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Preface

During the last decades, the finite element method (FEM) has become a numerical computa‐
tion tool used more and more extensively by engineers. FEM is based on the principle of
building complex objects from simple elements or dividing complex objects into smaller
parts that can be easily manipulated.

Applications of this simple concept can be easily found in real life and especially in the engi‐
neering domain. Various physical phenomena currently encountered in scientific and engi‐
neering domains can be mathematically described using partial derivative equations. In
general, finding the exact solutions of such equations by means of analytical methods is im‐
possible for domains with arbitrary geometry. FEM can be used to obtain approximate solu‐
tions of partial derivative equations. FEM is based on the selection of approximate functions
for solving such equations and can be successfully applied in various engineering fields:
static or dynamic analyses of solids, fluids, electromagnetic fields, biomechanics, etc.

This book aims to present results of the applicative research performed using FEM in vari‐
ous engineering fields by researchers affiliated to well-known universities. The book has a
profound interdisciplinary character and is mainly addressed to researchers, PhD students,
graduate and undergraduate students, teachers, engineers, as well as all other readers inter‐
ested in the engineering applications of FEM. I am confident that the readers will find infor‐
mation and challenging topics of high academic and scientific level, which will encourage
them to enhance their knowledge in this engineering domain having a continuous expan‐
sion. The applications presented in this book cover a broad spectrum of finite element appli‐
cations starting from mechanical, electrical, or energy production and finishing with the
successful simulation of severe meteorological phenomena.

Dr. Eng. Răzvan Păcurar
Associate Professor

Technical University of Cluj-Napoca
Cluj-Napoca, Romania
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Abstract

This chapter deals with studies of the mechanical properties of samples from long fiber-
reinforced composite structures that would contribute to the optimization of the devel-
oped constructions made of them. First, the basic issues of composite structures reinforced
with long fibers (carbon or glass) and generally of composites with the specification of
parameters that would lead to the optimization of mechanical properties with respect to
the theoretical strength are presented. Further, the possibilities and methods of measure-
ments of composite reinforced with carbon and glass fibers are described. This is followed
by the introduction of analytical models for the description of the transversal isotropic
composite, where these mathematical relations allow the determination of unknown elas-
tic constants and they are also important for the verification of numerical models. Finally, it
is comprehensively outlined the problems of creating a numerical model of advanced
composite fibrous structure for determining the mechanical properties, both through the
description of the continuum, and complex numerical model with a structural configura-
tion enabling approach to allow closer interaction among fibers and matrix. Compared to
the averaged values obtained from experimental samples, numerical simulations show a
similar trend of stress on strain, with results obtained from simulations.

Keywords: FEM, composite structures, testing, mechanical properties, nonlinear
properties

1. Introduction

Studies and analyses of mechanical properties of long fiber-reinforced composites provide
important information for future lightweight constructions. First of all, it is important to
approach the issues and specifics of long fiber-reinforced composite structures to increase the
strength and toughness of the resulting structure. The long fiber-reinforced composite struc-
ture is typically formed from two dominant components: carrier fiber reinforcement and a
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matrix. Ideal arrangement of the final composite (fiber-matrix connection), due to synergy, the
high specific properties (high strength, stiffness, and toughness) can be achieved, where none
of input components reached. It is that the optimal synergistic effect is characterized by a
known “illogical” rule 2 + 3 = 7, which characterizes the sum of the properties of the individual
input components (fibers + matrix) achieves a higher value of the specific properties of the
newly created structure. In general, the highest specific properties can be achieved if the fibers

are stressed up to the strength limit σfM
���
F f!max

with stress transferred with matrix. The matrix

transforms the stress into the fibers, and it also has a significant effect on the bonding with the
fibers. Thus, the matrix is the binder component of the composite, creating the final geometry
of the composite and at the same time protecting the fibers from wear and damage, which
would lead to loss of stability and strength of the resulting composite. The description of the
properties of composite structures reinforced with long fibers due to their potential and
specific characteristics was given by the authors namely Agarwal et al. [1], Guedes [2], Gay
and Gambelin [3], Reifsnider [4], Teply and Reddy [5], Berthelot [6], Gibson [7], or Soden et al.
[8]. The authors agree that long fiber-reinforced composite structures are unique materials
whose mechanical properties cannot be generally described in an analytical or experimental
manner. Theories also differ in mathematical relationships derived for unidirectional compos-
ite structures, let alone complete synthesis of mechanical properties for geometrically complex
structures of frames with multidirectional fibrous arrangement. This is due to the fact that their
properties vary significantly with the type of fibers and a matrix (e.g., physical and mechanical
properties, surface treatment, chemical compositions, binding agents, density, thermal expan-
sion, etc.) because only a slight change forms various combinations with significantly different
properties in mechanical behavior.1 Generally, long fiber-reinforced composite structures can
be considered as inhomogeneous and heterogeneous structures with anisotropic properties in
terms of physical and mechanical behavior. Their heterogeneity is manifested by a large
number of combinations of different variants of the resulting structural materials suitable or
unsuitable for the specific design requirements and load.2 If the strength of the composite has
to be maximized, the specific surface of the fiber-matrix interface must be high and free of
defects. The selection of fiber reinforcement is possible to use a wide range of fibers, whereas
their offer is developed and expanded. For structural applications such as frames for machine
parts and equipment may be used virtually any organic natural fibers (e.g., coconut, cotton,
cellulose fibers, etc.) from a variety of polycrystalline ceramic materials, polymeric fibers, glass,
or carbon fibers. The production technology of these fibers is well described by Bareš [9].
Carbon fibers are industrially manufactured with a diameter of 5–12 μm by various methods
such as carbonization of organic fibers or pyrolysis. It is generally known that carbon can exist
in nature in three forms: diamond, graphite, and glassy (amorphous). Carbon fibers can be

1
This can be mentioned in the example given by Bareš [9]. A simple combination of three homogeneous isotropic light
metals to form ternary cast iron is obtained 82,160 possible variants of alloys, if more six metals are combined, more than
300 million different alloy variants could be obtained. (The composite structure reinforced with long fibers has a similar
behavior, where the change of the matrix, directional arrangement, and type of fiber significantly affect resulting mechan-
ical properties because it leads to qualitatively different structure [10]).
2
Transmission of static stress applied to the composite and transferred with fibers is required excellent consistency of
fibers and matrix; on the contrary, a dynamic impact requires energy absorption by the crack propagation along fibers.

Finite Element Method - Simulation, Numerical Analysis and Solution Techniques2

considered as fibers produced at 800–1600�C, and graphite fibers are produced at >2200�C.
However, only fibers obtained from the crystalline form of carbon arranged in a certain
direction (production under tension) have a high elastic modulus and other specific design
parameters such as a lower density, higher surface area, lower thermal conductivity, higher
electrical resistance, and so forth compared to graphite fibers. Glass fibers with diameter of
3.5–20 μm are produced by fast drawing from the melts (the speed reaches up to 400 mmin�1).
The spinning speed is also influenced by the viscosity (50–100 Pa s), the melting temperature,

Figure 1. Example: Low strength of the fiber composite structure due to the poor joint of the fiber with matrix.

Figure 2. Cross section of composite sample with long fibers (upper), detail: fiber-matrix (bottom left), detail: phase
interface (bottom right).

FEM Analysis of Mechanical and Structural Properties of Long Fiber-Reinforced Composites
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and, of course, the chemical composition of the glass. The matrix, which affects the properties
and usability of the resulting composite, has been epoxy used for both the testing sample and
design of the developed composite construction. The composite production may result in
imperfect bonding of the matrix fibers (e.g., low wettability of the fiber reinforcement in the
matrix, bubble formation, etc.), which leads in mechanical defects in the composite structure,
which often over grow into critical defects with a significant reduction in strength (Figure 1).
The resulting strength of the composite structure affects mechanical properties of the selected
fiber reinforcement and matrix, which are characterized by mechanical parameters, for exam-
ple, the elastic modulus, Poisson number, or other parameters such as the creep and fracture
properties of the individual components. In terms of strength, a significant role (if not most)
plays the interfaces among the fibers and the matrix, which is shown in Figure 2. This is due to
the fact that the characteristic properties of the interface create a mechanism that apparently
causes the synergistic effect that provides their unique mechanical properties to composite
structures. Although a number of theories have been compiled, the synergistic mechanism of
the phase interface is not yet clear.

2. Measurement of mechanical properties of composite samples with long
fiber reinforcing

The determination of unknown parameters of composite materials has to be performed by
experimental measurements. These parameters represent input data for numerical simula-
tions. For a complete description of the properties, it is important to make measurements on
both the fiber reinforcement (tow) and the matrix as well as on the resulting long fiber-
reinforced composite structures (matrix-bonded fibers). Measurement of the mechanical prop-
erties of the samples is carried out according to standard laboratory tests, which are divided
according to the time course of the applied load. Tests can be divided into static and dynamic.
It can thus perform the tensile test at a constant or cyclic loading of the sample, three-point
bending strength, and Charpy impact test, as shown in Figure 3. The samples may be formed
in the “dog bone” shape or, optionally, in the form of a rectangle of defined length L, width b,
and thickness h,3 whereas they can be used for short- or long-term test.

The characteristic physical properties of samples of long fiber-reinforced composites are
influenced by weight and volume ratios of individual input components (fiber reinforcement
and matrices) that ultimately affect design parameters (mechanical properties and weight of
the structure). The mass and volume amounts of the fibers and the matrix in the composite
structure sample can be defined according to the following relationships (1–5).

mc ¼ mf þmm (1)

Mf ¼ mf

mc , Mm ¼ mm

mc (2)

3
Note: geometrical dimensions h, b, L can be also smaller, but it can lead to a problem with clamping of the sample to the
jaws of dynamometer.

Finite Element Method - Simulation, Numerical Analysis and Solution Techniques4

Mf ¼ 1�Mm (3)

Vf ¼ vf

vc , Vm ¼ vm

vc (4)

Vf ¼ 1� Vm (5)

where mc is the total weight of composite, mf ,mm is the weight of fibers and matrix, Mf ,Mm is
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volume fraction of fibers in the composite maximally 55–80% of the total volume of the
composite structure. Ideally, these values can be increased by precisely placing fiber tows
side by side. A limit state of volume fiber fraction, that is, 100%, cannot be achieved due to
the necessity of the presence of the matrix. Also by perfectly precise laying of fiber strands, the
strands will always have a certain fill value that will never be equal to 1 in the geometric
configuration. Perfectly precise laying of fiber tows does not provide 100% of volume filling
due to fiber cross section. However, it should be noted that the optimum ratio of fiber rein-
forcement is in the range of the synergistic effect, that is, Vf ≈ 0:4÷0:65:

The influence of selected physical parameters on the geometric parameter h of some tested
samples from long fiber-reinforced composite structures is shown in Table 1. These param-
eters can then be used to establish numerical models. Other input parameters that are
required for the numerical model have to be obtained by measuring the test samples. Other
input parameters that are necessary for the numerical model are obtained by testing com-
posite samples.

3. Analytical models for the study of mechanical properties of long
fiber-reinforced composites

Numerical modeling of the mechanical properties of the composite is a very difficult problem
because there are many unknown parameters that come into model simulations, which are
discussed in this chapter. Therefore, some parameters need to be properly verified with
analytical models. It is assumed that though mechanical properties of the sample are formed
from uniformly spaced transversely isotropic structure, its theoretical description is difficult, as
shown in Figure 4.

The model of the transverse isotropic fiber composite structure can be defined by
six independent elastic constants through the constitutive Eq. (9). The mechanical prop-
erties, such as composite structures, are also affected by the volume of fibers Vf and
matrix Vm:

Name of fibers mf ∗

[g m�2]
mm ∗

[g m�2]
Mf

[%]
MV

[%]
Vf

[%]
Vm

[%]
rf

[g cm�3]
rm

[g cm�3]
h
[mm]

GF 1600 tex/PUR
Huntsman

560 600 48 52 30 70 2.45 1.1 1.2

CF prepreg HEXPLY-
M10R

150 91.96 62 38 52 48 1.8 1.2 0.22

CF 24K/PUR Huntsman 213 747 22 78 15 85 1.8 1.1 1.2

Note: mf ∗, mm ∗ represent area weight, mc ∗ is the total weight of composite.

Table 1. Examples of physical and geometrical parameters of the selected samples of composite structures reinforced
with long fibers.
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where σii, εii are the principal stresses and strains in the transversal isotropic composite in
individual directions of the coordinate system x1, x2, x3, whereas σ11 > σ22 ¼ σ33,
ε11 6¼ ε22 ¼ ε33, and τ12, τ23 ¼ τ13 are the shear stresses in the given planes, γ12,γ23 ¼ γ13

expresses the shear to individual planes, E11, E22 ¼ E33 expresses the longitudinal and trans-
verse modulus of elasticity, G12, G23 is the shear modulus in the plane of the principal load
direction and in a plane perpendicular to the principal load direction, ν12 is the Poisson ratio in
the principal direction of the load, and ν23 is the Poisson ratio in a plane perpendicular to the
principal load direction.

For the corresponding model, the interconnection of individual components A, B, C must be
included (see Figure 2) to create a multiphase system approaching the behavior of composite
structures. Therefore, the problem of modeling a composite can be treated as a continuum (a
solid model without a geometric arrangement of individual components) or by creating a
completely new model with structural parameters, that is, the individual components will be
included in the structured unit. The problem of analytical modeling of mechanical properties
of general fiber structures through a structural unit is described, among others, by Wyk for the
study of interfiber contacts [11] and by Neckář [12]. However, the description of the mechan-
ical properties of the fibrous composite structure is more difficult and has not yet been
properly described. This is probably due to the fact that knowledge of the deformation mech-
anism and damage process is more important for understanding the mechanical properties
than the knowledge of the absolute strength that cannot be determined with sufficient preci-
sion. This is due to the fact that it is not possible to comprehensively construct a general
energy theory (to derive empirical relationships for deformation work) based on statistical

Figure 4. Model of idealized transverse isotropic fiber composite structure.
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characteristics, as can be done with very good accuracy for other anisotropic structures (Petrů
et al. [13, 14]). The problem is that the individual components composing the composite
structure cannot be reliably quantified even with homogeneous isotropic materials (matrices,
glass fibers), let alone anisotropic structures such as carbon fibers (the theoretical value
presented in the data sheet is different than value determined experimentally). Therefore, the
main problems are related to the complexity of the description and modeling of deformation
and the consequent character of the stress (stress concentration under loading). This is mainly
due to technological influences in composite production (influence of temperature, humidity,
and initial microporosity) that cannot be predicted for model simulations, and it is also
relatively difficult to experimentally identify these parameters.4

Over time, there have been widespread analytical relationships to form the approach to obtain
all elastic constants that can be used by these models, which are given as follows:

• phenomenological models.

• semiempirical models.

• homogenized models.

3.1. Phenomenological models

In the past, phenomenological models have been created as the primary mathematical deriva-
tion of the mechanical properties of transversally isotropic fibrous composite structures but
can be used well today. Such models include the Voigt and Reuss models. These are models
using the mixing rule (mixing of the individual input components, i.e., fibers and matrices),
while the Voigt model is very well usable for determining the elastic constants E11,ν12 defined
by relationships (10 and 11) and is characterized by isotropic strain. The Reuss model is usable
for determination E22, G12 defined by relationships (12 and 13) and unlike the Voigt model is
characterized by isotropic stress.

dσ11
dε11

¼ Vf dσ
f

dεf
þ Vm dσm

dεm
) E11 ¼ Vf Ef

11 þ VmEm (10)

ν12 ¼ Vf νf12 þ Vmνm (11)

E22 ¼ Ef
22E

m

EmVf þ Ef
22E

m
(12)

G12 ¼ Gf
12G

m

GmVf þ Gf
12E

m
(13)

4
In the advanced model, simulations can be assembled material models with any parameters, including the statistical
parameters, which describe technological production factors, for example, through the theory of random fields as defined
by Bittnar and Šejnoha [15]. The problem lies in the identification of the effects and the subsequent statistical evaluation.
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Semiempirical models were created later than phenomenological models, and based on the
new information and knowledge, they are still being updated. Their development led in
particular to the further expansion of the Voigt and Reuss models because these models have
been modified by correction factors to specify the resulting elastic constants for the given types
of input components. This category includes models that are implemented in certain modifi-
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Modified model according to the mixing rule is derived from Voigt [16] and Reuss [17], and for
elastic constants, E11, ν12 is defined according to Eqs. (10 and 11). Modification occurs with
constants E22, G12, because the resulting difference between the results obtained by the mea-
surements and the relationships (12–13) is usually noticeable. Therefore, it was necessary to
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where ζf , ζm are correction factors,5 according to Younes et al. [18].

• Halpin-Tsai model

This is a model that is implemented in a number of numerical programs by using finite
element method (FEM). This model is developed as a semiempirical model [19] with correction
of E22, G12: Its semiempirical derivation (16–17) using correction factors ζ, ξ has a very good
agreement with experiments.
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where ζ correction factor, for which it is valid ζ ¼ Mf =Mm�1
Mf =Mmþξ

, ξ is constant, which is for E22 equal

to 1, and for G12 is equal to 2,M ¼ E or G in the case of an expression E22 and G12 according to
Eqs. (12–13).

• Chamis model

This is another semiempirical model [20], which was unlike previous models developed not
only for independent elastic constants E11, E22,G12,ν12 but also for G23: The determination of
E11, ν12 is again based on Voigt and Reusse according to Eqs. (10–11). The Chamis model for

calculating other elastic constants introduces a square root of the volume of fiber
ffiffiffiffiffiffi
Vf

p
, which

has in Eqs. (18–20), the meaning of fiber incompressibility, which is in line with principle of
mass conservation.

E22 ¼ Em

1�
ffiffiffiffiffiffi
Vf

p
1� Em=Ef

22

� � (18)

G12 ¼ Gm

1�
ffiffiffiffiffiffi
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p
1� Gm=Gf

12
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G23 ¼ Gm

1�
ffiffiffiffiffiffi
Vf

p
1� Gm=Gf

23
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where Gf
23 is the shear modulus of the fiber elasticity in a plane perpendicular to the principle

direction of loading.

3.3. Homogenized models

Homogenized models are generalized models that can be used to determine very accurate
values of elastic constants for developed composite structures reinforced by longitudinally laid
fibers. Such models include, for example, the Mori-Tanaka model [21], a consistent model
created by Hill [22] or the Bridging model. Their applicability compared to phenomenological
or semiempirical models largely limits the more difficult determination of all constants enter-
ing to homogenized models. An example is the Eshelby toughness tensor that can be used for
inclusion, which is introduced in both the Mori-Tanaka model and the consistent model. In
view of this, from homogenized models, the Brindling model can be used to determine the
elastic constants.

• Bridging model

This is a model that is developed to predict the stiffness and strength of transverse isotropic
fiber composites. The elastic properties are for the elastic modulus E11, ν12 the same as for Voigt
and Reusse models (10–11). Elastic constants E22, G12, G23 can be expressed using the Bridging
model (21–23).
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where aii, S
f ,m
ii are thematrix components, which relate to fiber andmatrix ratios in the composite

structure as reported by Huang [23, 24], where a11 ¼ Em=Ef
22, a22 ¼ a44 ¼ 0, 35þ 1�ð 0; 35Þ
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22 .

4. Numerical models for the study of mechanical properties of long fiber-
reinforced composites

Measurement and analytical models of long fiber-reinforced composite structures designed to
study mechanical properties are generally able to provide only limited information. This is due
to the fact that the measurements are limited by the possibilities of positioning of the sensors
and also by the fact that some properties cannot be measured well (e.g., the distribution of the
main stress and deformation in the composite structure). The knowledge of the distribution of
the main stresses and deformations in the structure is important for assessing how the struc-
ture is changed and under which stress. In this case, the corresponding model simulation using
numeric methods represents a significant support for the development. Very suitable is to
build model simulation in finite element method (FEM), but other numerical methods, such
as discrete element (DEM), boundary element (BEM) or finite volume method (FVM) method,
are also available. The mechanical loading of composite causes many different processes in the
inner structure that varies with the actual deformation. Therefore, it is necessary to simplify or
neglect some characteristic features in modeling of such structures. A major problem of
mechanical properties modeling of composite structures is in particular the description of the
principal stresses in short time Δt ¼ tiþ1 � ti. The solution of problem of composite with
boundary conditions under tensile loading lies not only in the specification of the correct
boundary conditions and material properties but also in the design of the proposed finite
element mesh. The FEM programs are currently very sophisticated and allow the solution of
a continuous problem transform into a final solution where the corresponding geometric
simple subareas (finite elements) can be designed in the preprocessor. Let Ω⊂ℜ3 is the
continuous area of the three-dimensional space in which the problem is solved. Its borders
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ture is changed and under which stress. In this case, the corresponding model simulation using
numeric methods represents a significant support for the development. Very suitable is to
build model simulation in finite element method (FEM), but other numerical methods, such
as discrete element (DEM), boundary element (BEM) or finite volume method (FVM) method,
are also available. The mechanical loading of composite causes many different processes in the
inner structure that varies with the actual deformation. Therefore, it is necessary to simplify or
neglect some characteristic features in modeling of such structures. A major problem of
mechanical properties modeling of composite structures is in particular the description of the
principal stresses in short time Δt ¼ tiþ1 � ti. The solution of problem of composite with
boundary conditions under tensile loading lies not only in the specification of the correct
boundary conditions and material properties but also in the design of the proposed finite
element mesh. The FEM programs are currently very sophisticated and allow the solution of
a continuous problem transform into a final solution where the corresponding geometric
simple subareas (finite elements) can be designed in the preprocessor. Let Ω⊂ℜ3 is the
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will be denoted Γ, where Γis Lipschitz border and let the approximation of the selected base
functions is derived above each finite element of length lelement, because any continuous func-
tion can be represented by a linear combination of algebraic polynomials converging to a
continuous solution, that is, limlelement!0 ! 1: Thus, the FEM method can be understood as a
special type of variation method by using the mathematical description of the problem solu-
tion. The current commercial software and FEM programs (e.g., Ansys, Abaqus, Permas,
LS-Dyna, Marc, PAM CRASH) allow to assemble and subsequently solve a series of problems
with nonlinear materials not only with elastic but also plastic behavior corresponding to the
properties of the long fiber-reinforced composite.

4.1. FEM simulation of mechanical properties of long fiber-reinforced composite

Model simulations in FEM were performed for different combinations of reinforcement
arrangements of long fiber-reinforced composites, which are important for comparison with
experiments and analytical relationships. This gives the material properties for numerical
simulation of the strength characteristics of whole frames.

This chapter describes the creation of two numerical models and their comparison:

(I) continuum model

(II) extended continuous model with structural unit

The simulations were performed for a complete assessment of the mechanical properties
σ11, σ22, ε11, ε22,γ12,γ23 and elastic constants E11, E22, G12, G23, ν12, ν23, whereas also informa-
tion explaining the shape changes of the samples observed especially during tensile stress.
Model simulations were performed in the following steps:

• creating two model simulations of the long fiber-reinforced composite,

• creating the corresponding mesh of finite elements of the computational model in the
preprocessor,

• defining the corresponding initial and boundary conditions,

• assembling a material model of the long fiber-reinforced composite,

• the evaluation and comparison of model simulation results in postprocessor.

4.1.1. Assembling of continuum of the long fiber-reinforced composite model

The FEM model was created in the concept of coherent continuum consisting of a surface
geometry corresponding to the test sample with length L = 100 mm, width b = 20 mm, and
thickness h = 1.7 mm. The finite element mesh of the numerical model was created from SHELL
elements (2D elements) with a constant element size of 2 mm. The boundary conditions
affecting the magnitude of the displacements and stress can be defined in two ways, that is,
the boundary conditions of the first and second types. The first way is to determine the
displacement and stress distributions if force conditions are known, that is, volume forces,
surface forces, and nodal loads. The other way is to determine the displacement and tension
distribution if the geometric conditions are known, that is, the size of node displacement, the
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deformations, and so on. Both ways can be also combined. It is mixed boundary conditions, as
shown by Li [25]. Boundary and initial conditions for the model were made by the boundary
conditions of the second type. One side of the sample was fixed against the displacement and
rotation of nodes Ui ¼ Ri ¼ 0 in all directions (layout), and the opposite side of the edge of the
sample was fixed identically; only in X direction, the movement was allowed, whereas
Ux ¼ 1 mm that corresponds to the deformation εx ¼ 1 %. The strain rate was 2 mm.min�1.
The boundary conditions are shown in Figure 5.

4.1.2. Assembling of extended continuous composite model of long fiber-reinforced composite

The second numerical FEM model, which was created in the concept of structure unit, is
formed from three components: fiber matrix—the interfacial interface, where the microscopic
dimensions of such a model are closer to the more real composite. Such a model can be created
from a structural unit with the 1, 2,…, n fibers, wherein the volume geometric configuration
(e.g., structural unit is a cube, cuboid, sphere) can affect the volumetric quantity of fibers and a
matrix Vf , Vm, as shown by Neckář [12]. The change in volume ratio Vf can be given on the
example of the structural unit of the cuboid, which is shown in the section in Figure 6. The
structural unit consists of six fibers represented by circles with the same spacing mi, which are

Figure 5. Continuum FEM model of the composite reinforced with long fibers with defined boundary and initial
conditions.

Figure 6. The influence of fiber spacing in the structural unit on Vf fiber volume ratio.
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bounded by a matrix (rectangle). By changing of the spacing can then be increased or
decreased volume ratio of fibers Vf : The finite element mesh of the numerical model was
created from a combination of following elements: BRICK elements (3D elements) with a
designed element size of 0.0002 mm defined for fibers and matrix (Figure 7).

It will be assumed that E11 ¼ σ11
ε11
, E22 ¼ σ22

ε22
, G12 ¼ τ12

γ12
, G23 ¼ τ23

γ23
.

The problem lies in joining of fibers with the matrix because the interconnections form an
interphase. The structural FEM model assembling presents a problem of the determination of
appropriate boundary conditions, which is important in terms of accuracy and model verifica-
tion. Incorrect design may result in concentrators and singularities of stress. The boundary
conditions are created by the second type (geometric boundary conditions) as follows: the
perimeter surfaces of the model perpendicular to the plane of the stretching direction have
defined symmetry conditions on one side (symmetry in axis y and z) and on the opposite side,
the boundary conditions are not prescribed. On surfaces in the plane of the stretch direction, that
is, in the direction of the X axis, the displacements and rotations were not allowedUi ¼ Ri ¼ 0 in
all directions. On the opposite surface of the specimen, the condition was the same, only
displacement in the stretching direction was allowed. The displacement was defined constantly
to the maximum strain 1%, that is, Ux ¼ k:jεx¼1%, k: ¼ const:, with strain rate 2 mm min�1.
Boundary conditions are shown in Figure 8 and Table 2. The material properties applied in both
FEM models (I. Continuum Model and the II. Continuum Model with the Structure Unit) are
based on the generally known values reported by fiber and matrix manufacturers. The fiber and
epoxy matrix parameters are listed in Table 3. The results of both numerical simulations have
exhibited approximately the same stress at the defined strain εi ¼ 1% under tensile load in
applied direction for a given fiber reinforcement (carbon or glass). The resulting dependence
of force on the displacement of the samples obtained from the models showed an approximately
linear course, both for carbon and glass fiber-reinforced composite. Figure 9 shows the tensile
test for volume ratio Vf ¼ 0:3, where carbon fiber-reinforced composite with the epoxy matrix

Figure 7. Structural FEM model of a composite reinforced with long fibers.
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exhibits approximately 2.2 times higher force response than the glass fiber-reinforced composite
with epoxy matrix.

The obtained results shown in Figures 10 and 11 can be stated that the continuous model (FE
model I) has an approximately steady monotonic course manifested not only in continuous

Figure 8. The boundary conditions of the structural FE model of the composite structure reinforced with long fibers.

Planes in axis x Planes in axis y Planes in axis z

þx �x þy �y þz �z

E11,μ12 Ux ¼ k:jεx¼1% Ui, Ri ¼ 0 Uy, Rz, Rx ¼ 0 — Uz, Rx, Ry ¼ 0 —

E22,μ23 Ux, Ry, Rz ¼ 0 — Uy ¼ k:
��
εy¼1%

Ui, Ri ¼ 0 Uz, Rx, Ry ¼ 0 —

G12 Uy ¼ k:
��
εy¼1% Uz ¼ 0 Uy ¼ 0 Uz ¼ 0 Ux ¼ 0

Uz ¼ 0
Ux ¼ 0
Uz ¼ 0

Uz ¼ 0 Uz ¼ 0

G23 Ux ¼ 0 Ux ¼ 0 Ux ¼ 0
Uz ¼ 0

Ux ¼ 0
Uz ¼ 0

Uy ¼ k:
��
εy¼1%

Ux ¼ 0

Ux ¼ 0
Uy ¼ 0

Table 2. FEM model boundary conditions for obtaining elastic constants.

Material Density
[kg m�3]

Modulus of elasticity
[GPa]

Shear module
[GPa]

Poisson’s ratio [�] Tensile strength
[GPa]

Elongation
[%]

Ef ,m
11 Ef ,m

22 Gf ,m
12 Gf ,m

23 νf ,m12 νf ,m23

Carbon fibers 1750 � 150 230 15 24 5.4 0.279 0.49 2.3 � 1.2 1.9 � 0.6

Glass fibers 2370 � 230 72.4 72.4 28.7 28.7 0.22 0.22 1.06 � 0.65 4.8 � 0.7

Epoxy matrix 1150 � 370 3.573 3.573 1.31 1.31 0.345 0.345 0.067 � 0.033 3.6

Table 3. Material and mechanical properties of individual constituent of composite.
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distribution of deformation (Figure 12 above) but also in uniform distribution of the principal
stress σI ¼ σ11 acting in the load direction (Figure 12 center).

Due to the simplicity of the FEM model I, it appears to be very suitable for determining the
mechanical properties of composite structures and their optimization. However, such a
model does not provide information about strain and stress between the fibers and the
matrix, let alone the interphase. The continuous model with the structural unit (FEM model
II) is significantly more complex, and for some elastic constants, its resultant course is not
monotone (G23, ν23); in other words, the resulting dependency is not stable and may not be
accurate enough but more complex in terms of results. FEM model II allows to approximate
the layout distribution of the structure unit in the loading direction (Z axis) as shown in
Figure 12 (left) and also the principal stress distribution. The principal stress can be deter-
mined in isosurfaces or in sequential sections (Figure 12 right), which allow to analyze the
stress distribution between the fibers and the matrix including the interphase. By comparing
the maximum values of the stress of 189.1 and 190.9 MPa at same strain ε11 ¼ 1% and with
the volume ratio Vf ¼ 0:5 can be stated that the models have significant agreement. This is
affected not only by the same material parameters and boundary conditions but also appro-
priately selected types of elements of the finite element mesh as discussed earlier. FEM
model II of the composite structure reinforced with longitudinal fibers with the epoxy
matrix is more complex, and the time of the calculation is larger than the FEM model I.

Figure 9. Comparison of experiments and FEM models: Dependence of applied force on sample strain.

Finite Element Method - Simulation, Numerical Analysis and Solution Techniques16

However, it must be added that the FEMmodel II shows valuable scientific knowledge of the
approximate distribution of the maximum stress between the fibers and the matrix, which is
the largest in the interphase (Figure 13 left). This confirms the theoretical assumption of the
system mechanism (fiber-matrix interphase), where the highest stress transmits newly cre-
ated component, that is, the interphase, which causes the synergic effect of the resultant
construction of the composite structure. Figure 13 also shows the information that FEM
model II shows a nonuniform maximum stress in the composite structure (unlike the
FEM model I) and also shows that maximum stress is concentrated only on two fibers
(instead of six in the structural unit) of the structural unit. It will reduce the maximum
synergic effect that theoretically in the composite structure can occur. The distribution of
the interphase in the numerical model and in the real measurement is shown in Figure 13. It
is necessary to add that from the analyses carried out by measurements on real samples was
in all cases evident that the identification of the interphase is very complicated. Due to the

Figure 10. Dependence of modulus G23 (left above), ν12 (left below), ν23(right) on Vf of transversally isotropic composites
with epoxy matrix and carbon fibers and glass fibers.
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synergic effect that theoretically in the composite structure can occur. The distribution of
the interphase in the numerical model and in the real measurement is shown in Figure 13. It
is necessary to add that from the analyses carried out by measurements on real samples was
in all cases evident that the identification of the interphase is very complicated. Due to the

Figure 10. Dependence of modulus G23 (left above), ν12 (left below), ν23(right) on Vf of transversally isotropic composites
with epoxy matrix and carbon fibers and glass fibers.
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unidentifiable technological process, interphase (third component) could not be created.
Also, it is problem to identify and measure the interphase that is important both for verifying
of numerical models and for a statistical evaluation how many fibers are involved in syner-
gistic effect.

Figure 11. Dependence of modulus E11, E22, G12 on Vf of transversally isotropic composites with epoxy matrix and
carbon fibers (left) and glass fibers (right).
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Figure 12. Distribution of deformation (above) and principal stress in the loading direction (center) of the FEMmodel I of
long fiber-reinforced composite with epoxy matrix. The resulting distribution of axial strain (below left) and the principal
stress acting in the loading direction (below right) and the FEM model II of composite reinforced with long carbon fiber
with epoxy matrix.

Figure 13. Distribution of principal stress in direction of loading with maximal stress in interphase (left), real sample with
visible interphase (right).
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5. Conclusion

In this chapter, analyses and numerical simulations of mechanical properties of samples from
composite structures were presented. Several studies and experiments have been carried out
on samples reinforced with carbon and glass fibers, and mechanical properties allow them to
form structural reinforcements of composite materials. Further, analytical models with mathe-
matical relationships (e.g., Voigt, Reuss or Chamis model) allow to determine the unknown
elastic constants E11, E22, G12, G23, ν12, ν23 of the resulting composite structure. This is followed
by a more extensive description of the creation of a numerical model of a composite fiber
structure pattern for determining mechanical properties, both through the description of a
general continuum and a more complex numerical model with a structural arrangement to
allow closer interaction of the fiber and the matrix. From the numerical models, the stress and
strain distribution can be determined over a given time interval under chosen packing density
Vf as well as the elastic constants. The course of elastic constants has to be compared in some
cases only with analytical models because unknown constants cannot be appropriately mea-
sured. In summary, the I. continuous model is more user-friendly for numerical simulation and
that is suitable for describing the principal stresses, but it does not allow to analyze and study
the composite on microlevel. Thus, it does not allow the distribution of the stress between the
fiber and the matrix (interphase). This can be done with more complex II. extended continuous
model with a structural unit. The results of numerical models establish valuable knowledge
and information, including the determination of elastic constants for a particular specific
composite design. These results can be used for modeling of large samples and complicated
geometries to optimize the design solution.
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Abstract

The residual stress distribution introduced by shot peening (SP) in the deformed surface 
layer of Ti-6Al-4V and (TiB+TiC)/Ti-6Al-4V were simulated and studied via the three-
dimensional (3D) finite element dynamic analysis and the experimental validation. The 
program of ANSYS/LS-DYNA was utilized, and the 3D homogeneous and inhomoge-
neous models were set up. The homogeneous model was established for simulating 
SP process on Ti-6Al-4V. The influence of three important parameters, the shot balls’ 
size, shot velocity and coverage rate on residual stress distribution were investigated. 
Numerical simulation results showed that these parameters contributed different effects 
on SP treatment. Using a simplified method, an inhomogeneous model for simulating SP 
process on (TiB+TiC)/Ti-6Al-4V was set up. The max tensile and compressive residual 
stress (CRS) was +1155 and −1511 MPa, respectively. Based on this stress distribution, 
the beneficial effect of reinforcements was indicated during deformation, retarding the 
damage to the matrix and keeping the adverse tensile stresses in the reinforcements. In 
order to verify the results of simulation, the residual stress distribution along depth was 
measured by X-ray diffraction (XRD) method. The residual stress distribution by experi-
ments was agreed with the simulated results, which verified the availability of 3D finite 
element dynamic analysis.

Keywords: finite element dynamic analysis, residual stress, shot peening, titanium 
matrix composite, reinforcement, X-ray diffraction
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1. Introduction

Shot peening (SP) is an effective surface strengthening method and widely used in indus-
try, which can effectively improve the surface performance of material. The effect of SP 
depends on the material and parameters during SP process. The small SP intensity will 
lead to the strengthening effect unobvious, but the excessive SP intensity may result in 
the formation of micro-cracks and reduce the strength. So, a proper SP intensity should 
be conducted. Additionally, the improper shot balls will increase the surface roughness of 
material, which is not benefit to the surface properties. During SP, the shot balls impact 
the surface of material at a high speed, which transforms the kinetic energy of shot balls 
into the elastic energy of internal stress. So after SP, the internal energy of material is 
increased, and it is in the metastable state. While the external environment changes, the 
material with high energy may be transferred to the low energy state spontaneously, lead-
ing to the stress relaxation. For instance, in the high temperature environment, the resid-
ual stress will promote the local creep of the material, resulting in reducing the residual 
stress, which will weaken the effect of SP and be not conducive to the improvement of 
fatigue properties [1].

Usually, the fatigue strength and fatigue life of cyclically loaded metallic components can 
be considerably improved due to the compressive residual stress (CRS) and work harden-
ing induced on the surface layer after SP [2]. The distribution of CRS is mainly affected by 
the parameters of SP and the materials’ condition. A significant number of parameters are 
needed to be regulated and controlled in order to obtain a more beneficial CRS distribution. 
Therefore, in practical application of SP, the empirical knowledge should be accumulated for 
getting the appropriate processing parameters, which usually requires time and money con-
suming. For obtaining the suitable SP parameters and minimizing these trails, the numerical 
simulation of SP is conducted, building a better understanding of SP process with the aim of 
study, analyzing and predicting the relationship between the influencing factors and simula-
tion results.

SP simulation has been developed since more than four decades. Some references have indi-
cated that finite element method is a suitable and useful method to predict residual stress 
distribution after SP [3–7]. The finite element models for SP include 2D and 3D models. 
Usually, 2D models are adopted to simulate a single impact on a semi-infinite target body, 
and the simulated accuracy is verified by comparing the simulated stress distribution with 
the results measured by neutron diffraction and X-ray diffraction (XRD) methods. [8–12]. 
However, based on the direct comparison of residual stress distribution along the symmetry 
axis of a 2D model with the experimental results, it is questionable because the measure-
ment area by experiment is different from the impact area of 2D simulation. Generally, the 
measurement area by some techniques, like XRD, neutron diffraction, and hole drilling, is 
larger than the diameter of dimple utilized in 2D models, and these techniques just provide 
macroscopic stress values. Moreover, a very important parameter, the coverage rate, cannot 
be considered in 2D simulation during the multiple SP process. The shortcomings of 2D 
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models mentioned above lead to the introduction and popular application of 3D models. 
Because the 3D SP models can show the effect of SP coverage rate on residual stress distribu-
tion, they are approaching to the practical work more and become the main choice in recent 
years, especially 3D models with dynamic analysis. In the overview of SP simulation, some 
3D models are adopted with different model descriptions, kinds of material models, kinds 
of analysis, number of shot balls, and so on [8, 13–20]. On these 3D models, most studies 
focus on homogeneous material and few work involves 3D inhomogeneous inclusions while 
establishing models. Even though some researchers have established 3D inhomogeneous 
models for metal matrix composites using other methods [21–25], few investigation focused 
on SP.

Composite material is composed of two or more kinds of materials with different chemical 
and physical properties, and also with different size such as micro or macro. In metal matrix 
composites, the difference in the properties of metal matrix and reinforcement makes the 
presence of interface. Due to the mismatch between matrix and reinforcement, the material 
properties in the vicinity of the interface are not continuous, so that the material properties 
and microstructure in the vicinity of the interface will vary obviously. The variation of prop-
erties has a serious effect on the macroscopic properties of the composites [26]. The size of 
reinforcement in the composite is typically between several μm and several tens of μm, but 
the irradiation area of X-ray analysis is about 1 mm2, therefore, it is difficult to determine the 
stress distribution around reinforcement in the composite by experimental method. It is a 
feasible method to carry out numerical simulation using finite element analysis to solve this 
problem.

As one kind of important metal matrix composites, titanium matrix composites have wide 
application prospects in the field of aerospace, automobile, and other industries because of 
their good properties such as high specific strength, good ductility, and excellent fatigue 
properties, etc. [27–29]. About the residual stress distribution of titanium matrix composites 
after SP, the experimental investigation has been carried out in our previous work by XRD 
method [30–33]. However, the measured residual stress by experiments only reveals the aver-
age stress of matrix and reinforcements, because the beam size of X-ray is much bigger than 
the dimension of reinforcement. So, it is hard to directly test the residual stress distribution in 
and around the reinforcements by experiments, which depends on the method of simulation. 
In our current work, 3D finite element dynamic analysis of multiple shot impacting is per-
formed on Ti-6Al-4V alloy and titanium matrix composite (TiB+TiC)/Ti-6Al-4V (TiB:TiC = 1:1 
(vol%)). The program of ANSYS/LS-DYNA [34] is utilized in the 3D finite element dynamic 
analysis, and the 3D homogeneous and inhomogeneous models are set up. The systematic 
study is conducted using this 3D dynamic model to investigate the effect of coverage rate, 
shot balls’ radius, and shot velocity on the residual stress distribution after SP. Moreover, TiC 
and TiB reinforcements in the composite are constructed in a composite method by the sim-
plified inhomogeneous model. The influence of reinforcements on the stress distribution is 
analyzed, and the residual stresses in and around reinforcements are obtained and discussed 
in detail. Moreover, the experimental results by XRD method are compared with the simula-
tion results finally.
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Shot peening (SP) is an effective surface strengthening method and widely used in indus-
try, which can effectively improve the surface performance of material. The effect of SP 
depends on the material and parameters during SP process. The small SP intensity will 
lead to the strengthening effect unobvious, but the excessive SP intensity may result in 
the formation of micro-cracks and reduce the strength. So, a proper SP intensity should 
be conducted. Additionally, the improper shot balls will increase the surface roughness of 
material, which is not benefit to the surface properties. During SP, the shot balls impact 
the surface of material at a high speed, which transforms the kinetic energy of shot balls 
into the elastic energy of internal stress. So after SP, the internal energy of material is 
increased, and it is in the metastable state. While the external environment changes, the 
material with high energy may be transferred to the low energy state spontaneously, lead-
ing to the stress relaxation. For instance, in the high temperature environment, the resid-
ual stress will promote the local creep of the material, resulting in reducing the residual 
stress, which will weaken the effect of SP and be not conducive to the improvement of 
fatigue properties [1].
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suming. For obtaining the suitable SP parameters and minimizing these trails, the numerical 
simulation of SP is conducted, building a better understanding of SP process with the aim of 
study, analyzing and predicting the relationship between the influencing factors and simula-
tion results.

SP simulation has been developed since more than four decades. Some references have indi-
cated that finite element method is a suitable and useful method to predict residual stress 
distribution after SP [3–7]. The finite element models for SP include 2D and 3D models. 
Usually, 2D models are adopted to simulate a single impact on a semi-infinite target body, 
and the simulated accuracy is verified by comparing the simulated stress distribution with 
the results measured by neutron diffraction and X-ray diffraction (XRD) methods. [8–12]. 
However, based on the direct comparison of residual stress distribution along the symmetry 
axis of a 2D model with the experimental results, it is questionable because the measure-
ment area by experiment is different from the impact area of 2D simulation. Generally, the 
measurement area by some techniques, like XRD, neutron diffraction, and hole drilling, is 
larger than the diameter of dimple utilized in 2D models, and these techniques just provide 
macroscopic stress values. Moreover, a very important parameter, the coverage rate, cannot 
be considered in 2D simulation during the multiple SP process. The shortcomings of 2D 
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models mentioned above lead to the introduction and popular application of 3D models. 
Because the 3D SP models can show the effect of SP coverage rate on residual stress distribu-
tion, they are approaching to the practical work more and become the main choice in recent 
years, especially 3D models with dynamic analysis. In the overview of SP simulation, some 
3D models are adopted with different model descriptions, kinds of material models, kinds 
of analysis, number of shot balls, and so on [8, 13–20]. On these 3D models, most studies 
focus on homogeneous material and few work involves 3D inhomogeneous inclusions while 
establishing models. Even though some researchers have established 3D inhomogeneous 
models for metal matrix composites using other methods [21–25], few investigation focused 
on SP.

Composite material is composed of two or more kinds of materials with different chemical 
and physical properties, and also with different size such as micro or macro. In metal matrix 
composites, the difference in the properties of metal matrix and reinforcement makes the 
presence of interface. Due to the mismatch between matrix and reinforcement, the material 
properties in the vicinity of the interface are not continuous, so that the material properties 
and microstructure in the vicinity of the interface will vary obviously. The variation of prop-
erties has a serious effect on the macroscopic properties of the composites [26]. The size of 
reinforcement in the composite is typically between several μm and several tens of μm, but 
the irradiation area of X-ray analysis is about 1 mm2, therefore, it is difficult to determine the 
stress distribution around reinforcement in the composite by experimental method. It is a 
feasible method to carry out numerical simulation using finite element analysis to solve this 
problem.

As one kind of important metal matrix composites, titanium matrix composites have wide 
application prospects in the field of aerospace, automobile, and other industries because of 
their good properties such as high specific strength, good ductility, and excellent fatigue 
properties, etc. [27–29]. About the residual stress distribution of titanium matrix composites 
after SP, the experimental investigation has been carried out in our previous work by XRD 
method [30–33]. However, the measured residual stress by experiments only reveals the aver-
age stress of matrix and reinforcements, because the beam size of X-ray is much bigger than 
the dimension of reinforcement. So, it is hard to directly test the residual stress distribution in 
and around the reinforcements by experiments, which depends on the method of simulation. 
In our current work, 3D finite element dynamic analysis of multiple shot impacting is per-
formed on Ti-6Al-4V alloy and titanium matrix composite (TiB+TiC)/Ti-6Al-4V (TiB:TiC = 1:1 
(vol%)). The program of ANSYS/LS-DYNA [34] is utilized in the 3D finite element dynamic 
analysis, and the 3D homogeneous and inhomogeneous models are set up. The systematic 
study is conducted using this 3D dynamic model to investigate the effect of coverage rate, 
shot balls’ radius, and shot velocity on the residual stress distribution after SP. Moreover, TiC 
and TiB reinforcements in the composite are constructed in a composite method by the sim-
plified inhomogeneous model. The influence of reinforcements on the stress distribution is 
analyzed, and the residual stresses in and around reinforcements are obtained and discussed 
in detail. Moreover, the experimental results by XRD method are compared with the simula-
tion results finally.
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2. Finite element simulation on homogeneous SP model

2.1. Homogeneous SP model

2.1.1. Introduction of SOLID164 element

The explicit dynamic analysis of ANSYS/LS-DYNA program provides a rich element 
library, including 3D bar element (LINK160), 3D beam element (BEAM161), thin shell 
element (SHELL163), solid element (SOLID164), spring damping element (COMBI165), 
mass element (MASS166), cable element (Link167), and ten-node tetrahedral element (Tet-
Solid168). Each explicit dynamic element has a corresponded linear displacement func-
tion, and the default is set to a single point of integration (one of the reduced integrals). 
It has been proved that the explicit dynamic element with linear displacement function 
and the element integration can be used for solving the nonlinear problems effectively, 
such as the cases of large deformation and material’s failure [34]. The element utilized in 
simulation of SP is the SOLID164 element, which is a 3D explicit solid element consisting 
of eight nodes. Each node in SOLID164 has the degrees of freedom in x, y, z direction of 
translation, velocity, and acceleration. The geometry, node locations, and the coordinate 
system for SOLID164 element are shown in Figure 1 [35]. This element is only used in the 
dynamic explicit analysis, which supports all licensed nonlinear characteristics. By default, 
SOLID164 is the single point integral with the viscous hourglass control to speed up the 
calculation.

In the process of explicit dynamic analysis, the processing of element integral is the most 
time-consumption, and the processing time by CPU is proportional to the number of integral 

Figure 1. Geometry properties of SOLID164 [35].
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points. So, using the simplified integration of elements can save the data storage capacity and 
reduce the number of calculations greatly, for instance, the single point integral in SOLID164 
element, that is, an element has only one integration point, which is in the center of element. 
The utilization of single points can save a lot of calculation time, but may lead to the hourglass 
phenomenon. Mesh deformation with an hourglass effect is called the hourglass phenom-
enon, and in this situation, the typical feature is that the nonrigid element grid is distorted 
irregularly, resulting in a mathematically stable state but a physically impossible state. The 
presence of hourglass phenomenon will distort the results of the solution and even the solu-
tion cannot be carried out. Therefore, when using the simplified integration of elements, the 
hourglass phenomenon should be controlled. In ANSYS/LS-DYNA finite element analysis 
process, if the result of hourglass energy calculated by the model is less than 10% of the total 
energy, this simulation result and the model can be identified as credible.

2.1.2. Piecewise linear plasticity model

The choice of material model is not only related to the success of simulation, but also directly 
related to the rationality and reliability of calculated results. The process of SP causes a high 
plastic deformation in the surface layer, so Cowper-Symbols in ANSYS is adopted to achieve 
3D finite element dynamic analysis [34]. Cowper-Symbols model is a piecewise linear plastic-
ity model, and the yield stress can be obtained via the strain rate, which is shown in Eq. (1).
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  ε   ̇   represents the effective strain rate, P and C are the parameters for strain rate, and   σ  
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original yield stress while the strain rate has not been considered. In this model during simu-
lation, the input data include totally: the density of material ρ, the elastic modulus of material 
E, Poisson’s ratio ν, the yield stress, the tangent modulus, the strain rate parameters P and C, 
and the true stress–strain curve. If the load curve is used, the yield stress and tangent modulus 
are ignored. If P and C are set to 0, the strain rate effect is omitted.

2.1.3. Establishment of homogeneous SP model

Before establishing SP model for (TiB+TiC)/Ti-6Al-4V, the 3D model for homogeneous matrix 
Ti-6Al-4V should be established firstly. For reducing the number of elements and the calcula-
tion time, the symmetry of SP sample and shot balls should be considered, and a 1/2 model 
can be set up. The 3D homogeneous model established in this work is shown in Figure 2 [36], 
including the top four-layer of shot balls, and the bottom of peened target. The dimension of 
peened target is 12R × 6R × 2.1 mm3, in which R is the average radius of shot balls. Because 
of the intensive impacting in the near surface layer, a mesh refinement is adopted and each 
mesh depth is 0.02 mm. SOLID164 dynamic analysis element is chosen for meshing element, 
and total mesh number is 120,000.
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2. Finite element simulation on homogeneous SP model

2.1. Homogeneous SP model

2.1.1. Introduction of SOLID164 element
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dynamic explicit analysis, which supports all licensed nonlinear characteristics. By default, 
SOLID164 is the single point integral with the viscous hourglass control to speed up the 
calculation.
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points. So, using the simplified integration of elements can save the data storage capacity and 
reduce the number of calculations greatly, for instance, the single point integral in SOLID164 
element, that is, an element has only one integration point, which is in the center of element. 
The utilization of single points can save a lot of calculation time, but may lead to the hourglass 
phenomenon. Mesh deformation with an hourglass effect is called the hourglass phenom-
enon, and in this situation, the typical feature is that the nonrigid element grid is distorted 
irregularly, resulting in a mathematically stable state but a physically impossible state. The 
presence of hourglass phenomenon will distort the results of the solution and even the solu-
tion cannot be carried out. Therefore, when using the simplified integration of elements, the 
hourglass phenomenon should be controlled. In ANSYS/LS-DYNA finite element analysis 
process, if the result of hourglass energy calculated by the model is less than 10% of the total 
energy, this simulation result and the model can be identified as credible.

2.1.2. Piecewise linear plasticity model

The choice of material model is not only related to the success of simulation, but also directly 
related to the rationality and reliability of calculated results. The process of SP causes a high 
plastic deformation in the surface layer, so Cowper-Symbols in ANSYS is adopted to achieve 
3D finite element dynamic analysis [34]. Cowper-Symbols model is a piecewise linear plastic-
ity model, and the yield stress can be obtained via the strain rate, which is shown in Eq. (1).
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original yield stress while the strain rate has not been considered. In this model during simu-
lation, the input data include totally: the density of material ρ, the elastic modulus of material 
E, Poisson’s ratio ν, the yield stress, the tangent modulus, the strain rate parameters P and C, 
and the true stress–strain curve. If the load curve is used, the yield stress and tangent modulus 
are ignored. If P and C are set to 0, the strain rate effect is omitted.

2.1.3. Establishment of homogeneous SP model

Before establishing SP model for (TiB+TiC)/Ti-6Al-4V, the 3D model for homogeneous matrix 
Ti-6Al-4V should be established firstly. For reducing the number of elements and the calcula-
tion time, the symmetry of SP sample and shot balls should be considered, and a 1/2 model 
can be set up. The 3D homogeneous model established in this work is shown in Figure 2 [36], 
including the top four-layer of shot balls, and the bottom of peened target. The dimension of 
peened target is 12R × 6R × 2.1 mm3, in which R is the average radius of shot balls. Because 
of the intensive impacting in the near surface layer, a mesh refinement is adopted and each 
mesh depth is 0.02 mm. SOLID164 dynamic analysis element is chosen for meshing element, 
and total mesh number is 120,000.
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For improving the computational efficiency, the mesh size gradually increases at the model 
boundary and the lower half. In order to avoid the influence of reflected stress wave within 
the target on the distribution of residual stress during the process of impacting, nonreflective 
boundary conditions are implemented on the bottom and flank of the target. Because the XOZ 
plane is symmetrical, the symmetrical boundary conditions are applied. Because a small size 
model (12R × 6R × 2.1 mm3) may lead to the nonreal oscillation while simulating the process of 
impacting, in order to eliminate the effect of nonreal oscillation, the alpha damping constraint 
is applied to the model in the dynamic analysis. The alpha damping is a damping coefficient 
proportional to the mass and is very effective for the low frequency oscillations.

In 3D SP model, the top four-layers are shot balls made by case steel, and the hardness and 
strength of matrix is smaller than that of the case steel balls. The deformability of shot balls is 
very weak, which hardly affects the results of residual stress distribution. Therefore, the shot 
balls are defined as rigid bodies. During the explicit dynamics analysis, the degrees of freedom 
of all nodes in the rigid body are coupled to the mass center of rigid body, thus greatly reduc-
ing the computational time of the explicit analysis. Moreover, the corresponding mechanical 
parameters are given to the rigid body center to describe the dynamic characteristics. In addi-
tion, the coverage rate is very important to the distribution of residual stresses after SP. In 
order to keep the simulation accuracy, the coverage rate is defined and the schematic is shown 
in Figure 3 [36]. Four impacts with shot balls are performed in current 3D model. On a single 
impact, the coverage rate is about 25%, and after four impacts, it approaches 100%. If coverage 
rate increases to 200%, eight impacts should be carried out in turn.

Because the piecewise linear model is adopted during simulation, the true stress–strain curve 
is needed. Usually, the stress–strain curve obtained by experiment is the engineering stress–
strain curve, which is needed to be transformed into the true stress–strain curve, and the 
formula of transformation is shown in Eqs. (2) and (3).

Figure 2. 3D SP model for homogeneous materials [36].
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[37]. The true stress–strain curve is used to provide the corresponding deformation parameters 
for the shot peened material in the finite element model. Because of the existence of reinforce-
ments in composite and the influences of which on the matrix’s residual stress distribution, 
the strain–stress curves with a single strain rate (10−3 s−1) are utilized during simulation. The 
dynamic stress–strain curves become flatter with increasing strain rate, which reduces the mate-
rial strain hardening [38]. Thus, considering the variation of strain rates, based on the references 
[39, 40] and Eq. (1), the parameters C and P are set as C = 1300 and P = 5.

The true stress–strain curves of Ti-6Al-4V and (TiB+TiC)/Ti-6Al-4V can be obtained from the 
tensile tests. The dimension of tensile specimens with a gauge section of 4 × 1.8 × 18 mm is 
shown in Figure 4(a), and the axes direction is parallel to the hot-forging direction. The ten-
sile tests are performed using a Zwick T1-FR020TN test machine in air, and the initial strain 
rates is 10−3 s−1. The true stress–strain curves are shown in Figure 4(b), which are implemented 
in the simulation process as the elastic–plastic deformation curves. In addition, the typical 
mechanical parameters of shot balls, target, and reinforcements are shown in Table 1.

2.2. Simulated results and discussion

2.2.1. Residual stress distribution on surface

In order to show the deformation of material obviously after SP, the coverage rate of 300% is 
chosen and the shot velocity is 100 m/s. The simulation results of x-direction principal stress (σxx) 
are shown in Figure 5. From the Figure 5(a), it can be found that after SP, there is a compressive 
stress field with a certain depth in the plastic deformation area below the shot balls, and the  

Figure 3. Coverage rate of SP with different impacts [36].
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order to keep the simulation accuracy, the coverage rate is defined and the schematic is shown 
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distribution of CRS in the plastic deformation zone is uniform, which is about −900 to −1000 MPa. 
However, in the 2D result of surface in Figure 5(b), the distribution of residual stress is not uni-
form, and the max CRS is about −1453 MPa, which results from the stress concentration on the 
impact point of shot ball. In addition, there is tensile residual stress in some area between two 
craters. As the impacting time of shot ball on material’s surface is different, the size of crater on 
the surface is not consistent, and the area of craters formed firstly is significantly reduced by the 
extrusion of follow-up craters. In these extruded area, the tensile residual stress is formed, but 
after repeated SP, the distribution of residual stress is gradually tended to uniform.

Due to the repeated impact and extrusion of shot balls, the plastic deformation appears and 
many craters are formed on surface. The formation of craters results in the increase of surface 
area and the appearance of tensile residual stress, which is also the reason that the max CRS 
does not appear on surface. On surface, the residual stress includes both the compressive 
stress formed by the plastic deformation and the tensile stress formed by the increase of sur-
face area. With the increase of depth, the tensile residual stress decreases gradually but the 
CRS is gradually increased, then the max CRS is reached at a certain depth. At last, due to the 
reduction of plastic deformation, the CRS is gradually reduced to the level of stress before 
SP. In Figure 5(b), it can be found that there is tensile stress on the surface boundary. The for-
mation of such tensile stress field is mainly due to the limitation of finite element model size 
(only 12R × 6R), and the SP area only 8R × 4R in order to avoid the effect of model boundary 

Shot balls Ti-6Al-4V TiB TiC

Density ρ (Kg·m−3) 7800 4500 4520 4930

Poisson’s ratio ν 0.30 0.34 0.14–0.15 0.18–0.2

Young’s modulus E (GPa) 210 112 371–485 400–460

Constraint of the part Rigid Elastic–plastic Elastic–plastic Elastic–plastic

Table 1. Typical mechanical parameters of shot balls and target.

Figure 4. (a) Specimen size for room temperature tests (unit: mm); (b) stress-strain curves of the matrix and composite 
(strain rate: 10−3 s−1).
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on the simulation results. So, the tensile stress field of surface boundary has no effect on the 
residual stress distribution in the plastic deformation zone. Moreover, in the actual SP experi-
ment, the whole surface of material is subjected to SP process, and the uniform CRS can be 
obtained. The surface tensile stress on the boundary disappears at the same time.

The effect of SP on the residual stress distribution is mainly described by the residual stress 
variation with the increase of depth and the four characteristic parameters (the surface resid-
ual stress, the max residual stress, the depth of residual stress layer, and the depth of max 
residual stress). Usually, in experiment, after SP, the surface layer of samples are subjected to 
electrochemical etching and removed layer by layer (each layer is about 15–20 μm), and then 
the stress value of each layer can be measured by XRD method, and the curves of residual 
stress variation along the depth are obtained. In order to avoid measurement error, the irradia-
tion area of X-ray on the surface is generally about 1 mm2, so actually, the measured stress by 
experiment is the average stress under the statistical of surface area in 1 mm2. In this numerical 
simulation, for obtaining the distribution of residual stress along the depth, the stress value 
of all nodes at a certain depth along Z direction are selected and averaged, which can repre-
sent the average stress in a certain depth. Using this method to average the stress values of 
all nodes, the curve of residual stress distribution with the increase of depth can be obtained.

2.2.2. Influence of coverage rate on residual stress distribution

After SP, the surface coverage rate refers to the ratio of the area occupied by the shot craters 
to the area of surface required for SP. During the process of SP, the coverage rate is usually 
required for reaching or exceeding 100%. Moreover, in the experiment, the coverage rate more 
than 100% can be expressed as a multiple of the time required for a full coverage rate of 100%, 
for example, the coverage rate of 200% means that the SP time is two times of full coverage.  

Figure 5. Simulation results of residual stress field of SP (σxx), (a) 3D result; (b) 2D result of surface.
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distribution of CRS in the plastic deformation zone is uniform, which is about −900 to −1000 MPa. 
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impact point of shot ball. In addition, there is tensile residual stress in some area between two 
craters. As the impacting time of shot ball on material’s surface is different, the size of crater on 
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extrusion of follow-up craters. In these extruded area, the tensile residual stress is formed, but 
after repeated SP, the distribution of residual stress is gradually tended to uniform.

Due to the repeated impact and extrusion of shot balls, the plastic deformation appears and 
many craters are formed on surface. The formation of craters results in the increase of surface 
area and the appearance of tensile residual stress, which is also the reason that the max CRS 
does not appear on surface. On surface, the residual stress includes both the compressive 
stress formed by the plastic deformation and the tensile stress formed by the increase of sur-
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reduction of plastic deformation, the CRS is gradually reduced to the level of stress before 
SP. In Figure 5(b), it can be found that there is tensile stress on the surface boundary. The for-
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(only 12R × 6R), and the SP area only 8R × 4R in order to avoid the effect of model boundary 
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on the simulation results. So, the tensile stress field of surface boundary has no effect on the 
residual stress distribution in the plastic deformation zone. Moreover, in the actual SP experi-
ment, the whole surface of material is subjected to SP process, and the uniform CRS can be 
obtained. The surface tensile stress on the boundary disappears at the same time.

The effect of SP on the residual stress distribution is mainly described by the residual stress 
variation with the increase of depth and the four characteristic parameters (the surface resid-
ual stress, the max residual stress, the depth of residual stress layer, and the depth of max 
residual stress). Usually, in experiment, after SP, the surface layer of samples are subjected to 
electrochemical etching and removed layer by layer (each layer is about 15–20 μm), and then 
the stress value of each layer can be measured by XRD method, and the curves of residual 
stress variation along the depth are obtained. In order to avoid measurement error, the irradia-
tion area of X-ray on the surface is generally about 1 mm2, so actually, the measured stress by 
experiment is the average stress under the statistical of surface area in 1 mm2. In this numerical 
simulation, for obtaining the distribution of residual stress along the depth, the stress value 
of all nodes at a certain depth along Z direction are selected and averaged, which can repre-
sent the average stress in a certain depth. Using this method to average the stress values of 
all nodes, the curve of residual stress distribution with the increase of depth can be obtained.

2.2.2. Influence of coverage rate on residual stress distribution

After SP, the surface coverage rate refers to the ratio of the area occupied by the shot craters 
to the area of surface required for SP. During the process of SP, the coverage rate is usually 
required for reaching or exceeding 100%. Moreover, in the experiment, the coverage rate more 
than 100% can be expressed as a multiple of the time required for a full coverage rate of 100%, 
for example, the coverage rate of 200% means that the SP time is two times of full coverage.  

Figure 5. Simulation results of residual stress field of SP (σxx), (a) 3D result; (b) 2D result of surface.
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In order to simplify the model, the collision between two shot balls are not considered, and 
SP position of each ball can be precisely controlled. Therefore, the different coverage rate can 
be simulated by the multi-layer shot balls and the coverage increases linearity with the num-
ber of layers. In this work, the characteristics of 100% coverage rate (4-layer shot balls), 200% 
coverage rate (8-layer shot balls), and 300% coverage rate (12-layer shot balls) are simulated. 
The shot velocity are set as 50 and 100 m/s based on experiment (mentioned in Section 2.2.4), 
and the average radius of shot balls are chosen as 0.15, 0.3, and 0.6 mm. The influence of 
coverage rate, radius of shot balls (r), and shot velocity (v) on residual stress distribution are 
investigated and discussed.

Figure 6 shows the distribution of residual stress along depth with different coverage rates. While 
the radius and speed of shot balls are constant, the similar variation trend of residual stress can be 
obtained. With the increase of coverage rate, the CRS and the depth of stress layer are improved. 
In addition, the depth of max CRS decreases with the increase of coverage rate, which is more 
obvious in Figure 6(e) and (f). Comparing the results under coverage rate of 200 and 300%, it 
can be found that the increment of surface residual stresses are not obvious with increasing the 
coverage rate, since the surface of almost all area is covered by craters and the stress field reaches 
saturation. Though there is a little bit increment of the max CRS while coverage rate increases 
from 200 to 300%, there is not obvious comparing the coverage variation from 100 to 200%.

The simulated pictures about residual stress distribution under different coverage rates are 
shown in Figure 7, while r = 0.3 mm and v = 100 m/s. With increasing coverage, the number of 
craters on surface increases, and the surface residual stresses becomes more uniform. As well, 
the uniformity of residual stress distribution on subsurface is also improved while viewed 
from the cross section, and slight tensile stresses in the deep surface decrease gradually and 
disappear with the increase of coverage rate.

2.2.3. Influence of shot balls’ radius on residual stress distribution

According to the formula of  m =   4 __ 3   𝜋𝜋𝜋𝜋  R   3  , the mass of shot ball is not only linearly related to the 
density, but also is proportional to R3. In most of the industrial production, the criterion for 
choosing the size of shot ball is based on the surface roughness after SP. If it requires high 
quality of surface (small roughness), the small radius of shot ball is chosen. If there is no high 
quality requirement of surface, the big radius of shot ball is determined, because the cost of 
shot balls with small radius are much higher than that of big shot balls. Besides the influence 
of shot ball’s radius on surface roughness, the shot ball also influences the residual stress dis-
tribution. So the influence of three kinds of different radius (r = 0.15, 0.3, and 0.6 mm) on the 
residual stress distribution of Ti-6Al-4V is simulated by the model, while the shot velocity is 
100 m/s. The results of the residual stress versus depth are shown in Figure 8. From the simu-
lation results, it can be found that the surface CRS and max CRS are higher while using small 
shot balls, but the layer depth of CRS is smaller and the CRS decreases rapidly with increasing 
depth. When using the big shot balls, both the surface and max CRS are smaller, however, the 
layer depth of CRS is deeper and CRS decreases slowly with increasing depth.

Some work have shown that when the coverage rate is 100%, the depth of CRS layer has the 
following relationship with the crater diameter and the shot ball’s diameter.
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   Z  0   = a × D − c × R  (4)

D is the crater diameter, Z0 is the depth of CRS layer, R is the shot ball’s diameter, and a, c are 
constant coefficients. In general, the value of a is between 1 and 1.5, and the value of c is in 

Figure 6. Residual stress distribution in depth with different coverage rates, (a) r = 0.15 mm, v = 50 m/s; (b) r = 0.15 mm, 
v = 100 m/s; (c) r = 0.3 mm, v = 50 m/s; (d) r = 0.3 mm, v = 100 m/s; (e) r = 0.6 mm, v = 50 m/s; (f) r = 0.6 mm, v = 100 m/s.
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In order to simplify the model, the collision between two shot balls are not considered, and 
SP position of each ball can be precisely controlled. Therefore, the different coverage rate can 
be simulated by the multi-layer shot balls and the coverage increases linearity with the num-
ber of layers. In this work, the characteristics of 100% coverage rate (4-layer shot balls), 200% 
coverage rate (8-layer shot balls), and 300% coverage rate (12-layer shot balls) are simulated. 
The shot velocity are set as 50 and 100 m/s based on experiment (mentioned in Section 2.2.4), 
and the average radius of shot balls are chosen as 0.15, 0.3, and 0.6 mm. The influence of 
coverage rate, radius of shot balls (r), and shot velocity (v) on residual stress distribution are 
investigated and discussed.
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from 200 to 300%, there is not obvious comparing the coverage variation from 100 to 200%.

The simulated pictures about residual stress distribution under different coverage rates are 
shown in Figure 7, while r = 0.3 mm and v = 100 m/s. With increasing coverage, the number of 
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the uniformity of residual stress distribution on subsurface is also improved while viewed 
from the cross section, and slight tensile stresses in the deep surface decrease gradually and 
disappear with the increase of coverage rate.

2.2.3. Influence of shot balls’ radius on residual stress distribution

According to the formula of  m =   4 __ 3   𝜋𝜋𝜋𝜋  R   3  , the mass of shot ball is not only linearly related to the 
density, but also is proportional to R3. In most of the industrial production, the criterion for 
choosing the size of shot ball is based on the surface roughness after SP. If it requires high 
quality of surface (small roughness), the small radius of shot ball is chosen. If there is no high 
quality requirement of surface, the big radius of shot ball is determined, because the cost of 
shot balls with small radius are much higher than that of big shot balls. Besides the influence 
of shot ball’s radius on surface roughness, the shot ball also influences the residual stress dis-
tribution. So the influence of three kinds of different radius (r = 0.15, 0.3, and 0.6 mm) on the 
residual stress distribution of Ti-6Al-4V is simulated by the model, while the shot velocity is 
100 m/s. The results of the residual stress versus depth are shown in Figure 8. From the simu-
lation results, it can be found that the surface CRS and max CRS are higher while using small 
shot balls, but the layer depth of CRS is smaller and the CRS decreases rapidly with increasing 
depth. When using the big shot balls, both the surface and max CRS are smaller, however, the 
layer depth of CRS is deeper and CRS decreases slowly with increasing depth.

Some work have shown that when the coverage rate is 100%, the depth of CRS layer has the 
following relationship with the crater diameter and the shot ball’s diameter.
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D is the crater diameter, Z0 is the depth of CRS layer, R is the shot ball’s diameter, and a, c are 
constant coefficients. In general, the value of a is between 1 and 1.5, and the value of c is in 

Figure 6. Residual stress distribution in depth with different coverage rates, (a) r = 0.15 mm, v = 50 m/s; (b) r = 0.15 mm, 
v = 100 m/s; (c) r = 0.3 mm, v = 50 m/s; (d) r = 0.3 mm, v = 100 m/s; (e) r = 0.6 mm, v = 50 m/s; (f) r = 0.6 mm, v = 100 m/s.
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Figure 8. Influence of shot radius on depth distribution of residual stress (v = 100 m/s and coverage = 100%).

Figure 7. Residual stress distribution after SP with different coverage rates: (a) 100%; (b) 200%; (c) 300%. [36].
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the range from 0 to 0.1. In order to obtain the values of a and c, the SP experiment should be 
carried out. Firstly, the same material as the workpiece is chosen and then the surface of this 
material is subjected to SP treatment. Secondly, the diameter of crater and the depth of CRS are 
measured. And at last, the values of a and c are calculated by linear fitting. Based on the values 
of a and c, the depth of CRS layer can be estimated. At the same shot velocity, the diameter 
of crater increases with increasing shot diameter, and thus the depth of CRS layer increases.

2.2.4. Influence of shot velocity on residual stress distribution

SP is the process of consuming shot balls’ kinetic energy and transfer the kinetic energy to the 
deformation energy of target material. So, after SP, the elastic and plastic deformations are 
introduced in the surface layer of target material. The shot balls’ mass and velocity directly 
affect the value of kinetic energy. When the material of shot balls is same, the kinetic energy 
increases with the improvement of shot velocity. In SP experiment by using an air blast 
machine, the shot velocity can be varied and obtained by adjusting the air pressure. During 
the flight of shot balls, the velocity will be decreased because of the collision between them 
and the effect of air resistance, and the attenuation is related to the distance between the noz-
zle and the material. The smaller diameter of shot ball, the velocity attenuation is more obvi-
ous. The attenuation rates of cast shot balls (ρ = 7.8 g/cm3) with different diameters at different 
shot distances are shown in Figure 9 [41]. From this figure, it can be found that when the shot 
distance is less than 2 m, the attenuation rates are proportional to the distance increment.

The shot velocity is also affected by the shot angle in addition to the attenuation with the distance. 
When the shot balls impact on the surface of workpiece at a certain angle, the velocity can be decom-
posed into two directions. One is perpendicular to the surface (normal velocity) and the other is 
parallel to the surface (tangential velocity). The former velocity contributes to the plastic deforma-
tion of the surface layer, but the latter only promotes the friction effect. Based on the above analy-
sis, in the experiment of this work, the distance between nozzle and samples is 100 mm (0.1 m),  

Figure 9. Relationship between decrement of shot velocity and shooting distance [41].

Finite Element Dynamic Analysis on Residual Stress Distribution of Titanium Alloy and Titanium…
http://dx.doi.org/10.5772/intechopen.73120

35



Figure 8. Influence of shot radius on depth distribution of residual stress (v = 100 m/s and coverage = 100%).

Figure 7. Residual stress distribution after SP with different coverage rates: (a) 100%; (b) 200%; (c) 300%. [36].
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carried out. Firstly, the same material as the workpiece is chosen and then the surface of this 
material is subjected to SP treatment. Secondly, the diameter of crater and the depth of CRS are 
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parallel to the surface (tangential velocity). The former velocity contributes to the plastic deforma-
tion of the surface layer, but the latter only promotes the friction effect. Based on the above analy-
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in which, the shot velocity on surface is almost the same as initial velocity. Moreover, the direction 
of peening nozzle is perpendicular to the surface, which can keep the shot velocity perpendicular 
to the surface and transfer most of kinetic energy to the deformation energy.

In order to simulate the practical process of SP better, the actual shot velocity is estimated 
by the semi-experiential formula introduced by Dr. Klemenz [42], which is shown in Eq. (5).

Figure 10. Residual stress distribution in depth with different shot velocities, (a) r = 0.15 mm, coverage = 100%; 
(b) r = 0.15 mm, coverage = 200%; (c) r = 0.3 mm, coverage = 100%; (d) r = 0.3 mm, coverage = 200%; (e) r = 0.6 mm, 
coverage = 100%; (f) r = 0.6 mm, coverage = 200%.

Finite Element Method - Simulation, Numerical Analysis and Solution Techniques36

  v =   
16.35 × p

 _________ 1.53 × m + p   +   
29.50 × p

 _________ 0.598 × d + p   + 4.83 × p  (5)

m, p, and d represent the flux of shot balls (kg/min), the jet pressure (bar), and the diameter 
of shot balls (mm), respectively. In current experiment, the value of m is 0.5 kg/min. The dif-
ferent SP parameters are shown: (1) 0.15 mmA (SP intensity), 4 bar (air pressure), 0.5 min 
(SP time); (2) 0.3 mmA, 10 bar, 0.5 min. The average radius of shot balls r = 0.3 mm. Based 
on above parameters, the approximate shot velocities are estimated as 57 and 92 m/s, cor-
responding to SP intensities of 0.15 and 0.3 mmA respectively. Thus, the shot velocities of 50 
and 100 m/s are considered in this work.

During simulation, the initial shot velocity represents SP intensity. The larger velocity means 
the higher SP intensity. Figure 10 indicates the residual stress distribution in depth with dif-
ferent initial velocities. In these figures, the variation trends are similar. While increasing 
velocity, both the surface and max CRS significantly increase and the depth of deformation 
layer is also improved. At v = 100 m/s, the max depth of CRS in the material reaches 600 μm 
with r = 0.6 mm and coverage = 200% (in Figure 10(f)). The surface residual stress is less 
affected by the shot velocity while r = 0.3 and the surface residual stress is around −100 to 
−200 MPa (in Figure 10(c) and (d)). Because one part of the kinetic energy is transferred to the 
deformation energy during SP, while increasing shot velocity, much more kinetic energy can 
be transferred to the deformation energy, which can result in the surface deformation more 
severely and the deeper deformation layer can be obtained.

3. Finite element simulation on inhomogeneous SP model

3.1. Establishment of inhomogeneous SP model

In order to set up 3D SP model for inhomogeneous materials, the morphology of reinforce-
ments were observed by scanning electron microscope (SEM, Hitachi S-3400 N, Japan) under 
15 kV, 70 μA. Before SEM observation, the samples were ground by abrasive papers, and then 
by the diamond papers and the aluminum oxide suspensions in order. For acquiring clear 
morphology of reinforcements, the sample was etched using Kroll’s solution (HF: HNO3: 
H2O = 3:5:100 (vol)) for 2–6 s after polishing. All experiments were performed at room tem-
perature. The SEM images of reinforcements in (TiB+TiC)/Ti-Al-4V after etching on surface 
with different percentage have been shown in Figure 11 [36, 43]. It is indicated that the rein-
forcements are distributed uniformly in the composite. The reinforcements like short sticks 
are TiB, while the equiaxed or near equiaxed particles are TiC. In the following work, the 3D 
SP model for inhomogeneous materials is based on the microstructure of reinforcements in 
8% (TiB+TiC)/Ti-6Al-4V. Based on the simulated results from homogeneous model, the inho-
mogeneous SP model containing the reinforcements is built in this part and the residual stress 
distribution in and around the reinforcements are obtained and analyzed. In this model, the 
parameters of v = 100 m/s, r = 0.3 mm and coverage = 200% are chosen as the initial parameters.

The 3D SP model for inhomogeneous materials is shown in Figure 12 [36] based on the micro-
structure observation of reinforcements. In the figure, the green part represents the matrix, the 
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in which, the shot velocity on surface is almost the same as initial velocity. Moreover, the direction 
of peening nozzle is perpendicular to the surface, which can keep the shot velocity perpendicular 
to the surface and transfer most of kinetic energy to the deformation energy.

In order to simulate the practical process of SP better, the actual shot velocity is estimated 
by the semi-experiential formula introduced by Dr. Klemenz [42], which is shown in Eq. (5).
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of shot balls (mm), respectively. In current experiment, the value of m is 0.5 kg/min. The dif-
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(SP time); (2) 0.3 mmA, 10 bar, 0.5 min. The average radius of shot balls r = 0.3 mm. Based 
on above parameters, the approximate shot velocities are estimated as 57 and 92 m/s, cor-
responding to SP intensities of 0.15 and 0.3 mmA respectively. Thus, the shot velocities of 50 
and 100 m/s are considered in this work.

During simulation, the initial shot velocity represents SP intensity. The larger velocity means 
the higher SP intensity. Figure 10 indicates the residual stress distribution in depth with dif-
ferent initial velocities. In these figures, the variation trends are similar. While increasing 
velocity, both the surface and max CRS significantly increase and the depth of deformation 
layer is also improved. At v = 100 m/s, the max depth of CRS in the material reaches 600 μm 
with r = 0.6 mm and coverage = 200% (in Figure 10(f)). The surface residual stress is less 
affected by the shot velocity while r = 0.3 and the surface residual stress is around −100 to 
−200 MPa (in Figure 10(c) and (d)). Because one part of the kinetic energy is transferred to the 
deformation energy during SP, while increasing shot velocity, much more kinetic energy can 
be transferred to the deformation energy, which can result in the surface deformation more 
severely and the deeper deformation layer can be obtained.

3. Finite element simulation on inhomogeneous SP model
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In order to set up 3D SP model for inhomogeneous materials, the morphology of reinforce-
ments were observed by scanning electron microscope (SEM, Hitachi S-3400 N, Japan) under 
15 kV, 70 μA. Before SEM observation, the samples were ground by abrasive papers, and then 
by the diamond papers and the aluminum oxide suspensions in order. For acquiring clear 
morphology of reinforcements, the sample was etched using Kroll’s solution (HF: HNO3: 
H2O = 3:5:100 (vol)) for 2–6 s after polishing. All experiments were performed at room tem-
perature. The SEM images of reinforcements in (TiB+TiC)/Ti-Al-4V after etching on surface 
with different percentage have been shown in Figure 11 [36, 43]. It is indicated that the rein-
forcements are distributed uniformly in the composite. The reinforcements like short sticks 
are TiB, while the equiaxed or near equiaxed particles are TiC. In the following work, the 3D 
SP model for inhomogeneous materials is based on the microstructure of reinforcements in 
8% (TiB+TiC)/Ti-6Al-4V. Based on the simulated results from homogeneous model, the inho-
mogeneous SP model containing the reinforcements is built in this part and the residual stress 
distribution in and around the reinforcements are obtained and analyzed. In this model, the 
parameters of v = 100 m/s, r = 0.3 mm and coverage = 200% are chosen as the initial parameters.

The 3D SP model for inhomogeneous materials is shown in Figure 12 [36] based on the micro-
structure observation of reinforcements. In the figure, the green part represents the matrix, the 
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blue parts with disjunction distribution represent the reinforcements TiB and TiC, and the red 
and 1/4 spherical object is the shot ball. Because the mechanic parameters of these two reinforce-
ments are similar, one kind of mesh is used in this model to simplify the calculation. Moreover, 
the whole mesh number reaches 320,000. In addition, a combination of two kinds of materials is 
built, one is the matrix Ti-6Al-4V, and the other is the average parameters of TiB and TiC. Wherein 
the relatively large area of plastic deformation, actually the directly impact area, the quite fine 
mesh is introduced. In this inhomogeneous model, the volume percentage of reinforcement is set 
as 8% based on the microstructure of material. The 1/4 symmetry model is set up and the nonre-
flecting boundary conditions on flank of model are applied. The symmetric boundary conditions 
are also applied on the symmetry plane in order to avoid the effect of stress wave.

3.2. Residual stress distribution

The residual stress distribution (σxx) of plastic deformation area is shown in Figure 13 after 
SP. In the plastic deformation zone, there are both CRS and tensile stresses, the max CRS is 

Figure 12. 3D SP model for inhomogeneous materials [36].

Figure 11. SEM images of reinforcements in (TiB+TiC)/Ti-Al-4V after etching on surface with different percentage; (a) 
8% (TiB+TiC) [36]; (b) 5% (TiB+TiC) [43].
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−1511 MPa and the max tensile residual stress is +1155 MPa. Moreover, the CRS exist in the 
matrix, but there are tensile residual stresses in the reinforcements, which reveal that the rein-
forcements withstand the tensile stresses, and this stress distribution indicates the higher yield 
strength of reinforcements. The stress distribution indicates the effect of reinforcements, keep-
ing the adverse tensile stresses in reinforcements and retarding the damage to matrix. The dif-
ferent residual stress distributions between the matrix and reinforcements are resulted from 
the different mechanical properties, consisting with the desired results after SP treatments.

The simulation results of residual stress field of SP (σxx) on the whole surface are shown in 
Figure 14. The similar stress distribution as Figure 13 has been shown, in and around the rein-
forcement. Tensile residual stress appears and the stress concentration exists, but between the 
reinforcements, there are CRS and the distribution of CRS is uniform below the subsurface (in 

Figure 13. Residual stress distribution in depth simulated from inhomogeneous SP model (σxx direction); (a) 3D result; 
(b) 2D result; (c) magnification of 2D result.
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−1511 MPa and the max tensile residual stress is +1155 MPa. Moreover, the CRS exist in the 
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forcements withstand the tensile stresses, and this stress distribution indicates the higher yield 
strength of reinforcements. The stress distribution indicates the effect of reinforcements, keep-
ing the adverse tensile stresses in reinforcements and retarding the damage to matrix. The dif-
ferent residual stress distributions between the matrix and reinforcements are resulted from 
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Figure 14. Simulation results of residual stress field of SP (σxx) on the whole surface; (a) 3D result; (b) 2D result of surface.

Figure 14(a)). In addition, it is obvious that the max CRS appears in the subsurface, and after 
SP treatment of 200% coverage rate, the deformation of surface layer can be observed from the 
cross section (in Figure 14(a)) and the surface (in Figure 14(b)). Comparing with the residual 
stress distribution on the surface of homogeneous material in Figure 5, the stress distribution 
on surface of composite in Figure 14(b) is not uniform because the influence of reinforcements. 
The value of max CRS and tensile residual stress in Figure 14(b) are increased a little comparing 
the results in Figure 5(b). The detailed discussion will be carried out in the following section.

3.3. Influence of reinforcements on residual stress distribution

The stress difference between the reinforcement and matrix is mainly due to the large 
mechanical differences between them. During the SP process, the matrix material and the 
reinforcement are deformed by the pressure caused by the impact of shot balls. The matrix 
material is deformed easily due to the small Young’s modulus and yield strength. But the 
Young’s modulus of the reinforcement is very large. The reinforcement in the surface under-
goes bending under the vertical impact of shot balls, the reinforcement in the deeper area of 
plastic deformation zone is mainly deformed elastically. Some of the surface reinforcements 
are deformed in the plastic and result in high tensile residual stress (in Figure 14(a)). After SP, 
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there is still high compressive stress in the plastic deformation zone even though the elastic 
recovery occurs. Meanwhile, the elastic recovery of matrix is limited by the reinforcement, 
which also makes the CRS in matrix further improved.

During SP process, the matrix material in the composite undergoes the severe plastic deforma-
tion and the compressive stress is introduced. The tensile stress in whisker reinforcements is pro-
duced with a symmetrical distribution due to the bending deformation. In the top region where 
the whisker is strengthened, also the compressive stress is produced, but it is significantly less 
than the stress between the whisker reinforcements. After SP, the material will spontaneously 
show the elastic recovery and both the compressive and tensile stress are reduced. While the 
elastic recovery is completed, the compressive stress region is obtained in the matrix between 
the whisker reinforcements and the tensile stress is retained in the reinforcements (in Figure 14). 
Since the tensile stresses in reinforcement are much lower than the strength of reinforcement, it 
is reasonable to believe that these tensile stresses have no detrimental influences on the fatigue 
properties of shot peened composites. In order to verify the simulated results obtained by 3D 
finite element dynamic analysis, the experimental investigation on residual stress distribution 
of Ti-6Al-4V and 8% (TiB+TiC)/Ti-6Al-4V after SP are carried out via XRD method.

