)) Lispan(2,4))
2 1 W B d B £
3 3 3 0 3 0
L 4 4 T 4 T
5 6 5 6 5 6 5 6
L(span(2,5)) L(span(3,4)) £(span(3,5)) L(F3)
B A 2 1 2 1 2 1
3 3 3 0 3 0
4 4 4 7 4 7
5 6 & 6 ) 6 5 6
All the key additions
i 1 e 3y
2, 2 2 1 241
35 - 3 - 0 3 0
4~ 4 X 4 7
&% S5 6 5 6 5«6
2 1 2 1 2 1 2 1
oA 1 lf
3o 3 3 L .0 :13 tI:r
4 ?“‘ 4 4>ﬁ LT 4 7
6 B 6 B 6

Figure 2.3. Every linear partitions and key addition in F5.
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All the key additions are given at the bottom of Figure 2.3. The reverse implication of Propo-
sition 2.13 states that any linear partition is preserved by all the key additions. For instance,

a(L(span(6)) = {f({0, 6}), f(11, 7}), ({2, 4}), fF(3, 5})}

{ {204}, {35}, {06}, {17} }=L(span(e)).

Thus, the permutation a, preserves L(span(6)). Figure 2.4 illustrates graphically that this
linear partition is preserved by all the key additions. It is then not hard to check that the same
holds for every linear partition given in Figure 2.3. A

Now that we know linear partitions are of major importance, we focus on how the diffusion
layer deals with these partitions.

Proposition 2.15. Let 1 be a positive integer. Let L be an automorphism of F; and V a subspace
of F}. Then, L(L£(V)) = L(L(V)). In particular, L maps a linear partition to another one.

Proof. Since L is an automorphism, we have

L(L(V)) = L({x + Vlx€F2}) = {L(x + V)|x € F2}
= {L(x) + L(V)]x €2} = (' + L(V)|¥ €F2}.

Moreover, L(V) is a subspace of F, because L is a linear mapping. Consequently,
L(L(V)) = LL(V)). "

If Vand W are two subspaces of F7, it is straightforward to design a linear permutation L of F)
mapping L£(V) to L(W). Indeed, Proposition 2.15 establishes that L maps £(V) to L(W) is and
only if L(V) = W. In other words, we only need to consider the image of V and not the whole
linear partition £(V).

a4 9 2 ot 21
U ¢ \/
3+ ~0 3 0 M O 3 0
2 Gy 4 7 i it 4 7
) K AT o g
5 6 5 6 5 6 5«6
2o g O o B g 2
gea\ /et gou 7S a0 3 P 3 0
P A S e
=y s Fix X =
¥ Sy L8N A0y o) (N 4 7
¥ 4 o [} A v
5 6 5 6 5 6 5 6

Figure 2.4. The key additions preserving the partition £(span(6)).
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2.2. From the encryption function to the substitution layer

Along with the two results of the previous section, we can now address our main issue. For
the rest of this chapter, we consider a generic SPN whose parameters are defined as follows.

Definition 2.16 (SPN). Let m, n and r be positive integers. A substitution-permutation network is
an iterated block cipher whose encryption function is defined as follows. Let Sy,...,S,,_1 be n-
bit S-boxes.

*  The addition of the round key k is denoted by ay : F3" — F3", x —»x + k.
*  The substitution layer is denoted by o and maps (Xi)y<;cpy t0 (Si(¥1))g<icm-
¢ The diffusion layer is a linear permutation denoted by 7 : F;" — Fy".

The round function F associated with the round key k is defined by Fy = moay. The encryption
function associated with the round keys K = (kU, ..., k") in (F¥")"*! is defined by

EK = ak[r]Fk[v—l] ...Fk[o] .

We can now prove the following result.

Theorem 2.17. Let A and B be two partitions of ;". Suppose for any (r + 1)-tuples of round
keys K = (K, ..., k" in (F2™)™" that the encryption function Ex maps A to B. Define A% = A
and for all 1<i<r, A" = (no)'(A). Then,

e Al=p

e forany 0<i<rand forany k! in F§", Fy (Ally = Al

e forany0<i<y, A is a linear partition.

Proof. Observe that for the round key k = 0,,,, the key addition «,, is the identity mapping on

F™, and thus Fy,, = noay,, = mo. Now, choosing K = (k, ..., k") = (0,,,,, ..., 0,) gives
B= EK(.A[O]) = Qi Fk[HJ ...Fk[o] (A[O]) = ay,,, (Fomn)r(A[o])
= (o) (A") = A,

Let0 <i < rbe an integer. Let K be any element of F}". Define K= Oy for all 0<j<r such that
j # i. By hypothesis, the equality &, F,i-1...Fyo (A = A" holds. Thus,

Fk[i] . .Fk;o] (.A[O]) = (akm Fk[H] .. .Fk[i+1] )_1 (.AM) .

On one hand,

Fr...Fo (A%) =

i (Fn-.Fa ) (A™) = Fa (Fo,,, ) (A%)
v (m0) (A”) = F (AY).
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On the other hand,

(e Fyro Fyn) ™ (A) = (g, (Fy,, )™ ) (AT
_ ((na)r—(i+1))—1 (A[r]) _ .A[j+1].

Therefore, F,j (A = A1 or equivalently A (AT) = (0) ' (A1), Since this equality holds

for every k!'l, Proposition 2.13 states that the partition A" is linear.

It remains to show that A" is linear as the previous argument holds only for i < r. Let k! be an
element of ;™. Define k=0, for each 0<i < r. Then,

A = F o Fo (A%) = a0 (Fo,,, ) (AY) = aya (AT

Again, Proposition 2.13 implies that A" is linear and the result is proven. .

This theorem can be restated in the following way. First, the input partition A and the output
partition B must be linear. This result generalizes Proposition 2.13 in the sense that it applies to
the full cipher and not only to the key addition. As was pointed out earlier, linear partitions are
very specific partitions. This means that our combinatorial hypothesis implies to consider only
algebraic objects.

Second, we have only supposed that the encryption function maps A to B after r rounds.
Nevertheless, Theorem 2.17 ensures that each iteration of the round function also maps a fixed
linear partition to another one. As a consequence, the study of the full cipher is reduced to the
study of the round function. Additionally, this result can be strengthened as follows.

Corollary 2.18. Keep the notations of Theorem 2.17. For all 0<i<r, let V! denote the part of A"
containing 0. According to Theorem 2.17, A = £(V). Let 0<i < r be an integer. Then,

a(L(vVily) = c(wtly.

where W denotes the subspace 7w~ (V1))

map one linear partition to another one.

. In particular, the substitution layer must at least

Proof. By definition, o (A") = AT or, equivalently, o(A") = 71 (A"Y). This equality can
be restated as

As 7 is an automorphism of F7", then so 7! is. Next, Proposition 2.15 ensures that

YLV = £(n (V). The result follows. .

A diagrammatic representation of Theorem 2.17 and Corollary 2.18 is given in Figure 2.5. This
highlights that the input partition is always transformed in the same way through each basic
operation of the encryption process. The results obtained so far can be summarized as follows:
if an SPN maps a partition A of the plaintext space to a partition B of the ciphertext space no
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Assumption Theorem 2.17 Corollary 2.18
A Al L(vion
L(VIon)
J'III 0 7
L(We)
Al £(vIiy
lr..._,'-_" Alr-1] E{V[r ]])
L{Vir-1)
L(WIr-11)
Al L(VI)
B Al L(VI)

Figure 2.5. Results of Section 2.2.

matter the round keys used, then the substitution layer has to map at least one linear partition
to another one. This shows that our study can be reduced to the substitution layer without loss
of generality.

3. Structure of the substitution layer

In the remainder of this chapter, Vand W will denote two subspaces of (F5)".

As explained in the previous section, it remains to understand how the substitution layer can
map the linear partition £(V) to £L(W). This problem is far more complex for the substitution
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layer than it was for the diffusion layer. The reasons for this are twofold. First, the substitution
layer is nonlinear. It is even the only part of the SPN, which is not affine. As a consequence, to
map the linear partition £(V) to L(W), we have to consider all the parts of both partitions and
not only the subspaces Vand W, as was the case for the diffusion layer (see Proposition 2.15).

Second, the substitution layer should not be considered as a whole, but as the parallel applica-
tion of its S-boxes. Therefore our problem becomes the following. Given two subspaces V and
W, what are the necessary and/or sufficient conditions on the S-boxes for the substitution layer
to map L(V) to L(W).

Before going any further, let us introduce an example that we will continue throughout this
section.

Example 2.19. Consider the substitution layer made up of the four 5-bit S-boxes Sy, S1, S, and
S3 described in Figure 2.6. Its parameters are then m =4 and n = 5. Observe that the S-box S,
was previously studied in Example 2.7. Define the two families &y = (vi)y<;, and

Ew = (W;)g<;-y Of elements of (F3)* by

v3 = (02,00, 00, 1C), w3 = (02,00, 00,08),
v = (10,00, 00, 17), wy = (10, 00,00, 15),

vy = (01, 00,00, 1C), wy = (01,00,00,00),
v1 = (08,00,00,17), w1 = (08,00, 00, 1D),

vs = (00,00, 14, 00), ws = (00,00, 12,00),
v, = (04,00, 00, 0B), wy = (04,00, 00, 15),

v = (00,00,07,00). we = (00,00, OE, 00).

Finally, define Vand W as the subspaces spanned by £y and £y, respectively. Note that the family
Ey is linearly independent because it is echelonized. Hence, £y is a basis of V. The same applies

for £w and W. As a consequence, V and W are both seven-dimensional subspaces of (F3)*.

We claim that the substitution layer ¢ maps £(V) to £(W). Naturally, we will not verify this
statement by hand because it requires to check for each of the 2'* cosets of V that the 2” images
of its elements under ¢ lies in the same coset of W. However, the reader who is relectant to
accept this claim is encouraged to check it with a computer. A

So(2) }. 1F 19 03 05 1D 1B 01 07 14 12 1C 1A 1§ 10 1E 18
I l. OE 08 09 OF OC OA OB OD 04 02 17 11 06 00 15 13

S, () 0. 02 19 11 14 1B OE OC OF 15 0OA O1 Q0 OD 1C 1D 12
o 1 06 1E 10 16 05 13 17 1F 18 04 0% OB 1A 08 OF 03
S, () ( 1IE 08 04 13 OF 18 14 10 19 15 QE 0D 03 1C O7 17
s 12 11 OB 1B 02 05 1F 00 0OA 01 02 1A 06 OC 1D 18
Sy () 0. 03 0A 10 1A 15 04 1C CE 12 18 02 OB 06 14 0OC 1D
el 1. 1B 09 11 00 OF 05 1F 16 08 19 01 13 1E 17 0D OF

Figure 2.6. Specification of the S-boxes used throughout Section 3.
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3.1. Truncating the substitution layer

To understand how the substitution layer can map £(V) to L(W), we will adopt a divide and
conquer strategy. That is to say, we want to break down this problem into several independent
sub-problems, each involving less S-boxes than the full substitution layer. The first idea is to
truncate the substitution layer and the subspaces Vand W to get a local view of what happens
on some S-boxes.

Definition 2.20 (truncation and substitution layer). Let E be any non-empty subset of [0,m]
and define the following mappings

Te : (F3)" — (F3)" o : (F3)" — (F3)F

(Xi)o<icm P (Xi)ieE (xi)icp P (Si(xi))iek -

If E has cardinality p, then we identify (F)* with (F})".

The mapping T allows to shorten a vector of (F3)" to keep only the coordinates whose indices
belong to E. The application o is a substitution layer truncated to the S-boxes whose indices
liein E.

Remark 2.21. Note that T is a linear mapping. Observe that oy, is the substitution layer of
the SPN. Moreover, the truncated substitution layer oy and the S-box S; are equal for all
0<i<m.

Proposition 2.22 (truncating to a few S-boxes). Suppose that o maps L(V) to L(W). Let E be a
nonempty subset of [0,m[. Then, the permutation o maps L(Tg(V)) to L(Tg(W)).

Proof. Let x = (x;), . be an element of (F)E. Let y be the element of (F})" defined by y, = x;if i

belongs to E and y,= 0, otherwise. Thus, Tg(y) = x. By hypothesis, 0 maps L(V) to L(W).
Hence, Lemma 2.8 implies that o(y + V) = o(y) + W. Next,

Te(o(y +V)) = Te(o(y)) + Te(W)

since T is a linear mapping. Furthermore,
Te(o(y + V) = Teolly + oo €V)) = {Teoly + 0o e V)
= {op(Te(y +0))veV}=oe({Te(y + v)lveV))
= 0e({Te(y) + Te(v) v e VY) = 0e(Te(y) + Te(V)) -

Therefore, op(x + Te(V)) =Te(o(y)) + Te(W). In other words, the image of any part of
L(Tg(V)) under o lies in L(Tg(W)). The result is a consequence of Lemma 2.4. .

Example 2.23. By choosing E = {0,3}, the previous proposition ensures that the truncated
substitution layer oo, 3 maps L(T 1,3(V)) to L(T jo,3(W)). First, it is easy to see that

Ti0,3(V) = span((10, 17), (08, 17), (04, 0B), (02, 1C), (01, 1C)),

Ty0,31(W) = span((10, 15), (08, 1D), (04, 15), (02, 08), (01, 00)).
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Again, we will not explicitly check that oy 3, maps L(Tjo3;(V)) to L(T3,(W)) but limit our-
selves to prove that the coset (07, 03) + Tjo3)(V) is mapped to one coset of T jo 3(W). Its image
can be found using Lemma 2.8 as follow

0103((07,03) + Tio3y(V)) = 003((07, 03)) + Tyo.31(W)
=(07,12) + T{073}(W) .

The images of every element of this coset are given in Figure 2.7. For instance,

0103((07,03) + (01, 1C)) = 0y03;(06, 1F) = (S0(06), S3(1F)) = (01, 07)
= (07,1a) + (06, 1D).

This explains the second image. A

Choosing E = {i} in Proposition 2.22 gives that the S-box S; maps £(T 3(V)) to L(T 3(W)). As
this result holds for each index i in [0,m[, we deduce that

o(L(V)) = LW) = Vie[0m] Si(L(Ty(V))) = L(Ty(W)). 2.1)
However, the equivalence does not hold in general. Hence, this only gives a necessary condi-

tion on each S-box. In other words, this means that we can lose information when considering
each S-box independently. The next example stresses this fact.

Example 2.24. In our example, the truncated subspaces T;(V) and T;(W) are the following;:

T (V) =TF5, Tyy(V) = {00}, Ty (V) = span(07, 18), Tj3(V) = span(0B, 17),
Tio (W) = F5, Tipj(W) = {00}, Tj(W) = span(0B, 17), Tiz;(W) = span(08, 15).

(07. 03) + T{U,g} (V)

(07,03) + (00,00)
(07,03) + (01,1C)
(07,03) + (02,1C)
(07,03) + (03,00)
(07,03) + (04,0B)
(07,03) + (05,17)
(07,03) + (06,17)
(07,03) + (07,0B)
(07,03) + (08,17)
(07,03) + (09,0B)
(07,03) + (0A,0B)
(07,03) + (0B,17)
(07,03) + (0C,1C)
(07,03) + (0D,00)
(07,03) + (OE,00)
(07,03) + (OF,1C)

(07,1A) + Ty 33 (W) (07,03) + Tyo,33 (V)

(07,14) + (00,00)  (07,03) + (10,17)
(07,14) + (06,1D) (07,08) + (11,0B)
(07,14) + (1C,1D)  (07,03) + (12,0B)
(07,1A) + (14,00) (07,03) + (13,17)
(07,14) + (02,08) (07,03) + (14,1C)
(07,1A) + (04,15) (07,03) + (15,00)
(07,14) + (1E,15) (07,03) + (16,00)
(07,14) + (18,08) (07,03) + (17,1C)
(07,1A) + (1F,15) (07,03) + (18,00)
(07,14) + (19,08) (07,03) + (19,1C)
(07,14) + (17,08)  (07,03) + (1A,1C)
(07,14) + (11,15) (07,08) + (1B,00)
(07,1A) + (1D,1D)  (07,08) + (1C,0B)
(07,1A) + (1B,00) (07,03) + (1D,17)
(07,14) + (15,00) (07,03) + (1E,17)
(07,1A) + (13,1D) (07,03) + (1F,0B)

(0?, 1A) + T{U,g} (W)

(07,1A) + (0A,15)
(07,1A) + (0cC,08)
(07,1A) + (0D, 08)
(07,1A) + (OB, 15)
(07,1A) + (08,1D)
(07,1A) + (OE,00)
(07,1A) + (OF,00)
(07,1A) + (09,1D)
(07,1A) + (14,00)
(07,14) + (12,1D)
(07,1A) + (07,1D)
(07,1A) + (01,00)
(07,1A) + (16,08)
(07,1A) + (10,15)
(07,1A) + (05,15)
(07,1A) + (03,08)

PITLLLTLTT LTI
PIILLLLLLLLT LTI

Figure 2.7. 0o 3 mapping a coset of Ty 3(V) to a coset of T 3)(W).
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First, observe that the truncated subspaces for Sy and S; are trivial. Hence, the associated linear
partitions are also trivial and no information on Sy or S; can be drawn from 2.1. Yet, the last
two truncated subspaces are nontrivial and 1 gives the following equalities:

S»(L(span(07, 18))) = L(span(0B, 17)),
S3(L(span(0B, 17))) = L(span(08, 15)).

The first property has already been highlighted in Example 2.7 and in Figure 2.2. The second
one is represented in Figure 2.8.

Let us now show that the converse of Implication 2.1 does not hold in general. Consider the
substitution layer ¢’ made up of the four S-boxes Sy, S'1, S, and S'; where

So=85, S1=5, §,=5, S§3=5;.

Thus, this new substitution layer differs from ¢ by only one S-box. Recall that the linear
partition associated with Tjo,(V) = Tyo}(W) is trivial. Therefore, S’y necessarily preserves this
partition. As the other S-boxes remain the same, the right side of 2.1 still holds for ¢, that is

vie[0,4], S'i(L(Ty (V) = L(Ty(W)).

However, we will prove that ¢’ does not map £(V) to L(W). Suppose by contradiction that it
does. Then Proposition 2.22 ensures that ¢ 3) maps £(T3(V)) to L(Tj3(W)). By Lemma 2.8,

0'1031((07,03) + Tyo33(V)) = 0"10,31(07, 03) + Tjp 3 (W)
= (8'0(07),5'3(03)) + T3 (W)
= (51(07),53(03)) + Tjo3(W) = (07, 18) + Ty 3 (W) .

Then

0'103((07,03) + (01, 1C)) = 0’103 (06, 1F) = (§'0(06), S'3(1F)) = (51(06), S3(1F))
=(0¢,07) = (07, 12) 4 (0B, 1D).

This is a contradiction since (0B,1D) does not belong to T o 3;(W) as can be seen in Figure 2.7.
As a consequence, the substitution layer ¢’ does not map L(V) to L(W). A

As shown in the previous example, truncating the substitution layer and the subspaces V and
W to each S-box independently of the others is too restrictive in general. This suggests that

W+ 014V 02+V' 03+ 04+V' 05+V' 06+V' 0T+ V"
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Figure 2.8. The S-box S; mapping £(V') to L(W') where V' = span(0B, 17) and W’ = span(08, 15).
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some S-boxes can in a way be linked together. That is to say, considering them independently
results in a loss of information on the subspaces V and W. Recall that we are interested in
splitting the problem of finding all the substitution layers ¢ mapping £(V) to L(W) into
several independent smaller problems. Taking into account that some S-boxes can be linked
together, we require the following;:

®  asub-problem can involve several S-boxes;

¢ the same S-box cannot be involved in two different sub-problems (in other words, the sub-
problems are independent);

* each S-box is involved in one sub-problem (possibly trivial).

This is naturally formalized by a partition Z of [0,m[. Each part I of Z represents a sub-problem,
and its elements are the indices of the S-boxes involved in. By virtue of Proposition 2.22, it
holds that

a(L(V)) =LW) = VIEL o (L(T(V)))=L(T(W)). 22)
The next section aims to find a sufficient condition on the partition Z to obtain the equivalence.

In such a case, this means that combining the solutions of these sub-problems yields a substi-
tution layer mapping £(V) to £(W) and vice versa.

3.2. Structure of the subspaces Vand W

With the aim of ending up with partitions for which the converse of 2.2 holds, let us introduce
a few definitions and notations.

Definition 2.25 (trivial product). Let E be a subset of [0,m]. The trivial product subspace
associated with E, denoted by Trivg, is defined to be

Trivg = {x€ (F5)" | Vi€ ES, x;= 0,} .
Moreover, we denote by Vi the intersection of V and Trivg, thatis Vg = VnTrivg = fveV | Vi
€ E°, v;i= 0,}. The subspace W is defined in the same way.
Remark 2.26. It is easily seen that

m—1 of c
. . i . i J1{0,) ifieE",
Trive = gTrlvE with  Triv, = { F!  ifieE.

Thus, a trivial product subspace is the Cartesian product of trivial spaces for each S-box; this
justifies its name. Additionally, if E CF, then Trivg C Trivr, and hence Vi CVr and Wg C Wr.

The subspaces Trivg are essential in the study of the substitution layer because the latter
always preserves the partition £(Trivg) regardless of its S-boxes. This result, together with
Proposition 2.10, establishes the following corollary.
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Corollary 2.27. Let E be a subset of [0,m[. If ¢ maps £(V) to L(W), then ¢ also maps L(VE) to
L(WE).

Example 2.28. All the subspaces Vr are graphically represented in Figure 2.9. For instance,

Vo) = span((15, 00, 00, 00), (OD, 00, 00, 00), (03, 00, 00, 00)).

Additionally, this figure also highlights the expected inclusions given by Remark 2.26. Observe
that By = (v;),<,., is a basis of V. This new basis is more convenient than the echelonized basis
Ey previously introduced in Example 2.19 since all the V are then easily described. It is worth
noting that the same picture remains valid for the subspace W. For example,

wo = (14, 00,00,00), ws = (04, 00,00,15).
wy = {0E, 00,00,00}), wy = (02, 00,00,08).
wy = (01, 00,00,00}, ws={00,00,12,00).

wg = {00, 00, 0E, 00).

v = (15,00, 00,00, va ={04,00,00,0B),
wy = (0D, 00, 00,00), vy ={01,00,00,1C},
vp= (03,00,00,00), ws={00,00,14,00),

vg = (00, 00,07,00).

