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Biotechnology including medical applications depends on the yeast as biofermenter 
to produce many industrial products including pharmaceutical ones. Although yeasts 
are first known as useful microorganisms, some of them are identified as pathogens 

for plants, animals, and humans. Due to the simple cellular structure of the yeast 
among other microbial groups, it is used in the earliest investigations to determine the 
features of eukaryotic molecular biology, cell biology, and physiology. The economic 

income of some countries mainly depends on yeast for producing the economic 
products, such as France that depends on yeast for wine production. This book throws 

light on yeast and its important role in the medical applications.
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Preface

Yeast is a unicellular-eukaryotic microorganism belonging to the kingdom mycota. This ge‐
nus has more than 2000 species, which represent approximately 1.5% of the total identified
fungi. Although most yeasts are unicellular, some of them are multicellular due to pseudo‐
hyphae formation. The main reproduction way is mitosis, while budding and fission take
place. Yeast was discovered thousands of years ago, where it ferments the carbohydrates
and converts them into carbon dioxide and alcohol. The former is usually used in baking,
while the latter is used in many industries including alcoholic beverages. Yeast was consid‐
erably used in a lot of biological researches including molecular biological ones due to its
simple structure. Yeast such as Saccharomyces cerevisiae was known as a useful microorgan‐
ism, but there are other species such as Candida albicans that are pathogenic to humans and
animals. Yeast is described as a multimachinery microorganism due to its high metabolic
production. For example, yeast generates electricity in the microbial fuel cells and produces
ethanol under anaerobic conditions for the biofuel industry. Moreover, yeast can produce
specific proteins called "killer toxins," which are used in the treatment of candidiasis. Killer
toxins are also considered self-defense mechanism against other microorganisms. There are
different habitats for yeast including soil, insects, sea, fruit surface, plant exudates, flowers’
nectaries, ants, and gut of mammals as normal flora. Some genera such as Cryptococcus neo‐
formans and Cryptococcus gattii are opportunistic pathogens, which cause cryptococcosis.
Candida glabrata is a pathogenic yeast that causes candidiasis in the urogenital tract and can‐
didemia.

Yeasts are significantly used in the fermentation biotechnological field, such as ethanol,
bread, wine, and xylitol industries.Yarrowia lipolytica degrades oils, TNT, alkanes, fatty
acids, and fats and has the ability to tolerate high salinity and heavy metals. Saccharomyces
cerevisiae has the ability to bioremediate the toxic industrial effluents including arsenic and
bronze statues. On the other hand, S. cerevisiae can be used as a nutritional supplement be‐
cause it has high content of proteins, vitamins, and minerals and low content of fats and
sodium ions. Saccharomyces boulardii is mainly used to maintain the natural flora of the gas‐
trointestinal tract, decreases the acute diarrhea, and diminishes the harmful effect of Clostri‐
dium difficile. Moreover, yeasts are used in the bioremediation of the wastes. Although a lot
of yeasts are used as food supplements, some of them are the main cause of food spoilage
such as Zygosaccharomyces spp. and Brettanomyces bruxellensis.

Saccharomyces cerevisiae was used as a best eukaryotic model for determining the molecular
biological features, physiological properties, and cell biology. For example, specific human
proteins such as cell cycle proteins, signaling proteins, and protein-processing enzymes
were discovered first in the yeast. The genomic structure of Saccharomyces cerevisiae genome
sequence was first determined where it was composed of 12 million base pairs. In 2012, the



full genome sequence of Schizosaccharomyces pombe was determined where it was composed
of 13.8 million base pairs. Genetic engineering was used to improve the genetics of yeasts in
particular S. cerevisiae for producing of pharmaceutical products such as insulin, vaccines,
and human serum albumin and also for producing different chemicals such as phenolics,
isoprenoids, alkaloids, and polyketides.

This book is a scientific work that aims to illustrate the vital role of yeast in biotechnology
approach, in particular the medical field. I would like to thank the authors who have done a
commendable job and worked hard in writing the chapters. Also, thanks to all contributors
who have done hard work to bring this book to fruition. I wish that this book will be useful
for scientists and researchers. I wish to appreciate and thank the efforts made by InTechOp‐
en in publishing this book.

Waleed Mohamed Hussain Abdulkhair
National Organization for Drug Control and Research,

Egypt
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Abstract

A Saccharomyces boulardii strain, which does not carry any auxotrophic markers, was 
transformed with knockout constructs for the genes HIS3 and ADE2 using the domi-
nant antibiotic marker genes encoding for kanamycin/G418- and nourseothricin/NATR 
resistance. Thereby, homozygous derivatives that were histidine or adenine deficient 
were obtained. Histidine prototrophy was easily reconstituted by transforming his-
defective diploid derivatives with yeast plasmids carrying the HIS3 gene. Despite dif-
ferent attempts, for example, by creating a rme1::KANX rme1::NATR double-deleted S. 
boulardii yeast strain (RME1 encodes for Regulator of Meiosis), no visible sporulation 
to obtain haploid derivatives could be obtained. Besides, no filamentation properties of 
S. boulardii were observed. As previously mentioned, this yeast strain was confirmed to 
thrive at 37°C, a temperature disliked by some but not all S. cerevisiae strains used in the 
laboratory. S. boulardii is a diploid derivative of S. cerevisiae that does not sporulates and 
survives at temperatures as those found in the human gut. It can be easily manipulated 
by using conventional yeast methods to introduce auxotrophic markers and obtain het-
erozygous diploid knockout derivatives that can be transformed with yeast plasmids 
following conventional yeast protocols, thereby it could be even suited for biochemical 
and genetic research purposes.

Keywords: Saccharomyces cerevisiae, Saccharomyces boulardii, probiotic, genetic properties, 
yeast transformation

1. Introduction

The French microbiologist Henry Boulard isolated in 1923 a yeast strain (later named after 
him) after observing natives in Indochina affected by digestive disorders to chew litchi and 
mangosteen skins. It was said (but never proven) that those people could even protect them-
selves thereby against outbreaks of cholera.

© 2018 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



Ever since, there has been an increasing body of medical reports addressing the beneficial 
properties of Saccharomyces boulardii as a probiotic to treat cases of diarrhea, reconstituting 
the gut flora after antibiotic treatment and even in the treatment of patients suffering from 
Helicobacter pylori that can cause stomach ulcers (for a recent review, see [1]). High doses 
of lyophilized living cells (2–5 × 109) are administered in pills that dissolve in the gastro-
intestinal tract. It is assumed that S. boulardii cells do not establish in the gastrointestinal 
tract and are secreted with the feces. Therefore, several doses are recommended to be taken 
during several days. It has not been clearly shown if on their passage yeast cells interact 
with other microorganisms in the gastrointestinal tract. Despite several clinical studies 
indicating beneficial effects of S. boulardii, there have been also reports identifying it as 
the cause of fungemia in hospital patients (adults and children) that had received doses of 
this yeast to treat gastrointestinal disorders [2]. Though the beneficial effects of the baker’s 
yeast S. cerevisiae used for fermentation are unquestioned, certain wild S. cerevisiae isolates 
can have negative effects especially in people with a compromised immunosystem after 
undergoing surgery. Non-domesticated yeast strains as those isolated in hospitals can have 
invasive properties very different from those observed for domesticated yeast strains used 
in bakeries and breweries.

Yeast strains used in the laboratory such as S288C are mostly derivatives of industrial yeast 
strains used for ages in breweries [3]. More recently, derivatives of diploid strain Σ1278b, 
which shows filamentous properties related to non-domesticated yeast strains [4], are used in 
molecular biology research. Surprisingly, the sequence identity of both yeast strains is only 
46% [5] indicating considerable genetic variability due to adaptation to differing milieus and 
to human domestication of this eukaryotic species [6].

Thanks to molecular genetic techniques, S. boulardii considered originally as a yeast species 
by itself [7] has been proven in recent years to be a variant of S. cerevisiae [8]. In this chapter, 
a diploid yeast strain similar to those strains used in most research laboratories, amenable to 
genetic manipulation when using conventional yeast protocols is shown.

2. Results

2.1. Growth properties of S. boulardii

To further characterize this yeast, its growth properties at different temperatures are com-
pared with other diploid yeast strains (all yeast strains used are summarized in Table 1). S. 
boulardii (I will keep this name in the text even though it is a S. cerevisiae strain) grows well on 
rich medium at 30°C as well as at 37°C but not at 40°C (Figure 1A). Growth at 37°C—though 
not ideal—is not uncommon to yeast strains such as the diploid strain BY4743 (a derivative 
of S288C) but as opposed to diploid strain RH2585/2586 (an Σ1278b derivative) which hardly 
grows at 37°C (Figure 1A). In that sense, growth at 37°C is not a particular and unique prop-
erty of S. boulardii. It probably rather reflects its accommodation to hot climates such as those 
found often in Indochina.

The Yeast Role in Medical Applications4
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A further investigated property is S. boulardii’s potential capability to form filaments. For this 
purpose, it was grown on SLAD plates which carry only limiting concentrations of ammo-
nium sulfate (50 μM, about 1000× less than conventional SD minimal medium). As observed 
under the microscope, the diploid strain RH2585/2586 clearly shows filamentous properties 
under such ammonium-limiting conditions (Figure 1B) [9]. Deletion of the FLO8 gene encod-
ing a transcriptional factor required for filamentation and adhesion completely abolished its 
filamentous properties. Flo8 is required to express, for example, Flo11, a cell-surface glyco-
protein [10]. As opposed to RH2585/2586, S. boulardii hardly showed any filamentation prop-
erties. Interestingly, sequencing of the PCR-amplified FLO8 gene of S. boulardii indicated that 
it does not carry a premature stop codon (not shown) found in non-filamentous yeast strains 
as those derived from S288C [10]. So, other up- or downstream genes required for filamenta-
tion are likely dysfunctional in S. boulardii. Its lack of filamentation probably explains its low 
toxicity and its lack of establishment capacity in the gastrointestinal tract that otherwise could 
make it more persistent and thereby more problematic for medical applications.

Another interesting issue was to induce meiosis and sporulation in S. boulardii in order to 
obtain haploid progeny. For this purpose, diploid cells were incubated in a liquid medium 
with limiting nitrogen and very high potassium acetate concentration as a (poor) carbon 
source [11]. Despite several attempts, no tetrad formation was observed. In that respect, S. 
boulardii shows similar properties as RH2585/2586 (the filamentous diploid used in this work) 
that does not form tetrads upon treatment under the described conditions. In order to induce 
meiosis and sporulation, a double knockout of RME1 (Regulator of Meiosis 1) in S. boular-
dii was produced. RME1 is a negative regulator of meiosis that prevents the expression of 
meiosis-required proteins such as IME1 (Inducer of Meiosis 1) and promotes mitosis [12]. 
The S. boulardii ∆∆rme1 derivative did not show any phenotypical differences to the parental 
wild-type strain in terms of growth temperature (Figure 1A). Unfortunately, no tetrads were 
obtained from this knockout strain either. I conclude that S. boulardii does not undergo meio-
sis and haploid tetrad formation at least under laboratory conditions used here.

Name and properties of diploid yeast strain Auxotrophic properties/antibiotic resistances

BY4743 Requires histidine, leucine, methionine, and uracil

RH2585/2586 Requires histidine and uracil

RH2585/2586 ∆flo8::kanX ∆flo8::NATR No requirements; G418- and NAT-resistant

S. boulardii None

S. boulardii ∆flo8::kanX ∆flo8::NATR No requirements; G418- and NAT-resistant

S. boulardii ∆rem1::kanX ∆rem1::NATR No requirements; G418- and NAT-resistant

S. boulardii ∆his3::kanX ∆his3::NATR Requires histidine; G418- and NAT-resistant

S. boulardii ∆ade2::kanX ∆ade2::NATR Requires adenine; G418- and NAT-resistant

G418/geneticin and NAT/nourseothricin are selective antibiotics for yeast strains.

Table 1. Diploid yeast strains used in this work.

The Benefits of Saccharomyces boulardii
http://dx.doi.org/10.5772/intechopen.70591
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As shown in Figure 1C, S. boulardii does not carry any auxotrophic markers as it grows well 
on minimal medium (SD) devoid of amino acids or nucleic acid components such as adenine 
or uracil. Auxotrophic marker genes could be easily obtained by deleting the ADE2 (ade-
nine biosynthesis) or HIS3 (histidine biosynthesis) genes (Figure 1C). These deletions were 
obtained by introducing dominant auxotrophic marker genes that provide resistance to the 
antibiotics kanamycin/G418 or nourseothricin. Deletion of a single gene copy of ADE2 or 
HIS3 still allowed for growth on minimal medium plates (not shown) indicating the clear dip-
loid character of this yeast. Only double deletion of both HIS3- or ADE2-gene copies (which 
made it resistant against both kanamycin/G418 and nourseothricin; Figure 1C) made this 
yeast strain auxotrophic for histidine or for adenine. Newly gained histidine auxotrophy was 
used in a subsequent experiment to transform it with yeast plasmids carrying HIS3 as a select-
able marker gene (see subsequent text).

2.2. Transformation of S. boulardii with conventional yeast plasmids

As an auxotrophic histidine-deficient yeast strain was now available, I decided to transform 
it with conventional yeast plasmids that complement for the lack of HIS3. For this purpose, 
S. boulardii ∆∆his3 (#1811) was grown in minimal SD medium supplemented with histidine. 
Cells were made competent by treating them with Li-acetate following a well-established 
yeast transformation protocol [13].

Figure 1. Properties of S. boulardii and other diploid yeast strains (all listed in Table 1). (A) Growth comparison of 
yeast strains at different temperatures. Indicated yeast strains were spread on YPD plates and incubated at indicated 
temperatures (30, 37, and 40°C) for 2 days; (B) filamentation properties of different yeast strains. Strains RH2585/2586, 
RH2585/2586 ∆flo8::kanX ∆flo8::NATR, and S. boulardii were incubated on SLAD plates (50 μM ammonium sulfate) for 
1 day at 30°C and individual growth colony visualized under the microscope (upper panel: 20× magnification; lower 
panel: 100× magnification); (C) growth of S. boulardii on different media. S. boulardii (#1785) and derivatives ∆∆his3 
(#1811) and ∆∆ade2 (#1812) were grown for 2 days at 30°C on minimal SD medium (left plate) or on YPD + G418 and 
nourseothricin (both at final 100 μg/ml) (right plate). Denote the characteristic pinkish color of strain #1812 due to the 
deletion of both ADE2 gene copies.

The Yeast Role in Medical Applications6
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After 2–3 days of incubation at 30°C, his+-transformants were nicely observed (Figure 2; left 
panel), indicating that a simple yeast transformation protocol was sufficient to transform 
this yeast strain and to recover its prototrophy. Plasmids used for transformation (p301HIS3 
GAL-p20-HA from S. cerevisiae and Candida albicans) allow for the expression of the protein 
p20 (a modulator of the activity of eIF4E, the cap-binding protein; see subsequent text) when 
growing cells in a medium containing galactose. As shown on a Western Blot obtained from 
yeast extracts, p20 from different sources was expressed in galactose but not in glucose-
containing media (Figure 2; right panel). This confirms that, in S. boulardii, the GAL1/10 
promoter is regulated in an identical manner as in conventional yeast strains used in the 
laboratory [14].

2.3. Sequencing and comparison of S. boulardii p20 gene

p20, a small acidic protein of 161 amino acids, is encoded by the non-essential gene CAF20 
which only exists in a variety of yeast species (such as S. glabrata, Kluyveromyces lactis, C. 
albicans, S. cerevisiae). Its function is related to regulating the activity of the cap-binding 
protein eIF4E during translation in a yet not-well-understood manner [15]. A sequence 
alignment of different yeast species (see Figure 3; upper panel) shows a clear homol-
ogy but not identity of the corresponding p20 proteins. Especially conserved are peptide 
motifs at the amino terminus (which are required for binding to eIF4E; the canonical motif 
YxxxxLL/I/F highlighted) and at the carboxy terminus (where precise function has still to 
be determined).

Figure 2. Transformation of S. boulardii ∆∆his3 and expression of p20. (Left panel) Transformation of S. boulardii ∆∆his3. 
S. boulardii ∆∆his3 was transformed with plasmid p301HIS3 p20 (S. cerevisiae)-HA (segment 2) or with plasmid p301HIS3 
p20 (C. albicans)-HA (segment 3) and grown on minimal medium plates (without histidine) for 3 days at 27°C. As a 
negative control, no plasmid DNA was added (segment 1); (right panel) expression of HA-tagged p20 after induction 
with galactose. S. boulardii ∆∆his3 extracts from cells transformed with p301HIS3 p20 (S. cerevisiae)-HA (lanes 1 and 
3) or transformed with p301HIS3 p20 (C. albicans)-HA (lanes 2 and 4) grown on medium containing 2% glucose or 
2% galactose as indicated are shown. Individual colonies from segments 2 and 3 were picked and grown in liquid SD 
medium for 24 h. Subsequently, half of the cells were collected, washed (2× with water), resuspended in SGal (minimal 
medium with 2% galactose), and incubated for 24 h at 27°C. Collected cells were boiled in 2× SDS-sample buffer, proteins 
separated on a 15% SDS-PAGE gel. Separated proteins were blotted onto nitrocellulose, subsequently incubated with 
monoclonal antibodies against the HA-tag (1:2000 Dilution in 2% skim milk). For visualization of the Western Blot, 
WesternBright ECL kit (advansta) was used.
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The CAF20 gene from S. boulardii was PCR-amplified using genomic DNA and oligonucle-
otides hybridizing at the 5′ and 3′ region of the S. cerevisiae CAF20 gene. Subsequent sequenc-
ing showed that CAF20 from S. cerevisiae and S. boulardii is nearly identical. The only difference 
detected is a conserved amino acid substitution (leucine to valine; highlighted) at position 16 
(Figure 3; lower panel). Among those yeast species that carry the p20 gene conservation varies 
between 30 and 90% (not shown). The almost identity of both sequences shown here clearly 
confirms that S. boulardii is a variant of the species S. cerevisiae.

3. Conclusions

In this work, I present data indicating that S. boulardii is a diploid S. cerevisiae strain. It thrives 
well under laboratory conditions at different temperatures (up to 37°C) which is not unusual 
for different laboratory yeast strains. S. boulardii does not show filamentous properties even 
though its FLO8 gene does not carry the typical premature stop codon identified in many 
laboratory (and industrial) yeast strains. S. boulardii does not undergo meiosis or form hap-
loid progeny when incubated in sporulation-inducing media. S. boulardii does not carry 
any identifiable auxotrophic gene markers. It can be easily manipulated to obtain knockout 

Figure 3. Sequence comparison of p20 from different yeast species. Multiple sequence alignment of p20 from different 
yeast sources (CANGA, Candida glabrata; KLUYV, Kluyveromyces lactis; CANAL, Candida albicans; YEAST, Saccharomyces 
cerevisiae) was done with the help of Clustal Omega (http://www.ebi.ac.uk/Tools/msa/clustalo/). Highlighted amino 
acids; see text. For sequencing of S. boulardii p20 gene, the complete ORF and adjacent sequences were PCR-amplified 
with oligonucleotides used for S. cerevisiae p20 gene amplification and the obtained PCR product was sequenced in both 
directions (shown is the part encoding the p20 open reading frame of S. boulardii).
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derivatives by inserting genes conferring antibiotic resistance and obtain thereby auxotrophic 
progeny. Additionally, S. boulardii can be easily transformed with conventional yeast plas-
mids allowing also for the expression of proteins regulated by the galactose-inducible GAL 
1/10 yeast promoter.

In accordance with those properties, it is probably not detrimental for human health (at least 
not for immunocompetent individuals) as it will not easily establish in the gut or penetrate the 
intestinal blood barrier. All this does not mean that it has beneficial physiological properties 
and I would like to ask the question: is this not just a further conventional yeast strain?
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Abstract

Candida spp. strains are characterized by their ability to form a biofilm structure on 
biotic and abiotic surfaces, causing significant problems in many industrial branches 
and threatening human health. Candida biofilm is a heterogeneous, spatially well-orga-
nized structure consisting of planktonic and mycelial yeast forms which are interdepen-
dent in the quorum sensing system and surrounded by an extracellular polysaccharide 
substance. Biofilm-forming microorganisms are characterized by high invasiveness, 
the ability to cause dangerous and difficult to treat infections. Furthermore, the cells 
in the biofilm, compared to planktonic forms, show reduced sensitivity to chemical 
compounds with antifungal activity and increased survival under unfavorable envi-
ronmental conditions. The chapter focuses on the emergence of antifungal resistance 
with the development of biofilms. The work presents the examples of antibiotic resis-
tance of a variety of Candida, showing that a group of strains expressing intermediate 
sensitivity or resistance to the tested antibiotics include both clinical and food-borne 
isolates. Similarities in enzymatic and biochemical profiles of different origin isolates 
are discussed. A substantial heterogeneity within Candida albicans group is also under-
lined. Simultaneously, the incidents of biochemical profiles conformity of some clinical 
and food-borne isolates are presented, which may be a result of Candida transmission 
via food.

Keywords: Candida albicans, non-albicans Candida, Candida biofilm, drug resistance,  
food-borne Candida

1. Introduction

Unicellular forms of yeast are rarely found in nature as single, scattered cells, in the form of 
plankton but they are rather adsorpt at the solid-liquid, liquid-gas, or liquid-liquid interface. 
Generally, they form organized, settled structures taking the form of multicellular clusters 
forming biofilm. Biofilm, also called as the biological membrane, is a complex, multicellular, 

© 2018 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



and multifunctional structure of one or more species of microorganisms, surrounded by a 
layer of organic and inorganic substances produced by these microorganisms adhering to 
both biotic and abiotic surfaces. The form of biofilm enhances the effectiveness of microbial 
protection against the adverse environmental factors, including antibiotics, reduces the effec-
tiveness of host defense mechanisms, facilitates the acquisition of nutrients, creates the possi-
bility of horizontal gene transfer by providing evolutionary and genetic diversity, and enables 
the transmission of information between microbial cells [1–3].

Biofilm is most commonly formed on solid surfaces staying in contact with water, living 
tissues, and liquid-air interface. This ubiquitous structure can be very useful but also dan-
gerous being difficult to be removed. Biofilm plays a key role in a process of self-cleaning 
of surface-, ground-, and underground water. The biofilm’s ability to create a biobarrier 
has been exploited in water treatment and to reduce a pollution of soil and ground waters. 
Biofilm also allows biological removal of pollutants from sewage [2]. Biofilm exists not only 
in the natural environment but also is industrially applied, for example, to catalyze complex 
chemical reactions. Natural microbiota of the body of a healthy person forms a biofilm mod-
ulating some physiological functions, for example, colonic biofilm [4]. Moreover, changing 
environmental conditions may transform a biofilm from a big friend into a fierce enemy. A 
good example is the biofilm of the gastrointestinal tract, which, in unfavorable conditions, 
can become a source of mortal danger. In public facilities such as hospitals, hotels, swim-
ming pools, physiotherapeutic facilities, sanatoria, mass caterers, schools and kindergar-
tens, homes, and enterprise of the cosmetic and food industries, biofilm structure allows 
saprophytic and pathogenic microorganisms to survive washing, cleaning, and disinfection 
processes. Biofilm formed in a water supply network poses a sanitary risk to the public. In 
addition, the pipes water network is subjected to microbiological corrosion. Most food pro-
cessing plants are struggling with the problem of biofilm formation in water distribution sys-
tems, refrigeration systems, and heat exchangers. In the food industry, biofilm can colonize 
not only sewage systems, but also machine working surfaces and food products. Biofilm on 
work surfaces, even those made of stainless steel, glass, or Teflon, can lead to food contami-
nation with spoilage microorganisms, including pathogenic ones. Contaminated products of 
both plant and animal origin can cause serious human illnesses as well as huge losses in the 
food industry [2]. Biofilm microorganisms are characterized by increased invasiveness and 
the ability to cause serious infections, even in hospital. Ability to create biofilm is one of the 
pathogenicity factors of the microorganism. Most often, infections caused by biofilm-build-
ing microorganisms are the result of the abiotic surfaces colonization and account about 65% 
of all infections [1]. Microorganisms inhabiting medical materials both biomaterials within 
the human body such as vascular and intraperitoneal catheters, artificial valves, prostheses, 
implants, lenses, stitches, and diagnostic devices such as endoscopes, fibroscopes, and laryn-
goscopes are also an important problem. Biofilm formation on these devices is the cause of 
serious infections and also leads to device damage [1, 2, 5–7]. Microorganisms that inhabit 
the human body also occur mainly in the form of biofilms. These biofilms are mostly com-
posed of symbiotic microorganisms, but also opportunistic ones may occur, which in homeo-
stasis disturbances lead to a development of serious infections. The situation is particularly 
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dangerous, if the development of infection is accompanied by a dysfunction of the device 
colonized by biofilm.

2. Biofilm definition

Biofilm is defined as a well-organized, three-dimensional social structure surrounded by extra-
cellular matrix and irreversibly bound to the surface, built by microorganisms with altered, 
with respect to planktonic form, genotype properties [5, 6, 8–10]. Biofilm enables microorgan-
isms to survive in a changing and unfavorable environment, and therefore is the dominant 
form of their existence in the nature. It is characterized by structural heterogeneity, genetic 
diversity, complexity of interaction, and the presence of extracellular substances. It can be 
either mono- or multilayer, produced by one species or many different species. The biofilm 
structure depends on many factors such as hydrodynamic conditions, surface type, pH of the 
environment, microbial mobility, intercellular communication, nutrient content, exopolysac-
charides, proteins, or oxygen. Colonization of various surfaces by microorganisms is possible 
due to their adhesive properties and extracellular polymeric substances (EPS) stabilizing the 
biofilm structure. Adjacent microorganisms, in a spatially organized structure, produce a com-
mon layer of polymeric substances called extracellular matrix, the complex compounds playing 
an important role in the formation and functioning of the biofilm. Most EPS polysaccharides 
are the organic compounds with long linear or branched molecules of 106 Da. The amount of 
polymers depends on the quantitative and qualitative composition of nutrients. The percentage 
of water in the biofilm matrix is up to 97%. Polymers ability to cyclical accumulation simultane-
ously with donation of water gives the matrix hydrogel features with exceptional viscoelastic 
properties [2, 11–14]. Matrix hydrogel nature effectively protects biofilm microorganisms from 
desiccation and provides the cells with protection against environmental stress factors such as 
UV radiation, temperature shifts, pH fluctuations, or toxic substances [2, 5, 7]. The matrix serves 
also as a communication system between biofilm cells, where chemical and physical signals 
are transmitted through a branched open channel system separating individual microcolonies. 
Thanks to the channel network, oxygen and nutrients are delivered through the channels and 
the excreted waste products are discharged. Cells in biofilms are present in various metabolic 
states. On the periphery of the biofilm, where the channel network system is more developed, 
the cells are large, metabolically active, and its reproducing increases the biofilm thickness. 
While, microorganisms located inside the biofilm are partially cut off from the water system, 
which results in their growth rate decreasing. They may also fall in an anabiosis with possible 
activation in a case of destruction of the outer cell layer, which, no matter how long the biofilm 
works, uses the features of young biofilm cells [2, 12, 13]. The biofilm cell has different char-
acteristics than the planktonic cells. An important determinant of biofilm properties is quorum 
sensing, a specific communication system, strictly controlled by specific genes in response to the 
abundance of cells in the biofilm—the sense of the piston. The ability of cells to communicate 
makes the biofilm able to function in a way that resembles an almost one multicellular organ-
ism consisting of physiologically diverse subpopulations of microbial cells [2, 4, 5, 12, 13, 15].
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3. Biofilm structure

The process of biofilm formation is multistage and depends on the properties of the micro-
organisms, the construction, and properties of the colonized materials or the host. There are 
four basic phases: (I) reversible adhesion, (II) irreversible adhesion, (III) biofilm maturation, 
and (IV) dispersion (Figure 1).

Biofilm formation begins with the adhesion of free floating microorganisms to the biotic or 
abiotic surface. Reversible adhesion is the result of relatively weak physical interactions caus-
ing the first cells to attach to a solid surface such as gravitational interaction, electromagnetic 
surface charge, van der Waals forces, electrostatic, and hydro- and thermodynamic forces 
(Brownian motion). These forces play a crucial role when the distance between cells and the 
surface is relatively large. Biofilm is unstable and can easily be removed by both chemical 
and physical methods. When the cell distance from the surface is less than 1.5 nm, there is 
irreversible adhesion due to the formation of specific bonds. First microbial cells attached 
to the surface help attaching another one by the formation of hydrophobic, non-specific or 
specific hydrogen bonds, and pairs and ionic complexes (carbon-carbon covalent bonds) [2, 5, 
12, 13]. An important place in the biofilm-building process is the interaction of specific recep-
tors, adhesives, and ligands on the cell surface of the microorganism or the target host cell 
extracellular ligand. Initially, the surfaces are covered by a single layer of microbial cells. In 
the construction of the basic EPS matrix, which gives the biofilm a defined shape and struc-
ture, the increased synthesis and secretion of extracellular biopolymers is important. Biofilms 
expand by increasing the intensity of cell proliferation. While, glycocalyx, a shell composed 
of polysaccharide residues of glycolipids and glycoproteins, the components of the cell mem-
brane, is produced up to the total surroundings of the microcolonies. At this stage, biofilm, in 
addition to living microorganisms, also includes dead cells, mineral substances, and organic 
compounds. These elements are joined by further microbial cells. Irreversible adhesion allows 
the formation of microcolonies and biofilm maturation [5, 12, 13]. Biofilm maturation is fol-
lowed by the microorganisms’ reproduction, their gradual differentiation and the activation or 
inhibition of expression of certain genes. Biofilm cells acquire features that are not expressed 
by planktonic cells and can transmit them to adjacent and progeny cells. When reaching the 

Figure 1. Biofilm formation phases: (I) reversible adhesion, (II) irreversible adhesion, (III) biofilm maturation, and (IV) 
dispersion (elaborated according to [2]).
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Figure 1. Biofilm formation phases: (I) reversible adhesion, (II) irreversible adhesion, (III) biofilm maturation, and (IV) 
dispersion (elaborated according to [2]).
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 critical thickness of the biofilm membrane, cells migrate from peripheral parts of the mature 
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cans often occurs in the form of biofilm, which is the etiological factor of approximately 90% can-
didiasis. Among the clinical strains of the genus Candida, biofilm formation depends on the type 
of a strain [16], and Candida albicans, even of the same genotype, may differ in biofilm features [1].
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production by adhering to biotic and abiotic surfaces and its colonization [5]. Adhesion is a 
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or active penetration and because of enzymatic activity they contribute to the destruction of 
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5. Candida adhesion and the ability to the biofilm formation

The biofilm structure depends on the specific gene expression resulting from yeast contact with 
biotic or abiotic surface. Candida albicans yeast contact with a specific surface and activate the 
mitogen-activated protein kinase (MAPK) signaling cascade, which carries the extracellular 
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contact signal to eukaryotic cells, then activating transcription factors and expressing a specific 
set of genes responsible for adherence. MAPK gene mkc1 activity level is higher in cells growing 
on different surfaces than in planktonic cells. After contacting Candida albicans with a polysty-
rene surface, the transcriptional level of the gene coding for methionine and cysteine, and the 
cdr1 and mdr1 codes for the mechanism of active ejection of the drug by efflux are surprisingly 
increased. Some examples of Candida sp. adhesion to polystyrene are presented in Figure 2.