4. Experimental validation on residual stress distribution

4.1. Experimental process

SP treatment was performed using an air blast machine (Carthing Machinery Company, 
Shanghai, China). The SP intensities were: 0.15, 0.30, and 0.45 mmA. The distance between 
nozzle and samples was 100 mm and the diameter of peening nozzle was 15 mm. The shot 
media was cast steel ball with hardness of 610 HV and average radius of 0.3 mm. In order to 
obtain the uniform stress field on surface, the coverage rate of SP process was 200%. Residual 
stresses were measured by X-ray stress analyzer (LXRD, Proto, Canada) with Cu-Ka radiation 
under 30 kV/25 mA and Ni filter. The diffraction peak of Ti (213) was detected in the measure-
ments and then the residual stresses were determined according to the sin2ψ method [44] and 
the range of tilting angles was 0–45°. The schematic figure of residual stress measurement 
coordinate was shown in Figure 15(a) and the photo of residual stress measurement using 
X-ray stress analyzer was presented in Figure 15(b). For obtaining the stress distribution 
along the depth, the thin top surface layer was removed one by one via chemical etch method 
with a solution of distilled water, nitric acid, and hydrofluoric acid in proportion of 31:12:7.

4.2. Residual stress distribution of Ti-6Al-4V

The CRS distribution of Ti-6Al-4V under three different SP intensities is shown in Figure 16(a). 
The residual stresses are compressive stresses and the values increase to max and then decrease, 
close to the simulated results by the homogeneous SP model. When the SP intensity increases 
from 0.15 to 0.45 mmA, the depths of max CRS are located at 50, 50, and 75 μm, corresponding to 
the intensity of 0.15, 0.30, and 0.45 mmA, respectively. The surface deformation layers are 275, 325, 
and 400 μm depth, which show that the deformation layer depth increases gradually with increas-
ing SP intensity. In addition, with the increase of SP intensity, the CRS of surface is enhanced from 
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Figure 14. Simulation results of residual stress field of SP (σxx) on the whole surface; (a) 3D result; (b) 2D result of surface.
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the results in Figure 5(b). The detailed discussion will be carried out in the following section.
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The stress difference between the reinforcement and matrix is mainly due to the large 
mechanical differences between them. During the SP process, the matrix material and the 
reinforcement are deformed by the pressure caused by the impact of shot balls. The matrix 
material is deformed easily due to the small Young’s modulus and yield strength. But the 
Young’s modulus of the reinforcement is very large. The reinforcement in the surface under-
goes bending under the vertical impact of shot balls, the reinforcement in the deeper area of 
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are deformed in the plastic and result in high tensile residual stress (in Figure 14(a)). After SP, 
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there is still high compressive stress in the plastic deformation zone even though the elastic 
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which also makes the CRS in matrix further improved.
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duced with a symmetrical distribution due to the bending deformation. In the top region where 
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finite element dynamic analysis, the experimental investigation on residual stress distribution 
of Ti-6Al-4V and 8% (TiB+TiC)/Ti-6Al-4V after SP are carried out via XRD method.
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4.1. Experimental process

SP treatment was performed using an air blast machine (Carthing Machinery Company, 
Shanghai, China). The SP intensities were: 0.15, 0.30, and 0.45 mmA. The distance between 
nozzle and samples was 100 mm and the diameter of peening nozzle was 15 mm. The shot 
media was cast steel ball with hardness of 610 HV and average radius of 0.3 mm. In order to 
obtain the uniform stress field on surface, the coverage rate of SP process was 200%. Residual 
stresses were measured by X-ray stress analyzer (LXRD, Proto, Canada) with Cu-Ka radiation 
under 30 kV/25 mA and Ni filter. The diffraction peak of Ti (213) was detected in the measure-
ments and then the residual stresses were determined according to the sin2ψ method [44] and 
the range of tilting angles was 0–45°. The schematic figure of residual stress measurement 
coordinate was shown in Figure 15(a) and the photo of residual stress measurement using 
X-ray stress analyzer was presented in Figure 15(b). For obtaining the stress distribution 
along the depth, the thin top surface layer was removed one by one via chemical etch method 
with a solution of distilled water, nitric acid, and hydrofluoric acid in proportion of 31:12:7.

4.2. Residual stress distribution of Ti-6Al-4V

The CRS distribution of Ti-6Al-4V under three different SP intensities is shown in Figure 16(a). 
The residual stresses are compressive stresses and the values increase to max and then decrease, 
close to the simulated results by the homogeneous SP model. When the SP intensity increases 
from 0.15 to 0.45 mmA, the depths of max CRS are located at 50, 50, and 75 μm, corresponding to 
the intensity of 0.15, 0.30, and 0.45 mmA, respectively. The surface deformation layers are 275, 325, 
and 400 μm depth, which show that the deformation layer depth increases gradually with increas-
ing SP intensity. In addition, with the increase of SP intensity, the CRS of surface is enhanced from 
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−517 to −605 MPa, which is improved by 17%. The max CRS varies from −684 to −794 MPa and the 
increase rate is about 16%. It is mainly due to the improved shot velocity after increasing SP inten-
sity, which can cause more severe plastic deformation on surface, the deeper surface deformation 
layer and the larger CRS. Comparing the results by simulation and experiment, it reveals that the 
variation trends of residual stress by simulation are similar with the results from experiment.

4.3. Residual stress distribution of 8% (TiB+TiC)/Ti-6Al-4V

Figure 16(b) shows the experimental results of residual stress distribution on the composite 
8% (TiB+TiC)/Ti-6Al-4V. From the figure, the depths of surface deformation layer are 200, 250, 
and 300 μm corresponding to 0.15, 0.30, and 0.45 mmA, which are shallower than the matrix’s. 
The difference is resulted from the existence of reinforcements’ resistance to the deformation of 
surface. Moreover, SP intensity has direct relation to the shot velocity. The larger impact veloc-
ity, the higher impact kinetic energy, and the depths of surface deformation layer are deeper. 

Figure 15. (a) Schematic figure of residual stress measurement coordinate; (b) photo of the residual stress measurement 
using X-ray stress analyzer.

Figure 16. Depth distribution of CRS on the matrix and composite under three different SP intensities [36], (a) Ti-6Al-4V; 
(b) 8% (TiB+TiC)/Ti-6Al-4V.
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At the same depth, the higher of SP intensity, the values of CRS are bigger. These variation 
trends of residual stresses are similar to Figure 16(a), and the depths of max CRS are located at 
25 μm, which are shallower than the matrix’s under the same SP intensity. The CRS of surface 
is enhanced from −545 to −724 MPa and the max CRS varies from −655 to −819 MPa. Contrasting 
the results from experiment and simulation, the ranges of residual stress measured via experi-
ments are good agreement with the simulated results by 3D finite element dynamic analysis 
shown in Figure 13. The difference between simulation and experiment are inevitable, because 
the irradiation area of X-ray is larger than the dimension of reinforcement, and the tested resid-
ual stresses show the average values of the matrix and reinforcements. Based on all results, 
analysis and discussion, 3D finite element dynamic analysis is an effective method to simu-
late the residual stress distribution of metal matrix composite after SP treatment, especially to 
obtain the residual stress distribution in and around the reinforcements in the composite.

5. Conclusions

In order to study the effect of various parameters on the residual stress distribution after SP, 
LS/DYNA analysis module in ANSYS is utilized to establish the finite element model for 
Ti-6Al-4V and (TiB+TiC)/Ti-6Al-4V, and both 3D homogeneous and inhomogeneous models 
are set up. The influence of coverage rate, shot radius, and shot velocity on residual stress 
distribution is studied using the multi-layer shot balls to simulate the actual SP process. The 
main results are concluded as the following:

1. The influence of different coverage rates on residual stress distribution is investigated. 
With increasing coverage rate, the number of craters on the surface is increased obviously, 
and the uniformity of surface residual stresses is improved a lot. Comparing the results un-
der coverage rate of 200 and 300%, the increment of surface residual stresses are not obvi-
ous, since the surface of almost all covered by craters and the stress field reaches saturation.

2. The influence of cast steel shot balls with different radius on the residual stress distribution is 
simulated when the shot velocity is 100 m/s. The CRS induced by smaller shot balls is higher, 
but the depth of residual stress layer is smaller and decreases rapidly. While increasing radius, 
the surface and max CRS are smaller, while the depth of residual stress layer decreases slowly.

3. The simulation results of different shot velocities show that the higher CRS and the deeper 
residual stress layer can be obtained under higher velocity. At 100 m/s, the max depth of 
CRS reaches 600 μm with r = 0.6 mm and coverage = 200%. The surface residual stress is 
less affected by shot velocity, while the radius of shot balls is 0.3 mm and the surface re-
sidual stress under two kinds of velocities is around −100 to −200 MPa.

4. The residual stress distribution in the plastic deformation zone, and in and around the 
reinforcements are obtained. Due to the different mechanic properties between the rein-
forcement and matrix, the elastic deformation of the reinforcement is mainly caused by SP, 
and a large tensile residual stress is formed in the body of reinforcement. Meanwhile, the 
plastic deformation of the matrix occurs and CRS are formed. After the elastic recovery, 
there is still high CRS remained in the matrix.
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25 μm, which are shallower than the matrix’s under the same SP intensity. The CRS of surface 
is enhanced from −545 to −724 MPa and the max CRS varies from −655 to −819 MPa. Contrasting 
the results from experiment and simulation, the ranges of residual stress measured via experi-
ments are good agreement with the simulated results by 3D finite element dynamic analysis 
shown in Figure 13. The difference between simulation and experiment are inevitable, because 
the irradiation area of X-ray is larger than the dimension of reinforcement, and the tested resid-
ual stresses show the average values of the matrix and reinforcements. Based on all results, 
analysis and discussion, 3D finite element dynamic analysis is an effective method to simu-
late the residual stress distribution of metal matrix composite after SP treatment, especially to 
obtain the residual stress distribution in and around the reinforcements in the composite.
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In order to study the effect of various parameters on the residual stress distribution after SP, 
LS/DYNA analysis module in ANSYS is utilized to establish the finite element model for 
Ti-6Al-4V and (TiB+TiC)/Ti-6Al-4V, and both 3D homogeneous and inhomogeneous models 
are set up. The influence of coverage rate, shot radius, and shot velocity on residual stress 
distribution is studied using the multi-layer shot balls to simulate the actual SP process. The 
main results are concluded as the following:

1. The influence of different coverage rates on residual stress distribution is investigated. 
With increasing coverage rate, the number of craters on the surface is increased obviously, 
and the uniformity of surface residual stresses is improved a lot. Comparing the results un-
der coverage rate of 200 and 300%, the increment of surface residual stresses are not obvi-
ous, since the surface of almost all covered by craters and the stress field reaches saturation.

2. The influence of cast steel shot balls with different radius on the residual stress distribution is 
simulated when the shot velocity is 100 m/s. The CRS induced by smaller shot balls is higher, 
but the depth of residual stress layer is smaller and decreases rapidly. While increasing radius, 
the surface and max CRS are smaller, while the depth of residual stress layer decreases slowly.

3. The simulation results of different shot velocities show that the higher CRS and the deeper 
residual stress layer can be obtained under higher velocity. At 100 m/s, the max depth of 
CRS reaches 600 μm with r = 0.6 mm and coverage = 200%. The surface residual stress is 
less affected by shot velocity, while the radius of shot balls is 0.3 mm and the surface re-
sidual stress under two kinds of velocities is around −100 to −200 MPa.

4. The residual stress distribution in the plastic deformation zone, and in and around the 
reinforcements are obtained. Due to the different mechanic properties between the rein-
forcement and matrix, the elastic deformation of the reinforcement is mainly caused by SP, 
and a large tensile residual stress is formed in the body of reinforcement. Meanwhile, the 
plastic deformation of the matrix occurs and CRS are formed. After the elastic recovery, 
there is still high CRS remained in the matrix.
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5. The results obtained from the inhomogeneous SP model reveal that the compressive and 
tensile residual stresses are introduced in (TiB+TiC)/Ti-6Al-4V. The max CRS and tensile 
residual stress are −1511 and +1155 MPa, respectively. CRS appear in matrix, but the ten-
sile residual stresses gets generated in the reinforcements, which reveals the higher yield 
strength of reinforcements. This stress distribution indicates the effect of reinforcements, 
keeping the adverse tensile stresses in reinforcements and retarding the damage to matrix.

6. The experimental results from XRD method are shown that the surface CRS increased 
from −545 to −724 MPa and the max CRS varies from −655 to −819 MPa. The ranges of re-
sidual stress distribution in experiments are in good agreement with the simulated results 
by 3D finite element dynamic analysis.

From all results and discussion, using 3D finite element dynamic analysis to simulate the 
residual stress distribution of titanium matrix composite is reasonable, especially for the 
stress distribution in and around the reinforcements.

Acknowledgements

This work is supported by the projects of “Chu Tian Scholar” of Hubei Province in China 
(CTXZ2017-05), The 111 Project (B17034), National Natural Science Foundation of China (No. 
51302168, No. 51405356 and No. 51502142), 973 Program (No. 2014CB046701) and Shanghai 
Pujiang Program (No. 15PJD017). The financial support of the Jiangsu Higher Education 
Institutions of China (No. 15KJB430021) and the Startup Foundation for Introducing Talent 
of NUIST (No. 2014r036) are gratefully appreciated. The financial support of Research Fund 
for the Doctoral Program of Higher Education of China (No. 20130143120015), Medical 
Engineering Cross Research Foundation of Shanghai Jiao Tong University (No. YG2014MS02), 
Shanghai Jiao Tong University Chenxing Program (No. 15X100080069) are appreciated.

Author details

Lechun Xie1,2*, Zhou Wang1, Chengxi Wang3, Yan Wen1, Liqiang Wang3*, Chuanhai Jiang3, 
Weijie Lu3, Lai-Chang Zhang4 and Lin Hua1

*Address all correspondence to: lechunxie@yahoo.com and wang_liqiang@sjtu.edu.cn

1 Hubei Key Laboratory of Advanced Technology for Automotive Components, School 
of Automotive Engineering, Wuhan University of Technology, Wuhan, Hubei Province, 
P.R. China

2 Institute for Frontier Materials, Deakin University, Geelong, VIC, Australia

3 State Key Laboratory of Metal Matrix Composites, School of Materials Science and 
Engineering, Shanghai Jiao Tong University, Shanghai, P.R. China

4 School of Engineering, Edith Cowan University, Perth, WA, Australia

Finite Element Method - Simulation, Numerical Analysis and Solution Techniques44

References

[1] Bruno G, Fernández R, Gonzalez-Doncel G. Relaxation of the residual stress in 6061Al-
15 vol.% SiC w composites by isothermal annealing. Materials Science and Engineering 
A. 2004;382:188-197

[2] Schulze V. Characteristics of surface layers produced by shot peening. In: Proceeding of 
the Eighth International Conference on Shot Peening ICSP-8 in Garmisch-Partenkirchen 
DGM, Citeseer. 2002. pp. 145-160

[3] Kim K-H, Kim Y-C, Jeon E-C, Kwon D. Evaluation of indentation tensile properties of 
Ti alloys by considering plastic constraint effect. Materials Science and Engineering A. 
2011;528:5259-5263

[4] Benedetti M, Fontanari V, Monelli B. Numerical simulation of residual stress relaxation 
in shot peened high-strength aluminum alloys under reverse bending fatigue. Journal of 
Engineering Materials and Technology. 2010;132:011012

[5] Kim T, Lee JH, Lee H, Cheong S-k. An area-average approach to peening residual stress 
under multi-impacts using a three-dimensional symmetry-cell finite element model 
with plastic shots. Materials & Design. 2010;31:50-59

[6] Prasannavenkatesan R, Zhang J, McDowell DL, Olson GB, Jou H-J. 3D modeling of sub-
surface fatigue crack nucleation potency of primary inclusions in heat treated and shot 
peened martensitic gear steels. International Journal of Fatigue. 2009;31:1176-1189

[7] Guagliano M. Relating Almen intensity to residual stresses induced by shot peening: A 
numerical approach. Journal of Materials Processing Technology. 2001;110:277-286

[8] Rouhaud E, Ouakka A, Ould C, Chaboche J, Francois M. Finite elements model of shot 
peening, effects of constitutive laws of the material, Proceedings ICSP-9, Paris, France. 
2005

[9] Ould C, Rouhaud E, François M, Chaboche JL. A kinematic hardening finite elements 
model to evaluate residual stresses in shot-peened parts, local measurements by X-ray 
diffraction. In: Mater. Sci. Forum Trans Tech Publ. 2006. pp. 161-166

[10] Baragetti S, Guagliano M, Vergani L. A numerical procedure for shot peening optimi-
sation by means of non-dimensional factors. International Journal of Materials and 
Product Technology. 2000;15:91-103

[11] Boyce B, Chen X, Hutchinson J, Ritchie R. The residual stress state due to a spherical 
hard-body impact. Mechanics of Materials. 2001;33:441-454

[12] Evans R. Shot peening process: Modelling, verification, and optimisation. Materials 
Science and Technology. 2002;18:831-839

[13] Levers A. A. Prior, finite element analysis of shot peening. Journal of Materials Processing 
Technology. 1998;80:304-308

Finite Element Dynamic Analysis on Residual Stress Distribution of Titanium Alloy and Titanium…
http://dx.doi.org/10.5772/intechopen.73120

45



5. The results obtained from the inhomogeneous SP model reveal that the compressive and 
tensile residual stresses are introduced in (TiB+TiC)/Ti-6Al-4V. The max CRS and tensile 
residual stress are −1511 and +1155 MPa, respectively. CRS appear in matrix, but the ten-
sile residual stresses gets generated in the reinforcements, which reveals the higher yield 
strength of reinforcements. This stress distribution indicates the effect of reinforcements, 
keeping the adverse tensile stresses in reinforcements and retarding the damage to matrix.

6. The experimental results from XRD method are shown that the surface CRS increased 
from −545 to −724 MPa and the max CRS varies from −655 to −819 MPa. The ranges of re-
sidual stress distribution in experiments are in good agreement with the simulated results 
by 3D finite element dynamic analysis.

From all results and discussion, using 3D finite element dynamic analysis to simulate the 
residual stress distribution of titanium matrix composite is reasonable, especially for the 
stress distribution in and around the reinforcements.
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Abstract

Over the recent past, various numerical analysis techniques have been formulated and
used to obtain approximate solutions for numerous engineering problems to aid predict
the behaviour of systems accurately and efficiently. One such approach is the Wavelet
Finite Element Method (WFEM) which involves combining the classical Finite Element
Method (FEM) with wavelet analysis. The key desirable properties exhibited by some
wavelet families, such as compact support, multiresolution analysis (MRA), smooth-
ness, vanishing moments and the ‘two-scale’ relations, make the use of wavelets in
WFEM advantageous, particularly in the analysis of problems with strong nonlinear-
ities, singularities and material property variations present. The wavelet based finite
elements (WFEs) of a rod and beam are formulated using the Daubechies and B-spline
wavelet on the interval (BSWI) wavelet scaling functions as interpolating functions due
to their desirable properties, thus making it possible to alter the local scale of the WFE
without changing the initial model mesh. Specific benchmark cases are presented to
exhibit and compare the performance of the WFEM with FEM in static, dynamic,
eigenvalue and moving load transient response analysis for homogenous systems and
functionally graded materials, where the material properties continuously vary spatially
with respect to the constituent materials.

Keywords: multiresolution, wavelets, wavelet finite element (WFE), eigenvalue
analysis, moving load problem, functionally graded material (FGM)

1. Introduction

In the analysis of complex structural problems, it is often challenging to formulate and apply
exact closed-form solutions, as the realistic nature of such engineering systems exhibits vary-
ing complexities, high gradients and strong irregularities, e.g., suddenly varying loading
conditions, contrasting material composition or geometric variations. Based on the existing
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mathematical tools available, such systems may require certain assumptions and generalisa-
tions to be implemented in order to simplify the model, which may lead to inability to correctly
describe the properties and behaviour of the system under described conditions. However, the
preferred approach is to find an approximate numerical solution, whilst retaining these com-
plexities as accurately as possible, to better describe and predict the behaviour of such systems.
This has given rise to numerical methods such as the classical Finite Element Method which
employs polynomial interpolating functions to obtain approximate solutions for various engi-
neering problems. Although this numerical analysis technique has grown in popularity, its use
to tackle problems with regions of the solution domain where the gradient of the field vari-
ables are expected to vary suddenly or fast, bring on difficulties in the analysis of a complex
system [1]. In order to improve on the accuracy and better represent the system’s behaviour,
higher order polynomial interpolating functions or finer meshes may be employed and this in
turn significantly increases the computational costs; which is undesirable. Moreover, the reso-
lution of the elements can only be analysed to a specific scale once the orders of the governing
polynomial functions have been selected. Subsequently, overcoming these challenges has been
the driving force in the formulation of other numerical approximation techniques such as the
Wavelet Finite Element Method [1–6].

The initial development of wavelet analysis came from separate efforts that led to the founda-
tion of modern wavelet theory. Grossman and Morlet [7] used wavelet analysis as a tool for
signal analysis of seismic data and are credited with the introduction of the term and method-
ology of wavelets as it is known today. Ingrid Daubechies is recognised for her major break-
through and contribution by constructing a family of orthonormal wavelet with compact
support known as the Daubechies wavelets [8]. Wavelet analysis was used mainly by mathe-
maticians as a decomposition tool for data functions and operators and its application has
vastly grown in various disciplines at an exponential rate e.g., medicine [9], finance [10] and
astronomy [11]. Likewise, the range of wavelet families and bases available for selection has
also increased and this is credited to the properties of wavelets that allow it to be tailored to
suite numerous avenues for design manipulation to meet the necessary and specific require-
ments for its application. The properties of different wavelet families vary, and therefore the
decision on which family is the ‘most adequate’, is paramount to its application. Nevertheless,
the more general aspects of wavelets formulations make it an important and convenient tool
for mathematical manipulation allowing for the decomposition of a function into a set of
coefficients that are dependent on scale and location. The ‘two-scale’ relation gives rise to one
of the most key features of wavelet theory, multiresolution analysis (MRA), which allows for
the convenient transformation of wavelet basis functions between different resolution scales
[8]. Furthermore, the compact support property of wavelets ensures that the wavelet basis
functions are finitely bound (non-zero over a finite range). The vanishing moments of wavelets
allow the basic functions of wavelets to represent polynomials and other complex functions.

These desirable properties of wavelets have led to the use of wavelet basis functions as
interpolating functions, in contrast to conventional polynomial functions as used in classical
FEM, in the formulation of the wavelet based finite element method. For example, MRA
permits for specific WFEs to be selected and analysed locally at finer scales without altering
the initial systemmodel, thus improving the accuracy of the solution, particularly in areas with
high gradients or singularities present. Furthermore, rapid convergence of the method and
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compact support lead to a reduction in computational costs since fewer elements are required
to achieve acceptable levels of accuracy [4, 5]. Due to the adaptability of wavelets, different
wavelet families are being developed and customised for specific problems. However, it must
be noted that when selecting a particular wavelet basis function for WFEM, key requirements,
such as compatibility, completeness and convergence, must be satisfied and should allow for
the easy implementation and treatment of boundary conditions.

The Daubechies wavelet based finite element was first introduced to solve a 1D and 2D second
order Neumann problem via the formulation of a tensor product finite element [2]. The
Daubechies wavelet Galerkin finite element was then used to analyse the bending of plates
and beams [12] giving rise to the formulation of a wavelet based beam finite element [6] and
two dimensional Daubechies wavelet plate finite element [13] for static analysis. The
Daubechies wavelet base finite element stiffness matrices and load vectors were presented by
Chen et al. at multiresolution scale j = 0 [14] and different multiresolution scales [4]. The
Daubechies plate finite element was developed by Diaz et al. for the static analysis of plates
based on Mindlin-Reissner plate theory [15], where shear deformation is taken into consider-
ation through the thickness of the plate, and compared it with Kirchhoff plate theory formula-
tions [16]. This wavelet family has also been used in the analysis of many other structural
problems, including formulation of the Rayleigh-Euler and Rayleigh-Timoshenko beam ele-
ments [17], the wavelet based spectral finite element to study elastic wave propagation in 1-D
connected waveguides [18] and also to investigate the thermal stress distribution along the
vertical direction of the tank wall [19]. Overall, the wavelet family performed decently in
providing accurate solutions for the various structural analysis problems tackled. However,
the Daubechies wavelet lacks an explicit expression for the wavelet and scaling functions and
possesses unusual smoothness characteristics, particularly for lower orders, making it chal-
lenging to evaluate the numerical integrals necessary for the formulation of the element
matrices and load vectors. The evaluation of the connection coefficients is therefore necessary
for the formulation of these element matrices and vectors.

In a bid to overcome the limitations presented by the Daubechies wavelet, further research has
been carried out to identify other potential wavelet families that can be implemented in
WFEM. Basic spline functions were initially used as interpolating functions for the free vibra-
tion analysis of frame structures [3]. Chui and Quak [20] constructed the semi-orthogonal B-
spline Wavelet on the Interval, which has the desirable properties of multiresolution, compact
support, explicit expressions, smoothness and symmetry. The BSWI was employed to con-
struct the wavelet based C0 type plane elastomechanics element and Mindlin plate element
[21] as well as truncated conical shell wavelet finite elements [22]. Xiang et al. [5] significantly
contributed to the use of BSWI in WFEM by constructing the axial rod, beam (Timoshenko and
Euler Bernoulli) and spatial bar WFEs with a multiresolution lifting scheme. Furthermore, this
research was extended to the static and dynamic analysis of plates based on Kirchhoff plate
theory using BSWI based wavelet finite elements [23, 24]. Xiang et al. [25] were able to
illustrate that the shear-locking phenomenon of a rotating Rayleigh-Timoshenko shaft was
significantly eliminated when the BSWI based WFEs were employed. Majority of the problems
examined by this point were of static analysis and this led Musuva and Mares [26] to develop
and implement the Daubechies and BSWI homogenous beam WFEs for the analysis of
dynamic response and moving load problems. The vibration and dynamic response analysis
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WFEM. Basic spline functions were initially used as interpolating functions for the free vibra-
tion analysis of frame structures [3]. Chui and Quak [20] constructed the semi-orthogonal B-
spline Wavelet on the Interval, which has the desirable properties of multiresolution, compact
support, explicit expressions, smoothness and symmetry. The BSWI was employed to con-
struct the wavelet based C0 type plane elastomechanics element and Mindlin plate element
[21] as well as truncated conical shell wavelet finite elements [22]. Xiang et al. [5] significantly
contributed to the use of BSWI in WFEM by constructing the axial rod, beam (Timoshenko and
Euler Bernoulli) and spatial bar WFEs with a multiresolution lifting scheme. Furthermore, this
research was extended to the static and dynamic analysis of plates based on Kirchhoff plate
theory using BSWI based wavelet finite elements [23, 24]. Xiang et al. [25] were able to
illustrate that the shear-locking phenomenon of a rotating Rayleigh-Timoshenko shaft was
significantly eliminated when the BSWI based WFEs were employed. Majority of the problems
examined by this point were of static analysis and this led Musuva and Mares [26] to develop
and implement the Daubechies and BSWI homogenous beam WFEs for the analysis of
dynamic response and moving load problems. The vibration and dynamic response analysis
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was carried out for frame structures using the two wavelet families [27] and the WFEM was
compared with an analytical wavelet approach using coiflets for the analysis of vehicle-bridge
interaction for fast moving loads [28]. Furthermore, the Daubechies and BSWI wavelets were
used to construct a functionally graded beam wavelet finite element under various moving
load conditions [29, 30].

Other different wavelet families have been selected and employed in the formulation of the
WFEM to solve a wide variety of structural analysis problems and research in this field is still
ongoing. The trigonometric Hermite wavelet, which can be explicitly expressed, was used to
construct beam [31] and thin plate WFEs [32] for static and free vibration analysis. The Hermite
Cubic Spline Wavelet on the Interval (HCSWI), polynomial wavelets [33] and the second
generation wavelets [34] are other wavelet based approaches that have been introduced and
researched on. A more comprehensive synthesis and summary of wavelet based numerical
methods for various engineering problems is presented in [35].

A generalised Wavelet based Finite Element Method framework is presented based on the
BSWI and Daubechies wavelet families to derive rod and beam WFEs for homogenous and
functionally graded materials for static and dynamic structural problems. A brief introduction
of wavelet analysis is described in Section 2, with emphasis given to the Daubechies wavelets,
BSWI, multiresolution and connection coefficients formulations. In Section 3, the wavelet
based finite elements for a rod, Euler Bernoulli homogeneous beam and transversely varying
functionally graded beam are presented. The evaluation of the element matrices and various
load vectors, including the WFEM moving load formulation, are presented. A comparison on
the performance of the Daubechies and BSWI WFEMs are highlighted via numerical examples
for a variety of static and dynamic structural problems in Section 4 followed by conclusions.

2. Wavelet and multiresolution analysis

Wavelets are a class of basic functions that represent functions locally, both in space and time,
and allow for the analysis of functions to be carried out at different resolutions (scales) [36]. The
wavelet basis emanates from a set of wavelet coefficients associated with a particular location in
time and different multiresolution scales. The scaling and wavelet functions stem from
multiresolution analysis (MRA), which is a key and desirable property of wavelets, and refers to
the simultaneous appearance of multiple scales in function decompositions in the Hilbert space
L2 Rð Þ using a sequence of closed subspaces Vj, which is represented mathematically as [36]:

⋯V�2 ⊂V�1 ⊂V0 ⊂V1 ⊂V2 ⊂… (1)

Therefore in principle, in order for multiresolution to occur, the closed subspaces Vj satisfy the
following properties:

⋃
j∈Z

Vj ¼ L2 Rð Þ (2)

⋂
j∈Z

Vj ¼ 0f g (3)
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f 2 xð Þ ¼ f 2xð Þ∀x
f ∈Vj ⇔ f 2 ∈Vjþ1 j∈Z (4)

f n xð Þ ¼ f x� nð Þ
f ∈V0 ⇔ f n ∈V0 n∈Z (5)

The orthogonal complement subspace Wj of Vj contains the additional ‘detail’ for subspace
Vjþ1 i.e., Vjþ1 ¼ V0 ⊕W0 ⊕W1 ⊕W2⋯⊕Wj. The union of the subspaces Vj leads to the space

L2 Rð Þ from the condition in Eq. (2) [36]. The scaling f xð Þ∈L2 Rð Þ and wavelet ψ xð Þ∈ L2 Rð Þ
functions correspond to the subspaces Vj and Wj respectively. The difference between current
subspace Vj and subsequent subspace Vjþ1 is represented by the wavelet space Wj which
becomes automatically orthogonal to all other Wj for k < j due to the inclusion in and orthog-
onality to Vj. For the fundamental space V0, the scaling function f xð Þ and its translates
f x� kð Þ produce an orthonormal basis for V0. The orthonormal basis for the next space V1 is

the rescaled function
ffiffiffi
2

p
f 2x� kð Þ. Thus, the orthonormal basis of Vj is defined as:

f
j
k xð Þ ¼ 2

j
2f 2jx� k
� �

k∈Z (6)

Provided Eq. (6) and the above mentioned properties are satisfied, the wavelet orthonormal
basis for subspace Wj at scale j is

ψj
k xð Þ ¼ 2

j
2ψ 2jx� k
� �

k∈Z (7)

The orthogonal subspaces Wj result from the decomposition of L2 Rð Þ and subsequently the
functions within these subspaces inherit the scale and shift invariance properties from the
scaling function subspaces Vj and are orthonormal [8]. The projections of a function f ∈ L2 Rð Þ
at scale j in the subspaces Vj and Wj, defined as Pjf and Qjf respectively, are expressed as:

Pjf ¼
X
k

ajkf
j
k xð Þ

Qjf ¼
X
k

bjkψ
j
k xð Þ

(8)

where ajk and bjk are coefficients in the subspaces Vj and Wj respectively. Thus, if all the
conditions described above are met, then the scaling and wavelet functions satisfy [8]

ð∞
�∞

f xð Þdx 6¼ 0
ð∞
�∞

ψ xð Þdx ¼ 0
(9)

2.1. Daubechies wavelet

Daubechies wavelets are compact supported orthonormal wavelets developed by Ingrid
Daubechies and for order L, the scaling and wavelet functions are described by the ‘two-scale’
relation [8]:
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was carried out for frame structures using the two wavelet families [27] and the WFEM was
compared with an analytical wavelet approach using coiflets for the analysis of vehicle-bridge
interaction for fast moving loads [28]. Furthermore, the Daubechies and BSWI wavelets were
used to construct a functionally graded beam wavelet finite element under various moving
load conditions [29, 30].

Other different wavelet families have been selected and employed in the formulation of the
WFEM to solve a wide variety of structural analysis problems and research in this field is still
ongoing. The trigonometric Hermite wavelet, which can be explicitly expressed, was used to
construct beam [31] and thin plate WFEs [32] for static and free vibration analysis. The Hermite
Cubic Spline Wavelet on the Interval (HCSWI), polynomial wavelets [33] and the second
generation wavelets [34] are other wavelet based approaches that have been introduced and
researched on. A more comprehensive synthesis and summary of wavelet based numerical
methods for various engineering problems is presented in [35].

A generalised Wavelet based Finite Element Method framework is presented based on the
BSWI and Daubechies wavelet families to derive rod and beam WFEs for homogenous and
functionally graded materials for static and dynamic structural problems. A brief introduction
of wavelet analysis is described in Section 2, with emphasis given to the Daubechies wavelets,
BSWI, multiresolution and connection coefficients formulations. In Section 3, the wavelet
based finite elements for a rod, Euler Bernoulli homogeneous beam and transversely varying
functionally graded beam are presented. The evaluation of the element matrices and various
load vectors, including the WFEM moving load formulation, are presented. A comparison on
the performance of the Daubechies and BSWI WFEMs are highlighted via numerical examples
for a variety of static and dynamic structural problems in Section 4 followed by conclusions.

2. Wavelet and multiresolution analysis

Wavelets are a class of basic functions that represent functions locally, both in space and time,
and allow for the analysis of functions to be carried out at different resolutions (scales) [36]. The
wavelet basis emanates from a set of wavelet coefficients associated with a particular location in
time and different multiresolution scales. The scaling and wavelet functions stem from
multiresolution analysis (MRA), which is a key and desirable property of wavelets, and refers to
the simultaneous appearance of multiple scales in function decompositions in the Hilbert space
L2 Rð Þ using a sequence of closed subspaces Vj, which is represented mathematically as [36]:

⋯V�2 ⊂V�1 ⊂V0 ⊂V1 ⊂V2 ⊂… (1)

Therefore in principle, in order for multiresolution to occur, the closed subspaces Vj satisfy the
following properties:

⋃
j∈Z

Vj ¼ L2 Rð Þ (2)

⋂
j∈Z

Vj ¼ 0f g (3)
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f 2 xð Þ ¼ f 2xð Þ∀x
f ∈Vj ⇔ f 2 ∈Vjþ1 j∈Z (4)

f n xð Þ ¼ f x� nð Þ
f ∈V0 ⇔ f n ∈V0 n∈Z (5)

The orthogonal complement subspace Wj of Vj contains the additional ‘detail’ for subspace
Vjþ1 i.e., Vjþ1 ¼ V0 ⊕W0 ⊕W1 ⊕W2⋯⊕Wj. The union of the subspaces Vj leads to the space

L2 Rð Þ from the condition in Eq. (2) [36]. The scaling f xð Þ∈L2 Rð Þ and wavelet ψ xð Þ∈ L2 Rð Þ
functions correspond to the subspaces Vj and Wj respectively. The difference between current
subspace Vj and subsequent subspace Vjþ1 is represented by the wavelet space Wj which
becomes automatically orthogonal to all other Wj for k < j due to the inclusion in and orthog-
onality to Vj. For the fundamental space V0, the scaling function f xð Þ and its translates
f x� kð Þ produce an orthonormal basis for V0. The orthonormal basis for the next space V1 is

the rescaled function
ffiffiffi
2

p
f 2x� kð Þ. Thus, the orthonormal basis of Vj is defined as:

f
j
k xð Þ ¼ 2

j
2f 2jx� k
� �

k∈Z (6)

Provided Eq. (6) and the above mentioned properties are satisfied, the wavelet orthonormal
basis for subspace Wj at scale j is

ψj
k xð Þ ¼ 2

j
2ψ 2jx� k
� �

k∈Z (7)

The orthogonal subspaces Wj result from the decomposition of L2 Rð Þ and subsequently the
functions within these subspaces inherit the scale and shift invariance properties from the
scaling function subspaces Vj and are orthonormal [8]. The projections of a function f ∈ L2 Rð Þ
at scale j in the subspaces Vj and Wj, defined as Pjf and Qjf respectively, are expressed as:

Pjf ¼
X
k

ajkf
j
k xð Þ

Qjf ¼
X
k

bjkψ
j
k xð Þ

(8)

where ajk and bjk are coefficients in the subspaces Vj and Wj respectively. Thus, if all the
conditions described above are met, then the scaling and wavelet functions satisfy [8]

ð∞
�∞

f xð Þdx 6¼ 0
ð∞
�∞

ψ xð Þdx ¼ 0
(9)

2.1. Daubechies wavelet

Daubechies wavelets are compact supported orthonormal wavelets developed by Ingrid
Daubechies and for order L, the scaling and wavelet functions are described by the ‘two-scale’
relation [8]:
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fL xð Þ ¼
XL�1

k¼0

pL kð ÞfL 2x� kð Þ (10)

ψL xð Þ ¼
XL�1

k¼0

qL kð ÞfL 2x� kð Þ (11)

The scaling and wavelet functions have the supports 0; L� 1½ � and 1� L
2 ;

L
2

� �
respectively. The

normalised wavelet function filter coefficients qL kð Þ and scaling function filter coefficients pL kð Þ
have the relation qL kð Þ ¼ �1ð ÞkpL 1� kð Þ. The multiresolution scaling and wavelet basis func-
tions corresponding to the subspaces Vj and Wj are defined as:

f
j
L, k xð Þ ¼ 2

j
2fL 2jx� k
� �

(12)

ψj
L, k xð Þ ¼ 2

j
2ψL 2jx� k
� �

(13)

The scaling and wavelet functions defined in Eqs. (10)–(13) satisfy the following properties [8]:
ð∞
�∞

fL xð Þdx ¼ 1 (14)

ð∞
�∞

f
j
L, k xð Þfj

L, l xð Þdx ¼ δk, l (15)

ð∞
�∞

ψj
L, k xð Þψj

L, k xð Þdx ¼ δk, l (16)

ð∞
�∞

f
j
L, k xð Þψj

L, l xð Þdx ¼ 0 (17)

ð∞
�∞

xmψL xð Þdx ¼ 0 m ¼ 0, 1,…,
L
2
� 1 (18)

Certain wavelet families have no explicit formulation, as is the case with the Daubechies
wavelets. Therefore, Eq. (10) gives rise to a system of equations that require a normalising
equation obtained from Eq. (14) to evaluate the scaling functions. The Daubechies wavelet of
order L has L

2 � 1 vanishing moments from property (18) and consequently the scaling func-

tions at scale j can represent a polynomial of order xm where 0 ≤m ≤ L
2 � 1, i.e., [37]

xm ¼
X
k

Mj,m
k f

j
L, k xð Þ (19)

The coefficients Mj,m
k denote the moments of the scaling function and it translates at Vj. The

derivatives of the Daubechies wavelet scaling functions are evaluated by differentiating the
refinement Eq. (10) m times, and are obtained as [12]:
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f
mð Þ
L xð Þ ¼ 2m

XL�1

k¼0

p kð Þf mð Þ
L 2x� kð Þ (20)

A normalising condition is required to evaluate Eq. (20) which is obtained from the moments
of the scaling functions.

Xk¼∞

k¼�∞

kmf mð Þ x� kð Þ ¼ m! (21)

2.2. Daubechies connection coefficients

As earlier mentioned, the Daubechies functions cannot be computed analytically and their
derivatives are highly oscillatory, particularly at low wavelet orders and/or high order deriva-
tives. Therefore, the integral of the products of the scaling functions and/or derivatives are
computed as what is commonly known as connection coefficients [37]. There are two forms of
connection coefficients that are of relevance to this study; the multiscale two-term connection

coefficient a;bΓ
j, d1 , d2
k, l and multiscale connection coefficient Υj,m

k . We define the two-term connec-
tion coefficient [30]

a;bΓ
j, d1, d2
k, l ¼ 2j

ð∞
�∞

X 0,1½ � ξð Þf d1ð Þ
a 2jξ� k
� �

f
d2ð Þ
b 2jξ� l
� �

dξ (22)

where a and b are the orders of the scaling function at multiresolution j, while the values d1 and

d2 denote the order of the derivative of the scaling functions. X 0,1½ � xð Þ ¼ 1 0 ≤ x ≤ 1
0 otherwise

�
is the

characteristic function. The formulation presented is a modified algorithm of that described in
[4] and allows for the evaluation of the connection coefficients for different values of a and b at
different multiresolution scales j. From the ‘two-scale’ relation presented in Eq. (10),

fL 2jξ� k
� � ¼

X
r

p rð ÞfL 2jþ1ξ� 2k� r
� �

(23)

Differentiating Eq. (23) m times

2jmf mð Þ
L 2jξ� k
� � ¼ 2 jþ1ð ÞmX

r
p rð Þf mð Þ

L 2jþ1ξ� 2k� r
� �

(24)

Substituting Eq. (24) into Eq. (22) and applying the ‘two-scale’ relation of the characteristic
function, the two-term connection coefficient can be expressed as:

a;bΓ
j, d1, d2
k, l ¼ 2d1þd2�1

X
r, s

pa r� 2kð Þpb s� 2lð Þ þ pa r� 2kþ 2j
� �

pb s� 2lþ 2j
� �� �

Γj, d1, d2r, s (25)

where 2� a ≤ k, r ≤ 2j � 1 and 2� b ≤ l, s ≤ 2j � 1. Eq. (25) can be expressed in matrix form as:
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fL xð Þ ¼
XL�1

k¼0

pL kð ÞfL 2x� kð Þ (10)

ψL xð Þ ¼
XL�1

k¼0

qL kð ÞfL 2x� kð Þ (11)

The scaling and wavelet functions have the supports 0; L� 1½ � and 1� L
2 ;

L
2

� �
respectively. The

normalised wavelet function filter coefficients qL kð Þ and scaling function filter coefficients pL kð Þ
have the relation qL kð Þ ¼ �1ð ÞkpL 1� kð Þ. The multiresolution scaling and wavelet basis func-
tions corresponding to the subspaces Vj and Wj are defined as:

f
j
L, k xð Þ ¼ 2

j
2fL 2jx� k
� �

(12)

ψj
L, k xð Þ ¼ 2

j
2ψL 2jx� k
� �

(13)

The scaling and wavelet functions defined in Eqs. (10)–(13) satisfy the following properties [8]:
ð∞
�∞

fL xð Þdx ¼ 1 (14)

ð∞
�∞

f
j
L, k xð Þfj

L, l xð Þdx ¼ δk, l (15)

ð∞
�∞

ψj
L, k xð Þψj

L, k xð Þdx ¼ δk, l (16)

ð∞
�∞

f
j
L, k xð Þψj

L, l xð Þdx ¼ 0 (17)

ð∞
�∞

xmψL xð Þdx ¼ 0 m ¼ 0, 1,…,
L
2
� 1 (18)

Certain wavelet families have no explicit formulation, as is the case with the Daubechies
wavelets. Therefore, Eq. (10) gives rise to a system of equations that require a normalising
equation obtained from Eq. (14) to evaluate the scaling functions. The Daubechies wavelet of
order L has L

2 � 1 vanishing moments from property (18) and consequently the scaling func-

tions at scale j can represent a polynomial of order xm where 0 ≤m ≤ L
2 � 1, i.e., [37]

xm ¼
X
k

Mj,m
k f

j
L, k xð Þ (19)

The coefficients Mj,m
k denote the moments of the scaling function and it translates at Vj. The

derivatives of the Daubechies wavelet scaling functions are evaluated by differentiating the
refinement Eq. (10) m times, and are obtained as [12]:
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f
mð Þ
L xð Þ ¼ 2m

XL�1

k¼0

p kð Þf mð Þ
L 2x� kð Þ (20)

A normalising condition is required to evaluate Eq. (20) which is obtained from the moments
of the scaling functions.

Xk¼∞

k¼�∞

kmf mð Þ x� kð Þ ¼ m! (21)

2.2. Daubechies connection coefficients

As earlier mentioned, the Daubechies functions cannot be computed analytically and their
derivatives are highly oscillatory, particularly at low wavelet orders and/or high order deriva-
tives. Therefore, the integral of the products of the scaling functions and/or derivatives are
computed as what is commonly known as connection coefficients [37]. There are two forms of
connection coefficients that are of relevance to this study; the multiscale two-term connection

coefficient a;bΓ
j, d1 , d2
k, l and multiscale connection coefficient Υj,m

k . We define the two-term connec-
tion coefficient [30]

a;bΓ
j, d1, d2
k, l ¼ 2j

ð∞
�∞

X 0,1½ � ξð Þf d1ð Þ
a 2jξ� k
� �

f
d2ð Þ
b 2jξ� l
� �

dξ (22)

where a and b are the orders of the scaling function at multiresolution j, while the values d1 and

d2 denote the order of the derivative of the scaling functions. X 0,1½ � xð Þ ¼ 1 0 ≤ x ≤ 1
0 otherwise

�
is the

characteristic function. The formulation presented is a modified algorithm of that described in
[4] and allows for the evaluation of the connection coefficients for different values of a and b at
different multiresolution scales j. From the ‘two-scale’ relation presented in Eq. (10),

fL 2jξ� k
� � ¼

X
r

p rð ÞfL 2jþ1ξ� 2k� r
� �

(23)

Differentiating Eq. (23) m times

2jmf mð Þ
L 2jξ� k
� � ¼ 2 jþ1ð ÞmX

r
p rð Þf mð Þ

L 2jþ1ξ� 2k� r
� �

(24)

Substituting Eq. (24) into Eq. (22) and applying the ‘two-scale’ relation of the characteristic
function, the two-term connection coefficient can be expressed as:

a;bΓ
j, d1, d2
k, l ¼ 2d1þd2�1

X
r, s

pa r� 2kð Þpb s� 2lð Þ þ pa r� 2kþ 2j
� �

pb s� 2lþ 2j
� �� �

Γj, d1, d2r, s (25)

where 2� a ≤ k, r ≤ 2j � 1 and 2� b ≤ l, s ≤ 2j � 1. Eq. (25) can be expressed in matrix form as:
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aþ 2j� 2ð Þ bþ 2j� 2ð Þ� 1ð Þ a; bΓ
j

n o
¼

2d1þd2�1
aþ 2j� 2ð Þ bþ 2j� 2ð Þ� aþ 2j� 2ð Þ bþ 2j� 2ð Þð Þ a;bP

h i
aþ 2j� 2ð Þ bþ 2j� 2ð Þ� 1ð Þ a; bΓ

j
n o

(26)

where the square matrix a;bP
h i

contains the filter coefficients as expressed in Eq. (25) and

a;bΓ
j

n o
contains the connection coefficients. To uniquely determine the connection coefficients,

normalising conditions are required to generate a sufficient number of inhomogeneous equa-
tions via the multiscale moment condition from Eq. (19)

ξm ¼ 2
j
2

X
k

LM
j,m
k fL 2jξ� k

� �
(27)

Defining the second form of the connection coefficient

Υj,m
k ¼ 2

j
2

ð1
0
xmfL 2jξ� k

� �
dξ ¼ 2

j
2

ð∞
�∞

X 0;1½ � ξð ÞξmfL 2jξ� k
� �

dξ (28)

Substituting Eq. (27) into (28)

Υj,m
k ¼ 2j

X
l

Mj,m
l

ð∞
�∞

X 0;1½ � xð ÞfL 2jx� l
� �

fL 2jx� k
� �

dx (29)

However,

L;LΓ
j,0,0
k, l ¼ 2j

ð∞
�∞

X 0;1½ � xð ÞfL 2jx� l
� �

fL 2jx� k
� �

dx (30)

Thus

Υj,m
k ¼

X
l

Mj,m
l L;LΓ

j,0,0
k, l (31)

where L;LΓ
j,0,0
k, l are the two-term connection coefficients with a ¼ b ¼ L and d1 ¼ d1 ¼ 0 and

Mj,m
l are the moments earlier described.

2.3. B-spline wavelets on the interval [0,1] (BSWI)

The BSWI are a family of wavelets that emanate from Basis splines functions (B-Splines) and
the basic functions in subspace Vj of order m and scale j > 0 are expressed as [20]

Bj
m,k xð Þ ¼ tjkþm � tjk

� �
tjk;…; tjkþm

h i
f
t� xð Þm�1

þ (32)

with the knot sequence

tjk
n o2jþm�1

k¼�mþ1

tjk ≤ t
j
kþ1

(33)
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tjk; t
j
kþ1;…; tjkþm

h i
t
, is the mth divided difference of the truncated power function t� xð Þm�1

þ with

respect to variable t. The general B-splines take the form

Bj
m,k xð Þ ¼ x� tjk

tjkþm�1 � tjk
Bj
m�1, k xð Þ þ tjkþm � x

tjkþm � tjkþ1

Bj
m�1, kþ1 xð Þ

Bj
1, k xð Þ ¼

1 k ≤ x ≤ kþ 1

0 otherwise

( (34)

and have support suppB
j
m,k xð Þ ¼ tjk; t

j
kþm

h i
. The B-spline basis function has simple knots inside

the unit interval and m-tuple knots at 0 and 1, as expressed in Eq. (33). The knots at 0 ad 1
coalesce and form multiple knots for BSWI while the internal knots are simple hence smooth-

ness is unaffected. For the knot sequence on [0,1], tjk is given as [38]:

tjk ¼
0 �mþ 1 ≤ k < 1

2�jk 1 ≤ k < 2j

1 2j ≤ k ≤ 2j þm� 1

8>><
>>:

(35)

The number of inner scaling functions present in the formulation of BSWI is determined by the
scale j. There must be at least one inner scaling function on the interval [0,1] and this gives rise
to the minimum value of j necessary to ensure this condition is met and is defined as j0:

2j0 ≥ 2m� 1 (36)

The basis Bj
m,k xð Þ from the inner knots corresponds to the mth cardinal B-splines, Nm xð Þ, at

multiresolution j [38]:

Nm xð Þ ¼ m 0; 1;…;m½ � t� xð Þm�1
þ (37)

f
j
m,k xð Þ ¼ Bj

m,k xð Þ ¼ Nm 2jx� k
� �

0 ≤ k < 2j �mþ 1 (38)

where f
j
m, k xð Þ is the BSWI scaling function which can be differentiated m times. The

corresponding B-wavelet with support suppψ
j
m, k xð Þ ¼ k

2j
; kþ2m�1

2j

h i
is expressed as:

ψj
m, k xð Þ ¼ 1

2m�1

X2m�2

l¼0

�1ð ÞlN2m lþ 1ð ÞBjþ1, mð Þ
2m,2iþl xð Þ (39)

Bjþ1, mð Þ
2m,k xð Þ is the mth derivative for the B-spline of order 2m and scale jþ 1 and can be evaluated

explicitly from Eq. (34). Given that the requirement j > j0 ensures at least one inner B-wavelet
is present, the scaling and wavelet function of the BSWI are obtained as [39]:
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aþ 2j� 2ð Þ bþ 2j� 2ð Þ� 1ð Þ a; bΓ
j

n o
¼

2d1þd2�1
aþ 2j� 2ð Þ bþ 2j� 2ð Þ� aþ 2j� 2ð Þ bþ 2j� 2ð Þð Þ a;bP

h i
aþ 2j� 2ð Þ bþ 2j� 2ð Þ� 1ð Þ a; bΓ

j
n o

(26)

where the square matrix a;bP
h i

contains the filter coefficients as expressed in Eq. (25) and

a;bΓ
j

n o
contains the connection coefficients. To uniquely determine the connection coefficients,

normalising conditions are required to generate a sufficient number of inhomogeneous equa-
tions via the multiscale moment condition from Eq. (19)

ξm ¼ 2
j
2

X
k

LM
j,m
k fL 2jξ� k

� �
(27)

Defining the second form of the connection coefficient

Υj,m
k ¼ 2

j
2

ð1
0
xmfL 2jξ� k

� �
dξ ¼ 2

j
2

ð∞
�∞

X 0;1½ � ξð ÞξmfL 2jξ� k
� �

dξ (28)

Substituting Eq. (27) into (28)

Υj,m
k ¼ 2j

X
l

Mj,m
l

ð∞
�∞

X 0;1½ � xð ÞfL 2jx� l
� �

fL 2jx� k
� �

dx (29)

However,

L;LΓ
j,0,0
k, l ¼ 2j

ð∞
�∞

X 0;1½ � xð ÞfL 2jx� l
� �

fL 2jx� k
� �

dx (30)

Thus

Υj,m
k ¼

X
l

Mj,m
l L;LΓ

j,0,0
k, l (31)

where L;LΓ
j,0,0
k, l are the two-term connection coefficients with a ¼ b ¼ L and d1 ¼ d1 ¼ 0 and

Mj,m
l are the moments earlier described.

2.3. B-spline wavelets on the interval [0,1] (BSWI)

The BSWI are a family of wavelets that emanate from Basis splines functions (B-Splines) and
the basic functions in subspace Vj of order m and scale j > 0 are expressed as [20]

Bj
m,k xð Þ ¼ tjkþm � tjk

� �
tjk;…; tjkþm

h i
f
t� xð Þm�1

þ (32)

with the knot sequence

tjk
n o2jþm�1

k¼�mþ1

tjk ≤ t
j
kþ1

(33)
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tjk; t
j
kþ1;…; tjkþm

h i
t
, is the mth divided difference of the truncated power function t� xð Þm�1

þ with

respect to variable t. The general B-splines take the form

Bj
m,k xð Þ ¼ x� tjk

tjkþm�1 � tjk
Bj
m�1, k xð Þ þ tjkþm � x

tjkþm � tjkþ1

Bj
m�1, kþ1 xð Þ

Bj
1, k xð Þ ¼

1 k ≤ x ≤ kþ 1

0 otherwise

( (34)

and have support suppB
j
m,k xð Þ ¼ tjk; t

j
kþm

h i
. The B-spline basis function has simple knots inside

the unit interval and m-tuple knots at 0 and 1, as expressed in Eq. (33). The knots at 0 ad 1
coalesce and form multiple knots for BSWI while the internal knots are simple hence smooth-

ness is unaffected. For the knot sequence on [0,1], tjk is given as [38]:

tjk ¼
0 �mþ 1 ≤ k < 1

2�jk 1 ≤ k < 2j

1 2j ≤ k ≤ 2j þm� 1

8>><
>>:

(35)

The number of inner scaling functions present in the formulation of BSWI is determined by the
scale j. There must be at least one inner scaling function on the interval [0,1] and this gives rise
to the minimum value of j necessary to ensure this condition is met and is defined as j0:

2j0 ≥ 2m� 1 (36)

The basis Bj
m,k xð Þ from the inner knots corresponds to the mth cardinal B-splines, Nm xð Þ, at

multiresolution j [38]:

Nm xð Þ ¼ m 0; 1;…;m½ � t� xð Þm�1
þ (37)

f
j
m,k xð Þ ¼ Bj

m,k xð Þ ¼ Nm 2jx� k
� �

0 ≤ k < 2j �mþ 1 (38)

where f
j
m, k xð Þ is the BSWI scaling function which can be differentiated m times. The

corresponding B-wavelet with support suppψ
j
m, k xð Þ ¼ k

2j
; kþ2m�1

2j

h i
is expressed as:

ψj
m, k xð Þ ¼ 1

2m�1

X2m�2

l¼0

�1ð ÞlN2m lþ 1ð ÞBjþ1, mð Þ
2m,2iþl xð Þ (39)

Bjþ1, mð Þ
2m,k xð Þ is the mth derivative for the B-spline of order 2m and scale jþ 1 and can be evaluated

explicitly from Eq. (34). Given that the requirement j > j0 ensures at least one inner B-wavelet
is present, the scaling and wavelet function of the BSWI are obtained as [39]:
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f
j
m,k xð Þ ¼

Bj0
m,k 2j�j0x
� �

Bj0
m,0 2j�j0x� 2�j0k
� �

Bj0
m,2j�k�m

1� 2j�j0x
� �

�mþ 1 ≤ k ≤ � 1

0 ≤ i ≤ 2j �m

2j ≤ i ≤ 2j þm� 1

8>>>>>><
>>>>>>:

(40)

ψj
m,k xð Þ ¼

ψj0
m,k 2j�j0x
� �

ψj0
m,0 2j�j0x� 2�j0k
� �

ψj0
m,2j�k�2mþ1

1� 2j�j0x
� �

�mþ 1 ≤ k ≤ � 1

0 ≤ i ≤ 2j �m

2j ≤ i ≤ 2j þm� 1

8>>>>>><
>>>>>>:

(41)

and the scaling function derivatives can be evaluated directly by differentiating Eq. (40).

3. The wavelet finite element method

3.1. Axial rod wavelet finite element

Assume each WFE is divided into equal segments, ns, connected by r ¼ ns þ 1 elemental
nodes, as shown in Figure 1, with axial deformation ui. The total number of degrees of
freedom (DOFs) within each WFE is denoted by n ¼ r for n, r∈N. Vector uef g ¼ u1u2f
⋯ur�1urgT contains all the axial DOFs in physical space, as illustrated in Figure 2(a), where
ui ¼ u xið Þ represents the elemental node axial deformation DOF at node i corresponding to
coordinate position xi. The nodal natural coordinates is ξi ¼ xi�x1

Le
(0 ≤ ξi ≤ 1, 1 ≤ i ≤ r). The

Daubechies and BSWI scaling functions fj
z, k xð Þ are used as the interpolating functions and for

a family of order z at multiresolution scale j, the axial deformation

u ξð Þ ¼
X2j�1

k¼h

ajz, kf
j
z, k ξð Þ (42)

Figure 1. Wavelet finite element layout.
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contains the unknown wavelet coefficients ajz, k. This gives rise to the vector uef g containing the
axial deformations at all elemental nodes in physical space.

n�1ð Þ uef g¼ n�nð Þ Rw
r

� �
n�1ð Þ aef g (43)

The matrix Rw
r

� � ¼ Φj
z ξ1ð Þ� �

Φj
z ξ2ð Þ� �

⋯ Φj
z ξr�1ð Þ� �

Φj
z ξrð Þ� �h iT

contains the scal-

ing function vectors Φj
z ξið Þ� �

approximating the axial deformation at the corresponding

elemental nodes and aef g ¼ ajz, h ajz,hþ1 ⋯ aj
z,2j�2

aj
z,2j�1

h iT
. The axial deformation at

any point along the rod element can be generalised as:

u ξð Þ ¼ 1�nð Þ Φj
z ξð Þ� �

n�nð Þ Tw
r

� �
n�1ð Þ uef g (44)

The matrix Tw
r

� � ¼ Rw
r

� ��1 is the axial rod wavelet transformation matrix with the scripts r and
w denoting rod and wavelet respectively. The wavelet based axial rod shape functions can be
evaluated as Nr,e ξð Þf g ¼ Φj

z ξð Þ� �
Tw
r

� �
within each element.

Suppose the axial rod is subjected to nodal point loads f xi and distributed loading f d xð Þ, then
the potential energy within the axial rod Πa can be generally expressed as [40]:

Πa ¼
ðl
0

EA
2

du xð Þ
dx

� �2

dx�
X
i

u xið Þf xi �
ðl
0
f d xð Þu xð Þ dx (45)

where E is the Young’s modulus, A is the cross-sectional area and l is the length of the rod.
Therefore, given the relation highlighted in Eq. (44), the axial stain energy Ua

e within each WFE
of length Le is expressed in natural coordinates as:

Ua
e ¼

1
2
EA
Le

uef gT
ð1
0

Tw
r

� �T dΦj
z ξð Þ
dξ

� �T
dΦj

z ξð Þ
dξ

� �
Tw
r

� �
dξ uef g (46)

The stiffness matrix of the rod element in wavelet space, kwr,e
h i

is computed using the first

derivative of the scaling functions and is symmetric.

Figure 2. (a) Axial rod and (b) Euler Bernoulli beam wavelet finite element layout.
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f
j
m,k xð Þ ¼

Bj0
m,k 2j�j0x
� �

Bj0
m,0 2j�j0x� 2�j0k
� �

Bj0
m,2j�k�m

1� 2j�j0x
� �

�mþ 1 ≤ k ≤ � 1

0 ≤ i ≤ 2j �m

2j ≤ i ≤ 2j þm� 1

8>>>>>><
>>>>>>:

(40)

ψj
m,k xð Þ ¼

ψj0
m,k 2j�j0x
� �

ψj0
m,0 2j�j0x� 2�j0k
� �

ψj0
m,2j�k�2mþ1

1� 2j�j0x
� �

�mþ 1 ≤ k ≤ � 1

0 ≤ i ≤ 2j �m

2j ≤ i ≤ 2j þm� 1

8>>>>>><
>>>>>>:

(41)

and the scaling function derivatives can be evaluated directly by differentiating Eq. (40).

3. The wavelet finite element method

3.1. Axial rod wavelet finite element

Assume each WFE is divided into equal segments, ns, connected by r ¼ ns þ 1 elemental
nodes, as shown in Figure 1, with axial deformation ui. The total number of degrees of
freedom (DOFs) within each WFE is denoted by n ¼ r for n, r∈N. Vector uef g ¼ u1u2f
⋯ur�1urgT contains all the axial DOFs in physical space, as illustrated in Figure 2(a), where
ui ¼ u xið Þ represents the elemental node axial deformation DOF at node i corresponding to
coordinate position xi. The nodal natural coordinates is ξi ¼ xi�x1

Le
(0 ≤ ξi ≤ 1, 1 ≤ i ≤ r). The

Daubechies and BSWI scaling functions fj
z, k xð Þ are used as the interpolating functions and for

a family of order z at multiresolution scale j, the axial deformation

u ξð Þ ¼
X2j�1

k¼h

ajz, kf
j
z, k ξð Þ (42)

Figure 1. Wavelet finite element layout.
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contains the unknown wavelet coefficients ajz, k. This gives rise to the vector uef g containing the
axial deformations at all elemental nodes in physical space.

n�1ð Þ uef g¼ n�nð Þ Rw
r

� �
n�1ð Þ aef g (43)

The matrix Rw
r

� � ¼ Φj
z ξ1ð Þ� �

Φj
z ξ2ð Þ� �

⋯ Φj
z ξr�1ð Þ� �

Φj
z ξrð Þ� �h iT

contains the scal-

ing function vectors Φj
z ξið Þ� �

approximating the axial deformation at the corresponding

elemental nodes and aef g ¼ ajz, h ajz,hþ1 ⋯ aj
z,2j�2

aj
z,2j�1

h iT
. The axial deformation at

any point along the rod element can be generalised as:

u ξð Þ ¼ 1�nð Þ Φj
z ξð Þ� �

n�nð Þ Tw
r

� �
n�1ð Þ uef g (44)

The matrix Tw
r

� � ¼ Rw
r

� ��1 is the axial rod wavelet transformation matrix with the scripts r and
w denoting rod and wavelet respectively. The wavelet based axial rod shape functions can be
evaluated as Nr,e ξð Þf g ¼ Φj

z ξð Þ� �
Tw
r

� �
within each element.

Suppose the axial rod is subjected to nodal point loads f xi and distributed loading f d xð Þ, then
the potential energy within the axial rod Πa can be generally expressed as [40]:

Πa ¼
ðl
0

EA
2

du xð Þ
dx

� �2

dx�
X
i

u xið Þf xi �
ðl
0
f d xð Þu xð Þ dx (45)

where E is the Young’s modulus, A is the cross-sectional area and l is the length of the rod.
Therefore, given the relation highlighted in Eq. (44), the axial stain energy Ua

e within each WFE
of length Le is expressed in natural coordinates as:

Ua
e ¼

1
2
EA
Le

uef gT
ð1
0

Tw
r

� �T dΦj
z ξð Þ
dξ

� �T
dΦj

z ξð Þ
dξ

� �
Tw
r

� �
dξ uef g (46)

The stiffness matrix of the rod element in wavelet space, kwr,e
h i

is computed using the first

derivative of the scaling functions and is symmetric.

Figure 2. (a) Axial rod and (b) Euler Bernoulli beam wavelet finite element layout.
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n� nð Þ kwr,e
h i

¼
ð1
0

Φ0j
z ξð Þ� �T

Φ0j
z ξð Þ� �

dξ (47)

In order for one to obtain the stiffness matrix in physical space, the element properties and
transformation matrix Tw

r

� �
are applied to the wavelet space stiffness matrix in Eq. (47).

n� nð Þ kpr,e
h i

¼ EA
Le n�nð Þ Tw

r

� �T
n� nð Þ kwr,e

h i
n�nð Þ Tw

r

� �
(48)

The load vector containing the axial point loads of the WFE in physical space is obtained as:

n� 1ð Þ f n,pr,e

n o
¼
X
i

Tw
r

� �T Φj
z ξið Þ� �T

f xi (49)

and the equivalent nodal load vector for the distributed load f d xð Þ in physical space is

n� 1ð Þ f d,pr,e

n o
¼ Le

ð1
0
f d ξð Þ Tw

r

� �T Φj
z ξð Þ� �T

dξ (50)

When applying the Daubechies wavelet family, the WFE has a total of n ¼ 2j þ L� 2 DOFs.
The wavelet space stiffness matrix is evaluated from the multiscale two-term connection

coefficients a;bΓ
j, d1, d2
k, l a ¼ b ¼ L and d1 ¼ d1 ¼ 1 and is given as:

D
2jþ L� 2ð Þx 2jþ L� 2ð Þð Þ kwr,e

h i
¼ 22j Γj,1,1� �

(51)

where 22j
� �

is the normalising factor and the matrix Γj,1,1� �
has the entries L;LΓ

j,1,1
k, l for the limits

2� L ≤ k, l ≤ 2j � 1. Similarly, the distributed forces acting on the element require the form Υ j,m
k

for limits 2� L ≤ k, l ≤ 2j � 1 of connection coefficients and the value of m depends on the order
of the function f d xð Þ of the forces. In the case of the BSWI formulations, the total DOFs is

n ¼ 2j þm� 1 and the condition j ≥ j0 must be satisfied. Therefore, the wavelet space stiffness
matrices of the BSWI axial rod are computed as:

BS
2jþm� 1ð Þ� 2jþm� 1ð Þð Þ kwr,e

h i
¼
ð1
0

Φ0j
m ξð Þ� �T

Φ0j
m ξð Þ� �

dξ (52)

3.2. Euler Bernoulli beam wavelet finite element

According to Euler Bernoulli beam theory, it is assumed that the shear deformation effects are
neglected because before and after bending occurs, the plane cross-sections remain plane and
perpendicular to the axial centroidal axis of the beam. The beamWFE of length Le, is divided into
ns equally spaced elemental segments connected by r elemental nodes at coordinate values
xi ∈ x1; xr½ � and i∈N as illustrated in Figure 1. The WFE has the transverse displacement v and
rotation θ taken into account, with corresponding transverse forces f y and moments �m respec-

tively. The transverse displacement and rotation DOFs must be present at each elemental end
node to ensure inter-element compatibility [4–6]. However, the DOFs at the internal elemental
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nodes can be tailored according to the desired requirements and this in turn will affect the total
number of elemental segments and nodes present in each element. In this case the internal WFE
nodes only have the transverse displacement present and the total number of DOFs within each
beam element is n as illustrated in Figure 2(b). Therefore, there are n� 2 displacement DOFs and
2 rotation DOFs in total for eachWFE and consequently r ¼ n� 2 elemental nodes and ns ¼ n� 3

elemental segments. Let the vector {veg ¼ v1 θ1 v2 v3 ⋯f vr�2 vr�1 vrθrgT denote all the
physical DOFs within the beam element. The displacement and rotation DOFs corresponding to
coordinate position xi ∈ x1; xr½ � i∈N and 1 ≤ i ≤ rð Þ in local coordinates are denoted as vi ¼ v xið Þ
and θi ¼ θ xið Þ. The nodal natural coordinate ξi ¼ xi�x1

Le
(0 ≤ ξi ≤ 1, 1 ≤ i ≤ r). The deflection and

rotation at any point of the wavelet based beam finite element can be approximated by applying

the wavelet scaling functions fj
z, k xð Þ of order z at multiresolution scale j as interpolating functions.

v ξð Þ ¼
X2j�1

k¼h

bjz, kf
j
z, k ξð Þ

θ ξð Þ ¼ ∂v ξð Þ
∂x

¼ 1
Le

X2j�1

k¼h

bjz, k
∂fj

z, k ξð Þ
∂ξ

(53)

Therefore, the DOFs present within the entire beam element can be represented as

n�1ð Þ vef g¼ n�nð Þ Rw
b

� �
n�1ð Þ bef g (54)

Rw
b

� � ¼ Φj
z ξ1ð Þ� �

1
Le

Φ0j
z ξ1ð Þ� �

Φj
z ξ2ð Þ� �

⋯ Φj
z ξr�1ð Þ� �

Φj
z ξrð Þ� �

1
Le

Φ0j
z ξrð Þ� �h iT

and

vector bef g contains the unknown wavelet coefficients bjz, k representing the beam wavelet
space DOFs.

From Eq. (54), the transverse displacement and rotation at any point of the beam element can
be expressed as:

v ξð Þ ¼ 1�nð Þ Φj
z ξð Þ� �

n�nð Þ Tw
b

� �
n�1ð Þ vef g

θ ξð Þ ¼ 1
Le 1�nð Þ Φ0j

z ξð Þ� �
n�nð Þ Tw

b

� �
n�1ð Þ vef g (55)

where Tw
b

� � ¼ Rw
b

� ��1 is the beam wavelet transformation matrix which is used to obtain the

wavelet based shape functions for the beam Nb,e ξð Þ� � ¼ Φj
z ξð Þ� �

Tw
b

� �
. The potential energy

Πb within a Euler Bernoulli beam subjected to concentrated forces f yi, distributed force f d xð Þ
and bending moments �mi can be generally expressed as [40]:

Πb ¼
ðl
0

EI
2

d2v
dx2

� �2

dx�
X
i

f yiv xið Þ �
ðl
0
f d xð Þvdx�

X
k

�mk
dv xkð Þ
dx

(56)

where E is the Young’s modulus, I is the moment of inertia and l is the length of the beam. The

strain energy Ub
e within each beam element of length Le can expressed in terms of the approx-

imation of the transverse displacement via scaling functions as highlighted in Eq. (55).
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n� nð Þ kwr,e
h i

¼
ð1
0

Φ0j
z ξð Þ� �T

Φ0j
z ξð Þ� �

dξ (47)

In order for one to obtain the stiffness matrix in physical space, the element properties and
transformation matrix Tw

r

� �
are applied to the wavelet space stiffness matrix in Eq. (47).

n� nð Þ kpr,e
h i

¼ EA
Le n�nð Þ Tw

r

� �T
n� nð Þ kwr,e

h i
n�nð Þ Tw

r

� �
(48)

The load vector containing the axial point loads of the WFE in physical space is obtained as:

n� 1ð Þ f n,pr,e

n o
¼
X
i

Tw
r

� �T Φj
z ξið Þ� �T

f xi (49)

and the equivalent nodal load vector for the distributed load f d xð Þ in physical space is

n� 1ð Þ f d,pr,e

n o
¼ Le

ð1
0
f d ξð Þ Tw

r

� �T Φj
z ξð Þ� �T

dξ (50)

When applying the Daubechies wavelet family, the WFE has a total of n ¼ 2j þ L� 2 DOFs.
The wavelet space stiffness matrix is evaluated from the multiscale two-term connection

coefficients a;bΓ
j, d1, d2
k, l a ¼ b ¼ L and d1 ¼ d1 ¼ 1 and is given as:

D
2jþ L� 2ð Þx 2jþ L� 2ð Þð Þ kwr,e

h i
¼ 22j Γj,1,1� �

(51)

where 22j
� �

is the normalising factor and the matrix Γj,1,1� �
has the entries L;LΓ

j,1,1
k, l for the limits

2� L ≤ k, l ≤ 2j � 1. Similarly, the distributed forces acting on the element require the form Υ j,m
k

for limits 2� L ≤ k, l ≤ 2j � 1 of connection coefficients and the value of m depends on the order
of the function f d xð Þ of the forces. In the case of the BSWI formulations, the total DOFs is

n ¼ 2j þm� 1 and the condition j ≥ j0 must be satisfied. Therefore, the wavelet space stiffness
matrices of the BSWI axial rod are computed as:

BS
2jþm� 1ð Þ� 2jþm� 1ð Þð Þ kwr,e

h i
¼
ð1
0

Φ0j
m ξð Þ� �T

Φ0j
m ξð Þ� �

dξ (52)

3.2. Euler Bernoulli beam wavelet finite element

According to Euler Bernoulli beam theory, it is assumed that the shear deformation effects are
neglected because before and after bending occurs, the plane cross-sections remain plane and
perpendicular to the axial centroidal axis of the beam. The beamWFE of length Le, is divided into
ns equally spaced elemental segments connected by r elemental nodes at coordinate values
xi ∈ x1; xr½ � and i∈N as illustrated in Figure 1. The WFE has the transverse displacement v and
rotation θ taken into account, with corresponding transverse forces f y and moments �m respec-

tively. The transverse displacement and rotation DOFs must be present at each elemental end
node to ensure inter-element compatibility [4–6]. However, the DOFs at the internal elemental
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nodes can be tailored according to the desired requirements and this in turn will affect the total
number of elemental segments and nodes present in each element. In this case the internal WFE
nodes only have the transverse displacement present and the total number of DOFs within each
beam element is n as illustrated in Figure 2(b). Therefore, there are n� 2 displacement DOFs and
2 rotation DOFs in total for eachWFE and consequently r ¼ n� 2 elemental nodes and ns ¼ n� 3

elemental segments. Let the vector {veg ¼ v1 θ1 v2 v3 ⋯f vr�2 vr�1 vrθrgT denote all the
physical DOFs within the beam element. The displacement and rotation DOFs corresponding to
coordinate position xi ∈ x1; xr½ � i∈N and 1 ≤ i ≤ rð Þ in local coordinates are denoted as vi ¼ v xið Þ
and θi ¼ θ xið Þ. The nodal natural coordinate ξi ¼ xi�x1

Le
(0 ≤ ξi ≤ 1, 1 ≤ i ≤ r). The deflection and

rotation at any point of the wavelet based beam finite element can be approximated by applying

the wavelet scaling functions fj
z, k xð Þ of order z at multiresolution scale j as interpolating functions.

v ξð Þ ¼
X2j�1

k¼h

bjz, kf
j
z, k ξð Þ

θ ξð Þ ¼ ∂v ξð Þ
∂x

¼ 1
Le

X2j�1

k¼h

bjz, k
∂fj

z, k ξð Þ
∂ξ

(53)

Therefore, the DOFs present within the entire beam element can be represented as

n�1ð Þ vef g¼ n�nð Þ Rw
b

� �
n�1ð Þ bef g (54)

Rw
b

� � ¼ Φj
z ξ1ð Þ� �

1
Le

Φ0j
z ξ1ð Þ� �

Φj
z ξ2ð Þ� �

⋯ Φj
z ξr�1ð Þ� �

Φj
z ξrð Þ� �

1
Le

Φ0j
z ξrð Þ� �h iT

and

vector bef g contains the unknown wavelet coefficients bjz, k representing the beam wavelet
space DOFs.

From Eq. (54), the transverse displacement and rotation at any point of the beam element can
be expressed as:

v ξð Þ ¼ 1�nð Þ Φj
z ξð Þ� �

n�nð Þ Tw
b

� �
n�1ð Þ vef g

θ ξð Þ ¼ 1
Le 1�nð Þ Φ0j

z ξð Þ� �
n�nð Þ Tw

b

� �
n�1ð Þ vef g (55)

where Tw
b

� � ¼ Rw
b

� ��1 is the beam wavelet transformation matrix which is used to obtain the

wavelet based shape functions for the beam Nb,e ξð Þ� � ¼ Φj
z ξð Þ� �

Tw
b

� �
. The potential energy

Πb within a Euler Bernoulli beam subjected to concentrated forces f yi, distributed force f d xð Þ
and bending moments �mi can be generally expressed as [40]:

Πb ¼
ðl
0

EI
2

d2v
dx2

� �2

dx�
X
i

f yiv xið Þ �
ðl
0
f d xð Þvdx�

X
k

�mk
dv xkð Þ
dx

(56)

where E is the Young’s modulus, I is the moment of inertia and l is the length of the beam. The

strain energy Ub
e within each beam element of length Le can expressed in terms of the approx-

imation of the transverse displacement via scaling functions as highlighted in Eq. (55).
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Ub
e ¼

1
2
E I
Le3

vef gT
ð1
0

Tw
b

� �T d2Φj
z ξð Þ

dξ2

� �T
d2Φj

z ξð Þ
dξ2

� �
Tw
b

� �
dξ vef g (57)

This gives rise to the beam WFE stiffness matrix in wavelet space

n� nð Þ kwb,e
h i

¼
ð1
0

Φ00j
z ξð Þ� �T

Φ00j
z ξð Þ� �

dξ (58)

The vector Φ
0 0 j
z ξð Þ

n o
¼ f

00j
z, h ξð Þ f

00j
z, hþ1 ξð Þ ⋯ f

00j
z,2j�2

ξð Þ f
00j
z,2j�1

ξð Þ
n o

contains the second

derivative of the scaling functions. Taking into account the material properties of the beam, the
wavelet space stiffness matrix is transformed into physical space via the transformation matrix
Tw
b

� �
.

n� nð Þ kpb,e
h i

¼ E I
Le3

n�nð Þ Tw
b

� �T
n� nð Þ kwb,e

h i
n�nð Þ Tw

b

� �
(59)

The transverse kinetic energy of the beam element is expressed as

Λb
e ¼

1
2
rALe

ð1
0
_v ξð ÞT _v ξð Þdξ (60)

where _v ξð Þ ¼ ∂v ξð Þ
∂t , r is the density and A is the cross-sectional area of the beam. Applying

the scaling functions to approximate the displacements within the beam, the kinetic energy
becomes

Λb
e ¼ _vef gT 1

2
rALe

ð1
0

Tw
b

� �T Φj
z ξð Þ� �T

Φj
z ξð Þ� �

Tw
b

� �
dξ _vef g (61)

The mass matrix in physical space of the Euler Bernoulli beam element, mp
b,e

h i
, can be evalu-

ated as:

mp
b,e

h i
¼ rALe Tw

b

� �T ð1
0

Φj
z ξð Þ� �T

Φj
z ξð Þ� �

dξ Tw
b

� �
(62)

The vectors containing the element concentrated point loads, bending moments and equiva-
lent distributed loads in physical space respectively are subsequently evaluated as:

n� 1ð Þ f n,pb,e

n o
¼
Xr

i¼1
n�nð Þ Tw

b

� �T
n�1ð Þ Φj

z ξið Þ� �T
f yi

n� 1ð Þ f m,p
b,e

n o
¼
X
k

n�nð Þ Tw
b

� �T
n�1ð Þ Φ0j

z ξkð Þ� �T
�mk

n� 1ð Þ f d,pb,e

n o
¼ Le

ð1
0
f d ξð Þ n�nð Þ Tw

b

� �T Φj
z ξð Þ� �T

dξ (63)
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In various engineering problems, the loading conditions analysed vary in location and/or
magnitude with respect to time, e.g., a train travelling over a track, and this is generally
referred to as moving load problems. Assume a moving load of magnitude P travels across a
beam element, as illustrated in Figure 3, from the left at a constant speed of c m�s�1 and is
represented by the function x; tð Þ ¼ Pδ x� x0ð Þ [41]. δ xð Þ is the Dirac Delta function and x0 is
the distance travelled by the moving load at time t. The potential work of the load at this
instant at position ξ0 ¼ x0

Le
in natural coordinates is [1, 30]:

Ωb
e ξ0ð Þ ¼

ð1
0
Pδ ξ� ξ0ð Þv ξð Þdξ ¼ P vef gT Tw

b

� �T Φj
z ξ0ð Þ� �T

(64)

Therefore, the element load vector in physical space is evaluated as

f p,pb,e tð Þ
n o

¼ P Tw
b

� �T t Φj
z ξ0ð Þ� �T

(65)

Assuming the moving load transverses to a new position ξ0 within the same WFE, the
numerical values of the shape functions, and consequently load vector, will change accord-
ingly. All other WFEs representing the system with no loading present have zero entries within
the load vectors at that particular time t. When the moving load is acting on a new WFE, the
scaling functions corresponding to the WFE subjected to the moving load are used to obtain
the load vector for that particular element.

When applying the Daubechies wavelet family of order L at multiresolution j, the total DOFs
within a single element is n ¼ 2j þ L� 2 and for this specific layout, the total number of
elemental nodes is r ¼ 2j þ L� 4 and corresponding elemental segments ns ¼ 2j þ L� 5. The
Daubechies wavelet space stiffness and mass matrices of the Euler Bernoulli beam WFE are
obtained from the connection coefficients and are expressed as:

D
2jþ L� 2ð Þ� 2jþ L� 2ð Þð Þ kwb,e

h i
¼ 24j Γj,2,2� �

(66)

D
2jþ L� 2ð Þ� 2jþ L� 2ð Þð Þ mw

b,e

h i
¼ Γj,0,0� �

(67)

Correspondingly, the connection coefficients of the form Υj,m
k for 2� L ≤ k ≤ 2j � 1 are used to

evaluated the distributed loads and the value of m is based on the load function f d xð Þ. For the

Figure 3. Layout of a beam WFE subjected to a moving point load.
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e ¼

1
2
E I
Le3

vef gT
ð1
0

Tw
b

� �T d2Φj
z ξð Þ

dξ2

� �T
d2Φj

z ξð Þ
dξ2

� �
Tw
b

� �
dξ vef g (57)

This gives rise to the beam WFE stiffness matrix in wavelet space
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The vector Φ
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z, h ξð Þ f

00j
z, hþ1 ξð Þ ⋯ f

00j
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ξð Þ f
00j
z,2j�1

ξð Þ
n o

contains the second

derivative of the scaling functions. Taking into account the material properties of the beam, the
wavelet space stiffness matrix is transformed into physical space via the transformation matrix
Tw
b

� �
.

n� nð Þ kpb,e
h i

¼ E I
Le3

n�nð Þ Tw
b

� �T
n� nð Þ kwb,e

h i
n�nð Þ Tw

b

� �
(59)

The transverse kinetic energy of the beam element is expressed as

Λb
e ¼

1
2
rALe

ð1
0
_v ξð ÞT _v ξð Þdξ (60)

where _v ξð Þ ¼ ∂v ξð Þ
∂t , r is the density and A is the cross-sectional area of the beam. Applying

the scaling functions to approximate the displacements within the beam, the kinetic energy
becomes

Λb
e ¼ _vef gT 1

2
rALe

ð1
0

Tw
b

� �T Φj
z ξð Þ� �T

Φj
z ξð Þ� �

Tw
b

� �
dξ _vef g (61)

The mass matrix in physical space of the Euler Bernoulli beam element, mp
b,e

h i
, can be evalu-

ated as:

mp
b,e

h i
¼ rALe Tw

b

� �T ð1
0

Φj
z ξð Þ� �T

Φj
z ξð Þ� �

dξ Tw
b

� �
(62)

The vectors containing the element concentrated point loads, bending moments and equiva-
lent distributed loads in physical space respectively are subsequently evaluated as:

n� 1ð Þ f n,pb,e

n o
¼
Xr

i¼1
n�nð Þ Tw

b

� �T
n�1ð Þ Φj

z ξið Þ� �T
f yi

n� 1ð Þ f m,p
b,e
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¼
X
k

n�nð Þ Tw
b

� �T
n�1ð Þ Φ0j

z ξkð Þ� �T
�mk
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n o
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ð1
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f d ξð Þ n�nð Þ Tw

b

� �T Φj
z ξð Þ� �T

dξ (63)
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In various engineering problems, the loading conditions analysed vary in location and/or
magnitude with respect to time, e.g., a train travelling over a track, and this is generally
referred to as moving load problems. Assume a moving load of magnitude P travels across a
beam element, as illustrated in Figure 3, from the left at a constant speed of c m�s�1 and is
represented by the function x; tð Þ ¼ Pδ x� x0ð Þ [41]. δ xð Þ is the Dirac Delta function and x0 is
the distance travelled by the moving load at time t. The potential work of the load at this
instant at position ξ0 ¼ x0

Le
in natural coordinates is [1, 30]:

Ωb
e ξ0ð Þ ¼

ð1
0
Pδ ξ� ξ0ð Þv ξð Þdξ ¼ P vef gT Tw

b

� �T Φj
z ξ0ð Þ� �T

(64)

Therefore, the element load vector in physical space is evaluated as

f p,pb,e tð Þ
n o

¼ P Tw
b

� �T t Φj
z ξ0ð Þ� �T

(65)

Assuming the moving load transverses to a new position ξ0 within the same WFE, the
numerical values of the shape functions, and consequently load vector, will change accord-
ingly. All other WFEs representing the system with no loading present have zero entries within
the load vectors at that particular time t. When the moving load is acting on a new WFE, the
scaling functions corresponding to the WFE subjected to the moving load are used to obtain
the load vector for that particular element.

When applying the Daubechies wavelet family of order L at multiresolution j, the total DOFs
within a single element is n ¼ 2j þ L� 2 and for this specific layout, the total number of
elemental nodes is r ¼ 2j þ L� 4 and corresponding elemental segments ns ¼ 2j þ L� 5. The
Daubechies wavelet space stiffness and mass matrices of the Euler Bernoulli beam WFE are
obtained from the connection coefficients and are expressed as:

D
2jþ L� 2ð Þ� 2jþ L� 2ð Þð Þ kwb,e

h i
¼ 24j Γj,2,2� �

(66)

D
2jþ L� 2ð Þ� 2jþ L� 2ð Þð Þ mw

b,e
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¼ Γj,0,0� �

(67)

Correspondingly, the connection coefficients of the form Υj,m
k for 2� L ≤ k ≤ 2j � 1 are used to

evaluated the distributed loads and the value of m is based on the load function f d xð Þ. For the

Figure 3. Layout of a beam WFE subjected to a moving point load.
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BSWI family of order m and at scale j, there are n ¼ 2j þm� 1 total DOFs, r ¼ 2j þm� 3
elemental nodes and ns ¼ 2j þm� 4 elemental segments within the each WFE for this layout.
The stiffness and mass matrices in wavelet space can be evaluated directly and are obtained as:

BS
2jþm� 1ð Þ� 2jþm� 1ð Þð Þ kwb,e

h i
¼
ð1
0

Φ00j
m ξð Þ� �T

Φ00j
m ξð Þ� �

dξ (68)

BS
2jþm� 1ð Þ� 2jþm� 1ð Þð Þ mw

b,e

h i
¼
ð1
0

Φj
m ξð Þ� �T

Φj
m ξð Þ� �

dξ (69)

3.3. Transversely varying functionally graded Euler Bernoulli beam wavelet
finite element

Functionally graded materials are a recent evolution of composite materials where the material
constituents, hence properties, vary continuously in the desired spatial directions. The need for
such revolutionary materials arose to overcome limitations of conventional composite mate-
rials, for instance, desirable properties would diminished when applied to highly intense
thermal environments or material debonding due to increased stress concentration at material
interfaces [42]. In the formulation of the wavelet based functionally grade beam as presented in
Figure 4(a), of height h, length l and width b, the material distribution is modelled based on the
power law of transverse gradation [43]

P yð Þ ¼ Plo Pratio � 1½ � y
h
þ 1
2

� �n

þ 1
� �

(70)

As illustrated in Figure 4(b), the transverse variation of the effective material properties P(y)
(Young’s modulus) can be infinitely altered via the non-negative volume fraction power law

Figure 4. (a) Cross-section of transversely varying functionally graded beam. (b) Effective Young’s modulus variation of
steel-alumina functionally graded beam for different n. (c) Functionally graded beam layout.
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exponent, n. Pratio is the ratio of the upper and lower surface material properties Pu and Plo

respectively.

