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Preface

The pathophysiology of the aldosterone (Aldo) and mineralocorticoid receptor
(MR) endocrine system (Aldo/MR) underpins a wide number of common diseases
of high mortality and health cost. These include hypertension, heart failure, chronic
kidney diseases, diabetes, and obesity disorders. The MR hormone ligand aldoste-
rone was discovered in Europe in 1953 and since then European researchers have
led the way in basic and clinical research in this area. An EU Aldo/MR network was
established under the EU COST Action ADMIRE (http://www.admirecosteu.com).

The partners involved in ADMIRE have made major scientific and clinical break-
throughs in the Aldo/MR field from basic science (regulation and genetics of
aldosterone production, identifying novel modes of action, novel target organs), 
translational research (novel disease settings related to dysregulation of the sys-
tem), clinical impact (repurposing and novel indications of marketed drugs inhibit-
ing the system), and development of new drugs targeting the Aldo/MR system.

Aldo/MR and disease: Aldosterone is a steroid hormone produced in the adrenal 
gland from cholesterol and acts via its receptor MR as a transcription factor in vari-
ous organs and tissues. The main impact of Aldo/MR cell signaling is the regulation
of renal sodium balance as well as biological effects, which have been reported in
the last two decades in organs such as kidney, heart, blood vessels, adipose tissue, 
brain, eye, and skin (Figure 1). Increased levels of aldosterone are associated with
diseases such as hypertension, heart failure, stroke, obesity, and diabetes, which are
highly prevalent in the European and North American population. These conditions
are known to be complex multifactorial disorders combining polygenic variations
and numerous lifestyle and environmental factors. The MR is a ligand-activated 
transcription factor involved in renal ion homeostasis (salt reabsorption, acid/
base balance), and blood pressure control. The MR is also expressed in multiple
non-renal targets such as heart, vessels, adipose tissue, and immune cells where its
role remains to be defined. Aldosterone is the physiological ligand activating MR; 
however, the glucocorticoid cortisol can activate MR under certain pathological 
conditions such as chronic stress.

Overstimulation of the Aldo/MR pathway is well established as a major contributor
to high blood pressure. Moreover, dysregulation of aldosterone synthesis is more
common than anticipated in the general population. More research is needed to
better understand the underlying mechanisms (such as genetic or epigenetic) for
increased aldosterone synthesis as well as the pathophysiological consequences
of increased circulating levels of the hormone. The overactivation of MR is now
recognized as a major targetable pathway in heart failure leading to the impres-
sive success of the repurposing of MR antagonists in heart failure. In addition, 
basic research in the field by European teams in the ADMIRE consortium have
very recently uncovered a novel role of Aldo/MR in various disease settings such
as metabolic syndrome and chronic kidney disease. The underlying mechanisms
of Aldo/MR signaling in these diseases as well as the identification of appropriate
patient populations that would benefit from Aldo/MR therapeutic approaches
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remain to be defined. This Open Access Intech ADMIRE book presents the latest 
research reviews from partners in the ADMIRE network that highlight the remark-
able diversity of Aldo/MR physiology and pathophysiology.

Brian Harvey
Royal College of Surgeons in Ireland

Frédéric Jaisser 
Cordeliers Research Centre INSERM,

Paris

Figure 1. 
Aldosterone/mineralocorticoid receptor—a pleiotropic system with major health impacts. Aldosterone 
(Aldo) and mineralocorticoid receptor (MR)  (Aldo/MR) signaling regulates major body functions such as 
salt absorption in the kidney together with cardiovascular physiology that together regulate blood pressure. 
Dysregulation of Aldo/MR signaling (overactivation) is a major cause of hypertension and associated 
comorbidities. Novel actions of Aldo/MR have recently been found in pathologies associated with fibrosis, 
inflammation, and metabolic disorders.

Chapter 1

Mineralocorticoid Receptor
Antagonists in the Treatment of
Coronary Artery Disease,
Myocardial Infarction and Heart
Failure
Carolin Zwadlo and Johann Bauersachs

Abstract

Affecting sodium reabsorption and potassium excretion in the kidney,
mineralocorticoid receptor antagonists (MRA) were originally developed as
antihypertensive drugs. After several large clinical trials, the concept of MR
blockade has nowadays become a main treatment paradigm in heart failure with
reduced ejection fraction (HFrEF) and for patients after myocardial infarction (MI)
with left ventricular (LV) dysfunction. Recent analyses also point to a beneficial
effect of early MRA treatment in patients with acute MI without LV dysfunction,
however, there is no clear evidence yet. Although promising data from preclinical
settings suggest that MRAs mediate favorable anti-atherogenic effects, clinical
studies in patients with stable coronary artery disease (CAD) have not been able to
detect differences of hard clinical outcomes. The concept might still be pursued
using the most recent MRA, like the non-steroidal MR antagonist finerenone, and
larger clinical trials need to be performed. Here, we review the current impact of
MRA in patients with CAD and focus on the conflicting evidence of preclinical
and clinical data in patients with stable CAD and preserved ejection fraction and
summarize the current indications for MRA in these patients according to the
guidelines.

Keywords: mineralocorticoid receptor antagonists (MRA), aldosterone,
heart failure, myocardial infarction, spironolactone, eplerenone, finerenone

1. Introduction

Because of their effect on sodium reabsorption and potassium excretion in the
kidney, mineralocorticoid receptor antagonists (MRA) were originally developed as
antihypertensive drugs. Over the years, it became clear that their influence on the
cardiovascular system is much broader than initially thought. Spironolactone
was the first MRA to be developed. Later, eplerenone followed. Nowadays,
mineralocorticoid receptor (MR) antagonism consists of the steroidal first- and
second-generation MRAs spironolactone and eplerenone and the non-steroidal
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third-generation MRAs, such as finerenone, the latter one not being in clinical use
outside studies yet.

After several large clinical trials, the concept of MR blockade has become a main
treatment paradigm with chronic heart failure with reduced ejection fraction
(HFrEF) and for patients after myocardial infarction (MI) with left ventricular (LV)
dysfunction. On the contrary, no general recommendation for immediate MR antag-
onism in patients without LV dysfunction is currently justified. Moreover, there are
controversial data on the role of MRA in stable coronary artery disease (CAD),
although high plasma aldosterone levels have been associated with increased mortal-
ity and ischemic events in patients with stable CAD with or without heart failure.
Preclinical studies underline the anti-atherogenic and favorable vascular effects of
spironolactone, eplerenone and finerenone via various mechanisms. These positive
results, however, are largely limited to animal models and clinical studies could not
confirm an improvement of markers of vascular health so far.

In the past, we have summarized the existing preclinical and clinical data on
spironolactone and eplerenone in the treatment of CAD and its related complica-
tions [1]. Here, we review the impact of MRAs in these patients and supplement
updated information on published clinical studies and especially the newly
developed third-generation MRA, finerenone. We aim to shed light on the current
conflicting evidence of preclinical and clinical data and summarize the indications
for MR antagonism in patients with CAD and its complications.

2. Main part

2.1 Effects of aldosterone

The renin-angiotensin-aldosterone system (RAAS) regulates blood pressure and
fluid and electrolyte balance under physiological and pathological conditions. Aldo-
sterone is the final product of the RAAS. It is a steroid hormone produced by zona
glomerulosa cells in the adrenal cortex. Traditionally, its action was thought to be
restricted to sodium reabsorption and potassium excretion via activation of the
cytosolic MR in epithelial cells of the distal colon, the renal nephron as well as
salivary and sweat glands. However, over time it became clear that aldosterone’s
action is much broader than initially thought and MRs were identified in vascular
endothelial and smooth muscle cells as well as in cardiomyocytes, endothelial cells,
fibroblasts and macrophages in the heart [2].

Key evidence for the role of MR in the pathophysiology of cardiac diseases was
derived from cell-specific overexpression and deletion studies. In mouse models of
chronic pressure overload andmyocardial infarction, deletion or inactivation of theMR
gene attenuated left ventricular dilatation, cardiac hypertrophy and development of
heart failure, whereas overexpression of theMR in cardiomyocytes induced ventricular
remodeling, development of heart failure and pro-arrhythmogenic effects [3–7].

Aldosterone and glucocorticoids bind with similar affinity to MR. In the normal
state, plasma glucocorticoid levels are more than 100 times higher that aldosterone
levels and the majority of MRs in the heart is occupied by glucocorticoids. In
patients with acute MI and chronic heart failure, not only circulating aldosterone
levels but also aldosterone biosynthesis is enhanced. Moreover, the aldosterone-MR
complex is more stable than the glucocorticoid-MR complex [8, 9]. Based on these
findings, it is nowadays well accepted that aldosterone contributes to endothelial
dysfunction, fibrinolytic disorders, inflammation, oxidative stress, fibrosis and
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hypertrophy leading to or at least aggravating cardiovascular diseases (CVD) such
as CAD and heart failure [10–13].

Presumably, the exact molecular mechanism of aldosterone’s action is still not
fully understood and appears to be more complex than initially thought. For exam-
ple, aldosterone has been shown to promote the formation of venous thrombosis in
normotensive rats via mechanisms involving primary hemostasis, fibrinolysis, nitric
oxide and oxidative stress-dependent pathways but MR blockade was insufficient to
reverse the effect. Notably, other receptors, such as the glucocorticoid receptor
(GR) and angiotensin II receptor type 1 are involved [14, 15]. The effects of aldo-
sterone are mediated via classic nuclear receptors (genomic actions of aldosterone)
and cell-membrane receptors (non-genomic actions of aldosterone) with alternative
pathways, including activation of protein kinases or secondary messenger signaling
cascades [16, 17]. Indeed, in high, non-physiological plasma conditions, aldosterone
can also act via GR [18] or the G protein-coupled estrogen receptor (GPR30).
The latter one plays an important role in aldosterone-mediated regulation of
endothelial cell growth and in aldosterone’s endothelial-mediated regulation of
vasoreactivity [19].

2.2 Development of MRAs

The development of MRAs begun during the 1950s. At that time, the main role
of aldosterone was considered to be renal sodium and potassium excretion.
Spironolactone, the first steroidal MRA, was primarily developed and used for the
medical control of edema and ascites and control blood pressure, respectively. With
the RALES trial, the perception of spironolactone changed; spironolactone, in addi-
tion to standard therapy, substantially reduced the risk of both morbidity and death
among patients with severe heart failure [20]. With eplerenone, a second-
generation steroidal MRA was developed. The advantage of eplerenone compared
to spironolactone is mainly the higher selectivity for mineralocorticoid receptors,
therefore avoiding hormonal side effects such as gynecomastia. Despite consider-
able efforts to ensure a broad application of this essential medication in this defined
patient collective, many clinicians were reluctant to employ MRAs in their clinical
practice due to potential side effects. These side effects included worsening of renal
function, hyperkalemia and gynecomastia.

Interestingly, Vukadinović et al. performed a meta-analysis. The authors
emphasize that non-MRA-related rises in potassium levels might be underestimated
and should be rigorously explored before cessation of the evidence-based therapy
with MRAs [21].

Nevertheless, the issue of hyperkalemia and worsening renal function triggered
several pharmaceutical companies to develop novel MR-antagonizing compounds.
These so-called third-generation MRAs, such as finerenone or canrenone, are non-
steroidal compounds with both high selectivity and high potency to inhibit MR. The
first compound of these novel MRAs undergoing clinical evaluation was finerenone,
formerly known as BAY 94-8862. Finerenone is even more selective than
eplerenone to the MR with very low affinity to androgen, glucocorticoid and pro-
gesterone receptor. In clear contrast to spironolactone and eplerenone, which have a
higher tendency to concentrate in the kidney, finerenone displays a balanced dis-
tribution pattern into cardiac and kidney tissue of healthy rats [22, 23]. This sug-
gests a more favorable balance between cardioprotection and renal side effects,
especially in populations prone to hyperkalemia such as patients with chronic kid-
ney disease or diabetes (Figure 1) [24, 25].
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2. Main part
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Aldosterone and glucocorticoids bind with similar affinity to MR. In the normal
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complex is more stable than the glucocorticoid-MR complex [8, 9]. Based on these
findings, it is nowadays well accepted that aldosterone contributes to endothelial
dysfunction, fibrinolytic disorders, inflammation, oxidative stress, fibrosis and
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hypertrophy leading to or at least aggravating cardiovascular diseases (CVD) such
as CAD and heart failure [10–13].

Presumably, the exact molecular mechanism of aldosterone’s action is still not
fully understood and appears to be more complex than initially thought. For exam-
ple, aldosterone has been shown to promote the formation of venous thrombosis in
normotensive rats via mechanisms involving primary hemostasis, fibrinolysis, nitric
oxide and oxidative stress-dependent pathways but MR blockade was insufficient to
reverse the effect. Notably, other receptors, such as the glucocorticoid receptor
(GR) and angiotensin II receptor type 1 are involved [14, 15]. The effects of aldo-
sterone are mediated via classic nuclear receptors (genomic actions of aldosterone)
and cell-membrane receptors (non-genomic actions of aldosterone) with alternative
pathways, including activation of protein kinases or secondary messenger signaling
cascades [16, 17]. Indeed, in high, non-physiological plasma conditions, aldosterone
can also act via GR [18] or the G protein-coupled estrogen receptor (GPR30).
The latter one plays an important role in aldosterone-mediated regulation of
endothelial cell growth and in aldosterone’s endothelial-mediated regulation of
vasoreactivity [19].

2.2 Development of MRAs

The development of MRAs begun during the 1950s. At that time, the main role
of aldosterone was considered to be renal sodium and potassium excretion.
Spironolactone, the first steroidal MRA, was primarily developed and used for the
medical control of edema and ascites and control blood pressure, respectively. With
the RALES trial, the perception of spironolactone changed; spironolactone, in addi-
tion to standard therapy, substantially reduced the risk of both morbidity and death
among patients with severe heart failure [20]. With eplerenone, a second-
generation steroidal MRA was developed. The advantage of eplerenone compared
to spironolactone is mainly the higher selectivity for mineralocorticoid receptors,
therefore avoiding hormonal side effects such as gynecomastia. Despite consider-
able efforts to ensure a broad application of this essential medication in this defined
patient collective, many clinicians were reluctant to employ MRAs in their clinical
practice due to potential side effects. These side effects included worsening of renal
function, hyperkalemia and gynecomastia.

Interestingly, Vukadinović et al. performed a meta-analysis. The authors
emphasize that non-MRA-related rises in potassium levels might be underestimated
and should be rigorously explored before cessation of the evidence-based therapy
with MRAs [21].

Nevertheless, the issue of hyperkalemia and worsening renal function triggered
several pharmaceutical companies to develop novel MR-antagonizing compounds.
These so-called third-generation MRAs, such as finerenone or canrenone, are non-
steroidal compounds with both high selectivity and high potency to inhibit MR. The
first compound of these novel MRAs undergoing clinical evaluation was finerenone,
formerly known as BAY 94-8862. Finerenone is even more selective than
eplerenone to the MR with very low affinity to androgen, glucocorticoid and pro-
gesterone receptor. In clear contrast to spironolactone and eplerenone, which have a
higher tendency to concentrate in the kidney, finerenone displays a balanced dis-
tribution pattern into cardiac and kidney tissue of healthy rats [22, 23]. This sug-
gests a more favorable balance between cardioprotection and renal side effects,
especially in populations prone to hyperkalemia such as patients with chronic kid-
ney disease or diabetes (Figure 1) [24, 25].
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To date, finerenone is under investigation in two large clinical trials (FIGARO-
DKD: A Randomized, Double-Blind-Placebo-controlled, Multicenter, Event-driven
Phase 3 Study to Investigate Efficacy and Safety of Finerenone on the Reduction of
Cardiovascular Morbidity and Mortality in Subjects With Type 2 Diabetes Mellitus
and the Clinical Diagnosis of Diabetic Kidney Disease in Addition to Standard of
Care (NCT02545049) and FIDELIO-DKD: A Randomized, Double-Blind, Placebo-
controlled, Parallel-group, Multicenter, Event-driven Phase 3 Study to Investigate
the Efficacy and Safety of Finerenone, in Addition to Standard of Care, on the
Progression of Kidney Disease in Subjects With Type 2 Diabetes Mellitus and the
Clinical Diagnosis of Diabetic Kidney Disease (NCT02540993)). The effect of
canrenone compared to other therapies on cardiovascular mortality in patients with
chronic heart failure and preserved systolic function is currently undertaken in the
“COFFEE-IT” study: “CanrenOne eFFects on cardiovascular mortality in patiEnts
with congEstIve hearT failure” (https://clinicaltrials.gov/ct2/show/NCT03263962).

2.3 MRAs in chronic systolic LV dysfunction (after ischemia)

For a long time, the strongest evidence for the clinical usefulness of MRAs
existed for patients with chronic heart failure NYHA III and reduced ejection
fraction. In 2012, the guidelines for diagnosis and treatment of acute and chronic
heart failure by the European Society of Cardiology amended the recommendation
of MRAs for all patients with symptoms of heart failure class II and worse according
to the New York Heart Association (NYHA)-classification and an ejection fraction
≤35% [26]. Since then, the concept of MR blockade has become a main treatment
paradigm in HFrEF.

Two large clinical trials have firmly established the role of MRAs in chronic heart
failure: the Randomized Aldactone Evaluation Study (RALES) and the Eplerenone
in Mild Patients Hospitalization And SurvIval Study in Heart Failure (EMPHASIS-
HF). Death from all causes and specifically cardiac death as well as hospitalization
due to heart failure were decreased proving the efficacy of MRAs in patients with
severely reduced LV function [20, 27]. Although the underlying pathophysiology is
complex, the clinical effects of MRAs in these patients are thought to be mainly
related to the improvement of LV remodeling with a reduction in collagen synthesis
and myocardial fibrosis, seen as a decrease in LV size and hypertrophy and
improved LV function [28].

Figure 1.
Characteristics of three generations of mineralocorticoid receptor antagonists (MRAs).
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With the development of the third-generation MRAs, such as finerenone, there
came the necessity for further clinical trials. In rats with deoxycorticosterone
acetate-(DOCA)/salt-induced heart and kidney injury as well as in a chronic
myocardial infarction rat model, finerenone had proved to reduce cardiac hyper-
trophy, NT-proBNP and proteinuria more efficiently than eplerenone when directly
comparing equinatriuretic doses [29]. Similarly, in a mouse model of pressure
overload-induced heart failure treatment with finerenone compared to head-to-
head with eplerenone resulted in a more pronounced prevention of myocardial
hypertrophy [30].

ARTS (MinerAlocortocoid Receptor antagonist Tolerability Study) was the first
randomized, controlled, phase II trial to test the safety and tolerability (Part A) of
oral finerenone, at that time still under the name BAY 94-8862, in comparison with
placebo and spironolactone (Part B). Finerenone was associated with significantly
less increases in serum potassium concentration and fewer incidences of
hyperkalemia (5.3 and 12.7%, respectively). Moreover, it decreased the levels of
BNP, NT-proBNP and albuminuria at least as much as spironolactone. Adverse
events related to the substance were infrequent and mostly mild. The authors
concluded that in patients with HFrEF and moderate CKD, finerenone in various
concentrations was at least as effective as spironolactone in decreasing biomarkers
of hemodynamic stress and was associated with lower incidences of hyperkalemia
[31, 32]. After these promising results, ARTS-HF (MinerAlocortocoid Receptor
antagonist Tolerability Study-Heart Failure), a randomized, double-blind, phase IIb
multicenter study was initiated to evaluate oral doses of finerenone given in
patients with worsening heart failure and reduced ejection fraction and chronic
kidney disease and/or diabetes mellitus. The trial showed a comparable efficacy
between all dosage groups of finerenone and eplerenone in the primary endpoint,
the decrease of >30% in plasma NT-proBNP from baseline to day 90 [33]. Similar
results were obtained in the relatively small ARTS-HF Japan trial, conducted in
Japan with the same regime as described for ARTS-HF [34]. Overall, finerenone
showed a promising safety and efficacy profile in the so far conducted trials. How-
ever, patient numbers are too small to draw any fundamental conclusions. With
FINESSE-HF, a multicenter, randomized, double-blind, double-dummy, parallel-
group, active-controlled study to evaluate the efficacy and safety of finerenone
compared to eplerenone on morbidity and mortality in patients with chronic heart
failure and reduced ejection fraction after recent heart failure. Decompensation and
additional risk factors was supposed to launch. However, the trial prematurely
ended in May 2016 (https://www.clinicaltrialsregister.eu/ctr-search/trial/
2015-002168-17/HU#D). To date, finerenone holds its promise of a novel MRA with
greater selectivity, greater potency and fewer side effects. However, further clinical
trials with enough power are needed in patients.

Currently, two clinical trials are evaluating the efficacy and safety of finerenone
in patients with type 2 diabetes mellitus and diabetic kidney disease: the FIGARO-
DKD and FIDELIO-DKD trial. Both trials evaluate whether oral finerenone com-
pared to placebo is effective and safe in addition to standard of care. The primary
outcome measures are, however, different. FIGARO-DKD evaluates the time of the
first occurrence of the composite endpoint of cardiovascular death and non-fatal
cardiovascular events (myocardial infarction, stroke or hospitalization for heart
failure) in a follow-up of up to 53 months. The study is still recruiting and a total
enrollment of 6400 participants with primary completion in January 2020 is esti-
mated (https://clinicaltrials.gov/ct2/show/NCT02545049). FIDELIO-DKD aims to
investigate the time of the first occurrence of the composite endpoint of onset of
kidney failure, a sustained decrease of estimated glomerular filtration rate (eGFR)
≥40% from baseline over at least 4 weeks and renal death in a follow-up of up to
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48 months. A total of 4800 participants and a study completion date of October
2019 is estimated (https://clinicaltrials.gov/ct2/show/NCT02540993).

2.4 MRAs early post infarction

Several preclinical animal studies with coronary artery disease and/or with heart
failure have provided substantial evidence that activation of MR plays a pivotal role
in cardiac healing and remodeling after myocardial ischemia. These studies
suggested that cardiomyocyte-specific deletion of the MR gene attenuates LV dila-
tation, hypertrophy, fibrosis and heart failure, whereas cardiomyocyte-specific MR
overexpression induced adverse remodeling and pro-arrhythmogenic effects [3, 7].
Moreover, administration of MRAs early after MI reduced the expansion of the
healing infarct, attenuated early left ventricular dilatation and dysfunction and had
more beneficial effects on survival, early cardiac dilatation and functional decline
[3, 7, 35–38]. Indeed, after an acute MI, not only circulating aldosterone levels are
increased but also the myocardium distant from the infarct zone shows enhanced
activation of aldosterone synthesis [36].

In the clinical setting, Hayashi et al. demonstrated in 2003 that in patients with
their first anterior STEMI and no evidence of early heart failure, intravenous
canrenone followed by oral spironolactone for 6 months beginning day one post-MI
was safe and associated with a significant reduction in ventricular remodeling,
myocardial fibrosis and inflammatory cytokine activation [39]. In the same year,
the well-planned and executed Eplerenone Post-acute myocardial infarction Heart
failure Efficacy and Survival Study (EPHESUS) demonstrated MR blockade to
substantially improve morbidity and mortality among patients with moderate to
severe heart failure and LV dysfunction after MI [40]. More than 3000 patients
with an ejection fraction <40% received either 50 mg eplerenone or placebo on a
daily basis, starting 3–14 days after MI. In comparison to the placebo-group, all-
cause mortality, cardiovascular mortality and sudden cardiac death were decreased
by 15, 17 and 21%, respectively, in the eplerenone group.

Although EPHESUS had clearly established the clinical efficacy of MRAs in
patients with heart failure after an acute MI, the value of MRAs after MI without
concomitant heart failure needed to be determined. Moreover, EPHESUS suggested
that an early initiation of eplerenone treatment had significant beneficial effects
compared to later initiation [41]. The REMINDER trial (Role of Eplerenone in acute
Myocardial Infarction-Double-blind, Early treatment initiation, Randomized,
placebo-controlled, multi-center study) evaluated the potential benefit of early
administered eplerenone on cardiovascular morbidity and mortality after STEMI. In
this randomized, placebo-controlled, double-blind trial, 1012 patients with acute
STEMI and without a history of heart failure were randomized to receive either
eplerenone (25–50 mg once daily) or placebo in addition to standard therapy.
Treatment was initiated within 24 hours after onset of symptoms. The primary
endpoint was the composite of CV mortality, re-hospitalization or extended initial
hospital stay, due to diagnosis of heart failure, sustained ventricular tachycardia or
fibrillation, ejection fraction ≤40% or elevated BNP/NT-proBNP at 1 month or
more after randomization. The trial showed that the addition of eplerenone during
the acute phase of STEMI was safe and well tolerated. It reduced the primary
endpoint over a mean 13 months follow-up mostly because of significantly lower
natriuretic peptide levels [42].

Similarly, the ALBATROSS trial (Aldosterone Lethal effects Blocked in Acute
myocardial infarction Treated with or without Reperfusion to improve Outcome
and Survival at 6 months follow-up) randomized patients admitted for STEMI and
non-STEMI to test whether administration of MRAs within 72 hours after onset of
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symptoms improves cardiovascular outcome regardless of heart failure and treat-
ment strategy. In total, 1603 patients were included an received an MRA regime
with a single 200 mg intravenous bolus of potassium canrenoate followed by 25 mg
oral spironolactone once daily for 6 months in addition to standard therapy or
standard therapy alone. The primary outcome of the study was the composite of
death, resuscitated cardiac arrest, significant ventricular arrhythmia, indication for
implantable defibrillator, or new or worsening heart failure at 6-month follow-up.
Key secondary/safety outcomes included death and other individual components of
the primary outcome and rates of hyperkalemia at 6 months [43]. However, the
study failed to show the benefit of early MRA use in addition to standard therapy in
patients admitted for MI, and was intensively discussed among experts. In the
overall opinion, both ALBATROSS and REMINDER are undersized to detect a
difference in rates of hard clinical outcomes [43, 44]. Beygui et al. therefore
conducted a pre-specific meta-analysis and pooled individual patient-level data of
the STEMI subgroup of the ALBATROSS and the total population of the
REMINDER trial. Their analysis showed reduced rates of death in the MRA-treated
group compared to standard therapy. Although the authors underline that this
specific subgroup analysis should be considered “exploratory,” it suggests a consis-
tent effect of the early MRA-treatment in patients with STEMI [45]. However,
under these circumstances, additional studies are needed to clarify the role of early
use of MRAs in patients with MI without heart failure.

2.5 MRAs in stable coronary artery disease

A large number of preclinical studies indicate that aldosterone is an important
stimulus for vascular disease, with inflammation and fibrosis being the key players,
[3–6] and MRAs are able to inhibit atherosclerosis progression in different animal
models [46–49]. Treatment with aldosterone results in increased inflammation and
upregulated expression of proinflammatory cytokines, such as tumor necrosis
factor-α, interleukin-1β and transforming growth factor-β1 in rat myocardium.
Additionally, it leads to an increase in myocardial collagen synthesis and content,
fibrosis and profibrotic factors, including connective tissue growth factor, TGF-β,
plasminogen activator inhibitor-1, matrix metalloproteinase-2 and tumor necrosis
factor-α [7]. Oxidative stress is well-recognized to trigger inflammation and to
contribute to the development of fibrosis [7]. Furthermore, MR activation stimu-
lates apoptosis and causes vasoconstriction and reduced blood flow in the animal
heart and MRA treatment reverses these effects [7]. Especially finerenone can
significantly reduce apoptosis of endothelial cells and simultaneously attenuate
smooth muscle cells proliferation, resulting in accelerated endothelial healing and
reduced neointima formation of the injured vessels [50]. Over the years, several
clinical studies in patients with coronary artery disease pinpointed the association of
high aldosterone levels with an increased risk of cardiovascular death and all-cause-
mortality [51], the occurrence of an ischemic event [52] or the progression of
carotid artery plaques [53]. Although clear evidence exists that there is a strong
relationship between aldosterone and the progression of chronic CAD, up to now no
large clinical trial has specifically evaluated the effect of MRAs on the amelioration
of plaque formation. Vukusich et al. executed a randomized, double-blind, placebo-
controlled trial to assess the effectiveness of spironolactone in preventing progres-
sion of carotid intima-media thickness (CIMT) in non-diabetic hemodialysis
patients. Over a period of 24 months, 53 patients received either 50 mg
spironolactone or placebo thrice weekly after dialysis. CIMT measurements
revealed a progression in the placebo-group whereas in the spironolactone-treated
patients, CIMT significantly decreased [54]. Another clinical trial is currently
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use of MRAs in patients with MI without heart failure.

2.5 MRAs in stable coronary artery disease

A large number of preclinical studies indicate that aldosterone is an important
stimulus for vascular disease, with inflammation and fibrosis being the key players,
[3–6] and MRAs are able to inhibit atherosclerosis progression in different animal
models [46–49]. Treatment with aldosterone results in increased inflammation and
upregulated expression of proinflammatory cytokines, such as tumor necrosis
factor-α, interleukin-1β and transforming growth factor-β1 in rat myocardium.
Additionally, it leads to an increase in myocardial collagen synthesis and content,
fibrosis and profibrotic factors, including connective tissue growth factor, TGF-β,
plasminogen activator inhibitor-1, matrix metalloproteinase-2 and tumor necrosis
factor-α [7]. Oxidative stress is well-recognized to trigger inflammation and to
contribute to the development of fibrosis [7]. Furthermore, MR activation stimu-
lates apoptosis and causes vasoconstriction and reduced blood flow in the animal
heart and MRA treatment reverses these effects [7]. Especially finerenone can
significantly reduce apoptosis of endothelial cells and simultaneously attenuate
smooth muscle cells proliferation, resulting in accelerated endothelial healing and
reduced neointima formation of the injured vessels [50]. Over the years, several
clinical studies in patients with coronary artery disease pinpointed the association of
high aldosterone levels with an increased risk of cardiovascular death and all-cause-
mortality [51], the occurrence of an ischemic event [52] or the progression of
carotid artery plaques [53]. Although clear evidence exists that there is a strong
relationship between aldosterone and the progression of chronic CAD, up to now no
large clinical trial has specifically evaluated the effect of MRAs on the amelioration
of plaque formation. Vukusich et al. executed a randomized, double-blind, placebo-
controlled trial to assess the effectiveness of spironolactone in preventing progres-
sion of carotid intima-media thickness (CIMT) in non-diabetic hemodialysis
patients. Over a period of 24 months, 53 patients received either 50 mg
spironolactone or placebo thrice weekly after dialysis. CIMT measurements
revealed a progression in the placebo-group whereas in the spironolactone-treated
patients, CIMT significantly decreased [54]. Another clinical trial is currently
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recruiting patients to study the effect of spironolactone on vascular atherosclerotic
burden. The “Mineralocorticoid Receptor Antagonism Clinical Evaluation in ath-
erosclerosis Trial” (NCT02169089) is a phase IV trial that aims to evaluate the
efficacy of spironolactone in decelerating the worsening of atherosclerotic disease in
the aorta in patients with type 2 diabetes and a previous history of CAD. The
patients are randomized to spironolactone (12.5–25 mg daily) versus placebo. The
primary endpoint is the atheroma volume evaluated via magnetic resonance imag-
ing (MRI) pictures of the aortic wall before and after therapy (https://www.clinica
ltrialsregister.eu/ctr-search/trial/2015-002168-17/HU#D). In another clinical
approach, Garg et al. measured the effect of spironolactone on cardiovascular func-
tion in patients with diabetes and used the coronary flow reserve as a marker for
coronary microvascular function. A total of 64 participants with well-controlled
diabetes who were on chronic ACE-therapy were randomized to 25 mg
spironolactone, 12.5 mg hydrochlorothiazide or placebo for 6 months. The
spironolactone-treated patients showed a significant improvement in coronary
microvascular function [55].

Endothelial dysfunction plays an important role in the pathogenesis of CAD and
is a well-established marker for cardiovascular risk and prognosis [56]. Accordingly,
MR blockade has been shown to improve endothelial dysfunction in patients with
HFrEF [57]. Bavry et al. designed a double-blind, parallel-group, repeated measures
study in women with symptoms and signs of ischemia and coronary endothelial
dysfunction but no significant CAD already receiving ACE-inhibitor or angiotensin
receptor blockers. Patients received either eplerenone (25 mg daily for 4 weeks,
then uptitrated to 50 mg daily for 12 weeks) or placebo. The primary outcome was
percent change in coronary diameter to acetylcholine and secondary in flow reserve
to adenosine at 16 weeks. A total of 41 women completed the treatment period, but
there was no significant difference between treatment groups [58]. Similarly,
Sudano et al. randomized CAD patients with preserved ejection fraction to receive
daily eplerenone (25 mg) or placebo and assessed endothelial cell function after
4 weeks of treatment. Based on brachial artery dilatation, the investigators did not
find any differences in the endothelial cell function between the groups [59].

In contrast to the firmly established benefit of MR blockade in HFrEF and
patients with LV-dysfunction after MI, the role of MRAs with stable CAD with
preserved ejection fraction remains a matter of debate. The variety of small studies
with different approaches and endpoints is not sufficient to give a general recom-
mendation. Larger, prospective, randomized trials are needed further evaluating
the role of MR blockade in stable CAD.

3. Conclusion

It has long been clear that the effects of aldosterone are more diverse than
originally thought. High aldosterone plasma levels early after STEMI or NSTEMI or
in patients with heart failure are associated with increased cardiovascular morbidity
and mortality. Clinical trials have firmly established that MR blocking therapy pro-
vides considerable improvements in cardiovascular mortality and morbidity in
patients with severe heart failure (RALES and ARTS-HF), LV dysfunction after
acute MI (EPHESUS), as well as in patients with less symptomatic chronic heart
failure (EMPHASIS-HF) (Table 1). With REMINDER and ALBATROSS, there is
conflicting data on the role of MRAs in patients after MI without LV-dysfunction.
However, one has to keep in mind that ALBATROSS and REMINDER were both
underpowered and group analysis showed that patients with STEMI might benefit
from treatment. As with stable CAD and preserved ejection fraction, the role of MR
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recruiting patients to study the effect of spironolactone on vascular atherosclerotic
burden. The “Mineralocorticoid Receptor Antagonism Clinical Evaluation in ath-
erosclerosis Trial” (NCT02169089) is a phase IV trial that aims to evaluate the
efficacy of spironolactone in decelerating the worsening of atherosclerotic disease in
the aorta in patients with type 2 diabetes and a previous history of CAD. The
patients are randomized to spironolactone (12.5–25 mg daily) versus placebo. The
primary endpoint is the atheroma volume evaluated via magnetic resonance imag-
ing (MRI) pictures of the aortic wall before and after therapy (https://www.clinica
ltrialsregister.eu/ctr-search/trial/2015-002168-17/HU#D). In another clinical
approach, Garg et al. measured the effect of spironolactone on cardiovascular func-
tion in patients with diabetes and used the coronary flow reserve as a marker for
coronary microvascular function. A total of 64 participants with well-controlled
diabetes who were on chronic ACE-therapy were randomized to 25 mg
spironolactone, 12.5 mg hydrochlorothiazide or placebo for 6 months. The
spironolactone-treated patients showed a significant improvement in coronary
microvascular function [55].