Genes encoding sulfur amino acids are responsible for the amount of biofilm biomass pro-
duced, while the expression of the cdr1 and mdr1 genes is associated with the acquisition of 
drug resistance by the biofilm phenotype. What is more, the activity of adh1 alcohol dehydro-
genase is higher in plankton cells than in biofilm cells, which influences the biofilm formation 
[1]. This enzyme is probably responsible for inhibition of biofilm formation and inactiva-
tion or mutation of the adh1 gene results in stronger biofilm formation in vitro and in vivo 
[1, 5]. Adhesion to both biotic and abiotic surfaces related to recognition of host cell surface 
receptors, is a precondition for colonization, biofilm formation, initiation, and development 
of infection. Lack of adhesion prevents yeast cells from biofilm formation. Phenotypic vari-
ability and plasticity of cells in relation to changing environmental conditions allow for the 
settlement of new surfaces. Numerous Candida albicans gene products important for biofilm 
development have been identified [1, 19]. Adhesive genes can be activated by different envi-
ronmental signals. The potential adhesives involved in biofilm formation are cell wall surface 
proteins. The input of surface proteins with GPI (glycosylphosphatidylinositol) module is 
decisive in the formation of fungal biofilm. Ability of Candida albicans to adhesion is an impor-
tant virulence factor associated with glycoproteins encoded primarily by genes such as hwp1 
and als. Such an effect leads to changes in the expression of genes encoding cell wall proteins 
glycosylphosphatidylinositol dependent. Several key adhesins: als1, als2, als3, als4, als5, eap1, 
hwp1, hydrolases, lipases, phospholipases, and transcriptional factors bcr1 regulating protein 
expression are responsible for biofilm formation [1, 5, 19, 20]. Ywp1, mannoprotein with a GPI 

Figure 2. Adhesion to a polystyrene surface of environmental Candida sp. strains (a) Candida albicans cl/MP/12 clinical 
isolate; (b) Candida parapsilosis Fo/82/03 food-borne isolate; (c) Candida albicans cl/MP/08 clinical isolate (photographs by 
M. Maroszyńska).
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module, is both the regulator of adhesion and a marker of Candida albicans cells. Blastospores 
are characterized by weaker intercellular adherence than mycelial forms. In addition, they are 
probably equipped with mechanisms to regulate the activity of their own adhesins [1]. The 
ywp1 protein found on yeast cells, a known adherence regulator, can function as an antihis-
tamine and inhibit adherence. The discovery of the ywp1 protein is a scientific proof for the 
presence of the cell diffusion phase in the biofilm’s life cycle. The deletion of the ywp1 gene 
leads to the enhancement of the blastospor adherence to the various surfaces [1]. On the other 
hand, in the biofilm layer composed of pseudomycelium Candida albicans identified adhesins 
with GPI, HWP1, EAP1 module, and the ALS adhesin family. Some studies indicate that the 
genes als and eap1 within the Candida genus show similarity to the genes regulating adhesion 
in Saccharomyces cerevisiae [1]. While, the hwp1 gene, known as the gene coding for the main 
Candida albicans protein, is involved in many functions such as cell wall building, intracellular 
signaling, and the development of hyphae. In addition, it appears that it is involved in the 
adhesion of yeast to epithelial cells, which is so important in the initial colonization stage. 
There is also an evidence for the involvement of the hwp1 gene in systemic candidiasis patho-
genesis on mouse model in vivo. It has been shown that strains having the hwp1 and hwp1-null 
heterologous genes showed, respectively, reduced and no virulence compared to control wild 
strains. Hwp1 is the first exposed adhesive, required for biofilm formation in vivo, which is 
not present on cells in the form of yeast and plays no role in the formation of microcolonies. 
However, it expresses during morphogenesis blastospores to pseudomycelium [1].

6. Candida germ tubes and the ability to the biofilm formation

Pseudomycelium is formed by a germ tube process and as a key component of the biofilm pro-
vides its integrity. Both morphological forms of blastospore and pseudomycelium are capable 
of a biofilm formation, but strains capable of growth only in the form of blastospores produce 
only residual biofilm. The transcription factor efg1 plays a key role in regulating the morphol-
ogy and virulence of yeast Candida albicans. It was first identified as an inducer of the develop-
ment of pseudomycelium in Saccharomyces cerevisiae and then as a necessary for the growth 
of mycelium Candida albicans. The consequence of deletion of this gene is a loss of ability to 
transition into mycelial forms in response to majority of stimulation factors, but may occur 
in hypoxia and abiotic conditions. The efg1 gene fulfills many of the important functions in 
Candida albicans yeast cells, and most important is the virulence of vast infection models. Cells 
with efg1 gene deletion do not attack the human epithelium. In addition, efg1 is one of the key 
regulators of transition from the “white” form to the “opaque” form and essential to keep the 
default “white” phenotype. Moreover, unlike many other biofilm process regulators, the efg1 
gene is essential for biofilm development under hypoxia and oxygenation conditions. Even 
when the yeast cells have adhered to the abiotic surface it is necessary to produce resistance 
to antifungal agents. Efg1 is a part of a network of six transcription factors that regulate the 
expression of at least 1000 genes involved in the development of the Candida albicans biofilm 
[21]. Several thousands of intergenic regions bound by the transcriptional factor efg1, which 
binds to promotors at least 53 genes in Candida albicans, including many transcription factors 
have been identified. The binding of efg1 is closely related to the transition from the basic 

Candida Biofilms: Environmental and Clinical Aspects
http://dx.doi.org/10.5772/intechopen.70703

19



form of the yeast cell to the pseudomycelium. Mutants with the deletion of efg1, cph1, and tec1 
genes encoding transcription factors do not form pseudomycelium, and consequently have 
no ability to form mature biofilm structures. This indicates that transcriptional factors efg1, 
cph1, and tec1 play a key regulatory role in the formation of mature Candida albicans biofilm 
[1, 21]. Furthermore, the mutations of the genes suv3, nup85, mds3, and kem1 inhibit the for-
mation of pseudomycelium, which in turn promotes the formation of “immature” biofilm. 
In addition, mutants with the deletion of the bcr1 gene produce pseudomycelium, but do not 
produce biofilm, since the inhibition of gene expression for adhesin als and hwp1, involved in 
biofilm formation and regulated by bcr1 [1]. Separation of the filamentation process and bio-
film formation showed that the morphogenesis of blastopores to pseudomycelium and con-
sequently the presence of pseudomycelium did not clearly determine the biofilm formation. 
Pseudomycelium is only a basis, on which under control of the transcription factor bcr1, the 
adhesins gene gradually express. It is therefore necessary to provide the proper function—
filamentous adherence, without which mature biofilm will not be formed. Mutants lacking 
the activity of tec1, bcr1, als3, or hwp1 proteins exhibit large abnormalities in the biofilm 
production, which may underline the importance of all these proteins in the early stages of 
biofilm formation. The ability of residual biofilm formation by these mutants may at the same 
time indicate that these proteins are not directly involved in adherence to the surface, but in 
adherence between the blastospore, the mycelium forms, or the adherence mixed between 
both forms [1, 5, 21].

7. Candida communication and the ability to the biofilm formation

For the proper functioning of biofilm, communication between the cells and density regula-
tion is necessary. These tasks are executed by small signaling particles called autoinducers and 
by responding to the generated signals within population in the quorum sensing system. In the 
culture with a high population density, there are signaling particles which, through diffusion, 
penetrate other cells running different signals. Exchanging signals lead to specific cell effects 
and coordination of cellular activity like multicellular behavior. Candida yeasts produce sev-
eral signaling molecules, the accumulation of which determines the development, existence, 
and breakdown of the biofilm through having a direct influence on the process of mycelial 
forms creation. The best-known molecule is farnesol (C15H26O), a terpene alcohol isolated from 
Candida albicans cells. In the reproduction and maturation phase of the biofilm, the density 
of cells is relatively small, allowing the formation of mycelium. With the cell concentration 
increase, the concentration of farnesol, which interacts with the blastospore cell receptors, is 
increasing, preventing transformation into pseudomycelium and maturation of biofilm. The 
consequence is the phase of the biofilm dispersion in which individual blastospores and their 
aggregates are detached [1, 2, 5, 18]. The release of blastospore requires weakening of the 
adhesive properties, which corresponds to the anti-adhesion ywp1 protein, and the main reg-
ulator of the process is the hsp90 protein [5]. Farnesol exogenously inhibits biofilm formation 
by blocking the expression of many genes responsible for the formation of pseudomycelium 
and induces expression of the adh gene taking part in inhibition of the biofilm formation. The 
endogenous accumulation of this signaling molecule in biofilm structures may therefore be 
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a factor initiating the breakdown of the biofilm upon reaching a critical cell concentration. 
Farnesol also influences the expression of ergosterol metabolism genes. At the time of action of 
azoles blocking the ergosterol synthesis, the substrate to produce this molecule is increased by 
Candida albicans, and the amount of farnesol may even rise 45 times. Farnesol also affects many 
other processes, such as production of chlamydospores, iron transport, and activation of genes 
responsible for antibiotic resistance and oxidative stress. Unfortunately, it also has an adverse 
effect on host cells by inhibiting macrophage activity in the mouse model [1, 2, 5].

Another Candida albicans signaling molecule is an autoinducer thiamazole that stimulates 
the production of mycelium during the intermediate phase of biofilm growth. Comparing 
to planktonic cells, biofilm cells produce higher amounts of thiamazole [2, 18]. It protects the 
cells from a decrease in the expression of DNA replication genes, chromosome segregation, 
and a cell cycle control [1, 2].

The active regulation of the process of detachment from biofilm surface layers, in the state 
of achieving critical concentration of cells inside, is a crucial role of signaling molecules [1].

8. Candida antibiotic resistance

Candida albicans, like most pathogens, developed a number of mechanisms that regulate their 
virulence. It has developed different strategies to colonize host tissues and break down and 
weaken its barriers and defense mechanisms. One of the most important virulence factors of 
Candida sp. is the ability to produce mycelial forms that allow a host tissue invasion, at the 
same time repelling an effective phagocytes attack. The virulence of Candida sp. is strongly 
related to proteins determining of cell integrity, adherence, colonization, or change of phe-
notypic forms. These proteins are also an effective weapon in the fight against host defense. 
Most of them are characterized by the presence of anchored glycosylphosphatidylinositol and 
represent 88% of all covalently bound Candida albicans cell membrane proteins. Increasing 
clinical drug resistance because of abuse of antimicrobial agents is an important phenomenon 
hindering the fight against these yeasts. Candida albicans drug resistance is closely related to 
the antifungal activity of the drugs used.

Most drug resistance mechanisms to antifungal agents are the results of gene mutations. 
Usually, these are point mutations of genes encoding drug-binding molecules, enzymes of 
metabolic pathways, or transcription factors [22]. Such mutations are stable and their acquisi-
tion takes time. It is believed that they are the expression of a cell response to chronic stress, 
for example, resistance-inducing azoles [23] or genetic aneuploidy [24], which changes the 
expression of multi-drug pump points or transcription factors. Antifungal drugs can also acti-
vate a classic, immediate response to a stress. Resistance acquired on this path does not involve 
the change of genetic material and is reversible, for example, Candida sp. phenotype form 
change or biofilm formation. This reversible change allows us to obtain the time necessary to 
induce permanent resistance dependent on genetic mechanisms. For the resistance of one of 
the oldest antifungal agents, 5-FC, the most responsible is uracil phosphoribosyltransferase 
mutation preventing conversion of 5-fluorouracil to fluorouradine 5- monophosphate [25]. 
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Resistance to polyene, which is still relatively rare today, is obtained by decreasing ergosterol 
content in the cell membrane, inter alia by erg3 gene mutation. Lowering ergosterol content 
in the cell membrane also leads to azole resistance by the increased expression of the erg11p 
molecule, the azoles binding point. Point mutations of this molecule are responsible for 
replacing the toxic ergosterol precursors accumulated in the yeast cell by non-toxic ones [25]. 
In vitro studies show different patterns of drug resistance to azoles, frequently overlapping 
with clinical trials. In vitro, the role of the hsp90 molecule chaperone for calcineurin in pro-
moting the rapid acquisition of Candida albicans resistance to fluconazole has been identified 
[26, 27]. Interestingly, the ability to maintain azole resistance even after treatment has ended 
[28]. Another effective mechanism of azoles resistance is the high expression of multilayer 
membrane pumps (MFS Mdr1p drug pump or ATP binding cartridge (ABC) of the Cdr1p or 
Cdr2p pump). These pumps beside azoles are active against a variety of other drugs, apart 
from echinocandins [25, 29]. Limited resistance to echinocandin is most likely related to their 
relatively rare use. Although, in recent years, there have been reports both in vitro and in vivo 
on Candida sp. resistance to echinocandins. The best-known mechanism of resistance to these 
antibiotic agents is the mutation of the β-1,3-d-glucan synthase Gsc1p subunit [25, 29].

9. Candida biofilm and its drug resistance

Particularly dangerous from a clinical point of view is the ability of most clinically important 
Candida species (Candida albicans, Candida dubliniensis, Candida glabrata, Candida krusei, Candida 
tropicalis, and Candida parapsilosis) to biofilm formation. The clinical significance of biofilm is 
increasing with the increasing introduction of various medical devices into the human body. 
Almost all the contaminations of these devices are the results of their colonization by micro-
organisms forming organized biofilm structures.

Biofilm Candida sp. is characterized by high resistance to all antifungal agents currently used: 
azoles (fluconazole, itraconazole, voriconazole, posaconazole), echinocandins (kaspofungin, 
mikafungin, anidulafungin), amphotericin B, flucytosine, but the level of this resistance is 
different for different drugs. Studies have shown that Candida sp. biofilm is resistant to flu-
conazole at a concentration of 2000 times higher than the MIC value for the planktonic form. 
The liposomal form of amphotericin B and echinocandin are the most active against Candida 
sp. biofilm. These antibiotic agents exhibit anti-biofilm activity in concentrations 2–25 times 
higher than the MIC values against planktonic forms [25, 30, 31]. Biofilm resistance is a com-
plex, multi-factor phenomenon that uses the different mechanisms generated by planktonic 
forms at different stages of biofilm formation. There is also the possibility of generating dif-
ferent mechanisms of drug resistance by individual cell in the biofilm. For example, in the 
early stages of biofilm-building with low cell concentration, the increase in the activity of 
drug pumps, lowering the intracellular concentration of azoles, is noted. In mature biofilms 
characterized by greater cell concentration and many extracellular substances, resistance to 
amphotericin, azoles, and echinocandins is generated [11, 25, 30]. In addition, it appears that 
the lower content of ergosterol in mature biofilm is also one of the mechanisms of defense 
against antifungal agents [22]. The change from planktonic forms to biofilm is a response to 
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unfavorable environmental conditions, which starts a rapid response to stress, which gener-
ates, for example, drug resistance. Acquired by acute stress resistance, it is associated with 
protein kinase activity, calcineurin or hsp90p heat shock protein. Drug-resistant subpopula-
tion protects the pool of cells needed to rebuild the biofilm [25]. An extracellular matrix (ECM) 
is an important factor in the generation of multi-drug resistance. β-1,3-d-glucan, one of the 
ECM components, is responsible for drug resistance to fluconazole and amphotericin B. While 
the role of ECM in generating multi-drug resistance is unquestioned, the mechanisms leading 
to it remain unexplained.

In the fight against Candida biofilm, there are two main problems: a penetration of the drug 
into the biofilm structure and to overcome the yeast resistance produced by the cells orga-
nized in the biofilm. A method of “lock therapy” is conformed to deliver the antifungals 
directly into the places colonized by the biofilm. To conquer the growing antibiotic biofilm 
resistance the following strategies are applied: (i) novel antifungal agents in the forms of con-
jugates, (ii) a multi-drug therapy, (iii) a combination of antifungal agents with nonsteroidal 
anti-inflammatory drugs, and (iv) agents interfering the communication of cells in the biofilm.

The use of high drug concentrations, for example, higher echinocandin doses used to treat 
endocarditis, is one of the proposed methods of fighting against Candida sp. biofilm. “Lock 
therapy” uses medical devices (e.g., vascular catheters) for treatment, where high drug doses 
are introduced into the catheter [32, 33].

Hudson et al. [34] describe a novel form of amphotericin B, dextran aldehyde conjugate with 
amphotericin B, preservative gel formulation used in local treatment of infections (ligaments, 
vascular catheters, bones) caused by Candida sp. biofilm. In vitro, also other compounds: 
EDTA, ethanol, and high doses of monocycline, are effective in the fight against Candida sp. 
biofilm as “lock therapy” [32, 35].

Another method of fighting infections caused by Candida sp. biofilm is the combination ther-
apy of antifungal agents (fluconazole, echinocandin, and amphotericin B) with calcineurin 
inhibitors such as cyclosporin A or tacrolimus. Such therapy exhibited good in vivo activity 
in the treatment of rat-associated venous catheter infections [35]. Other promising prepara-
tions used in “lock therapy” in combination with antifungal agents are compounds that target 
hsp90 heat shock proteins such as geldanamycin [25, 35]. However, none of these prepara-
tions are suitable for systemic use due to their toxicity or lack of confirmed safety in clinical 
trials.

An interesting proposal seems to be the combination of antifungal preparations with widely 
used nonsteroidal anti-inflammatory drugs (NSAIDs). Their activity by inhibiting cyclooxy-
genase prevents yeasts filamentation and thus biofilm formation [32].

Recently, the synergistic effects of 2-adamantanamine, a structural analogue of antiviral 
amantadine, with fluconazole have been discovered. The mechanism of action is unknown, 
but it appears that 2-adamantanamine inhibits lanosterol 14-α-demethylase in the ergosterol 
cycle [32]. The patients’ safety of such association has not been established.

Attempts are also being made to use molecules responsible for biofilm communication. One of 
them is farnesol, which, more than in physiological concentration, leads to biofilm degradation. 
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Its activity in mouse model studies in vitro was comparable to that of azoles. However, in vivo 
studies on animal models have not been conducted [32, 36].

Pulmozyme preparation, comprising recombinant human deoxy ribonuclease (rkDNase), is 
currently used in inhalation therapy of patients with cystic fibrosis, which targets bacterial 
biofilm DNA [32].

10. Probable environmental circulation of Candida strains

Besides the most frequent fungal pathogen Candida albicans, non-albicans Candida strains are 
isolated from the patients and clinical environments. Among non-albicans, the common clini-
cal isolates are Candida glabrata, Candida lusitaniae, Candida parapsilosis, Candida auris, Candida 
tropicalis, and Candida dubliniensis. Candida sp. are the widespread yeasts in food products 
serving as natural flora members or food-contaminants. The examples of food-associated 
Candida yeasts are Candida lusitaniae, Candida famata, Candida parapsilosis, Candida colliculosa, 
Candida tropicalis, Candida krusei, Candida boidinii, and Candida pelliculosa. Considering the 
possibilities of Candida strains’ natural circulation between food and clinical environments, 
a question arises if the food-borne strains can be a threat for specific groups of patients. Our 
previous work presented the examples of antibiotic resistance of a variety of Candida clini-
cal and food-borne isolates [37]. Within the study, 24 clinical strains of Candida albicans and 
1 Candida glabrata strain as well as a Candida lusitaniae strain were compared with 18 non-
albicans food-borne candidas. The set of food-borne isolates consisted of Candida lusitaniae 
(four strains), Candida famata (two strains), Candida parapsilosis (one strain), Candida colliculosa 
(one strain), Candida tropicalis (one strain), Candida krusei (four strains), Candida boidinii (three 
strains), Candida rugosa (one strain), and Candida pelliculosa (one strain). The strains sensitiv-
ity to the nystatin (polyenes), fluconazole (triazoles I generation), voriconazole (triazoles II 
generation), and caspofungin (echinocandins) were checked. It was found that all the tested 
strains were sensitive to caspofungin but 15 strains differed in sensitivity to nystatin, fluco-
nazole, and voriconazole irrespective of their origin. Interestingly, two of four tested food-
borne strains of Candida krusei were not susceptible to fluconazole, and the third one was 
classified as intermediate. All Candida krusei isolates were sensitive to fluconazole. One clini-
cal isolate of Candida glabrata was not sensitive to fluconazole. Triazoles were the last effec-
tive not totally inhibiting the growth of the clinical isolates and five food-borne strains. The 
results proved that a group of strains expressing intermediate sensitivity or resistance to the 
tested antibiotics include both clinical and food-borne isolates.

According to the biochemical profiles, the tested strains were classified in two groups: (i) 24 
Candida albicans clinical isolates and 1 strain of food-borne yeast Candida tropicalis, which was 
isolated from pickled cucumbers; (ii) 17 food-borne strains and 2 clinical isolates Candida gla-
brata and Candida lusitaniae. What is more, Candida albicans isolates expressed vast biochemical 
heterogeneity. A yeast adaptation to the host organism may explain these differences.

Both Candida albicans and Candida glabrata, typical human pathogens, were not found in food 
[37]. The noted biochemical profiles conformity of some clinical and food-borne isolates may 
be a result of Candida transmission via food. The similarity of food-borne Candida tropicalis to 
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the Candida albicans strains isolated from clinical patients implies the possibility of circulating 
of antibiotic-resistant strains outside the hospital environment and the possible yeast infec-
tion caused by yeasts entered into the body with food.

The plasticity of Candida yeasts subjected to non-conventional antifungal compounds like 
essential oils were also proved [38, 39]. Both Candida albicans and food-borne isolates, Candida 
rugosa, Candida famata, and Candida krusei, have changed their properties at the presence of 
tea tree oil (Melaleuca alternifolia Maiden & Betche Cheel), thyme oil (Thymus vulgaris l.), and 
clove oil (Syzygium aromaticum l. Merr. & L.M. Perry).

11. Conclusions

Biofilm-forming microorganisms, including Candida species, are characterized by high 
invasiveness, the ability to cause dangerous, and difficult to treat infections. Furthermore, 
the cells in the biofilm, compared to planktonic forms, show reduced sensitivity to chemi-
cal compounds with antifungal activity and increased survival under unfavorable envi-
ronmental conditions. The morphological diversity of the biofilm structures formed by 
Candida albicans and non-albicans strains allows these yeasts to colonize both biotic and 
abiotic surfaces. The emergence of antifungal resistance with the development of biofilms 
is still a problem. The incidences of medical equipment colonization by Candida yeasts are 
constantly noted. Moreover, the proven biochemical profiles conformity of some clinical 
and food-borne isolates may be a result of Candida transmission via food.
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Abstract

The budding yeast Saccharomyces cerevisiae is a useful eukaryote model organism for 
application to chemical biology studies, for example, drug screening, drug evaluation, 
and target identification. To use yeast for chemical biology research, however, it has been 
necessary to construct yeast strains suitable for various compounds because of their high 
drug resistance. Hence, the deletion of all multidrug resistance genes except for those 
that are important for viability and for genetic experiments/manipulation could increase 
the drug sensitivity without influencing the transformation, mating, or sporulation effi-
ciency. There are two major factors conferring multidrug resistance in S. cerevisiae: one is 
the drug efflux system and the other is the permeability barrier. We therefore constructed 
a strain which shows high sensitivity to multiple drugs by disrupting the drug efflux 
system using ATP-binding cassette transporters and suppressing the membrane barrier 
system by introducing an ERG6-inducible system. In this review, we discuss the construc-
tion of our multidrug-sensitive yeast strains and their application in chemical biology.

Keywords: multidrug-sensitive yeast, drug efflux system, permeability barrier system, 
drug target identification, drug screening

1. Introduction

1.1. Screening and target identification of bioactive small molecules: important  
processes in chemical genetics

The screening of bioactive small molecule compounds is the most important process in drug 
development. Natural products which have structural diversity isolated from microorganisms, 
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plants, and animals are useful sources in the field of drug development [1]. Structurally, new 
natural products might show novel activities such as antimicrobial, antiviral, and antitumor 
activities. These natural products also provide useful information for medicinal chemistry, and 
allow the development of new synthetic compounds as novel medicines. For example, eribulin, 
a semi-synthetic derivative of halichondrin B, has been approved as an anti-cancer drug [2–4]. 
Therefore, the screening and identification of new small molecules open new avenues for drug 
development. There are two major ways to identify bioactive small molecules: phenotypic 
screening and target-based screening. Phenotypic screening is based on cytotoxicity [5–7], cell 
cycle arrest [8], immune-suppression [9], and morphological changes [10] of drug-treated cells, 
fungi, and bacteria. Target-based screening is performed based on measurable readouts such 
as enzymatic activity inhibition [11] or drug-protein interaction [12]. These approaches have 
identified useful small molecules and medicines.

Target identification (Target ID) of small molecules is also quite important in order to develop 
safe and useful drugs [13]. Thalidomide, a cautionary example, was used as a sedative a half-
century ago before it was found to be teratogenic and to cause multiple birth defects [14]. 
However, thalidomide is also used in the treatment of Hansen’s disease, myeloma [14], and 
so on. In addition, immunomodulatory drugs derived from thalidomide have been developed 
as a new class of anti-cancer drugs and novel medicines for treating ribosomopathies such as 
5q-syndrome [15]. Recently, cereblon, a substrate receptor of the CRL4 E3 ubiquitin ligase, 
has been identified as a primary target of thalidomide teratogenic [16] and anti-cancer [15] 
activity. These lines of research provide useful information that cereblon may pose a risk of 
teratogenic activity and simultaneously serve as an attractive molecular target for immuno-
modulatory drug development. To identify the relevant target molecules and target path-
ways, indirect and direct approaches have been used [13]. The indirect approaches include 
phenotypic analysis and large-scale analysis such as proteomic and genome-wide analyses. 
Some specific changes in cell morphology, cell cycle arrest, and other phenotypes provide us 
useful information for predicting targets of the drugs. Based on this property, Morphobase, 
an encyclopedic database of the morphological changes that occur in drug-treated cells, has 
been constructed and applied to drug target discovery [17]. Large-scale analyses such as pro-
teomics, metabolomics, and transcriptome analysis of drug-treated cells have been performed 
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functions in cells. Well-known examples are famous immunosuppressants such as FK506, 
cyclosporine, and rapamycin. These compounds inhibit immunophilin and T-cell activa-
tion through different mechanisms [30]. Studies of these compounds have revealed their 
detailed immunoreaction mechanisms [30]. Mitotic inhibitors are another example. Mitotic 
spindle formation and chromosome segregation are fast processes that are completed within 
approximately 1 hour. Therefore, by taking advantage of rapid pharmacological interven-
tion, studies using microtubule inhibitors (αβ-tubulin inhibitors [31–33] or γ-tubulin inhibi-
tor [12]), mitotic kinesins (Eg5 [34, 35]), and mitotic kinase inhibitors (aurora kinases [36, 
37], Cdk1 [38], Plk1 [39, 40], Mps1 [41, 42]) highlighted useful information regarding the 
temporal regulation of mitotic spindle architecture and faithful chromosome segregation. 
These findings could in turn contribute to further drug development. Therefore, target ID of 
newly found useful bioactive compounds is quite an important process in both basic science 
and medicine development.

1.2. Saccharomyces cerevisiae, a useful model organism for chemical genetics

Saccharomyces cerevisiae is one of the most frequently used model organisms in chemical 
genetics. The properties of S. cerevisiae along with easy-to-use genetic analyses, mutational 
analyses, gene disruption, and genome modification have facilitated both chemical screen-
ing and target ID (Table 1). For example, the target of rapamycin (TOR) has been found by 
genetics using S. cerevisiae [29]. In addition, S. cerevisiae is useful for chemical screening [43, 
44]. However, S. cerevisiae generally shows higher resistance against various compounds 
compared with mammalian cells, except in the case of a few compounds such as rapamy-
cin (Table 2). This disadvantage limits the application of S. cerevisiae in chemical screening. 
Therefore, S. cerevisiae showing sensitivities against drug of interest has been quite useful. 
For example, S. cerevisiae quadruple deletion mutant lacking yrr1, yrs1, pdr1, and pdr3 was 
constructed for the analyses of target molecule of reveromycin A. However, construction of 
sensitive yeast suitable for each compound is a time-consuming process. To overcome this 
drawback, we developed two multidrug-sensitive strains which have proven quite useful for 

Compound Approach Finding Ref.

Benomyl Pathway 
analysis

Identification of Mad1, Mad2, Mad3 as mitotic spindle checkpoint 
proteins by using benomyl sensitive mutants

[31]

Benomyl Pathway 
analysis

Identification of Bub1, Bub2, Bub3 as mitotic spindle checkpoint 
proteins by using benomyl sensitive mutants

[32]

Reveromycin A Target ID Identification of ILS1 as a target of reveromycin A [27]

Curvularol Target ID Identification of RPL3 as a target of curvularol [28]

Rapamycin Target ID Identification of TOR as a target of rapamycin [29]

Eudistomin C Target ID Identification of RPS14 as a target of eudistomin C [50]

Splitomicin Screening Identification of splitomicin as a NAD+-dependent histone 
deacetylase inhibitor

[51]

Table 1. The examples of chemical genetics studies using S. cerevisiae.

Multidrug Sensitive Yeast Strains, Useful Tools for Chemical Genetics
http://dx.doi.org/10.5772/intechopen.70664

31



research in chemical biology. There are two major systems conferring multidrug resistance 
in S. cerevisiae: one is the drug efflux system, which exports drugs into vacuoles or outside of 
cells, and the other is the permeability barrier, which blocks the penetration of drugs into the 
cells (Figure 1). The drug efflux system consists of ATP-binding cassette (ABC) transporters 
that export xenotoxic compounds outside of cells or inside of vacuoles, and their transcrip-
tional factors [45–47]. S. cerevisiae has at least 16 ABC transporters, of which Pdr5p, Snq2p, and 
Yor1p confer multidrug resistance by exporting bioactive small molecules out of cells. Four 
transcriptional factors (Pdr1p, Pdr3p, Pdr8p, and Yrr1p) up-regulate the transcription of most 
of the ABC transporters [45–47]. A permeability barrier is conferred by ergosterol in the yeast 
plasma membrane. Therefore, ABC transporter-related genes and ergosterol synthesis genes 
were frequently disrupted to construct drug-sensitive strains. For instance, a strain in which 
pdr1, pdr3 (genes encoding transcriptional factors for ABC transporters), and erg6 (a gene 
involved in ergosterol synthesis) were disrupted was used for drug screening [43]. However, 
the erg6 deletion mutant shows decreased transformation and sporulation efficiencies that 
are essential for yeast genetic analysis. In addition, some of the transporters located in the 
vacuole membrane are involved in the detoxination of metabolites as well as xenotoxins, and 
their disruption results in growth defects. Therefore, to make a yeast strain sensitive to a wide 
range of drugs, it is necessary to suppress both efflux and barrier systems without affecting 
the genetic properties and growth rate. Hence, we speculated that the disruption of all ABC 
transporters located on the plasma membrane that are not important for viability and genetic 
experiments or for the conditional expression regulation of the ERG6 gene could increase the 
drug sensitivity without influencing the transformation, mating, or sporulation efficiency.

In this review, we discuss the construction of two multidrug-sensitive yeast strains, 
12geneΔHSR [48] and 12geneΔHSR-iERG [49], which are available for genetic analysis. We 
also discuss the application of these strains in drug screening and target ID [50].