The beam WFE has axial deformation ui and transverse deflection vi DOFs at all elemental
nodes and rotation θi DOFs only present at elemental end nodes with corresponding axial
forces f xi, transverse forces f yi and bending moments θi as illustrated in Figure 4(c). The

wavelet scaling functions are implemented as interpolating functions and the axial deforma-
tion, deflection and rotation at any point of the beam element are described by Eqs. (42) and
(53) respectively. However, in order to ensure that the defined DOFs are positioned correctly,
the layout of the element determines the order of scaling functions selected. In this case, the
order of the scaling functions selected to approximate the axial displacement is z� 2 if
the scaling function order approximating the bending DOFs is z. The vector containing
the total number of DOFs, s, present in the functionally graded beam element is hef g ¼
u1 v1 θ1 u2 v2 u3 v3 ⋯ ur�1 vr�1 ur vr θrf gT and subsequently

u ξð Þ ¼ a
1�sð Þ Φj

z�2 ξð Þ
n o

s�1ð Þ cef g
v ξð Þ ¼ t

1�sð Þ Φj
z ξð Þ� �

s�1ð Þ cef g

θ ξð Þ ¼ ∂v ξð Þ
∂x

¼ 1
Le

∂v ξð Þ
∂ξ

¼ 1
Le

t
1�sð Þ Φ0j

z ξð Þ� �
s�1ð Þ cef g (71)

where the vector cef g contains the unknown wavelet space element DOFs and

a
1�s Φj

z�2 ξð Þ
n o

¼ f
j
z�2, h ξð Þ 0 0 f

j
z�2, hþ1 ξð Þ 0 ⋯ 0 f

j
z�2,2j�1

ξð Þ 0 0
n o

t
1�s Φj

z ξð Þ� �¼ 0 f
j
z, i ξð Þ f

j
z, iþ1 ξð Þ 0 ⋯ 0 f

j
z,2j�2

ξð Þ f
j
z,2j�1

ξð Þ
n o

t
1�s Φ0j

z ξð Þ� �¼ 0 f
0j
z, i ξð Þ f

0j
z, iþ1 ξð Þ 0 ⋯ 0 f

0j
z,2j�2

ξð Þ f
0j
z,2j�1

ξð Þ
n o

(72)

Therefore, the DOFs present within the entire beam element can be represented as

s�1 hef g¼ s�s Rw
p

h i
s�1 cef g (73)

and consequently

u ξð Þ ¼ a
1�sð Þ Φj

z ξð Þ� �
s�sð Þ Tw

p

h i
s�1ð Þ hef g

v ξð Þ ¼ t
1�sð Þ Φj

z ξð Þ� �
s�sð Þ Tw

p

h i
s�1ð Þ hef g

θ ξð Þ ¼ 1
Le

t
1�sð Þ Φ0j

z ξð Þ� �
s�sð Þ Tw

p

h i
s�1ð Þ hef g (74)

The wavelet transformation matrix Tw
p

h i
¼ Rw

p

h i�1
. The strain energy of the functionally

graded beam element, Ue, is defined as
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BSWI family of order m and at scale j, there are n ¼ 2j þm� 1 total DOFs, r ¼ 2j þm� 3
elemental nodes and ns ¼ 2j þm� 4 elemental segments within the each WFE for this layout.
The stiffness and mass matrices in wavelet space can be evaluated directly and are obtained as:
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3.3. Transversely varying functionally graded Euler Bernoulli beam wavelet
finite element

Functionally graded materials are a recent evolution of composite materials where the material
constituents, hence properties, vary continuously in the desired spatial directions. The need for
such revolutionary materials arose to overcome limitations of conventional composite mate-
rials, for instance, desirable properties would diminished when applied to highly intense
thermal environments or material debonding due to increased stress concentration at material
interfaces [42]. In the formulation of the wavelet based functionally grade beam as presented in
Figure 4(a), of height h, length l and width b, the material distribution is modelled based on the
power law of transverse gradation [43]

P yð Þ ¼ Plo Pratio � 1½ � y
h
þ 1
2
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þ 1
� �

(70)

As illustrated in Figure 4(b), the transverse variation of the effective material properties P(y)
(Young’s modulus) can be infinitely altered via the non-negative volume fraction power law

Figure 4. (a) Cross-section of transversely varying functionally graded beam. (b) Effective Young’s modulus variation of
steel-alumina functionally graded beam for different n. (c) Functionally graded beam layout.
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exponent, n. Pratio is the ratio of the upper and lower surface material properties Pu and Plo

respectively.

The beam WFE has axial deformation ui and transverse deflection vi DOFs at all elemental
nodes and rotation θi DOFs only present at elemental end nodes with corresponding axial
forces f xi, transverse forces f yi and bending moments θi as illustrated in Figure 4(c). The

wavelet scaling functions are implemented as interpolating functions and the axial deforma-
tion, deflection and rotation at any point of the beam element are described by Eqs. (42) and
(53) respectively. However, in order to ensure that the defined DOFs are positioned correctly,
the layout of the element determines the order of scaling functions selected. In this case, the
order of the scaling functions selected to approximate the axial displacement is z� 2 if
the scaling function order approximating the bending DOFs is z. The vector containing
the total number of DOFs, s, present in the functionally graded beam element is hef g ¼
u1 v1 θ1 u2 v2 u3 v3 ⋯ ur�1 vr�1 ur vr θrf gT and subsequently

u ξð Þ ¼ a
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where the vector cef g contains the unknown wavelet space element DOFs and
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(72)

Therefore, the DOFs present within the entire beam element can be represented as

s�1 hef g¼ s�s Rw
p
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s�1 cef g (73)

and consequently
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The wavelet transformation matrix Tw
p

h i
¼ Rw

p

h i�1
. The strain energy of the functionally

graded beam element, Ue, is defined as
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(75)

where Le is the length of the element and E yð Þ the effective Young’s modulus obtained from
Eq. (70). Let
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AEe , BEe and CEe denote axial, axial-bending coupling and bending stiffness of the WFE
respectively. The wavelet based physical space elemental stiffness matrix of the beam, kwe
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, is
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The kinetic energy of the functionally graded beam element, Λe, is defined as

Λe ¼ 1
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r yð Þ is the effective density also obtained from Eq. (70). Let the inertial coefficients be denoted as:
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The wavelet based physical space elemental mass matrix of the beam, mp
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4. Numerical examples

Example 1: A uniform axial cantilever rod (free-fixed) subjected to linear varying load
q xð Þ ¼ �q0 x has a uniform cross sectional area, A ¼ A0, Young’s Modulus, E ¼ E0 and length
l. The exact solution for displacement at a particular point x can be obtained by solving

u xð Þ ¼ 1
EA

Ðx
o
P xð Þdx ¼ 1

E0A0

Ð
q0

x2
2 dx [40]. One WFE is used to represent the rod using

Daubechies and BSWI WFEM approaches and the results are compared with the exact, h-
FEM and p-FEM formulations. The governing equation of the system for FEM and WFEM is

Kr½ � Urf g ¼ Frf g (81)

where Kr½ � is the system stiffness matrix, Urf g is the system vector containing the DOFs and
Frf g is the loading vector of the system. The axial deformation of the rod is analysed at the

arbitrary point 0.1l and the rate of convergence of the different approaches is compared in
Figure 5. The plot shows the absolute relative error of the axial deformation and
corresponding number of DOFs. The FEM (h-FEM) solution involves increasing the number
of elements, p-FEM involves increasing the order of the polynomials (one element only) and
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where Le is the length of the element and E yð Þ the effective Young’s modulus obtained from
Eq. (70). Let

A Ee ¼
ðh
2

�
h
2

E yð Þdy ¼
ðh
2

�
h
2

Eu � El½ � y
h
þ 1
2

� �n

þ Eldy

BEe ¼
ðh
2

�
h
2

y E yð Þdy ¼
ðh
2

�
h
2

y Eu � El½ � y
h
þ 1
2

� �n

þ El

� �
dy

CEe ¼
ðh
2

�
h
2

y2E yð Þdy ¼
ðh
2

�
h
2

y2 Eu � El½ � y
h
þ 1
2

� �n

þ El

� �
dy

(76)

AEe , BEe and CEe denote axial, axial-bending coupling and bending stiffness of the WFE
respectively. The wavelet based physical space elemental stiffness matrix of the beam, kwe
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The kinetic energy of the functionally graded beam element, Λe, is defined as

Λe ¼ 1
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r yð Þ is the effective density also obtained from Eq. (70). Let the inertial coefficients be denoted as:
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The wavelet based physical space elemental mass matrix of the beam, mp
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4. Numerical examples

Example 1: A uniform axial cantilever rod (free-fixed) subjected to linear varying load
q xð Þ ¼ �q0 x has a uniform cross sectional area, A ¼ A0, Young’s Modulus, E ¼ E0 and length
l. The exact solution for displacement at a particular point x can be obtained by solving

u xð Þ ¼ 1
EA

Ðx
o
P xð Þdx ¼ 1

E0A0

Ð
q0

x2
2 dx [40]. One WFE is used to represent the rod using

Daubechies and BSWI WFEM approaches and the results are compared with the exact, h-
FEM and p-FEM formulations. The governing equation of the system for FEM and WFEM is

Kr½ � Urf g ¼ Frf g (81)

where Kr½ � is the system stiffness matrix, Urf g is the system vector containing the DOFs and
Frf g is the loading vector of the system. The axial deformation of the rod is analysed at the

arbitrary point 0.1l and the rate of convergence of the different approaches is compared in
Figure 5. The plot shows the absolute relative error of the axial deformation and
corresponding number of DOFs. The FEM (h-FEM) solution involves increasing the number
of elements, p-FEM involves increasing the order of the polynomials (one element only) and

Multiscale Wavelet Finite Element Analysis in Structural Dynamics
http://dx.doi.org/10.5772/intechopen.71882

67



both Daubechies and BSWI WFEMs have the order and/or multiresolution scale j increased.
The results show that although the rates of convergence of all the methods are similar, the
WFEM approaches have a slightly improved rate with only one element employed.

Example 2: A simply supported two-stepped beam of length 2l has non-uniform flexural
stiffness represented by the unequal cross sections; the bending stiffness of the right and left
half is given as E1I1 ¼ E0I0 and E2I2 ¼ 4 E0I0 respectively. The entire beam is subjected to a
uniformly distributed load q(x) = 1. The flexural stiffness function is expressed as [44]:

E xð ÞI xð Þ ¼ E0I0 1� γ bH x� x0ð Þ
h i

(82)

where γ ¼ 0:75 is defined as the decrement of discontinuity intensity and satisfies the condi-

tion 0 ≤γ ≤ 1 to ensure positivity of the flexural stiffness. bH x� x0ð Þ is the Heaviside function for
0 ≤ x0 ≤ 2l. The general analytical governing equation is

E0I0 1� γ bH x� x0ð Þ
h i

v
0 0
xð Þ

n o0 0

¼ q xð Þ (83)

The FEM and WFEM governing equation is summarised as:

Kb½ � Vbf g ¼ Fbf g (84)

The vector Vbf g contains the system DOFs within the entire beam, Kb½ � is the beam stiffness
matrix and Fbf g is the equivalent system load vector. The h-FEM (FEM-8; 8 elements), p-FEM

Figure 5. Comparison of the convergence of the axial deformation at point x = 0.1l.
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of order 9 (p-FEM-9; 2 elements), Daubechies WFEM of order L ¼ 10 and scale j ¼ 1 (D101; 2
elements) and the BSWI WFEM of order m ¼ 3 and scale j ¼ 3 (BSWI33; 2 elements) are
selected for comparison with the exact solution governed by Eq. (83). Each approach has a
total of 18 DOFs within the beam. The deflection and rotation across the beam is presented in
Figure 6(a) and (b) respectively. The percentage errors of the deflections are compared for
the different approaches and presented in Figure 6(c). All numerical approaches describe the
deflection and rotation across the beams very accurately. However, given that both the
Daubechies and BSWI WFEM deflection solutions have a maximum error of 1.28% in compar-
ison to 3.82% from the h-FEM and p-FEM approaches, the WFEMs exhibit better convergence
to the exact solution. Furthermore, improved accuracy is attained with fewer elements
implemented than the h-FEM and p-FEM and this results in reduced computational time.

Example 3: A steel-alumina functionally graded beam of length l and uniform cross-sectional
area A ¼ 0:36 m2 (height h ¼ 0:9 m and width b ¼ 0:4 m) is fully alumina at the upper surface
and fully steel at the lower surface with material properties; Eu ¼ 3:9� 1011 Pa, ru ¼ 3:96� 103

kg�m�3 and El ¼ 2:1� 1011 Pa, rl ¼ 7:8� 103 kg�m�3 respectively (Eratio ¼ Eu
El
; rratio ¼ ru

rl
). E and

r denote the Young’s modulus and density respectively. The slenderness ratio for the beam is
l h= ¼ 100. The free vibration of the steel-alumina beam is analysed for the boundary conditions
pinned-pinned (PP), pinned-clamped (PC), clamped-clamped (CC) and clamped-free (CF), for

Figure 6. (a) Deflection and (b) rotation (c) comparison of the deflection percentage error across a simply supported
stepped beam subjected to a uniformly distributed load q(x) = 1.
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both Daubechies and BSWI WFEMs have the order and/or multiresolution scale j increased.
The results show that although the rates of convergence of all the methods are similar, the
WFEM approaches have a slightly improved rate with only one element employed.
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stiffness represented by the unequal cross sections; the bending stiffness of the right and left
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where γ ¼ 0:75 is defined as the decrement of discontinuity intensity and satisfies the condi-
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0 ≤ x0 ≤ 2l. The general analytical governing equation is
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The FEM and WFEM governing equation is summarised as:

Kb½ � Vbf g ¼ Fbf g (84)

The vector Vbf g contains the system DOFs within the entire beam, Kb½ � is the beam stiffness
matrix and Fbf g is the equivalent system load vector. The h-FEM (FEM-8; 8 elements), p-FEM

Figure 5. Comparison of the convergence of the axial deformation at point x = 0.1l.
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of order 9 (p-FEM-9; 2 elements), Daubechies WFEM of order L ¼ 10 and scale j ¼ 1 (D101; 2
elements) and the BSWI WFEM of order m ¼ 3 and scale j ¼ 3 (BSWI33; 2 elements) are
selected for comparison with the exact solution governed by Eq. (83). Each approach has a
total of 18 DOFs within the beam. The deflection and rotation across the beam is presented in
Figure 6(a) and (b) respectively. The percentage errors of the deflections are compared for
the different approaches and presented in Figure 6(c). All numerical approaches describe the
deflection and rotation across the beams very accurately. However, given that both the
Daubechies and BSWI WFEM deflection solutions have a maximum error of 1.28% in compar-
ison to 3.82% from the h-FEM and p-FEM approaches, the WFEMs exhibit better convergence
to the exact solution. Furthermore, improved accuracy is attained with fewer elements
implemented than the h-FEM and p-FEM and this results in reduced computational time.

Example 3: A steel-alumina functionally graded beam of length l and uniform cross-sectional
area A ¼ 0:36 m2 (height h ¼ 0:9 m and width b ¼ 0:4 m) is fully alumina at the upper surface
and fully steel at the lower surface with material properties; Eu ¼ 3:9� 1011 Pa, ru ¼ 3:96� 103

kg�m�3 and El ¼ 2:1� 1011 Pa, rl ¼ 7:8� 103 kg�m�3 respectively (Eratio ¼ Eu
El
; rratio ¼ ru

rl
). E and

r denote the Young’s modulus and density respectively. The slenderness ratio for the beam is
l h= ¼ 100. The free vibration of the steel-alumina beam is analysed for the boundary conditions
pinned-pinned (PP), pinned-clamped (PC), clamped-clamped (CC) and clamped-free (CF), for

Figure 6. (a) Deflection and (b) rotation (c) comparison of the deflection percentage error across a simply supported
stepped beam subjected to a uniformly distributed load q(x) = 1.

Multiscale Wavelet Finite Element Analysis in Structural Dynamics
http://dx.doi.org/10.5772/intechopen.71882

69



different values of n in Eq. (70). The free vibration of the functionally graded beam is governed
by [45]

K½ � � ω2 M½ �� �
�U

n o
¼ 0 (85)

The matrices K½ � and M½ � are the stiffness and mass matrices for the functionally graded beam,

ω is the natural frequency and �U
n o

is the vector containing the DOFs within the entire beam.

The ith non-dimensional frequency λi of the FGM beam is evaluated from the relation

λi
2 ¼ ωil2

12 rl
Elh2

� �1
2
. The functionally graded beam is modelled for the different approaches using

2 Daubechies WFEs (L ¼ 12; j ¼ 0; 37 DOFs); one BSWI (m ¼ 5; j ¼ 4; 38 DOFs) WFE and 12
h-FEM elements (39 DOFs). The results of the first 3 non-dimensional natural frequencies of the
beam are presented in Table 1 for different boundary conditions and material distributions. It is

n = 0 n = 0.1 n = 0.5 n = 1 n = 5 n = 10 n = 104

λ1 PP BSWI55 4.34462 4.1943 3.84903 3.65795 3.37139 3.29504 3.33251

FEM 4.34463 4.19431 3.84912 3.65811 3.3715 3.2951 3.33258

D120 4.34462 4.1943 3.84903 3.65795 3.37139 3.29504 3.33251

BSWI54 4.34462 4.1943 3.84903 3.65795 3.37139 3.29504 3.33251

PC BSWI55 5.43022 5.24233 4.81079 4.57197 4.21381 4.11838 3.92681

FEM 5.43024 5.24238 4.81112 4.57253 4.21419 4.11856 3.92682

D120 5.43023 5.24234 4.8108 4.57197 4.21382 4.11839 3.92681

BSWI54 5.43022 5.24233 4.81079 4.57197 4.21381 4.11839 3.92681

CC BSWI55 6.54131 6.31498 5.79514 5.50745 5.07601 4.96105 4.73028

FEM 6.54137 6.31509 5.79585 5.50867 5.07685 4.96145 4.73028

D120 6.54132 6.31498 5.79514 5.50745 5.07601 4.96106 4.73028

BSWI54 6.54131 6.31498 5.79514 5.50745 5.07601 4.96105 4.73028

CF BSWI55 2.59318 2.50345 2.29737 2.18333 2.01229 1.96671 1.87523

FEM 2.59318 2.50346 2.2974 2.18337 2.01232 1.96673 1.87523

D120 2.59318 2.50345 2.29737 2.18333 2.01229 1.96671 1.87523

BSWI54 2.59318 2.50345 2.29737 2.18333 2.01229 1.96671 1.87523

λ2 PP BSWI55 8.68871 8.38806 7.69754 7.31541 6.74237 6.58969 6.66461

FEM 8.68894 8.38834 7.69844 7.31684 6.74338 6.59024 6.66537

D120 8.68968 8.389 7.6984 7.31623 6.74313 6.59043 6.66535

BSWI54 8.68871 8.38806 7.69754 7.31541 6.74238 6.58969 6.66461

PC BSWI55 9.77473 9.4365 8.65966 8.22977 7.58512 7.41335 7.06849

FEM 9.77513 9.43702 8.66145 8.23263 7.58713 7.41442 7.06879

D120 9.7765 9.43821 8.66124 8.23127 7.5865 7.4147 7.06977
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observed that all approaches give highly accurate results with respect to the reference (BSWI55),
particularly for the fundamental frequencies. Furthermore, the BSWI WFEM solution exhibits
better levels of accuracy than the Daubechies WFEM and h-FEM solutions for the higher fre-
quencies. Both WFEM solutions achieve high levels of accuracy with the described layout
of having the rotation DOFs present at elemental and nodes and using fewer elements that the
h-FEM approach.

Assume the same beam, with simply supported boundary conditions and length l ¼ 20 m, is
subjected to amoving load of magnitude P ¼ 1� 105 N travelling across at cm�s�1. The behaviour
of the beam is described using Euler Bernoulli beam theory and is assumed to be

n = 0 n = 0.1 n = 0.5 n = 1 n = 5 n = 10 n = 104

BSWI54 9.77473 9.4365 8.65967 8.22977 7.58512 7.41335 7.06849

CC BSWI55 10.8597 10.4839 9.62083 9.14322 8.42702 8.23619 7.85305

FEM 10.8604 10.4848 9.62387 9.14808 8.43044 8.238 7.85355

D120 10.8636 10.4877 9.62433 9.14655 8.43009 8.23918 7.8559

BSWI54 10.8597 10.4839 9.62083 9.14322 8.42702 8.23619 7.85305

CF BSWI55 6.49133 6.26671 5.75083 5.46534 5.03722 4.92315 4.69413

FEM 6.49138 6.2668 5.75131 5.46615 5.03778 4.92342 4.69417

D120 6.49134 6.26673 5.75084 5.46535 5.03723 4.92316 4.69415

BSWI54 6.49133 6.26671 5.75083 5.46534 5.03722 4.92315 4.69413

λ3 PP BSWI55 13.0317 12.5808 11.545 10.9719 10.1125 3.29504 3.33251

FEM 13.0334 12.5826 11.5489 10.9774 10.1166 3.2951 3.33258

D120 13.0461 13.5947 11.5578 10.984 10.1237 3.29504 3.33251

BSWI54 13.0317 12.5808 11.545 10.9719 10.1125 3.29504 3.33251

PC BSWI55 14.1176 13.629 12.507 11.8861 10.9551 10.7071 10.209

FEM 14.1201 13.6318 12.5131 11.895 10.9617 10.711 10.2108

D120 14.1444 13.655 12.5308 11.9088 10.9761 10.7275 10.2284

BSWI54 14.1176 13.629 12.507 11.8861 10.9551 10.7071 10.209

CC BSWI55 15.2034 14.6773 13.4689 12.8003 11.7977 11.5306 10.9942

FEM 15.2071 14.6813 13.4779 12.8135 11.8074 11.5364 10.9968

D120 15.2662 14.7379 13.5247 12.8533 11.8466 11.5783 11.0396

BSWI54 15.2034 14.6773 13.469 12.8003 11.7978 11.5306 10.9942

PC BSWI55 10.8611 10.4853 9.62205 9.14437 8.42814 8.2373 7.85409

FEM 10.8618 10.4861 9.62437 9.14797 8.4307 8.23872 7.85458

D120 10.8667 10.4907 9.62702 9.1491 8.43249 8.24155 7.85814

BSWI54 10.8611 10.4853 9.62206 9.14438 8.42815 8.2373 7.8541

Table 1. The non-dimensional frequencies of a steel-alumina FG beam for different transverse varying distributions and
boundary conditions.
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different values of n in Eq. (70). The free vibration of the functionally graded beam is governed
by [45]

K½ � � ω2 M½ �� �
�U

n o
¼ 0 (85)

The matrices K½ � and M½ � are the stiffness and mass matrices for the functionally graded beam,

ω is the natural frequency and �U
n o

is the vector containing the DOFs within the entire beam.

The ith non-dimensional frequency λi of the FGM beam is evaluated from the relation

λi
2 ¼ ωil2

12 rl
Elh2

� �1
2
. The functionally graded beam is modelled for the different approaches using

2 Daubechies WFEs (L ¼ 12; j ¼ 0; 37 DOFs); one BSWI (m ¼ 5; j ¼ 4; 38 DOFs) WFE and 12
h-FEM elements (39 DOFs). The results of the first 3 non-dimensional natural frequencies of the
beam are presented in Table 1 for different boundary conditions and material distributions. It is

n = 0 n = 0.1 n = 0.5 n = 1 n = 5 n = 10 n = 104
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D120 5.43023 5.24234 4.8108 4.57197 4.21382 4.11839 3.92681
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D120 6.54132 6.31498 5.79514 5.50745 5.07601 4.96106 4.73028
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λ2 PP BSWI55 8.68871 8.38806 7.69754 7.31541 6.74237 6.58969 6.66461
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D120 9.7765 9.43821 8.66124 8.23127 7.5865 7.4147 7.06977
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observed that all approaches give highly accurate results with respect to the reference (BSWI55),
particularly for the fundamental frequencies. Furthermore, the BSWI WFEM solution exhibits
better levels of accuracy than the Daubechies WFEM and h-FEM solutions for the higher fre-
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Table 1. The non-dimensional frequencies of a steel-alumina FG beam for different transverse varying distributions and
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undamped. The governing equation describing the dynamic behaviour of the system is given
by [45]:

M½ � €U tð Þ
n o

þ K½ � U tð Þf g ¼ F tð Þf g (86)

where €U tð Þ
n o

and U tð Þf g represent the system acceleration and displacement vectors at time t.

F tð Þf g is the moving load vector. The deflection of the beam v x; tð Þ, as the moving load travels

across, is normalised as a non-dimensional parameter v x; tð Þ=v0 where v0 ¼ Pl3
48ElI

is the deflec-

tion at the centre of the simply supported functionally graded beam when subjected to a static
load of magnitude P at the centre. The maximum normalised deflection mid-span of the beam
is analysed over a moving load velocity range 0 < c ≤ 300 m�s�1 at increments of 1 m�s�1 to
identify the critical velocity for the different variations of the constituent materials as illus-
trated in Figure 7. The results present are obtained from the BSWI (2 element; m ¼ 4; j ¼ 3; 37
DOFs) WFEM solution. The h-FEM (12 elements; 39 DOFs) and Daubechies (2 elements;
L ¼ 12; j ¼ 0; 37 DOFs) WFEM solution gives similar results. The values of the critical moving
load velocity and corresponding maximum non-dimensional displacement are presented in
Table 2 for the different values of n for all approaches. The results are compared with those
presented in [46]. Both the Daubechies and BSWI WFE M solutions very accurately yield the
correct values.

Figure 7. Variation of the maximum non-dimensional vertical displacement at the centre of a simply supported steel-
alumina beam with respect to moving load velocities, for different n.

Finite Element Method - Simulation, Numerical Analysis and Solution Techniques72

5. Conclusions

A generalised formulation framework for the construction of an axial rod, Euler Bernoulli beam
and functionally graded two-dimensional wavelet based finite elements is presented. The
Daubechies and BSWI families are selected due to their desirable properties, particularly compact
support, ‘two-scale’ relation and multiresolution. It is illustrated via a set of numerical examples
that the WFEMs perform exceptionally well when compared to conventional h-FEM and p-FEM
where high levels of accuracy are achieved with fewer elements required and the approaches
converge more rapidly to the exact solution. Furthermore, the methods are able to accurately
describe the behaviour of static and dynamic systems with singularities, variation in material
properties and loading conditions present. This exhibits the vast potential of the method in the
analysis of more complicated systems and the ability to alter the multiresolution scales without
affecting the original mesh allows effective and efficient avenues solution accuracy improvement.
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n Critical velocity c m∙s�1

Max
v l

2;tð Þ
v0

� �

Ref. [46] FEM D120 BSWI43 Ref. [46] FEM D120 BSWI43

0 252 252 252 252 0.9328 0.9322 0.9323 0.9322

0.1 – 235 235 235 – 0.9863 0.9864 0.9863

0.2 222 222 222 222 1.0344 1.0340 1.0340 1.0340

0.5 198 198 198 198 1.1444 1.1435 1.1437 1.1436

1 179 178 178 178 1.2503 1.2491 1.2495 1.2493

2 164 164 164 164 1.3376 1.3363 1.3368 1.3365

3 – 157 158 158 – 1.3747 1.3751 1.3748

5 – 151 151 152 – 1.4217 1.422 1.4218

7 – 148 148 148 – 1.4567 1.4570 1.4568

10 – 145 145 145 – 1.4974 1.4976 1.4974

104 132 132 132 132 – 1.7308 1.7309 1.7308

Table 2. The non-dimensional frequencies of a steel-alumina FG beam for different transverse varying distributions and
boundary conditions.
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Abstract

A numerical method to analyse the effect of the application of polymer coatings on the 
bending resistance of steel pipeline joints is presented. Experiments were conducted by 
Heerema Marine Contractors at Heriot Watt University to investigate the influence of the 
thickness of polymer field joint coatings and the cooldown time provided after applying 
the coating on the behaviour of pipeline joints when being bent during reeling opera-
tions. Temperature readings were obtained from thermocouples inside the polymer field 
joint coating during the application process, and pipeline ovality measurements were 
taken during mechanical testing. Thermal modelling of the coating application proce-
dure was developed using COMSOL Multiphysics; this model was validated against the 
thermocouple readings, while a mechanical model simulating the pipe being bent to a 
reel was developed in Abaqus finite element modelling software. The temperature out-
puts, areas of stress concentration and pipe ovalities obtained from the experiments are 
shown to be predicted accurately by the numerical models. Upon successful validation of 
the numerical models, a parametric study was conducted assessing the influence of field 
joint coating thickness and cooldown times, in order to find an optimal design solution to 
reduce the cooldown time required prior to bending the pipe without buckling.

Keywords: nonlinear mechanics, polymers, reel-lay method, steel pipelines, subsea 
engineering, thermo-mechanical modelling

1. Introduction

In the field of subsea engineering, the reel-lay method offers logistical and technical advantages 
over alternative pipe laying methods such as J-lay as S-lay [1]. A considerable length of pipe-
line is fabricated and coated onshore from pipe segments, which are welded together to form 
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1. Introduction

In the field of subsea engineering, the reel-lay method offers logistical and technical advantages 
over alternative pipe laying methods such as J-lay as S-lay [1]. A considerable length of pipe-
line is fabricated and coated onshore from pipe segments, which are welded together to form 
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 individual stalks, as shown in Figure 1a. The stalks are spooled continuously onto a reel situated 
on a barge (see Figure 1b and c) docked at an onshore production facility, with tie-in welds per-
formed to join consecutive stalks together to form a contiguous pipeline typically numerous kilo-
metres in length. The barge then transports the loaded reel out to a construction vessel offshore, 
such as Heerema Marine Contractors’ deepwater construction vessel DCV Aegir (see Figure 2a), 
where it is installed onto the vessel. The pipe is fed over the aligner wheel on the lay tower, through  
a straightener and through the moonpool in the deck of the vessel, then subsequently unspooled 
and laid on the seabed (see Figure 2b). In the case of the Aegir, logistical advantages are offered 
by three reels being available. While a reel is being unspooled onboard the vessel and pipe being 
laid offshore, another reel can be loaded with another pipeline back onshore, with yet another 
reel in transit either to or from the vessel. Compared to the J-lay method where the pipeline 
is fabricated onboard the vessel by welding successive 50 to 75 m-long segments together, the 
onshore fabrication process is far less susceptible to the suspension of operations due to adverse 
weather conditions, and the overall process of unspooling and laying the pipe is considerably 
quicker and thus also less likely to be affected by scheduling or weather delays [2].

In order to provide mechanical protection, corrosion protection and thermal insulation for the 
product conveyed within, the steel pipes are coated with a polymer linepipe coating. In order 
to maintain the temperature of production fluids during operation and shutdown conditions, 
thicker coatings have had to be employed to enhance the thermal performance of the pipeline 
solution [3]. There are considerable challenges inherent to installing pipes with such thick coat-
ings; it has been found previously [4] that combinations of coating thickness, pipe wall thickness 
and mismatch in material properties across a field joint can result in buckling. These challenges 
are especially present when employing the reel-lay method where the pipeline, welds and 
coatings typically undergo a number of bending events during fabrication, spooling, unspool-
ing and eventual touchdown on the seabed. Previous projects have seen Heerema successfully 
reel and lay pipelines with a 53 mm-thick multiple layer polypropylene (MLPP) coating; the 

Figure 1. (a) Stalks prepared onsite; (b) empty reel drum onboard a barge; (c) reeling of pipeline stalks.
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impetus for the investigation described in the current chapter was to ascertain whether this 
capacity could be extended to considerably thicker coating systems. Extending the envelope to 
encompass these coating solutions would allow Heerema to employ the reel-lay method to lay 
pipeline in ever more challenging environments and greater water depths. The current chapter 
focuses on pipelines with a 9LPP coating with an overall thickness of 100 mm.

In order not to damage the polymer coating when welding pipe segments together, it is nec-
essary to cut back the coating approximately 300 mm either side of the weld, typically with 
a 30° chamfer to provide a smooth transition between the linepipe coating and the field joint 
coating and avoid stress raisers due to geometric and material discontinuities. After the weld 
has been performed and passed inspection, an injection-moulded polypropylene (IMPP) field 
joint coating (FJC) is applied around the weld in order to replace the coating material that had 
been cut back prior to welding. The IMPP application process (described in more detail in 
Section 2.2) involves heating the steel to above 200°C. Since steel loses strength and stiffness 
with increasing temperature, the field joint is left to cool down so that the steel pipe can regain 
its strength and be bent to the reel without buckling or deforming excessively.

It is thus necessary to determine how long is required for the field joint to cool down sufficiently 
before reeling can take place safely. For field joints within a single stalk this is not an issue since 
the stalks are fabricated well in advance of reeling and so the field joints will have cooled down 
and regained full strength. However, during continuous reeling the stalks are joined together 
while the pipeline is being spooled with reeling paused while the weld is performed.

The pipeline is thus subject to barge motions and the associated fatigue effects which can fur-
ther weaken the welds. It is advantageous that reeling is paused for a short time as possible 
so that allowances made for fatigue effects need not be too onerous; current best practice is to 
pause reeling at least overnight.

One of the primary factors dictating the cooldown time is the thickness of the insulating IMPP 
field joint coating, which can be controlled by using a specially-shaped mould for the IMPP, cre-
ating either hourglass or full FJCs (see Figure 3). A thinner coating allows for a quicker cooldown 
time and hence the strength of the steel is regained sooner. However, thicker FJCs contribute 
noticeably to the overall resistance of the field joint, even though the elastic stiffness and the 
strength of steel are orders of magnitude greater than those of the polymer coatings; although 
the steel yields at a strain of around 0.2% and loses much of its stiffness thereafter, the polymers 

Figure 2. (a) DCV Aegir, owned and operated by Heerema Marine Contractors, capable of reel-lay and J-lay; (b) schematic 
of reel-lay system onboard the Aegir.
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maintain their elastic stiffness up to strains of approximately 2%, and thus contribute to the sta-
bility of the steel pipe when it is deforming plastically and help to prevent buckling. Thus, an 
optimal field joint coating thickness can be found where a balance is struck between steel strength 
being regained sooner and the contribution of the polymer material to the resistance of the joint.

In the current chapter, the experimental campaign is described and results presented, followed by 
a description of the thermal and mechanical numerical models developed to simulate the behav-
iour of the hot tie-in field joints. After successful validation of the models against the experimental 
results, a parametric study was conducted varying the thickness of the FJC and the cooldown 
time prior to bending, providing a matrix of viable coating and cooldown combinations upon 
which an appropriate operational envelope could be defined for the pipeline system.

2. Experimental investigation

Following successful qualification and commissioning of 12.75″ pipelines with 53 mm-thick 
five-layer polypropylene (5LPP) coating for a previous project, it was initially decided to 
investigate the behaviour of a pipeline with 100 mm-thick nine-layer polypropylene (9LPP) 
coating in order to expand the reel-lay capacity envelope for the Aegir. Given that the inner 
radius of the reel is 8 m, the outer diameter of bare or thinly-coated reel-laid pipes is typically 
limited to 16″ so that strains in the innermost layer of pipe around the reel are limited to 2.5% 
in accordance with DNV guidelines [5]. For thicker coatings, the strains in the outer surface of 
the coating increase accordingly, with a greater risk of damage to the pipe walls and coating. 
Thus, the primary aim of the experimental investigation was to assess whether these higher 
levels of strain could be withstood satisfactorily by the steel pipe and coating materials.

2.1. Specimens

Factory-coated test specimens were prepared comprising three pipe segments of grade X65 
steel (yield strength fy = 450 N/mm2), with 20 mm girth-welded field joints. The field joints 
were 3.45 m apart in order to test two FJCs at the same time on the rig. The outer diameter of 
the pipes was nominally 327 mm, while the wall thickness was 15.7 mm, giving a diameter-
to-thickness ratio of 20.8; the pipes were intentionally chosen to be this slender in order to 
provide a more onerous combination of pipe wall thickness and coating thickness [3]. The 
composition of the 9LPP coating is shown in Figure 4; after a thin three-layer polypropyl-
ene (3LPP) base layer is applied, alternating layers of foam and solid polypropylene are pro-
vided in order to combine the enhanced thermal insulating performance of the foam with the 

Figure 3. (a) Hourglass field joint coating; (b) full field joint coating.
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relative stiffness and strength of the solid polypropylene layers. Material fingerprinting was 
undertaken in parallel to the experimental investigation in order to characterise the thermal 
and mechanical properties of the various materials used in the pipeline system.

While the majority of specimens prepared were intended for full mechanical bend testing, a 
number of specimens were reserved in order to measure the heat evolution occurring within the 
liquid IMPP after injection. The temperatures were recorded using thermocouples, which were 
arranged as shown in Figure 5, in order to calibrate and validate thermal numerical models.

Three different FJC geometries were investigated: full, with a nominal thickness of 108 mm to 
include a 50 mm long, 8 mm thick overlap at the top of the chamfer, a thick hourglass with a 
nominal thickness of 50 mm, and a thin hourglass with a nominal thickness of 40 mm. A bare 
pipe with no FJCs was also tested in the bend rig as a control specimen. Temperature readings 
recorded by the thermocouples are presented and discussed in Section 3.2.3.

2.2. Setup and procedure

The tests were conducted at Heriot Watt University, Edinburgh, from November 2014 to 
January 2015. A coating station was installed onsite; for the specimens being used solely for 
temperature development measurement, the thermocouples were installed in the coating sta-
tion also. The ambient temperature was recorded during each test.

The IMPP application process involves heating the bare steel substrate to temperatures 
around 240°C with an induction heater, then applying a thin layer of fusion bonded epoxy 
(FBE) followed by thin layers of chemically-modified polypropylene (CMPP) to encourage 
bonding between the steel substrate and the IMPP. The chamfers of the linepipe coating are 
reheated to encourage bonding with the IMPP, and a mould is then fitted around the field 
joint. The liquid polypropylene is then injected at 200°C into the mould, which is removed 
after some solidification of the polypropylene.

Figure 4. Chamfer section of 9LPP linepipe coating and IMPP field joint coating.

Figure 5. Schematic of thermocouple locations within the FJC.
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relative stiffness and strength of the solid polypropylene layers. Material fingerprinting was 
undertaken in parallel to the experimental investigation in order to characterise the thermal 
and mechanical properties of the various materials used in the pipeline system.

While the majority of specimens prepared were intended for full mechanical bend testing, a 
number of specimens were reserved in order to measure the heat evolution occurring within the 
liquid IMPP after injection. The temperatures were recorded using thermocouples, which were 
arranged as shown in Figure 5, in order to calibrate and validate thermal numerical models.

Three different FJC geometries were investigated: full, with a nominal thickness of 108 mm to 
include a 50 mm long, 8 mm thick overlap at the top of the chamfer, a thick hourglass with a 
nominal thickness of 50 mm, and a thin hourglass with a nominal thickness of 40 mm. A bare 
pipe with no FJCs was also tested in the bend rig as a control specimen. Temperature readings 
recorded by the thermocouples are presented and discussed in Section 3.2.3.

2.2. Setup and procedure

The tests were conducted at Heriot Watt University, Edinburgh, from November 2014 to 
January 2015. A coating station was installed onsite; for the specimens being used solely for 
temperature development measurement, the thermocouples were installed in the coating sta-
tion also. The ambient temperature was recorded during each test.

The IMPP application process involves heating the bare steel substrate to temperatures 
around 240°C with an induction heater, then applying a thin layer of fusion bonded epoxy 
(FBE) followed by thin layers of chemically-modified polypropylene (CMPP) to encourage 
bonding between the steel substrate and the IMPP. The chamfers of the linepipe coating are 
reheated to encourage bonding with the IMPP, and a mould is then fitted around the field 
joint. The liquid polypropylene is then injected at 200°C into the mould, which is removed 
after some solidification of the polypropylene.

Figure 4. Chamfer section of 9LPP linepipe coating and IMPP field joint coating.

Figure 5. Schematic of thermocouple locations within the FJC.
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The bending rig consisted of a reel former with a radius of curvature equal to 8 m, and a 
straightening former with a radius of curvature equal to 55.84 m (see Figure 6); these radii 
are representative of those of the reel drum and straightener employed onboard DCV Aegir. 
After coating of the field joints was completed in the coating station, the pipe specimen was 
installed into the bending rig. One end of the pipe was anchored with a pin, while the other 
end of the pipe was attached to a pull head, which was translated between the two formers by 
means of a cable attached to a crane.

After a pre-defined cooldown period, the test procedure was initiated, whereby the specimen 
underwent five full bending cycles, with each cycle consisting of a number of steps: (i) the 
pipe is bent to the reel former and held; (ii) the pipe is released, (iii) the pipe is bent to the 
straightening former and (iv) the pipe is finally released again. The pipe was held to the reel 
former overnight in order to simulate the effect of the IMPP cooling down on the reel prior to 
resumption of reeling operations. The pipe is subjected to five full cycles during qualification 
testing in order to ensure that pipe integrity is maintained during initial spooling, straighten-
ing, bending over the aligner wheel and pipelay, along with contingencies for weather delays 
or the possibility of requiring to recover the pipe back onto the reel and then to unspool again. 
Ovality measurements were taken at salient locations after each cycle step, where the ovality 
is defined according to DNV design guidance [5] as:

  ovality =  ( D  max   –  D  min  )  /  ( D  nom  )   (1)

where Dmax is the maximum diameter of the deformed pipe, Dmin is the minimum diameter 
of the deformed pipe and Dnom is the original nominal diameter of the pipe. The ovality mea-
surements were taken using optical metrology equipment inserted inside the pipe; thus, the 
values used in Eq. (1) relate to the inner diameter of the steel pipes with Dnom = 295.7 mm.

3. Numerical modelling

Finite element modelling was used during the planning phase of the campaign in order to 
select suitable specimens, coating thicknesses and cooldown times for the tests; these models 
were refined further and validated against the experimental results. In the current section, the 
modelling techniques employed are described.

Figure 6. Bend test rig at Heriot Watt University, with a test specimen bent to the reel former.

Finite Element Method - Simulation, Numerical Analysis and Solution Techniques82

3.1. Modelling approach

In order to model the behaviour of the hot tie-in field joints, a thermo-mechanical model 
was required. Although coupled thermo-mechanical modelling is available in commercially-
available finite element modelling software such as Abaqus [6], it is computationally expen-
sive. An alternative approach employed in the current work is to separate the analysis into a 
thermal model to simulate the process of applying the IMPP, followed by a mechanical model 
simulating the process of bending the pipe that incorporates the temperature field predicted 
by the thermal model along with temperature-dependent material models.

Thermal modelling was performed using COMSOL Multiphysics [7], with the temperature 
fields around the field joint exported at a number of defined intervals of cooldown. These 
fields were then mapped onto an Abaqus mechanical model that simulated bend testing of 
the pipe. Given that the cooldown times are in the order of hours and that the bending events 
were performed in a number of minutes, there is a difference in orders of magnitude between 
the cooldown rates and the strain rate during the bend tests. Thus, it is reasonable to assume 
that heat flow within the field joints during bending was negligible and so can be accurately 
modelled by assuming a static temperature field in the mechanical models, thus achieving a 
considerable degree of efficiency over a fully-coupled thermo-mechanical model.

3.2. Thermal modelling

A time-dependent thermal model was developed in COMSOL Multiphysics, which was cho-
sen due to its relative computational efficiency and modelling flexibility when compared to 
thermal modelling in comparable finite element modelling software. A section of the pipe 
around a particular field joint was represented by two-dimensional models assuming axisym-
metric conditions about the longitudinal axis, with symmetry also assumed at the weld plane. 
The models relating to the three different FJC geometries are shown in Figure 7. It was found 
from sensitivity analysis that the change in temperature was negligible at a distance of 2 m 
from the weld, and thus the extent of the models reflects this. Triangular elements were used 

Figure 7. Modelling of field joints in COMSOL.
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to mesh the model. Temperature-dependent thermal conductivities and heat capacities from 
an extensive campaign of material fingerprinting of coating materials and steel pipe materials 
conducted by Heerema Innovation were applied in the numerical models.

3.2.1. Boundary conditions

An air cooling boundary heat flux was imposed on external surfaces, with the convection 
transfer coefficient set equal to 10 W/m2/K. When validating the numerical model against the 
experimental data, the ambient temperature was set equal to that recorded onsite on the day of 
testing; for the subsequent parametric study, the ambient temperature was set equal to 20°C.

Initially, it was assumed that internal airflow was negligible and so no boundary heat flux 
was defined along internal surfaces; this assumption is accurate for considerably long lengths 
of pipe where air flow is practically non-existent. However, for the shorter test specimens, 
the effects of internal air cooling on the temperature within the field joint coating are signifi-
cant since heat is drawn from the polymer coating by the relatively highly-conductive steel 
pipe, which is being continually cooled by the air. It was found from sensitivity analysis that 
applying a temperature of 18°C and a heat transfer coefficient of 3 W/m2/K along the internal 
surfaces of the models provided appropriate cooldown rates.

3.2.2. Analysis steps

The analysis was divided into a number of steps representing the IMPP application proce-
dure as conducted onsite. Firstly, induction heating of the steel was modelled using a body 
heat flux defined appropriately to raise the temperature of the steel pipe to 240°C within 
the recorded operating time. Next, domains representing the layers of FBE and CMPP were 
added to the model and the analysis was resumed in order to simulate cooling of the steel sub-
strate to 190°C. Reheating of the chamfers was simulated by applying a surface heat flux to the 
relevant surfaces in the model, defined appropriately so as to replicate reheating to between 
140 and 150°C during the time recorded onsite.

In the final step of the thermal analysis, the IMPP was included at an initial temperature of 
200°C. The model was run to simulate 16 h of cooldown to provide comparison with the 
thermocouple data. Three separate models were created for the full, thick hourglass and thin 
hourglass FJC geometries, respectively, as shown in Figure 7.

3.2.3. Validation of thermal model

The temperature evolution profiles recorded by the thermocouples (located at the positions 
indicated in Figure 5) for the thick hourglass FJC specimen are shown in Figure 8 as solid 
lines. It can be seen that, as would be expected, temperatures recorded closer to the outer 
surface of the FJCs at the overlap reduce quicker than those located internally. Owing to 
thermal conduction through the steel pipe, the temperatures at the weld and toe locations 
reduce quicker than at the internal thermocouples where the insulating polymer slows down 
heat flow considerably. This effect was noticeably more pronounced in the full FJC than in the 
hourglass FJCs, with the temperature reducing quickest in the thin hourglass FJC.
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The predictions of the numerical models are shown as dashed lines in Figure 8. Good agree-
ment is observed between the experimental observations and the numerical predictions, par-
ticularly at the weld and toe locations and also at the internal thermocouples, while some 
discrepancy is observed to develop at the external overlap locations; this behaviour was also 
observed in the full FJC and thin hourglass FJC models. This can most likely be attributed 
to the overestimation of the convection transfer coefficient for the external boundary cool-
ing coefficients. It is noticeable that since this discrepancy is more prevalent on the external 
boundaries rather than in the rest of the model, the majority of temperature loss in the IMPP 
is due to conduction through the steel, rather than from air convection. Overall, the accuracy 
of the numerical predictions is confirmation of the suitability of the modelling techniques and 
the material models used, and allows for the temperature fields to be applied to the mechani-
cal models in the next stage of the analysis.

3.3. Mechanical modelling

Modelling of the bend test procedure was performed using Abaqus 6.12 [6]. For validation of 
the model, the measured geometry of the test specimens was used, while for the parametric 
study, nominal dimensions were used. Temperature-dependent material models were used in 
the simulations as outlined in Section 3.3.2, with the temperature fields predicted by the ther-
mal modelling mapped to the Abaqus models using the procedure outlined in Section 3.3.4. 
The model was validated successfully against the experimental results for ovality and stress 
distributions, which then allowed a parametric study to be conducted to identify combina-
tions of FJC thickness and cooldown time where buckling is avoided.

3.3.1. Model geometry and boundary conditions

The model of the bend test rig is shown in Figure 9, with a combination of shell and solid 
instances used to model the pipe and coating materials, with two FJCs centred at 20 mm girth 
welds. A pipe with no FJCs was also modelled in order to provide validation against the bare 
pipe tested onsite.

Figure 8. Experimental and numerical temperature evolutions for the thick hourglass FJC specimen.
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Analytical rigid instances were used to model the reel former and straightening former, each 
with a radius of curvature equivalent to those used onsite, respectively. Pin-ended conditions 
were defined at the anchor end, permitting only rotation in the plane of the rig. Connector 
elements were used to model the cables from the pullhead to the crane with appropriate dis-
placements imposed on them in order to simulate the pipe being bent to the formers across 
the various analysis steps.

Contact interactions were defined between the outer surface of the coating and the former 
surfaces, with a coefficient of friction of 0.3 to define the tangential behaviour and a pressure 
overclosure to define the normal behaviour.

3.3.2. Material modelling

As part of a campaign of material fingerprinting conducted by Heerema Marine Contractors, 
moduli of elasticity and full stress-strain curves for the various polymer and steel materials used 
in the pipes were obtained at a number of ambient temperatures and strain rates. A typical set of 
stress-strain curves is shown in Figure 10 for the IMPP material, with testing performed at 5 mm/
min; these curves were converted to true stress and true strain prior to their use in the numerical 
models. For temperatures outside the tested range, the material curves were based on extrapola-
tion. For the polypropylene materials, an elastic-plastic material model with isotropic hardening 
was assumed, in keeping with previous studies [8]. Although polypropylene exhibits viscoelas-
tic behaviour in practice, given the strain rates and hold times being modelled in the current 
study, it was not necessary to model changes in stress owing to viscous flow of the material.

The moduli of elasticity of the various coating materials were modelled as temperature-dependent, 
while the Poisson’s ratio was set at 0.45. The coefficient of thermal expansion for the three polypro-
pylene materials was temperature-dependent and based on manufacturers’ recommendations.

The X65 material was also modelled using an elastic-plastic material model albeit with non-
linear kinematic hardening, and based on test data obtained across a range of temperatures. 
For temperatures outside the tested range, material curves were extrapolated based on derat-
ing the material in accordance with DNV guidelines [5]. The resulting true stress-true strain 
curves are shown in Figure 11. The stress-strain relationship for the welds was assumed to be 
similar to that of the parent steel, albeit with isotropic hardening and a strength overmatch of 

Figure 9. Model of the bend test rig and pipe specimen in Abaqus.
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80 N/mm2 based on previous project experience. The modulus of elasticity of the steel materi-
als was assumed to be 210,000 N/mm2 with a Poisson’s ratio equal to 0.3. The coefficient of 
linear expansion was set equal to 13 × 10−6.

3.3.3. Elements and meshing

In the interests of computational efficiency, the mechanical model employed a combination of 
quadrilateral shell S4R elements for the steel pipe, and solid C3D8R elements for the thicker 
coating materials. The steel pipe elements were in fact composite layups in order to include 
the thin layers of FBE and CMPP. A nominal element size of 15 mm was used, with the mesh 
density increased in the area of interest around the weld.

3.3.4. Mapping of temperature fields

The thermal analysis was performed using two-dimensional axisymmetric models with tri-
angular meshes, while the mechanical analysis used three-dimensional solid brick and quad-
rilateral shell elements. In order to map the temperature field correctly, an algorithm was 
developed whereby the COMSOL temperature field was centred on a weld plane and then 

Figure 10. Stress-strain curves for the IMPP material obtained from tensile testing.

Figure 11. Stress-strain curves for X65 steel at a range of temperatures.
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translated and rotated to cylindrical coordinates. A least-squares node-matching routine then 
identified the nodes in the COMSOL mesh closest to each node in the Abaqus mesh within 
longitudinal neighbourhoods of 100 mm. The resulting field was then inputted as a discrete 
field into the Abaqus model. An example of the result of running the algorithm is shown in 
Figure 12, with the COMSOL temperature output on the left hand side and the resulting 
temperature field in Abaqus shown on the right. For the validation of the numerical mod-
els against the experiments, temperature fields were outputted at the appropriate cooldown 
times related to the time after IMPP application recorded during the bend tests. Since there 
was a half hour to an hour difference in application time between the two FJCs for a particular 
test pipe, and thus a noticeable difference in temperature, separate temperature fields were 
mapped around the two joints.

Figure 12. Example of transferral of COMSOL temperature output to a discrete field in Abaqus.

Figure 13. Bend cycle steps modelled in Abaqus.
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3.3.5. Analysis procedure

A geometrically-nonlinear static analysis was employed, divided into a number of steps, as 
shown in Figure 13: (i) firstly, the temperature field was applied to the model; (ii) next the pipe 
was bent to the reel former and held; (iii) the temperature field was then set equal to the appro-
priate ambient temperature (either that recorded onsite for the validation study, or 20°C for the 
parametric study) in order to simulate the pipe and FJCs cooling down; (iv) next, the pipe was 
released, then (v) bent to the straightening former, and finally (vi) released again, thus complet-
ing the first bend cycle. The model simulated five full bending cycles in total (the latter four all 
with the temperature field set equal to the appropriate ambient temperature). As can be seen 
in Figure 13, after a full bend cycle there is a noticeable amount of plastic deformation present 
in the pipe after straightening; limiting this plastic deformation and avoiding buckling of the 
pipe and tearing of the coating are two of the main challenges posed by the reel-lay procedure.

4. Results and comparisons

In this section, the results of the bend tests are discussed, and comparison is made with the 
predictions of the numerical model.

4.1. Pipe deformation, buckling and ovality

A bare pipe with no FJCs was tested first in the bend rig as a control specimen, whereupon it 
buckled at the first bend to the reel former, as shown in Figure 14a; this early onset buckle can 
be attributed to the stiffness mismatch between the full linepipe coating and the bare steel pipe 
causing strains to concentrate within the bare steel. It can also be seen that the point of initia-
tion of the buckle is located to the left of the weld. The strain field predicted by the numerical 
model is shown in Figure 14b, where the strain concentration can indeed be observed in the 
uncoated region of the pipe. It can be seen that the pipe was also predicted to buckle after the 
first bend to the reel, albeit with the point of initiation of the buckle located closer to the weld. 
Given the high imperfection sensitivity of cylindrical shells in compression, this discrepancy 
in buckle location is likely down to a localised thinning of the pipe wall in the area around the 
buckle due to corrosion. It can be seen that, in areas in the steel pipe away from the buckle, the 
tensile strain is approximately 2.5%, in keeping with analytical predictions.

Despite the presence of the polymer coating, one of the field joints on the pipe with the thin 
hourglass FJC also buckled on the first bend to the reel. During initial simulations prior to 
the test campaign, ovalities in excess of 10% were expected; based on previous experience 
[9] this level of ovality is a strong predictor of the occurrence of buckling. The buckled field 
joint is shown in Figure 15a; as can be seen, there is noticeable lift-off from the reel former. 
In Figure 15b, the equivalent numerical prediction of the stress field is shown, with rippling 
observable in the compression zone.

The pipes with the thick hourglass and full FJCs did not buckle throughout the five bending 
cycles; the numerical models also predicted that no buckling would occur. In Figure 16, the 
ovalities recorded along the length of the pipe with the thick hourglass FJC after the first bend 
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translated and rotated to cylindrical coordinates. A least-squares node-matching routine then 
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field into the Abaqus model. An example of the result of running the algorithm is shown in 
Figure 12, with the COMSOL temperature output on the left hand side and the resulting 
temperature field in Abaqus shown on the right. For the validation of the numerical mod-
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Figure 12. Example of transferral of COMSOL temperature output to a discrete field in Abaqus.

Figure 13. Bend cycle steps modelled in Abaqus.

Finite Element Method - Simulation, Numerical Analysis and Solution Techniques88

3.3.5. Analysis procedure

A geometrically-nonlinear static analysis was employed, divided into a number of steps, as 
shown in Figure 13: (i) firstly, the temperature field was applied to the model; (ii) next the pipe 
was bent to the reel former and held; (iii) the temperature field was then set equal to the appro-
priate ambient temperature (either that recorded onsite for the validation study, or 20°C for the 
parametric study) in order to simulate the pipe and FJCs cooling down; (iv) next, the pipe was 
released, then (v) bent to the straightening former, and finally (vi) released again, thus complet-
ing the first bend cycle. The model simulated five full bending cycles in total (the latter four all 
with the temperature field set equal to the appropriate ambient temperature). As can be seen 
in Figure 13, after a full bend cycle there is a noticeable amount of plastic deformation present 
in the pipe after straightening; limiting this plastic deformation and avoiding buckling of the 
pipe and tearing of the coating are two of the main challenges posed by the reel-lay procedure.

4. Results and comparisons

In this section, the results of the bend tests are discussed, and comparison is made with the 
predictions of the numerical model.

4.1. Pipe deformation, buckling and ovality

A bare pipe with no FJCs was tested first in the bend rig as a control specimen, whereupon it 
buckled at the first bend to the reel former, as shown in Figure 14a; this early onset buckle can 
be attributed to the stiffness mismatch between the full linepipe coating and the bare steel pipe 
causing strains to concentrate within the bare steel. It can also be seen that the point of initia-
tion of the buckle is located to the left of the weld. The strain field predicted by the numerical 
model is shown in Figure 14b, where the strain concentration can indeed be observed in the 
uncoated region of the pipe. It can be seen that the pipe was also predicted to buckle after the 
first bend to the reel, albeit with the point of initiation of the buckle located closer to the weld. 
Given the high imperfection sensitivity of cylindrical shells in compression, this discrepancy 
in buckle location is likely down to a localised thinning of the pipe wall in the area around the 
buckle due to corrosion. It can be seen that, in areas in the steel pipe away from the buckle, the 
tensile strain is approximately 2.5%, in keeping with analytical predictions.
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to the reel are compared with numerical predictions, with the ovalities calculated using Eq.(1). 
The two peaks in the ovality distributions coincide with the location of the field joints. As can 
be seen, there is particularly good agreement in the region around the field joint furthest from 
the anchor end, while the predictions of ovality are underestimated at the field joint closest to 
the anchor end. This can be attributed to some relaxation of contact stress towards the anchor 
end during the simulation as the point of contact progresses along the pipe. Similar accuracy 
was obtained across all the tested pipes, thus increasing confidence in the ability of the numer-
ical model to predict pipe deformations and ovalities but most importantly whether the field 
joints can withstand five full bending cycles without buckling. The results of the experimental 
investigations and the numerical analysis showed that, provided the correct FJC thickness is 
applied, reeling of pipelines with 100 mm-thick MLPP coatings is indeed achievable.

4.2. Stress whitening

During testing of the specimens with FJCs applied, a phenomenon known as stress whitening 
was observed. Stress whitening occurs when the molecule chains within a polymer become 
damaged due to excessive tensile stresses causing plastic deformation, with holes and tears 
forming as the molecular structures are altered [10]. Light incident upon the affected zones is 
then diffused and scattered more readily, appearing as white discolorations on the surface of 
the polypropylene. In the following discussion, comparisons are made after the first bend to the 
reel former and holding in position overnight, i.e., after the field joint has cooled down fully.

Owing to the inherent difficulty of installing stress measuring instrumentation into the coat-
ing and retrieving it afterwards, visual identification of stress whitening was used as an indi-
cator of tensile stress concentrations within the IMPP material. In Figure 17, the appearance 

Figure 14. Bending of field joint with no coating; (a) experimental observation and (b) numerical prediction of strain field.
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of stress whitening in the thick hourglass FJC is compared to the numerical prediction of the 
principal stress field. Given that the yield stress is approximately 16 N/mm2 it can be seen that 
the location of areas where plastic deformation has occurred agree very well with the location 
of stress whitening above the chamfer toes observed onsite.

In the case of the thin hourglass FJC, as can be seen in Figure 18a, the level of stress whiten-
ing was not as prevalent or as noticeable, indicating that much less plastic deformation has 
occurred than in the thick hourglass FJC. This corroborates with the predicted stress field 

Figure 15. Pipe with thin hourglass FJC; (a) experimental observation, (b) simulated stress field with rippling observable.

Figure 16. Comparison of measured and predicted ovality distributions in the pipe with the thick hourglass FJCs after 
the first bend to the reel.

Numerical Analysis of Hot Polymer-Coated Steel Pipeline Joints in Bending
http://dx.doi.org/10.5772/intechopen.72262

91



to the reel are compared with numerical predictions, with the ovalities calculated using Eq.(1). 
The two peaks in the ovality distributions coincide with the location of the field joints. As can 
be seen, there is particularly good agreement in the region around the field joint furthest from 
the anchor end, while the predictions of ovality are underestimated at the field joint closest to 
the anchor end. This can be attributed to some relaxation of contact stress towards the anchor 
end during the simulation as the point of contact progresses along the pipe. Similar accuracy 
was obtained across all the tested pipes, thus increasing confidence in the ability of the numer-
ical model to predict pipe deformations and ovalities but most importantly whether the field 
joints can withstand five full bending cycles without buckling. The results of the experimental 
investigations and the numerical analysis showed that, provided the correct FJC thickness is 
applied, reeling of pipelines with 100 mm-thick MLPP coatings is indeed achievable.

4.2. Stress whitening

During testing of the specimens with FJCs applied, a phenomenon known as stress whitening 
was observed. Stress whitening occurs when the molecule chains within a polymer become 
damaged due to excessive tensile stresses causing plastic deformation, with holes and tears 
forming as the molecular structures are altered [10]. Light incident upon the affected zones is 
then diffused and scattered more readily, appearing as white discolorations on the surface of 
the polypropylene. In the following discussion, comparisons are made after the first bend to the 
reel former and holding in position overnight, i.e., after the field joint has cooled down fully.

Owing to the inherent difficulty of installing stress measuring instrumentation into the coat-
ing and retrieving it afterwards, visual identification of stress whitening was used as an indi-
cator of tensile stress concentrations within the IMPP material. In Figure 17, the appearance 

Figure 14. Bending of field joint with no coating; (a) experimental observation and (b) numerical prediction of strain field.

Finite Element Method - Simulation, Numerical Analysis and Solution Techniques90

of stress whitening in the thick hourglass FJC is compared to the numerical prediction of the 
principal stress field. Given that the yield stress is approximately 16 N/mm2 it can be seen that 
the location of areas where plastic deformation has occurred agree very well with the location 
of stress whitening above the chamfer toes observed onsite.

In the case of the thin hourglass FJC, as can be seen in Figure 18a, the level of stress whiten-
ing was not as prevalent or as noticeable, indicating that much less plastic deformation has 
occurred than in the thick hourglass FJC. This corroborates with the predicted stress field 

Figure 15. Pipe with thin hourglass FJC; (a) experimental observation, (b) simulated stress field with rippling observable.

Figure 16. Comparison of measured and predicted ovality distributions in the pipe with the thick hourglass FJCs after 
the first bend to the reel.
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shown in Figure 18b where the maximum stress is 13.85 N/mm2, suggesting that the mate-
rial has not yielded yet (although in practice some polymer chains may have been damaged 
already when the material was hotter and therefore less strong, as evidenced by the material 
curves shown in Figure 10). While it may be counter-intuitive that less stress whitening has 
occurred in the thin hourglass FJC rather than in the thick hourglass FJC, this can be explained 
by considering the reduction in longitudinal strain on the outer surface of the thin hourglass 
FJC since it is closer to the neutral axis of the section than the outer surface of the thick hour-
glass FJC. It can be seen that the areas of peak stress above the chamfer toe coincide with the 
lightest areas on the external surface of the tested pipe.

Figure 17. Thick hourglass FJC; comparison of (a) stress whitening observed during test with (b) numerical prediction of stress.

Figure 18. Thin hourglass FJC; comparison of (a) stress whitening observed during test with (b) numerical prediction of stress.
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In the full FJC, stress whitening was observed after testing as shown in Figure 19a; stress concen-
trations were also predicted in the numerical model above the chamfers, as shown in Figure 19b. 
Although the agreement is not as clearly observable as in the hourglass FJCs, the level of stress 
predicted in the areas of stress whitening is commensurate with the yield stress of the material.

Finally, in addition to the three pipes with hot tie-in field joints, another pipe with full FJCs 
was tested after it had fully cooled down to the ambient temperature. As can be seen in 
Figure 20a, there was no evidence of stress whitening visible in this specimen, and as shown 
in Figure 20b, the numerical model also predicted a uniform stress field with no concentra-
tions, with maximum stresses of approximately 15 N/mm2 in the IMPP.

Bending of the steel when it is still hot and weakened leads to higher strains and deformations 
around the field joint as a whole. The thin hourglass field joint would have cooled quicker 
than the thick hourglass field joint, allowing the steel to regain relatively more strength and 
thus limiting the amount of strain. The increased deformation in the thick field joint has led 
to higher stresses in the pipe as well as the field joint coating, which can be observed upon 
comparison of Figures 17b and 18b.

In the each of the three hot tie-in field joints, it can be seen that stress concentrations and areas of 
stress whitening occur above the chamfers, particularly above the chamfer toe. One explanation 
is that there is a stiffness mismatch either side of the chamfer that causes stress to accumulate at 
this point; however, the transition between the IMPP field joint coating and the MLPP linepipe 
coating occurs quite gradually over the length of the chamfer (approximately 175 mm), and so 
sudden peaks in stress would not be expected. Upon inspection of the evolution of the distribu-
tion of ovality along the length of the pipe specimens during the bend test, a correlation between 
the ovality gradient and the peaks in stress was apparent. In Figure 21, the distribution of oval-
ity gradient along the length of the thick hourglass FJC specimen, as predicted by the numerical 
model, is shown. The locations of the chamfers and field joints are also overlaid on the graph. 
It can be seen that areas of peak ovality gradient coincide with the toes of the chamfer, where 

Figure 19. Full hourglass FJC; comparison of (a) stress whitening observed during test with (b) numerical prediction of stress.
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stress whitening was also observed very clearly in the test pipe, as shown in Figure 17a. In addi-
tion, although stresses close to yield were predicted by the numerical model in the full FJCs of 
the pipe that was bent after fully cooling down, since the stress distribution and also ovality dis-
tribution were quite uniform, i.e., with a small gradient, there was no stress whitening visible. 
This agreement between peak ovality gradient and areas of stress whitening can be attributed 
to the higher levels of strain associated with sudden large deformations in the steel pipe, which 
would cause associated large strains, and hence stresses, in the coating materials.

4.3. Parametric study

As demonstrated by the comparisons between the experimental observations and the numerical 
results, the thermal and mechanicals models are capable of accurately predicting the behaviour 
of hot tie-in field joints in bending. With the model validated, a parametric study was conducted 

Figure 21. Ovality gradient along the length of the pipe with the thick hourglass FJC with chamfer locations overlain.

Figure 20. Full hourglass FJC bent after being fully cooled down; comparison of (a) stress whitening observed during 
test with (b) numerical prediction of stress.
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varying the thickness of the FJCs and the amount of cooldown time. Bend tests on pipes with FJC 
thicknesses from 20 mm up to a full FJC and cooldown times from 1 hour up to 24 hours were sim-
ulated and assessed to ascertain whether five full bend cycles could be completed without the pipe 
buckling. The results of the parametric study showed that an optimal thickness and cooldown 
time existed that represented significant material and time savings compared to current practice.

5. Conclusions

Finite element models simulating the thermal and mechanical behaviour of hot tie-in field joints 
during coating application and bending have been developed. Experimental investigations 
recording the temperature evolution profiles within the field joint coatings after pouring and the 
mechanical behaviour of the field joints during bend testing were used as a basis for calibration 
and validation of the numerical models. Three separate field joint coating geometries were tested 
in order to examine the influence of coating thickness on the overall behaviour of the field joint.

Thermal modelling in COMSOL Multiphysics employed temperature-dependent thermal 
properties obtained from material fingerprinting. It was found that it was necessary to model 
internal air cooling in the test specimens, which would not normally be required when model-
ling longer pipeline sections. Close agreement was observed upon comparison of temperature 
evolutions recorded onsite with those predicted by the numerical models, allowing for the 
predicted temperature fields to be subsequently applied to mechanical models.

Numerical models were developed in Abaqus to simulate bend testing of the various pipe 
specimens, employing temperature-dependent material models obtained from material fin-
gerprinting. Temperature fields obtained from the thermal numerical models were mapped 
onto the mechanical models and the process of bend testing over five full bend cycles simu-
lated. The numerical predictions for pipe ovality and coating stress distributions were com-
pared with the experimental results, with close agreement observed. It was also found that 
ovality gradient can be used as a predictor of the occurrence of stress whitening in the coating 
materials. The numerical analysis, coupled with the results of the experimental investigation, 
showed that reeling of pipes with 100 mm-thick coating is possible.

The successful validation of the numerical models allowed for an extensive parametric study 
to be conducted, varying the field joint coating thickness and the cooldown times provided 
after application of the IMPP. It was found that an optimal FJC thickness existed that balanced 
the quicker cooldown times associated with thinner FJCs with the material strength benefits 
of thicker FJCs. The results of the study showed that use of this optimal FJC thickness can 
result in significant time savings when conducting reeling operations in practice.
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Abstract

The application of finite element analysis has been presented in multiscale metal forming 
process. A 3D finite element method (FEM) has first been proposed to analyze the defor-
mation mechanism of thin strip cold rolling with the consideration of friction variation 
in deformation zone. The crystal plasticity finite element method (CPFEM) is applied on 
the simulation of surface asperity flattening in the uniaxial planar compressing process. 
3D Voronoi tessellation and frictional modeling have been applied in microforming pro-
cesses. All simulation results from the proposed modeling have been validated by the 
related experimental results.

Keywords: multiscale, metal forming, FEM, friction variation, Voronoi tessellation, size 
effect

1. Introduction

Process modeling for the investigation and understanding of deformation mechanics has 
become a major concern in research, and the application of the finite element method (FEM) 
has been tremendously increased, particularly in the modeling of forming processes. There 
are many research studies on the principles and fundamentals of the simulation of metal 
forming, but only a few studies describe the application of FEM to the analysis and simulation 
of multiscale forming processes. The main objective of this chapter is to present the applica-
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Abstract

The application of finite element analysis has been presented in multiscale metal forming 
process. A 3D finite element method (FEM) has first been proposed to analyze the defor-
mation mechanism of thin strip cold rolling with the consideration of friction variation 
in deformation zone. The crystal plasticity finite element method (CPFEM) is applied on 
the simulation of surface asperity flattening in the uniaxial planar compressing process. 
3D Voronoi tessellation and frictional modeling have been applied in microforming pro-
cesses. All simulation results from the proposed modeling have been validated by the 
related experimental results.
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effect
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results where the friction is changeable in the roll bite [1], and the rolling pressure and model 
control accuracy will be influenced significantly. The deformation mechanics of thin foil [2] 
and the foil rolling with constant friction during cold rolling [3] have been investigated. The 
finite element method has been proposed in special-shaped strip rolling [4–6], particularly 
with variable friction models [5, 6]. Considering modeling accuracy, a friction variation model 
should be introduced in the cold rolling simulation of thin strip.

The application of crystal plasticity finite element method (CPFEM) has been introduced in 
the simulation of surface asperity flattening in cold quasistatic uniaxial planar compression 
process. Rate-dependent crystal plasticity constitutive models have been established on the 
basis of experimental conditions [7], and the influences of the reduction and strain rate on the 
surface roughness are investigated using the 3D crystal plasticity finite element method [8]. 
The experimental results are also employed in the 3D CPFEM model and compared with the 
simulation results.

Microforming differs from the conventional forming technology in terms of materials, pro-
cesses, tools, and machines and equipment due to the miniaturization nature of the whole 
microforming system [9]. It is impossible to scale down all parameters in the microforming 
process according to the theory of similarity due to the existence of size effects in microform-
ing processes. A number of unexpected problems in key aspects of mechanical behavior, tri-
bology, and scatter of material behavior are encountered [10, 11]. Challenges remain in the 
high efficiency manufacturing of high-quality microproducts due to the common problem of 
microscale size effects [9, 11], complexity of processes for making microproducts, and the ever 
increasing requirement to improve product quality and performance.

In Section 4, novel material model with grained heterogeneity in 3D Voronoi tessellation has 
been developed in the simulation of micro cross wedge rolling, springback analysis in micro 
flexible rolling and the micro V-bending processes considering grain boundary and genera-
tion process of grains in the workpiece [12–16]. The modified FE model in microforming has 
been applied with the consideration of size effects including material characterization, fric-
tion/contact characterization, and other size-related factors presented in Section 5. Open and 
closed lubricate pocket (OCLP) theory and size-dependent friction coefficient are proposed 
in micro deep drawing (MDD) and micro hydromechanical deep drawing (MHDD) [17–19]. 
Real microstructures and Voronoi structures are applied in microstructural models through 
the image-based modeling method [20, 21].

2. FEM analysis applied to thin strip rolling

The three-dimensional (3D) finite element method (FEM) has been used in the analysis of 
strip rolling, shape rolling, and slab rolling, and Jiang et al. [4–6, 22] used this finite element 
method to solve special-shaped strip rolling. This is a major drawback to producing accurate 
and reliable models for the cold rolling of thin strip due to the lack of well-defined friction 
boundary conditions. The 3D rigid plastic FEM has been proposed to solve the thin strip roll-
ing considering friction variation in the deformation zone, and the comparison between the 
computed results and measured values has also been made.
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In the friction variation model, the friction varies along the contact length of the deformation 
zone. The frictional shear stress model is modified as [5]:

   τ  f   =  K  i     
 m  1    σ  s   ____ 
 √ 
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 3  
   (  2 __ π    tan   −1  {  

 V  g   ___  k  i  
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where   m  1    is the friction factor;   σ  s    yields stress;   K  i    is a coefficient of the friction shear stress 
changes with   K  1    and   K  2    for forward slip zone and backward slip zone, respectively;   k  i    is a posi-
tive constant with   k  1    and   k  2    for forward slip zone and backward slip zone, respectively;   V  g    is 
relative slip velocity between the strip and the roll and can be obtained by:

   V  g   =  √ 
_______________

    ( v  x   sec𝛽𝛽 −  V  R  )    2  +   v  y     2     (2)

where   v  x    and   v  y    are the velocity components in the  x  and  y  directions, respectively,  β  is the 
angular position of the node,   V  R    is the tangential velocity of the roll, and the distribution of 
these frictional shear stress models is shown in Figure 1.

As shown in Figure 2, a quarter of the strip was studied. Isoparametric hexahedral elements 
were applied with eight Gauss points throughout the deformed workpiece. The element 
number in  x ,  y , and  z  directions are 10, 8, and 5, respectively, and totally there are 594 nodes 
and 400 elements.

From the simulation with low carbon steel, Figures 3 and 4 show the effect of reduction on 
rolling pressure and spread of strip for different   k  2    and constant   k  1    = 0.1.   k  2    influences the 
simulation results significantly where the rolling pressure increases with decreased k2. When 
k2 value is below 0.1, the rolling pressure calculation value is in agreement with the measured 
one. The spread calculation value for   k  2    = 0.1 is also close to the measured one when the reduc-
tion is less than 43%. For   k  2    = 0.1, the change of   k  1    also has an effect on the simulation results, 
as shown in Figures 5 and 6. It can be seen that the calculated results are in good agreement 
with the measured values for   k  1   = 0.1. Therefore, the simulation results are close to measured 
values when   k  1    and   k  2    are less than 0.1.

The rolling of copper strip is simulated with work roll diameter 158.76 mm, width of strip 
76.2 mm, rolling speed 0.16 m/s, and friction factor   m  1    = 0.4. For case 1,   K  1    =   K  2    = 1.0 and   k  1    =   k  2    = 0.1  

Figure 1. Frictional shear stress models.
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and case 2,   K  1   = 0.7,   K  2    = 1.4, and   k  1    =   k  2    = 0.1. The friction variation in the roll bite has a signifi-
cant effect on the spread as shown in Figure 7, where the spread calculated through the con-
stant friction model is greater than the result obtained from the friction variation one, and the 
spread increases with an increase of reduction. The spread decreases when   K  1    increases and   K  2    
decreases (in case 2) due to the increased forward slip as shown in Figure 8, more metal flows 
along the rolling direction, resulting in a decrease of the transverse flow of metal. It is found 
in Figure 7 that the effect of friction variation on spread is not significant for reduction < 25%.

Figure 2. One-quarter of the deforming workpiece.

Figure 3. Effect of K2 on rolling pressure.
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Figure 4. Effect of K2 on spread.

Figure 5. Effect of K1 on rolling pressure.

Figure 6. Effect of K1 on spread.
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3. Application of crystal plasticity finite element method (CPFEM)

Little research has been done on the surface development of constraint surface (surface asperity 
flattening process) with CPFEM. Most current CPFEM research focus on the development of free 
surface (surface roughening) by uniaxial and biaxial tensile deformation. In particular, there are 
almost no reports that mention the relationship between the orientation of surface grains and 
surface roughness. The texture development of the constraint surface is also a very interesting 
topic. In metal forming, the strain rate contributes significantly to the workpiece work harden-
ing, but there is little research on how the strain influences the surface roughness. A physical sim-
ulation has been conducted on an INSTRON servo-hydraulic testing machine by using a channel 
die. The relationship between the surface roughness and related parameters such as gauged 
reduction, friction, texture (grain orientation), and grain size and strain rate has been identified.

The methodology of crystal plasticity finite element modeling (Figure 9) follows the rules as: 
rate-dependent crystal plasticity constitutive models will be written into the UMAT and then 
used in the ABAQUS main program (geometric model). The geometric model is established 
based on experimental conditions (reduction, strain rate, friction, original surface rough-
ness, and original texture information). The modeling results will be compared with the 

Figure 8. Effect of reduction on forward slip.

Figure 7. Effect of reduction on spread.
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 experimental results. Furthermore, the relationship between the surface asperity flattening 
process (surface roughness) and the above-mentioned parameters will be investigated. The 
mechanism of surface asperity flattening will be analyzed.

Flow rule of plastic deformation gradient   F   p   can be expressed [7]:

    F   ̇    p   F    p   −1   =   ∑ 
α=1

  
n
      γ   (α)     S   (α)    ⨂  m  α     ̇    (3)

where    γ   (α)      ̇    is the plastic shear rate of the  α th slip system.

The relationship between the shear rate    γ   (α)      ̇    and the resolving shear stress   τ   (α)     is formulated 
below [7]:

    γ   (α)    =   ̇     γ  0     ̇   sgn  ( τ   (α)   )    |  
 τ   (α)    ___  S   (α)   

  |    
1/m

   (4)

For cubic metal, the hardening equation of the slip system can be simplified as [7]:

    S   (  α )     ´   =  ∑   
          β=1

  
        n

   h  αβ    |    γ   (  β )     ´   |     (5)

where   h  𝛼𝛼𝛼𝛼    is the hardening matric of the slip system  α  led by the slip system  β .

Figure 9. Methodology of crystal plasticity finite element modeling.
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3.1. Three-dimensional (3D) model

A three-dimensional model based on crystal plasticity finite element (CPFE) is proposed 
according to the atomic force microscopy (AFM) experimental values where the results are 
sorted and applied in MATLAB for modeling the surface morphology. Every four neighbor-
ing elements at the top surface have one orientation for keeping the weight function of ori-
entation in the model. Some elements on the top surface are refined. There are 840 C3D8R 
integration elements; among them 280 elements are with 70 Euler angle triplets and the others 
are featured by one element with one orientation. Both the tool and mold have 460 discrete 
rigid elements. A spatial orientation distribution has been assigned for the workpiece based 
on the electron backscatter diffraction (EBSD) experimental results.

The relationship between the AFM measured results, the MATLAB calculated results, and 3D 
CPFE model is shown in Figure 10. Direction 1 corresponds to the rolling direction, direction 
2 to the normal, and direction 3 to the transverse direction. The three-dimensional model 
is 100 μm × 100 μm × 100 μm in size. Due to the small size of the sample, only a quarter of 
practical samples were chosen for simulation. It is considered that during the modeling, the 
combined slip system includes 12 {110} <111> slip systems (slip planes and slip directions). A 
total of 630 Euler angle triplets from the experimental results were input into ABAQUS as the 
initial crystallographic condition of the 3D model [7, 8]. All the parameters of simulation are 
taken from Table 1 as a reference.

Figure 10. Relationship between AFM, MATLAB, and the 3D CPFE model.
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3.2. Results and discussion

3.2.1. Influence on surface roughness

Figure 11 shows that the surface asperity of the samples tends to be flattened with an increase 
of reduction. With an increase in reduction, the sample with a higher strain rate has a higher 
flattened rate of surface asperity than the sample with a lower strain rate. Increasing the applied 
macroscopic strain rate will increase the shear rate of lip systems in the surface area. Then 
under the same reduction, the sample deformed at a higher strain rate will activate more slip 
systems in the surface area. When the reduction is 40%, the surface roughness Ra of the sample 
with a higher strain rate is 0.16 μm, while the sample with a lower strain rate is only 0.09 μm.

3.2.2. Influence of the strain rate on hardness

Figure 12 shows the influence of the strain rate on the hardness of the sample, and the influ-
ence is nonlinear. There are different stages in the evolution of hardness because when the 

Parameter Value Parameter Value

  C  
11

   106,750 MPa   s  
0
   12.5 MPa

  C  
22

   60,410 MPa   h  
0
   60 MPa

  C  
44

   28,340 MPa   s  
s
   75 MPa

   γ   ̇   
0
   0.001  a 2.25

 m 0.02   q  
1
   1.0 (coplanar)

1.4 (no coplanar)

Table 1. Material parameter of aluminum.

Figure 11. Influence of strain rate on surface roughness.
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Figure 10. Relationship between AFM, MATLAB, and the 3D CPFE model.
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3.2. Results and discussion
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3.2.2. Influence of the strain rate on hardness

Figure 12 shows the influence of the strain rate on the hardness of the sample, and the influ-
ence is nonlinear. There are different stages in the evolution of hardness because when the 

Parameter Value Parameter Value

  C  
11

   106,750 MPa   s  
0
   12.5 MPa

  C  
22

   60,410 MPa   h  
0
   60 MPa

  C  
44

   28,340 MPa   s  
s
   75 MPa

   γ   ̇   
0
   0.001  a 2.25

 m 0.02   q  
1
   1.0 (coplanar)

1.4 (no coplanar)

Table 1. Material parameter of aluminum.

Figure 11. Influence of strain rate on surface roughness.
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reduction is lower (less than 60%), increasing the strain rate generally increases the hardness. 
At a larger reduction, increasing the strain rate will decrease the hardness under the same 
reduction [23]. When the reduction is lower, increasing the strain rate can increase the shear-
ing rate of slip systems and also increase the density of dislocation. However, when reduction 
exceeds a certain value, the dislocation motion will overcome the barrier of grain boundary. 
In some areas, the density of dislocation decreases.

3.2.3. Effect of strain on surface roughness (Ra)

In Figure 13, both the experimental and simulation results show the same tendency that 
increasing the strain rate can lead to a decrease in surface roughness under the same reduc-
tion. When reduction is less than 10%, the effect of the strain rate on surface roughness is 
insignificant, where mostly elastic deformation influences the flattening behavior of surface 
asperity. In this case, the increase of strain rate affects insignificantly the elastic deforma-
tion surface roughness. Plastic deformation plays an important role on surface area when the 
reduction exceeds 10%. When slip is the only deformation mode, the increased strain rate can 
result in more slip through the increased slip shear rate. Therefore, the surface roughness will 
decrease greatly with an increase in the strain rate.

3.2.4. Effect of the strain rate on texture

Figure 14 shows that the influence of strain rate on the pole figures with at strain rate of 
0.001 s−1 and 0.01 s−1 is not significant. In this case, every experiment has been carried out at 
room temperature, and the two applied strain rates are quite small. Deformation under the 
two strain rates belongs to the quasistatic deformation, and the difference between the two 
applied strain rates is small compared to the other dynamic deformation.

Figure 12. Influence of the strain rate on hardness (a) valley and (b) ridge.
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Figure 13. Effect of the strain rate on surface roughness Ra: (a) experimental and (b) simulation.

Figure 14. Effect of the strain rate on texture (reduction 60% without lubrication).
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Figure 13. Effect of the strain rate on surface roughness Ra: (a) experimental and (b) simulation.

Figure 14. Effect of the strain rate on texture (reduction 60% without lubrication).
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Figure 15. Comparison of the experimental pole figures with the simulation results.
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3.2.5. Analysis of pole figure

Normally, the close-packed plane in FCC metal is {111}. In this case, the pole figure {111} is used for 
the analysis. Before compression, the sample has a cubic texture {111}<001> as shown in Figure 16. 
The predicted result has been compared to the experimental result; both of them show the same 
texture development. In the pole figure {111}, with an increased reduction, the brass orientation 
{110}<112> of silk texture becomes obvious while the cubic texture {001}<100> gets weaker. When 
the reduction reaches 60%, the brass orientation {110}<112> of silk texture shows extreme strong 
around a and d areas shown in Figure 15. Additionally, some S orientations {123}<634> can be 
seen in b and c areas. These results are basically in the agreement with the Sarma and Dawson’s 
results [7, 8], which show a consistent development in hardness and grain size.