Endothelial dysfunction plays an important role in the pathogenesis of CAD and
is a well-established marker for cardiovascular risk and prognosis [56]. Accordingly,
MR blockade has been shown to improve endothelial dysfunction in patients with
HFrEF [57]. Bavry et al. designed a double-blind, parallel-group, repeated measures
study in women with symptoms and signs of ischemia and coronary endothelial
dysfunction but no significant CAD already receiving ACE-inhibitor or angiotensin
receptor blockers. Patients received either eplerenone (25 mg daily for 4 weeks,
then uptitrated to 50 mg daily for 12 weeks) or placebo. The primary outcome was
percent change in coronary diameter to acetylcholine and secondary in flow reserve
to adenosine at 16 weeks. A total of 41 women completed the treatment period, but
there was no significant difference between treatment groups [58]. Similarly,
Sudano et al. randomized CAD patients with preserved ejection fraction to receive
daily eplerenone (25 mg) or placebo and assessed endothelial cell function after
4 weeks of treatment. Based on brachial artery dilatation, the investigators did not
find any differences in the endothelial cell function between the groups [59].

In contrast to the firmly established benefit of MR blockade in HFrEF and
patients with LV-dysfunction after MI, the role of MRAs with stable CAD with
preserved ejection fraction remains a matter of debate. The variety of small studies
with different approaches and endpoints is not sufficient to give a general recom-
mendation. Larger, prospective, randomized trials are needed further evaluating
the role of MR blockade in stable CAD.

3. Conclusion

It has long been clear that the effects of aldosterone are more diverse than
originally thought. High aldosterone plasma levels early after STEMI or NSTEMI or
in patients with heart failure are associated with increased cardiovascular morbidity
and mortality. Clinical trials have firmly established that MR blocking therapy pro-
vides considerable improvements in cardiovascular mortality and morbidity in
patients with severe heart failure (RALES and ARTS-HF), LV dysfunction after
acute MI (EPHESUS), as well as in patients with less symptomatic chronic heart
failure (EMPHASIS-HF) (Table 1). With REMINDER and ALBATROSS, there is
conflicting data on the role of MRAs in patients after MI without LV-dysfunction.
However, one has to keep in mind that ALBATROSS and REMINDER were both
underpowered and group analysis showed that patients with STEMI might benefit
from treatment. As with stable CAD and preserved ejection fraction, the role of MR
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blockade in this highly inhomogeneous patient collective is still unclear and remains
a matter of debate. The variety of small studies with different approaches and
endpoints is not sufficient to give a general recommendation. Larger, prospective,
randomized trials are urgently needed.

Regarding drug safety and side effects: when contraindications such as co-
medication with potassium-sparing diuretics are respected and renal function and
potassium levels are closely monitored, application of spironolactone and
eplerenone is relatively safe and patients with mild to moderate renal insufficiency
gain similar reductions in mortality and hospitalization as heart failure patients with
normal renal function. Nevertheless, there are always cases in which deterioration
of the kidney function or hyperkalemia requires the discontinuation of the medica-
tion. Especially with the development of the non-steroidal third-generation MRAs,
such as finerenone, with both high selectivity and high potency to inhibit MR, we
might be able to fulfill the hope of achieving cardiovascular benefit without or at
least with fewer renal side effects than spironolactone and eplerenone (Figure 1).

Without any question, MRAs are nowadays one of the mainstays of current
pharmacotherapy for cardiovascular diseases and are clearly indicated in patients
with chronic heart failure (NYHA class II–IV and and/or an ejection fraction ≤35%)
as well as in patients with evidence of heart failure/LV dysfunction early after an
acute MI. On the contrary, no general recommendation for immediate MR antago-
nism is currently justified in patients without LV dysfunction after MI. An ade-
quately powered prospective randomized trial evaluating the safety and efficacy of
MRA administration early post-MI in patients without heart failure/LV dysfunction
is still needed to finally answer that question.
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blockade in this highly inhomogeneous patient collective is still unclear and remains
a matter of debate. The variety of small studies with different approaches and
endpoints is not sufficient to give a general recommendation. Larger, prospective,
randomized trials are urgently needed.

Regarding drug safety and side effects: when contraindications such as co-
medication with potassium-sparing diuretics are respected and renal function and
potassium levels are closely monitored, application of spironolactone and
eplerenone is relatively safe and patients with mild to moderate renal insufficiency
gain similar reductions in mortality and hospitalization as heart failure patients with
normal renal function. Nevertheless, there are always cases in which deterioration
of the kidney function or hyperkalemia requires the discontinuation of the medica-
tion. Especially with the development of the non-steroidal third-generation MRAs,
such as finerenone, with both high selectivity and high potency to inhibit MR, we
might be able to fulfill the hope of achieving cardiovascular benefit without or at
least with fewer renal side effects than spironolactone and eplerenone (Figure 1).

Without any question, MRAs are nowadays one of the mainstays of current
pharmacotherapy for cardiovascular diseases and are clearly indicated in patients
with chronic heart failure (NYHA class II–IV and and/or an ejection fraction ≤35%)
as well as in patients with evidence of heart failure/LV dysfunction early after an
acute MI. On the contrary, no general recommendation for immediate MR antago-
nism is currently justified in patients without LV dysfunction after MI. An ade-
quately powered prospective randomized trial evaluating the safety and efficacy of
MRA administration early post-MI in patients without heart failure/LV dysfunction
is still needed to finally answer that question.
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Mineralocorticoid Receptor and 
Leptin: A Dangerous Liaison in the 
Obese Heart
Gema Marin-Royo, María Luaces, Victoria Cachofeiro  
and Ernesto Martínez-Martínez

Abstract

Multiple factors have been proposed as being responsible for cardiac damage in 
the context of obesity, including aldosterone/mineralocorticoid receptor and leptin. 
Aldosterone exerts proinflammatory, prooxidant and profibrotic actions, which 
can play a key role in the development of cardiac damage associated with different 
pathologies, through binding of mineralocorticoid receptor (MR). Moreover, its 
pharmacological blockade has demonstrated to improve these situations. Different 
studies have demonstrated that aldosterone is inappropriately elevated in obesity 
and MR antagonism improves left ventricle function and reduces circulating 
procollagen levels in patients with obesity without other comorbidities. Leptin is 
locally produced in the myocardium and its production is up-regulated in obesity. 
This adipokine is a proinflammatory, prooxidant and profibrotic factor that can 
participate in the cardiac damage associated with obesity. Interactions among leptin 
and aldosterone have previously been reported in different scenarios and at dif-
ferent levels, supporting a link between leptin and MR and that could result in the 
potentiation of the cardiac damage associated with obesity. Therefore, the aim of 
this review is to discuss whether MR activation can mediate the deleterious effects 
of leptin in the heart in the context of obesity, as well as the potential mechanisms 
involved in this process.

Keywords: leptin, mineralocorticoid receptor, fibrosis, heart, oxidative stress

1. Cardiac effects of obesity

Obesity has become a global problem of the first magnitude worldwide and 
is associated with an increase in total mortality, especially that of cardiovascular 
origin [1]. Obesity is an exaggeration of normal adiposity and plays a central role in 
the pathophysiology of various diseases such as type 2 diabetes mellitus, cardiovas-
cular disease, stroke, hypertension, and dyslipidemia [2]. Obesity is associated with 
several structural and function alterations in the heart which are characterized by 
cardiac hypertrophy and left ventricle systolic and diastolic dysfunction that con-
tribute to the development of heart failure [3]. There have been reported changes 
in left ventricle geometry in obese individuals, with these being more prevalent in 
an eccentric pattern defined by an increase in left ventricle mass but not in relative 
parietal thickness [4]. This cardiac hypertrophy could be a consequence of higher 
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metabolic demand required by obese individuals, as well as increased cardiac output 
which is associated with higher ventricular filling and which promotes ventricular 
dilatation and, in consequence, an enlargement of myocardial mass [5]. It is well 
known that left ventricular hypertrophy is a risk factor for heart failure develop-
ment [6]. Diastolic dysfunction is the main functional alteration observed in obese 
patients [7]. Ventricular hypertrophy along with an increase in blood flow and 
circulating volume predisposes to diastolic dysfunction observed in obese patients 
[4]. Pascual et al. reported subclinical left ventricular diastolic dysfunction in all 
degrees of obesity (mildly, moderate, and severely obese patients) [8]. Another 
study reported that the severity of the diastolic dysfunction observed in obesity 
increases proportionally with the body mass index [9]. Conflicting results have 
been found [8, 10–14] with regard to systolic function in obese individuals. These 
contradictory effects on systolic function could be consequence of the presence or 
not of comorbidities frequently associated with obesity (hypertension, metabolic 
disorders, and coronary artery disease) which can also have an impact on cardiac 
function. Several studies have postulated that perivascular and interstitial fibrosis 
could contribute to the cardiac dysfunction, especially diastolic one, observed in 
obesity [15]. Cardiac fibrosis is characterized by increased deposit of extracellular 
matrix (ECM) proteins in the myocardium. This is a dynamic process regulated by 
the balance between the synthesis and degradation of the ECM proteins within the 
heart. Collagen, especially collagen type I, is the main protein involved in fibrotic 
process, and metalloproteinases (MMPs) are the enzymes involved in ECM protein 
degradation. It has been described that obese patients present elevated serum levels 
of collagen peptides and are associated with indices of insulin resistance and with 
diastolic dysfunction [16, 17]. Moreover, the reduction in body mass index after 
bariatric surgery is not always accompanied by the normalization of diastolic func-
tion suggesting myocardial damage probably due to the accumulation of ECM [4].

Several mechanisms and factors have been proposed for the structural and 
functional changes that occur in the obese heart, such as, the effects of aldosterone, 
through mineralocorticoid receptor (MR) binding, and leptin, two hormones whose 
levels are increased in the context of obesity. Aldosterone/MR and leptin promote 
cardiac damage through its prooxidant and proinflammatory effects which can trigger 
an excessive ECM accumulation, promoting fibrogenic and hypertrophic responses 
and functional alterations [18–20]. We herein review the MR and leptin effects at 
cardiac level with special focus on the context of obesity as well as the interaction of 
aldosterone and leptin and its role in the development of cardiac remodeling.

2. Cardiac effects of mineralocorticoid receptor

Aldosterone is the main mineralocorticoid hormone, which plays an important 
role in the pathophysiology of cardiovascular disease through its binding to MR, 
which resides in the cytosol and is translocated to the nucleus after ligand bind-
ing, thereby promoting gene transcription [21]. Besides the hypertensive and the 
renal effects of aldosterone, chronic hyperaldosteronism promotes cardiovascular 
complications, including left ventricular hypertrophy, myocardial infarction, and 
atrial fibrillation [22]. The deleterious effects of aldosterone have traditionally been 
considered over the years due to its effects on sodium/water retention and its effects 
on blood pressure. However, its extrarenal effects through MR activation in non-
epithelial cells of the cardiovascular system have been confirmed in recent years [23]. 
Several clinical studies have demonstrated that the activation of MR plays an impor-
tant role in mild to severe heart failure [24–26]. MR blockade through MR antagonists 
(MRA) reduces morbidity and mortality in heart failure patients. MRA treatment 
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has demonstrated beneficial effects at cardiac level even in the absence of aldosterone 
level modifications [24–26]. In accordance with these observations, the effects of MR 
by genetic modulation in different cell types have been demonstrated. Specifically, 
MR overexpression in cardiomyocytes leads to cardiac arrhythmias in mice in the 
absence of changes in aldosterone levels [27], and this effect is accompanied by severe 
coronary endothelial dysfunction due at least in part to an increase in oxidative stress 
[28]. In addition, mice with MR genetic deletion in cardiomyocytes are resistant to 
developing cardiac fibrosis induced by deoxycorticosterone/salt (DOCA-salt) and do 
not show inflammatory cell infiltration after 8 weeks of treatment [29]. In another 
animal model of cardiac disease, Fraccarollo et al. have demonstrated that MR dele-
tion in cardiomyocytes improved infarct healing, cardiac function, cardiac fibrosis, 
and mitochondrial superoxide anion production after myocardial infarction, which 
confirms the role of MR activation in cardiac cells in cardiac pathophysiology [30]. 
Similar beneficial effects on cardiac remodeling, hypertrophy, and profibrotic and 
proinflammatory markers have been observed in endothelial [31, 32] or macrophage 
[33] MR inactivation after DOCA-salt mineralocorticoid challenge and also in vascu-
lar smooth muscle MR inactivation in myocardial infarction [34].

In the context of obesity, clinical and experimental studies have demonstrated 
that aldosterone production is increased in obesity and is correlated with white adi-
pose tissue mass [35–37]. In addition, weight loss in obese individuals is accompa-
nied by a reduction in aldosterone levels [38]. Aldosterone is primarily synthesized 
in the outer layer of the adrenal cortex. However, it has been demonstrated that 
adipose tissue possesses the machinery necessary to produce aldosterone, which 
can act in an autocrine or paracrine manner [39]. Activation of renin-angiotensin-
aldosterone system has been reported in animal models of obesity [20, 40, 41]. 
Endothelial-specific MR deletion in female mice was able to prevent the diastolic 
dysfunction induced by high-fat diet [42]. This improvement was accompanied by 
a reduction in cardiac fibrosis, ECM protein deposition, cardiac inflammation, and 
oxidative stress as well as an improvement in insulin metabolic signaling [42]. These 
results were confirmed by the same research group where the administration of the 
MRA spironolactone reproduced the same results [43] in female mice fed with a 
high-fat diet as well as prevented the development of arterial stiffening in the ani-
mals [44]. In agreement with these findings, a randomized controlled clinical study 
has shown that aldosterone blockade with spironolactone for 6 months improved 
left ventricular function and reduced circulating procollagen peptide levels in obese 
patients without other comorbidities [45]. The addition of spironolactone to the 
standard treatment (angiotensin II inhibitors) was also able to improve left ventricle 
dysfunction and collagen turnover in patients with metabolic syndrome [46]. In 
a recent study, we have demonstrated that galectin-3, a lectin upregulated by MR 
activation, is increased in obese patients and its levels were associated with diastolic 
function [17]. In addition, pharmacological blockade of galectin-3 with an activity 
inhibitor blunted the cardiovascular remodeling and inflammation in obese male 
rats [17]. Another study in obese rats showed that the administration of spironolac-
tone normalized cardiac diastolic function and reduced cardiac fibrosis [47]. The 
studies performed in the context of obesity overall show the implication of MR in 
cardiac damage and the beneficial consequences of the use of MRA in the treatment 
of obesity-related cardiovascular dysfunction.

3. Cardiac effects of leptin

Leptin is the product of the ob gene that circulates in proportion to body fat 
[48]. This hormone is considered critical for informing the central nervous system 
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adipose tissue possesses the machinery necessary to produce aldosterone, which 
can act in an autocrine or paracrine manner [39]. Activation of renin-angiotensin-
aldosterone system has been reported in animal models of obesity [20, 40, 41]. 
Endothelial-specific MR deletion in female mice was able to prevent the diastolic 
dysfunction induced by high-fat diet [42]. This improvement was accompanied by 
a reduction in cardiac fibrosis, ECM protein deposition, cardiac inflammation, and 
oxidative stress as well as an improvement in insulin metabolic signaling [42]. These 
results were confirmed by the same research group where the administration of the 
MRA spironolactone reproduced the same results [43] in female mice fed with a 
high-fat diet as well as prevented the development of arterial stiffening in the ani-
mals [44]. In agreement with these findings, a randomized controlled clinical study 
has shown that aldosterone blockade with spironolactone for 6 months improved 
left ventricular function and reduced circulating procollagen peptide levels in obese 
patients without other comorbidities [45]. The addition of spironolactone to the 
standard treatment (angiotensin II inhibitors) was also able to improve left ventricle 
dysfunction and collagen turnover in patients with metabolic syndrome [46]. In 
a recent study, we have demonstrated that galectin-3, a lectin upregulated by MR 
activation, is increased in obese patients and its levels were associated with diastolic 
function [17]. In addition, pharmacological blockade of galectin-3 with an activity 
inhibitor blunted the cardiovascular remodeling and inflammation in obese male 
rats [17]. Another study in obese rats showed that the administration of spironolac-
tone normalized cardiac diastolic function and reduced cardiac fibrosis [47]. The 
studies performed in the context of obesity overall show the implication of MR in 
cardiac damage and the beneficial consequences of the use of MRA in the treatment 
of obesity-related cardiovascular dysfunction.

3. Cardiac effects of leptin

Leptin is the product of the ob gene that circulates in proportion to body fat 
[48]. This hormone is considered critical for informing the central nervous system 
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about the status of energy reserves and control satiety [49]. It is thought that obese 
people are leptin-resistant due to the lack of satiation observed. However, this 
leptin resistance does not occur in peripheral tissues, including the cardiovascular 
system, where leptin promotes several actions in obesity [50]. Leptin is mainly 
produced by adipose tissue, but it is also produced in different tissues, including 
the heart [48]. Plasma leptin levels have been considered to be an independent 
predictor of coronary heart disease [51] and a risk factor for myocardial infarc-
tion [52] and coronary atherosclerosis [53]. During obesity there is an increase 
in systemic leptin levels, as well as in the heart where it is locally produced [54]. 
Leptin acts via transmembrane receptors which are the product of db gene [55]. 
Genetic deletion of ob or db genes promotes obese animals, which have been used 
in conjunction with diet-induced obese animals in order to study the role of leptin 
in the cardiovascular system [56–58]. Several mechanisms have demonstrated the 
pathogenic role of leptin at cardiac level. Leptin receptor-deficient obese Zucker 
rats have been a studied animal model of hyperglycemia and diabetes [59], cardiac 
lipotoxicity [60], and diastolic cardiac dysfunction [61] as well. In accordance with 
this metabolic alterations, it has been demonstrated that leptin increased fatty 
acid uptake in HL-1 cells leading to intracellular lipid accumulation [62] being one 
possible mechanism involved in cardiac lipotoxicity that can facilitate the develop-
ment of heart failure [63].

Concerning structural modifications observed in obesity, clinical data have 
shown a positive correlation between plasma leptin levels with left ventricular 
hypertrophy [64]. Infusion of leptin in myocardial infarction mice increased left 
ventricle diameter as compared with animals without leptin infusion [65]. In vitro 
data show the direct hypertrophic effects of leptin inducing elongation of cardiac 
myocytes via the activation of JAK/STAT pathway [65]. Despite the well-established 
hypertrophic effects of leptin, there is one report that documented contradictory 
effects. Ob/ob mice have shown cardiac hypertrophy which is reverted after leptin 
repletion [66]. It is documented that oxidative stress plays an important role in 
the development of cardiac hypertrophy [67]. Leptin levels are correlated with 
superoxide anion levels in peripheral blood mononuclear cells from obese patients 
after adjusting for age and sex [68]. In this context, leptin produced an increase in 
reactive oxygen species (ROS) accumulation in a dose- and time-dependent manner 
in endothelial cells, accompanied by an activation of the JNK pathway [69]. Similar 
results have been observed in vascular smooth muscle cells [70] and in cardiac 
fibroblasts [54]. In addition, an antioxidant treatment in vascular and cardiac cells 
was able to prevent the increase in collagen production induced by leptin [54, 70],  
showing the role of oxidative stress in fibrogenic responses. Experimental studies 
have shown that leptin administration in ob/ob mice increased myocardial col-
lagen deposition, thus confirming its profibrotic effects [71]. Complementary 
techniques revealed cardiac interstitial fibrosis in db/db mice [72] and in Zucker 
rats [73], and it is associated with diastolic dysfunction. Multiple mechanisms have 
been suggested as being responsible for the interstitial fibrosis observed in these 
animals, including metabolic alterations and the activation of renin-angiotensin-
aldosterone system. However, the potential role of leptin in the aldosterone/MR 
activation observed in these animals is likely acting through mechanisms other than 
leptin, since both db/db mice and Zucker rats have impaired leptin signaling. These 
potential mechanisms could include angiotensin II, oxidative stress, or metabolic 
alterations [47, 74–76].

In a recent study, we have demonstrated that leptin enhances lysyl oxidase 
(LOX) protein levels in cardiac fibroblasts [77]. LOX is an ECM enzyme that 
catalyzes the cross-linking of collagen fibers [78]. The pharmacological inhibition 
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of LOX is able to prevent the increase in collagen production induced by leptin 
in cardiac and vascular cells as well as the cardiovascular fibrosis associated with 
obesity [77]. In addition, we have observed that leptin increased the aldosterone 
downstream product, galectin-3, protein levels in cardiac fibroblasts, which at the 
same time mediates the fibrotic effect of leptin [54] supporting the possible rela-
tionship between leptin and MR.

Another mechanism involved in cardiac injury in obesity is the inflammation 
[79]. Leptin can be considered to be an inflammatory cytokine itself [80] but also 
promotes monocyte recruitment [81] and macrophage foam cell formation [82] 
and promotes the secretion of another inflammatory cytokines [83]. The present 
knowledge of the mechanisms triggered by leptin has established the implication 
of this adipokine in the deleterious consequences of obesity in the cardiovascular 
system.

4. Leptin-aldosterone/MR axis

Leptin is a major stimulus to the production of aldosterone in obesity [41, 84]  
and may be responsible for the excessive MR signaling that is the hallmark of 
obesity-related heart failure [85, 86]. This thus supports a cross talk between 
leptin and MR, which can have deleterious consequences in the context of obesity 
including sodium balance. In this regard, visceral adiposity leads to positive sodium 
balance through the leptin receptor, which can cause sodium retention [87] through 
different mechanisms which include a direct action on the renal tubules, an increase 
in renal sympathetic nerve traffic [88, 89], and a direct stimulation of renin- 
angiotensin-aldosterone system [90, 91].

Obesity is associated with dysfunctional adipose tissue, which is characterized 
by the increase in the synthesis of different cytokines as well as leptin. In addition 
to leptin which is able to stimulate aldosterone synthesis and therefore active MR, 
whether other adipokines, such as, tumor necrosis factor-α, are able to increase 
aldosterone is not totally established in the literature since a variety of results have 
been reported [41, 92].

Leptin infusion in obese and lean mice promotes an increase in aldosterone 
plasma levels suggesting a relationship between both hormones [93]. Confirming 
these results, Huby et al. have demonstrated that there is an increase in aldosterone 
production in an animal model of leptin hypersensitivity due to an increase in 
CYP11B2 (aldosterone synthase) expression [90]. The authors showed in the same 
study that this increase in aldosterone and CYP11B2 is absent in three different 
transgenic models of leptin activity deletion [90]. In fact, leptin receptors are colo-
calized with CYP11B2 in human adrenal cells. In addition, the administration of the 
leptin receptor antagonist prevented the rise in aldosterone plasma levels observed 
in the leptin hypersensitivity animal model as well as in obese mice [94]. These 
data taken together demonstrate that aldosterone production induced by leptin is 
dependent on leptin signaling rather than on the increase in body weight. However, 
there are several discrepancies in this suggestion [95]. The mechanisms involved 
in aldosterone production induced by leptin are still unclear, although it has been 
proposed to be a calcium-dependent process. In human adrenocortical carcinoma 
cells, leptin increased calcium activity as well as CYP11B2 aldosterone production. 
When intracellular calcium is chelated, leptin-treated cells do not show the increase 
in CYP11B2 promoter activity [90].

Female mice infused with leptin presented reduced endothelium-dependent 
relaxation, which was prevented by spironolactone treatment—this demonstrates 
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about the status of energy reserves and control satiety [49]. It is thought that obese 
people are leptin-resistant due to the lack of satiation observed. However, this 
leptin resistance does not occur in peripheral tissues, including the cardiovascular 
system, where leptin promotes several actions in obesity [50]. Leptin is mainly 
produced by adipose tissue, but it is also produced in different tissues, including 
the heart [48]. Plasma leptin levels have been considered to be an independent 
predictor of coronary heart disease [51] and a risk factor for myocardial infarc-
tion [52] and coronary atherosclerosis [53]. During obesity there is an increase 
in systemic leptin levels, as well as in the heart where it is locally produced [54]. 
Leptin acts via transmembrane receptors which are the product of db gene [55]. 
Genetic deletion of ob or db genes promotes obese animals, which have been used 
in conjunction with diet-induced obese animals in order to study the role of leptin 
in the cardiovascular system [56–58]. Several mechanisms have demonstrated the 
pathogenic role of leptin at cardiac level. Leptin receptor-deficient obese Zucker 
rats have been a studied animal model of hyperglycemia and diabetes [59], cardiac 
lipotoxicity [60], and diastolic cardiac dysfunction [61] as well. In accordance with 
this metabolic alterations, it has been demonstrated that leptin increased fatty 
acid uptake in HL-1 cells leading to intracellular lipid accumulation [62] being one 
possible mechanism involved in cardiac lipotoxicity that can facilitate the develop-
ment of heart failure [63].

Concerning structural modifications observed in obesity, clinical data have 
shown a positive correlation between plasma leptin levels with left ventricular 
hypertrophy [64]. Infusion of leptin in myocardial infarction mice increased left 
ventricle diameter as compared with animals without leptin infusion [65]. In vitro 
data show the direct hypertrophic effects of leptin inducing elongation of cardiac 
myocytes via the activation of JAK/STAT pathway [65]. Despite the well-established 
hypertrophic effects of leptin, there is one report that documented contradictory 
effects. Ob/ob mice have shown cardiac hypertrophy which is reverted after leptin 
repletion [66]. It is documented that oxidative stress plays an important role in 
the development of cardiac hypertrophy [67]. Leptin levels are correlated with 
superoxide anion levels in peripheral blood mononuclear cells from obese patients 
after adjusting for age and sex [68]. In this context, leptin produced an increase in 
reactive oxygen species (ROS) accumulation in a dose- and time-dependent manner 
in endothelial cells, accompanied by an activation of the JNK pathway [69]. Similar 
results have been observed in vascular smooth muscle cells [70] and in cardiac 
fibroblasts [54]. In addition, an antioxidant treatment in vascular and cardiac cells 
was able to prevent the increase in collagen production induced by leptin [54, 70],  
showing the role of oxidative stress in fibrogenic responses. Experimental studies 
have shown that leptin administration in ob/ob mice increased myocardial col-
lagen deposition, thus confirming its profibrotic effects [71]. Complementary 
techniques revealed cardiac interstitial fibrosis in db/db mice [72] and in Zucker 
rats [73], and it is associated with diastolic dysfunction. Multiple mechanisms have 
been suggested as being responsible for the interstitial fibrosis observed in these 
animals, including metabolic alterations and the activation of renin-angiotensin-
aldosterone system. However, the potential role of leptin in the aldosterone/MR 
activation observed in these animals is likely acting through mechanisms other than 
leptin, since both db/db mice and Zucker rats have impaired leptin signaling. These 
potential mechanisms could include angiotensin II, oxidative stress, or metabolic 
alterations [47, 74–76].

In a recent study, we have demonstrated that leptin enhances lysyl oxidase 
(LOX) protein levels in cardiac fibroblasts [77]. LOX is an ECM enzyme that 
catalyzes the cross-linking of collagen fibers [78]. The pharmacological inhibition 
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of LOX is able to prevent the increase in collagen production induced by leptin 
in cardiac and vascular cells as well as the cardiovascular fibrosis associated with 
obesity [77]. In addition, we have observed that leptin increased the aldosterone 
downstream product, galectin-3, protein levels in cardiac fibroblasts, which at the 
same time mediates the fibrotic effect of leptin [54] supporting the possible rela-
tionship between leptin and MR.

Another mechanism involved in cardiac injury in obesity is the inflammation 
[79]. Leptin can be considered to be an inflammatory cytokine itself [80] but also 
promotes monocyte recruitment [81] and macrophage foam cell formation [82] 
and promotes the secretion of another inflammatory cytokines [83]. The present 
knowledge of the mechanisms triggered by leptin has established the implication 
of this adipokine in the deleterious consequences of obesity in the cardiovascular 
system.

4. Leptin-aldosterone/MR axis

Leptin is a major stimulus to the production of aldosterone in obesity [41, 84]  
and may be responsible for the excessive MR signaling that is the hallmark of 
obesity-related heart failure [85, 86]. This thus supports a cross talk between 
leptin and MR, which can have deleterious consequences in the context of obesity 
including sodium balance. In this regard, visceral adiposity leads to positive sodium 
balance through the leptin receptor, which can cause sodium retention [87] through 
different mechanisms which include a direct action on the renal tubules, an increase 
in renal sympathetic nerve traffic [88, 89], and a direct stimulation of renin- 
angiotensin-aldosterone system [90, 91].

Obesity is associated with dysfunctional adipose tissue, which is characterized 
by the increase in the synthesis of different cytokines as well as leptin. In addition 
to leptin which is able to stimulate aldosterone synthesis and therefore active MR, 
whether other adipokines, such as, tumor necrosis factor-α, are able to increase 
aldosterone is not totally established in the literature since a variety of results have 
been reported [41, 92].

Leptin infusion in obese and lean mice promotes an increase in aldosterone 
plasma levels suggesting a relationship between both hormones [93]. Confirming 
these results, Huby et al. have demonstrated that there is an increase in aldosterone 
production in an animal model of leptin hypersensitivity due to an increase in 
CYP11B2 (aldosterone synthase) expression [90]. The authors showed in the same 
study that this increase in aldosterone and CYP11B2 is absent in three different 
transgenic models of leptin activity deletion [90]. In fact, leptin receptors are colo-
calized with CYP11B2 in human adrenal cells. In addition, the administration of the 
leptin receptor antagonist prevented the rise in aldosterone plasma levels observed 
in the leptin hypersensitivity animal model as well as in obese mice [94]. These 
data taken together demonstrate that aldosterone production induced by leptin is 
dependent on leptin signaling rather than on the increase in body weight. However, 
there are several discrepancies in this suggestion [95]. The mechanisms involved 
in aldosterone production induced by leptin are still unclear, although it has been 
proposed to be a calcium-dependent process. In human adrenocortical carcinoma 
cells, leptin increased calcium activity as well as CYP11B2 aldosterone production. 
When intracellular calcium is chelated, leptin-treated cells do not show the increase 
in CYP11B2 promoter activity [90].

Female mice infused with leptin presented reduced endothelium-dependent 
relaxation, which was prevented by spironolactone treatment—this demonstrates 
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that leptin induces endothelial dysfunction via MR [90]. In the same study, the 
authors showed that leptin administration for 7 days induced an increase in mRNA 
levels in profibrotic markers at cardiac level, which was blunted by treatment with 
spironolactone. This effect is independent of body weight since obese transgenic 
mice (ob/ob) only presented the increase in the profibrotic markers when they were 
treated with leptin [90]. The transgenic background could explain this effect since 
ob/ob mice are deficient in leptin, suggesting that leptin induced cardiac fibrosis 
through MR.

As it has been mentioned above, circulating leptin levels are increased in obe-
sity but also are increased locally at cardiac level [54]. In previous studies, we have 
demonstrated that leptin participates in collagen I production through its prooxi-
dant effects and suggests its possible role in the cardiac fibrosis associated with 
obesity [54]. Considering that mitochondria is the main source of ROS produc-
tion, we explored in a recent study the possible role of mitochondrial oxidative 
stress in cardiac alterations in obesity [40]. For this purpose, we used a normo-
tensive model of diet-induced obesity in rats treated with either MitoTEMPO (a 
mitochondrial ROS scavenger) or vehicle. The mitochondrial antioxidant was 
able to prevent the increase in superoxide anion production, as well as the cardiac 
hypertrophy and fibrosis in obese rats, thus showing the role of mitochondrial 
ROS in these alterations [40]. Interestingly, these effects of MitoTEMPO were 
accompanied by a reduction in leptin and aldosterone plasma levels in obese 
rats, suggesting a possible cross talk between both hormones. For this reason, we 
explored this possible interaction in cardiac myofibroblasts. In these cells, leptin 
increased CYP11B2 mRNA levels (Figure 1A) which was accompanied by an 
increase in the production of aldosterone in a dose- and time-dependent manner 
(Figure 1B and C).

In addition, leptin increased ECM proteins, profibrotic mediators, and the pro-
duction of superoxide anion at total and mitochondrial level through the activation of 
Akt and ERK1/ERK2 pathways [40]. The pharmacological blockade of MR through 
pretreatment of the cells with eplerenone was able to prevent all these alterations 
induced by leptin in the cardiac cells, thus showing the cross talk between MR and 
leptin. The results taken together show the possible role of leptin in cardiac fibrosis in 
the context of obesity through MR-dependent mechanisms (Figure 2) [40].

Figure 1. 
(A) Effects of leptin (100 ng/mL) on CYP11B2 mRNA levels at 24 hours of stimulation. (B) Dose-response 
and (C) time-course of leptin on aldosterone secretion in human cardiac fibroblasts. *p < 0.05; ***p < 0.001 vs. 
control.
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that leptin induces endothelial dysfunction via MR [90]. In the same study, the 
authors showed that leptin administration for 7 days induced an increase in mRNA 
levels in profibrotic markers at cardiac level, which was blunted by treatment with 
spironolactone. This effect is independent of body weight since obese transgenic 
mice (ob/ob) only presented the increase in the profibrotic markers when they were 
treated with leptin [90]. The transgenic background could explain this effect since 
ob/ob mice are deficient in leptin, suggesting that leptin induced cardiac fibrosis 
through MR.

As it has been mentioned above, circulating leptin levels are increased in obe-
sity but also are increased locally at cardiac level [54]. In previous studies, we have 
demonstrated that leptin participates in collagen I production through its prooxi-
dant effects and suggests its possible role in the cardiac fibrosis associated with 
obesity [54]. Considering that mitochondria is the main source of ROS produc-
tion, we explored in a recent study the possible role of mitochondrial oxidative 
stress in cardiac alterations in obesity [40]. For this purpose, we used a normo-
tensive model of diet-induced obesity in rats treated with either MitoTEMPO (a 
mitochondrial ROS scavenger) or vehicle. The mitochondrial antioxidant was 
able to prevent the increase in superoxide anion production, as well as the cardiac 
hypertrophy and fibrosis in obese rats, thus showing the role of mitochondrial 
ROS in these alterations [40]. Interestingly, these effects of MitoTEMPO were 
accompanied by a reduction in leptin and aldosterone plasma levels in obese 
rats, suggesting a possible cross talk between both hormones. For this reason, we 
explored this possible interaction in cardiac myofibroblasts. In these cells, leptin 
increased CYP11B2 mRNA levels (Figure 1A) which was accompanied by an 
increase in the production of aldosterone in a dose- and time-dependent manner 
(Figure 1B and C).