Mammalian cell line (HeLa) Budding yeast (BY4741)

Cycloheximide (μM) 0.2 270

Digitonin (μM) 0.4 1.9

Fluphenazine (μM) 13 51

Latrunculin A (nM) 0.2 >240

4-Nitroquinoline 1-oxide (μM) 0.1 7.1

Rapamycin (nM) >300 7.1

Staurosporine (μM) 0.1 15.1

Tunicamycin (μM) 1.8 >120

HeLa cells (3 × 103 cells/well in 96 well plate) and BY4741 cells (3.8 × 105 cells/well in 96 well plate) were treated with 
various concentrations of compounds for 48 and 8 h, respectively. Cell viabilities were determined by WST-8 (Dojindo, 
Kumamoto, Japan) and IC50 values were calculated.

Table 2. The IC50 values of compounds against HeLa cells and S. cerevisiae.
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Figure 1. The work flow of the construction of multidrug-sensitive strains. (A) The parental strain, BY4741, possesses 
high genetic manipulation availability, but shows high drug resistance. (B) 12geneΔ0HSR, created by disruption of the 
drug efflux system and introduction of the RME1(ins-308A) mutation, achieves drug-sensitivity without compromising 
the genetic manipulation availability. (C) 12geneΔ0HSR-iERG was created by the insertion of a gal1 promoter into ERG6. 
This strain shows high drug sensitivity but drastically decreased genetic manipulation availability under the glucose 
condition, because ERG6p expression is repressed. Instead, genetic manipulation is available under the galactose 
condition through enhancement of the ERG6p expression.
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2. Construction and application of multidrug-sensitive yeast strains

2.1. Construction of multidrug-sensitive yeast strains

We constructed a multidrug-sensitive yeast strain by disrupting 12 ABC transporter-related 
genes and suppressing the ERG6 gene. The work flow is shown in Figure 1. As a first step, 
we focused on drug efflux systems. The drug efflux system composed of ABC transporters 
confers resistance against a wide variety of compounds [45–47]. Therefore, it is difficult 
to predict which transporters will confer drug resistance against the drug of interest. We 
thus decided to construct the 12geneΔ0 strain through the disruption of all of the ABC 
transporters involved in drug export located on the plasma membrane and transcription 
factors involved in multidrug resistance specifically on a BY4741 background [48]. Gene 
disruption of eight gene-encoding ABC transporters (AUS1, PDR5, PDR10, PDR11, PDR12, 
PDR15, SNQ2, and YOR1) and four genes encoding transcriptional factors (PDR1, PDR3, 
PDR8, and YRR1) was carried out using a PCR-based markerless gene disruption method 
modified from the delitto perfetto method [52]. Because 12geneΔ0 leaves no marker genes 
in the genome, auxotroph markers which the parental strain originally possesses can be 
used for further studies. To use 12geneΔ0 for chemical genetics, it is important to show not 
only its multidrug sensitivity but also its transformation, mating, and sporulation efficien-
cies, which are necessary for genetic analysis. The transformation and mating efficiency of 
12geneΔ0 were on the same order as those of the parental strain BY4741 (Table 3). However, 
the sporulation efficiency was drastically decreased in 12geneΔ0 (Table 3). It was reported 
that single-nucleotide polymorphisms of three genes (a noncoding regulatory region of 
RME1(ins-308A), and two missense mutations in TAO3 and MKT1) are involved in sporula-
tion efficiency, and when these mutations were introduced in S288c, the parental strain of 
BY4741, the sporulation efficiency increased [53]. We therefore introduced the RME1(ins-
308A) and MKT1(D30G) mutations into 12geneΔ0. Although both mutations increased 
the sporulation efficiencies, the MKT1(D30G) mutant formed petite colonies as reported 
previously [54]. Therefore, we decided to use the RME1 mutant for our studies, and the 
strain created was named 12geneΔ0HSR (12geneΔ0 strain showing High Sporulation by 
RME1(ins-308A) mutation) [48]. 12geneΔ0HSR showed sporulation efficiency comparable 
to that of BY4741. By testing the drug sensitivities of the 12geneΔ0HSR, BY4741Δerg3, and 
BY4741Δerg6 strains, we revealed that there are different spectrums of drug resistance con-
ferred by the efflux and barrier systems (Figure 2) [48], suggesting that it is necessary to 
disrupt both the drug efflux and permeability barrier systems to make a strain with high 
sensitivity against a wide range of multiple drugs. To disrupt the permeability barrier sys-
tem without affecting any of the genetic properties, we introduced the conditional expres-
sion promoter GAL1p in the ERG6 gene in 12geneΔ0HSR (Figure 1) [49]. The constructed 
strain, 12geneΔ0HSR-iERG6, showed improved sensitivities to several compounds under 
the glucose condition (ERG6 suppression), and it exhibited sufficient transformation and 
sporulation efficiencies under the galactose condition (ERG6 expression) (Table 3). Because 
of its high sensitivities to several compounds, the 12geneΔ0HSR-iERG6 strain will be a use-
ful tool in chemical biology studies.
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2.2. Application 1: drug screening

2.2.1. Availability of 12geneΔ0HSR-iERG6 in drug screening

In general, S. cerevisiae exhibits high levels of drug resistance, which is an obstacle for drug 
screening. In fact, most of the compounds used for clinical or basic research show higher 
IC50 values against S. cerevisiae than against mammalian cells (Table 2). Therefore, multi-
drug-sensitive strains of S. cerevisiae—for example, the pdr1 pdr3 erg6 triple mutant or pdr1 
pdr3 yrs1 yrr1 quadruplex mutant—have been used for drug screening [43, 55]. To test 
the superiority of our strain, we screened mitochondrial inhibitors from microbial second-
ary metabolites and compared the hit ratio of 12geneΔ0HSR-iERG6 with that of BY25929 
(yrs1::HIS3 yrr1::TRP1 pdr1::hisG pdr3::hisG), a multidrug-sensitive quadruplex mutant 
(Tables 4 and 5).

Transformation efficiency 
(Cfu/μg)

Mating efficiency 
(%)

Sporulation efficiency 
(%)

BY4741 9.6 × 105 ± 2.2 × 105 17.7 ± 7.5 21.9 ± 6.8

Δerg6 55.0 ± 51.3 4.8 ± 1.7 9.4 ± 4.7

12geneΔ0 1.2 × 105 ± 2.0 × 104 15.7 ± 5.3 5.0 ± 2.9

12geneΔ0HSR N.D. N.D. 28.8 ± 4.6

12geneΔ0HSR-iERG6 (under glucose 
condition)

7.0 ± 8.2 6.4 ± 2.2 0.0 ± 0.0

12geneΔ0HSR-iERG6 (under galactose 
condition)

3.0 × 104 ± 2.4 × 104 N.D. 10.7 ± 3.0

Values are mean ± S.D. calculated from three independent experiments. These data are edited from Figure 1 of Ref. [48] 
for BY4741, Δerg6, 12geneΔ0, and 12geneΔ0HSR, or Figure 2 of Ref. [49] for 12geneΔ0HSR-iERG6.

Table 3. Comparison of the efficiencies of transformation, mating and sporulation between BY4741, erg6 disruptant and 
12geneΔ0HSR.

Figure 2. Drugs to which resistance was conferred by ABC transporters, ergosterol or both systems (indicated by 
underlining), respectively.
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To identify the mitochondrial inhibitors, we used the difference in cell growth between the 
glucose medium and the glycerol medium. Yeast can use glycerol as a respiratory substance 
after the conversion to dihydroxyacetone phosphate via glycerol-3-phosphate by cytosolic 
and mitochondrial enzymes, GUT1p and GUT2p, respectively. Therefore, yeast could grow 
even in the presence of a mitochondrial inhibitor in glucose medium because of anaerobic res-
piration, but not in glycerol medium in which one of the metabolites in glycolysis, dihydroxy-
acetone phosphate, could not be produced. Therefore, we compared the growth inhibition 
induced by microbial broth samples on glucose medium (1% yeast extract, 2% polypeptone, 
2% glucose, 1.5% agar) with that on glycerol medium (1% yeast extract, 2% polypeptone, 3% 
glycerol, 1.5% agar), and chose the broth which inhibited yeast growth on glycerol medium 
but not on glucose medium [55]. Growth inhibition activities of microbial broth samples were 
evaluated using the paper disc method on agar plates inoculated with recombinant S. cere-
visiae strains. In detail, 6 mm sterile filter discs impregnated with each compound solution 
(10 μl) were placed on the agar plate using a forceps (medium volume; 30 ml/plate, cell num-
ber; 1.5 × 106 cells/plate, plate dimension; 144 × 100 × 14.5 mm, square shape), and the plates 
were incubated at 30°C for 48 h. After incubation, the diameters of the zone of inhibition were 
measured with a vernier caliper. As shown in Table 4, the hit ratio using the quadruplex 
mutant, BY25929, was about 5%. Because the hit ratio when wild-type yeasts (W303-derived 
yeast strains) were used in a similar screening system was 1.4% (fungus samples 0.5% (44 total 
hits among 8610 samples), actinomycetes samples 3.2% (125 total hits among 3912 samples), 
this result suggests that the quadruplex mutant is useful for drug screening with a high hit 
ratio. Indeed, a novel compound, decatamariic acid, was isolated as a mitochondrial inhibi-
tor using the quadruplex mutant [55]. Moreover, the hit ratio using 12geneΔ0HSR-iERG6 
increased to about 8% (Table 5).

Number of broth Number of hit broth Hit ratio (%)

Origin

Fungus 3144 270 8.6

Actinomycetes 3067 253 8.2

Total 6211 523 8.4

Table 5. Hit ratio of screening of mitochondrial inhibitor using 12geneΔ0HSR-iERG6.

Number of broth Number of hit broth Hit ratio (%)

Origin

Fungus 2664 149 5.6

Actinomycetes 5617 289 5.1

Total 8281 438 5.3

Table 4. Hit ratio of screening of mitochondrial inhibitor using quadruplex mutant, BY25929.
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To determine whether it is possible to isolate the novel compounds or not, we selected the 
microbial broths which were detected using 12geneΔ0HSR-iERG6 but not using the quadru-
plex mutant. We found a total of 46 broths (fungus origin: 16 broths; actinomycetes origin: 
30 broths) which inhibited the growth of 12geneΔ0HSR-iERG6 specifically. Among these 
broths, we selected two fungus broths for further purification of active metabolites, and iso-
lated 4,6′-anhydrooxysporidinone (1, fusoxypyridone [56]), pestalotic acid A (2), and three 
novel compounds (manuscript in preparation) (Figure 3). 4,6′-Anhydrooxysporidinone has 
been isolated from Fusarium oxysporum in the course of the screening of anti-angiogenesis 
inhibitors [57], but showed weak cytotoxicity against mammalian cell cultures (IC50 > 100 μM) 
and anti-MRSA activity (MIC = 100 μg/ml) [58]. Pestalotic acid A has been isolated from a 
Pestalotiopsis sp. as an antimicrobial compound containing a furylidine tetronic acid core [59]. 
Because of the lack of biological activity other than antimicrobial activities, the observation of 
antifungal activity is a novel insight. These results strongly suggest that 12geneΔ0HSR-iERG6 
would be useful for drug screening.

2.2.2. Screening of readthrough compounds

Because the usefulness of our strains was confirmed, we next performed the preliminary 
screening of compounds that show readthrough activities. Readthrough compounds allow the 
translational machinery to skip nonsense mutations encoding premature termination codons 
(PTCs) and could become medicines for hereditary diseases caused by PTCs (Figure 4). To 
date, many small molecules have been developed as readthrough drug candidates. Several 
forms of aminoglycoside antibiotics, such as gentamicin (3), G418 (4), and its analogues, have 
been reported to show readthrough activities (Figure 5) [60]. Barton-Davis et al. revealed that 
the dystrophin expression in mdx mice, an animal model of duchenne muscular dystrophy 
(DMD) is increased after the administration of gentamicin (3) [61]. Novel aminoglycosides 
derived from gentamicin, which showed readthrough activity against four different nonsense 
DNA constructs underlying genetic diseases, were also recently reported [62]. However, 
long-term treatment with aminoglycosides showed serious side effects such as nephrotoxic-
ity [63] and ototoxicity [64]. As a non-aminoglycoside readthrough compound, ataluren (5), 
which is a 1,2,4-oxadiazole derivative developed from a chemical library, promotes dystro-
phin production in primary muscle cells from humans and mdx mice (Figure 5) [65]. It was 
also found that (+)-negamycin (6), which is a dipeptide-like antibiotic containing a hydrazide 

Figure 3. Structure of 4,6′-anhydrooxysporidinone (1) and pestalotic acid A (2).
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structure [66], has readthrough activity and restores dystrophin expression in the muscles of 
mdx mice (Figure 5) [67]. In our structure-activity relationship study of (+)-negamycin, we 
discovered several more potent derivatives, including Leucyl-3-epi-deoxynegamycin (TCP-
126, 7) and TCP-112 (8) (Figure 5) [68, 69]. However, the activities of these compounds are not 
sufficient for medicine, and the mechanism of action of the readthrough activity remains to 
be elucidated.

To discover novel readthrough compounds, we constructed yeast strains for the screening 
of readthrough compounds using 12geneΔ0HSR. ADE2 is an enzyme that is essential to 
producing adenine in live yeast systems, and its mutation induced the accumulation of 
red pigment in vacuoles [70]. One of the ade2 auxotroph markers, ade2–101, has a nonsense 
mutation (ochre) at 190 bp [71]. Therefore, we introduced PTCs at the same site as in the 
ADE2 gene and inserted the ADE2 loci of 12geneΔ0HSR by pop-in/pop-out. The resulting 
strains 12geneΔ0HSR ade2-E64X required adenine for growth and formed red colonies in 
adenine-limited medium (Figure 6A). In contrast, most of the colonies appeared white on 

Figure 4. Nonsense mutation as a premature termination codon (PTC) and readthrough compounds. (A) mRNAs 
containing no PTC are translated into full-length and functional proteins. (B) In the case of mRNAs containing PTC, 
translation stops at PTC and non-functional truncated proteins are synthesized. (C) In the presence of readthrough 
compounds, even mRNAs containing PTC are translated into full-length and functional proteins.
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medium containing TCP-126 (Figure 6B), suggesting that TCP-126 evoked readthrough in 
ade2-E64X. In addition, DMSO solution (3 μl) containing readthrough compounds (G418 
or negamycin analogues including TCP-126) induced the white halo on the 12geneΔ0HSR 
ade2-E64X strain-inoculated plate after 4 days incubation (Figure 6C). These results 
indicated that 12geneΔ0HSR ade2-E64X is suitable for use in the qualitative analysis of 
readthrough activity.

Next, we initiated a high-throughput screening of the readthrough compounds based on 
the halo assay using chemical library. This screening is underway, but already several hit 
compounds have been found, including rapamycin (9) [72], wortmannin (10) [72], and 
A23187 (11) [73] (Figure 7). These data provided further evidence of the usefulness of the 
12geneΔ0HSR ade2-E64X strains for identifying and elucidating the mechanism of action of 
readthrough drugs.

2.3. Application 2: target ID

Since our strains show multidrug sensitivity without a decrease in genetic availability, they 
should also be useful for performing target ID for drugs and the mechanism evaluation of 
compounds, especially those which are only available in limited amounts, such as natural 
products. Here we show an example of target ID [50]. Eudistomin C (EudiC, Figure 8), a natu-
ral product isolated from the Caribbean tunicate Eudistoma olivaceum [74, 75] shows broad-
spectrum antiviral activity [76]. Because of a unique structural feature, oxathiazepine ring 
attached to a tetrahydro-β-carboline, EudiC has attracted attention as a lead compound for 
antiviral medicines. However, several trials for its clinical development have failed due to 
the strong cytotoxicity of EudiC. To reveal the cause of the cytotoxicity of EudiC, it is impor-
tant to identify the target molecule responsible for the cytotoxicity of EudiC. By using the 
yeast genetic approach, we found that a mutation in the RPS14A gene confers EudiC-specific 

Figure 5. Structure of readthrough compounds. Gentamicin (3) and G418 (4) are aminoglycoside-type readthrough 
compounds. Aataluren (5), (+)-negamycin (6), and negamycin derivatives (Leucyl-3-epi-deoxynegamycin (TCP-126, 7), 
TCP-112 (8)) are non-aminoglycoside-type readthrough compounds.
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Figure 6. The color of 12geneΔ0HSR ade2-E64X strains turned from red to white in the presence of readthrough 
compounds. (A) 12geneΔ0HSR ade2-E64X strains were plated on YPD containing 0.0005% adenine for 4 days. The 
wild-type strain (12geneΔ0HSR) formed white colonies, but 12geneΔ0HSR ade2-E64X strains formed red colonies. 
(B) 12geneΔ0HSR ade2-E64X strains were plated on SC-ADE + 0.0045% adenine with or without luecyl-3-epi-deoxy-
negamycin (TCP-126) for 4 days. The colonies formed on medium containing TCP-126 were white, suggesting that TCP-
126 evoked readthrough activity in the 12geneΔ0HSR ade2-E64X (TGA) strain. (C) DMSO and G418 were spotted on 0.5% 
agar containing 12geneΔ0HSR ade2-E64X strains overlaid on YPD containing 0.0005% adenine. After 4 days incubation, 
the halo that formed around the G418 was white.
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resistance [50]. The work flow is shown in Figure 9. We used dTC033, one of the multidrug-
sensitive yeast strains which lacks 12 genes of the drug-efflux system. The sensitivity of 
dTC033 against EudiC was 25-fold higher than that of the parental strain BY4741. We isolated 
the 59 spontaneous mutants that show EudiC resistance. We then crossed these 59 EudiC-
resistant strains with OTA014, which has the same genotype as dTC033 (except for the mating 
type and RME1(ins-308A) mutation), and confirmed that 34 of the strains showed dominant 
resistance. Dominant resistance is predicted to be the mutation in target molecules which 
inhibits drug-target interaction rather than a lack of cell death signals activated by EudiC 
treatment (Figure 9). These 34 strains were further tested for their EudiC resistance under a 
higher concentration of EudiC, and 11 strains were selected as strongly resistant mutants. To 
confirm that the EudiC-resistant mutations of these mutants were not related to multi-drug-
resistance mechanisms such as drug efflux pump up-regulation, we checked the sensitivity 

Figure 7. Compounds showing readthrough activities in our screening. Rapamycin (9), wortmannin (10), and A23187 (11) 
were found as readthrough compounds in our assay system. The structures and haloes of these compounds are shown.

Figure 8. Chemical structure of eudistomin C (EudiC).
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of these mutants against several compounds. These strains did not show cross-resistance 
against 4-nitroquinoline 1-oxide, digitonin, cycloheximide, or rhodamine 6G, suggesting that 
these mutants obtained specific resistance against EudiC. We speculate that our strain cannot 
obtain cross-resistance easily due to its lacking all ABC transporters on the plasma mem-
brane. To select mutants which have a single mutation responsible for EudiC resistance, we 
performed a tetrad analysis of the spores derived from the diploid of the 11 selected mutants 
and confirmed that 8 of the strains showed a 2:2 segregation pattern for EudiC resistance. 
These eight strains were classified into three complementation groups, which we named 
YER1 (1 strain), YER2 (2 strains), and YER3 (5 strains). “YER” stands for Yeast Eudistomin 
C Resistance. Whole-genome sequence analysis of the YER strains and further confirmatory 
analyses, including the disruption of mutated genes in YER strains and the re-introduction of 
identified mutations into wild-type strains (Figure 9), revealed that YER1 is RPS14A(E54K). 
Unless we checked all of the gene mutations found in the coding region, we failed to identify 
the mutations in YER2 and YER3, suggesting that the YER2 and YER3 mutations were located 
on the noncoding region or repetitive sequences—for example, rDNA. RPS14A encodes a 

Figure 9. The work flow of the identification of RPS14A as a target of EudiC.
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component of the 40S ribosome, uS11, which participates not only in protein translation but 
also in 18S ribosomal RNA (rRNA) maturation (20S to 18S processing) in ribosome biogen-
esis with Fap7p [77]. To distinguish the effect of EudiC on uS11, we performed biochemical 
analysis using biotinylated EudiC and purified ribosome complexes. Because biotinylated 
EudiC failed to pull Fap7p down and no effect on 18S maturation processes was observed, it 
was confirmed that EudiC targets the matured 40S ribosome and inhibits protein translation 
but not rRNA maturation [50].

Collectively, our target ID studies of EudiC suggested the mode of action of EudiC cytotoxic-
ity and indicated that our sensitive strains would be quite useful for performing drug target 
IDs in a relatively short period.

3. Conclusions and perspective

In the field of chemical biology, several model organisms, including yeast, worms, flies, and 
mice, have been used. Yeast is one of the most-used model organisms due to its ease of han-
dling and its genetic availability, but its drug resistance is sometimes an obstacle to inves-
tigation. To overcome this problem, we constructed two multidrug-sensitive yeast strains, 
12geneΔ0HSR and 12geneΔ0HSR-iERG6. These strains not only show a broad spectrum of 
drug sensitivities against compounds for which resistance is shown by both ABC transport-
ers and ergosterol without influencing transformation, mating, or sporulation efficiency, but 
they are also useful for drug screening. Indeed, we performed a screening of antifungal com-
pounds and protein translation regulators which skip stop codons and found some promis-
ing candidates. Using 12geneΔ0HSR-iERG6, we succeeded in improving the hit rate of drug 
screening from microbial broth. The screening of microbial broth which inhibits the growth of 
12geneΔ0HSR-iERG6 but not of the quadruplex mutant identified novel compounds suggested 
that our multidrug-sensitive strain-based screening using previously tested chemical sources 
in yeast screening could identify new bioactive compounds. Furthermore, as our screening 
system for readthrough compounds, genetically modified multidrug-sensitive strains can be 
applied for several types of screening such as a yeast 2-hybrid system-based protein-protein  
interaction modulators screening. Recently, a yeast 3-hybrid system has been applied for 
drug-protein interaction analysis [78]. In this study, the pdr5 snq2 yor1 triple mutant was used 
to increase the sensitivity of the system [78]. Our multidrug-sensitive yeast strain was thus 
shown to be useful for this kind of analysis. Moreover, we expect that the 12geneΔ0HSR 
and 12geneΔ0HSR-iERG6 strains will also be useful tools for genome-wide chemical biology 
studies such as synthetic lethal/sick genetic interaction analyses [19, 20], genome-wide over-
expression screening [21], and haploinsufficiency-chemical sensitive assays [22]. In addition, 
the genetic approach using our strains identified the 40S ribosome component uS11 as a target 
molecule of the cytotoxicity caused by the antiviral compound EudiC. Because it has been 
reported that protein translation is one of the targets for antiviral agents [79–81], the effect on 
the 40S ribosome and the inhibition of translation by EudiC may cause both the cytotoxicity 
and the antiviral activity. In contrast, it has also been reported that the uS11 protein interacts 
with the eS1 and eS26 proteins, which form part of the mRNA exit tunnel [82], and that the 
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eS1 protein is one of the contact sites for hepatitis C virus internal ribosome entry sites (IRES) 
[83, 84]. These reports might suggest that EudiC decreases the interaction between ribosomes 
and some of the viral IRES, and efficiently inhibits the translation of viral proteins compared 
to that of host mRNA. Elucidating the detailed inhibitory mechanism of EudiC on protein 
translation and its effects on IRES-dependent translation might promote the development of 
EudiC as a novel antiviral medicine.

Recently, it has been reported that RNAseq combined with Crisper/Cas9-based genome-editing  
technologies is useful for target ID in mammalian cells [25]. Identification of the drug target 
using our multidrug-sensitive strains and confirmation of the identified mutation in mamma-
lian cells by Crisper/Cas9-based genome editing will reveal the mechanisms of drugs in more 
detail. Our multidrug-sensitive strains have the potential to facilitate chemical genetic studies 
and contribute to the development of medicines in the future.
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Abstract

TOR (Target of Rapamycin) is a Ser/Thr kinase that was originally identified by genetic
screening using the budding yeast Saccharomyces cerevisiae. The TOR protein forms two
structurally and functionally distinct complexes (TOR complex 1, TORC1, and TOR
complex 2, TORC2). TORC1 is involved in various cellular activities, such as cell growth,
ribosome biogenesis, translation initiation, metabolism, stress response, aging, and
autophagy. TORC2 is involved in actin organization, sphingolipid biogenesis, and endo-
cytosis. TORC1 plays a central role in the signaling network in response to stimuli
coupled to internal and external nutrient conditions, particularly an amino acid suffi-
ciency. A dimeric complex of Rag GTPases, the activity of which is regulated by the
guanine nucleotide-loading status, and some regulator proteins communicating with
Rag GTPases are involved in the activation of TORC1 by amino acids. In TORC2
signaling, membrane stress appears to be a cue, in which some proteins associated with
respective membrane compartments, such as eisosomes, play a role.

Keywords: TOR (Target of Rapamycin), small GTPase, signal transduction, protein
kinase, Saccharomyces cerevisiae

1. Introduction

All heterotrophs must take organic compounds from outside of cells to gain energy for various
biological activities. For example, since amino acids are components of proteins, an insuffi-
ciency in amino acids has serious effects on cellular functions. The bacterial feedback regula-
tion of amino acid biosynthesis at the enzyme and gene expression levels is a well-known
mechanism that controls intracellular amino acid levels. In this feedback-regulatory mecha-
nism, an amino acid functions as a signaling molecule in the closed metabolic loop for the
production of respective amino acids.

On the other hand, in higher Eukarya, an insufficiency in amino acids has been linked to
various metabolic diseases; therefore, sensing amino acid amounts inside and outside of cells
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through the transmission of signals needs to be strictly controlled. TOR (Target of Rapamycin)
is one of the nutritional signaling mechanisms that is evolutionarily conserved in eukaryotes
from yeast to humans. TOR, a Ser/Thr kinase, is involved in two complexes: TOR complex 1
(TORC1) and TOR complex 2 (TORC2), which are distinctly different structurally and func-
tionally. TORC1 is in an active form when amino acids are abundant, namely conditions under
which cellular activities that promote cell growth proceed dynamically. TORC1 signaling
activates anabolic processes such as protein/lipid synthesis and ribosome biogenesis, which
are linked to cell growth. TORC1 signaling also inhibits catabolic processes including
autophagy, a bulk protein degradation system. Therefore, the breakdown of TORC1 signaling
in humans has been linked to various diseases including cancers and metabolic disorders [1].
TORC2 is involved in the polarized organization of the actin cytoskeleton, endocytosis, and
sphingolipid biosynthesis. Physiological cues to activate TORC2 signaling in mammalian cells
are insulin and insulin-like growth factors; however, the mechanisms by which these hor-
mones activate mammalian TORC2 have not yet been elucidated in detail. Furthermore,
despite the evolutionary conservation of TORC2 in lower eukaryotes such as yeast, the growth
factor-like hormonal-regulatory mechanism for the promotion of cell growth is not conserved
in yeast. TORC1 signaling has been extensively examined using rapamycin, a potent inhibitor
of TORC1 signaling, whereas TORC2 is insensitive to rapamycin. Therefore, although the
mechanisms underlying the amino acid-induced activation of TORC1 signaling have been
investigated in detail, limited information is currently available on the activation mechanisms
of TORC2, which may be explained, at least in part, by the absence of TORC2-specific inhibi-
tors, such as rapamycin for TORC1. However, many important insights into TORC2 signaling
have been provided by the budding yeast Saccharomyces cerevisiae, which is an excellent model
organism. This chapter overviews TOR signaling in the budding yeast, with a particular focus
on the regulatory machinery and cues for the activation of TORC1 and TORC2, and compares
it with that in mammalian cells. Since TOR is a master regulator of cell growth, the outputs of
TOR signaling also cover a broad range of biological activities. More information on the
downstream outputs of TOR signaling in yeast is available in recent reviews and references
therein [2–4].

2. TOR: a master regulator for cell growth

2.1. Rapamycin and FKBP12

Rapamycin is a macrolide antifungal chemical that was identified from the bacterium Strepto-
myces hygroscopicus, which was isolated from a soil sample obtained on the Easter Islands, Rapa
Nui in the local tongue, and, hence, it was named “rapamycin.” Despite being an antifungal
drug, rapamycin also exerted immunosuppressive effects; therefore, it was subsequently used
as an immunosuppressant in organ transplantation [5]. Rapamycin and its derivatives also
exerted antitumor effects, indicating their potential in the treatment of certain cancers [6].

The first approach to investigating the mode of action of rapamycin was biochemical. Since
rapamycin was found to inhibit the mammalian immune system, molecule(s) with the ability
to bind to rapamycin may be involved in the action of this drug as an immunosuppressant.
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Rapamycin was shown to bind to a peptidyl-prolyl cis-trans isomerase, also known as FKBP12
(FK506-binding protein 12), which is one of the immunophilins [7]. Yeast has served as an
excellent model organism of higher eukaryotes. Since the mechanisms underlying some bio-
logical events discovered in this unicellular microorganism to date are conserved among
Eukarya, the mode of action of rapamycin in yeast is also expected to be evolutionarily
conserved. Based on this concept, rapamycin-binding protein was purified from yeast cell
extracts, and its amino acid sequence was partially elucidated. A reverse genetic approach
was applied to clone the gene encoding the rapamycin-binding protein using a partial amino
acid sequence, and the FKBP12 homologous gene FPR1 (FKBP12 proline rotamase) was
obtained [8]. Fpr1 is a small protein that consists of only 114 amino acids (molecular weight,
12,157). Gene disruption experiments revealed that FPR1 was dispensable for the growth of
yeast cells [8–11]. However, since Fpr1 was a rapamycin-binding protein in yeast, the disrup-
tion of FPR1 conferred resistance to rapamycin [8, 12]. These findings suggested that the
formation of an Fpr1-rapamycin complex was involved in the mode of action of rapamycin in
yeast, and this mode of action was observed in an immunophilin-immunosuppressant com-
plex in mammalian cells.

2.2. Discovery of TOR

In order to identify the target of the Fpr1-rapamycin complex, genetic screening using
S. cerevisiae with resistance to rapamycin was conducted, and consequently, three genes, that is,
TOR1, TOR2, and FPR1, were identified [12]. As expected, most mutants (258 clones from 277
rapamycin-resistant mutants) contained recessive mutations in FPR1 [8]. Similarly, deletion of
FPR1 conferred the recessive resistance to rapamycin, and expression of human FKBP12 restored
sensitivity to rapamycin [13]. Two novel genes, TOR1 and TOR2 [8], which were also referred to
as DRR1 and DRR2, respectively, for dominant rapamycin resistance [13], were identified.

TOR1 and TOR2 encode large-molecular-weight proteins (molecular weight, >280 kDa). The
Tor1 (2470 amino acids) and Tor2 (2474 amino acids) proteins share 67% identity at the amino
acid-sequence level and were initially considered to be lipid kinases (phosphatidylinositol
kinases). However, neither proteins exhibited lipid kinase activity; they were later found to be
phosphatidylinositol kinase-related kinases (PIKKs). Mutations occurring in TOR1 (TOR1-1)
and TOR2 (TOR2-1) that conferred resistance to rapamycin were identified as a single amino
acid substitution, that is, Ser1972Arg in Tor1 and Ser1975Ile in Tor2. In contrast to yeast, which
possesses two TOR genes, mammalian cells have a single TOR (mTOR, mammalian TOR)
gene. mTOR was initially designated as mammalian TOR, but has recently been referred to as
mechanistic TOR, which includes not only mammalian TOR but also all other TORs, such as
yeast Tor1 and Tor2.