4. Novel material model based on Hall-Petch relationship in 
microforming

Size effects in microforming cannot be conveyed by the classical theory of continuum plastic 
mechanics, which is scale-independent. The specimen size effects on the flow stress of poly-
crystalline Cu-Al alloy have been investigated, and the fact that the flow stress decreases 
with the dimensional reduction of specimen has been explained by the proposed affect zone 
model [24]. A flow stress model, a function of the ratio of the sheet thickness to grain size, 
has been established based on Hall-Petch relationship, dislocation pile-up theory, and affect 
zone model [25]. A mixed material model based on modified Hall-Petch relationship, surface 

Figure 16. FE model in grained heterogeneities of workpiece in MCWR.
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layer model, and grained heterogeneity is proposed, and the 3D aggregate of polycrystalline 
is represented by a Voronoi tessellation. The effect of grain size on flow stress is an important 
aspect of polycrystalline metal plastic deformation. The simulation of microforming processes 
(micro cross wedge rolling (MCWR), micro flexible rolling and micro V-bending) have been 
conducted with the consideration of size effects from grain size and feature size. The valida-
tion of the proposed material model will be conducted by physical experiments through the 
comparison between experimental results and simulation ones.

Fundamentals have been developed to build up a FE model considering the occurrence of size 
effects at microscale by using the ANSYS/LS-DYNA program. The newly developed material 
model is implemented considering grained heterogeneity. As shown in Figure 16, two form-
ing tools and a cylindrical workpiece of 0.831.2 mm2 are meshed in solid element 164 with an 
8-noded structure. In order to reduce computational time and ensure stability in large defor-
mation, viscous hourglass control and one-point integration were applied for all elements. 
For each grain size, 10 different polycrystalline aggregates of workpiece were generated sto-
chastically by the algorithm of 3D Voronoi tessellation. The simulation was performed by 
applying equal and opposite velocities to forming tools in the horizontal (x) direction. In 
whole process, the workpiece is left unconstrained, and the tools are held in the vertical (y) 
direction and in the out-of-plane (z) direction [12]. Figure 17 shows the process of forging 
shape during micro cross wedge rolling.

Laminar cricoid distribution of strain is typical in conventional CWR with homogeneous mate-
rial properties and also exists in MCWR where billet material is homogeneous (Figure 18a). 
However, the grained heterogeneity effects on the metal deformability and strain distribution 
should be considered in microscale forming. It is shown in Figure 18b–d that the continuous 
laminar distribution of strain in the workpiece has been disturbed due to the inhomogeneous 

Figure 17. Process of forging shape during MCWR.
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mechanical properties [12–14]. The location of the maximum strain and stress cannot be deter-
mined easily as that in the conventional CWR process.

The stress and strain distribution on the profile for the halved 250 μm thick workpiece consist-
ing of grains with the average grain size of 250 μm is illustrated in Figure 19. The stress-strain 
distribution is inhomogeneous because only some grains are in plastic regime while others 
still undergo elastic strain regime during the flexible rolling process [15].

Figure 18. Distribution of effective strain of the medial section in axial direction (a) uniform material properties and  
(b, c, d) inhomogeneous material properties with grain sizes of 6, 40, and 120 μm, respectively.

Figure 19. Stress-strain distribution on the profile after springback in micro flexible rolling: (a) von Mises stress 
distribution and (b) equivalent plastic strain distribution.
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still undergo elastic strain regime during the flexible rolling process [15].
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Figure 19. Stress-strain distribution on the profile after springback in micro flexible rolling: (a) von Mises stress 
distribution and (b) equivalent plastic strain distribution.
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Figure 20 shows the tension effect on the average springback from the proposed models. 
Regardless of the initial thickness and pass reduction, the springback decreases moderately 
when the front and back tensions increase in increments of 25 MPa from 0 to 100 MPa. For 
thicker workpiece, front and back tensions have a significant influence on eliminating the 
springback due to that front and back tensions are able to improve metal flow and relax resid-
ual stresses and then increase the thickness precision of rolled workpiece.

In Figure 21, it can be seen that the thickness springback increases as the initial workpiece 
thickness decreases. For a certain grain size, the grain number decreases in thickness direction 
for less thick workpiece. Therefore, the effect of each single grain plays a very significant role 
on the springback resulting in larger springback value. For each thickness, the curves are in 
similar trends under different reductions, and the springback difference is below 10.5% for 
each grain size, which is close to the simulation result.

Micro V-bending process is simulated with an implicit FEM package: ABAQUS/Standard. 
The processing parameters in the simulation are the same as those in physical experiments, 
and the value of coefficient of friction is set to be 0.02. The FE model of micro V-bending 
with Voronoized specimen is shown in Figure 22a. Figure 22b illustrates the grain heteroge-
neity in Voronoized specimen, among which different colors represent different mechanical 
properties of grains. It is shown in Figure 23 that the upper bound grain plastic property is 
illustrated by dark blue (six grains), while light blue (six grains) is for the lower bound grain 
plastic property [16]. The FE model is close to real physical test condition as the right and 
the left sides of the sample are not equal in terms of grain size and the scatter of mechanical 
properties of grains, rather than set up as a traditional asymmetrical one.

Figure 24 shows the simulation result of micro V-bending. The inhomogeneous deformation 
occurs significantly during bending process. The different colors in middle deformation zone 
represent that different grains have undergone different deformation because of grain hetero-
geneity. In the bending process, some grains first reach their yield stress and undergo plastic 
deformation prior to other grains. Even the workpiece has started the plastic deformation, 
some grains with higher yield stress may still be under elastic stress condition. This sort of 
grain heterogeneous deformation could influence the springback significantly and should be 
taken into account in numerical simulation of microforming [16].

Figure 20. Relationship between average springback in thickness direction and front and back tensions for initial 
workpiece thickness of 100, 250, and 500 μm: (a) 20% reduction and (b) 50% reduction.
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Figure 21. Springback in thickness direction versus gain size for initial workpiece thickness of 100 μm: (a) 20% reduction 
and (b) 50% reduction.

Figure 22. FEM simulation of micro V-bending with (a) Voronoi tessellations and (b) grain heterogeneity.
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Figure 21. Springback in thickness direction versus gain size for initial workpiece thickness of 100 μm: (a) 20% reduction 
and (b) 50% reduction.

Figure 22. FEM simulation of micro V-bending with (a) Voronoi tessellations and (b) grain heterogeneity.
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Seven plastic properties are obtained by experiment and calculation, and they are randomly 
distributed in bending specimens. Specimens with different random grain heterogeneity dis-
tributions are exhibited in Figure 25, which are called models “1,” “2,” “3,” “4,” “5,” “6,” and 
“7,” respectively. Seven groups of micro V-bending FE simulations have been conducted with 
above-mentioned seven specimens individually. Springback angles of seven simulations and 
an average value are measured and calculated, as shown in Table 2.

Figure 23. Grain properties randomly assigned on a Voronoized bending sample.

Figure 24. (a) Final angle after springback and (b) von Mises stress distribution.
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5. Modified FEM with the consideration of material and lubrication 
characterization in MDD and MHDD

Figure 26 represents a typical EBSD microstructure. First, the EBSD image was input into the 
MATLAB software, and the binary image was obtained with black grain boundaries and white 
grains. Noise and small holes were eliminated in the transformation. Then, the Moore-Neighbor 
tracing algorithm modified by Jacob’s stopping criteria was applied in the binary image treat-
ment. As shown in Figure 26b, the information of grains and individual closed subareas, 
including single grain’s area, geometrical center and geometrical orientation, was detected and 
sorted in MATLAB. The blue ports in Figure 26b are the grain’s geometrical centers [9, 20, 21].

Figure 27 displays the Voronoi structures and their corresponding FE models with average 
grain sizes of 10, 20, and 40 μm, respectively.

After annealed at 1100°C, the 50 μm thick blanks, with equiaxed crystals microstructure and 
average grain size of 40 μm, were drawn into micro cups. The drawn cup mouth is shown 
in Figure 28a, and the maximum thickness distributions of drawn cups are illustrated in 
Figure 28b–d, which represented the new developed model, a Voronoi model without the 
consideration of grain boundaries and a normal model in homogeneous material properties, 
respectively. The comparison of the maximum wall thickness between the simulation and 
the experimental results has been conducted. The localized deformation is ignored, and the 
maximum thickness was averaged with the lowest peak thickness values for all the simula-
tion cases. It can be seen that the new model and the Voronoi model considered microscopic 
heterogeneity have higher maximum thickness than that in the normal model [9], where the 
largest thickness is obtained from the Voronoi model without grain boundaries buffer.

Figure 25. Bending specimens with different gain heterogeneity distributions.

Distribution group 1 2 3 4 5 6 7 Average

Springback angle 30.52 27.37 32.09 31.78 33.44 28.65 34.12 31.14

Table 2. Springback angles from FE simulation (degree).
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The material surface consists of lots of peaks and valleys called roughness in microforming. 
The roughness and the extent of the valleys get larger compared to the scaled down  workpiece 
size. As shown in Figure 29, the lubricant cannot be retained in the valleys connected to the 
edge of the blank, and this area is called open lubricant pockets (OLPs) [9, 18, 19]. The  fraction 
of OLPs increases with the decrease in specimen size. The friction force increases because the 
lubricant cannot be kept during microscale forming process. Therefore, the OLPs must be 
taken into account when studying the tribological behavior of microforming.

Figure 30 shows schematic of evaluation test for OLPs utilizing liquid where the blank is 
compressed by the tools under approximately 20 MPa contact pressure. During experiment, 
the liquid is filled into the tool first, and the liquid intruded area is colored. Then the blank 

Figure 26. (a) Microstructure of a sample from EBSD, (b) its corresponding geometry detected by MATLAB and (c) 
corresponding simulation model.

Figure 27. Voronoi structures (in the first line) and their corresponding FE models (in the second line): average grain 
sizes of (a) 10, (b) 20, and (c) 40 μm.
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with visualized, and liquid intruded area is taken out when the liquid dries out. After this, 
the blank surface is observed under a digital microscope, and the pictures are digitized [9, 17].

Figure 31 illustrates the effects of scale factor on the normalized punch force-stroke curves 
at MDD with lubrication and MHDD with radial pressure. The shape of punch force-stroke 
curves in λ = 1, 2 is as similar as that with λ = 50 at MDD and MHDD. In these conditions, 
only the inner or outer pockets exist in the flange area. Therefore, the coefficient of friction in 
the flange area is almost uniform. On the other hand, in λ = 5, the inner and outer pockets are 

Figure 28. (a) Drawn cup with 1100°C annealed blank and maximum thickness distribution from the simulation with (b) 
the developed new model, (c) the Voronoi model, and (d) the normal model.

Figure 29. The change of fraction of OLPs in flange area with the decrease of blank size.
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only the inner or outer pockets exist in the flange area. Therefore, the coefficient of friction in 
the flange area is almost uniform. On the other hand, in λ = 5, the inner and outer pockets are 

Figure 28. (a) Drawn cup with 1100°C annealed blank and maximum thickness distribution from the simulation with (b) 
the developed new model, (c) the Voronoi model, and (d) the normal model.

Figure 29. The change of fraction of OLPs in flange area with the decrease of blank size.
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mixed in the flange area. In the initial process, the inner pockets mainly exist at die shoulder 
and flange area and affect the tribological behavior significantly. Therefore, the punch force-
stroke curves are as similar with that in macroscale. However, in the middle process, the ratio 
of outer pockets increases. As a result, the tribological behavior shifts to that in microscale. 
This behavior appears at both MDD and MHDD. This causes the maximum punch force shifts 
as shown in Figure 31a. These results indicate the ratio of the outer pockets to the flange area 
during the forming process influences the tribological behavior of the MHDD as shown in 
Figure 31b.

Figure 32a shows the tribological size effects in MDD and MHDD. With the decrease in the 
size, the friction force increases in case of MDD with lubrication because the ratio of outer 
pockets increases. When λ = 1, 2, the maximum effective punch forces in MDD with the dry 
friction and lubrication become the same because only the outer pockets exist at flange area. 
On the other hand, with the decrease in the size, the friction force in MHDD decreases. It can 
be seen the tribological size effects in MHDD have an opposite behavior with MDD. In MHDD, 
the fluid medium is provided to the outer pockets whose ratio is high in microscale. This 

Figure 30. Schematic of evaluation test for OLPs utilizing liquid.

Figure 31. Effects of scale factor λ on normalized punch force-stroke curve at different lubrication conditions (a) MDD 
with lubrication, and (b) MHDD with radial pressure.
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caused the decrease in friction force in MHDD. Figure 32b shows the effect of the  lubrication 
type on friction force in MHDD. The decrease of friction force in radial pressure condition 
is much larger than that in leakage condition. Also in radial pressure condition, the friction 
force significant decreases from λ = 5–1. It is because the contact pressure between the blank 
and die at die shoulder is higher than that between the blank and blank holder in the small 
Dp/t. Therefore, the decrease in coefficient of friction at die shoulder is especially important to 
decrease the friction force in MHDD. According to the above-mentioned results, the friction 
force can decrease with the decrease in size in MHDD, while it only increases in MDD. The 
friction force can be reduced by filling the fluid medium in the outer pockets in MHDD [19].

6. Conclusions

This chapter presents the applications of FEM in metal-forming analysis from macroscale to 
microscale, including FEA software programs used, simulation approach and results obtained, 
and their validation for metal-forming processes. A 3D rigid plastic FEM is used with the 
consideration of friction variation models in the case of work roll kiss occurrence during cold 
rolling of thin strip. The modeling of the friction variation can produce a more accurate model 
that can improve the accuracy of simulation results. In the CPFEM, the simulation results 
show that with an increase in reduction, the cubic texture {001}<100> is weak, while the brass 
orientation {110}<112> becomes strong. The simulation result agrees with the experimental 
one. When reduction exceeds 60%, most grains have plastic slips. With an increase in reduc-
tion, both the grain size and surface roughness decrease while the flow stress increases. Novel 
material model with grained heterogeneity in 3D Voronoi tessellation has been developed in 
the simulation of micro cross wedge rolling, springback analysis in thickness direction dur-
ing micro flexible rolling process and the micro V-bending process considering grain bound-
ary and generation process of grains in the workpiece. Real microstructures and Voronoi 
structures are applied in microstructural models through image-based  modeling method and 

Figure 32. Tribological size effects at different lubrication conditions in MDD and MHDD.
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modified FE with the consideration of size effects including material  characterization,  friction/
contact characterization, and other size-related factors. Open and closed lubricate pocket the-
ory and size-dependent coefficient of friction are also proposed in micro deep drawing and 
micro hydromechanical deep drawing.
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Abstract

In this chapter, a three-dimensional finite element model is developed to simulate the
thermal behavior of the molten pool in selective laser melting (SLM) process. Laser-based
additive manufacturing (AM) is a near net shapemanufacturing process able to produce 3D
objects. They are layer-wise built through selective melting of a metal powder bed. The
necessary energy is provided by a laser source. The interaction between laser and material
occurs within a few microseconds, hence the transient thermal behavior must be taken into
account. A calibration procedure is carried out to fit the numerical solution with the exper-
imental data. Once the calibration has corrected the thermal parameters, a dynamic mesh
refinement is applied to reduce the computational cost. The scanning strategy adopted by
the laser is simulated by a path simulator built using MatLab®, while numerical analysis
is carried out using ANSYS®, a commercial finite element software. To improve the perfor-
mance of the simulation, the two codes interact each other to solve the analysis. Temperature
distribution and geometrical feature of the molten pool under different process conditions
are investigated. Results from the FE analysis provide guidance for setting up the optimi-
zation of process parameters and develop a base for further residual stress analysis.

Keywords: selective laser melting, titanium, CAD geometry, nonlinear transient
thermal analysis, dynamic mesh refinement, parameters calibration

1. Introduction

Additive manufacturing is a 3D manufacturing process able to produce prototypes directly
from a CAD file. Powder bed fusion (PBF) processes were, among others, the first commercial-
ized AM processes. Nowadays, the most important powder bed fusion process is selective
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laser melting (SLM). Its basic method of operation is schematically shown in Figure 1 and,
generally, all other powder bed fusion processes follow the same basic approach.

The process fuses thin layers (typically 30÷60 μm thick) of metallic powder, which has been
spread across the build area using a powder depositor and a leveler (wiper). The building area
is enclosed in a chamber filled with inert gas to minimize oxidation and degradation of the
powdered material. The base plate is heated in order to maintain the powder and the fabri-
cated component at high temperature. Sometimes, infrared heaters are placed above the build
platform to increase the temperature around the part being formed. The temperature within
the chamber must be controlled to minimize the laser power requirements of the process
(when preheating, less laser energy is required for fusion) and to prevent warping of the part
due to non-uniform thermal expansion (curling).

Once the layer has been deposited and adjusted by the wiper, a laser beam is directed onto the
powder bed and is moved using galvanometers in such a way that it thermally fuses the
material to form the slice cross-section. Surrounding powder remains loose and serves as a
support for subsequent layer deposition. After completing a layer, the build platform (base
plate) is lowered and a new layer is laid. The beam scans the subsequent slice cross-section and
the process repeats until the complete part is built. A cool-down period is typically required to
allow the parts to uniformly achieve an adequately low temperature to be handled and
exposed to ambient atmosphere. Finally, the parts are removed from the powder bed, loose
powder is cleaned off the parts, and further finishing operations, if necessary, are performed.

Since the introduction of PBF, each new technology developer has introduced competing
terminology to describe the mechanism by which fusion occurs, with variants of sintering and
melting being the most popular. However, the use of a single word to describe the powder
fusion mechanism is problematic as multiple mechanisms are possible. There are four different
fusion mechanisms that are present in PBF processes. These include solid-state sintering,
chemically-induced binding, liquid-phase sintering, and full melting [1, 2].

Figure 1. Schematic drawing of SLM process.
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Since the attention of this chapter is mainly focused on SLM, the only full melting mechanism
will be considered in detail. Full melting is indeed the mechanism most commonly associated
with PBF processing of engineering metal alloys. In SLM, the entire region of material
subjected to the heat source is melted to a depth exceeding the layer thickness. The thermal
energy of subsequent scans of a laser is typically sufficient to remelt a portion of the previously
solidified material. As a consequence, this type of melting is very effective at creating well-
bonded, high-density structures.

Use of optimum process parameters is extremely important for producing satisfactory parts
using PBF processes. Among them, special attention must be paid to the scanning strategy,
viz. the movements applied by the laser on the powder surface. The path followed by the
laser greatly influences the surface heat distribution, as it is responsible for highly localized
temperature peaks. Scanning often occurs in two modes, contour and fill mode, as shown in
Figure 2.

In contour mode, the outline of the part cross-section is scanned. This is typically done for
surface finishing reasons around the perimeter. The rest of the cross-section is then scanned
using a raster technique, whereby one axis is incrementally moved across the part being
formed and the other axis is continuously swept back and forth. The contour can be scanned

Figure 2. An example of scanning strategy: fill mode and contour mode.
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generally, all other powder bed fusion processes follow the same basic approach.

The process fuses thin layers (typically 30÷60 μm thick) of metallic powder, which has been
spread across the build area using a powder depositor and a leveler (wiper). The building area
is enclosed in a chamber filled with inert gas to minimize oxidation and degradation of the
powdered material. The base plate is heated in order to maintain the powder and the fabri-
cated component at high temperature. Sometimes, infrared heaters are placed above the build
platform to increase the temperature around the part being formed. The temperature within
the chamber must be controlled to minimize the laser power requirements of the process
(when preheating, less laser energy is required for fusion) and to prevent warping of the part
due to non-uniform thermal expansion (curling).

Once the layer has been deposited and adjusted by the wiper, a laser beam is directed onto the
powder bed and is moved using galvanometers in such a way that it thermally fuses the
material to form the slice cross-section. Surrounding powder remains loose and serves as a
support for subsequent layer deposition. After completing a layer, the build platform (base
plate) is lowered and a new layer is laid. The beam scans the subsequent slice cross-section and
the process repeats until the complete part is built. A cool-down period is typically required to
allow the parts to uniformly achieve an adequately low temperature to be handled and
exposed to ambient atmosphere. Finally, the parts are removed from the powder bed, loose
powder is cleaned off the parts, and further finishing operations, if necessary, are performed.

Since the introduction of PBF, each new technology developer has introduced competing
terminology to describe the mechanism by which fusion occurs, with variants of sintering and
melting being the most popular. However, the use of a single word to describe the powder
fusion mechanism is problematic as multiple mechanisms are possible. There are four different
fusion mechanisms that are present in PBF processes. These include solid-state sintering,
chemically-induced binding, liquid-phase sintering, and full melting [1, 2].

Figure 1. Schematic drawing of SLM process.
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Since the attention of this chapter is mainly focused on SLM, the only full melting mechanism
will be considered in detail. Full melting is indeed the mechanism most commonly associated
with PBF processing of engineering metal alloys. In SLM, the entire region of material
subjected to the heat source is melted to a depth exceeding the layer thickness. The thermal
energy of subsequent scans of a laser is typically sufficient to remelt a portion of the previously
solidified material. As a consequence, this type of melting is very effective at creating well-
bonded, high-density structures.

Use of optimum process parameters is extremely important for producing satisfactory parts
using PBF processes. Among them, special attention must be paid to the scanning strategy,
viz. the movements applied by the laser on the powder surface. The path followed by the
laser greatly influences the surface heat distribution, as it is responsible for highly localized
temperature peaks. Scanning often occurs in two modes, contour and fill mode, as shown in
Figure 2.

In contour mode, the outline of the part cross-section is scanned. This is typically done for
surface finishing reasons around the perimeter. The rest of the cross-section is then scanned
using a raster technique, whereby one axis is incrementally moved across the part being
formed and the other axis is continuously swept back and forth. The contour can be scanned

Figure 2. An example of scanning strategy: fill mode and contour mode.
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either before or after the cross-section, depending on the surface characteristics of the part
being done. Multiple scanning strategies are available for the fill section as shown in Figure 3.

Since high thermal gradients result in large residual stresses, a great effort must be made to
well define the movement of the heat source on the surface. The choice of the path is not
unique and it must be done trying to find the most suitable one depending on the cross-section
characteristics. Moreover, the scan strategy rotates at each subsequent layer as it is explained in
Figure 4.

The rotation helps to balance the temperature of the working area. Despite the rotation, the path
increment in horizontal direction remains constant and opposite to the gas flux. Consequently,
the working area is kept clean because the melting slags drop far from the loose powder. The
user can set the rotation angle. The angle used in this study has been suggested by the machine
manufacturer and it is equal to 67�, so the rotation scheme repeats every 180 layers.

Nowadays, SLM specifically permits to manufacture highly customized products that are almost
ready to use rather than mere prototypes. An object with very complex shape, which is almost
impossible to produce with traditional technologies, can be easily created saving cost and time.
Despite the benefit, these manufacturing processes are very problematic to control because of the
high number of involved parameters. The numerical simulation helps to reduce the number of
experimental trial-and-error tests necessary to optimize the process, minimizing the time and
cost of manufacture of the final product while maintaining its quality unmodified. The thermal

Figure 3. The four different scanning strategies: meander, stripes, chess, and contour.

Figure 4. The meander path rotation and the oriented path progress.
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behavior of the molten pool is one of the most critical factors influencing the reliability of the
part, as it affects geometrical accuracy, material properties, and residual stresses. In addition, the
heat exchange between laser and powder is a very complex process that involves a lot of vari-
ables. Despite direct measurements of the thermal field are available, this is not enough to fully
understand the molten pool behavior. Finite element analysis (FEA) is a powerful tool to gather
more information about the process [3].

The first studies about numerical simulation applied to PBF were developed during the
1990s of the last century. In 1998, Williams and Deckard [4] were the first that setup a
framework for the numerical analysis applied to PBF. The numerical model was able to
study the effects of process parameters on the selective laser sintering (SLS). Afterward,
Shiomi and Yoshidome proposed a model where melting and solidifying process could be
studied, using FE analysis [5]. In this chapter, the behavior of a molten pool due to a single
laser spot is considered. The laser works in pulse mode and the melted part of the powder
are assumed to change into a sphere that increases the dimensions after each pulsed irradi-
ation. Fisher and Romano [6] investigated the variation in sintering process using pulse and
continuous heat source. They noticed that during continuous wave interaction, the grains
are homogeneously heated (the authors use an analogy to distinguish between different
heating: they say that with homogeneously heating, the grains are cooked), while during
pulsed laser interaction, the heating is no longer homogeneous (the grains are roasted). As
mentioned before, the interaction of laser radiation with powder bed is a very complex
mechanism greatly responsible for the mechanical characteristics of the final product.
Gusarov et al. made a great effort in developing a numerical model that is able to simulate
the heat transfer between laser and powder [7, 8]. It is worth mentioning that all the new
models developed for the SLM simulation always refer to the models that have just been
developed for the welding process [9] inasmuch SLM can be considered as a series of micro
welding processes. Among all the numerical frameworks proposed in the literature, it seems
that the most powerful tool for the process simulation is the finite element method. The first
example of 3D finite element analysis is the paper of Contuzzi and Campanelli [10]. The aim
of this study is to evaluate the temperature evolution in a 3D part being formed with SLM
process. The molten liquid phase is considered by introducing the specific latent heat while
the thermal properties are kept constant, aiming to reduce the computational cost of the
analysis. The model proposed by Kolossov and Boillat [11] instead, allows for the nonlinear
behavior of thermal conductivity and specific heat due to the temperature change and phase
transformation. Introducing nonlinear behavior for the material increases the reliability of
the simulation. However, the measurements of the thermal properties are greatly affected by
uncertainty. The thermal properties can be directly measured [12–14] or calculated with
thermal models [15]. A more precise thermal conductivity of the powder bed, named effec-
tive thermal conductivity, can be calculated using the relation proposed by Dai and Shaw
[16]. Their model encompasses the effect of temperature- and porosity-dependent thermal
conduction and radiation as well as the temperature-dependent natural convection. Not
only material properties but also heat source definitions greatly affect the numerical results.
Hashemzadeh and Chen [17] collected a variety of heat distributions that can be used to
model the heat exchange. Articles [11] and [18] are an example where the heat source can be
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either before or after the cross-section, depending on the surface characteristics of the part
being done. Multiple scanning strategies are available for the fill section as shown in Figure 3.

Since high thermal gradients result in large residual stresses, a great effort must be made to
well define the movement of the heat source on the surface. The choice of the path is not
unique and it must be done trying to find the most suitable one depending on the cross-section
characteristics. Moreover, the scan strategy rotates at each subsequent layer as it is explained in
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The rotation helps to balance the temperature of the working area. Despite the rotation, the path
increment in horizontal direction remains constant and opposite to the gas flux. Consequently,
the working area is kept clean because the melting slags drop far from the loose powder. The
user can set the rotation angle. The angle used in this study has been suggested by the machine
manufacturer and it is equal to 67�, so the rotation scheme repeats every 180 layers.

Nowadays, SLM specifically permits to manufacture highly customized products that are almost
ready to use rather than mere prototypes. An object with very complex shape, which is almost
impossible to produce with traditional technologies, can be easily created saving cost and time.
Despite the benefit, these manufacturing processes are very problematic to control because of the
high number of involved parameters. The numerical simulation helps to reduce the number of
experimental trial-and-error tests necessary to optimize the process, minimizing the time and
cost of manufacture of the final product while maintaining its quality unmodified. The thermal
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behavior of the molten pool is one of the most critical factors influencing the reliability of the
part, as it affects geometrical accuracy, material properties, and residual stresses. In addition, the
heat exchange between laser and powder is a very complex process that involves a lot of vari-
ables. Despite direct measurements of the thermal field are available, this is not enough to fully
understand the molten pool behavior. Finite element analysis (FEA) is a powerful tool to gather
more information about the process [3].

The first studies about numerical simulation applied to PBF were developed during the
1990s of the last century. In 1998, Williams and Deckard [4] were the first that setup a
framework for the numerical analysis applied to PBF. The numerical model was able to
study the effects of process parameters on the selective laser sintering (SLS). Afterward,
Shiomi and Yoshidome proposed a model where melting and solidifying process could be
studied, using FE analysis [5]. In this chapter, the behavior of a molten pool due to a single
laser spot is considered. The laser works in pulse mode and the melted part of the powder
are assumed to change into a sphere that increases the dimensions after each pulsed irradi-
ation. Fisher and Romano [6] investigated the variation in sintering process using pulse and
continuous heat source. They noticed that during continuous wave interaction, the grains
are homogeneously heated (the authors use an analogy to distinguish between different
heating: they say that with homogeneously heating, the grains are cooked), while during
pulsed laser interaction, the heating is no longer homogeneous (the grains are roasted). As
mentioned before, the interaction of laser radiation with powder bed is a very complex
mechanism greatly responsible for the mechanical characteristics of the final product.
Gusarov et al. made a great effort in developing a numerical model that is able to simulate
the heat transfer between laser and powder [7, 8]. It is worth mentioning that all the new
models developed for the SLM simulation always refer to the models that have just been
developed for the welding process [9] inasmuch SLM can be considered as a series of micro
welding processes. Among all the numerical frameworks proposed in the literature, it seems
that the most powerful tool for the process simulation is the finite element method. The first
example of 3D finite element analysis is the paper of Contuzzi and Campanelli [10]. The aim
of this study is to evaluate the temperature evolution in a 3D part being formed with SLM
process. The molten liquid phase is considered by introducing the specific latent heat while
the thermal properties are kept constant, aiming to reduce the computational cost of the
analysis. The model proposed by Kolossov and Boillat [11] instead, allows for the nonlinear
behavior of thermal conductivity and specific heat due to the temperature change and phase
transformation. Introducing nonlinear behavior for the material increases the reliability of
the simulation. However, the measurements of the thermal properties are greatly affected by
uncertainty. The thermal properties can be directly measured [12–14] or calculated with
thermal models [15]. A more precise thermal conductivity of the powder bed, named effec-
tive thermal conductivity, can be calculated using the relation proposed by Dai and Shaw
[16]. Their model encompasses the effect of temperature- and porosity-dependent thermal
conduction and radiation as well as the temperature-dependent natural convection. Not
only material properties but also heat source definitions greatly affect the numerical results.
Hashemzadeh and Chen [17] collected a variety of heat distributions that can be used to
model the heat exchange. Articles [11] and [18] are an example where the heat source can be
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easily modeled as a 2D flux applied on the powder surface, neglecting the effect of the laser
penetration into the powder. Li and Wang [19] explained how a 3D heat flux can be modeled
in order to improve the numerical results related to the molten pool depth. Despite the great
accuracy of all the previous models, results coming from the numerical simulations are
slightly different from the experimental evidence. This is due to the high complexity of the
physics involved in SLM and indeed to a large number of simplifications needed to simulate
the process. Hu and Kovacevic [18] tried to reduce the mismatch between numerical and
experimental data with a calibration procedure that adjusts the process parameters in order
to fit the molten pool dimension retrieved from the simulation with the experimental mea-
surements. It can be noticed from the previous papers that the discretization of the domain is
always kept constant so that all the analysis must be applied to microscopic scale in order to
keep the computational time low. Patil, Pal et al. [20, 21] explained how the dynamic mesh
refinement can be applied to reduce the computational cost needed to solve such problems
(like SLM), where different levels of mesh density are required to capture the localized
phenomena.

Despite the strong reduction in computational time due to the dynamic mesh refinement, it is
not feasible to simulate the thermal field evolution of an entire object, also for very small
components. This is due to the extremely large number of spots that are required to melt the
cross-section of a single layer. This problem can be partially solved with an analytical solution
of the thermal field [22, 23]. Nevertheless, this solution returns the global temperature of a
single layer and it is not possible to distinguish between different heat distributions due to the
multiple scanning strategies. Therefore, the simulation presented in this chapter is mainly
focused on the study of the thermal evolution of a microscale domain. The FEA domain
presented here includes only one layer of powder and its dimensions are chosen to reduce as
much as possible the number of elements. A model that is able to simulate the thermal
evolution of a complete part, taking also into consideration the effect of the scanning strategy,
is still an open challenge.

SLM technology is widely used in different domains of the industry, such as aerospace, automo-
tive, and consumer goods. However, the most important industrial application is the medical
and surgical field. In this context, SLM is acting a major transformation of the traditional
production techniques, more and more surgical implants are fabricated with PBF technologies.
Since the industrial applications of SLM are continuously increasing, numerical simulations of
the process become fundamental to predict the mechanical properties of the parts starting from
the behavior of the thermal field. ANSYS® and ABAQUS® are an example of general purpose
software that is widely used for the FE simulation of SLM process. Moreover, the industries are
so interested in the new manufacturing possibilities offered by the SLM, so that numerical
simulations were no more confined to academic research but became a powerful tool for the
companies willing to develop new commercial products. As a result, specific software has
launched onto the marketplace, for example, 3DSIM (based on dynamic adaptive mesh refine-
ment [24]), SIMUFACT (based on the inherent strain theory [25, 26]), and NETFABB.

The framework presented in this chapter involves both ANSYS® and MatLab® to perform the
FE analysis of a SLM process on a titanium alloy powder. At the beginning, all the process
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parameters needed for the simulation are collected. Then, the laser path is simulated using
MatLab®. This permits the definition of each point of heat application. Their spatial coordi-
nates are imported into ANSYS® to apply the thermal load into the FE model. The perfor-
mances of the simulation are improved through a tight interaction between MatLab® and
ANSYS®. The main analysis environment is ruled by MatLab® and ANSYS®, which is
launched in batch mode only when it is needed. Moreover, a dynamic mesh refinement is
applied to the model to reduce the computational cost of the simulation. Finally, a calibration
procedure is proposed to correct the titanium alloy properties.

2. Process parameters

Thermal residual stresses are greatly affected by the temperature distribution. Moreover, the
thermal field is greatly affected by laser characteristics and scanning strategies. Therefore, a
proper setup of machines parameters is a key issue in reducing thermal residual stresses. Even
if different scanning strategies can be adopted, the meandering path only will be considered in
the following as it seems to be the most reliable one, ensuring a uniform thermal field and a low
machining time. In this configuration, the laser scans the powder with the trajectory shown in
Figure 2. The most important process parameters that are related to the different laser scanning
strategies are listed below:

• Laser power [150÷500 W]

• Hatch distance [50÷105 μm]

• Point distance [20÷75 μm]

• Path rotation [0÷90�]

• Layer thickness [30÷60 μm]

• Time exposure [30÷70 μs]

• Powder absorbance [0.3÷0.5]

Changing these parameters can lead to different material characteristics, for example, material
density, surface roughness, and porosity. All these characteristics are directly responsible for
the mechanical properties of the sample. It is important, indeed, to have a powerful tool that is
able to predict the thermal field with respect to different laser parameters.

The SLMmachine available for this study is a Renishaw® model AM250. The main characteristic
of this machine is the pulsed laser technology. The process parameters used in the simulation are
collected in Table 1 and refers to the machine setup.

2.1. Material properties

The most suitable metallic material for surgical implants is Ti-6Al-4 V and the data collected in
the subsequent tables always refer to this alloy. Ti-6Al-4 V is a titanium alloy with 6% of
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single layer and it is not possible to distinguish between different heat distributions due to the
multiple scanning strategies. Therefore, the simulation presented in this chapter is mainly
focused on the study of the thermal evolution of a microscale domain. The FEA domain
presented here includes only one layer of powder and its dimensions are chosen to reduce as
much as possible the number of elements. A model that is able to simulate the thermal
evolution of a complete part, taking also into consideration the effect of the scanning strategy,
is still an open challenge.

SLM technology is widely used in different domains of the industry, such as aerospace, automo-
tive, and consumer goods. However, the most important industrial application is the medical
and surgical field. In this context, SLM is acting a major transformation of the traditional
production techniques, more and more surgical implants are fabricated with PBF technologies.
Since the industrial applications of SLM are continuously increasing, numerical simulations of
the process become fundamental to predict the mechanical properties of the parts starting from
the behavior of the thermal field. ANSYS® and ABAQUS® are an example of general purpose
software that is widely used for the FE simulation of SLM process. Moreover, the industries are
so interested in the new manufacturing possibilities offered by the SLM, so that numerical
simulations were no more confined to academic research but became a powerful tool for the
companies willing to develop new commercial products. As a result, specific software has
launched onto the marketplace, for example, 3DSIM (based on dynamic adaptive mesh refine-
ment [24]), SIMUFACT (based on the inherent strain theory [25, 26]), and NETFABB.

The framework presented in this chapter involves both ANSYS® and MatLab® to perform the
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parameters needed for the simulation are collected. Then, the laser path is simulated using
MatLab®. This permits the definition of each point of heat application. Their spatial coordi-
nates are imported into ANSYS® to apply the thermal load into the FE model. The perfor-
mances of the simulation are improved through a tight interaction between MatLab® and
ANSYS®. The main analysis environment is ruled by MatLab® and ANSYS®, which is
launched in batch mode only when it is needed. Moreover, a dynamic mesh refinement is
applied to the model to reduce the computational cost of the simulation. Finally, a calibration
procedure is proposed to correct the titanium alloy properties.

2. Process parameters

Thermal residual stresses are greatly affected by the temperature distribution. Moreover, the
thermal field is greatly affected by laser characteristics and scanning strategies. Therefore, a
proper setup of machines parameters is a key issue in reducing thermal residual stresses. Even
if different scanning strategies can be adopted, the meandering path only will be considered in
the following as it seems to be the most reliable one, ensuring a uniform thermal field and a low
machining time. In this configuration, the laser scans the powder with the trajectory shown in
Figure 2. The most important process parameters that are related to the different laser scanning
strategies are listed below:

• Laser power [150÷500 W]

• Hatch distance [50÷105 μm]

• Point distance [20÷75 μm]

• Path rotation [0÷90�]

• Layer thickness [30÷60 μm]

• Time exposure [30÷70 μs]

• Powder absorbance [0.3÷0.5]

Changing these parameters can lead to different material characteristics, for example, material
density, surface roughness, and porosity. All these characteristics are directly responsible for
the mechanical properties of the sample. It is important, indeed, to have a powerful tool that is
able to predict the thermal field with respect to different laser parameters.

The SLMmachine available for this study is a Renishaw® model AM250. The main characteristic
of this machine is the pulsed laser technology. The process parameters used in the simulation are
collected in Table 1 and refers to the machine setup.

2.1. Material properties

The most suitable metallic material for surgical implants is Ti-6Al-4 V and the data collected in
the subsequent tables always refer to this alloy. Ti-6Al-4 V is a titanium alloy with 6% of
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aluminum and 4% of Vanadium. It has excellent biocompatibility properties, as well as good
mechanical properties [12].

Since the melting and cooling process is governed by nonlinear phenomena, the material prop-
erties used in the simulation must be temperature dependent. The parameters needed for the FE
thermal analysis are thermal conductivity, density, and specific heat. In addition, for the pro-
cesses involving phase changes, enthalpy is requested as well to account for the latent heat of the
material. Specifically, the enthalpy (H) is related to density (r), specific heat (c), and temperature
(T) according to Eq. (1):

H ¼
ð
rc Tð ÞdT (1)

The thermal properties of Ti-6Al-4 V can be easily found in the technical literature [12, 13].
However, these properties are defined only for the solid bulk state and are not suitable to
represent the material behavior in powder form or above the melting point. Regarding the
properties of the liquid phase, the following simplifying assumptions are taken:

• The apparent powder density is assumed to be 60% of that of the bulk material [27, 28].

• The powder’s thermal conductivity might be calculated from the modified Zehner-
Schlunder’s equation [15] or from the Dai and Shaw’s model [16]. Nevertheless, constants
involved in the equation are given in the literature with a high uncertainty; therefore,
accurate results are not straightforward. Despite the presence of those analytical models,
thermal conductivity is simply supposed to be one order of magnitude less than the
corresponding parameter for bulk material. In general, the powder is a worse heat con-
ductor than the solid.

• The numerical model requires the definition of thermal parameters for the whole temper-
ature domain, even though thermal conductivity has no real meaning in liquid and vapor
phase. Starting from the consideration that thermal gradients are hindered in the liquid
phase (and even more in vapor) since crystal lattices are randomly oriented, a first trial
conductivity can be half of the value at the transition point. Moreover, the thermal
conductivity is supposed to remain constant through liquid and vapor phase. The lack of
reliability caused by these assumptions will be reduced by the calibration procedure.

Process parameters

Laser power (W) 160

Hatch distance (μm) 50

Point distance (μm) 20

Layer thickness (μm) 60

Path rotation (�) 67

Time exposure (μm) 30

Powder absorbance 0.5

Table 1. Process parameters used in the simulation.
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• A distinction between powder and bulk thermal properties holds only in the solid-phase.
Above the melting point, the thermal behavior is the same both for powder and bulk.

As a result, thermal conductivity below melting point is experimentally measured while for
high-temperature simplifications apply. Data are shown in Table 2.

While the conductivity value is taken from experimental data (or from literature), the enthalpy
is calculated from Eq. (1). Variables needed for the equation are collected in Table 3.

The integration domain from Eq. (1) is divided into steps, from reference temperature (0�C) to
limit temperature (5000�C). Each step corresponds to a different alloy phase: solid, liquid, and
vapor. In order to reduce the computational cost, the density is kept constant throughout the
temperature domain. The specific heat changes as a function of the temperature, but it is
considered constant at each integration step. As a consequence, the enthalpy behavior is linear
and can be easily calculated from the equations below.

Cavg ¼ Cs þ CL

2
average specific heat
� �

(2)

C∗ ¼ Cavg þ L
TL � TS

� �
specific heat for transition
� �

(3)

HS ¼ rCS TS � T0ð Þ enthalpy at solid temperature
� �

(4)

HL ¼ HS þ rC∗ TL � TSð Þ enthalpy at liquid temperature
� �

(5)

Hþ ¼ HL þ rCL T� TLð Þ enthalpy above liquid temperature
� �

(6)

Thermal conductivity (W/mK)

Temperature (�C) Solid Powder

0 6.1874 0.6187

19 6.5660 0.6566

399 12.2620 1.2262

800 18.1490 1.8149

1198 23.4590 2.3459

1499 27.8010 2.7801

1605 29.9134 2.9913

1660 14.9567 14.9567

3265 14.9567 14.9567

3295 7.4784 7.4784

5000 7.4784 7.4784

Table 2. Variation of thermal conductivity with temperature.
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ductor than the solid.

• The numerical model requires the definition of thermal parameters for the whole temper-
ature domain, even though thermal conductivity has no real meaning in liquid and vapor
phase. Starting from the consideration that thermal gradients are hindered in the liquid
phase (and even more in vapor) since crystal lattices are randomly oriented, a first trial
conductivity can be half of the value at the transition point. Moreover, the thermal
conductivity is supposed to remain constant through liquid and vapor phase. The lack of
reliability caused by these assumptions will be reduced by the calibration procedure.
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• A distinction between powder and bulk thermal properties holds only in the solid-phase.
Above the melting point, the thermal behavior is the same both for powder and bulk.

As a result, thermal conductivity below melting point is experimentally measured while for
high-temperature simplifications apply. Data are shown in Table 2.

While the conductivity value is taken from experimental data (or from literature), the enthalpy
is calculated from Eq. (1). Variables needed for the equation are collected in Table 3.

The integration domain from Eq. (1) is divided into steps, from reference temperature (0�C) to
limit temperature (5000�C). Each step corresponds to a different alloy phase: solid, liquid, and
vapor. In order to reduce the computational cost, the density is kept constant throughout the
temperature domain. The specific heat changes as a function of the temperature, but it is
considered constant at each integration step. As a consequence, the enthalpy behavior is linear
and can be easily calculated from the equations below.

Cavg ¼ Cs þ CL

2
average specific heat
� �

(2)

C∗ ¼ Cavg þ L
TL � TS

� �
specific heat for transition
� �

(3)

HS ¼ rCS TS � T0ð Þ enthalpy at solid temperature
� �

(4)

HL ¼ HS þ rC∗ TL � TSð Þ enthalpy at liquid temperature
� �

(5)

Hþ ¼ HL þ rCL T� TLð Þ enthalpy above liquid temperature
� �

(6)

Thermal conductivity (W/mK)

Temperature (�C) Solid Powder

0 6.1874 0.6187

19 6.5660 0.6566

399 12.2620 1.2262

800 18.1490 1.8149

1198 23.4590 2.3459

1499 27.8010 2.7801

1605 29.9134 2.9913

1660 14.9567 14.9567

3265 14.9567 14.9567

3295 7.4784 7.4784

5000 7.4784 7.4784

Table 2. Variation of thermal conductivity with temperature.
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where CL: specific heat of solid; r: density; TS: solidus temperature; TL: Liquidus temperature;
T0: reference temperature; T: saturation temperature; and L: latent heat.

Table 4 shows the values of enthalpy calculated with the previous equations. The column
named equation refers to previously numbered equations used for the calculation.

2.2. Heat source

The heat source can be modeled both as a surface or a volumetric thermal load [17]. In order to
keep the computational cost as low as possible, the heat source is considered as a 2D heat flux
applied on the surface of the powder bed. The thermal load transferred by the laser is called
laser irradiance and can be represented as a Gaussian distribution [18]:

I ¼ 2AP
πr2max

∙e
�2 r2

r2max

� �
(7)

Thermal parameters Solid Powder

Density (kg/m3) 4220 2532

Solidus temp (�C) 1605 1605

Liquidus temp (�C) 1660 1660

Vapor temp (�C) 3265 3265

Saturation temp (�C) 3295 3295

Specific heat for solid (J/kgK) 708.8 708.8

Specific heat for liquid (J/kgK) 1000 1000

Specific heat for vapor (J/kgK) 1500 1500

Latent heat of fusion (J/kg) 365,000 365,000

Latent heat of vapor (J/kg) 9,376,200 9,376,200

Table 3. Thermal parameters.

Enthalpy (J/m3)

Temperature (�C) Solid Powder Equation

0 0 0

1605 4.8008e + 9 2.8805e + 9 Eq. 3

1660 6.5398e + 9 6.5398e + 9 Eq. 4

3265 1.3312e + 10 1.3312e + 10 Eq. 5

3295 1.4210e + 10 1.4210e + 10

5000 6.5237e + 10 6.5237e + 10

Table 4. Variation of enthalpy with temperature.
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where A: powder absorbance; P: laser powder; and rmax: laser beam radius is defined as the
radius in which the power density is reduced from the peak value by a factor of e2 [29].

Figure 5 shows irradiance values of the laser heat source. The laser radius is 35 μm.

3. Path simulation

A good knowledge of the heat source movements is fundamental to develop a reliable simula-
tion that is able to predict the temperature distribution into the working area. The simulation is
developed using MatLab® and takes a CAD file storing the geometry of the part in STereo
Lithography interface format (STL) as input. This file extension describes volumes through
raw unstructured triangulated surfaces (tessellation). For each triangle, the unit normal and
vertices (ordered by the right-hand rule) are collected using a three-dimensional Cartesian
coordinate system. Figure 6 shows an example of tessellation.

Even if the simulation can analyze any kind of CAD geometry, a simple square block was
chosen for the sake of simplicity. Since a non-uniform heat distribution is greatly responsible
for thermal residual stresses, different scanning strategies can be used to reduce temperature
peaks on the powder bed. Among them, the most suitable paths are: meandering, stripes,
chess, and contour (Figure 3). The strategy chosen for the simulator is the meandering path,
since it is a good trade-off between high deposition rate and low-temperature gradients.
Moreover, for further reduction in local temperature peaks, the laser path changes orientation
at each layer. Path simulation carried out with MatLab® takes into account all these character-
istics. At the beginning, a slicing algorithm is formulated to slice the 3D-geometry into a given
number of layers as requested by the real process. Once having the spatial location and
orientation of the triangles (from STL files), it is possible to intersect their triangular surfaces
with horizontal planes (layers) using geometrical properties. Figure 7 explains the working
principle of the slicing algorithm.

Figure 5. Laser beam irradiance with a Gaussian distribution.
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where CL: specific heat of solid; r: density; TS: solidus temperature; TL: Liquidus temperature;
T0: reference temperature; T: saturation temperature; and L: latent heat.

Table 4 shows the values of enthalpy calculated with the previous equations. The column
named equation refers to previously numbered equations used for the calculation.

2.2. Heat source

The heat source can be modeled both as a surface or a volumetric thermal load [17]. In order to
keep the computational cost as low as possible, the heat source is considered as a 2D heat flux
applied on the surface of the powder bed. The thermal load transferred by the laser is called
laser irradiance and can be represented as a Gaussian distribution [18]:

I ¼ 2AP
πr2max

∙e
�2 r2

r2max

� �
(7)

Thermal parameters Solid Powder

Density (kg/m3) 4220 2532

Solidus temp (�C) 1605 1605

Liquidus temp (�C) 1660 1660

Vapor temp (�C) 3265 3265

Saturation temp (�C) 3295 3295

Specific heat for solid (J/kgK) 708.8 708.8

Specific heat for liquid (J/kgK) 1000 1000

Specific heat for vapor (J/kgK) 1500 1500

Latent heat of fusion (J/kg) 365,000 365,000

Latent heat of vapor (J/kg) 9,376,200 9,376,200

Table 3. Thermal parameters.

Enthalpy (J/m3)

Temperature (�C) Solid Powder Equation

0 0 0

1605 4.8008e + 9 2.8805e + 9 Eq. 3

1660 6.5398e + 9 6.5398e + 9 Eq. 4

3265 1.3312e + 10 1.3312e + 10 Eq. 5

3295 1.4210e + 10 1.4210e + 10

5000 6.5237e + 10 6.5237e + 10

Table 4. Variation of enthalpy with temperature.
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where A: powder absorbance; P: laser powder; and rmax: laser beam radius is defined as the
radius in which the power density is reduced from the peak value by a factor of e2 [29].

Figure 5 shows irradiance values of the laser heat source. The laser radius is 35 μm.

3. Path simulation

A good knowledge of the heat source movements is fundamental to develop a reliable simula-
tion that is able to predict the temperature distribution into the working area. The simulation is
developed using MatLab® and takes a CAD file storing the geometry of the part in STereo
Lithography interface format (STL) as input. This file extension describes volumes through
raw unstructured triangulated surfaces (tessellation). For each triangle, the unit normal and
vertices (ordered by the right-hand rule) are collected using a three-dimensional Cartesian
coordinate system. Figure 6 shows an example of tessellation.

Even if the simulation can analyze any kind of CAD geometry, a simple square block was
chosen for the sake of simplicity. Since a non-uniform heat distribution is greatly responsible
for thermal residual stresses, different scanning strategies can be used to reduce temperature
peaks on the powder bed. Among them, the most suitable paths are: meandering, stripes,
chess, and contour (Figure 3). The strategy chosen for the simulator is the meandering path,
since it is a good trade-off between high deposition rate and low-temperature gradients.
Moreover, for further reduction in local temperature peaks, the laser path changes orientation
at each layer. Path simulation carried out with MatLab® takes into account all these character-
istics. At the beginning, a slicing algorithm is formulated to slice the 3D-geometry into a given
number of layers as requested by the real process. Once having the spatial location and
orientation of the triangles (from STL files), it is possible to intersect their triangular surfaces
with horizontal planes (layers) using geometrical properties. Figure 7 explains the working
principle of the slicing algorithm.

Figure 5. Laser beam irradiance with a Gaussian distribution.
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Instead of a three-dimensional example, the triangles are sketched in 2D-space. The dashed
line represents the slicing plane. Vertices are grouped with respect to Z-coordinates as listed in
Table 5.

The triangles having the Z-coordinate higher than the height of the slicing plane belong to the
upper vertices group, while the remaining belongs to the other group. The triangles that share

Figure 6. An example of CAD model tessellation.

Figure 7. A 2D example of a triangles tessellation.
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vertices in both groups are those involved in the slicing procedure. Contour related to each
cross-section is calculated from the intersection between the plane and the triangle surfaces as
it is shown in Figure 8. Coordinates of the intersection point are called Zp and Xp.

As a result, being the contour related to all cross-sections, the meandering path is applied to
each layer. Since the path rotates at each layer, meandering slope changes and also the inter-
section between the path and the contour. Instead of a straightforward rotation of the path, it
seems preferable to apply first a geometrical transformation to the contour and then apply the
path, keeping its slope horizontal. This indeed allows a simple evaluation of the intersection
points. Figure 9 shows an example that can help to understand the procedure.

Referring to Figure 9, a square contour (blue) must be filled with a meandering contour tilted
first with a slope of 45� and then 67�. Instead of tilting the path, the contour is rotated (cyan) by
an angle corresponding to the desired slope of the path. Then, the contour is stretched so that the
meander path is held constant and the hatch distance is kept unitary. Notice that the number of

Vertices below the slicing plane Vertices above the slicing plane

1 ! A 9 ! A

2 ! E 10 ! B

4 ! B 12 ! E

7 ! C 14 ! D

8 ! D 15 ! C

Table 5. Vertices are grouped with respect to the slicing plane.

Figure 8. The intersection points are determined through geometrical relations.
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Instead of a three-dimensional example, the triangles are sketched in 2D-space. The dashed
line represents the slicing plane. Vertices are grouped with respect to Z-coordinates as listed in
Table 5.

The triangles having the Z-coordinate higher than the height of the slicing plane belong to the
upper vertices group, while the remaining belongs to the other group. The triangles that share
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Figure 7. A 2D example of a triangles tessellation.
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vertices in both groups are those involved in the slicing procedure. Contour related to each
cross-section is calculated from the intersection between the plane and the triangle surfaces as
it is shown in Figure 8. Coordinates of the intersection point are called Zp and Xp.

As a result, being the contour related to all cross-sections, the meandering path is applied to
each layer. Since the path rotates at each layer, meandering slope changes and also the inter-
section between the path and the contour. Instead of a straightforward rotation of the path, it
seems preferable to apply first a geometrical transformation to the contour and then apply the
path, keeping its slope horizontal. This indeed allows a simple evaluation of the intersection
points. Figure 9 shows an example that can help to understand the procedure.

Referring to Figure 9, a square contour (blue) must be filled with a meandering contour tilted
first with a slope of 45� and then 67�. Instead of tilting the path, the contour is rotated (cyan) by
an angle corresponding to the desired slope of the path. Then, the contour is stretched so that the
meander path is held constant and the hatch distance is kept unitary. Notice that the number of

Vertices below the slicing plane Vertices above the slicing plane

1 ! A 9 ! A

2 ! E 10 ! B

4 ! B 12 ! E

7 ! C 14 ! D

8 ! D 15 ! C

Table 5. Vertices are grouped with respect to the slicing plane.

Figure 8. The intersection points are determined through geometrical relations.
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hatch spaces has been previously calculated, and keeping a unitary hatch distance will result in a
more reliable intersection procedure.

The result of the slicing procedure is illustrated in Figure 10.

Figure 9. The geometrical transformation applied to cross-section for two different path rotations.

Figure 10. Results from the path simulator.
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As shown in Figure 10, the scanning strategy is defined for each layer with a sequential
rotation (multiple of 67�). The dots represent the laser spot locations and the line used to
connect them is indicated to emphasize the meandering path. The coordinates of the laser spot
are stored into a file and can be used by ANSYS® for the heat source application. Notice that
distances between laser spots in Figure 10 are not in true scale. Meandering paths are shown
just for illustrating how the laser moves on the powder surface.

4. Modeling approach

In SLM, the energy needed to melt the powder bed is provided by a laser source. The portion of
material under the laser is heated because of the interaction between electromagnetic waves and
powder grains. This type of heat transfer occurs in a very short time interval (microseconds) and
provokes material modifications due to both phase (liquid and solid) and aggregation (powder
and bulk) state changes. When the laser heats the surface, powder grains undergo very rapid
heating that melts the material in the localized region surrounding the irradiated spot. After that,
the laser is moved forth and the molten pool starts cooling and solidifying. At the end, the
material has changed its aggregation state from powder to bulk. Since the path meanders on the
surface, the material undergoes multiple reheating processes, sometimes above the melting point.

All previous characteristics would lead to a very complex and cumbersome simulation unless
some simplifications are applied to the numerical model. The simulation is formulated taking
into consideration all the SLM features, even if they are applied in a simpler way. For example,
with the aim of reproducing both phase (solid-liquid-vapor) and aggregation state (bulk-
powder) transformations, only material properties are defined, rather than complex thermo-
dynamic models. Applications involving phase change can be approached using ANSYS®

through elements with enthalpy property capabilities.

The thermal transient analysis is necessary to take into account the high heating and cooling
rate. Moreover, since the laser works in pulsedmode, the analysis is fully solved for each application
point. The iterative algorithm forces the analysis to be solved, deleted, and restarted at each step.
Consequently, nodal results must be continuously saved and uploaded through a mapping proce-
dure as will be extensively explained later.

4.1. Numerical model

The governing heat transfer equation can be written as:

� ∂qx
∂x

þ
∂qy
∂y

þ ∂qz
∂z

� �
þQ ¼ rc

∂T
∂t

(8)

where qx, qy and qz are components of heat flow through unit area. According to Fourier’s law:

qx ¼ �kx
∂T
∂x

qy ¼ �ky
∂T
∂y
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hatch spaces has been previously calculated, and keeping a unitary hatch distance will result in a
more reliable intersection procedure.

The result of the slicing procedure is illustrated in Figure 10.

Figure 9. The geometrical transformation applied to cross-section for two different path rotations.

Figure 10. Results from the path simulator.
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As shown in Figure 10, the scanning strategy is defined for each layer with a sequential
rotation (multiple of 67�). The dots represent the laser spot locations and the line used to
connect them is indicated to emphasize the meandering path. The coordinates of the laser spot
are stored into a file and can be used by ANSYS® for the heat source application. Notice that
distances between laser spots in Figure 10 are not in true scale. Meandering paths are shown
just for illustrating how the laser moves on the powder surface.

4. Modeling approach

In SLM, the energy needed to melt the powder bed is provided by a laser source. The portion of
material under the laser is heated because of the interaction between electromagnetic waves and
powder grains. This type of heat transfer occurs in a very short time interval (microseconds) and
provokes material modifications due to both phase (liquid and solid) and aggregation (powder
and bulk) state changes. When the laser heats the surface, powder grains undergo very rapid
heating that melts the material in the localized region surrounding the irradiated spot. After that,
the laser is moved forth and the molten pool starts cooling and solidifying. At the end, the
material has changed its aggregation state from powder to bulk. Since the path meanders on the
surface, the material undergoes multiple reheating processes, sometimes above the melting point.

All previous characteristics would lead to a very complex and cumbersome simulation unless
some simplifications are applied to the numerical model. The simulation is formulated taking
into consideration all the SLM features, even if they are applied in a simpler way. For example,
with the aim of reproducing both phase (solid-liquid-vapor) and aggregation state (bulk-
powder) transformations, only material properties are defined, rather than complex thermo-
dynamic models. Applications involving phase change can be approached using ANSYS®

through elements with enthalpy property capabilities.

The thermal transient analysis is necessary to take into account the high heating and cooling
rate. Moreover, since the laser works in pulsedmode, the analysis is fully solved for each application
point. The iterative algorithm forces the analysis to be solved, deleted, and restarted at each step.
Consequently, nodal results must be continuously saved and uploaded through a mapping proce-
dure as will be extensively explained later.

4.1. Numerical model

The governing heat transfer equation can be written as:

� ∂qx
∂x

þ
∂qy
∂y

þ ∂qz
∂z

� �
þQ ¼ rc

∂T
∂t

(8)

where qx, qy and qz are components of heat flow through unit area. According to Fourier’s law:

qx ¼ �kx
∂T
∂x

qy ¼ �ky
∂T
∂y
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qz ¼ �kz
∂T
∂z

Notice that for isotropic, material thermal conductivity is the same: kx ¼ ky ¼ kz.

General formulation of governing differential equation can be obtained substituting Fourier’s
law component in Eq. (8):

div k½ �∙∇Tð Þ þQ ¼ rc
∂T
∂t

(9)

where k½ � ¼ k I½ � is the thermal conductivity matrix.

Eq. (9) can be decomposed into a weak formulation [30] as the following system of differential
equation of first order in t:

Cthermal½ � _T tð Þ� �þ kthermal½ � T tð Þf g ¼ F tð Þf g t∈ 0; t0f g (10)

A description of the three matrices in Eq. (10) is given below:

i. The thermal stiffness matrix kthermal½ � is expressed as follows:

kthermal½ � ¼
ð

V
Bthermal½ �T k½ � Bthermal½ �dVþ

ð

S
h N½ �TNds (11)

where Bthermal½ � is the matrix containing the first derivatives of shape functions. The size of
this matrix related to a brick element comprised of eight integration points is 3 � 8. Once
computed, kthermal½ � has dimension 8 � 8. dV denotes the volume of the element. The
surface integral is valid when the bulk is exposed to convection boundary conditions
(i.e., boundary condition with imposed flux). h is the convective heat transfer coefficient
which has been assumed to be 12:5 w=m2K for Argon [20].

ii. The thermal specific heat matrix Cthermal½ � is expressed as follows:

Cthermal½ � ¼
ð

V
N½ �T N½ � rc dV (12)

where N½ � ¼ N1N2N3…N8½ � are the three-dimensional nodal shape functions of size
1 � 8. Once computed, Cthermal½ � has dimension 8 � 8. r is the mass density and c is the
specific heat.

iii. The thermal flux vector F tð Þf g is expressed as follow:

F tð Þf g ¼
ð

S
q x; tð Þ∙bnð Þ∙ N½ �TdSþ

ð

S
h N½ �TTf dS (13)

where q is the input heat flux depending on boundary conditions and x ¼ x; y; z
� �T is the

position vector. dS denotes the surface area of the element. The second surface integral in Eq. (13)
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is valid only when the convection boundary conditions apply. Tf is the temperature of the
environment into the working chamber.

Simulation reliability is subjected to the accuracy of the numerical model. Although geometri-
cal features try to reproduce as much as possible the real SLM environment, simplifications
must be taken regarding the boundary and loading conditions in order to reduce the compu-
tational cost. The attention is mainly focused on the melting process of one single powder
layer, even if the algorithm allows for the simulation of multiple layers. Adding more layers,
the number of elements grows as well as the number of spots; hence, the computational cost
dramatically increases. As it will be presented in Section 5, dynamic mesh refinement is a
powerful way to reduce the number of elements and, therefore, the time needed for the
numerical solution, while preserving results accuracy.

The FE model is based on SLM real workspace. The geometry, as it is shown in Figure 11,
is divided into two regular and constant meshes. The first one is at the surface and it
is finer because it simulates the powder bed (1 mm x 0.2 mm x 0.06 mm) where the
temperature variations are more important. To reduce the computation time, the base plate

Figure 11. Boundary condition and different material properties: molten pool (red elements circular area on the top), powder
bed (blue elements, fine-meshed volume on the top), and base plate (cyan elements, coarse-meshed volume on the bottom).
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qz ¼ �kz
∂T
∂z

Notice that for isotropic, material thermal conductivity is the same: kx ¼ ky ¼ kz.
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where Bthermal½ � is the matrix containing the first derivatives of shape functions. The size of
this matrix related to a brick element comprised of eight integration points is 3 � 8. Once
computed, kthermal½ � has dimension 8 � 8. dV denotes the volume of the element. The
surface integral is valid when the bulk is exposed to convection boundary conditions
(i.e., boundary condition with imposed flux). h is the convective heat transfer coefficient
which has been assumed to be 12:5 w=m2K for Argon [20].

ii. The thermal specific heat matrix Cthermal½ � is expressed as follows:

Cthermal½ � ¼
ð
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N½ �T N½ � rc dV (12)

where N½ � ¼ N1N2N3…N8½ � are the three-dimensional nodal shape functions of size
1 � 8. Once computed, Cthermal½ � has dimension 8 � 8. r is the mass density and c is the
specific heat.

iii. The thermal flux vector F tð Þf g is expressed as follow:

F tð Þf g ¼
ð

S
q x; tð Þ∙bnð Þ∙ N½ �TdSþ

ð

S
h N½ �TTf dS (13)

where q is the input heat flux depending on boundary conditions and x ¼ x; y; z
� �T is the

position vector. dS denotes the surface area of the element. The second surface integral in Eq. (13)

Finite Element Method - Simulation, Numerical Analysis and Solution Techniques138

is valid only when the convection boundary conditions apply. Tf is the temperature of the
environment into the working chamber.

Simulation reliability is subjected to the accuracy of the numerical model. Although geometri-
cal features try to reproduce as much as possible the real SLM environment, simplifications
must be taken regarding the boundary and loading conditions in order to reduce the compu-
tational cost. The attention is mainly focused on the melting process of one single powder
layer, even if the algorithm allows for the simulation of multiple layers. Adding more layers,
the number of elements grows as well as the number of spots; hence, the computational cost
dramatically increases. As it will be presented in Section 5, dynamic mesh refinement is a
powerful way to reduce the number of elements and, therefore, the time needed for the
numerical solution, while preserving results accuracy.

The FE model is based on SLM real workspace. The geometry, as it is shown in Figure 11,
is divided into two regular and constant meshes. The first one is at the surface and it
is finer because it simulates the powder bed (1 mm x 0.2 mm x 0.06 mm) where the
temperature variations are more important. To reduce the computation time, the base plate

Figure 11. Boundary condition and different material properties: molten pool (red elements circular area on the top), powder
bed (blue elements, fine-meshed volume on the top), and base plate (cyan elements, coarse-meshed volume on the bottom).
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(1 mm x 0.2 mm x 0.3 mm) is discretized with a coarser mesh. The height must ensure that
the bottom border will not interfere with the surface temperature. Mapped mesh guarantees
nodal consistency at the interface between powder and base. Convergence analysis has been
done to validate the mesh size. Powder elements affected by the heat source, are assigned
with different material properties, as it is shown in Figure 11.

A mapped mesh employing hexahedral 8-node elements is adopted to reduce the computa-
tional cost while maintaining high thermal field resolution. Specifically, thermal brick elements
called SOLID70 with the following characteristics are used:

• Conduction and enthalpy capabilities

• Eight nodes (no mid-edge node capability)

• Applicable to a 3-D transient thermal analysis

• Mapped mesh

Different thermal properties can be associated with the same element type, hence it makes it
possible to distinguish the different behavior of powder, base plate, and molten pool. Referring
to Figure 11, the base plate elements (cyan) are associated with constant thermal properties, as
it is supposed that the base plate is not affected by the thermal field. This assumption helps to
reduce the non-linearity. Different element properties are also associated with the layer in
order to distinguish between the inert powder bed (blue elements) and the grains that undergo
the melting process. These elements are depicted in red and represent the dimension of the
molten pool. Different thermal properties have just been explained in Section 2.1.

As mentioned before, the algorithm is iterative and the system must be solved at each laser
spot application. The diagram in Figure 12 shows how the solving algorithm is carried out.

4.2. Boundary condition

The system of equations resulting from Eq. (10) can be solved once the prescribed boundary
conditions (BCs) have been substituted. In FE thermal analysis, the possible BCs are:

1. Imposed temperature

2. Imposed heat flux

3. Flux due to convection ruled by the temperature difference

4. Flux due to radiation ruled by the fourth power of the absolute temperature

Boundary conditions depend on how the system interacts with the external environment:

i. Top surface:

The working chamber is filled with Argon to reduce the alloy powder oxidation. Natural
convection applies overall on the top surface, apart from the localized area where the
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Figure 12. A flow chart representing the main algorithm.
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(1 mm x 0.2 mm x 0.3 mm) is discretized with a coarser mesh. The height must ensure that
the bottom border will not interfere with the surface temperature. Mapped mesh guarantees
nodal consistency at the interface between powder and base. Convergence analysis has been
done to validate the mesh size. Powder elements affected by the heat source, are assigned
with different material properties, as it is shown in Figure 11.
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tional cost while maintaining high thermal field resolution. Specifically, thermal brick elements
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• Mapped mesh
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possible to distinguish the different behavior of powder, base plate, and molten pool. Referring
to Figure 11, the base plate elements (cyan) are associated with constant thermal properties, as
it is supposed that the base plate is not affected by the thermal field. This assumption helps to
reduce the non-linearity. Different element properties are also associated with the layer in
order to distinguish between the inert powder bed (blue elements) and the grains that undergo
the melting process. These elements are depicted in red and represent the dimension of the
molten pool. Different thermal properties have just been explained in Section 2.1.

As mentioned before, the algorithm is iterative and the system must be solved at each laser
spot application. The diagram in Figure 12 shows how the solving algorithm is carried out.

4.2. Boundary condition

The system of equations resulting from Eq. (10) can be solved once the prescribed boundary
conditions (BCs) have been substituted. In FE thermal analysis, the possible BCs are:

1. Imposed temperature

2. Imposed heat flux

3. Flux due to convection ruled by the temperature difference

4. Flux due to radiation ruled by the fourth power of the absolute temperature

Boundary conditions depend on how the system interacts with the external environment:

i. Top surface:

The working chamber is filled with Argon to reduce the alloy powder oxidation. Natural
convection applies overall on the top surface, apart from the localized area where the
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laser heat flux is imposed. Since the emitting radiation flux makes the analysis highly
nonlinear, its effect is not considered here. To solve this problem, an empirical relation-
ship has been proposed [9, 18], which combines the effect of radiation and convection
into a lumped heat transfer coefficient.

ii. Lateral surfaces:

Since the powder conductivity is very low, lateral surfaces can be considered as adia-
batic, hence the heat flux imposed is equal to zero (q x; tð Þ ¼ 0).

iii. Bottom surface:

In SLM machines, the base plate is heated between 80�C and 130� C, depending on the
machine model. Bottom nodes are constrained with imposed temperature or with con-
vection conditions. In this work, the bottom surface is constrained with convection
boundary condition. As a consequence, a convection coefficient must be chosen in order
to reproduce the convective exchange conditions into the base plate.

BC applied to the numerical model is summarized in Figure 11.

Not only boundary conditions, but also initial conditions (ICs) are requested to solve the
numerical model. Initial conditions can be imposed setting up a starting temperature for all
the nodes. These temperatures are used in transient solutions as the first step temperatures,
hence at a time equal to zero:

T x; t ¼ 0…t0ð Þ ¼ T0 xð Þ (14)

Moreover, since transient solution occurs at each cycle, initial condition must also be set at the
beginning of each load step. It follows that initial condition applied to load step n are the nodal
temperature obtained from the solution at step n-1.

4.3. Mapping procedure

Element undergoing phase change must be continuously updated with different material
properties to simulate the melting and cooling process. When the average temperature of an
element is higher than the melting point, the element is provided with different material
properties that allow tracking the molten pool behavior. ANSYS® cannot easily change material
properties while the transient solution is running, not even using restart options. Therefore, it is
mandatory to solve the analysis before modifying material properties. During post-processing,
the temperatures of each element are analyzed and the material properties are changed
accordingly.

The iterative algorithm helps to keep the analysis simple, even if it requires the element
properties to be deleted at the end of each iteration so that they must be continuously saved
and resumed at the beginning of the next iteration. Moreover, the mesh and, hence, the
element spatial location are not constant throughout the iteration due to the dynamic mesh
refinement (see Section 5). In fact, the FE environment is rebuilt iteratively with different
element densities depending on the laser location, as it is shown in Figure 13.
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OLD_MESH and NEW_MESH refer to listed mesh entities. Each row of the list contains
elements and nodes tracking number, their spatial coordinates, and the related properties.

The procedure able to assign correctly the temperature and material properties between two
different mesh environments is called mapping procedure and is carried out in sequence by
MatLab® and ANSYS®. A mapping algorithm is a useful tool that is able to save nodal temper-
atures from the previous load step, evaluate and assign material type with respect to the element
average temperature, and finally, restore the data in the subsequent iteration as initial conditions.
To avoid misunderstanding, it is worth noticing the difference between nodal and element
properties: temperatures are the values assigned to nodes, while the material number is assigned
to the elements. Due to ANSYS® programming language, different thermal behaviors can be
assigned to the same element type using material numbers. This is the reason why in this work
the expression material properties has been used with the same meaning as thermal properties.

The flowchart presented in Figure 14 helps to understand the mapping algorithm.

At the beginning, the elements and nodes are listed by ANSYS® in a file with the related
material number and temperature. This occurs in the post-procedure step related to the n cycle
(NEW_MESH). The file is imported into MatLab® and compared with the previous mesh file,
just saved before from the n-1 cycle (OLD_MESH). Referring to Figure 13, elements and nodes
are compared with respect to their spatial location and divided into two groups: common and
uncommon entities. The dashed squares in Figure 13 highlight the difference between com-
mon and uncommon mesh.

Data coming from the previous analysis (step n-1) are assigned to the next one (step n) regardless
of the grouped entities. Since the common elements and nodes share the same spatial location,
the properties are simply transferred from the OLD_MESH to the NEW_MESH. The mapping
algorithm takes the (element and node) spatial coordinates from OLD_MESH and searches the
corresponding location in NEW_MESH (notice that the reference point for the element localiza-
tion is the centroid). The mapping based on spatial coordinates is needed as the common entities
share the same location but not the same tracking number because of the different meshes.
Consequently, the temperatures and material numbers are transferred to NEW_MESH and can
be simply assigned as the initial condition with respect to the entities number.

Figure 13. Comparison between OLD_MESH and NEW_MESH.
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Regarding the uncommon entities, their properties cannot be directly transferred to the model
because there is a spatial mismatch between the two meshes. The solution is to perform an
interpolation. The elements and nodes locations from OLD_MESH are the input values, while
the NEW_MESH entities are the target. The interpolation scheme scans all the elements
(nodes) in the NEW_MESH, searching for the location that suits better the elements (nodes)
belonging to the OLD_MESH. When the best solution is found, the properties can be interpo-
lated between the two meshes. A different interpolation scheme is applied for temperature and
material properties. The material number is assigned to the target with respect to the nearest
OLD_MESH element and no interpolation is needed. However, the temperatures are assigned
to target nodes with a more complicated scheme: not only the nearest node from OLD_MESH
is chosen, but also a group of surrounding nodes that properly fit the target. Therefore, the
temperature is assigned by means of an interpolation scheme that can be performed on a
surface (2D interpolation) or on a volume (3D interpolation) regardless of the precision
requested in the analysis. Finally, the interpolated value can be transferred to NEW_MESH
and used for the initial condition.

Figure 14. A flowchart illustrating the mapping procedure between two subsequent spots.
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The framework for the mapping procedure requests a lot of time for being set up, because it
needs a strong interaction between ANSYS® and MatLab®. MatLab® is used for grouping the
entities and for mapping the common entities. ANSYS® is chosen for the uncommon nodes
taking advantage of the in-built powerful interpolation algorithm. Despite the complexity, a
mapping method based on common and uncommon entities guarantees a strong reduction in
the computational cost. The bottleneck of a traditional mapping procedure is the time-
consuming interpolation algorithm. With this solution, the interpolation is applied only to a
limited number of elements and not to the entire domain.

5. Mesh refinement

FEA is a useful tool to return an approximation of physics variables. Obviously, the computation
time is a decisive factor to make numerical simulations competitive with respect to trial-and-error
experiments. Traditionally, the bottleneck of a transient FEA is the time requested to compute the
temperature field at each laser beam position. This gets even worse considering nonlinear mate-
rial properties, the high amount of load steps, and elements number. In fact, every load step is
divided into sub-steps to satisfy transient time integration rules. Consequently, the factor mainly
responsible for the prolonged simulation time is the amount of elements and sub-steps; thus, in
order to minimize the computational cost, this must be reduced as much as possible.

Suppose that the model has been built applying a uniform mapped mesh to the entire domain.
Moreover, the mesh density has been increased as much as possible since FEM can predict
more accurate results when the number of elements is high. Generally, it is often recommended
to increase the elements density in the neighborhood of a certain zone where the results are
requested to be more accurate. A typical example is when the stress concentration factor of a
shouldered shaft subjected to an axial force needs to be determined. In such a case, the
elements are concentrated in the vicinity of the fillet in order to obtain more reliable results.

However, the simulation time is proportional to the elements number and expected to increase
enormously. One possible solution to overcome this long computing time is to use the dynamic
mesh refinement (DMR) approach. It involves an independent mesh refinement of multiple
sub-domains. This strategy allows to further refine, independently, the meshes in a hierarchic
manner to reach a higher resolution.

It is mainly composed of two parts:

• Mesh refinement: increase element density in a region while having a coarse mesh in the
remaining domain.

• Dynamic: the mesh is dynamically adapted according to the problem’s nature, e.g., bound-
ary conditions, constitutive laws or geometry.

We will adopt a dynamic mesh refinement so as to adjust the local mesh refinement to the
position of the laser spot. This has the great advantage of solving load steps with much fewer
elements, hence the simulation time will benefit too. The dynamic part is a priority in this case,
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since there is a need to iteratively update the mesh at the end of each load step according to the
laser spot position. The mesh can be rearranged in many ways; one option is to divide the
mesh into different levels of refinement. As shown in Figure 15, three levels of increasing
refinement degree have been implemented, namely level 1,2, and 3.

There are essentially two methods in order to build the mesh with different refinement levels,
viz. bottom-up and top-down approaches. The former builds the entire domain starting with the
coarsest mesh (level 1) and subsequently digs and removes the elements in order to generate a
mesh of level 2 and so on for all the refinement levels. The latter method differs inasmuch as
the finest mesh is built at the beginning and the remaining meshes are generated accordingly.
ANSYS® does not let the user modify the mesh once it is created, thus the second method was
preferred over the first one.

5.1. Bonded contact technique

In order to impose discontinuous mesh levels to work properly, there is a need to connect the
two parts to restore the continuity of the field variable. As it can be seen from Figure 15, mesh
level 2 and 3 do not share the same nodes; hence, there is no mesh continuity between the two
parts. Mesh compatibility was intentionally lost in order to further reduce the number of
elements outside the heat-affected zone (HAZ). As a matter of fact, there are two main
techniques to ensure continuity between incompatible meshes: bonded contact and constraint
equations. Since the latter introduces additional constraint equations thus increasing the com-
putational cost and the memory request, DMR based on bonded contact is preferred. The state
of these contact elements never changes throughout the simulation, whereby not introducing
additional sources of nonlinearity.

DMR requires an additional routine that permits data transfer from the previous mesh to the
newly created and adapted mesh, as it has been explained in Section 4. Figure 16 shows the

Figure 15. An example of dynamic mesh refinement approach.
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Figure 16. A flow chart for the mesh refinement procedure.

Figure 17. Time consumption and maximum temperature trend.
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flowchart related to the DMR procedure. Moreover, it helps to understand how the mapping
procedure is matched to well-fit the DMR requirements.

At the beginning, the ANSYS® simulation of the first laser spot is solved and data including
mesh and nodal temperature are stored in the external file OLD_MESH. Subsequently, the spot
position is moved and the mesh is updated and saved as NEW_MESH. At this point, ANSYS®

stops working and MatLab® ad-hoc procedure will take OLD_MESH and NEW_MESH as
inputs. The routine will sort nodes as common and uncommon and will return the information

Figure 18. Comparison between the constant mesh and the dynamic mesh refinement.

Figure 19. Micrograph of a single molten seam.
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Figure 21. A flow chart for the calibration procedure.

Figure 20. Thermal behavior of the molten pool.
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to ANSYS®. At this point, the temperature field of the previous mesh can be applied to the new
mesh as an initial condition in the following way:

• Common new nodes will have the same temperature as the old ones

• Uncommon new nodes will have an interpolated temperature from the old ones due to
the *MOPER APDL command.

As a result, the simulation time dropped from 15 minutes/spot to 71 seconds/spot reducing the
calculation time by 92%. As already mentioned before, the main parameter, which greatly affects
the simulation time, is the number of substeps. The optimal value thereof was found through a
convergence analysis based on the plot shown in Figure 17. It can be noted that an increment in the
time step size Δt has a much more pronounced effect on the solution time rather than on maxi-
mum nodal temperature (a measure of the solution accuracy). A reasonable trade-off between
accuracy and simulation time is a time step size of 3 μs, allowing for 1% error in maximum
temperature estimation and a computation time reduction of 80%. It is worth noting that the
overall time reduction, due to mesh refinement and time step size reduction, is equal to 98.5%.

The uniformmesh model and the one implementing DMRwas tested applying a laser beam on
a straight line and the results are shown in Figure 21. It can be seen that the temperature scale
has only some little negligible variations. The DMR model well represents the physical phe-
nomena and is a trade-off between result accuracy and computation time.

6. Calibration

It has been proven that the computational performances can be strongly enhanced using a
simplified numerical model. Nevertheless, results are greatly affected by the lack of accuracy
due to several simplifications applied to the model. A calibration procedure is necessary to
reduce this issue: the material properties and the boundary conditions can be modified trying
to fit numerical results with experimental data. The comparison is based on the molten pool
dimension measured from a solidified seam. Moreover, since only a single seam is needed for
the calibration, the geometrical domain can be halved along the symmetry plane, saving
computational cost. The main reason for the calibration is that ANSYS® does not consider
elements which behave as liquid elements. The only way to simulate melting and cooling is to
change the material properties and in particular thermal conduction and enthalpy, even
though conduction does not apply for liquids.

As a consequence, the thermal properties are not well-defined for temperatures above the
melting point. In this situation, a convective parameter should be used. This consideration
permits the change of the parameters as needed, trying to simulate the convective behavior
with a fictitious conduction parameter. The calibration procedure aims to adjust the thermal
properties (only above the melting point) whereby fitting the molten pool size to the experi-
mental data. The parameters adjusted by the calibration are enthalpy and thermal conductiv-
ity: the enthalpy is modified to control the temperature field while the conductivity is mainly
responsible for the size of the molten pool. Specifically, metallographic inspections, as shown
in Figure 19, are used to estimate width and depth of the molten pool.
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Figure 18 shows a single molten seam obtained overlapping multiple layers. The seam was
melted using the process parameters listed in Table 1. It has been cut and analyzed in order to
gather information about the width and depth of the molten pool. Measured values are:

• Width = 183 � 38 μm

• Depth = 107 � 38 μm

The deviation related to measurements is mainly related to the narrow geometry and tiny
dimensions of the object. Its width is only 4-5 times larger than the dimensions of the metal
powder particles; therefore, the profile is not regular. It represents the minimum thickness that
can be obtained with a single scan of the laser beam on the powder bed. Notice from Figure 19
that the molten seam undergoes the re-melting process with the application of successive
layers and therefore the depth is not a reliable parameter. Nevertheless, the object is helpful in
order to evaluate the real width of the molten pool.

6.1. Calibration results

Due to the uncertainty related to the depth, only the molten pool width is taken into account,
while the former issue will be addressed in future work. At the beginning, a trial simulation is
carried out to check how the temperature field is sensitive to the parameters change. A directly
measured thermal field is not available for this work; hence, the comparison is done with
respect to results retrieved from the literature [20]. The enthalpy is indeed modified to keep
the thermal field under control. New values for enthalpy are shown in Table 6. Only the last
enthalpy value is modified increasing the specific heat for vapor by a factor of 10. This helps to
decrease the maximum nodal temperature.

The thermal behavior of molten pool is shown in Figure 20, which gives an idea about how
elevated is the temperature of the zone irradiated by the laser.

This is due to the fact that the molten pool width is narrower than the experimental data and
the conductivity needs to be increased. The calibration is, in a nutshell, an iterative algorithm
that changes the conductivity with a trial factor as long as the numerical data well reproduce
the experimental measurement. The algorithm involves MatLab® and ANSYS® as it is shown
in the diagram presented in Figure 21.

The correction factor for conductivity is shown in Table 7. Notice that the correction is applied
only to those values above the melting temperature.

Results coming from calibration are shown in Figure 22.

Enthalpy (J/m3)

Powder Solid Powder

5000 5.2448e + 11 5.2448e + 11

Table 6. Calibrated value for enthalpy.
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the *MOPER APDL command.

As a result, the simulation time dropped from 15 minutes/spot to 71 seconds/spot reducing the
calculation time by 92%. As already mentioned before, the main parameter, which greatly affects
the simulation time, is the number of substeps. The optimal value thereof was found through a
convergence analysis based on the plot shown in Figure 17. It can be noted that an increment in the
time step size Δt has a much more pronounced effect on the solution time rather than on maxi-
mum nodal temperature (a measure of the solution accuracy). A reasonable trade-off between
accuracy and simulation time is a time step size of 3 μs, allowing for 1% error in maximum
temperature estimation and a computation time reduction of 80%. It is worth noting that the
overall time reduction, due to mesh refinement and time step size reduction, is equal to 98.5%.

The uniformmesh model and the one implementing DMRwas tested applying a laser beam on
a straight line and the results are shown in Figure 21. It can be seen that the temperature scale
has only some little negligible variations. The DMR model well represents the physical phe-
nomena and is a trade-off between result accuracy and computation time.

6. Calibration

It has been proven that the computational performances can be strongly enhanced using a
simplified numerical model. Nevertheless, results are greatly affected by the lack of accuracy
due to several simplifications applied to the model. A calibration procedure is necessary to
reduce this issue: the material properties and the boundary conditions can be modified trying
to fit numerical results with experimental data. The comparison is based on the molten pool
dimension measured from a solidified seam. Moreover, since only a single seam is needed for
the calibration, the geometrical domain can be halved along the symmetry plane, saving
computational cost. The main reason for the calibration is that ANSYS® does not consider
elements which behave as liquid elements. The only way to simulate melting and cooling is to
change the material properties and in particular thermal conduction and enthalpy, even
though conduction does not apply for liquids.

As a consequence, the thermal properties are not well-defined for temperatures above the
melting point. In this situation, a convective parameter should be used. This consideration
permits the change of the parameters as needed, trying to simulate the convective behavior
with a fictitious conduction parameter. The calibration procedure aims to adjust the thermal
properties (only above the melting point) whereby fitting the molten pool size to the experi-
mental data. The parameters adjusted by the calibration are enthalpy and thermal conductiv-
ity: the enthalpy is modified to control the temperature field while the conductivity is mainly
responsible for the size of the molten pool. Specifically, metallographic inspections, as shown
in Figure 19, are used to estimate width and depth of the molten pool.
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Figure 18 shows a single molten seam obtained overlapping multiple layers. The seam was
melted using the process parameters listed in Table 1. It has been cut and analyzed in order to
gather information about the width and depth of the molten pool. Measured values are:

• Width = 183 � 38 μm

• Depth = 107 � 38 μm

The deviation related to measurements is mainly related to the narrow geometry and tiny
dimensions of the object. Its width is only 4-5 times larger than the dimensions of the metal
powder particles; therefore, the profile is not regular. It represents the minimum thickness that
can be obtained with a single scan of the laser beam on the powder bed. Notice from Figure 19
that the molten seam undergoes the re-melting process with the application of successive
layers and therefore the depth is not a reliable parameter. Nevertheless, the object is helpful in
order to evaluate the real width of the molten pool.