In addition, leptin increased ECM proteins, profibrotic mediators, and the pro-
duction of superoxide anion at total and mitochondrial level through the activation of 
Akt and ERK1/ERK2 pathways [40]. The pharmacological blockade of MR through 
pretreatment of the cells with eplerenone was able to prevent all these alterations 
induced by leptin in the cardiac cells, thus showing the cross talk between MR and 
leptin. The results taken together show the possible role of leptin in cardiac fibrosis in 
the context of obesity through MR-dependent mechanisms (Figure 2) [40].
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Aldosterone/Mineralocorticoid 
Receptor Downstream Targets 
as Novel Therapeutic Targets 
to Prevent Cardiovascular 
Remodeling
Jaime Ibarrola, Frederic Jaisser and Natalia López-Andrés

Abstract

The incidence of heart failure (HF) is increasing because of aging of the popula-
tion. Despite optimal therapy, patients with HF experience disease progression 
associated with high mortality rates. HF is still the first cause of hospital admission 
in subjects aged >65 years. The obvious solution for HF epidemics is to prevent 
new-onset HF with therapies directed specifically to mechanistic targets that are 
involved in the transition to HF. The mineralocorticoid receptor (MR) and its natu-
ral ligand, the hormone aldosterone (Aldo), play important roles during cardiac and 
arterial remodeling, but the underlying effects are still not understood. MR antago-
nists are highly recommended for treatment of systolic symptomatic HF. However, 
adverse effects limit their use in clinical practice. Galectin-3 (Gal-3), neutrophil 
gelatinase-associated lipocalin (NGAL), and cardiotrophin-1 (CT-1) have been 
identified as highly focused targets controlling downstream key MR-mediated 
HF mechanisms. Therefore, interfering with mechanistic pathways involved in 
downstream MR activation may provide therapeutic alternatives to MR antagonists. 
The aim of this review is to focus on the role of the MR biotargets in cardiovascular 
remodeling.

Keywords: biotarget, galectin-3, neutrophil gelatinase-associated lipocalin, 
cardiotrophin-1

1. Introduction

Inappropriate mineralocorticoid signaling has been shown to play an important 
role in the progression of cardiovascular disease. Aldosterone (Aldo) is a main 
regulator of renal sodium reabsorption with an overall effect on volemia and blood 
pressure. Aldo binds to the mineralocorticoid receptor (MR), which works as a 
transcription factor of the nuclear receptor family present in the kidney and also 
in various other non-epithelial cells including the heart and the vasculature [1]. 
Indeed, new extrarenal pathophysiological effects of this hormone have been char-
acterized, extending its actions to the cardiovascular system [2]. A growing body 
of clinical and preclinical evidence suggests that Aldo and MR play an important 
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pathophysiological role in cardiovascular remodeling by promoting changes involv-
ing cardiac hypertrophy, fibrosis, arterial stiffness, as well as in inflammation and 
oxidative stress [3]. In line with these findings, inappropriate MR activation has 
been shown to promote cardiovascular remodeling in experimental models [4]. The 
RALES, EPHESUS, and the EMPHASIS-HF clinical trials demonstrated that the 
addition of MR antagonists (MRAs) to standard care markedly reduced the overall 
and cardiovascular mortality in patients with systolic heart failure (HF) [5–7]. The 
beneficial effects were mainly associated with a reduction of cardiovascular fibro-
sis, as assessed by circulating biomarkers of cardiovascular extracellular matrix [8]. 
Moreover, results of the recently completed REMINDER (impact of eplerenone 
on CV outcomes in patients post myocardial infarction, clinical trial number 
NCT01176968) trial and TOPCAT (NCT00094302) trial suggest that MR blockade 
might be clinically beneficial, respectively, for acute myocardial infarction healing 
and progression of HF with preserved ejection fraction.

The molecular targets involved in the remodeling processes modulated by 
Aldo/MR activation in the cardiovascular system need to be more precisely ana-
lyzed. Inflammatory processes are tightly linked with fibrosis during cardiovas-
cular remodeling. In addition to profibrotic targets, there is evidence that Aldo/
MR may trigger inflammatory processes negatively impacting on cardiovascular 
remodeling processes. Thus, MR activation and inhibition modulate the expres-
sion of several pro-inflammatory molecules that may contribute to the patho-
genesis of cardiovascular remodeling: Aldo/MR activation increases monocyte 
chemoattractant protein-1 (CCL-2), transforming growth factor-β1 (TGF-β1), 
connective tissue growth factor (CTGF), plasminogen activator inhibitor type-1 
(PAI-1), as well as collagen and metalloproteases through MR-dependent mecha-
nisms. The identification of the Aldo/MR-modulated targets in cardiovascular 
remodeling associated with HF development is actually a medical need. Their 
inhibition could add therapeutic benefits in patients at high risk for the develop-
ment of HF and cardiovascular remodeling. In the last years, new candidates to be 
Aldo/MR biotargets emerged in preclinical and clinical studies, such as galectin-3 
(Gal-3), neutrophil gelatinase-associated lipocalin (NGAL), and cardiotrophin-1 
(CT-1) (Figure 1).

Figure 1. 
Aldo/MR biotargets Gal-3, NGAL, and CT-1 contribute to cardiovascular remodeling and dysfunction in 
various pathological and clinical conditions.
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2. Galectin-3

2.1 Galectin-3 induces fibrosis, inflammation, and oxidative stress

Galectin-3 (Gal-3) is a 29–35 kDa protein, member of a β-galactoside-binding 
lectin family, localized in the nucleus, cytoplasm, cell surface, and extracellular 
space [9]. It is composed of a highly conserved N-terminal domain and a C-terminal 
carbohydrate recognition domain, which interacts with glycoproteins [10]. The 
damaging effects of Gal-3 have been associated with its capacity to bind matrix 
proteins such as cell surface receptors (integrins), collagen, elastin, or fibronectin 
[11]. The expression of this lectin has been reported in many tissues, including the 
heart, vessels, and kidney [12]. Moreover, Gal-3 is expressed in many cell types of 
the cardiovascular system such as cardiac fibroblasts [13], vascular smooth muscle 
cells [14], endothelial cells [15], and inflammatory cells [16]. Gal-3 is involved in 
numerous physiological and pathological processes, some of which, inflamma-
tion and fibrosis, are pivotal contributing to pathophysiological mechanisms in 
the development and progression of HF. Indeed, it has been demonstrated in cell 
culture that Gal-3 turns quiescent fibroblasts into myofibroblasts that produce and 
secrete matrix proteins, including collagens [13, 17]. Gal-3 exerts its effects during 
several other stages of fibrogenesis besides collagen production, such as collagen 
maturation, externalization, and cross-linking, which underscores the pivotal 
importance of Gal-3 in cardiovascular fibrosis. Moreover, Gal-3 has emerged as a 
potential mediator of cardiac damage in different pathological situations through 
its ability to stimulate key pro-inflammatory molecules [16]. Thus, it has been 
demonstrated that in human cardiac fibroblasts, Gal-3 enhances the production and 
the secretion of pro-inflammatory and profibrotic mediators such as interleukin 
(IL)-1β, IL-6, CCL-2, collagen type I, collagen type III, and fibronectin as well as 
the activity of MMP-1, MMP-2, and MMP-9 [18]. The in vitro findings have been 
corroborated by animal studies. Thus, Gal-3 administration induces cardiac fibrosis 
leading to cardiac dysfunction in rats [13]. Additionally, a new line of evidence 
points out that Gal-3 is involved in reactive oxygen species (ROS) production, 
although the mechanisms have not been elucidated. Gal-3 increases the expression 
of Nox4 in cardiac cells and could regulate Nox4-derived ROS levels during cardiac 
fibrosis [19]. Moreover, Gal-3 downregulates peroxiredoxin-4 inducing a decrease 
in total antioxidant capacity and a consequent increase in peroxide production 
and in oxidative stress markers in cardiac fibroblasts [20]. Additionally, Gal-3 
downregulates the protective fumarate hydratase increasing fumarate production in 
human cardiac fibroblasts, leading to increased ROS levels and increased collagen 
production [21].

2.2 Galectin-3 as a mediator of Aldo/MR activation

Preclinical studies have demonstrated that Gal-3 is a key mediator of cardio-
vascular and renal fibrosis and dysfunction in pathological conditions associated 
with high Aldo levels [14, 18, 22–24]. In addition, hyperaldosteronism worsens 
hypertension-induced cardiovascular fibrosis through an increase of Gal-3 [25]. A 
summary of Gal-3 mediating Aldo/MR effects is shown in Figure 2.

2.2.1 Aldosterone/MR regulates galectin-3 expression in vitro

In vitro, in primary cultured vascular smooth muscle cells (VSMCs), Calvier 
and co-workers described that Aldo increases Gal-3 expression in a dose- and 
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time-dependent manner via its MR [14]. Gal-3, via its lectin activity, is a necessary 
mediator allowing Aldo-induced collagen type I synthesis, because the blockade of 
Gal-3 with carbohydrates such as modified citrus pectin (MCP, a complex water-
soluble indigestible polysaccharide rich in β-galactose) or N-Acetyl-D-lactosamine 
abolishes Aldo-induced collagen type I deposition. In confirmation of the phar-
macological data, Gal-3-depleted VSMCs are resistant to Aldo profibrotic effects, 
especially collagen type I deposition [14].

In human cardiac fibroblasts, Aldo also increased Gal-3 expression via its MR, 
and Gal-3 and Aldo enhance pro-inflammatory and profibrotic markers, as well as 
metalloproteinase activities, those effects being not observed in Gal-3-silenced cells 
treated with Aldo [18].

In line with these observations, it has been described that Aldo induces Gal-3 
secretion in inflammatory cells (macrophage cell lines THP-1 and RAW 264.7 cells) 
through MR and via PI3K/Akt and NF-kB transcription signaling pathways [26], 
amplifying the inflammatory response.

Finally, unpublished data from our group confirmed Gal-3 induction by Aldo via 
MR in other cell types such and renal cells and 3T3-L1 adipocytes.

2.2.2  Beneficial effects of galectin-3 blockade in experimental models with high 
aldosterone

In vivo, it has been shown that rats treated with Aldo-salt for 3 weeks pres-
ent hypertension and display vascular hypertrophy, inflammation, fibrosis, and 
increased aortic Gal-3 expression. Spironolactone or MCP treatment reverses all 
the above effects. Interestingly, MCP also blunts Aldo-induced hypertension. In 

Figure 2. 
Gal-3 as a mediator of Aldo/MR effects on fibrosis in several cells and tissues.
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wild-type (WT) and Gal-3 knockout (KO) mice treated with Aldo for 6 hours or 
3 weeks—a normotensive model—Aldo increases aortic Gal-3 expression, inflam-
mation, and collagen type I in WT mice at both the short- and the long-term, 
whereas no changes occur in Gal-3 KO mice. Altogether, these data show that 
Gal-3 is required for the inflammatory and fibrotic responses to Aldo in VSMCs 
in vivo, suggesting a key role for Gal-3 in vascular fibrosis [14]. While using the 
same experimental models, downstream in vitro experiments in human cardiac 
fibroblasts and the influence of Gal-3 on Aldo-mediated cardiac and renal effects 
have been also explored. Hypertensive Aldo-salt-treated rats present cardiac and 
renal hypertrophy (at morphometric, cellular, and molecular levels) and dysfunc-
tion. Cardiac and renal expressions of Gal-3 as well as levels of molecular markers 
attesting fibrosis are also augmented by Aldo-salt treatment. Spironolactone or 
MCP treatment reverses all of these effects. In WT mice, Aldo does not alter blood 
pressure levels but increases cardiac and renal Gal-3 expression, fibrosis, and renal 
epithelial-mesenchymal transition (i.e., renal epithelial cells differentiate onto 
extracellular matrix secreting and profibrotic myofibroblasts). Gal-3 KO mice are 
resistant to Aldo-induced deleterious cardiorenal effects [22].

Aldo levels are increased in spontaneously hypertensive rats (SHR) [27], as 
well as in hypertensive patients [28], being considered as an inducer of hyperten-
sive organ damage [29]. MR activation and high salt intake cause hypertension 
as well as inflammation, leading to cardiac inflammation and fibrosis [30]. Gal-3 
levels, as well as cardiorenal inflammation and fibrosis, are also increased in the 
myocardium and kidney from SHR as compared to normotensive controls. Gal-3 
pharmacological inhibition using MCP exerts beneficial effects,  diminishing 
cardiorenal inflammation and fibrosis in the absence of blood pressure 
 modifications [18, 23, 31].

Obesity is frequently associated with increased Aldo concentrations in humans 
[32] and is considered as HF stage A [33]. Obesity upregulates Gal-3 production 
in the cardiovascular and in the renal system in a normotensive animal model of 
diet-induced obesity by feeding for 6 weeks a high-fat diet, while Gal-3 inhibition 
with MCP reduces cardiovascular and renal levels of Gal-3, fibrosis, and inflam-
mation in obese animals without changes in body weight or blood pressure [34]. In 
adipose tissue, obese male Wistar rats fed with a high-fat diet for 6 weeks present an 
increase in Gal-3 levels that are accompanied by an increase in pericellular collagen. 
Obese rats exhibit higher adipose tissue inflammation, as well as enhanced dif-
ferentiation degree of the adipocytes. Treatment with MCP prevents all the above 
effects [24]. In summary, Gal-3 emerges as a potential therapeutic target in adipose 
tissue remodeling associated with obesity—a condition associated with hyperaldo-
steronemia—and could have an important role in the development of metabolic, 
cardiovascular, and renal alterations associated with obesity.

In theory, MR activation can promote aortic sclerosis and aortic stenosis (AS), 
due to its effect on inflammation and fibrosis. Once aortic valve disease has been 
established, the pressure or volume overload may induce left ventricular dysfunc-
tion. In a normotensive animal model of pressure overload (AS), cardiac, vascular, 
and renal Gal-3 is augmented, and its pharmacological inhibition with MCP 
prevents cardiovascular and renal functional alterations as well as cardiovascular 
and renal fibrosis and inflammation [21, 34, 35].

The acute administration of MRAs, either before the onset of ischemia or at the 
moment of reperfusion, profoundly reduces infarct size (reviewed in [36]). In an 
animal model of ischemia–reperfusion, cardiac Gal-3 is augmented, and its phar-
macological inhibition with MCP prevented cardiac functional, histological, and 
molecular alterations (unpublished data from our group).
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mediator allowing Aldo-induced collagen type I synthesis, because the blockade of 
Gal-3 with carbohydrates such as modified citrus pectin (MCP, a complex water-
soluble indigestible polysaccharide rich in β-galactose) or N-Acetyl-D-lactosamine 
abolishes Aldo-induced collagen type I deposition. In confirmation of the phar-
macological data, Gal-3-depleted VSMCs are resistant to Aldo profibrotic effects, 
especially collagen type I deposition [14].

In human cardiac fibroblasts, Aldo also increased Gal-3 expression via its MR, 
and Gal-3 and Aldo enhance pro-inflammatory and profibrotic markers, as well as 
metalloproteinase activities, those effects being not observed in Gal-3-silenced cells 
treated with Aldo [18].

In line with these observations, it has been described that Aldo induces Gal-3 
secretion in inflammatory cells (macrophage cell lines THP-1 and RAW 264.7 cells) 
through MR and via PI3K/Akt and NF-kB transcription signaling pathways [26], 
amplifying the inflammatory response.

Finally, unpublished data from our group confirmed Gal-3 induction by Aldo via 
MR in other cell types such and renal cells and 3T3-L1 adipocytes.

2.2.2  Beneficial effects of galectin-3 blockade in experimental models with high 
aldosterone

In vivo, it has been shown that rats treated with Aldo-salt for 3 weeks pres-
ent hypertension and display vascular hypertrophy, inflammation, fibrosis, and 
increased aortic Gal-3 expression. Spironolactone or MCP treatment reverses all 
the above effects. Interestingly, MCP also blunts Aldo-induced hypertension. In 

Figure 2. 
Gal-3 as a mediator of Aldo/MR effects on fibrosis in several cells and tissues.
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wild-type (WT) and Gal-3 knockout (KO) mice treated with Aldo for 6 hours or 
3 weeks—a normotensive model—Aldo increases aortic Gal-3 expression, inflam-
mation, and collagen type I in WT mice at both the short- and the long-term, 
whereas no changes occur in Gal-3 KO mice. Altogether, these data show that 
Gal-3 is required for the inflammatory and fibrotic responses to Aldo in VSMCs 
in vivo, suggesting a key role for Gal-3 in vascular fibrosis [14]. While using the 
same experimental models, downstream in vitro experiments in human cardiac 
fibroblasts and the influence of Gal-3 on Aldo-mediated cardiac and renal effects 
have been also explored. Hypertensive Aldo-salt-treated rats present cardiac and 
renal hypertrophy (at morphometric, cellular, and molecular levels) and dysfunc-
tion. Cardiac and renal expressions of Gal-3 as well as levels of molecular markers 
attesting fibrosis are also augmented by Aldo-salt treatment. Spironolactone or 
MCP treatment reverses all of these effects. In WT mice, Aldo does not alter blood 
pressure levels but increases cardiac and renal Gal-3 expression, fibrosis, and renal 
epithelial-mesenchymal transition (i.e., renal epithelial cells differentiate onto 
extracellular matrix secreting and profibrotic myofibroblasts). Gal-3 KO mice are 
resistant to Aldo-induced deleterious cardiorenal effects [22].

Aldo levels are increased in spontaneously hypertensive rats (SHR) [27], as 
well as in hypertensive patients [28], being considered as an inducer of hyperten-
sive organ damage [29]. MR activation and high salt intake cause hypertension 
as well as inflammation, leading to cardiac inflammation and fibrosis [30]. Gal-3 
levels, as well as cardiorenal inflammation and fibrosis, are also increased in the 
myocardium and kidney from SHR as compared to normotensive controls. Gal-3 
pharmacological inhibition using MCP exerts beneficial effects,  diminishing 
cardiorenal inflammation and fibrosis in the absence of blood pressure 
 modifications [18, 23, 31].

Obesity is frequently associated with increased Aldo concentrations in humans 
[32] and is considered as HF stage A [33]. Obesity upregulates Gal-3 production 
in the cardiovascular and in the renal system in a normotensive animal model of 
diet-induced obesity by feeding for 6 weeks a high-fat diet, while Gal-3 inhibition 
with MCP reduces cardiovascular and renal levels of Gal-3, fibrosis, and inflam-
mation in obese animals without changes in body weight or blood pressure [34]. In 
adipose tissue, obese male Wistar rats fed with a high-fat diet for 6 weeks present an 
increase in Gal-3 levels that are accompanied by an increase in pericellular collagen. 
Obese rats exhibit higher adipose tissue inflammation, as well as enhanced dif-
ferentiation degree of the adipocytes. Treatment with MCP prevents all the above 
effects [24]. In summary, Gal-3 emerges as a potential therapeutic target in adipose 
tissue remodeling associated with obesity—a condition associated with hyperaldo-
steronemia—and could have an important role in the development of metabolic, 
cardiovascular, and renal alterations associated with obesity.

In theory, MR activation can promote aortic sclerosis and aortic stenosis (AS), 
due to its effect on inflammation and fibrosis. Once aortic valve disease has been 
established, the pressure or volume overload may induce left ventricular dysfunc-
tion. In a normotensive animal model of pressure overload (AS), cardiac, vascular, 
and renal Gal-3 is augmented, and its pharmacological inhibition with MCP 
prevents cardiovascular and renal functional alterations as well as cardiovascular 
and renal fibrosis and inflammation [21, 34, 35].

The acute administration of MRAs, either before the onset of ischemia or at the 
moment of reperfusion, profoundly reduces infarct size (reviewed in [36]). In an 
animal model of ischemia–reperfusion, cardiac Gal-3 is augmented, and its phar-
macological inhibition with MCP prevented cardiac functional, histological, and 
molecular alterations (unpublished data from our group).
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2.2.3 Aldosterone-galectin-3 in clinical populations

As mentioned above, Aldo increases Gal-3 expression in the cardiovascular and 
renal system as well as in adipose tissue in experimental models.

In a cohort of patients with Aldo-producing adenoma, the authors demonstrated 
that Gal-3 levels are enhanced. Interestingly, 1 year after adrenalectomy, plasma 
Gal-3 levels decrease, reinforcing the relation of Aldo-Gal-3 and confirming the 
results obtained using preclinical models [26]. In contrast with these observations, 
another group recently described that Gal-3 levels are not increased in patients with 
primary hyperaldosteronism (as compared to hypertensive patients) and levels do 
not decrease after adrenalectomy [37].

In untreated congestive HF, Aldo plasma concentrations are elevated in 
proportion to the severity of the disease and are further increased by the use of 
diuretic treatment [38]. Interestingly, the serum Gal-3 level has been correlated 
with serum markers of cardiac extracellular matrix turnover in HF patients, and, 
therefore, Gal-3 emerges as a biomarker associated with HF onset, morbidity, and 
mortality [39].

In morbidly obese patients presenting high Aldo levels, insulin resistance, and 
left ventricular hypertrophy, high Gal-3 levels are associated with a worsening of 
diastolic function [23]. Moreover, in patients with AS, cardiac Gal-3 is increased 
and associates with markers of myocardial fibrosis and inflammation [35]. 
Interestingly, both Aldo and Gal-3 are increased in pulmonary arterial hyperten-
sion patients. The axis Aldo/Gal-3 is relevant in pulmonary arterial hypertension 
because plasma levels of both molecules are associated with pulmonary arterial 
hypertension severity [40]. Furthermore, Gal-3 positively correlated with Nox4 
(related to oxidative stress production) in pulmonary arterial hypertension 
patients [41].

Given the intimate relation between Aldo, Gal-3, and cardiovascular fibrosis, 
the predictive value of Gal-3 in patients treated with MRAs has been analyzed. In a 
cohort of HF patients, MRA treatment does not alter the prognostic value of Gal-3 
[42]. An analysis examining the interaction between baseline Gal-3 levels and MRA 
therapy on outcomes shows no difference in patients who were receiving MRA [43]. 
Moreover, among patients with chronic HF and elevated Gal-3 concentrations, 
there is no specific benefit from addition or intensification of MRA therapy [44].

3. NGAL

3.1 NGAL induces fibrosis and inflammation

NGAL, also known as lipocalin-2, 24p3, siderocalin, or uterocalin, is a small 
glycoprotein of 25 kDa member of the lipocalin family. NGAL is expressed by dif-
ferent cell types including renal, endothelial, VSMCs, macrophages, dendritic cells, 
cardiomyocytes or cardiac fibroblasts (reviewed in [45]).

NGAL is involved in a wide variety of pathological situations as cardiovascular 
and renal diseases. Indeed, it has been demonstrated in cell culture that NGAL 
enhances the production and the secretion of pro-inflammatory and profibrotic 
mediators such as interleukin (IL)-1β, IL-6, CCL-2, osteopontin, collagen type I, 
and collagen type III in human cardiac fibroblasts [46, 47]. NGAL also increases 
collagen type I production as well as CT-1 and Gal-3 expression and secretion in 
VSMCs [48]. In cardiac cells, NGAL can also activate the inflammatory pathway 
NF-kB [47]. Moreover, NGAL treatment induces migration of neutrophils [49], 
and NGAL KO mice have been shown to present reduced chemotaxis and adhesion 
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[50]. Moreover, NGAL KO mice subjected to ischemia/reperfusion do not present 
immune cell recruitment [51].

3.2 NGAL as a mediator of Aldo/MR activation

In vitro, in HL-1 cardiomyocytes, Aldo induces NGAL expression via its MR 
[52]. These results have been also expanded to other cell types such as cardiac 
fibroblasts, where Aldo also enhances NGAL expression [47].

Preclinical studies have demonstrated that NGAL is a key mediator of cardiovas-
cular and renal fibrosis, inflammation, and dysfunction in pathological conditions 
associated with high Aldo levels. Firstly, NGAL has been found to be increased in 
mice overexpressing MR in cardiomyocytes [52]. Moreover, NGAL KO mice have 
been found to be resistant to Aldo-salt-induced hypertension and vascular fibrosis 
[48]. Interestingly, NGAL KO mice subjected to myocardial infarction show lower 
cardiac fibrosis and inflammation as well as improved cardiac function [47]. 
Recently it has been described using mice depleted for NGAL in their immune cells 
by bone marrow transplantation that NGAL from immune cells is mandatory for 
Aldo-induced cardiac fibrosis and inflammation [53].

In hypertensive patients, NGAL plasma concentrations are elevated and cor-
relate with blood pressure levels [54]. NGAL serum levels are also increased in myo-
cardial infarction patients and in HF patients [55, 56], as well as in obese patients 
[57]. Importantly, the rise of the complex NGAL/MMP-9 in obese subjects (stage A 
HF) and its association with plasma Aldo levels suggest that NGAL may serve as a 
biomarker of MR activation [48].

4. Cardiotrophin-1

4.1 Cardiotrophin-1 induces fibrosis and inflammation

CT-1 is a member of the interleukin-6 superfamily, which is expressed in 
different tissues including the heart, vessels, skeletal muscle, liver, lung, adipose 
tissue, and kidney [58, 59]. In the myocardium, CT-1 is produced by both cardio-
myocytes and fibroblasts, exerting its action through the glycoprotein 130 (gp130)/
leukemia inhibitory factor receptor (LIFR) heterodimer. Whereas CT-1 was initially 
described as a stress-response factor promoting cardiomyocyte survival [60], 
chronic exposure to this cytokine induces cardiomyocyte hypertrophy and dys-
function [61, 62]. In addition, experimental in vitro findings in rodent and canine 
fibroblasts [63–66] as well as in VSMCs [67] suggest that CT-1 behaves also as a 
profibrotic factor. In particular, CT-1 induces fibroblast growth and proliferation 
and collagen production. Moreover, in human cardiac fibroblasts, CT-1 has been 
shown to stimulate myofibroblast differentiation and collagen type I and III produc-
tion [68]. Coherently, rats chronically exposed to CT-1 present increased fibrosis 
in the cardiovascular and in the renal system characterized by increased collagen 
deposition [62]. Finally, data in chronic HF patients indicate that an association 
exists between CT-1 and collagen type I and III production in the myocardium [68].

4.2 Cardiotrophin-1 as a mediator of Aldo/MR activation

In vitro, in HL-1 cardiomyocytes, Aldo induces CT-1 in a dose- and time-dependent  
manner via its MR and through the activation of p38MAPK signaling pathway 
[69]. Moreover, Aldo also enhances CT-1 expression in VSMCs [67]. Interestingly, 
CT-1 blockade with specific antibodies avoids Aldo-induced hypertrophy of 
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by bone marrow transplantation that NGAL from immune cells is mandatory for 
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cardiomyocytes. According to the in vitro data, CT-1-null mice subjected to acute 
Aldo treatment are resistant to Aldo-induced expression of hypertrophic markers 
[69]. These results were confirmed in other studies demonstrating that in experimen-
tal hyperaldosteronism, the increase of cardiac CT-1 expression is associated with 
parameters showing left ventricular hypertrophy and fibrosis. Moreover, CT-1-null 
mice are resistant to Aldo-induced left ventricular hypertrophy and fibrosis [70].

CT-1 expression has been found to be increased in the myocardium of HF 
patients of different etiologies [68, 71]. Importantly, and according to the results 
obtained in experimental models, in HF patients high Aldo levels are associated 
with high CT-1 levels [72].

Acknowledgements

This publication is based upon work from the EU COST Action ADMIRE 
BM1301 in Aldosterone and Mineralocorticoid Receptor Physiology and 
Pathophysiology (www.admirecosteu.com).

Author details

Jaime Ibarrola1, Frederic Jaisser2 and Natalia López-Andrés1*

1 Cardiovascular Translational Research, Navarrabiomed, Complejo Hospitalario 
de Navarra (CHN), Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, 
Spain

2 INSERM UMRS 1138 Team 1, Centre de Recherche des Cordeliers, University 
Pierre and Marie Curie, Paris, France

*Address all correspondence to: natalia.lopez.andres@navarra.es

39

Aldosterone/Mineralocorticoid Receptor Downstream Targets as Novel Therapeutic Targets…
DOI: http://dx.doi.org/10.5772/intechopen.87232

References

[1] Viengchareun S, Le Menuet D,  
Martinerie L, Munier M, Pascual- 
Le Tallec L, Lombès M. The 
mineralocorticoid receptor: Insights into 
its molecular and (patho)physiological 
biology. Nuclear Receptor Signaling. 
2007;5:e012. Available from: https://
www.nursa.org/NRS/nrs05012.pdf

[2] Messaoudi S, Azibani F, 
Delcayre C, Jaisser F. Aldosterone, 
mineralocorticoid receptor, and 
heart failure. Molecular and Cellular 
Endocrinology. 2012;350(2):266-272. 
Available from: http://www.ncbi.nlm.
nih.gov/pubmed/21784127

[3] Bauersachs J, Jaisser F, Toto R.  
Mineralocorticoid receptor activation 
and mineralocorticoid receptor 
antagonist treatment in cardiac 
and renal diseases. Hypertension. 
2015;65(2):257-263. Available from: 
http://www.ncbi.nlm.nih.gov/
pubmed/25368026

[4] Brilla CG. Aldosterone and 
myocardial fibrosis in heart failure. 
Herz. 2000;25(3):299-306. Available 
from: http://www.ncbi.nlm.nih.gov/
pubmed/10904856

[5] Pitt B, Remme W, Zannad F, Neaton 
J, Martinez F, Roniker B,  
et al. Eplerenone, a selective 
aldosterone blocker, in patients 
with left ventricular dysfunction 
after myocardial infarction. The 
New England Journal of Medicine. 
2003;348(14):1309-1321. Available 
from: http://www.nejm.org/doi/
abs/10.1056/NEJMoa030207

[6] Pitt B, Zannad F, Remme WJ, Cody 
R, Castaigne A, Perez A, et al. The 
effect of spironolactone on morbidity 
and mortality in patients with severe 
heart failure. Randomized Aldactone 
evaluation study investigators. The 
New England Journal of Medicine. 
1999;341(10):709-717. Available from: 

http://www.nejm.org/doi/abs/10.1056/
NEJM199909023411001

[7] Zannad F, McMurray JJV, Krum H,  
van Veldhuisen DJ, Swedberg K, 
Shi H, et al. Eplerenone in patients 
with systolic heart failure and mild 
symptoms. The New England Journal of 
Medicine. 2011;364(1):11-21. Available 
from: http://www.ncbi.nlm.nih.gov/
pubmed/21073363

[8] Zannad F, Alla F, Dousset B, Perez A,  
Pitt B. Limitation of excessive 
extracellular matrix turnover may 
contribute to survival benefit of 
spironolactone therapy in patients with 
congestive heart failure: Insights from 
the randomized aldactone evaluation 
study (RALES) . Rales investigators. 
Circulation. 2000;102(22):2700-2706. 
Available from: http://www.ncbi.nlm.
nih.gov/pubmed/11094035

[9] Dumic J, Dabelic S, Flögel M.  
Galectin-3: An open-ended story. 
Biochimica et Biophysica Acta. 
2006;1760(4):616-635. Available from: 
http://linkinghub.elsevier.com/retrieve/
pii/S0304416505004083

[10] Dennis JW, Pawling J, Cheung 
P, Partridge E, Demetriou M. UDP-
N-acetylglucosamine:alpha-
6-D-mannoside beta1,6 
N-acetylglucosaminyltransferase V 
(Mgat5) deficient mice. Biochimica et 
Biophysica Acta. 2002;1573(3):414-422. 
Available from: http://www.ncbi.nlm.
nih.gov/pubmed/12417426

[11] Ochieng J, Furtak V, Lukyanov P.  
Extracellular functions of galectin-3. 
Glycoconjugate Journal. 2002;19 
(7-9):527-535. Available from: 
http://www.ncbi.nlm.nih.gov/
pubmed/14758076

[12] Kim H, Lee J, Hyun JW, Park JW,  
Joo H, Shin T. Expression and 
immunohistochemical localization of 



Aldosterone-Mineralocorticoid Receptor - Cell Biology to Translational Medicine

38

© 2019 The Author(s). Licensee IntechOpen. Distributed under the terms of the Creative 
Commons Attribution - NonCommercial 4.0 License (https://creativecommons.org/
licenses/by-nc/4.0/), which permits use, distribution and reproduction for  
non-commercial purposes, provided the original is properly cited. 

cardiomyocytes. According to the in vitro data, CT-1-null mice subjected to acute 
Aldo treatment are resistant to Aldo-induced expression of hypertrophic markers 
[69]. These results were confirmed in other studies demonstrating that in experimen-
tal hyperaldosteronism, the increase of cardiac CT-1 expression is associated with 
parameters showing left ventricular hypertrophy and fibrosis. Moreover, CT-1-null 
mice are resistant to Aldo-induced left ventricular hypertrophy and fibrosis [70].

CT-1 expression has been found to be increased in the myocardium of HF 
patients of different etiologies [68, 71]. Importantly, and according to the results 
obtained in experimental models, in HF patients high Aldo levels are associated 
with high CT-1 levels [72].

Acknowledgements

This publication is based upon work from the EU COST Action ADMIRE 
BM1301 in Aldosterone and Mineralocorticoid Receptor Physiology and 
Pathophysiology (www.admirecosteu.com).