Rapamycin itself does not directly bind to the TOR protein, whereas the Fpr1-rapamycin
complex binds to the Tor1 or Tor2 protein, thereby inhibiting the protein kinase activity of
TOR [14–17]. TOR1-1 and TOR2-1 produce Tor1 and Tor2 proteins, respectively, without
affinity or with low affinity to the Fpr1-rapamycin complex; therefore, mutants with these
alleles develop resistance to rapamycin. Similarly, the FKBP12-rapamycin complex binds to
mTOR in order to inhibit its activity in mammalian cells [18].
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2.3. Domain structure of TOR

The domain structures and amino acid sequences of all TOR proteins are evolutionarily
conserved. Both Yeast Tor1 and Tor2 contain the following domains (in the direction from the
N-terminus to the C-terminus): HEAT repeats, FAT, FRB, kinase, FIT, and FATC (Figure 1).
These domains are also found in the mTOR protein in the same order. Each HEAT motif
(originally identified in Huntingtin, elongation factor 3, protein phosphatase 2A (PP2A), and
TOR) consists of approximately 40 amino acid residues that form anti-parallel alpha-helices,
and Tor1/Tor2 proteins contain ~20 tandemly repeated HEATmotifs between their N-terminal
and central regions. Tor1 and Tor2 bind with their respective subunits that constitute distinct
TOR complexes (see subsequent text) through the HEAT repeats. FAT, FRB, kinase, and FATC
domains, which are located on the C-terminal to the HEAT repeats, are commonly found in
PIKK family members [19–21]. The FAT domain, which was named to represent the main
groups in PIKKs (FRAP, ATM, and TRRAP), consists of ~500 amino acid residues. The FRB
(FKBP-rapamycin binding) domain consists of ~100 amino acid residues, and the Fpr1-
rapamycin complex binds to this region. The TOR1-1 and TOR2-1 mutations conferring resis-
tance to rapamycin occur within the FRB domain, which demonstrates that the Fpr1-
rapamycin complex is a true inhibitor of TOR kinase.

2.4. TOR complexes

Although the primary structures of Tor1 and Tor2 share strong similarities, their cellular
functions are distinct [14, 22]. The TOR1 null mutation is viable, whereas the TOR2 null
mutation is not. Previous studies reported that rapamycin treatments mimicked starvation,
indicating that TOR is involved in cell growth control in response to nutrients [23, 24]. The
findings of genetic analyses on TOR1 and TOR2 suggested that the roles of Tor1 and Tor2 are
divided into two aspects, that is, some readouts in which TOR signaling is involved are
redundantly regulated by Tor1 and Tor2, whereas some are specifically regulated by Tor2.
Rapamycin was found to affect cellular events in which Tor1 and Tor2 functioned redundantly.
For example, rapamycin inhibits protein synthesis and ribosome biogenesis, but induces
autophagy, which occurs under nutrient-starved conditions, and both Tor1 and Tor2 are
involved in these events [18]. Meanwhile, the regulation of actin organization, endocytosis,
and sphingolipid biosynthesis is controlled by Tor2. The distinction between Tor1- and Tor2-
related readouts is due to differences in the complexes in which Tor1 and Tor2 are involved.

Figure 1. TOR complexes in S. cerevisiae.
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TORC1 involves either Tor1 or Tor2 as the TOR protein, while Kog1, Tco89, and Lst8 are subunits.
TORC2 involves Tor2 as the TOR protein with subunits of Avo1, Avo2, Avo3, Bit61, and Lst8.
Readouts redundantly regulated by Tor1 and Tor2 are controlled by TORC1, which is sensitive
to rapamycin, whereas the specific readouts of Tor2 are regulated by TORC2. TORC2 contains
Tor2, in which the FRB domain exists; however, this TOR complex is not sensitive to
rapamycin. This issue was resolved using crosslinking-mass spectrometric and electron micro-
scopic analyses, that is, the C-terminal part of Avo3 was close to the FRB domain, which
rendered the Fpr1-rapamycin complex incapable of accessing the FRB domain, resulting in
TORC2 insensitivity to rapamycin [25].

3. TORC1

3.1. Subunit components

The following components constitute TORC1: Kog1, Tco89, Lst8, and either Tor1 or Tor2 [26–28]
(Figure 1). Mammalian TORC1 (mTORC1) contains counterparts of each subunit of yeast
TORC1, except for Tco89, instead mTORC1 contains PRAS40 (proline-rich Akt substrate of
40 kDa) and DEPTOR (Disheveled, Egl-10, and Pleckstrin domain-containing mTOR-interacting
protein). mTORC1 forms a dimeric structure [29], and this also appears to be the case for yeast
TORC1. The structural integrity of mTORC1 was disrupted by rapamycin [29], whereas all yeast
TORC1 components were co-immunoprecipitated by FKBP12 [26], suggesting that rapamycin
does not affect the structure of TORC1 in yeast.

Kog1 and mammalian ortholog Raptor (regulatory-associated protein of mTOR) contains the
RNC (Raptor N-terminal conserved) domain, through which Kog1/Raptor binds to the TOR
protein and the substrates of TORC1. Kog1/Raptor contains three HEAT repeats in the proximity
of the C-terminal of the RNC domain and also contains seven WD40 motifs in the C-terminus.
Tco89 contains no obvious motifs. Lst8 (mLst8 in mTORC1) contains seven WD40 motifs.

3.2. Activation of TORC1 signaling

3.2.1. Rag GTPases (Gtr1 and Gtr2)

When cells are exposed to conditions that are unfavorable for growth, they cease division and
remodel cellular metabolism and gene expression profiles to survive under these stressful
conditions. The treatment of yeast cells with rapamycin causes multiple phenomena resem-
bling those occurring in cells starved of nutrients, particularly amino acids. Therefore, one of
the physiological cues for the activation of TORC1 signaling may be amino acid(s). Upstream
module(s) that communicate with TORC1 were revealed by a genetic approach using
S. cerevisiae. Mutants that are unable to recover cell growth when transferred from nutrient-
depleted conditions to nutrient-rich conditions are expected to be defective in module(s) that
communicate with TORC1. Since rapamycin mimics amino acid-starved conditions, mutants
with the ability to recover from rapamycin-induced growth arrest were screened. EGO (Exit
from rapamycin-induced GrOwth arrest) mutants were identified, in which the Ras-related
GTPase (Rag) Gtr2 and the vacuolar membrane-associated proteins Ego1 and Ego3 were
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included [30]. Another study revealed that modules involved in the trafficking of the general
amino acid permease to the cytoplasmic membrane were Gtr1, Gtr2, Ego1, Ego3, and Ltv1 [31].

Gtr1 andGtr2 belong to the Rag family. Orthologs of Gtr1 andGtr2 inmammalian cells are RagA/
RagB for Gtr1 and RagC/RagD for Gtr2. Amino acid-sequence similarities between RagA and
RagB (90% identity) and between RagA/RagB and Gtr1 (48%) are high. This is also the case
between RagC and RagD (81%) and between RagC/RagD and Gtr2 (46%). However, amino acid-
sequence similarities between RagA/RagB and RagC/RagD and between Gtr1 and Gtr2 are low
(approximately <25%) [32–34]. RagGTPases function as heterodimers that are formed by a combi-
nation of one monomer of either RagA or RagB and one monomer of either RagC or RagD [33].
Similarly, Gtr1 andGtr2 form a heterodimer [34]. HeterodimerswithGTP-boundRagA/RagB and
GDP-bound RagC/RagD exhibit full activity. This is also the case for S. cerevisiae Rag GTPase, that
is, Gtr1GTP andGtr2GDP are a dynamic combination that activate TORC1 in yeast (Figure 2).

3.2.2. EGO complex (ragulator)

Small GTPases are generally lipid-linked proteins, and lipid modifications enable these pro-
teins to anchor to biological membranes. However, neither Gtr1 nor Gtr2 is modified by lipids.

Figure 2. Activation of TORC1 signaling in yeast and mammals.
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Ego1, Ego3, and Ego2 were recently found to form the EGO complex, which serves as a
scaffold for the Gtr1-Gtr2 heterodimer to anchor to the vacuolar membrane in order to activate
TORC1 in response to amino acids in S. cerevisiae [35]. Ego1 is a myristoylated and
palmitoylated protein that is anchored to the vacuolar membrane through such lipids [36–39].
Ego2 and Ego3 bind to vacuolar membrane-anchored Ego1 [35].

Mammalian cells also contain a large protein complex that functions together with the
heterodimeric Rag GTPase, designated “Ragulator” (Rag regulator). Ragulator consists of five
subunits, that is, LAMTOR1-5 (LAMTOR, Lysosomal Adaptor, and Mitogen-activated protein
kinase (MAPK), and mTOR). Ragulator is anchored to lysosomal membranes through lipid-
modified LAMTOR1 [40]; therefore, LAMTOR1 may be a functional homolog of Ego1.
LAMTOR 2 and LAMTOR3 form a heterodimer each with a monomer protein, which are
structurally and functionally homologous to Ego3 [41]. LAMTOR4 and LAMTOR5 show high
structural similarities with Ego2 and Ego4, a paralog of Ego2 [35, 42]. Ragulator and
heterodimeric Rag GTPases, which consist of GTP-bound RagA/RgB and GDP-bound RagC/
RagD, communicate the signal of an amino acid sufficiency to mTORC1 on lysosomal mem-
branes in mammalian cells (Figure 2).

3.2.3. GEF and GAP for Rag GTPases

The activities of small GTPases are generally regulated by the status of the guanine nucleotide
loaded, which is controlled by the guanine nucleotide exchange factor (GEF) and GTPase-
activating protein (GAP). Gtr1-activating factors were screened using a genetic approach,
and, as a result, Vam6 (also known as Vps39) was obtained [36]. Vam6/Vps39 exhibited Gtr1
GEF activity in vitro [36].

On the other hand, a breakthrough regarding the regulation of Gtr2 was achieved by the
discovery that Folliculin (FLCN) tumor suppressor functioned as a positive regulator of
RagC/RagD [43, 44]. FLCN forms a complex with either FNIP1 or FNIP2 and has the ability
to recruit mTORC1 to lysosomal membranes in response to an amino acid stimulation, thereby
activating mTORC1. FLCN-FNIP1/2 complexes are GAPs toward RagC/RagD. A similar
mechanism was conserved in yeast, that is, Lst7 and Lst4 are counterparts of FLCN and
FNIP1/2, respectively [45]. Lst4 and Lst7 form a stable complex, both of which are necessary
for the activation of TORC1 in the presence of amino acids. The Lst4-Lst7 complex preferen-
tially binds to Gtr2GTP in order to enhance the hydrolytic activity of its GTPase activity, thereby
yielding Gtr2GDP to activate TORC1 in yeast upon an amino acid stimulation (Figure 2).

3.2.4. SEACIT and SEACAT (GATOR1 and GATOR2)

What is an upstream regulator(s) of Rag GTPases? In order to solve this question, genome-
wide screening was conducted in yeast to discover negative effectors of TORC1 activity, and,
as a result, Npr2 and Npr3 were identified [46]. Npr2 and Npr3 form a heterodimer [46]. The
coatomer-related Seh1-associated complex (SEAC) that associates with vacuolar membranes
was implicated in responses to nitrogen starvation [47–49]. Npr2 and Npr3 together with Iml1/
Sea1 form a SEAC subcomplex, which negatively regulates Gtr1 within the EGO complex [50].
A biochemical analysis revealed that Iml1/Sea1 exhibited GAP activity toward Gtr1 in vitro.
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Npr2 is phosphorylated by an unknown protein kinase and dephosphorylated by PP2A, the
phosphorylation status of which correlates with the assembly of this SEAC subcomplex. The
Iml1/Sea1-Npr2-Npr3 SAEC subcomplex, which was named SEACIT (for SEAC subcomplex-
Inhibiting TORC1 signaling), functions as GAP toward Gtr1, thereby inhibiting TORC1 signal-
ing [50]. The GAP activity of SEACIT is conserved in higher eukaryotes, such as Drosophila and
humans, that is, DEPDC5-NPRL2-NPRL3 corresponds to the yeast Iml1/Sea1-Npr2-Npr3, and
DEPDC5 (ortholog of yeast Iml1/Sea1) directly binds to RagA and enhances the hydrolytic
activity of GTP-bound RagA; therefore, the DEPDC5-NPRL2-NPRL3 complex was designated
GATOR1 (for GAPActivity TOward Rags 1). GATOR1 inactivates mTORC1 in the absence of
amino acids (Figure 2).

The SEAC of yeast is an octameric complex, that is, SEAC contains Sea2, Sea3, Sea4, Seh1, and
Sec13 besides Iml1/Sea1-Npr2-Npr3, which constitutes SEACIT. These proteins constitute the
other SEAC subcomplex, which binds to SEACIT in order to inhibit its Gtr1 GAP activity, and,
thus, has been designated SEACAT (SEAC subcomplex-Activating TORC1 signaling) [49].
Orthologs of components in SEACAT also exist in Drosophila and mammals, that is, WDR24,
WDR59, Mios, Seh1L, and Sec13 in flies and humans, respectively, are Sea2, Sea3, Sea4, Seh1,
and Sec13 in yeast, and this complex is referred to as GATOR2. All components in SEACAT
and GATOR2 contain beta propeller-forming WD40 motifs, which are characteristic in
membrane-coating proteins [51]. Sec13 is a component of COPII, which controls vesicle trans-
port. In addition, Seh1/Seh1L and Sec13 are components of the nuclear pore complex [49].

3.2.5. Upstream modules of GATOR2 (Sestrins and CASTOR)

Amino acid sensors that function upstream of GATOR2 were identified in 2016, that is,
Sestrin1/2 as a Leu sensor [52] and CASTOR as an Arg sensor [53]. Previous studies reported
that Sestrins interacted with GATOR2 in order to inhibit mTORC1 signaling under amino acid-
depleted conditions [54–56]. Wolfson et al. [52] demonstrated that Leu directly bound to
Sestrin2 with a dissociation constant of 20 μM, and the binding of Leu to Sestrin2 disrupted
the Sestrin2-GATOR2 interaction, thereby enabling GATOR2 to interact with GATOR1. The
interaction between GATOR2 and GATOR1 inhibits the GAP activity of GATOR1 toward
RagA/RagB, and, consequently, mTORC1 is activated.

The uncharacterized protein CASTOR1 binds to GATOR2, which inhibits GATOR2 binding to
GATOR1. CASTOR1 forms a homodimer with CASTOR1 and a heterodimer with CASTOR2, a
CASTOR1-related protein. Arginine specifically binds to CASTOR1 with a dissociation constant
of ~30 μM, and the binding of Arg to CASTOR1 disrupts the CASTOR1-GATOR2 interaction,
which turnsCASTOR1 into a homodimer [53]. LiberatedGATOR2 interactswithGATOR1 in order
to inhibit its GAPactivity toward RagA/RagB,which leads to the activation ofmTORC1 (Figure 2).

Since no orthologs of Sestrins or CASTOR have been found in yeast, the mechanisms by
which yeast senses intracellular amino acid availability currently remain unclear. A model in
which tRNA functions as a negative regulator of TORC1 kinase activity in yeast was recently
proposed [57]. Both amino acid-uncharged and amino acid-charged (aminoacylated)
tRNAs inhibited TORC1 kinase activity in an in vitro kinase assay. Under nutrition-sufficient
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depleted conditions [54–56]. Wolfson et al. [52] demonstrated that Leu directly bound to
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the Sestrin2-GATOR2 interaction, thereby enabling GATOR2 to interact with GATOR1. The
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CASTOR1-related protein. Arginine specifically binds to CASTOR1 with a dissociation constant
of ~30 μM, and the binding of Arg to CASTOR1 disrupts the CASTOR1-GATOR2 interaction,
which turnsCASTOR1 into a homodimer [53]. LiberatedGATOR2 interactswithGATOR1 in order
to inhibit its GAPactivity toward RagA/RagB,which leads to the activation ofmTORC1 (Figure 2).

Since no orthologs of Sestrins or CASTOR have been found in yeast, the mechanisms by
which yeast senses intracellular amino acid availability currently remain unclear. A model in
which tRNA functions as a negative regulator of TORC1 kinase activity in yeast was recently
proposed [57]. Both amino acid-uncharged and amino acid-charged (aminoacylated)
tRNAs inhibited TORC1 kinase activity in an in vitro kinase assay. Under nutrition-sufficient
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conditions, aminoacylated tRNAs predominantly bind to ribosomes for protein synthesis;
therefore, tRNAs have fewer opportunities to interact with TORC1 (i.e., TORC1 is active).
Upon nutrition starvation, uncharged tRNAs are released from ribosomes and interact with
TORC1 in order to inhibit its kinase activity.

Human and yeast cells depleted for Rag GTPase/Gtr remained the ability to respond to amino
acid, particularly glutamine [58–60]. It was recently reported that phosphatidylinositol 3-kinase
complex Vps34-Vps15, and a vacuolar membrane protein Pib2, which contains a phosphatidy-
linositol 3-phosphate-binding FYVE (Fab1, YOTB, Vac1, and EEA1) domain, played a role in
sensing glutamine in the Gtr-independent activation of TORC1 in S. cerevisiae [61].

3.3. The TSC1/2-Rheb branch in the activation of mTORC1

In mammalian cells, mTORC1 is activated by another small GTPase Rheb (Ras homolog
enriched in brain). Similar to other small GTPases, GTP-bound Rheb is a dynamic form in
terms of the activation of mTORC1, and the guanine nucleotide status in Rheb is regulated
by machinery downstream of growth factor signaling, such as the insulin-signaling path-
way. Although the mechanisms by which RhebGTP stimulate mTORC1 have not yet been
elucidated, mTORC1 activity is negatively regulated by the TSC complex, consisting of
TSC1, TSC2, and TBC1D7, in which TSC2 functions as GAP toward RhebGTP. Upon a
growth factor stimulation, Akt, a member of the AGC kinase family, is activated in a
phosphatidylinositol 3-kinase-dependent manner, and activated Akt subsequently phos-
phorylates TSC2. The TSC complex is localized in the cytoplasm close to lysosomal mem-
branes with which mTORC1 associates via Ragulator, and the phosphorylation of TSC2
alters the localization of the TSC complex away from the lysosome, thereby releasing Rheb
from the inhibitory effects induced by the TSC complex [62]. On the other hand, a previous
study reported that amino acid deprivation recruited the TSC complex to the lysosome [63],
suggesting that the amino acid-dependent activation of mTORC1 is regulated by an inter-
play between the Rag GTPases-Ragulator branch and the TSC complex-Rheb branch. A
recent study reported that Arg is required for the growth factor-dependent delocalization
of the TSC complex from the lysosome, which leads to the activation of Rheb, and, thus,
mTORC1 [64] (Figure 2).

S. cerevisiae does not contain the orthologs of TSC1/2, but has the Rheb homolog, Rhb1;
however, there is currently no evidence to show that Rhb1 is a functional homolog of
mammalian Rheb [36]. On the other hand, the fission yeast Schizosaccharomyces pombe was
found to have homologs of TSC1/2 and Rheb [65]. Similar to the mammalian TSC complex,
Tsc1 and Tsc2 in fission yeast form a complex, in which Tsc2 functions as a GAP toward
Rhb1 GTPase [65–67]. Rhb1 physically interacts with Tor2 (Tor2 in fission yeast corresponds
to Tor1 in budding yeast), thereby stimulating TORC1 (Tor2 is involved in TORC1 in fission
yeast) activity [65, 68]. Therefore, an rhb1 mutant showed some phenotypes that are
displayed in cells starved of nitrogen [69, 70]. An epistatic analysis showed that Rhb1
functions upstream of Tor2, that is, the activated allele of tor2+ suppressed the loss of
function of rhb1+ [71].
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4. TORC2

4.1. Subunit components

The following components constitute the budding yeast TORC2: Tor2, Avo1, Avo2, Avo3,
Bit61, and Lst8 (Figure 1). Avo1 has several conserved domains. Avo1 contains an RBD (a
Ras-binding domain) at the center of its molecule. At the C-terminal region of Avo1, an
essential PH (Pleckstrin homology)-like domain exists, through which TORC2 may tether to
the definite region of the plasma membrane called the MCT (membrane compartment-
containing TORC2) [72]. The CRIM (conserved region in the middle) domain exists in proxim-
ity to the N-terminal side of RBD and has been implicated in binding to the substrates of
TORC2 [73, 74]. Avo1 binds to the kinase domain of Tor2 via Lst8 [25].

Avo3 is the largest subunit of TORC2. It functions as a scaffold protein in order to maintain the
integrity and function of TORC2 because the loss of Avo3 induced the disassembly of TORC2
[75]. Avo3 contains the ARM (armadillo repeat)-like domain, which is a similar structure to the
HEAT repeats, at the center of its molecule. Repeated ARM units fold together as a superhelical
structure to provide a platform to interact with many proteins [76]. Avo3 also interacts with
the FAT and kinase domains of Tor2 within TORC2. Avo3 has a RasGEFN domain, which is
found in the N-terminal region of GEF proteins toward Ras-like GTPases; however, the func-
tion of this domain in Avo3 currently remains unknown. Since the FRB domain of Tor2 within
TORC2 is masked by the C-terminal part of Avo3, the accessibility of the Fpr1 (FKBP12)-
rapamycin complex to TORC2 is limited, which renders TORC2 insensitive to rapamycin.

Bit61 has a paralog Bit2. Although Bit61 binds to TORC2 through Avo1 and Avo3, it is not an
essential subunit for the assembly of TORC2 [25, 75]. The specific functions of Bit61 have not
yet been elucidated; however, mammalian orthologs of Bit61 and Bit2 exist (PRR5 also known
as Protor-1, and PRR5L also known as Protor-2) and possess an HbrB domain that was found
in a fungal Aspergillus nidulans protein required for filamentous growth [77].

Avo2 is a yeast TORC2-specific subunit, but is not essential. Avo2 contains ankyrin repeats.
Avo2 and Bit61 have been reported to bind to Slm1 and Slm2 proteins, which are involved in
the recruitment of Ypk1/Ypk2 to TORC2, thereby phosphorylating them [78].

The core subunits of mammalian TORC2 (mTORC2) include mTOR as the TOR protein, mSin1
(stress-activated protein kinase-interacting protein 1) as the Avo1 ortholog, Rictor (rapamycin-
insensitive companion of mTOR) as the Avo3 ortholog, and mLst8 as the Lst8 ortholog. Analo-
gous to the yeast counterpart, mSin1 contains RBD. mSin1 was originally cloned as a factor that
interfered with S. cerevisiae Ras signaling [79]. mSin1 also contains the CRIM and PH domains,
which function in the binding of substrates and tethering to the plasma membrane, respectively.

The ARM-like domain is conserved in Rictor and Avo3, while the RasGEFN domain is not
conserved in Rictor. mTORC2 is also insensitive to an acute treatment with rapamycin, the
mechanism of which is presumably the same as that elucidated in yeast TORC2. However, in
some mammalian cell lines, a prolonged treatment with rapamycin was found to inhibit the
interaction between newly synthesized mTOR and Rictor, and mTORC2-Akt signaling was
subsequently reduced [80].
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4.2. Activation of TORC2

4.2.1. Implication of GTPases

Small GTPase Rag complexes (RagAGTP/RagBGTP-RagCGDP/RagDGDP in metazoans, and
Gtr1GTP-Gtr2GDP in yeast) play pivotal roles in the amino acid-induced activation of
TORC1, as described in the previous sections. The other small GTPase Rheb is also
involved in the growth factor-mediated activation of mTORC1. Do any small GTPases
play roles in the activation of TORC2? In the fission yeast S. pombe, genetic screening
revealed that the human Rab6 GTPase ortholog Ryh1 was involved in TORC2-Gad8
signaling [81]. S. pombe TORC2 phosphorylated Gad8, a member of the AGC kinase
family, and a genetic mutation in ryh1+ markedly decreased the phosphorylation level of
Gad8. sat1+ and sat4+ genes were predicted to code for GEFs toward Ryh1, and the
mutational inactivation of these genes also induced a decrease in the phosphorylation
level of Gad8, suggesting that Rhy1GTP is an active form in terms of the activation of
TORC2-Gad8 signaling. GTP-locked Rhy1 facilitated the physical interaction between
TORC2 and its substrate Gad8. Furthermore, the expression of human Rab6 functionally
compensated for the loss of ryh1+ in S. pombe in terms of TORC2 signaling, which implied
that Rab GTPase is involved in mTORC2-Akt signaling in mammals, similar to fission
yeast. However, since S. cerevisiae does not possess the Rab6 ortholog, it currently remains
unclear whether this regulatory system is generally conserved in eukaryotes. However,
Avo1 and Avo3 contain the RBD and RasGEFN domains, respectively, both of which are
related to Ras GTPase; therefore, some small GTPases may be involved in TORC2 signal-
ing in S. cerevisiae. Previous studies demonstrated the participation of small GTPases in
mTORC2 signaling. Rac1 GTPase was reported to bind directly to mTOR within mTORC1
and mTORC2, which led to the appropriate localization of these TOR complexes to the
respective cellular membranes [82]. Rit, a Ras family GTPase, was shown to bind to
mTORC2 and subsequently activate it in response to oxidative stress [83]. Since the
oxidative stress-responsive activation of TORC2 was also observed in S. cerevisiae [84], a
similar mechanism by which Ras family GTPase activates TORC2 may be conserved in
budding yeast.

4.2.2. Posttranslational modifications in TORC2 components

mTOR is phosphorylated in the growth factor-mediated activation of mammalian TOR signal-
ing. For example, Thr2173 in the kinase domain of the mTOR protein is phosphorylated by Akt,
which appears to be the negative feedback regulation of mTORC2 signaling. This feedback
regulation is also conserved in fission yeast TORC2-Gad8 signaling, that is, Gad8 phosphory-
lates Thr1972 in the ATP-binding domain to reduce Tor1 activity within TORC2 [85]. More than
20 potential phosphorylation sites have been assigned in Rictor [86]. Ser260 in the CRIM
domain and Thr398 in the PH domain in mSin1 are also phosphorylated [87, 88]. A high-
throughput phosphoproteomic analysis predicted numerous potential phosphorylation sites
in Avo1-3 and Bit61 [89].

Besides phosphorylation, Rictor is known to be acetylated at Lys1116, Lys1119, and Lys1125

[90, 91], modifications to which may activate mTORC2 activity.
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4.3. Activation of TORC2 signaling

4.3.1. Relationship between membrane tension and the activation of TORC2 signaling in yeast

When TORC2 was observed using GFP-tagged Avo1 or Avo3, its localization was visible as
many dots just beneath the plasma membrane. The plasma membrane regions at which patchy
TORC2 is located are referred to as the MCT [78]. Although Avo1 contains the PH domain,
which has the potential to associate with membrane phospholipids, the underlying mecha-
nisms by which TORC2 localizes to the plasma membrane remain unclear. Other regions on
the yeast plasma membrane, referred to as eisosomes, are characterized by their distinctive
shape, that is, they are furrows approximately 50-nm deep and 300-nm long on the surface of
the plasma membrane [92]. The curvature of the membrane in eisosomes is formed by proteins
possessing the BAR (Bin/amphiphysin/Rvs) domain, that is, Pil1 and Lsp1. Eisosomes exist in
close proximity to the MCT, but never overlap.

Slm1 and its paralog Slm2 are eisosome-residential proteins and are effectors as well as sub-
strates of TORC2. Under normal turgor pressure conditions, Slm1 and Slm2 are predominantly
localized in eisosomes; however, following an increase in membrane tension caused by, for
example, hypotonic shock or some mechanical stress, Slm1 and Slm2 alter their localization
from eisosomes to the MCT and then bind to TORC2 via its components Avo2 and Bit61. Slm1
and Slm2 may recruit Ypk1 to TORC2, and the interaction between TORC2 and its substrate
Ypk1 promotes the phosphorylation of Ypk1 (Figure 3).

It has not yet been established whether there exist any natural conditions that change the
tension of the plasma membrane in yeast. One of these conditions may induce a decrease in
the levels of sphingolipids that constitute the yeast plasma membrane together with
glycerophospholipids and ergosterols. The initial step in the biosynthetic pathway of
sphingolipids is catalyzed by serine palmitoyltransferase. The activity of this enzyme is nega-
tively regulated by Orm1 and its paralog Orm2, the functions of which are controlled through
the phosphorylation by Ypk1, a TORC2 substrate, at Ser51, Ser52, and Ser53 in Orm1, and Ser46,
Ser47, and Ser48 in Orm2 [93, 94]. Myriocin is a potent inhibitor of serine palmitoyltransferase;
therefore, the treatment of yeast cells with this chemical reduces the production of
sphingolipids, which causes feedback regulation to activate sphingolipid biosynthesis through

Figure 3. Activation of TORC2 signaling in S. cerevisiae.
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the stimulation of TORC2-Ypk1 signaling. Orm1/2 is subsequently phosphorylated, and its
inhibitory effects on serine palmitoyltransferase are then compromised. Aureobasidin A, a
cyclic depsipeptide antibiotic drug, exerts similar effects on the yeast plasma membrane in
terms of altering membrane tension because this chemical inhibits the synthesis of inositol-
phosphoceramide, one of the sphingolipid species in yeast. Aureobasidin A and myriocin
consistently induce the phosphorylation of Ypk1 at Thr662, a target site of TORC2 [94].

4.3.2. Activation of TORC2 signaling by the metabolic cue methylglyoxal

In contrast to mammals, which possess many isozymes of protein kinase C and its related
kinases, Pkc1 is the sole protein kinase C in budding yeast. Pkc1 is involved in numerous pivotal
biological functions including the organization of the actin cytoskeleton and the maintenance of
cell wall integrity (CWI). TheMpk1MAPK cascade lies downstream of Pkc1, and the Pkc1-Mpk1
MAPK cascade constitutes the main stream of the CWI pathway [95]. Chemicals that provoke
cell wall damage such as Congo red or heat-shock stress activate the CWI pathway. The small
GTPase Rho1 plays a crucial role in the heat-shock stress-induced activation of the CWI pathway,
that is, the transmembrane proteins Wsc1 and Mid2 on the plasma membrane sense heat shock
and interact with Rom2, a GEF toward Rho1, to load GTP to Rho1. Rho1GTP physically interacts
with Pkc1 to communicate the signal to the downstream Mpk1 MAPK cascade [96, 97]. A recent
study reported that phosphatidylserine, one of the major glycerophospholipids prevailing in the
plasma membrane, mediates the physical interaction between Pkc1 and Rho1GTP [98, 99]. On the
other hand, methylglyoxal, a typical 2-oxoaldehyde derived from glycolysis [100], also activates
the Pkc1-Mpk1 MAPK cascade; however, the methylglyoxal-induced activation of this pathway
is not dependent on Wsc1/Mid2, whereas Rho1 is indispensable [101]. Besides Ypk1 and Ypk2,
Pkc1 has also been identified as a direct substrate of TORC2 in S. cerevisiae, that is, Thr1125 within
the turn motif and Ser1143 within the hydrophobic motif in Pkc1 are phosphorylated by TORC2
[101]. Methylglyoxal enhanced the phosphorylation levels of Pkc1 at Ser1143 in a TORC2-depen-
dent manner [101] (Figure 3).

The methylglyoxal-induced activation of TORC2 is conserved in mammalian cells, that is, the
phosphorylation levels of Ser473 within the hydrophobic motif in Akt, a substrate of mTORC2,
were enhanced following the treatment of mouse 3 T3-L1 cells with methylglyoxal [101].
Collectively, these findings demonstrate that methylglyoxal activates (m)TORC2 signaling in
yeast and mammalian cells; however, the underlying mechanisms have not yet been eluci-
dated. Since methylglyoxal is a naturally occurring ubiquitous metabolite and is involved in
type 2 diabetes and its complications [100], its involvement in the activation of (m)TORC2
signaling is of considerable interest in order to obtain insights into not only novel activation
mechanisms of TORC2 but also the physiological significance of methylglyoxal.