6.1. Calibration results

Due to the uncertainty related to the depth, only the molten pool width is taken into account,
while the former issue will be addressed in future work. At the beginning, a trial simulation is
carried out to check how the temperature field is sensitive to the parameters change. A directly
measured thermal field is not available for this work; hence, the comparison is done with
respect to results retrieved from the literature [20]. The enthalpy is indeed modified to keep
the thermal field under control. New values for enthalpy are shown in Table 6. Only the last
enthalpy value is modified increasing the specific heat for vapor by a factor of 10. This helps to
decrease the maximum nodal temperature.

The thermal behavior of molten pool is shown in Figure 20, which gives an idea about how
elevated is the temperature of the zone irradiated by the laser.

This is due to the fact that the molten pool width is narrower than the experimental data and
the conductivity needs to be increased. The calibration is, in a nutshell, an iterative algorithm
that changes the conductivity with a trial factor as long as the numerical data well reproduce
the experimental measurement. The algorithm involves MatLab® and ANSYS® as it is shown
in the diagram presented in Figure 21.

The correction factor for conductivity is shown in Table 7. Notice that the correction is applied
only to those values above the melting temperature.

Results coming from calibration are shown in Figure 22.

Enthalpy (J/m3)

Powder Solid Powder

5000 5.2448e + 11 5.2448e + 11

Table 6. Calibrated value for enthalpy.
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7. Results

After parameters calibration, the simulation of a SLM process can be carried out. Because of
the high number of laser spots, the simulation must be applied only to a small portion of the
powder bed. Only one layer is considered and the adopted laser scanning strategy is the
meander path. In order to gather information about the thermal field evolution into the bed
powder, the time evolution of the temperature field is sampled on a spot selected as a temper-
ature probe. The corresponding results are shown in Figure 23. The small window shows
powder bed and meandering path. The black point along the meandering path represents the
probe, which the temperature graph refers to.

Thermal conductivity (W/mK)

Temperature (�C) Solid Powder

1660 14.9567*5 14.9567*5

3265 14.9567*5 14.9567*5

3295 7.4784*5 7.4784*5

5000 7.4784*5 7.4784*5

Table 7. Calibrated value for thermal conductivity.

Figure 22. Molten pool behavior with calibrated parameters.
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A very narrow temperature peak can be noticed in Figure 23. The highest peak is due to the
heat source applied directly onto the probe. The other peaks are related to the reheating of the
solidified area as the heat source is applied on the surrounding areas. In this example, the
scan element is subject to remelting only once. The melting and cooling process occurs with
very high gradients and this is the main source of the thermal residual stresses affecting the as-
built parts.

8. Conclusions

A three-dimensional FE model is developed using ANSYS® to study the thermal behavior
of the molten pool in building a single layer via SLM process. At the beginning, the
scanning strategy adopted by the laser is simulated by a path simulator built using MatLab.
Then, the FE analysis framework is extensively explained with special regard to thermal
properties applied to the model. Dynamic mesh refinement is used to reduce the computa-
tional cost of the simulation. Special care is taken in devising a mapped mesh discretization
scheme, ensuring that the traveling subdomain centered on the laser spot changes as less as
possible the mesh of the remaining subdomain. Finally, a calibration procedure is applied to
fit the numerical results with the experimental measurements. The simulation results agree
reasonably well with experimental and literature results and give some insight into the
mutual interaction among the process parameters. Useful indications can be gained to
optimize the process parameters, to estimate the adhesion between the layers, and to
identify the best building strategy. This model can be further developed by incorporating
the nodal temperature field into a structural analysis for predicting the resulting stress and
strain field.

Figure 23. Temperature development of a point at the surface of the powder bed.
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fit the numerical results with the experimental measurements. The simulation results agree
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identify the best building strategy. This model can be further developed by incorporating
the nodal temperature field into a structural analysis for predicting the resulting stress and
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Adaptive Modeling and Simulation of Elastic, Dielectric
and Piezoelectric Problems

Grzegorz Zboiński

Additional information is available at the end of the chapter

Abstract

In this chapter, theoretical and implementation details of the algorithms of hierarchical
modeling and hierarchical hp-approximations, residual error estimation methods and
four-step adaptive procedures are considered in the context of their application to
modeling and simulation of the problems of elasticity, dielectricity and piezoelectricity.
In the hierarchical modeling, 3D-based hierarchical elastic and dielectric models are
applied. The adaptive discretization process is based on the hierarchical shape functions
and the constrained approximations. In the error estimation, the equilibrated residual
method is applied, which serves the total and approximation error assessment. These
errors control the model and hp-adaptivity. In the case of adaptive algorithms, four-step
procedure is utilized. It includes global solutions on the initial mesh, mesh modified in
order to remove some undesired numerical phenomena, the intermediate h-refined
mesh and the final (or target) p-enriched mesh. Examples demonstrating the effectivity
of the mentioned modeling and approximation, error estimation and adaptivity control
parts of the overall simulation algorithm in the three classes of problems are presented.

Keywords: adaptivity, modeling, simulation, finite elements, hierarchical models,
hierarchical approximations, error estimation, adaptivity control, algorithms, effectivity,
elasticity, dielectricity, piezoelectricity

1. Introduction

This chapter constitutes a continuation and extension of the previous work [1] on theoretical and
implementation difficulties in application of the adaptive hierarchical modeling and hp-adaptive
finite element analysis to elasticity, dielectricity and piezoelectricity. In the cited work, the 3D-
based elastic, dielectric and piezoelectric hierarchies of models were elucidated. These models
are based on either three-dimensional theories or reduced models polynomially constrained
through the thickness. In the mentioned work, also the hierarchical approximations for the three
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Abstract

In this chapter, theoretical and implementation details of the algorithms of hierarchical
modeling and hierarchical hp-approximations, residual error estimation methods and
four-step adaptive procedures are considered in the context of their application to
modeling and simulation of the problems of elasticity, dielectricity and piezoelectricity.
In the hierarchical modeling, 3D-based hierarchical elastic and dielectric models are
applied. The adaptive discretization process is based on the hierarchical shape functions
and the constrained approximations. In the error estimation, the equilibrated residual
method is applied, which serves the total and approximation error assessment. These
errors control the model and hp-adaptivity. In the case of adaptive algorithms, four-step
procedure is utilized. It includes global solutions on the initial mesh, mesh modified in
order to remove some undesired numerical phenomena, the intermediate h-refined
mesh and the final (or target) p-enriched mesh. Examples demonstrating the effectivity
of the mentioned modeling and approximation, error estimation and adaptivity control
parts of the overall simulation algorithm in the three classes of problems are presented.

Keywords: adaptivity, modeling, simulation, finite elements, hierarchical models,
hierarchical approximations, error estimation, adaptivity control, algorithms, effectivity,
elasticity, dielectricity, piezoelectricity

1. Introduction

This chapter constitutes a continuation and extension of the previous work [1] on theoretical and
implementation difficulties in application of the adaptive hierarchical modeling and hp-adaptive
finite element analysis to elasticity, dielectricity and piezoelectricity. In the cited work, the 3D-
based elastic, dielectric and piezoelectric hierarchies of models were elucidated. These models
are based on either three-dimensional theories or reduced models polynomially constrained
through the thickness. In the mentioned work, also the hierarchical approximations for the three
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classes of hierarchical models are presented. The rules for ordering the hierarchical models and
approximations are described. Then, the a posteriori error estimation, based on the equilibrated
residual method (ERM) applied to the three classes of problems, is presented. The similarities
and differences between the element (local) problems necessary for the element error estimation
for these three cases are addressed. Finally, the three- and four-step error-controlled adaptive
procedures for the three classes of problems are proposed. The procedures require the global
problem solution on the initial, modified, intermediate (h-refined) and final (p-enriched) meshes.

In this chapter, attention is paid to the effectivity of the algorithms for adaptive modeling and
simulation of three considered classes of physical phenomena, that is, elasticity, dielectricity
and piezoelectricity. Effectivity of hierarchical approximations within elastic, dielectric and
piezoelectric media is compared. For this purpose, convergence curves for the analogous
model problems within three mentioned classes of problems are generated and assessed. Also,
the exemplary comparative results of the approximations are presented for these three classes
of model problems. In the case of the error estimation, the global and local (element) effectivity
indices for the total, approximation and modeling errors, where the latter is the difference of
the former two, in the exemplary model problems of elasticity, dielectricity and piezoelectricity
are calculated and compared. The exemplary distribution of the element error indicators and
the global values of the error estimators for the model problems of three classes are presented
and compared. In the case of the adaptive procedures, the model- and hpq-adaptive algo-
rithms, where h represents the element size parameter, while p and q stand for the element
longitudinal and transverse orders of approximation, are of our interest. These algorithms
are controlled with the estimated values of the modeling, approximation and total errors. In
order to check the effectivity of these algorithms, results necessary for the obtainment of the
hp-adaptive convergence curves for the mentioned three model problems of elasticity, dielec-
tricity and piezoelectricity are produced. The convergence is assessed in the context of obtain-
ment of the target values of the errors in subsequent steps of the adaptive calculations for three
classes of problems. Also, the comparative results of the adaptive solutions of the model
problems of three classes are presented.

1.1. Research objectives

The main objective of this research is to demonstrate the effectivity of our generalizing algo-
rithms [1] adapted, modified or developed for the problems of elasticity, dielectricity and
piezoelectricity. Also, the issue of comparison of the corresponding effectivities for these three
classes of problems is of our interest. In relation to these objectives, the presented general
approach to adaptive modeling and simulation is numerically tested in the context of the
approximation algorithms, error estimation algorithms and adaptivity control algorithms as
well.

1.2. State-of-the-art issues

In this brief survey, the issues of hierarchical modeling, hierarchical approximations, error
estimation and adaptivity control are addressed. The survey is limited to the numerical tech-
niques used in this chapter and the papers directly utilized for this research—no general
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overview of the four mentioned issues is presented. The interested readers can find such
overviews in some of the publications cited below.

The 3D-based hierarchical shell models utilizing three-dimensional degrees of freedom (dofs)
and conforming to higher order shell theories were firstly proposed in [2] and repeated in [3].
The conventional hierarchical shells, employing mid-surface dofs, were proposed in [4]. The
3D-based approach was extended onto the first-order shell and shell-to-shell theories in [3, 5].
The latter works also extend the 3D-based hierarchical modeling onto 3D elasticity and solid-
to-shell transition models. The author of this chapter is not aware of any hierarchical models of
linear dielectricity. Some hierarchic piezoelectric models were presented in [6] in the context of
multilayered plate structures. Suggestions on introduction of the 3D-based hierarchical dielec-
tric and piezoelectric models were formulated in [1, 7].

The hierarchical and constrained approximations necessary for p- and h-adaptivity, respec-
tively, are adopted in our work and were proposed in [8]. Hierarchical approximations for
conventional shells were developed in [4], for 3D-based shells in [2, 9] and for complex
structures in [5]. The last paper collects partial results presented in [9–12]. Classical and
hierarchical approximations for piezoelectric problems were elaborated in [6, 13]. Hierarchical
approximations for the complex 3D or 3D-based hierarchical models of dielectrics and piezo-
electrics were proposed in the works [1, 7].

The general considerations on error estimation based on the equilibrated residual method can
be found in [14]. Application of this method to 3D elasticity was described in [15]. The method
was also applied to the hierarchical shells of conventional character in [16]. The analogous
approach for the 3D-based first-order shells was developed in [17, 18]. The method was also
utilized to error estimation in the 3D-based complex structures [19]. Application of the method
to dielectric and piezoelectric problems was suggested in [1, 20].

Finally, adaptivity control by means of the three-step strategy for simple structures was
presented in [21]. Within this strategy, three subsequent meshes are generated—initial, inter-
mediate (or h-refined) and target (or p-enriched) ones. The method was applied to adaptive
analysis of conventional hierarchical models of shell- and plate-like structures in [16]. In that
work, the third step is split into two, that is, q and p enrichments are performed in sequence.
The original three-step strategy was then extended in [3] by addition of the fourth step in
which the mesh is modified to get rid of the numerical consequences of the improper solution
limit, numerical locking and edge effect. The model adaptivity is performed along with the
h-step and p and q enrichments are performed simultaneously. Such a four-step adaptive stra-
tegy is applied to modeling and simulation of complex elastic structures in [19]. Adaptive
simulation in electric or electromechanical problems is less advanced. Adaptivity for simple
piezoelectrics was introduced in [22]. Application of the three- or four-step strategies to the
analysis of simple and complex dielectrics and piezoelectrics was suggested in [1].

1.3. Novelty of the research

The main novelty of the presented research consists in application of the chosen techniques of
hierarchical modeling and approximation, error estimation and adaptivity control, effective in
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and differences between the element (local) problems necessary for the element error estimation
for these three cases are addressed. Finally, the three- and four-step error-controlled adaptive
procedures for the three classes of problems are proposed. The procedures require the global
problem solution on the initial, modified, intermediate (h-refined) and final (p-enriched) meshes.

In this chapter, attention is paid to the effectivity of the algorithms for adaptive modeling and
simulation of three considered classes of physical phenomena, that is, elasticity, dielectricity
and piezoelectricity. Effectivity of hierarchical approximations within elastic, dielectric and
piezoelectric media is compared. For this purpose, convergence curves for the analogous
model problems within three mentioned classes of problems are generated and assessed. Also,
the exemplary comparative results of the approximations are presented for these three classes
of model problems. In the case of the error estimation, the global and local (element) effectivity
indices for the total, approximation and modeling errors, where the latter is the difference of
the former two, in the exemplary model problems of elasticity, dielectricity and piezoelectricity
are calculated and compared. The exemplary distribution of the element error indicators and
the global values of the error estimators for the model problems of three classes are presented
and compared. In the case of the adaptive procedures, the model- and hpq-adaptive algo-
rithms, where h represents the element size parameter, while p and q stand for the element
longitudinal and transverse orders of approximation, are of our interest. These algorithms
are controlled with the estimated values of the modeling, approximation and total errors. In
order to check the effectivity of these algorithms, results necessary for the obtainment of the
hp-adaptive convergence curves for the mentioned three model problems of elasticity, dielec-
tricity and piezoelectricity are produced. The convergence is assessed in the context of obtain-
ment of the target values of the errors in subsequent steps of the adaptive calculations for three
classes of problems. Also, the comparative results of the adaptive solutions of the model
problems of three classes are presented.

1.1. Research objectives

The main objective of this research is to demonstrate the effectivity of our generalizing algo-
rithms [1] adapted, modified or developed for the problems of elasticity, dielectricity and
piezoelectricity. Also, the issue of comparison of the corresponding effectivities for these three
classes of problems is of our interest. In relation to these objectives, the presented general
approach to adaptive modeling and simulation is numerically tested in the context of the
approximation algorithms, error estimation algorithms and adaptivity control algorithms as
well.

1.2. State-of-the-art issues

In this brief survey, the issues of hierarchical modeling, hierarchical approximations, error
estimation and adaptivity control are addressed. The survey is limited to the numerical tech-
niques used in this chapter and the papers directly utilized for this research—no general
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overview of the four mentioned issues is presented. The interested readers can find such
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The 3D-based hierarchical shell models utilizing three-dimensional degrees of freedom (dofs)
and conforming to higher order shell theories were firstly proposed in [2] and repeated in [3].
The conventional hierarchical shells, employing mid-surface dofs, were proposed in [4]. The
3D-based approach was extended onto the first-order shell and shell-to-shell theories in [3, 5].
The latter works also extend the 3D-based hierarchical modeling onto 3D elasticity and solid-
to-shell transition models. The author of this chapter is not aware of any hierarchical models of
linear dielectricity. Some hierarchic piezoelectric models were presented in [6] in the context of
multilayered plate structures. Suggestions on introduction of the 3D-based hierarchical dielec-
tric and piezoelectric models were formulated in [1, 7].

The hierarchical and constrained approximations necessary for p- and h-adaptivity, respec-
tively, are adopted in our work and were proposed in [8]. Hierarchical approximations for
conventional shells were developed in [4], for 3D-based shells in [2, 9] and for complex
structures in [5]. The last paper collects partial results presented in [9–12]. Classical and
hierarchical approximations for piezoelectric problems were elaborated in [6, 13]. Hierarchical
approximations for the complex 3D or 3D-based hierarchical models of dielectrics and piezo-
electrics were proposed in the works [1, 7].

The general considerations on error estimation based on the equilibrated residual method can
be found in [14]. Application of this method to 3D elasticity was described in [15]. The method
was also applied to the hierarchical shells of conventional character in [16]. The analogous
approach for the 3D-based first-order shells was developed in [17, 18]. The method was also
utilized to error estimation in the 3D-based complex structures [19]. Application of the method
to dielectric and piezoelectric problems was suggested in [1, 20].

Finally, adaptivity control by means of the three-step strategy for simple structures was
presented in [21]. Within this strategy, three subsequent meshes are generated—initial, inter-
mediate (or h-refined) and target (or p-enriched) ones. The method was applied to adaptive
analysis of conventional hierarchical models of shell- and plate-like structures in [16]. In that
work, the third step is split into two, that is, q and p enrichments are performed in sequence.
The original three-step strategy was then extended in [3] by addition of the fourth step in
which the mesh is modified to get rid of the numerical consequences of the improper solution
limit, numerical locking and edge effect. The model adaptivity is performed along with the
h-step and p and q enrichments are performed simultaneously. Such a four-step adaptive stra-
tegy is applied to modeling and simulation of complex elastic structures in [19]. Adaptive
simulation in electric or electromechanical problems is less advanced. Adaptivity for simple
piezoelectrics was introduced in [22]. Application of the three- or four-step strategies to the
analysis of simple and complex dielectrics and piezoelectrics was suggested in [1].

1.3. Novelty of the research

The main novelty of the presented research consists in application of the chosen techniques of
hierarchical modeling and approximation, error estimation and adaptivity control, effective in
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the adaptive modeling and simulation of the elasticity problems, to the adaptive analysis of
dielectric and piezoelectric phenomena.

The novelty of this particular chapter is the direct comparison of the robustness of the model-
ing and simulation algorithms of the coupled problem of piezoelectricity and the problems of
pure elasticity and pure dielectricity.

2. Model problems

The following model problems are considered in this chapter: the linear static problem of
elasticity, the linear electrostatic problem and the linear problem of stationary piezoelectricity.
For each of the model problems, the appropriate finite element formulation is presented. For
this purpose, the standard engineering matrix notation is applied.

2.1. Elastostatics

Here, the problems of a three-dimensional (solid) and 3D-based shell or solid-to-shell bodies
are considered. Such problems were presented in [1]. In that work, the local (strong) and
variational (weak) formulations of the problems are given. These formulations take advantage
of the former considerations from [2, 23, 24] and are repeated in [3]. Using the variational
formulation presented therein, one can derive the global finite element equations of the prob-
lem under consideration and write them in the following form:

KM qq, hp ¼ FV þ FS (1)

where KM is the global stiffness matrix, while FV and FS represent the global vectors of the
volume and surface nodal forces. The vector qq,hp stands for the global displacement degrees of
freedom (dof), corresponding to hpq approximation, and is composed of the element (local)

displacement dof vectors q
e
of the elements e ¼ 1, 2,…, E, where E is the total number of

elements within an elastic body. These vectors are defined later in this chapter.

The global stiffness matrix is composed (aggregated) of the element stiffness matrices of the
form

k
e
¼
ð1
0

ð1
0

ð�ξ2þ1

0
BT
e

DB
e
det Jð Þ dξ1dξ2dξ3 (2)

where D denotes the elastic constants matrix, B
e
represents the strain-displacement matrix,

and det Jð Þ is the Jacobian matrix determinant. The limits and coordinates of the integration
correspond to the normalized coordinates ξi, i ¼ 1, 2, 3 of the prismatic elements applied in [1].
The specific forms of the strain-displacement matrix can be found in the works [9, 10, 12] for
the 3D-based versions of the prismatic solid (and hierarchical shell), first-order shell and solid-
to-shell (and shell-to-shell) adaptive elements, respectively.
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The nodal mass forces vector can be defined in the standard way

f
e

M ¼
ð1
0

ð1
0

ð�ξ2þ1

0
NT
e

f det Jð Þ dξ1dξ2dξ3, (3)

where N
e
and f represent the element shape functions matrix and the mass loading vector,

respectively.

The element nodal forces vector due to the surface traction p can be defined in the following
two forms

f S
e
¼
ð1
0

ð�ξ2þ1

0
NT
e

p wsp Jð Þdξ2dξ1

f S
e
¼
ð1
0

ð1
0
NT
e

p wsp Jð Þdξ3dηi
(4)

corresponding to the bases and sides of the prismatic element. Above the element, bases and
sides are defined with the normalized longitudinal coordinates ξj, j ¼ 1, 2, or the transverse
normalized coordinate ξ3 and the coordinates ηi, i ¼ 1, 2, 3 tangential to the sides of the
element [3, 9]. The term wsp Jð Þ is the coefficient defined with the components of the Jacobian
matrix J (see [3, 9] again).

2.2. Electrostatics

The general formulations of the problems of electrostatics can be found in [25]. Here, classical
linear dielectric models are applied to such problems. The local and variational formulations
for this case was presented in [1] for any 3D or 3D-based geometry (bulky, symmetric-
thickness or transition ones). The corresponding finite element equations read:

KEw
r, hπ ¼ FQ (5)

In Eq. (5), KE represents the global characteristic matrix of dielectricity, while FQ stands for the
global characteristic electric charges nodal vector. The vector wr, hπ is the unknown global nodal
vector of electric potentials. This vector definition results from the applied r, hπ-approximation,
where r and π represent the transverse and longitudinal orders of approximation. The global

potential vector is composed of the element potential vectors we , which are described later in this
chapter. The global matrix KE is the result of summation of the element contributions

kE
e
¼
ð1
0

ð1
0

ð�ξ2þ1

0
bT
e

γb
e
det Jð Þdξ1dξ2dξ3 (6)

with γ and b
e
denoting the electric (or permittivity) constants matrix and the matrix of the

relation between the electric field components and the nodal electric potentials (or shortly
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the adaptive modeling and simulation of the elasticity problems, to the adaptive analysis of
dielectric and piezoelectric phenomena.

The novelty of this particular chapter is the direct comparison of the robustness of the model-
ing and simulation algorithms of the coupled problem of piezoelectricity and the problems of
pure elasticity and pure dielectricity.

2. Model problems

The following model problems are considered in this chapter: the linear static problem of
elasticity, the linear electrostatic problem and the linear problem of stationary piezoelectricity.
For each of the model problems, the appropriate finite element formulation is presented. For
this purpose, the standard engineering matrix notation is applied.

2.1. Elastostatics

Here, the problems of a three-dimensional (solid) and 3D-based shell or solid-to-shell bodies
are considered. Such problems were presented in [1]. In that work, the local (strong) and
variational (weak) formulations of the problems are given. These formulations take advantage
of the former considerations from [2, 23, 24] and are repeated in [3]. Using the variational
formulation presented therein, one can derive the global finite element equations of the prob-
lem under consideration and write them in the following form:

KM qq, hp ¼ FV þ FS (1)

where KM is the global stiffness matrix, while FV and FS represent the global vectors of the
volume and surface nodal forces. The vector qq,hp stands for the global displacement degrees of
freedom (dof), corresponding to hpq approximation, and is composed of the element (local)

displacement dof vectors q
e
of the elements e ¼ 1, 2,…, E, where E is the total number of

elements within an elastic body. These vectors are defined later in this chapter.

The global stiffness matrix is composed (aggregated) of the element stiffness matrices of the
form
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¼
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BT
e
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e
det Jð Þ dξ1dξ2dξ3 (2)

where D denotes the elastic constants matrix, B
e
represents the strain-displacement matrix,

and det Jð Þ is the Jacobian matrix determinant. The limits and coordinates of the integration
correspond to the normalized coordinates ξi, i ¼ 1, 2, 3 of the prismatic elements applied in [1].
The specific forms of the strain-displacement matrix can be found in the works [9, 10, 12] for
the 3D-based versions of the prismatic solid (and hierarchical shell), first-order shell and solid-
to-shell (and shell-to-shell) adaptive elements, respectively.
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where N
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corresponding to the bases and sides of the prismatic element. Above the element, bases and
sides are defined with the normalized longitudinal coordinates ξj, j ¼ 1, 2, or the transverse
normalized coordinate ξ3 and the coordinates ηi, i ¼ 1, 2, 3 tangential to the sides of the
element [3, 9]. The term wsp Jð Þ is the coefficient defined with the components of the Jacobian
matrix J (see [3, 9] again).

2.2. Electrostatics

The general formulations of the problems of electrostatics can be found in [25]. Here, classical
linear dielectric models are applied to such problems. The local and variational formulations
for this case was presented in [1] for any 3D or 3D-based geometry (bulky, symmetric-
thickness or transition ones). The corresponding finite element equations read:

KEw
r, hπ ¼ FQ (5)

In Eq. (5), KE represents the global characteristic matrix of dielectricity, while FQ stands for the
global characteristic electric charges nodal vector. The vector wr, hπ is the unknown global nodal
vector of electric potentials. This vector definition results from the applied r, hπ-approximation,
where r and π represent the transverse and longitudinal orders of approximation. The global

potential vector is composed of the element potential vectors we , which are described later in this
chapter. The global matrix KE is the result of summation of the element contributions
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with γ and b
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field-potential matrix). The specific form of the latter matrix in the case of the prismatic
element can be found in the work [26].

The nodal electric charges vector of the element e has to be defined in a different way on the
prismatic element bases and sides, that is,

fQ
e
¼
ð1
0

ð�ξ2þ1

0
nT
e

c wsp Jð Þdξ2dξ1 (7)

and

fQ
e
¼
ð1
0

ð1
0
nT
e

c wsp Jð Þdξ3dηi (8)

where n
e
and c are the element shape functions vector and the scalar density of the surface

electric charges.

2.3. Stationary piezoelectricity

The local and variational formulations of linear piezoelectricity combine our former consider-
ations concerning the linear elasticity and linear dielectricity [13, 27]. This approach was repeated
in [1]. The corresponding finite element formulation can be written in the form a coupled system
of equations. The coupling is represented by the matrix KC in the following way

KMqq, hp � KCw
r, hπ ¼ FV þ FS,

KT
Cq

q, hp þ KEw
r, hπ ¼ FQ

(9)

The coupling term can be called the global characteristic matrix of piezoelectricity, while
the rest terms retain their previous meaning. The additional remark concerns special or sim-
plified versions of the above equation. The inverse or direct piezoelectric problems can be
considered here with the right-hand side terms equal to zero in the first and second equation,
respectively. It is also worth mentioning that different pq and πr adaptive approximations of
the vectorial displacement and scalar electric fields are proposed in (9), with the common
h-approximation.

The global matrix of piezoelectricity introduced above can be obtained through the standard
finite element summation procedure, where the following element contributions are employed

kC
e
¼
ð1
0

ð1
0

ð�ξ2þ1

0
BT
e

Cb
e
det Jð Þdξ1dξ2dξ3 (10)

with C representing the piezoelectric (coupling) constants matrix.

The element contributions to the other terms of (9) are defined as before, that is, in accordance

with (2)–(4) and (6)–(7). Note that the different shape functions matrices, N
e
and n

e
, for the

displacements and potential fields are employed here due to the different orders of
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approximations, pq and πr, within both fields. Thanks to this, the corresponding adaptation
processes within both fields can be performed independently.

3. The applied numerical techniques

3.1. Hierarchies of models

The presented elastic, dielectric and piezoelectric models are all based on the 3D-based approach,
which results in the application of the three-dimensional or 3D-based degrees of freedom (dofs)
only. The mechanical shell and transition models are also equipped with such dofs. This means
that mid-surface degrees of freedom of the conventional shell and transition models are not
applied. The so-called through-thickness dofs are employed instead. Also, some constraints are
imposed on the three-dimensional displacements field of the shell and transition models so as to
obtain the equivalence of the conventional and 3D-based descriptions. The related issues are
presented in detail in the works [3, 5]. Analogously, in [7], the 3D-based hierarchy of dielectric
models was proposed. It includes the three-dimensional and symmetric-thickness hierarchical
models. Three-dimensional and 3D-based through-thickness dofs are employed in these models.
In the latter work, also the 3D-based mechanical and dielectric models were combined, so as to
obtain the 3D-based hierarchy of the piezoelectric models. This idea was also recalled in [1]. Note
that all the presented 3D-based models, either elastic, dielectric or piezoelectric ones, can be
treated as the 3D models polynomially constrained through the thickness.

The mechanical hierarchy M of the 3D or 3D-based elastic models M reads:

M∈M, M ¼ 3D;MI;RM; 3D=RM;MI=RMf g (11)

with 3D denoting three-dimensional elasticity, MI representing hierarchical shell models of
higher order, RM being the first-order shell model corresponding to Reissner theory of shells
and 3D=RM and MI=RM standing for the transition models of solid-to-shell or shell-to-shell
character. The hierarchical shell and shell-to-shell models constitute two sub-hierarchies:

MI ¼ M2;M3;M4;…f g,
MI=RM ¼ M2=RM;M3=RM;M4=RM;…f g

(12)

where I represents the order of the hierarchical modelMI. This order is equivalent to the order
of polynomial constraints defining the transverse displacement.

Subsequently, the hierarchy E of 3D-based dielectric models E includes:

E∈E, E ¼ 3D;EJf g (13)

where 3D represents three-dimensional theory of dielectricity, while EJ denotes the 3D-based
hierarchical models. The latter models constitute the following subhierarchy:

EJ ¼ E1;E2;E3;…f g (14)
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field-potential matrix). The specific form of the latter matrix in the case of the prismatic
element can be found in the work [26].

The nodal electric charges vector of the element e has to be defined in a different way on the
prismatic element bases and sides, that is,

fQ
e
¼
ð1
0

ð�ξ2þ1

0
nT
e

c wsp Jð Þdξ2dξ1 (7)

and

fQ
e
¼
ð1
0

ð1
0
nT
e

c wsp Jð Þdξ3dηi (8)

where n
e
and c are the element shape functions vector and the scalar density of the surface

electric charges.

2.3. Stationary piezoelectricity

The local and variational formulations of linear piezoelectricity combine our former consider-
ations concerning the linear elasticity and linear dielectricity [13, 27]. This approach was repeated
in [1]. The corresponding finite element formulation can be written in the form a coupled system
of equations. The coupling is represented by the matrix KC in the following way

KMqq, hp � KCw
r, hπ ¼ FV þ FS,

KT
Cq

q, hp þ KEw
r, hπ ¼ FQ

(9)

The coupling term can be called the global characteristic matrix of piezoelectricity, while
the rest terms retain their previous meaning. The additional remark concerns special or sim-
plified versions of the above equation. The inverse or direct piezoelectric problems can be
considered here with the right-hand side terms equal to zero in the first and second equation,
respectively. It is also worth mentioning that different pq and πr adaptive approximations of
the vectorial displacement and scalar electric fields are proposed in (9), with the common
h-approximation.

The global matrix of piezoelectricity introduced above can be obtained through the standard
finite element summation procedure, where the following element contributions are employed

kC
e
¼
ð1
0

ð1
0

ð�ξ2þ1

0
BT
e

Cb
e
det Jð Þdξ1dξ2dξ3 (10)

with C representing the piezoelectric (coupling) constants matrix.

The element contributions to the other terms of (9) are defined as before, that is, in accordance

with (2)–(4) and (6)–(7). Note that the different shape functions matrices, N
e
and n

e
, for the

displacements and potential fields are employed here due to the different orders of
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approximations, pq and πr, within both fields. Thanks to this, the corresponding adaptation
processes within both fields can be performed independently.

3. The applied numerical techniques

3.1. Hierarchies of models

The presented elastic, dielectric and piezoelectric models are all based on the 3D-based approach,
which results in the application of the three-dimensional or 3D-based degrees of freedom (dofs)
only. The mechanical shell and transition models are also equipped with such dofs. This means
that mid-surface degrees of freedom of the conventional shell and transition models are not
applied. The so-called through-thickness dofs are employed instead. Also, some constraints are
imposed on the three-dimensional displacements field of the shell and transition models so as to
obtain the equivalence of the conventional and 3D-based descriptions. The related issues are
presented in detail in the works [3, 5]. Analogously, in [7], the 3D-based hierarchy of dielectric
models was proposed. It includes the three-dimensional and symmetric-thickness hierarchical
models. Three-dimensional and 3D-based through-thickness dofs are employed in these models.
In the latter work, also the 3D-based mechanical and dielectric models were combined, so as to
obtain the 3D-based hierarchy of the piezoelectric models. This idea was also recalled in [1]. Note
that all the presented 3D-based models, either elastic, dielectric or piezoelectric ones, can be
treated as the 3D models polynomially constrained through the thickness.

The mechanical hierarchy M of the 3D or 3D-based elastic models M reads:

M∈M, M ¼ 3D;MI;RM; 3D=RM;MI=RMf g (11)

with 3D denoting three-dimensional elasticity, MI representing hierarchical shell models of
higher order, RM being the first-order shell model corresponding to Reissner theory of shells
and 3D=RM and MI=RM standing for the transition models of solid-to-shell or shell-to-shell
character. The hierarchical shell and shell-to-shell models constitute two sub-hierarchies:

MI ¼ M2;M3;M4;…f g,
MI=RM ¼ M2=RM;M3=RM;M4=RM;…f g

(12)

where I represents the order of the hierarchical modelMI. This order is equivalent to the order
of polynomial constraints defining the transverse displacement.

Subsequently, the hierarchy E of 3D-based dielectric models E includes:

E∈E, E ¼ 3D;EJf g (13)

where 3D represents three-dimensional theory of dielectricity, while EJ denotes the 3D-based
hierarchical models. The latter models constitute the following subhierarchy:

EJ ¼ E1;E2;E3;…f g (14)
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with J standing for the order of the hierarchical dielectric theory (the polynomial order of the
through-thickness constraints of electric potential).

The 3D-based hierarchy P of piezoelectric models P consists of the following component models:

P∈P, P ¼ M;Eð Þ : M∈M;E∈Ef g (15)

The hierarchy is composed of all combinations M;Eð Þ of the elastic models M from (11) and
(12) and dielectric models E defined in (13) and (14), that is,

P ¼ 3D; 3Dð Þ, MI; 3Dð Þ, RM; 3Dð Þ, 3D=RM; 3Dð Þ, MI=RM; 3Dð Þf
3D;EJð Þ, MI;EJð Þ, RM;EJð Þ, 3D=RM;EJð Þ, MI=RM;EJð Þg

(16)

3.2. Hierarchical and constrained approximations

In the proposed approach, each of the 3D or 3D-based elastic, dielectric and piezoelectric
models is approximated with the three-dimensional hierarchical shape functions. The func-
tions applied in this work are originated from [8]. Their main feature is that they allow different
orders of approximation on each of the element edges and sides. Such different orders are
necessary for the local (element) q- and p-adaptivity. These different orders are obtained due to
the shape function definition based on tensor products of the directional (longitudinal and
transverse) shape functions of different orders. The specific form of the directional and three-
dimensional functions for the case of the 3D solid and 3D-based hierarchical shell elements was
presented in [3, 9]. The case of the solid-to-shell and shell-to-shell elements is addressed in
[3, 12], while the first-order shell element shape functions are shown in [3, 10]. The analogous
functions for the three-dimensional and hierarchical symmetric-thickness dielectric elements
are given in [26]. In the case of the piezoelectric elements, the idea is to combine the elastic
elements of various mechanical models with the dielectric elements. This idea is implemented
in [1, 26]. Some details concerning shape functions of the component (elastic and dielectric) and
combined (piezoelectric) elements are presented in the following paragraphs.

The displacement field of the elastic and piezoelectric elements is defined through the interpo-

lation function u ¼ u ξð Þ describing displacements u ¼ u1; u2; u3ð ÞT of any point ξ of the nor-
malized geometry of the element. This interpolant is a sum of four component functions:

u ξð Þ ¼ u1 ξð Þ þ u2 ξð Þ þ u3 ξð Þ þ u4 ξð Þ (17)

The first component function u1 ξð Þ of the element vertices is defined as a product of the linear
vertex node shape function matrix Nv and the corresponding vector of nodal threesomes of
directional dofs, that is,

u1 ξð Þ ¼ Nv ξð Þqv (18)

where the mentioned vector is: qv ¼ …; q1, i; q2, i; q3, i;…
h iT

, and where i ¼ 1, 2,…, Iv with Iv

being the number of vertex nodes within the element.
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The second component interpolant u2 ξð Þ, corresponding to the element edges, is equal to the
product of the higher-order shape function matrices, Nh and Nu, of the element horizontal and
vertical (upright) mid-edge nodes and the corresponding dof vectors:

u2 ξð Þ ¼ Nh ξð Þqh þNu ξð Þqu (19)

The mentioned vectors of degrees of freedom at the horizontal and vertical nodes are as

follows: qh ¼ …; q1, i, k; q2, i, k; q3, i, k;…
h iT

, qu ¼ …; q1, j, l; q2, j, l; q3, j, l;…
h iT

, i ¼ 1, 2,…, Ih, j ¼
1, 2,…, Iu, where Ih and Iu are the numbers of the horizontal and upright mid-edge nodes,
while k and l represent numbers of dofs at these nodes.

The subsequent interpolant u3 ξð Þ corresponds the higher order mid-base and mid-side nodes
of the element. The function is obtained through the multiplication of the shape function
matrices, Nb and Νs, by the corresponding dofs vectors in accordance with

u3 ξð Þ ¼ Nb ξð Þqb þNs ξð Þqs (20)

where the vectors of nodal dofs are equal to: qb ¼ …; q1, i, k; q2, i, k; q3, i, k;…
h iT

, qs ¼

…; q1, j, l; q2, j, l; q3, i, l;…
h iT

with i ¼ 1, 2,…, Ib and j ¼ 1, 2,…, Is. Here, Ib and Is denote the num-

bers of the mid-base and mid-side nodes, while k and l are dof numbers at these nodes.

The last component interpolant u4 ξð Þ, assigned to the element higher order middle node, is
defined as a product of the shape function matrix Nm and the corresponding dof vector:

u4 ξð Þ ¼ Nm ξð Þqm (21)

where the dof vector is: qm ¼ …; q1, k; q2, k; q3, k;…
h iT

, with k standing for a dof number at this

node.

With N
e ¼ Nv ξð Þ;Nh ξð Þ;Nu ξð Þ;Nb ξð Þ;Nv ξð Þ;Nm ξð Þ½ � and q

e ¼ qv; qh; qu; qb; qs; qm
� �T Eq. (17)

can be written in the alternative standard form

u ξð Þ ¼ N
e
ξð Þqe (22)

The function f ¼ f ξð Þ interpolating electric potential at any point ξ of the normalized dielec-
tric or piezoelectric element is also defined as a sum of four components

f ξð Þ ¼ f1 ξð Þ þ f2 ξð Þ þ f3 ξð Þ þ f4 ξð Þ (23)

The linear interpolant f1 ξð Þ of the element vertices is equal to the product of the vector nv of
shape functions for the vertices and the corresponding nodal vector of scalar dofs, that is,

f1 ξð Þ ¼ nv ξð Þwv (24)
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with J standing for the order of the hierarchical dielectric theory (the polynomial order of the
through-thickness constraints of electric potential).

The 3D-based hierarchy P of piezoelectric models P consists of the following component models:

P∈P, P ¼ M;Eð Þ : M∈M;E∈Ef g (15)

The hierarchy is composed of all combinations M;Eð Þ of the elastic models M from (11) and
(12) and dielectric models E defined in (13) and (14), that is,

P ¼ 3D; 3Dð Þ, MI; 3Dð Þ, RM; 3Dð Þ, 3D=RM; 3Dð Þ, MI=RM; 3Dð Þf
3D;EJð Þ, MI;EJð Þ, RM;EJð Þ, 3D=RM;EJð Þ, MI=RM;EJð Þg

(16)

3.2. Hierarchical and constrained approximations

In the proposed approach, each of the 3D or 3D-based elastic, dielectric and piezoelectric
models is approximated with the three-dimensional hierarchical shape functions. The func-
tions applied in this work are originated from [8]. Their main feature is that they allow different
orders of approximation on each of the element edges and sides. Such different orders are
necessary for the local (element) q- and p-adaptivity. These different orders are obtained due to
the shape function definition based on tensor products of the directional (longitudinal and
transverse) shape functions of different orders. The specific form of the directional and three-
dimensional functions for the case of the 3D solid and 3D-based hierarchical shell elements was
presented in [3, 9]. The case of the solid-to-shell and shell-to-shell elements is addressed in
[3, 12], while the first-order shell element shape functions are shown in [3, 10]. The analogous
functions for the three-dimensional and hierarchical symmetric-thickness dielectric elements
are given in [26]. In the case of the piezoelectric elements, the idea is to combine the elastic
elements of various mechanical models with the dielectric elements. This idea is implemented
in [1, 26]. Some details concerning shape functions of the component (elastic and dielectric) and
combined (piezoelectric) elements are presented in the following paragraphs.

The displacement field of the elastic and piezoelectric elements is defined through the interpo-

lation function u ¼ u ξð Þ describing displacements u ¼ u1; u2; u3ð ÞT of any point ξ of the nor-
malized geometry of the element. This interpolant is a sum of four component functions:

u ξð Þ ¼ u1 ξð Þ þ u2 ξð Þ þ u3 ξð Þ þ u4 ξð Þ (17)

The first component function u1 ξð Þ of the element vertices is defined as a product of the linear
vertex node shape function matrix Nv and the corresponding vector of nodal threesomes of
directional dofs, that is,

u1 ξð Þ ¼ Nv ξð Þqv (18)

where the mentioned vector is: qv ¼ …; q1, i; q2, i; q3, i;…
h iT

, and where i ¼ 1, 2,…, Iv with Iv

being the number of vertex nodes within the element.
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The second component interpolant u2 ξð Þ, corresponding to the element edges, is equal to the
product of the higher-order shape function matrices, Nh and Nu, of the element horizontal and
vertical (upright) mid-edge nodes and the corresponding dof vectors:

u2 ξð Þ ¼ Nh ξð Þqh þNu ξð Þqu (19)

The mentioned vectors of degrees of freedom at the horizontal and vertical nodes are as

follows: qh ¼ …; q1, i, k; q2, i, k; q3, i, k;…
h iT

, qu ¼ …; q1, j, l; q2, j, l; q3, j, l;…
h iT

, i ¼ 1, 2,…, Ih, j ¼
1, 2,…, Iu, where Ih and Iu are the numbers of the horizontal and upright mid-edge nodes,
while k and l represent numbers of dofs at these nodes.

The subsequent interpolant u3 ξð Þ corresponds the higher order mid-base and mid-side nodes
of the element. The function is obtained through the multiplication of the shape function
matrices, Nb and Νs, by the corresponding dofs vectors in accordance with

u3 ξð Þ ¼ Nb ξð Þqb þNs ξð Þqs (20)

where the vectors of nodal dofs are equal to: qb ¼ …; q1, i, k; q2, i, k; q3, i, k;…
h iT

, qs ¼

…; q1, j, l; q2, j, l; q3, i, l;…
h iT

with i ¼ 1, 2,…, Ib and j ¼ 1, 2,…, Is. Here, Ib and Is denote the num-

bers of the mid-base and mid-side nodes, while k and l are dof numbers at these nodes.

The last component interpolant u4 ξð Þ, assigned to the element higher order middle node, is
defined as a product of the shape function matrix Nm and the corresponding dof vector:

u4 ξð Þ ¼ Nm ξð Þqm (21)

where the dof vector is: qm ¼ …; q1, k; q2, k; q3, k;…
h iT

, with k standing for a dof number at this

node.

With N
e ¼ Nv ξð Þ;Nh ξð Þ;Nu ξð Þ;Nb ξð Þ;Nv ξð Þ;Nm ξð Þ½ � and q

e ¼ qv; qh; qu; qb; qs; qm
� �T Eq. (17)

can be written in the alternative standard form

u ξð Þ ¼ N
e
ξð Þqe (22)

The function f ¼ f ξð Þ interpolating electric potential at any point ξ of the normalized dielec-
tric or piezoelectric element is also defined as a sum of four components

f ξð Þ ¼ f1 ξð Þ þ f2 ξð Þ þ f3 ξð Þ þ f4 ξð Þ (23)

The linear interpolant f1 ξð Þ of the element vertices is equal to the product of the vector nv of
shape functions for the vertices and the corresponding nodal vector of scalar dofs, that is,

f1 ξð Þ ¼ nv ξð Þwv (24)
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where wv ¼ …;wi;…½ �T and i ¼ 1, 2,…, Jv, with Jv denoting the number of vertices within the
element.

The higher order interpolant f2 ξð Þ, corresponding to horizontal and vertical (upright) mid-
edge nodes, is equal to a product of the shape function vectors nh and nu and the
corresponding vectors of nodal dofs:

f2 ξð Þ ¼ nh ξð Þwh þ nu ξð Þwu (25)

with wh ¼ …;wi, k;…
� �T , wu ¼ …;wi, l;…

� �T , i ¼ 1, 2, ,…, Jh, j ¼ 1, 2,…, Ju. Above, the numbers
of the horizontal and upright mid-edge nodes are equal to Jh and Ju, respectively, while k and l
are numbers of the consecutive dofs at these nodes.

The next higher order interpolation function f3 ξð Þ, dealing with the mid-base and mid-side
nodes, can be calculated with the multiplication of the shape function vectors nb and ns of these
nodes and the respective vectors of nodal dofs:

f3 ξð Þ ¼ nb ξð Þwb þ ns ξð Þws (26)

while wb ¼ …;wi, k;…
� �T and ws ¼ …;wi, l;…

� �T . Additionally, i ¼ 1, 2,…, Jb and j ¼ 1, 2,…, Js
with Jb and Js standing for the numbers of the mid-base and mid-side nodes, respectively, and
k, l being dofs numbers at these nodes.

The last component function f4 ξð Þ, assigned for the middle node, needs multiplication of the
shape function vector nm of the node and the corresponding vector of the nodal dofs

f4 ξð Þ ¼ nm ξð Þwm (27)

where wm ¼ …;wk;…½ �T , and k represents the number of a hierarchical dof at the middle node.

Note that when n
e ¼ nv ξð Þ; nh ξð Þ; nu ξð Þ; nb ξð Þ; ns ξð Þ; nm ξð Þ½ � and w

e ¼ wv;wh;wu;wb;ws;wm½ �T ,
Eq. (23) can be written in the well-known general form

f ξð Þ ¼ n
e
ξð Þwe (28)

Here, we discuss on the constrained approximation. Such an approximation is necessary for
h-adaptivity, which results in neighborhood of the element of different sizes, that is, the
undivided elements e of the initial mesh are adjacent to the divided elements f of the h-adapted
mesh. A further consequence of the different sizes is the constrained (or hanging) nodes of the
smaller elements, which do not possess their counterparts in the neighboring bigger elements.
In order to assure continuity of the field of displacements and the electric potential field
between such elements, the constraining relations have to be introduced to the contributions
of the smaller elements f to Eqs. (1), (5) and (9), before the assemblage of the global matrices
and vectors. The constraining relation for the case of displacements reads:
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q
f ¼

qs
f

qu
f
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fe

2
4

3
5 qs

f

qw
e

2
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3
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where the parts qs
f
and qu

f
of q

f
include the unconstrained and constrained dofs of the smaller

element f , qw
e
contains displacements of the constraining nodes of the bigger neighbor e, while

Cq

fe
and I represent the constraint coefficient matrix and the unity matrix. In the case of the

electric potential, the analogous relation reads:

w
f ¼

ws
f

wu
f

2
64
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I 0

0 Cw

fe

2
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3
5 ws

f

ww
e

2
4

3
5 (30)

The general rules for the constrained approximation are presented in [8]. These rules are
applied in [3, 14, 26] where the methods of obtainment of the constraint coefficients for the
two-dimensional and three-dimensional cases are described.

3.3. Error estimation

The equilibrated residualmethodof error estimation [14–16, 19] applied to solidmechanics is based
on the solution of the approximated local (element) problems of mechanical equilibrium. The
corresponding equilibrium condition, written in the language of finite elements, takes the form:

k
e
Mq

e Q,HP ¼ f
e

V þ f
e

S þ f
e

R (31)

with k
e
M standing for the element stiffness matrix, f

e

V and f
e

S denoting the nodal mass and

surface forces vectors, and f
e

R representing the nodal forces vector due to the equilibrated

interelement stress loadings. In (31), q
e Q,HP is the solution displacements vector in the approx-

imated local problem. Note that the discretization parameters H, P and Q (the element size,
and the longitudinal and transverse approximation orders in the local problems) can be
different to their global counterparts h, p and q. The element solutions from the above relation
give the global error estimate, which upper-bounds the true error [15, 16, 19]. In the presented
approach, the above relation is applied to both the approximation and total errors estimation.
However, different values of the discretization parameters are applied in both cases, that is,
H ¼ h, P ¼ pþ 1, Q ¼ q and H ¼ h, P ¼ pþ 1, Q ¼ qþ 1, respectively. The modeling error is
calculated as the difference of the previous two errors.

As demonstrated in the work [20], application of the equilibrated residual methods to dielec-
tric problems needs solution of the local (element) electric equilibrium problems. Such equilib-
rium, expressed in the language of finite elements, can be written in the following way:
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where wv ¼ …;wi;…½ �T and i ¼ 1, 2,…, Jv, with Jv denoting the number of vertices within the
element.

The higher order interpolant f2 ξð Þ, corresponding to horizontal and vertical (upright) mid-
edge nodes, is equal to a product of the shape function vectors nh and nu and the
corresponding vectors of nodal dofs:

f2 ξð Þ ¼ nh ξð Þwh þ nu ξð Þwu (25)

with wh ¼ …;wi, k;…
� �T , wu ¼ …;wi, l;…

� �T , i ¼ 1, 2, ,…, Jh, j ¼ 1, 2,…, Ju. Above, the numbers
of the horizontal and upright mid-edge nodes are equal to Jh and Ju, respectively, while k and l
are numbers of the consecutive dofs at these nodes.

The next higher order interpolation function f3 ξð Þ, dealing with the mid-base and mid-side
nodes, can be calculated with the multiplication of the shape function vectors nb and ns of these
nodes and the respective vectors of nodal dofs:

f3 ξð Þ ¼ nb ξð Þwb þ ns ξð Þws (26)

while wb ¼ …;wi, k;…
� �T and ws ¼ …;wi, l;…

� �T . Additionally, i ¼ 1, 2,…, Jb and j ¼ 1, 2,…, Js
with Jb and Js standing for the numbers of the mid-base and mid-side nodes, respectively, and
k, l being dofs numbers at these nodes.

The last component function f4 ξð Þ, assigned for the middle node, needs multiplication of the
shape function vector nm of the node and the corresponding vector of the nodal dofs

f4 ξð Þ ¼ nm ξð Þwm (27)

where wm ¼ …;wk;…½ �T , and k represents the number of a hierarchical dof at the middle node.

Note that when n
e ¼ nv ξð Þ; nh ξð Þ; nu ξð Þ; nb ξð Þ; ns ξð Þ; nm ξð Þ½ � and w

e ¼ wv;wh;wu;wb;ws;wm½ �T ,
Eq. (23) can be written in the well-known general form

f ξð Þ ¼ n
e
ξð Þwe (28)

Here, we discuss on the constrained approximation. Such an approximation is necessary for
h-adaptivity, which results in neighborhood of the element of different sizes, that is, the
undivided elements e of the initial mesh are adjacent to the divided elements f of the h-adapted
mesh. A further consequence of the different sizes is the constrained (or hanging) nodes of the
smaller elements, which do not possess their counterparts in the neighboring bigger elements.
In order to assure continuity of the field of displacements and the electric potential field
between such elements, the constraining relations have to be introduced to the contributions
of the smaller elements f to Eqs. (1), (5) and (9), before the assemblage of the global matrices
and vectors. The constraining relation for the case of displacements reads:
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where the parts qs
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The general rules for the constrained approximation are presented in [8]. These rules are
applied in [3, 14, 26] where the methods of obtainment of the constraint coefficients for the
two-dimensional and three-dimensional cases are described.

3.3. Error estimation

The equilibrated residualmethodof error estimation [14–16, 19] applied to solidmechanics is based
on the solution of the approximated local (element) problems of mechanical equilibrium. The
corresponding equilibrium condition, written in the language of finite elements, takes the form:

k
e
Mq

e Q,HP ¼ f
e

V þ f
e

S þ f
e

R (31)

with k
e
M standing for the element stiffness matrix, f

e

V and f
e

S denoting the nodal mass and

surface forces vectors, and f
e

R representing the nodal forces vector due to the equilibrated

interelement stress loadings. In (31), q
e Q,HP is the solution displacements vector in the approx-

imated local problem. Note that the discretization parameters H, P and Q (the element size,
and the longitudinal and transverse approximation orders in the local problems) can be
different to their global counterparts h, p and q. The element solutions from the above relation
give the global error estimate, which upper-bounds the true error [15, 16, 19]. In the presented
approach, the above relation is applied to both the approximation and total errors estimation.
However, different values of the discretization parameters are applied in both cases, that is,
H ¼ h, P ¼ pþ 1, Q ¼ q and H ¼ h, P ¼ pþ 1, Q ¼ qþ 1, respectively. The modeling error is
calculated as the difference of the previous two errors.

As demonstrated in the work [20], application of the equilibrated residual methods to dielec-
tric problems needs solution of the local (element) electric equilibrium problems. Such equilib-
rium, expressed in the language of finite elements, can be written in the following way:
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k
e
Ew

e P,HΠ ¼ f
e

Q þ f
e

H (32)

In the above-mentioned equation, the term k
e
E stands for the element characteristic matrix of

dielectricity, f
e

Q is the element nodal vector due to surface charges, while f
e

H represents nodal

forces due to the equilibrated interelement charges. The vector we P,HΠ is the solution vector of
electric potential in the local problem. The solution is approximate and the corresponding
discretization parameters H, Π, P (the element size and longitudinal and transverse approxi-
mation orders) can be different to their global counterparts h, π, r. In the cases of the approx-
imation and total errors, the values of H ¼ h, Π ¼ πþ 1, P ¼ r and H ¼ h, Π ¼ πþ 1,
P ¼ r þ 1 are applied, respectively. Again, the collection of the local solutions obtained by
means of (32) leads to the error estimate, which upper-bounds the true total and true approx-
imation errors, and the modeling error is defined as the difference of these two errors.

Generalization of the equilibrated residual methods onto piezoelectric problems was proposed
and developed in [1, 20, 26]. In accordance with this proposition, the above mechanical and
electrical local equilibria Eqs. (31) and (32) have to be replaced by the coupled equations
describing electromechanical equilibrium. Such equations take the following finite element form:
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The coupled local solutions q
e Q,HP and w

e P,HΠ of the above set have one disadvantage. It lies in
the lack of the upper-bound property of the total, approximation and modeling errors by the
residual-based global estimators obtained from the local solutions of (33).

In the works [1, 26], the decoupled version of the above set was also proposed as a simpler
alternative:
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In Eqs. (31) and (32) and in the above two sets of equations, the vectors of the equilibrated
nodal forces and charge are defined in accordance with:
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where Se and S are the element and body surfaces, while re uhpq
� �� �

and he fhπr� �� �
denote the

equilibrated interelement (between element e and any of its neighbors f ) stress vector and the
equilibrated interelement charge density acting on the common sides Sef between the elements.
Some more details on how to calculate the equilibrated stresses and charge can be found in
[3, 19, 26].

3.4. Adaptive strategy

The adaptive strategy applied in this chapter takes advantage of the Texas three-step strategy
[21]. The original strategy is assigned for structures of simple geometry (a single geometrical part
of one type) and simple physical description (one model). Such a strategy is designed for hp-
adaptivity and consists of three steps: initial, intermediate and final ones, where three subse-
quent global problem solutions are obtained. In this strategy, the solution on the initial mesh is
followed by the error estimation and error-controlled h-adaptation (element refinement). In
this way, the intermediate mesh is formed. The solution on this mesh is then followed by the
error estimation and the error-controlled p-adaptivity (element approximation order enrich-
ment). The problem solution on this mesh is followed by the error estimation again.

The original strategy was extended in three ways [3, 26]. First, structures of complex geometry
and complex physical description can be analyzed in the presented approach. Second, the
h-step of the adaptation is enriched with the model adaptivity, while the p-step of the strategy
is completed with q-adaptivity (enrichment of the element transverse approximation order)
[19] in the way different to the earlier proposition of [4]. Third, the strategy is enhanced
through the addition of one more adaptation step called the modification one. In this step, the
initial mesh is modified so as to remove the undesired numerical phenomena, such as the
improper solution limit, numerical locking or boundary layers [28]. The extended strategy can
be applied to elastic [3, 19], dielectric [1] and piezoelectric [1, 26] problems. Some difficulties in
the application of the strategy to the cases of piezoelectricity are described in [1]. The analo-
gous comments for the case of elasticity can be found in [29, 30].

Description of the error-controlled adaptivity for elastic, dielectric and piezoelectric structures
is started with the h-adaptivity within the mechanical field (hence index M). In accordance
with [19, 21], the new number of elements nIM in the intermediate mesh (denoted with index I),
which replace an element of the initial mesh, is equal to:

n
2μ0M

=dþ1

IM
¼ η20M EI

γ2
a, I u0 2

U

���� (37)

where η0M is the estimated value of the approximation error from the initial mesh, μ0M repre-
sents the known or assumed h-convergence rate, d denotes dimensionality (equal to 2 or 3) of
the adapted geometrical part. Additionally, EI is the total number of elements in the interme-
diate mesh, u0 2

U

���� is the strain energy norm of the solution from the initial mesh, while the
coefficient γa, I determines the expected relative value of the global approximation error within
the intermediate mesh.
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where η0M is the estimated value of the approximation error from the initial mesh, μ0M repre-
sents the known or assumed h-convergence rate, d denotes dimensionality (equal to 2 or 3) of
the adapted geometrical part. Additionally, EI is the total number of elements in the interme-
diate mesh, u0 2
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���� is the strain energy norm of the solution from the initial mesh, while the
coefficient γa, I determines the expected relative value of the global approximation error within
the intermediate mesh.
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In the case of the mechanical field, local (element) p-enrichments are controlled with the
longitudinal (or overall) element approximation order pT of the final (or target) mesh (marked
with the index T). The longitudinal order corresponds to thin-walled structures, while the
overall order to three-dimensional bodies. The following common formula [19, 21] determines
this parameter:

p2ν0MT ¼ p
2ν0M
0 η2IM EI

γ2
a,T u0 2

U

���� (38)

with ηIM representing the estimated value of the approximation error from the intermediate
mesh, ν0M being the given p-convergence rate, p0 denoting the longitudinal approximation
order from the initial mesh and γa,T standing for the expected relative value of the global
approximation error in the target mesh.

In the case of q-adaptivity within the mechanical field of the thin-walled structures, the target
values of the element transverse approximation orders qT can be defined in accordancewith [3, 19]:

qT ¼ q0 �
1
2
log t=2l

θ2
IM EI

γ2
m,T u0 2

U

���� (39)

Above, q0 is the element transverse order from the initial mesh, t and 2l represent the thickness
and length of the thin-walled part of the structure, θIM is the estimated value of the modeling
error from the intermediate mesh and γm,T denotes the expected relative value of the modeling
error in the target mesh.

The h-adaptivity within the electric field needs determination of the new number (denoted
with index E) of elements, nIE , in the intermediate mesh (marked with index I again). Such a
number has to be determined for each element of the initial mesh. This number is equal to:

n
2μ0E

=dþ1

IE
¼ η20E EI

γ2
a, I f0

2
W

���� (40)

Above, the quantity η0E stands for the estimated value of the approximation error in the initial

mesh, the exponent μ0E
is the assumed h-convergence rate and the norm f0

2
W

���� represents the

electrostatic energy corresponding to the initial mesh.

Note that in the case of piezoelectricity, for each element, the final subdivision is determined
with

nI ¼ max nIM ; nIE
� �

(41)

as the common mesh division is applied for the mechanical and electric fields (see [1]).

The value of the longitudinal (or overall) approximation order πT within the electric field of an
element of the target (final) mesh can be calculated from [26]:
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π
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0E η2IEEI

γ2
a,T f0

2
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���� (42)

where ηIE is the estimated approximation error value from the intermediate mesh, ν0E is the

assumed problem-dependant p-convergence rate and π0 is the longitudinal approximation
order within the initial mesh.

Finally, in the case of q-adaptivity of thin dielectric or piezoelectric body, the element trans-
verse order of approximation of the electric potential field in the final mesh has to be deter-
mined. The following formula can be proposed for this purpose [26]:

rT ¼ r0 �
1
2
log t=2l

θ2
IE EI

γ2
m,t
��f0

2
W

�� (43)

where r0 is the element transverse approximation order applied in the initial mesh, t and 2l are
the transverse and longitudinal dimensions of a thin member (body or part) and θIE is the
modeling error estimated value of a finite element of the intermediate mesh.

4. Numerical examples

In this section, some comparative examples for problems of elasticity, dielectricity and piezo-
electricity are presented. Attention is focused on the comparison of effectiveness of three main
algorithms applied in our generalizing approach to adaptive modeling and analysis of the
problems of three mentioned classes. The tested numerical procedures include hierarchical
approximations, error estimation and error-controlled adaptivity. In the first case of hierarchi-
cal approximations, convergence curves for the three classes of problems are compared. In the
second case of error estimation with the equilibrated residual method, effectivities of the global
estimators in three problems are presented. In the third case of adaptive procedure, effectivity
of the adaptation is checked through the comparison of the adaptive convergence curves. Also,
the ability to reach the assumed admissible error in problems of three types is assessed.

4.1. Model structures

Here, the same domain geometry is considered in the problems of elasticity, dielectricity and
piezoelectricity. Its square longitudinal dimensions are equal to 2l ¼ 3:1415 � 10�2 m, while its
thickness equals t ¼ 0:01 � 10�2 m. The domain thickness may change if necessary. This domain
can represent a plate structure in the mechanical case, a thin dielectric in the electric case and a
thin piezoelectric structure in the electromechanical case.

So as to be able to compare three different physical problems, physical properties of the mate-
rials and the external load and charge are assumed such that the inducedmechanical and electric
potential energies are of the same order. The isotropic mechanical properties of the plate struc-
ture and thin piezoelectric correspond to a typical piezoelectric material and are taken from [27].
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Young’s modulus is assumed to be equal to E ¼ 0:5 � 1011 N=m2, while the applied Poisson’s
ratio is ν ¼ 0:294. The isotropic dielectric properties of the dielectric and piezoelectric are
characterized with the permittivity equal to δ ¼ 0:1593 � 10�7 F/m. The nonzero anisotropic
piezoelectric constants are d13 ¼ d23 ¼ �0:15 � 10�9 C/N, d33 ¼ 0:3 � 10�9 C/N and d52 ¼
d61 ¼ 0:5 � 10�9 C/N (compare [27] again). The surface load of magnitude p ¼ 0:4 � 106 N=m2 is
applied to the upper surface of the elastic and piezoelectric structures. Furthermore, the surface
electric charge of density c ¼ 0:2 � 10�1 C=m2 is applied to the upper surface of the dielectric and
piezoelectric domains.

The kinematic boundary conditions within the mechanical field of displacements of the elastic
and piezoelectric structures assume all edges (lateral sides) clamped—no displacements on these
edges are present. In the case of the electric field of potential within the dielectric and piezoelec-
tric domains, grounding is assumed around the domain (zero potential on the lateral sides).

In the next sections, only symmetric quarters of the structures are shown due to the symmetry
of the applied geometry, load and charge distributions and boundary conditions.

4.2. Convergence of hierarchical approximations

Figures 1 and 2 illustrate distributions of the effective value (sef ) of a stress tensor (effective
stress) and the electric displacement vector magnitude (dm) for the purely mechanical and
electric problems, while Figures 3 and 4 present the same quantities corresponding to the
electromechanical problem. The displayed values are obtained due to solution of the corres-
ponding global problems, either (1) or (5) or (9). Comparing Figure 1 with Figure 3 as well as
Figures 2 and 4, one can notice that the stresses in the piezoelectric case are changed with

Figure 1. Effective stress in the purely mechanical case.
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respect to the purely elastic case due to the presence of the electromechanical coupling.
Similarly, the electric displacements of the piezoelectric case look different to those of the purely
dielectric example due to the influence of the coupled mechanical displacements field.

Figure 2. Magnitude of electric displacement in the purely electric case.

Figure 3. Effective stress in the coupled problem.
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The h- and p-convergence curves for the elastostatic case are presented in Figures 5 and 6.
The electrostatic problem solution h- and π-convergence curves are displayed in Figures 7
and 8. The solution convergence curves for the stationary piezoelectricity are shown in
Figures 9 and 10. In these figures, the absolute values of the approximation errors are plotted
versus the number N of the applied degrees of freedom. The number of degrees of freedom
changes due to the increase in either the number of subdivisions m ¼ l=h (the case of h-
convergence) or the longitudinal approximation order p or π (the case of p-convergence).
The applied values of the discretization parameters of the uniform meshes are m ¼ 1, 2,…, 8,
p ¼ π ¼ 1, 2,…, 6 while the transverse orders of approximation are kept constant and equal
to q � I ¼ 2 or/and r � J ¼ 2, with π � pi and r � rho. The error is calculated as a square root
of the difference of the potential energy of the numerical solution and the exact value of this
energy in three cases: mechanical, electric or electromechanical. As the exact values of the
solutions to three problems are not known, these values are replaced by the best numerical
ones obtained from the meshes of p ¼ π ¼ 9, h ¼ 9, q ¼ r ¼ 2.

The following findings can be formulated based on the analysis and comparison of the
drawings. The convergence curves for the purely mechanical problem consist of three parts.
The first part, almost horizontal and flat, corresponds to the presence of the numerical
locking. The second part of the highest slope corresponds to the so-called asymptotic con-
vergence. The third part of worse convergence is affected by the influence of the boundary
layer. Such a picture of convergence is typical for elastic problems and displacement finite
element formulation (compare [5]). In the case of the pure dielectricity, the curves consists of
two parts only—the second and third ones. No locking is observed for this problem. In the
case of the coupled problem of piezoelectricity, three parts of the curves appear again. As far

Figure 4. Magnitude of electric displacement in the coupled problem.
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as the asymptotic convergence range is concerned, it should be noticed that in the purely
electric case, the convergence is much higher (slopes are more steep) than in the purely
mechanical problem. Additionally, the boundary layer effect in the dielectric problem is less
severe than in the mechanical one—the slopes of the third parts of the curves are higher in
the former case.

Figure 6. p-Convergence in the purely elastic problem.

Figure 5. h-Convergence in the purely elastic problem.
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Figure 4. Magnitude of electric displacement in the coupled problem.
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as the asymptotic convergence range is concerned, it should be noticed that in the purely
electric case, the convergence is much higher (slopes are more steep) than in the purely
mechanical problem. Additionally, the boundary layer effect in the dielectric problem is less
severe than in the mechanical one—the slopes of the third parts of the curves are higher in
the former case.

Figure 6. p-Convergence in the purely elastic problem.

Figure 5. h-Convergence in the purely elastic problem.
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As it comes to the piezoelectricity, the following observations can be seen. The first parts of the
convergence curves in the case of the coupled problem are not flat but are bent, that is, the
monotonic character of these parts is not retained. This observation reflects the fact of change

Figure 7. h-Convergence in the purely dielectric problem.

Figure 8. p-Convergence in the purely dielectric problem.
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of the sign of the potential energy, which is composed of mechanical, electric and coupling
contributions of different signs. The solution convergence curves of the piezoelectric problem,
in the asymptotic and boundary-layer ranges, lie just between the corresponding curves of the
pure problems, with a tendency to be closer to the purely mechanical case.

Figure 9. h-Convergence in the coupled piezoelectric problem.

Figure 10. p-Convergence (π ¼ p) in the coupled problem.
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4.3. Effectivity of error estimation

In this section, results concerning application of the equilibrated residual method to the
analogous model problems of elastostatics, electrostatics and stationary piezoelectricity are
presented. The data of the problems are taken from Section 4.1. The thickness of the analyzed
domains is now equal to t ¼ 0:15 � 10�2 m. The surface traction equals now p ¼ 4:0 � 106 N=m2.
This value has changed due to the thickness change so as to assure the same order of the
electric and mechanical potential energies, as well as the same order of the electric and
mechanical parts of this energy, in the tests concerning three mentioned problems of elasticity,
dielectricity and piezoelectricity. Presentation of the results starts with the purely elastic case.
In Figure 11, the chosen example of the estimated total error distribution is presented for the
uniform mesh discretization parameters m ¼ 3, p ¼ 4 and q ¼ 2. The level of the relative
estimated total errors in elements (denoted as Mð Þnt) for the mechanical problem can be seen
in the figure, as well as the average global value of the error estimator, marked as avr. The
estimated local errors represent the square root of the difference between the mechanical
potential energies of the numerical global solution under consideration, determined by (1),
and the solution obtained from the local problems (31). In the case of a local error indicator,
these energies are limited to a single element, while in the case of the global error estimator, the
energies of all elements are taken into account. Figure 12 presents effectivity indices of the
global error estimators as a function of the longitudinal approximation order p. The effectivity
indices are calculated as ratios of the global estimators by the global values of the true total,
approximation and modeling errors. The global values of the errors are equal to the square
root of the difference of the appropriate energies. As the exact values of the solutions,

Figure 11. Estimated total errors in the purely mechanical case.
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necessary for the exact energy values, are not known, they are replaced with the numerical
values obtained by using (1), from the finest and richest meshes possible, that is, with m ¼ 9,
p ¼ 9 and q ¼ 2 or q ¼ 6 in the cases of the approximation and total errors calculations,
respectively.

Figures 13 and 14 display the analogous results for the electrostatic case. The first figure shows
the exemplary distribution of the locally estimated relative total errors (denoted as Eð Þnt), and
also the average error estimate (marked with avr), for m ¼ 3, π � pi ¼ 4, r � rho ¼ 2. The
global solution to the problem (5) and the solutions to the local problems (32) are employed
for the determination of two electric potential energies. These energies correspond to the
numerical solution and the estimate of the exact solution. As far as the second figure is
concerned, it illustrates the change of the effectivity indices of estimation of the total, approx-
imation and modeling errors as a function of the longitudinal order of approximation π. In
order to obtain the necessary exact values of the energies, the global problem (5) was applied
again, with m ¼ 9, π ¼ 9 and r ¼ 2 or r ¼ 6, for the calculation cases of the approximation and
total errors, respectively.

The analogous estimated error distributions and the analogous plots of the effectivity indices
versus p ¼ π for the piezoelectricity case are shown in Figures 15–18. Here, the numerical and
estimated values of the mechanical and electric parts of potential energies, necessary for the
exemplary local and average estimated error values determination, are obtained from (9), with
m ¼ 3, p ¼ π ¼ 4, q ¼ r ¼ 2 and (33), respectively. The exact energy values necessary for
effectivity calculations are obtained through the global numerical approximation (9), with
m ¼ 9, p ¼ π ¼ 9 and q ¼ r ¼ 2 or q ¼ r ¼ 6 and π � pi, r � rho.

Figure 12. Effectivities of the estimators in the purely mechanical case.
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Comparing Figures 11, 13, 15 and 17, one can notice that the estimated total error level for the
cases of elasticity and dielectricity are not the same for the corresponding model problems, as
the latter problem produces the lower local and global error estimates. The average relative

Figure 13. Estimated total errors in the purely electric case.

Figure 14. Effectivities of the estimators in the purely electric case.

Finite Element Method - Simulation, Numerical Analysis and Solution Techniques180

values of the total error estimates for these two cases are equal to 0.128 and 0.013, respectively.
In the case of the piezoelectricity, the estimated local and global error values are higher than in
the previous two cases. The mechanical and electric parts of the average total error estimate are

Figure 15. Mechanical parts of the estimated total errors (piezoelectricity).

Figure 16. Effectivities of estimators’ mechanical parts (piezoelectricity).
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equal to 0.221 and 0.018, respectively. As far as the effectivities for three model problems from
Figures 12, 14, 16, 18 are concerned, one can see that the pure problems deliver very similar
effectivities—in both problems close to the desired values of 1. The values are almost everywhere

Figure 17. Electrical parts of the estimated total errors (piezoelectricity).

Figure 18. Effectivities of estimators’ electrical parts (piezoelectricity).
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larger than 1, and this result is consistent with the upper bound property of the estimation
present in the pure problems (compare [19]). In the case of the coupled piezoelectric problem,
global effectivities are much greater than 1, that is, the estimated global error values are much
overestimated. This suggests that some additional techniques should be applied in the error
estimation by the equilibrated residual method if one wants the effectivities to become closer to
1. A remedy can be the application of the higher order equilibration [14] in the piezoelectricity
problems, instead of the linear equilibration used in this work and usually applied to pure
problems.

4.4. Convergence of hp-adaptivity

In Figures 19–24, the results illustrating both hp-adapted meshes and convergence of the
corresponding adaptation processes are presented for three model problems of elasticity,
dielectricity and piezoelectricity. In these problems, the original data are recalled from Section 4.1.
The thickness of the domains is equal to t ¼ 0:15 � 10�2 m, as in the previous test. In this way,
the influence of the error estimation, performed in the previous subsection, on effectiveness of
the mesh adaptation presented here can be assessed. Also, it is worth noticing that for the
applied thickness value, the locking and boundary layer phenomena do not influence conver-
gence very much. Note also that the presented adaptation is controlled with the estimated
values of the element approximation errors within the displacements and electric potential
fields by means of the formulas (37), (38) or/and (40), (42).

In the first two figures, the purely elastic case is presented. Figure 19 presents the mesh
obtained in the three-step adaptive process. Both the changes of the mesh density and the

Figure 19. Final hp-adapted mesh in the purely mechanical case.
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element changes of the longitudinal order of approximation can be seen in Figure 19. The
initial mesh (not displayed) corresponds to the discretization parameters m ¼ 3, p ¼ 4 and
q ¼ 2. In this mesh, the longitudinal approximation order equal to p ¼ 4 is applied in order to

Figure 20. hp-Adaptive convergence in the purely mechanical case.

Figure 21. Final hπ-adapted mesh in the purely electric case.
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remove the influence of the locking phenomenon present in purely mechanical problems.
The target approximation error for the final mesh is assumed to be 0.1 with the ratio of the
errors from the intermediate and final meshes equal to 2. The next Figure 20 displays the

Figure 22. hπ-Adaptive convergence in the purely electric case.

Figure 23. Final hp-adapted mesh in the coupled problem.
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hp-convergence of the solution during the adaptation process. In the error calculations, the exact
value of the energy is replaced with the value obtained for the best numerical discretization of
the second-order (q ¼ 2) hierarchical shell model, where m ¼ 9 and p ¼ 9. The final true error
value corresponds to the lowest (third) point of the convergence curve. This value can be
compared with the horizontal dotted line corresponding to the admissible error level.

Figures 21 and 22 present the similar results for the purely electric case. The first of them
displays the final mesh resulting from the three-step adaptation. The only difference within the
applied discretization parameters is π ¼ 2 within the electric potential field of the initial mesh.
This value replaces p ¼ 4 in the displacements field of the previous example. The assumption
of π ¼ 2 results from lower error level within the former field and the lack of the numerical
locking within dielectric problems. Subsequently, the second figure illustrates the hπ-conver-
gence curve of the adapted solution. The curve can be compared with the admissible error
level again. The exact solution, necessary for the error calculations, is approximated by the
numerical solution corresponding to m ¼ 9, π ¼ 9 and r ¼ 2.

The next two couples, Figures 23 and 24, as well as Figures 25 and 26, present exactly the same
results, that is, final meshes and adaptive convergence curves for the displacements and electric
potential fields, respectively, in the case of the coupled problem of piezoelectricity. For both fields,
exactly the same initial mesh and error control parameters are applied as for the pure problems of
elasticity and dielectricity. The presence of locking in piezoelectric problems is taken into account,
hence p ¼ 4 and π ¼ 2 are set within the initial meshes of the corresponding fields. In the case of
the adaptive convergence curves, the admissible error levels are marked with the dotted lines

Figure 24. hp-Adaptive convergence in the coupled problem.
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again. The numerical approximation of the exact solution entering the error calculations is
obtained from the discretization based on m ¼ 9, p ¼ π ¼ 9, q ¼ r ¼ 2.

Discussion of the obtained numerical results can be concluded in the following way. In the case
of the pure elasticity, the admissible error value is reached in three steps. The estimated
average approximation error relative value for the initial mesh is 0.084. A relatively rare
h-mesh is generated as the error is relatively low in the initial mesh and overestimation for
p ¼ 4 does not occur (compare Figure 12). Then the mesh is well p-enriched.

In the case of the pure dielectricity, the relatively fine h-mesh is produced because of the error
overestimation for π ¼ 2 (see Figure 14) present in the initial mesh. The estimated average
approximation error relative value for the initial mesh is moderate and equal to 0.124. As a
result, the p-enrichment is reduced (barely visible). The admissible error is reached, however.

In the case of the piezoelectricity, the changes in the common h-mesh come from the relatively
large errors of the displacements field in the initial mesh. The corresponding average error value
for the displacements field is equal to 0.227, while for the electric potential field, it equals 0.127.
The displacements field errors in elements are larger than those of the electric potential field. As a
result, the common h-mesh is too fine for the electric potential. This effect is enforced by the
overestimation for π ¼ 2 (Figure 18). The following π-enrichment is weak. However, the admis-
sible error level is reached for the potential field. This demonstrates that the idea of the common
h-mesh for both fields works well also in the case of the field of lower errors. As far as the
displacement field is concerned, one can notice that the error overestimation for p ¼ 4 (see
Figure 16) in the common h-mesh produces too rich p-mesh for displacements and thus the

Figure 25. Final hπ-adapted mesh in the coupled problem.
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corresponding admissible error value is far exceeded. The obtained solution for displacements is
better than expected.

5. Conclusions

In this chapter, the algorithms of hierarchical modeling, hierarchical approximations, error
estimation and adaptivity control, so far utilized successfully for elastic problems, are applied
to the problems of dielectricity and piezoelectricity. To the best knowledge, no examples of
such application had been reported in the existing literature.

This chapter shows how to assess effectivity of the algorithms of hierarchical approxima-
tions, equilibrated residual method of error estimation and three-step adaptive procedure,
originally applied to elasticity and possible also in dielectricity and the coupled piezoelectric
problems.

The observations from the tests concerning hierarchical hp-approximations allow for the following
generalizations. The applied hierarchical approximations can be effective in modeling and simu-
lation of all three classes of problems. The h- and p-convergence rate is the highest for the purely
dielectric problems and the lowest for the analogous purely elastic ones. The convergence of the
piezoelectric problems is located between the convergences of the corresponding pure problems.
In the case of the pure problems, the convergence curves are monotonic, while in the case of the
coupled problems of piezoelectricity, the loss of monotonicity can happen because of the sign
change of the electromechanical potential energy.

Figure 26. hπ-Adaptive convergence in the coupled problem.
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The general conclusions concerning the applied error estimation method are as follows. In the
pure problem of elasticity, the effectivities of the modeling, approximation and total errors are all
close to 1.0, except for the cases of poor discretization (p ¼ 1, 2). In the pure dielectric problems,
the values of the effectivities are between 0.9 and 1.0. For the cases of poor discretization, these
values are close to 2.0. In the case of piezoelectricity, the indices are close to their values from the
pure problems for low values of the approximation order, that is, for p ≤ 3 or/and π ≤ 3. For higher
values of the approximation order, the corresponding effectivities are much higher than 1.0 for
the approximation error. A bit smaller overestimation can be seen in the case of the total error. It
can be concluded that for rich discretizations, some additional techniques are necessary in the
case of piezoelectricity, so as to enforce values of the effectivities closer to 1.0.

Generalizations related to the applied adaptivity control algorithms can be formulated in the
following way. For the analogous mechanical, electric and electromechanical problems, the
three-step adaptive strategy leads to similar convergence results as it comes to the final mesh
true error level, even though the hp-path in each of three cases can be different. The final error
values are usually smaller or close to the admissible error level. In the case of piezoelectricity,
too fine or/and too rich meshes may be generated, if overestimation, coming from the error
estimation procedure, occurs.

The results concerning the effectivity of the application of the mentioned three algorithms to
the dielectric and piezoelectric problems as well as the comparative effectivity analysis of the
analogous mechanical, electric and electromechanical problems are unique—no other exam-
ples of such results can be found in the related literature.
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better than expected.

5. Conclusions

In this chapter, the algorithms of hierarchical modeling, hierarchical approximations, error
estimation and adaptivity control, so far utilized successfully for elastic problems, are applied
to the problems of dielectricity and piezoelectricity. To the best knowledge, no examples of
such application had been reported in the existing literature.

This chapter shows how to assess effectivity of the algorithms of hierarchical approxima-
tions, equilibrated residual method of error estimation and three-step adaptive procedure,
originally applied to elasticity and possible also in dielectricity and the coupled piezoelectric
problems.

The observations from the tests concerning hierarchical hp-approximations allow for the following
generalizations. The applied hierarchical approximations can be effective in modeling and simu-
lation of all three classes of problems. The h- and p-convergence rate is the highest for the purely
dielectric problems and the lowest for the analogous purely elastic ones. The convergence of the
piezoelectric problems is located between the convergences of the corresponding pure problems.
In the case of the pure problems, the convergence curves are monotonic, while in the case of the
coupled problems of piezoelectricity, the loss of monotonicity can happen because of the sign
change of the electromechanical potential energy.

Figure 26. hπ-Adaptive convergence in the coupled problem.
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The general conclusions concerning the applied error estimation method are as follows. In the
pure problem of elasticity, the effectivities of the modeling, approximation and total errors are all
close to 1.0, except for the cases of poor discretization (p ¼ 1, 2). In the pure dielectric problems,
the values of the effectivities are between 0.9 and 1.0. For the cases of poor discretization, these
values are close to 2.0. In the case of piezoelectricity, the indices are close to their values from the
pure problems for low values of the approximation order, that is, for p ≤ 3 or/and π ≤ 3. For higher
values of the approximation order, the corresponding effectivities are much higher than 1.0 for
the approximation error. A bit smaller overestimation can be seen in the case of the total error. It
can be concluded that for rich discretizations, some additional techniques are necessary in the
case of piezoelectricity, so as to enforce values of the effectivities closer to 1.0.

Generalizations related to the applied adaptivity control algorithms can be formulated in the
following way. For the analogous mechanical, electric and electromechanical problems, the
three-step adaptive strategy leads to similar convergence results as it comes to the final mesh
true error level, even though the hp-path in each of three cases can be different. The final error
values are usually smaller or close to the admissible error level. In the case of piezoelectricity,
too fine or/and too rich meshes may be generated, if overestimation, coming from the error
estimation procedure, occurs.

The results concerning the effectivity of the application of the mentioned three algorithms to
the dielectric and piezoelectric problems as well as the comparative effectivity analysis of the
analogous mechanical, electric and electromechanical problems are unique—no other exam-
ples of such results can be found in the related literature.
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Abstract

This chapter deals with the basics of vibration calculations in electrical machines. It 
includes a brief introduction to the sources of vibration in electrical machines. In addi-
tion, the construction of electric machines is briefly summarized. It also describes the 
influence of individual parts of electric machines on vibration generation. The chapter 
also deals with the important steps that need to be taken when calculating vibration sig-
nal waveform using finite element method (Ansys). The individual sections summarize 
the most important requirements for setting the vibration calculation and it also deals 
with minimizing the calculation errors.
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1. Introduction

The vibration of electric machines is one of the causes of the function of electric machines. This 
is an undesirable phenomenon that cannot be completely separated. The vibrations of electric 
machines are very depending on the operating state of the electric machine. In the diagnostics 
of electrical machines, vibrations are used to identify failures of both electrical machines as well 
as mechanical connections to other machines and power failures. In practice, electrical machines 
can experience many types of malfunctions that can affect the function of the electrical machine 
itself or even destroy it. In some cases, vibrations generated by electrical machine failures can 
also damage other machinery near this machine. For this reason, prevention and early detection 
of malfunctions is important. In electrical machines, most of the progressive failures begin gradu-
ally to appear on the level or frequency spectrum of vibrations. Each failure has other symptoms 
(other vibration frequencies, direction, size, etc.). This makes it possible to determine the type of 
failure based on long-term tracking. In order to be able to identify in a timely manner, the type 
of malfunction that arises, it is necessary to know the manifestations of the individual faults. In 
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earlier times, the only possibility of tracking and measuring the development of malfunctions 
was done on real machines. On the basis of this experience, the same foreseeability disturbances 
could be assumed in other machines. This process has been simplified with the onset of comput-
ing and finite element utilization. It is now possible to simulate the physical models in electrical 
machines in full extent. It is possible to interface individual types of models (mechanical, electro-
magnetic, thermal) and then achieve very accurate results. The Ansys program is a program that 
allows to solve physical phenomena in electrical machines. Thanks to the individual modules, 
it is possible to make electromagnetic, thermal and mechanical design of any electrical machine 
and then simulate its behavior in different operating states. Especially today, when using many 
types of inverters, it is a great advantage to connect a model to an electrical circuit. It allows to 
solve the influence of different methods of power supply on electric machine. For example, what 
effect the vibrations of the electric machine will have on higher harmonic generated inverter.

The problem of calculating vibrations in electrical machines is very complex due to the num-
ber of physical phenomena, and it is necessary to handle a large amount of information from 
many areas (mechanics, magnetism, etc.). For this reason, this chapter focuses on a basic 
approach to solution issues. In solving a particular problem, it is necessary to take into account 
the time requirement of individual calculations and to perform a sufficient amount of calcula-
tion simplifications which are based on the results requirements analysis. Simplification may 
involve adjustments to a particular model that is used for the calculations. Another simplifica-
tion may be the neglect of some of the vibration sources that operate in the electric machine, 
and so on. The main requirement is that the simplification of the model does not cause the 
error to be calculated. Therefore, it is necessary to familiarize themselves with the construc-
tion of the simulated machine, the sources of vibration, the functions of individual parts and 
their effect on the propagation of vibrations [1, 2].