(Viy=8v] [Viy={0}]

Ay = span(vs, ve) ,

By =span(vo, v1,v2) ,

Cv = span(vo, vy, 02, v3,14) ,
Dy = span(vy, v1, V2, U, V) -

Figure 2.9. The subspaces Vi, W for each subset E of {0,1,2,3}.

Aw = span(ws, wg) .

By = span(wg, wy, wy) ,

Cw = span(wg, wy, wa. Wy, wy) ,
Dy = span(wy, wy, wa, ws, we) .



24 Partition-based Trapdoor Ciphers

W[O] - span((l4/ ’ ’ )/ (OE/ 7 ’ )/ (Ol/ ’ ’ )) .

This emphasizes that when the substitution layer maps £(V) to L(W), the subspaces Vand W
have the same structure.

According to Corollary 2.27, the substitution layer maps £(V{) to £L(Wyq). Next, truncate to
E = {0} using Proposition 2.22 to obtain

So(L(span(03, 0D, 15))) = L(span(01, OE, 14)).

This property is depicted in Figure 2.10. Finally, it should be underlined that with Proposition
2.22 alone, no property can be established on the S-box Sy (see Example 2.24). A

Definition 2.29 (projection P). Let E be a subset of [0,m[. The projection Pr from (F3)" onto
Trivg is defined by Pg(xo, ..., Xm—1) = (g, ..., Y,,_1) Where y; = x; if i belongs to E and y; = 0,
otherwise.

Remark 2.30. It is not hard to see that P is a linear mapping and that V¢ is always a subspace
of Pg(V). Moreover, it holds that Tg(V) = Tg(Pg(V)).

The next lemma gives some relations between the previous definitions. It is quite important
and will be used several times by the end of the current chapter.

Lemma 2.31. Let Z be a partition of [0,m[. Then V equals the internal direct sum @7V if and
only if V; =P;(V) for any part I of Z. In this case, the decomposition of an element v of V is

v=">1e7Pi1(0).

Remark 2.32. Suppose that Z is a partition of [0,m[ such that V = @ ez V. The previous
lemma, together with Remark 2.30, establishes that T;(V') = T;(V;) for each part I of Z.

Proposition 2.33 (Substitution layer structure). Let Z be a partition of [0,m[ satisfying both
V==®esViand W = @ ez W). The permutation o maps L(V) to L(W) if and only if o; maps
L(T (V) to L(T ;(W)) for any Iin Z.

The preceding proposition establishes that the converse of Implication 2.2 (page 21) holds
whenever the partition 7 satisfies both V = @ezVr and W = @ ez W;. For such a partition,
the problem of finding all the substitution layers ¢ mapping £(V) to £L(W) can equivalently be
broken down into the independent sub-problems of finding all the o; mapping £(T;(V)) to
L(T;(W)) for each part I of 7.

00+ V" 01+ V" 04 + 17 Ch+ V'

OUGE{JDDEISI'EIEJ.B 01020‘30F141?191h NDTUQBHIIIEICIF 05 06 08 0B 10 13 1D 1E
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Figure 2.10. The S-box So mapping L(V') to L(W') where V' = span(03, 0D, 15) and W’ = span(01, OE, 14).
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3.3. Linked and independent S-boxes

Of course, there may be several partitions 7 such that V = @;e7V;and W = @7 Wi, each
yielding a different decomposition of the substitution layer. A few of these decompositions are
certainly more interesting or easier to solve. The purpose of this section is to study such
partitions. Let us begin with the following lemma.

Lemma 2.34. Suppose that ¢ maps £L(V) to L(W). For every partition Z of [0,m], V= @7V
ifandonly if W = @1e7Wr.

The contrapositive of Lemma 2.34 is the following: if there exists a partition Z such that
V==&1e7rV; and W # @ ;czWj or such that V # @17V and W = @7 W), then there
exists no substitution layer mapping £(V) to L(W). Because we intend to study the substitu-
tion layers mapping £(V) to £L(W), Lemma 2.34 suggests to assume the following.

Assumption 2.35. For the remainder of this section, we assume that for any partition Z of
[0,m], it holds that

V= @V[@W: @W[
IeT IeT

Proposition 2.33, together with the preceding assumption, suggests the following definition.

Definition 2.36 (decomposition partition). A decomposition partition (with respect to Vand W)
is a partition of [0,m[ such that V = @7 V.

Remark 2.37 (partial order on partitions). Recall that if Z and .7 are two partitions of [0,m],
then the partition 7 is said to be finer than 7 if for any part I in Z, there exists a part | in 7 such
that ICJ.

Example 2.38. The purpose of this example is to find all the decomposition partitions with
regard to Vand W. By virtue of Lemma 2.31, the subspace V can be decomposed as @ ez V] if
and only if V;is equal to P,(V) for each part I of Z. The eight-framed subspaces in the middle of
Figure 2.9 are exactly those that satisfy Vp = Pr(V). Hence, the decomposition partitions are
the partitions whose parts are selected from the following:

o, {1}, {2}, {1,2}, {0,3}, {0,1,3}, {0,2,3}, {0,1,2,3}.

It is then easy to check that the decomposition partitions of V are:

{{1} {25, {03}, {{1},{0,2,3}}, {{2},{0,1,3}},
{{0,3},{1,2}} and {0,1,2,3}}.

“

In Figure 2.11, all the partitions of [0,4] are ordered by the “finer-than” relation, and the
decomposition partitions are emphasized. What stands out is that the decomposition partition

{{1}, {2}, {0, 3}} is finer than all other decomposition partitions. A

The existence of this least decomposition partition in the example above is a very welcome and
nontrivial property. This means that all the truncated substitution layers obtained using

25
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(0,123

1,023

1,2,03

0.1.23 (1,213 1.3.02 23,01

Figure 2.11. The partitions Z of {0, 1, 2, 3} such that V = @e7 V.

Proposition 2.33 are the smallest possible. Thus, such a partition should be preferred to any
other decomposition partition. We will now prove that this least decomposition partition
always exists.

Proposition 2.39. The set of the partitions Z of [0,m] satisfying V = @ ;7 V| has a least element
denoted Z14.

Consequently, the only decomposition partition that will be considered in the remainder of this
chapter is the least decomposition partition Zi4. The following definition is inspired by Propo-
sition 2.33 and Proposition 2.39.

Definition 2.40 (linked and independent S-boxes). Suppose that ¢ maps £(V) to L(W). Let I
be a part of T14.

e IfI={i}, the S-box S; is said to be independent of the other S-boxes.

Moreover, if V= {0} or Vi = Trivy;, the S-box §; is said to be inactive. Otherwise, S; is
active.

e If #1>2, then the S-boxes whose indices lie in I are said to be linked together.

Remark 2.41. Let 0 < i < m be an integer. We have already noted that the substitution layer o
always preserves L£({0,,,}) and L(Triv;). In addition, Proposition 2.33 ensures that ¢ maps
L(Vyy) to L(Wyy). Consequently, if V3= {0} or if Vi = Trivy, then Viy= Wiy,
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Suppose that the S-box S; is independent with regard to the subspaces Vand W. As established
by Proposition 2.33 and Remark 2.32, if S; is replaced with another S-box §';, then this new
substitution layer still maps £(V) to L(W) provided that S'; maps L(T (V) to L(T 3(Wyy))-

Suppose further that S; is active. By definition, {0, } € V}; € Trivy;y. Observe that the restriction
of Ty to Trivy; is one-to-one, hence

{04} = Ty ({0n}) € T1iy (Vi) € Ty (Trivyy) = F3 .

Thus, Tj4(V}y) is a nontrivial subspace of F} and the requirement that S'; maps £(T (V) to
L(T (W) is also nontrivial. Therefore, an independent active S-box can be chosen indepen-
dently of the other S-boxes but has to respect the structure of the subspaces Vand W.

Now suppose that S; is inactive. By definition, V3= {0} or Vi3 = Trivyy. Then, the equality
Viy = Wy follows from Remark 2.41 and we have that

Ty(Viy) = Ta(Wp) = {0} or Ty(Viy) =Tu(Wy) =F;.

In either case, the condition that S'; maps L(T(Vyy)) to L£(Tjy(Wyy)) is trivial, and any S-box
fulfills it. As a consequence, an independent inactive S-box can be freely chosen. In other
words, such an S-box has no impact on the fact that ¢ maps £(V) to L(W).

Finally, suppose that some S-boxes are linked together. If only one of these S-boxes is replaced
independently of the others, then the desired property of the substitution layer may not hold.

Example 2.42. As we have seen in Example 2.38 and Figure 2.11, the least decomposition
partition with regard to the subspaces V and W is 714 = {{1}, {2}, {0, 3}}. By Proposition 2.33,
the substitution layer maps £(V) to £(W) is and only if the following equalities hold:

S1(L(Ty (V) = L(Twy(W)),

0103 (L(T3(V))) = L(T3(W)), S L(Te (V) = L(Tg(W)).

Thus, the S-box S is independent of the other S-boxes, the same applies to S, and the S-boxes
So and S; are linked together. As was already noted in Figure 2.9, we have that

Vi) =1{(00,00,00,00)} and Vi = span((00, 00, 1A, 00), (00, 00,07, 00)).
Therefore, the S-box S, is active while S; is inactive. A

3.4. The forbidden case

Throughout this section, we assume that the substitution layer ¢ maps £(V) to £(W). In order
to prove the last main theorem of this chapter, we need to consider the following particular
case.

Proposition 2.43. Let Z be a decomposition partition. Let I be a part of Z such that #/ > 2 and let
E be a nonempty proper subset of I. Suppose that Vg = Vj\g= {0,} and Pg(V) = Trivg. Then,
for alliin E, S;is an affine mapping.

27
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If the subspace V satisfies the assumption of the proposition above, then at least one of S-boxes
has to be affine. Nowadays, an SPN whose substitution layer has an affine S-box cannot be
taken seriously. Additionally, such a cipher is likely to be very weak to differential and linear
cryptanalysis. This discussion explains the title of this section.

Example 2.44. As seen in Example 238, the least decomposition partition is
Tia = {{1}, {2}, {0, 3}}. Its only part of cardinality greater than or equal to 2 is [ = {0,3}. The
nonempty proper subsets of I are the E = {0} and E = {1}. According to Figure 2.9, we have
Vioy # {020}. Consequently, Proposition 2.43 does not apply to this example, and this is good
news because none of the S-boxes is affine. Otherwise, this would have disproved the contra-
positive of Proposition 2.43.

Now let us introduce another example. Consider a substitution layer ¢’ made up of two 3-bit S-
boxes S’y and S'1; hence, its parameters are m = 2 and n = 3. Define the subspaces V' and W' of
(F3)* by

V' =W’ = span((4,4),(2,2),(1,1)) = {(x,x)xeF>}.

Finally, suppose that ' maps £(V’) to L(W'). It is easily seen that

VlQ) = {( ’ )}/ VI{O} = {( s )}/ V/[l} = {( 7 )}/ V/[O,l} = V/
P@ (V/) = TI‘iV@ , P{O}(V/) = TI‘iV[()} , P“}(V’) = TI‘iV[1} , P{OJ}(V/) =V.

Thus, the least decomposition partition with regard to V' and W' is {{0, 1}}. The S-boxes S’y and
S’y are then linked together. Choosing E = {0} in Proposition 2.43 ensures that S'¢ must be
affine. Similarly, we can prove that S’y must also be affine by considering E = {1}. As a result,
any substitution layer ¢’ mapping £(V’) to L(W') is necessary affine. These subspaces are thus
completely prohibited as the whole cipher is then affine. A

3.5. Reduction to one S-box

To prove our main result about the substitution layer, we need the following preliminary
lemma.

Lemma 2.45. Let I be a part of 7;4 and E be a non-empty proper subset of I.
e If Vg is a trivial product subspace, then Vi = Trivg= {0,}.
e If Pg(V)is a trivial product subspace, then Pg(V) = Trive.

Now we have all the results needed, let us state and prove the main result of Section 3 which is
depicted in Figure 2.12.

Theorem 2.46. Let n > 2 and m be two positive integers. Let Sy,...,S5,,_1 be n-bit S-boxes. Define
the permutation ¢ of (F5)", which maps the element (x;),<;_,, t0 (Si(x;))<;,,- Let Vand W be
two subspaces of (F3)" such that o maps £(V) to L(W). Suppose that Vis not a trivial product
subspace. Then, at least one of the S-boxes maps a nontrivial linear partition to another one.
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Assumption Theorem 2.46
L(V) # Trivg L(V)
L(V;)
L(W;)
L(W) # Trivg L(W)

Figure 2.12. Diagrammatic representation of Theorem 2.46.

Proof. Let us prove this result by complete induction on the number m of S-boxes. Suppose
that m = 1. In this case, 0 = Sp. By hypothesis, V is different from {0,} and F},. Hence, L(V) is a
nontrivial partition and So maps £(V) to L(W).

Let m > 2 be an integer. Suppose that the result holds for any positive integer strictly lower than
m. First, suppose that all the S-boxes are independent. In other words, Zig = {{i}|i € [0,m[}. If
each S-box is inactive, then Vis a trivial product subspace, a contradiction with our hypothesis.
Thus, there exists at least one active S-box S;. In this case, {0} € Vi € Trivyy. According to
Lemma 2.31, the equality P [i}(V) =V holds. Then, T[,‘](V{,‘]) = T[i)(P{i](V)) = T[,‘](V) is a
nontrivial subspace of F, so £(T;(V)) is also nontrivial. Finally, Proposition 2.22 states that
S;maps L(T 3(V)) to L(T ;3(W)), and thus the result holds in this case.

Now, suppose that some S-boxes are linked together. Then, there exists an element I of 714 such
that I > 2. Next, at least one of the following three cases holds.

1. Suppose that there exists a nonempty proper subset E of I such that Pg(V) is not a trivial
product subspace. Let p denote the cardinality of E. Recall that Tz(Pg(V)) = Te(V). It
follows that Tg(V) is not a trivial product subspace of (F;)". According to Proposition
2.22, o maps L(Tg(V)) to L(Te(W)). Note that E is a non-empty proper subset of I, so of
[0,m[. Hence p < m, so the induction hypothesis ensures that at least one of the S-boxes of
0, maps a nontrivial partition to another one.

2. Suppose that there exists a nonempty proper subset E of I such that Vg is not a trivial
product subspace. Recall that ¢ maps £(Vg) to £L(WFE). Proposition 2.22 ensures that o
maps L(Tg(VE)) to L(Te(WE)). It is easily seen that Tg(VE) is not a trivial product sub-
space. As before, the result is a consequence of the induction hypothesis.

3. Suppose that there exists a nonempty proper subset E of I such that P¢(V), Vg and Vg are
all trivial product subspaces. Then, Lemma 2.45 implies that Pg(V) = Trivg and
Ve = Vne= {0y} According to Proposition 2.43, the S-boxes whose indices belong to E
are affine mappings. Combining Proposition 2.15 and 2.13, we see that these S-boxes map
any non-trivial linear partition to another one.

29
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In any case, the result holds for this integer m. The result follows by induction. .

Example 2.47. It is worthwhile to note that the proof of Theorem 2.46 is constructive. There-
fore, it gives a method to find necessary conditions on the S-boxes for the substitution layer to
map L(V) to L(W). Let us apply this method to our main example.

The first step is equivalent to what had been done in Examples 2.38 and 2.42. Consider the least
decomposition partition Z14 = {{1}, {2}, {0, 3}} and deduce that:

e §;isinactive;

e S,is active and maps L(span(07, 12)) to L(span(0OE, 12)) (see Figure 2.2);

* Spand S; are linked together.

Now, consider the part I = {0,3} of Z}4. Thus, the nonempty proper subsets of I are {0} and {3}.
The first case requires to compute the following projections:

Pipy(V) =Triviy and Pigy(V) = span((00, 00, 00, 0B), (00, 00, 00, 1C)).

Thus, P3y(V) is not a trivial product subspace. As in Example 2.24 and Figure 2.8, we see that
Sz maps £(0B, 1C) to £(08, 15) by truncating ¢ and the subspaces Py (V), Pigy(W) to {3}. Now,
we need to compute the following subspaces:

Vioy = span((03, 00, 00, 00), (0D, 00, 00, 00), (15,00, 00,00)) and Vi = Trivg.

Since Vg, is not a trivial product subspace, the second case apply. Then, truncate the substitu-
tion layer ¢ and the subspaces Vi and Wy to prove that S, maps £(03,0D,15) to
L£(01, OE, 14). This property was stressed in Example 2.28 and Figure 2.9. Finally, recall that
the third case does not apply to these subspaces, as observed in Example 2.44. A

The preceding example covers only the first and the second cases in the treatment of linked S-
boxes given by the proof of Theorem 2.46. To illustrate the third case, we introduced the
following example.

Example 2.48. Let n = m = 3. Thus, the substitution layer ¢ is made up of three 3-bit S-boxes
denoted by Sy, S; and S,. Define the subspaces Vand W of (F3)° by

V=W={xyx+y) |xyeF}

and assume that the substitution layer ¢ maps L£(V) to £L(W). By definition, it holds that
Py (V) =1{(0,0,0)} and Py 12,(V) = V. Then, for each nonempty proper subset E of {0,1,2}, it is
easily seen that Pg(V) = Trivg. For instance,

Py (V) ={(xy, )Ix,yeFi} = Trivy ) .

We know that Vi = {(0, 0, 0)} and V912,(V) = V. The other subspaces V¢ are the following:
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V{O}:{( 7y )}/ V[l]:{( 7y )}/ V[2]:{( 7 Y )}r
Vioqy = {(x, x, )\xe]Fg}, Vioo = (%, ,x)|xe]F§}, Vigy =10, x, x)|erFg}.

Thus, the equality Pg(V) = V¢ holds only for E = @ and E = {0,1,2}. Consequently, the least
decomposition partition is Z1q = {{0, 1, 2}}, and hence, all the S-boxes are linked together.

From now on, we follow the method given in the proof of Theorem 2.46. As previously noted,
for each nonempty proper subset E of {0,1,2}, the projection Pg(V) is a trivial product. There-
fore, the first case does not apply to this example. We move on to the second case. By
induction, the substitution layer and the subspaces Vo1 and W1, are truncated to {0,1}.
Hence, we now consider the permutation ¢’ = (0,1;, which maps £(V’) to £L(W') where

V=W =T (Vi) = {(x, x)[x €F3}.

Such a substitution layer has already been studied in Example 2.44. Recall that

V,@ = {( 7 )}/ VI{O} = {( s )}/ V/{l} = {( 7 )}/ V,{O,l} = V/
P@(V,) = Tl‘ng , P{OJ(V,) = TriV[O] , Pm(V’) = TI‘iV{l] , P{QJ}(V,) =V.

Thus, the least decomposition partition with regard to V' and W' is {{0,1}}. Since V'io;, V'),
Pioy(V') and Pyyy(V') are all trivial products, the first and second cases do not apply. Choosing
E={0} and E = {1} in the third case proves that Sy and S; are affine mappings. Come back to the
full substitution layer. Similarly, it is straightforward to verify that S, must be affine by
truncating o and the subspaces Vi 2, Wioz) to {0,2}. To summarize, we have proven that any
substitution layer mapping £(V) to £L(W) is necessarily affine. A

In this chapter, we have studied a generic SPN mapping a partition A of F7" to a partition B of F;",
independently of the round keys used. Combining Theorem 2.17 and Corollary 2.18, we proved

that there exist two families (V1) _,_, and (W), _._ of subspaces of Fi" such that the substitution
layer o maps £(V!") to £(W!) for each 0 <i < r. This result has been illustrated in Figure 2.5.

First, suppose that all the V! are trivial products. In such a case, the diffusion layer of the
cipher is probably not playing its role (or the round number is very small). As is generally the
case, suppose that there is no diffusion layer in the last round of the SPN. Then, the input and
the output partitions are both linear partitions associated with a trivial product subspace. This
implies that some ciphertext bits are independent of some plaintext bits. Such a property must
be avoided in any good cipher.

Now, suppose that at least one of the V7 is not a trivial product. This second case is far more
interesting than the previous one. By virtue of Theorem 2.46, at least one of the S-boxes must
map a nontrivial linear partition to another one, as illustrated in Figure 2.12.

Thus, we have proven in this chapter that any good partition-based trapdoor SPN has at least
on S-box mapping a nontrivial linear partition to another one. The following chapter aims to
design such an S-box with the best security against both differential and linear cryptanalysis.

31



32

Partition-based Trapdoor Ciphers

Analysis of a backdoor S-box

Differential [21] and linear [22] cryptanalysis are considered as the most important attacks
against block ciphers [23]. The resistance of an S-box against these attacks is assessed by its
difference distribution table and its linear approximation table respectively.

Let S be an n-bit S-box. The difference distribution table and the linear distribution table of S
are the two families DTs and LT indexed by (F%)* and defined for any (a, b) in (F})* by

DTs(a,b) = #{x€F5 | S(x) + S(x +a) = b},

LTs(a,b) = #{x €F4 | {a,x) = (b, S(x))} — 2" '.

Moreover, the S-box S is said to be differentially 6-uniform if DTs(a, b) <6 for any (4, b) in (Iﬁ‘g)2
with a # 0. Similarly, S is linearly A-uniform if [LTs(a, b)| <A for every (a, b) in (F})* with b # 0. Tt
is worthwhile to mention that the smaller the differential uniformity is, the more resistant S is
against differential cryptanalysis. The same applies for linear cryptanalysis.

Remark 3.1. It can be proven that any n-bit S-box is at least linearly 27 -uniform.

Recall that two permutations S; and S, of [F; are said to be equivalent if there exist two linear
mappings L, L, of ] and two elements vy, v, of I} such that

VXEFS, Sz(x) = L2(51 (L1 (X) + 01)) + 7.

It is well known that equivalent permutations have the same differential uniformity and the
same linear uniformity, see for instance [24, 25]. More precisely, their differential tables are
equal up to row and column permutations. This result holds for linear tables up to the sign of
the coefficients.