4.3.3. Activation of mTORC2 signaling by growth factor

In mammalian cells, physiological cues for the activation of mTORC2 signaling are insulin
and insulin-like growth factors [102]. Upon the capture of ligands by tyrosine kinase-type
receptors, tyrosine-phosphorylated IRS (insulin receptor substrate) undergoes the activa-
tion of phosphatidylinositol 3-kinase, which enhances the levels of phosphatidylinositol

TOR Signaling in Budding Yeast
http://dx.doi.org/10.5772/intechopen.70784

67



(3,4,5)-trisphosphate (PtdIns(3,4,5)P3). Two events are subsequently induced by this phosphoi-
nositide near the plasma membrane: that is, the activation of PDK (phosphoinositide-dependent
kinase) and the recruitment of Akt to the plasma membrane in which the PH domain of Akt
binds to PtdIns(3,4,5)P3. In turn, Akt at Thr308 within the activation loop and Ser473 within the
hydrophobic motif are phosphorylated by PDK and mTORC2, respectively; however, the mech-
anisms by which insulin activates mTORC2 remain obscure.

5. Concluding remarks

Laboratory conditions for culturing yeast may be adequate for yeast cells to maintain cellular
activities because ample amounts of glucose and amino acids are typically supplied in media. By
contrast, nutritional conditions surrounding yeast cells that exist in the natural world are harsh
and variable. Yeast cells have evolved mechanisms for sensing changes in nutritional conditions
and transitioning the metabolic status and gene expression profile to adapt efficiently and
survive inhospitable conditions. The TOR signaling system had been acquired as one of these
signal network systems and has been evolutionarily conserved among eukaryotes. In higher
eukaryotes, such as humans, dysfunctions in the TOR signaling network closely correlate with
pathological conditions including diabetes, cancer, obesity, and neurodegeneration [1]; therefore,
TOR is a target from a clinical point of view. Upstream and downstream processes of TORC1
signaling have been extensively investigated because rapamycin, a potent inhibitor for TORC1,
was available. By contrast, studies on TORC2 signaling appear to be challenging because of the
absence of TORC2-specific inhibitors. However, yeast was always a vanguard from the begin-
ning of TOR studies (TOR was discovered by genetic screening using yeast) and will continue to
be so in the future. Many issues remain to be solved in TOR signaling; however, since TOR is a
central player in cell growth, studies on TOR will be nothing less than a study of the living
system itself. Investigations on TOR will provide many insights for understanding “life.”
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Abstract

Yeast organisms are widely explored by humans for different biotechnological applica-
tions. During their growth, they need to adapt and interact themselves with the environ-
ment medium. For this purpose, organisms uptake nutrients and at the same time secrete
different molecules include proteins to extracellular medium. This phenomenon requires
the use of specialized structures to regulate entry and exit of molecules called transporters.
Two transporters, namely Proteins and Vesicles, are specialized in translocating molecules
in and out across the wall. The knowledge of these systems is important and served to
bring novel applications of yeast. Taking together, this book chapter is divided into two
parts: at first, it primarily accounts on few examples of protein (carbohydrates and perox-
isome proteins) and vesicle (intracellular and extracellular vesicles) transporters of yeasts.
Second, it deals with the recent advances of yeast applications in diverse area of science.

Keywords: vesicles, symporter, induction, repression, transporters

1. Introduction

For decades, Saccharomyces cerevisiae has been the model organism of the lower eukaryotes.
The available complete genome favors access to perform possible molecular and genetics
researches to understand cell activities of this yeast. The composition and concentration of
molecules that conform the outer medium dictates the transporters pattern present in the
cellular membrane. The role of molecular transport mechanisms is highly recognized and
well-studied. Basically, transport systems can be drawn in two ways; the barrier systems- cell
membrane and cell wall. (1) Transport of compounds from inside to outside, (2) And outside to
inside. There are many compounds involucrated in the phenomenon: carbohydrates, peptides,
some proteins (mucin-type glycopeptides and gycoproteins) and ions (Figure 1). As organisms
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like S. cerevisiae contains multiple membranous organelles, it is expected to conduct similar
types of transport, from cytosol to intracellular organelles across the membrane. Organelle
could be any of the following: Nucleus, Mitochondria, Golgi bodies, Endoplasmic reticulum,
Peroxisomes. Besides diffusion, various types of transport systems are shown to be involved to
either import or export molecules across membranes; we categorize different types reported in
the literature. Membrane transporters: Embedded in the membrane are demonstrated to carry
out different mechanisms such as a) Protein transport, b) Carbohydrate transport, c) Bilayered
membranous vesicles (both intracellular and extracellular vesicles).

2. Hydrocarbons transporters of yeast

There is a great diversity of yeasts and they all require a carbon source to maintain metabolic,
physiological and cell growth processes. One of the main nutrients is glucose because it plays a
key role regulating the expression of sugar-carrying genes. Yeasts can also consume different
types of sugars like xylose, arabinose and under very specific conditions glycerol. These nutri-
ents need to be introduced into the cell whereby yeasts have developed numerous transporters
proteins, with similar structures, but with very specific substrate functions and affinities.

Figure 1. Pictorial representation of diverse transport systems present in the yeast organisms. It includes protein machin-
ery for the transport of biomolecules such as glucose, amino acids, enzymes, ions. Other transporters include vehicles
such as vesicles, which are bi-layered liposomes.
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2.1. Glucose regulation

Glucose is a substrate of easy metabolism and can act as a signaling molecule depending of its
extracellular/intracellular concentration to adjust diverse cellular activities. In Saccharomyces
cerevisiae, there are two pathways to control glucose consume by regulation of HXT transporter [1].

2.1.1. Pathway of glucose induction Rgt2/Snf3, responsible for its consumption.

Snf3, and Rgt2 are important sugar sensors (not glucose transport) in the S. cerevisiae, they are in
cell membrane and play key roles, selecting what nutrient to utilize and coordinating expression
of sugar transporters. Under low glucose concentration Snf3 sensor elevates the transcription of
high-affinity hexose transporter genes, while at high concentrations, Rgt2 sensor promotes low-
affinity hexose transporter expression [2]. In both cases, glucose binding to sensors leads their
conformation switch and activate a casein kinase I (Yck1/2) which phosphorylates regulators of
the glucose-sensing signal transduction pathwayMth1 and Std1 to subsequently be ubiquitylated
and degraded [3]. The degradation of Mth1 and Std1 interrupts the interaction between a tran-
scriptional factor Rgt1 and Cyc8/Tup1 to form a general co-repressor complex of expression of
HXT genes. Once liberated Rgt1 is phosphorylated therefor HXT genes are expressing [4].

2.1.2. Pathway of glucose repression Snf1/Mth1 negatively regulates genes involved in glucose
oxidation and the use of alternative sugars.

Under glucose limitation, there is transcriptional inhibition of hexose transporter genes (HXT)
by blocking of their promoter by a repressor complex conformed with Snf1, the complex Cyc8-
Tup1 and the Mth1/Std1 [1, 5]. This mechanism is required for the yeast to adapt to glucoses
limitation medium.

In Candida albicans membrane, the sugar sensor Hht4 (homolog to Snf3 and Rgt2) responses to
different levels of sugar by inactivation of a transcriptional repressor Rgt1 that regulates multiple
HGT genes encoding hexoses transporters (Hgt2, Hxt10 and Hgt7), this process plays a key role
in systemic infections [6]. Hxt4 expression is repressed by high levels of glucose. Snf3p in Candida
glabrata is essential for growth in low glucose media and plays a role in the induction of several
hexoses transporters [7]. Kluyveromyces lactis possesses a system of glucose signaling that also
depends of intercellular glucose metabolism, demonstrated in glycolytic mutants whose affec-
tion has a direct correlation with the repression of one of its main transporters of glucose Rag1.
[8]. Figure 2 shows the expression pattern of the carbohydrates transporters depending on the
glucose concentration.

2.2. Hexoses transporters

The vast majority of yeast carbohydrate transporters belong to the Major Facilitator Superfam-
ily (MFS) and the hexoses transporters (HXT) of S. cerevisiae have been extensively studied.
HXT family is conformed of 17 putative membrane proteins with a high similarity, but differ-
ent affinities, [9]. A deletion assay has demonstrated that HXT1–4, HXT6–7 are the mayor
functional transporters in glucose or fructose [10]. Some transporters can transport xylose
efficiently but there is inhibition by glucose presence because they have a clear preference for
this sugar [11].
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All transporters are expressed in several specific conditions. Hxt1 has a low affinity and is
expressed in high glucose levels to control carbon flux; in some cases the affinity of the trans-
porters can be modulated to adapt to consumption needs, as Gal2 and Hxt2, they switch affinity
to regulate specific transport. Some transporters (Hxt 8–17) are transcribed at low levels and
cannot support the demand of nutrients by themselves and in the particular case of Hxt12 does
not transport glucose. HXT family has the ability to translocate other sugars such as fructose,
which also covers a role of expression regulation [9, 10]. In Schizosaccharomyces pompe, the
symporter Ght2 has better affinity for fructose instead of glucose [12].

Specific fructose symporter (Fsy1) has been described to function as a proton symporter; this
transporter is able to discriminate between fructose and other hexoses in Saccharomyces
pastorianus [13]. The symport transport of fructose occurs when cells growth in low fructose
(0.5%) medium and exhibits an unusual fructose:H+ stoichiometry of 1:2 [14].

Figure 2. Expression of transporters in yeasts dependent on the concentration of glucose in the medium. At high
concentrations of Glu: a) Hxt1 main transporter of Glu, b) Hxt7 has inhibition in xylose transport; c) Rgt2 is a sensor that
induces expression of transporters required at high concentrations of glucose. At low concentrations of Glu: d) Mal11
transports α-glusides as maltose, e) Ght2 a symporter proton allows the consumption of fructose, f) decreases inhibition
of xylose transport and initiates its consumption, g) Snf3 is a sensor that induces expression of required transporters at
low glucose concentrations. In the absence of sugars, yeasts use alternative carbon sources via carriers h) Gup1 or 2 and j)
St1. Under osmotic stress, equilibrium is maintained by expelling glycerol via carrier i) Fps1.
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Frt1, from Kluyveromyces lactis encoding a fructose transport protein of high affinity to
fructose that acts as a proton-coupled symporter dependent of energy and is rather specific
for fructose. This transporter is also induced by galactose, although in a lesser extent. It
remains to be determined whether Frt1 transcription is under control of the Rag4 glucose
sensor [15].

Yeast Zygosaccharomyces bailii uptake fructose mainly at high sugar concentrations by a specific
transporter system with high capacity and low affinity and a non-specific transporter with
low-capacity and high-affinity that also transports glucose, similar results were also found for
Z. rouxii [16]. Galactose is another sugar that is uptake by yeast, transporter Gal2 who shows
homology with HXT but is not a specific-transporter and presents two conformational state for
low and high affinity. In mutant of transporter Lac2 of K. lactis lost the capacity of lactose
consumption and also for galactose indicating that Lac2 can transport galactose [17].

2.3. Pentoses transporters

Glucose is preferentially transported into the cell due to a 100-fold lower affinity of xylose for
the transporters. In S. cerevisiae some non-specific Hxt transporters are able to transport xylose
only when glucose is absent or in concentrations below 5 g/L. Hxt7 has a low affinity to xylose
and presents efficient transport for this sugar [11].

Candida intermedia shows to grow well on xylose, the transport of this sugar is carried on by
two different transport systems: a Gxf1 glucose/xylose facilitator 1 with low affinity, it is
constitutive expressed and on the other hand a Gxs1 glucose/xylose symporter 1 whit a high
affinity to xylose is repressed in the presence of glucose [18]. In [19] was detected a very weak
growth in complementation of xylose for YHT1 and YHT6 (genes from Yarrowia lipolytica) in an
hxt-null mutant of S. cerevisiae engineered for use of xylose.

S. cerevisiae lacks of arabinose specific transporters, however Gal2 can be transported at a slow
rate, other yeast as Scheffersomyces stipitis have an AraT to uptake arabinose and apparently
does not facilitate hexoses transport [20].

2.4. α-glucosides transporters

MAL loci contains genes necessary for the transport and consumption of maltose as MALx1
which encodes a maltose permease with low affinity and MALx3 encoding a positive regula-
tory protein of these genes in the presence of maltose, a clear example would be maltotriose/
maltose: symporter Mal61 encoded by MAL61 and a positive regulatory protein encoded by
MAL63 [21]. In yeast there are maltose transporters with high and low affinity, for example
MAL11, MAL21 and Mal 61 have high affinities to maltose (Michaelis constant (Km): 2–4 mM)
and can carry other sugars as turanose but cannot convey maltotriose. Atg1:H+ is a symporter
transporter capable of transporting a wide variety of α-glucosides (trehalose, sucrose, maltose,
α-methyl-glucoside, maltotriose) in S. cerevisiae [22].

2.5. Glycerol transporters

Polyols like glycerol are used as osmoprotectants by many organisms; yeasts accumulate glyc-
erol under high osmolality conditions. Fps1 glycerol efflux facilitator in S. cerevisiae is essential
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maintaining the balance in hypoosmotic changes, this transmembranal protein contain a cyto-
solic terminal domains that is important regulating glycerol flux through the channel [23].

Another glycerol:H+ proton symport transporters like Stl1 are expressed transitorily and acti-
vated when all sugar is consumed and the yeast enters into diauxic shift, during this, major
changes in gene expression alter the fermentative to oxidative metabolism, allowing to utilize
the produced ethanol and glycerol before entry into the stationary phase. Stl1 was inactive in
the presence of glucose [24]. By homology analysis with Stl1 from S. cerevisiae, the Gt1 of
Scheffersomyces stipitis demonstrated to be a glycerol transporter that is active when the
medium contains ethanol and absence of sugars [25].

2.6. Inositol transporter

Inositol transporters ITR1 and ITR2 (from S. cerevisiae) are located in the plasma membrane
and accept myo-inositol, both have similar affinities (ITR1: Km = 100 μM, ITR2: Km = 140 μM).
However, there is insufficient inositol uptake when only ITR2 is present and there for ITR1
appears to be responsible for inositol uptake because ITR1 is highly transcripted. The ITR2
transporter of Schizosaccharomyces pombe (inositol auxotroph) is essential for regular cell
growing, this transporter contains 12 intermembranial domains whit two sugar-transport
motifs typical for HXT and shows similarity whit S. cerevisiae inositol transporters. The mRNA
levels of itr2 gene are also repressed by glucose [26].

All transporters mentioned have the transport of carbohydrates in common, but they pre-
sent variation on substrate affinity that can be classified in low (Km: >40 mM) and high (Km
<40mM) affinity, this feature leads to control carbon flux; therefore at high substrate concentrations
the expression of low affinity transporters is induced. One way to measure carbohydrate
transport rates (uptake) is by scintillation assay, where studied strains that express the trans-
porter of interest. It is harvested and transferred to a substrate-free buffer to subsequently
expose them to a solution of known concentration of the radioactively labeled carbohydrate of
interest for a defined period of time, then, the cells are filtered and washed with the same
buffer, after, the remanent is analized by a liquid scintillation counter. The difference between
the radioactivity data of the initial substrate and the remaining concentrations, allows sub-
strate consumption quantification per unit time; this information can also be integrated into an
enzymatic modeling or nonlinear regression analysis to obtain kinetic parameters of Km and
maximal initial uptake speed (Vmax). Table 1 presents a list of diverse characterized yeast and
transporters.

3. Protein transport

Membranous and non-membranous proteins are the indispensable machinery for the cells
life. Membranous proteins are integral and peripheral membrane proteins that include trans-
porters (sugars, ions), GTP binding proteins, cell wall synthesizing proteins. While, non-
membranous proteins are metabolic proteins, transcription factors and so on. Most proteins
are usually encoded in the nucleus and synthesized in the free ribosomes of cytoplasm [39].
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Once synthesized, they must have to be transported to different compartmentalized organ-
elles such as Nucleus, Endoplasmic Reticulum (ER), Mitochondria (Mt), Golgi bodies, Vacu-
oles and Peroxisomes [39–41]. These compartmentalized organelles are constituted by
multiple sites like outer membrane, intermembrane space, inner membrane and matrix as
shown in Figure 3. The proteins should be transported to all specified sites of organelle(s)
and across the wall (cell wall) to the extracellular medium [39–41]. The order of events that
leads the protein to get transported are protein recognition and its subsequent translocation
into the organelle. Despite the organelle specific transport, multiple steps of protein trans-
port are briefly generalized here.

3.1. Signal sequence

Most proteins synthesized in the cytosol are mostly precursors or preproteins carrying signal
sequences [39]. The signal sequences, present in each protein molecule, are organelle specific.
They can be found either at the N-terminal or C-terminal ends of proteins [39–41]. The signal
sequence has three conserved general domains: A N-terminal region that varies widely in length,
but typically, contains amino acids which contribute a net positive charge: a central hydrophobic
region made up of seven to 16 amino acids; followed by a signal cleavage site (Figure 4). For
instance, Mt. preproteins are rich in positively charged amino acids, arginine and lysine, and
hydroxyl bearing ones, serine and threonine. In nuclear preproteins, the sequence region of
first 10–90 N-terminal residues, exhibiting a high composition of arginine and near absence of

Figure 3. Compartmentalization of organelles like nucleus, endoplasmic reticulum, mitochondria, peroxisomes into
multiple layers include outer membrane, intermembrane space, inner membrane and matrix. A mitochondria layers
example is given here.
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negatively charged residues, is considered as signal peptide [42]. Regarding membrane proteins,
the targeting signals have so far only been identified for a small subset of proteins [43]. In
general, non-membranous proteins carry signal peptides at N-terminal, whereas signal peptides
are located at the carboxyl termini of membranous proteins [43]. Additional signal sequences
found in the proteins conceive multiple entries across the membrane layers of organelles. The
example is shown in Figure 4, where Mt. luminal proteins contain three signal sequences as
follows: (1). A N-terminal protein signal required to gain access into organelle, (2). A stretch of
amino acids signalizing the intermembrane space and (3). The mature part of the precursor
protein signal that allows the protein to locate themselves into the Mt. lumen [44, 45].

As proteins contain unique signals to each organelle, various bioinformatics databases are
developed to facilitate the search process of signals in the proteins. The databases are listed at
the end of the book chapter. The enlisted bioinformatic databases will assist the researchers to
study and explore the signal peptides appropriate for the organelles of interest.

3.2. Protein recognition and entry into organelle

The signal sequences present in the protein molecules are recognized by signal receptors or
signal recognition particles and outer-membrane translocases [42, 44, 45]. They are usually
found either in the cytosol or on the membrane of the organelles’. Pex5p is a remarkable
example of cytoplasmic receptor protein [46]. Some examples of membranous receptors are
exportins and importins (nuclei), translocase outer-membrane complex (Tom70; Mt) [44, 45].
The receptor always function by coupling with other accessory proteins to import and export
proteins. For instance, Tom 70 binds to a subset of mitochondrial precursor proteins, with
Tom70, are Tom22, Tom5, Tom6, Tom7, Tom20 and Tom70 [44, 45]. These binding partners
cooperate and facilitate the targeting of mitochondria proteins. Usually, receptors contain
binding sites for signal sequence in the precursor proteins. After gaining access to the organelle
specific receptors, precursor proteins are either further processed and deposited into the
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Mature
Protein

COOHOMP        IMP     MP        Matrix Mature-Protein

Outer-Membrane Inter-Membrane Inner-Membrane

Mitochondrial Proccesing Peptidase
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Figure 4. Representation of signal peptide regions present in the various preproteins. (a). The classic preproteins that are
entering ER organelle consists of three separate regions in signal peptide include a segment of positively charged amino acids
followed by a stretch of hydrophobic amino acids. A protease cleavage site is found next to the mature protein segment. (b).
More similarly, mitochondrial matrix proteins contain three peptide regions that corresponds to specific peptidases located
on the outer membrane, intermembrane space and inner membrane. Each region is highlighted by arrow. The successive
cleavage of peptide regions at respective sites moves the proteins across the membrane to reach matrix.
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respective compartments, or translocated directly through the membrane pore complexes [39–
41]. In the case of processing precursors, the function of multiple peptidases locating in the
respective compartment is required. Especially, in the transport of Mt. luminal proteins, three
peptidases: Mitochondrial processing peptidase, Mitochondrial intermediate peptidase, Mito-
chondrial inner membrane peptidase and their complex proteins are involved to translocate
protein from the outer - membrane to the matrix [44, 45] (Figure 3).

In the followingsection,weaccounton theexamplesof two typicalprotein transport systemsbased
on the presence (peroxisome protein) and absence of signal sequences (vesicle-associated protein).

3.3. Transport of peroxisome proteins

Peroxisomes are ubiquitous eukaryotic cell organelles that compartmentalize a large variety of
oxidative metabolic reactions. Peroxisome proteins play essential roles in glycolate recycling,
amino acid biosynthesis and in fatty acid degradation. Since, it does not contain any genetic
material, all the peroxisome proteins are encoded in the nuclear genome. Two types of Perox-
isome transport sequence (PTS) have been discovered: type I (PTS1) and type II (PTS2) to
translocate proteins from cytoplasm [46, 47]. Some of the identified peroxisome signal peptides
are listed in Table 2. The PTS1 is found in most of the peroxisome matrix proteins and is
located at the C-terminus as a tripeptide SKL20. It generally fits the consensus sequence (S/A/
C)-(K/R/H)-(L/M). The PTS2 is a conserved sequence which is located near the N-terminus of a
protein and is comprised in some species within a pre-sequence that is cleaved off after import
into the peroxisomal matrix. Sequence comparisons showed the conserved nonapeptide of
PTS2 as (R/K)-(L/V/I)-X5-(H/Q)-(L/A/F). Some proteins which do not contain neither a PTS1
nor a PTS2 have been identified and well known examples are acyl-CoA oxidase, catalase from
S. cerevisiae and Y. lipolytica, the alcohol oxidase from Hansenula polymorpha [48].

Pex5p protein, the cytoplasmic receptor, shuttles between a soluble form and an integral
membrane-bound form [46, 49, 50]. They guide free-ribosomal-synthesized peroxisome proteins
to translocate across the peroxisome membrane to matrix. It has been characterized that this
protein has the capacity to translocate folded, and even oligomeric proteins. The C-terminal
domain comprises of seven tetratricopeptide (TPR) repeats, in which 1–3 and 5–7 TPRs adopt
extended conformation to link other three TPRs [49]. This conformation produces a funnel shaped
binding site for the proteins containing PTS1 signal sequence. Once the receptor recognizes the
cargo in the cytosol, a set of proteins Pex13p, Pex14p, Pex17p associate to it forming a docking

Yeasts Protein Sequence

C. tropicalis Catalase ILELSPRK

S. cerevisiae Catalase ELSSNSLF

C. tropicalis Acyl-CoA oxidase EYAAILSK

H. polymorpha Dihydroxyacetone synthase NHDKVNKL

C. tropicalis Trifunctional enzyme LVGDLAKI

S. cerevisiae Trifunctional enzyme LSQAKSKL

Table 2. List of peroxisome protein signal sequences.
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complex [46, 50]. This establishes a possible link to cargo-receptor complex with peroxisome
membrane. At the peroxisome membrane, Pex5p would act as intrinsic membrane protein
forming a stable complex with the docking proteins. This complex is shown to exhibit the main
conductance of a pore with 3.8 nm in diameter [46, 50]. Also, they can transiently expand to more
than 9 nm, when they are importing large oligomeric cargo proteins. The formed pore might at
some stage import and translocate the proteins to the lumen [46, 50]. After the luminal protein is
released, Pex5p is recycled and translocated to the cytosol by an ATP dependent ubiquitination
machinery [46, 49, 50]. In summary, in the cytosol, Pex5p functions as PTS1-receptor in cargo
recognition and at the peroxisomemembrane where it contributes to pore formation and presum-
ably translocation (Figure 5).

3.4. Transport mechanism of a transmembrane protein, Snc1p/2p

Here, we give an example of transport of a transmembrane protein associated to vesicles
(discussed below in the following section). Synaptobrevin (Snc1p/Snc2p) is a soluble N-
ethylmaleimide-sensitive factor attachment protein receptor (SNARE) transmembrane protein.
These proteins bind onto vesicles and interact with t-SNARE proteins on the plasma mem-
brane, by which they provide specificity for the targeting and fusion of vesicles with the
plasma membrane [51]. It consists of a variable N-terminal domain, a central coiled-coil
domain, and, in most cases, of a single C-terminal transmembrane domain (TMD) that is
thought to be α-helical. The conserved region in the SNARE proteins was predicted to contain
two amphipathic alpha helices [51]. Helix 1, from 39 to 53, is unusually hydrophobic and Helix

Figure 5. Outline of transportation of matrix proteins of peroxisome mediated by Pex5p and its associated proteins. The
protein transport involves five steps: (I) cargo-receptor recognition (II) docking of cargo-receptor complex to the mem-
brane (III) translocation of cargo into matrix across membrane (IV) disassembly and (V) recycling of receptor to cytosol
(modified from [50]).
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2, from 60 to 88, predicted to be interacted with other hydrophobic segments of membrane
proteins t-SNAREs (Syntaxin) during the fusion of vesicles. Other than helices, it carries a
variable domain in the N-terminal, a carboxy trans-membrane domain (TMD) region of
96–110 amino acids is usually hydrophobic and some amino acids present intravesicular in
vesicles [51].

Just like the other class of membrane proteins, it lacks a signal sequence and contains a single
hydrophobic segment close to their C-terminus, leaving most of the polypeptide chain in the
cytoplasm (tail-anchored) [43]. The initial targeting of these proteins to the ER is mediated by
hydrophobic signal sequences, which are recognized during translation by the signal recogni-
tion particle. This hydrophobic stretch near the C termini of membranous protein do not bind
to signal recognition particles and are inserted into membranes post-translationally. Once after
getting entry into ER, it wasn’t clear about the regions responsible in targeting them to
secretory vesicles. Deletion and mutational studies were made in the SNARE proteins to
investigate the region possessing the ability to target it (Table 3). From the targeting studies
of Grote et al. [52] and Gerst [53], it was clear that in the absence of helical loops, it is not
possible to target the Snc proteins onto secretory vesicles. Thus, deletion or gross substitutions
in either of the predicted H1or H2 segments result either in the loss of targeting or in a
complete loss of functions. This shows that conserved amphipathic alpha helical region (32–
85) is essential for the confinement of snare proteins.

Regions deleted Effects Reference

Presence Absence

VAMP 2–30 ++ [52]

2–60 ��
31–38 ��
41–50 ��
61–70 ++

71–80 ++

Snc1 2–27 ++ [53]

31–50 ��
51–82 N.D.

VAMP 1–90 ��
Snc1 91–116 ��
Snc1 1–65 ++

VAMP 65–84

Snc1 85–116

++ confers the targeting of SNARE proteins.
�� confers the non-targeting of SNARE proteins.
VAMP—vesicles associated membrane protein/ortholog of Snc1.

Table 3. Deletion mutational study reveals the regions required for the targeting of Snc1 and its ortholog proteins.
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In the other hand, deletions of both variable domain and transmembrane domain do not
produce a more deleterious effect in the fusion of vesicles. That is, their localization onto
vesicles is not affected by these mutations [52–54]. These results substantiate that the TMD of
Snc protein is tuned to conduct its delivery into ER, while the helices take it over from ER to
Golgi. Besides, the targeting of SNAREs to vesicles, TMD plays a key role in their sorting and
fine tunes their distribution within the secretory pathway. That is, TMD sorts Sncp proteins
and let them to undergo a dynamic cycle of transport to and retrieval from the plasma
membrane to vesicles. Thus, it is understood that TMD serves both, as a key factor in the
membrane distribution and as the targeting signal for initial insertion of protein to ER domain.
Taking together, it was concluded that the sequence-specific information present in the mem-
brane proteins is important for the respective localization to specific organelles and its subse-
quent protein function.

4. Vesicular transport

Despite the appreciable functionality of various transporters and protein machinery, there is
another existing sophisticated source to transport materials across the walls. They are “natu-
rally existing liposomes” which are made up of an outer hydrophobic lipid bi-layer and an
inner aqueous hydrophilic core. Two vesicle types depending on their localization: intracellu-
lar and extracellular vesicles are identified and extensively studied in the literature. This
section briefly describes the role of such vesicles in the transport of biological materials in
yeast organisms.

4.1. Intracellular vesicles

In S. cerevisiae, two types of intracellular vesicles: - early secretory and post secretory
vesicles are involved to transport cargos (proteins) [39–41]. Early secretory vesicles (ESVs),
derived from ER membrane, carry cargoes to Golgi complex, where at this stage post
translational modifications such as glycosylation, mannosylation, acetylation, methylation,
phosphorylation and acylation are done [41]. While post secretory vesicles (PSVs), shed
from trans-Golgi membrane, transport selective cargos destined to extracellular medium
and plasma membrane [40]. First, Golgi complex cargoes, secretion and cargoes of other
organelles requiring post translational modification are selected via the signal peptide.
Later, they are transferred from the ER and packaged as cargo into COPII coated vesicles
(ESVs) bound for the stacks of the Golgi complex [39, 41]. The ER vesicles fuse with the cis-
Golgi membrane to deposit the cargo into the Golgi complex. The deposited proteins are
post translationally modified according to their functional requirements [39, 40]. Then, the
proteins for secretion and plasma membrane, that are sorted away from the rest of the
cargo, pass into the trans-Golgi network (TGN) and are packed into clathrin coated vesicles,
which are called early as PSVs [39].

The PSVs move vectorially towards sites of polarized growth (the bud and mother/daughter
neck). They move to arrive at the target membrane dock and subsequently fuse to transfer
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their contents to extracellular medium [39, 55]. This complete process is termed as polarized
exocytosis. It consists of at least three stages. First, PSVs are targeted to the vicinity of
designated plasma membrane domains via microtubule- and/or actin-based transport sys-
tems [55, 56]. Second, after vesicles arrive at their sites of active exocytosis, where a exocyst
complex consisting of eight components: Sec3, Sec5, Sec6, Sec8, Sec10, Sec15, Exo70, and
Exo84 mediate the targeting and tethering of PSVs for subsequent membrane fusion [56–58].
Two proteins Sec15p and Sec10p bridge Sec4p, a Rab Gtpase, to other exocyst components.
On the plasma membrane, Sec3 and Exo70 interact with PIP2 and with other family mem-
bers of Rho Gtpases (Cdc42, Rho1p) [58]. Finally, the fusion between PSVs and plasma
membrane takes place allowing the secretion of vesicle contents and the incorporation of
membrane proteins at specific plasmamembrane domains. This specific fusion event is mediated
by interaction of proteins present in PSVs membrane (v-SNAREs, snc1p/2p) (SNARE, soluble N-
ethylmaleimide-sensitive fusion attachment protein receptors) and plasma-membrane (t-
SNAREs; sso1p/2p) [51].

Wild type S. cerevisiae strains generate PGVs from 50 to 70 nm in diameter. In contrast, some
mutant strains deficient in vesicular transport accumulates PSVs within the cell in different
size ranges. For example, exo70–35 and exo70–38 mutant cells accumulated PSVs from were
80–100 nm in diameter [58]. Forsmark et al. [59] have determined the protein composition of
PGVs obtained from the sec6–4 and sro7 mutant strains for isolation. The protein content
identified are mainly involved in vesicle transport, molecules transportation, metabolism of
carbohydrates and protein biosynthesis and degradation. Major dominant lipids constituents
of membrane are phosphatidylcholine (PtdCho), phosphatidylethanolamine (PtdEtn) and
phosphatidylinositol (PtdIns). It has been speculated that the above mentioned mutants serve
as an outstanding source of vesicles for lateral biotechnological applications.