Author details

Jaime Ibarrola1, Frederic Jaisser2 and Natalia López-Andrés1*

1 Cardiovascular Translational Research, Navarrabiomed, Complejo Hospitalario 
de Navarra (CHN), Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, 
Spain

2 INSERM UMRS 1138 Team 1, Centre de Recherche des Cordeliers, University 
Pierre and Marie Curie, Paris, France

*Address all correspondence to: natalia.lopez.andres@navarra.es

39

Aldosterone/Mineralocorticoid Receptor Downstream Targets as Novel Therapeutic Targets…
DOI: http://dx.doi.org/10.5772/intechopen.87232

References

[1] Viengchareun S, Le Menuet D,  
Martinerie L, Munier M, Pascual- 
Le Tallec L, Lombès M. The 
mineralocorticoid receptor: Insights into 
its molecular and (patho)physiological 
biology. Nuclear Receptor Signaling. 
2007;5:e012. Available from: https://
www.nursa.org/NRS/nrs05012.pdf

[2] Messaoudi S, Azibani F, 
Delcayre C, Jaisser F. Aldosterone, 
mineralocorticoid receptor, and 
heart failure. Molecular and Cellular 
Endocrinology. 2012;350(2):266-272. 
Available from: http://www.ncbi.nlm.
nih.gov/pubmed/21784127

[3] Bauersachs J, Jaisser F, Toto R.  
Mineralocorticoid receptor activation 
and mineralocorticoid receptor 
antagonist treatment in cardiac 
and renal diseases. Hypertension. 
2015;65(2):257-263. Available from: 
http://www.ncbi.nlm.nih.gov/
pubmed/25368026

[4] Brilla CG. Aldosterone and 
myocardial fibrosis in heart failure. 
Herz. 2000;25(3):299-306. Available 
from: http://www.ncbi.nlm.nih.gov/
pubmed/10904856

[5] Pitt B, Remme W, Zannad F, Neaton 
J, Martinez F, Roniker B,  
et al. Eplerenone, a selective 
aldosterone blocker, in patients 
with left ventricular dysfunction 
after myocardial infarction. The 
New England Journal of Medicine. 
2003;348(14):1309-1321. Available 
from: http://www.nejm.org/doi/
abs/10.1056/NEJMoa030207

[6] Pitt B, Zannad F, Remme WJ, Cody 
R, Castaigne A, Perez A, et al. The 
effect of spironolactone on morbidity 
and mortality in patients with severe 
heart failure. Randomized Aldactone 
evaluation study investigators. The 
New England Journal of Medicine. 
1999;341(10):709-717. Available from: 

http://www.nejm.org/doi/abs/10.1056/
NEJM199909023411001

[7] Zannad F, McMurray JJV, Krum H,  
van Veldhuisen DJ, Swedberg K, 
Shi H, et al. Eplerenone in patients 
with systolic heart failure and mild 
symptoms. The New England Journal of 
Medicine. 2011;364(1):11-21. Available 
from: http://www.ncbi.nlm.nih.gov/
pubmed/21073363

[8] Zannad F, Alla F, Dousset B, Perez A,  
Pitt B. Limitation of excessive 
extracellular matrix turnover may 
contribute to survival benefit of 
spironolactone therapy in patients with 
congestive heart failure: Insights from 
the randomized aldactone evaluation 
study (RALES) . Rales investigators. 
Circulation. 2000;102(22):2700-2706. 
Available from: http://www.ncbi.nlm.
nih.gov/pubmed/11094035

[9] Dumic J, Dabelic S, Flögel M.  
Galectin-3: An open-ended story. 
Biochimica et Biophysica Acta. 
2006;1760(4):616-635. Available from: 
http://linkinghub.elsevier.com/retrieve/
pii/S0304416505004083

[10] Dennis JW, Pawling J, Cheung 
P, Partridge E, Demetriou M. UDP-
N-acetylglucosamine:alpha-
6-D-mannoside beta1,6 
N-acetylglucosaminyltransferase V 
(Mgat5) deficient mice. Biochimica et 
Biophysica Acta. 2002;1573(3):414-422. 
Available from: http://www.ncbi.nlm.
nih.gov/pubmed/12417426

[11] Ochieng J, Furtak V, Lukyanov P.  
Extracellular functions of galectin-3. 
Glycoconjugate Journal. 2002;19 
(7-9):527-535. Available from: 
http://www.ncbi.nlm.nih.gov/
pubmed/14758076

[12] Kim H, Lee J, Hyun JW, Park JW,  
Joo H, Shin T. Expression and 
immunohistochemical localization of 



Aldosterone-Mineralocorticoid Receptor - Cell Biology to Translational Medicine

40

galectin-3 in various mouse tissues. Cell 
Biology International. 2007;31(7): 
655-662. Available from: http://doi.
wiley.com/10.1016/j.cellbi.2006.11.036

[13] Sharma UC, Pokharel S, van Brakel 
TJ, van Berlo JH, Cleutjens JPM, 
Schroen B, et al. Galectin-3 marks 
activated macrophages in failure-prone 
hypertrophied hearts and contributes 
to cardiac dysfunction. Circulation. 
2004;110(19):3121-3128. Available 
from: http://www.ncbi.nlm.nih.gov/
pubmed/15520318

[14] Calvier L, Miana M, Reboul P, 
Cachofeiro V, Martinez-Martinez E, 
de Boer RA, et al. Galectin-3 mediates 
aldosterone-induced vascular fibrosis. 
Arteriosclerosis, Thrombosis, and 
Vascular Biology. 2013;33(1): 
67-75. Available from: http://atvb.
ahajournals.org/cgi/doi/10.1161/
ATVBAHA.112.300569

[15] Wan SY, Zhang TF, Ding Y.  
Galectin-3 enhances proliferation 
and angiogenesis of endothelial 
cells differentiated from bone 
marrow mesenchymal stem cells. 
Transplantation Proceedings. 
2011;43(10):3933-3938. Available from: 
http://linkinghub.elsevier.com/retrieve/
pii/S0041134511015272

[16] Papaspyridonos M, McNeill E, de 
Bono JP, Smith A, Burnand KG, Channon 
KM, et al. Galectin-3 is an amplifier 
of inflammation in atherosclerotic 
plaque progression through 
macrophage activation and monocyte 
chemoattraction. Arteriosclerosis, 
Thrombosis, and Vascular Biology. 
2008;28(3):433-440. Available from: 
http://atvb.ahajournals.org/cgi/
doi/10.1161/ATVBAHA.107.159160

[17] Yu L, Ruifrok WPT, Meissner M,  
Bos EM, van Goor H, Sanjabi B, 
et al. Genetic and pharmacological 
inhibition of galectin-3 prevents 
cardiac remodeling by interfering with 
myocardial fibrogenesis. Circulation. 

Heart Failure. 2013;6(1):107-117. 
Available from: http://circheartfailure.
ahajournals.org/cgi/doi/10.1161/
CIRCHEARTFAILURE.112.971168

[18] Martínez-Martínez E, Calvier L, 
Fernández-Celis A, Rousseau E, Jurado-
López R, Rossoni LV, et al. Galectin-3 
blockade inhibits cardiac inflammation 
and fibrosis in experimental 
Hyperaldosteronism and hypertension 
novelty and significance. Hypertension. 
2015;66(4):767-775. Available from: 
http://www.ncbi.nlm.nih.gov/
pubmed/26238446

[19] He J, Li X, Luo H, Li T, Zhao L, 
Qi Q , et al. Galectin-3 mediates the 
pulmonary arterial hypertension-
induced right ventricular 
remodeling through interacting with 
NADPH oxidase 4. Journal of the 
American Society of Hypertension. 
2017;11(5):275-289.e2. Available from: 
http://linkinghub.elsevier.com/retrieve/
pii/S1933171117300980

[20] Ibarrola J, Arrieta V, Sádaba R, 
Martinez-Martinez E, Garcia-Peña 
A, Alvarez V, et al. Galectin-3 down-
regulates antioxidant peroxiredoxin-4 in 
human cardiac fibroblasts: A new 
pathway to induce cardiac damage. 
Clinical Science (London, England). 
2018;132(13):1471-1485. Available from: 
http://clinsci.org/lookup/doi/10.1042/
CS20171389

[21] Ibarrola J, Martínez-Martínez E,  
Sádaba J, Arrieta V, García-Peña A, 
Álvarez V, et al. Beneficial effects 
of Galectin-3 blockade in vascular 
and aortic valve alterations in an 
experimental pressure overload model. 
International Journal of Molecular 
Sciences. 2017;18(8):1664. Available 
from: http://www.ncbi.nlm.nih.gov/
pubmed/28758988

[22] Calvier L, Martinez-Martinez E,  
Miana M, Cachofeiro V, Rousseau 
E, Sádaba JR, et al. The impact 
of galectin-3 inhibition on 

41

Aldosterone/Mineralocorticoid Receptor Downstream Targets as Novel Therapeutic Targets…
DOI: http://dx.doi.org/10.5772/intechopen.87232

aldosterone-induced cardiac and 
renal injuries. JACC: Heart Failure. 
2015;3(1):59-67. Available from: http://
linkinghub.elsevier.com/retrieve/pii/
S2213177914003886

[23] Martínez-Martínez E, López-
Ándres N, Jurado-López R, Rousseau 
E, Bartolomé MV, Fernández-Celis 
A, et al. Galectin-3 participates in 
cardiovascular Remodeling associated 
with ObesityNovelty and significance. 
Hypertension. 2015;66(5):961-969. 
Available from: http://www.ncbi.nlm.
nih.gov/pubmed/26351031

[24] Martínez-Martínez E, Calvier L, 
Rossignol P, Rousseau E, Fernández-
Celis A, Jurado-López R, et al. 
Galectin-3 inhibition prevents 
adipose tissue remodelling in obesity. 
International Journal of Obesity. 
2016;40(6):1034-1038. Available 
from: http://www.nature.com/
doifinder/10.1038/ijo.2016.19

[25] Azibani F, Benard L, Schlossarek S,  
Merval R, Tournoux F, Fazal L, et al. 
Aldosterone inhibits antifibrotic 
factors in mouse hypertensive 
heart. Hypertension (Dallas, 
Texas 1979). 2012;59(6):1179-
1187. Available from: http://hyper.
ahajournals.org/cgi/doi/10.1161/
HYPERTENSIONAHA.111.190512

[26] Lin Y-H, Chou C-H, Wu X-M, 
Chang Y-Y, Hung C-S, Chen Y-H, 
et al. Aldosterone induced galectin-3 
secretion in vitro and in vivo: From 
cells to humans. Syn W-K, editor. PLoS 
One. 2014;9(9):e95254. Available from: 
http://dx.plos.org/10.1371/journal.
pone.0095254

[27] Sowers J, Tuck M, Asp ND, 
Sollars E. Plasma aldosterone 
and corticosterone responses to 
adrenocorticotropin, angiotensin, 
potassium, and stress in spontaneously 
hypertensive rats. Endocrinology. 
1981;108(4):1216-1221. Available 
from: https://academic.oup.com/

endo/article-lookup/doi/10.1210/
endo-108-4-1216

[28] Tsybouleva N, Zhang L, Chen S,  
Patel R, Lutucuta S, Nemoto S, 
et al. Aldosterone, through novel 
signaling proteins, is a fundamental 
molecular bridge between the genetic 
defect and the cardiac phenotype 
of hypertrophic cardiomyopathy. 
Circulation. 2004;109(10):1284-
1291. Available from: http://circ.
ahajournals.org/cgi/doi/10.1161/01.
CIR.0000121426.43044.2B

[29] Zia AA, Kamalov G, Newman KP,  
McGee JE, Bhattacharya SK, Ahokas 
RA, et al. From aldosteronism 
to oxidative stress: The role of 
excessive intracellular calcium 
accumulation. Hypertension Research. 
2010;33(11):1091-1101. Available 
from: http://www.nature.com/articles/
hr2010159

[30] Amador CA, Barrientos V, Peña J,  
Herrada AA, González M, Valdés S,  
et al. Spironolactone decreases 
DOCA-salt-induced organ damage by 
blocking the activation of T helper 17 
and the downregulation of regulatory 
T lymphocytes. Hypertension 
(Dallas, Texas 1979). 2014;63(4):797-
803. Available from: http://hyper.
ahajournals.org/lookup/doi/10.1161/
HYPERTENSIONAHA.113.02883

[31] Martinez-Martinez E, Jurado-
Lopez R, Valero-Munoz M, Bartolome 
MV, Ballesteros S, Luaces M, et al. 
Leptin induces cardiac fibrosis through 
galectin-3, mTOR and oxidative stress: 
Potential role in obesity. Journal of 
Hypertension. 2014;32(5):1104-1114. 
discussion 1114

[32] Engeli S, Bohnke J, Gorzelniak K,  
Janke J, Schling P, Bader M, et al. 
Weight loss and the renin-angiotensin-
aldosterone system. Hypertension. 
2005;45(3):356-362. Available from: 
http://www.ncbi.nlm.nih.gov/
pubmed/15630041



Aldosterone-Mineralocorticoid Receptor - Cell Biology to Translational Medicine

40

galectin-3 in various mouse tissues. Cell 
Biology International. 2007;31(7): 
655-662. Available from: http://doi.
wiley.com/10.1016/j.cellbi.2006.11.036

[13] Sharma UC, Pokharel S, van Brakel 
TJ, van Berlo JH, Cleutjens JPM, 
Schroen B, et al. Galectin-3 marks 
activated macrophages in failure-prone 
hypertrophied hearts and contributes 
to cardiac dysfunction. Circulation. 
2004;110(19):3121-3128. Available 
from: http://www.ncbi.nlm.nih.gov/
pubmed/15520318

[14] Calvier L, Miana M, Reboul P, 
Cachofeiro V, Martinez-Martinez E, 
de Boer RA, et al. Galectin-3 mediates 
aldosterone-induced vascular fibrosis. 
Arteriosclerosis, Thrombosis, and 
Vascular Biology. 2013;33(1): 
67-75. Available from: http://atvb.
ahajournals.org/cgi/doi/10.1161/
ATVBAHA.112.300569

[15] Wan SY, Zhang TF, Ding Y.  
Galectin-3 enhances proliferation 
and angiogenesis of endothelial 
cells differentiated from bone 
marrow mesenchymal stem cells. 
Transplantation Proceedings. 
2011;43(10):3933-3938. Available from: 
http://linkinghub.elsevier.com/retrieve/
pii/S0041134511015272

[16] Papaspyridonos M, McNeill E, de 
Bono JP, Smith A, Burnand KG, Channon 
KM, et al. Galectin-3 is an amplifier 
of inflammation in atherosclerotic 
plaque progression through 
macrophage activation and monocyte 
chemoattraction. Arteriosclerosis, 
Thrombosis, and Vascular Biology. 
2008;28(3):433-440. Available from: 
http://atvb.ahajournals.org/cgi/
doi/10.1161/ATVBAHA.107.159160

[17] Yu L, Ruifrok WPT, Meissner M,  
Bos EM, van Goor H, Sanjabi B, 
et al. Genetic and pharmacological 
inhibition of galectin-3 prevents 
cardiac remodeling by interfering with 
myocardial fibrogenesis. Circulation. 

Heart Failure. 2013;6(1):107-117. 
Available from: http://circheartfailure.
ahajournals.org/cgi/doi/10.1161/
CIRCHEARTFAILURE.112.971168

[18] Martínez-Martínez E, Calvier L, 
Fernández-Celis A, Rousseau E, Jurado-
López R, Rossoni LV, et al. Galectin-3 
blockade inhibits cardiac inflammation 
and fibrosis in experimental 
Hyperaldosteronism and hypertension 
novelty and significance. Hypertension. 
2015;66(4):767-775. Available from: 
http://www.ncbi.nlm.nih.gov/
pubmed/26238446

[19] He J, Li X, Luo H, Li T, Zhao L, 
Qi Q , et al. Galectin-3 mediates the 
pulmonary arterial hypertension-
induced right ventricular 
remodeling through interacting with 
NADPH oxidase 4. Journal of the 
American Society of Hypertension. 
2017;11(5):275-289.e2. Available from: 
http://linkinghub.elsevier.com/retrieve/
pii/S1933171117300980

[20] Ibarrola J, Arrieta V, Sádaba R, 
Martinez-Martinez E, Garcia-Peña 
A, Alvarez V, et al. Galectin-3 down-
regulates antioxidant peroxiredoxin-4 in 
human cardiac fibroblasts: A new 
pathway to induce cardiac damage. 
Clinical Science (London, England). 
2018;132(13):1471-1485. Available from: 
http://clinsci.org/lookup/doi/10.1042/
CS20171389

[21] Ibarrola J, Martínez-Martínez E,  
Sádaba J, Arrieta V, García-Peña A, 
Álvarez V, et al. Beneficial effects 
of Galectin-3 blockade in vascular 
and aortic valve alterations in an 
experimental pressure overload model. 
International Journal of Molecular 
Sciences. 2017;18(8):1664. Available 
from: http://www.ncbi.nlm.nih.gov/
pubmed/28758988

[22] Calvier L, Martinez-Martinez E,  
Miana M, Cachofeiro V, Rousseau 
E, Sádaba JR, et al. The impact 
of galectin-3 inhibition on 

41

Aldosterone/Mineralocorticoid Receptor Downstream Targets as Novel Therapeutic Targets…
DOI: http://dx.doi.org/10.5772/intechopen.87232

aldosterone-induced cardiac and 
renal injuries. JACC: Heart Failure. 
2015;3(1):59-67. Available from: http://
linkinghub.elsevier.com/retrieve/pii/
S2213177914003886

[23] Martínez-Martínez E, López-
Ándres N, Jurado-López R, Rousseau 
E, Bartolomé MV, Fernández-Celis 
A, et al. Galectin-3 participates in 
cardiovascular Remodeling associated 
with ObesityNovelty and significance. 
Hypertension. 2015;66(5):961-969. 
Available from: http://www.ncbi.nlm.
nih.gov/pubmed/26351031

[24] Martínez-Martínez E, Calvier L, 
Rossignol P, Rousseau E, Fernández-
Celis A, Jurado-López R, et al. 
Galectin-3 inhibition prevents 
adipose tissue remodelling in obesity. 
International Journal of Obesity. 
2016;40(6):1034-1038. Available 
from: http://www.nature.com/
doifinder/10.1038/ijo.2016.19

[25] Azibani F, Benard L, Schlossarek S,  
Merval R, Tournoux F, Fazal L, et al. 
Aldosterone inhibits antifibrotic 
factors in mouse hypertensive 
heart. Hypertension (Dallas, 
Texas 1979). 2012;59(6):1179-
1187. Available from: http://hyper.
ahajournals.org/cgi/doi/10.1161/
HYPERTENSIONAHA.111.190512

[26] Lin Y-H, Chou C-H, Wu X-M, 
Chang Y-Y, Hung C-S, Chen Y-H, 
et al. Aldosterone induced galectin-3 
secretion in vitro and in vivo: From 
cells to humans. Syn W-K, editor. PLoS 
One. 2014;9(9):e95254. Available from: 
http://dx.plos.org/10.1371/journal.
pone.0095254

[27] Sowers J, Tuck M, Asp ND, 
Sollars E. Plasma aldosterone 
and corticosterone responses to 
adrenocorticotropin, angiotensin, 
potassium, and stress in spontaneously 
hypertensive rats. Endocrinology. 
1981;108(4):1216-1221. Available 
from: https://academic.oup.com/

endo/article-lookup/doi/10.1210/
endo-108-4-1216

[28] Tsybouleva N, Zhang L, Chen S,  
Patel R, Lutucuta S, Nemoto S, 
et al. Aldosterone, through novel 
signaling proteins, is a fundamental 
molecular bridge between the genetic 
defect and the cardiac phenotype 
of hypertrophic cardiomyopathy. 
Circulation. 2004;109(10):1284-
1291. Available from: http://circ.
ahajournals.org/cgi/doi/10.1161/01.
CIR.0000121426.43044.2B

[29] Zia AA, Kamalov G, Newman KP,  
McGee JE, Bhattacharya SK, Ahokas 
RA, et al. From aldosteronism 
to oxidative stress: The role of 
excessive intracellular calcium 
accumulation. Hypertension Research. 
2010;33(11):1091-1101. Available 
from: http://www.nature.com/articles/
hr2010159

[30] Amador CA, Barrientos V, Peña J,  
Herrada AA, González M, Valdés S,  
et al. Spironolactone decreases 
DOCA-salt-induced organ damage by 
blocking the activation of T helper 17 
and the downregulation of regulatory 
T lymphocytes. Hypertension 
(Dallas, Texas 1979). 2014;63(4):797-
803. Available from: http://hyper.
ahajournals.org/lookup/doi/10.1161/
HYPERTENSIONAHA.113.02883

[31] Martinez-Martinez E, Jurado-
Lopez R, Valero-Munoz M, Bartolome 
MV, Ballesteros S, Luaces M, et al. 
Leptin induces cardiac fibrosis through 
galectin-3, mTOR and oxidative stress: 
Potential role in obesity. Journal of 
Hypertension. 2014;32(5):1104-1114. 
discussion 1114

[32] Engeli S, Bohnke J, Gorzelniak K,  
Janke J, Schling P, Bader M, et al. 
Weight loss and the renin-angiotensin-
aldosterone system. Hypertension. 
2005;45(3):356-362. Available from: 
http://www.ncbi.nlm.nih.gov/
pubmed/15630041



Aldosterone-Mineralocorticoid Receptor - Cell Biology to Translational Medicine

42

[33] Hunt SA, Abraham WT, Chin MH, 
Feldman AM, Francis GS, Ganiats TG, 
et al. ACC/AHA 2005 guideline update 
for the diagnosis and Management 
of Chronic Heart Failure in the adult: 
A report of the American College of 
Cardiology/American Heart Association 
task force on practice guidelines 
(writing committee to update the 
2001 guidelines for the evaluation 
and Management of Heart Failure): 
Developed in collaboration with the 
American College of Chest Physicians 
and the International Society for Heart 
and Lung Transplantation: Endorsed by 
the Heart Rhythm Society. Circulation. 
2005;112(12):e154-e235. Available 
from: http://www.ncbi.nlm.nih.gov/
pubmed/16160202

[34] Martinez-Martinez E, Ibarrola J, 
Calvier L, Fernandez-Celis A, Leroy 
C, Cachofeiro V, et al. Galectin-3 
blockade reduces renal fibrosis in two 
normotensive experimental models of 
renal damage. Rouet P, editor. PLoS 
One. 2016;11(11):e0166272. Available 
from: http://dx.plos.org/10.1371/
journal.pone.0166272

[35] Arrieta V, Martinez-Martinez E, 
Ibarrola J, Alvarez V, Sádaba R, Garcia-
Peña A, et al. A role for galectin-3 in 
the development of early molecular 
alterations in short-term aortic stenosis. 
Clinical Science (London, England). 
2017;131(10):935-949. Available from: 
http://clinsci.org/lookup/doi/10.1042/
CS20170145

[36] van den Berg TNA, Rongen GA, 
Fröhlich GM, Deinum J, Hausenloy 
DJ, Riksen NP. The cardioprotective 
effects of mineralocorticoid receptor 
antagonists. Pharmacology & 
Therapeutics. 2014;142(1):72-87. 
Available from: http://www.ncbi.nlm.
nih.gov/pubmed/24275323

[37] van den Berg TNAD, Meijers WC,  
Donders ART, Van Herwaarden AE,  
Rongen GA, de Boer RA, et al. Plasma 
galectin-3 concentrations in patients 

with primary aldosteronism. Journal of 
Hypertension. 2017;35(9):1849-1856. 
Available from: http://insights.ovid.com/
crossref?an=00004872-201709000-00019

[38] Zannad F. Aldosterone and heart 
failure. European Heart Journal. 
1995;16(Suppl N):98-102. Available 
from: http://www.ncbi.nlm.nih.gov/
pubmed/8682070

[39] Lopez-Andrès N, Rossignol P, 
Iraqi W, Fay R, Nuée J, Ghio S, et al. 
Association of galectin-3 and fibrosis 
markers with long-term cardiovascular 
outcomes in patients with heart 
failure, left ventricular dysfunction, 
and dyssynchrony: Insights from the 
CARE-HF (cardiac resynchronization 
in heart failure) trial. European Journal 
of Heart Failure. 2012;14(1):74-81. 
Available from: http://doi.wiley.
com/10.1093/eurjhf/hfr151

[40] Calvier L, Legchenko E, Grimm 
L, Sallmon H, Hatch A, Plouffe BD, 
et al. Galectin-3 and aldosterone 
as potential tandem biomarkers in 
pulmonary arterial hypertension. 
Heart. 2016;102(5):390-396. Available 
from: http://heart.bmj.com/lookup/
doi/10.1136/heartjnl-2015-308365

[41] He J, Li X, Luo H, Li T, 
Zhao L, Qi Q , et al. Galectin-3 
mediates the pulmonary arterial 
hypertension–induced right ventricular 
remodeling through interacting with 
NADPH oxidase 4. Journal of the 
American Society of Hypertension. 
2017;11(5):275-289.e2. Available 
from: http://www.ncbi.nlm.nih.gov/
pubmed/28431936

[42] Koukoui F, Desmoulin F, Galinier 
M, Barutaut M, Caubère C, Evaristi 
MF, et al. The prognostic value of 
plasma galectin-3 in chronic heart 
failure patients is maintained when 
treated with mineralocorticoid receptor 
antagonists. Mischak H, editor. PLoS 
One. 2015;10(3):e0119160. Available 

43

Aldosterone/Mineralocorticoid Receptor Downstream Targets as Novel Therapeutic Targets…
DOI: http://dx.doi.org/10.5772/intechopen.87232

from: http://dx.plos.org/10.1371/
journal.pone.0119160

[43] Fiuzat M, Schulte PJ, Felker M, 
Ahmad T, Neely M, Adams KF, et al. 
Relationship between galectin-3 
levels and mineralocorticoid receptor 
antagonist use in heart failure: Analysis 
from HF-ACTION. Journal of Cardiac 
Failure. 2014;20(1):38-44. Available 
from: http://linkinghub.elsevier.com/
retrieve/pii/S107191641301261X

[44] Gandhi PU, Motiwala SR, 
Belcher AM, Gaggin HK, Weiner RB, 
Baggish AL, et al. Galectin-3 and 
mineralocorticoid receptor antagonist 
use in patients with chronic heart 
failure due to left ventricular systolic 
dysfunction. American Heart Journal. 
2015;169(3):404-411.e3. Available 
from: http://www.ncbi.nlm.nih.gov/
pubmed/25728731

[45] Buonafine M, Martinez-Martinez 
E, Jaisser F. More than a simple 
biomarker: The role of NGAL in 
cardiovascular and renal diseases. 
Clinical Science (London, England). 
2018;132(9):909-923. Available from: 
http://clinsci.org/lookup/doi/10.1042/
CS20171592

[46] Buonafine M, Martínez-Martínez 
E, Amador C, Gravez B, Ibarrola J, 
Fernández-Celis A, et al. Neutrophil 
Gelatinase-associated Lipocalin 
from immune cells is mandatory for 
aldosterone-induced cardiac remodeling 
and inflammation. Journal of Molecular 
and Cellular Cardiology. 2018;115:32-38. 
Available from: http://www.ncbi.nlm.
nih.gov/pubmed/29289651

[47] Martinez-Martinez E, Buonafine M,  
Boukhalfa I, Ibarrola J, Fernandez-
Celis A, Kolkhof P, et al. Aldosterone 
target NGAL (neutrophil Gelatinase-
associated Lipocalin) is involved in 
cardiac Remodeling after myocardial 
infarction through NFkappaB pathway. 
Hypertension (Dallas, Texas 1979). 
2017;70(6):1148-1156

[48] Tarjus A, Martínez-Martínez E, 
Amador C, Latouche C, El Moghrabi 
S, Berger T, et al. Neutrophil 
Gelatinase-associated Lipocalin, a 
novel mineralocorticoid biotarget, 
mediates vascular Profibrotic effects 
of mineralocorticoids. Hypertension 
(Dallas, Texas 1979). 2015;66(1): 
158-166. Available from: http://hyper.
ahajournals.org/lookup/doi/10.1161/
HYPERTENSIONAHA.115.05431

[49] Schroll A, Eller K, Feistritzer C, 
Nairz M, Sonnweber T, Moser PA, et al. 
Lipocalin-2 ameliorates granulocyte 
functionality. European Journal of 
Immunology. 2012;42(12):3346-3357. 
Available from: http://doi.wiley.
com/10.1002/eji.201142351

[50] Shao S, Cao T, Jin L, Li B, Fang H, 
Zhang J, et al. Increased Lipocalin-2 
contributes to the pathogenesis of 
psoriasis by modulating neutrophil 
Chemotaxis and cytokine secretion. The 
Journal of Investigative Dermatology. 
2016;136(7):1418-1428. Available from: 
http://linkinghub.elsevier.com/retrieve/
pii/S0022202X16308703

[51] Aigner F, Maier HT, Schwelberger 
HG, Wallnöfer EA, Amberger A, 
Obrist P, et al. Lipocalin-2 regulates 
the inflammatory response during 
ischemia and reperfusion of the 
transplanted heart. American Journal 
of Transplantation. 2007;7(4):779-788. 
Available from: http://www.ncbi.nlm.
nih.gov/pubmed/17391123

[52] Latouche C, El Moghrabi S, Messaoudi 
S, Nguyen Dinh Cat A, Hernandez-Diaz 
I, Alvarez de la Rosa D, et al. Neutrophil 
gelatinase-associated lipocalin is a 
novel mineralocorticoid target in the 
cardiovascular system. Hypertension 
(Dallas, Texas 1979). 2012;59(5): 
966-972. Available from: http://hyper.
ahajournals.org/cgi/doi/10.1161/
HYPERTENSIONAHA.111.187872

[53] Buonafine M, Martinez-Martinez E,  
Amador C, Gravez B, Ibarrola J, 
Fernandez-Celis A, et al. Neutrophil 



Aldosterone-Mineralocorticoid Receptor - Cell Biology to Translational Medicine

42

[33] Hunt SA, Abraham WT, Chin MH, 
Feldman AM, Francis GS, Ganiats TG, 
et al. ACC/AHA 2005 guideline update 
for the diagnosis and Management 
of Chronic Heart Failure in the adult: 
A report of the American College of 
Cardiology/American Heart Association 
task force on practice guidelines 
(writing committee to update the 
2001 guidelines for the evaluation 
and Management of Heart Failure): 
Developed in collaboration with the 
American College of Chest Physicians 
and the International Society for Heart 
and Lung Transplantation: Endorsed by 
the Heart Rhythm Society. Circulation. 
2005;112(12):e154-e235. Available 
from: http://www.ncbi.nlm.nih.gov/
pubmed/16160202

[34] Martinez-Martinez E, Ibarrola J, 
Calvier L, Fernandez-Celis A, Leroy 
C, Cachofeiro V, et al. Galectin-3 
blockade reduces renal fibrosis in two 
normotensive experimental models of 
renal damage. Rouet P, editor. PLoS 
One. 2016;11(11):e0166272. Available 
from: http://dx.plos.org/10.1371/
journal.pone.0166272

[35] Arrieta V, Martinez-Martinez E, 
Ibarrola J, Alvarez V, Sádaba R, Garcia-
Peña A, et al. A role for galectin-3 in 
the development of early molecular 
alterations in short-term aortic stenosis. 
Clinical Science (London, England). 
2017;131(10):935-949. Available from: 
http://clinsci.org/lookup/doi/10.1042/
CS20170145

[36] van den Berg TNA, Rongen GA, 
Fröhlich GM, Deinum J, Hausenloy 
DJ, Riksen NP. The cardioprotective 
effects of mineralocorticoid receptor 
antagonists. Pharmacology & 
Therapeutics. 2014;142(1):72-87. 
Available from: http://www.ncbi.nlm.
nih.gov/pubmed/24275323

[37] van den Berg TNAD, Meijers WC,  
Donders ART, Van Herwaarden AE,  
Rongen GA, de Boer RA, et al. Plasma 
galectin-3 concentrations in patients 

with primary aldosteronism. Journal of 
Hypertension. 2017;35(9):1849-1856. 
Available from: http://insights.ovid.com/
crossref?an=00004872-201709000-00019

[38] Zannad F. Aldosterone and heart 
failure. European Heart Journal. 
1995;16(Suppl N):98-102. Available 
from: http://www.ncbi.nlm.nih.gov/
pubmed/8682070

[39] Lopez-Andrès N, Rossignol P, 
Iraqi W, Fay R, Nuée J, Ghio S, et al. 
Association of galectin-3 and fibrosis 
markers with long-term cardiovascular 
outcomes in patients with heart 
failure, left ventricular dysfunction, 
and dyssynchrony: Insights from the 
CARE-HF (cardiac resynchronization 
in heart failure) trial. European Journal 
of Heart Failure. 2012;14(1):74-81. 
Available from: http://doi.wiley.
com/10.1093/eurjhf/hfr151

[40] Calvier L, Legchenko E, Grimm 
L, Sallmon H, Hatch A, Plouffe BD, 
et al. Galectin-3 and aldosterone 
as potential tandem biomarkers in 
pulmonary arterial hypertension. 
Heart. 2016;102(5):390-396. Available 
from: http://heart.bmj.com/lookup/
doi/10.1136/heartjnl-2015-308365

[41] He J, Li X, Luo H, Li T, 
Zhao L, Qi Q , et al. Galectin-3 
mediates the pulmonary arterial 
hypertension–induced right ventricular 
remodeling through interacting with 
NADPH oxidase 4. Journal of the 
American Society of Hypertension. 
2017;11(5):275-289.e2. Available 
from: http://www.ncbi.nlm.nih.gov/
pubmed/28431936

[42] Koukoui F, Desmoulin F, Galinier 
M, Barutaut M, Caubère C, Evaristi 
MF, et al. The prognostic value of 
plasma galectin-3 in chronic heart 
failure patients is maintained when 
treated with mineralocorticoid receptor 
antagonists. Mischak H, editor. PLoS 
One. 2015;10(3):e0119160. Available 

43

Aldosterone/Mineralocorticoid Receptor Downstream Targets as Novel Therapeutic Targets…
DOI: http://dx.doi.org/10.5772/intechopen.87232

from: http://dx.plos.org/10.1371/
journal.pone.0119160

[43] Fiuzat M, Schulte PJ, Felker M, 
Ahmad T, Neely M, Adams KF, et al. 
Relationship between galectin-3 
levels and mineralocorticoid receptor 
antagonist use in heart failure: Analysis 
from HF-ACTION. Journal of Cardiac 
Failure. 2014;20(1):38-44. Available 
from: http://linkinghub.elsevier.com/
retrieve/pii/S107191641301261X

[44] Gandhi PU, Motiwala SR, 
Belcher AM, Gaggin HK, Weiner RB, 
Baggish AL, et al. Galectin-3 and 
mineralocorticoid receptor antagonist 
use in patients with chronic heart 
failure due to left ventricular systolic 
dysfunction. American Heart Journal. 
2015;169(3):404-411.e3. Available 
from: http://www.ncbi.nlm.nih.gov/
pubmed/25728731

[45] Buonafine M, Martinez-Martinez 
E, Jaisser F. More than a simple 
biomarker: The role of NGAL in 
cardiovascular and renal diseases. 
Clinical Science (London, England). 
2018;132(9):909-923. Available from: 
http://clinsci.org/lookup/doi/10.1042/
CS20171592

[46] Buonafine M, Martínez-Martínez 
E, Amador C, Gravez B, Ibarrola J, 
Fernández-Celis A, et al. Neutrophil 
Gelatinase-associated Lipocalin 
from immune cells is mandatory for 
aldosterone-induced cardiac remodeling 
and inflammation. Journal of Molecular 
and Cellular Cardiology. 2018;115:32-38. 
Available from: http://www.ncbi.nlm.
nih.gov/pubmed/29289651

[47] Martinez-Martinez E, Buonafine M,  
Boukhalfa I, Ibarrola J, Fernandez-
Celis A, Kolkhof P, et al. Aldosterone 
target NGAL (neutrophil Gelatinase-
associated Lipocalin) is involved in 
cardiac Remodeling after myocardial 
infarction through NFkappaB pathway. 
Hypertension (Dallas, Texas 1979). 
2017;70(6):1148-1156

[48] Tarjus A, Martínez-Martínez E, 
Amador C, Latouche C, El Moghrabi 
S, Berger T, et al. Neutrophil 
Gelatinase-associated Lipocalin, a 
novel mineralocorticoid biotarget, 
mediates vascular Profibrotic effects 
of mineralocorticoids. Hypertension 
(Dallas, Texas 1979). 2015;66(1): 
158-166. Available from: http://hyper.
ahajournals.org/lookup/doi/10.1161/
HYPERTENSIONAHA.115.05431

[49] Schroll A, Eller K, Feistritzer C, 
Nairz M, Sonnweber T, Moser PA, et al. 
Lipocalin-2 ameliorates granulocyte 
functionality. European Journal of 
Immunology. 2012;42(12):3346-3357. 
Available from: http://doi.wiley.
com/10.1002/eji.201142351