Let Vand W be two subspaces of F5. Suppose that S’ is an n-bit S-Box mapping £(V) to L(W).
Proposition 2.11 ensures that there exists an automorphism L of F}) such that L(V) = W. Since
L™'(W) =V, Proposition 2.15 states that L' maps £(W) to £(V). Then, S = L'+ S is equiva-
lent to S’ and maps £(V) to L(V). This discussion establishes the following proposition.

Proposition 3.2. Let Vand W be two subspaces of Fj. If S’ is an n-bit S-box mapping £(V) to
L(W), then there exists an S-box S equivalent to S’ preserving L(V).

Remark 3.3. Conversely, suppose that S preserves L(V). Let Wbe any subspace isomorphic to V.
Then find an automorphism L such that L(V) = W. By Proposition 2.15, L o S maps L(V) to L(W).

As with Section 3, let us introduce an example that we will continue throughout this section.

Example 3.4. Consider the 5-bit S-box S’ given in Figure 3.1. This S-box has already been met
twice in Examples 2.7 and 2.19 (refered to as f and S, respectively). Thus, we know that &’
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Figure 3.1. Construction of the S-box S used throughout Chapter 3.
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Figure 3.2. The permutation S preserving £(V) where V = span(07, 1a).

maps L(V) to L(W) where V = span(07, 1) and W = span(OE, 12). Following the proof of
Proposition 2.11, an automorphism L of 5 satisfying L(V) = W was constructed in Example
2.12. Its inverse L' and the composition S = LS are given in Figure 3.1. For instance,
S(07) =L7'(58'(07)) = L'(10) = 18. It is easy to check in Figure 3.2 that S preserves the
linear partition £(V). Finally, it is worth observing how Figures 2.2 and 3.2 look similar. This
explains our choices to construct the automorphism L. A

By virtue of Proposition 3.2, we can assume without loss of generality that V= W in our study
of the linear and differential properties of an S-box mapping L(V) to L(W).

Throughout this section, we consider the following

¢ let Vbe a d-dimensional nontrivial subspace of 5,
e let Ube a complement space of V,

* let S be an n-bit S-box preserving L(V).

Therefore, the space F; can be written as the direct sum U @ V. In other words, every element x
of ;5 can be uniquely written as the sum x = u + v where u and v belong to U and V,
respectively. Let [u] denote the coset of V with respect to u. Thus, [u] = u + V is the unique part
of L£(V) where u lies in and we have

LV)={uljuel}.
Since V is d-dimensional, the complement space U is (1 — d)-dimensional. In addition, we have
the following inequalities

1<d<n—-1 and 1<n—-d<n-1
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because V is assumed to be a nontrivial subspace of F7.

The following theorem describes the structure of permutations preserving a linear partition. It
can be seen as a corollary of the Krasner-Kaloujnine embedding theorem [26]. However, for
convenience, we give a direct constructive proof.

Theorem 3.5. There exist a unique permutation p of U and a unique family of permutations
(Tu), ey Of Vsuch that, for all x =u + v in F3,

S(u+10) = pl) + 1 (0)

Conversely, if p is a permutation of U and if (1,), ¢, is a family of permutations of V, then the
mapping S’ defined by S'(u +v) = p(u) + 7,(v) preserves L(V).

Proof. By hypothesis, S preserves £(V). Thus, S induces a permutation p of U defined as
follows. Let u be an element of U. Hence, there exists a unique ' in U such as f([u]) = [1'].
Define then p(u) = u'. For each element u of U, define the permutation 7, of V, which maps v to
S(u +v) + p(u). By construction, for any u in U and any v in V, we have

7,(v) = S(u+v)+ p(u) andhence S(u+v)=pu)+ 14(v).

The existence of the permutations p and 7, is proven. Now, let us show their uniqueness.
Suppose that there exist a permutation p of U and a family of permutations (7,),c of V
satisfying the result. Let (1, v) be an element of U x V. By hypothesis, we have

p(u) + () = p(u) + Tu(v) -
Because the sum of U and V is direct, it follows that p(u) = p(u) and 7,(v) = 7,(v). The
uniqueness of p and the 7, follows.

Conversely, let p be a permutation of U and (7,),, ¢ ; be a family of permutations of V. Denote S’

uel
the mapping from F} to F, defined by S'(u + v) = p(u) + 7,(v). Since F} = U®V and p and
the 7, are permutations of U and V respectively, The mapping S’ is a permutation of F5. Let u
be an element of U. It holds that

S'([u]) ={S'(u+v)lveV}={p(u) + t,(v)veV}
=p(u) +{tu(v)veV} = p(u) + V = [p(u)] .

Hence, S’ preserves the linear partition £(V). .

This theorem allows us to design an S-box that preserves £(V) using permutations with
smaller domains. Furthermore, these permutations can be chosen arbitrarily.

Example 3.6. Consider the complement subspace U of V defined by
U = span(01, 02, 08) = {00, 01,02,03, 08,09, 0A, OB}
Figure 3.2 shows that S induces a permutation p of U. For instance, p(00) = 02 because S maps

the part [00] to [02]. The whole permutation p is given in Figure 3.3. For each u in U, define the
permutation 7, of Vby t,(v) = S(u + v) + p(u). For example,
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Tg2(1D) = S(02 + 1D) + p(02) = S(1F) + p(02) = 12 4+ 08 = 1A,

The permutations 7, are also given in Figure 3.3. Informally, the permutation p tells us how S
permutes the parts of £(V) and the permutations (7,),.; describe how the elements are

moved inside each part (Figure 3.4). A
In the rest of this section, the permutation p and the family (7,), < ; given by Theorem 3.5 are fixed.

The goal of this part is to express the linear and differential properties of S according to the
ones of the permutations p and (7,), ¢ ;- However, these permutations are not defined on [}
but on the subspaces U and V of F;. Thus, the concept of linear or differential table is inexistent
for such maps. To solve this problem, we define two isomorphisms between U and F2~ and

between Vand F4. Then, we consider the maps induced by p and (7,), . ;; on these spaces.

Notation 3.7. Let By = (u#i);.,,_4 and By = (vi);_,,_; be two bases of U and V respectively.
Define the following mappings:
Ly :Fy % —Uu Ly :Fi -V
n—d—1 d—1

(Xn-d-1, - X0) > Yo Xittis Yoy, Yo) P Y, YiVic

It is easily seen that L;; and Ly are both isomorphisms of vector spaces. Define the permutation
o' = L' pLy of Fy . Finally, for each u in U, let 7, denote the permutation L;'7,Ly of F4.

Example 3.8. Consider the bases B;; = (01,02, 08) and By = (07, 12) and define the isomor-
phisms Ly and Ly The permutation p’ of F3 and the permutations 7/, of F3 are given in
Figure 3.5. A

1. Linear approximation table

The next theorem links the linear tables of S and p’. The coefficients of the linear approximation
table of S taken into account by this result are in practice the greatest. Thus, they generally
determine the linear uniformity of S.

Theorem 3.9. Let a and b be two elements of V*. Denote a' = L];(a) and b' = L], (b). Then,
LTs(a,b) =27 x LTy (", b") .
Remark 3.10. Consider the map L], : F4 — F2~%. Then, ker(L!,) = (ImLy;)* = U" . Observe that

Utnvt = (U 4 V)" = (F2)* = {0}. Consequently, the restriction L}, : V* — F3“ is one-to-one
and thus onto because of the rank-nullity theorem.

Example 3.11. The restriction L], : V* — F; is given by the following table.
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Figure 3.3. The permutation S preserving £(V) where V = span(07, 1a).
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Figure 3.4. The linear transformations L;; and Ly
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Figure 3.5. The family of permutations (7'),c; and the permutation p'.

Reorder the rows and the columns of the linear approximation table of S to begin with
((L{l)fl(x))xeﬂ‘-;, as suggested by Theorem 3.9. The reordered linear table is shown in

Figure 3.6. Each dot “-” in this figure stands for the integer 0. With this order, it is easily seen
that the top left part of LTs is exactly the linear table of p’ multiplied by 2 = 4. For instance,
LTs(1D, 16) = 2% x LTy (5, 2) = —8 because L{,(1D) = 5 and L{;(16) = 2. A

Corollary 3.12. The S-box S is at least linearly 2("*~1)/2_uniform.

Proof. As noted in Remark 3.1, there exist two elements a' and b’ of F§“ both nonzero such
that [LT, (a!, b')| 22"~#"D/2, Let a and b denote the elements (L!,)"(a’) and (L];)"" (") of F3.
Then, Theorem 3.9 implies that

ILTs(a, b)|= 2% x |LTy(a',b")| 227 x 20n~4-1/2= plntd=1)/2

Observe that a and b are nonzero and the result is proven. .

Remark 3.13. It is well-known that any 4-bit S-box is at least linearly 4-uniform, see for
example [27]. As a consequence, the permutation § is at least 24**-uniform if n—d = 4. Similarly,
any 2-bit S-Box is linearly 2-uniform, and hence S is at least 2*""-uniform if 1 — d = 2.

Example 3.14. It is easily seen that S is linearly 8-uniform in Figure 3.6. The lower bound given
by Corollary 3.12 is 2("+4=1)/2= 2(5+2-1)/2 — 8 Therefore, this bound is tight on this example. A
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Figure 3.6. The reordered linear table of S.
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2. Differential distribution table

Unlike linear cryptanalysis, where only a local view of the table was provided, the results for
differential cryptanalysis bring both local and global outlooks.

Theorem 3.15. Let a = u, + v, and b = u; + v, be elements of Fj. Denote v/, = L&l(uﬂ) and
u'y = L (up). Then
> DTs(ib) = > DTs(aj) =27 x DTy (u'a 1t}) .

i€ [u,) j€(up)
Especially, DTs(a, b) < 24 % DTy (', u'p).

The preceding theorem can be restated in the following way. If DT is rearranged coset by
coset, a simple operation enables recovery of DTp’. On the other hand, the next theorem is
similar to Theorem 3.9 but for differential cryptanalysis. Again, it generally highlights the
coefficients of DT involved in the differential uniformity of S.

Theorem 3.16. Let v, and v, be two elements of V. Denote v/, = L(,l (v,) and V', = L(,l (vp). Then
DTS (Ua/ Ub) = ZDTT/“ (U/a, U,b) .
uel

Particularly, the subtable (DTs (v, vs))
(DTT’u)

v, 0, v 18 uniquely determined by the differential tables

uel*

Example 3.17. To illustrate Theorems 3.15 and 3.16, reorder the rows and the columns of the
differential table of S as presented in Figure 3.7. With this order, we can see the differential
table of p’ by considering the differential table of S coset by coset. In fact, Theorem 3.15 states
that the sum of all elements in the same row or column of the subtable DTs([u1], [u2]) is equal to
the coefficient (x1, x2) of DT,y multiplied by 22 where x; = L;l (u;). For instance, if we consider
the subtable

03 04 19 1E

09| 4 : 4 :
DTs([09],[08])=0E | - 4 - 4

13 1 ]

14 1 l

we can see that the sum of each row or column is equal to 8 = 2> x DT (5, 3) since L(5) = 09
and Ly(3) = 03.

Finally, Theorem 3.16 ensures that the subtable DTs(V, V) = DTs([00], [00]) is the sum of the
differential tables (DTv,) A

uel:
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Figure 3.7. The reordered differential table of S.
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Corollary 3.18. The permutation S is at least 6-uniform for the differential cryptanalysis where

0 denotes the even integer directly greater than or equal to ij

Example 3.19. In Figure 3.7, we can see that S is differentially 12-uniform. Thus, this S-box
reaches the lower bound given by Corollary 3.18. A

3. The design of a trapdoor S-box

First, let us summarize the theorems of this section.

e Theorem 3.9 implies to reduce at most the linear uniformity of p’ to keep the one of S as
small as possible.

e In the same way, Theorem 3.15 implies to reduce at most the differential uniformity of p’.

*  The same theorem also stresses that the greater the number of nonzero coefficients of DT,
is, the better.

¢ Finally, Theorem 3.16 teaches us that the sum of the differential distribution tables DT,
should be as low as possible.

Now, to design the S-box S, one needs to pick a permutation p’ of Fi™ with the smallest
uniformities for linear and differential cryptanalysis. Then, one searches for permutations 7',
of 4 satisfying the last condition. This search can be conducted randomly over every d-bit S-
boxes. Finally, construct the S-box S as in the converse of Theorem 3.5. If the differential and
linear uniformities of S are too far from the lower bounds given by Corollaries 3.12 and 3.18
and by Remark 3.13, then start again. In practice, these bounds are reached (or almost reached)
after a small number of iterations.

Moreover, observe that the closer the dimension d of V from n is, the weaker the S-box S is
against linear cryptanalysis and the stronger S is against differential cryptanalysis. The lower
bounds given by Corollaries 3.12 and 3.18 and by Remark 3.13 are given in Figure 3.8 for each
3<n<8.

nnd 1 2 3 4 5 6 7 nNd 1 2 3 4 5 6 7
3 4 4 . 3 8 4 .

4 4 8 8 . 4 16 6 4 .

5 8 8 16 16 . ' ; 5 32 12 6 4 .

6 8 16 16 32 32 . ; 6 64 22 10 6 4 .

7 12 16 32 32 64 64 ; 7 128 44 20 10 6 4 .
8 16 23 32 64 64 128 128 8 256 8 38 18 10 6 4

Figure 3.8. Lower bounds for the linear (left) and differential (right) uniformities of S.
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Finally, it should be highlighted that these results can be used to easily prove that a given S-box
does not map any linear partition to another one. For instance, the linear and differential
uniformities of the S-box of Rijndeal [11] are far below the lower bounds given by Corollaries
3.12 and 3.18, no matter what the dimension d of the subspace V is. As a consequence, this S-
box does not map any linear partition to another linear one.



Partition-Based Trapdoor Ciphers
http://dx.doi.org/10.5772/intechopen.70420

Backdoored Encryption Algorithm 1

BEA-1 [28] (Backdoored Encryption Algorithm) is an AES-like cipher together with a backdoor based
on the theory developed in Chapters 2 and 3. This cipher is designed to resist linear and differential
cryptanalysis. Nonetheless, the backdoor enables recovery of the full 120-bit cipher key in just a
few seconds on a laptop computer using 2'® chosen plaintext blocks, as presented in [29].

This chapter is organized as follows. First, the specification of the cipher BEA-1 and its security
analysis against linear and differential cryptanalysis are given in Section 1. Then, Section 2
explains the hidden property of the algorithm and its design. To conclude, the cryptanalysis
exploiting the backdoor is detailed in Sections 3 and 4.

1. Presentation of BEA-1

The cipher BEA-1 is directly inspired by Rijndael [7], the block cipher designed by Joan
Daemen and Vincent Rijmen, now known as the AES. Our algorithm encrypts 80-bit plaintext
blocks using a 120-bit cipher key. Unlike the AES, the internal state is not seen as a matrix of
bytes but as an array of 10-bit bundles. Therefore, the message and key spaces are respectively

(F})® and (F}")"2.

1.1. Specification of the encryption process

The encryption consists in applying 11 times a simple keyed operation called round function to
the data block. A different 80-bit round key is used for each iteration of the round function.
Since the last round is slightly different and uses two round keys, the encryption requires twelve
80-bit round keys. These round keys are derived from the 120-bit cipher key using a key schedule.

Like any other substitution-permutation network, the round function is made up of three
stages: a key addition, a substitution layer and a diffusion layer.

¢ The key addition is just a bitwise “exclusive or” (XOR) between the data block and the
round key.

¢  The substitution layer consists in the parallel evaluation of four different 10-bit S-boxes
and is the only part of the cipher that is not affine. These S-boxes are referred to as S, Ss,
Sy, Sz and are defined in Figures 5A, 7A, 9A and 11A given in Appendix. They should not
be confused with the secret S-boxes Sp, S1, S, and S;, only used in the design and the
cryptanalysis of BEA-1.

* Following the design principles of the AES, the diffusion layer comes in two parts: the
ShiftRows and the MixColumns operations. The first part is a bundle permutation. The
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second evaluates in parallel the linear transformation M : (F}°)* — (F1%)* processing four

10-bit bundles. Because of its linearity, M is only defined over the standard basis of (F})*
in Figure 3A in Appendix. For convenience, its inverse M~ is also in the same figure.

The pseudo-codes for the key schedule and the encryption algorithm are both given in
Figure 4.1. To provide an overview of their structures, the first step of the key schedule and

Algorithm 1 - ExpandKey
Input. The 120-bit cipher key K = (Ky,..., K1) € (F3*)'2
Output. The twelve 80-bit round keys k%1, ... k(1] e (F}")3,

{ﬁ{; .k”) - {I{n._ . ,f{n]

For i from Q0 to § do
&+ M(Kies, . - . Kkr2ien)
@+ (5(x) )<
T« (20 @ (3 mod 2'°), 1, x5, 23)
(Ki2ie12: - - -5 ki2ie15) = (K12is0s - - Ki2iea ) @ T

For r from Q to 11 do
kY (Kegpai )ics

i1 Return k[“].,, . _.k.[ll]

Algorithm 2 - Encrypt
Input . The 120-bit master key K € (F}?)*? and the 80-bit plaintext block p € (F}°)®
Output. The 80-bit ciphertext block ¢ € (F}°)®.

kO k1] « ExpandKey (K)

For r from 0 to 9 do

@« x® k] AddRoundKey
T+ (Simoda(Ti))ics SubBundles
I+ (&g, &5, Tg,T7, X4, L1, L, T3) Shi ftRows
a« (M || M)(z) P
&I+ $ k[lﬂ] AddRoundKe

T + (Simoda(Ti))ies
w0 ¥ + (Zo,Ts, T2, T7, T4, T1, T6, T3) Shi I
o~ ® ki

2 Return x

Figure 4.1. The key schedule and the encryption function of BEA-1.
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the round function is illustrated in Figure 4.2. This representation also emphasizes the similar-
ities between our algorithm and the AES.

Remark 4.1. The decryption is straightforward from the encryption since all the primitives are
bijective. Thus, to decrypt, we just have to apply the inverse operations in the reverse order. It
should be stressed that the key addition and the Shif tRows are involutions; therefore the same
operations are used in the decryption process. Finally, note that the inverse S-boxes are not

given here but can be computed by using the equation S;*(5(x)) = x holding for each x in F}°.

Bdke 0 1 2 a 4 B [ T 8 1 10 11
Bt {a-i¥ 12 L] -2 -0 Ak—4% -5 G50 TO-T9 Rap—E1) [ L] 100-108  110-119
{ ! 1 ] r II.
A T
] W] o 7
I
L T be'
Bumndle [1] 1 2 3 - [ 6 T
Eie MR 1m-19 20-19 363 ELUE G GRG0 -6O TN
ke L _'\-\.' e, ey

Figure 4.2. Diagrammatic representations of the key schedule and the round function of BEA-1.
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1.2. Differential and linear cryptanalysis

In [7], Daemen and Rijmen introduced the differential and the linear branch numbers of a linear
transformation. With an exhaustive search, it can be checked that the differential and linear
branch numbers of M are both equal to 5, which is the maximum. This implies that any 2-round
trail has at least 5 active S-boxes. Thus, a 10-round trail involves at least 25 active S-boxes.

Note that all the S-boxes are (at most) differentially 40-uniform and linearly 128-uniform.

Therefore, the probability of any 10-round differential trail is upper bounded by (:4%)* =

1024
271189 and the absolute bias of a 10-round linear trail is upper bounded by (%)25: 2790,
Consequently, a differential cryptanalysis of the 10-round version of our cipher would require
at least 2'"” chosen plaintext/ciphertext pairs and a linear cryptanalysis would require 2'*

known plaintext/ciphertext pairs.

Even if this is a rough approximation since it does not take into account the inter-column
diffusion provided by the ShiftRows operation, it suffices to prove the cipher’s practical
resistance against classical differential and linear cryptanalysis. In fact, there are only 2%
different plaintext/ciphertext pairs for a fixed cipher key.

2. Design of the backdoor

The presentation of secret structure of BEA-1 comes in two parts. First, Section 2.1 explains the
nature of this backdoor and provides all the results needed to address the cryptanalysis. Then,
the design of BEA-1’s primitives is given in Sections 2.2 and 2.3. The reader who just wants to
understand how the backdoor works can skip these two sections. Indeed, they are more
technical and are also independent of the remainder of this chapter.

2.1. The linear partitions throughout the encryption

As said in introduction, the backdoor of BEA-1 relies on the theoretical framework developed
in Chapters 2 and 3. Thus, it should not be surprising that linear partitions must play a key role

in it. For this purpose, let us introduce the following 5-dimensional subspaces of 3’
Vo = span(266, 343, 3ED, 354, 17F), W, = span(162,11B, 306, 05E, 0B8),
V1 =span(398,229, 34C,251,37B), W; =span(04B,3B7,0D5,027,2C8),

V, = span(0BA, 155,307, 37E, 318), W, = span(1A9, 095, 107, 36F, 2A3),

( ( )

V3 =span(1D1, 21E, 134, 0DC, 153), W3 =span(0FO0, 2FE, 191, 332, 126).

Then, define the 40-dimensional subspaces V = Hi7:0 Vimod4 and W = H?:owi mod 4 Of message

space (F1°)®. Therefore, the linear partitions £(V) and £(W) are both made up with 2% cosets,
each containing 2*° elements.
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The S-boxes Sy, S1, S and S; given in the specification of BEA-1 are actually derived from the
secret S-boxes Sy, S1, Sp and S; given in Figures 4A, 6A, 8A and 10A in Appendix. The relation
between the secret S-boxes S; and their modified versions S; will be detailed later in Section 2.2.
In the first place, let us state the following theorem relating BEA-1 to the theory of partition-
based backdoor ciphers.

Theorem 4.2. Consider the encryption function of BEA-1 where the modified S-boxes Sy, S1, S,
and S are replaced with their secret counterparts Sy, Sy, S,, and S;. Then, the round function
preserves the linear partition £(V) of (Fi%)® and the last round maps £(V) to £(W), no matter
the round keys used. As a consequence, the full encryption maps £(V) to L(W).