2. Vibration fundamentals

Vibrations are a mechanical phenomenon. It can be said that this is the movement of a flexible 
body or environment whose individual body vibrates around the equilibrium position.

The forces acting on the vibrating body define the motion equation:

  m .    d   2  x ___  dt   2    = F (t)  − k . x − b .   dx ___ dt    (1)

where  m  is body mass,  x  is deviation from the steady state of the body,  F (t)   is force dependent 
on time,  k  is stiffness of the spring, and  b  is coefficient of damping.

The forces acting on any system create the oscillation itself. In a simple case, the oscillation has 
a harmonic character. This occurs when system is exposed to a single source with a constant 
exciting force. For the description of harmonic oscillation, the relationship is used:

  x (t)  =  x  max   . sin (2 . π . f . t)   (2)

where  x (t)   is displacement value,   x  max    is maximum displacement value and  f  is vibration 
frequency.
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This relationship applies to very simple oscillations. There are a number of sources and influ-
ences in electric machines that affect the vibration generation. The actual course of vibration 
displacement is, therefore, the sum of forces that change over time with different frequen-
cies. The vibration displacement of the electric machine is shown in Figure 1. Fast Fourier 
Transformation is used to convert the signal into the frequency area and the result of this 
transformation is shown in Figure 1. Figure 1 also shows the proportion of individual har-
monics on the vibration signal [2–4].

3. Electric machine construction

For the calculation of vibrations in electrical machines, it is necessary to get basic information 
about their basic construction. The electric machine consists of a magnetic circuit. The mag-
netic circuit focuses most of the magnetic field into a defined area. The magnetic circuit itself 
is made of steel plates connected to the stator, respectively into the rotor. There are grooves 
cut on the internal circumference of the stator, into which the winding is inserted. The wind-
ing itself is one of the most important parts of electric machines. Copper with good electric 
conductivity and with 99% purity is used as a material of winding. In some applications, 
aluminum alloy of similar purity is used as a material. All electric motors have many other 
mechanical parts. These include a shaft on which the rotor plates are mounted. Although the 
shaft is, in most cases, a simple component that is made of a machined steel rod, it can have a 
great effect on the vibration of the machine. The main parameter that can affect the vibration is 
the quality of the processing and the quality of the whole rotor balancing. Due to the possible 
inhomogeneity of the material, the so-called mass unbalance can occur, causing the unwanted 
vibrations generated by the machine. The vibration level and frequency depend on the rota-
tion speed of the rotor itself. Rotors are balancing in production to reduce this phenomenon.

Another important part of electrical machines is bearings. Many types of bearings are used 
in electrical machines. Ball bearing or roller bearings are commonly used. Nowadays, elec-
tromagnetic bearings are also used in special applications. From the vibration point of view, 
two separate phenomena occur in the bearings. The first is generating vibrations. This is in 

Figure 1. Induction motor vibration - a) Displacement of electric machine. b) FFT of vibration signal
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This relationship applies to very simple oscillations. There are a number of sources and influ-
ences in electric machines that affect the vibration generation. The actual course of vibration 
displacement is, therefore, the sum of forces that change over time with different frequen-
cies. The vibration displacement of the electric machine is shown in Figure 1. Fast Fourier 
Transformation is used to convert the signal into the frequency area and the result of this 
transformation is shown in Figure 1. Figure 1 also shows the proportion of individual har-
monics on the vibration signal [2–4].

3. Electric machine construction

For the calculation of vibrations in electrical machines, it is necessary to get basic information 
about their basic construction. The electric machine consists of a magnetic circuit. The mag-
netic circuit focuses most of the magnetic field into a defined area. The magnetic circuit itself 
is made of steel plates connected to the stator, respectively into the rotor. There are grooves 
cut on the internal circumference of the stator, into which the winding is inserted. The wind-
ing itself is one of the most important parts of electric machines. Copper with good electric 
conductivity and with 99% purity is used as a material of winding. In some applications, 
aluminum alloy of similar purity is used as a material. All electric motors have many other 
mechanical parts. These include a shaft on which the rotor plates are mounted. Although the 
shaft is, in most cases, a simple component that is made of a machined steel rod, it can have a 
great effect on the vibration of the machine. The main parameter that can affect the vibration is 
the quality of the processing and the quality of the whole rotor balancing. Due to the possible 
inhomogeneity of the material, the so-called mass unbalance can occur, causing the unwanted 
vibrations generated by the machine. The vibration level and frequency depend on the rota-
tion speed of the rotor itself. Rotors are balancing in production to reduce this phenomenon.

Another important part of electrical machines is bearings. Many types of bearings are used 
in electrical machines. Ball bearing or roller bearings are commonly used. Nowadays, elec-
tromagnetic bearings are also used in special applications. From the vibration point of view, 
two separate phenomena occur in the bearings. The first is generating vibrations. This is in 

Figure 1. Induction motor vibration - a) Displacement of electric machine. b) FFT of vibration signal
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trouble-free condition caused, for example, by skipping the balls. The fault condition is the 
result of a missing lubricant. Failures can also be caused by poor quality lubricants. The sec-
ond factor that affects the vibration of the electric machine is transmission between the rotor 
and the stator. Depending on the design of the bearings, they are partially damped.

The bearings are located in a bearing shield that is attached to the frame of the electric 
machine. A stator of the electric machine is also placed in the frame. There are several types of 
frames. The most commonly used are foot frame or flanges frame. Based on the type of frame, 
the machine is mechanically connected to the device. Again, the method of attachment of the 
machine affects the propagation or, respectively, vibration damping in the electrical machine. 
A terminal box is also attached to the frame and it serves to connect the power supply. The 
power supply method of the electric machine is another important factor. Electric machines 
are divided according to the following types of power supply:

• Asynchronous: Electric machines powered by AC voltage, either in one or in three phases. 
These are the most commonly used machines in the industry. They have different rotations 
of the magnetic field in the stator and the rotor.

• Synchronous: Electrical machine whose rotating speed is proportional to the frequency of 
the alternating current supply and independent of the load. Synchronous machines are 
very often used as a generator

• DC machines: Electrical machine powered by direct current. In most cases, it works with 
a static field in static machine parts. Permanent magnets may appear in their construction.

As can be seen from the brief description of the construction of the electric machine, it is a 
mechanically and intricately complex device with many variations. Various factors can affect 
the formation or propagation of vibrations. For this reason, it is always necessary to deter-
mine which parameters and structural elements are inserted into the calculation process and 
which are neglected [5–7, 10, 11].

3.1. Electrical machine failures

The generation of vibrations in an electric machine influences several design parameters. The 
influence on the generation of vibrations is mainly due to components design, mainly their 
shape and quality of production. With the time of use of the electrical machine in operation, 
vibration and wear of individual components increase.

Vibration sources are identified in vibration spectrum. Each vibration source takes effect of 
specific frequency in the spectrum. The amplitude is proportional to the degree of damage. 
For each source that causes the peaks at corresponding frequencies with increasing deviation, 
the value of peaks increases [2, 8].

Examples of electrical machine faults that can be modeled with finite element method are:

• Unbalance of the rotor: The unbalance depends on the distribution of the center of gravity of the 
rotor relative to its axis of rotation. Because of the uneven distribution of matter, the imbalance 
causes centrifugal force, noise and rotor vibration. With higher speeds, vibration is increasing.
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• Eccentric rotor: Eccentricity occurs especially when the rotary axis is shifted relative to the 
geometric axis. Because of the eccentric rotor, there is a variable air gap between the stator 
and the rotor that generates pulsating vibrations. The greatest vibration reaches the first 
harmonic component. The rotor eccentricity contributes to vibration and noise. It causes an 
unbalanced pull of magnetic force in the rotor and bending the shaft.

There are two types of eccentricity:

Static eccentricity: Situation, when the rotor is deflected from the center of the engine and still 
rotates around its own axis of rotation. This is because of the static eccentricity. The size of the 
air gap is not constant over its entire circumference, resulting in stronger interactions between 
the stator and rotor magnetic fields in places with a smaller air gap.

Dynamic eccentricity: In the latter case, dynamic eccentricity occurs when the rotor rotates in 
the geometric center of the engine but does not rotate around its own axis of rotation. The air 
gap is a function of both position and time. The variable air gap rotates at a frequency equiva-
lent to the rotational speed of the rotor.

• Bent shaft: The cause of the shaft deformation is the difference between the geometric axis 
and the axis of rotation. The geometric axis of the bent shaft has the shape of a curve. If the 
axis of rotation is not a straight line, it is a bend shaft. If the center of gravity does not lie on 
the rotary axis, the rotor is unbalanced [2, 8].

4. Vibration sources

For any calculation of the vibration level, it is necessary to become familiar with the various 
sources that generate these vibrations in electric machines. According to the physical prin-
ciple, sources of vibration can be divided into several groups:

• Electromagnetic sources

• Mechanical sources

• Aerodynamic sources

Vibrations of electromagnetic and mechanical origin occur in all rotating electric machines. As 
a source of aerodynamic origin, it is usually a fan. Fan is often not a part of the construction of 
electric machines. For this reason, this chapter does not deal with the problem of calculating 
the vibrations thus generated [1].

4.1. Electromagnetic sources

Part of the vibration of electric machines is of electromagnetic origin. Their cause is the oscil-
lation of the machine frame and its parts caused by electromagnetic forces. These forces are 
due to higher harmonics of the supply current, magnetic saturation, phase asymmetry, mag-
netostriction or disturbances in the magnetic circuit or electrical component of the machine. 
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the formation or propagation of vibrations. For this reason, it is always necessary to deter-
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which are neglected [5–7, 10, 11].
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The generation of vibrations in an electric machine influences several design parameters. The 
influence on the generation of vibrations is mainly due to components design, mainly their 
shape and quality of production. With the time of use of the electrical machine in operation, 
vibration and wear of individual components increase.

Vibration sources are identified in vibration spectrum. Each vibration source takes effect of 
specific frequency in the spectrum. The amplitude is proportional to the degree of damage. 
For each source that causes the peaks at corresponding frequencies with increasing deviation, 
the value of peaks increases [2, 8].

Examples of electrical machine faults that can be modeled with finite element method are:

• Unbalance of the rotor: The unbalance depends on the distribution of the center of gravity of the 
rotor relative to its axis of rotation. Because of the uneven distribution of matter, the imbalance 
causes centrifugal force, noise and rotor vibration. With higher speeds, vibration is increasing.
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• Eccentric rotor: Eccentricity occurs especially when the rotary axis is shifted relative to the 
geometric axis. Because of the eccentric rotor, there is a variable air gap between the stator 
and the rotor that generates pulsating vibrations. The greatest vibration reaches the first 
harmonic component. The rotor eccentricity contributes to vibration and noise. It causes an 
unbalanced pull of magnetic force in the rotor and bending the shaft.

There are two types of eccentricity:

Static eccentricity: Situation, when the rotor is deflected from the center of the engine and still 
rotates around its own axis of rotation. This is because of the static eccentricity. The size of the 
air gap is not constant over its entire circumference, resulting in stronger interactions between 
the stator and rotor magnetic fields in places with a smaller air gap.

Dynamic eccentricity: In the latter case, dynamic eccentricity occurs when the rotor rotates in 
the geometric center of the engine but does not rotate around its own axis of rotation. The air 
gap is a function of both position and time. The variable air gap rotates at a frequency equiva-
lent to the rotational speed of the rotor.

• Bent shaft: The cause of the shaft deformation is the difference between the geometric axis 
and the axis of rotation. The geometric axis of the bent shaft has the shape of a curve. If the 
axis of rotation is not a straight line, it is a bend shaft. If the center of gravity does not lie on 
the rotary axis, the rotor is unbalanced [2, 8].

4. Vibration sources

For any calculation of the vibration level, it is necessary to become familiar with the various 
sources that generate these vibrations in electric machines. According to the physical prin-
ciple, sources of vibration can be divided into several groups:

• Electromagnetic sources

• Mechanical sources

• Aerodynamic sources

Vibrations of electromagnetic and mechanical origin occur in all rotating electric machines. As 
a source of aerodynamic origin, it is usually a fan. Fan is often not a part of the construction of 
electric machines. For this reason, this chapter does not deal with the problem of calculating 
the vibrations thus generated [1].

4.1. Electromagnetic sources

Part of the vibration of electric machines is of electromagnetic origin. Their cause is the oscil-
lation of the machine frame and its parts caused by electromagnetic forces. These forces are 
due to higher harmonics of the supply current, magnetic saturation, phase asymmetry, mag-
netostriction or disturbances in the magnetic circuit or electrical component of the machine. 
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The frequency spectrum of these vibrations has discrete character. Vibrations caused by the 
 electrical causes occur mainly in the radial direction. Vibrations are occurred in the case of 
more varied air gap size in the axial direction, for example, due to non-symmetrical rotor 
mounting [1].

4.2. Mechanical sources

Mechanical vibrations are mainly caused by bearings, rotor balancing, machining of rotating 
parts and rotor mounting. Mechanical vibrations produced into electrical machines are also 
caused by connected devices. These external vibration sources include clutch misalignment 
or gearing, wedge gears or vibrations caused by connected loads [1].

4.3. Aerodynamic sources

The basic aerodynamic source of vibration is the fan in electric machine. Any obstruction that 
is exposed to air flow can generate vibration. The main cause of fan noise is the formation of 
turbulent airflow around the fan blades [1, 2, 4].

5. Vibration simulation using finite element method (FEM)

As already indicated in the previous sections of the chapter, the vibration of electric machines 
is a phenomenon that interferes with several physical areas (mechanics, electromagnetism, 
etc.) [8–10]. Therefore, the entire calculation process needs to be divided into several parts:

a. Determining Vibration Sources: at first, it is necessary to decide which resources to count. 
In the case of this chapter, the calculation is simplified only for the occurrence of vibra-
tions by the effect of a time-dependent electromagnetic field. For this reason, it is possible 
to use Maxwell 2D or Maxwell 3D. This module allows to calculate the time-varying effect 
of the force in the magnetic circuit depending on the change of the electric current. The use 
of this program also allows to connect to a simulator of electrical circuits (program Sim-
plorer). After connecting the supply current to the Maxwell model on the simpler electric 
circuit, it is possible to calculate the changes in the magnetic circuit caused by the control 
logic, that is, speed control.

b. Model creation: creating a model of an electric machine is one of the most important parts 
of the calculation itself. The user must choose between 2D and 3D model. The 2D model 
is much simpler, and therefore, the calculation itself takes a very short time. On the other 
hand, this is a great simplification of the calculation. The 3D model will allow for a more 
accurate calculation and consideration of the more influences affecting the calculation. 
However, the calculation of 3D models is considerably more demanding for computa-
tional power, and therefore, the calculation time is considerably longer.

c. Calculation of forces caused by selected sources: the next step is to determine the forces that 
act on the electrical machine. In this chapter, this is defined as a force of  electromagnetic 
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 origin. The Maxwell program is used to determine them. These calculations can be sup-
plemented by the calculation of the actual frequencies of the electric machine and also by 
external influences (such as asymmetry, etc.). An important factor is determining the right 
time step.

d. Determining vibration on the model: determination of vibration on a particular model is 
the result of a mechanical analysis [8–10] (Figure 2).

6. Model creation

The model of an electric machine can be made in several ways. One of them is the use of 
modern CAD systems to create geometry and its subsequent import into the computing envi-
ronment. Another option is to create a model directly in the Ansys (using DesignModeler).

Another choice is to use the RMxprt environment. This module is primarily designed for 
rapid calculations of electrical machines. It features an environment for fast input of electrical 
machine dimensions. At the beginning of the job, the user selects a template that matches the 
specific machine type. The user then enters the main machine dimensions, slot size and slot 
type, and other parameters using simple tables.

RMxprt contains the following electrical machine templates:

• Synchronous machine

• Permanent magnet DC motor/DC machine

• Claw-pole alternator

• DC machine

• Single-phase/three-phase induction machine

• Universal motor

Figure 2. The Ansys workbench modules.
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is much simpler, and therefore, the calculation itself takes a very short time. On the other 
hand, this is a great simplification of the calculation. The 3D model will allow for a more 
accurate calculation and consideration of the more influences affecting the calculation. 
However, the calculation of 3D models is considerably more demanding for computa-
tional power, and therefore, the calculation time is considerably longer.
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time step.
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ronment. Another option is to create a model directly in the Ansys (using DesignModeler).
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User needs to know a lot of information to create a model in RMXprt. One of the items to 
know is the basic design dimensions. Furthermore, it is necessary to know how to place the 
windings in the grooves and also the dimensions of the individual wires. All of these param-
eters affect the end result [10] (Figure 3).

7. Determining the time step

When calculating the vibration of an electrical machine, it is important to note, as in the case 
of its measurement, the need to take into account the sampling frequency of the search signal. 
In the case of finite element calculation, this sampling frequency is represented by the time 
step of the individual calculations.

Results of transient analysis are linear approximate in the Ansys program. This can cause data 
loss. Example of choosing a time step or sampling frequency is shown in Figure 4 on the simple 
signal. The used signal shows the sinus function with frequency 1 Hz. When selecting a large 
time step (specifically 3 Hz), this function is approximated by a straight line. There is a complete 
loss of function. When there is use 5 values on signal sampling and there is use linear interleav-
ing function for his reconstruction, then constructed signal has triangle waveform. The calcu-
lated signal is the same as the original function only when using a sampling frequency of 36 Hz 
(and higher). This example shows how the time step can affect the results of the time waveform 

Figure 4. Linear approximation of sin signal.

Figure 3. Models of induction machine generated by RMxprt: a) 2D model and b) 3D model.
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calculations of primitive function. Even greater influence can be experienced on the course of 
the calculated waveforms of the vibrational signals, which are much more complicated.

For the sampling of the general signal, the so-called Nyquist condition is mentioned in the lit-
erature. This indicates that each frequency-limited time function can be replaced by samples 
taken with the   T  

sam
    period, which is equal to half of the overturned value of the   f  

max
   , the highest 

frequency contained in the sampling signal. Therefore:

   f  sam   =   1 ____  T  sam     ≥ 2 .  f  max    (3)

where   f  
sam

    is sampling frequency and   f  
max

    is maximal frequency included in the signal.

As shown in Figure 4, when this state is used for a complex signal (such as the vibration are 
complex), there has been a strong deformation of the entire calculated waveform. Determining 
the time step requires some experience and knowledge that leads to a compromise between 
the quality of the result and the time consumption of the calculation [4].

8. Electromagnetic simulation

Electromagnetic simulation is a possible solution in the Maxwell program, which is one of the 
Ansys software package modules. Maxwell module is used to calculate the magnetic field on 
2D and 3D models. The calculation itself is based on Maxwell’s equations. These equations 
can be written in a differential form:

  ∇ xE = −   ∂ B ___ ∂ t    (4)

  ∇  . B = 0  (5)

  ∇ xH = J +   ∂ D ___ ∂ t    (6)

  ∇  . D = ρ  (7)

where  E  is electric field intensity,  B  is magnetic flux density,  H  is magnetic field intensity,  J  is 
current density on surface,  D  is electric flux density, and  ρ  is volume charge density.

Some of these parameters depend on the properties of the used material:

  B =  μ  0   .  μ  r   . H  (8)

where   μ  
0
    is permeability of vacuum and   μ  

r
    is relative permeability of material.

  D =  ε  0   .  ε  r   . E  (9)
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calculations of primitive function. Even greater influence can be experienced on the course of 
the calculated waveforms of the vibrational signals, which are much more complicated.
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taken with the   T  
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   , the highest 

frequency contained in the sampling signal. Therefore:
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    is sampling frequency and   f  
max

    is maximal frequency included in the signal.

As shown in Figure 4, when this state is used for a complex signal (such as the vibration are 
complex), there has been a strong deformation of the entire calculated waveform. Determining 
the time step requires some experience and knowledge that leads to a compromise between 
the quality of the result and the time consumption of the calculation [4].

8. Electromagnetic simulation

Electromagnetic simulation is a possible solution in the Maxwell program, which is one of the 
Ansys software package modules. Maxwell module is used to calculate the magnetic field on 
2D and 3D models. The calculation itself is based on Maxwell’s equations. These equations 
can be written in a differential form:
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  ∇  . B = 0  (5)
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  ∇  . D = ρ  (7)

where  E  is electric field intensity,  B  is magnetic flux density,  H  is magnetic field intensity,  J  is 
current density on surface,  D  is electric flux density, and  ρ  is volume charge density.

Some of these parameters depend on the properties of the used material:

  B =  μ  0   .  μ  r   . H  (8)

where   μ  
0
    is permeability of vacuum and   μ  
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    is relative permeability of material.
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where   ε  
0
    is permittivity of vacuum and   ε  

r
    is permittivity of magnetic material.

  J = σ . E  (10)

where  σ  is electric conductivity.

To determine the vibrations in the electric machine model, the force acting between the rotor 
and the stator must be determined from the magnetic field in the air gap. For the calculation 
of these forces, it is possible to use the Maxwell stress tensor. Based on this, it is possible to 
write for two components electromagnetic forces on a 2D model equation:

• For radial direction

   F  rad   =   
 L  stk   ____ 2 .  μ  0  

   .   ∮ 
l
     ( B  n  2  −  B  t  2 ) dl  (11)

• For tangential direction

   F  tan   =   
 L  stk   ____ 2 .  μ  0  

   .   ∮ 
l
      B  n   .  B  t   dl  (12)

where   B  
n
    is normal component of flux density,   B  

t
    is tangential component of flux density,  l  is 

length of stator edge, and   L  
stk

    is stack length of the motor [2, 8, 9].

In the Maxwell environment, the following relationships to determine the individual power 
components [3] can be used:

   F  rad   =  F  x   . cos  Θ  tip   +  F  y   . cos  Θ  tip    (13)

   F  tan   = −  F  x   . cos  Θ  tip   +  F  y   . cos  Θ  tip    (14)

The radial force component acts perpendicularly to each tip, and the teeth cause radial defor-
mation and vibration. Meanwhile, the tangential force acts on the rotor and produces rota-
tional torque and also causes torsional strains.

When determining the behavior of an electrical machine, the time course of the supply voltage 
is decisive. This chapter deals with the calculation of vibrations on an asynchronous motor. 
This type of machine is powered by three-phase alternating voltage. For the simplest case, the 
time course is harmonious, containing one harmonic. In many real cases, the supply voltage 
is not smooth. The effect on these waveforms may be the power supply or the function of the 
inverter connected to the electric machine.

For calculation, the voltage was given in the following phases:

• Phase A: Umax * sin(2*pi*50*time)

• Phase B: Umax * sin(2*pi*50*time-2*pi/3)

• Phase C: Umax * sin(2*pi*50*time-4*pi/3)
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From the point of view of the electromagnetic calculation of electrical machines, the magnetic 
magnet induction is the most important variable in the air gap. This magnitude depends on the 
design of the particular electric machine (number of slots, etc.). The figure of this magnitude at 
half the length of the air gap is shown in Figure 5. It is seen that magnetic flux density waveform 
is not as smooth as the supply voltage waveform. This waveform is displayed on a line repre-
senting the half of the air gap. It is clear that the quality of this process is very dependent on the 
quality of the mesh. The number of elements can affect the resulting signal waveform and also 
its frequency spectrum. Generally, it is recommended to use at least four elements representing 
the width of the air gap. Since the width of the air gap of the electric machine can range from tens 
to millimeters, it is a factor that can greatly influence the solving time and calculation difficulty.

The total time course of the absolute value of the forces in the electric machine is shown in 
Figure 6. As shown in Figure 6, the influence of linear approximation between the individual 
time steps is evident [2, 8, 9].

9. Mechanical simulation

The mechanical analysis itself in the Ansys program serves to determine the deformations 
based on the forces applied to the model. The main variable, which in this case describes the 
vibration, is the displacement of the individual components of the model. It also serves to 
determine a deformation and displacement of the body at each point in the mesh when finite 
element method is used. The calculation is based on the following equation:

   [M]  .  {a}  +  [C]  .  {v}  +  [K]  .  {x (t) }  =  {F (t) }   (15)
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where   ε  
0
    is permittivity of vacuum and   ε  

r
    is permittivity of magnetic material.

  J = σ . E  (10)

where  σ  is electric conductivity.
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   .   ∮ 
l
     ( B  n  2  −  B  t  2 ) dl  (11)

• For tangential direction
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   .   ∮ 
l
      B  n   .  B  t   dl  (12)

where   B  
n
    is normal component of flux density,   B  

t
    is tangential component of flux density,  l  is 

length of stator edge, and   L  
stk

    is stack length of the motor [2, 8, 9].
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where  F (t)   is load vector,  M  is mass,  C  is damping,  K  is stiffness,  x  is displacement vector,  a  is 
acceleration vector ( a =  x ¨   (t)  ), and v is velocity vector ( v =  x   ̇  (t)  ).

On the basis of this equation, the individual displacements of the bodies are then determined. 
Several other parameters have to be taken into account to set the calculation correctly. One of 
the things that need to be set is the material properties of the individual parts of the simulated 
machine. The material properties are the material density, the Poisson’s ratio and the Young’s 
modulus for mechanical analysis. These material properties can be found on the Internet or 
requested from the material supplier.

Another parameter that affects the quality of the result is the final set-up of the mesh. There 
is a need to focus on to focus on where forces work or where there is a small cross-section on 
model. At these points of the model, it is necessary to manually adjust the strength of the mesh 
to avoid any unwanted effect on the result.

Another parameter is to determine the properties of the contact surfaces. Particularly, for 
more complex models, results are poor where there is a poor contact surface setting. The 
Ansys mechanical analysis module uses five types of contact surfaces such as bounded, with-
out separation, without friction, friction and pulping. Their choice depends on the knowledge 
of the construction of the electrical machine and on the way of the mechanical connection of 
its individual parts [4, 8] (Figure 7).

10. Conclusions

Since the vibration of electric machines is a carrier of information about its state, the issue 
of vibration calculation is very topical. When designing any electrical machine, the designer 
must reach to a certain standard of vibration which is given by the norm. In many cases, when 
designing a new machine, there were problems with vibration. This problem occurs only after 
the prototype has been created. By using finite element methods in vibration determination, 
designer can achieve very interesting results that can help minimize the vibration of electrical 
machines at the design stage. It can mean considerable savings for the manufacturing company.

The calculation of vibrations using the Ansys program is a very complex issue. The correct 
setup of electromagnetic computation requires experience not only with calculating electrical 

Figure 7. Vibration results from FEM.
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machines but also with program Maxwell’s control and adjustment. The actual modeling of 
the machine itself is also quite demanding. Whether the user uses a classical CAD system or 
RMxprt, it needs a lot of information that can have a detrimental effect on the calculation. One 
of the most important information is the dimensions of the electric machine. This information 
can be obtained from the technical documentation. Another factor that can influence the cal-
culation is the knowledge of the materials used and especially their properties. Much informa-
tion about these materials can be found on the Internet. In many cases, the values of material 
properties are measured in specific conditions (e.g., at temperature 22°C) and then these values 
do not have to match the calculation conditions. The ideal source of information on material 
properties is the supplier of construction materials.

Once a model has been created, it is necessary to set-up individual analyses. It should be noted 
that, for example, electromagnetic analysis has different mesh quality requirements than 
mechanical analysis. There are automatic features for mesh creation  in Ansys Workbench 
and Maxwell environment. For vibration calculations, it is necessary to edit the quality mesh 
on certain parts of the model manually in many cases. However, this requires knowledge not 
only of the procedures for both types of calculations but also of some experience with differ-
ent types of analyses. Another non-negligible part of the calculation is the time step selection 
for transient analysis. If the time step is too long, there is a loss of data that could be critical 
to the calculation. Conversely, when setting a small time step, an unreasonable load on the 
computing hardware will occur and an increase in the computational time will be necessary. 
Given the number of calculations that need to be made to achieve the relevant results, a minor 
change may mean an extension of day calculations.

It can be said that modern programs using finite element methods allow the calculation of a 
wide range of physical problems. As far as the calculations of vibrations of electric machines 
are concerned, it is a very complex issue, which affects many areas (electricity, magnetism, 
mechanics, thermal). The calculation of the complete vibrational spectrum of the electric 
machine with all vibration sources is possible, but it is very time consuming. Therefore, it is 
always necessary to focus on solving a certain part of this issue. Based on the analysis of the 
results, requirements and the analysis of the input parameters, it is possible to simplify the 
solution considerably, which allows to achieve reasonable results in a sufficiently short time. 
An ideal solution to the vibration problem of electric tools using finite element method is to 
build a team of workers with knowledge and experience from different industries who will 
cooperate.
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Abstract

Coal burst is referred to as the violent failure of overstressed coal, which has been
recognised as one of the most critical dynamic failures in coal mines. This chapter aims
to analytically and numerically evaluate the energy transformation between the differ-
ent strata and coal layers. An accurate closed-form solution is developed. Due to the
complexity of the causes and mechanisms contributing to the coal burst occurrence, 3D
finite element modelling as well as discrete element models will be developed to vali-
date the suggested analytical assessments of rock/coal burst occurrence. The energy
concept is emphasised in order to improve the understanding of the underlying mecha-
nisms of coal burst. Only with enhanced understanding of the driving mechanisms, a
reliable coal burst risk assessment can be achieved.

Keywords: analytical modelling, numerical modelling, released energy, coal burst,
failure mechanism

1. Introduction

One of the critical engineering problems faced by the coal mining industry is coal burst. It is
caused by a dynamic release of energy within the overstressed rock mass/coal during the
mining process. It occurs under the effects of complex environments of geology, stress and
mining conditions. It has been recognised that the unstable releases of potential energy of the
rock around the excavations, mainly in the form of kinetic energy, contributes to the coal burst
occurrence. Interactions between the coal and rock interface, as well as the confinement, can
completely determine the failure mode and the ultimate bearing capacity of coal pillars,
influencing the amount of stored energy within a pillar. Many authors define rock/coal burst
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as a sudden, rapid rupture of the rock mass with a violent, explosive release of elastic/strain
energy from the surface of an excavation, which is generally associated with a seismic event
and produces rock particle ejections [1–5]. The coal burst source is the mechanism that
triggers or induces the damage mechanism visible on the excavation surface. The coal burst
source is generally associated with a seismic event that can be performed at a wide range of
local magnitudes, normally ranging from undetectable up to 5 [6]. Indeed, mining-induced
seismicity can reach moderate values of ground velocity and acceleration, and in some cases
its effects on the surface can be compared with low-intensity earthquakes [7]. The mecha-
nism that produces the seismic event is a sudden release of the strain energy that has been
stored above a critical level within the rock/coal mass. Some portion of this energy is
demolished by crack development, and the rest of the energy is converted into the kinetic
energy [8, 9]. When the energy source is located near the roadway, the released energy may
lead to coal fragmentation. At the place of the source of the energy, where it is located in a
plane of weakness inside the coal mass, the released energy provokes shear displacement
along the plane, which in revolve generate vibrations that persuade coal ejections when they
are situated near the excavation boundaries [7]. Tarasov and Randolph [6] have explained a
number of special and inconsistent behaviours of hard rock at the significant depth that are
directly related to rock failure mechanisms in deep excavations. They determined that the
procedures of the shear failure, with respect to the significant low friction, can be classified as
the main reason to release energy. Based on the suggested frictionless mechanism, the level of
the brittleness of the confined rock/coal masses might be increased under high stress condi-
tions. This may result in reducing the overall ductility which would in line with the abrupt
fracture failure. Under an energy-balance approach, the methods to predict coal burst risk
are based on energy indexes such as energy release rate (ERR) [8–10], energy storage rate
(ESR), strain energy storage index (WET) [11], potential energy of elastic strain (PES) or
strain energy density (SED) (i.e., the elastic strain energy in a unit volume of the coal mass,
which can be computed by the uni-axial compressive strength of the coal and the relevant
unloading tangential modulus), and burst potential index (BPI). A combination of both
analytical as well as numerical methods, where they can comprehensively evaluate the
structural performance of the mine scale, would be broadly addressed in the current
research. Thus, the following aims explicitly will be addressed.

1. Develop a full 2D and 3D finite element as well as discrete element models to compute the
inducted energies in a single pillar with different high to width ratios. In this approach,
different loading conditions varying from the static, quasi-static as well as dynamic
loading will be exclusively examined.

2. Considering the effect of the energy transformations between the rock/coal layers due to
the different contact/joint properties.

3. Suggest empirical equations to predict the amount of the released strain energy due to the
mining activities.

The main novelty of this research is to simulate the effect of the failure and post-failure of the
engaged material as well as joint/contact properties on the energy transformation.

Finite Element Method - Simulation, Numerical Analysis and Solution Techniques208

2. Numerical modelling strategy

Numerical simulations can be considered as an individual tool to predict possible failure
modes and the actual capacity of the mining setting. It is mostly useful to undertake paramet-
ric and sensitivity analyses to gain better understanding the nature and level of indecision, or
remaining hazard, associated with design process.

First, a finite element model is developed by taking advantage from the commercial software
package ABAQUS/Explicit. All the geotechnical components, including the rock and coal,
were modelled by the eight-node linear brick element (C3D8R) available in the ABAQUS
library. Element C3D8R relies on reducing integration and hourglass control. The assigned
meshes were established by using the structured technique available in ABAQUS. The solution
to the nonlinear problem was sought using the explicit dynamic analysis procedure available
in ABAQUS. In the current study, Figure 1 presents a quarter of a single pillar.

Thus, by taking advantage from the symmetrical boundary conditions, a finer mesh was
assigned to the model. Finding the right input material properties would be a significant
assumption, which has not been appropriately studied in the available literature. Modelling of
mechanical behaviour of the coal under both compression and shear stresses would be very
complicated, since there are no articulated reports which might be concerned with the uni-axial
and tri-axial behaviour of coal under both static and dynamic loading conditions. According to

Figure 1. Illustration of a typical single pillar model using ABAQUS/Explicit.
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seismicity can reach moderate values of ground velocity and acceleration, and in some cases
its effects on the surface can be compared with low-intensity earthquakes [7]. The mecha-
nism that produces the seismic event is a sudden release of the strain energy that has been
stored above a critical level within the rock/coal mass. Some portion of this energy is
demolished by crack development, and the rest of the energy is converted into the kinetic
energy [8, 9]. When the energy source is located near the roadway, the released energy may
lead to coal fragmentation. At the place of the source of the energy, where it is located in a
plane of weakness inside the coal mass, the released energy provokes shear displacement
along the plane, which in revolve generate vibrations that persuade coal ejections when they
are situated near the excavation boundaries [7]. Tarasov and Randolph [6] have explained a
number of special and inconsistent behaviours of hard rock at the significant depth that are
directly related to rock failure mechanisms in deep excavations. They determined that the
procedures of the shear failure, with respect to the significant low friction, can be classified as
the main reason to release energy. Based on the suggested frictionless mechanism, the level of
the brittleness of the confined rock/coal masses might be increased under high stress condi-
tions. This may result in reducing the overall ductility which would in line with the abrupt
fracture failure. Under an energy-balance approach, the methods to predict coal burst risk
are based on energy indexes such as energy release rate (ERR) [8–10], energy storage rate
(ESR), strain energy storage index (WET) [11], potential energy of elastic strain (PES) or
strain energy density (SED) (i.e., the elastic strain energy in a unit volume of the coal mass,
which can be computed by the uni-axial compressive strength of the coal and the relevant
unloading tangential modulus), and burst potential index (BPI). A combination of both
analytical as well as numerical methods, where they can comprehensively evaluate the
structural performance of the mine scale, would be broadly addressed in the current
research. Thus, the following aims explicitly will be addressed.

1. Develop a full 2D and 3D finite element as well as discrete element models to compute the
inducted energies in a single pillar with different high to width ratios. In this approach,
different loading conditions varying from the static, quasi-static as well as dynamic
loading will be exclusively examined.

2. Considering the effect of the energy transformations between the rock/coal layers due to
the different contact/joint properties.

3. Suggest empirical equations to predict the amount of the released strain energy due to the
mining activities.

The main novelty of this research is to simulate the effect of the failure and post-failure of the
engaged material as well as joint/contact properties on the energy transformation.
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2. Numerical modelling strategy

Numerical simulations can be considered as an individual tool to predict possible failure
modes and the actual capacity of the mining setting. It is mostly useful to undertake paramet-
ric and sensitivity analyses to gain better understanding the nature and level of indecision, or
remaining hazard, associated with design process.

First, a finite element model is developed by taking advantage from the commercial software
package ABAQUS/Explicit. All the geotechnical components, including the rock and coal,
were modelled by the eight-node linear brick element (C3D8R) available in the ABAQUS
library. Element C3D8R relies on reducing integration and hourglass control. The assigned
meshes were established by using the structured technique available in ABAQUS. The solution
to the nonlinear problem was sought using the explicit dynamic analysis procedure available
in ABAQUS. In the current study, Figure 1 presents a quarter of a single pillar.

Thus, by taking advantage from the symmetrical boundary conditions, a finer mesh was
assigned to the model. Finding the right input material properties would be a significant
assumption, which has not been appropriately studied in the available literature. Modelling of
mechanical behaviour of the coal under both compression and shear stresses would be very
complicated, since there are no articulated reports which might be concerned with the uni-axial
and tri-axial behaviour of coal under both static and dynamic loading conditions. According to

Figure 1. Illustration of a typical single pillar model using ABAQUS/Explicit.
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the elastic analysis, the stress analysis and energy computations were organised in line with the
linear relationship between the stress and the strain in coal and overburden properties. The peak
and post-peak behaviour of coal and surrounding rock masses will be ignored. Therefore, in the
current literature, the computed stress, strain and kinetic energy have been noticeably
overestimated. At the second stage, a combination of the 2D and 3D discrete element models
using UDEC and 3DECwas developed. Figure 2 illustrates the pillar model incorporating half of
coal, roof and floor along the symmetrical centre-line of the pillar. The height of the roof and floor
was 20 m and the mining height was fixed at 3 m, while the pillar widths varied in order to
simulate the pillars with width to height (w/h) ratios from 1 to 5.

A Mohr-Coulomb (MC) material that presents a constant strength after failure and a Mohr-
Coulomb strain-softening material that can reach the peak strength and then decrease to a
residual strength have been considered. A quasi-static loading condition as a velocity was
applied on the top and bottom of the model. The applied velocity was started with a very
small, constant velocity to represent a relative loading system to promote a model of a coal
failure that progresses slowly. Simulating a proper loading/displacement condition is signifi-
cantly crucial, specifically, gaining a sound understanding of the structural reaction of a single

Figure 2. Geometry and zoning of coal pillar model using UDEC.
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coal sample under dynamic or quasi-static loading conditions. Consideration was also given to
defining a joint interface. A Coulomb Slip (CS) joint interface property, where it is represented
by displacement softening parameters, was taken into account to simulate the interface prop-
erties between the different joints.

The uniform zone size of 0.1 m was applied to the coal, and a smooth variation of zoning
from the coal to the boundaries was used for roof and floor with appropriate aspect ratios to
avoid numerical instability. Roller boundaries were applied along the side of the roof and
floor, the bottom of the floor and the vertical line. The same trend was applied to develop the
three-dimensional discrete element using 3DEC (see Figure 3).

3. Analytical approach

An analytical method is developed to evaluate shear stress and strain distributions between
the engaged surfaces throughout different joint layers by considering the beam theory

Figure 3. Geometry and zoning of coal pillar model using 3DEC.
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method in different directions with respect to the different planes, where it can indepen-
dently calculate shear forces between the different layers and shear strain as well as the
curvature distribution along the different layers that have been extracted. The main concept
to derive the following equations was extracted from [12, 13]. The cross-sectional analysis is
based on the assumption of the Euler-Bernoulli beam model. The strain distribution across
the section can be calculated by ε ¼ εr � y� κ, where εr is the strain at the reference point
(which can be determined at any point), y is the distance between the selected point and
location of the neutral axis of the cross-section and κ is the curvature across the section in
different strata layers. A vector can be introduced by K Dð Þ which will be included in the
internal action N (axial forces) and M (internal moment). External loads, which might be due
to the effect of the self-weight of the strata layers as well as the possible applied forces due to
the vertical or horizontal displacement in the different layers, can induce the external axial
force Ne and external moment Me. The relationship between the internal and external actions
can be presented by:

ε ¼
εr

κ

" #
(1)

r εð Þ ¼
N

M

" #
(2)

re ¼
Ne

Me

" #
(3)

r εð Þ ¼ re This is the vector for strainð Þ (4)

By considering the nonlinear interactions, the presented equations can be re-written by:

r ε iþ1ð Þ
� �

¼ r ε ið Þ
� �

þ rt ε ið Þ
� �

� Δε ið Þ ¼ re (5)

rt ε ið Þ
� �

� Δε ið Þ ¼ r ið Þ
R (6)

r ið Þ
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� �
(7)
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r ;κ ið Þ
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∂εr
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r ;κ ið Þ
� �

∂κ
� Δκ ¼ N ið Þ
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N ið Þ
R ¼ Ne �N ε ið Þ

r ; κ ið Þ
� �

(9)

M ið Þ
R ¼ Me �M ε ið Þ

r ;κ ið Þ
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(10)
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All the equations can be re-presented in matrix format:
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The partial derivatives of N and M with respect to εr and κ can be re-arranged in a more
practical form, recalling the definitions of internal actions as:
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where the values of the stress depend on the constitutive models adopted for the materials and
on the magnitude of the strain
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σ ¼ E� ε for εj j ≤ εp elastic strainð Þ (22)

σ ¼ f p for εj j > εp plastic strain
� �
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Thus, by calculating stress and strain at the different points in the different layers of the
overburden, the internal axial forces as well as internal moments can be calculated. It was
assumed that the strain energy can be calculated by:
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A ¼ 1
2
�∭ σxx � εxx þ σyy � εyy þ σzz � εzz þ σxy � εxy þ σxz � εxz þ σyz � εyz

� �
dxdydz (57)

where σxx � εxx,……, σyz � εyz can be calculated, according to the principal of the virtual work
and virtual deformation δA ¼ δR1 þ δR2, when the induced stresses and strains cannot be
directly extracted from the simulated model.

4. Energy calculation based on the numerical approach

According to Xie et al. [14], the coal burst proneness of a coal can be determined by the coal
burst proneness assessments. Special attentions were devoted by the number of researchers to
develop coal burst proneness indexes, which are broadly utilised, such as elastic energy,
impact energy, dynamic failure time as well as elastic deformation and stiffness ratio indexes.
The elastic energy index WET is defined as the ratio of the elastic strain energy and the strain
energy dissipation at point E (75–85% of the peak strength). As shown in Figure 4, the ratio of
the area SEAC (between the unloaded line EA and the strain axis) and the area SEOA (between
the load and unload line) is the elastic energy index

WET ¼ SEAC
SEOA

� �
(58)

The impact energy index KE is defined as the ratio of the pre-peak area and the post-peak area,
KE namely, the ratio of energy in the pre-peak stage and the energy released in the post-peak
stage.

Figure 4. A typical stress-strain curve.
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5. Energy calculation based on the analytical approach

According to Xie et al. [14], dissipated and released energy can play a significant role which
may result in coal deformation and failure. Based on the failure mechanism, the fracture
procedure of a coal mass might be started from a partial fracture which would be followed by
local damage. This procedure will be finally resulting in collapsing the mining structures. The
failure process is thermodynamically permanent, which includes released and dissipated
energy. The dissipated energy can cause damage as well as a permanent deformation of the
coal mass, which is followed by weakening of strength. A sudden release of the strain energy
may lead to a catastrophic failure, which clearly indicates a certain condition where the coal
mass collapses. The released and dissipated energy from the coal mass, individually, plays an
essential role in the relevant sudden failure, which would be one of the major requirements to
investigate the procedure of the deformation and failure of a coal mass. Figure 5 is a typical
compression curve of coal under a constant displacement.

Figure 5 explicitly demonstrates the calculation of the dissipated, released and residual ener-
gies. With respect to the constant development of the inner micro-defects, energy dissipation is
an indispensable characteristic of the deformation and failure of the coal mass. The evolution
declines the strength of the coal, which may result in total failure. In this content, the dissi-
pated energy is directly concerned with the damage as well as mitigating strength of the coal.
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� �� σp lð Þ þ σp l�1ð Þ
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Tables 1 and 2 presents a comparison between the different elastic and post-failure energy
components using UDEC and 3DEC output results as well as semi-close form solutions. As it
can be found, there is a good agreement between the suggested semi-analytical methods as
well as the calculated key energy components which were extracted from the UDEC and 3DEC
output results.

Elastic strain
energy (kJ/m3)

Dissipated elastic
strain energy (kJ/m3)

The amount of the energy
in the pre-peak stage (kJ/m3)

The energy released in
the post-peak stage (kJ/m3)

Ratio (w/h) UDEC Analytic UDEC Analytic UDEC Analytic UDEC Analytic

1 1.56 1.63 0.78 0.77 3.61 3.73 12.47 10.59

1.5 1.92 1.35 0.8 0.78 7.89 7.44 12.48 11.03

2 2.0621 2.004 0.991 0.92 10.22 9.83 18.31 17.09

2.5 4.70 4.82 1.16 1.11 14.47 13.43 21.17 23.14

3 11.13 10.58 2.51 2.41 35.825 32.87 11.73 10.6

4 14.72 13.27 4.07 4.60 60.26 55.00 56.34 70.02

5 16.63 16.24 5.334 5.37 75.83 73.67 91.19 84.04

Table 1. A comparison between the different energy components (UDEC and the analytical solution).

Figure 5. Analytically calculation of dissipated energy and released energy (Xie et al. [14]).
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6. Progress of the failure in different pillar ratios

Different loading conditions varying from the quasi-static to dynamic loading has been
applied to the coal pillar with the different width to height (w/h) ratio to determine the pillar
capability as well as the possible observed failure modes. A strain-based criterion, as a major
failure criterion, was implemented in the ABAQUS/Explicit to predict of the cracking path due
to the different applied loadings as well as different pillar geometrical properties. A quarter

Elastic strain
energy (kJ/m3)

Dissipated elastic
strain energy (kJ/m3)

The amount of the energy in
the pre-peak stage (kJ/m3)

The energy released in the
post-peak stage (kJ/m3)

Ratio (w/h) 3DEC Analytic 3DEC Analytic 3DEC Analytic 3DEC Analytic

1 2.58 2.65 1.767 1.55 4.91 4.77 14.87 14.77

1.5 2.94 2.37 1.88 0.78 8.88 8.46 16.56 15.23

2 4.24 4.01 2.891 2.92 12.55 11.98 21.23 20.14

2.5 6.72 6.84 3.18 3.11 15.37 15.41 24.35 23.99

3 13.15 12.62 5.51 5.44 37.15 36.87 28.45 27.68

4 16.76 16.27 7.07 7.20 60.26 62.33 59.11 57.88

5 19.83 19.28 8.334 8.22 76.22 75.12 96.54 92.66

Table 2. A comparison between the different energy components (3DEC and the analytical solution).

Figure 6. Failure mode of a single pillar with the different w/h ratios.
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coal pillar model based on the symmetrical boundary conditions with respect to the different
width by height (w/h) ratios of 1–10 were developed. It was observed that when the w/h ratios
are less than 4, the failure mode of pillar can be either a double or a single diagonal shear
failure in which the trajectory cracking starts from the edges and progresses towards the centre
of the pillar. While the w/h ratios are greater than 4, the obtained possible failure mode would
be a combination of the shear and compression failure modes. Thus, the trajectory of the
cracking due to the pure compression failure would be propagated from the centre to the
corners where a pillar gradually starts towards fully squashed (see Figure 6).

7. Remarkable conclusions

Analytical method is an important part of coal burst evaluation and forecasting. Analytical
forecasting methods, either alone or combined with numerical simulations, can be used to
estimate both in situ stress and induced stress, which leads to the prediction of failure-prone
areas and calculation of critical values of the energies. The behaviour of a single pillar under
different applied loads ranging from the quasi-static towards the dynamic loading conditions
was simulated using commercial finite element package ABAQUS/Explicit. A strain-based
failure condition was evaluated to determine the failure modes in a single pillar by respecting
to the different w/h ratios. The observed numerical failure modes can be classified by shear
and compression failures as well as a combination of both shear and compression were
comprehensively illustrated. The released energy or residual energy is either transferred into
kinetic energy or dissipated energy in non-elastic behaviour such as joint shear and fracturing.
The unstable release of potential energy of the coal around the excavations, mainly in the form
of kinetic energy, causes coal burst.
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Abstract

Most engineering applications estimate the deformation induced by loads by using the
linear elasticity theory. The discretization process starts with the equilibrium equation and
then develops a displacement formulation that employs the Hooke’s law. Problems of
practical interest encompass designing of large structures, buildings, subsurface deforma-
tion, etc. These applications require determining stresses to compare them with a given
failure criteria. One often tackles this way a design or material strength type of problems.
For instance, Geomechanics applications in the oil and gas industry assess the induced
stresses changes that hydrocarbon production or the injection of fluids, i.e., artificial lift, in
a reservoir produce in the surrounding rock mass. These studies often include reservoir
compaction and subsidence that pose harmful and costly effects such as in wells casing,
cap-rock stability, faults reactivation, and environmental issues as well. Estimating these
stress-induced changes and their consequences require accurate elasticity simulations that
are usually carried out through finite element (FE) simulations. Geomechanics implies that
the flow in porous media simulation must be coupled with mechanics, which causes a
substantial increase in CPU time and memory requirements.

Keywords: elasticity, single-phase flow, geomechanics, Dirichlet-Neumann, mortar
methods, continuous Galerkin

1. Introduction

This chapter presents a continuous Galerkin FE formulation for linear isotropic elasticity. It
covers in detail how to derive such formulation beginning with the equilibrium equation and
the virtual work statement. It also discretizes the continuity equation for slightly compressible
single-phase flow to show how to couple different physics with elasticity. It discusses several
coupling approaches such as the monolithic and iterative ones, i.e., loosely coupled. This
chapter also mentions the affinity of the poroelastic case with the thermoelastic one. It thus
also includes thermoelasticity in the treatment herein. It shows concrete numerical examples
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covering two- and three-dimensional problems of practical interest in thermo-poroelasticity.
The sample problems employ triangular, quadrilateral, and hexahedral meshes and include
comments about implementing boundary conditions (BCS). An introduction to domain
decomposition ideas such as iterative coupling by the BCS, i.e., Dirichlet-Neumann domain
decomposition and mortar methods for non-matching interfaces is included.

The treatment herein demonstrates that the continuous Galerkin formulation for linear isotro-
pic elasticity is the foundation to develop codes for mechanics. Indeed, after discretizing linear
elasticity is straightforward to extend the implementation to nonlinear mechanics such as rate-
independent plasticity. It thus provides some comments about such extension. Applications of
practical interest show that industrial size problems will require domain decomposition tech-
niques to handle such simulations in a timely fashion. Unquestionably, domain decomposition
techniques can exploit current parallel machines architectures which brings high-performance
computing into the picture. For instance, recently the author showed that the Dirichlet-
Neumann scheme could handle problems at the reservoir field-level as well as the mortar
method decoupled by this last one. Its current results are backed up by papers published in
peer-reviewed journals and conferences thus this book chapter summarizes that effort.

2. Mathematical model for thermo-poroelasticity

This section discusses the governing equations for linear homogeneous isotropic thermo-
poroelasticity and their FE formulation. It skips details for the sake of brevity thus a more
detailed treatment can be found in [1–4]. The mathematical formulation considers a bounded
domainΩ⊂Rn, n ¼ 2, 3 and its boundary is Γ ¼ ∂Ω, and a time interval of interest �0,ℑ½. Let T h

be a non-degenerate, quasi-uniform conforming partition ofΩ composed of triangles or quadri-
laterals for two-dimensional problems, and hexahedra or tetrahedra for three-dimensional prob-
lems. For instance, Gai [5] thesis showed that deformable porous media, i.e., the reservoir matrix,
the single-phase flow model equation derives from the continuity equation, i.e., a mass balance
statement, for slightly incompressible single-phase flow and Darcy’s law which yields:

∂f∗

∂t
þ ∇ � � 1

μ
K ∇p� rg∇zð Þ

� �
¼ q, (1)

where the equation’s parameters are f∗, a model specific porosity, K represents the absolute

permeability tensor. The dynamic viscosity is μ, while r is the fluid density, as well as g, is the
gravity acceleration constant, p is the fluid pressure, and q represents sources and sinks. This
latter notation is standard in fluid mechanics and reservoir simulation. Finally, the algorithmic
porosity f∗ is defined by:

f∗ ¼ f0 þ α � ∇ � u� ε0v
� �þ 1

M
p� p0
� �

, (2)

where the additional parameters are accordingly α which is the Biot’s constant, u represents the
displacement vector, while ε0v is the initial volumetric strain. Herein M is the Biot’s modulus [6],
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while f0 and p0 define for a reference or initial state. The common BCS for the pressure equation
imply Neumann or no-flow namely:

∇p � bn ¼ 0 on Γ, (3)

one should also consider an initial or reference pressure distribution in the whole domain.
Sources and sinks simulate injector and producer wells, respectively. Herein bn is the outer
unitary normal vector as usual. For the mechanics part, one begins from the equilibrium
equation for a quasi-steady process, i.e., Newton second law, which means that one discards
the acceleration term:

�∇ � σ ¼ f in Ω ; Γ ¼ ΓuD ∪ Γu
N

u ¼ 0 on ΓuD

t ¼ σ � bn on Γu
N

(4)

where σ is the stress tensor, f corresponds to the vector of body forces, such as gravity and

electromagnetic effects, for instance. One can decompose BCS in Dirichlet type, i.e., Γu
D, and

Neumann type BCS, i.e., Γu
N , where the external tractions are known or prescribed. Hooke’s

law combined with Biot’s poroelastic theory defines σ by the following expression:

σ ¼ C : ε � α p� p0
� �þ 3Kβ T � T0� �� �

δ ; C ¼ λδ⊗ δ þ 2GI, (5)

where T ¼ T x; tð Þ is the temperature, C is the elastic moduli, β corresponds to the coefficient of

thermal dilatation while K is the bulk modulus. The Kronecker delta becomes δ while λ, and G,

are the Lamé constants, and I represents the fourth-order identity tensor. The strain tensor ε is

given by:

ε ¼ ∇su ¼ 1
2

∇uþ ∇uð ÞT
h i

: (6)

One can derive a weak form by substituting Eq. (2) into Eq. (1) and then multiplying by a test
function v∈H1

0 Ωð Þ and integrating over Ω and using the Gauss-divergence theorem, this
yields:

ð

Ω

1
M

∂p
∂t

vþ αv∇ � _u þ 1
μ
K � ∇p ∇vð ÞT

� �
� dx ¼

ð

Ω

q � vdxþ

ð

Ω

rg
μ
K � ∇z ∇vð ÞT

� �
dxþ

ð

∂Ωp
N

v
1
μ
K ∇p� rg∇zð Þ � bnTds:

(7)

A weak form for the equilibrium Eq. (4) can be derived in a similar way, by testing against a
given virtual displacement, χ. One arrives at:
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ð

Ω

∇χ
� �T

: σdΩ ¼
ð

∂Ωu
N

χT � tdsþ
ð

Ω

χT � f dΩ (8)

where t ¼ σ � bn are the tractions applied as Neumann BCS. This is the well-known virtual work

statement. The FE space can be taken as a finite-dimensional subspace of the continuous Sobolev
spaces [7], thus:

Ck T hð Þ ¼ v∈ L2 Ωð Þ : ∀e∈ T h; vje ∈Pk eð Þ� �
(9)

where Pk eð Þ represents the space of polynomials of total degree less than or equal to k, Ck T hð Þ is
called test functions that are continuous along the given element’s edges. Let one represents
the primary variables in the element e, i.e. displacements and pressure, as nodal values
multiplied by shape or interpolation functions [8]:

phe xð Þ ¼ Πeð ÞT � pe ; uhe xð Þ ¼ Ψe � ue (10)

where Πe and Ψe are matrices of shape functions given by:

Πi
e ¼ ψi

e xð Þ

Ψij
e ¼

ψk
e xð Þ if j ¼ j

0 otherwise

(

j ¼ nDOF � k� 1ð Þ þ i ; k ¼ 1…nn

(11)

here nn is the number of nodes in the given element, i ¼ 1…nn j ¼ 1…nn � n and nDOF is the
number of degrees of freedom which equals the space dimension, n. Now the engineering
strain bε is defined by:

bε ¼ B � ue ; B ¼ D �Ψe (12)

where D
nð Þ, n ¼ 2, 3 is defined as:

DT
2ð Þ ¼

∂x 0 ∂y
0 ∂y ∂x

� �
; DT

3ð Þ ¼
∂x 0 0 ∂y ∂z 0
0 ∂y 0 ∂x 0 ∂z
0 0 ∂z 0 ∂x ∂y

2
64

3
75: (13)

Finally substituting the generalized Hooke’s law Eq. (5) into Eq. (8) and using Eq. (7) leads to
the FE model for linear isotropic poroelasticity, thus:

0 0
QT S

" #
d
dt

u
p

( )
þ

K �Q

0 H

" #
u
p

( )
¼

f u
f p

( )
: (14)

One can obtain the loose coupling approach in different ways. Eq. (15) shows one possible
choice, where one solves the displacements first by taking the pressures from the previous time
step. Next, one updates the pressures by using the newest displacements:
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K � ukþ1 ¼ f u þQ pk � p0
� �

S0 � pkþ1 ¼ S00 � pk þ f p � Δt�QT ukþ1 � uk
� �

S0 ¼ S þ θ � Δt �H

S00 ¼ S � 1� θð Þ � Δt �H,

(15)

where expressions for the matrices are provided in Eq. (16) and θ is the implicitness factor that
lies between 0 and 1, while Δt represents the time-step size. One can define an iterative
coupling scheme in different ways, but they all derive from the loose coupling scheme with
incorporating an internal iteration to update lagged quantities. For further details please refer
to [4]. Also notice that for thermal stresses, one can derive an equivalent pressure drop, after
Eq. (5), that renders Eq. (15) unchanged.

S ¼
ð

Ω

1
M

Π �ΠTdx ; Q ¼
ð

Ω

BTαω nð Þ �Πdx

K ¼
ð

Ω

BTC Bdx ; f u ¼
ð

∂Ωu
N

t �ΨTdsþ
ð

Ω

ΨTf � dx

H ¼
ð

Ω

1
μ
K∇Π � ∇Πð ÞTdx ; ω 2ð Þ ¼ 1; 1; 0ð ÞT ; ω 3ð Þ ¼ 1; 1; 1; 0; 0; 0ð ÞT

f p ¼
ð

∂Ωp
N

1
μ
K∇p � n

� �
�Πdsþ

ð

Ω

ΠTq � dxþ
ð

Ω

rg
μ
K � ∇Π ∇zð ÞT

� �
dx:

(16)

This section completes with a comment about the Continuous Galerkin (CG) formulation for
the pressure (1). It is well-known that the formulation that was presented above for flow it is
not locally mass conservative, and thus the resulting fluxes are not continuous across the
element edges. But it is also true that accurate flow simulations require the latter, especially
for multi-phase flow, though. Nevertheless, one can utilize post-processing techniques to
recover locally conservative mass fluxes [2]. This chapter, though, for convenience has
restricted its focus to CG methods for flow but has realized that the coupled formulation may
be modified to consider mixed FE methods and finite volumes for flow as well as changing CG
by post-processing. The author already showed for the simple flow cases reported herein that
CG yields to physical pressure fields that can be employed for geomechanics purposes. The
precise numerical comparison among CG and Discontinuous Galerkin (DG) solutions was
performed in [2] to demonstrate that CG can compute pressures accurately.

3. Nonlinear heat transfer equation

The transient nonlinear heat conduction in a given body is as follows [9–11]:
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choice, where one solves the displacements first by taking the pressures from the previous time
step. Next, one updates the pressures by using the newest displacements:
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K � ukþ1 ¼ f u þQ pk � p0
� �

S0 � pkþ1 ¼ S00 � pk þ f p � Δt�QT ukþ1 � uk
� �

S0 ¼ S þ θ � Δt �H

S00 ¼ S � 1� θð Þ � Δt �H,

(15)

where expressions for the matrices are provided in Eq. (16) and θ is the implicitness factor that
lies between 0 and 1, while Δt represents the time-step size. One can define an iterative
coupling scheme in different ways, but they all derive from the loose coupling scheme with
incorporating an internal iteration to update lagged quantities. For further details please refer
to [4]. Also notice that for thermal stresses, one can derive an equivalent pressure drop, after
Eq. (5), that renders Eq. (15) unchanged.

S ¼
ð

Ω

1
M

Π �ΠTdx ; Q ¼
ð

Ω

BTαω nð Þ �Πdx

K ¼
ð

Ω

BTC Bdx ; f u ¼
ð

∂Ωu
N

t �ΨTdsþ
ð

Ω

ΨTf � dx

H ¼
ð

Ω

1
μ
K∇Π � ∇Πð ÞTdx ; ω 2ð Þ ¼ 1; 1; 0ð ÞT ; ω 3ð Þ ¼ 1; 1; 1; 0; 0; 0ð ÞT

f p ¼
ð

∂Ωp
N

1
μ
K∇p � n

� �
�Πdsþ

ð

Ω

ΠTq � dxþ
ð

Ω

rg
μ
K � ∇Π ∇zð ÞT

� �
dx:

(16)

This section completes with a comment about the Continuous Galerkin (CG) formulation for
the pressure (1). It is well-known that the formulation that was presented above for flow it is
not locally mass conservative, and thus the resulting fluxes are not continuous across the
element edges. But it is also true that accurate flow simulations require the latter, especially
for multi-phase flow, though. Nevertheless, one can utilize post-processing techniques to
recover locally conservative mass fluxes [2]. This chapter, though, for convenience has
restricted its focus to CG methods for flow but has realized that the coupled formulation may
be modified to consider mixed FE methods and finite volumes for flow as well as changing CG
by post-processing. The author already showed for the simple flow cases reported herein that
CG yields to physical pressure fields that can be employed for geomechanics purposes. The
precise numerical comparison among CG and Discontinuous Galerkin (DG) solutions was
performed in [2] to demonstrate that CG can compute pressures accurately.

3. Nonlinear heat transfer equation

The transient nonlinear heat conduction in a given body is as follows [9–11]:
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rCp
∂T
∂t

¼ ∇ � κ∇Tð Þ þQT on Ω��0,ℑ½,

T ¼ g on ΓTD��0,ℑ½,
n � κ∇Tð Þ ¼ h on ΓT

N��0,ℑ�,
T x; 0ð Þ ¼ T0 xð Þ∀x∈Ω:

(17)

In (17), Cp is the heat capacity to constant pressure and κ ¼ κ Tð Þ is the thermal conductivity.
QT represents heat sources. Neumann BCS imply heat transfer via Fourier’s law: adiabatic or
no-flux BCS; h ¼ 0 of most domain boundaries.

One can derive a FE formulation for model problem (17) by multiplying by a test function and
integrate by parts and applying the Gauss-divergence theorem to arrive at the following
bilinear form:

m T; vð Þ þ k T; vð Þ � q QT ; vð Þ � f h; vð Þ ¼ 0, (18)

where the functions are:

m T; vð Þ ¼
ð

Ωe

vrCp∂tT � dx,

k T; vð Þ ¼
ð

Ωe

κ ∇Tð ÞT � ∇v � dx,

q QT ; vð Þ ¼
ð

Ωe

v �QT � dx ; f h; vð Þ ¼
ð

Γeh

v � h � ds:

(19)

Time discretization renders the local residual for the element e:

R � M � T ℓð Þ � T mð Þ
� �

þ Δt � K � T
� � mþθð Þ

� Δt � q mþθð Þ � Δt � f mþθð Þ ¼ 0,
(20)

where the linear operator �ð Þ mþθð Þ � 1� θð Þ �ð Þ t¼t mð Þð Þ þ θ �ð Þ t¼t ℓð Þð Þ, ℓ ¼ mþ 1ð Þ, M K are the

mass and stiffness matrix respectively. Thus the Jacobian is given by:

J ¼ ∂R

∂T ℓð Þ ¼ M þ ∂

∂T ℓð Þ K � T
� � t ℓð Þð Þ

(21)

this equation renders once again:

J ¼ M þ Δt � K þ δK
� �

(22)

if one assumes that κ Tð Þ ¼ a � T þ bð Þ; a, b∈R, then:
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δK ¼
X
p

∂Kip

∂T ℓð Þ
j

� T ℓð Þ
p , (23)

where the variation term is given by:

∂Kip

∂T ℓð Þ
j

¼
ð

Ωe

aψj ∇ψi

� �T � ∇ψp � dx: (24)

One often employs the Newton-Raphson algorithm to solve the linearized system of equations

in every time step, namely, J � ΔT ℓð Þ ¼ �R. One can utilize the same continuous FE space that

where described in Section 2. The reader may refer to [11] for a full treatment.

4. Domain decomposition methods

Domain Decomposition Methods (DDM) encompass highly efficient algorithms to obtain
solutions of large-scale discrete problems on parallel super-computers. They mainly consist of
partitioning the domain into various subdomains and then getting the global solution through
the resolution of the subdomain problems [12, 13] often in an iterative fashion. These methods
can be seen as an iterative coupling by the internal and thus unknown BCS. There is a broad
literature covering these approaches, and that is why this chapter, therefore, presents a short
introduction for the sake of completeness. The recommended references include Bjorstad and
Widlund [14], Bramble et al. and Marini and Quarteroni [15], who considered the Dirichlet-
Neumann (DN) DDM and Neumann-Neumann.

Let L be an abstract linear differential operator, such as the Laplace operator, for instance. The
DN-DDM scheme implies solving a series of problems in the proper sequence that requires a
coloring tool (see Figure 1). Let the Dirichlet subdomains be colored in white while the
Neumann subdomains are in black. Notice that the interface between subdomains is denoted
by Γ. After one provides the initial guess on the primary variables on Γ, i.e., γk must be given,
then one can solve the problem on the white subdomains (Dirichlet problems), which corre-
sponds to step 1 in Eq. (25).

1Þ
Lu1kþ1 ¼ f in Ω1

u1kþ1 ¼ 0 on ∂Ω1 ∩ ∂Ω

u1kþ1 ¼ γk on Γ

8>>><
>>>:

2Þ
Lu2kþ1 ¼ f in Ω2

u2kþ1 ¼ 0 on ∂Ω2 ∩ ∂Ω

∂nu2kþ1 ¼ κkþ1 on Γ

8>><
>>:

(25)

Let the primary variable be called “displacements” and their gradient “tractions,” i.e., normal
derivative in the boundary. Then, the tractions on the interface Γ must be computed after first
solving step 1 on the white subdomains. They are then passed through communication to
solve the second step on the black subdomains, i.e., Neumann subdomains. On this latter, since
the tractions are known on Γ, one can solve for unknown displacements to provide feedback
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Domain Decomposition Methods (DDM) encompass highly efficient algorithms to obtain
solutions of large-scale discrete problems on parallel super-computers. They mainly consist of
partitioning the domain into various subdomains and then getting the global solution through
the resolution of the subdomain problems [12, 13] often in an iterative fashion. These methods
can be seen as an iterative coupling by the internal and thus unknown BCS. There is a broad
literature covering these approaches, and that is why this chapter, therefore, presents a short
introduction for the sake of completeness. The recommended references include Bjorstad and
Widlund [14], Bramble et al. and Marini and Quarteroni [15], who considered the Dirichlet-
Neumann (DN) DDM and Neumann-Neumann.

Let L be an abstract linear differential operator, such as the Laplace operator, for instance. The
DN-DDM scheme implies solving a series of problems in the proper sequence that requires a
coloring tool (see Figure 1). Let the Dirichlet subdomains be colored in white while the
Neumann subdomains are in black. Notice that the interface between subdomains is denoted
by Γ. After one provides the initial guess on the primary variables on Γ, i.e., γk must be given,
then one can solve the problem on the white subdomains (Dirichlet problems), which corre-
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Let the primary variable be called “displacements” and their gradient “tractions,” i.e., normal
derivative in the boundary. Then, the tractions on the interface Γ must be computed after first
solving step 1 on the white subdomains. They are then passed through communication to
solve the second step on the black subdomains, i.e., Neumann subdomains. On this latter, since
the tractions are known on Γ, one can solve for unknown displacements to provide feedback
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on the next iteration level. Both displacements and tractions are often over-relaxed to improve
the convergence rate. The given relaxation parameters, referred in Eq. (26) as θD and θN, must
lie between 0 and 1:

κ kþ1ð Þ ¼ �θN � ∂nu1kþ1 þ 1� θN� � � ∂nu2k
� �

on Γ

γ kþ1ð Þ ¼ θD � u2kþ1 þ 1� θD� � � u1k
� �

on Γ:
(26)

It happens that this approach requires at least a two-entry coloring tool or even more, i.e., there
may be subdomains with mixed interfaces, colored as gray [12]. There is a lack of parallelism
in the sense that black subdomains must wait for the white ones to communicate their trac-
tions. An initial guess for tractions should be prescribed to mitigate this issue, but this latter is
not feasible in most cases. A straightforward way to obtain an initial estimate for the multiplier
γk is by computing the so-called coarse-run that implies solving the same problem in a coarser
mesh and interpolating over Γ by using the smaller’s problem FE space. The reader may refer
to the literature [16, 17] for further reading and proof of convergence and also revise [2] for a
more detailed description that includes implementation details, which this chapter omits for
the sake of brevity.

5. The mortar FE method (MFEM)

The primary goal here is to extend MFEM to glue curved interfaces such as the one shown in
Figure 2whereMFEM treats non-matching interfaces. The section first introduces a brief descrip-
tion of non-uniform rational B-Splines curves and surfaces (NURBS) in [2, 3, 18]. The reader is

Figure 1. It depicts the DNDDM.
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referred to those references that cover the topics of computational geometry, in particular how to
build these NURBS entities. Let MFEM be described for linear isotropic elasticity regarding
bilinear forms, a and ϒ defined in Eq. (27) below [2, 3],

a u; v
� �

¼
ð

Ω

ε vð ÞT � C � ε uð Þdx ; l vð Þ ¼
ð

∂ΩN

tT � vdsþ
ð

Ω

f T � vdx

ϒ u;Φ
� �

¼
ð

Γ

u½ �T � Φds ; u½ � ¼ u 1ð Þ � u 2ð Þ
� � (27)

where ϒ stands for the gluing condition among subdomain interfaces and the jump u½ � on the
displacements is required to vanish in an integral or “weak” sense, thus:

a uh; vh
� �þ ϒ vh;Λhð Þ ¼ l vhð Þ
ϒ uh;Φh
� � ¼ 0

(
(28)

the parameters in Eq. (28) are as follows: Φh represents the mortar space while vh corresponds
to the weighting space and Λh is the Lagrange multiplier space, i.e., the linear combination of
mortar functions, often polynomial functions, and Lagrange multiplier degrees of freedom. Let

T h
M
be a conforming partition of the so-called parametric space, Ω, whose image serves as the

mortar’s geometrical entity, i.e., curve or surface, composed of line-segments (n ¼ 2Þ or quad-
rilaterals (n ¼ 3). One takes the mortar space as a finite-dimensional subspace of the continu-
ous Sobolev spaces, that is:

Figure 2. Ω1 is in the top, Ω2 is in the bottom, and the interface Γ is the bold curve.
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Ck T h
M

� �
¼ Φ∈L2 Ω

� �
: ∀eM ∈ T h

M
;ΦjeM ∈Pk eM

� �n o
(29)

herein Pk eM
� �

stands for the space of polynomials of total degree less than or equal to k while

Ck T h
M

� �
represents test functions that are continuous along the edges of eM.

One can write in a matrix or algebraic form, Eq. (28) as:

k 1ð Þ
h i

0½ � ϒ 1ð Þ� �T

0½ � k 2ð Þ
h i

� ϒ 2ð Þ� �T

ϒ 1ð Þ� � � ϒ 2ð Þ� �
0½ �

2
6664

3
7775 �

u 1ð Þ

u 2ð Þ

Λ

2
64

3
75 ¼

l 1ð Þ

l 2ð Þ

0

2
64

3
75� (30)

The equation above corresponds to the so-called “saddle-point problem (SPP).” Notice that
subdomains are only connected using the Lagrange multiplier Λ if they happen to be known (it
is well-known that for elasticity, the multipliers are the unknown tractions on the interface), then
one can decouple the system in Eq. (30) and then one just needs to perform subdomain solves.
For the SPP (30), one may match displacements or tractions in the interface. The Dirichlet-
Neumann scheme that the section presents is only a particular case of the most general Robin-
Robin domain decomposition scheme [2, 3]. The rectangular matrices ϒ ið Þ� �

, i ¼ 1…2, are denoted
as projectors since they permit to map to and from the given mortar space [2, 3].

The following line integral defines the projector, for 2-D problems, as:

ϒ kð Þ
ij ¼

ð

Ω

w
kð Þ
j ξð ÞΦi ξð Þ � dξC ξð Þk kdξ (31)

where w kð Þ
j represents the global non-mortar side interpolation functions and Φi are the mortar

space basis functions, while dξCk k is the length of the tangent vector associated to the B-Spline
or NURBS curve. Similarly, 3-D problems imply:

ϒ kð Þ
ij ¼

ðð

Ω

w
kð Þ
j ξ
� �

Φi ξ
� � � ∂ξS ξ

� �� ∂ηS ξ
� ��� ��dξdη (32)

where ∂ξS � ∂ηS
�� �� is the norm of the surface’s normal vector. Particular quadrature rules to

compute these integrals must be developed. The reader should refer to [3] for a detailed
explanation including the proper algorithm in pseudo-code.

6. Numerical examples

The author implemented these FE models in the Integrated Parallel Finite Element Analysis
program (IPFA) that is a C++ application whose main characteristics are described in [2, 12].
IPFA employs standard continuous Lagrange polynomials as shape functions for the space
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discretization in each subdomain, Pk eð Þ, as well as mortar space Pk eM
� �

. It also utilizes piece-
wise linear polynomials for the space discretizations in all examples herein that were run on a
MacBook Pro laptop equipped with an Intel(R) Quad-Core(TM) i7-4870HQ CPU @ 2.5 GHz
and 16 GB of RAM. The author chose this laptop for the sake of convenience, in particular, the
availability of debugging tools free of charge, such as the Microsoft Visual Studio Community.
Aside, one can achieve some level of parallelism due to the multi-core technology.

6.1. Example 1: Two-dimensional steady state single-phase flow

The example is a manufactured problem where the solution is a priori chosen. Then, one sub-
stitutes the given pressure field in the governing partial differential equation to obtain the source
term, i.e., loading, that reproduces the input field. The problem in strong form looks like:

�∇ � K∇p
� �

¼ f in Ω ; p ¼ p0 on ΓD ¼ Γ, (33)

where the domain of interest corresponds to the unitary square and Dirichlet BCS are enforced.
The input pressure field is given by:

p x; yð Þ ¼ xy � x� 1ð Þ � y� 1ð Þ � exp � x2 þ y2
� �� �

; K ¼ I: (34)

Figure 3 shows the pressure field that corresponds to the problem 6.1 whose discretization
encompasses three subdomains: two of them (the top and bottom ones) consist of triangular
meshes while the one in the middle was discretized by a regular Cartesian quadrilateral mesh.
The top-left corner of the figure shows the mesh that is employed.

The pressure field is on the right-top corner, and its horizontal derivative is in the bottom-left
corner, while the discrepancy between the numerical and exact solutions, i.e., the absolute

Figure 3. The MFEM solution to problem 6.1.
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explanation including the proper algorithm in pseudo-code.

6. Numerical examples

The author implemented these FE models in the Integrated Parallel Finite Element Analysis
program (IPFA) that is a C++ application whose main characteristics are described in [2, 12].
IPFA employs standard continuous Lagrange polynomials as shape functions for the space
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discretization in each subdomain, Pk eð Þ, as well as mortar space Pk eM
� �

. It also utilizes piece-
wise linear polynomials for the space discretizations in all examples herein that were run on a
MacBook Pro laptop equipped with an Intel(R) Quad-Core(TM) i7-4870HQ CPU @ 2.5 GHz
and 16 GB of RAM. The author chose this laptop for the sake of convenience, in particular, the
availability of debugging tools free of charge, such as the Microsoft Visual Studio Community.
Aside, one can achieve some level of parallelism due to the multi-core technology.

6.1. Example 1: Two-dimensional steady state single-phase flow

The example is a manufactured problem where the solution is a priori chosen. Then, one sub-
stitutes the given pressure field in the governing partial differential equation to obtain the source
term, i.e., loading, that reproduces the input field. The problem in strong form looks like:

�∇ � K∇p
� �

¼ f in Ω ; p ¼ p0 on ΓD ¼ Γ, (33)

where the domain of interest corresponds to the unitary square and Dirichlet BCS are enforced.
The input pressure field is given by:

p x; yð Þ ¼ xy � x� 1ð Þ � y� 1ð Þ � exp � x2 þ y2
� �� �

; K ¼ I: (34)

Figure 3 shows the pressure field that corresponds to the problem 6.1 whose discretization
encompasses three subdomains: two of them (the top and bottom ones) consist of triangular
meshes while the one in the middle was discretized by a regular Cartesian quadrilateral mesh.
The top-left corner of the figure shows the mesh that is employed.

The pressure field is on the right-top corner, and its horizontal derivative is in the bottom-left
corner, while the discrepancy between the numerical and exact solutions, i.e., the absolute

Figure 3. The MFEM solution to problem 6.1.
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error, was rendered in the right-bottom corner. Table 1 represents the number of elements and
points of each mesh from top to bottom. The mortars as geometrical entities correspond to two
B-Splines interpolants (NURBS with all weights equal 1) that were constructed by interpolat-
ing a sinusoidal wave as the figure shows (see [3] for details). Thirty-two quadratic mortar
elements per curve were utilized to glue these three subdomains. A direct frontal solver was
used to solve the global SPP in Eq. (30) [3]. The results that are summarized on Figure 3 are in
good agreement with the analytical solution. The absolute error against the correct answer is
also displayed. The discrepancy is of the order of 10�4. Notice that besides the example only
matched the displacements on the interface, a good accordance is also obtained for the hori-
zontal derivative.

Whether or not one utilizes the SPP approach, the local problems are completely disconnected.
This fact can be exploited to reduce the computational time significantly. Indeed, these sub
problems can be handled in separate threads using a shared memory approach, i.e., multi-
threading assembling. A convergence analysis was also performed, by successively running
refined meshes [3] and by keeping a refinement ratio of 2:1 between subdomains. The exercise
used a piecewise quadratic mortar space where the number of mortar elements equals the
number of coarse edges in the non-mortar sides. It tackled meshes of size 8, 16, 32, 64, 128 and
256 respectively. Figure 4 displays the resulting convergence rate in a log� log plot. The slope
of the least-squares straight line is 1.44143, where the coefficient of determination is R2 ¼ 84%.

Points Elements Kind of mesh

980 1814 Triangular

1560 1472 Quadrilateral

4090 7858 Triangular

Table 1. Meshes for example 6.1.
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Figure 4. Snapshots showing the evolution of the DN-DDM applied to problem 6.1.
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This slope agrees with the theory that predicts a rate of O h3=2
� �

[2, 3]. However, the resulting

slope is slightly lower because of numerical errors, such as quadrature and linear system
solving errors.

Finally, Figure 5 shows pressure snapshots that represent four different Dirichlet-Neumann
iteration levels evolving from left-to-right and top-to-bottom. The fact that no initial guess for
pressure was provided explains the mismatch in the first snapshot. That is why one needs to
eliminate discrepancies by running the process to match up those subdomains, i.e., the traction
residual in the interface must vanish, which for this case occurs in just a handful of iterations.
The stop criterion precisely involves the residual in the tractions in the interface that is required
to fall below the given tolerance. For this particular problem, the iterative process spent six
iterations to achieve a residual lower than 10�6 [3].

6.2. Example 2: Coupled flow and mechanics

This example analyzes a coupled flow and mechanics simulation in a reconstructed reservoir
(RS) model with different meshes for the flow and mechanics physics [18]. The author pro-
posed such a reconstruction workflow in [18] which permits this latter feature by computing a
projection operator to mapping pressures from the original flow mesh into the so-called
reference mechanics mesh. Toward that end, the example employs the slightly compressible
flow formulation loosely combined with the mechanics model as shown in Eq. (15). The
objective is to show a realistic field level RS compaction and subsidence coupled computation.
The goal is thus working three different cases for the mechanics part in which one only
changes the resolution of the reconstructed mechanics mesh in the pay-zone while preserving
the mechanical properties constant as well as the geometry, BCS, and the depletion scenario.
The exercise admits the actual static properties as being in the pay-zone such as porosity f and
permeability for the isotropic case Kx ¼ Kz ¼ Ky as shown in Figure 6, whose depiction is three

Figure 5. The numerical L2 convergence rate for problem 6.1.
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iteration levels evolving from left-to-right and top-to-bottom. The fact that no initial guess for
pressure was provided explains the mismatch in the first snapshot. That is why one needs to
eliminate discrepancies by running the process to match up those subdomains, i.e., the traction
residual in the interface must vanish, which for this case occurs in just a handful of iterations.
The stop criterion precisely involves the residual in the tractions in the interface that is required
to fall below the given tolerance. For this particular problem, the iterative process spent six
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This example analyzes a coupled flow and mechanics simulation in a reconstructed reservoir
(RS) model with different meshes for the flow and mechanics physics [18]. The author pro-
posed such a reconstruction workflow in [18] which permits this latter feature by computing a
projection operator to mapping pressures from the original flow mesh into the so-called
reference mechanics mesh. Toward that end, the example employs the slightly compressible
flow formulation loosely combined with the mechanics model as shown in Eq. (15). The
objective is to show a realistic field level RS compaction and subsidence coupled computation.
The goal is thus working three different cases for the mechanics part in which one only
changes the resolution of the reconstructed mechanics mesh in the pay-zone while preserving
the mechanical properties constant as well as the geometry, BCS, and the depletion scenario.
The exercise admits the actual static properties as being in the pay-zone such as porosity f and
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times exaggerated in the z�direction. The numerical values are assumed to be as follows:
the fluid viscosity is 0.01325 cp and the total compressibility is ct ¼ 1:4� 10�5 Psi�1 (M�1 ¼
f � ct). This example does not incorporate gravity loading for both flow and mechanics.

Table 2 compiles the mesh dimensions in every direction. The example also contemplates
Nz ¼ 10,Nu ¼ 5,No ¼ 7,Nc ¼ 5 (mesh patches on the corners and No and Nu stand for over-
and under-burden respectively). The table also displays the number of elements, ne, degrees of
freedom (DOF) and timing data for all three cases. The example considers 30 vertical producer
wells as revealed in Figure 6. The initial condition encompasses a constant pressure of 10,000
Psi in the whole pay-zone while the pressure in the producer wells is set at 5000 Psi. This
assumption resembles a depletion scenario. BCS correspond to no-flow on all RS faces for the
pressure equation, while Figure 7 depicts BCS for mechanics that are the typical traction free
surface on the top and far-field on all remainder planes. Notice that the far-field BCS implies
that the displacement in the perpendicular direction to the given plane is zero. The example
also assumes a zero initial displacement field.

Figure 8 displays the mechanics mesh. The second case on Table 2 corresponds to a layered RS
with Young’s modulus Eu ¼ 3� 104, Ep ¼ 1� 104, Eo ¼ 2� 104 Psi½ � , while Poisson’s ratio,
v ¼ 0:25, is constant in the whole domain. In Figures 8 through 10 the graphs are 6 times
exaggerated in the z�direction for better visualization. The subscript letters symbolize the

Case # Description Nx Ny ne DOF Assembling time

One 1/4 of RS 35 13 15,960 51,830 0 min, 19 s 75 ms

Two 1/2 of RS 70 26 48,279 159,120 0 min, 59 s 89 ms

Three 1/1 of RS 140 49 156,408 506,160 3 min, 14 s 89 ms

Table 2: Mesh sizes and simulations in example 6.2.

Figure 6. The reservoir’s permeability Ky.
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under-burden, pay-zone and over-burden levels respectively. The goal is representing a more
realistic geomechanics model with stiffer surroundings around the RS.

Figure 9 pictures snapshots with the evolution of the vertical displacement uz m½ � and the
RS pressure. A compaction dome naturally grows just above the area where the most significant
pressure-drop happens. The pattern of deformation is the typical scenario where a compaction-
dome rests on the top (blue color) while a build-up occurs in the bottom of the RS (rendered in
red color). The deformation caused by the pressure-drop is localized because this reservoir does
not entirely drain but is still a compelling case for coupled flow and mechanics.

Figure 10 renders pressure-drop snapshots at 10 years of production. Each picture draws the
original RS mesh and the reference mechanic’s mesh for all cases that Table 2 covered, from
top-to-bottom and left-to-right. Notice that the action of the projection operator improves with
the refinement of the reference mechanics mesh as one should expect. The monotone pressure
behavior, which does not drastically change across neighboring elements in the original RS
mesh, may explain this improvement. Though, some items remain red-colored because they
are inactive. That happens due to the interpolation error that tends to smooth out the RS
topology. Perhaps it is not clear in the picture, but the reference mechanics mesh’s layers (since
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Figure 7. The BCS for the mechanics problem in the x� z plane (the pay-zone is highlighted in red).

Figure 8. The hexahedral mesh generated for 2nd case in Table 2.
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the thickness distribution in the z�direction is not uniform but instead graded toward the
edge) are not evenly-spaced which tells why these inactive spots appear.

Finally, Table 3 reviews results for the minimum and maximum vertical displacements uz for all
cases considered above. Notice that the differences between them are less than 3% for uz min and
8% for uz max, which proves the consistency of the projection operator. The shape of the compac-
tion dome and the subsidence profile are alike as well. Notice that this is the case for linear
isotropic elasticity. For non-linear elasticity or rate-independent plasticity probably onemay expect
more significant differences, though. The table also displays timing data, which reveals how the
computational burden grows with the mesh refinement (see also the time spent to assemble the
stiffness matrix in the last column of Table 2). Figure 11 zooms out the snapshot corresponding at

Figure 9. Snapshots at 10 and 20 years of evolution showing the vertical-displacement field uz , the pay-zone displays
pressure.

Figure 10. Snapshots showing pressure-drop [Psi] evolution at 10 years.
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40 years to reveal the subsidence in the surface. The plot is exaggerated several times. It also
exposes the subsidence profile on the surface in the centerline of the mechanics mesh in the most
extended direction. The differences between the three cases are minimal; it seems that the profile
does converge toward amesh independent solution, which is not far from the last row on the table.