[50] Shao S, Cao T, Jin L, Li B, Fang H, 
Zhang J, et al. Increased Lipocalin-2 
contributes to the pathogenesis of 
psoriasis by modulating neutrophil 
Chemotaxis and cytokine secretion. The 
Journal of Investigative Dermatology. 
2016;136(7):1418-1428. Available from: 
http://linkinghub.elsevier.com/retrieve/
pii/S0022202X16308703

[51] Aigner F, Maier HT, Schwelberger 
HG, Wallnöfer EA, Amberger A, 
Obrist P, et al. Lipocalin-2 regulates 
the inflammatory response during 
ischemia and reperfusion of the 
transplanted heart. American Journal 
of Transplantation. 2007;7(4):779-788. 
Available from: http://www.ncbi.nlm.
nih.gov/pubmed/17391123

[52] Latouche C, El Moghrabi S, Messaoudi 
S, Nguyen Dinh Cat A, Hernandez-Diaz 
I, Alvarez de la Rosa D, et al. Neutrophil 
gelatinase-associated lipocalin is a 
novel mineralocorticoid target in the 
cardiovascular system. Hypertension 
(Dallas, Texas 1979). 2012;59(5): 
966-972. Available from: http://hyper.
ahajournals.org/cgi/doi/10.1161/
HYPERTENSIONAHA.111.187872

[53] Buonafine M, Martinez-Martinez E,  
Amador C, Gravez B, Ibarrola J, 
Fernandez-Celis A, et al. Neutrophil 



Aldosterone-Mineralocorticoid Receptor - Cell Biology to Translational Medicine

44

Gelatinase-associated Lipocalin 
from immune cells is mandatory for 
aldosterone-induced cardiac remodeling 
and inflammation. Journal of Molecular 
and Cellular Cardiology. 2017;115:32-38

[54] Ong K-L, Tso AWK, Cherny SS, 
Sham P-C, Lam T-H, Lam KSL, et al. 
Role of genetic variants in the gene 
encoding lipocalin-2 in the development 
of elevated blood pressure. Clinical 
and Experimental Hypertension. 
2011;33(7):484-491. Available from: 
http://www.tandfonline.com/doi/full/10
.3109/10641963.2010.549276

[55] Damman K, van Veldhuisen DJ, 
Navis G, Voors AA, Hillege HL. Urinary 
neutrophil gelatinase associated 
lipocalin (NGAL), a marker of tubular 
damage, is increased in patients with 
chronic heart failure. European Journal 
of Heart Failure. 2008;10(10):997-1000. 
Available from: http://www.ncbi.nlm.
nih.gov/pubmed/18804416

[56] Yndestad A, Landrø L, Ueland 
T, Dahl CP, Flo TH, Vinge LE, et al. 
Increased systemic and myocardial 
expression of neutrophil gelatinase-
associated lipocalin in clinical and 
experimental heart failure. European 
Heart Journal. 2009;30(10):1229-1236. 
Available from: https://academic.
oup.com/eurheartj/article-lookup/
doi/10.1093/eurheartj/ehp088

[57] Wang Y. Small lipid-binding 
proteins in regulating endothelial 
and vascular functions: Focusing on 
adipocyte fatty acid binding protein 
and lipocalin-2. British Journal of 
Pharmacology. 2012;165(3):603-621. 
Available from: http://www.ncbi.nlm.
nih.gov/pubmed/21658023

[58] Escoté X, Gómez-Zorita S, 
López-Yoldi M, Milton-Laskibar I, 
Fernández-Quintela A, Martínez 
JA, et al. Role of Omentin, Vaspin, 
Cardiotrophin-1, TWEAK and 
NOV/CCN3 in obesity and diabetes 
development. International Journal of 

Molecular Sciences. 2017;18(8):1770. 
Available from: http://www.mdpi.
com/1422-0067/18/8/1770

[59] López-Andrés N, Calvier L, 
Labat C, Fay R, Díez J, Benetos A, 
et al. Absence of cardiotrophin 
1 is associated with decreased 
age-dependent arterial stiffness 
and increased longevity in mice. 
Hypertension (Dallas, Texas 
1979). 2013;61(1):120-129. 
Available from: http://hyper.
ahajournals.org/cgi/doi/10.1161/
HYPERTENSIONAHA.112.201699

[60] López N, Díez J, Fortuño 
MA. Characterization of the 
protective effects of cardiotrophin-1 
against non-ischemic death stimuli 
in adult cardiomyocytes. Cytokine. 
2005;30(5):282-292. Available from: 
http://www.ncbi.nlm.nih.gov/
pubmed/15927854

[61] López N, Díez J, Fortuño 
MA. Differential hypertrophic 
effects of cardiotrophin-1 on adult 
cardiomyocytes from normotensive 
and spontaneously hypertensive rats. 
Journal of Molecular and Cellular 
Cardiology. 2006;41(5):902-913. 
Available from: http://www.ncbi.nlm.
nih.gov/pubmed/17014864

[62] López-Andrés N, Rousseau A, 
Akhtar R, Calvier L, Iñigo C, Labat C, 
et al. Cardiotrophin 1 is involved in 
cardiac, vascular, and renal fibrosis and 
dysfunction. Hypertension (Dallas, 
Texas 1979). 2012;60(2):563-573.  
Available from: http://hyper.
ahajournals.org/cgi/doi/10.1161/
HYPERTENSIONAHA.112.194407

[63] Tsuruda T, Jougasaki M, Boerrigter 
G, Huntley BK, Chen HH, D’Assoro 
AB, et al. Cardiotrophin-1 stimulation 
of cardiac fibroblast growth: Roles for 
glycoprotein 130/leukemia inhibitory 
factor receptor and the endothelin 
type a receptor. Circulation Research. 
2002;90(2):128-134. Available from: 

45

Aldosterone/Mineralocorticoid Receptor Downstream Targets as Novel Therapeutic Targets…
DOI: http://dx.doi.org/10.5772/intechopen.87232

http://www.ncbi.nlm.nih.gov/
pubmed/11834704

[64] Freed DH, Moon MC, Borowiec 
AM, Jones SC, Zahradka P, IMC 
D. Cardiotrophin-1: Expression in 
experimental myocardial infarction and 
potential role in post-MI wound healing. 
Molecular and Cellular Biochemistry. 
2003;254(1-2):247-256. Available 
from: http://www.ncbi.nlm.nih.gov/
pubmed/14674704

[65] Freed DH, Borowiec AM, 
Angelovska T, IMC D. Induction 
of protein synthesis in cardiac 
fibroblasts by cardiotrophin-1: 
Integration of multiple signaling 
pathways. Cardiovascular Research. 
2003;60(2):365-375. Available from: 
http://www.ncbi.nlm.nih.gov/
pubmed/14613866

[66] Drobic V, Cunnington RH, 
Bedosky KM, Raizman JE, Elimban 
VV, Rattan SG, et al. Differential and 
combined effects of cardiotrophin-1 
and TGF-β 1 on cardiac myofibroblast 
proliferation and contraction. 
American Journal of Physiology-
Heart and Circulatory Physiology. 
2007;293(2):H1053-H1064. Available 
from: http://www.physiology.org/
doi/10.1152/ajpheart.00935.2006

[67] Lopez-Andres N, Fortuno MA, 
Diez J, Zannad F, Lacolley P, Rossignol 
P. Vascular effects of cardiotrophin-1: 
A role in hypertension? Journal of 
Hypertension. 2010;28(6):1261-1272. 
Available from http://www.ncbi.nlm.
nih.gov/pubmed/20216087

[68] López B, González A, Querejeta R,  
Larman M, Rábago G, Díez J.  
Association of cardiotrophin-1 
with myocardial fibrosis in 
hypertensive patients with heart 
failure. Hypertension (Dallas, 
Texas 1979). 2014;63(3):483-489. 
Available from: http://hyper.
ahajournals.org/cgi/doi/10.1161/
HYPERTENSIONAHA.113.02654

[69] López-Andrés N, Iñigo C, Gallego 
I, Díez J, Fortuño MA. Aldosterone 
induces cardiotrophin-1 expression 
in HL-1 adult cardiomyocytes. 
Endocrinology. 2008;149(10):4970-4978.  
Available from: https://academic.oup.
com/endo/article-lookup/doi/10.1210/
en.2008-0120

[70] López-Andrés N, Martin-
Fernandez B, Rossignol P, Zannad F, 
Lahera V, Fortuno MA, et al. A role 
for cardiotrophin-1 in myocardial 
remodeling induced by aldosterone. 
American Journal of Physiology-
Heart and Circulatory Physiology. 
2011;301(6):H2372-H2382. Available 
from: http://www.ncbi.nlm.nih.gov/
pubmed/21926338

[71] Zolk O, Ng LL, O’Brien RJ, Weyand 
M, Eschenhagen T. Augmented 
expression of cardiotrophin-1 in failing 
human hearts is accompanied by 
diminished glycoprotein 130 receptor 
protein abundance. Circulation. 
2002;106(12):1442-1446. Available 
from: http://www.ncbi.nlm.nih.gov/
pubmed/12234945

[72] López B, González A, Querejeta 
R, Barba J, Díez J. Association of 
plasma cardiotrophin-1 with stage 
C heart failure in hypertensive 
patients: Potential diagnostic 
implications. Journal of Hypertension. 
2009;27(2):418-424. Available from: 
http://www.ncbi.nlm.nih.gov/
pubmed/19155793



Aldosterone-Mineralocorticoid Receptor - Cell Biology to Translational Medicine

44

Gelatinase-associated Lipocalin 
from immune cells is mandatory for 
aldosterone-induced cardiac remodeling 
and inflammation. Journal of Molecular 
and Cellular Cardiology. 2017;115:32-38

[54] Ong K-L, Tso AWK, Cherny SS, 
Sham P-C, Lam T-H, Lam KSL, et al. 
Role of genetic variants in the gene 
encoding lipocalin-2 in the development 
of elevated blood pressure. Clinical 
and Experimental Hypertension. 
2011;33(7):484-491. Available from: 
http://www.tandfonline.com/doi/full/10
.3109/10641963.2010.549276

[55] Damman K, van Veldhuisen DJ, 
Navis G, Voors AA, Hillege HL. Urinary 
neutrophil gelatinase associated 
lipocalin (NGAL), a marker of tubular 
damage, is increased in patients with 
chronic heart failure. European Journal 
of Heart Failure. 2008;10(10):997-1000. 
Available from: http://www.ncbi.nlm.
nih.gov/pubmed/18804416

[56] Yndestad A, Landrø L, Ueland 
T, Dahl CP, Flo TH, Vinge LE, et al. 
Increased systemic and myocardial 
expression of neutrophil gelatinase-
associated lipocalin in clinical and 
experimental heart failure. European 
Heart Journal. 2009;30(10):1229-1236. 
Available from: https://academic.
oup.com/eurheartj/article-lookup/
doi/10.1093/eurheartj/ehp088

[57] Wang Y. Small lipid-binding 
proteins in regulating endothelial 
and vascular functions: Focusing on 
adipocyte fatty acid binding protein 
and lipocalin-2. British Journal of 
Pharmacology. 2012;165(3):603-621. 
Available from: http://www.ncbi.nlm.
nih.gov/pubmed/21658023

[58] Escoté X, Gómez-Zorita S, 
López-Yoldi M, Milton-Laskibar I, 
Fernández-Quintela A, Martínez 
JA, et al. Role of Omentin, Vaspin, 
Cardiotrophin-1, TWEAK and 
NOV/CCN3 in obesity and diabetes 
development. International Journal of 

Molecular Sciences. 2017;18(8):1770. 
Available from: http://www.mdpi.
com/1422-0067/18/8/1770

[59] López-Andrés N, Calvier L, 
Labat C, Fay R, Díez J, Benetos A, 
et al. Absence of cardiotrophin 
1 is associated with decreased 
age-dependent arterial stiffness 
and increased longevity in mice. 
Hypertension (Dallas, Texas 
1979). 2013;61(1):120-129. 
Available from: http://hyper.
ahajournals.org/cgi/doi/10.1161/
HYPERTENSIONAHA.112.201699

[60] López N, Díez J, Fortuño 
MA. Characterization of the 
protective effects of cardiotrophin-1 
against non-ischemic death stimuli 
in adult cardiomyocytes. Cytokine. 
2005;30(5):282-292. Available from: 
http://www.ncbi.nlm.nih.gov/
pubmed/15927854

[61] López N, Díez J, Fortuño 
MA. Differential hypertrophic 
effects of cardiotrophin-1 on adult 
cardiomyocytes from normotensive 
and spontaneously hypertensive rats. 
Journal of Molecular and Cellular 
Cardiology. 2006;41(5):902-913. 
Available from: http://www.ncbi.nlm.
nih.gov/pubmed/17014864

[62] López-Andrés N, Rousseau A, 
Akhtar R, Calvier L, Iñigo C, Labat C, 
et al. Cardiotrophin 1 is involved in 
cardiac, vascular, and renal fibrosis and 
dysfunction. Hypertension (Dallas, 
Texas 1979). 2012;60(2):563-573.  
Available from: http://hyper.
ahajournals.org/cgi/doi/10.1161/
HYPERTENSIONAHA.112.194407

[63] Tsuruda T, Jougasaki M, Boerrigter 
G, Huntley BK, Chen HH, D’Assoro 
AB, et al. Cardiotrophin-1 stimulation 
of cardiac fibroblast growth: Roles for 
glycoprotein 130/leukemia inhibitory 
factor receptor and the endothelin 
type a receptor. Circulation Research. 
2002;90(2):128-134. Available from: 

45

Aldosterone/Mineralocorticoid Receptor Downstream Targets as Novel Therapeutic Targets…
DOI: http://dx.doi.org/10.5772/intechopen.87232

http://www.ncbi.nlm.nih.gov/
pubmed/11834704

[64] Freed DH, Moon MC, Borowiec 
AM, Jones SC, Zahradka P, IMC 
D. Cardiotrophin-1: Expression in 
experimental myocardial infarction and 
potential role in post-MI wound healing. 
Molecular and Cellular Biochemistry. 
2003;254(1-2):247-256. Available 
from: http://www.ncbi.nlm.nih.gov/
pubmed/14674704

[65] Freed DH, Borowiec AM, 
Angelovska T, IMC D. Induction 
of protein synthesis in cardiac 
fibroblasts by cardiotrophin-1: 
Integration of multiple signaling 
pathways. Cardiovascular Research. 
2003;60(2):365-375. Available from: 
http://www.ncbi.nlm.nih.gov/
pubmed/14613866

[66] Drobic V, Cunnington RH, 
Bedosky KM, Raizman JE, Elimban 
VV, Rattan SG, et al. Differential and 
combined effects of cardiotrophin-1 
and TGF-β 1 on cardiac myofibroblast 
proliferation and contraction. 
American Journal of Physiology-
Heart and Circulatory Physiology. 
2007;293(2):H1053-H1064. Available 
from: http://www.physiology.org/
doi/10.1152/ajpheart.00935.2006

[67] Lopez-Andres N, Fortuno MA, 
Diez J, Zannad F, Lacolley P, Rossignol 
P. Vascular effects of cardiotrophin-1: 
A role in hypertension? Journal of 
Hypertension. 2010;28(6):1261-1272. 
Available from http://www.ncbi.nlm.
nih.gov/pubmed/20216087

[68] López B, González A, Querejeta R,  
Larman M, Rábago G, Díez J.  
Association of cardiotrophin-1 
with myocardial fibrosis in 
hypertensive patients with heart 
failure. Hypertension (Dallas, 
Texas 1979). 2014;63(3):483-489. 
Available from: http://hyper.
ahajournals.org/cgi/doi/10.1161/
HYPERTENSIONAHA.113.02654

[69] López-Andrés N, Iñigo C, Gallego 
I, Díez J, Fortuño MA. Aldosterone 
induces cardiotrophin-1 expression 
in HL-1 adult cardiomyocytes. 
Endocrinology. 2008;149(10):4970-4978.  
Available from: https://academic.oup.
com/endo/article-lookup/doi/10.1210/
en.2008-0120

[70] López-Andrés N, Martin-
Fernandez B, Rossignol P, Zannad F, 
Lahera V, Fortuno MA, et al. A role 
for cardiotrophin-1 in myocardial 
remodeling induced by aldosterone. 
American Journal of Physiology-
Heart and Circulatory Physiology. 
2011;301(6):H2372-H2382. Available 
from: http://www.ncbi.nlm.nih.gov/
pubmed/21926338

[71] Zolk O, Ng LL, O’Brien RJ, Weyand 
M, Eschenhagen T. Augmented 
expression of cardiotrophin-1 in failing 
human hearts is accompanied by 
diminished glycoprotein 130 receptor 
protein abundance. Circulation. 
2002;106(12):1442-1446. Available 
from: http://www.ncbi.nlm.nih.gov/
pubmed/12234945

[72] López B, González A, Querejeta 
R, Barba J, Díez J. Association of 
plasma cardiotrophin-1 with stage 
C heart failure in hypertensive 
patients: Potential diagnostic 
implications. Journal of Hypertension. 
2009;27(2):418-424. Available from: 
http://www.ncbi.nlm.nih.gov/
pubmed/19155793



47

Chapter 4

Aldosterone/MR Signaling, 
Oxidative Stress, and Vascular 
Dysfunction
Ana M. Briones and Rhian M. Touyz

Abstract

The mineralocorticoid receptor (MR) is a transcription factor of the family of 
steroid receptors that classically binds the hormone aldosterone. The contribution 
of MR in the regulation of sodium retention and blood pressure is well known. 
However, MR is expressed in extrarenal tissues including endothelial and vascular 
smooth muscle cells, and its activation leads to vascular remodeling, vascular 
stiffness, and endothelial dysfunction leading to vascular damage, an important 
pathophysiological process in hypertension and other cardiovascular diseases. 
Moreover, MR is expressed in nonvascular cells in close contact with the vascular 
wall including immune cells and adipocytes that might influence vascular function 
and structure. MR activation involves its translocation to the nucleus and regulation 
of gene transcription. In addition, aldosterone exerts rapid non-genomic effects 
mediated by MR-dependent and MR-independent mechanisms. Both genomic and 
non-genomic effects facilitate reactive oxygen species (ROS) production (par-
ticularly by the enzyme NADPH oxidase), inflammation, and fibrosis, which, in 
turn, promote tissue remodeling, vascular stiffening, and endothelial dysfunction. 
Studies with MR antagonists and experimental models with cell-specific knockout 
or overexpression of MR further support a role for aldosterone/MR-mediated 
oxidative stress-dependent processes in vascular damage. This review focuses on 
the relationship between aldosterone/MR signaling and oxidative stress and the 
implications in vascular regulation in health and disease.

Keywords: aldosterone, mineralocorticoid receptor, oxidative stress, NADPH oxidase

1. Introduction

The mineralocorticoid receptor (MR) classically binds the hormone aldosterone 
and in the kidney regulates sodium retention, volume homeostasis, and blood 
pressure. The MR, originally thought to be expressed only in the kidney, is now 
known to have an extensive extrarenal distribution and is functionally active in the 
cardiovascular and immune systems. MR activation is involved in various cardio-
vascular diseases [1, 2] and has also been implicated in metabolic disorders and 
insulin resistance. At the vascular level, MR is expressed in endothelial and vascular 
smooth muscle cells (VSMC), and its activation leads to vascular remodeling, 
vascular fibrosis, and endothelial dysfunction leading to vascular damage, arterial 
stiffness, and hypertension [1–3]. However, MR is also expressed in nonvascular 
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pathophysiological process in hypertension and other cardiovascular diseases. 
Moreover, MR is expressed in nonvascular cells in close contact with the vascular 
wall including immune cells and adipocytes that might influence vascular function 
and structure. MR activation involves its translocation to the nucleus and regulation 
of gene transcription. In addition, aldosterone exerts rapid non-genomic effects 
mediated by MR-dependent and MR-independent mechanisms. Both genomic and 
non-genomic effects facilitate reactive oxygen species (ROS) production (par-
ticularly by the enzyme NADPH oxidase), inflammation, and fibrosis, which, in 
turn, promote tissue remodeling, vascular stiffening, and endothelial dysfunction. 
Studies with MR antagonists and experimental models with cell-specific knockout 
or overexpression of MR further support a role for aldosterone/MR-mediated 
oxidative stress-dependent processes in vascular damage. This review focuses on 
the relationship between aldosterone/MR signaling and oxidative stress and the 
implications in vascular regulation in health and disease.
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1. Introduction

The mineralocorticoid receptor (MR) classically binds the hormone aldosterone 
and in the kidney regulates sodium retention, volume homeostasis, and blood 
pressure. The MR, originally thought to be expressed only in the kidney, is now 
known to have an extensive extrarenal distribution and is functionally active in the 
cardiovascular and immune systems. MR activation is involved in various cardio-
vascular diseases [1, 2] and has also been implicated in metabolic disorders and 
insulin resistance. At the vascular level, MR is expressed in endothelial and vascular 
smooth muscle cells (VSMC), and its activation leads to vascular remodeling, 
vascular fibrosis, and endothelial dysfunction leading to vascular damage, arterial 
stiffness, and hypertension [1–3]. However, MR is also expressed in nonvascular 
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cells in close contact with the vascular wall including immune cells and adipocytes 
where it influences inflammatory and metabolic processes [4, 5].

The MR is an intracellular receptor that has three domains: (i) an N-terminal 
domain that controls transcriptional activity of the receptor, (ii) the DNA-binding 
domain that influences binding of the specific response element on the promoter of 
MR target genes, and (iii) the ligand-binding domain for aldosterone. Upon activa-
tion, the MR is translocated to the nucleus and further regulates gene transcription 
and translation of proteins by binding to DNA hormone/steroid stimulatory or 
negative response elements [1, 2]. In addition, aldosterone exerts rapid non-
genomic effects mediated by MR-dependent and MR-independent mechanisms [6], 
and recent studies uncovered an MR-dependent suppression of miRNA expression 
resulting in upregulation of vascular miRNA targets [7]. Both genomic and non-
genomic effects promote reactive oxygen species (ROS) production particularly by 
the enzyme NADPH oxidase, as well as inflammation and fibrosis, which, in turn, 
leads to tissue remodeling and vascular stiffening and endothelial dysfunction. This 
review focuses on the relationship between aldosterone/MR signaling and oxidative 
stress and its vascular effects (Figure 1).

2. MR and oxidative stress in vascular cells

Extensive evidence has demonstrated a relationship between MR and redox 
signaling in vascular cells. Animal models including the deoxycorticosterone 
acetate (DOCA)/salt model and the aldosterone/salt model with or without 
nephrectomy exhibit vascular oxidative stress. The significance of ROS in these 
models is supported by studies that demonstrated that MR blockers reduce ROS 
levels in cardiovascular pathologies including hypertension, obesity, atherosclero-
sis, or heart failure. In many of the experimental and human studies, evidence of 

Figure 1. 
At the vascular level, MR is expressed in endothelial (EC) and vascular smooth muscle cells (VSMC). Its 
activation by genomic and rapid non-genomic effects mediated by MR-dependent and MR-independent 
mechanisms leads to activation of NADPH oxidase that produced reactive oxygen species (ROS) leading to 
vascular remodeling, fibrosis, inflammation, and endothelial dysfunction that produces vascular damage and 
arterial stiffness and might participate in hypertension and cardiac and kidney damage.
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altered oxidative stress was often based on a single method to determine oxidative 
stress, i.e., altered gene or protein expression of NADPH oxidase subunits, NADPH 
oxidase activity, lipid peroxidation determinations, fluorescence-based studies, 
etc., and this might explain, at least in part, some divergent findings. Because of 
the complexity of redox biology and difficulties in accurately measuring ROS, 
expert recommendations have been published suggesting that multiple different 
assays need to be used to accurately assess redox status in biological systems and 
experimental models [8]. Here we will not discuss specific methods to measure 
ROS in the context of aldosterone/MR, and the reader is referred to comprehensive 
reviews [8, 9].

Aldosterone increases ROS production in cultured VSMC [10–15] and endo-
thelial cells [16–21]. Moreover, aldosterone infusion into mice or rats increases 
plasma and vascular oxidative stress, and MR blockade reduces ROS production 
in the setting of hypertension, obesity, and other cardiovascular diseases [21–29]. 
Earlier studies identified NADPH oxidase as responsible for increased production 
of vascular ROS, specifically superoxide (O2

−), in the aorta from mineralocorticoid 
(DOCA-salt) hypertensive rats excluding other ROS sources (i.e., uncoupled eNOS 
or xanthine oxidase) as potential contributors [30]. NADPH oxidase is considered 
the major source of ROS in response to aldosterone/MR stimulation in vessels.

The NADPH oxidase (Nox) family is composed of seven Nox isoforms (Nox1–
Nox5 and Duox1 and Duox2); several regulatory subunits p22phox, p47phox, 
Noxo1, p67phox, Noxa1, and p40phox; and the major binding partner Rac. The 
main catalytic function of NADPH oxidases is the generation of ROS. NADPH 
oxidase reduces oxygen to O2

−, with NADPH being the electron donor. Nox-2 is the 
classical Nox that was characterized initially in leukocytes. Nox-1, Nox-2, Nox-4, 
and Nox-5 are expressed in the cardiovascular system with Nox5 not being present 
in rodents. Nox-1, Nox-2, Nox-3, and Nox-5 produce O2

−, while Nox-4, Duox-1, and 
Duox-2 produce H2O2 [31, 32]. In vessels, in addition to vascular cells possessing 
functional Noxes, resident macrophages, neutrophils, and platelets express NADPH 
oxidase, particularly in pathological states. Accordingly, these cells can also contrib-
ute to vascular oxidative stress in disease [32, 33].

2.1 Genomic and non-genomic effects of aldosterone/MR on ROS production

At the vascular level, a combination of aldosterone and high salt caused O2
− 

production in VSMC through upregulation of Nox1 without affecting expression 
of mRNA Nox4, p22phox, and p47phox [11]. In human vein endothelial cells 
(HUVEC), aldosterone increased p47phox transcription, but no effect on transcrip-
tion levels of Nox1, Nox2, Nox4, p22phox, p40phox, or p67phox was observed 
[16]. However, other studies showed that incubation with aldosterone for 24 h 
dose-dependently increased Nox4 mRNA expression in HUVEC [17]. In human 
pulmonary artery endothelial cells, aldosterone increased protein levels of Nox4 
and p22phox as well as H2O2 production [20]. Similarly, in bovine retinal endothe-
lial cells, aldosterone increased mRNA for Nox4 [19], and other studies showed that 
aldosterone administration modulated exclusively p22phox mRNA expression in 
freshly isolated aortic endothelial cells [21]. Aldosterone plus salt infusion into rats 
increased vascular NADPH oxidase activity and expression of p47phox, gp91phox, 
and p22phox [34], and recently, Jia et al. [29] found vascular upregulation of 
Nox2 expression and nitrotyrosine (a marker of nitrosative stress) formation after 
3 weeks of aldosterone infusion in mice. Together, these findings clearly show a 
pattern of vascular NADPH oxidase upregulation by aldosterone at the vascular 
level. This is also supported by the fact that MR antagonists decrease NADPH 
oxidase subunit expression [9]. For example, eplerenone treatment decreased the 



Aldosterone-Mineralocorticoid Receptor - Cell Biology to Translational Medicine

48

cells in close contact with the vascular wall including immune cells and adipocytes 
where it influences inflammatory and metabolic processes [4, 5].

The MR is an intracellular receptor that has three domains: (i) an N-terminal 
domain that controls transcriptional activity of the receptor, (ii) the DNA-binding 
domain that influences binding of the specific response element on the promoter of 
MR target genes, and (iii) the ligand-binding domain for aldosterone. Upon activa-
tion, the MR is translocated to the nucleus and further regulates gene transcription 
and translation of proteins by binding to DNA hormone/steroid stimulatory or 
negative response elements [1, 2]. In addition, aldosterone exerts rapid non-
genomic effects mediated by MR-dependent and MR-independent mechanisms [6], 
and recent studies uncovered an MR-dependent suppression of miRNA expression 
resulting in upregulation of vascular miRNA targets [7]. Both genomic and non-
genomic effects promote reactive oxygen species (ROS) production particularly by 
the enzyme NADPH oxidase, as well as inflammation and fibrosis, which, in turn, 
leads to tissue remodeling and vascular stiffening and endothelial dysfunction. This 
review focuses on the relationship between aldosterone/MR signaling and oxidative 
stress and its vascular effects (Figure 1).

2. MR and oxidative stress in vascular cells

Extensive evidence has demonstrated a relationship between MR and redox 
signaling in vascular cells. Animal models including the deoxycorticosterone 
acetate (DOCA)/salt model and the aldosterone/salt model with or without 
nephrectomy exhibit vascular oxidative stress. The significance of ROS in these 
models is supported by studies that demonstrated that MR blockers reduce ROS 
levels in cardiovascular pathologies including hypertension, obesity, atherosclero-
sis, or heart failure. In many of the experimental and human studies, evidence of 

Figure 1. 
At the vascular level, MR is expressed in endothelial (EC) and vascular smooth muscle cells (VSMC). Its 
activation by genomic and rapid non-genomic effects mediated by MR-dependent and MR-independent 
mechanisms leads to activation of NADPH oxidase that produced reactive oxygen species (ROS) leading to 
vascular remodeling, fibrosis, inflammation, and endothelial dysfunction that produces vascular damage and 
arterial stiffness and might participate in hypertension and cardiac and kidney damage.
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altered oxidative stress was often based on a single method to determine oxidative 
stress, i.e., altered gene or protein expression of NADPH oxidase subunits, NADPH 
oxidase activity, lipid peroxidation determinations, fluorescence-based studies, 
etc., and this might explain, at least in part, some divergent findings. Because of 
the complexity of redox biology and difficulties in accurately measuring ROS, 
expert recommendations have been published suggesting that multiple different 
assays need to be used to accurately assess redox status in biological systems and 
experimental models [8]. Here we will not discuss specific methods to measure 
ROS in the context of aldosterone/MR, and the reader is referred to comprehensive 
reviews [8, 9].

Aldosterone increases ROS production in cultured VSMC [10–15] and endo-
thelial cells [16–21]. Moreover, aldosterone infusion into mice or rats increases 
plasma and vascular oxidative stress, and MR blockade reduces ROS production 
in the setting of hypertension, obesity, and other cardiovascular diseases [21–29]. 
Earlier studies identified NADPH oxidase as responsible for increased production 
of vascular ROS, specifically superoxide (O2

−), in the aorta from mineralocorticoid 
(DOCA-salt) hypertensive rats excluding other ROS sources (i.e., uncoupled eNOS 
or xanthine oxidase) as potential contributors [30]. NADPH oxidase is considered 
the major source of ROS in response to aldosterone/MR stimulation in vessels.

The NADPH oxidase (Nox) family is composed of seven Nox isoforms (Nox1–
Nox5 and Duox1 and Duox2); several regulatory subunits p22phox, p47phox, 
Noxo1, p67phox, Noxa1, and p40phox; and the major binding partner Rac. The 
main catalytic function of NADPH oxidases is the generation of ROS. NADPH 
oxidase reduces oxygen to O2

−, with NADPH being the electron donor. Nox-2 is the 
classical Nox that was characterized initially in leukocytes. Nox-1, Nox-2, Nox-4, 
and Nox-5 are expressed in the cardiovascular system with Nox5 not being present 
in rodents. Nox-1, Nox-2, Nox-3, and Nox-5 produce O2

−, while Nox-4, Duox-1, and 
Duox-2 produce H2O2 [31, 32]. In vessels, in addition to vascular cells possessing 
functional Noxes, resident macrophages, neutrophils, and platelets express NADPH 
oxidase, particularly in pathological states. Accordingly, these cells can also contrib-
ute to vascular oxidative stress in disease [32, 33].

2.1 Genomic and non-genomic effects of aldosterone/MR on ROS production

At the vascular level, a combination of aldosterone and high salt caused O2
− 

production in VSMC through upregulation of Nox1 without affecting expression 
of mRNA Nox4, p22phox, and p47phox [11]. In human vein endothelial cells 
(HUVEC), aldosterone increased p47phox transcription, but no effect on transcrip-
tion levels of Nox1, Nox2, Nox4, p22phox, p40phox, or p67phox was observed 
[16]. However, other studies showed that incubation with aldosterone for 24 h 
dose-dependently increased Nox4 mRNA expression in HUVEC [17]. In human 
pulmonary artery endothelial cells, aldosterone increased protein levels of Nox4 
and p22phox as well as H2O2 production [20]. Similarly, in bovine retinal endothe-
lial cells, aldosterone increased mRNA for Nox4 [19], and other studies showed that 
aldosterone administration modulated exclusively p22phox mRNA expression in 
freshly isolated aortic endothelial cells [21]. Aldosterone plus salt infusion into rats 
increased vascular NADPH oxidase activity and expression of p47phox, gp91phox, 
and p22phox [34], and recently, Jia et al. [29] found vascular upregulation of 
Nox2 expression and nitrotyrosine (a marker of nitrosative stress) formation after 
3 weeks of aldosterone infusion in mice. Together, these findings clearly show a 
pattern of vascular NADPH oxidase upregulation by aldosterone at the vascular 
level. This is also supported by the fact that MR antagonists decrease NADPH 
oxidase subunit expression [9]. For example, eplerenone treatment decreased the 
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expression of p22phox, p47phox, and p40phox in a model of high-fat diet [21]. 
Moreover, deletion of MR in specific vascular cell types also downregulates NADPH 
oxidase isoforms (discussed below).

For the rapid MR-dependent aldosterone effects, the MR seems to be localized 
near the plasma membrane, but not directly inserted into it. It is located at the cyto-
solic site associated with scaffolding proteins that are associated with or inserted in 
the cell membrane such as striatin or caveolin-1 [6]. In this location, aldosterone can 
also interact with receptors such as receptor tyrosine kinases including epidermal 
growth factor receptor (EGFR), platelet-derived growth factor receptor (PDGFR), 
and insulin-like growth factor 1 receptor (IGF1R) or G protein-coupled receptors 
(GPCR) such as angiotensin type 1 receptor (AT1) or G protein-coupled estrogen 
receptor 1 (GPER1) [6].

The Src family of non-receptor tyrosine kinases seems to be involved in non-
genomic ROS generation by aldosterone [9]. In cultured VSMC, NADPH oxidase-
dependent ROS generation through non-genomic effects of aldosterone is increased 
in spontaneously hypertensive rats and is dependent on c-Src [10]. A role for c-Src 
and Rac-1 in NADPH oxidase activation in endothelial cells has also been described 
although this effect might be mediated via genomic actions because long incubation 
times were tested [18]. In VSMC, EGFR and PDGFR, but not IGFR, transactivation 
by MR and AT1 activates c-Src that in turn facilitates activation of NADPH oxidase 
and ROS production leading to VSMC migration [35].