More precisely, Figure 4.3 depicts the evolution of the linear partition £(V) throughout each
primitive of the (secret) encryption process. For instance, we can see that the S-box S; maps the
linear partition £(V;) to £(W;), and hence, the substitution layer maps £(V) to £(W). Simi-
larly, the diffusion layer comes back to the original partition, since it maps L(W) to L(V).

Vo Vi Va Va Va Vi Va Va

= Vo Vi Vi Vi Va Vi Va Vi
E ! 5, S b T S ] S =
[
- Wa Wi W Wy Wa Wy Wy Wy
._L| L
=
Tl on o B o & o B o
M M
Vo Vi Va Va Vo W Va Vi
Vo Vi Va Vi Vo Vi Va Vi
= S S, Ss Sa S S, S, Sa
I'IE Wy Wi Wy Wa Wy wi Wa Wi
dace
ow
= ]
[
Wa 145 Wa Wy Wa Wi Wa Wa

Wa Wi Wz Ws Wa Wi Wa Wa

Figure 4.3. The linear partitions throughout the encryption.
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Remark 4.3. Theorem 4.2, as well as Theorem 18 stated hereinafter, will be proven in Sections
2.2 and 2.3. Indeed, they establish the main properties of the backdoor and are hence closely
related to the design of the cipher’s primitives.

Thanks to Theorem 4.2, we can now explain our choices for the V; and W,. Each of these subspaces
of F}? is a five-dimensional linear code whose minimal distance is equal to 4. This property
ensures that the Hamming distance of any two different elements lying in the same coset is at
least equal to 4. The subspaces V nd Wof FY” inherit this property. Thus, if p is a plaintext, then any
other plaintext p’ lying in the same coset of V differs from p in at least four bits. Considering the
secret encryption function, Theorem 4.2 establishes that their ciphertexts ¢ and ¢’ belong to the
same coset of W. Thus, ¢ and ¢ have at least four different bits. As it will become clear in the next
two sections, the subspaces V; and W; could have been freely chosen among the five-dimensional
subspaces of F}". We surmised that using linear codes with high minimal distance should reduce
the likelihood of observing the backdoor by accident, hence our choice for the V; and Wi.

Having explained the main property of the secret encryption function, now is the time to
introduce the following theorem establishing a link between the secret cipher and BEA-1.

Theorem 4.4. Let F and E denote the round function and the encryption function of BEA-1
using the secret S-boxes. Let p = pl¥! be any plaintext. Define the following elements with

respect to the round keys k[o], e K10,

pil = Fa(pl) and pltl =Fu(pll) for0<i<11.

Assume that the round keys k%,... k') are independent and uniformly distributed. The prob-
ability that all the equalities p'! = p hold for each 1 <i <11 is given by

6 2\ 1
944 " 925 <ol
1024 1024 '
Therefore, the probability that p is encrypted equally with E and E can be approximated by 2.

Remark 4.5. The fact that the MixColumns operation is replaced with a key addition in the last
round of BEA-1 does not matter in Theorem 4.4. For the sake of simplicity, we then ignore this
detail. This explains why the last round key k"' does not appear in the statement of this result.

Needless to say, the hypothesis that the round keys are independent and uniformly distributed
is mathematically wrong in any practical cryptanalysis. Indeed, the twelve 80-bit round keys
are all extracted from one 120-bit cipher key. However, the cipher key needs to have (at least)
960 bits to provide independence and uniform distribution to its round keys. Such a cipher key
must be related to the concept of long-key cipher defined in [30]. Nonetheless, if the cipher key
is uniformly distributed, the same applies for each round key.

In our cryptanalysis of BEA-1, we are given plaintexts with their ciphertexts encrypted under a
fixed cipher key. Even if we forget about the independence of the round keys, each plaintext
must be encrypted with a random cipher key to make use of Theorem 4.4.
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Fortunately, our experiments suggest that the proportion of the plaintexts encrypted equally
with Ex and Eg is approximatively 27 '!, even when the round keys are derived from a fixed

cipher key K. To put it another way, if P is a subset of the plaintext space (Fi’)®, it seems
reasonable to assume that

#P
#p € PIEk(p) = Ex(p)}= o5y - @.1)

Now, suppose that P is included in a coset of V denoted by x + V. As the secret encryption
function Ex maps £(V) to L(W) (see Theorem 4.2), we know that the image of P under Eg is
included in a coset of W. More precisely, Lemma 2.8 establishes that Ex(P) is included iny + W
where y = Ex(x). Hence,

{pePlEk(p) = Ex(p)} € {p € P|Ek(p) € (y + W)} 4.2)

Combining (4.1) with (4.2), we conclude that approximately #P x 2~ ciphertexts in C = Ei(P)
belong to y + W. In addition, we have observed that the ciphertexts ¢ = Ex(p) such that
Ex(p) # Ex(p) are spread over the 2*° cosets of W.

The backdoor of BEA-1 is hence the following. First, choose a set P of 2'® plaintexts uniformly
chosen in one coset x + Vand collect their ciphertexts C = Ex(P) encrypted under an unknown
cipher key K. Then search for the most represented coset of W in C and denote by y one of its
representatives. According to our experiments, this coset should have roughly 2'¢7'! = 32
elements, and the second most represented coset is unlikely to have more than six elements.
As a consequence of the preceding discussion, we know that the coset x + Vis mapped toy + W
by the secret encryption function Eg. This information can then be used to recover the cipher
key K with a low computation cost, as detailed later in Sections 3 and 4.

To conclude this section, observe that no particular property of the key schedule has been used.
It can be proven that each round of the key schedule preserves the linear partition Lﬁ(H}io W),
provided that the S-boxes S; are replaced with their secret equivalents S;. This implies that if two

cipher keys K and K’ are in the same coset of [}, W, then we can approximate the probability

that each pair of round keys k! and k' are in the same coset of W by (944° - 925 . 2740)7 =235,
However, for this property to be easily exploitable, the round keys ought to stay in the same
coset of V instead of W (which can be simply achieved by switching the mappings M and (S
51115,1153) in the key schedule). Therefore, if compared with our cryptanalysis, this property
appears not to be very useful and was intentionally left as a wrong track.

2.2. The substitution layer

The nature of the hidden property of BEA-1 having been emphasized, this and the following
sections detail the design of the cipher’s primitives and prove Theorems 4.2 and 4.4 stated
above. As explained in introduction, these two sections are aimed at the reader who wants to
understand how BEA-1 was made. For a first read, it is possible to jump directly to Section 3
explaining the basic principle of the cryptanalysis using the backdoor.
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Let {0*} and {*0} denote respectively the subspaces {05} x Fg and Fg x {05} of ]Féo. It should be
noted that {*0} is a complement space of {0*} in F3’. The design of each secret S-box S; rests on a
permutation S} of F}’ preserving the linear partition £({0 * }). Following Theorem 3.5, we just

need to choose a permutation p; of {*0} and a family (7; ,) 1+0) of permutations of {0*}. Then,

ue

we define S/ for all x = u + v in F}” by
Si(x) = Sj(u +0) = pi(u) + 7i.u(v),

where u is in {*0} and v in {0*}. The permutations p; and 7, , were selected following the method
given in Section 3, in order to maximize the resistance of S} against both differential and linear
cryptanalysis.

Figure 1A in Appendix defines the linear mappings Ly, and Ly, (for 0 <i<4) over the standard
basis of F}". It is worthwhile to note that these mappings are automorphisms of F3’. Moreover,
Ly,({0x}) = V; and Lw, ({0 *}) = W;. By virtue of Proposition 2.15, we know that Ly, maps
L({0 +}) to £(V;) and that Ly, maps £({0 * }) to L(W;). Last, but not least, define for each 0 <i <
4 the secret S-box S; by

S; =Ly, oS e (Ly)".

These S-boxes are given in Figures 4A, 6A, 8A and 10A in Appendix. Obviously, (Ly,)”! maps
L(V;) to L({0*}), then S'; preserves L({0 * }), and Ly, maps L({0 = }) to £L(W;). This implies the
following proposition.

Proposition 4.6. For each 0 <i <4, the secret S-box S; maps L(V;) to L(W;).

Remark 4.7. If the reader is interested in an explicit definition of the permutations p; and the
families of permutations (7; u);c .o they can be recovered in the following way. First, compute
S'i = (Lw, )71 oS, o Ly, using the tables of Figures 1A and 4A (or 6A, 8A, 10A). As noted previously,
the permutation S'; preserves the linear partition £({0 * }). To obtain its decomposition, we just
have to follow the proof of Theorem 3.5. Thus, for each u in {*0}, define p;(u) as the unique element
of { * 0JU(S';(u) + {0 * }). It is not hard to see that p;(u) is simply equal to the element of F3’, where
the five leftmost bits are exactly the ones of S§';(1) and the five remaining bits are all zero. Finally,
for each u in {*0}, let 7;,, be the permutation of {0*} defined by 7, ,(v) = S'i(u + v) + p,(u). Again,
T;,(v) is just the 10-bit vector having its five leftmost bits all zero and its five rightmost bits
identical to the ones of S';(u + v). Naturally, the permutations p; and 7;,, can be seen as permuta-
tions of ]Fg (instead of {*0} and {0*}) to obtain the more convenient definition

S'i(ullv) = (p;(u)lITi,u(v)) -

The modified S-boxes S; given in the specification of BEA-1 are such that S;(x) = S,(x) for almost
all input x in F3°. For instance, So(x) = Sy (x) for all except 80 elements x in Fi’. The images of
these 80 particular points are emphasized in Figures 4A and 5A. These modifications were
chosen so as to improve the differential and linear resistances of S, compared to the original
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secret S-box Sy. More generally, S; and S; have 80 different images for i in {0,1,2}. The last-
modified S-box S; is less close to it secret equivalent since S; and S; have 99 different images.

Consequently, if x is uniformly distributed over F}°, then the equality S;(x) = S;(x) holds with
probability g; where

944 925
qO =0 =9, = 1024 an 6]3 = 1024 .

This implies that when x is uniformly distributed over (F1’)?, the images of x under the secret

and the modified substitution layers are equal with probability g = (T;., qi)z.

Let p = p!” be a plaintext. In the following, we use the notations of Theorem 4.4. If kil is
uniformly distributed, then so is p! + k'l. Thus, pli*!l = F;; (pl) is equal to pi*! = F,; (pl!) with
probability q. Assuming moreover that the round keys are independent implies that the events
p!'! = p! for each 1 <i < 11 are independent. Therefore, the probability that the equalities p!! =
p' hold for all 1 <i <11 is given by g'". This discussion proves Theorem 4.4.

2.3. The diffusion layer

Some components used to design the linear transformation M are defined over the finite field
[F,5. In order to have an explicit construction of this field, we consider the irreducible polyno-

mial X° + X* + 1 over IF, and define s as the quotient ring F,[X]/(X° + X + 1). Let a denote
the equivalence class of X in F,. By construction, the equality a®+a®+1 =0 holds, or

4 .
equivalently, a® = a® + 1. Each element of F,s can hence be uniquely written as Zizoxial

where (xy,..., xo) belongs to F5. More precisely, the family (a'),_s is a basis of F,s seen as a 5-

dimensional vector space over F,. The field F,s will then be identified with (F,)’ via the
4 .
isomorphism from F5 to F,s mapping (xy,..., Xo) to Zi: (X', For instance, the element a*+a

+1in F,s is identified with 07 in 5. Now define the 4 x 4 matrices M;; and My over F,s by

i b e d a=a*+a? a=a+a®+1,
b a d ¢ b=a*+a+a?+a+1, b=a*+a+a%+a,
My : My :
c d a b c=ad+a? c=a*+a*+a
d b
¢ g d=a*+a*+1, d=ad.

It can be verified that these matrices are MDS. In other words, the [8, 4]-linear code having
G = [Id4, My] as generator matrix has minimal distance equals to 5, which is the maximum
achievable.

Each of these matrices naturally induces an automorphism of (Fy5)* and hence of (F§0)4. For
instance, My maps the element x = (xo, x1, x2, x3) to x x M. Observe that we chose to see

elements of (F1’)* as row vectors to keep the common notations of linear codes.
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Example 4.8. To illustrate these notations, let us compute the image of the element
x = (00,02, 00,00) of (Fi)* under the automorphism induced by My;. First, x is identified
with the element (0, «, 0, 0) of (IE‘Zs)4. Then,
(0,2,0,0) x My = (a(a* + a® +a® + a + 1), a(a* + a?), a(a* + a* + 1), a(a® + a?))
=(@+at+a’+a’+a, d+ad, dS+at+a at+a°)

=@+l +a+l, P+’ +L,a8+a? +a+1, at +ad).

Therefore, (00,02, 00, 00) x My = (1B, 0D, OF, 18). A

As was the case for the secret S-boxes S;, the linear transformation M rests upon the linear
transformation M’ defined as follows

M () — ()
(il vi)icy = (p(); Nl Tu(0););c
where p(u) = u x My and 7,(v) = v x My + Py_y(u). The strength of this construction is that

M’ inherits the linear and differential branch numbers of M;; and My, as stated in the proposi-
tion hereunder. But first, we introduce the following example.

Example 4.9. Let us compute the image of x = ( ,070, , ) under M'. As a first step,
observe that x can be written as

x = (00]100,03]120, 00[100, 00]|00) = (uillvi);a ,

where u =(00,03,00,00) and ©v=(00,10,00,00). Let ey =(00,02,00,00) and
el = (00,01, 00, 00). Then u = ey + ey, it is indeed its decomposition over the standard basis
of (IF3)*. Thus, for any linear mapping L, it holds that L(u) = L(e) 4 L(eo). The image of u
under p can hence be computed by

p(u) = p(es) + p(ero) = (1B, OD, OF, 18) + (1F, 14,15,0C) = (04, 19, 13, 14).

In the same way,

Tu(v) = v x My + Pu_v(es) + Pu—v(ew)
= (16, 0E, 14, 02) + (OF, 11,0C, 16) + (11, OE, 02, 0A) = (08, 11, 1A, 1E).

Consequently, M'(x) = (04 || 08,19 || 11, 1A || 1A, 14 || 1E) = (088,331, 353, 29E). A

Proposition 4.10. The linear and the differential branch numbers of M’ are both equal to 5.
Thus, M’ is a perfect diffusion layer.

Proof. Let x = (1; || v;),., be a nonzero element of (F°)*. In order to prove that the differential
branch number of M’ is equal to 5, we need to show that wo(x) + wqo(M'(x)) is greater than
or equal to 5. First, assume that u = (u;),, is nonzero. Using the fact that M, is MDS, we

obtain the inequality ws(u) + ws(u x My) 2 5. Next,
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5<ws(u) +ws(p(u)) = wio((ui 1 0);y) + wio((p(u); 11 0);4)
<wio((ui Il 02)i2q) + W0 ((p((w); 1| Tu(v);)icq) = Wio(x) + W10 (M (x)).

Now, suppose that u = 0. It must be the case that v # 0 as x is nonzero by definition. Again, it
holds that ws(v) + ws(v x My) 25 because My is also MDS. Then,

5<ws(v) +ws(To(2)) = wio((0 [ v3);s) + w10((0 Il 70(0);)ics)
= wm(x) + WlO(Ml(x))'

We have proven that wig(x) + wio(M'(x))25 for any nonzero element x of (F)°)*. Conse-
quently, the differential branch number of M’ is greater than or equal to 5. The equality
Bp(M') =5 follows as 5 is the maximum achievable. Similarly, it can be proven that M’ has
also the maximum linear branch number. It follows that M’ is a perfect diffusion layer and the
result is proven. .

Recall that the notation {0*} denotes the subspace {0s} x 5 and that the linear mappings Ly,
and Ly, (see Figure 1A) map respectively L£({0 x}) to £(V;) and L({0 *}) to L(W;). It is then
easily seen that M’ maps {0*}* to itself. Thus, M’ preserves the partition £({0 * }*) by Proposi-
tion 2.15. Finally, define

M = (Lv, | Lv, | Lv, Il Lv;) oMo (L, Il Lw, 1| L, || Lw,) ™"

From its definition, it is straightforward to check that M maps the linear partition £([}_, W)
to LT, Vi)

Example 4.11. We are going to compute M( ,080, , ). First, we have that

(Lw, Il Lw, Il Lw, Il Lw,) " (000,080, 000, 000)
= (L}, (000), Ly} (080), Ly} (000), Lyt (000)) = (000,070, 000, 000).

Then, the image of (000,070, } ) under M’ is (088,331,354 29E), as already
established in Example 4.9. Finally,
M(000, 080, , )= (Lv, Il Lv, Il Ly, |l Lv,)(088, 331, 353, 29E)
= (15E, OBF, 1E2, 04F).

Indeed, Ly,(088) = Ly,(080) + Ly,(008) = 21D + 343 = 15E. The three other bundles are
computed in the same manner. A

Because each mapping Ly, or Ly, operates on different bundles and is invertible, it is clear that
the linear and differential branch numbers of M are the same as M'. This discussion completes
the proof of the following corollary.

Corollary 4.12. The linear mapping M is a perfect diffusion layer, which maps £([]._, W;) to
LT Vi)-
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In conclusion, Proposition 2.13 ensures that any key addition preserves all the linear partitions,
and hence it preserves £(V). Next, it has been proven in Section 2.2 that every secret S-box S;
maps L(V;) to L(W;). Thus, the secret substitution layer maps £(V) to L(W). Itis clear that the
ShiftRows operation is linear and maps W to itself. According to Proposition 2.15, this
mapping preserves L£(W). Finally, the MixColumn operation maps £(W) to £(V) by Corollary
4.12. This discussion is summarized in Figure 4.3 and proves Theorem 4.2 previously given in
Section 2.1.

3. Main idea of the cryptanalysis

As we have seen in Section 2.1, the cipher BEA-1 does not map a linear partition to another one
but behaves as though it did for a nonnegligible fraction of the message space. This nontrivial
property can be used to recover the cipher key in an operational cryptanalysis. But before
considering the full cipher, we give the main idea of this attack.

3.1. A detailed example

To explain how to take advantage of this backdoor, we introduce a toy example. First, let us
mention that all the notations of this section are independent of the remainder of this chapter.

The message space of this toy cipher is simply FS. Then, consider the subspaces Vand W of F§
defined by

V =span(01, 02, 10, 20) = {(x3, x2,0,0,x1, xo)|x €F3},
W = span(01, 02, 04, 10) = {(0,x3, 0,x2, x1, xo)\xe]Fg}.

Thus, L(V) = {x + V|x€{00, 04, 08, 0c}} and L(W) = {y + W|y€{00, 08, 20, 28}}.

Let S be the permutation of F$ given in Figure 4.4. We defined another permutation S of F$
satisfying S(x) = S(x) for any input x in F§ except 00, 01, 04, 05, 08, 09, 0C and OD. The
images of these eight specific points under S are also given in Figure 4.4. By analogy with
Section 2, the permutation S represents the secret S-box used to design the trapdoor whereas S
represents the modified S-box given in the specification of the algorithm. Lastly, define the
following keyed mappings

iIC 1E 1F 08 39 34 3C 24 12 05 02 03 37 20 24 31
S(+) 0D 18 OA 1A 3B 2D 29 3E 14 07 11 10 25 26 21 35

. 1B 19 OB 1D 2B 2F 2C 28 15 01 16 06 27 36 30 32
0OC 09 OF OE 3F 2E 3D 38 00 17 04 12 22 23 33 34

S(x) 39 065 13 1C 1E 3A

Figure 4.4. The theoretical and the modified S-boxes.



Partition-Based Trapdoor Ciphers
http://dx.doi.org/10.5772/intechopen.70420
Fy: F§ — TS Fy:FS — F$
x> S(x) +k, x> S(x) +k,
representing respectively the secret and the modified round functions. Naturally, the key k can
be any element of 5.
It can be easily verified that the secret S-box S maps £(V) to £L(W). In fact, we have that
S(00+V)=08+W, S(08+V)=00+W,
S(04+V)=28+W, S(oc+V)=20+W.

In contrast with the secret permutation S, the modified S-box S does not map £(V) to L(W).
However, the equality S(x) = S(x) holds with probability */, assuming that x is uniformly
distributed over F$. This can be stated equivalently as

#{x €FS|S(x) = S(x)} =2° — 8 =56.
It should also be noted that this statement remains valid when considering their inverse

mappings, that is #ly € FS|S~!(y) = S7'(y)} = 56. Indeed, if x is an element of F§ such that
S(x) = S(x), then y = S(x) satisfies the equality S(x) = Sfl(y). As a consequence,

#HxeF3IS(x) = S(x))<H#y €FS (S (y) =S ()}

The converse inequality can be proven in the same way, establishing the equality.

Now, consider the subset P of F§ defined hereinafter. We assume that the round key is k = 37.
The image of P under S and its encryption with F;; are given below.

= {001 = {01-17) £ {08+17) e {0C+V)

p—— R e T e ¥
P ={ 22 . 04,05.06,15.16.17,27.34,35.36 , 18,34, OD,0F },
S(P)={ 0B . 39,3A.3C,2D.29 3E,28 3F,2E. 3D, 14,04, 20,31 }.
Fy(P)={ 3C . OE,0D.0OB,1A.1E. 09, 1F.08,19.0A . 23,33, 17,06 }.

— e

£ [2B4+1 ) £ {0B4+1) £ (20410 & [00-W7)

It should be stressed that the coset 04 + V is significantly more represented in P than any other
coset of V. Since F5;(P) maps the linear partition £(V) to £(W), the messages belonging to the
same coset of V are all mapped to the same coset of W. Therefore, the most represented coset of
W in F;;(P) has also ten elements.

As we have seen above, the modified round function F;, does not map L£(V) to L(W).
Figure 4.5 displays the differences between the encryption of P with F5, and its encryption
with F5, by highlighting the messages x in P such that S(x) # S(x) (that is 04, 05, and 0D) and
their images throughout the encryption.
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To explain these differences, let us first consider the set Q of the ten messages lying in both P
and 04 + V. Knowing that the equality S(x) = S(x) holds with probability /., when x is
uniformly distributed, it seems reasonable to assume that only 10x%¢/ ., = 8.75 messages of
Q will remain in the same coset when computing their images under S. By comparing with the
actual messages in Q, we can see that this is a good approximation since eight messages in
5(Q) belong to the same coset of W.