The above-coupled flow and geomechanics computation, which used the reconstructed model,
confirmed that the procedure is quite useful to tackle realistic reservoir compaction and
subsidence simulations [18].

6.3. Example 3: Nonlinear heat transfer: arch problem

The example addresses the interesting problem that has been investigated by several resear-
chers [9, 10]. Its distinctive features are the two re-entrant corners. Near sharp corners, there
may be singularities in the solution, which cause the spatial derivatives of the solution to
become unbounded. The material properties are constant density and specific heat, and a
linear isotropic thermal conductivity,

r ¼ 1:0kg=m3; Cp ¼ 1:0
W � s
kg� ∘K ; κ ¼ 1þ T

1000 ∘K

� �
W

m� ∘K : (35)

Figure 12 shows the domain and the mesh. The BCS are of Dirichlet type on the left- (T ¼ 103)
and right-most (T ¼ 0) sides, and insulation on all other sides: n � κ∇Tð Þ ¼ 0. The triangular

Case # uz min uz max Runtime

One �6.652 2.693 4 min, 34 s 23 ms

Two �6.511 2.961 7 min, 53 s 84 ms

Three �6.469 2.752 23 min, 42 s 18 ms

Table 3. Simulations performed in example 6.2.

Figure 11. Subsidence profiles after 40 years of evolution.
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mesh consists of 7985 points and 15,539 elements. The domain lengths are 1 m�0.5 m. The
initial temperature distribution was taken to be [9]:

T x; y; t∗ð Þ ¼ 103erfc
x

2
ffiffiffiffiffiffiffi
κt∗

p
� �˚

K, (36)

which is the short-time linear solution at a time t∗ for a plane semi-infinite medium. In the
analysis, it is assumed κ ¼ 1 and t∗ ¼ 0:0005s in the calculation of the initial conditions.

Figure 13 shows temperature field snapshots for different times increasing from top to bottom.
The example simulates 0.1 s with a fully implicit approach. It is observed that a heating front
quickly travels from left to right as expected due to the temperature gradient. The temperature
scale in the color maps is from 0 to 1000�K. As a qualitative benchmark, the temperature
profile reported by Winget and Hughes [9] accords very well with the results herein.

The example finalizes with a simple loosely coupled thermal and mechanics computation. It
takes the temperature variation that the arch problem experiences as driving force for the
mechanical problem. It assumes linear isotropic elasticity with E ¼ 30 Ksi and ν ¼ 0:3 and the
coefficient of thermal dilatation β ¼ 1 � 10�5K�1 and the bulk modulus. The bottommost edges
are clamped while the remainders are traction free. The right column in Figure 13 includes
three snapshots that depict the mean stress. Dilatation grows from the upper-right corner

Figure 12. The mesh for the arch-problem.

Figure 13. Temperature, Th, (left) and mean stress, Sm, snapshots (right).
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while compression appears from the upper-left corner, which are clearly observed in the
results. The figure depicts the magnitude of the induced thermal stresses. The reader should
refer to [10] for further details about this thermo-elasticity example.

7. Concluding remarks

This chapter introduced how to estimate stress-induced changes using elasticity simulations
that are often performed through FE computations. It thus presented a formulation for linear
thermo-poroelasticity. It covered the nonlinear energy equation as well. It also implemented a
comprehensive MFEM on curved interfaces where the classical DN-DDM was employed to
decouple the global SPP for elasticity, and steady single-phase flow. The coupled flow and
geomechanics computation that utilizes the reconstructed model showed that this workflow is
valuable to tackle realistic reservoir compaction and subsidence simulations. The research
presented herein unfolds new prospects to further parallel codes for reservoir simulation
coupled with geomechanics.
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Abstract

The present chapter introduces incompressible Newtonian fluid flow and heat transfer
by using the finite difference method. Since the solution of the Navier-Stokes equation is
not simple because of its unsteady and multi-dimensional characteristic, the present
chapter focuses on the simplified flows owing to the similarity or periodicity. As a first
section, the first Stoke problem is considered numerically by introducing the finite
difference method. In the second section, natural convection heat transfer heated from
a vertical plate with uniform heat flux is introduced together with the method how to
obtain the system of ordinary differential equations. In the third example, linear stability
analysis for the onset of secondary flow during the Taylor-Couette flow is numerically
treated using the HSMAC method.
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1. Introduction

The governing equation for the fluid flow is known as Navier-Stokes equation, which is however
difficult to solve analytically; and therefore, a lot of numerical techniques have been proposed
and developed. Nevertheless various complex flow phenomena such as turbulent flow, multi-
phase flow, compressible flow, combustion, and phase change encountered in the fields of engi-
neering would have still difficulties to circumvent even using both present computational
resources and numerical techniques. The present chapter devotes not to elucidate such complex
phenomena, but to introduce rather simplified fluid flow by using the finite difference method.

One focuses on incompressible flows, in which physical properties such as the viscosity, the
thermal conductivity, the specific heat are constant and even the fluid density is not a thermo-
dynamic variable. This simplified assumption makes the fluid flow phenomena much easier to
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be handled and it is valid when the flow velocity is much slower than the sound velocity and/
or the temperature difference in the fluid is small enough to consider the thermal expansion
coefficient is independent to the temperature. The former situation is known the low Mach
number approximation, while the latter one the Boussinesq approximation.

Another simplification on the incompressible flows is the reduction of dimension due to the
characteristic of similarity and periodicity. For the boundary layer flows such as the Blasius
flow, the stagnation-point flow, and the von Kármán rotating disk flow have the similar solution
where the flow transition from laminar to turbulence does not occur. In those cases, a com-
bined dimensionless variable (similar variable) η is introduced and the velocity distribution
can be only a function of η. While for the onset of instability such as the Rayleigh-Bénard
convection, the Bénard-Marangoni convection, and the Taylor-Couette flow, the periodic character-
istic of flow structure is observed. At the stage of onset of instability, the non-linear term is
negligible and therefore the function of flow field is separated into the amplitude part and
periodic part, respectively. This makes the effort on numerical analysis to reduce significantly
and also to contribute the augmentation of accuracy of the results.

This chapter consists of three main bodies. First, a numerical technique for solving the boundary
value problem called the first Stokes problem or the Rayleigh problem [1] is introduced. The differ-
ential equation is transferred into an ordinary equation and it is solved by a finite difference
method using the Jacobi method. Second, similar solution of natural convection heat transfer
heated froma vertical platewith uniformheat flux is introduced togetherwith themethodhow to
obtain the systemof ordinary differential equations. The obtainedNusselt numbers are compared
with some previous studies. Third, for example, of the linear stability analysis, one shows that the
HSMACmethod can be applied to obtain the critical values for the onset of secondary flow such
as the Taylor-Couette flow. The Eigen functions of flow and pressure fields are visualized.

2. Unsteady flow due to sudden movement of the plate

2.1. Governing equations

An infinite length plate is set in a stationary fluid as an initial condition. Let us consider the
situation that the infinite length plate suddenly moves along its parallel direction at a constant
speed uw. This problem was first solved by Stokes [2] in his famous treatment of the pendulum.
Since Lord Rayleigh [3] also treated this flow, it is often called the Rayleigh problem in the
literature. One takes that x is the plate movement direction and y is distance from the plate.
Since the velocity component perpendicular to the plate v is zero, the momentum equation is
simplified and is shown as a diffusion equation

∂u
∂t

¼ ν
∂2u
∂y2

(1)

Here, u is the velocity component parallel to the plate direction, t is the time, and ν is the
kinematic viscosity. The boundary conditions for this partial differential equation are as
follows:
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y ¼ 0 : u ¼ uw
y ! ∞ : u ! 0

�
(2)

In order to reduce the partial differential equation to an ordinary equation, the following
dimensionless velocity U and the similar variable η are introduced

u ¼ uwU ηð Þ, η ¼ y
2
ffiffiffiffi
νt

p (3)

Then, the following ordinary differential equation can be obtained

d2U
dη2

þ 2η
dU
dη

¼ 0 (4)

The boundary condition for the ordinary differential equation is as follows using the similar
variable η instead of y:

η ¼ 0 : U ¼ 1
η ! ∞ : U ! 0

�
(5)

As a consequence, one needs to solve this boundary value problem. The theoretical solution
can be easily obtained and expressed using the error function

U ¼ u
uw

¼ 1� erf ηð Þ ¼ 1� 2ffiffiffiffi
π

p
ðη
0
exp �ξ2

� �
dξ (6)

The velocity profile is shown in Figure 1.

Figure 1. Velocity profile.
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2.2. Numerical method for solving the ordinary differential equation using finite
difference method

For numerical solution, it is necessary to define the range of η, as recognized from Figure 1,
η = 4 is enough. Hence, the boundary condition shown below is used instead of Eq. (5)

η ¼ 0 : U ¼ 1
η ¼ 4 : U ¼ 0

�
(7)

As illustrated in Figure 2, in which vertical and horizontal axes are exchanged from Figure 1,
one needs to obtain each value of dimensionless velocity numerically. The approximated
velocity profile is expressed by connecting these values smoothly. For simplicity, the intervals
between neighboring two points are the same and it is noted as Δη. When the second-order
central difference method is used, Eq. (4) is as follows:

Uiþ1 � 2Ui þUi�1

Δηð Þ2 þ 2ηi
Uiþ1 �Ui�1

2 Δηð Þ ¼ 0, i ¼ 2; 3;⋯N � 1ð Þ

Here, N is total number of grids and in this chapter, the first grid point starts from 1 as its
definition. The above equation becomes

1� ηi Δηð Þ� �
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

αi

Ui�1 � 2Ui þ 1þ ηi Δηð Þ� �
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

βi

Uiþ1 ¼ 0, i ¼ 2; 3;⋯N � 1ð Þ: (8)

Here, ηi ¼ i� 1ð Þ Δη
� �

and αi and βi are coefficients determined by the number of grids. The
boundary condition (7) is modified

Figure 2. Equidistant grids discretized.
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η ¼ 0 : U1 ¼ 1

η ¼ 4 : UN ¼ 0

(
(9)

In the following, the case ofN = 7 is considered, for example. By substituting i = 2–6 into Eq. (8),
the following simultaneous equation is obtained:

�2 β2 0 0 0

α3 � 2 β3 0 0

0 α4 � 2 β4 0

0 0 α5 � 2 β5

0 0 0 α6 � 2

0
BBBBBBBBB@

1
CCCCCCCCCA

U2

U3

U4

U5

U6

0
BBBBBBBBB@

1
CCCCCCCCCA

¼

�α2U1

0

0

0

�β6U7

0
BBBBBBBBB@

1
CCCCCCCCCA

(10)

This kind of tridiagonal matrix is often seen and can be solved by a direct numerical method,
such as Tomas method. However, the rank of the matrix is usually extremely large and one
introduces an iterative method for solving the king-size matrix.

2.3. Iterative method for matrix solver

In general, the rank of the matrix appearing in computational fluid dynamics (CFD) is large and
iterative methods such as Jacobi, Gauss-Seidel, or successive over relaxation (SOR) methodare
employed. In this subsection, the Jacobi method is explained. The matrix can be divided into
three parts of lower, diagonal, and upper as follows:

0 0 0 0 0

α3 0 0 0 0

0 α4 0 0 0

0 0 α5 0 0

0 0 0 α6 0

0
BBBBBBBBB@

1
CCCCCCCCCA

U2

U3

U4

U5

U6

0
BBBBBBBBB@

1
CCCCCCCCCA

þ

�2 0 0 0 0

0 � 2 0 0 0

0 0 � 2 0 0

0 0 0 � 2 0

0 0 0 0 � 2

0
BBBBBBBBB@

1
CCCCCCCCCA

U2

U3

U4

U5

U6

0
BBBBBBBBB@

1
CCCCCCCCCA

þ

0 β2 0 0 0

0 0 β3 0 0

0 0 0 β4 0

0 0 0 0 β5

0 0 0 0 0

0
BBBBBBBBB@

1
CCCCCCCCCA

U2

U3

U4

U5

U6

0
BBBBBBBBB@

1
CCCCCCCCCA

¼

�α2U1

0

0

0

�βN�1UN

0
BBBBBBBBB@

1
CCCCCCCCCA

(11)

In the Jacobi method, only the diagonal part is put in the left-hand side (n + 1 step), while the
lower and upper parts are moved to the right-hand side (n step)
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Here, n is the old iteration step and n + 1 is the new iteration step. Hence, the following
equation is repeatedly used:

U
!nþ1

¼ D�1 b
! � LþUð ÞU!

n
� �

(13)

This is equivalent to the following equation:

Unþ1
i ¼ 1

2
αiUn

i�1 þ βiU
n
iþ1

� �
, i ¼ 2; 3; 4; 5; 6ð Þ (14)

By using Eq. (9), Eq. (14) is computed repeatedly and then the value of each grid gradually
converges to a certain solution. The Gauss-Seidel and SOR methods are known as the faster
convergence method.

3. Similarity solution for natural convection heated from a vertical plate

3.1. Introduction

In this section, let us consider the natural convection heat transfer for a vertical plate heated
with uniform heat flux in the wide range of Prandtl number from zero to infinity. In order to
explain the numerical method as how to solve the governing equations, one assumes that the
flow and temperature fields formed in the vicinity of the heated plate have a similarity and
then one introduces the finite difference method to obtain numerical results.

3.2. Governing equations

One assumes that the flow is incompressible laminar and boundary layer equations are used in
this analysis. The governing equations with presuming the Boussinesq approximation are
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shown in Eqs. (15)–(17) together with the boundary condition (18). Here, one defines that x
axis is in the vertical direction and its velocity component is u, and y axis is in the direction
perpendicular to the vertical plate and its velocity component is v.

Continuity of mass

∂u
∂x

þ ∂v
∂y

¼ 0 (15)

Momentum equation

u
∂u
∂x

þ v
∂u
∂y

¼ ν
∂2u
∂y2

þ gβ T � T∞ð Þ (16)

Energy equation

u
∂T
∂x

þ v
∂T
∂y

¼ α
∂2T
∂y2

(17)

Boundary equation

y ¼ 0 : u ¼ v ¼ 0, q ¼ �k ∂T=∂yð Þ
y ! ∞ : u ! 0, T ! T∞

�
(18)

Here, β is the thermal expansion coefficient, g is the acceleration due to gravity, α is the thermal
diffusivity, k is the thermal conductivity, and T is the temperature.

3.3. Non-dimensionalization

First, dimensionless variables, such as velocity and temperature, are set as follows using the
unknown reference value denoted with subscripts a and b:

X ¼ x
xa

, Y ¼ y
ya

, U ¼ u
ua

, V ¼ v
va

, θ ¼ T � Tb

Ta
(19)

Equation (19) is substituted into Eqs. (15)–(18), and one gets

∂U
∂X

þ vaxa
yaua|ffl{zffl}

1½ �

∂V
∂Y

¼ 0

U
∂U
∂X

þ vaxa
yaua|ffl{zffl}

1½ �

V
∂U
∂Y

¼ νxa
ya2ua|fflffl{zfflffl}

2½ �

∂2U
∂Y2 þ

gβ Tb � T∞ð Þxa
ua2|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
3½ �

þ gβTaxa
ua2|fflfflffl{zfflfflffl}
4½ �

θ
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Here, n is the old iteration step and n + 1 is the new iteration step. Hence, the following
equation is repeatedly used:
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¼ D�1 b
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This is equivalent to the following equation:
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αiUn

i�1 þ βiU
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, i ¼ 2; 3; 4; 5; 6ð Þ (14)

By using Eq. (9), Eq. (14) is computed repeatedly and then the value of each grid gradually
converges to a certain solution. The Gauss-Seidel and SOR methods are known as the faster
convergence method.

3. Similarity solution for natural convection heated from a vertical plate

3.1. Introduction

In this section, let us consider the natural convection heat transfer for a vertical plate heated
with uniform heat flux in the wide range of Prandtl number from zero to infinity. In order to
explain the numerical method as how to solve the governing equations, one assumes that the
flow and temperature fields formed in the vicinity of the heated plate have a similarity and
then one introduces the finite difference method to obtain numerical results.

3.2. Governing equations

One assumes that the flow is incompressible laminar and boundary layer equations are used in
this analysis. The governing equations with presuming the Boussinesq approximation are
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shown in Eqs. (15)–(17) together with the boundary condition (18). Here, one defines that x
axis is in the vertical direction and its velocity component is u, and y axis is in the direction
perpendicular to the vertical plate and its velocity component is v.

Continuity of mass

∂u
∂x

þ ∂v
∂y

¼ 0 (15)

Momentum equation

u
∂u
∂x

þ v
∂u
∂y

¼ ν
∂2u
∂y2

þ gβ T � T∞ð Þ (16)

Energy equation

u
∂T
∂x

þ v
∂T
∂y

¼ α
∂2T
∂y2

(17)

Boundary equation

y ¼ 0 : u ¼ v ¼ 0, q ¼ �k ∂T=∂yð Þ
y ! ∞ : u ! 0, T ! T∞

�
(18)

Here, β is the thermal expansion coefficient, g is the acceleration due to gravity, α is the thermal
diffusivity, k is the thermal conductivity, and T is the temperature.

3.3. Non-dimensionalization

First, dimensionless variables, such as velocity and temperature, are set as follows using the
unknown reference value denoted with subscripts a and b:

X ¼ x
xa

, Y ¼ y
ya

, U ¼ u
ua

, V ¼ v
va

, θ ¼ T � Tb

Ta
(19)

Equation (19) is substituted into Eqs. (15)–(18), and one gets

∂U
∂X

þ vaxa
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¼ 0
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∂2U
∂Y2 þ
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U
∂θ
∂X

þ vaxa
yaua|ffl{zffl}

1½ �

V
∂θ
∂Y

¼ αxa
ya2ua|fflffl{zfflffl}

5½ �

∂2θ

∂Y2

Y ¼ 0 : U ¼ V ¼ 0, qya
� �

= kTað Þ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
6½ �

¼ �∂θ=∂Y

Y ! ∞ : U ¼ 0, θ ¼ T∞ � Tbð Þ=Ta|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
7½ �

8>>>><
>>>>:

At the moment stage, xa is recognized as the height of the vertical plate.

Putting [3] = 0, and one obtains Tb ¼ T∞.Hence [7] becomes θ ¼ 0.

Putting [6] = 1, and one gets qya
kTa

¼ 1 ) Ta ¼ qya
k

Putting [5] = 1, and one gets αxa
ya2ua

¼ 1 ) ya ¼ αxa
ua

� �1=2

Putting [1] = 1, vaxayaua
¼ 1 ) va ¼ yaua

xa

Putting [4] = 1, gβTaxa
ua2

¼ 1 ) ua ¼ gβTaxa
� �1=2 ¼ gβ qya

k xa
� �1=2 ¼ gβ q

k
αxa
ua

� �1=2
xa

� �1=2

∴ ua ¼ gβ
q
k

� �2
αxa3

� �1=5

¼ gβqxa
4

kα2

� �2=5
α
xa

¼ Ra∗Prð Þ2=5 α
xa

, ∵Ra∗ ¼ gβqxa
4

kαν
(20)

ya ¼
αxa
ua

� �1=2

¼ αxa
Ra∗Prð Þ2=5 α

xa

 !1=2

¼ xa2

Ra∗Prð Þ2=5
 !1=2

¼ xa Ra∗Prð Þ�1=5 (21)

Ta ¼
qya
k

¼ q
k

xa
Ra∗Prð Þ1=5

¼ qxa
k

Ra∗Prð Þ�1=5 (22)

va ¼
yaua
xa

¼
xa

Ra∗Prð Þ1=5 Ra∗Prð Þ2=5 α
xa

xa
¼ Ra∗Prð Þ1=5 α

xa
(23)

In the above process, finally one obtains the dimensionless equations as follows:

∂U
∂X

þ ∂V
∂Y

¼ 0 (24)

U
∂U
∂X

þ V
∂U
∂Y

¼ Pr
∂2U
∂Y2 þ θ (25)

U
∂θ
∂X

þ V
∂θ
∂Y

¼ ∂2θ

∂Y2 (26)
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Y ¼ 0 : U ¼ V ¼ 0, ∂θ=∂Y ¼ �1
Y ! ∞ : U ¼ 0, θ ¼ 0

�
(27)

The dimensionless variables are summarized as follows:

X ¼ x
xa

, Y ¼ y

xa Ra∗Prð Þ�1=5 , U ¼ u
α
xa

Ra∗Prð Þ2=5
,

V ¼ v
α
xa

Ra∗Prð Þ1=5
, θ ¼ T � T∞

qxa
k

Ra∗Prð Þ�1=5

(28)

Furthermore, one assumes that the velocity and temperature fields has a similarity along the
direction of vertical plate, so one puts X = 1. These equations are useful for analyzing low
Prandtl number cases and summarized as follows:

Low Prandtl number

Continuity of mass

dV
dη

¼ 1
5

η
dU
dη

� 3U
� �

(29)

Momentum equation

U
dV
dη

� V
dU
dη

þ Pr
d2U
dη2

þ θ ¼ 0 (30)

Energy equation

U
5

η
dθ
dη

� θ
� �

� V
dθ
dη

þ d2θ
dη2

¼ 0 (31)

Boundary conditions

η ¼ 0 : U ¼ V ¼ 0, dθ=dη ¼ �1
η ! ∞ : U ¼ θ ¼ 0

�
(32)

The dimensionless variables and non-dimensional numbers are defined as follows:

η ¼ y

x Rax∗Prð Þ�1
5
, U ¼ u

α
x

Rax∗Prð Þ25
, V ¼ v

α
x

Rax∗Prð Þ15
,

θ ¼ T � T∞
qx
k

Rax∗Prð Þ�1
5

, Rax∗ ¼ gβqx4

ανk
, Pr ¼ ν

α

(33)

The local Nusselt number can be obtained by the following derivation:
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yaua|ffl{zffl}

1½ �
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At the moment stage, xa is recognized as the height of the vertical plate.

Putting [3] = 0, and one obtains Tb ¼ T∞.Hence [7] becomes θ ¼ 0.

Putting [6] = 1, and one gets qya
kTa

¼ 1 ) Ta ¼ qya
k

Putting [5] = 1, and one gets αxa
ya2ua

¼ 1 ) ya ¼ αxa
ua

� �1=2

Putting [1] = 1, vaxayaua
¼ 1 ) va ¼ yaua

xa

Putting [4] = 1, gβTaxa
ua2

¼ 1 ) ua ¼ gβTaxa
� �1=2 ¼ gβ qya

k xa
� �1=2 ¼ gβ q

k
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∴ ua ¼ gβ
q
k

� �2
αxa3
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¼ gβqxa
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kα2
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α
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¼ Ra∗Prð Þ2=5 α
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, ∵Ra∗ ¼ gβqxa
4

kαν
(20)

ya ¼
αxa
ua

� �1=2

¼ αxa
Ra∗Prð Þ2=5 α

xa

 !1=2

¼ xa2

Ra∗Prð Þ2=5
 !1=2

¼ xa Ra∗Prð Þ�1=5 (21)

Ta ¼
qya
k

¼ q
k

xa
Ra∗Prð Þ1=5

¼ qxa
k

Ra∗Prð Þ�1=5 (22)

va ¼
yaua
xa

¼
xa

Ra∗Prð Þ1=5 Ra∗Prð Þ2=5 α
xa

xa
¼ Ra∗Prð Þ1=5 α

xa
(23)

In the above process, finally one obtains the dimensionless equations as follows:

∂U
∂X

þ ∂V
∂Y

¼ 0 (24)

U
∂U
∂X

þ V
∂U
∂Y

¼ Pr
∂2U
∂Y2 þ θ (25)

U
∂θ
∂X

þ V
∂θ
∂Y

¼ ∂2θ

∂Y2 (26)
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Y ¼ 0 : U ¼ V ¼ 0, ∂θ=∂Y ¼ �1
Y ! ∞ : U ¼ 0, θ ¼ 0

�
(27)

The dimensionless variables are summarized as follows:

X ¼ x
xa

, Y ¼ y

xa Ra∗Prð Þ�1=5 , U ¼ u
α
xa

Ra∗Prð Þ2=5
,

V ¼ v
α
xa

Ra∗Prð Þ1=5
, θ ¼ T � T∞

qxa
k

Ra∗Prð Þ�1=5

(28)

Furthermore, one assumes that the velocity and temperature fields has a similarity along the
direction of vertical plate, so one puts X = 1. These equations are useful for analyzing low
Prandtl number cases and summarized as follows:

Low Prandtl number

Continuity of mass

dV
dη

¼ 1
5

η
dU
dη

� 3U
� �

(29)

Momentum equation

U
dV
dη

� V
dU
dη

þ Pr
d2U
dη2

þ θ ¼ 0 (30)

Energy equation

U
5

η
dθ
dη

� θ
� �

� V
dθ
dη

þ d2θ
dη2

¼ 0 (31)

Boundary conditions

η ¼ 0 : U ¼ V ¼ 0, dθ=dη ¼ �1
η ! ∞ : U ¼ θ ¼ 0

�
(32)

The dimensionless variables and non-dimensional numbers are defined as follows:

η ¼ y

x Rax∗Prð Þ�1
5
, U ¼ u

α
x

Rax∗Prð Þ25
, V ¼ v

α
x

Rax∗Prð Þ15
,

θ ¼ T � T∞
qx
k

Rax∗Prð Þ�1
5

, Rax∗ ¼ gβqx4

ανk
, Pr ¼ ν

α

(33)

The local Nusselt number can be obtained by the following derivation:
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Nux ¼ hxx
k

¼ qx
Tw � T∞ð Þk ¼

qx
Taθwk

¼
gβq
α2k

� �1=5
k

qx1=5
|fflfflfflfflffl{zfflfflfflfflffl}

Ta
�1

qx
θwk

¼ gβq
α2k

� �1=5 x4=5
θw

¼ gβqx4

α2k

� �1=5 1
θw

¼ Ra∗xPr
� �1=5 1

θw

(34)

Nux ¼ Rax∗Prð Þ15 θjη¼0

� ��1
¼ RaxNuxPrð Þ15 θjη¼0

� ��1
(35)

Therefore, the local Nusselt number can be obtained just from the dimensionless temperature
at the wall using Eq. (36)

Nux
RaxPrð Þ14

¼ θjη¼0

� ��5
4

(36)

High Prandtl number

If the Prandtl number is higher than unity, the following equations are useful:

Continuity of mass

dV
dη

¼ 1
5

η
dU
dη

� 3U
� �

(37)

Momentum equation

U
dV
dη

� V
dU
dη

þ Pr
d2U
dη2

þ Prθ ¼ 0 (38)

Energy equation

U
5

η
dθ
dη

� θ
� �

� V
dθ
dη

þ d2θ
dη2

¼ 0 (39)

Boundary conditions

η ¼ 0 : U ¼ V ¼ 0, dθ=dη ¼ �1
η ! ∞ : U ¼ θ ¼ 0

�
(40)

The dimensionless variables and non-dimensional numbers are defined as follows:

η ¼ y

x Rax∗ð Þ�1
5
, U ¼ u

α
x

Rax∗ð Þ25
, V ¼ v

α
x

Rax∗ð Þ15
,

θ ¼ T � T∞
qx
k

Rax∗ð Þ�1
5

, Rax∗ ¼ gβqx4

ανk
, Pr ¼ ν

α

(41)
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Nux
Raxð Þ14

¼ θjη¼0

� ��5
4

(42)

3.4. Numerical results

Figure 3 shows the numerical result for the various Prandtl number cases. The upper figures
indicate the vertical velocity and lower ones the temperature. The left-hand side figures show
the cases of Pr ≥ 1, while the right-hand side ones the cases of Pr ≤ 1

Table 1 shows the summary of the local Nusselt number for various Prandtl number cases
together with the reference of Churchill and Ozoe for comparison [4]. The agreement is quite
good except for the extreme cases such as Pr! 0 and ∞. In such extreme cases, a small amount
of discrepancy exists. In this study, the boundary condition for Pr ! 0

η ¼ 0 : dU=dη ¼ V ¼ 0, dθ=dη ¼ �1
η ! ∞ : U ¼ θ ¼ 0

�

and that for Pr ! ∞

Figure 3. Vertical velocity and temperature distributions for various Prandtl numbers. The left-hand side indicates high
Prandtl number cases while the right-hand side low Prandtl number cases.
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indicate the vertical velocity and lower ones the temperature. The left-hand side figures show
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together with the reference of Churchill and Ozoe for comparison [4]. The agreement is quite
good except for the extreme cases such as Pr! 0 and ∞. In such extreme cases, a small amount
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η ¼ 0 : dU=dη ¼ V ¼ 0, dθ=dη ¼ �1
η ! ∞ : U ¼ θ ¼ 0

�

and that for Pr ! ∞

Figure 3. Vertical velocity and temperature distributions for various Prandtl numbers. The left-hand side indicates high
Prandtl number cases while the right-hand side low Prandtl number cases.
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η ¼ 0 : U ¼ V ¼ 0, dθ=dη ¼ �1
η ! ∞ : dU=dη ¼ θ ¼ 0:

�

are used. Owing to this kind of special treatments for the boundary condition of such extreme
cases, one can obtain accurate numerical results for the system of ordinary equations. The
results between the solution of the present method and that of Le Fevre [5] for the case of
constant temperature of heated wall are identical to each other. The value for Pr ! ∞ is 0.5027
and that for Pr = 0 is 0.6004.

4. Linear stability of Taylor-Couette flow

4.1. Governing equations

In the text book of Chandrasekar [6], various examples of the linear stability analysis such as
the Rayleigh-Bénard convection, the Taylor-Couette flow, and the Rayleigh-Taylor instability were
studied extensively. More recently, Koschmieder [7] described the research focusing on the
Bénard cells and the Taylor vortices. In this section, only the Taylor-Coette flow is considered.
Figure 4 shows the schematic model considered for the Taylor-Couette flow. In this section, the
fluid flow inside of the co-axial double cylindrical enclosure is assumed to be incompressible
Newtonian, isothermal and axisymmetric. The gray part represents the computational
domain. It is known that the stationary secondary flow is generated at a certain condition
under the influence of centrifugal force due to the rotation of primary basic flow which is in
azimuthal direction. The continuity of mass and momentum equations are shown in the
cylindrical coordinate system as follows:

∂ur
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þ ur
r
þ ∂uz

∂z
¼ 0 (43)

∂ur
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þ ur
∂ur
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Pr 0 0.01 0.1 1 10 100 ∞

Nux
Raxð Þ1=4

N/A 0.4564
0.456

0.5234
0.524

0.5495
0.550

0.5631
0.5627

Nux
RaxPrð Þ1=4

0.7107
0.6922

0.6694
0.670

0.5970
0.597

0.4564
0.456

N/A

Table 1. Local Nusselt number for various values of Prandtl number (the upper: present results, the lower: Churchill and
Ozoe [4]).
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Here, it is indicated that r is the radial, θ is the azimuthal, and z is the axial components.

4.2. Basic state and linearization

The cylindrical enclosure is long enough to neglect the top and bottom ends. In that situation,
the basic states for the azimuthal component of velocity and pressure are as follows:

Azimuthal velocity

uθ rð Þ ¼ � r22Ω2 � r21Ω1

r21 � r22
rþ r21r

2
2 Ω2 �Ω1ð Þ
r21 � r22

1
r

(47)

Pressure

p r; zð Þ ¼
ð
r uθ rð Þf g2

r
dr� rgzþ p0 (48)

Here, Ω1 is the angular velocity at the inner cylinder, Ω2 is the angular velocity at the outer
cylinder, p is the pressure, r is the density, and g is the acceleration due to gravity. In order
to derive disturbance equations for the linear stability, the three components of velocity
and pressure are represented as a summation of basic state and infinitesimal disturbance as
follows:

Figure 4. Schematic model for the Taylor-Couette flow.
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Here, it is indicated that r is the radial, θ is the azimuthal, and z is the axial components.
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Here, Ω1 is the angular velocity at the inner cylinder, Ω2 is the angular velocity at the outer
cylinder, p is the pressure, r is the density, and g is the acceleration due to gravity. In order
to derive disturbance equations for the linear stability, the three components of velocity
and pressure are represented as a summation of basic state and infinitesimal disturbance as
follows:
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uθ r; z; tð Þ ¼ uθ rð Þ þ v
0
r; z; tð Þ, ur r; z; tð Þ ¼ u

0
r; z; tð Þ, uz r; z; tð Þ ¼ w

0
r; z; tð Þ,

p r; z; tð Þ ¼ p r; zð Þ þ p
0
r; z; tð Þ (49)

After neglecting the second-order disturbance, the following linearized equations are obtained:

∂u
0

∂r
þ u

0

r
þ ∂w

0
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� duθ
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u
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(52)
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r
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∂r2
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r
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0
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þ ∂2w

0

∂z2
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(53)

By considering the periodicity of the secondary flow which could be happened, each compo-
nent of infinitesimal disturbance is assumed to be given in the following form. Here, a is the
axial wavenumber (real number) and s is angular frequency (complex number)

u
0

~u rð Þ ¼
v
0

~v rð Þ ¼
w

0

~w rð Þ ¼
p
0

~p rð Þ ¼ exp iazþ stð Þ (54)

4.3. Linear stability analysis

The dimensionless simultaneous ordinary equations are summarized as follows:

Basic velocity

Uθ Rð Þ ¼ μ� η2

1� η2
Rþ η2 1� μ

� �
1� η2

1
R

(55)

Disturbance equations for amplitude functions

D∗ ~U þ ik ~W ¼ 0 (56)

S~U ¼ �D~P þ DD∗ � k2
� �

~U þ ReΩ
2Uθ

R
~V (57)

S~V ¼ DD∗ � k2
� �

~V � ReΩ D∗Uθ
� �

~U (58)

S ~W ¼ �ik~P þ D∗D� k2
� �

~W (59)

Here, the dimensionless variables and non-dimensional numbers are as follows. The outer
radius r2 is taken as the characteristic length
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R ¼ r
r2
, Uθ ¼ uθ

Ω1r2
, ~U ; ~V ; ~W
� �

¼ ~u; ~v; ~wð Þ
Ω1r2

, ~P ¼ ~p
rνΩ1

,

ReΩ ¼ Ω1r22
ν

, k ¼ r2a, η ¼ r1
r2
, μ ¼ Ω2

Ω1
, S ¼ s

ν=r22
, D ¼ d

dR
, D∗ ¼ d

dR
þ 1
R

(60)

The boundary conditions are as follows:

R ¼ η : ~U ¼ ~V ¼ ~W ¼ 0 Inner wallð Þ
R ¼ 1 : ~U ¼ ~V ¼ ~W ¼ 0 Outer wallð Þ:

(
(61)

After Chandrasekar [6], the following two non-dimensional numbers are introduced to verify
the computational results:

Ta ¼ 4Ω1
2r41

ν2
1� μ
� �

1� 4μ
� �

1� η2ð Þ2 ¼ 4Re 2
Ω

η4 1� μ
� �

1� 4μ
� �

1� η2ð Þ2 , κ ¼ 1� μ=η2

1� μ
(62)

In this section, it is assumed that S = 0. This indicates that the secondary flow caused by the
centrifugal instability is stationary and it contains toroidal vortices. To deal with the simulta-
neous ordinary differential equations for the boundary value problem, a one-dimensional
staggered grid system is employed as shown in Figure 5. All the equations are discretized by
the fourth order central difference method with a given wavenumber k using the HSMAC
method [8] during which ReΩ is obtained by the Newton method. The following equations are
used for correction of the pressure and velocity simultaneously. Here, the subscript i indicates
grid location, while the superscripts m and n indicate the iteration of the corrections for the
convergence of Eq. (56) and the time step, respectively. The more detailed explanation can be
found in the recent papers published by the present author [9, 10]

Figure 5. The staggered grids in the radius direction together with the points of each variable definition.
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nent of infinitesimal disturbance is assumed to be given in the following form. Here, a is the
axial wavenumber (real number) and s is angular frequency (complex number)

u
0

~u rð Þ ¼
v
0

~v rð Þ ¼
w

0

~w rð Þ ¼
p
0

~p rð Þ ¼ exp iazþ stð Þ (54)

4.3. Linear stability analysis

The dimensionless simultaneous ordinary equations are summarized as follows:

Basic velocity

Uθ Rð Þ ¼ μ� η2

1� η2
Rþ η2 1� μ

� �
1� η2

1
R

(55)

Disturbance equations for amplitude functions

D∗ ~U þ ik ~W ¼ 0 (56)

S ~U ¼ �D~P þ DD∗ � k2
� �

~U þ ReΩ
2Uθ

R
~V (57)

S~V ¼ DD∗ � k2
� �

~V � ReΩ D∗Uθ
� �

~U (58)

S ~W ¼ �ik~P þ D∗D� k2
� �

~W (59)

Here, the dimensionless variables and non-dimensional numbers are as follows. The outer
radius r2 is taken as the characteristic length

Finite Element Method - Simulation, Numerical Analysis and Solution Techniques256

R ¼ r
r2
, Uθ ¼ uθ

Ω1r2
, ~U ; ~V ; ~W
� �

¼ ~u; ~v; ~wð Þ
Ω1r2

, ~P ¼ ~p
rνΩ1

,

ReΩ ¼ Ω1r22
ν

, k ¼ r2a, η ¼ r1
r2
, μ ¼ Ω2

Ω1
, S ¼ s

ν=r22
, D ¼ d

dR
, D∗ ¼ d

dR
þ 1
R

(60)

The boundary conditions are as follows:

R ¼ η : ~U ¼ ~V ¼ ~W ¼ 0 Inner wallð Þ
R ¼ 1 : ~U ¼ ~V ¼ ~W ¼ 0 Outer wallð Þ:

(
(61)

After Chandrasekar [6], the following two non-dimensional numbers are introduced to verify
the computational results:

Ta ¼ 4Ω1
2r41

ν2
1� μ
� �

1� 4μ
� �

1� η2ð Þ2 ¼ 4Re 2
Ω

η4 1� μ
� �

1� 4μ
� �

1� η2ð Þ2 , κ ¼ 1� μ=η2

1� μ
(62)

In this section, it is assumed that S = 0. This indicates that the secondary flow caused by the
centrifugal instability is stationary and it contains toroidal vortices. To deal with the simulta-
neous ordinary differential equations for the boundary value problem, a one-dimensional
staggered grid system is employed as shown in Figure 5. All the equations are discretized by
the fourth order central difference method with a given wavenumber k using the HSMAC
method [8] during which ReΩ is obtained by the Newton method. The following equations are
used for correction of the pressure and velocity simultaneously. Here, the subscript i indicates
grid location, while the superscripts m and n indicate the iteration of the corrections for the
convergence of Eq. (56) and the time step, respectively. The more detailed explanation can be
found in the recent papers published by the present author [9, 10]

Figure 5. The staggered grids in the radius direction together with the points of each variable definition.

Numerical Analysis of the Incompressible Fluid Flow and Heat Transfer
http://dx.doi.org/10.5772/intechopen.72263

257
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i�1 � Δτ

ΔR
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� �nþ1

i (64)

mþ1 ~W
nþ1
i ¼ m ~W

nþ1
i � ik Δτð Þ � m δ~P

� �nþ1
i (65)

Table 2 shows the computational results for various rotation speeds at η = 0.5. When μ > 0.25,
the basic flow is always stable due to the Rayleigh’s criterion. The present results exhibit
slightly smaller values of Taylor number than those of Chandrasekar. Figures 6 and 7 show
the amplitude functions and Eigen functions, respectively, for the case of μ = 0 (the outer
cylinder is stationary), and Figures 8 and 9 show the case of μ =�0.5 (the outer cylinder rotates
with half angular velocity in opposite direction to the inside rotation).

The simultaneous ordinary equations from (56) to (59) were divided into the real and
imaginary parts. However, only four equations among the eight equations are necessary to
solve in this problem because of the symmetricity and anti-symmetricity of the complex

variables. In Figures 6 and 8, the real part of ~U, ~V, ~P and the imaginary part of ~W are
shown. For the visualization shown in Figures 7 and 9, the Stokes stream function Ψ is
defined as follows:

Present (201 grids) Chandrasekar [6]

κ μ Critical wave number Critical Ta number Wavenumber Ta number

0 1/4 6.286 15316 6.4 15332

0.4 1/6 6.293 19518 6.4 19542

0.6 2/17 6.299 22617 6.4 22644

1.0 0 6.325 33062 6.4 33100

4/3 �1/8 6.403 53210 6.4 53280

1.6 �1/4 6.715 98520 6.4 99072

1.8 �4/11 7.819 197715 7.8 199540

1.9 �9/21 8.733 288761 8.6 293630

2.0 �1/2 9.602 417734 9.6 428650

Table 2. Computational results and comparison with Chandrasekar (η = 0.5).
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~Uℜ � cos kZð Þ ¼ 1
R
∂Ψ
∂Z

, ~Wℑ � sin kZð Þ ¼ 1
R
∂Ψ
∂R

(66)

Here, the subscripts ℜ and ℑ represent the real part and the imaginary part, respectively. The
visualization of other variables, such as the azimuthal velocity and the pressure, are treated in
the similar manner using the trigonometric functions.

Figure 7. Visualization of Eigen functions for two wavelengths (η = 0.5, μ = 0, k = 6.325). From left to right, Stokes stream
function, azimuthal velocity, and pressure.

Figure 6. Amplitude functions (η = 0.5, μ = 0, k = 6.325).
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Figure 8. Amplitude functions (η = 0.5, μ = �0.5, k = 9.602).

Figure 9. Visualization of Eigen functions for two wavelengths (η = 0.5, μ = �0.5, k = 9.602). From left to right, Stokes
stream function, azimuthal velocity, and pressure.
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Abstract

In this paper, the Kuramoto-Sivashinsky equation is solved using Hermite collocation
method on an adaptive mesh. The method uses seventh order Hermite basis functions
on a mesh that is adaptive in space. Numerical experiments are carried out to validate
effectiveness of the method.
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method, moving mesh partial differential equation, numerical solution

1. Introduction

The Kuramoto-Sivashinsky equation (KSe) is a non-linear fourth order partial differential
equation (PDE) discovered separately by Kuramoto and Sivashinsky in the study of non-
linear stability of travelling waves. Sivashinsky [1] came up with the equation while modelling
small thermal diffusive instabilities in laminar flame fronts. Kuramoto [2–5] derived the equa-
tion in the study of the Belousov-Zhabotinsky reaction as a model of diffusion induced chaos.
The KSe is of interest to many researchers because of its ability to describe several physical
contexts such as long waves on thin films or on the interface between two viscous fluids [6]
and unstable drift waves in plasmas. The equation is also used as a model to describe spatially
uniform oscillating chemical reaction in a homogeneous medium and fluctuations in fluid
films on inclines [7]. In one dimension, consider the KSe of the form

∂u
∂t

þ u
∂u
∂x

þ ∂2u
∂x2

þ ∂4u
∂x4

¼ 0, t > 0: (1)

© The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons

Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,

distribution, and eproduction in any medium, provided the original work is properly cited.

DOI: 10.5772/intechopen.71875

© 2018 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



Chapter 12

Numerical Simulation of Wave (Shock Profile)
Propagation of the Kuramoto-Sivashinsky Equation
Using an Adaptive Mesh Method

Denson Muzadziwa, Stephen T. Sikwila and
Stanford Shateyi

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.71875

Provisional chapter

Numerical Simulation of Wave (Shock Profile)
Propagation of the Kuramoto-Sivashinsky Equation
Using an Adaptive Mesh Method

Denson Muzadziwa, Stephen T. Sikwila and

Stanford Shateyi

Additional information is available at the end of the chapter

Abstract

In this paper, the Kuramoto-Sivashinsky equation is solved using Hermite collocation
method on an adaptive mesh. The method uses seventh order Hermite basis functions
on a mesh that is adaptive in space. Numerical experiments are carried out to validate
effectiveness of the method.

Keywords: adaptive mesh method, Kuramoto-Sivashinsky equation, collocation
method, moving mesh partial differential equation, numerical solution

1. Introduction

The Kuramoto-Sivashinsky equation (KSe) is a non-linear fourth order partial differential
equation (PDE) discovered separately by Kuramoto and Sivashinsky in the study of non-
linear stability of travelling waves. Sivashinsky [1] came up with the equation while modelling
small thermal diffusive instabilities in laminar flame fronts. Kuramoto [2–5] derived the equa-
tion in the study of the Belousov-Zhabotinsky reaction as a model of diffusion induced chaos.
The KSe is of interest to many researchers because of its ability to describe several physical
contexts such as long waves on thin films or on the interface between two viscous fluids [6]
and unstable drift waves in plasmas. The equation is also used as a model to describe spatially
uniform oscillating chemical reaction in a homogeneous medium and fluctuations in fluid
films on inclines [7]. In one dimension, consider the KSe of the form

∂u
∂t

þ u
∂u
∂x

þ ∂2u
∂x2

þ ∂4u
∂x4

¼ 0, t > 0: (1)

© The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons

Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,

distribution, and eproduction in any medium, provided the original work is properly cited.

DOI: 10.5772/intechopen.71875

© 2018 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



The second derivative term is an energy source and thus has a distributing effect. The non-
linear term is a correction to the phase speed and responsible for transferring energy. The
fourth derivative term is the dominating term and is responsible for stabilising the equation.
Several methods have been used to solve the KSe numerically and these include Chebyshev
spectral collocation method [8], Quintic B-spline collocation method [9], Lattice Boltzmann
method [10], meshless method of lines [11], Fourier spectral method [12] and septic B-spline
collocation method [13].

2. Grid generation

Generation of an adaptive mesh in the spatial domain is based on the r-refinement technique
[14] which relocates a fixed number of nodal points to regions which need high spatial
resolution in order to capture important characteristics in the solution. This has the benefit of
improving computational effort in those regions of interest whilst using a fixed number of
mesh points. The relocation of the fixed number of nodal points at any given time is achieved
by solving Moving Mesh Partial Differential Equations (MMPDEs) [15, 16] derived from the
Equidistribution Principle (EP). The EP [17] makes use of a measure of the solution error called
a monitor function, denoted by M which is a positive definite and user defined function of the
solution and/or its derivatives. Mesh points are then chosen by equally distributing the error in
each subinterval. In this paper, MMPDE4 [15] is chosen to generate the adaptive mesh because
of its ability to stabilise mesh trajectories and ability to give unique solutions for the mesh
velocities with Dirichlet boundary conditions. MMPDE4 is given by

∂
∂ξ

M
∂ _xð Þ
∂ξ

� �
¼ � 1

τ
∂
∂ξ

M
∂x
∂ξ

� �
(2)

where τ is the relaxation parameter and it plays the role of driving the mesh towards
equidistribution. Central finite difference approximation of MMPDE4 in space on the interval
a ≤ x ≤ b gives

Miþ1 þMi

2 1
N

� �2 _xiþ1 � _xið Þ �Mi þMi�1

2 1
N

� �2 _xi � _xi�1ð Þ ¼ �Ei

τ
, (3)

where

Ei ¼ Miþ1 þMi

2 1
N

� �2 xiþ1 � xið Þ �Mi þMi�1

2 1
N

� �2 xi � xi�1ð Þ, i ¼ 2,…, N (4)

x1 ¼ a xNþ1 ¼ b: (5)

The modified monitor function given by

M x; tð Þ ¼ 1þ α2 ∂u
∂x

� �2

þ α2 ∂2u
∂x2

� �2
 !1

2

(6)
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is used. It is composed of the standard arc-length monitor and the curvature monitor func-
tions. Smoothing on the monitor function is done as described in [15]. Values of the smoothed
monitor function ~M at the grid points are given by

eM ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Piþp

k¼i�p Mkð Þ2 γ
1þγ

� � k�ij j

Piþp
k¼i�p

γ
1�γ

� � k�ij j

vuuuut (7)

where the parameter p is called the smoothing index which determines the extent of smoothing
and is non-negative. γ is non-negative and is called the smoothing index and determines the
rigidity of the grid.

3. Discretization in time

The Crank-Nicolson scheme for the KSe is

unþ1 � un

δt

� �
þ uuxð Þnþ1 þ uuxð Þn

2

" #
þ unþ1

xx þ unxx
2

� �
þ unþ1

xxxx þ unxxxx
2

� �
¼ 0 (8)

where δt is the time step. Rubin and Graves [18] suggested the expression

uuxnþ1 ¼ unþ1unx þ ununþ1
x � uuxð Þn (9)

for the linearization of the non-linear term uuxð Þnþ1. Expression (9) is substituted into (1) and
the terms are rearranged to give

unþ1 þ δt
2

unþ1unx þ ununþ1
x þ unþ1

xx þ unþ1
xxxx

� � ¼ un � δt
2

unxx þ unxxxx
� �

(10)

4. Septic Hermite collocation method

Consider the mesh on the domain a; b½ � which is a solution of MMPDE4 given by

a ¼ X1 tð Þ < X2 tð Þ < … < XNþ1 tð Þ ¼ b (11)

The variable spatial length of each interval is given by Hi where Hi ¼ Xiþ1 tð Þ � Xi tð Þ for
i ¼ 1,…, N. For some xE Xi tð Þ;Xiþ1 tð Þ½ �, define the local variable s as

s ¼ x� Xi tð Þ
Hi tð Þ (12)

such that sE 0; 1ð Þ for every subinterval of the mesh (11). Define the septic Hermite basis
functions with the local variables s as
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L0,0 ¼ 20s3 þ 10s2 þ 4sþ 1
� �

s� 1ð Þ4

L0,1 ¼ s 10s2 þ 4sþ 1
� �

s� 1ð Þ4

L0,2 ¼ s2

2
4sþ 1ð Þ s� 1ð Þ4

L0,3 ¼ s3

6
s� 1ð Þ4

L1,0 ¼ � 20s3 � 70s2 þ 84s� 35
� �

s4

L1,2 ¼ � s4

2
s� 1ð Þ2 4s� 5ð Þ

L1,3 ¼ s4

6
s� 1ð Þ3

(13)

For l ¼ 0, 1, 2, 3 the functions L0, l sð Þ and L1, l sð Þ yield the following conditions

dk

dsk
L0, l 0ð Þ ¼ δk, l,

dk

dsk
L0, l 1ð Þ ¼ 0, k, l ¼ 0, 1, 2, 3

dk

dsk
L0, l 0ð Þ ¼ 0,

dk

dsk
L1, l 1ð Þ ¼ δk, l, k, l ¼ 0, 1, 2, 3

where δk, l denotes the Kronecker delta. The physical solution u x; tð Þ on the mesh (11) is
approximated by the piecewise Hermite polynomial [19]

Uðx;tÞ ¼ UiðtÞL0,0ðsÞ þUx, iHiðtÞL0,1ðsÞ þUxx, iðtÞH2
i ðtÞL0,2ðsÞ þUxxx, iðtÞH3

i ðtÞL0,3ðsÞ
þUiþ1ðtÞL1,0ðsÞ þUx, iþ1HiðtÞL1,1ðsÞ þUxx, iþ1ðtÞH2

i ðtÞL1,2ðsÞ þUxxx, iþ1ðtÞH3
i ðtÞL1,3ðsÞ,

(14)

Where Ui tð Þ, Ux, i tð Þ, Uxx, i tð Þ and Uxxx, i tð Þ are the unknown variables. Derivatives of U x; tð Þ
with respect to the spatial variable x for x∈ Xi tð Þ;Xiþ1 tð Þ½ � are obtained by direct differentiation
of (14) to give

∂ðlÞUðx;tÞ
∂xðlÞ

¼ 1

HiðtÞðlÞ
UiðtÞ d

ðlÞL0,0
dsðlÞ

þUx,iðtÞHiðtÞ d
ðlÞL0,1
dsðlÞ

þUxx, iðtÞH2
i ðtÞ

dðlÞL0,2
dsðlÞ

"

þUxxx, iðtÞH3
i ðtÞ

dðlÞL0,3
dsðlÞ

þUiþ1ðtÞ d
ðlÞL1,0
dsðlÞ

þUx,iþ1ðtÞHiðtÞ d
ðlÞL1,1
dsðlÞ

þUxx, iþ1ðtÞH2
i ðtÞ

dðlÞL1,2
dsðlÞ

þUxxx, iþ1ðtÞH3
i ðtÞ

dðlÞL1,3
dsðlÞ

#
(15)

for l ¼ 1, 2, 3, 4: In each subinterval Xi tð Þ;Xiþ1 tð Þ½ � of the mesh (11), define four Gauss-Legendre
points

0 < r1 < r2 < r3 < r4 < 1

which are given by
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r1 ¼
1
2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
525þ 70

ffiffiffiffiffi
30

pp

70

r2 ¼
1
2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
525� 70

ffiffiffiffiffi
30

pp

70

r3 ¼ 1� r1

r4 ¼ 1� r2

One regards these points as the collocation points in each subinterval of the mesh (11). Scaling
of the Gauss-Legendre points into subsequent intervals is done by defining the collocation
points as

Xij ¼ Xi þHirj, i ¼ 1,…:, N, j ¼ 1, 2, 3, 4: (16)

and redefining the local variable s as

s ið Þ
j ¼ Xij � Xi

Hi
(17)

for i ¼ 1,…, N and j ¼ 1, 2, 3, 4. Evaluation of the Hermite polynomial approximation (14), its
first, second and fourth derivatives (15) is then done at the four internal collocation points in
each subinterval Xi;Xiþ1½ � and substitution of the expressions into (10) gives the difference
equation

β ið Þ
j1 U

nþ1
i þ β ið Þ

j2 U
nþ1
x, i þ β ið Þ

j3 U
nþ1
xx, i þ β ið Þ

j4 U
nþ1
xxx, i þ β ið Þ

j5 U
nþ1
iþ1 þ β ið Þ

j6 U
nþ1
x, iþ1 þ β ið Þ

j7 U
nþ1
xx, iþ1 þ β ið Þ

j8 U
nþ1
xxx, iþ1 ¼ ψn

ij

(18)

where

ψn
ij ¼ Un

i tð ÞL0,0 sj
� �þUn

x, i Hi tð ÞL0,1 sj
� �þUn

xx, i tð ÞH2
i tð ÞL0,2 sj

� �þUn
xxx, i tð ÞH3

i tð ÞL0,3 sj
� �

þUn
iþ1 tð ÞL1,0 sj

� �þUn
x, iþ1Hi tð ÞL1,1 sj

� �þUn
xx, iþ1Hi tð ÞL1,1 sj

� �þUn
xxx, iþ1Hi tð ÞL1,1 sj

� �

� δt
2H2

i
Un

i tð ÞL0 0
0,0 sj
� �þUn

x, i Hi tð ÞL0 0
0,1 sj
� �þUn

xx, i tð ÞH2
i tð ÞL0 0

0,2 sj
� �þUn

xxx, i tð ÞH3
i tð ÞL0 0

0,3 sj
� �h

þUn
iþ1 tð ÞL0 0

1,0 sj
� �þUn

x, iþ1Hi tð ÞL0 0
1,1 sj
� �þUn

xx, iþ1Hi tð ÞL0 0
1,1 sj
� �þUn

xxx, iþ1Hi tð ÞL0 0
1,1 sj
� ��

� δt
2H4

i

Un
i tð ÞL ivð Þ

0,0 sj
� �þUn

x, i Hi tð ÞL ivð Þ
0,1 sj
� �þUn

xx, i tð ÞH2
i tð ÞL ivð Þ

0,2 sj
� �þUn

xxx, i tð ÞH3
i tð ÞLiv0,3 sj

� �h

þUn
iþ1 tð ÞL ivð Þ

1,0 sj
� �þUn

x, iþ1Hi tð ÞL ivð Þ
1,1 sj
� �þUn

xx, iþ1Hi tð ÞL ivð Þ
1,1 sj
� �þUn

xxx, iþ1Hi tð ÞL ivð Þ
1,1 sj
� ��

(19)

and
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L0,0 ¼ 20s3 þ 10s2 þ 4sþ 1
� �

s� 1ð Þ4

L0,1 ¼ s 10s2 þ 4sþ 1
� �

s� 1ð Þ4

L0,2 ¼ s2

2
4sþ 1ð Þ s� 1ð Þ4

L0,3 ¼ s3

6
s� 1ð Þ4

L1,0 ¼ � 20s3 � 70s2 þ 84s� 35
� �

s4

L1,2 ¼ � s4

2
s� 1ð Þ2 4s� 5ð Þ

L1,3 ¼ s4

6
s� 1ð Þ3

(13)

For l ¼ 0, 1, 2, 3 the functions L0, l sð Þ and L1, l sð Þ yield the following conditions

dk

dsk
L0, l 0ð Þ ¼ δk, l,

dk

dsk
L0, l 1ð Þ ¼ 0, k, l ¼ 0, 1, 2, 3

dk

dsk
L0, l 0ð Þ ¼ 0,

dk

dsk
L1, l 1ð Þ ¼ δk, l, k, l ¼ 0, 1, 2, 3

where δk, l denotes the Kronecker delta. The physical solution u x; tð Þ on the mesh (11) is
approximated by the piecewise Hermite polynomial [19]

Uðx;tÞ ¼ UiðtÞL0,0ðsÞ þUx, iHiðtÞL0,1ðsÞ þUxx, iðtÞH2
i ðtÞL0,2ðsÞ þUxxx, iðtÞH3

i ðtÞL0,3ðsÞ
þUiþ1ðtÞL1,0ðsÞ þUx, iþ1HiðtÞL1,1ðsÞ þUxx, iþ1ðtÞH2

i ðtÞL1,2ðsÞ þUxxx, iþ1ðtÞH3
i ðtÞL1,3ðsÞ,

(14)

Where Ui tð Þ, Ux, i tð Þ, Uxx, i tð Þ and Uxxx, i tð Þ are the unknown variables. Derivatives of U x; tð Þ
with respect to the spatial variable x for x∈ Xi tð Þ;Xiþ1 tð Þ½ � are obtained by direct differentiation
of (14) to give

∂ðlÞUðx;tÞ
∂xðlÞ

¼ 1

HiðtÞðlÞ
UiðtÞ d

ðlÞL0,0
dsðlÞ

þUx,iðtÞHiðtÞ d
ðlÞL0,1
dsðlÞ

þUxx, iðtÞH2
i ðtÞ

dðlÞL0,2
dsðlÞ

"

þUxxx, iðtÞH3
i ðtÞ

dðlÞL0,3
dsðlÞ

þUiþ1ðtÞ d
ðlÞL1,0
dsðlÞ

þUx,iþ1ðtÞHiðtÞ d
ðlÞL1,1
dsðlÞ

þUxx, iþ1ðtÞH2
i ðtÞ

dðlÞL1,2
dsðlÞ

þUxxx, iþ1ðtÞH3
i ðtÞ

dðlÞL1,3
dsðlÞ

#
(15)

for l ¼ 1, 2, 3, 4: In each subinterval Xi tð Þ;Xiþ1 tð Þ½ � of the mesh (11), define four Gauss-Legendre
points

0 < r1 < r2 < r3 < r4 < 1

which are given by
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r1 ¼
1
2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
525þ 70

ffiffiffiffiffi
30

pp

70

r2 ¼
1
2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
525� 70

ffiffiffiffiffi
30

pp

70

r3 ¼ 1� r1

r4 ¼ 1� r2

One regards these points as the collocation points in each subinterval of the mesh (11). Scaling
of the Gauss-Legendre points into subsequent intervals is done by defining the collocation
points as

Xij ¼ Xi þHirj, i ¼ 1,…:, N, j ¼ 1, 2, 3, 4: (16)

and redefining the local variable s as

s ið Þ
j ¼ Xij � Xi

Hi
(17)

for i ¼ 1,…, N and j ¼ 1, 2, 3, 4. Evaluation of the Hermite polynomial approximation (14), its
first, second and fourth derivatives (15) is then done at the four internal collocation points in
each subinterval Xi;Xiþ1½ � and substitution of the expressions into (10) gives the difference
equation

β ið Þ
j1 U

nþ1
i þ β ið Þ

j2 U
nþ1
x, i þ β ið Þ

j3 U
nþ1
xx, i þ β ið Þ

j4 U
nþ1
xxx, i þ β ið Þ

j5 U
nþ1
iþ1 þ β ið Þ

j6 U
nþ1
x, iþ1 þ β ið Þ

j7 U
nþ1
xx, iþ1 þ β ið Þ

j8 U
nþ1
xxx, iþ1 ¼ ψn

ij

(18)

where

ψn
ij ¼ Un

i tð ÞL0,0 sj
� �þUn

x, i Hi tð ÞL0,1 sj
� �þUn

xx, i tð ÞH2
i tð ÞL0,2 sj

� �þUn
xxx, i tð ÞH3

i tð ÞL0,3 sj
� �

þUn
iþ1 tð ÞL1,0 sj

� �þUn
x, iþ1Hi tð ÞL1,1 sj

� �þUn
xx, iþ1Hi tð ÞL1,1 sj

� �þUn
xxx, iþ1Hi tð ÞL1,1 sj

� �

� δt
2H2

i
Un

i tð ÞL0 0
0,0 sj
� �þUn

x, i Hi tð ÞL0 0
0,1 sj
� �þUn

xx, i tð ÞH2
i tð ÞL0 0

0,2 sj
� �þUn

xxx, i tð ÞH3
i tð ÞL0 0

0,3 sj
� �h

þUn
iþ1 tð ÞL0 0

1,0 sj
� �þUn

x, iþ1Hi tð ÞL0 0
1,1 sj
� �þUn

xx, iþ1Hi tð ÞL0 0
1,1 sj
� �þUn

xxx, iþ1Hi tð ÞL0 0
1,1 sj
� ��

� δt
2H4

i

Un
i tð ÞL ivð Þ

0,0 sj
� �þUn

x, i Hi tð ÞL ivð Þ
0,1 sj
� �þUn

xx, i tð ÞH2
i tð ÞL ivð Þ

0,2 sj
� �þUn

xxx, i tð ÞH3
i tð ÞLiv0,3 sj

� �h

þUn
iþ1 tð ÞL ivð Þ

1,0 sj
� �þUn

x, iþ1Hi tð ÞL ivð Þ
1,1 sj
� �þUn

xx, iþ1Hi tð ÞL ivð Þ
1,1 sj
� �þUn

xxx, iþ1Hi tð ÞL ivð Þ
1,1 sj
� ��

(19)

and
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β ið Þ
j1 ¼ L0,0 sj

� �þ δt
2
Un

x, iL0,0 sj
� �þ δt

2Hi tð ÞU
n
i L

0
0,0 sj
� �þ δt

2H2
i tð Þ L

00
0,0 sj
� �þ δt

2H2
i tð Þ L

ivð Þ
0,0 sj
� �

β ið Þ
j2 ¼ Hi tð ÞL0,1 sj

� �þ δt
2
Un

x, iHi tð ÞL0,1 sj
� �þ δt

2Hi tð ÞU
n
i Hi tð ÞL00,1 sj

� �þ δt
2H2

i tð ÞHi tð ÞL000,1 sj
� �þ δt

2H2
i tð ÞHi tð ÞL ivð Þ

0,1 sj
� �

β ið Þ
j3 ¼ H2

i tð ÞL0,2 sj
� �þ δt

2
Un

x, iH
2
i tð ÞL0,2 sj

� �þ δt
2Hi tð ÞU

n
i H

2
i tð ÞL00,2 sj

� �þ δt
2H2

i tð ÞH
2
i tð ÞL000,2 sj

� �þ δt
2H4

i tð ÞH
2
i tð ÞL ivð Þ

0,2 sj
� �

β ið Þ
j4 ¼ H3

i tð ÞL0,3 sj
� �þ δt

2
Un

x, iH
3
i tð ÞL0,3 sj

� �þ δt
2Hi tð ÞU

n
i H

3
i tð ÞL00,3 sj

� �þ δt
2H2

i tð ÞH
3
i tð ÞL000,3 sj

� �þ δt
2H4

i tð ÞH
3
i tð ÞL ivð Þ

0,3 sj
� �

β ið Þ
j5 ¼ L1,0 sj

� �þ δt
2
Un

x, iL1,0 sj
� �þ δt

2Hi tð ÞU
n
i L

0
1,0 sj
� �þ δt

2H2
i tð Þ L

00
1,0 sj
� �þ δt

2H4
i tð Þ L

ivð Þ
1,0 sj
� �

β ið Þ
j6 ¼ Hi tð ÞL1,1 sj

� �þ δt
2
Un

x, iHi tð ÞL1,1 sj
� �þ δt

2Hi tð ÞU
n
i Hi tð ÞL01,1 sj

� �þ δt
2H2

i tð ÞHi tð ÞL001,1 sj
� �þ δt

2H4
i tð ÞHi tð ÞL ivð Þ

1,1 sj
� �

β ið Þ
j7 ¼ H2

i tð ÞL1,2 sj
� �þ δt

2
Un

x, iH
2
i tð ÞL1,2 sj

� �þ δt
2Hi tð ÞU

n
i H

2
i tð ÞL01,2 sj

� �þ δt
2H2

i tð ÞH
2
i tð ÞL001,2 sj

� �þ δt
2H4

i tð ÞH
2
i tð ÞL ivð Þ

1,2 sj
� �

β ið Þ
j8 ¼ H3

i tð ÞL1,3 sj
� �þ δt

2
Un

x, iH
3
i tð ÞL1,3 sj

� �þ δt
2Hi tð ÞU

n
i H

3
i tð ÞL01,3 sj

� �þ δt
2H2

i tð ÞH
3
i tð ÞL001,3 sj

� �þ δt
2H4

i tð ÞH
3
i tð ÞL ivð Þ

1,3 sj
� �

(20)

From the boundary conditions (28) and (29), one gets

U x1ð Þ ¼ σ

Ux x1ð Þ ¼ β
U xNþ1ð Þ ¼ ω

Ux xNþ1ð Þ ¼ ζ

(21)

which results in a consistent system of 4N þ 4 equations in 4N þ 4 unknowns.

5. Solution approach for the PDE system

The PDE system is solved using the rezoning approach which works best with the decoupled
solution procedure [20]. The rezoning approach allow varying criteria of convergence for the
mesh and physical equation since in practice the mesh does not require the same level of
accuracy to compute as compared to the physical solution. The algorithm for the rezoning
approach is as follows:

1. Solve the given physical PDE on the current mesh.

2. Use the PDE solution obtained to calculate the monitor function.

3. Find the new mesh by solving a MMPDE.

4. Adjust the current PDE solution to suite the new mesh by interpolation.

5. Solve the physical PDE on the new mesh for the solution in the next time.
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6. Solution adjustment by interpolation

Discretization of the time domain ta; tb½ � is done using the following finite sequence

ta ¼ t0 < … < tn < … < tk ¼ tbf g (22)

At each time t ¼ tn ¼ n� dt, consider a non-uniform spatial mesh Xn
i

� �Nþ1
i¼1 given by

a ¼ Xn
1 < … < Xn

Nþ1 ¼ b (23)

where Xn
i ¼ Xi tnð ÞwithHn

i ¼ Xn
iþ1 � Xn

i being a non-uniform spatial step for i ¼ 1,…, N. At the
same time step t ¼ tn one also considers the approximations to the exact solution u x; tð Þ and its

derivatives given by Un
i

� �Nþ1
i¼1 and U lð Þ

i

� �nn oNþ1

i¼1
respectively where U lð Þ

i

� �n
represents the lth

derivative approximation with respect to the variable x at the time t ¼ tn For l ¼ 1, 2, 3. A new

mesh ~X
n
i

n oNþ1

i¼1
is generated by (2) at each current time step tn. The goal is to determine the

new approximations ~U
n
i

n oNþ1

i¼1
and ~U

lð Þ
i

� �nn oNþ1

i¼1
which are related to the new mesh ~X

n
i

n oNþ1

i¼1

in a similar manner the approximations Un
i

� �Nþ1
i¼1 and U lð Þ

i

� �nn oNþ1

i¼1
are related to the old mesh

Xn
i

� �Nþ1
i¼1 in each subinterval Xi;Xiþ1½ �. This process of updating the solution and its derivatives

from the old mesh to the new mesh is achieved by interpolation. One considers the septic
Hermite interpolating polynomial, a piecewise polynomial which allows the function values
and its three consecutive derivatives to be satisfied in each subinterval Xi;Xiþ1½ �. The Hermite
polynomial (14) is written in compact form as

X3

l¼0
hlð Þ lð ÞU lð Þ

i L0, l sð Þ þ
X3

l¼0
hlð Þ lð ÞU lð Þ

iþ1L1, l sð Þ (24)

where the 4 N þ 1ð Þ unknowns are given by

U ið Þ
i ¼ ∂lu

∂xl
Xi tð Þ; tð ÞU lð Þ

iþ1 ≈
∂lu
∂xl

Xiþ1 tð Þ; tð Þ, l ¼ 0, 1, 2, 3:

Given the partition (23) and approximations U lð Þ
i

� �nn o
for l ¼ 0, 1, 2, 3, suppose interpolation

of U lð Þ xð Þ is required at x ¼ ~Xi
n where ~Xi

n ∈ Xn
i ;X

n
iþ1

� �
for i ¼ 1,…, N. Firstly, the local coordi-

nate s of ~Xi
n is defined as

s ¼
~Xi

n � Xn
i

Hn
i

(25)

~U lð Þ ~Xi
n

� �
is then defined as
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β ið Þ
j1 ¼ L0,0 sj

� �þ δt
2
Un

x, iL0,0 sj
� �þ δt

2Hi tð ÞU
n
i L

0
0,0 sj
� �þ δt

2H2
i tð Þ L

00
0,0 sj
� �þ δt

2H2
i tð Þ L

ivð Þ
0,0 sj
� �

β ið Þ
j2 ¼ Hi tð ÞL0,1 sj

� �þ δt
2
Un

x, iHi tð ÞL0,1 sj
� �þ δt

2Hi tð ÞU
n
i Hi tð ÞL00,1 sj

� �þ δt
2H2

i tð ÞHi tð ÞL000,1 sj
� �þ δt

2H2
i tð ÞHi tð ÞL ivð Þ

0,1 sj
� �

β ið Þ
j3 ¼ H2

i tð ÞL0,2 sj
� �þ δt

2
Un

x, iH
2
i tð ÞL0,2 sj

� �þ δt
2Hi tð ÞU

n
i H

2
i tð ÞL00,2 sj

� �þ δt
2H2

i tð ÞH
2
i tð ÞL000,2 sj

� �þ δt
2H4

i tð ÞH
2
i tð ÞL ivð Þ

0,2 sj
� �

β ið Þ
j4 ¼ H3

i tð ÞL0,3 sj
� �þ δt

2
Un

x, iH
3
i tð ÞL0,3 sj

� �þ δt
2Hi tð ÞU

n
i H

3
i tð ÞL00,3 sj

� �þ δt
2H2

i tð ÞH
3
i tð ÞL000,3 sj

� �þ δt
2H4

i tð ÞH
3
i tð ÞL ivð Þ

0,3 sj
� �

β ið Þ
j5 ¼ L1,0 sj

� �þ δt
2
Un

x, iL1,0 sj
� �þ δt

2Hi tð ÞU
n
i L

0
1,0 sj
� �þ δt

2H2
i tð Þ L

00
1,0 sj
� �þ δt

2H4
i tð Þ L

ivð Þ
1,0 sj
� �

β ið Þ
j6 ¼ Hi tð ÞL1,1 sj

� �þ δt
2
Un

x, iHi tð ÞL1,1 sj
� �þ δt

2Hi tð ÞU
n
i Hi tð ÞL01,1 sj

� �þ δt
2H2

i tð ÞHi tð ÞL001,1 sj
� �þ δt

2H4
i tð ÞHi tð ÞL ivð Þ

1,1 sj
� �

β ið Þ
j7 ¼ H2

i tð ÞL1,2 sj
� �þ δt

2
Un

x, iH
2
i tð ÞL1,2 sj

� �þ δt
2Hi tð ÞU

n
i H

2
i tð ÞL01,2 sj

� �þ δt
2H2

i tð ÞH
2
i tð ÞL001,2 sj

� �þ δt
2H4

i tð ÞH
2
i tð ÞL ivð Þ

1,2 sj
� �

β ið Þ
j8 ¼ H3

i tð ÞL1,3 sj
� �þ δt

2
Un

x, iH
3
i tð ÞL1,3 sj

� �þ δt
2Hi tð ÞU

n
i H

3
i tð ÞL01,3 sj

� �þ δt
2H2

i tð ÞH
3
i tð ÞL001,3 sj

� �þ δt
2H4

i tð ÞH
3
i tð ÞL ivð Þ

1,3 sj
� �

(20)

From the boundary conditions (28) and (29), one gets

U x1ð Þ ¼ σ

Ux x1ð Þ ¼ β
U xNþ1ð Þ ¼ ω

Ux xNþ1ð Þ ¼ ζ

(21)

which results in a consistent system of 4N þ 4 equations in 4N þ 4 unknowns.

5. Solution approach for the PDE system

The PDE system is solved using the rezoning approach which works best with the decoupled
solution procedure [20]. The rezoning approach allow varying criteria of convergence for the
mesh and physical equation since in practice the mesh does not require the same level of
accuracy to compute as compared to the physical solution. The algorithm for the rezoning
approach is as follows:

1. Solve the given physical PDE on the current mesh.

2. Use the PDE solution obtained to calculate the monitor function.

3. Find the new mesh by solving a MMPDE.

4. Adjust the current PDE solution to suite the new mesh by interpolation.

5. Solve the physical PDE on the new mesh for the solution in the next time.
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6. Solution adjustment by interpolation

Discretization of the time domain ta; tb½ � is done using the following finite sequence

ta ¼ t0 < … < tn < … < tk ¼ tbf g (22)

At each time t ¼ tn ¼ n� dt, consider a non-uniform spatial mesh Xn
i

� �Nþ1
i¼1 given by

a ¼ Xn
1 < … < Xn

Nþ1 ¼ b (23)

where Xn
i ¼ Xi tnð ÞwithHn

i ¼ Xn
iþ1 � Xn

i being a non-uniform spatial step for i ¼ 1,…, N. At the
same time step t ¼ tn one also considers the approximations to the exact solution u x; tð Þ and its

derivatives given by Un
i

� �Nþ1
i¼1 and U lð Þ

i

� �nn oNþ1

i¼1
respectively where U lð Þ

i

� �n
represents the lth

derivative approximation with respect to the variable x at the time t ¼ tn For l ¼ 1, 2, 3. A new

mesh ~X
n
i

n oNþ1

i¼1
is generated by (2) at each current time step tn. The goal is to determine the

new approximations ~U
n
i

n oNþ1

i¼1
and ~U

lð Þ
i

� �nn oNþ1

i¼1
which are related to the new mesh ~X

n
i

n oNþ1

i¼1

in a similar manner the approximations Un
i

� �Nþ1
i¼1 and U lð Þ

i

� �nn oNþ1

i¼1
are related to the old mesh

Xn
i

� �Nþ1
i¼1 in each subinterval Xi;Xiþ1½ �. This process of updating the solution and its derivatives

from the old mesh to the new mesh is achieved by interpolation. One considers the septic
Hermite interpolating polynomial, a piecewise polynomial which allows the function values
and its three consecutive derivatives to be satisfied in each subinterval Xi;Xiþ1½ �. The Hermite
polynomial (14) is written in compact form as

X3

l¼0
hlð Þ lð ÞU lð Þ

i L0, l sð Þ þ
X3

l¼0
hlð Þ lð ÞU lð Þ

iþ1L1, l sð Þ (24)

where the 4 N þ 1ð Þ unknowns are given by

U ið Þ
i ¼ ∂lu

∂xl
Xi tð Þ; tð ÞU lð Þ

iþ1 ≈
∂lu
∂xl

Xiþ1 tð Þ; tð Þ, l ¼ 0, 1, 2, 3:

Given the partition (23) and approximations U lð Þ
i

� �nn o
for l ¼ 0, 1, 2, 3, suppose interpolation

of U lð Þ xð Þ is required at x ¼ ~Xi
n where ~Xi

n ∈ Xn
i ;X

n
iþ1

� �
for i ¼ 1,…, N. Firstly, the local coordi-

nate s of ~Xi
n is defined as

s ¼
~Xi

n � Xn
i

Hn
i

(25)

~U lð Þ ~Xi
n

� �
is then defined as
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~U lð Þ ~Xi
n

� �
¼
X3

i¼0

Hl�p
i U lð Þ

i
d lð ÞL0, l sð Þ

ds lð Þ þ
X3

i¼0

Hl�p
i U lð Þ

iþ1
d lð ÞL0, l sð Þ

ds lð Þ (26)

for l ¼ 0, 1, 2, 3 to give the interpolated values of ~U and the first three consecutive derivatives

on the new subinterval ~X
n
i ;

~Xn
iþ1

h i
. In order to compute the approximations of U at the next

time step t ¼ tnþ1 denoted by Un
i

� �Nþ1
i¼1 , the values of the new mesh ~X

n
i

n oNþ1

i¼1
and the updated

approximations ~U
n
i

n oNþ1

i¼1
are used in a septic Hermite collocation numerical scheme. The new

approximations Unþ1
i

� �Nþ1
i¼1 and the new mesh ~X

nþ1
i

n oNþ1

i¼1
become the starting conditions for

repeating the whole adaptive process.

7. Numerical results

Consider the KSe

∂u
∂t

þ u
∂u
∂x

þ ∂2u
∂x2

þ ∂4u
∂x4

¼ 0, t > 0 (27)

in the domain �30; 30½ �, t > 0 with boundary conditions

u �30; tð Þ ¼ σ, ux �30; tð Þ ¼ β (28)

u 30; tð Þ ¼ ω, ux 30; tð Þ ¼ ζ (29)

Where σ, β,ω and ζ are obtained from the exact solution

u x; tð Þ ¼ cþ 15
19

ffiffiffiffiffi
11
19

r
�9 tanh3 k x� ct� x0ð Þð Þ þ 11 tanh k x� ct� x0ð Þð Þ� �

(30)

With c ¼ 0:1, x0 ¼ �12 and k ¼ 1
2

ffiffiffiffi
11
19

q
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Figures 1 and 2 show the behaviour of the numerical solution and the absolute error, respec-
tively of the KSe equation on a stationary mesh using Hermite collocation method at t ¼ 4 with
N ¼ 100 and δt ¼ 0:001. In Figure 1, one observes that the numerical solution tracks the exact
solution with the absolute error variation as shown in Figure 2.

Figure 3 shows the solution obtained by the collocation method on a stationary mesh for time
t ¼ 0, 1, 2, 3, 4. The movement of the solution is from left to right as time increases and the
solution tracks the exact solution with no oscillations. One also observes that the concentration
of mesh points is higher in the flatter regions of the solution profile in comparison to the
concentration in the steeper region.
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Figure 1. Hermite collocation method, uniform mesh, numerical solution behaviour of KSe at t ¼ 4 with N ¼ 100 and
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Figure 2. Hermite collocation method, uniform mesh, absolute error in numerical solution of KSe at t ¼ 4, N ¼ 100 and
δt ¼ 0:001.
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Figures 1 and 2 show the behaviour of the numerical solution and the absolute error, respec-
tively of the KSe equation on a stationary mesh using Hermite collocation method at t ¼ 4 with
N ¼ 100 and δt ¼ 0:001. In Figure 1, one observes that the numerical solution tracks the exact
solution with the absolute error variation as shown in Figure 2.

Figure 3 shows the solution obtained by the collocation method on a stationary mesh for time
t ¼ 0, 1, 2, 3, 4. The movement of the solution is from left to right as time increases and the
solution tracks the exact solution with no oscillations. One also observes that the concentration
of mesh points is higher in the flatter regions of the solution profile in comparison to the
concentration in the steeper region.
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Figure 1. Hermite collocation method, uniform mesh, numerical solution behaviour of KSe at t ¼ 4 with N ¼ 100 and
δt ¼ 0:001.
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Figure 2. Hermite collocation method, uniform mesh, absolute error in numerical solution of KSe at t ¼ 4, N ¼ 100 and
δt ¼ 0:001.
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Figures 4 and 5 show the numerical solution profile and the behaviour of the maximum
absolute error, respectively at t ¼ 4 with N ¼ 100, δt ¼ 0:001 and α ¼ 8 on an adaptive mesh.
In Figure 4, one observes that the numerical solution is able to track the exact solution and the
distribution of mesh points is almost equal along the solution profile which enables resolution
of the solution with minimum errors.
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Figure 3. Hermite collocation method, stationary mesh, numerical solution behaviour of KSe problem with N ¼ 100,
δt ¼ 0:001 up to final time T ¼ 4:
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Figure 4. Hermite collocation method, non-uniform mesh, numerical solution behaviour of KSe problem at t ¼ 4 with
N ¼ 100, δt ¼ 0:001, τ ¼ 2� 10�2 and α ¼ 8.
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Figure 6 shows the numerical solution profiles produced by the adaptive collocation method
for time t ¼ 0, 1, 2, 3, 4. One observes that the solution moves from left to right as time pro-
gresses. The mesh points at different times keep on tracking the solution profile and maintain
an almost equal distribution along the profile up to final time T ¼ 4. Figure 7 shows the paths
taken by the mesh points in tracking the solution profile. In Table 1, the infinity norm error for
an adaptive collocation method is calculated and results are compared with the method in [13].
Results show improvements in the maximum point wise errors when an adaptive Hermite
collocation method is used.
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Figure 5. Hermite collocation method, non-uniformmesh, absolute error in numerical solution of KSe at t ¼ 100, δt ¼ 0:001,
τ ¼ 2� 10�2 and α ¼ 8.
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Figure 6. Hermite collocation method, adaptive mesh, numerical solution behaviour of KSe up to final time T ¼ 4 for
N ¼ 100, δt ¼ 0:001, τ ¼ 2� 10�2 and α ¼ 8.
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8. Conclusions

The KSe is solved using an adaptive mesh method with discretization in the spatial domain
done using seventh order Hermite basis functions. Numerical results show that Hermite
collocation method on a non-uniform adaptive mesh is able to improve the accuracy of the
numerical solution of the KSe. The method is able to keep track of the region of rapid solution
variation in the KSe, which is one of the desired properties of an adaptive mesh method.
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Figure 7. Hermite collocation method, mesh trajectories of KSe equation up to final time T ¼ 4 with N ¼ 100, δt ¼ 0:001,
τ ¼ 2� 10�2 and α ¼ 8.

Time Hermite collocation Method in [19]

0.5 9:0� 10�4 1:03619� 10�3

1 1:4� 10�3 1:63762� 10�3

1.5 1:9� 10�3 2:07273� 10�3

2 1:7� 10�3 2:48375� 10�3

2.5 2:0� 10�3 2:79434� 10�3

3 2:1� 10�3 3:00439� 10�3

3.5 2:1� 10�3 3:16038� 10�3

4 2:1� 10�3 3:43704� 10�3

Table 1. Comparison of maximum pointwise errors in the numerical solution of the KSe on an adaptive mesh at different
times with δt ¼ 0:001 and N ¼ 100.
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Abstract

During landfall on the southeast coast of China, tropical cyclone (TC) Fung-Wong in 
the year 2008 caused torrential rainfall and flooding. In order to clarify the mechanism 
for the rainfall, a series of numerical simulations were conducted in this study using 
the National Center for Atmospheric Research (NCAR), Weather Research & Forecasting 
(WRF) mesoscale numerical model with three-nested domains and a highest horizontal 
resolution of 600 m. Numerical analysis was then performed based on the simulations. 
It is found that, during the evolution of heavy rainfall, quasi-frontal systems are fre-
quently produced at the boundary of TC inflow and convective updrafts, which is more 
evident at the region of TC inner core and spiral rain band. The existence of energy cas-
cading, featured by the energy transition among TC-scale inflow and convective cells, is 
also identified at the quasi-frontal region. These multiscale processes of Fung-Wong are 
further clarified by the analysis of helicity, which are believed to be responsible for the 
genesis and development of deep convection and rapid accumulation of rainfall. In the 
quasi-frontal region, numerical analysis further indicates the existence of intensive low-
level wind shear as well as vertically turning of low level jet (LLJ), implying the contribu-
tion from Kelvin-Helmholtz instability (KHI).

Keywords: tropical cyclone, rainfall, landfall, helicity, CAPE

1. Introduction

Tropical cyclones (TCs) are the most devastating weather systems. Along with the direct threat 
from the strong winds, hazards are often brought by the torrential rainfall that causes flood 
and landslide. Previous studies on TC rainfall either focused on the structure and dynamics of 
secondary eyewalls [1] and principal rainbands [2] within the inner core or mesoscale effects 
such as orographically forced ascent (upslope) and coastal front in predecessor rain events 
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(PREs) [3]. In addition to that of TCs, suggested rainfall genesis mechanisms also include 
the convergence of moist outflows from previous cellular convection [4], squall line at the 
advance of moist cold pools [5], unorganized thermodynamic-generated tropical deep con-
vections [6], etc. Among them, cold pools which are areas of evaporatively cooled downdraft 
air that spread out beneath precipitating cloud [7] have been frequently investigated because 
of its prominent role in growth of convection. In TCs, although cold pools are less common 
due to the relative lack of dry air in comparison to that in midlatitudes, they are known to 
be the primary mechanism for the sustenance of multicell thunderstorms and convective 
lines [8]. While TC outer rainband formation has been attributed to a variety of processes, 
including outward propagating inertia-gravity waves [9] and vortex-Rossby waves [10], it 
seems plausible that the cold pool played a contributory role in the intensification of TC outer 
rainband. Numerous TC studies [11–13] have utilized coastal buoys, instrumental towers, 
and aircraft data to document outer rainband and cold pool structure. When observed, cold 
pools are often associated with outer rainbands or bands adjacent to inward-spiraling dry 
air intrusions. These studies also noted decreasing storm-relative inflow, decreasing equiva-
lent potential temperatures, and locally enhanced wind speeds in the boundary layer beneath 
the rainbands. Moreover, while a necessary condition for cold pool formation may be the 
presence of midlevel dry air, cold pool intensity appears more related to factors other than 
the degree of midlevel dryness. While affecting the growth of rainfall, cold pools are some-
times associated with cold fronts and cold air damming (CAD) [14]. Atallah and Bosart [15] 
examined aspects of the precipitation distribution of hurricane Floyd (1999) through synoptic 
and modeling analyses and found that precipitation ahead of Floyd’s track was generally 
enhanced along the cold front from approximately 12 h before the time of storm passage. CAD 
occurs most often on the eastern side of approximately north-south-oriented mountains, as 
cold air moving toward the eastern slopes has insufficient kinetic energy to go over the barrier 
and is then forced to decelerate. The genesis of cold pool can be associated with extratropical 
transition (ET) [16–18], which occurs from a warm-core to cold-core cyclone and gains extra-
tropical cyclone characteristics. Snodgrass et al. [19] found that the heaviest convective rainfall 
occurred in mesoscale arcs around cloud-free areas, reminiscent of outflow boundaries of 
cold pools created by earlier convection. However, different with the mechanism of cold pool, 
Tompkins [6] shows that air moistened by evaporating precipitation can be pushed outward 
by a drier downdraft driven by precipitation and trigger new convection when the surface air 
becomes sufficiently buoyant.