Besides receptor tyrosine kinases, GPCR are important partners involved in 
the non-genomic actions of aldosterone. Thus, MR/AT1 receptor interaction has 
been implicated, because MR blockade can inhibit angiotensin II-induced ROS 
production in vascular tissue [22], and more recently, it has been shown that 
AT1a is required for MR-induced endothelial dysfunction and vascular remodel-
ing, oxidative stress, and inflammation [27], although a genomic effect cannot 
be excluded in these studies. In cardiac myocytes, an interaction between MR 
and AT1 participates in aldosterone-induced ROS generation by Nox4 via G 
protein-coupled receptor kinase (GRK) 2 likely via non-genomic actions [36], 
but whether this GRK2-dependent mechanism also occurs in vascular cells is 
unknown. Similarly, there is a paucity of information regarding the novel putative 
aldosterone receptor GPER1 (also known as GPR30) in aldosterone-induced ROS 
production in vascular cells, and the evidence supporting this possibility comes 
from cardiac cells [37, 38].

Non-genomic MR signaling can modulate MR genomic effects [6], thus further 
perpetuating ROS generation in vascular cells.

2.2  Aldosterone/MR/oxidative stress pathway and endothelial and smooth 
muscle cells

Extensive experimental evidence has demonstrated a beneficial effect of aldo-
sterone/MR blockade in vascular damage (i.e., endothelial dysfunction, vascular 
remodeling, and stiffness) and oxidative stress [1–3, 21, 22, 39–42]. As such, it has 
been suggested that many of the beneficial effects of MR antagonist rely, at least in 
part, on its ability to decrease oxidative stress. This is supported by direct evidence 
emerging from studies using models of aldosterone or mineralocorticoid infusion 
together with antioxidant treatments and by the use of transgenic mouse models of 
MR overexpression or deletion.

MR expressed in cerebral artery endothelial cells mediates increased capac-
ity for O2

− production in response to chronically increased systemic levels of 
aldosterone [26]. Moreover, mRNA expression of p22phox, but not gp91phox, 
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was upregulated by aldosterone, and this effect was abolished in endothelial 
cell-specific MR knockout mice (EC-MR-KO) [21], concomitant with improved 
endothelial function. However, in the absence of stimuli, conditional overexpres-
sion of the MR in endothelial cells is not sufficient to increase local vascular or 
systemic oxidative stress [43], suggesting that upregulation of the MR alone is not 
enough to produce increased oxidative stress generation. This is consistent with the 
idea that EC-MR might be vasoprotective in healthy states and that this protection 
is lost when cardiovascular risk factors such as hypertension, obesity, or increased 
aldosterone levels are present, as suggested recently [2, 44] (Figure 2). In support 
of this hypothesis, EC-MR deficiency prevented western diet-induced Nox2, Nox4, 
p22phox, and 3-nitrotyrosine expression, and this was concomitant with reduced 
aortic fibrosis and stiffness and restoration of endothelial nitric oxide synthase 
activation [28]. Similarly, EC-MR deletion prevented resistance vessel endothelial 
dysfunction associated with hyperlipidemia in females, but not in males, and this 
was associated with decreased O2

− generation [45].
Although adult SMC-MR-KO mice show no difference in basal vascular ROS, 

aged SMC-MR-KO mice vessels produce significantly less vascular ROS [7, 46]. 
Moreover, both young and aged SMC-MR-KO mice show attenuated angiotensin 
II-stimulated ROS production [46] which might have contributed to the lower 
blood pressure observed in these mice via improved vascular contraction. More 
recently, an inverse relationship between SMC-MR and miR-155 has been described 
in aging [7], whereby this miRNA would repress the SMC-MR-associated oxidative 
stress also having an impact in vascular function [7]. However, the specific ROS 
source that is modulated by miR-155 is unknown. VSMC-MR was also shown to 
be involved in the progression of heart failure post myocardial infarction, through 
its direct role in oxidative stress-induced coronary endothelial dysfunction and 
in decreased coronary reserve [47]. In this study the antioxidants apocynin and 
superoxide dismutase (SOD) improved endothelium-dependent relaxation of 

Figure 2. 
MR expressed in endothelial cells mediates increased capacity for O2

− production in response to chronically 
increased systemic levels of aldosterone such as those occurring in hypertension, obesity, or diabetes. In aging or 
heart failure after myocardial infarction (HF), SMC-MR facilitates increased ROS production. In addition, 
an inverse relationship between SMC-MR and miR-155 has been described in aging, whereby this miRNA 
would repress the SMC-MR-associated oxidative stress. Whether this is via NADPH oxidase is unknown. In 
these pathologies, both EC and SMC-MR activation facilitate ROS formation that participates in endothelial 
dysfunction, vasoconstriction, vascular remodeling, and fibrosis, the latter being mediated by the increased 
expression of different extracellular matrix proteins and profibrotic factors (CTFG, connective tissue growth 
factor; PAI-1, plasminogen activator inhibitor 1; Fn, fibronectin).
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expression of p22phox, p47phox, and p40phox in a model of high-fat diet [21]. 
Moreover, deletion of MR in specific vascular cell types also downregulates NADPH 
oxidase isoforms (discussed below).

For the rapid MR-dependent aldosterone effects, the MR seems to be localized 
near the plasma membrane, but not directly inserted into it. It is located at the cyto-
solic site associated with scaffolding proteins that are associated with or inserted in 
the cell membrane such as striatin or caveolin-1 [6]. In this location, aldosterone can 
also interact with receptors such as receptor tyrosine kinases including epidermal 
growth factor receptor (EGFR), platelet-derived growth factor receptor (PDGFR), 
and insulin-like growth factor 1 receptor (IGF1R) or G protein-coupled receptors 
(GPCR) such as angiotensin type 1 receptor (AT1) or G protein-coupled estrogen 
receptor 1 (GPER1) [6].

The Src family of non-receptor tyrosine kinases seems to be involved in non-
genomic ROS generation by aldosterone [9]. In cultured VSMC, NADPH oxidase-
dependent ROS generation through non-genomic effects of aldosterone is increased 
in spontaneously hypertensive rats and is dependent on c-Src [10]. A role for c-Src 
and Rac-1 in NADPH oxidase activation in endothelial cells has also been described 
although this effect might be mediated via genomic actions because long incubation 
times were tested [18]. In VSMC, EGFR and PDGFR, but not IGFR, transactivation 
by MR and AT1 activates c-Src that in turn facilitates activation of NADPH oxidase 
and ROS production leading to VSMC migration [35].

Besides receptor tyrosine kinases, GPCR are important partners involved in 
the non-genomic actions of aldosterone. Thus, MR/AT1 receptor interaction has 
been implicated, because MR blockade can inhibit angiotensin II-induced ROS 
production in vascular tissue [22], and more recently, it has been shown that 
AT1a is required for MR-induced endothelial dysfunction and vascular remodel-
ing, oxidative stress, and inflammation [27], although a genomic effect cannot 
be excluded in these studies. In cardiac myocytes, an interaction between MR 
and AT1 participates in aldosterone-induced ROS generation by Nox4 via G 
protein-coupled receptor kinase (GRK) 2 likely via non-genomic actions [36], 
but whether this GRK2-dependent mechanism also occurs in vascular cells is 
unknown. Similarly, there is a paucity of information regarding the novel putative 
aldosterone receptor GPER1 (also known as GPR30) in aldosterone-induced ROS 
production in vascular cells, and the evidence supporting this possibility comes 
from cardiac cells [37, 38].

Non-genomic MR signaling can modulate MR genomic effects [6], thus further 
perpetuating ROS generation in vascular cells.

2.2  Aldosterone/MR/oxidative stress pathway and endothelial and smooth 
muscle cells

Extensive experimental evidence has demonstrated a beneficial effect of aldo-
sterone/MR blockade in vascular damage (i.e., endothelial dysfunction, vascular 
remodeling, and stiffness) and oxidative stress [1–3, 21, 22, 39–42]. As such, it has 
been suggested that many of the beneficial effects of MR antagonist rely, at least in 
part, on its ability to decrease oxidative stress. This is supported by direct evidence 
emerging from studies using models of aldosterone or mineralocorticoid infusion 
together with antioxidant treatments and by the use of transgenic mouse models of 
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was upregulated by aldosterone, and this effect was abolished in endothelial 
cell-specific MR knockout mice (EC-MR-KO) [21], concomitant with improved 
endothelial function. However, in the absence of stimuli, conditional overexpres-
sion of the MR in endothelial cells is not sufficient to increase local vascular or 
systemic oxidative stress [43], suggesting that upregulation of the MR alone is not 
enough to produce increased oxidative stress generation. This is consistent with the 
idea that EC-MR might be vasoprotective in healthy states and that this protection 
is lost when cardiovascular risk factors such as hypertension, obesity, or increased 
aldosterone levels are present, as suggested recently [2, 44] (Figure 2). In support 
of this hypothesis, EC-MR deficiency prevented western diet-induced Nox2, Nox4, 
p22phox, and 3-nitrotyrosine expression, and this was concomitant with reduced 
aortic fibrosis and stiffness and restoration of endothelial nitric oxide synthase 
activation [28]. Similarly, EC-MR deletion prevented resistance vessel endothelial 
dysfunction associated with hyperlipidemia in females, but not in males, and this 
was associated with decreased O2

− generation [45].
Although adult SMC-MR-KO mice show no difference in basal vascular ROS, 

aged SMC-MR-KO mice vessels produce significantly less vascular ROS [7, 46]. 
Moreover, both young and aged SMC-MR-KO mice show attenuated angiotensin 
II-stimulated ROS production [46] which might have contributed to the lower 
blood pressure observed in these mice via improved vascular contraction. More 
recently, an inverse relationship between SMC-MR and miR-155 has been described 
in aging [7], whereby this miRNA would repress the SMC-MR-associated oxidative 
stress also having an impact in vascular function [7]. However, the specific ROS 
source that is modulated by miR-155 is unknown. VSMC-MR was also shown to 
be involved in the progression of heart failure post myocardial infarction, through 
its direct role in oxidative stress-induced coronary endothelial dysfunction and 
in decreased coronary reserve [47]. In this study the antioxidants apocynin and 
superoxide dismutase (SOD) improved endothelium-dependent relaxation of 

Figure 2. 
MR expressed in endothelial cells mediates increased capacity for O2

− production in response to chronically 
increased systemic levels of aldosterone such as those occurring in hypertension, obesity, or diabetes. In aging or 
heart failure after myocardial infarction (HF), SMC-MR facilitates increased ROS production. In addition, 
an inverse relationship between SMC-MR and miR-155 has been described in aging, whereby this miRNA 
would repress the SMC-MR-associated oxidative stress. Whether this is via NADPH oxidase is unknown. In 
these pathologies, both EC and SMC-MR activation facilitate ROS formation that participates in endothelial 
dysfunction, vasoconstriction, vascular remodeling, and fibrosis, the latter being mediated by the increased 
expression of different extracellular matrix proteins and profibrotic factors (CTFG, connective tissue growth 
factor; PAI-1, plasminogen activator inhibitor 1; Fn, fibronectin).
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coronary arteries from myocardial infarction mice without affecting relaxation of 
arteries from myocardial infarction-MR-SMC-knockout or treated with finerenone, 
indicating a lower effect of oxidative stress when MR is absent in VSMCs or after 
general MR blockade [47]. Together, these findings point to both endothelial cells 
and VSMC as potential sources of ROS in response to aldosterone or pathological 
conditions that impact vascular function (Figure 2).

Regarding the role of oxidative stress in vascular remodeling and stiffness, it has 
been demonstrated that a combination of aldosterone and high salt caused O2

− pro-
duction and VSMC hypertrophy through the upregulation of Nox1 [11] and antioxi-
dants attenuated aldosterone-induced VSMC senescence and Ki-ras2A expression 
[48]. In addition, it has been suggested that aldosterone augments vascular 
hypertrophic effects of insulin via an MR- and oxidative stress-mediated pathways 
[49]. Aldosterone-induced hypertrophy and perivascular fibrosis were significantly 
ameliorated by long-term treatment with spironolactone or antioxidants [50, 51]. 
However, the profibrotic, but not the hypertrophic, action of aldosterone in resis-
tance arteries was blocked by the antioxidant tempol treatment [23]. Mechanisms 
responsible for these effects likely rely on the ability of aldosterone-derived ROS 
to modulate a number of genes involved in vascular injury including placental 
growth factor, metallothioneins 1 and 2, or connective tissue growth factor [52]. In 
addition, aldosterone increased expression of profibrotic factors fibronectin and 
plasminogen activator inhibitor (PAI)-1 in wild type but not in Nox-1 knockout 
mice [53, 62] (Figure 2). Moreover, tempol treatment inhibited other proinflamma-
tory and profibrotic markers such as osteopontin, intracellular adhesion molecule 1, 
vascular cell adhesion molecule 1, or PAI-1 mRNA expressions that were induced by 
aldosterone infusion in rats [54].

Among the mechanisms responsible for endothelial dysfunction, it is generally 
assumed that the interaction between NO and O2

−, usually from NADPH oxidase, 
leads to ONOO− formation or eNOS uncoupling, thus decreasing NO availability, 
among other mechanisms (for detailed reviews, see [31–33, 55, 56]) (Figure 3). In 
this scenario, aldosterone-induced inhibition of NO production in endothelial cells 
was partially restored by p47phox knockdown using siRNA [16]. Other potential 
mechanisms responsible for aldosterone/MR/ROS-induced endothelial dysfunc-
tion include (i) oxidative posttranslational modification(s) of guanylyl cyclase 
activity that impair sensing of this enzyme by NO [12], (ii) downregulation of the 
antioxidant enzyme glucose-6-phosphate dehydrogenase [57], or (iii) oxidative 
modification of the redox sensitive, functional cysteinyl thiol(s) in the endothelin 
receptor (ETBR) (Cys405) by Nox-4-dependent H2O2, to impair ETB-dependent 
activation of eNOS and decrease synthesis of NO [20]. In this sense, during renal 
ischemia, activation of MR signals Rac1 to increase ROS production in the SMCs 
that diffuse to ECs to induce posttranslational sulfenic acid modification in ETBR 
that impairs eNOS activation and diminishes NO production leading to sustained 
vasoconstriction and reduced kidney perfusion [58]. In addition, cardiomyocyte-
specific overexpression of human MR induces severe coronary endothelial 
dysfunction with decreased NO-mediated relaxing responses to acetylcholine in 
coronary arteries (but not in peripheral arteries), effects prevented by 1-month 
treatment with an MR antagonist, vitamin E/vitamin C, or a NADPH oxidase 
inhibitor [59]. Finally, a role for the epithelial sodium channel in aldosterone-
induced oxidative stress and in endothelium stiffness and endothelial dysfunction 
and fibrosis has also been described [29] (Figure 3). Interestingly, Rac1 is not 
only one of the NADPH oxidase components but also serves as the upregulator of 
MR signaling in the kidney [60]. This Rac1-MR pathway is activated by ROS in 
cardiomyocytes [61] and also plays a crucial role in ROS production and cardiac 
dysfunction [62].
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3. MR and oxidative stress in immune cells

Growing evidence suggests that aldosterone induces vascular monocyte/
macrophage and T-cell infiltration in different pathological states [24, 63, 64]. MR 
is expressed in both macrophages and T cells, where it functions as an important 
transcriptional regulator of cellular phenotype and function and can be activated 
even with normal or low aldosterone levels in pathological conditions [5, 65].

The relationship between immune cells, MR, and oxidative stress was dem-
onstrated in uninephrectomized rats treated for 4 weeks with dietary 1% NaCl 
and aldosterone, where there was an increased H2O2 production by monocytes and 
lymphocytes, upregulation of oxidative stress-inducible tyrosine phosphatase and 
Mn-SOD genes in peripheral blood mononuclear cells, and the presence of 3-nitro-
tyrosine in CD4+ inflammatory cells invading intramural coronary arteries [66]. 
Guzik et al. [67] showed that DOCA/salt-induced hypertension and O2

− production 
in the aorta were blunted in rag−/− mice deficient in T and B lymphocytes. Notably, 
enhanced suppressor regulatory T lymphocytes, which are suppressors of the 
innate and adaptive immune responses, prevented aldosterone-induced endothelial 
dysfunction, vascular remodeling, and oxidative stress [25]. More recently, the key 
role of immune cell MR in oxidative stress generation was demonstrated by Sun 
and coworkers [68] that showed that blood vessels from T-cell MR knockout mice 
had suppressed O2

− production, and this was paralleled by attenuated target organ 
damage including better endothelial function and less vascular hypertrophy and 
fibrosis after angiotensin II infusion. This may be due to a lower proportion of IFN-
γ-producing T cells in the arteries [68]. In fact, T-cell MR facilitates activation of T 

Figure 3. 
Mechanisms responsible for aldosterone/MR-induced endothelial dysfunction. The interaction between NO 
and O2

−, usually from NADPH oxidase, leads to ONOO− formation or eNOS uncoupling, thus decreasing 
NO availability. Other potential mechanisms include oxidative posttranslational modification(s) of guanylyl 
cyclase (GC) activity that impair sensing of this enzyme by NO, downregulation of the antioxidant enzyme 
glucose-6-phosphate dehydrogenase (G6PD), or oxidative modification of the endothelin receptor (ETBR) to 
impair ETB-dependent activation of eNOS and decrease synthesis of NO. In renal ischemia, ROS production 
in the SMCs diffuses to ECs to induce modifications in ETBR that diminishes NO production leading to 
sustained vasoconstriction and reduced kidney perfusion. Also, cardiomyocyte-specific overexpression of human 
MR induces severe coronary endothelial dysfunction with decreased NO-mediated relaxing responses via 
NADPH oxidase-dependent ROS. Epithelial sodium channel (ENac) also participates in aldosterone-induced 
oxidative stress and endothelial dysfunction.
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coronary arteries from myocardial infarction mice without affecting relaxation of 
arteries from myocardial infarction-MR-SMC-knockout or treated with finerenone, 
indicating a lower effect of oxidative stress when MR is absent in VSMCs or after 
general MR blockade [47]. Together, these findings point to both endothelial cells 
and VSMC as potential sources of ROS in response to aldosterone or pathological 
conditions that impact vascular function (Figure 2).
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− pro-
duction and VSMC hypertrophy through the upregulation of Nox1 [11] and antioxi-
dants attenuated aldosterone-induced VSMC senescence and Ki-ras2A expression 
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−, usually from NADPH oxidase, 
leads to ONOO− formation or eNOS uncoupling, thus decreasing NO availability, 
among other mechanisms (for detailed reviews, see [31–33, 55, 56]) (Figure 3). In 
this scenario, aldosterone-induced inhibition of NO production in endothelial cells 
was partially restored by p47phox knockdown using siRNA [16]. Other potential 
mechanisms responsible for aldosterone/MR/ROS-induced endothelial dysfunc-
tion include (i) oxidative posttranslational modification(s) of guanylyl cyclase 
activity that impair sensing of this enzyme by NO [12], (ii) downregulation of the 
antioxidant enzyme glucose-6-phosphate dehydrogenase [57], or (iii) oxidative 
modification of the redox sensitive, functional cysteinyl thiol(s) in the endothelin 
receptor (ETBR) (Cys405) by Nox-4-dependent H2O2, to impair ETB-dependent 
activation of eNOS and decrease synthesis of NO [20]. In this sense, during renal 
ischemia, activation of MR signals Rac1 to increase ROS production in the SMCs 
that diffuse to ECs to induce posttranslational sulfenic acid modification in ETBR 
that impairs eNOS activation and diminishes NO production leading to sustained 
vasoconstriction and reduced kidney perfusion [58]. In addition, cardiomyocyte-
specific overexpression of human MR induces severe coronary endothelial 
dysfunction with decreased NO-mediated relaxing responses to acetylcholine in 
coronary arteries (but not in peripheral arteries), effects prevented by 1-month 
treatment with an MR antagonist, vitamin E/vitamin C, or a NADPH oxidase 
inhibitor [59]. Finally, a role for the epithelial sodium channel in aldosterone-
induced oxidative stress and in endothelium stiffness and endothelial dysfunction 
and fibrosis has also been described [29] (Figure 3). Interestingly, Rac1 is not 
only one of the NADPH oxidase components but also serves as the upregulator of 
MR signaling in the kidney [60]. This Rac1-MR pathway is activated by ROS in 
cardiomyocytes [61] and also plays a crucial role in ROS production and cardiac 
dysfunction [62].
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cells modulating the production of inflammatory cytokines such as IFNγ and IL-6 
[69] that can induce ROS production at vascular level.

Regarding macrophages, it has been shown that aldosterone stimulation of mac-
rophages induces a proinflammatory M1 phenotype [5]. Macrophages from mice 
lacking MR in myeloid cells exhibited a transcription profile of alternative activa-
tion from a M1 phenotype toward a M2 more anti-inflammatory phenotype [70]. 
This might modulate vascular function as NLRP3 inflammasome in macrophages 
explains aldosterone-induced hypercontractility, endothelial dysfunction, and 
hypertrophic remodeling [71], although in this study the specific contribution of 
macrophage-derived ROS was not evaluated. Interestingly, a shift in polarization to 
a M2 phenotype in the EC-MR-KO mice exposed to a western diet was also observed 
[28], suggesting a role for endothelial cells-MR in macrophage function. Regarding 
oxidative stress, aldosterone increases O2

− production and NADPH oxidase activa-
tion in macrophages both in vivo and in vitro [72] and also mitochondrial ROS 
generation [71] that might contribute to the activation of inflammasome in this 
cell type as suggested previously [73]. Notably, aldosterone-induced endothelial 
dysfunction and vascular oxidative stress were decreased in mcsfOp/+, which have 
a low monocyte/macrophage number in the vessel wall [24], suggesting that MR 
activation in macrophages modulates vascular oxidative stress. Interestingly, oxida-
tive stress assessed as Nox2 and p22phox gene expression is equivalently increased 
in the heart of wild-type and mac-MR-KO with L-NAME/salt treatment [74], 
and MR deficiency in macrophages did not influence their oxidative status in the 
context of atherosclerosis [75], suggesting a different contribution of MR-derived 
ROS in different tissues and pathologies. In vivo, MR deficiency in macrophages 
mimicked the effects of MR antagonists and protected against vascular damage 

Figure 4. 
Aldosterone induces vascular monocyte/macrophage and T-cell infiltration in different pathological states such 
as hypertension and obesity. MR is expressed in both macrophages and T cells. T-cell MR facilitates activation 
of T cells modulating the production of inflammatory cytokines such as IFNγ and IL-6 that can induce ROS 
production at vascular level. MR activation in macrophages induces a proinflammatory M1 phenotype leading 
to the production of IL-1β. Either directly or through the production of these proinflammatory cytokines, 
immune cell-derived ROS seems to facilitate vascular remodeling and endothelial dysfunction. MR expression 
is increased in the adipose tissue in obesity. MR in the different cell types included in the adipose tissue (i.e., 
adipocytes, preadipocytes, macrophages) might facilitate oxidative stress and vascular alterations associated 
with obesity.

55

Aldosterone/MR Signaling, Oxidative Stress, and Vascular Dysfunction
DOI: http://dx.doi.org/10.5772/intechopen.87225

caused by L-NAME/angiotensin II [70], and selective deletion of MR in myeloid 
cells limits macrophage accumulation that leads to less VSMC activation and vascu-
lar inflammation and inhibits neointimal hyperplasia and vascular remodeling [76]. 
In both studies, again the specific contribution of macrophage-derived ROS was not 
evaluated.

Together, these findings highlight a key contribution of MR-dependent ROS 
from immune cells in vascular damage. Whether this is due to locally produced ROS 
by infiltrated cells or through the release of proinflammatory cytokines affect-
ing the underlying VSMC or endothelial cells to induce oxidative stress, or both, 
remains unclear (Figure 4).

4. MR and oxidative stress in adipose tissue

Other extrarenal tissue that express MR is the adipose tissue where MR is 
involved in essential processes such as differentiation, autophagy, and adipokine 
secretion [4, 77]. MR expression is increased in adipose tissue of murine models of 
obesity and in obese human subjects, and different studies using MR antagonists 
and also adipocyte-specific MR transgenic mice have demonstrated a key role of 
MR in insulin signaling and inflammation, as reviewed previously [4, 77, 78].

It is well accepted that adipose tissue, particularly perivascular adipose tissue 
(PVAT), modulates vascular health and disease through the release of a number of 
adipokines that affect contractile and relaxant properties, vascular smooth muscle 
cell proliferation and hypertrophy, fibrosis, and inflammation [79]. Among the 
many substances released, ROS such as H2O2 seems to have a pivotal role both in 
physiological and pathological conditions; however, in some disease states such as 
obesity or hypertension, proinflammatory cytokines such as IL-1, IL-6, or TNF-α 
released from PVAT clearly affect vascular tone [79], probably in part through 
increased oxidative stress generation. Thus, in healthy rat mesenteric arteries, 
the anticontractile effect of PVAT was lost following incubation with aldosterone 
(10 minutes and 3 hours), and this was restored by a combination of SOD and 
catalase and by eplerenone, and this is likely dependent on macrophage infiltra-
tion in the PVAT [80]. Moreover, MR blockade reduced ROS production in 3 T3-L1 
adipocytes [81, 82].

Earlier studies showed that the NADPH oxidase subunits p22 and p47phox 
were significantly increased in adipose tissue from ob/ob and db/db obese mice 
compared with lean control mice and that eplerenone treatment suppressed 
this increase [81]. The increase in ROS levels observed in adipose tissue of these 
models of obesity could also be due to the decreased gene expression of the ROS-
eliminating enzymes, catalase, and Cu/Zn-SOD, which were reduced in both ob/
ob and db/db mice and which were also restored by administration of eplerenone 
[81]. Other studies also reported upregulation of antioxidant enzymes (SOD-1 
and catalase) at vascular level by MR blockade in obesity/diabetes [41]. Finally, in 
the adipose tissue of nephrectomized rats, oxidative stress increased, and this was 
reversed by spironolactone [83].

In vivo conditional upregulation of MR in mouse adipocytes led to increased 
production of H2O2 from epididymal adipose tissue likely due to the decrease in 
catalase mRNA levels and the increased Nox-4 mRNA levels without changes in 
Nox-1 and Nox-2 expressions which likely explain changes in vascular contractility 
[84]. Interestingly, adipocyte-specific MR knockout mice (AdipoMR-KO) fed with 
high-fat/high-sucrose diet showed similar levels of 8-isoprostane, p22phox, SOD-
1, or catalase mRNA levels, and they did not show differences in body weight, fat 
weight, glucose tolerance, insulin sensitivity, or inflammation [85]. Similar results 
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cells modulating the production of inflammatory cytokines such as IFNγ and IL-6 
[69] that can induce ROS production at vascular level.

Regarding macrophages, it has been shown that aldosterone stimulation of mac-
rophages induces a proinflammatory M1 phenotype [5]. Macrophages from mice 
lacking MR in myeloid cells exhibited a transcription profile of alternative activa-
tion from a M1 phenotype toward a M2 more anti-inflammatory phenotype [70]. 
This might modulate vascular function as NLRP3 inflammasome in macrophages 
explains aldosterone-induced hypercontractility, endothelial dysfunction, and 
hypertrophic remodeling [71], although in this study the specific contribution of 
macrophage-derived ROS was not evaluated. Interestingly, a shift in polarization to 
a M2 phenotype in the EC-MR-KO mice exposed to a western diet was also observed 
[28], suggesting a role for endothelial cells-MR in macrophage function. Regarding 
oxidative stress, aldosterone increases O2

− production and NADPH oxidase activa-
tion in macrophages both in vivo and in vitro [72] and also mitochondrial ROS 
generation [71] that might contribute to the activation of inflammasome in this 
cell type as suggested previously [73]. Notably, aldosterone-induced endothelial 
dysfunction and vascular oxidative stress were decreased in mcsfOp/+, which have 
a low monocyte/macrophage number in the vessel wall [24], suggesting that MR 
activation in macrophages modulates vascular oxidative stress. Interestingly, oxida-
tive stress assessed as Nox2 and p22phox gene expression is equivalently increased 
in the heart of wild-type and mac-MR-KO with L-NAME/salt treatment [74], 
and MR deficiency in macrophages did not influence their oxidative status in the 
context of atherosclerosis [75], suggesting a different contribution of MR-derived 
ROS in different tissues and pathologies. In vivo, MR deficiency in macrophages 
mimicked the effects of MR antagonists and protected against vascular damage 
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Aldosterone induces vascular monocyte/macrophage and T-cell infiltration in different pathological states such 
as hypertension and obesity. MR is expressed in both macrophages and T cells. T-cell MR facilitates activation 
of T cells modulating the production of inflammatory cytokines such as IFNγ and IL-6 that can induce ROS 
production at vascular level. MR activation in macrophages induces a proinflammatory M1 phenotype leading 
to the production of IL-1β. Either directly or through the production of these proinflammatory cytokines, 
immune cell-derived ROS seems to facilitate vascular remodeling and endothelial dysfunction. MR expression 
is increased in the adipose tissue in obesity. MR in the different cell types included in the adipose tissue (i.e., 
adipocytes, preadipocytes, macrophages) might facilitate oxidative stress and vascular alterations associated 
with obesity.
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caused by L-NAME/angiotensin II [70], and selective deletion of MR in myeloid 
cells limits macrophage accumulation that leads to less VSMC activation and vascu-
lar inflammation and inhibits neointimal hyperplasia and vascular remodeling [76]. 
In both studies, again the specific contribution of macrophage-derived ROS was not 
evaluated.

Together, these findings highlight a key contribution of MR-dependent ROS 
from immune cells in vascular damage. Whether this is due to locally produced ROS 
by infiltrated cells or through the release of proinflammatory cytokines affect-
ing the underlying VSMC or endothelial cells to induce oxidative stress, or both, 
remains unclear (Figure 4).

4. MR and oxidative stress in adipose tissue

Other extrarenal tissue that express MR is the adipose tissue where MR is 
involved in essential processes such as differentiation, autophagy, and adipokine 
secretion [4, 77]. MR expression is increased in adipose tissue of murine models of 
obesity and in obese human subjects, and different studies using MR antagonists 
and also adipocyte-specific MR transgenic mice have demonstrated a key role of 
MR in insulin signaling and inflammation, as reviewed previously [4, 77, 78].

It is well accepted that adipose tissue, particularly perivascular adipose tissue 
(PVAT), modulates vascular health and disease through the release of a number of 
adipokines that affect contractile and relaxant properties, vascular smooth muscle 
cell proliferation and hypertrophy, fibrosis, and inflammation [79]. Among the 
many substances released, ROS such as H2O2 seems to have a pivotal role both in 
physiological and pathological conditions; however, in some disease states such as 
obesity or hypertension, proinflammatory cytokines such as IL-1, IL-6, or TNF-α 
released from PVAT clearly affect vascular tone [79], probably in part through 
increased oxidative stress generation. Thus, in healthy rat mesenteric arteries, 
the anticontractile effect of PVAT was lost following incubation with aldosterone 
(10 minutes and 3 hours), and this was restored by a combination of SOD and 
catalase and by eplerenone, and this is likely dependent on macrophage infiltra-
tion in the PVAT [80]. Moreover, MR blockade reduced ROS production in 3 T3-L1 
adipocytes [81, 82].

Earlier studies showed that the NADPH oxidase subunits p22 and p47phox 
were significantly increased in adipose tissue from ob/ob and db/db obese mice 
compared with lean control mice and that eplerenone treatment suppressed 
this increase [81]. The increase in ROS levels observed in adipose tissue of these 
models of obesity could also be due to the decreased gene expression of the ROS-
eliminating enzymes, catalase, and Cu/Zn-SOD, which were reduced in both ob/
ob and db/db mice and which were also restored by administration of eplerenone 
[81]. Other studies also reported upregulation of antioxidant enzymes (SOD-1 
and catalase) at vascular level by MR blockade in obesity/diabetes [41]. Finally, in 
the adipose tissue of nephrectomized rats, oxidative stress increased, and this was 
reversed by spironolactone [83].

In vivo conditional upregulation of MR in mouse adipocytes led to increased 
production of H2O2 from epididymal adipose tissue likely due to the decrease in 
catalase mRNA levels and the increased Nox-4 mRNA levels without changes in 
Nox-1 and Nox-2 expressions which likely explain changes in vascular contractility 
[84]. Interestingly, adipocyte-specific MR knockout mice (AdipoMR-KO) fed with 
high-fat/high-sucrose diet showed similar levels of 8-isoprostane, p22phox, SOD-
1, or catalase mRNA levels, and they did not show differences in body weight, fat 
weight, glucose tolerance, insulin sensitivity, or inflammation [85]. Similar results 
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were reported by Feraco and coworkers [86] using inducible adipocyte-specific 
deletion of MR fed a 45% high-fat diet although in this study oxidative stress was 
not evaluated. Further studies are warranted to identify the specific contribution 
of MR in the different cell types included in the adipose tissue (i.e., adipocytes, 
preadipocytes, macrophages) as responsible for the MR-dependent inflammation, 
oxidative stress, and metabolic alterations associated with obesity (Figure 4).

5. Clinical relevance

While there is extensive preclinical data indicating that aldosterone-MR signals 
through redox-dependent pathways, there is a paucity of information in humans. 
However, a few clinical studies have suggested that hyperaldosteronism is associated 
with increased concentration of circulating markers of oxidative stress. In patients 
with stable heart failure and in patients with hypertension, higher aldosterone 
levels were associated with systemic evidence of oxidative stress, inflammation, and 
matrix turnover [87]. In heart failure patients, aldosterone-associated cardiovascu-
lar damage and renal fibrosis were linked to decreased production of NO, increased 
oxidative stress, and activation of proinflammatory transcription factors, includ-
ing NF-κB [9]. At the cellular level, there is also some suggestion that aldosterone 
stimulates ROS production in humans. In human endothelial cells, spironolactone 
inhibited Nox-induced oxidative stress and increased eNOS activity [88], indicating 
a role for MR-mediated regulation of ROS in human vessels. In patients with hyper-
aldosteronism and adrenal adenomas, a number of studies have reported increased 
expression of redox-related genes and proteins including Nrf2, p22phox, HO-1, 
and proinflammatory transcription factors [89–91]. In human cardiomyocytes, 
aldosterone impairs mitochondrial function, important in redox regulation [91]. 
Despite suggestions that hyperaldosteronism promotes oxidative stress in human 
cardiovascular disease, studies using MR antagonists have not shown significant 
improvement in oxidative stress markers. Thus, Hwang and coworkers [92] demon-
strated that eplerenone-related improvement in flow-mediated dilation (a marker 
of endothelial function) was not associated with oxidative stress markers, plasma 
F2-isoprostanes, and vascular endothelial cell protein expression of nitrotyrosine 
and p47phox. In a small group of older adults with metabolic syndrome, flow-
mediated dilation, levels of oxidized low-density lipoproteins, or F2-isoprostanes 
did not improve in response to MR blockade, despite a large reduction (10 mmHg) 
in systolic blood pressure [93]. In addition, there was no effect of 1-month treat-
ment with eplerenone on oxidative stress (oxidized LDL) and arterial stiffness in 
healthy older adults [94]. However, Chen et al. [95] recently demonstrated that 
increased NADPH oxidase-dependent oxidative stress, oxidative BH4 degradation, 
eNOS uncoupling, and reduced NO generation were responsible for the impaired 
in vivo endothelial repair capacity of early endothelial progenitor cells from hyper-
tensive patients with primary hyperaldosteronism [95]. Further clinical studies are 
needed to confirm the role of ROS in aldosterone-mediated cardiovascular injury. 
Moreover, trials that assess effects of MR antagonists on ROS levels rather than 
markers of oxidative stress (oxidized LDL, F2-isoprostanes) are warranted.