Q ={ 04,05, 06,15,16,17.27,34,35,36 } = P {04+ V),
§(Q)=1{ 12,10, 3C,2D, 29, 3E,28,3F, 2E,3D .

e - -
£ {28-W) £ B4

Needless to say, there are also eight messages in F37(Q) lying in the same coset of W because
the key addition preserves L(W).

We focus now to the set P as a whole. According to the discussion above, we know that the
most represented coset of Win F3,(/P) has at least eight elements. We have seen that the images
under S of messages lying in the same coset may not stay together. Nonetheless, the converse
can also be true, and messages in different cosets may end up in the same coset. This is exactly
what happens with the message 0D, as illustrated in Figure 4.5. Consequently, the most
represented coset in F37(P) has actually nine elements.

Encryption of P with Fgy Encryption of P with Fi;
ox 88 os B o o4 88 o & o
= . a = E
T T e M omo n
o @ o o
" @ e
an = om m I m 1 m o€
£ @@ x o oa o n B x = oo
06 om0 o4 0m (B GE R
@ 1 ou % 1r 5 iE ar
- = W a8
£l ) = x

Figure 4.5. Encryption with F5, and F.,.
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The fact that the most represented coset may not only lose but occasionally retrieve elements
should be seen as a side effect. Its impact remains low when

*  one coset has significantly more elements than all other cosets (say at least 5 times more), and
*  when the number of messages is lower than the total number of cosets.

We must nevertheless keep this fact in mind to understand why the right key will not neces-
sarily have the best score.

It is now time to explain how to recover the round key using only the set C = F37(P) of
encrypted messages. First, we have to determine the most represented coset in C. In our
example, this coset is 08 + W with nine messages, and u = 08 is one of its representatives.

Now, assume that k is the round key used to encrypt C. We need to find the coset of V which is
mapped to u + W by the secret round function Fy. According to Lemma 2.8, Fy maps t + V to
Fi(t) + W. A representative of this coset of V is then t = S~'(u + k). Finally, the score of the
guessed key k is the number of messages F;'(c) = S (c + k) that belong to the theoretical
coset t + V, that is to say

score(k) = #{ce C|S (c + k) e(t+V)}.

Figure 4.6 illustrates the scoring process applied to the right key (37) and to a wrong key (07).
We naturally recover the set P and the coset t +V = 34 + V = 04 + V when using the right

Decryption — Right Key Decryption — Wrong Key
o8 o8 08 04 OH oo 0E [ 08 03 04 OH m 1
1 18 14 1B IF 11 1 OF |
:a 3 M 2
33 s 3 fo
)
o4 on o1 o oc 0 Ok oF |
14 1B 19 m e
20 :monm w2 3 =
3 3 U 3¢ X m W T n |
o ooE 06 @ oF e oE |
15 18 aF W W o oz 14
- I 2 23 -3 ]
Mo ETY 0 n 3 = ¥

Figure 4.6. Decryption with the right key and with a wrong key.
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Key OB 12 1C 37 03 05 10 1D 20 21 22 2C 2F 35 36 38
Score 11 10 10 10 9 9 9 9 9 9 9 9 9 9 9 9

Key 3B 3C 3D 00 01 02 04 06 07 08 09 OA OE OF 11 13
Scoe 9 9 9 8 8 8 8 8 8 8 8 8 8 8 8 8

Key 18 19 1E 1IF 24 25 26 27 2A 2B 2D 2E 30 34 39 3A
Score 8 & 8 & 8 & 8 & 8 & 8 8 8 8 8 8

Key 0C OD 14 15 16 17 1A 1B 23 28 29 31 32 33 3E 3F
Seore 7 7 7 7 v 7 7 7 7 797 9 7 7 7 7 7

Figure 4.7. The scores for each key.

key. Thus, the score of k=37 is equal to 10. In the same way, the score of k= 07 is the number of
decrypted messages in the coset t +V = 324+ V = 00 + V, so score(07) = 8.

Let us now explain why a wrong key tends to have a lower score than the right key. First, the
addition of the wrong key randomizes the cosets and the messages within. Recall that when
the input x is uniformly distributed, the equality S~'(x) = S~(x) holds with probability >/,
The most represented coset after the addition of the wrong key should then lose some elements
by applying S~'. Thus, the score of any wrong key should be lower than or equal to 8.

It goes without saying that the previous discussion gives just the main idea of the cryptanaly-
sis. For some wrong keys, the side effects are significant, and their scores can even be higher
than the score of the right key, as shown in Figure 4.7. Indeed, the key 37 is one the four best
keys but is not the one that has the highest score (0B). For this reason, we will not only return
the best key but also the NbCand candidate keys having the highest scores when running this
cryptanalysis.

3.2. Formalization of the attack

The aim of this section is to formalize and to generalize the cryptanalysis introduced previ-
ously in Section 3.1. As we have just seen, this attack really begins in Figure 4.6. The very first
data needed is the set C containing the encrypted messages under the unknown key, given by

C = {04, 05,06, 0D, OF, 15,16,17, 18, 22,27, 34, 35, 36, 3A}.
Naturally, C is included in the set ¥ = F$ of all possible ciphertexts. Similarly, the set of all
possible round keys is denoted by .#" = FS. Next, define the keyed mapping

G: A x€— TS
(k) S Y c+k).

Each mapping Gy : c = G(k, ¢) is the inverse of the round function Fy. The secret counterpart of
Gis G: (kc)~ S !(c+ k). Observe that for each round key k, the mapping G, maps L(W) to
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L(V). It is also necessary to know the most represented coset u + Win C. Using these notations,
the cryptanalysis is formalized in Algorithm 3. Finally, to include potential information on the
round keys, this attack processes only a subset C of %"

Algorithm 3 - SelectKeys(G, &, K, C. u, V, NbCand
Input. See Section 3.2.
Dutput. The set Cand containing the NbCand best kevs together with their scores

Cand + []
For each ke kK do

Score < 1)
For each eceC do
t « G(k,u)

If G(k,c) lies in t+V then
Score + Score+ 1

If the cardinality of Cand is lower than NbCand then
Insert (k,Score) in Cand
Else if Score is greater than the lowest score in Cand then
Remove the lowest scored key of Cand
Insert (k,Score) in Cand
Return Cand

More generally, the parameters can be outlined as follows.
*  The sets of all possible keys and ciphertexts are referred to as 4" and 4.

* The keyed mapping G : # x ¥ — E typically undoes (or partially undoes) one or two
rounds of the encryption process.

®  Its secret counterpart is denoted by G : #* x ¥ — E. It is assumed that G, maps a linear
partition £(W) to another partition £(V) no matter the key k used.

*  The set of the given ciphertexts is denoted by C. The set of the keys that must be scored by
this attack is denoted by K.

e Itis assumed that there is a coset of W containing significantly more ciphertexts than any
other coset. The element u of % is a representative of this coset.

¢ Finally, NbCand is the number of candidate keys to return.

Remark 4.13. Taking a closer look at Algorithm 3, we can see that the structure Cand requires
an efficient way to remove the lowest scored key. In our implementation, Cand is a sorted
array of couples (s, L) where L is a list containing the keys having the score s. Since there are
very few different scores, the sorted insertion in Cand is (almost) in constant time. Removing
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the lowest scored key is also in constant time. Thus, the time complexity of this cryptanalysis is
O(#IKC x #C).

4. Cryptanalysis of BEA-1 using the backdoor

The algorithm SelectKeys (see Algorithm 3) detailed into the previous section enables
recovery of information on the last round key, using the fact that the round function acts as a
function mapping a linear partition to another one with high probability. In this section, we
explain how this algorithm can be used to recover the full 120-bit cipher key in just a few
seconds on a laptop computer.

This cryptanalysis requires N = 2'® chosen plaintexts and their corresponding ciphertexts
encrypted under one unknown cipher key K. As BEA-1 operates on 80-bit blocks, this amounts
to 2 x 640 KiB of data. The plaintexts only need to be uniformly chosen in one coset of V, and
there is no requirement on the cipher key.

Our cryptanalysis is naturally divided in five distinct parts. First, we give a brief overview of
each part. By hypothesis, all the plaintexts are in the same coset of V. As explained in Section
2.1, a coset of W should be more represented among the ciphertexts. The first part is aimed at
finding a representative u of this coset. The second part consists in using the algorithm
SelectKeys to find 2'° candidates for the full 80-bit last round key k'''l. Next, relying on a
property of the key schedule, SelectKeys is applied to these 2'° candidates to find the right
last key in a third part. So far, we have recovered 80 bits of the cipher key. Knowing the last
round key, it is then possible to undo the last round of each ciphertext. The fourth part is really
close to the first one and provides 2'° candidates for the 40 remaining bits. Finally, deduce the
2'5 candidate cipher keys from k"' and the preceding candidates. The last part involves testing
these cipher keys on the plaintext/ciphertext pairs available to find the right one.

The presentation of our cryptanalysis is structured as follows. First, we provide the full
attack in Algorithm 4. Then, each part of this algorithm is detailed in one dedicated section.
It should be noted that we keep the notations of Section 2 (and not those of Section 3) in
the remainder of this chapter. This work has been presented at the RusKrypto 2017 confer-
ence [31].

4.1. Part 1: finding the right output coset

Let P denote the set of the 2'° plaintexts uniformly chosen in one coset of V and let
C = {Ex(p)|p € P} denote the set of their ciphertexts. As said previously, we first need to find

the most represented coset of Win C. Let U, be the subspace of F}’ defined by U; = Ly, ({ * 0})
for each 0 < i < 3. Since {*0} is a complement space of {0*} and Ly, is an automorphism, we

know that U, is a complement space of Ly, ({0 * }) = W;. Define U as the subspace H1’7:0 U; mod 4

of (F1%)®. Of course, U is a complement space of W.
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Algorithm 4 - Cryptanalysis of BEA-1 Using the Backdoor
Input. The number N of plaintext/ciphertext pairs (typically, N = 215).
» A set P of N plaintexts uniformly chosen in one coset of 1.
« The corresponding ciphertexts encryvpted under one (unknown) cipher key K
The set {Ex(p) | pe P} of these ciphertexts in denoted by C.
Output. The cipher key K or "Failure" in case of failure.

NbCand « 2'%
Part 1: find the representative of the output coset.
u < the element uel maximizing the ca:dmal:.ty of Cn(u+W)

Part 2: find the 2'° best candidates for |

E « {3}

Cand « {(k)ice | ks € F}"}

For each idx-‘:‘[ﬂﬂﬂ,l,i?,ﬁ] do
E + Eu{idx}
Define Gr, Gg, Cr and Vr as in Section 4.2
Kg « {(ki)ier | k1ax € F)® and (ki)icg.j14x) € Cand}
Cand « SelectKeys(Gg. (g, KEg.Cg, (1;)icp. Vi, NbCand)

: Part 3: find among tis candidates.

E «{0,2,5,7}

Define G G and V" as in Section 4.3

Cand « SelectKeys(G, G,Cand,Cg, (u; )i.g. V,NbCand)

k(1] « the key with the highest score in Cand

r Part 4: find the 2 5 best candidates for (k' i )
Define ' and u' as in Section 4.4
E « {4}
Cand « {(k)icr | K} € F3°
For each idx€[7,5,6] do
E« Eu{idx}
Define Gg, Gg, C; and Vp as in Section 4.4
K« {(EDier | klay € Fin and (k!)icE.[14ax) € Cand}
Cand « SelectKeys(Gg, G, K, Cf, (u))ick, Vi, NbCand)

s Part §: find the cipher key K.
For each [Fc"'[ “]]mﬂgfﬂand do
{-'Ilq[j ]}-Is i<h f“f{“b:lm]]-lsuu)
K + the cipher key corresponding to (k;[1),..x and k[11]
If Eg(p)=c for all plaintext/ciphertext pairs (p,c) then
Return K
iz Return "Failure"
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Let ¢ be a ciphertext and u = (u;),_g be in U. Because both U and W are product spaces, it is

i<8
easily seen that u is the unique representative in U of the coset ¢ + Wif, and only if, c; and u; are
in the same coset of Wjy,oq4 for each i < 8. We deduce the following efficient way to compute the
representative in U of the coset ¢ + W. First, precompute the four tables RepW; such that, for
each x in F}’, RepW;[x] gives the representative in U; of x + W;. These tables are just arrays of

1024 integers. Then, the representative of c = (¢;);g is just # = (RepW; mod 4[Ci]);<s-
To find the most represented coset of Win C, we first compute the representative in U of each
ciphertext as described above. Then, we search for the representative that occurs the most. Any

naive algorithm should work since there are only 2'° representatives.

4.2, Part 2: obtaining candidates for the last round key

This part is intended to find candidates for the last round key k'l using the algorithm
SelectKeys (see Algorithm 3) to undo the last round of BEA-1. However, if this algorithm is
naively applied, then the last round has to be undone for each of the 2'° ciphertexts and 2%
possible values of k'], yielding an order of 2°® time complexity.

To solve this problem, the 215 candidates for k' are obtained bundle by bundle, as illustrated
in Figure 4.8. First, we partially decrypt the bundles of index 3 and 7. We begin by these

O O BOE BTOR BTOR BTER BTUR B

Figure 4.8. Cryptanalysis using the backdoor (Part 2).
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bundles since they both involve the S-box S, being the most different from its secret equiva-
lent. Following the notations of SelectKeys, the set containing the ciphertexts is

Ci37 = {(c3, ¢7)|c €C}, and the set of the keys is K37 = {(ks, k7)|ks, k7 € F}}. The mapping used
to partially decrypt the last round of these ciphertexts is

Gz« (FY)? x (F)* — (F3°)?
((ks, k7), (c3,¢7)) = (S5 (c3 + ka), S5 (7 + k7)) -

Its secret equivalent Gy3 7 is obtained by replacing S; with S3. The two remaining inputs of the
algorithm are the representative u = (us, u;) of the most represented coset of (Ws)?, and the
subspace (V3)? of (F}°). Tt is worth observing that G 7 maps £((W3)?) to £((V3)?) as required
by the algorithm. Running SelectKeys with these arguments generates a set Cand
containing 2" candidates for (k3'!), ;") instead of 2%°.

From now on, each step seeks to add a new bundle to our candidates for the last round key
kK. The next bundle to add has index 0. Let E denote the set {0, 3, 7} of the current bundle’s

indices. Since we have no information on the value of ko', the set of the possible values for
(ki[u])ieE is

Ke = {(ki)ieE|k0 EFEO, (ks, k7) € cand}.

Following the idea of the first step, we define Cr = {(c;);c|(ci);cg €C} and
G : (FY)" x (FY)E — (FY)E
((kiep (ci)iep) ™ (51 | (ckieE -
Then, define G by replacing S; with S; and let Vg denote the subspace [[;c Vimod 4 Of (IF;O)E.

The set Cand obtained by running SelectKeys with these parameters contains 2'° candidates
for (koMY ks 11, 1)),

According to Algorithm 4, the index of the next bundle is 4. Actually, the order of the bundle’s
indices was chosen such as to involve the S-boxes S;, then Sy, S and finally S,. The current
indices are in the set E = {0, 3,4, 7}. Similarly, we define

Kg = {(ki)ieE|k4 EIF%O, (ko, ks, k7) € Cand}

to include the information on k! gathered by the previous step. Finally, define C¢, G, G and
Vg as above. Again, the algorithm SelectKeys yields 2'° candidates for (k; 1y, .

This time, let us take a closer look at the implementation of this step. Because #r= 2% and
#Cp=2'°, a straightforward implementation of SelectKeys requires 2*' partial round
decryptions, as explained by Remark 4.13. Algorithm 5 provides our implementation of
SelectKeys for this step. As we can see, the previous candidates are used to filter the
ciphertexts before attacking k4 by brute force. For each of the 2'° candidates, initializing the
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filter requires 2'° partial decryptions. On average, it remains roughly 2° ciphertexts after the
filtering process. The loop over ky hence requires 2'° partial decryptions. Consequently, this
implementation performs about 2°* partial decryptions instead of 2*'.

Algorithm 5 - An implementation of the step idx=4 in part 2.
Cand + []

For each of the 2'5 candidates (ko.ks.k;) for {knl,“].k:':']?k;“]} do

$ o . 43 F
L er L -

Filter « &
(to, t3,t7) « (55" (ko + o), S5" (ks + u3), 85" (k7 + uy))
For each ce( do
(to.t3.t7) « (S5" (Ko + o). S5 (k3 +¢3). S5 (k7 + 7))
If the(to+Vy) and fy€(ty+V4) and ;€ (t; +13) then
Filter « Filteru{c}
For each k¢ F,:D do
Score «(
ty « SEJ (ks +uy)
For each ceFilter do
T Sﬁl I:Iq + ﬂ;)
If t4€(ty+V5) then
Score + Score +1

If #Cand <2'% then
Insert ((ko,ks, ki, kr),Score) in Cand
Else if Score is greater than the lowest score in Cand then
Remove the lowest scored key of Cand
Insert ((ko,ks,ky, k7),Score) in Cand

Return Cand

Naturally, the 2'° candidates for the full round key k') are obtained by repeating this method
for the four remaining bundles. We will conclude by observing that the complexity of each step
decreases since the filtering process improves as the algorithm progresses.

4.3. Part 3: finding the last round key

So far, we have found 2'° candidates for the 80-bit key k!''l. This part intends to recover the
right key among these candidates, relying on the key schedule’s structure. Let us consider the
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Figure 4.9. Cryptanalysis using the backdoor (Part 3).

last round of the key schedule in order to derive a relation between k"' and k'l In
Figure 4.2:

o K= (kW ..., kO corresponds with (ko, ..., k7),
o K00 = (k0] | k119 corresponds with (k, ..., kis),
L4 k[ll] = (k()[ll], veey k7[11]) COI‘I‘ESpOI‘ldS with (k16, eey k23).

It iS then easily seen that
10 10 10 10 11 11 11 11 11 11 11 11

Thus, the 40 leftmost bits of k') are determined by k!'*l. Using this equality, it is possible to
partially decrypt the last two rounds for every candidate for k!'*. Again, the algorithm
SelectKeys is used to distinguish between candidates.

Instead of wasting time understanding the definition of G stated hereinafter, we encourage the
reader to compare it with Figure 4.9, which speaks for itself. Let us consider
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G : (F%® x (F19){0,2,5,7) - (FL')4
((k)ics (C)icioas7) = (So'(co + ko) + ko +ka, ST (cs +ks) + k1 + ks,
S;'(c2+ka) +ky + ke, S5t (c7 +k7) + ks + k7).

Then, let G be the mapping from (Fi°)® x (F%O){O’Z’S’ﬂ to (F1%)* given by

G=(SollSi1IS21IS3)  eMtaG .

Define G in the same way as before and let V' = [[7_, V;. Finally, run Selectkeys as in line
12 of Algorithm 4. The candidate that has the highest score is then the last round key k',

To explain why Parts 2 and 3 of this cryptanalysis are complementary, let us take a closer look
at the 2" candidates obtained previously. Most of them are in fact really close to kI''}; more
precisely, they have at most three bundles different from k'''l. This observation is not surpris-
ing because when decrypting the last round, each bundle of the key affects only one bundle of
the output. As a direct consequence, close candidates give rise to close one-round decrypted
ciphertexts. This explains why the algorithm SelectKeys, as used in Part 2, may assign
similar scores to close candidates.

By contrast, the mapping G defined above yields very different outputs when used with close
candidate keys. Such a property comes from the high diffusion provided by M. Thus, this
part is more effective where the previous part has its main weakness. Moreover, the side effects
are limited here since we decrypt two rounds instead of one.

4.4, Part 4: obtaining candidates for the remaining bits

The round function of the key schedule being bijective, it is sufficient to know the 120 output bits
of the last round to compute the cipher key. Until now, we have recovered the last round key k',
accounting for 80 of these 120 bits. The 40 remaining bits are the 40 rightmost bits of k'), also
denoted by (ki1), _,_g This fourth part intends to find 2'® candidates for these unknown bits.

Since the key k" is now known, it is possible to undo the last round for every ciphertext. The
cryptanalysis is then reduced to the attack of the second to last round. However, the method
used in Part 2 cannot be directly applied here since the second to last round involves the MDS

mapping M. Let x and k be elements of (F1’)* and observe that

M(x) + k= M(x) + M(M~(k)) = M(x + M~} (k)) = M(x + k)

where k' = M~ (k). Thus, the key addition and the mapping M can be switched provided that
the key is replaced. According to this observation, define

(k1) yeicg = MM (") 42 icg) -
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Figure 4.10. Cryptanalysis using the backdoor (Part 4).

Therefore, the last two rounds of BEA-1 can equivalently be represented as in Figure 4.10.

Thanks to this representation, candidates for the key (K1), ; o can be obtained using
SelectKeys as in Part 2. To this end, we first need to partially undo the last round using
K Following Figure 4.10, define

f o (E) — (),
(c)iel1,3,4,6) M1 (Sy  (cq + k™), ST (1 + K, 1),
Sy (e + k™), S5 (c5 + ksM)) .

The set {f((ci);c134))|c €C) of these “new” ciphertexts is denoted by (), and the corresponding
coset representative is u' = f((u;);c (1 34¢))- To be more consistent with Figure 4.10, the bundles
of v’ and of the elements of C' are indexed from 4 to 7 included. The remainder of the attack is
similar to Part 2 as the candidates are obtained bundle by bundle. The first step gets candidates
for the bundle’s indices 4 and 7. The second and the third steps add the indices 5 and 6,
respectively. If E denotes the set of the current bundle’s indices, then the parameters of
SelectKeys are the set C'r = {(¢'1);c£|(C'i)4<ieg € C'}, the mapping
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Ge : (F)" x (FY)E — (FY)*
(Kd)iep (€)ier) = (Simoa a(di + Ki)iek,

its equivalent Gg and the subspace Vg = H Vi mod 4 Of (]Féo)E. The other details are given in

i€eE
Algorithm 4. At the end of this part, every candidate k' = (K), ., ¢ for (K;1%),_; ¢ givesrise to
a candidate k = M(K) for (k1%),_, .