4.2. Exosomes or extracellular vesicles

In all the three kingdoms of life, Exosomes or Extracellular Vesicles (EVs) are one of the most
protective sources of conducting trans-cell wall transfer of macromolecules to the recipient
cells. EVs (Ø 50–120 nm) are secreted from cells as membranous vesicular organelles by a wide
variety of cells, from lower to higher eukaryotic organisms, i.e., from fungi to mammals [60, 61].
Unlike intracellular vesicles, they act as extracellular carriers of proteins and/or nucleic acids,
particularly microRNAs and mRNAs, between cells and serve as shuttle vectors and media-
tors of intercellular communication, immune responses, and antigen presentation [60]. The
biogenesis of exosomes begins in the last stage of endocytosis, during which the endocytic
membrane undergoes budding to form intraluminal vesicles (ILVs). The accumulated ILVs
within the original endocytic membrane, at this stage, is named the multi-vesicular body.
These bodies, then fuse with either lysosomes for degradation or the plasma membrane for
extracellular release of ILVs, i.e., exosomes or EVs. EVs are released from cells, either consti-
tutively or upon activation of a secretory pathway [60]. The machinery involved in the bio-
genesis of exosomes varies in different cell types [60, 61]; however, in most cells, the ESCRT
(endosomal sorting complex required for transport) machinery plays a major role in EVs
biogenesis [60, 61]. The roles of both the ESCRT-dependent and -independent mechanisms in
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exosome biogenesis remain largely unknown and are yet to be fully elucidated. Similarly, the
mechanisms underlying the packaging of cargo into exosomes and the transport of these
exosomes across cellular membranes have been described both in vivo and in vitro, but remain
to be fully elucidated [60, 61].

EVs have been conserved and distributed widely in many different fungal species, including
yeast cells and hyphae [23]. Pathogenic fungus and opportunistic fungus are the well-recognized
candidates for the release of EVs. Some of the examples are as follows: Paracoccidioides brasiliensis,
Sporothrix schenckii, Candida albicans, Candida parapsilosis, Malassezia sympodialis, Histoplasma
capsulatum, Cryptococcus neoformans, Malassezia sympodialis [61]. Non-pathogenic S. cerevisiae
mutants (sec4–2, sec6–4, sec4–8, sec23–1, exo70–35, and exo70–38) have also been demonstrated
to excrete EVs in the extracellular medium [62]. Several EV proteome studies revealed the
presence of multiple organelle specific proteins which are derived from the cytoplasm, plasma
membrane, mitochondrial, vacuolar and even nuclear proteins. Sterols, phospholipids and pig-
ments are also present in the EVs. Quite recently, the presence of small RNAs in the fungal EVs
was addressed [63].

4.2.1. Diverse roles of transport cargoes of EVs

The EVs derived from pathogenic fungus are natural born carriers of cargo responsible for
fungal pathogenesis. Several components of fungal EVs are potent elicitors of immunolog-
ical activities [64]. For instance, the very common protein HSP60 carried by EVs acts as
immunogen and induces protective antibodies [65]. The main virulence factor of EVs
derived from Cryptococcus neoformans is a polysaccharide capsule coating glucuronoxy-
lomannan, which activates immune-suppressive and anti-phagocytic properties [65]. The
incubation of cryptococcal vesicles with murine macrophages induced high levels of
extracellular tumor necrosis factor alpha (TNF-α), interleukin-10 (IL-10), and transforming
growth factor β (TGF-β) [65]. M. sympodialis releases extracellular vesicles carrying aller-
gen were shown to induce IL-4 and TNF-α responses in PBMC patients [66]. The immu-
nogenic galactosyl epitopes distributed on the surface of large EVs of Paracoccidioides
brasilensis generated robust immune response in the paramycoccidiodomycosis patients
[67]. They bind to host lectins and induce immunological type 2 suppressive response.
Also, C. albicans EVs stimulated dendritic cells (DCs) to produce IL-12p40, IL-10, and
TNF-α, and induced upregulation of CD86 and MHC-II [68]. The change in protein
composition of THP-1 macrophage-derived EVs was studied during the interaction with
C. albicans [69]. This study revealed the changes in the abundance of proteins relating to
immune response, signaling, or cytoskeletal reorganization. The interaction significantly
increased the secretion of proinflammatory cytokines and the candidacidal activity. More
likely, the treatment of H. capsulatum cells with monoclonal antibodies (MAbs) affected the
sizes, enzymatic contents, and proteomic profiles of the vesicles released by fungal cells
[70]. The coating of Hc with cryptococcal glycans (Cn-gly) resulted in higher pulmonary
fungal burden in co-infected animals relative to control. Co-cultivation or addition of Cn-
gly resulted in enhanced pellicle formation with a hybrid polysaccharide matrix with
higher reactivity to GXM mAbs [71].
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5. Methods to determine the secretion-proteins across yeast wall

Numerous established techniques are already available in literature to detect, characterize and
demonstrate the phenomenon of secreting proteins, towards the extracellular medium, across
yeasts wall. At cellular level, usually, the proteins destined to secretion are always preserved
intact into the secretory vesicles of yeasts. Taking advantage of this nature, many fluorescent
methods detect the proteins presence througth the secretion route in cells by fluorescence. The
availability of several fluorescent proteins (FPs): Green-FP, Red-FP, Yellow-FP and Blue-FP has
made the detection process simple and effective [72]. To this end, tagging proteins of interest
with FPs, using genetic engineering techniques, will come handy and serve the purpose of
locating them into the cells. In the other hand, immunofluorescent technique makes use of
antibodies to demonstrate the integrity of secretion proteins inside vesicles [53]. For this
purpose, various temperature sensitive sec-mutant strains, with the ability to accumulate
vesicles, are highly recommended [73].

Once the proteins are secreted outside, they can be characterized by molecular techniques like
SDS-PAGE and Western blotting to identify specifically the proteins of interest in the extracel-
lular medium [53, 74]. By other hand enzyme activity studies are suitably advantageous to
determine the proper functioning of the secreted protein The design of such experiments
generally varies with respect to the enzymes and must be handled appropriately and the
experiments can be performed either by using the whole extracellular medium containing
secreted proteins or by using the purified proteins of interest (see protein purification section
in applications below). Combining all together, we conclude that one of the abovementioned
techniques could be suitable for realizing adequate studies on the proteins secretion.

6. Applications in biotechnology

This is an overview of the main trends reported within the last years in current research on
applications related to transport proteins in some yeast, which has not yet discussed in detail.
Major advances, of the role of different biological transporters in S. cerevisiae are focused in
carbohydrates related to obtain value-added bioproducts. Mainly discuss the expression of
carbohydrates transporters in yeast are focused to improve different substrates and in the
modification of specific aminoacides into transporters to regulate the affinity, order to alleviate
transport inhibition by sugar concentration. The capacity to co-transport glucose and xylose
into yeast has remained a technical challenge in the field [11, 29]. Due to the lack of an
endogenous xylose transporter in Saccharomyces cerevisiae, the xylose uptake depends on trans-
porter engineering to increase transport rates avoiding glucose-based inhibition, thus enhanc-
ing the potential of using lignocellulosic biomass as a feedstock for yeast [11, 29]. Besides of to
the generation of fuels, the production of value-added chemicals from renewable biomass has
been widely studied. According to [75], S. cerevisiae could be exploited for the production of
other non-ethanol fuels and chemicals from byproducts through metabolic engineering
expressing specific sugar transporter. Some other efforts to use S. cerevisiae strains as a cell
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factory to obtain valued-added products which no involves the use of genetic tools, but
metabolic activators [76] and ultrasound [77].

Some other works involves the study of trafficking mechanisms of small and large compounds
to regulate biosynthesis of appreciated biochemical products. Also, mitochondrial transport
mechanisms are relevant due to its use in future comparative studies aiding explorations of
human mitochondrial diseases and to improve biochemical process. Because energy is a
fundamental enabler of the economy, energy security and environmental safety are two major
issues in the current world that have boosted the demand for an alternative and eco-friendly
energy source.

6.1. Protein purification mediated by heterologous expression

Using genetic engineering techniques, recombinant proteins can be synthesized in anyone of
three compartments of heterologous hosts: cytoplasm, periplasm and the extracellular
medium. The natural ability of secreting proteins is captivated by many researchers as a
medium for the large-scale industrial production of foreign proteins and simplifying down-
stream processes [78]. The secretory expression requires a simple tagging of recombinant pro-
teins of interest with three essential components: (1). A signal peptide sequence targeting
secretion, followed by (2) a purification tag and (3) a protease cleavage site [78–80]. Some of
the examples of these three essential components are enlisted and the recommendable design
of a gene fusion cassette for recombinant protein secretion is shown in Figure 6. The expression
of this gene fusion cassette in the following hosts enables the secretion of protein towards
extracellular medium. The purification tag serves as an anchor and allows the recombinant
protein to separate from rest of the media culture, which is subsequently recovered by using
protease enzyme [80]. Some of the valuable hosts as recommended by Food and Drug Admin-
istration are S. cerevisiae, P. pastoris, Y. lipolytica, K. lactis, and H. polymorpha [78]. Though
technology ages 3 decades, the growth and value of applications are still increasing with
respective to the demand. Some of the recent heterologous expression and secretion of proteins
of biotechnological interest are presented in the Table 4. It is important to note that the α-MF
signal sequence has proven to be most effective in directing protein through the secretory
pathway in host organisms [81, 84–91, 93, 94]. Such expression and purification of recombinant
proteins are widely applied in the industries of textile, food processing, therapeutic applica-
tions. In the other hand, the natural ability of yeast hosts to provide, post translational modi-
fications was highly utilized to express, modify and further secrete eukaryotic proteins,
especially for therapeutic applications, in the extracellular medium [99]. The expression and
secretion of full length IgGs, insulin, glucagon, growth hormone, in yeast hosts is a proof-of-
concept in this context [52]. The glycolate form of antibodies and human glycoproteins with
fully complex terminally sialylated N-glycans were also synthesized in the engineered
Scchefersomyces stipitis (formerly P. pastoris) [97, 98].

6.2. Peroxisome production of valuable bioproducts

Here, we highlight the use of signal peptides and transporter system of Peroxisome for the
synthesis of valuable bioproducts. Mostly, researchers took advantage of the active fatty acid
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pathways and PTS1 signals to generate polyhydroxyalkanoates (bioplastics) and biofuels
(fatty-acid-derived fatty alcohols, alkanes and olefins) [99–106]. From literature, a simple
modification of polyhydroxyalkanoate synthase with PTS was sufficient for targeting and

Figure 6. Overview of genetic elements used for the recombinant secretion of proteins towards extracellular medium (a,
b, and c). The most significant elements are signal peptide sequence, protein tags and protease cleavage sites. Some
examples of well-recognized and highly used components are listed. (d). The design of a gene construct that is in practice
and essential for the heterologous expression and secretion of recombinant proteins in yeast hosts in presented.
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synthesizing PHAs in peroxisome of S. cerevisiae and P. pastoris [99–102]. The authors did an
addition of carboxyl 34 amino acids from the Brassica napus isocitrate lyase to Pseudomonas
aeruginosa PHAC1 synthase for peroxisome targeting, which was further expressed under the

Organism Protein Signal Applications Reference

S. cerevisiae

Human β-defensin-2,
(hBD2)

MFα1 (mating factor alpha)
leader

Antimicrobial activity [81]

Beta glucosidase Sed1, glucoamylase, alpha
mating leader

Cellulolytic activity [82]

endoglucanase II

Cel3A Native secretion signal Lignocellulosic [83]

Cel7A ethanol production

Cel5A

Pichias pastoris

Trx-HPV16-L2
immunogen

alpha-factor signal peptide Vaccine [84]

Horseradish peroxidase MATα prepro secretion signal [85]

Candida antartica
lipase

Human Pro-relaxin L2 alpha-factor signal peptide Therapeutic applications [86]

FSL2, Lipase S. cerevisiae α-factor signal
sequence

Lipolytic activity [87]

Endo-
polygalacturonase

alpha-factor signal peptide Textile scouring [88]

Camel Hepcidin S. cerevisiae α-factor signal
sequence

Antimicrobial activity,
Hormone

[89]

Human anti-αIIbβ3
antibody

alpha-factor signal peptide Atheroma Targeting [90]

Subtilisin QK alpha-factor signal peptide Thrombolytic activity [91]

Yarrowia
lipolytica

Glucoamylase preLip2, preXpr2, and preSuc2 Starch degradation [92]

Xylanase

Kluyveromyces
lactis

Fructosyltransferase alpha-factor signal peptide Hypocaloric sweeteners [93]

Arylsulfatase alpha-factor signal peptide Milk processing [94]

Interferon-Beta Glucoamylase signal sequence Therapeutic applications [95]

Table 4. Recent heterologous expression and secretion of recombinant proteins from mid2016–Feb2017.
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control of the promoter of the P. pastoris acyl-CoA oxidase gene [96, 97]. By this expression,
PHAs was accumulated as inclusions within the peroxisomes and synthesized up to 1%
medium-chain-length PHA per g dry weight was obtained using oleic acid as substrate in the
medium. In another study, a medium-chain-length-PHA (mcl-PHA) polymer was synthesized
in the cytosol of S. cerevisiae utilizing the ß-oxidation intermediates, key peroxisome proteins,
including Faa2p, Fox1p, and Fox2p, together with PHA synthase [101]. A Pex5p mutant was
made in S. cerevisiae to retain peroxisome proteins in the cytoplasm. This retention led the
peroxisome proteins to take part actively in the generating the mcl-PHA monomers. Accumu-
lated PHA up to approximately 7% of its cell dry weight with a monomeric composition of C12
(3-hydroxydodecanoic acid), C10 (3-hydroxydecanoic acid), C8 (3-hydroxyoctanoic acid), and
C6 (3-hydroxyhexanoic acid).

Another effective exploration is targeting synthetic pathways to peroxisomes to produce
medium fatty alcohols and long fatty alcohols [103–106]. The targeted expression of fatty
acyl-CoA reductase TaFAR to the peroxisome of S. cerevisiae has produced medium chain fatty
alcohols [103]. The genes Pex7p and acetyl-CoA carboxylase are overexpressed together with
targeted TaFAR enzyme in the peroxisome. The coexpression improved the synthesis of
decanol, dodecanol, tetradecanol and hexadecanol, which have extensive applications as
biofuels and detergents. Another heterologous expression of a fatty acyl-CoA reductase from
Arabidopsis thaliana in a Pex10p mutant Y. lipolytica had produced over 500 mg/L of 1-decanol
[104]. Likewise, Rhodospirillum toruloides was engineered to express a bifunctional fatty acyl-
ACP reductase (FaCoAR) from Marinobacter aquaeolei VT8 and produced up to over 8 g/L of
C16–C18 fatty alcohols in fed-batch condition using sucrose as carbon source [105]. A recent
study has shown enhanced the peroxisome production of fatty alcohols by targeting the
FaCoAR enzyme using signal per2 (GGGSAAVKLSQAKSKL) [100]. In the same study, the
expression of two FFA based enzymes, Mycobacterium marinum carboxylic acid reductase
(MmCAR)29 and its activation cofactor-40-phosphopantetheinyl transferase NpgA from Asper-
gillus nidulans in a Pex31p/Pex32p mutant strain have resulted in the high level of alkane
production.

6.3. Vesicles in therapeutic applications

The prime role of intercellular communication has motivated researchers to conceive EVs as
potential nano-vehicles for biodelivery applications. Recently in 2016, A patent entitled
¨Compositions and Methods for Yeast Extracellular Vesicles as Delivery Systems, US
20160331686¨ was filed and published [107]. The authors have proposed the use of native
and modified EVs from yeasts cells as practical drug delivery vehicles. In the case of modi-
fied EVs, an exosomal transmembrane peptide of mammalian origin is immobilized onto the
outer membrane of EVs for targeted biodelivery applications. Using these yeast EVs, various
therapeutic sources of cargoes: therapeutic RNAs (circular RNAs), autonomously replicating
cytoplasmic linear mammalian plasmid (express either therapeutic RNAs or proteins), ther-
apeutic peptides, have been tested for delivery applications. Once the cargo loaded EVs are
released from cells, they have been isolated from culture supernatants by either centrifuga-
tion or ultra/micro filtration. Authors conducted in vivo and in vitro studies to study the
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uptake of EVs by these cells and its effect in the delivery of cargoes. The purified vesicles are
recognized by mammalian target cells with the receptors specific for the targeting ligand and
take up the vesicles carrying the biologically active therapeutics via endocytosis. Following
this inspirational work, we believe that the combination of recombinant DNA techniques
and natural loading efficiency of cargoes into EVs would bring potential drug-targeting
properties in future.

7. Webserver

Mitochondria

• p://mitf.cbrc.jp/MitoFates/

• MitoII

Subcellular localization program

• PSORT

• TargetP

• NNPSL (neural network-based predictor)

• http://www.signalpeptide.de/

• SignalP 4.1 (http://www.cbs.dtu.dk/services/SignalP/)

• SPdb (http://proline.bic.nus.edu.sg/spdb)

Peroxisome

• PTS1 Predictor - http://mendel.imp.univie.ac.at/mendeljsp/sat/pts1/PTS1predictor.jsp

Peptidase Database

• http://merops.sanger.ac.uk/
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Abstract

Nucleosome, composed of a 147-bp segment of DNA helix wrapped around a histone 
protein octamer, serves as the basic unit of chromatin. Nucleosome positioning refers 
to the relative position of DNA double helix with respect to the histone octamer. The 
positioning has an important role in transcription, DNA replication and other DNA 
transactions since packing DNA into nucleosomes occludes the binding site of proteins. 
Moreover, the nucleosomes bear histone modifications thus having a profound effect in 
regulation. Nucleosome positioning and its roles are extensively studied in model organ-
ism yeast. In this chapter, nucleosome organization and its roles in gene regulation are 
reviewed. Typically, nucleosomes are depleted around transcription start sites (TSSs), 
resulting in a nucleosome-free region (NFR) that is flanked by two well-positioned 
H2A.Z-containing nucleosomes. The nucleosomes downstream of the TSS are equally 
spaced in a nucleosome array. DNA sequences, especially 10–11 bp periodicities of some 
specific dinucleotides, partly determine the nucleosome positioning. Nucleosome occu-
pancy can be determined with high throughput sequencing techniques. Importantly, 
nucleosome positions are dynamic in different cell types and different environments. 
Histones depletions, histones mutations, heat shock and changes in carbon source will 
profoundly change nucleosome organization. In the yeast cells, upon mutating the his-
tones, the nucleosomes change drastically at promoters and the highly expressed genes, 
such as ribosome genes, undergo more change. The changes of nucleosomes tightly asso-
ciate the transcription initiation, elongation and termination. H2A.Z is contained in the 
+1 and −1 nucleosomes and thus in transcription. Chaperon Chz1 and elongation fac-
tor Spt16 function in H2A.Z deposition on chromatin. The chapter covers the basic con-
cept of nucleosomes, nucleosome determinant, the techniques of mapping nucleosomes, 
nucleosome alteration upon stress and mutation, and Htz1 dynamics on chromatin.

Keywords: nucleosome, 10–11 bp periodicities, nucleosome-free region, 
MNase-sequencing, histone mutation, H2A.Z
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1. Basic conceptions about chromatin and nucleosome

1.1. Chromatin of eukaryotic DNA, nucleosome, nucleosome compositions, and histone

1.1.1. Chromatin

Eukaryotic DNA exists as chromatin structure, which is composed of DNA and proteins in 
the nucleus (Figure 1). The proteins can divide into histone proteins (H1/H5, H2A, H2B, H3, 
and H4) and non-histone ones. The former acts as core which DNA winds. The histone wind-
ing with DNA acts as a ball that forms the basic structure. Non-histone proteins have three 
main functions: (1) enzyme used in different DNA activities, for example, DNA reparation, 
duplication, and translation, such as DNA polymerase and DNA ligase; (2) scaffold proteins. 
They play the role of skeleton; and (3) other motor proteins. All play essential roles in cell 
structure and regulatory functions that make life possible.

Since the package of DNA must be rapidly accessible so that protein machinery is able to 
interact with DNA in replication, transcription, DNA repair, and recombination, the chroma-
tin is highly different in different cells and different periods. Chromatin can be divided into 
euchromatin and heterochromatin. Heterochromatin is characterized by its high compactness 
and its inhibitory effect on DNA transactions such as gene expression. However, according 
to Volpe et al. [1], many of them actually can transcribe but are silenced by RNA by RNA-
induced transcriptional silencing (RITS). Euchromatin is the chromatin which is not packaged 
tightly like heterochromatin so it is more accessible. Most of chromatin are euchromatin (92% 
of the human genome [2]); it contains activating genes and changes its condensation during 
cell cycle.

1.2. Nucleosome and histones

Nucleosomes are the basic unit of chromatin. The nucleosome consists of 147 bp of DNA 
wrapped around an octamer of histones, with two copies of each H2A, H2B, H3, and H4, 
and about 1.65 superhelical turns arranged in a left-handed manner [3] (Figure 2). The 
nucleosome cores are connected by linker DNA, which typically ranges from 10 bp to 90 bp 
in length, to form a “beads-on-a-string” nucleosomal array with a diameter of 11 nm [4]. At 
the entry and the exit of the nucleosome, H1 binds the DNA to make the nucleosomes fixate 
in the space.

The “tails” of these histone proteins stick out, especially H3 and H4, where they can be modi-
fied in many ways. Modifications of the tail include methylation, acetylation, phosphory-
lation, ubiquitination, SUMOylation, citrullination, and ADP-ribosylation. Through these 
chemical modifications, histone can change its interaction with DNA. Interestingly, many of 
these modifications have fixed position and function (Table 1).

All histones have its variants (Figure 3) [5], and they have different biological function com-
pared to canonical histones. Exchanging with canonical histones dynamically also plays an 
important role in regulation of gene expression.
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1.3. Research history of nucleosomes, especially in yeast

Clark and Felsenfeld first used staphylococcal nuclease to digest chromatin in 1971 and found 
that some regions were sensitive to nuclease while some were insensitive; insensitive regions 
were homogeneous, suggesting it contains subunits. Then Hewish and Burgoyun Researchers 

Figure 1. Chromatin structure (http://csma31.csm.jmu.edu/chemistry/faculty/mohler/chromatin.htm).
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in previous study digested the nuclei with endogenous nuclease and isolated DNA from the 
nucleus. As a result, a series of DNA fragments were found, which corresponded to a basic 
unit of about 200 bp, indicating that histones bind to DNA in a regular manner which results 
in only certain restricted regions are sensitive to nuclease.

Kornberg and Thomas then digested the chromatin with a small cellulase in 1974 and centri-
fuged it to obtain monomers, dimers, trimers, and tetramers. Using electron microscopy, the 
monomer was observed as a 10 nm body, and the dimer was two associated bodies. The same 

Figure 2. These views of NCP147 (147-bp nucleosome core particle), at Å resolution, show the two strands of the double-
helix in purple and green, with the protein core in gray. (A) The curvature of DNA around the histone core, with the 
dyad at the top, center; (B) a rotation of the particle, showing the adjacent segments of DNA, opposite the dyad; and (C) a 
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Type of modification Histone

H3K4 H3K9 H3K14 H3K27 H3K79 H3K36 H4K20 H2BK5 H2BK20

Mono-Me A A A A A A

Di-Me R R A

Tri-Me A R R A & R A R

Ac A A A A

Note: Me, methylation; Ac, acetylation; A, activation; R, repression.

Table 1. Different modifications in transcription regulation (from) [7–10].
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trimer and tetramer consisted of three bodies and four bodies, respectively, indicating that the 
structure consisting of 200 bp DNA was “rope beads” units, which are called nucleosomes.

Through all kinds of experiments, it was found that the structure of the nucleosome core 
is relatively invariant from yeast to metazoans [11, 12] containing a 147 bp DNA wrapped 
around a histone protein octamer. In 2005, Yuan et al. developed a tiled microarray 
approach to identify at high resolution the translational positions of 2278 nucleosomes over 
482 kb of Saccharomyces cerevisiae DNA, including almost all of chromosome III and 223 
additional regulatory regions [13]. However, the study of the location of nucleosomes is 
quite time-consuming and costly if using experiments alone, so the researchers began to 
build nucleosome positioning prediction model based on the existing experimental data 
[14]. In yeast genome, Segal et al. found that DNA sequence contains ~10-bp period pat-
tern of AA-TT-TA/GC dinucleotides [15]. Nucleosomal DNA sharp bending occurs at every 
DNA helical repeat (~10 bp), when the major groove of the DNA faces inward toward the 
histone octamer, and again ~5 bp away, with opposite direction, when the major groove 
faces outward. The property of the ~10-bp periodicity is called “a genome code” for nucleo-
somes. Since that, many nucleosome prediction models were developed.

Figure 3. All of the histone variants contain a highly conserved histone fold domain and vary mainly in their C- and 
N-terminal sequences. The above shown is a schematic comparing histone variant sequences. Boxes represent the 
histone fold domain and orange lines represent site-specific sequence variations. Histones that are in different shades of 
the same color are from the same histone family but have large differences in sequence [5].
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2. Nucleosome positioning and its determinant

2.1. Concepts of nucleosome positioning and nucleosome occupancy

The term “nucleosome positioning” is used to indicate where nucleosomes are located with 
respect to the genomic DNA sequence [16]. Generally, nucleosome positioning can divide 
into two parts: rotational positioning and translational positioning. The first one is to describe 
the side of the DNA helix that faces the histones and the next one is to determine the nucleo-
some midpoint with regard to the DNA sequence.

By doing statistical analysis, “nucleosome occupancy” tries to identify the possibilities of a 
base pair whether it is in a nucleosome region [16]. It is possible to calculate average nucleo-
some positioning levels on a given region of DNA in a population of cells. In ideal conditions, 
nucleosome is “shaking” in the perfect position. By counting the time of sequenced reads that 
are overlapped by nucleosome center in a ~147 bp window, it gives the most conservative 
locus which means that it is most possible to have a nucleosome there (Figure 4).

Figure 4. Illustration of the concepts of nucleosome positioning and nucleosome occupancy. (A) We use fraction of 
cells from the population in which that basepair is in the middle of a 157bp nucleosome representing the nucleosome 
positioning along every basepair in the genome. The left figure exhibit perfect-positioning region, where the 
nucleosome center is located at the same basepair all over population cells; the other two showed partial-positioning 
and no-positioning region. (B) [16].
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2.2. The association between nucleosome positioning and 10–11 bp periodicities in  
DNA sequence in yeast

Early in 1990, the 10–11 bp periodicities were reported [17]. In addition to 3-bp periodic-
ity, which is due to the fact that three consecutive bases encode one type of amino acids, 
the genomic DNA exhibits 10–11 bp periodicities. The 10–11 bp periodicities in complete 
genomes reflect protein structure and DNA folding [17].

In alpha helices structure, the hydrophobic amino acids (aa) occur with a ~3.5 aa, and all five 
hydrophobic amino acids L, I, V, F, and M have a base T (thymine) at middle position of their 
codons. This leads ~3.5 × 3 = ~10.5 bp periodicity in protein coding DNA sequences, called 
protein-induced periodicity.

On the other hand, the 10–11 bp periodicities have an intimate association with nucleosome 
positioning. To sharply bent and tightly wrapped around a histone protein octamer, DNA 
sequence has intrinsic bias. The position of certain dinucleotides, such as AA, TA, and TT 
in minor grooves facing toward (every 10 bp) and GG in minor grooves facing away from 
the histone octamer favors these (Figure 5) distortions [15]. Moreover, when digesting DNA 
using DNase I (Deoxyribonuclease I), it was observed that the cleavage pattern in nucleosome 
position shows a ~10.3 bp period, which is equal to a minor groove. For the naked DNA, 
which is entirely devoid of nucleosomes, the oscillatory pattern in cleavage profile was disap-
peared in digesting [18]. All of these strongly suggested the role of the 10–11 bp periodici-
ties of the specific dinucleotides in positioning nucleosomes. Based on the features of DNA 
sequences, many models are developed to predict nucleosomes (Table 2).