6. Conclusions

Experimental evidence clearly shows that MR/aldosterone blockade decreases 
vascular oxidative stress and improves vascular function, structure, and mechani-
cal properties in different experimental models. Among the cell types involved 
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in aldosterone/MR/oxidative-associated vascular damage are endothelial cells 
and vascular smooth muscle cells. However, growing evidence suggests that these 
vascular effects can also be modulated by MR expressed in infiltrating immune cells, 
i.e., lymphocytes and macrophages, and in the surrounding perivascular adipose 
tissue that might release ROS directly impacting the endothelium and vascular 
wall. Alternatively, these cells can generate MR-dependent inflammatory cytokines 
(or adipokines) that act in a paracrine manner in the underlying vessels to induce 
oxidative stress and hence vascular damage. Thus, MR-associated oxidative stress in 
different cell types emerges as an important pathway contributing to vascular dys-
function and injury associated with conditions of high aldosterone/MR activation. 
Accordingly, it is suggested that some of the vasoprotective effects of MR antago-
nists used clinically may be mediated by inhibiting ROS-induced vascular damage.
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were reported by Feraco and coworkers [86] using inducible adipocyte-specific 
deletion of MR fed a 45% high-fat diet although in this study oxidative stress was 
not evaluated. Further studies are warranted to identify the specific contribution 
of MR in the different cell types included in the adipose tissue (i.e., adipocytes, 
preadipocytes, macrophages) as responsible for the MR-dependent inflammation, 
oxidative stress, and metabolic alterations associated with obesity (Figure 4).
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While there is extensive preclinical data indicating that aldosterone-MR signals 
through redox-dependent pathways, there is a paucity of information in humans. 
However, a few clinical studies have suggested that hyperaldosteronism is associated 
with increased concentration of circulating markers of oxidative stress. In patients 
with stable heart failure and in patients with hypertension, higher aldosterone 
levels were associated with systemic evidence of oxidative stress, inflammation, and 
matrix turnover [87]. In heart failure patients, aldosterone-associated cardiovascu-
lar damage and renal fibrosis were linked to decreased production of NO, increased 
oxidative stress, and activation of proinflammatory transcription factors, includ-
ing NF-κB [9]. At the cellular level, there is also some suggestion that aldosterone 
stimulates ROS production in humans. In human endothelial cells, spironolactone 
inhibited Nox-induced oxidative stress and increased eNOS activity [88], indicating 
a role for MR-mediated regulation of ROS in human vessels. In patients with hyper-
aldosteronism and adrenal adenomas, a number of studies have reported increased 
expression of redox-related genes and proteins including Nrf2, p22phox, HO-1, 
and proinflammatory transcription factors [89–91]. In human cardiomyocytes, 
aldosterone impairs mitochondrial function, important in redox regulation [91]. 
Despite suggestions that hyperaldosteronism promotes oxidative stress in human 
cardiovascular disease, studies using MR antagonists have not shown significant 
improvement in oxidative stress markers. Thus, Hwang and coworkers [92] demon-
strated that eplerenone-related improvement in flow-mediated dilation (a marker 
of endothelial function) was not associated with oxidative stress markers, plasma 
F2-isoprostanes, and vascular endothelial cell protein expression of nitrotyrosine 
and p47phox. In a small group of older adults with metabolic syndrome, flow-
mediated dilation, levels of oxidized low-density lipoproteins, or F2-isoprostanes 
did not improve in response to MR blockade, despite a large reduction (10 mmHg) 
in systolic blood pressure [93]. In addition, there was no effect of 1-month treat-
ment with eplerenone on oxidative stress (oxidized LDL) and arterial stiffness in 
healthy older adults [94]. However, Chen et al. [95] recently demonstrated that 
increased NADPH oxidase-dependent oxidative stress, oxidative BH4 degradation, 
eNOS uncoupling, and reduced NO generation were responsible for the impaired 
in vivo endothelial repair capacity of early endothelial progenitor cells from hyper-
tensive patients with primary hyperaldosteronism [95]. Further clinical studies are 
needed to confirm the role of ROS in aldosterone-mediated cardiovascular injury. 
Moreover, trials that assess effects of MR antagonists on ROS levels rather than 
markers of oxidative stress (oxidized LDL, F2-isoprostanes) are warranted.

6. Conclusions

Experimental evidence clearly shows that MR/aldosterone blockade decreases 
vascular oxidative stress and improves vascular function, structure, and mechani-
cal properties in different experimental models. Among the cell types involved 
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in aldosterone/MR/oxidative-associated vascular damage are endothelial cells 
and vascular smooth muscle cells. However, growing evidence suggests that these 
vascular effects can also be modulated by MR expressed in infiltrating immune cells, 
i.e., lymphocytes and macrophages, and in the surrounding perivascular adipose 
tissue that might release ROS directly impacting the endothelium and vascular 
wall. Alternatively, these cells can generate MR-dependent inflammatory cytokines 
(or adipokines) that act in a paracrine manner in the underlying vessels to induce 
oxidative stress and hence vascular damage. Thus, MR-associated oxidative stress in 
different cell types emerges as an important pathway contributing to vascular dys-
function and injury associated with conditions of high aldosterone/MR activation. 
Accordingly, it is suggested that some of the vasoprotective effects of MR antago-
nists used clinically may be mediated by inhibiting ROS-induced vascular damage.
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Chapter 5

Renin-Angiotensin-Aldosterone 
System in Heart Failure: Focus 
on Nonclassical Angiotensin 
Pathways as Novel Upstream 
Targets Regulating Aldosterone
Urszula Tyrankiewicz, Agnieszka Kij, Tasnim Mohaissen, 
Mariola Olkowicz, Ryszard T. Smolenski and Stefan Chlopicki

Abstract

Aldosterone plays an important role in the regulation of blood pressure, body 
fluid, and electrolyte homeostasis. Overactivation of aldosterone/ mineralocorticoid 
receptor (MR) pathway leads to hypertension, atherosclerosis, vascular  damage, 
heart failure, and chronic kidney disease and is involved in many other diseases 
 associated with endothelial dysfunction, inflammation, fibrosis, and metabolic 
 disorders. Aldosterone is a final product of the renin-angiotensin-aldosterone 
system (RAAS), and its production is activated by angiotensin II, while 
 angiotensin-(1–7) negatively regulates angiotensin II-mediated aldosterone 
 production and in some experimental models inhibits aldosterone-induced damage 
in target tissues. In fact, the aldosterone/mineralocorticoid receptor-dependent 
pathway is regulated upstream by at least two major axes of RAAS: classical axis 
(ACE/Ang II) and nonclassical axis (ACE2/Ang-(1–7)). The relative balance 
between these two axes determines aldosterone production and activity. To better 
understand the  regulation of aldosterone activity in physiology and diseases, it is 
important to analyze the role of aldosterone/mineralocorticoid receptor-dependent 
pathways in the context of upstream angiotensin pathways as some of the recently 
described mechanisms of RAAS represent possible novel upstream targets to inhibit 
aldosterone/mineralocorticoid receptor-dependent responses. In this review, we 
highlight the complexity of angiotensin pathways focusing on their role in various 
tissues in heart failure, with particular emphasis on nonclassical pathways including 
protective ACE2/Ang-(1–7) axis and detrimental Ang-(1–12)/chymase/Ang II axis.

Keywords: angiotensin pathways, angiotensin-converting enzyme (ACE), 
angiotensin-converting enzyme 2 (ACE2), chymase, aldosterone, heart failure

1. Introduction

The renin-angiotensin-aldosterone system (RAAS) includes angiotensin (poly)
peptides such as angiotensinogen, angiotensin I, angiotensin II, angiotensin III, 
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angiotensin IV, angiotensin-(1–9), angiotensin-(1–7), alamandine and angiotensin A 
[1], and a number of enzymes regulating the production of particular angiotensins 
(renin, angiotensin-converting enzyme (ACE) and angiotensin-converting enzyme 
2 (ACE2), chymase, neutral endopeptidase (NEP), prolyl endopeptidase (PEP), 
and others) [2–5], as well as specific receptors such as AT1R, AT2R, AT4R, MasR, or 
MrgDR, activated in response to a given angiotensin sub-type [5]. All these elements 
contribute to the incredible complexity of the RAAS that is not perceived any more 
like a simple linear system with two major enzymes (renin and ACE) generating 
Ang II but rather as a network of tightly regulated peptides and enzymes endowed 
not only with endocrine (tissue to tissue) but also paracrine (cell-to-cell) and an 
intracrine (intercellular/nuclear) activities. There is also abundant evidence for the 
importance of tissue-based angiotensin pathways that seems to be heterogeneously 
organized in various organs which act independently of the RAAS in plasma. The 
major role of the protective ACE2/Ang-(1–7) axis counteracting classic ACE/Ang II  
axis has also been well documented. A simplified scheme of the angiotensin  pathways 
with major angiotensins, enzymes, and receptors is shown in Figure 1.

The final RAAS product, aldosterone, plays an important role in the regulation 
of blood pressure, body fluid, and electrolyte homeostasis, but overactivation 
of aldosterone/mineralocorticoid receptor (MR) pathway leads to  hypertension, 
atherosclerosis, vascular damage, heart failure, and chronic kidney disease and 
is involved in many other diseases associated with endothelial  dysfunction, 
 inflammation, fibrosis, metabolic disorders, and organ damage [6–9]. The 
 overstimulation of AT1R (by Ang II and its metabolites) and increased aldosterone 
production result among others in increased ROS production and NADPH oxidase 
activation [9, 10] that contribute to cardiac and vascular pathology [11].

The importance of RAAS in cardiovascular, hypertensive, and kidney 
 diseases has been firmly established by therapeutic effects of renin inhibitors, 

Figure 1. 
Simplified scheme of major angiotensin pathways with respective enzymes and receptors. Abbreviations: 
Ang, angiotensin; ACE, angiotensin-converting enzyme; ACE2, angiotensin-converting enzyme 2; NEP, 
neutral endopeptidase; AT1R, angiotensin receptor type 1; AT2R, angiotensin receptor type 2; AT4R, 
angiotensin receptor type 4; MasR, Mas receptor; MrgD, MAS-related G protein-coupled receptor member 
D. Colors: Red, classical axis (renin/ACE/Ang II); green, nonclassical protective axis (ACE2/Ang-(1–7); 
orange, non-renin non-ACE, chymase-dependent axis Ang-(1–12)/chymase/Ang II axis; gray, other 
elements.
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angiotensin-converting enzyme inhibitors (ACE-I), angiotensin receptor blockers 
(ARBs), and finally mineralocorticoid receptor antagonists (MRA). Importantly, 
these drugs influence not only the downstream but also the upstream activity of the 
RAAS. This phenomenon is rather overlooked but needs to be taken into account 
in designing the optimal RAAS-targeted therapy for the treatment of a variety of 
diseases. In particular, evidence accumulated showing reciprocal regulation of 
major angiotensins and aldosterone/mineralocorticoid pathway (Figure 2).

Indeed, MRA modify upstream pathways. MRA decrease ACE activity and increase 
ACE2 activity, suggesting a protective role for MRA is not only mediated by the direct 
inhibition of MR-dependent pathways but also by increasing the expression of ACE2 
and generating angiotensin-(1–7) and decreasing the formation of angiotensin II as 
documented in heart failure (HF) patients and in the rat model of renal  dysfunction 
[12–14]. Noteworthy, plasma levels of Ang-(1–7) increase after treatment with 
ACE-I or ARB [15–20]. On the other hand, aldosterone upregulates the expression 
and  activity of upstream ACE [21]. Furthermore, aldosterone-induced accelerated 
production of an angiotensin II is negatively regulated by angiotensin-(1–7) via the 
Mas receptor and JAK/STAT signaling in human adrenal cells [22]. Angiotensin-(1–7) 
may also suppress aldosterone-induced damage in target tissues. For example, 
 angiotensin-(1–7) inhibits hypertensive kidney damage induced by  infusion of 
 aldosterone [23]. Interestingly, this effect is independent of blood pressure and  mediated 
by the suppression of the expression of TGF, FGF, TIMP, and ROS production  
suggesting that the inhibition of aldosterone activity by angiotensin-(1–7) occurs 
locally in the kidney [23]. Angiotensin-(1–7) may inhibit angiotensin II-mediated 
effects on aldosterone not only by counterbalancing effects mediated by the activation 
of Mas receptor [23] but also by acting as natural-biased ligand for the AT1 receptor, 
behaving as a natural competitive neutral antagonist for AT1 in G protein-dependent 
signaling while  simultaneously acting as an agonist for β-arrestin-related signaling [24].

In summary, aldosterone/mineralocorticoid receptor-dependent  signaling 
pathways are under upstream regulation by at least two major axes of the RAAS: 
classical axis (ACE/Ang II) and nonclassical axis (ACE2/Ang-(1–7)). The  relative 
ratio of these two axes determines aldosterone production and activity, and 
 reciprocally aldosterone production might affect upstream mechanisms of RAAS. 
For the better understanding of the regulation of aldosterone/mineralocorticoid 
 receptor-dependent pathways and optimal pharmacotherapy of diseases  associated 
with aldosterone overactivation, one needs to take into account the regulatory 

Figure 2. 
Scheme showing the reciprocal regulation of major angiotensins and aldosterone/mineralocorticoid pathway. 
Abbreviations: PEP, prolyl endopeptidase (see Figure 1 for other abbreviations and colors coding).
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 diseases has been firmly established by therapeutic effects of renin inhibitors, 

Figure 1. 
Simplified scheme of major angiotensin pathways with respective enzymes and receptors. Abbreviations: 
Ang, angiotensin; ACE, angiotensin-converting enzyme; ACE2, angiotensin-converting enzyme 2; NEP, 
neutral endopeptidase; AT1R, angiotensin receptor type 1; AT2R, angiotensin receptor type 2; AT4R, 
angiotensin receptor type 4; MasR, Mas receptor; MrgD, MAS-related G protein-coupled receptor member 
D. Colors: Red, classical axis (renin/ACE/Ang II); green, nonclassical protective axis (ACE2/Ang-(1–7); 
orange, non-renin non-ACE, chymase-dependent axis Ang-(1–12)/chymase/Ang II axis; gray, other 
elements.

67

Renin-Angiotensin-Aldosterone System in Heart Failure: Focus on Nonclassical Angiotensin…
DOI: http://dx.doi.org/10.5772/intechopen.87239

angiotensin-converting enzyme inhibitors (ACE-I), angiotensin receptor blockers 
(ARBs), and finally mineralocorticoid receptor antagonists (MRA). Importantly, 
these drugs influence not only the downstream but also the upstream activity of the 
RAAS. This phenomenon is rather overlooked but needs to be taken into account 
in designing the optimal RAAS-targeted therapy for the treatment of a variety of 
diseases. In particular, evidence accumulated showing reciprocal regulation of 
major angiotensins and aldosterone/mineralocorticoid pathway (Figure 2).

Indeed, MRA modify upstream pathways. MRA decrease ACE activity and increase 
ACE2 activity, suggesting a protective role for MRA is not only mediated by the direct 
inhibition of MR-dependent pathways but also by increasing the expression of ACE2 
and generating angiotensin-(1–7) and decreasing the formation of angiotensin II as 
documented in heart failure (HF) patients and in the rat model of renal  dysfunction 
[12–14]. Noteworthy, plasma levels of Ang-(1–7) increase after treatment with 
ACE-I or ARB [15–20]. On the other hand, aldosterone upregulates the expression 
and  activity of upstream ACE [21]. Furthermore, aldosterone-induced accelerated 
production of an angiotensin II is negatively regulated by angiotensin-(1–7) via the 
Mas receptor and JAK/STAT signaling in human adrenal cells [22]. Angiotensin-(1–7) 
may also suppress aldosterone-induced damage in target tissues. For example, 
 angiotensin-(1–7) inhibits hypertensive kidney damage induced by  infusion of 
 aldosterone [23]. Interestingly, this effect is independent of blood pressure and  mediated 
by the suppression of the expression of TGF, FGF, TIMP, and ROS production  
suggesting that the inhibition of aldosterone activity by angiotensin-(1–7) occurs 
locally in the kidney [23]. Angiotensin-(1–7) may inhibit angiotensin II-mediated 
effects on aldosterone not only by counterbalancing effects mediated by the activation 
of Mas receptor [23] but also by acting as natural-biased ligand for the AT1 receptor, 
behaving as a natural competitive neutral antagonist for AT1 in G protein-dependent 
signaling while  simultaneously acting as an agonist for β-arrestin-related signaling [24].

In summary, aldosterone/mineralocorticoid receptor-dependent  signaling 
pathways are under upstream regulation by at least two major axes of the RAAS: 
classical axis (ACE/Ang II) and nonclassical axis (ACE2/Ang-(1–7)). The  relative 
ratio of these two axes determines aldosterone production and activity, and 
 reciprocally aldosterone production might affect upstream mechanisms of RAAS. 
For the better understanding of the regulation of aldosterone/mineralocorticoid 
 receptor-dependent pathways and optimal pharmacotherapy of diseases  associated 
with aldosterone overactivation, one needs to take into account the regulatory 

Figure 2. 
Scheme showing the reciprocal regulation of major angiotensins and aldosterone/mineralocorticoid pathway. 
Abbreviations: PEP, prolyl endopeptidase (see Figure 1 for other abbreviations and colors coding).
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role of at least two major angiotensin pathways, the balance of which determines 
aldosterone/mineralocorticoid receptor-dependent pathways. Here, we review the 
complexity of local angiotensin pathways focusing on their role in various tissues in 
heart failure with particular emphasis on nonclassical pathways including protective 
ACE2/Ang-(1–7) axis and detrimental Ang-(1–12)/chymase/Ang II axis.

2.  Classical (ACE/Ang II/AT1R) and nonclassical (ACE2/Ang-(1–7)/
MasR) axes of RAAS

The classical RAAS pathway involves renin secreted by the kidney to produce 
Ang I from angiotensinogen (derived from the liver) (Figures 1 and 2). Ang I is 
then converted mainly through ACE to Ang II which predominantly stimulates 
the AT1 receptor, the major culprit receptor for Ang II-induced cardiovascular 
pathology. Indeed, overactivation of AT1R contributes to the pathophysiology of 
heart failure inducing cardiac fibrosis, inflammation, cell proliferation, coronary 
vasoconstriction, and cardiomyocyte hypertrophy, as well as apoptosis [25], 
cardiac remodeling [25, 26], vascular stiffness and atherosclerosis [27], endothelial 
 dysfunction, oxidative stress, or insulin resistance [28]. Ang II may also stimulate 
AT2R that has a vasoprotective profile—anti-inflammatory, antifibrotic, and 
anti-apoptotic—involving the activation of bradykinin/NO/cGMP system [29]. 
AT2R is linked also to the regulation of vascular and cardiac growth responses [30]. 
Activation of AT2R after cardiac injury decreases sympathetic overstimulation and 
stimulates cardiac regeneration with increasing coronary vasodilation [31]. It was 
also shown that AT2R stimulation may indirectly increase ACE2 activity, Ang-(1–7), 
and MasR expression level [32]. Additionally, in physiological conditions, AT2R 
may downregulate [33] or directly inhibit AT1R [34–36]; however, physiological AT2R 
activation occurs mostly at embryonal stage (responsible for fetus  development), 
while in adulthood AT2R expression is low [36, 37]. Nevertheless, it may still be 
detectable in different organs, including the heart in particular in pathological 
 conditions. Both AT1R and AT2R are located on cell surfaces or nuclear membranes 
[38–40].

The second dominant RAAS pathway opposing the classical axis (ACE/Ang II/
AT1R) is the ACE2-dependent pathway, leading to the generation of Ang-(1–7) 
acting on Mas receptors. The major player in this system, ACE2, converts Ang I 
to Ang-(1–9), Ang II to Ang-(1–7), and Ang A to alamandine [41]. Ang-(1–7) is 
the main opposing signaling peptide to Ang II with a broad range of effects in 
 different organs. The most significant activity of Ang-(1–7) includes  vasodilation 
and anti-proliferative and anti-inflammatory effects that are mediated by Mas 
 receptors [42]. Alamandine (the product of Ang A and Ang-(1–7)), despite 
its  similarity in function to Ang-(1–7), acts on different receptors identified 
as Mas-related G protein-coupled receptor member D (MrgDR) [43]. Both of 
these vasoprotective angiotensins induce endothelial-dependent vasorelaxation 
and central nervous system-dependent cardiovascular effects [41], but their 
 activity is not always identical [44, 45]. Importantly, the Mas receptor was found 
in  cardiomyocytes and cardiac endothelial cells [46–48], as well as on cardiac 
 fibroblasts [49]. MasR genetic deletion leads to impairment of cardiac function and 
endothelial dysfunction pointing to the important protective role of this  receptor 
in cardiac and vascular physiology. Although there is equivocal evidence that 
Ang-(1–7) has vasoprotective, cardioprotective, and anti-inflammatory effects, 
still it is not clear if all of the effects of ACE2 pathway are mediated by Ang-(1–7) 
and by MasR. Ang-(1–7), alamandine, and bradykinin could act in concert as 
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their concentrations increase simultaneously with decreased ACE/ACE2 ratio and 
Ang-(1–7)-mediated effects in some systems are inhibited by B2 receptor antagonists 
[50]. Although evidence supporting the protective role of ACE2/Ang-(1–7) axis is 
convincing, it is still not clear if ACE2 is the only enzyme that plays a key role in 
Ang-(1–7) generation in various pathologies.

The major difference between ACE and ACE2 (which are quite similar in 
structure: 42% of amino acids are identical in the extracellular domain) is that ACE 
acts as dipeptidyl carboxypeptidase (removing a dipeptide from the C-terminus of 
substrate), while ACE2 acts as a mono-carboxypeptidase (removing a single amino 
acid) [2, 3]. Both enzymes are type I transmembrane proteins with an extracellular 
N-terminal domain containing the catalytic site and an intracellular C-terminal 
tail. ACE inhibitors do not act on ACE2 catalytic activity, the latter is affected by 
MLN 4760, a prototypic ACE2 inhibitor [51]. In the healthy heart, ACE2 is present 
in cardiomyocytes, fibroblasts, and coronary endothelial cells [52], while ACE is 
mainly found in endothelial cells [53]. ACE2 catalytic efficiency is 400-fold higher 
with Ang II as a substrate than with Ang I, suggesting a dominant role for ACE2 in 
Ang II metabolism as compared with Ang I metabolism. In this way, ACE2 coun-
terbalances ACE activity mainly at the level of Ang II. In fact, ACE increases Ang II 
levels, and ACE2 decreases Ang II levels resulting in the activation of MasR instead 
of AT1R. The relative significance of ACE2 converting Ang I to Ang-(1–9) and Ang 
A to alamandine seems to be of less importance, but further studies are needed.

The discovery of ACE2 in 2000 [3] and subsequent studies documenting 
 opposite actions of ACE2/Ang-(1–7)/MasR axis as compared to ACE/Ang II/AT1R 
axis have revealed this pathway as a major protective arm of RAAS.

3. Other angiotensin pathways, enzymes, and receptors

In addition to ACE/Ang II/AT1 and ACE2/Ang-(1–7)/MasR axes, the couple 
of other angiotensin axes has been proposed as important counterparts of RAAS 
including the protective axes of Ang III/aminopeptidase N(APN)/Ang IV/insulin-
regulated aminopeptidase (IRAP)/AT4R and Ang II/aminopeptidase A(APA)/Ang 
III/AT2R/NO/cGMP [54] (Figure 1). Additionally, the prorenin/renin/prorenin 
receptor was proposed to constitute an important vasopressor pathway in addition 
to the ACE/Ang II/AT1 axis, with an emerging role for the prorenin receptor (PRR) 
[55] that may affect intracellular signaling pathways in an angiotensin-independent 
manner [56, 57]. On the other hand, the generation of Ang III stimulating 
directly AT2R and AT4R after conversion of Ang III to Ang IV represents a novel 
 vasoprotective arm of angiotensin pathways regulating RAAS with vasodilator 
properties, as well as promoting endothelial cell proliferation [58, 59].

Additionally, intracellular Ang II in various tissues may be generated in a non-
ACE-dependent way from Ang-(1–12) via chymase, particularly in pathological 
conditions [59, 60] (Figure 1). The detrimental effects of Ang-(1–12)/chymase/
Ang II axis seem to play an important role, for example, in heart failure [61]. 
Ang-(1–12) when activated may lead to tissue remodeling and potentiated vascular 
as well as cardiac contractility [62, 63]. The independence of intracellular Ang 
II production from extracellular system was confirmed by studies showing that 
chronic administration of losartan and lisinopril did not influence cardiac Ang II 
content, despite antihypertensive effects of these treatments linked to circulating 
angiotensins [59].

Many other enzymes are also implicated in the generation of Ang II (besides 
ACE and chymase), including chymostatin-sensitive Ang II-generating enzyme 
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(CAGE), endopeptidase-2, meprin [64], cathepsins D and G, or tonin [65–67]. 
Various types of aminopeptidases (-A,-N,-M,-B) were suggested to take part in 
the generation of Ang III or Ang IV. Production of Ang-(1–9) may be mediated 
by  carboxypeptidase A (CP-A) or cathepsin, while the generation of Ang-(1–7) 
can occur by activation of prolyl endopeptidase (PEP), neutral endopeptidase 
[68], neprilysin (NEP) [69–71], or thimet oligopeptidase (TOP) [72]. Prolyl 
 endopeptidase has also an influence on tissue angiotensins which makes it an 
interesting target for pharmacotherapy [73].

The physiological and pathophysiological relevance of these multiple enzymes 
in the regulation of the angiotensin pathways influencing the RAAS network as 
well as the pathophysiological importance of prorenin/renin/prorenin receptor 
pathways (Figure 1) still needs to be delineated. Currently, among nonclassical 
pathways influencing angiotensin pathways, protective ACE2/Ang-(1–7)/MasR axis 
and detrimental Ang-(1–12)/chymase/Ang II axis are best characterized and seem 
to play a major role in heart failure. Both of them could influence the activity of 
aldosterone/mineralocorticoid receptor-dependent pathways (Figure 2).

4. Alterations of RAAS in heart failure

It is well known that overactivation of RAAS plays a crucial role in heart failure 
progression, while the inhibition of RAAS (by ACE-I, ARB, and MRA) represents 
a cornerstone for the current pharmacotherapy of HF [74]. It is clear that systemic 
RAAS and local angiotensin pathways in tissues act independently as alterations 
in systemic and tissue-derived angiotensins in HF progression do not coincide. 
Moreover, the range of concentrations of angiotensins in plasma and tissue differs, 
that is, cardiac Ang II concentration is about 100-fold higher than that of plasma 
[75]. This phenomenon may result from intrinsic cardiac Ang I production, which 
was estimated to represent about 90% of cardiac Ang I and about 75% cardiac Ang 
II [76], the rest being regulated by RAAS components taken to the tissue from the 
systemic circulation, for example, by plasma-derived renin [77]. Cardiac intrinsic 
angiotensin pathway activity gains particular importance in course of heart 
failure, activating additional mechanisms leading to increased Ang II production 
[78]. Cardiac intrinsic angiotensin pathways are upregulated in HF progression 
mainly through increased ACE/ACE2 ratio, leading to excessive Ang II production 
and through activation of intracellular chymase-dependent axis responsible for 
additional Ang II production [53, 79]. Both of these pathways lead to cardiac Ang II 
generation and AT1R stimulation.

Indeed, apart from ACE the second major cardiac intrinsic mechanism  leading 
to excessive Ang II production in course of HF utilizes an intracellular source of 
Ang-(1–12) and chymase (present in different cell types, including mast cells, 
cardiac fibroblasts, and vascular endothelial cells [87, 88]). In HF, chymase-
dependent conversion of Ang-(1–12) to Ang II [4, 62, 89–91] was proposed to play 
a role of an independent intracrine pathway accounting for trophic, contractile, 
and pro-arrhythmic effects of Ang II in the human heart as well as in resistance 
arteries [92]. Interestingly, it was shown that MR antagonists decrease Ang-(1–12) 
 production and by this may additionally decrease the detrimental effects of Ang II 
[14]. The combined inhibition of chymase and ACE compared to ACE  inhibition 
alone provided an added benefit in terms of left ventricular function and adverse 
cardiac remodeling [93, 94]. Chymase-specific inhibitor improved cardiac  function 
in human myocardial infarction (MI) [95] and significantly  attenuated cardiac 
diastolic dysfunction accompanied by fibrosis in an experimental dog model of 
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tachycardiac-induced HF [96]. There is also evidence for local  (intracellular) 
 chymase activity that generates Ang II in the vascular wall [73, 95]. In relation 
to ACE, chymase is much more specific in Ang II production and does not break 
down bradykinin [87, 88, 97]. In contrast to ACE, chymase is not present in 
plasma and contributes only to tissue-based angiotensin pathways [87]. There is 
evidence for ACE inhibition-dependent chymase activation, which may explain 
a secondary increase in Ang II level in a large group of patients treated with 
ACE-I [93, 98].

In contrast to ACE and chymase, ACE2 has cardioprotective effects (influencing 
left ventricle remodeling and function) in HF [80]. In turn, loss of ACE2 leads to 
deterioration of cardiac function [81] and deleterious effects linked to increased 
Ang II production [49]. The ACE2 activity may be regulated by cardiac sheddases, 
which are located near ACE2 in the cellular membrane and their activation results 
in the secretion of a soluble form of tissue ACE2 into the circulation and decreases 
its activity in the heart. ADAM 17 (known as TACE) was proposed to act as a local 
sheddase [82, 83]. In humans, there are 21 sheddases described, among them 13 are 
proteolytically active [84], suggesting that besides ADAM 17 there may be other 
sheddases involved in ACE2 regulation. Shedding of ACE2 may be stimulated by 
Ang II acting through AT1R, which induces phosphorylation and activation of 
ADAM 17. Circulating soluble form of ACE2 was recognized as one of the markers 
of worsening HF prognosis [85, 86] that, in our opinion, might reflect the increased 
shedding of ACE2 from the heart and dominance of ACE/Ang II/AT1 axis in the 
heart.

In our recent study [99], in a unique murine model of HF that is character-
ized by a long-term development of end-stage HF [100], we demonstrated that 
changes in the profile of systemic versus tissue angiotensin pathways seem 
independent of each other. As shown in Figure 3, a significant increase in local 
Ang-(1–7) and alamandine content in the heart and aorta was observed at the 
early stage of HF and was followed by a decrease of Ang-(1–7) and alamandine 
in the heart and in the aorta at the late HF stage with simultaneous increase 
in Ang-(1–12). We concluded that HF progression in this murine model of HF 
was associated with a pronounced activation of the local ACE/Ang II pathway 
that was counterbalanced by a prominent ACE2/Ang-(1–7) activation with 
distinct pattern of changes in ACE/ACE2 balance in plasma. We tempted to  
speculate that the dominance of ACE2/Ang-(1–7) over ACE/Ang II in the adaptive 
phase of HF may contribute to the late onset of apparent cardiac dysfunction in 
this model and the balance between ACE/Ang II and ACE2/Ang-(1–7) in favor 
of the first axis determines the progression to the end stage of heart failure. 
Interestingly, the balance between ACE/Ang II and ACE2/Ang-(1–7) seems to 
correspond with aldosterone plasma concentration, low in the early phase and 
increased at the end stage of HF in this model (unpublished data).

Up to 45% of patients with reduced ejection fraction present elevated plasma 
angiotensin II levels despite ACE-I and MRA therapy [101, 102]. Moreover, for 
heart failure patients, with preserved ejection fraction and diastolic disturbance 
(which form up to 40% of HF patients), ACE-I are much less effective [103]. Lack 
of sufficient effectiveness of ACE-I and MRA therapy seems to support the notion 
of an ACE-independent local angiotensin pathway that may independently regulate 
Ang II production as well as AT1R stimulation and may represent an important 
contributing mechanism to heart failure progression. Clearly, the Ang II-generating 
mechanisms in HF are not well-controlled by current therapy, and this is also one of 
the reasons why additional treatment with MRA is frequently required and highly 
effective in HF patients.
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additional Ang II production [53, 79]. Both of these pathways lead to cardiac Ang II 
generation and AT1R stimulation.

Indeed, apart from ACE the second major cardiac intrinsic mechanism  leading 
to excessive Ang II production in course of HF utilizes an intracellular source of 
Ang-(1–12) and chymase (present in different cell types, including mast cells, 
cardiac fibroblasts, and vascular endothelial cells [87, 88]). In HF, chymase-
dependent conversion of Ang-(1–12) to Ang II [4, 62, 89–91] was proposed to play 
a role of an independent intracrine pathway accounting for trophic, contractile, 
and pro-arrhythmic effects of Ang II in the human heart as well as in resistance 
arteries [92]. Interestingly, it was shown that MR antagonists decrease Ang-(1–12) 
 production and by this may additionally decrease the detrimental effects of Ang II 
[14]. The combined inhibition of chymase and ACE compared to ACE  inhibition 
alone provided an added benefit in terms of left ventricular function and adverse 
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tachycardiac-induced HF [96]. There is also evidence for local  (intracellular) 
 chymase activity that generates Ang II in the vascular wall [73, 95]. In relation 
to ACE, chymase is much more specific in Ang II production and does not break 
down bradykinin [87, 88, 97]. In contrast to ACE, chymase is not present in 
plasma and contributes only to tissue-based angiotensin pathways [87]. There is 
evidence for ACE inhibition-dependent chymase activation, which may explain 
a secondary increase in Ang II level in a large group of patients treated with 
ACE-I [93, 98].

In contrast to ACE and chymase, ACE2 has cardioprotective effects (influencing 
left ventricle remodeling and function) in HF [80]. In turn, loss of ACE2 leads to 
deterioration of cardiac function [81] and deleterious effects linked to increased 
Ang II production [49]. The ACE2 activity may be regulated by cardiac sheddases, 
which are located near ACE2 in the cellular membrane and their activation results 
in the secretion of a soluble form of tissue ACE2 into the circulation and decreases 
its activity in the heart. ADAM 17 (known as TACE) was proposed to act as a local 
sheddase [82, 83]. In humans, there are 21 sheddases described, among them 13 are 
proteolytically active [84], suggesting that besides ADAM 17 there may be other 
sheddases involved in ACE2 regulation. Shedding of ACE2 may be stimulated by 
Ang II acting through AT1R, which induces phosphorylation and activation of 
ADAM 17. Circulating soluble form of ACE2 was recognized as one of the markers 
of worsening HF prognosis [85, 86] that, in our opinion, might reflect the increased 
shedding of ACE2 from the heart and dominance of ACE/Ang II/AT1 axis in the 
heart.