4.5. Part 5: deducing the cipher key

Concatenating the candidates for (k1%),_._ with K" yields 2'° candidates for the output of
the key schedule’s last round. To obtain the corresponding candidates for the cipher key, we
need to reverse the rounds of the key schedule.

Referring to Figure 4.2, the ith round of the key schedule maps the element (X, X3, X5) of
(F2%)% to (Y, Y3, Ya) according to the following equalities

Yo=Xo+f(X2), Yi=Yo+Xi, Yo=Yi+Xo,

where f; denotes the permutation of (Fi°)* defined for each X by

fi(X) = (3" mod 2'%,0,0,0) + (So Il S1 Il S2 Il S3) = M(X).

Using these notations, it easily seen that

Xo=Yo+f,(Y1+Y2), Xi=Yo+Y:, Xx=Yi+Y,.

These equalities describe how to reverse each round of the key schedule, and thus how to
recover the 2'° candidate cipher keys.

Finally, it just remains to test these candidate cipher keys to complete the cryptanalysis. To be
efficient, choose one plaintext/ciphertext pair (p, ¢) and check whether or not the encryption of
p under the candidate K is equal to c. In case of equality, repeat this process for all pairs
available to prevent false positive results. Otherwise, the candidate is discarded. Obviously,
the right cipher key is the one that passes all tests.
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Conclusion

In this book, we have addressed the following issue: “is it possible to design a mathematical
backdoor which would rely mostly on suitable partitionning techniques of the plaintext and
ciphertext spaces, independently of the round keys?”. We had in mind initially to exploit
combinatorial properties of the core primitives.

The overall conclusion we get is that if we want to design such a backdoor, the only solution is
to stay in the algebraic domain and no specifically combinatorial tools or primitive are possi-
ble. Let us summarize in details the main results.

If we wish to design any encryption system that maps any partition A of the plaintexts to a
partition BB of the ciphertexts, independently of the round keys then

¢ the round function must map a linear partition to another one, and
¢  atleast one S-box must do the same.

Here, the backdoor is precisely the knowledge of the pair (A, 5). This result implies that the
partitions considered for the backdoor belong to the algebraic domain and not to the combi-
natorial one. We are condemned to consider highly structured algebraic objects.

For the candidate S-boxes which make it possible to design such a backdoor, we have
performed a detailed study with respect to their linear and differential tables. We have given
lower bounds on their linear and differential uniformities and we have explained how to
(nearly) achieve them.

The study presented in this book shows that the linear and differential tables of these
backdoor S-boxes are highly structured. Thus, we have proved that our backdoor class
implies necessarily a high algebraic structure. We conjecture that the reverse may be also
true: any algebraic structure can be used to design a backdoor cipher. In terms of backdoor
detectability, we also surmise that it is easy to detect and identify our backdoor from the results
presented in this book.

As future works, we would primarily address the two following issues. First, what would the
results be if we consider dependent round keys? In other words, we would like to consider a
key schedule algorithm which therefore would be part of the backdoor.

Second, we want to explore and formalize exhaustively a criterion which would help either to
design better hidden backdoors or, on the contrary, to evaluate the presence of a potential
backdoor. The first idea of criterion is the following. Let S denote the set of the S-boxes
mapping a linear partition to another linear partition. For any S-box S we define the distance
with respect to S as follows
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min{# Supp (7)|t € 6(F5), Se1€S}.

This represents the minimal number of images under S we have to modify in order to obtain
an S-box lying in S. In other words, the aim is to have a distance measure to a backdoor S-
box. In Chapter 4, Section 2, we have first considered secret S-boxes mapping linear parti-
tions to another ones. Unfortunately, as mentioned previously, the structure of their linear
and differential tables is likely to betray the existence of a backdoor and can be used to find
it. This is the reason why, we have then modified the S-boxes. These new S-boxes “behave”
similarly to their secret counterparts with high probability. We have published a first-
algorithm proposal [32] denoted BEA-1 (Backdoored Encryption Algorithm version 1) whose
backdoor is based on this property. It operates on 80-bit data blocks using a 120-bit cipher
key and is directly inspired by the AES. The knowledge of the backdoor enables recovery
of the full cipher key in just a few seconds on a laptop computer using only 2'® chosen
plaintext blocks.

We also hope to develop our work further to explore the different classes of possible back-
doors. In order to have a clearer view of the research presented in this book, we outline a
tentative starting classification of backdoor techniques. Of course, we hope that other authors
will have a critical cross-view of it and will make it evolve.

*  Backdoors based on a single mathematical weakness. The backdoor is essentially put in the core
cryptographic primitives, exploits algebraic or combinatorial properties and is indepen-
dent of the key and the plaintext.

*  Backdoors based on the combination of mixed techniques. Here, the backdoor relies on the
combination of several factors: algebraic properties, combinatorial properties, environ-
mental use of the algorithm (for example the nature of the plaintext encoding). Each
aspects being taken separately, it is not possible to see the backdoor. Only the combined
and global view makes it possible to see it, possibly. This approach seems promising in the
light our study of real-life governmental encryption algorithms proposed in a more or less
recent past.

Laval, France

May 26th, 2017
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(10,00, 00,00)
(08,00, 00,00)
(04,00,00,00)
(02,00, 00,00)
(01, 00,00,00)

(00, 10,00,00)
(00, 08,00,00)
(00,04, 00,00)
(00,02,00,00)
(00,01,00,00)

(00,00,10,00)
(00, 00,08,00)
(00, 00,04,00)
(00, 00,02,00)
(00,00,01,00)

(00,00, 00, 10)
(00,00, 00,08)
(00, 00,00,04)
(00, 00,00,02)
(00, 00,00,01)

(07,06, 1E, 17)
(11,03, 0F, 19)
(14,13,15, 1E)
(0D, 1B, 18, OF)
(14,1F,0C, 15)

(06,07,17, 1E)
(03,11,19, 0F)
(13, 1A, 1E, 15)
(1B, 0D, OF, 18)
(1F, 14,15,0C)

(1E,17,07,06)
(OF,19,11,03)
(15, 1E, 1A,13)
(18,0F, 0D, 1B)
(oc, 15,14, 1F)

(17, 1E, 06,07)
(19, 0F,03,11)
(1E, 15,13, 1)
(OF, 18, 1B, 0D)
(15,0¢, 1F, 14)

(OE, 16,02,14)
(07,08B,01,04)
(11,17,12,05)
(1A,19,09,10)
(0D, 1E, 16,08)

(16,0E, 14,02)
(0B,07,04,01)
(17,11,05,12)
(19, 14,10, 09)
(1E, 0D, 08, 16)

(02,14, O, 16)
(01,04,07,0B)
(12,08,11,17)
(09,10, 1A, 19)
(16,08,0D, 1E)

(14,02, 16, 0E)
(04,01, 0B,07)
(05,12,17,11)
(10,09, 19,14)
(08, 16, 1E, 0D)

(07,01,1cC, 18)
(05,16,14,03)
(04,01,1C,1¢)
(02, 1F, 1E, 1C)
(01,1B,13,04)

(07,08,01,11)
(02, 1E, 1B, 1F)
(16,06, 1E,0D)
(0F, 11,0¢, 16)
(11,0E,02,04)

(1F,0C, 08, 1B)
(17,15,17,16)
(1D, 04, 0E, 00)
(11,0E, 19, 15)
(16, 1F, 06, 14)

(0F, 03,16,03)
(0B,12,03,0D)
(1F, 1D, 1B, 02)
(18,12,04,15)
(17, 05,08,05)

Figure 2A. The linear mappings over (Fi%)* associated to My, My and the linear mapping Py

Appendix
See Figures 1A to 11A.
i 200 100 080 040 020 010 008 004 002 001
Ly,(r) 334 259 21D OE4 193 266 343 3ED 354 17F
Ly (r) 3DA 306 39E 262 080 398 229 34C 251 37B
Ly,(z) 295 237 131 3D1 26B OBA 155 307 37E 318
Ly, (z) 290 15D OF8 2BE 25F 1Di 21E 134 0DC 15A
Lw,(z) 3E8 386 067 19C 158 16A 11B 306 O5E OB8
Lw,(z) 364 33E 3A7 119 1D2 04B 3B7 0D5 027 2C8
Lw,(r) 324 188 3CB 1BO 131 1A9 095 107 36F 243
Lw,(r) 262 1A5 34E 0B7 3ED OF0 2FE 191 332 1A6
(Ly,)"'(r) 3BF 268 OBB 379 17B 055 061 2F9 354 1F2
(Ly;)"%(z) 13D O0AD 020 2C7 36D 2B4 314 047 O0D7 14C
(Lv,)"'(z) 361 070 133 02A 2B8 3CC ODC 21A 08B 184
(Lv,)"%(») 1E9 3D1 OBE 245 OF6 357 1DA 074 318 26D
(Lw,)*(z) 026 OE9 104 29D 351 053 207 3F9 332 187
(Lw,)™*(#) 142 1BO 070 3D3 196 088 2E0 OB7 2BB 398
(Lw,)"'(x) 02D OAA 205 OF1 375 19A 3AF 1F2 339 265
(Lw,)'(r) ©0A6 3B3 045 32B 1E4 29A 2AD 27A 069 168
Figure 1A. The transformation mappings given over the standard basis of F}’.
&I T X MU T X My PU--V (?)
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T
(200,000, 000,000
(100, 000, 000,000
(080,000,000, 000
(040,000, 000,000
(020, 000, 000,000
(010,000, 000,000
(008, 000, 000,000
(004, 000, 000,000
(002,000, 000,000
(001,000, 000,000

)
)
)
)
)
)
)
)
)
)
(000, 200, 000, 000)
(000, 100,000, 000)
(000, 080, 000,000)
(000, 040, 000, 000)
(000, 020, 000, 000)
(000,010,000, 000)
(000,008, 000,000)
(000, 004, 000,000)
(000, 002, 000, 000)
(000, 001, 000, 000)
(000, 000,200, 000)
(000, 000, 100,000)
(000, 000,080, 000)
(000,000,040, 000)
(000, 000, 020,000)
(000,000,010, 000)
(000,000, 008,000)
(000,000,004, 000)
(000,000,002, 000)
(000,000, 001,000)

)

)

)

)

)

)

)

)

)

)

(000,000, 000,200
(000,000,000, 100
(000,000, 000,080
(000,000, 000,040
(000,000, 000,020
(000, 000,000,010
(000,000, 000,008
(000,000, 000,004
(000, 000, 000,002
(000, 000,000,001

M(z)

M-1(z)

(13E, 20F, 253, 0BC)
(35€, 13E, 212, 110)
(32¢, 199,2C5,07A)
(3C6,010, 0EC, 261)
(231,120, 322,016)
(2D9, 104, 0C4, 095)
(215, 11F, 1E0, 2E7)
(23F, 15B,0C7,0A7)
(344,394,342, 165)
(112, 1BC, 36C, 0C5)

(OES6, OED, 314, 289)
(17E, 011,198, 3C5)
(15E, OBF, 1E2, 04F)
(006,131, 32E, 12B)
(394,062, 38C, 2EB)
(1F4,1C5, 1FF, 31D)
(022, 37D, 08D, 3D4)
(13B,2FA, 328, 38C)
(0CC, 32A,01A, 2DB)
(237,252,004, 0F8)

(009, 175,254, 3ED)
(2D5, 29F, 072, 04D)
(09A, 1DD, 336, 34B)
(269, 2CC, 27E, 1CD)
(1B2,0A7,178,208)
(189, 2AB, 1A6, 39D)
(opc, 0B1, 061, 3DE)
(019, 08E, 280, 1A7)
(38B, 146, 221, 260)
(075,380,371, 2E9)

(099,176, 3BC, 031)
(38E, 3D2, 2CD, 21C)
(1€7,259, 17E, OBE)
(165, 3BA, 19B, 0F7)
(37F,282,3A4,3D8)
(256, 130,382, 067)
(370, 1D0, 3CD, O7F)
(22D, 1C8, 221, 18B)
(058, 044, 310, 281)
(28D, 172, 3EA, 24E)

(208,209, 353, 243)
(OF5, 1BD, 210, 210)
(1E9, 3FE, 238, 329)
(002,246, 2E2, 380)
(322, 3FD, 3D5, OE5)
(0AD, 337, 3C5,2D4)
(08D, 04D, 016, 34C)
(1AB, 11E, O5F, 3A4)
(1AE, 1E9, 2CB, 245)
(10B,221,09D, 398)

(395,295, 38D, 129)
(207, 1F4,378,157)
(OBD, 1B1, 18E, 2AB)
(3AA, 29E, 239, 1C0)
(3D9, 069, 21B, 11B)
(06D, 1BE, 3EB, OBE)
(3D1,236,09D, 2F1)
(OEB, 2FD, 3C3, 176)
(055, 128,254, 17F)
(07D, 2BB, 037,3C8)

(0A8, 050, 36D, 016)
(263,36C,361,369)
(0C8, 111, 34B, 38E)
(169, 1A1,02D, 39B)
(009, 1D9, 3CC, 131)
(141,222,031, 28A)
(1C7, 3F1, 063, 33C)
(084,128, 167, 20B)
(0D0, 34D, 18C, 354)
(15E, 23B, 378, 376)

(03D, 208, 27E, 249)
(005, 38F, 215, 2DF)
(14F, 3D2, 0E2, 1C7)
(211,209, 1B2, 362)
(13c, 355, 058, O7F)
(194, 0E6, 364, OF2)
(322,319,244, 300)
(2BE, 1DD, 223, 1FA)
(044, 1EC, 1B6, 3B4)
(015,371, 2DC, OE2)

Figure 3A. Specification of the diffusion M and its inverse M~".
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Figure 4A. Specification of the secret S-box S,.

73



74  Partition-based Trapdoor Ciphers

OBA 026 OAO 1E1 183 30B 1A4 053 110 350 086 2ES 3B4 196 359 2E6
1 S33A 268 200 217 1CE 2E3 OCO 138 129 OCE 306 OB4 040 3F2 0O9F 322
118 OTF 139 07D 2CF O2A 268 237 246 1CE 12B 366 160 20D 1ET 3&H
3 313 0OCD 1iE 1E8 117 366 162 OBE6 094 1B9 189C 28C 089 338 OAF 180
ZBC 1A% 31B OQE 282 2AE 372 ZES 3AA 1DD 013 303 30F 35 150 1BE
110 12h 249 30T 28B 191 O35 1T3 015 33D 1A1 185 00T 156 3TE 313
OC% 143 06D 3FA 038 3DE OBl OF9 21 3FE 1CT 3ED IDC 18A 2DE 23F
030 1EB 3AF 311 36D 3BD 309 348 261 I1AF 071 3EE 3BA 3AB 1BE 3CA
B 228 118 279 OFS 3FF 122 182 360 1D 1B 304 3B 3B3 OEM 097 306
9 A9 0OB6 OQAE 16K 263 0GB OBB 3D6 010 1A3 23E 063 36D 27T B84 (OE2
A 233 ZBH ZAF 00O 1B1 106 OB3 2156 A2 2VF 20B ITE 13¢ 3A2 18E 240
321 0BC 204 O4C 036 2F1 302 18D 1838 245 128 069 188 2F4 3DC 3T
158 5334 23C IFD 082 247 005 QA3 OF0 273 162 1TH 1A0 1CH O4E 340
D 12F 0CC 0TS 10E 290 021 1AE 211 3E6 1TA 276 269 =85 123 OIF O46
201 OBF 208 002 179 32E 120 1AC 1E3 109 OV@ 37C 207 086 12D 323
166 OAC 188 OAB IFF 230 2BB 3D 111 O7E 21C 1BE 18T 30E B34A 318
269 343 20F 395 1AD 102 O3 202 1B 35E 20T 044 206 AF1 310 QAT
28T 303 A5 213 3E4 3DA OFD 140 38E 202 164 264 16F 02C 1FE 1ED
106 061 062 080 214 148 190 150 OA1 185 032 OBD IDA 239 304 3483
3 331 06D 02D 009 2FC 3AD 2k 363 1EF 38F 394 20C 3BF 106 338 31F
i O3E ODE 1BC 06T OCF 166 2CE 40 OSE OEB OC4 149 (0B8C 3ES 241 160
101 238 3DF OEOC 3FS 193 168 27D 21B0 35C OE3 171 180 022 QOE 358
161 OEE 365 15B 0C3 200 3E1 O8C 119 283 OF1 309 212 226 OTE 382
38C ID3 15C 0B2 22C 314 OBE 216 384 200 1ES 020 ITE 389 2FR OTR
B O5F 2TE 027 14E 177 26D 1BA OEC 25a 194 3C6 2F9 X1 OE1 3F4 0BT
] 14F 2803 144 OFB 2F0 3ED OF4 10C OCS8 086 028 3156 3E2 20D 274 OFA
oo 041 080 205 OT2 OBD 339 M3 IF1 IDF 2F6 267 016 0Bl UTE Q0B
091 03F 259 18F 1C3 2TBE 31% 153 002 O0BD 200 064 000 379 2FE 248
142 OFs 3EF 08B 3F8 344 3BC 266 OET 334 238 OBE 247 174 150 162
112 1D0 01C 292 200 OES 2B6 301 OC1 30D 360 100 1E4 1FT O8A 2FA
SCE 34D 2BE 24F 084 380 232 D262 333 2FE 3097 204 OBE 274 317 a7
32T 280 XI5 16T 0SB 35C 362 004 IFT OFT 208 23D 32 102 OCA 196
2 33F B2 ATD 302 146 170 36T 18A IDE 0BG 090 3BE 201 OBC 2A0 OB
2 11D 010 342 169 365 2EC OB 361 291 131 2FF 169 104 380 00D 24F
2ET 063 3ER 381 OAR OTO 1CB OTB 270 20C 388 33B 101 396 ITE 39E
23 160 OFF 1A2 OD4 024 248 178 1BD 326 2EF 28D 350 21F 24A 106 042
5 141 256 23 215 OEB 260 145 050 085 OES 300 3JAE 1E2 34E 233 20A
2 164 0OXF OC5 210 1AG 268 3F6 320 1B4 2EA 104 3D 381 371 200 101
3C8 SF3 1F2 10F OD4 1BF 206 320 380 25E 240 341 338 203 04T 23N
OSE 065 208 3A6 OF2 263 108 207 3E8 304 2BE 140 36E 13E 209 376
2 014 OOF ODA 133 163 0OBC Can 1ES 019 37D 043 1FC 184 OTA 3FE 03D
y OFE 26F 26E 387 136 2E8 3B1 1BT 012 2CA 0OC2 113 001 271 1D& OuA
16F 1C8 OAD 238 799 3CF 3EC ME 3F0 104 30C 28F 203 333 186 250
2B 181 062 243 1F3 11F 2EE 332 32C 034 3AE 2B4 34F 031 306 006 124
C 13F 13C 19 3A0 17C 2EX BCE MG 3CD OEF 206 1A 23D OB 059 19F
1B0 308 3F9 103 337 ODB 140 353 127 OCE 385 114 107 307 057 286
O4F 282 208 039 234 2B 2E1 324 2FB 116 116 37B 3AE 092 373 ITF
21E 2aB 37F 2FD 2ED ZBA 1EA 125 208 16E 33C 0A9 IF3 3C2 AC1I D
11A Oa4 3EA 047 167 26D 1D 10a 16D 20E 098 2B1 340 29E 241 OTH
i1 1FE OED 21E 298 3AT7 30C I1CF O5F 351 OB4 335 046 151 24C 1EE 235
12E 206 1AS 061 3A1 29C 011 086 093 O3A 38A 1F8 1F0 084 134 356
3 225 200 3D9 2E4 OAE OBE 1FE OFC OCT 377 2FT OTC OT4 045 1ES OSA
34 35B 36F 3ITE 375 04D AFA 26T 138 089 220 399 O0B 159 106 058 280
357 ODD OBF 1BO 2AT 23B 255 3FC O0A 330 2a4 200 016 008 126 OAE
% 0SB STA 284 204 OF3 28E 237 310 ODF 368 386 060 3T4 31C 033 26N
) 100 354 1F9 048 391 39F 30B OOC OTT 2EE 3E: 231 20B 049 202 1M
132 ZDA 2A8 286 06A 180 130 130 1EC 29D 104 387 32F 316 207 13T
OpC 038 ADT 1. 364 390 OBE 29 245 3A4 009 245 JB3 ODE 33E 251
OCE 1DB 172 296 192 O4A 244 250 1FS 2AD 206 346 OBD 388 328 343
2CT 3ET 20E 300 ODB 22A 1F4 168 3FD 242 102 3C5 OF8 251 284 20F
a7 00 003 388 10C 380 100 206 303 197 1CD 219 13K 306 166 304
1TE 18A OD8 284 OA2 26F 3E8 102 148 304 OBE 24D 1AT 121 1GE 372
OB4 286 23F OFE OBO 0BG OLE 3AC 14a 2ED 34B 1D6 3ES 393 2ET 03T
20F ODT 1A8 1AB 16B 36A 352 204 28D 08B 147 1AA 35F 03C 309 330