We further found that within frequency domains, weakly bound dinucleotides (AA, AT, and 
the combinations AA-TT-TA and AA-TT-TA-AT) present doublet peaks in a periodicity range 

Figure 5. Illustration of nucleosome sequence preferences [16].
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Software Description References

Segal Lab: Online 
Nucleosomes Prediction

This tool allows you to submit a genomic sequence and to receive a 
prediction of the nucleosomes positions on it, based on the nucleosome-
DNA interaction model

[15, 21, 22]

iNuc-PseKNC A predictor for predicting nucleosome positioning in Homo sapiens, 
Caenorhabditis elegans, and Drosophila melanogaster genomes

[23]

NuCMap NuCMap is based on chemical modification of engineered histones. The 
tool reveals novel aspects of the in vivo nucleosome organization that are 
linked to transcription factor (TF) binding, RNA polymerase pausing, and 
the higher order structure of the chromatin fiber

[24]

NuPoP Predicts nucleosome position by explicitly modeling the linker DNA length. 
NuPoP is based on a duration hidden Markov model (HMM)

[25]

Epidaurus Epidaurus is a bioinformatics tool used to effectively reveal inter-dataset 
relevance and differences through data aggregation, integration, and 
visualization

[26]

Multi-Layer Model Analyses nucleosome position data obtained with microarray-based 
approach. MLM is a classifier to distinguish between several kinds of 
patterns

[27]

NucEnerGen Predicts nucleosome energetics by using high throughput sequencing. It 
establishes that nucleosome occupancies can be explained by systematic 
differences in mono- and dinucleotide content between nucleosomal and 
linker DNA sequences

[28]

nuMap Implements the YR and W/S schemes to predict nucleosome positioning 
at high resolution. This methodology is based on the sequence-dependent 
anisotropic bending

[29, 30]

NPRD Compiles the available experimental data on locations and characteristics 
of nucleosome formation sites (NFSs). The object of the database is a single 
NFS described in an individual entry

[31]

AWNFR An algorithm based on down-sampling operation and footprint in wavelet [32]

ICM Allows users to assess nucleosome stability and fold sequences of DNA into 
putative chromatin templates. It uses an elastic model to place nucleosomes

[33]

SymCurv The tool is able to capture sequence constraints, which are related to 
structure in genomic regions

FineStr Allows users to upload genomic sequences in FASTA format and to 
perform a single-base-resolution nucleosome mapping on them

[34]

iNuc-PhysChem Identifies nucleosomal sequences by incorporating physicochemical 
properties into a 1788-dimensional feature vector. iNuc-PhysChem was 
able to identify nucleosome positioning for an independent DNA segment 
extracted from the Saccharomyces cerevisiae genome

[35]

TemplateFilter High-resolution nucleosome mapping reveals transcription-dependent 
promoter packaging

[36]

DANPOS A comprehensive bioinformatics pipeline explicitly designed for dynamic 
nucleosome analysis at single-nucleotide resolution. DANPOS is also 
robust in defining functional dynamic nucleosomes

[37]

BINOCh A package that allows biologists to carry out an analysis of nucleosome 
occupancy data to discover stimulus-induced transcription factor binding

[38]
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Software Description References

PING A package for nucleosome positioning using MNase-seq data or MNase- 
or sonicated ChIP-seq data. PING uses a model-based approach, which 
enables nucleosome predictions even in the presence of low read counts

[39]

ChIPseqR A package based on an algorithm for the analysis of nucleosome 
positioning and histone modification ChIP-seq experiments

[40]

NUCwave A bioinformatic tool that generates nucleosome occupation maps from 
chromatin digestion with micrococcal nuclease (MNase-seq), chemical 
cleavage (CC-seq), chromatin inmunoprecipitation (ChIP-seq) and 
fragmentation by sonication

[41]

NucPosSimulator A simulation tool to identify positions of nucleosomes from next generation 
sequencing data

[42]

NucHunter Inferring nucleosome positions with their histone mark annotation from 
ChIP data

[43]

DiNuP A systematic approach to identify regions of differential nucleosome 
positioning

[44]

NucTools Allows calculations of nucleosome occupancy profiles averaged over 
several replicates, comparisons of nucleosome occupancy landscapes 
between different experimental conditions, and the estimation of the 
changes of integral chromatin properties. NucTools facilitates the 
annotation of nucleosome occupancy with other chromatin features 
like binding of transcription factors (TF) or architectural proteins, and 
epigenetic marks like histone modifications or DNA methylation

[45]

Dimnp Identifies differential nucleosome regions (DNRs) in multiple samples. 
Dimnp is able to identify all the DNRs that are identified by two-sample 
method Danpos. It shows a good capacity (area under the curve >0.87) 
compared with the manually identified DNRs

[46]

ArchAlign ArchAlign identifies shared chromatin structural patterns from high-
resolution chromatin structural datasets derived from next-generation 
sequencing or tiled microarray approaches for user defined regions of 
interest

[47]

SANEFALCON A tool developed to calculate the fetal fraction for noninvasive prenatal 
testing based on genome-wide nucleosome profiles, based on single end 
sequencing of cell-free DNA

[48]

NucDe An R package mapping nucleosome-linker boundaries from both MNase-
Chip and MNase-seq data using a non-homogeneous hidden-state model 
based on first-order differences of experimental data along genomic 
coordinates

Nu-OSCAR A program that can be used to identify binding sites of known transcription 
factors

NSeq A multithreaded Java application for finding positioned nucleosomes from 
sequencing data

[49]

ArchTEx The extension of mapped sequence tags is a common step in the analysis of 
single-end next-generation sequencing (NGS) data from protein localization 
and chromatin studies. ArchTEx identifies the optimal extension of 
sequence tags based on the maximum correlation between forward and 
reverse tags and extracts and visualizes sites of interest using the predicted 
extension

[50]
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Software Description References

PuFFIN Builds genome-wide nucleosome maps specifically designed to take 
advantage of paired-end reads. This method can accurately determine a 
genome-wide set of nonoverlapping nucleosomes without any user-defined 
parameters

[51]

NPS A python software package that can identify nucleosome positions 
given histone-modification ChIP-seq or nucleosome sequencing at the 
nucleosome level

[52]

Table 2. Nucleosome prediction models and nucleosome sequenced data-processed models.

of 10–11 bp, and strongly bound dinucleotides present a single peak [19]. A time-frequency 
analysis, based on wavelet transformation, indicated that weakly bound dinucleotides of 
nucleosomal DNA sequences were spaced smaller (~10.3 bp) at the two ends, with larger 
(~11.1 bp) spacing in the middle section. The finding was supported by DNA curvature and 
was prevalent in all core DNA sequences.

We assessed the roles of the 10–11 bp periodicities for different kinds of dinucleotides [20]. 
Near the transcription start site, the signals reveal a similar feature that the nucleosome orga-
nization exhibits (Figure 6). But, it seems that the species do not share the same dinucleo-
tides patterns. Furthermore, the dinucleotides patterns are dominant at the specific region of 
genome, indicating their diverse roles in forming and organizing nucleosomes.

2.3. Nucleosome prediction models for yeast

In Table 2, the models for both nucleosome prediction and nucleosome sequencing data pro-
cessing are listed.

2.4. The chromatin remodeling complex and its roles in altering nucleosomes

Chromatin remodeling complex helps cell to establish the access of genomic DNA for tran-
scription factors. The complexes have two major groups, namely covalent histone-modifying 
complexes and ATP-dependent chromatin remodeling complexes [53]. They work in a differ-
ent way.

ATP-dependent chromatin-remodeling enzymes are helicase which use ATP’s energy to repo-
sition (slide, twist or loop) nucleosomes along the DNA, expel histones away from DNA or 
facilitate exchange of histone variants, and thus creating nucleosome-free regions of DNA for 
gene activation [54]. All known ATP-dependent chromatin complex can be organized into SWI/
SNF, ISWI, CHD, and INO80 families. Each family of ATPase has distinct remodeling activities, 
including incremental nucleosome sliding on DNA in cis; the creation of DNA loops on the sur-
face of the nucleosome; eviction of histone H2A/H2B dimers; eviction of the histone octamer; or 
the exchange of histone octamer subunits within the nucleosome to change its composition [55].

Covalent histone-modifying complexes modify the histone including acetylation, methyla-
tion, and phosphorylation which can change the interaction between histone and DNA; for 
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example, methylation of specific lysine residues in H3 and H4 causes further condensation of 
DNA around histones, making it hard to bind transcription factor or other proteins.

2.5. The statistical model for nucleosomes distribution

A typical nucleosome distribution around TSS is shown in Figure 7 [56]. Nucleosomes 
are depleted around TSSs, resulting in a nucleosome-free region (NFR) that is flanked 
by two well-positioned nucleosomes whereas the nucleosomes downstream of the TSS 
are equally spaced in a nucleosome array. Of all nucleosomes around the gene, the +1 
nucleosome often contains histone variants (H2A.Z and H3.3) and modification by acet-
yltransferases and methyltransferases. These may help to the nucleosome eviction when 
transcription is needed. The +2 nucleosome follows the +1 nucleosome immediately and 
shares the some properties but contains less H2A.Z and less methylation and acetylation. 
In a barrier model for nucleosome organization, the nucleosome distribution is largely a 
consequence of statistical packing principles. The genomic sequence specifies the location 
of the −1 and +1 nucleosomes. The +1 nucleosome forms a barrier against which nucleo-
somes are packed, resulting in uniform positioning, which decays at farther distances from 
the barrier [57].

Figure 6. The 10–11 bp periodicities signals of the dinucleotides patterns around TSSs of eight species (human, mouse, 
chicken, worm, fly, fugu, lancelet, and yeast) [20].
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Figure 7. The consensus distribution of nucleosomes (gray ovals) around all yeast genes is shown, aligned by the 
beginning and end of every gene. The resulting two plots were fused in the genic region. The peaks and valleys represent 
similar positioning relative to the transcription start site (TSS). The arrow under the green circle near the 5′nucleosome-
free region (NFR) represents the TSS. The green-blue shading in the plot represents the transitions observed in 
nucleosome composition and phasing (green represents high H2A.Z levels, acetylation, H3K4 methylation and phasing, 
whereas blue represents low levels of these modifications). The red circle indicates transcriptional termination within the 
3′ NFR. Figure is reproduced from REF(2008) Cold Spring Harbor Laboratory Press [56].

Figure 8. Determinants of nucleosome positioning. (a) Nucleosome-depleted regions (NDRs) are generated either 
by poly (dA:dT) tracts and/or by transcription factors and their recruited nucleosome remodeling complexes. Gray 
circles indicate nucleosomes. (b) Nucleosomes located at highly preferred positions (black circles) flanking the NDR 
are generated by nucleosome-remodeling complexes (for example, Isw2 and RSC, likely in a transcription-independent 
manner), and fine-tuned by the Pol II preinitiation complex (PIC) and associated factors. (c) Positioning of the more 
downstream nucleosomes depends on transcriptional elongation, and the recruitment of nucleosome-remodeling 
activities (for example, Chd1 and Isw1) and histone chaperones by the elongating Pol II machinery [16].
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2.6. The nucleosome determinant [16]

A variety of factors determine the location of nucleosomes including DNA sequence, nucleo-
some remodelers, transcription factors (TFs), and elongating Pol II (Figure 8). Each of these 
components has different contribution in nucleosome positioning. Interestingly, these com-
ponents can affect each other thus resulting in different positioning pattern in a more com-
plex way. The DNA sequence is critical for rotational positioning along the DNA helix, and 
it is also an important determinant for nucleosome occupancy. In particular, poly (dA:dT) 
and poly (dG:dC) tracts are intrinsically inhibitory to nucleosome formation, whereas non-
homopolymeric GC-rich regions favor nucleosome formation.

3. The experiment methods of determining nucleosome occupancy and 
the bioinformatics analysis for the data

3.1. The techniques of determining nucleosomes positions

3.1.1. Mnase-seq

Micrococcal nuclease (MNase), one kind of glycolprotein of Staphylococcus aureus, has capacity 
of digesting the naked DNA. MNase, firstly, induces single-strand breaks, and then cleaves 
the complementary strand near the first break [58, 59]. Nucleosomal DNA is protected by 
wrapping on histone octamer in digesting with MNase, thus being remained as DNA frag-
ments after the digestion. Taking this advantage, a high throughput sequencing technique 
MNase-seq is developed to probe nucleosome positions in a genome-wide manner. MNase 
cleavage favors AT-rich region in limiting enzyme concentrations.

3.1.2. Dnase-seq

DNase I, one kind of endonuclease, can cut the chromatin-accessible DNA, namely DNase 
I hypersensitive sites (DHSs), and thus is used in mapping opening chromatin regions 
(Figure 9) [60]. The opening chromatin region is mainly the regulatory sites in gene transcrip-
tion. Thus, the opening region may alter in different cells types. This can be reflected in DHSs. 
The change of DHSs often associates one or more nucleosomes loss or formation [60].

DNase-seq means the DNase I digestion followed by DNA sequencing [60]. DNase-seq has 
been widely used in probing cell-specific chromatin accessibility. The rotational localization of 
individual nucleosomes is based on the inherent preference of DNA enzyme I cleavage of DNA 
at about 10 bp per nucleosome [61]. By coupling bioinformatics analysis, DNase-seq can be 
used in studying TF occupancy at nucleotide resolution in a qualitative and quantitative man-
ner [62]. In DNase-seq, many cells and many sample preparations and enzyme titration steps 
are required [63].

3.1.3. ATAC-seq

ATAC-seq is an assay for transposase-accessible chromatin with high throughput sequenc-
ing [64]. The technique is based on Tn5 transposase’s “cutting and pasting” function to probe 
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the active regulatory regions [65]. ATAC-seq only needs a small number of cells, ~500–50,000 
unfixed nuclei. Moreover, its procedure only involves two steps. Therefore, it is able to study 
multiple aspects of chromatin architecture simultaneously at high resolution, including nucleo-
somes, chromatin accessibility [64].

3.1.4. ChIP-seq

Chromatin immunoprecipitation followed by sequencing (ChIP-seq) sequences the interest 
DNA fragments that are separated and collected from the immunoprecipitation [66]. The 
main area of ChIP-seq is in precisely mapping for transcription factor-binding sites (TFBSs). 
Figure 10 shows a general procedure of a ChIP experiment [66]. This procedure includes the 
DNA-protein crosslinking with formaldehyde, sonication, immunoprecipitation, reversed 
crosslinking, and sequencing [66]. Using antibody of the histones, such as histone H3, ChIP-
seq is immediately able to determine nucleosome positions.

3.1.5. Other techniques

In addition to the techniques mentioned above, there are other techniques often used, such as 
Formaldehyde-assisted isolation of regulatory elements (FAIRE-seq) and ChIP-exo. FAIRE-
seq is based on the differences in crosslinking efficiencies between DNA and nucleosomes 
or sequence-specific DNA-binding proteins. Sequencing provides information for regions of 
DNA that are not occupied by histones [67]. ChIP-exo employs the use of exonucleases to 
degrade strands of the protein-bound DNA in the 5′–3′ direction to within a small number of 
nucleotides of the protein binding site [68]. The nucleotides of the exonuclease-treated ends 
are determined using DNA sequencing.

3.2. Procedures of dealing with the nucleosome DNA sequenced dataset

At the present, nucleosome sequencing dataset are mainly from MNase-seq. In some studies, 
dataset from ATAC-seq, DNase-seq, and ChIP-seq are used to infer nucleosome positions. A 
general analysis workflow includes data quality control, mapping, making nucleosome pro-
file, determining nucleosome position, comparing between cell types, and associating with 
other omics-data (expression data) to find biological meanings.

Figure 9. DNase I hypersensitive sites within chromatin [60].
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3.2.1. Data management and genome alignment

Sequencing quality control (QC) is to check the reads quality (fraction of mapped reads) and 
depth of coverage. Tools BWA and Bowtie are widely used in reads alignments. During the 

Figure 10. Overview of a ChIP-seq experiment [66] (https://www.nature.com/nrg/journal/v10/n10/full/nrg2641.html).
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alignment process, multiple-mapping reads and duplication reads are often filtered so as to 
remove overrepresented regions of the genome due to technical bias [60]. Reads filtering can 
be performed with SAMtools or Picard tools.

3.2.2. Data visualization

Data visualization helps to observe the reads distribution at specific locus. The Integrative 
Genomics Viewer (IGV) [69], which is developed by the University of California Santa Cruz 
(UCSC), is one of the most powerful tools to visualize. In IGV, the multiple types of annota-
tion data are integrated, including gene information, epigenetic and expression data, single-
nucleotide polymorphisms (SNPs), repeat elements and functional information from the 
ENCODE, and other research projects. IGV accepts many types of data formation including 
BED, BedGraph, GFF, WIG, and BAM files, which allow to compare with publicly data.

3.2.3. Identification of enriched regions

With respect to nucleosomes sequencing data, there are two basic tasks in analysis. One is to cal-
culate the nucleosome profile (reads coverage) both along the genomic coordinate and near the 
regulatory sites (for instance the TSSs). This helps to directly check the quality of MNase digestion 
and DNA sequencing. The other task is to infer the precise nucleosomes positions (dyad position) 
using the nucleosome profile so as to identify the nucleosome alteration among different cell types.

3.2.3.1. MNase-seq data

For single-end MNase-seq data, one method to make nucleosome profile is as follows [70]. 
First, the length of each read was extended 73 bp in the 3′ direction, and the Watson-strand 
reads and Crick-strand reads were oppositely shifted 73 bp. The absolute nucleosome occu-
pancy value of each genomic site was expressed as the number of reads covering the genomic 
sites. Second, nucleosome occupancy was scaled by dividing the occupancy value by the 
average nucleosome occupancy of the whole genome; i.e., the nucleosome occupancy was 
expressed as the fold change of the absolute occupancy relative to the average occupancy. 
Reads can also be shifted 73 bp toward the 3′ direction, which represented the midpoint [60].

With paired-end sequencing, it is assumed that the nucleosome midpoint is consistent with 
the midpoint of the forward and reverse reads. Unless the reads are from the on type cell 
(single cell), nucleosome positions actually represent the average positions in cell population. 
Therefore, the overlapping reads have to be clustered over genomic regions [60].

Calling nucleosomes actually is to find the peak positions along the nucleosome profile. DANPOS 
is one tool that can identify nucleosome positions [37]. Also, it allows us to detect three categories 
of nucleosome dynamics, such as position shift, fuzziness change, and occupancy change, using 
a uniform statistical framework using MNase-seq datasets. Other tools can be found in Table 2.

3.2.3.2. DNase-seq data, ATAC-seq, and ChIP-seq

From the DNase/ATAC/ChIP-seq datasets, nucleosome position cannot be directly inferred, 
but they provide information about the opening chromatin and protein-binding regions, 
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which associate nucleosome depletion. Therefore, for these datasets, peaking calling is one 
central task. MACS identifies genome-wide locations of transcription/chromatin factor bind-
ing or histone modification, including removing redundant reads, adjusting read position, 
calculating peak enrichment, and estimating the empirical false discovery rate (FDR) (http://
liulab.dfci.harvard.edu/MACS/index.html) [71]. Based on the position-adjusted reads, MACS 
slides a window of size 2d across the genome to identify regions that are significantly enriched 
relative to the genome background. The P-value is derived from Poisson distribution. When 
a control sample is available, MACS can also estimate an empirical false discovery rate (FDR) 
for every peak by exchanging the ChIP-seq and control samples and identifying peaks in the 
control sample using the same set of parameters used for the ChIP-seq sample.

Figure 11. The GC content in 147 base pair windows is strongly correlated to nucleosome occupancy. Density plot 
comparison between the normalized centered GC content in 147 base pair windows (x axis) and (A) the in vitro 
reconstituted, (B) the in vivo (YPD). GC-content is normalized as the log2 GC-content within 147 base pairs [75].
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3.3. GC-content and cutting bias

GC content bias means the variability between the GC content in a region and the count of 
fragments/reads mapped to it. The bias can dominate the signal of interest for analyses and 
leads to false positive. More seriously, the bias tends to be different among the samples; thus, 
there is no general method to remove it [72]. Two facts associate the variability. One is GC 
content which is heterogeneous among the genome. In yeast, the open reading frames (ORFs) 
with similar GC contents at silent codon positions are significantly clustered on chromosomes 
[73]. Moreover, GC content varies along the genome and is often correlated with functional-
ity. The other is MNase that has a cutting bias. Kinetic analysis indicates that the rate of cleav-
age is 30 times greater at the 5′ side of A or T than at G or C [74].

Most current correction methods follow a common path. Both fragment counts and GC counts 
are binned to a bin-size of choice [72]. Then, the conditional mean fragment count per GC 
value is modeled by assuming smoothness. At last, a predicted count is estimated for each bin 
based on the bin’s GC. The predictions represent one normalization for the original signal [72].

Another aspect is that GC-content is predictive for nucleosome position both in vivo and in vitro 
(Figure 11) [75]. That is, nucleosomal DNA sequences tend to be enriched in GC base pairs.

4. The transcription regulation and nucleosome positioning

4.1. The +1 and −1 nucleosomes and nucleosome-free regions (NFRs) near transcription 
start sites (TSSs)

Nucleosome positioning is in gene regulation since the DNA packing on the surface of the his-
tone octamer can occlude the binding sites of transcription factors (TFs) on genomic DNA. That 
is to say, the nucleosome positioning at promoters negatively regulates gene transcription by 
preventing TFs binding. Typically, nucleosomes are depleted around transcription start sites 
(TSSs), resulting a nucleosome-free region (NFR) that is flanked by two well-positioned nucleo-
somes (+1 and −1 nucleosomes). In downstream of the TSS, nucleosomes are equally spaced as a 
nucleosome array. At 3′ direction gene (transcription termination sites (TTS)), there is also a NFR, 
called 3′ NFR. Additionally, the poly (dA:dT) sequences are found in the 5′ and 3′ NFRs, where 
they act as nucleosome-excluding sequence. The characteristics of nucleosome organization are 
found in multiple species, including yeast, worms, flies and humans. In such an organization, the 
NFRs are often the TFs binding regions. Transcriptional activation involves several steps in yeast 
[56]. Firstly, special chemical modifications (acetylation and methylation (H3K4me3)) occur on 
histones of the −1 and +1 nucleosomes (Figure 12). The acetylation marks can be recognized by 
bromodomain modules of the SAGA histone acetyltransferase complex and Bdf1. SAGA and 
TFIID then deliver TBP to promoters. Then, the pre-initiation complex (PIC) is mounted.

It is suggested that NFRs at promoters result from a competition between TF and nucleo-
some binding because that incorporating competition with TFs improves the prediction per-
formance for nucleosome positioning, particularly in promoter regions [76]. Moreover, the 
mechanism is not restricted to a few promoters, but is the typical configuration along the 
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genomes. Interestingly, it was reported that of the 158 yeast TFs, only 10–20 significantly 
contribute to inducing NFRs, and these TFs are highly enriched for having direct interactions 
with chromatin remodelers [76].

Therefore, theoretically, nucleosome level at promoters should negatively associate gene 
expression level. As expected, for the acid phosphatase inducible PHO5 gene, a significant 
cell-to-cell variation was found in nucleosome positions and the nucleosome shift correlates 
with changes of gene expression (Figure 13) [77]. However, nucleosome positioning is not 
absolute, and even with major shifts in gene expression, some cells fail to change nucleosome 
configuration. We found in human CD4+ T cells, a wider NFR at promoters of housekeeping 
genes and highly expressed genes [78].

4.2. The difference of nucleosome organization among species

The current studies suggest that almost all eukaryotic organisms hold the nucleosome orga-
nization characteristics at the 5′ end of gene, namely a NFR flanked by two (+1 and −1) well-
positioned nucleosomes and followed by an array of nucleosomes downstream of TSSs  
[37, 70, 79]. But compared with multicellular organisms fly, worm, and human, yeast is very 
simple. Nucleosome organization exhibits some differences. First, averagely, yeast has a short 
linker DNA. The linker DNA is 18 bp in S. cerevisiae, ~28 bp in Drosophila melanogaster and 
Caenorhabditis elegans, and ~38 bp in human [56]. Second, the dyad position of the +1 nucleo-
some relative to TSS appears to vary in different organisms. In yeast, the dyad of the nucleo-
some is at ~50–60 bp downstream of the TSS [80]. However, in Drosophila, the dyad is found 
at 135 bp downstream of the TSS, reflecting the differences in transcriptional regulatory mech-
anisms. Third, the 10–11 bp periodicities of the specific dinucleotides (such as AA/TA/TT-GC, 
WW-SS) pronounce stronger in yeast than in other multicellular organism. In other words, 
from single-cell organism to multicellular organism, genomic DNA needs to bear more of 
“encoding information” to meet a more complex regulation requirement. In genomic DNA of 
multicellular organism, more of TF binding sites are embedded, which will disturb the coding 
for other information, such as the coding for nucleosome positioning. Forth, in multicellular 
organism, there exits exons and introns, thus having a splicing process in transcription. It was 

Figure 12. Transcription initiation in budding yeast, including four steps [56].
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found that nucleosomes are also well-positioned at both ends of the exon in multicellular [81]. 
But yeast lacks the feature since its genomic DNA does not include introns. Moreover, upon 
stress or mutation, nucleosome dynamics frequently occurs at promoters in yeast cells [70]. 
But in human cells, the nucleosomes alter mainly at enhancers [82, 83].

5. Nucleosome alteration (dynamics) during stress and histone mutation

5.1. Nucleosome alteration upon mutating at modifiable histone residues

Histones are the fundamental element of nucleosomes, and histone mutation do have direct 
influence on the genome-wide nucleosome organization.

Mutations in histone H3 N-terminal can affect the binding of Chd1, RSC, and SWI/SNF on chro-
matin, thus having a role in repositioning nucleosomes [84]. Using a native gel  electrophoresis 

Figure 13. The heterogeneity of nucleosome architecture at the PHO5 promoter. (A) Canonical position of nucleosomes 
(gray ovals) in the PHO5 promoter. White circles indicate the locations of cytosines of GC dinucleotides. (B) Mapping of 
mononucleosomal DNA of cells grown in rich media using a nucleosome-scanning assay. Enrichment of mononucleosomal 
DNA (y axis) is indicated by the midpoints of each amplicon (x axis), and error bars represent 1 SD from two independent 
biological replicates. (C) MNase-seq track of the PHO5 promoter from cells grown in rich media. (D) Nucleosome 
architecture of 806 cells from three bulk populations revealed eight conformations (a–h). Nucleosomes are depicted as 
gray ovals. Red circles indicate methylated cytosines, and white circles indicate unmethylated cytosines that are part of 
GC dinucleotides. The fraction of total cells that demonstrated each protection pattern is indicated on the right. The SDs 
for the three experiments were all less than 1.5% [77] (the figure legend is re-written according to the literature).

The Yeast Role in Medical Applications134



found that nucleosomes are also well-positioned at both ends of the exon in multicellular [81]. 
But yeast lacks the feature since its genomic DNA does not include introns. Moreover, upon 
stress or mutation, nucleosome dynamics frequently occurs at promoters in yeast cells [70]. 
But in human cells, the nucleosomes alter mainly at enhancers [82, 83].

5. Nucleosome alteration (dynamics) during stress and histone mutation

5.1. Nucleosome alteration upon mutating at modifiable histone residues

Histones are the fundamental element of nucleosomes, and histone mutation do have direct 
influence on the genome-wide nucleosome organization.

Mutations in histone H3 N-terminal can affect the binding of Chd1, RSC, and SWI/SNF on chro-
matin, thus having a role in repositioning nucleosomes [84]. Using a native gel  electrophoresis 

Figure 13. The heterogeneity of nucleosome architecture at the PHO5 promoter. (A) Canonical position of nucleosomes 
(gray ovals) in the PHO5 promoter. White circles indicate the locations of cytosines of GC dinucleotides. (B) Mapping of 
mononucleosomal DNA of cells grown in rich media using a nucleosome-scanning assay. Enrichment of mononucleosomal 
DNA (y axis) is indicated by the midpoints of each amplicon (x axis), and error bars represent 1 SD from two independent 
biological replicates. (C) MNase-seq track of the PHO5 promoter from cells grown in rich media. (D) Nucleosome 
architecture of 806 cells from three bulk populations revealed eight conformations (a–h). Nucleosomes are depicted as 
gray ovals. Red circles indicate methylated cytosines, and white circles indicate unmethylated cytosines that are part of 
GC dinucleotides. The fraction of total cells that demonstrated each protection pattern is indicated on the right. The SDs 
for the three experiments were all less than 1.5% [77] (the figure legend is re-written according to the literature).

The Yeast Role in Medical Applications134

experiment, we can quantitively track the loss of nucleosome in different histone mutations. 
As for influence on RSC repositioning, mutations of H3 R42A and R49A rank the first, both 
raise the original rate in wild-type nucleosomes up to 2.1-fold. H3 I51A mutations has the 
least effect on products of RSC directed remodeling (Figure 14), indicating that H3 I51A is 
capable of suppressing the nucleosome-unraveling function of RSC.

SWI/SNF-independent (Sin) mutants have various effects on nucleosome alteration. Class I 
Sin mutants like H4 R45 has the greatest effect; they may completely evanish certain pro-
tein-DNA interactions. Influence of class II mutants is relatively mild, which just do little 
 modification on solvent structure as well as the histone octamer main chain conformation, 

Figure 14. RSC remodeling products in nucleosome with different H3 mutations. H3 mutations could influence the 
repositioned products, and these mutations are separated into four classes according to the distribution pattern of 
the products (i.e., bands 1,2 and 3, and band 0 is the origin position). We use four line chart describing band intensities of 
the RSC remodeled nucleosomes one to one [84] (the legend is rewritten according to the literature).
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and class III mutants merely weaken the interactions between octamer and DNA. The changes 
of protein-NDA interactions lead to an increment of nucleosome-sliding rates.

Histone depletion also has influences on nucleosome. For instance, +1 nucleosomes will nota-
bly shift away from the TSS (transcription start sites) when conducting histone H4 depletion 
in nucleosomes, and +2, +3, and +4 nucleosomes also showed different levels of movement 
away from the TSS [85]. This was first founded in the study of Harm van Bakel et al., with 
an excellent idea of researching nucleosome reposition under promoter-closing condition 
(Figure 15).

H3 depletion also causes changes of nucleosome occupancy in genome-wide manner [86]. 
Depleting HHT1 and using GAL1 promoter to control HHT2 (HHT1 and HHT2 are H3 cod-
ing genes) as HHT2 gene nearly does not express when strains grow in dextrose but not 
in galactose, histone H3 completely disappeared in S. cerevisiae (Figure 16). In this way, 
Andrea J. got four strains with different types and carbon sources. In strains with the his-
tone H3 deleted (3 hours), severe changes in nucleosome organization were observed from 
normal histone levels strain (3 hours) while two types of strains are quite similar in the start 
(Figure 16B). Upon H3 depletion, weakness appears over the whole nucleosomes. An overall 
view of whole-genome correlation between nucleosome occupancy profiles of normal wild 
type and H3 depletion strains exhibit an expected decrease compared with ones of H3 shut-
off strains grown in galactose (e.g., H3 not deleted) and normal wild type (Figure 16). More 
clearly, there is an evident nucleosome positioning decrement along with the movement from 
+1 and +2 nucleosomes to the gene’s transcription termination site (TTS).

Figure 15. A box plot of nucleosome shifts relative to TSS caused by histone H4 depletion [85].
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5.2. Nucleosome alteration upon heat shock for yeast

Several kinds of changes on carbon source for yeast can alter nucleosome positioning 
directly or indirectly. After a heat shock, nucleosome occupancy usually becomes higher 
at promoters that are repressed and the condition is on the contrary at activated ones 
[87]. A negative correlation is suggested between nucleosome occupancy and transcrip-
tion levels caused by heat shock. PAPAS is a long non-coding RNA (lncRNA) and was 
tested carrying out help in the repression of Pol I transcription as it is upregulated by heat 
shock [88]. CHD4/NuRD is the remodeling complex that could prevent transcription in a 
way of accessing nucleosomes which should have bound around promoters onto the tran-
scriptional off position. An examination for nucleosome positioning in normal and heat-
shocked cells indicated that heat shock led to a promoter-bound nucleosome  movement 

Figure 16. Histone H3 depletion alters nucleosome occupancy genome-wide. (A) Mechanism for H3 depletion in strains. 
(B) The average, Gaussian-smoothed dyad density for the wild-type and H3 shutoff strains at 0 and 3 hours were aligned 
on the +1 nucleosomes for 4555 genes. H3 depletion results in a loss of regular positioning of nucleosomes internal to the 
gene. (C) Log2 normalized average nucleosome occupancy in the wild-type strain versus the H3 shutoff strain. Genome-
wide nucleosome occupancy in the two strains is similar prior to H3 depletion (r = 0.94) but decreases following H3 
depletion (r = 0.81) [86] (the figure legend is rewritten according to the literature).
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award downstream position via promoting PAPAS expression which could induce recruit-
ment of CHD4/NuRD to rDNA [88].

5.3. Nucleosome alteration upon changing carbon source for yeast

Several kinds of changes on carbon source for yeast can alter nucleosome positioning directly 
or indirectly. Gal4, a transcriptional activator discovered in S. cerevisiae has been intensively 
studied. Two genes, GAL1 and GAL10 are both regulated by Gal4 (Figure 17) [89]. It was 
found that GAL1 promoter nucleosomes became absent from cells grown for many genera-
tions in galactose. But by ChIP experiments, Gal4 is found always present both before and 
after the nutrition shift. In fact, the follow-up Gal80-absence comparison revealed that galac-
tose could remove Gal80 from nucleosomes, an inhibitor of Gal4. Then the recruiting function 
of freed Gal4 is quickly motivated, leading SWI/SWF binding to the genes. And this always 
goes with promoter nucleosomes removal as another two ChIP experiments shows.

Besides, the influence of glucose on nucleosome reassembly was affected by the presence of 
galactose [89]. The transcription factor Msn2, which is recognized with stress-response feature, 
not only participates in quite a number of environmental stress response as a mediator but also 
proactively functions in the restructure activities of nucleosome-depleted region (NDR) dur-
ing transcriptional reprogramming [90]. Msn2 usually binds to small parts of stress response 
elements (STREs) and a glucose-to-glycerol downshift could apparently promote Msn2 occu-
pancy near STREs (Figure 18). Moreover, the nutrition downshift-stress also enables Msn2 to 
promote the nucleosome repositioning over promoters of genes. It is concluded that Msn2 has 
a main function of removing the nucleosomes-binding to promoter regions during gene acti-
vation and acts negative role in these regions when genes expression is in low level.