As the development of TC rainfall becomes quite complicated during landfall due to the inter-
action with midlatitude atmospheric systems and the topographical effect, these complicated 
processes were usually investigated with advanced atmospheric numerical models based on a 
series of dynamic and thermodynamic equations. TC rainfall mechanism can then be further 
understood with the assistance of dynamic or thermodynamic diagnosis. In this study, the 
mechanism of heavy rainfall associated with the frontal structure and cold pool during the 
landfall process of TC Fung-Wong (2008) is preliminarily examined based on the numerical 
simulations and numerical analysis with the special use of multiscale conception of helicity 
[20, 21]. The original definition of helicity [22] has been frequently employed to investigate 
the structure of convections and TCs [23–25]. Wu et al. [26], by investigating the relationship 
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between helicity and nonlinear energy transition with a helicity budget of the mean and distur-
bance flows, indicated that the helical mean flow transfers helicity to the convective eddies and 
both the buoyant effect and mean-eddy exchange are important sources for disturbance. It is 
further indicated that the disturbances gain helicity from mean flows and the buoyancy effect 
amplifies it. Fei and Tan [24] reported that weak helicity is favorable for the energy cascading 
from large scale to convective scale at the early stage of a convective storm. Hendricks et al. 
[25] and Montgomery et al. [27] argued that vertical hot towers (VHTs), helical by definition 
because of coincident updrafts and vertical vorticity, were the preferred mode of convection in 
TCs. Molinari and Vollaro [28] also identified convective cells, generally favored downshear, 
would be stronger and longer-lived as a result of larger helicity. Although it is widely accepted 
that intensive helicity favors the genesis of supercell and TC intensification, it is still an open 
question of the connection between helicity and the evolution of TC heavy rainfall. In this 
regard, the mechanism for the rapid growth of TC Fung-Wong’s heavy rainfall is examined 
based on the understanding of Fung-Wong’s multiscale processes analyzed with helicity.

TC Fung-Wong, as the first strong typhoon made landfall over China mainland in 2008, was 
characterized by torrential rainfall, large size, and wide-range influence. It was developed 
at 06 UTC, 25 July 2008, over the Northwest Pacific and then intensified into a typhoon at 
09 UTC, 26 July. From the morning on 27 July, it started to move northwest and approached 
the east coast of Taiwan Island. Fung-Wong intensified into a severe typhoon at 12 UTC, 
27 July. As shown on the FY2C satellite imagery, the cloud distribution of Fung-Wong was 
significantly asymmetric before the occurrence of landfall. More clouds were clustered to the 
southwest of TC. A clear eye formed before it reached Taiwan. At 22 UTC, 27 July, Fung-
Wong landed on Hualian, Taiwan, with the maximal wind speed of 45 m s−1 near its center. 
As Fung-Wong passed over Taiwan, heaviest rainfall of 818 mm was recorded near Tai-Ping 
Mountain. Fung-Wong landed again on Donghan, Fujian province, at 14 UTC, 28 July, with 
the estimated maximal wind speed of 33 m s−1 near its center. At that time, NASA’s CloudSat 
satellite’s Cloud Profiling Radar showed that the cloud top of Fung-Wong reached more 
than 15 km with estimated precipitation rate exceeding 30 mm h−1 on 28 Jul. After the second 
landfall, it was quickly reduced to a severe tropical storm, and its eyewall and spiral struc-
ture were significantly vanished. However, during its stay inland for about 52 h, it produced 
heavy rainfall in Zhejiang and Fujian province, leading to two rivers flooding, with an esti-
mated total loss of CNY 3.37 billion.

To clarify the mechanism for heavy rainfall, it is helpful to carry out high-resolution simu-
lation with mesoscale nonhydrostatic microphysical models. Recent numerical experiments 
using the Weather Research & Forecasting (WRF) model have shown some promise in fore-
casting TCs near landfall [29]. In this study, numerical experiments were designed and per-
formed with the multiply-nested WRF model. With an inner resolution of 600 m, it provides 
the possibility for answering questions on the role of the energy cascading on the rainfall 
development of TCs.

The methods and data are described in Section 2. The numerical simulations on track, intensity, 
and rainfall of Fung-Wong are verified in Section 3. The numerical analysis on the multiscale 
mechanism of the heavy rainfall is conducted in Section 4. Section 5 is the summary.
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processes were usually investigated with advanced atmospheric numerical models based on a 
series of dynamic and thermodynamic equations. TC rainfall mechanism can then be further 
understood with the assistance of dynamic or thermodynamic diagnosis. In this study, the 
mechanism of heavy rainfall associated with the frontal structure and cold pool during the 
landfall process of TC Fung-Wong (2008) is preliminarily examined based on the numerical 
simulations and numerical analysis with the special use of multiscale conception of helicity 
[20, 21]. The original definition of helicity [22] has been frequently employed to investigate 
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09 UTC, 26 July. From the morning on 27 July, it started to move northwest and approached 
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significantly asymmetric before the occurrence of landfall. More clouds were clustered to the 
southwest of TC. A clear eye formed before it reached Taiwan. At 22 UTC, 27 July, Fung-
Wong landed on Hualian, Taiwan, with the maximal wind speed of 45 m s−1 near its center. 
As Fung-Wong passed over Taiwan, heaviest rainfall of 818 mm was recorded near Tai-Ping 
Mountain. Fung-Wong landed again on Donghan, Fujian province, at 14 UTC, 28 July, with 
the estimated maximal wind speed of 33 m s−1 near its center. At that time, NASA’s CloudSat 
satellite’s Cloud Profiling Radar showed that the cloud top of Fung-Wong reached more 
than 15 km with estimated precipitation rate exceeding 30 mm h−1 on 28 Jul. After the second 
landfall, it was quickly reduced to a severe tropical storm, and its eyewall and spiral struc-
ture were significantly vanished. However, during its stay inland for about 52 h, it produced 
heavy rainfall in Zhejiang and Fujian province, leading to two rivers flooding, with an esti-
mated total loss of CNY 3.37 billion.

To clarify the mechanism for heavy rainfall, it is helpful to carry out high-resolution simu-
lation with mesoscale nonhydrostatic microphysical models. Recent numerical experiments 
using the Weather Research & Forecasting (WRF) model have shown some promise in fore-
casting TCs near landfall [29]. In this study, numerical experiments were designed and per-
formed with the multiply-nested WRF model. With an inner resolution of 600 m, it provides 
the possibility for answering questions on the role of the energy cascading on the rainfall 
development of TCs.

The methods and data are described in Section 2. The numerical simulations on track, intensity, 
and rainfall of Fung-Wong are verified in Section 3. The numerical analysis on the multiscale 
mechanism of the heavy rainfall is conducted in Section 4. Section 5 is the summary.
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2. Methodology

2.1. Numerical experiments

In order to clarify the multiscale mechanism for heavy rainfall, high-resolution numerical exper-
iments were conducted with the NCAR/WRF mesoscale model [29]. The triply nested model 
domains (Figure 1a), i.e., the outermost domain (D1), the inner domain (D2), and the innermost 
domain (D3), are designed with horizontal spacing of 15 km, 3 km, and 600 m, respectively, with 
domain sizes of  281 × 281 ,  721 × 721 , and  721 × 721  grid points, respectively. D1, which covers the 
northwest Pacific, eastern Tibetan plateau, Bengal Bay, and China, is employed to examine the 
large-scale environmental flow. D2, which covers east China, is one-way nested within D1 and is 
used to examine the major landfall processes. D3, which is fixed and one-way nested within D2, 
is used to analyze the detailed structure of rainfall system. A total of 37 vertical sigma levels are 
used for all the domains. The Kain-Fritsch cumulus parameterization scheme [30] with modi-
fication of convection trigger function [31] is used in D1. However, in D2 and D3, no cumulus 
parameterization scheme is considered to avoid its ambiguous application in high-resolution 
simulation. The WRF single-moment 6 (WSM6) class multiphase cloud scheme is employed in 
all domains to represent cloud physics. The Yonsei University (YSU) planetary boundary layer 
(PBL) scheme [32], using counter-gradient terms to represent nonlocal fluxes, is considered for 
PBL parameterization in D1 and D2. The YSU PBL scheme [33, 34] explicitly treats the entrain-
ment layer at the PBL top with the surface buoyancy flux in line with results from large-eddy 
models. The PBL top is defined using a critical bulk Richardson number of zero. The turbulent 
kinetic energy (TKE) diffusion scheme is employed in D3 to deal with the PBL physics [35]. 
Furthermore, the rapid radiative transfer model (RRTM) scheme [36] and Dudhia scheme [37] 
are used for the parameterization of longwave and shortwave radiation, respectively.

Figure 1. (a) The triply nested model domains for numerical simulation (D1, the outermost domain; D2, the inner 
domain; D3, the innermost domain) and (b) the phases of model integration for each model domain.
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Figure 1b indicates the phases for model integration in each domain. For domain D1, the time 
between 12UTC, 27 July, and 12UTC, 29 July, is chosen for an overall description of Fung-
Wong’s track and rainfall during landfall. In order to examine the detailed evolution of TC 
structure and rainfall, the time between 02UTC 28 and 12UTC 29 is selected for D2, and the time 
between 02UTC 28 and 12UTC 28 is selected for D3. The background field of D1 is interpolated 
from the analysis of NCEP Global Forecast System (GFS) whose horizontal resolution is 0.5°. 
The vortex initialization scheme developed by Ma and Tan [38] is employed to produce the 
initial analysis for TC simulation. In this scheme, sea level pressure (SLP) derived from satellite 
sea surface wind is used to generate the initial TC circulation. To ensure a reasonable simula-
tion of Fung-Wong’s track and intensity, two numerical experiments, e.g., Expt. CTRL (the one 
without vortex initialization) and Expt. VIRV (the one with vortex initialization), are conducted. 
The 3B-42 gridded rainfall datasets with the resolution of 0.25 × 0.25°, derived from the Tropical 
Rainfall Measuring Mission (TRMM), are employed for verification on rainfall simulation.

2.2. The multiscale conception of helicity

Helicity ( H =   V ⇀   ⋅   ω ⇀   ) is originally defined as the scalar product of velocity (   V 
⇀

   ) and vorticity 
vector (   ω ⇀   = ∇ ∧  V ⇀   ), which represents the rotational characteristics in the motion direction and 
the twining structure of the vortex tubes [39]. Subsequent researches [20, 21] further examined 
its multiscale conception.

According to Tan and Wu [20], for large-scale motion, helicity (hereafter   H  
1
   ) can be approxi-

mated as

   H  1   ≈ − u (  ∂ v ___ ∂ z  )  + v (  ∂ u ___ ∂ z  )   (1)

Based on the assumption of thermal wind balance,   H  1    can be further expressed as

   H  1   ≈ − u   ∂ θ ___ ∂ x   + v   ∂ θ ___ ∂ y   = −   V ⇀   ⋅ ∇ θ  (2)

where  θ  is the potential temperature.

Clearly, Eq. (2) indicates the equality between helicity and temperature advection for large-
scale flow, e.g., helicity should be positive (negative) for warm (cold) air advection. Therefore, 
very large gradient of helicity is associated with frontogenesis.

For small-scale motion, helicity (hereafter   H  2   ) can be rewritten as

   H  2   ≈ u   ∂ w ___ ∂ y   − v   ∂ w ___ ∂ x   + w (  ∂ v ___ ∂ x   −   ∂ u ___ ∂ y  )   (3)

Assuming  α = α (z)   the angle between velocity vector    v ⇀    (   |  v ⇀  |    2  =  u   2  +  v   2  ) and its component  
u  (i.e.,  tan α =   v __ u   ), then

   H  1   ≈  v   2    ∂ ___ ∂ z   (  u __ v  )  = −   |  v ⇀  |    2    ∂ α ___ ∂ z    (4)
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kinetic energy (TKE) diffusion scheme is employed in D3 to deal with the PBL physics [35]. 
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Figure 1b indicates the phases for model integration in each domain. For domain D1, the time 
between 12UTC, 27 July, and 12UTC, 29 July, is chosen for an overall description of Fung-
Wong’s track and rainfall during landfall. In order to examine the detailed evolution of TC 
structure and rainfall, the time between 02UTC 28 and 12UTC 29 is selected for D2, and the time 
between 02UTC 28 and 12UTC 28 is selected for D3. The background field of D1 is interpolated 
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The vortex initialization scheme developed by Ma and Tan [38] is employed to produce the 
initial analysis for TC simulation. In this scheme, sea level pressure (SLP) derived from satellite 
sea surface wind is used to generate the initial TC circulation. To ensure a reasonable simula-
tion of Fung-Wong’s track and intensity, two numerical experiments, e.g., Expt. CTRL (the one 
without vortex initialization) and Expt. VIRV (the one with vortex initialization), are conducted. 
The 3B-42 gridded rainfall datasets with the resolution of 0.25 × 0.25°, derived from the Tropical 
Rainfall Measuring Mission (TRMM), are employed for verification on rainfall simulation.
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Clearly, Eq. (2) indicates the equality between helicity and temperature advection for large-
scale flow, e.g., helicity should be positive (negative) for warm (cold) air advection. Therefore, 
very large gradient of helicity is associated with frontogenesis.
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The multiscale conception of helicity discussed above is fundamental for the understanding 
of energy cascade, which occurs either by Taylor’s mechanism of stretching and spin-up of 
small-scale vortices due to large-scale strain or twisting of small-scale vortex filaments due to 
a large-scale screw.

3. Numerical experiments on TC landfall process and evolution of 
rainfall

The landfall process of Fung-Wong is simulated based on the experiments in Section 2. 
Statistical variables, including the errors of track and intensity, are calculated. The result indi-
cates that the errors in the experiment VIRV are generally less than CTRL. For example, the 
errors of 24 h simulated track for the experiments CTRL and VIRV are 79 and 54 km, respec-
tively. The improvement in TC intensity is about 27.6% in the simulation of maximum wind 
speed (MWS) and 16.4% in minimum sea level pressure (MSLP), respectively. Because of the 
“spin-up” process of numerical simulation, both the experiments exhibit smaller MWS and 
MSLP errors at 24 h than 12 h. However, the difference of MSLP between VIRV and CTRL 
increases with the model integration, indicating that the simulation of MSLP is sensitive to 
the initial condition. For the rainfall simulation (Figure 2), the rainfall pattern in VIRV agrees 
with the TRMM observation. In this regard, the results from VIRV simulations are used for the 
analysis of rainfall mechanism in the subsequent section.

Figure 2. The accumulated rainfall (mm) during 12UTC 27–12UTC 29, Jul 2009, from TRMM 3B42 (a) and numerical 
simulation from D1 (b).
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4. Numerical analysis on the multiscale systems associated with the 
torrential rainfall

4.1. Quasi-frontal structure viewed from helicity, low-level jet (LLJ), and cold pool

Numerous studies have highlighted the role of preexisting boundaries intersecting the primary 
convective system where cyclonic-only mesovortices were observed to form at the intersection 
point [40, 41]. More detailed analysis also indicated shearing instability [42] as the genesis 
mechanism for cyclonic-only low-level vortices formed along mesoscale boundaries such as 
gust fronts [43, 44]. These mesoscale boundaries are usually associated with frontal structures, 
which are required to be examined to clarify the mechanism of heavy rainfall. While it has long 
been recognized that the low-level jet (LLJ) is an efficient moisture transport mechanism [45] 
and a source of large-scale destabilization through warm advection [46, 47], the frontogeneti-
cal character of the boundary of LLJ can be important for the genesis of MCSs [48]. Therefore, 
the frontogenesis process similar to that of Augustine and Caracena [49] is investigated here 
to understand the characteristics of boundaries associated with MCSs. In particular, a time-
averaged composite vertical cross section at 6 h preceding the mature stage shows that the 
LLJ in the plane of the cross section ascending the northeastward sloping frontal surface. Trier 
et al. [50] argued that long-lived MCSs are aided by the frontogenetical lifting of air by the LLJ, 
which produces a zone of elevated conditional instability favorable for rainfall genesis.

Through the analysis on the evolution of   H  1    during TC landfall, this study also identifies that rela-
tive warm and moist LLJs associated with TC inflow frequently appear and move toward the TC 
core region and finally meet with the strong cold convective downdrafts which was induced by 
the convective detrainment from the middle-to-upper troposphere (PBL, Figure 3). As a result, 
quasi-frontal structure is generated at the boundary between the warm LLJ and cold down-
draft. The LLJ intensifies as the front gradually sharpens. The large curvature near the quasi-
front should serve to accelerate the buoyant air and the growth of convection. According to Eq. 
(4), the vertical shear of the angle between vector    v ⇀    and  u  component is equivalent to the ratio 
between helicity (  H  1   ) and the square of total horizontal velocity. In this regard, positive helicity 
should be generated when the LLJ turns clockwise with height. It is interesting to find that before 
the occurrence of heavy rainfall, the shear vector of LLJ generally turns counterclockwise with 
height (   ∂ α ___ ∂ z    is positive). This relation indicates the existence of negative helicity and cold advec-
tion. However, as heavy rainfall occurs, the shear vector turns clockwise with height, showing a 
positive helicity. It is also noticed that high potential vorticity (PV, >2.5 PVU) associated with the 
mesoscale disturbances mainly occupies 700–950 hPa before the genesis of heavy rainfall. These 
PV disturbances then grow rapidly and extend to the whole troposphere, in companion with the 
genesis of heavy rainfall. Moreover, to evaluate the influence of the frontogenetical forcing on 
the growth of heavy rainfall, the Sawyer-Eliassen equation is further calculated. It is found that 
evident frontogenetical forcing (stream function value is −10.1 hPa m s−1) is formed at the quasi-
frontal area to the southeastern part of heavy rainfall. The forcing is intensified (−12.2 hPa m s−1) 
and extended from 400 hPa to a lower level (700 hPa) at the peak time of rainfall (04UTC 28 Jul).
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The multiscale conception of helicity discussed above is fundamental for the understanding 
of energy cascade, which occurs either by Taylor’s mechanism of stretching and spin-up of 
small-scale vortices due to large-scale strain or twisting of small-scale vortex filaments due to 
a large-scale screw.

3. Numerical experiments on TC landfall process and evolution of 
rainfall

The landfall process of Fung-Wong is simulated based on the experiments in Section 2. 
Statistical variables, including the errors of track and intensity, are calculated. The result indi-
cates that the errors in the experiment VIRV are generally less than CTRL. For example, the 
errors of 24 h simulated track for the experiments CTRL and VIRV are 79 and 54 km, respec-
tively. The improvement in TC intensity is about 27.6% in the simulation of maximum wind 
speed (MWS) and 16.4% in minimum sea level pressure (MSLP), respectively. Because of the 
“spin-up” process of numerical simulation, both the experiments exhibit smaller MWS and 
MSLP errors at 24 h than 12 h. However, the difference of MSLP between VIRV and CTRL 
increases with the model integration, indicating that the simulation of MSLP is sensitive to 
the initial condition. For the rainfall simulation (Figure 2), the rainfall pattern in VIRV agrees 
with the TRMM observation. In this regard, the results from VIRV simulations are used for the 
analysis of rainfall mechanism in the subsequent section.

Figure 2. The accumulated rainfall (mm) during 12UTC 27–12UTC 29, Jul 2009, from TRMM 3B42 (a) and numerical 
simulation from D1 (b).
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4. Numerical analysis on the multiscale systems associated with the 
torrential rainfall

4.1. Quasi-frontal structure viewed from helicity, low-level jet (LLJ), and cold pool

Numerous studies have highlighted the role of preexisting boundaries intersecting the primary 
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point [40, 41]. More detailed analysis also indicated shearing instability [42] as the genesis 
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gust fronts [43, 44]. These mesoscale boundaries are usually associated with frontal structures, 
which are required to be examined to clarify the mechanism of heavy rainfall. While it has long 
been recognized that the low-level jet (LLJ) is an efficient moisture transport mechanism [45] 
and a source of large-scale destabilization through warm advection [46, 47], the frontogeneti-
cal character of the boundary of LLJ can be important for the genesis of MCSs [48]. Therefore, 
the frontogenesis process similar to that of Augustine and Caracena [49] is investigated here 
to understand the characteristics of boundaries associated with MCSs. In particular, a time-
averaged composite vertical cross section at 6 h preceding the mature stage shows that the 
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mesoscale disturbances mainly occupies 700–950 hPa before the genesis of heavy rainfall. These 
PV disturbances then grow rapidly and extend to the whole troposphere, in companion with the 
genesis of heavy rainfall. Moreover, to evaluate the influence of the frontogenetical forcing on 
the growth of heavy rainfall, the Sawyer-Eliassen equation is further calculated. It is found that 
evident frontogenetical forcing (stream function value is −10.1 hPa m s−1) is formed at the quasi-
frontal area to the southeastern part of heavy rainfall. The forcing is intensified (−12.2 hPa m s−1) 
and extended from 400 hPa to a lower level (700 hPa) at the peak time of rainfall (04UTC 28 Jul).
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Studies on tropical convection [51–53] suggested that convective rainfall rate is directly related 
to cold pool intensity. A number of idealized numerical simulations of tropical [54] and mid-
latitude [55, 56] convection also have shown that cold pool may intensify when the low- to mid-
level moisture is drier. Here, this study explores such relationship based on the simulation for 
Fung-Wong’s inner rainbands where the most intensive rainfall appears. It is found that maxi-
mum Δθ deficits ranged from 1 to 5 K with a mean value of 2.7 K, while maximum Δθe deficits 
ranged from 1 to 14 K with a mean of 6.2 K. Thus, Fung-Wong’s cold pools which lead to the 
heavy rainfall was equally intense as cold pools observed in other tropical storms. Moreover, 
in the cross-band direction, convergence of strong storm-relative inflow along the cold pool 
leading edge was coincident with a modest meso-high pressure anomaly, while inflow diver-
gence prevailed through the collocated rainfall and cold pool maxima (figure is not given). 
Such structure is qualitatively consistent with many prior studies of TC outer rainbands and 
their associated cold pools [11, 12, 53]. In the along-band direction, several cold pools show 
signs of upband expansion while being advected downband by the prevailing cyclonic flow.

Meanwhile, the simulated wind profiles at the site of the most intensive cold pool exhibited 
easterly surface winds that veered with height, with 0–6 km shear vectors oriented toward 
the north at ~13 m s−1. The strength and orientation (primarily crossband) of the 0–3 km shear 
vectors were marginally consistent with expectations for intense, long-lived rainbands [57]. 
Simulations further indicate a shallow moist layer near the surface (below ~1 km), drier air at 
mid-levels (~2–6 km), and moister air aloft. The midlevel RH minima approached 30–35% near 
3–5 km AGL.

According to previous studies, the physical mechanisms for the genesis of this kind of 
cold pool include (1) advection of cooler and drier air from over land, (2) enhancement of 
rainband convection over land leading to mesoscale saturated downdrafts of cool and dry 

Figure 3. Schematic diagram of the multiscale quasi-frontal structure that results in the heavy rainfall.
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middle-level air, (3) enhanced turbulent entrainment of dry air from above the top of PBL, 
and (4) loss of the oceanic heat and moisture source, causing air to cool dry adiabatically 
while flowing toward the center. In this study, the first mechanism seems the most plausible 
if one examines the temperature advection disclosed by large-scale helicity. In contrast, the 
second mechanism seems not considerable, as the cold air is not covered by the rainband 
as seen from the FY2C cloud image. Based on the analysis of the simulations, the other two 
mechanisms should have played an additional indirect role in inducing the cold flow in the 
middle level.

4.2. K-H instability associated with the multiscale systems

According to Romine and Wilhelmson [58], the Kelvin-Helmholtz instability is one of the 
principle mechanisms that result in the genesis of spiral rain band. Based on radar data, 
Weckwerth and Wakimoto [59] examined a mesoscale front in association with the outflow 
produced by the downdraft of a supercell. They found that the K-H instability and meso-
scale convective cell develop at the top of the edge of front. Detailed investigation on the 
important features of the quasi-frontal structure, e.g., vertical wind shear, local Richardson 
number (less than 1/4), and the distribution of wave structure, which is parallel to the gust-
front head and perpendicular to the low-level shear vector, shows high similarity with the 
characteristics of K-H waves from supercells [59] and hurricanes [58]. It is also noticed that 
the quasi-frontal region is characterized by vertical vorticity maxima. According to Atkins 
and Laurent [60], as the vorticity near the front can be amplified by updraft through stretch-
ing, the vorticity maxima provides favorable locations for the growth of instability and 
convection. These convective cells subsequently propagated back relative to the outflow 
boundary while they preferentially existed along the updraft side of the K-H waves. The 
spacing of the cells at the leading edge of the outflow boundary, particularly along the 
northern part, is approximately 5 km, which compares well with the wavelength of the K-H 
waves. It also indicates that the static instability increases and ultimately triggered upward 
motion at the front. As a result, horizontal shear of vertical motion across the front devel-
ops and contributes to the growth of helicity and helical disturbance. It is also recognized 
that the intersections between the vortex tubes at the gust-front head are characterized by 
vertical vorticity maxima. In addition to the K-H instability, this study also calculated the 
Brunt-Vaisala frequency atop the radial inflow layer at the spiral rainband and the decrease 
of Scorer number [61] with height below the cold flow, which indicates the presence of grav-
ity wave with the wave period of 220 s. It thus may mix the dynamic-unstable sheared layer 
and contribute to the accumulation of rainfall [58].

4.2.1. Numerical analysis on energy cascading

The vertical wind profile averaged at the quasi-frontal region is further investigated. It is 
found that the profile is characterized with clockwise-turning and increased curvature of 
hodograph through a deep layer. According to Wu et al. [26], the increased curvature of hodo-
graph is beneficial to the development of small-scale convection due to the energy cascading 
from the basic flow. In this regard, the process of energy cascading is further examined based 
on the numerical simulation results.
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middle-level air, (3) enhanced turbulent entrainment of dry air from above the top of PBL, 
and (4) loss of the oceanic heat and moisture source, causing air to cool dry adiabatically 
while flowing toward the center. In this study, the first mechanism seems the most plausible 
if one examines the temperature advection disclosed by large-scale helicity. In contrast, the 
second mechanism seems not considerable, as the cold air is not covered by the rainband 
as seen from the FY2C cloud image. Based on the analysis of the simulations, the other two 
mechanisms should have played an additional indirect role in inducing the cold flow in the 
middle level.

4.2. K-H instability associated with the multiscale systems

According to Romine and Wilhelmson [58], the Kelvin-Helmholtz instability is one of the 
principle mechanisms that result in the genesis of spiral rain band. Based on radar data, 
Weckwerth and Wakimoto [59] examined a mesoscale front in association with the outflow 
produced by the downdraft of a supercell. They found that the K-H instability and meso-
scale convective cell develop at the top of the edge of front. Detailed investigation on the 
important features of the quasi-frontal structure, e.g., vertical wind shear, local Richardson 
number (less than 1/4), and the distribution of wave structure, which is parallel to the gust-
front head and perpendicular to the low-level shear vector, shows high similarity with the 
characteristics of K-H waves from supercells [59] and hurricanes [58]. It is also noticed that 
the quasi-frontal region is characterized by vertical vorticity maxima. According to Atkins 
and Laurent [60], as the vorticity near the front can be amplified by updraft through stretch-
ing, the vorticity maxima provides favorable locations for the growth of instability and 
convection. These convective cells subsequently propagated back relative to the outflow 
boundary while they preferentially existed along the updraft side of the K-H waves. The 
spacing of the cells at the leading edge of the outflow boundary, particularly along the 
northern part, is approximately 5 km, which compares well with the wavelength of the K-H 
waves. It also indicates that the static instability increases and ultimately triggered upward 
motion at the front. As a result, horizontal shear of vertical motion across the front devel-
ops and contributes to the growth of helicity and helical disturbance. It is also recognized 
that the intersections between the vortex tubes at the gust-front head are characterized by 
vertical vorticity maxima. In addition to the K-H instability, this study also calculated the 
Brunt-Vaisala frequency atop the radial inflow layer at the spiral rainband and the decrease 
of Scorer number [61] with height below the cold flow, which indicates the presence of grav-
ity wave with the wave period of 220 s. It thus may mix the dynamic-unstable sheared layer 
and contribute to the accumulation of rainfall [58].

4.2.1. Numerical analysis on energy cascading

The vertical wind profile averaged at the quasi-frontal region is further investigated. It is 
found that the profile is characterized with clockwise-turning and increased curvature of 
hodograph through a deep layer. According to Wu et al. [26], the increased curvature of hodo-
graph is beneficial to the development of small-scale convection due to the energy cascading 
from the basic flow. In this regard, the process of energy cascading is further examined based 
on the numerical simulation results.
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Using the conception of difference in total energy (DTE), Tan et al. (hereafter T04) [62] exam-
ined the impacts of initial small-scale disturbance on a “surprise” snowstorm through the 
analysis of energy cascading. Similar to the definition of DTE by T04, the total energy ( TE ) is 
defined here by considering kinetic and internal components:

  TE =   1 __ 2   (  U  i,j,k     2  +   V  i,j,k     2  +   kT  i,j,k     2 )   (5)

where  U ,  V , and  T  are horizontal u-wind, v-wind components, and temperature, respectively.  
k =  C  p   /  T  r    (the reference temperature   T  

r
    =287 K). I, j, and k are the numbers of x, y, and σ grid 

points, respectively.

A power spectrum of  TE , averaged in the region of heavy rainfall, is analyzed. Wavenumbers 0, 1, 
and 2 are the TC scales following Krishnamurti et al. [63]. Meanwhile, the scales of the individual 
deep convective clouds reside around the azimuthal wave numbers 20–30. According to Saltzman 
[64], the TC scale is about several hundreds of kilometers, whereas the scale of convection, includ-
ing updrafts and adjacent downdrafts, is only a few kilometers. It shows that a sizeable portion of 
the variance of  TE  is contributed by the first few harmonics (0–4) in the innermost region. The con-
tribution from wavenumbers 3 to 55 (associated with medium- to small-scale processes) accounts 
for less than 10% of total  TE , which agrees with the results from quasi-geostrophic models [65].

To better understand the energy transition during rainfall, this section further examines the 
relation between helicity, the magnitude of which is associated with kinematic energy, and 
CAPE, an indicator of potential energy. Krishnamurti et al. [63], by examining the scale interac-
tion of hurricane inferred from the decomposition of the liquid water mixing ratio fields, found 
that nonlinear interaction of kinetic energy and available potential energy among cloud scales 
and the hurricane scale provide the energy to drive the hurricane. The generation of available 
potential energy and its transformation to kinetic energy takes place directly on the larger 
scales of the hurricane. Their results among hurricane scales and smaller scales show largely 
a cascade of energy, that is, hurricane scales lose energy when they interact with other scales.

The evolution of CAPE and helicity of TC circulation during landfall (12UTC 27–12UTC 29 
July) is investigated. It shows that an approximated negative correlation exists between   H  

1
    and 

CAPE before the occurrence of rainfall, which is mainly featured by the decrease (increase) of 
CAPE (  H  1   ). However after rainfall, the original negative relation is replaced by an approximate 
positive correlation, which decreases simultaneously. The decrease of CAPE should be asso-
ciated with the significantly reduced heat flux from land surface and the large consumption 
of CAPE during the rainfall process. Scatter plot also shows that intensive   H  1    corresponds to 
low CAPE (e.g., CAPE of 3500 J kg−1 vs.   H  1    of 50–150 m2 s−2) during the growth of convection. 
In other words, kinematic energy increases as potential energy is consumed. However, there 
is no clear correlation between CAPE and   H  2   , indicating that the energy from CAPE might 
not directly fuel the growth of small-scale convection. Moreover, over the land,   H  1    is positive 
in more than 66.6% of the rainfall region. The maximum of CAPE is 3500 J kg−1 with   H  1    of 
50–150 m2 s−2. Five percent of   H  1    are greater than 400 m2 s−2, with the biggest of 800 m2 s−2. Over 
land, more than 95% of   H  1    is positive, with   H  1    decreasing with CAPE. Most of the intensive   H  1    
corresponds to CAPE less than 500 J kg−1, while over the ocean, negative   H  1    corresponds to the 
CAPE as low as 1000 J kg−1.
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The nonlinear multiscale transition of energy from basic flow to the process of disturbance 
(  E  

t
   ) can be also represented by   E  t   = −  u   ′   w   ′  ∂  u ̄   / ∂ z −  v   ′   w   ′  ∂  v ̄   / ∂ z  (hereafter WL92) [26]. Here   E  t    

represents the weakening phase of environmental vertical wind shear by convection, during 
which larger-scale instability is eliminated by the small-scale motion. Similar to WL92, this 
study examined the difference of   E  t    produced by D1 and D2. It shows that the   E  t    produced 
by D1 is generally higher than that of D2, with the difference more evident after landfall, and 
the   E  

t
    of D1 rapidly decreases. The amplitude of energy transition in D2 increases persistently 

as the typhoon makes landfall, which might relate to the development of small-scale convec-
tion. It is also noticed that the tendency of   E  

t
    evolution is nearly in positive correlation with   H  2    

(instead of   H  1   ). The distribution of   E  t    is examined before and after the heavy rainfall, during 
which the maximas of   E  t    merged together, in concert with the rainfall intensification.

Detailed analysis also shows that the largest value of the generation of available potential 
energy (CAPE) and its conversion to kinetic energy occurs at the region of the heaviest rain 
in the simulation of TC Fung-Wong. The values decrease rapidly from TC core region to the 
outer radial belts. The cloud scales essentially extract energy from the TC scale (azimuthally 
averaged wavenumber 0) system. It implies that the TC scale is barotropically unstable to the 
cloud scales (wavenumbers 1 and 2). This is essentially a cascading process where energy is 
conveyed from the larger to the smaller scales. The generation of available potential energy 
and its transformation to kinetic energy takes place directly on the larger scales of TC Fung-
Wong. Using a spectral closure calculation, Andre and Lesieur [66] showed that transport of 
energy through the inertial range is sensitive to the presence of helicity. In the calculations of 
this study, the time evolution of the energy spectrum toward the k−5/3 form is slowed down 
when helicity is injected at small wavenumbers. It thus supports the argument by Tsinober 
and Levich [67] that helical structures might be an inherent part of the turbulent energy cas-
cade and thereby suppress the nonlinear terms responsible for the cascade.

5. Summary and discussion

High-resolution simulations are performed with nonhydrostatic WRF mesoscale numerical 
model to clarify the multiscale mechanisms leading to the heavy rainfall of TC Fung-Wong 
during landfall on southwestern coast of China. Numerical analysis shows that quasi-frontal 
structures are frequently generated at the boundary of warm LLJs associated with TC inflow 
and cold convective downdrafts, which favor the genesis of intensive rainfall. Some impor-
tant features of the quasi-frontal structures, e.g., intensive vertical wind shear and small local 
Richardson number, exhibit similarity with that of K-H waves from supercell. The hodograph 
of LLJ which turns clockwise with height tends to produce positive helicity and favors the 
genesis of convection. An evident antiphase relationship between   H  1    and CAPE during heavy 
rainfall suggests the energy transition from CAPE to kinematic energy.

For the future study, the structure, organization, and impact of convective rainfall systems 
in TCs during landfall remain a fruitful area for research. Convective cells are known to be 
favored downshear in TCs due to the shear-induced increase in convergence and upward 
motion downshear [68]. The variations of helicity and CAPE described in this paper should 
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tant features of the quasi-frontal structures, e.g., intensive vertical wind shear and small local 
Richardson number, exhibit similarity with that of K-H waves from supercell. The hodograph 
of LLJ which turns clockwise with height tends to produce positive helicity and favors the 
genesis of convection. An evident antiphase relationship between   H  1    and CAPE during heavy 
rainfall suggests the energy transition from CAPE to kinematic energy.

For the future study, the structure, organization, and impact of convective rainfall systems 
in TCs during landfall remain a fruitful area for research. Convective cells are known to be 
favored downshear in TCs due to the shear-induced increase in convergence and upward 
motion downshear [68]. The variations of helicity and CAPE described in this paper should 
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also connect with vertical shear. As has been stated by Molinari and Vollaro [28], the helicity 
and CAPE in the presence of large ambient shear exceeded those in storms with small ambient 
shear. The reduction in stability and increase in helicity might represent the positive influence 
of large vertical wind shear in offsetting the greater ventilation of the storm core. Many ques-
tions about heavy rainfall in landfalling TCs remain unanswered. How about the multiscale 
characteristics of helicity in different situation of shear? How do the multiscale helicity affect 
supercells of TCs? Observation (i.e., radar) and simulations are required to confirm the pro-
cesses that such cells develop in landfalling TCs. Moreover, the detailed cascading process 
of rainfall should be carefully examined based on energy budget. The quantitative impact of 
systems in various scales on rainfall deserved to be examined with sensitive numerical experi-
ments. Additional studies should be conducted to verify and expand upon the limited obser-
vation of cold pool associated with landfalling TCs. In particular, combination of numerical 
simulation and datasets including both onshore and offshore observations at various intensities 
and evolutionary stages across a spectrum of large-scale environments would improve under-
standing of cold pools and their various feedbacks on convection. To enhance the simulation 
on cold pools, improved representation of microphysics in models would also be beneficial. 
Furthermore, although the orographic effect is not addressed in this study as there is no clear 
evident of relationship between the terrain and the amplification of rainfall, the alteration, or 
reorganization of the convective clouds, frontal systems associated with TC when it encounters 
topographic features might be possible [69], which will be examined in a next study.
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Abstract

In this chapter, the two-dimensional elasticity problem with a singularity caused by the
presence of a re-entrant corner on the domain boundary is considered. For this problem, the
notion of the Rv-generalized solution is introduced. On the basis of the Rv-generalized
solution, a scheme of the weighted finite-element method (FEM) is constructed. The pro-
posed method provides a first-order convergence of the approximate solution to the exact
one with respect to the mesh step in the W1

2,ν Ωð Þ-norm. The convergence rate does not
depend on the size of the angle and kind of the boundary conditions imposed on its sides.
Comparative analysis of the proposed method with a classical finite-element method and
with an FEM with geometric mesh refinement to the singular point is carried out.

Keywords: elasticity problem with singularity, corner singularity, Rv-generalized
solution, weighted finite-element method, numerical experiments

1. Introduction

The singularity of the solution to a boundary value problem can be caused by the degeneration of
the input data (of the coefficients and right-hand sides of the equation and the boundary condi-
tions), by the geometry of the boundary, or by the internal properties of the solution. The classic
numerical methods, such as finite-difference method, finite- and boundary-element methods, have
insufficient convergence rate due to singularity which has an influence on the regularity of the
solution. It results in significant increase of the computational power and time required for calcu-
lation of the solutionwith the given accuracy. For example, the classic finite-elementmethod allows
the finding of the solution for the elasticity problem posed in a two-dimensional domain containing
a re-entrant corner of on the boundary with convergence rate O(h1/2). In this case to compute the
solution with the accuracy of 10�3 requires a computational power that is one million times greater
than in the case of the weighted finite-element method used for the solution of the same problem.
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By using meshes refined toward the singularity point, it is possible to construct schemes of the
finite-element method with the first order of the rate of convergence of the approximate
solution to the exact one [1–3].

In [4, 5], for boundary value problems with strongly singular solutions for which a generalized
solution could not be defined and it does not belong to the Sobolev space H1, it was proposed to
define the solution as a Rv-generalized one. The existence and uniqueness of solutions as well as its
coercivity and differential properties in the weighted Sobolev spaces and sets were proved [5–10],
the weighted finite-element method was built, and its convergence rate was investigated [11–15].

In this chapter, for the Lamé system in domains containing re-entrant corners we will state
construction and investigation of the weighted FEM for determination of the Rv-generalized
solution [16, 17]. Convergence rate of this method did not depend on the corner size and was
equal O(h) (see [18], Theorem 2.1). For the elasticity problems with solutions of two types—
with both singular and regular components and with singular component only—a compara-
tive numerical analysis of the weighted finite-element method, the classic FEM, and the FEM
with meshes geometrically refined toward the singularity point is performed. For the first two
methods, the theoretical convergence rate estimations were confirmed. In addition, it was
established that FEM with graded meshes failed on high dimensional meshes but weighted
FEM stably found approximate solution with theoretical accuracy under the same computa-
tional conditions. The mentioned failure can be explained by a small size of steps of the graded
mesh in a neighbourhood of the singular point. As a result, for the majority of nodes, the
weighted finite-element method allows to find solution with absolute error which is by one or
two orders of magnitude less than that for the FEM with graded meshes.

2. Rv-generalized solution

Let Ω ¼ �1; 1ð Þ � �1; 1ð Þ∖ 0; 1½ � � �1; 0½ �⊂R2 be an L-shaped domain with boundary ∂Ω

containing re-entrant corner of 3π/2 with the vertex located in the point O(0,0), Ω ¼ Ω∪∂Ω:

Denote by Ω0 ¼ x∈Ω : x21 þ x22
� �1=2

≤ δ < 1
n o

a part of δ-neighbourhood of the point (0,0)

laying in the Ω. A weight function r(x) can be introduced that coincides with the distance to

the origin in Ω
0
, and equals δ for x∈Ω Ω

0
.

Let W1
2,α Ω; δð Þbe the set of functions satisfying the following conditions:

a. Dku xð Þ�� �� ≤ c1 δ=r xð Þð Þαþk for x∈Ω
0
, where k = 0,1 and c1 is a positive constant independent on

k,

b. uk kL2,α Ω�Ω0ð Þ ≥ c2 > 0,

with the norm

uk kW1
2,α Ωð Þ ¼

X
∣λ∣ ≤ 1

ð

Ω

r2α Dλu
�� ��2 dx

0
@

1
A

1=2

, (1)
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where Dλ ¼ ∂∣λ∣=∂xλ1
1 ∂xλ2

2 , λ = (λ1,λ2), and |λ|=λ1+λ2; λ1, λ2 are nonnegative integers, and α is
a nonnegative real number.

Let L2,α Ω; δð Þ be the set of functions satisfying conditions (a) and (b) with the norm

uk kL2,α Ωð Þ ¼
ð

Ω

r2αu2 dx

0
@

1
A

1=2

:

The set W
�

1
2,α Ω; δð Þ⊂W1

2,α Ω; δð Þ is defined as the closure in norm (1) of the set C0 Ω; δð Þ of
infinitely differentiable and finite in Ω functions satisfying conditions (a) and (b).

One can say that φ∈W1=2
2,α ∂Ω; δð Þ if there exists a function Φ from W1

2,α Ω; δð Þ such that
Φ xð Þj∂Ω ¼ φ xð Þ and

φk kW1=2
2,α ∂Ω;δð Þ ¼ inf

Φj∂Ω¼ϕ
Φk kW1

2,α Ω;δð Þ:

For the corresponding spaces and sets of vector-functions are used notationsW1
2,α Ω; δð Þ,

L2,α Ω; δð Þ, W
�

1
2,α Ω; δð Þ.

Let u = (u1,u2) be a vector-function of displacements. Assume that Ω is a homogeneous
isotropic body and the strains are small. Consider a boundary value problem for the displace-
ment field u for the Lamé system with constant coefficients λ and μ:

� 2div με uð Þ� �þ ∇ λdivuð Þ� �¼ f, x∈Ω, (2)

ui¼ qi, x∈ ∂Ω, (3)

Here, ε(u) is a strain tensor with components εij uð Þ ¼ 1
2

∂ui
∂xj

þ ∂uj
∂xi

� �
.

Assume that the right-hand sides of (2), (3) satisfy the conditions

f∈L2,β Ω; δð Þ, qi ∈W1=2
2,β ∂Ω; δð Þ, i ¼ 1, 2, β > 0: (4)

Denoted by

a1 u; vð Þ ¼
ð

Ω

λþ 2μ
� � ∂u1

∂x1

∂ r2νv1
� �
∂x1

þ μ
∂u1
∂x2

∂ r2νv1
� �
∂x2

þ λ
∂u2
∂x2

∂ r2νv1
� �
∂x1

þ μ
∂u2
∂x1

∂ r2νv1
� �
∂x2

�
dx,

�

a2 u; vð Þ ¼
ð

Ω

λ
∂u1
∂x1

∂ r2νv2
� �
∂x2

þ μ
∂u1
∂x2

∂ r2νv2
� �
∂x1

þ λþ 2μ
� � ∂u2

∂x2

∂ r2νv2
� �
∂x2

þ μ
∂u2
∂x1

∂ r2νv2
� �
∂x1

�
dx,

�

l1 vð Þ ¼
ð

Ω

r2νf 1v1dx, l2 vð Þ ¼
ð

Ω

r2νf 2v2dx

the bilinear and linear forms and a u; vð Þ ¼ a1 u; vð Þ; a2 u; vð Þð Þ, l vð Þ ¼ l1 vð Þ; l2 vð Þð Þ.

Weighted Finite-Element Method for Elasticity Problems with Singularity
http://dx.doi.org/10.5772/intechopen.72733

297



By using meshes refined toward the singularity point, it is possible to construct schemes of the
finite-element method with the first order of the rate of convergence of the approximate
solution to the exact one [1–3].

In [4, 5], for boundary value problems with strongly singular solutions for which a generalized
solution could not be defined and it does not belong to the Sobolev space H1, it was proposed to
define the solution as a Rv-generalized one. The existence and uniqueness of solutions as well as its
coercivity and differential properties in the weighted Sobolev spaces and sets were proved [5–10],
the weighted finite-element method was built, and its convergence rate was investigated [11–15].

In this chapter, for the Lamé system in domains containing re-entrant corners we will state
construction and investigation of the weighted FEM for determination of the Rv-generalized
solution [16, 17]. Convergence rate of this method did not depend on the corner size and was
equal O(h) (see [18], Theorem 2.1). For the elasticity problems with solutions of two types—
with both singular and regular components and with singular component only—a compara-
tive numerical analysis of the weighted finite-element method, the classic FEM, and the FEM
with meshes geometrically refined toward the singularity point is performed. For the first two
methods, the theoretical convergence rate estimations were confirmed. In addition, it was
established that FEM with graded meshes failed on high dimensional meshes but weighted
FEM stably found approximate solution with theoretical accuracy under the same computa-
tional conditions. The mentioned failure can be explained by a small size of steps of the graded
mesh in a neighbourhood of the singular point. As a result, for the majority of nodes, the
weighted finite-element method allows to find solution with absolute error which is by one or
two orders of magnitude less than that for the FEM with graded meshes.

2. Rv-generalized solution

Let Ω ¼ �1; 1ð Þ � �1; 1ð Þ∖ 0; 1½ � � �1; 0½ �⊂R2 be an L-shaped domain with boundary ∂Ω

containing re-entrant corner of 3π/2 with the vertex located in the point O(0,0), Ω ¼ Ω∪∂Ω:

Denote by Ω0 ¼ x∈Ω : x21 þ x22
� �1=2

≤ δ < 1
n o

a part of δ-neighbourhood of the point (0,0)

laying in the Ω. A weight function r(x) can be introduced that coincides with the distance to

the origin in Ω
0
, and equals δ for x∈Ω Ω

0
.

Let W1
2,α Ω; δð Þbe the set of functions satisfying the following conditions:

a. Dku xð Þ�� �� ≤ c1 δ=r xð Þð Þαþk for x∈Ω
0
, where k = 0,1 and c1 is a positive constant independent on

k,

b. uk kL2,α Ω�Ω0ð Þ ≥ c2 > 0,

with the norm

uk kW1
2,α Ωð Þ ¼

X
∣λ∣ ≤ 1

ð

Ω

r2α Dλu
�� ��2 dx

0
@

1
A

1=2

, (1)

Finite Element Method - Simulation, Numerical Analysis and Solution Techniques296

where Dλ ¼ ∂∣λ∣=∂xλ1
1 ∂xλ2

2 , λ = (λ1,λ2), and |λ|=λ1+λ2; λ1, λ2 are nonnegative integers, and α is
a nonnegative real number.

Let L2,α Ω; δð Þ be the set of functions satisfying conditions (a) and (b) with the norm

uk kL2,α Ωð Þ ¼
ð

Ω

r2αu2 dx

0
@

1
A

1=2

:

The set W
�

1
2,α Ω; δð Þ⊂W1

2,α Ω; δð Þ is defined as the closure in norm (1) of the set C0 Ω; δð Þ of
infinitely differentiable and finite in Ω functions satisfying conditions (a) and (b).

One can say that φ∈W1=2
2,α ∂Ω; δð Þ if there exists a function Φ from W1

2,α Ω; δð Þ such that
Φ xð Þj∂Ω ¼ φ xð Þ and

φk kW1=2
2,α ∂Ω;δð Þ ¼ inf

Φj∂Ω¼ϕ
Φk kW1

2,α Ω;δð Þ:

For the corresponding spaces and sets of vector-functions are used notationsW1
2,α Ω; δð Þ,

L2,α Ω; δð Þ, W
�

1
2,α Ω; δð Þ.

Let u = (u1,u2) be a vector-function of displacements. Assume that Ω is a homogeneous
isotropic body and the strains are small. Consider a boundary value problem for the displace-
ment field u for the Lamé system with constant coefficients λ and μ:

� 2div με uð Þ� �þ ∇ λdivuð Þ� �¼ f, x∈Ω, (2)

ui¼ qi, x∈ ∂Ω, (3)

Here, ε(u) is a strain tensor with components εij uð Þ ¼ 1
2

∂ui
∂xj

þ ∂uj
∂xi

� �
.

Assume that the right-hand sides of (2), (3) satisfy the conditions

f∈L2,β Ω; δð Þ, qi ∈W1=2
2,β ∂Ω; δð Þ, i ¼ 1, 2, β > 0: (4)

Denoted by

a1 u; vð Þ ¼
ð

Ω

λþ 2μ
� � ∂u1

∂x1

∂ r2νv1
� �
∂x1

þ μ
∂u1
∂x2

∂ r2νv1
� �
∂x2

þ λ
∂u2
∂x2

∂ r2νv1
� �
∂x1

þ μ
∂u2
∂x1

∂ r2νv1
� �
∂x2

�
dx,

�

a2 u; vð Þ ¼
ð

Ω

λ
∂u1
∂x1

∂ r2νv2
� �
∂x2

þ μ
∂u1
∂x2

∂ r2νv2
� �
∂x1

þ λþ 2μ
� � ∂u2

∂x2

∂ r2νv2
� �
∂x2

þ μ
∂u2
∂x1

∂ r2νv2
� �
∂x1

�
dx,

�

l1 vð Þ ¼
ð

Ω

r2νf 1v1dx, l2 vð Þ ¼
ð

Ω

r2νf 2v2dx

the bilinear and linear forms and a u; vð Þ ¼ a1 u; vð Þ; a2 u; vð Þð Þ, l vð Þ ¼ l1 vð Þ; l2 vð Þð Þ.

Weighted Finite-Element Method for Elasticity Problems with Singularity
http://dx.doi.org/10.5772/intechopen.72733

297



Definition 1
A function uv from the set W1

2,ν Ω; δð Þ is called an Rv-generalized solution to the problem (2), (3) if it

satisfies boundary condition (3) almost everywhere on ∂Ω and for every v fromW1
2,ν Ω; δð Þ the integral

identity

a uν; vð Þ ¼ l vð Þ (5)

holds for any fixed value of ν satisfying the inequality

ν ≥ β: (6)

In [17], for the boundary value problem (2)–(3) with homogeneous boundary conditions,
existence and uniqueness of its Rv-generalized solution were established.

Theorem 1
Let condition (4) be satisfied. Then for any ν > β there always exists parameter δ such that the problem
(2)–(3) with homogeneous boundary conditions has a unique Rv-generalized solution uv in the set

W�1
2,α Ω; δð Þ. In this case

uνk kW1
2,ν Ωð Þ ≤ c3 fk kL2,β Ωð Þ, (7)

where c3 is a positive constant independent of f.

Then for any ν > β, there always exists parameter δ such that the problem (2)–(3) with homogeneous

boundary conditions has a unique Rv-generalized solution uv in the set W�1
2,α Ω; δð Þ.

Comment 1
At present, there exists a complete theory of classical solutions to boundary value problems
with smooth initial data (equation coefficients, right hands of solution and boundary condi-
tions) and with smooth enough domain boundary [19–22].

On the basis of the generalized solution-wide investigations of boundary value problems with
discontinuous initial data and not smooth domain boundary were performed in Sobolev and
different weighted spaces [23–26]. On the basis of the Galerkin method, theories of difference
schemes, finite volumes, and finite-element method were developed to find approximate
generalized solution [27].

Let us call boundary value problem a problem with strong singularity if its generalized
solution could not be defined. This solution does not belong to the Sobolev space W1

2 (H
1), or,

in other words, the Dirichlet integral of the solution diverges. In [4, 5], we suggested to define a
solution to the boundary value problems with strong singularity as an Rv-generalized one in
the weighted Sobolev space. The essence of this approach is in introducing weight function
into the integral equality. The weight function coincides with the distance to the singular
points in their neighbourhoods. The role (sense, mission) of this function is in suppressing of
the solution singularity caused by the problem features and is in assuring convergence of
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integrals in both parts of the integral equality. Taking into account the local character of the
singularity, we define weight function as the distance to each singularity point inside the disk
of radius δ centered in that points, and outside these disks the weight function equals δ. An
exponent of the weight function in the definition of the Rν-generalized solution as well as
weighted space containing this solution depend on the spaces to which problem initial data
belongs, on geometrical features of the boundary (re-entrant corners), and on changing of the
boundary condition type.

In [13, 14], for the transformed system of Maxwell equations in the domain with re-entrant
corner in which the solution does not depend on the spaceW1

2, the weighted edge-based finite-
element method was developed on the basis of introducing the Rν-generalized solution. Con-
vergence rate of this method is O(h), and it does not depend on the size of singularity as
opposed to other methods [28, 29].

The proposed approach of introducing Rν-generalized solution allows to effectively find solu-
tions not only to the boundary value problems with divergent Dirichlet integral but also to
problems with weak singularity when the solution belongs to the W1

2 and does not belong to
the space W2

2.

3. The weighted finite-element method

A finite-element scheme for problems (2)–(3) is constructed relying on the definition of an Rν-
generalized solution. For this purpose, a quasi-uniform triangulation Th of Ω and introduction
of special basis functions are constructed.

The domain Ω is divided into a finite number of triangles K (called finite elements) with
vertices Pk (k = 1,…,N), which are triangulation nodes. Denoted by Ωh ¼ ∪K∈Th K—the union
of all elements; here, h is the longest of their side lengths. It is required that the partition

satisfies the conventional constraints imposed on triangulations [10]. Denote by P ¼ Pkf gk¼n
k¼1,

the set of triangulation internal nodes; by P ¼ Pkf gk¼N
k¼nþ1, the set of nodes belonging to the ∂Ω.

Each node Pk ∈P is associated with a function Ψ k of the form

Ψ k xð Þ ¼ rν
∗
xð Þϕk xð Þ, k ¼ 1,…, n,

where ϕk xð Þ is linear on each finite element, ϕk Pj
� � ¼ δkj, k, j ¼ 1,…, n δkj is the Kronecker

delta, and ν∗ is a real number.

The set Vh is defined as the linear span of the system of basis functions Ψ kf gk¼n
k¼1 . Denote the

corresponding vector set by Vh ¼ Vh� �2
. In set Vh, one singled out the subset V

�h ¼ v∈Vh; vi
�

Pkð ÞjPk ∈ ∂Ω ¼ 0, i ¼ 1, 2g.
Associated with the constructed triangulation, the finite-element approximation of the dis-
placement vector components has the form
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In [17], for the boundary value problem (2)–(3) with homogeneous boundary conditions,
existence and uniqueness of its Rv-generalized solution were established.

Theorem 1
Let condition (4) be satisfied. Then for any ν > β there always exists parameter δ such that the problem
(2)–(3) with homogeneous boundary conditions has a unique Rv-generalized solution uv in the set

W�1
2,α Ω; δð Þ. In this case

uνk kW1
2,ν Ωð Þ ≤ c3 fk kL2,β Ωð Þ, (7)

where c3 is a positive constant independent of f.

Then for any ν > β, there always exists parameter δ such that the problem (2)–(3) with homogeneous

boundary conditions has a unique Rv-generalized solution uv in the set W�1
2,α Ω; δð Þ.

Comment 1
At present, there exists a complete theory of classical solutions to boundary value problems
with smooth initial data (equation coefficients, right hands of solution and boundary condi-
tions) and with smooth enough domain boundary [19–22].

On the basis of the generalized solution-wide investigations of boundary value problems with
discontinuous initial data and not smooth domain boundary were performed in Sobolev and
different weighted spaces [23–26]. On the basis of the Galerkin method, theories of difference
schemes, finite volumes, and finite-element method were developed to find approximate
generalized solution [27].

Let us call boundary value problem a problem with strong singularity if its generalized
solution could not be defined. This solution does not belong to the Sobolev space W1

2 (H
1), or,

in other words, the Dirichlet integral of the solution diverges. In [4, 5], we suggested to define a
solution to the boundary value problems with strong singularity as an Rv-generalized one in
the weighted Sobolev space. The essence of this approach is in introducing weight function
into the integral equality. The weight function coincides with the distance to the singular
points in their neighbourhoods. The role (sense, mission) of this function is in suppressing of
the solution singularity caused by the problem features and is in assuring convergence of
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integrals in both parts of the integral equality. Taking into account the local character of the
singularity, we define weight function as the distance to each singularity point inside the disk
of radius δ centered in that points, and outside these disks the weight function equals δ. An
exponent of the weight function in the definition of the Rν-generalized solution as well as
weighted space containing this solution depend on the spaces to which problem initial data
belongs, on geometrical features of the boundary (re-entrant corners), and on changing of the
boundary condition type.

In [13, 14], for the transformed system of Maxwell equations in the domain with re-entrant
corner in which the solution does not depend on the spaceW1

2, the weighted edge-based finite-
element method was developed on the basis of introducing the Rν-generalized solution. Con-
vergence rate of this method is O(h), and it does not depend on the size of singularity as
opposed to other methods [28, 29].

The proposed approach of introducing Rν-generalized solution allows to effectively find solu-
tions not only to the boundary value problems with divergent Dirichlet integral but also to
problems with weak singularity when the solution belongs to the W1

2 and does not belong to
the space W2

2.

3. The weighted finite-element method

A finite-element scheme for problems (2)–(3) is constructed relying on the definition of an Rν-
generalized solution. For this purpose, a quasi-uniform triangulation Th of Ω and introduction
of special basis functions are constructed.

The domain Ω is divided into a finite number of triangles K (called finite elements) with
vertices Pk (k = 1,…,N), which are triangulation nodes. Denoted by Ωh ¼ ∪K∈Th K—the union
of all elements; here, h is the longest of their side lengths. It is required that the partition

satisfies the conventional constraints imposed on triangulations [10]. Denote by P ¼ Pkf gk¼n
k¼1,

the set of triangulation internal nodes; by P ¼ Pkf gk¼N
k¼nþ1, the set of nodes belonging to the ∂Ω.

Each node Pk ∈P is associated with a function Ψ k of the form

Ψ k xð Þ ¼ rν
∗
xð Þϕk xð Þ, k ¼ 1,…, n,

where ϕk xð Þ is linear on each finite element, ϕk Pj
� � ¼ δkj, k, j ¼ 1,…, n δkj is the Kronecker

delta, and ν∗ is a real number.

The set Vh is defined as the linear span of the system of basis functions Ψ kf gk¼n
k¼1 . Denote the

corresponding vector set by Vh ¼ Vh� �2
. In set Vh, one singled out the subset V

�h ¼ v∈Vh; vi
�

Pkð ÞjPk ∈ ∂Ω ¼ 0, i ¼ 1, 2g.
Associated with the constructed triangulation, the finite-element approximation of the dis-
placement vector components has the form
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uhν,1 ¼
Xn

k¼1

d2k�1Ψ k, uhν,2 ¼
Xn

k¼1

d2kΨ k, dj ¼ r�ν∗ P jþ1
2½ �

� �
cj, j ¼ 1,…, 2n:

Definition 2
An approximate Rν-generalized solution to the problems (2)–(3) by the weighted finite-element method
is a function uh

ν ∈Vh such that it satisfies the boundary condition (3) in the nodes of the boundary ∂Ω

and for arbitrary vh xð Þ∈Vh and ν > β the integral identity

a uh
ν; v

h� � ¼ l vh
� �

,

holds, where uh
ν ¼ uhν,1; u

h
ν,2

� �
.

In [18], it was shown that convergence rate of the approximate solution to the exact one does
not depend on size of the re-entrant corner and is always equal to O hð Þ when weighted finite-
element method is used for finding an Rν-generalized solution to elasticity problem. The next
section explains results of comparative numerical analysis for the model problems (2)–(3) of
the weighted FEM using the classical finite-element method and the FEM with geometrically
graded meshes of two kinds.

4. Results of numerical experiments

In the domain, Ω is considered a Dirichlet problem for the Lamé system (2), (3) with constant
coefficients λ ¼ 3 and μ ¼ 5. Two kinds of vector-function u ¼ u1; u2ð Þ were used as a solution
to the problem.

Problem A
Components of the solution u of the model problem (2), (3) contain only a singular component

u1 ¼ cos x1ð Þcos2 x2ð Þ x21 þ x22
� �0:3051

,

u2 ¼ cos2 x1ð Þ cos x2ð Þ x21 þ x22
� �0:3051

:

Singularity order of u1, u2 corresponds to the size of the re-entrant corner γ ¼ 3π=2 on the
domain boundary [30].

Problem B
Solution u of the model problems (2, 3) contains both singular and regular components—
regular part belongs to the W2

2 Ωð Þ

u1 ¼ cos x1ð Þcos2 x2ð Þ x21 þ x22
� �0:3051 þ x21 þ x22

� �
,

u2 ¼ cos2 x1ð Þ cos x2ð Þ x21 þ x22
� �0:3051 þ x21 þ x22

� �
:
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4.1. Comparative analysis of the generalized and Rν-generalized solutions

Results of numerical experiments presented in this subsection were obtained using the code
”Proba-IV” [31] with regular meshes which were built by the following scheme:

Domain Ω was divided into squares by lines parallel to coordinate axis, with distance equal to
1/N between them, whereN is a half of number of partitioning segments along the greater side;

Each square was subdivided into two triangles by the diagonal.

In this case, size of the mesh-step h could be computed by h ¼ ffiffiffi
2

p
=N. Example of the regular

mesh for N = 4 is presented in Figure 1.

Calculations were performed for different values of N. Optimal parameters δ, ν, and ν∗ were
obtained by the program complex [32]. Generalized solution was determined by the integral
equality (5) for ν ¼ 0.

One calculated the errors e ¼ e1; e2ð Þ ¼ u1 � uh1; u2 � uh2
� �

and eν ¼ eν,1; eν,2ð Þ ¼ u1 � uhν,1;
�

u2 � uhν,2Þ of numerical approximation to the generalized uh ¼ uh1; u
h
2

� �
and Rν-generalized

uh
ν ¼ uh1,ν; u

h
2,ν

� �
solutions, respectively. Problems A and B in Tables 1 and 4, respectively,

present values of relative errors of the generalized solution in the norm of the Sobolev space

W1
2 η ¼

ek kW1
2

uk kW1
2

� �
and the Rν-generalized one in the norm of the weighted Sobolev space W1

2,ν

ην ¼
eνk kW1

2,ν
uk kW1

2,ν

 !
with different values of h. In addition, these tables contain ratios between error

norms, obtained on meshes with step reducing twice. Figures 2 and 3 show the convergence
rates of the generalized and Rν-generalized solutions to the corresponding problems with the
logarithmic scale. The dashed line in the figures corresponds to convergence with the rate
O hð Þ. Tables 2 and 3 (Problem A) and Tables 5 and 6 (Problem B) give limit values: number of
nodes where |e1|, |e2|, |ev,1|, and |ev,2| belong to the giving range, this number in percentage
to the total number of nodes, and pictures of the absolute error distribution in the domain Ω.

Figure 1. Example of regular mesh (a), and graded meshes I (b) and II (c) (N = 4, κ ¼ 0:4).
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4.1. Comparative analysis of the generalized and Rν-generalized solutions

Results of numerical experiments presented in this subsection were obtained using the code
”Proba-IV” [31] with regular meshes which were built by the following scheme:

Domain Ω was divided into squares by lines parallel to coordinate axis, with distance equal to
1/N between them, whereN is a half of number of partitioning segments along the greater side;
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In this case, size of the mesh-step h could be computed by h ¼ ffiffiffi
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=N. Example of the regular

mesh for N = 4 is presented in Figure 1.

Calculations were performed for different values of N. Optimal parameters δ, ν, and ν∗ were
obtained by the program complex [32]. Generalized solution was determined by the integral
equality (5) for ν ¼ 0.

One calculated the errors e ¼ e1; e2ð Þ ¼ u1 � uh1; u2 � uh2
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with different values of h. In addition, these tables contain ratios between error

norms, obtained on meshes with step reducing twice. Figures 2 and 3 show the convergence
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4.1.1. Problem A

∣e1∣ ∣e2∣ Limit values ∣e1∣ ∣e2∣

Distribution % Number % Number

≥ 5e� 6 0.033 4102 0.033 4102

≥ 1e� 6 0.764 96075 0.764 96075

≥ 5e� 7 2.457 308985 2.457 308985

≥ 1e� 7 21.704 2729186 21.704 2729186

≥ 5e� 8 12.589 1582976 12.589 1582974

≥ 0 62.454 7853397 62.454 7853399

Table 3. Number, percentage equivalence, and distribution of nodes where absolute errors ∣eν, i∣ i ¼ 1; 2ð Þ of finding
components of the approximate Rν-generalized solution to problem A δ ¼ 0:0029ð , ν ¼ 1:2, ν∗ ¼ 0:16Þ are not less than
given limit values, 2N ¼ 4096.

∣e1∣ ∣e2∣ Limit values ∣e1∣ ∣e2∣

Distribution Number % Number

≥ 5e� 6 48.077 6045579 48.077 6045579

≥ 1e� 6 29.387 3695290 29.387 3695290

≥ 5e� 7 6.724 845468 6.724 845468

≥ 1e� 7 9.624 1210192 9.624 1210192

≥ 5e� 8 2.564 322449 2.564 322449

≥ 0 3.624 455743 3.624 455743

Table 2. Number, percentage equivalence, and distribution of nodes where absolute errors ∣ei∣ i ¼ 1; 2ð Þ of finding
components of the approximate generalized solution to problem A are not less than given limit values, 2N ¼ 4096.

2N 128 256 512 1024 2048 4096

h 1.105e-2 5.524e-3 2.762e-3 1.381e-3 6.905e-4 3.453e-4

η 6.963e-2 1.52 4.579e-2 1.52 3.007e-2 1.52 1.972e-2 1.53 1.293e-2 1.53 8.476e-3

ην 7.011e-2 1.55 4.522e-2 1.64 2.756e-2 2.17 1.272e-2 2.21 5.745e-3 1.98 2.902e-3

Table 1. Dependence of relative errors of the generalized (η) and Rν-generalized (ην) (δ ¼ 0:0029, ν ¼ 1:2, ν∗ ¼ 0:16)
solution to problem A on mesh step.
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4.1.2. Problem B

2N 128 256 512 1024 2048 4096

h 1.105e-2 5.524e-3 2.762e-3 1.381e-3 6.905e-4 3.453e-4

η 2.849e-2 1.54 1.850e-2 1.53 1.205e-2 1.53 7.870e-3 1.53 5.146e-3 1.53 3.367e-3

ην 2.868e-2 1.57 1.827e-2 1.65 1.107e-2 2.16 5.117e-3 2.21 2.319e-3 1.98 1.171e-3

Table 4. Dependence of relative errors of the generalized ηð Þ and Rν-generalized ηνð Þ δ ¼ 0:0029ð , ν ¼ 1:2, ν∗ ¼ 0:16
solution of the problem B on the mesh step.

Figure 2. Chart of η for the generalized (squared line) and of ην for Rν-generalized (circled line) (δ=0.0029, ν=1.2, ν*=0.16)
solutions to the problem A in dependence on the number of subdivisions 2N.

Figure 3. Chart of η for the generalized (squared line) and of ην for Rν-generalized (circled line) δ ¼ 0:0029ð , ν ¼ 1:2,
ν∗ ¼ 0:16Þ solutions to the problem B in dependence on the number of subdivisions 2N.
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4.1.2. Problem B
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4.2. FEM with graded mesh: comparative analysis

This subsection presents results of error analysis for finding generalized solution to the prob-
lems A and B by the FEM with graded meshes of two kinds (for detailed information about
graded meshes, see [2, 33, 34]).

Mesh I. This partitioning was built by the following scheme
1. In the domain Ω, for a given N, regular mesh was constructed as described in section 4.1.

2. Level l ¼ maxi¼1, 2 jN � xi þ 1ð ÞN½ �jð Þ was determined for each node. Here, xi (i ¼ 1, 2) are
initial node coordinates on the regular mesh, �½ � means integer part.

3. New coordinates of nodes of the graded mesh are calculated by the formula xi þ 1ð ÞN½ �ð
�NÞl�1 l=Nð Þ1=κ (i ¼ 1, 2).

∣e1∣ ∣e2∣ Limit values ∣e1∣ ∣e2∣

Distribution Number % Number

≥ 5e� 6 48.078 6045622 48.078 6045622

≥ 1e� 6 29.387 3695278 29.387 3695278

≥ 5e� 7 6.724 845466 6.724 845466

≥ 1e� 7 9.624 1210158 9.624 1210159

≥ 5e� 8 2.564 322439 2.564 322438

≥ 0 3.624 455758 3.624 455758

Table 5. Number, percentage equivalence, and distribution of nodes where absolute errors ∣ei∣ i ¼ 1; 2ð Þ of finding
components of the approximate generalized solution to problem B are not less than given limit values, 2N ¼ 4096.

∣e1∣ ∣e2∣ Limit values ∣e1∣ ∣e2∣

Distribution % Number % Number

≥ 5e� 6 0.033 4108 0.033 4108

≥ 1e� 6 0.771 96899 0.771 96899

≥ 5e� 7 2.481 311996 2.481 311996

≥ 1e� 7 21.789 2739862 21.789 2739863

≥ 5e� 8 12.588 1582876 12.588 1582876

≥ 0 62.339 7838980 62.339 7838979

Table 6. Number, percentage equivalence, and distribution of nodes where absolute errors ∣eν, i∣ i ¼ 1; 2ð Þ) of finding
components of the approximate Rν-generalized solution to problem B ( δ ¼ 0:0029ð , ν ¼ 1:2, ν∗ ¼ 0:16Þ are not less than
given limit values, 2N ¼ 4096.
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Mesh II. Constructing process for this mesh differs from the one described earlier in the level-

calculating mode. Here, l ¼P
2

i¼1
∣N � xi þ 1ð ÞN½ �∣. In this case, new coordinates are determined

only for nodes with l ≤N.

Examples of meshes I and II are shown in Figure 1(b) and (c), respectively.

The FEM solution obtained on described graded meshes converges with the first rate on the
mesh step when the value of the parameter κ is less than the order of singularity [2, 33].

Calculations were performed for different values of N and κ. For each node, one calculated the
errors eI ¼ u� uh

I and eII ¼ u� uh
II of the approximate generalized solutions uh

I , u
h
II obtained

on meshes I and II, respectively. The values of relative errors of the generalized solution to the
problems A and B in the norm of the Sobolev spaceW1

2 for different values of h and κ for mesh

I ηI ¼
eIk kW1

2
uk kW1

2

� �
are presented in Tables 7 and 10, respectively, and for mesh II ηII ¼

eIIk kW1
2

uk kW1
2

� �
are

presented in Tables 8 and 11, respectively. In addition, these tables contain ratios between
error norms and between mesh steps obtained with nodes number increasing four times.
Figures 4 and 5 show the convergence rates of the generalized solutions to the corresponding
problems for meshes I and II with the logarithmic scale. Dashed line in the figures corresponds
to convergence with the rate O(h) as in paragraph 1. Besides, for the problems A and B,
Tables 9 and 12, respectively, contain limit values for the following data: number of nodes
where ∣e1, II ∣, ∣e2, II ∣ belong to the giving range, this number in percentage to the total number of
nodes, and pictures of the absolute error distribution in the domain Ω.

4.2.1. Problem A

2N 128 256 512 1024 2048 4096

κ ¼ 0:3

ηI 2.659e-2 2.00 1.332e-2 2.00 6.675e-3 1.91 3.501e-3 0.75 4.650e-3 0.27 1.741e-2

h 0.062263 1.979 0.031459 1.99 0.015812 1.995 0.007926 1.997 0.003968 1.999 0.001985

κ ¼ 0:4

ηI 2.111e-2 2.00 1.057e-2 1.99 5.302e-3 1.78 2.971e-3 0.53 5.559e-3 0.26 2.154e-2

h 0.044928 1.986 0.02262 1.993 0.011349 1.997 0.005684 1.998 0.002845 1.999 0.001423

κ ¼ 0:5

ηI 1.990e-2 1.99 1.001e-2 1.99 5.038e-3 1.71 2.940e-3 0.46 6.401e-3 0.25 2.513e-2

h 0.034611 1.99 0.017387 1.995 0.008714 1.998 0.004362 1.999 0.0021823 1.999 0.001092

κ ¼ 0:6

ηI 2.315e-2 1.92 1.204e-2 1.93 6.254e-3 1.70 3.678e-3 0.50 7.292e-3 0.26 2.818e-2

h 0.030169 1.993 0.015135 1.997 0.007580 1.998 0.003793 1.999 0.0018973 1.9996 0.0009489

Table 7. Dependence of relative errors of the generalized solution to problemAwithmesh I on themesh step for differentκ.
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4.2. FEM with graded mesh: comparative analysis

This subsection presents results of error analysis for finding generalized solution to the prob-
lems A and B by the FEM with graded meshes of two kinds (for detailed information about
graded meshes, see [2, 33, 34]).

Mesh I. This partitioning was built by the following scheme
1. In the domain Ω, for a given N, regular mesh was constructed as described in section 4.1.

2. Level l ¼ maxi¼1, 2 jN � xi þ 1ð ÞN½ �jð Þ was determined for each node. Here, xi (i ¼ 1, 2) are
initial node coordinates on the regular mesh, �½ � means integer part.

3. New coordinates of nodes of the graded mesh are calculated by the formula xi þ 1ð ÞN½ �ð
�NÞl�1 l=Nð Þ1=κ (i ¼ 1, 2).

∣e1∣ ∣e2∣ Limit values ∣e1∣ ∣e2∣

Distribution Number % Number

≥ 5e� 6 48.078 6045622 48.078 6045622

≥ 1e� 6 29.387 3695278 29.387 3695278

≥ 5e� 7 6.724 845466 6.724 845466

≥ 1e� 7 9.624 1210158 9.624 1210159

≥ 5e� 8 2.564 322439 2.564 322438

≥ 0 3.624 455758 3.624 455758

Table 5. Number, percentage equivalence, and distribution of nodes where absolute errors ∣ei∣ i ¼ 1; 2ð Þ of finding
components of the approximate generalized solution to problem B are not less than given limit values, 2N ¼ 4096.

∣e1∣ ∣e2∣ Limit values ∣e1∣ ∣e2∣

Distribution % Number % Number

≥ 5e� 6 0.033 4108 0.033 4108

≥ 1e� 6 0.771 96899 0.771 96899

≥ 5e� 7 2.481 311996 2.481 311996

≥ 1e� 7 21.789 2739862 21.789 2739863

≥ 5e� 8 12.588 1582876 12.588 1582876

≥ 0 62.339 7838980 62.339 7838979

Table 6. Number, percentage equivalence, and distribution of nodes where absolute errors ∣eν, i∣ i ¼ 1; 2ð Þ) of finding
components of the approximate Rν-generalized solution to problem B ( δ ¼ 0:0029ð , ν ¼ 1:2, ν∗ ¼ 0:16Þ are not less than
given limit values, 2N ¼ 4096.
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Mesh II. Constructing process for this mesh differs from the one described earlier in the level-

calculating mode. Here, l ¼P
2

i¼1
∣N � xi þ 1ð ÞN½ �∣. In this case, new coordinates are determined

only for nodes with l ≤N.

Examples of meshes I and II are shown in Figure 1(b) and (c), respectively.

The FEM solution obtained on described graded meshes converges with the first rate on the
mesh step when the value of the parameter κ is less than the order of singularity [2, 33].

Calculations were performed for different values of N and κ. For each node, one calculated the
errors eI ¼ u� uh

I and eII ¼ u� uh
II of the approximate generalized solutions uh

I , u
h
II obtained

on meshes I and II, respectively. The values of relative errors of the generalized solution to the
problems A and B in the norm of the Sobolev spaceW1

2 for different values of h and κ for mesh

I ηI ¼
eIk kW1

2
uk kW1

2

� �
are presented in Tables 7 and 10, respectively, and for mesh II ηII ¼

eIIk kW1
2

uk kW1
2

� �
are

presented in Tables 8 and 11, respectively. In addition, these tables contain ratios between
error norms and between mesh steps obtained with nodes number increasing four times.
Figures 4 and 5 show the convergence rates of the generalized solutions to the corresponding
problems for meshes I and II with the logarithmic scale. Dashed line in the figures corresponds
to convergence with the rate O(h) as in paragraph 1. Besides, for the problems A and B,
Tables 9 and 12, respectively, contain limit values for the following data: number of nodes
where ∣e1, II ∣, ∣e2, II ∣ belong to the giving range, this number in percentage to the total number of
nodes, and pictures of the absolute error distribution in the domain Ω.

4.2.1. Problem A

2N 128 256 512 1024 2048 4096

κ ¼ 0:3

ηI 2.659e-2 2.00 1.332e-2 2.00 6.675e-3 1.91 3.501e-3 0.75 4.650e-3 0.27 1.741e-2

h 0.062263 1.979 0.031459 1.99 0.015812 1.995 0.007926 1.997 0.003968 1.999 0.001985

κ ¼ 0:4

ηI 2.111e-2 2.00 1.057e-2 1.99 5.302e-3 1.78 2.971e-3 0.53 5.559e-3 0.26 2.154e-2

h 0.044928 1.986 0.02262 1.993 0.011349 1.997 0.005684 1.998 0.002845 1.999 0.001423

κ ¼ 0:5

ηI 1.990e-2 1.99 1.001e-2 1.99 5.038e-3 1.71 2.940e-3 0.46 6.401e-3 0.25 2.513e-2

h 0.034611 1.99 0.017387 1.995 0.008714 1.998 0.004362 1.999 0.0021823 1.999 0.001092

κ ¼ 0:6

ηI 2.315e-2 1.92 1.204e-2 1.93 6.254e-3 1.70 3.678e-3 0.50 7.292e-3 0.26 2.818e-2

h 0.030169 1.993 0.015135 1.997 0.007580 1.998 0.003793 1.999 0.0018973 1.9996 0.0009489

Table 7. Dependence of relative errors of the generalized solution to problemAwithmesh I on themesh step for differentκ.
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4.2.2. Problem B

2N 128 256 512 1024 2048 4096

κ ¼ 0:3

ηII 2.392e-2 2.00 1.196e-2 2.00 5.982e-3 1.99 3.012e-3 1.46 2.059e-3 0.36 5.687e-3

h 0.05114 1.982 0.025805 1.99 0.012962 1.995 0.006496 1.998 0.003252 1.999 0.001627

κ ¼ 0:4

ηII 1.974e-2 2.00 9.879e-3 2.00 4.942e-3 1.97 2.511e-3 1.16 2.167e-3 0.30 7.154e-3

h 0.038606 1.988 0.019417 1.994 0.009737 1.997 0.004876 1.999 0.00244 1.999 0.001220

κ ¼ 0:5

ηII 1.954e-2 1.98 9.857e-3 1.99 4.963e-3 1.93 2.565e-3 0.94 2.726e-3 0.28 9.725e-3

h 0.031006 1.99 0.015564 1.996 0.007797 1.998 0.003902 1.999 0.001952 1.9995 0.000976

κ ¼ 0:6

ηII 2.339e-2 1.91 1.225e-2 1.92 6.386e-3 1.90 3.368e-3 1.14 2.966e-3 0.31 9.712e-3

h 0.025906 1.995 0.012987 1.997 0.006502 1.999 0.003253 1.999 0.001627 1.9997 0.000814

Table 8. Dependence of relative errors of the generalized solution to problem A with mesh II on the mesh step for
different κ.

∣e1∣ ∣e2∣ Limit values ∣e1∣ ∣e2∣

Distribution % Number % Number

≥ 5e� 6 0.001 6 0.001 6

≥ 1e� 6 35.524 278645 35.479 278292

≥ 5e� 7 13.631 106920 13.770 108011

≥ 1e� 7 33.363 261697 33.377 261808

≥ 5e� 8 7.020 55066 6.984 54782

≥ 0 10.461 82051 10.389 81486

Table 9. Number, percentage equivalence, and distribution of nodes where absolute errors ∣ei, II ∣ i ¼ 1; 2ð Þ of finding
components of the approximate generalized solution to problem A obtained with mesh II κ ¼ 0:5ð Þ are not less than
given limit values, 2N ¼ 1024.

2N 128 256 512 1024 2048 4096

κ ¼ 0:3

ηI 9.851e-3 1.99 4.955e-3 1.97 2.510e-3 1.36 1.845e-3 0.33 5.639e-3 0.25 2.247e-2

h 0.062263 1.979 0.031459 1.99 0.015812 1.995 0.007926 1.997 0.003968 1.999 0.001985

κ ¼ 0:4

ηI 7.712e-3 1.99 3.870e-3 1.95 1.988e-3 0.98 2.034e-3 0.28 7.218e-3 0.25 2.866e-2

h 0.044928 1.986 0.02262 1.993 0.011349 1.997 0.005684 1.998 0.002845 1.999 0.001423
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2N 128 256 512 1024 2048 4096

κ ¼ 0:3

ηII 5.963e-3 2.00 2.982e-3 2.00 1.492e-3 1.91 7.819e-4 0.77 1.013e-3 0.27 3.757e-3

h 0.05114 1.982 0.025805 1.99 0.012962 1.995 0.006496 1.998 0.003252 1.999 0.0016267

κ ¼ 0:4

ηII 6.349e-3 2.00 3.178e-3 2.00 1.591e-3 1.87 8.490e-4 0.67 1.263e-3 0.26 4.805e-3

h 0.038606 1.988 0.019417 1.994 0.009737 1.997 0.004876 1.999 0.00244 1.999 0.0012203

κ ¼ 0:5

ηII 7.441e-3 1.98 3.756e-3 1.98 1.894e-3 1.83 1.037e-3 0.60 1.717e-3 0.26 6.606e-3

h 0.031006 1.99 0.015564 1.996 0.007797 1.998 0.003902 1.999 0.001952 1.9995 0.0009763

κ ¼ 0:6

ηII 9.574e-3 1.91 5.000e-3 1.92 2.602e-3 1.85 1.409e-3 0.78 1.804e-3 0.27 6.660e-3

h 0.025906 1.995 0.012987 1.997 0.006502 1.999 0.003253 1.999 0.001627 1.9997 0.00081366

Table 11. Dependence of relative errors of the generalized solution to problem B with mesh II on the mesh step for
different κ.

Figure 4. Chart of ηI for mesh I (squared line) and of ηII for mesh II (circled line) for problem A depending on the number
of subdivisions 2N; κ ¼ 0:3.

κ ¼ 0:5

ηI 7.625e-3 1.99 3.839e-3 1.92 1.995e-3 0.87 2.301e-3 0.27 8.676e-3 0.25 3.454e-2

h 0.034611 1.99 0.017387 1.995 0.008714 1.998 0.004362 1.999 0.002182 1.999 0.001091

κ ¼ 0:6

ηI 9.330e-3 1.92 4.849e-3 1.88 2.584e-3 0.91 2.847e-3 0.28 1.016e-2 0.25 4.001e-2

h 0.034611 1.99 0.017387 1.995 0.008714 1.998 0.004362 1.999 0.002182 1.999 0.001091

Table 10. Dependence of relative errors of the generalized solution to problem B with mesh I on the mesh step for
different κ.
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5. Conclusions

Presented numerical results have demonstrated that:

1. An approximate Rν-generalized solution to the problem (2)–(4) converges to the exact one
with the rate O hð Þ in the norm of the set W1

2,ν Ω; δð Þ in contrast with the generalized

solution, which converges with the rate O h0:61
� �

for the classical FEM;

2. FEM with graded meshes fails on high-dimensional grids because of the small mesh size
near the singular point, but the weighted FEM stably allows to find approximate solution
with the accuracy O hð Þ under the same computational conditions;

Figure 5. Chart of ηI for mesh I (squared line) and of ηII for mesh II (circled line) for problem B depending on the number
of subdivisions 2N; κ ¼ 0:3.

∣e1∣ ∣e2∣ Limit values ∣e1∣ ∣e2∣

Distribution % Number % Number

≥ 5e� 6 0.001 6 0.001 6

≥ 1e� 6 23.718 186038 23.282 182623

≥ 5e� 7 18.518 145255 19.047 149398

≥ 1e� 7 34.864 273467 35.327 277097

≥ 5e� 8 8.084 63407 7.899 61956

≥ 0 14.816 116212 14.445 113305

Table 12. Number, percentage equivalence, and distribution of nodes where absolute errors ∣ei, II ∣ i ¼ 1; 2ð Þ of finding
components of the approximate generalized solution to problem B obtained with mesh II κ ¼ 0:5ð Þ are not less than given
limit values, 2N ¼ 1024.
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For the approximate Rν-generalized solution obtained by the weighted finite-element method,
an absolute error value is by one or two orders of magnitude less than the approximate
generalized one obtained by the FEM or by the FEM with graded meshes; this holds for the
overwhelming majority of nodes.
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