Figure 5A. Specification of the modified S-box S.
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021 058 3TA 3AB ODF 016 IFE 004 OTC 3BE 141 357 300 136 00C 1AT
1 2FA 3AA 235 089 003 3CF 14A 18F 356 383 (55 2E4 168 OCF 373 374
2CA 333 168 393 283 2E0 2B9 3E9 12F 4T 3AD OTB 288 146 JOF a8
3 15C OIF 22C OF8 10F 360 367 343 1EC 04T 008 062 20F 019 368 148
OB4 ZE3 25E 234 0D2 IFB 184 I2FF 2EB 2BB 3A1 34F 312 108 2EA (4D
1B1 ZFE 084 30C 216 33T OD4 08D 21F 036 1F5 3R 1AL 182 4B 1BF
246 257 DIE 34E 376 197 202 1DD 14D 180 27E 16D 137 3A3 228 3392
010 34C 389 114 3BG 288 335 210 1ET 30B 388 225 OB4 088 038 1C2
B 306 38E 112 OAA O01B 260 3C1 104 30E 3D4 OEF OT9 347 332 22E 090
Ll 1EE 0BT 278 20D 28B 060 215 206 3E0 OA1 3FD 179 262 1B5 106 368
A 029 1ES 204 IC5 03T 233 204 133 38D 20B 37D LAE 115 116 1B2 2F3
286 333 OBF 050 1B9 326 26F 1EA 1A9 OEE 291 2ED OGE 162 1EE 3862
H 1EE 351 20F 17D 08B 2DE 2B9 271 14F 2F6 011 3E7 14B 391 248 082
119 3CD 160 23E 06A OD0 3C3 OIC 171 3D3 349 061 16F OFB IDF 343
082 oT4 218 289 383 226 2F9 230 020 223 161 OC5 29 OFE 096 046
OF2 ODA O3A 015 040 570 14C 256 360 193 144 20E 164 3N6 030 387
24C 030 315 30K IEE OCE O2C 203 107 OF: 3FE 244 26C 264 106 108
0Bl 0BQ 36F 28F 1A3 190 QEE 317 198 25C 117 OED 396 0BF 3TE 3E4
GEC 3FB 103 2BE 24E 11E 213 279 316 38C 27T 2\E 081 08a 20 IFT
3 3C5 085 2FC O09F 2B5 332 QBC 364 308 09E 20D 353 18F 111 ZAT 280
14, 091 320 106 10E 042 273 ZEC 023 080 174 208 ICT 102 203 123 1BQ
i O3F 2D4 364 131 OAE 276 OOA 386 062 3DC 339 11A 211 2 I7F QDD
318 ZTB 17TB M7 1E4 2B6 144 D268 3F4 1EF 083 3BB 207 08E 380 OEB
206 2CB 0BB 3NS5 120 OAC 0T 028 3ES OB 221 135 159 287 OF9 37C
B 054 320 3F6 051 053 29F 23C 2A1 OD9 237 110 232 1B3 101 380 201
] OCT 380 0DE 25 34A ITF 208 3E1 20C OA2 1FE 207 COCBE 040 1DE 028
200 121 134 2AB 2FB 2T: ODT OTE 001 263 2TA IFF 269 3EB IFM Oa8
253 06 128 195 14E 289 OFE 3A8 302 261 178 3ES 200 08T 308 181
09T 22h J2E 166 306 OFC 139 138 OF7 1AC AFD 298 OAF 041 2CC OCA
238 1F2 250 OEC 314 204 03¢ 333 306 0C0 168 28C 3E8 21E 06E 283
0C4 0B5 1BD 051 3E2 163 013 OF3 288 1AB 17C 200 207 3BT 330 29E
OBE 2TC 3F2 398 194 099 OA9 30 35A 366 202 OED 1F9 226 098 (4B
2 OBA 3AC 33E OES OAT 186 100 ITE 126 32B 110 OBF 1A6 390 3CE IFC
2 11F an4é 305 13C 2BD 261 365 066 235 30F 162 OTA 086 1BE 308 188
. ODC 124 15F OFS 2ET 39E 046 302 32C 2CE 104 3AF 267 066 354 128
23 OED 371 2AF 12 376 319 24D 1DT 3TF 3A2 21D 167 31k 3FF 238 2DA
2 071 318 266 3F3 33D 280 300 OQB8C 21C 058 1CD 2D6 166 3A0 OTT 354
022 33F 369 28C 374 1ER 30A 182 ICF 1BA 0SB OAD ITT 183 28E 246
2 28C 130 323 122 331 201 3BE1 OBC 254 ODE 34B 11B 24F 2EA 1F1 3F5
5I1C 264 M8 3ITE 11C 000 243 008 351 OB 22D O1A 161 300 OTF 1EQ
B 296 TS O4F 304 1AF 2A2 161 2F7 34D 36C 2E2 3DT 02E 3CB OF6 2F6
20 0C1 30D 025 1F3 01D 1D3 O8C 138 109 2DF 3BB 31F 18C OE1 231 100
A 36D 3DB 3TT 108 16D 09C O34 242 072 39B MMD 209 149 206 088 (43
pric OEA 0BT 250 2CD 338F 2A0 CB3 169 12D 300 208 20D :F0 3F1 108 043
C 258 2A8 IDS JBA 1CA 224 2AA O2F IDE 3CT OD3 T4 14T 219 282
106 13F 383 3DA 3ED 26A OAE 1DC 301 2M4 350 2F2 OAB 2A6 308 014
202 352 108 OE3 27D 225 1Al 200 1BE O6F 002 OBS OCA4 198 234 044
064 268 M5 3C ITE B4 00T 3C2 JAF 21T 28T OTH B2 1GE O3B 16T
2BE 2D0 340 OF4 OBD 2F0 363 304 18A 294 390 246 1CB 028 1A2 2E1
i1 JFC 212 1BT 032 281 367 130 (48 322 3AD 3B6 33K 194 1BB IFB 194
1E2 OAD 101 oF0 22F 23T OB6 345 002 220 OVD 268 3EF 089 2F1 ODE
3 304 OE4 202 OD1 21B QOB 12C OEE 13A 28F 092 O0D CGB 009 3TE 385
34 ODE 2AC 27D 39D 3JAT 214 OCC IAD 225 2DE 1D9 1ES 100 3DE 140 24A
283 268 1F0 3C0 3A4 OdA 030 203 O0BA OTE AD4 1E3 16A 1456 170 2CH
% GOB 3B 1AB 127 2BF 16E 2BE 241 IE1 063 334 2B1 136 3EE 244 ICE
¥ 23D 2D1 042 372 3BA 1ED OFA 337 OC9 018 1C3 3%6 3F8 ISE 1BC 187
034 3IFD 310 118 101 076 22B 143 208 380 39F OD6 3B4 199 309 3Bh
:] OEZ2 130 10A 284 168 160 173 155 3DD 15D OCD 163 1A0 OC3 100 341
A 180 1Aé 321 OOE 276 O3E 26F :EC 189 223 AD0 100 26D 2056 ITA 3FA
3B S5E 036 36F 2F8 067 2BA 205 16C 309 2FD 29T 18E 113 OFD 313 OE7
1GA 1BB 0BA 239 O4B 220 0B3 386 JF4 19C 12E 017 3BC 224 136 290
05A 311 240 13E OAG 24E 069 158 OFF 236 364 1A4 04C 3AE 1EB 3ME
3E 132 23F ZX2 OTO 2AE 3EA 249 023 203 0BO 330 21A 28D ICE 154 172
| iF4 0B& OOF 2EF 361 1D2 OBO 104 19E 282 1B4 3F7 204 142 2D9 OCE

Figure 6A. Specification of the secret S-box S;.
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021 058 3TA 3AB ODF 016 IFE 004 OTC 3BE 141 357 300 136 00C 1AT
1 2FA 3AA 235 0B9 003 3CF 14A 18F 356 363 173 2ZE4 168 OCF 373 3Td
2CA 336 168 393 283 2E0 2B9 3E9 12F 4T 308 OTB 288 146 JOF 267
3 15C OIF 22C OF8 10F 360 367 343 1EC 04T 008 062 20F 300 368 148
OB4 ZE3 25E 234 O0D2 IFB 184 I2FF 2EB 2BB 3A1 34F 312 108 2EA (4D
1B1 2FE 084 229 216 33T OD4 08D 21F 036 164 3R 1AL 182 4B 1BF
246 257 DIE 34E 376 197 202 1DD 14D 180 27E 13D 137 3A3 228 3392
010 34C 389 114 3BG 288 335 210 1ET 30B 388 a1 OB4 088 038 1C2
B 306 38E 112 OAA O01B 260 3C1 104 30E 3D4 OEF OT9 347 332 22E 090
Ll 1EE 0BT 278 20D 28B 060 215 206 3E0 0S5 3F9 179 262 1B5 106 368
A 029 1ES 204 IC5 03T 233 204 133 38D 20B 37D 1AE 030 116 1B2 2F3
266 333 0BF 050 1B9 328 26F 1EA 1A9 OEE 291 2ED COGKE 162 1EE 382
S AEB 351 20F 17D 08B 206 269 271 14F 2FE 011 3E7T 14B 391 248 0B3
oD 119 3CD 160 Z3E O6A ODO 3C3 0IC 1T1 3D3 340 061 16F OFB 1DF 342
E 082 068 218 289 383 226 2F9 230 020 223 161 OC5 29 OFE 096 046
OF2 ODA O3A 015 040 370 14C 255 360 193 284 20E OB1 3N6 035 387
24C 030 315 30K 0an OCE ORC 203 107 116 IFE 244 26C 264 105 108
123 08) 36F 28F 1A3 180 OEE 317 198 25C 117 OED 395 OBF 3TE 3E4
04C 3FB 103 2BE 2CE QIE 301 279 316 38C 27T 2\E OB1 074 H1a IFT
3 3C5 085 2FC 09F 2B5 332 QBC 31F 324 09E 20D 3FC 18F 111 ZAT 280
14. 091 329 106 10E 012 273 2EC 241 080 174 208 1CT 102 203 2EE IR
i O3F 2D4 364 131 OAG 276 OOA 386 062 3DC 339 11A 211 2 ITF QDD
318 ZTB 1TB M7 1E4 2B6 OAC D268 3F4 1EF 083 3BB 207 08E 380 OEB
206 2CB 0BB 3A5 120 1CA 0T 028 3ES 084 221 135 159 28T OF9 37C
B 054 320 3F6 051 053 29F 23C 2A1 OD9 237 336 232 1B3 101 380 201
] 10A 380 20C 265 344 ITF 208 3E1 20C QA2 IFE 207 OF1 040 1DE 028
200 121 134 2AB 2FB 2T: ODT OTE 001 263 2TA IFF 269 3EB IFM 35F
253 06 128 35E 14E 289 OFE 3A8 302 261 178 3ES 200 08T 308 181
09T 22h J2E 166 306 OFC 139 138 28F 1AC AFD 298 OAF 041 2CC OCA
23 1F2 250 OEC 314 20A 03¢ 120 308 OCO 168 28C 3ER 21E O6E 263
0C4 0B5 1BD 051 3E2 163 013 OF3 288 1AB 17C 200 207 3BT 33C 29
OBE 2TC 3F2 398 194 099 OA9 30 35A 366 202 OED 1F9 226 098 (4B
2 OEA 3AC 33E OES OAT 186 105 ITE 126 32B 110 OBF 1A6 390 3CE IFC
2 11F 015 3D6 13C 2BD 261 365 OBE 1IFC 3DF 162 OTA OBE 1B6 308 188
ODC 124 15F OFS 2ET 39E 046 302 32C 2CE 30C F 208 066 384 128
23 0D 371 2WF 124 37TE 319 40 1DT 3TF 3A2 21D 187 31k 3FF 382 20N
4 071 318 258 3F3 33D 250 144 OBC 21C 058 1CD 2D6 165 3A0 OTT 354
2 02k 32F 3569 28C 374 1EB 30A 192 ICF 1BA 0GB OAD 177 183 28E 248
29C 130 323 122 331 201 3Bl OBC 25A ODB 34B 11B MF 2E8 IF1 3FS
31C 254 346 36 11C 000 243 008 381 OE9 22D O1A 161 300 OTF 1EQ
2 296 175 DQ4F 304 1AF 242 191 2FT 34D 38C 2E2 307 CFT 188 OFE 2FE
) 0CL 30D 025 1F3 01D 1D3 OBC 138 109 2DF 38B ZES 18C OE1 231 10D
36D 308 37T 108 16D 09C O34 242 072 398 31D 209 149 0F0 089 OA3
pric OEA 0BT 2560 2CD 38F 2M0 COB3 169 12D 300 208 20D =58 3F1 108 043
C 268 2A3 1D& ZBA ZEC 15D 2AA O2F 1DE 3CT OD3 374 147 219 020 282
0CC 13F 383 3DA 3ED 26A OAE IDC 301 2M4 350 2F2 OAB ZA6 394 014
202 352 108 OE3 270D 3EX 0OZE 200 1BE O6F 002 OBS OCA4 198 234 044
OCE 258 M8 3WC ITE 2B4 OOT 302 33F 21T 28T 073 238 1SE 03B 167
2BE D0 340 OF4 OBD 2F0 363 100 18A 294 390 246 1CB 028 1A2 2E1
i1 JFG 212 1BT 032 281 36T 3AD 048 322 3AD 3B6 33K 194 1BB IFB 194
1E2 OAD 101 033 22F 23T OB6 345 002 220 OFD 268 3EF 089 2F1 ODE
3 304 OE4 202 OD1 21B QOB 12C OEE 13A OCT 092 O0D COGB 009 3TE 3685
34 ODE 2AC 27D 39D 3AT 214 235 IAD 335 2DE 1D9 1ES 100 3DE 140 24A
283 268 1F0 3CO 3A4 OdAA 0AR 203 O0BA OTE AD4 1E3 16A 1456 170 2CH
% GOB 3B 1AB 127 2BF 16E 2BE 241 1E1 063 334 2B1 136 3EE 288 ICE
¥ 23D 2D1 042 372 3BA 1ED OFA 337 OC9 018 1C3 3%6 3F8 ISE 1BC 187
034 3IFD 310 118 101 OTé 22B 143 380 23B OEG OD6 3B4 199 309 3Bh
CEZ 155 10A 284 166 160 1.0 166 30D IBD OCD 163 1A0 OC3 10C 350
180 1A6 321 OOE 276 O3E 26F 006 189 206 1D0 10C 260 206 1TA 3FA
3BE 038 35F 2F3 067 2BA 205 16C 309 2FD 297 1BE 113 OFD 313 OET
16A 1BS OBA 239 O4B 334 OB3 386 2F4 19C 12E 017 3BC 224 136 190
08A 311 240 13E OAE 24E 088 0B OFF 236 36A 1A4 344 3AE 1ER 31E
152 23F 222 OT0 2ME 3EA 249 023 203 0BO 330 WA 28D ICE 154 173
1F4 056 OOF 2EF 361 102 OBO 104 198 282 1B4 3F7 204 142 2D9 OCE

Figure 7A. Specification of the modified S-box S;.
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12E 388 18E 131 039 10D 2DE 246 286 2BE 315 384 21D 1a5 08D OCA
1 2A2 2CE 264 085 374 3BB 3BO 1BT ODE 3BC 207 002 302 1B6 0OBA 318
39C ZEE 130 126 227 063 ITE 136 oAk 082 306 16T 206 OAD 008 308
3 100 3F3 24D 199 102 108 1DB 30E 310 245 0&B 116 032 301 028 333
1E1 ZET ODA 255 OCB OTC 2A0 240 150 166 268 208 OC4 334 368 201
B0 138 304 OFF 1AT 10C 363 198 171 038 36D 000 3A2 189 282 2EB
104 304 20F 23C 007 164 012 ODF 10F 237 O4E 166 2E2 189 O0IE 121
1B4 381 273 123 082 12C 1B8 033 202 303 238 38 IFT 160 341 1M
B 33T 1BE6 3BE 32T o0BD 096 2E4 107 102 263 2A4 2CF M4 196 38a 16D
Ll OAL 2C3 004 049 303 BAR OOE 361 065 1BD OBD 319 21B 249 282 399
A 196 26A 080 1B1 340 264 330 316 OFC 37F 1AB 134 ITF 30F 34F 3EG
206 32n 34A 101 09D 3FB OBE 3A5 383 036 3B6 22 ZIE 286 JAE OFA
H 101 0OB2 113 3ES 129 34C 1E3 333 OTE OIF 01D 213 209 OF8 130 1BS
162 OA2 1A1 10D 119 210 24C 00 09T 3F0 280 112 O4C 14D IER 307
386 OAE 322 2FE 217 307 IAF 3456 058 3F6 110 1C8 O3C 105 354 0CO
5F1 238 338 ICB OF4 2B OOF 3A1 242 03D 104 1ES 003 114 BF0 313
35F OC5 261 201 16D 28F 390 109 10D 3CT 14F 11D 066 04D 03B OES
2BA ZFD 34T 191 044 OBE 184 148 256 360 326 267 I1AE 396 098 20D
1IET 3CD IFF 2659 040 3ET OBA 216 OC9 33 309 1BC 281 326 11B 16F
3 053 22h 186 180 27D 11F 2A% 13E 3E1 0D4 24E 102 2ZFC 3C9 1FE 31N
4 SDE 107 025 372 339 2C7 2ED 25F 226 098 2EF 247 OES 203 106 O9F
20C 36D 3MF 24B iDeé 241 068 211 2AF 32 366 3BC 06 2BD 035 OEF
3BB 233 06A 1BE 281 368 137 035 208 140 26B 1E4 379 O7F 3EB 164
20B 130 TS 1BF 132F 1AM 1BB 268 3F4 384 OFT 057 OBS 3CE 060 190
B 238 ATC 11C 081 23R 3B4 OBF 2FS 219 224 30C 042 OGF 390 218 023
] 216 17T 190 335 274 369 OQE2 2ES 397 OF1 010 089 17D O8E 314 317
ODC O3F IAC 1AG 132 162 166 3AD 389 302 019 OF0 OCD O74 1TB 1T4
184 3EQ 084 2FB 1A9 0BT 280 278 06C 13B OFB 286 207 30F 350 14E
00T 10E 19C 055 351 034 176 108 272 020 200 21C 047 0D 0B 298
13F IDF 162 376 OBF 1CA 3EC 2B9 3FE 388 133 200 33A 304 IFE 058
13D 1540 204 028 127 1ER 276 OTE 14C O1B 031 168 OA3 OEC 27C 087
36D 3B0 b4 IFA IFS OOA 3E2 OZE 220 285 MB 211 OTE IF1 14 O0M
2 SFF 202 2TF 2F9 30D 136 33F 301 308 206 3D2 309 OEA 073 IF1 280
2 3BE 053 111 084 20E 1BA IFT 24h 394 IBT 366 336 3IBE 01T 2BC 3C4
. 1IEC 3BC 144 1E9 193 16A 33D 344 2095 07O 287 D4 38K 1TA 292 OAC
23 OF2 35E 1EF 0BB 1EE 071 2DA 3F7 301 037 2AB 330 OBO 20B OTA 220
2 00C 149 OQAF 290 2E0 122 283 3J2E 3BAE 3C3 109 2E6 3ITE (BC 266 320
06 208 116 081 18A OES OBC 1A3 387 ODO 276 23C 003 30B 236 100
2 2F3 0OAS 062 AR 185 091 208 156 X30 320 385 2BE Z21E 3F9 11E 0SE
166 281 008 3I7C ODD 188 O4F 26E 33E 2FB 3AD 3E3 308 0A9 1AZ 3MA
B 502 36E 3BF 19E 212 142 24D 0B3 141 3EF ACE 262 146 362 348 176
20 1E3 148 3A9 30D 1C6 3FE OT0 OD3 1EA 3BA 248 146 201 243 1FE 2068
L OaT 208 IFE OOE 26T 26D AT 10 200 0D 3BE 006 30A 33 305 8@
pric 2D6 3AT 1DS 3A4 101 20T 34E 2B6 072 26C 090 1F8 1F9 3AF 1F0O 0C2
C 2C2 1A OBA OAB IFC 100 18B 1BE 161 38C 1CC IT1 IT9 369 342 1DE
01A 016 352 173 34D 364 161 235 754 23F 16C 030 03E 1C3 JEA OCF
1BC 078 180 01B 117 3893 3F2 39E 370 1BD 24F 104 204 OA4 08D 187
01E 045 OC1 251 00D 348 014 21F 001 008 204 321 1B2 1B6 043 147
223 OB6 054 1AB OFD 373 31E 323 20C 161 10B 288 045 041 348 2E3
51 32F OED 27T 179 27B 3FG 23E 252 OTT O04A 120 200 308 300 312 048
1ED 048 30C 183 0D2 35F 3BT OAD 3FD 204 050 1C7 197 2F2 221 208
3 1FZ 343 061 1F2 160 266 26A D26F OF3 2B0 085 1TE 31B OFE OEE 2DC
34 226 380 1EE 253 068 OE1 021 31C 306 1AD 16T 20C 0GB 230 398 033
350 2FA DDB 381 239 OF6 335 02C 083 143 024 28E 36F 214 104 14N
% OE4 1ES 19F 2E1 IFD 356 28D OTD 11A OEE OEB 370 368 1DC 183 OBE
¥ 36T O3n 2D6 353 229 3DA OBB 382 270 2EB 2FF 168 027 IZAE 170 28C
2A3 0OBC ICF OTE 280 32 Z2EC 2A5 209 2A6 29C 3ED COOC O0CC 2AEB 203
:] OFE 2853 20F 2F4 OET 232 OCE 3AB 13A 011 308 220 CD8 1F4 22F 238
34 ITE 1A4 2TA 125 329 324 06T 365 024 288 3E4 ODE 3AC 3AS 172 306
3B 16E ODB 300 258 088 2DB GEF 380 259 2M1 1E2 377 OIF 029 2F0 2BF
204 136 7B 381 1DE 306 01C 26E 283 060 OAG 106 ODE 3DC 11B 2EE
3D 2DD 103 18F 371 064 260 OCT OE0 005 1D0 JEE OD® 3TA 387 3CB 234
iE. ED0 1BF 3B2 OQ8F 1BA 013 331 328 (€E 25D OFD 062 166 378 ICE 138
IF 0O0E OSA 128 051 231 1A0 3CF 30K 20F 192 086 3BT 22C 124 3FC 3TE