5.4. Nucleosome alterations caused by mutations at modifiable histone residues in 
S. cerevisiae

Histone proteins can be modified by chemical modifications on particular residues. We exam-
ined the effect of substituting modifiable residues of four core histones with the non-modifiable 
residue alanine on nucleosome dynamics [70]. We mapped the genome-wide nucleosomes in 
22 histone mutants of S. cerevisiae and compared the nucleosome alterations relative to the 
wild-type strain. The results indicated that different types of histone mutation resulted in dif-
ferent phenotypes and a distinct reorganization of nucleosomes. Nucleosome occupancy was 
altered at telomeres, but not at centromeres. The first nucleosomes upstream (−1) and down-
stream (+1) of the TSS were more dynamic than other nucleosomes (Figure 19). Mutations 
in histones affected the nucleosome array downstream of the TSS. Highly expressed genes, 
such as ribosome genes and genes involved in glycolysis, showed increased nucleosome 

Figure 17. GAL 1, GAL 10, and Gal 4 binding sites (cyan rectangles) locus. Nucleosomes are presented by green circles, 
and a TATA box is located between Gal4 and GAL1, with blue rectangles [89] (the figure legend is rewritten according 
to the literature).
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Figure 18. The average Msn2 occupancy near a certain STREs before a carbon source (glucose) replacement with glycerol 
and 20 min later [89] (the legend is re-written according to the literature).

Figure 19. Nucleosome occupancy was altered at telomeres and promoters upon mutating the modifiable residues of 
the histones. (A) Average differences in nucleosome occupancy around the TSS between mutant and wild-type strains. 
(B) Difference significance of nucleosome occupancy at telomeres and centromeres between each mutant and the wild-
type strain. All P-values (−log10) were calculated with a two-sample t-test [70].
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occupancy in many types of histone mutant. In particular, the H3K56A mutant exhibited 
a high percentage of dynamic genomic regions, decreased nucleosome occupancy at telo-
meres, increased occupancy at the +1 and −1 nucleosomes, and a slow growth phenotype 
under stress conditions. Our findings provide insight into the influence of histone mutations 
on nucleosome dynamics.

6. Htz1 dynamics on chromatin and its effect on nucleosome stability

6.1. Htz1 and nucleosome, Htz1 and transcription

Yeast histone H2A variant Htz1, which is called H2A.Z in mammalian, plays important roles 
in DNA transactions. Zhang et al. gave a detailed study for the genome-wide dynamics of 
Htz1 [91]. Firstly, Htz1 occupancy is highly reproducible (r ≥ 0.94). Secondly, Bdf1 (a com-
ponent of Swr1 complex), Gcn5 (a histone acetyltransferase) and histone acetylation all play 
a part in Htz1 occupancy, as well as Swr1. At several specific locations, Swr1 complex is 
indispensable to meet the requirements for Htz1 deposition. There are obvious correlations 
between Htz1 and some histone acetylation, implying Htz1 occupies genes in their repressed/
basal states, and Htz1 occupancy was reduced in strains with little Gcn5 or Bdf1. Thirdly, 
Htz1 shows much greater preference than the poor performance of H2A in occupying pro-
moters. Htz1 occupancy is negatively correlated to the presence of a TATA box, suggesting 
that the occupancy prefers TATA-less promoters. Fourthly, gene activation associates Htz1 
loss from promoters.

Zhang et al. presented a model to explain the mechanism that how Htz1 works to regulate tran-
scription (Figure 20) [91]. In the particular repressed/basal genes, a nucleosome with Htz1 occu-
pies the promoters and tends to TATA-less regions. Bdf1, a component of SWR1 complex, could 
promote the process and helps targeting. Loss of Bdf1 could confer a decrement of Htz1 occu-
pancy. SWR1 complex is necessary for deposition as its recruitment involves physical interac-
tions between SWR1 and DNA sequence-specific transcriptional regulators, physical interactions 
between SWR1 and promoter binding initiation factors and finding histone modification via 
Bdf1 or other SWR1 components. Gcn5 does not just help target deposition, but also acetylates 
H3K14 and other residues which may well be the primary reason for the association between 
Htz1 occupancy and histone acetylation. But Htz1 takes no particular role in making favor of 
repressing genes, even though it is observed in a high frequency during repression. In fact, Htz1 
keeps a balance presence between the repressed and basal states for full activation. When genes 
states transit from basal to active, chromatin remodeling factors take in action and activators bind 
to the enhancer. All of the above likely contribute to the Htz1 nucleosome replacement, which 
promotes activation via giving way to occupancy of certain transcription factors (Figure 20).

Martins-Taylor et al. studied Htz1 in a new aspect and revealed that there were some relation-
ship between Htz1 and the cell-cycle progression requirement of establishing transcriptional 
silencing [92]. Htz1 appeared to work in a direct way to restrict the spread of silent chromatin 
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from the telomere, and the deletion of genes coding Htz1 could make the establishment of 
silent chromatin independent from cell-cycle progression.

6.2. Nucleosome, Pol II, Chz1, Htz1, and Spt16

Pol II (RNA polymerase II) promotes the transcription of DNA and is positively associated 
with the transcription rate. At the beginning of transcription initiation, Pol II are assembled 
with general transcription factors (GTFs) to make up the pre-initiation complex, binding 
onto the promoter to initiate transcription [93]. The Htz1 generally occupies the Pol II pro-
moters and affects the combination of GTFs with Pol II, thus inhibiting transcription [91, 
94]. Chz1 is an H2B-specific chaperone that delivers Htz1 for H2A substitution [95]. The 
transcriptional elongation factor FACT is an indispensable component in achieving the pro-
cess of eliminating the nucleosome block in transcriptional elongation [96]. In yeast cells, 
Spt16 and Pob3 are the counterparts of FACT. Spt16 destroys the nucleosomes before the 
running of Pol II complex and reconstructs them after the running. Also, Spt16 has a role 
of chaperone.

We revealed that Spt16 and Pol II interact with each other and together affect or be affected 
by gene transcription as they both bind at exposed gene regions, and are positively cor-
related with the transcription rate (Figure 21) [97]. Importantly, Spt16 prefers genes with-
out Htz1 only when Chz1 exists. This discrimination may not be caused for that there are 
direct interaction mechanism, but is probably to meet the need of transcription initiation. 
It is found that Chz1 deletion prevents Htz1 occupancy at promoters and telomeres in 
previous study. Also, in the chz1-deletionmutant, Spt16 binding at ribosomal genes was 
lost, suggesting that Chz1 is prior in Htz1-bound genes and thus Spt16 has no more bind-
ing chances.

Figure 20. Transcriptional regulation model of Htz1 [91].
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Abstract

RNA polymerases are heteromultimeric complexes responsible of RNA synthesis. In
yeast, as in the other eukaryotes, these complexes contain five common subunits (Rpb5,
Rpb6, Rpb8, Rpb10 and Rpb12) that must have similar functions in the three RNA
polymerases. However, some of these proteins have been shown to also have specific
roles. In the last few decades, substantial progress has been made to understand the role
of these common subunits in transcription, but their participation in the activity of each
enzyme remains unclear. This review gives a comprehensive overview of current knowl-
edge on the five common subunits of eukaryotic RNA pol, placing attention not only on
their common roles in the activity of the RNA pols but also on describing specific roles
for some of the complexes.

Keywords: RNA polymerases, transcription, protein complexes, common subunits, RNA

1. Introduction

Transcription is carried out by the RNA polymerases (RNA pol). While archaea and bacteria
contain only one RNA pol, most eukarya contain three different enzymes responsible for the
specific synthesis of different types of RNAs [1]. RNA pol I synthesises the precursor of the
three largest rRNAs, whereas RNA pol III sy\nthesises mostly tRNAs and 5S rRNA, together
with several short non-translated RNAs. Meanwhile, RNA pol II produces all mRNAs and
many non-coding RNAs [1, 2]. Moreover, in plants, two additional polymerases, IV and V (or
nuclear RNA polymerases D and E), reportedly synthesise small interfering RNAs (siRNAs),
regulating methylation and participating in gene silencing, as well as long non-coding RNAs
involved in development and response to environmental changes [3–5].
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While bacteriophage T7 and some related enzymes that transcribe the mitochondrial genome or
contribute to chloroplast transcription are single-subunit RNA polymerase [6], bacterial, archaeal
and eukaryotic enzymes are heteromultimeric complexes (Table 1). As in other eukaryotes, yeast
RNA pol I, II and III are composed of 14, 12 and 17 subunits, respectively. These contain a
catalytic core formed by the two largest subunits, which are highly conserved through evolution
(Rpb1 and Rpb2). Moreover, among all eukaryotic RNA pol subunits, five have bacterial homo-
logues (Rpb1, Rpb2, Rpb3, Rpb6 and Rpb11) and others are common to archaea, but without
bacterial homologues (Rpb4, Rpb5, Rpb7, Rpb8, Rpb9, Rpb10, and Rpb12) [1, 2, 6–9]. Finally,
eukaryotic RNA pols contain five common subunits to the three enzymes (Rpb5, rpb6, Rpb8,
Rpb10 and Rpb12), which have archaeal homologues (Figure 1) [10–12].

In the last few decades, substantial progress has been made to understand the role of the RNA
pol common subunits in transcription, but their participation in the activity of each enzyme
remains unclear. This review gives a comprehensive overview of current knowledge on the

Eukaryotes

Bacteria Archaea RNA pol I RNA pol II RNA pol III RNA pol IV (plants) RNA pol V (plants)

β Rpo1 (RpoA) RPA190 RPB1 RPC160 NRPD1 NRPE1

β Rpo2 (RpoB) RPBA135 RPB2 RPC128 NRPD/E2 NRPD/E2

α Rpo3 (RpoD) RPAC40 RPB3 RPAC40 RPB3 [1] RPB3 [1]

α Rpo11 (RpoL) RPAC19 RPB11 RPAC19 RPB11 RPB11

ω Rpo6 (RpoK) RPB6 RPB6 RPB6 RPB6 [1] RPB6

Rpo5 (RpoH) RPB5 RPB5 RPB5 RPB5 [3] NRPES5

Rpb8 (RpoG)* RPB8 RPB8 RPB8 RPB8 [1] RPB8 [1]

Rpo10 (RpoN) RPB10 RPB10 RPB10 RPB10 RPB10

Rpo12 (RpoP) RPB12 RPB12 RPB12 RPB12 RPB12

Rpo4 (RpoF) RPA14 RPB4 RPC17 NRPD/E4 NRPD/E4

Rpo7(RpoE) RPA43 RPB7 RPC25 NRPD7 [1] NRPE7

RPA12 RPB9 RPC11 NRPD9b RPB9

Rpo13*

RPA49 RPC53

RPA34.5 RPC37

RPC82

RPC34

RPC31

In a square, the RNA pol common subunits in a box. *Subunits RpoG and Rpo13 have been identified only in some
archaeal species [6] [1]. The numbers in square brackets indicate the number of orthologues of RNA pol IVand RNA pol V
subunits in plants.Different names for common subunits of yeast RNA pol: Rpb5: ABC27; Rpb6: ABC23 or Rpo26; Rpb8:
ABC14.5; Rpb10: ABC10β; Rpb12: ABC10α.

Table 1. RNA polymerase (RNA pol) subunit composition.

The Yeast Role in Medical Applications152



While bacteriophage T7 and some related enzymes that transcribe the mitochondrial genome or
contribute to chloroplast transcription are single-subunit RNA polymerase [6], bacterial, archaeal
and eukaryotic enzymes are heteromultimeric complexes (Table 1). As in other eukaryotes, yeast
RNA pol I, II and III are composed of 14, 12 and 17 subunits, respectively. These contain a
catalytic core formed by the two largest subunits, which are highly conserved through evolution
(Rpb1 and Rpb2). Moreover, among all eukaryotic RNA pol subunits, five have bacterial homo-
logues (Rpb1, Rpb2, Rpb3, Rpb6 and Rpb11) and others are common to archaea, but without
bacterial homologues (Rpb4, Rpb5, Rpb7, Rpb8, Rpb9, Rpb10, and Rpb12) [1, 2, 6–9]. Finally,
eukaryotic RNA pols contain five common subunits to the three enzymes (Rpb5, rpb6, Rpb8,
Rpb10 and Rpb12), which have archaeal homologues (Figure 1) [10–12].

In the last few decades, substantial progress has been made to understand the role of the RNA
pol common subunits in transcription, but their participation in the activity of each enzyme
remains unclear. This review gives a comprehensive overview of current knowledge on the

Eukaryotes

Bacteria Archaea RNA pol I RNA pol II RNA pol III RNA pol IV (plants) RNA pol V (plants)

β Rpo1 (RpoA) RPA190 RPB1 RPC160 NRPD1 NRPE1

β Rpo2 (RpoB) RPBA135 RPB2 RPC128 NRPD/E2 NRPD/E2

α Rpo3 (RpoD) RPAC40 RPB3 RPAC40 RPB3 [1] RPB3 [1]

α Rpo11 (RpoL) RPAC19 RPB11 RPAC19 RPB11 RPB11

ω Rpo6 (RpoK) RPB6 RPB6 RPB6 RPB6 [1] RPB6

Rpo5 (RpoH) RPB5 RPB5 RPB5 RPB5 [3] NRPES5

Rpb8 (RpoG)* RPB8 RPB8 RPB8 RPB8 [1] RPB8 [1]

Rpo10 (RpoN) RPB10 RPB10 RPB10 RPB10 RPB10

Rpo12 (RpoP) RPB12 RPB12 RPB12 RPB12 RPB12

Rpo4 (RpoF) RPA14 RPB4 RPC17 NRPD/E4 NRPD/E4

Rpo7(RpoE) RPA43 RPB7 RPC25 NRPD7 [1] NRPE7

RPA12 RPB9 RPC11 NRPD9b RPB9

Rpo13*

RPA49 RPC53

RPA34.5 RPC37

RPC82

RPC34

RPC31

In a square, the RNA pol common subunits in a box. *Subunits RpoG and Rpo13 have been identified only in some
archaeal species [6] [1]. The numbers in square brackets indicate the number of orthologues of RNA pol IVand RNA pol V
subunits in plants.Different names for common subunits of yeast RNA pol: Rpb5: ABC27; Rpb6: ABC23 or Rpo26; Rpb8:
ABC14.5; Rpb10: ABC10β; Rpb12: ABC10α.

Table 1. RNA polymerase (RNA pol) subunit composition.

The Yeast Role in Medical Applications152

five common subunits of eukaryotic RNA pol, placing attention not only on their common
roles in the activity of the RNA pols but also on describing specific roles for some of the
complexes.

2. Rpb5

In budding yeast, the essential Rpb5 subunit, also known as ABC27, consists of 215 amino acid
residues and has a molecular mass of 27 kDa [11, 13–15]. Contrary to other RNA polymerase
common subunits, human Rpb5 homologue (RPB5), with 44% identity and 80% similarity to
the yeast polypeptide, fails to complement the RPB5 null allele in Saccharomyces cerevisiae [12].
Rpb5 shows homology not only with a small archaeal subunit called “H” but also with nuclear
and cytoplasmic DNA viruses [16, 78]. Rpb5 have two paralogues in Trypanosome brucei,
T. cruzi and Leishmania major [17]. Notably, it has been reported that along four distantly related
eukaryotic lineages (the higher plant and protistan) Rpb5 shows different isoforms and as a
result a diversification of its functions [17].

Structurally, Rpb5 has a bipartite organisation combining two globular modules separated by a
short hinge: an N-terminal domain (“jaw” domain), found only in eukaryotes (positions 1–142 in S.
cerevisiae), and a C-terminal globe largely conserved in all non-bacterial enzymes (“assembly”
domain) [7, 16, 18–20]. Both modules are essential in vivo and are functionally exchangeable with
their human homologues, except for a small central segment located between positions 121–146 in S.
cerevisiae [10]. The eukaryotic module of Rpb5 has two highly conserved sequence blocks. One of
them harbours the last 12 amino acids and the other, highly conserved (positions 11–30 in budding
yeast), belongs to the long hydrophilic helix Rpb5-α1 and occupies the “lower” far-end of the DNA
Cleft [7, 21, 22]. The C-terminal module (position 143–215) binds the largest subunit of RNA pol II
(Rpb1) and their paralogues on the RNA pols I and III [10, 23]. Rpb5 does not belong directly to the
catalytic domain of RNA pol II [7, 22, 24]. Nevertheless, some studies indicate that the N-terminal
domain probably accounts for the Rpb5/DNA contacts found 15–20 nucleotides ahead of the

Figure 1. Schematic representation of structure of the RNA pols I, II and III. Each RNA pol common subunit is indicated
in grey. The numbers correspond to each subunit are indicated in Table 1.

Subunits Common to RNA Polymerases
http://dx.doi.org/10.5772/intechopen.70936

153



transcription fork in RNApolymerases III [25] and II [26]. In addition, the N-terminal modulemarks
the far end of the DNA channel in the RNA pol II [7, 27] and probably also in the RNA pols I and III
[28–30]. Notably, the lower jaw and the assembly domains of Rpb5 belong to the Shelf module, one of
the four RNA pol II mobile modules (core, jaw-lobe, shelf and clamp) in S. cerevisiae [7, 18].

The periphery localization of Rpb5 on all three enzymes [7, 30, 31] would allow possible
interactions with general transcription factors or specific gene regulators. It should be the basis
of the interaction between Rpb5 and Rsc4, a subunit of RSC (chromatin remodeler complex) in
S. cerevisiae [32]. The lack of this interaction affects the chromatin structure in the promoter
region of some RSC-regulated genes, leading to impaired transcription. Rpb5 also interacts
with TFIIE in Schizosaccharomyces pombe [33]. In human, RPB5 directly interacts with HBx
(hepatitis B virus X protein), essential for HBV infection, and both RPB5 and HBx communi-
cate with transcription initiation factor TFIIB but through different sites [34]. Human RPB5
also interacts with hTAFII68 (human TATA-binding protein-associated factor II 68) identified
by its homology to the proto-oncogenes EWS (Ewing’s sarcoma) and TLS (Translocated in
Liposarcoma; another member of the EWS gene family) [35–37]. In vitro studies have shown
that RPB5 also interacts with the TATA-binding protein-interacting protein 120 (TIP120), which
stimulates the transcription driven by RNA pols I and III [38]. Furthermore, RPB5 in human
has been described to interact with the general transcription factor TFIIF and this association is
critical for the interaction between TFIIF and the RNA pol II [39].

The HBx transactivation seems to be modulated by the protein URI/RMP (Unconventional
Prefoldin Rpb5 Interactor) that specifically binds to RPB5 both in vitro and in vivo and negatively
modulates transcription through binding to RPB5 [40]. Owing to RPB5-URI interaction, RPB5
could participate in regulating the androgen receptor in human cells [41]. This interaction also
extends to S. cerevisiae and the correct association between Rpb5 and the URI orthologue, Bud27,
is essential for the correct cytoplasmic assembly of the three RNA pols before their entry to the
nucleus [42]. Notably, in mammals, RPB5 forms a complex with UXT, WDR92/Monad, PDRG1,
URI, PFDN2 and PFDN6, which is thought to adopt a prefoldin-like structure and cooperates
with the cochaperone R2TP complex to assembly of RNA pol II [43–45].

Furthermore, it has been proposed that Bud27 modulates the association between Sth1 (subunit
of RSC complex) and the RNA pol II probably through Rpb5 interaction in S. cerevisiae [46].

3. Rpb6

Rpb6 (also known as ABC23 or Rpo26) is an acidic 155-amino acid subunit with apparent and
predicted molecular masses of 23 and 18 kDa, respectively [11, 47]. It is phosphorylated in all
three RNA pols, mainly on serine and threonine residues [48–51]. Moreover, the in vitro
phosphorylation of rat RPB6 by casein kinase II (CKII) has been demonstrated [52]. Eukaryotic
RNA pols I, II and III subunit Rpb6 are homologous in sequence, structure and function to
archaeal RNA pol subunit RpoK and bacterial subunit ω [53]. In addition, S. cerevisiae Rpb6 is
functionally interchangeable with their human homologue in vivo [12, 54], demonstrating their
structural and functional conservation.
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S. cerevisiae RPB6 is an essential gene for cell growth [11, 55], and RNA pol I lacking Rpb6 is
virtually inactive in RNA synthesis in vitro but regains activity upon the addition of Rpb6 [56].

A role for Rpb6 in transcription elongation has been proposed. In fact, some temperature-
sensitive mutants in S. pombe are unable to grow in the presence of 6-azauracil and a functional
and direct physical interaction of Rpb6 with transcription elongation factor TFIIS has been
proposed [57]. Moreover, a recent study demonstrates that the C-terminus of RPAP2, the
human homologue of the CTD phosphatase Rtr1 participating in the transition from transcrip-
tion initiation to elongation, interacts directly with the RNA pol II subunit Rpb6 in vitro [58].
Rpb6 could also participate in transcription initiation, since the archaeal TFIIB and Rpb6
counterparts have been demonstrated to interact in vitro [59].

According to a global role of Rpb6 in transcription, the RPB6 gene has also been identified as a
dosage suppressor of the cold-sensitive phenotype of tgs1Δ cells, which lacks of the trimethyl-
guanosine (TMG) caps of small nuclear (sn) RNA in S. cerevisiae [60].

Rpb6 was found to make contact with three small RNA pol subunits, Rpb5, Rpb7 and Rpb8, as
well as with the foot of the RNA pol II, with its largest subunits Rpb1 and Rpb2 [7, 61]. Similarly,
Rpb6 interacts on the crystal structure with the largest subunit of the RNA pol I, Rpa190 [30] and
probably with its homologue in the RNA pol III, Rpc160. Notably, the contact between Rpb6 and
Rpb7 involves the residue Gln100 of Rpb6 and Gly66 of Rpb7 on the RNA pol II core and the
rpb6Q100Rmutant leads to Rpb4/7 dissociation at high temperatures [21, 62].

While the C-terminal segment of Rpb6, from amino acids 72 to 155, is well organised on the
crystal structure of yeast RNA pol II [7], the N-terminal domain 71-amino acid segment on the
RNA pol II structure, as well as the N-terminal 54-amino acid segment on the RNA pol I
structure is disordered [24, 28, 30]. Moreover, the segment from amino acids 55 to 71 of Rpb6
on the RNA pol I structure comprises an α-helix that provides additional contacts with Rpa43
and Rpa14 [28, 30]. The N-terminal region of Rpb6 seems to be dispensable for the functions of
this subunit, explaining the lack of conservation of this region with its archaeal homologues
and the low degree of similarity of the Rpb6 sequence among various eukaryotes [63]. How-
ever, a region of 13 amino acids in the C-terminal domain of Rpb6 is highly conserved in
eukaryotes and archaea, suggesting an essential function [63]. Rpb6 is connected to the base of
a flexible module containing portions of Rpb1 and Rpb2, called the clamp, through a set of five
“switches” that control clamp movement [7]. In addition, the association of Rpb6 with Rpb4/
Rpb7 dimmer suggest that these two subunits could modulate the clamp movement and may
regulate the position of the clamp by signalling through Rpb6 [62].

Rpb6 and its bacterial homologue have been proposed to promote RNA pol II assembly and/or
increase RNA pol stability, through specific interactions with the RNA pol II largest subunit,
Rpb1, in the case of S. cerevisiae [53, 56, 63, 64]. It has been recently reported that mutations in
foot conserved domain of Rpb1 cause an integrity defect of the RNA pol II, altering the associa-
tion between Rpb1 and Rpb6, and the correct association of the dimer Rpb4/7. This assembly
alteration causes a transcriptional defect, which affects the amount of enzyme associated with
genes and its transcriptional activity [64]. In addition, the partial dissociation of Rpb4/Rpb7
dimmer leads to an increase in mRNA stability by loss of mRNA imprinting [65, 66]. Notably,
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all these defects are overcome by RPB6 overexpression and agree with previous data pointing to
an important role of Rpb6 in RNA pol II integrity/assembly [47, 63–65].

In S. cerevisiae, assembly of the RNA pols occurs in the cytoplasm prior their entry to the
nucleus, and Rpb6 and Rpb5 assemble in a process dependent on the prefoldin-like Bud27
[42]. Similarly, cytoplasmic RNA pol I assembly has been previously proposed in human [44].
In accordance with the role of Rpb6 in RNA pols assembly, the lack of Bud27 alters the correct
cytoplasmic assembly of Rpb5 and Rpb6 to the three RNA polymerases, leading to a more
instable RNA pol II [42]. Intriguingly, of the five shared subunits, both Rpb6 and Rpb5 have
two paralogues in Trypanosome brucei, T. cruzi and Leishmania major [17]. One is identical in
domain organisation to the canonical eukaryotic subunit, called RPB6, whereas the other
differs in domain organisation, RPB6z. The highly charged N-terminal domain of RPB6 is
absent in RPB6z, making it seems similar in structure to the archaeal subunit. Moreover, the
trypanosomatid RPB6z subunit also differs from the canonical RPB6 because of a short inser-
tion in the C-terminal domain [17].

4. Rpb8

Rpb8 (also known as ABC14.5) is an essential subunit of 16.5 kDa conserved among eukary-
otes and thought to be restricted to them [11, 12, 67]. However, recently, the Rpb8 archaeal
orthologues, called G or Rpo8, has been identified in Sulfolobus acidocaldarius (18% identity)
and other 15 of the 17 Crenarchaea. This protein presumably appeared at an early step in
eukaryotic evolution [6, 68]. This Rpo8 subunit (15.1 kDa; 132 residues) is located at peripheral
positions, similar to eukaryotic Rpb8, and interacts with subunit Rpo1N, equivalent to the
interaction of Rpb8 with Rpb1 in eukaryotes [69].

Rpb8 crystal structure in RNA pol II contains nine closely packed β-strands forming a double
OB-fold [7]. Rpb8 interacts with the largest subunit of the RNA pol II, Rpb1, and shows a
subunit interface between Rpb3 and Rpb11. Two-hybrid analyses identified similar binding of
Rpb8 to the Rpb1-like subunits of RNA pol I (Rpa190) and RNA pol III (Rpc160) [61]. In
addition, mutational analysis of S. cerevisiae Rpb8 demonstrated a functional interaction with
Rpb6 [67].

As opposed to the Rpb8 human orthologue, S. pombe Rpb8 cannot replace S. cerevisiae protein.
A region of 21 amino acids (residues 68–88) of Rpb8 is absent in S. pombe. On the contrary, in
human, only six of those residues are missing from the sequence. However, overexpression of
Rpc160 in S. cerevisiae allows S. pombe Rpb8 to functionally replace Rpb8, suggesting a specific
interaction between the S. cerevisiae Rpb8 and Rpc160 subunit [70]. Notably, S. pombe Rpb8
selectively affects RNA polymerase III but not RNA polymerase I complex assembly [70].

5. Rpb10

Rpb10, also called AB10β in yeast, is one of the smallest polypeptides (70-aminoacid polypep-
tide in S. cerevisiae and 71 in S. pombe) shared by all three RNA polymerases with a molecular
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weight of around 10 kDa [71, 72]. Rpb10 has a strong conservation along eukaryotic sequences
with 41 identical amino acid positions in fungal, plant and human sequences [73]. In addition,
Rpb10 shows a close homology to the N subunit of archaeal enzyme [12, 54, 74] and is loosely
related to the smallest enzyme of cytoplasmic DNA viruses [73, 75, 76]. In vivo studies in
budding yeast have demonstrated that Rpb10 can be functionally replaced by its human
homologue (RPB10) [12]. Nevertheless, the N subunit of archaeal cannot replace Rpb10
in vivo [73]. However, yeast/archaeal chimeras are largely interchangeable, pointing to a con-
served function in their respective transcription complexes [12].

All the eukaryotic forms of Rpb10 share an invariant HVDLIEK motif (located between posi-
tions His-53 and Pro-65 in S. cerevisiae) critical for the biological activity of Rpb10 [73]. The
Rpb10 sequence also harbours an atypical and invariant metal-binding domain CX2C…CC
with Zn2+ binding properties in vitro [71, 73] that is conserved in eukaryotic, archaeal and viral
polypeptides and that is strictly essential for yeast growth, as shown in site-directed mutagen-
esis experiments [73]. Curiously, mutations out of the metal-chelating domain sequence are
fairly tolerant to amino acid replacements [73].

Rpb10 is localised in the periphery of all three RNA polymerases [7, 30, 31]. In budding
yeast, Rpb10 was described to interact not only with two essential subunits of the RNA pols I
and III, Rpac40 and Rpac19 (homologous to Rpb3 and Rpb11, respectively, in the RNA pol II)
but also with the two largest subunits of RNA pol I (Rpa190 and Rpa135) and their homo-
logues in RNA pol III (Rpc160 and Rpc128) [23, 72].

Rpb10 has been found to be involved in the assembly of RNA polymerases in eukaryotes as
part of the assembly platform. In fact, it has been proposed that Rpb10 and Rpb12 form a
stable complex with Rpb3-Rpb11 (homologous to the bacterial α-subunit homodimer) [77].
Rpb10 and Rpb12 fill concave depressions of Rpb2 and thereby act as structural adaptors
between Rpb2 and Rpb3 (reviewed in [1]). Notably, mutations of the invariant HVDLIEKmotif
lead to a complete depletion of the largest RNA pol I subunit (Rpa190) and decrease the
accumulation of mature rRNA species transcribed by RNA pol I [73]. However, Rpb10 could
have additional functions beyond RNA polymerases assembly. In accordance, Rpb10 is
localised in proximity to TBP in the structural model of the DNA-TBP-TFIIB-RNA pol II
transcription initiation complex [79].

6. Rpb12

The eukaryotic subunit Rpb12, also designated as ABC10α [71, 80], together with Rpb10 are
the smallest common subunits to the RNA pols. The corresponding gene is essential for
growth in S. cerevisiae and the lethal phenotype of a yeast RPB12 null mutant is complemented
by expression of its homologous counterparts from S. pombe and Homo sapiens [12, 81]. A zinc-
ribbon motif is conserved in this subunit between eukaryotes and archaea. The equivalent to
Rpb12 in archaea is the P subunit (RpoP) that shows sequence similarities in their N-terminal
zinc ribbon and some highly conserved residues in the C-terminus and that can complement a
null RPB12 mutant strain. Mutational analysis of Rpb12 showed that only the first cysteine in
the zinc-ribbon motif was essential for viability, whereas the mutation of other three cysteine
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residues resulted in temperature-sensitive strains [80]. In the crystal structure of RNA pol II
from yeast, Rpb12 contacts subunits Rpb2 and Rpb3 [7].

The importance of Rpb12 in transcription is extrapolated from studies on the archaeal P
subunit. The P subunit is involved in promoter opening. The ΔP enzyme is unable to form
stable open complexes and its activity can be rescued by the addition of Rpb12 or subunit P to
transcription reactions. Notably, mutation of cysteine residues in the zinc ribbon impairs the
activity of the enzyme in transcription reactions. The conserved zinc ribbon in the N-terminus
seems to be important for proper interaction of the complete subunit with other RNA poly-
merase subunits, and a 17-amino acid C-terminal peptide is sufficient to support all basic RNA
polymerase functions in vitro [82].

The contact between S. cerevisiae RNA pol III and the assembly factor TFIIIC involves the
common subunit Rpb12 and the TFIIIB-assembling subunit of TFIIIC, t131. Moreover,
thermosensitive mutation in the conserved C-terminal region Rpb12, which weakens this
interaction, can be recovered by overexpression of a variant form of t131 [83].
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