Figure 8A. Specification of the secret S-box S,.
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13E 388 18E 131 039 10D 20E 246 286 2BE 316 384 210 142 06D OCA
2h2 2CE 64 086 AT4 2EE 3ABG IBT SEG XBC 207 002 X822 IBE OBA 318
2 ¥9C ZEE 1DA 126 015 063 27E 126 154 OB2 308 OEZ 206 OAD 009 3CE
100 3F3 2AD 199 102 108 10DB 2F0 310 2456 QA8 116 022 301 026 333
1E1 ZET ODA 257 OCB OTC 240 240 16O 165 268 208 O04 334 34B 3
1E0 138 3mA OFF 1AT 10C 363 168 171 038 3BD 000 3A2 1BS B2 2EB
14 34 20F 23C ODT 164 042 ODF 3A8 237 058 166 2E2 188 IF: 134
T 1B4 381 273 123 052 12C 168 033 202 308 288 3B8 IFT 160 341 1M
337 1EE 3PE 32T 103 045 JE4 107 1C2 263 2A4 2CF 244 196 364 160
Al 203 004 049 200 3A3 221 361 01E 1B0 OBD 319 21B M9 IB2 34
L 198 264 080 1B1 340 28K 33C 316 OFC 37F 1A8 134 17F 3DF JHF 3ES
209 ¥ BMA ADM 09D 3FB OBE GEA 383 038 3BE 232 2IE 288 3AE OFA
161 0B2 113 3E8 120 34C 163 333 OTE OIF 01D 213 209 OF% 130 1BG
182 0A2 1Al 305 119 10F M4C 020 09T 3F0 280 112 04C 14D 1EE 307
f.  BB5 OAE 322 IFE 0C6 ADT 1AF 346 OGB AFG 110 108 0AC 106 354 OO
0F.  3FL 15E 338 ICE OF 2B4 OOF 3A1 242 03D 250 1B3 003 114 3FL B2
ic ZEF 217 61 X1 18D 28F 390 106 10D 3CT 14F 11D 066 04D 08B OES
11 ZBA ZFD T 1591 044 0BB 154 148 266 360 336 25T 1AE 96 08B 20D
12, 1ET 3D IFF 265 040 BET O08A 216 OCO 538 309 1BC 2B1 326 11E 16F
13 063 ZIW 186 180 27D 11F 249 13E 3E1 OD4 24E 102 ZFC 309 1FE 31A
14 3DE 1DT 26 3T2 330 20T JED 25F OAT OBE 2EF 247 OES D3 106 OOF
15 2CC 36D 3IF ME 1DE 241 068 21 2AF OAL 355 35C 026 IBD 138 OQEF
16 358 233 CO6A 1BE 291 368 137 035 208 140 268 1E4 379 OTF 3EE 164
7. B 130 376 1BF 13F 1AM 1BB 268 3F4 364 OF7T 10C DB9 3CE 060 190
18 ZIB 17C 11C 081 23A 384 OSF 2FS 219 224 OES 042 DEF 380 216 023
19 iDE ATT 180 396 274 350 OE2 2E9 39T OF1 010 099 1TD OBE 314
3 ODC 03F LAC 1AE 132 153 195 3AD 3E9 3CI 183 OFD OCD 074 178
184 3E0 245 JFB LAS OBT 360 2TH OGC 13B OFB 266 207 30F 350
00T 10E 19C 056 351 034 1TE 108 272 O30 200 21C 047 20D O0EA
13F 1DF 162 376 OBF 1CA 3EC 289 3IFE 388 133 Oa9 334 304 IFE 058
L 13D 08D 284 O02B 12T 1ER 276 OTB 14C 018 031 106 OA3 OEC 27C 06T
380 30 384 AFA AFS OOA 3E2 OJE 238 265 3B 311 076 IF1 104 04
AFF 202 TF IF9e 30D 136 33F 301 308 206 3D2 309 05T OF3 1F1 28§
1 3B 3CE 111 0B4 20E 1BA IFT 24A 304 16T 3EE S35 0B O0IT 26C 34
. IEC 2BC 144 1ES 183 18A 33D 344 266 079 027 204 3BA ITA 282 OQAC
5 OF2 35E 1EF 0BB 106 OT1 20K BFT 084 03T 2AR 330 OBO DB OTA 20
4. 0OC 145 OAF 230 2ED0 122 283 B2E SAE 5C3 109 2EE 3TE OBC 266 320
Z B3 2CE 116 081 1BA 255 O6C 1A3 28T ODD 27é 320 003 30B X2 100
6 2F3 OAS 121 2AA 710 091 208 IEE 230 320 3856 28E 21E 3F9 11E OGE
27 159 281 OCE 37C ODD 188 O4F 26E 33E 2F8 3A0 3B3 308 727 1A2 3AN
302 36E 3WF 19E 212 130 4D 0B3 141 3EF ICE 262 146 362 ME 176
F- 1E3 14 349 30D 093 3F6 OT0 009 1EAR 3BA 248 146 201 243 1FE 205
24 IO 20M IFE OQOE 26T 26D AT 1FC 200 OD1 3BE 008 30 3E3 105 26E
5. 9D6 AT 1DE 3A4 101 20T M4E 2BG OT2 260 080 1FA 1F9 JAF 1F0 O3
x 2C2 1A OEAL OAB 1EE 109 1EB 1EE 181 3BC 156 271 279 MO 342 1DE
- 014 016 352 173 34D 354 181 185 1AL 23F 160 030 21E ICE 2EA OCF
ZE. GODE OTE 18D O1B 117 383 3F2 35E 37D 1BD 24F 18C 284 OA4 OBD 18T
¥, DB 065 OC1 251 00D 348 014 MF 001 008 2CA XL 1B2 1BE 043 14T
30 223 OBE OS54 1AB OFD 373 31E 323 20C 161 108 288 20F 041 345 2E3
1 32F OCED 277 179 27TE 3F6 23E 252 OTT O4h 120 200 308 300 312 O4B
2 1ED 048 30C 183 0D2 35F 38T OAD 3FD 204 060 1CT 187 IJ0F 046 4B
3 1F3 343 061 1F2 160 266 26A 26F OF3 2B0 0B 17B 31B OF6 OEE 20C
4. EIS 3BC 7T B3 056 OE1L 021 3IC 306 1AD 16T ZAC 30 398 032
3 350 2FA OOB 391 239 OF5 335 02C OB3 143 02ZA 29E 36F 214 104 144
k- 0E4 096 19F 281 IFD 30E 28D OTD 11A OEE OQER 57O i0C 163 056
7. 36T (BA 306 353 229 30A 0SB 1ES 2TO 2E8 2FF 168 104 ZAE 10 28C
CE] 2h3 08C ICF OTE 200 B2B JEC 2A6 2CH 2M6 260 3ED OBC ODC 2AE 203
2. OFE 208 0F 24 OET 232 OCE JAB 134 011 3DB 230 0DS 1F4 XIF 206
Ah. 062 IA4 2TA 128 320 324 06T 366 024 B8 3EA ODE 3AC 3G 1TR 30E
18 16E 0DB 300 258 088 208 203 MG 260 241 1E2 OBS O2F 029 356 2EF
G, @04 03E JEB 381 1TE 20C Q0C 2EE 2BR O0E9 QA6 15O C 118 IEE
b0 235 18F 371 064 280 OCT OED OCE 1DO 254 OD9 AT 3BT ACE 234
3 3p0 A5F 3B O&F 16A 013 351 338 OGE 26D OF9 92 TR 310 138
05 OBL 128 061 231 1A0 3CF 3CA 302 162 OBE 36T 1234 3FC 3ITE

Figure 9A. Specification of the modified S-box S,.
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1AD OB4 1BS 30A 254 151 1T4 3F9 113 384 35B 261 332 10 O ME
1 O0E 2FC 023 0BO 376 269 2BC 378 081 060 350 1FF 26C O0DE 214 OED
IAE OAB 3AC 035 OE2 2F6 OTA OEA 2CB OFE 24E 280 057 073 219 3EA
3 2E2 2TC 032 162 285 13C OBE 1ED 0B3 2F5 206 34B 335 093 298 3TA
273 ITE 30F 2ET 14B 3BC ICE 088 316 014 144 104 20K 2a9 862 100
236 109 2F9 OA4 052 OE3 17F 061 02C 140 OE1 166 10E 2150 288 1BE
OTC 2BR 06D 242 192 QAR 3B) ODB 129 2AF 063 3AF 3D1 0C38 QA 028
29 3B 052 OT8 2A2 OSE 2CF 3CF OEF OET 019 1F1 OTE 1BB 2CT 261
B 36A 2CA 0T 216 2ES OEE 10D 2FE 390 277 102 394 205 022 05h 396
0. OF4 265 OFD 160 027 111 2EC 20C 3DF 11F 241 168 388 103 BCE 354
Tl 3B 279 064 1A4 028 34F AD6 352 2CH 25T 304 AESL 0BT 322 0L AT
10F 1A% 137 30C 016 096 2AA 2A4 3FS 1A3 30A OBE 2E8 343 35F 11A
H OAE 38D 328 348 292 202 3P4 059 31C 1AC 1E4 3BF 102 38D 1DE OED
191 303 34 045 OEB 373 034 23C 102 3CE 11E 353 O0B 207 20A OOF
208 230 180 184 1B6 339 360 240 011 306 ATA 3M 344 045 IF0 OF3
106 OB4 OBD 1SE 036 OCO 545 OD3 37D 3CA 284 JEF OO0 197 368 O&R
0B 108 18A 218 20E 32A 200 OAE I54 OFC 066 246 24D 132 OA2 145
20B 189 3TF 1E1 382 3F3 1C8 10D 136 2D0 326 2B 068 1FS O7TT 220
12, 1EZ JP4 0B2 2E9 3CC 206 2EA 116 30D 276 020 118 OBC IBE 16T 186
13 3A1 3F2 3DT 130 2568 227 OD4 268 1FE 1EA 3TR 3X9 1T® IS5 OC4 OSF
i S09E OSE AFD 158 126 2B3 1BE 012 21A 372 366 164 042 01T 217 158
1F6 261 3ED 14 22F 110 03T 1BY OT® 201 3CH OEE 2B6 107 3CB 303
19E 210 1ES 205 26F 3BD 196 1898 337 068 32E ODF 3EE 272 0BC 302
0ib ATH 300 OA3 22E 123 2A% ODE AT 2FF 3A5 OBR 38F 04T 1B4 350
B 1EE QA1 280 1FC 024 298 3A3 115 3BE 215 09A 3TE 2A0 OC2 377 0B1
] 148 04n O0ES 365 3Dé 2E3 200 35A 1TE ODT 134 30D 3BE 338 334 1FE
1DC 3B2 2B1 2B 3F1 AFA 06T OBC 0@0 211 233 280 ODA 34C 20C 1AH
2BF 389 349 3F5 2FB ICF 3BE3 38T (CH 08F 0C0 1356 3AT 280 348 30E
163 33C 3F 1EF OFA 126 244 X6 1C1 25E QA2 262 1E9 3A0 146 308
148 353 OFF 37C 040 200 268 048 117 1E3 246 003 323 OAD 10T 313
OT2 18D 207 394 OCT 120 016 222 066 27. 287 066 366 293 3ED 354
IF. 359 299 190 10F 258 183 080 1B 361 3JAA 3E1 318 2BA 1SC OD& 1DB
20 342 2JEE 1AE O4F 1AT 20D 2F8 034 O1F OBA 188 OO0 2BT 382 16F OCH
21, 1B0 2 10C 389 26T 163 4B IET 002 OFC 23R OFF 3BB 25C 1CT ODG
Zr. 00C 271 OAA ICE 35T 1EE OLE 3FE 081 245 314 204 164 13F 212 340
23, 141 1B 203 OQE 087 OE4 13E 26A 1T1 249 22B 206 138 001 OAD 23F
4. 028 BB OGF OSE 2TE 20E B3 12K 2BA 100 2AC 23A 263 OF9 100 B
2 203 308 36C 6 088 008 3E6 ODD 30T 106 121 185 OAT 3EC 11C 347
2 034 3560 1B2 O2A 3B1 204 114 312 167 131 304 280 231 3ET 2DE 302
2T, 202 3XC 3ES X1 009 100 32T IF2 21 1BA 2FD 3D 253 I2EF 282 aDg
28 338 14F 1B1 8B 330 2F0 18C 176 12E 169 200 233 2F3 1656 003 13D
20 388 16F 160 M 2BD OFE 3FA 2ED 147 161 O1B O4B 17D 28C 088 3C1
24 1 21F 1DA 37F 124 2BF 390 005 0564 35F 143 3CE 18 043 10F 104
2B OCF 286 188 243 006 106 333 162 1BF 3FF 3BT 1EC 30B 093 08E 11
2 059 30D IF0 210 2EB 309 2FT 138 20D 3AD OF OEC 11D 180 3AB 34E
1 311 1E6 3FB OAF 2E1 128 220 030 OF1 2FA 208 160 28E 181 33a 118
033 10n OCA Z2A5 010 31F 3BA 1F3 3BS 20D 1893 2AD 283 085 OOA 328
OFE 3AB I1DO 2E5 OEB 20F 2B 06A (065 3aC 18F 364 23E 0B 2CE 1F2
280 142 266 132 3E2 24C 101 24A 308 09B 097 1A0 230 3TE 320 062
i1 33D 118 3EB 03C 1A 281 1Al 20T 3CT 331 319 o082 127 34E OTR 238
23A 300 0BS 01C 285 1E0 35F 180 321 133 26F 371 1B 363 A6D 23E
33 0CE 165 OFE 19C OTO OED 36T 1DE 24T 215 0OB3 100 206 284 BDE 29E
34 30C 1CE OES 1FT 16D 2EO 013 235 2A3 228 QBB 14D 018 278 156 1CH
35 178 OCD 370 OFD 3AG 238 049 DM 39T OBF 1BC 21E 3090 3F8 OAC 004
GG, B4A 0OBS 04D 14C 33F 13n 301 OBC 3A2 112 20E O76 3FT 391 040 328
ar 208 000 ODC OD1 O41 14E 208 1AS 168 188 051 220 31B OCC 18E 173
38 ICA 204 303 049 03F 1723 2TE O8A 250 1F9 014 170 Q44 16B 330 17@
30 310 3EZ 108 139 208 04C 187 071 XOF 381 316 038 OCE 060 34D 1AM
Sh. 12 e 1Ch O4E 365 361 202 3BA 225 189 154 306 (26 OF0 245 08C
3B OEF 16F 2BE 270 060 083 186 3DD 2AE OC1 23D 160 241 OF8 1ER 385
374 17T 3E4 358 IFE 099 130 1M 3A4 310 O30 1AF IF4 OBE 074 1GA
3D 274 16 21C IFD 306 238 234 262 305 31A 395 27D 3EE 128 002 29M
SE.  B2D oODD 341 2EE OBO 224 23T OF2 2E4 12C 103 025 20F B0 BAE 288
ar OTF 038 03E 007 182 169 091 3B 3E3 394 264 Op6 360 2656 21 24F

Figure 10A. Specification of the secret S-box Ss.
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200 0B4 1BS 30A 25A 151 1T4 3F9 113 384 35B 261 332 1V0 O ME
1 O0E 2FC 023 080 320 260 2BC ATE 081 060 oD0 AFF 26C OD6 214 23E
1AE OAB 3AC 035 OE2 2F6 OTA OEA 2CB OFE 24E 280 135 073 219 3EA
3 2EZ ITC 032 162 285 13C OB6 1ED 0B3 2F6 206 3B 336 1EF 26E 3TA
273 ITE 30F 2ET 14B SBC ICE 089 316 O1A 144 104 20A 178 862 100
236 109 2F9 OA4 062 OE3 CED 061 02C 140 OE1 166 10E 250 288 1BE
OTC 2BR 06D 242 192 QAR 3B) ODB 129 2AF 063 3AF 3D1 0C38 QA 028
29 3BB 002 OTE 2A2 OSE 2CF 3CF OEF OET 019 1F1 OTE 1BB 2CT 261
B 36A 2CA 0T 216 2ES OEE 10D 2FE 390 277 102 394 205 022 05A 396
0. OF4 265 OFD 160 057 111 2EC 20C 30F 11F 13i 168 388 103 308 354
Tl 3B 2T9 064 1A4 028 22F 1D6 352 2CH 25T 304 AEL 104 322 2CL 583
10F 1A% 137 30C 016 096 2AA 2A4 3FE 1A3 3DA OBE 2EB 343 233 11A
S OAE 38D X33 348 292 130 SF4 069 31C 1AC 106 XBF 102 36D 1D& OED
o 191 308 304 302 OEE 373 034 23C 224 306 11E 393 O0B 308 2Dh OOF
IE 209 230 180 184 1BB 339 360 207 011 306 AVA 3 344 178 3IF0 OF3
J17 OB4 OBD 1ISE 036 OCO 545 OD3 37D 3CA 284 3EF OO0 197 368 O&B
0SB 108 18A 218 046 32A 200 OAE I54 OFC 066 246 24D 132 OA2 145
1 20B 189 3TF 1E1 392 3F3 1C8 10D 136 2D0 326 2B 068 1FS 07T 220
I2. 13F P4 0B2 29 3CC 206 2EA 116 30D 276 020 266 OBC IBE 16T 166
13 3A1 3F2 3DT 130 258 227 OD4 268 027 1EA 3TR 33X 1T® IS OC4 OSF
14. 39E OSE IFD 15B 126 2B3 IBE 012 21A 372 366 1B4 042 017 20T 5@
15 1F6 261 3ED 14A 1FE 110 03T 1BY 079 045 3CH OEE 2B6 107 3CB 303
19E 210 1ES 205 26F 3BD 156 1898 337 069 32E ODF 3EE 201 0BC 302
0ib ATH 300 OA3 22E 123 2A% ODE AT 2FF 3A5 OER 38F 04T 1B4 350
B OCE QAL 200 AFC 024 29B 3A3 a1 3BE 215 O9A 3TE 2A0 OC2 3TT 0B1
:] 148 338 323 365 3DEé 2E3 OB2 35A IAC ODT 134 30D 3BE 338 334 1FE
1DC 3B2 2B1 213 3F1 AFA S80 OBC 0R0 211 033 280 ODA 34C 20C 1AH
2BF 369 349 3F5 2FB ICF 3B3 3BT I5E 08F 294 135 3AT 280 348 30E
163 33C 3F 093 OFA 126 244 X6 1C1 1EE QA2 262 1E9 3A0 146 308
148 353 OFF 37C 090 200 268 048 117 1E3 246 003 118 OAD 10T 313
0F2 18D 207 394 OCT 120 016 222 066 1CBE 287 OB6 366 293 3ED 354
IF. 13E 299 190 10F 258 183 080 1B 361 3JAA 3E1 318 ZBA 1SC OD& 1DB
20. 342 2ZEE 1AE O4F 1AT 20D 2F8 03A 06A OBA 188 000 2BT 1E4 16F OCH
21, 1B0 22 10C 389 26T 163 4B IET 208 OFC 2EG OFF 3BB 276 1CT ODG
00C 271 OAA 1C5 35T 1EE OLE 3FE 081 245 314 284 164 13F 112 340
23. 141 1B% 120 O02E 34F QB4 052 28h 1T1 249 228 208 (00 001 OMD 23F
24. Q2B BB OGF OSE 275 20E 3B 13A J8A 100 2AC 23R 263 OF9 100 B
25 203 308 360 205 088 OOB 3ES ODD 30T 106 121 185 OAT 3EC 11C 347
0s4 300 1B2 O2A 3B1 204 114 312 167 131 304 200 231 3ET 203 302
f. 202 320 3ES 04n 009 10C 33T 180 31 1BA 2FD 36D 253 IEF 282 306
28 3328 14F 1B1 8B 330 2F0 1BC 176 12E 189 200 223 2F3 255 OC3 13D
29 398 IGF 160 20C 2BD OFE 3FA 2ED 147 161 O1B O4B ITD 25C 058 3C1
' 1M 2F 1DA 09 124 2BF 39C 005 054 35F 143 3CE 18R 043 35F 1F3
2B OCF 286 188 243 006 106 333 162 1BF 3FF 3BT 1EC 30B 093 08E 11
059 530D IF0 210 2EB 309 2FT 138 20D 3AD OZF OEC 11D 060 3AB 34E
311 1E6 3FB OAF 2E1 128 220 030 OF1 2FA 208 160 28E 181 33A 118
105 10A OCA 2A5 010 3IF 3BA CLT 385 20D 1893 24D 283 085 004 328
2F. 2B JAB 1DO 2F1 OEB 20F 298 10E 65 17C 18F 364 3BE 0BS 2CE AFI
30 280 142 82 006 3E2 24C 101 24A 308 09B 09T 1A0 230 3TE 320 062
51 33D 118 3EB 03C 16A 281 1Al 20T 3CT 331 39 ITA 13T MME OTR 234
2 23A 300 0BS 01C 285 1E0 35F 180 321 133 26F 371 1B 363 26D OFs
33 0CE 165 OFE 19C OTO OBED 36T 002 247 380 OB3 27F 206 284 BDE 29E
34 30C a0 OES 220 16D 2EO 013 235 2A3 228 QBB 14D 018 278 156 1CH
35 178 OCD 370 OFD 3AG 23B 049 DM 39T O0BF 1BC 21E 3090 3F8 OAC 004
GG, B4A 0OBS 04D 14C 33F 1FT 301 OBC 3A2 112 20E O76 3FT 391 040 328
ar 208 000 ODC OD1 O41 14E 06T 160 168 188 051 Oa9 31B OCC 18E 173
38 . ICA 204 303 1E2 03F 173 2TE O8A 250 1F9 014 17F Q44 16B 2F2 17E
30 31D 3ES 108 139 200 04C 18T OT1 ZOF 381 316 03 OCE 203 34D 1AM
34 122 225 1CG3 O4E 368 361 202 38A 102 189 194 306 06 OF0 248 08C
iE. OQBF 19F 2BE 270 060 OB3 18B& 3DD 2AE OC1 23D 272 241 OF8 1EBE 01F
3¢ T4 1TT 3E4 353 AFE 096 2aF iD4 3A4 310 030 1AF 1F4 OBE OT4 1GA
3D 274 18 21C 3FD 3CE 238 234 262 3D6 314 386 27D 3E8 240 1AE 0&T
3E 32D 358 M1 250 OB9 106 23T OF2 2E4 120 103 036 20F 260 3JAE 266
3 OTF 038 03E 007 182 159 091 386 3E3 384 264 =65 36C 256 2N M4F

Figure 11A. Specification of the modified S-box S3.
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Block encryption algorithms are now the most widely used cipher systems in the world
to protect our communications and our data. Despite the fact that their design is open
and public, there is absolutely no guarantee that there do not exist hidden features, at
the mathematical design level, that could enable an attacker to break those systems
in an operational way. Such features are called backdoors or trapdoors. The present
book intends to address the feasibility of a particular class of such backdoors based on
partitionning the plaintext and ciphertext message spaces. Going from the theory to
the practical aspects, it is shown that mathematical backdoors in encryption systems
are possible. This book, thus, intends to initiate a new field of research
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