In our recent study [99], in a unique murine model of HF that is character-
ized by a long-term development of end-stage HF [100], we demonstrated that 
changes in the profile of systemic versus tissue angiotensin pathways seem 
independent of each other. As shown in Figure 3, a significant increase in local 
Ang-(1–7) and alamandine content in the heart and aorta was observed at the 
early stage of HF and was followed by a decrease of Ang-(1–7) and alamandine 
in the heart and in the aorta at the late HF stage with simultaneous increase 
in Ang-(1–12). We concluded that HF progression in this murine model of HF 
was associated with a pronounced activation of the local ACE/Ang II pathway 
that was counterbalanced by a prominent ACE2/Ang-(1–7) activation with 
distinct pattern of changes in ACE/ACE2 balance in plasma. We tempted to  
speculate that the dominance of ACE2/Ang-(1–7) over ACE/Ang II in the adaptive 
phase of HF may contribute to the late onset of apparent cardiac dysfunction in 
this model and the balance between ACE/Ang II and ACE2/Ang-(1–7) in favor 
of the first axis determines the progression to the end stage of heart failure. 
Interestingly, the balance between ACE/Ang II and ACE2/Ang-(1–7) seems to 
correspond with aldosterone plasma concentration, low in the early phase and 
increased at the end stage of HF in this model (unpublished data).

Up to 45% of patients with reduced ejection fraction present elevated plasma 
angiotensin II levels despite ACE-I and MRA therapy [101, 102]. Moreover, for 
heart failure patients, with preserved ejection fraction and diastolic disturbance 
(which form up to 40% of HF patients), ACE-I are much less effective [103]. Lack 
of sufficient effectiveness of ACE-I and MRA therapy seems to support the notion 
of an ACE-independent local angiotensin pathway that may independently regulate 
Ang II production as well as AT1R stimulation and may represent an important 
contributing mechanism to heart failure progression. Clearly, the Ang II-generating 
mechanisms in HF are not well-controlled by current therapy, and this is also one of 
the reasons why additional treatment with MRA is frequently required and highly 
effective in HF patients.
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5. Quantification of angiotensin peptides and clinical needs

To better understand the regulation of angiotensin pathways and its impact 
on aldosterone/mineralocorticoid receptor-dependent pathways, the reliable 
 quantification of endogenous angiotensin peptides is needed, in particular for 
angiotensins that are representatives of classical ACE/Ang II and nonclassical ACE2/
Ang-(1–7) pathways. As the physiological levels of angiotensin peptides in  biological 
samples are extremely low (fmol/mL in plasma or fmol/g tissue in organs), the 

Figure 3. 
Angiotensin profile in plasma, the heart, and the aorta in Tgαq*44 mice. Concentration of Ang-(1–12), Ang-
(1–10), and Ang-(1–9) (a), Ang II, Ang III and Ang IV (b), Ang A, Ang-(1–7), and alamandine (c) in plasma, 
aorta, and heart homogenates. *P < 0.05 for the heart tissue of a given group of Tgαq*44 mice vs. 2-month-old 
Tgαq*44 mice; #P < 0.05 for the aorta tissue of a given Tgαq*44 group vs. 2-month-old Tgαq*44 mice; +P < 0.05 
for plasma of a given Tgαq*44 group vs. 2-month-old Tgαq*44 mice (one-way ANOVA with Tukey post hoc test 
or Kruskal-Wallis); δP < 0.05 hearts vs. plasma (t-test or Wilcoxon test). Reprinted with permission from [99].
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analytical approaches require very sensitive methods among which enzyme-linked 
immunosorbent assay (ELISA), radioimmunoassay (RIA), and liquid  
chromatography combined with RIA (LC-RIA) or mass spectrometry detection 
(LC-MS) are used so far (Table 1).

Origin Angiotensin peptides (endogenous level in healthy 
subjects*)

Analytical 
approach

Ref.

Plasma

Mouse Ang II (24–215 fmol); Ang-(1–7) (ca. 142 fmol) ELISA [109, 110]

Ang I (20–328 fmol); Ang II (15–48 fmol) LC-RIA [99, 111]

Alamandine (40–263 fmol); Ang I (57–180 fmol)
Ang II (28–86 fmol); Ang III (50–176 fmol)
Ang IV (35–118 fmol); Ang A (10–50 fmol)
Ang-(1–12) (8–75 fmol); Ang-(1–9) (8–46 fmol)
Ang-(1–7) (23–72 fmol)

LC-MS [99, 106]

Rat Ang II (72–95 pmol) ELISA [112, 113]

Ang I (40–137 fmol); Ang II (25–130 fmol) RIA [114, 115]

Ang I (10–130 fmol); Ang II (5–30 fmol)
Ang III (4–8 fmol); Ang IV (2.5–7 fmol)
Ang-(2–10) (26–70 fmol); Ang-(1–9) (2–6 fmol)
Ang-(3–10) (5–30 fmol); Ang-(1–7) (1.4–15 fmol)
Ang-(2–7) (2.6–7 fmol); Ang-(3–7) (ca. 8 fmol)
Ang-(4–8) (ca. 8 fmol)

LC-RIA [116–120]

Human Ang-(4–10) (ca. 16 fmol); Ang-(5–10) (ca. 80 fmol)
Ang-(6–10) (ca. 12 nmol)

FLD-EIA [121]

Ang II (ca. 18 fmol) LC-MS [122]

Ang I (ca. 20 fmol); Ang II (ca. 14 fmol)
Ang III (ca. 3.0 fmol); Ang-(1–9) (<0.4 fmol)
Ang-(2–10) (ca. 2.4 fmol); Ang-(2–9) (<2.1 fmol)
Ang-(1–7) (1.0–9.5 fmol); Ang-(2–7) (<1.1 fmol)

LC-RIA [123, 124]

Serum

Rat Ang II (42–87 fmol); Ang-(1–7) (2220–6310 fmol) CZE-PDA [125]

Urine

Rat Ang I (ca. 0.5 pmol); Ang II (ca. 1.25 pmol)
Ang-(1–7) (ca. 0.5 pmol)

RIA [115]

Human Ang-(1–7) (ca. 0.11 pmol) LC-RIA [126]

Kidney

Mouse Ang I (60–184 fmol); Ang II (159–328 fmol) LC-RIA [111, 127]

Rat Ang I (52–1050 fmol); Ang II (90–250 fmol)
Ang III (ca. 50 fmol); Ang IV (ca. 6 fmol)
Ang-(1–9) (ca. 64 fmol); Ang-(2–10) (ca. 300 fmol)
Ang-(3–10) (ca. 90 fmol); Ang-(1–7) (24–120 fmol)
Ang-(2–7) (ca. 50 fmol)

LC-RIA [117, 118, 128]

Adrenal gland

Mouse Ang I (ca. 7 fmol); Ang II (ca. 300 fmol) LC-RIA [111]

Rat Ang I (6–180 fmol); Ang II (545–2000 fmol)
Ang III (ca. 150 fmol); Ang IV (ca. 10 fmol)
Ang-(1–9) (<62 fmol); Ang-(2–10) (3–80 fmol)
Ang-(3–10) (ca. 3 fmol); Ang-(1–7) (30–180 fmol)
Ang-(2–7) (15–40 fmol); Ang-(3–7) (ca. 90 fmol)

LC-RIA [117, 118, 128]
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analytical approaches require very sensitive methods among which enzyme-linked 
immunosorbent assay (ELISA), radioimmunoassay (RIA), and liquid  
chromatography combined with RIA (LC-RIA) or mass spectrometry detection 
(LC-MS) are used so far (Table 1).

Origin Angiotensin peptides (endogenous level in healthy 
subjects*)

Analytical 
approach

Ref.
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LC-MS [99, 106]

Rat Ang II (72–95 pmol) ELISA [112, 113]

Ang I (40–137 fmol); Ang II (25–130 fmol) RIA [114, 115]

Ang I (10–130 fmol); Ang II (5–30 fmol)
Ang III (4–8 fmol); Ang IV (2.5–7 fmol)
Ang-(2–10) (26–70 fmol); Ang-(1–9) (2–6 fmol)
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Ang-(2–7) (2.6–7 fmol); Ang-(3–7) (ca. 8 fmol)
Ang-(4–8) (ca. 8 fmol)
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Human Ang-(4–10) (ca. 16 fmol); Ang-(5–10) (ca. 80 fmol)
Ang-(6–10) (ca. 12 nmol)

FLD-EIA [121]

Ang II (ca. 18 fmol) LC-MS [122]

Ang I (ca. 20 fmol); Ang II (ca. 14 fmol)
Ang III (ca. 3.0 fmol); Ang-(1–9) (<0.4 fmol)
Ang-(2–10) (ca. 2.4 fmol); Ang-(2–9) (<2.1 fmol)
Ang-(1–7) (1.0–9.5 fmol); Ang-(2–7) (<1.1 fmol)

LC-RIA [123, 124]

Serum

Rat Ang II (42–87 fmol); Ang-(1–7) (2220–6310 fmol) CZE-PDA [125]

Urine

Rat Ang I (ca. 0.5 pmol); Ang II (ca. 1.25 pmol)
Ang-(1–7) (ca. 0.5 pmol)

RIA [115]

Human Ang-(1–7) (ca. 0.11 pmol) LC-RIA [126]
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Mouse Ang I (60–184 fmol); Ang II (159–328 fmol) LC-RIA [111, 127]

Rat Ang I (52–1050 fmol); Ang II (90–250 fmol)
Ang III (ca. 50 fmol); Ang IV (ca. 6 fmol)
Ang-(1–9) (ca. 64 fmol); Ang-(2–10) (ca. 300 fmol)
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Adrenal gland

Mouse Ang I (ca. 7 fmol); Ang II (ca. 300 fmol) LC-RIA [111]

Rat Ang I (6–180 fmol); Ang II (545–2000 fmol)
Ang III (ca. 150 fmol); Ang IV (ca. 10 fmol)
Ang-(1–9) (<62 fmol); Ang-(2–10) (3–80 fmol)
Ang-(3–10) (ca. 3 fmol); Ang-(1–7) (30–180 fmol)
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The immunoassay-based methods have many drawbacks, among others, 
being the lack of specific antibodies as the antibodies used currently in ELISA 
kits for Ang II quantification cross-react with Ang III (36–100%), Ang IV 

Origin Angiotensin peptides (endogenous level in healthy 
subjects*)

Analytical 
approach

Ref.

Lungs

Mouse Ang I (ca. 5 fmol); Ang II (ca. 90 fmol) LC-RIA [111]

Rat Ang I (2–3 fmol); Ang II (70–90 fmol)
Ang-(1–9) (ca. 4.6 fmol); Ang-(1–7) (<4.4 fmol)

LC-RIA [117, 128]

Liver

Mouse Ang I (1.9–39 fmol); Ang II (42–204 fmol) LC-RIA [127]

Heart

Mouse Ang I (5.3–36 fmol); Ang II (49–201fmol) LC-RIA [111, 127]

Alamandine (70–320 fmol); Ang I (5–50 fmol)
Ang II (10–100 fmol); Ang III (50–150 fmol)
Ang IV (15–35 fmol); Ang A (25–55 fmol)
Ang-(1–12) (20–280 fmol); Ang-(1–9) (35–50 fmol)
Ang-(1–7) (125–330 fmol)

LC-MS [99, 106]

Rat Ang I (5–25 fmol); Ang II (6–20 fmol);  
Ang III (ca. 5 fmol); Ang IV (ca. 1 fmol);  
Ang-(1–9) (<3.8 fmol)
Ang-(2–10) (ca. 2.5 fmol); Ang-(3–10) (ca. 2 fmol)
Ang-(1–7) (3.5–8 fmol); Ang-(2–7) (ca. 5 fmol)

LC-RIA [117, 120, 128]

Brain

Mouse Ang I (ca. 2 fmol); Ang II (ca. 5 fmol) LC-RIA [111]

Rat Ang I (<4 fmol); Ang II (8–16 fmol)
Ang-(1–9) (ca. 20 fmol); Ang-(1–7) (<13 fmol)

LC-RIA [117, 128]

Rat 
(medulla)

Ang I (1.5–520 fmol); Ang II (3–900 fmol)
Ang III (ca. 3 fmol); Ang IV (ca. 90 fmol)
Ang-(2–10) (1.2–80 fmol); Ang-(3–10) (1.4–45 fmol)
Ang-(1–7) (5–720 fmol); Ang-(2–7) (ca. 7 fmol)
Ang-(3–7) (ca. 180 fmol)

LC-RIA [116, 120]

Aorta

Mouse Alamandine (ca. 185 fmol); Ang I (ca. 16 fmol)
Ang II (ca. 15 fmol); Ang III (ca. 122 fmol)
Ang IV (ca. 30 fmol); Ang A (ca. 52 fmol)
Ang-(1–12) (ca. 57 fmol); Ang-(1–9) (ca. 25 fmol)
Ang-(1–7) (ca. 240 fmol)

LC-MS [99]

Rat Ang I (<10 fmol); Ang II (76–200 fmol)
Ang-(1–9) (<19 fmol); Ang-(1–7) (<20 fmol)

LC-RIA [117, 128]

Adipose

Rat (BAT) Ang I (ca. 8 fmol); Ang II (42–60 fmol)
Ang-(1–9) (ca. 8 fmol); Ang-(1–7) (<8 fmol)

LC-RIA [117, 128]

Rat (WAT) Ang II (18–56 pmol); Ang-(1–7) (190–648 pmol) CZE-PDA [125]

*The range of Ang peptides endogenous levels in healthy subjects was roughly estimated based on published data 
and expressed per milliliter (mL) of plasma, per mg of creatinine excreted per day for urine, and per g of tissue 
for organs; BAT, brown adipose tissue; WA, white adipose tissue; LC-RI, liquid chromatography combined with 
radioimmunoassay; LC-MS, liquid chromatography combined with mass spectrometry; RIA, radioimmunoassay; 
FLD-EIA, immunofluorescence assay; CZE-PDA, capillary zone electrophoresis with PDA detection.

Table 1. 
The range of endogenous levels of angiotensin peptides in various biological matrices and the most commonly 
used analytical approaches for their quantification.
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(33–100%), and Ang A (100%) which leads to the overestimation of the real 
concentration of Ang II in measured samples and does not allow to discern the 
role of individual angiotensin peptides. The limitations of immunoassay-based 
approaches are overcome by a highly specific, sensitive LC-MS technique. As 
LC-MS relies on the initial identification of studied peptides based on their 
molecular weight followed by detection of peptide fragmentation signatures, 
this approach is highly specific for individual angiotensins [105, 106]. Indeed, 
in a number of studies including our own [99, 106–108], LC-MS enabled a 
 comprehensive analysis of various angiotensin peptides in in vivo, in vitro, and 
ex vivo studies (Table 1).

It seems that the pattern of Ang peptides measured in plasma could be of 
the clinical value and LC-MS could offer adequate analytical potential to  foster 
 development of angiotensin profiling in clinical field. After optimization, 
 introduction of such analyses into the clinic may provide fundamental information 
in many current clinical challenges such as treatment of resistant hypertension or 
reversal of pathological cardiac remodeling. At the same time, angiotensin  profiling 
could lead to a better understanding of upstream mechanisms of classical and 
nonclassical pathways of RAAS in the regulation of aldosterone/mineralocorticoid 
receptor-dependent pathways.

6. Conclusion

The diverse role of the aldosterone/mineralocorticoid receptor-dependent 
pathway in physiology and pathology needs to be analyzed in the context of the 
increasingly complex network of angiotensins. In fact a number of noncanonical 
mechanisms of angiotensin pathways represent possible novel upstream targets 
to inhibit aldosterone/mineralocorticoid receptor-dependent pathways, for 
example, the ACE2/Ang-(1–7) pathway and their novel regulatory elements such 
as sheddases (ADAM 17) or apelin (which increases ACE2 promotor activity) 
[129], as well as Ang-(1–12)/chymase/Ang II pathway. As expected,  interventions 
blocking Ang-(1–12)/chymase/Ang II as well as enhancing ACE2/Ang-(1–7) 
diminished aldosterone production [124, 130]. It remains to be determined, 
however, which of the novel pharmacotherapies, shown to be effective in 
experimental heart failure including chymase inhibitors [131], recombinant 
human ACE2 [132–134], Ang-(1–7) [135], or combined angiotensin receptor 
antagonist and neprilysin inhibitor (ARNI) [104], are most effective in reducing 
the  activity of aldosterone/mineralocorticoid receptor-dependent signaling. To 
exploit further these novel mechanisms pharmacotherapeutically, it is important 
to better understand the heterogeneity of local angiotensin pathways in various 
organs and their effects on aldosterone/mineralocorticoid receptor-dependent 
pathways.

Finally, we believe that the profiling of angiotensins in clinical facilities, at least 
for these two angiotensins (i.e., Ang II, Ang-(1–7)) with opposite actions on MR 
and aldosterone production, may prove to be a good tool to optimize the pharmaco-
therapy of RAAS including treatment with MRA.
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increasingly complex network of angiotensins. In fact a number of noncanonical 
mechanisms of angiotensin pathways represent possible novel upstream targets 
to inhibit aldosterone/mineralocorticoid receptor-dependent pathways, for 
example, the ACE2/Ang-(1–7) pathway and their novel regulatory elements such 
as sheddases (ADAM 17) or apelin (which increases ACE2 promotor activity) 
[129], as well as Ang-(1–12)/chymase/Ang II pathway. As expected,  interventions 
blocking Ang-(1–12)/chymase/Ang II as well as enhancing ACE2/Ang-(1–7) 
diminished aldosterone production [124, 130]. It remains to be determined, 
however, which of the novel pharmacotherapies, shown to be effective in 
experimental heart failure including chymase inhibitors [131], recombinant 
human ACE2 [132–134], Ang-(1–7) [135], or combined angiotensin receptor 
antagonist and neprilysin inhibitor (ARNI) [104], are most effective in reducing 
the  activity of aldosterone/mineralocorticoid receptor-dependent signaling. To 
exploit further these novel mechanisms pharmacotherapeutically, it is important 
to better understand the heterogeneity of local angiotensin pathways in various 
organs and their effects on aldosterone/mineralocorticoid receptor-dependent 
pathways.

Finally, we believe that the profiling of angiotensins in clinical facilities, at least 
for these two angiotensins (i.e., Ang II, Ang-(1–7)) with opposite actions on MR 
and aldosterone production, may prove to be a good tool to optimize the pharmaco-
therapy of RAAS including treatment with MRA.
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Chapter 6

Primary Aldosteronism: A 
Glimpse into the Most Common 
Endocrine Cause of Arterial 
Hypertension
Gian Paolo Rossi and Teresa M. Seccia

Abstract

Compelling evidences showed that primary aldosteronism (PA) is a quite common 
disease. In spite of this, hypertensive patients are seldom screened for PA and, there-
fore, many patients are mislabelled as (low-renin) essential hypertension thereby 
remaining exposed to the nefarious consequences of long-term hyperaldosteronism. 
In this chapter we reviewed the clinical aspects of PA and the evidences supporting 
the need of implementing strategies aimed at diagnosing early PA patients. After 
reporting the prevalence rates of PA in different cohorts of hypertensive patients, 
we examined the reasons why PA is rarely searched for. The cardiovascular and renal 
damage associated with PA were also discussed, with particular emphasis to endo-
thelial dysfunction, vascular remodeling, left ventricular changes, fibrosis, diastolic 
dysfunction, atrial fibrillation and chronic kidney disease. Studies supporting the 
concept that PA-associated organ damage can be prevented and even regressed 
with a timely diagnosis were also reviewed. A flowchart illustrating the proposal of 
a simplified diagnostic algorithm for screening and subtyping of PA, which allows 
circumventing the complexity of a diagnostic workup centred on confirmatory tests, 
is also proposed. Finally, the principles of treatment for PA are discussed.

Keywords: endocrine hypertension, primary aldosteronism, subtyping, diagnosis, 
adrenal vein sampling, outcome

1. Epidemiology

Primary aldosteronism (PA) is regarded by most practicing physicians as a 
‘needle in the haystack’ [1], notwithstanding compelling evidences supporting the 
opposite view that is quite common. At the dawn of this millennium, based on small 
single-centre retrospective studies, the prevalence rate of PA was estimated to range 
from 1.4–32% (median 8.8%), i.e. so widely that no firm conclusions could be drawn 
on how common PA was, likely because of differences in the selection of the patient’s 
cohorts and heterogeneous diagnostic criteria used in the various studies [2].

In 2006, the PA Prevalence in Hypertensives (PAPY) study, a prospective survey 
of consecutive newly diagnosed hypertensive patients referred to specialized 
hypertension centres, exploited for the first time use of a predefined protocol and 
standardized diagnostic criteria to diagnose PA [3]. This seminal study provided 



89

Chapter 6

Primary Aldosteronism: A 
Glimpse into the Most Common 
Endocrine Cause of Arterial 
Hypertension
Gian Paolo Rossi and Teresa M. Seccia

Abstract

Compelling evidences showed that primary aldosteronism (PA) is a quite common 
disease. In spite of this, hypertensive patients are seldom screened for PA and, there-
fore, many patients are mislabelled as (low-renin) essential hypertension thereby 
remaining exposed to the nefarious consequences of long-term hyperaldosteronism. 
In this chapter we reviewed the clinical aspects of PA and the evidences supporting 
the need of implementing strategies aimed at diagnosing early PA patients. After 
reporting the prevalence rates of PA in different cohorts of hypertensive patients, 
we examined the reasons why PA is rarely searched for. The cardiovascular and renal 
damage associated with PA were also discussed, with particular emphasis to endo-
thelial dysfunction, vascular remodeling, left ventricular changes, fibrosis, diastolic 
dysfunction, atrial fibrillation and chronic kidney disease. Studies supporting the 
concept that PA-associated organ damage can be prevented and even regressed 
with a timely diagnosis were also reviewed. A flowchart illustrating the proposal of 
a simplified diagnostic algorithm for screening and subtyping of PA, which allows 
circumventing the complexity of a diagnostic workup centred on confirmatory tests, 
is also proposed. Finally, the principles of treatment for PA are discussed.

Keywords: endocrine hypertension, primary aldosteronism, subtyping, diagnosis, 
adrenal vein sampling, outcome

1. Epidemiology

Primary aldosteronism (PA) is regarded by most practicing physicians as a 
‘needle in the haystack’ [1], notwithstanding compelling evidences supporting the 
opposite view that is quite common. At the dawn of this millennium, based on small 
single-centre retrospective studies, the prevalence rate of PA was estimated to range 
from 1.4–32% (median 8.8%), i.e. so widely that no firm conclusions could be drawn 
on how common PA was, likely because of differences in the selection of the patient’s 
cohorts and heterogeneous diagnostic criteria used in the various studies [2].

In 2006, the PA Prevalence in Hypertensives (PAPY) study, a prospective survey 
of consecutive newly diagnosed hypertensive patients referred to specialized 
hypertension centres, exploited for the first time use of a predefined protocol and 
standardized diagnostic criteria to diagnose PA [3]. This seminal study provided 



Aldosterone-Mineralocorticoid Receptor - Cell Biology to Translational Medicine

90

solid evidences that among referred hypertensive patients the prevalence of PA was 
high, i.e. 11.2% [3]. Moreover, by calling attention to the fact that the only subtype 
of PA that could be diagnosed with certainty is aldosterone-producing adenoma 
(APA), this study introduced the ‘four-corners criteria’ to diagnose PA due to APA, 
a concept thereafter adopted in the PASO criteria [4] and recently revised to take 
into consideration the availability, thanks to Gomez-Sanchez’s laboratory, of a 
monoclonal antibody for human aldosterone synthase (CYP11B2) that allowed the 
immunohistochemical demonstration of aldosterone biosynthesis in adrenocortical 
nodule(s) of excised adrenals [5, 6].

It should be acknowledged, though, that estimates of the prevalence of PA are 
meaningless figures without specification of the cohort of hypertensive patients 
that are being considered. For example, in a general population survey in Japan, 
Ito et al. reported a prevalence of PA of 6.8% in prehypertensive subjects and 3.3% 
and 3.2%, respectively, in stage I and II hypertensive patients [7]. In the Bussolengo 
study, which involved hypertensive patients seen in general practice in Verona 
province in Italy, 34% were found to have an elevated aldosterone-to-renin ratio 
(ARR) suggesting PA [8]. Although the actual rate of those with confirmed PA 
remained uncertain, because no further tests could be undertaken, those findings 
suggested a high prevalence of PA among such unselected hypertensive patients. In 
line with this suggestion, in a similar study involving general practitioners in Torino 
(Italy), 5.9% of the patients were found to have PA [9]. Altogether these results led 
to the proposal that the screening for PA should be wider [10] than a screening only 
in selected categories of patients recommended by current guidelines [11].

Undoubtedly, screening should be exploited in patients with drug-resistant 
hypertension, which represent the cohort at the highest cardiovascular risk, not 
only because of the uncontrolled blood pressure (BP) values, but also because of 
the common concurrence of hypertension-mediated organ damage (HMOD) [9, 
11–14]. In a single-centre study carefully carried out in Greece by Douma et al. in 
drug-resistant hypertension patients, who were studied after wash-out from inter-
fering drugs, 20.6% were found to have a high ARR [15]. The rate fell to about 11% 
when the authors used the BP-lowering response to spironolactone to confirm their 
diagnosis. They considered this rate to be not as high as they expected [15]. However, 
yet unpublished data from the AVIS-2 study, the largest registry of patients submit-
ted to adrenal vein sampling (AVS) for the subtyping of PA worldwide, indicated 

Figure 1. 
Prevalence of a disease affects positive and negative predictive values. Furthermore, the diagnostic gain of a test 
is maximized when the prevalence of the disease is between 10 and 30%. Since primary aldosteronism (PA) 
was found to involve 11.2% in the hypertensive patients referred to the specialized centres for hypertension, 
and to be even more prevalent in the ‘resistant’ hypertensives, implementation of the screening strategies for PA 
furnishes an unambiguous gain in these categories, besides being of crucial relevance for identifying the patients 
who can benefit of the targeted treatment.
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that between 20.1 and 49.5% of PA patients, depending on the criteria used to define 
this condition, have drug-resistant hypertension. Hence, resistant hypertension is a 
common presentation of PA. On the whole, these results showed that, at least among 
referred hypertensives who are carefully investigated, more than 11% have PA, with 
a rate that increases together with the stage of hypertension.

Hence, besides supporting the original contention of Conn [16], these findings 
showed that PA is by no means an exceptionally rare cause of human hypertension. 
Therefore, they have implications of paramount importance for the implementa-
tion of screening strategies in the hypertensive patients as the diagnostic gain of a 
diagnostic test is maximized when the prevalence of the disease that is sought for is 
between 10 and 30% (Figure 1).

2. Why PA is under-detected?

In spite of the fact that compelling evidences support the notion that PA is a 
common curable form of secondary hypertension, this condition remains mark-
edly underdiagnosed for a number of reasons. The first is the misbelief that it 
is rare and therefore it is not worth of a search. The second entails the fact that 
hypokalaemia, which for decades has been considered the hallmark of PA, occurs 
only in less than half of the hypertensive patients, with APA and in less than 20% 
of those with bilateral adrenal hyperplasia (BAH, also known as idiopathic hyperal-
dosteronism, IHA) [3]. The third reason is a general phenomenon in medicine: the 
time lag occurring between publication of scientific data, their incorporation into 
practice guidelines and implementation of guidelines’ recommendations in clini-
cal practice. A survey of general practitioners in Italy and Germany documented 
that this is true also for PA: only 1 and 2%, respectively, in these countries were 
ever screened for PA by their general practitioners [17]. The fourth major reasons 
for the underscreening and consequent underdiagnosis of PA relate, in our view, 
to the fact that the diagnostic workup of patients for PA is perceived by practicing 
physicians as too complex to undertake and interpret. The recommended measure 
to prepare the hypertensive patients pharmacologically with a complete wash-out 
from drugs, which is totally unjustified, or better a switch to non-interfering drugs 
before undertaking the screening tests, is perceived as risky, even though evidence 
supporting the safety of a transient withdrawal of antihypertensive treatment exists 
[18, 19]. Uses of different assays to measure renin and aldosterone and of different 
units of measure are further factors undoubtedly confusing the interpretation of 
the screening test, which led us to develop an app that has been made freely avail-
able to address these difficulties [20] (https://siia.it/attivita-ricerca/iniziative/
una-app-per-calcolare-l-arr/).

As a result of the under diagnosis, far too many PA patients are misdiagnosed 
as (low-renin) essential hypertension and remain exposed to the nefarious conse-
quences of long-term exposure to hyperaldosteronism [21, 22], which are described 
in the next section.

3. Cardiovascular and renal damage associated with PA

Patients with PA have higher cardiovascular morbidity and mortality than age-, 
sex- and BP-matched patients with essential hypertension [9, 13, 14, 23, 24]. This 
is because aldosterone excess, in the presence of a normal-to-high salt intake, has 
deleterious effects on the cardiovascular system that aggravate those of high BP, as 
convincingly demonstrated in both experimental and clinical studies [25–28].



Aldosterone-Mineralocorticoid Receptor - Cell Biology to Translational Medicine

90

solid evidences that among referred hypertensive patients the prevalence of PA was 
high, i.e. 11.2% [3]. Moreover, by calling attention to the fact that the only subtype 
of PA that could be diagnosed with certainty is aldosterone-producing adenoma 
(APA), this study introduced the ‘four-corners criteria’ to diagnose PA due to APA, 
a concept thereafter adopted in the PASO criteria [4] and recently revised to take 
into consideration the availability, thanks to Gomez-Sanchez’s laboratory, of a 
monoclonal antibody for human aldosterone synthase (CYP11B2) that allowed the 
immunohistochemical demonstration of aldosterone biosynthesis in adrenocortical 
nodule(s) of excised adrenals [5, 6].

It should be acknowledged, though, that estimates of the prevalence of PA are 
meaningless figures without specification of the cohort of hypertensive patients 
that are being considered. For example, in a general population survey in Japan, 
Ito et al. reported a prevalence of PA of 6.8% in prehypertensive subjects and 3.3% 
and 3.2%, respectively, in stage I and II hypertensive patients [7]. In the Bussolengo 
study, which involved hypertensive patients seen in general practice in Verona 
province in Italy, 34% were found to have an elevated aldosterone-to-renin ratio 
(ARR) suggesting PA [8]. Although the actual rate of those with confirmed PA 
remained uncertain, because no further tests could be undertaken, those findings 
suggested a high prevalence of PA among such unselected hypertensive patients. In 
line with this suggestion, in a similar study involving general practitioners in Torino 
(Italy), 5.9% of the patients were found to have PA [9]. Altogether these results led 
to the proposal that the screening for PA should be wider [10] than a screening only 
in selected categories of patients recommended by current guidelines [11].

Undoubtedly, screening should be exploited in patients with drug-resistant 
hypertension, which represent the cohort at the highest cardiovascular risk, not 
only because of the uncontrolled blood pressure (BP) values, but also because of 
the common concurrence of hypertension-mediated organ damage (HMOD) [9, 
11–14]. In a single-centre study carefully carried out in Greece by Douma et al. in 
drug-resistant hypertension patients, who were studied after wash-out from inter-
fering drugs, 20.6% were found to have a high ARR [15]. The rate fell to about 11% 
when the authors used the BP-lowering response to spironolactone to confirm their 
diagnosis. They considered this rate to be not as high as they expected [15]. However, 
yet unpublished data from the AVIS-2 study, the largest registry of patients submit-
ted to adrenal vein sampling (AVS) for the subtyping of PA worldwide, indicated 

Figure 1. 
Prevalence of a disease affects positive and negative predictive values. Furthermore, the diagnostic gain of a test 
is maximized when the prevalence of the disease is between 10 and 30%. Since primary aldosteronism (PA) 
was found to involve 11.2% in the hypertensive patients referred to the specialized centres for hypertension, 
and to be even more prevalent in the ‘resistant’ hypertensives, implementation of the screening strategies for PA 
furnishes an unambiguous gain in these categories, besides being of crucial relevance for identifying the patients 
who can benefit of the targeted treatment.

91

Primary Aldosteronism: A Glimpse into the Most Common Endocrine Cause of Arterial…
DOI: http://dx.doi.org/10.5772/intechopen.87228

that between 20.1 and 49.5% of PA patients, depending on the criteria used to define 
this condition, have drug-resistant hypertension. Hence, resistant hypertension is a 
common presentation of PA. On the whole, these results showed that, at least among 
referred hypertensives who are carefully investigated, more than 11% have PA, with 
a rate that increases together with the stage of hypertension.

Hence, besides supporting the original contention of Conn [16], these findings 
showed that PA is by no means an exceptionally rare cause of human hypertension. 
Therefore, they have implications of paramount importance for the implementa-
tion of screening strategies in the hypertensive patients as the diagnostic gain of a 
diagnostic test is maximized when the prevalence of the disease that is sought for is 
between 10 and 30% (Figure 1).

2. Why PA is under-detected?

In spite of the fact that compelling evidences support the notion that PA is a 
common curable form of secondary hypertension, this condition remains mark-
edly underdiagnosed for a number of reasons. The first is the misbelief that it 
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In 1991, Karl Weber’s and Richardo Rocha’s laboratories provided unambiguous 
evidences that uni-nephrectomized salt-fed rats infused with aldosterone devel-
oped prominent inflammation and fibrosis in the heart and kidneys. Moreover, they 
showed that these changes could be prevented by pretreatment with mineralocor-
ticoid receptor antagonists, as spironolactone, even at sub-antihypertensive doses, 
suggesting that aldosterone can cause fibrosis independently of its pressor effects 
[25, 29]. Moreover, in animal models, aldosterone infusion was shown to cause 
endothelial dysfunction via reactive oxygen species (ROS) generation; increased 
expression of NADPH oxidase subunits p22phox, gp91phox and p47phox; forma-
tion of peroxynitrite; oxidation of the NOS cofactor BH4 (5,6,7,8-tetrahydrobiop-
terin); and decreased G6PD (glucose-6-phosphate dehydrogenase) [30, 31].

In 1996, at a time when PA was still regarded as a ‘benign’ form of arterial 
hypertension, we reported that PA patients developed more left ventricular (LV) 
hypertrophy (LVH) than age-, sex- and BP-matched essential hypertensive patients, 
[32] and that this was particularly evident in those who showed more florid PA phe-
notypes due to an APA [13]. These findings were thereafter extended to show that 
they are more prone to develop fibrosis, atrial fibrillation [33], vascular remodeling 
[34], endothelial dysfunction [35, 36], increased carotid intima-media thickness 
and femoral pulse wave velocity, more frequently than those with essential hyper-
tension [13, 14, 32, 37].

Moreover, the occurrence of LVH, LV fibrosis, impaired diastolic function, atrial 
dilatation and electric remodeling in PA (rev in [38]) explains why these patients 
were found to have a 12-fold higher risk of developing atrial fibrillation, the most 
common arrhythmia worldwide, than essential hypertensive patients in a French 
retrospective study [39]. Accordingly, adrenalectomy was found to lower the risk 
of atrial fibrillation in PA patients in the long-term longitudinal phase of the PAPY 
study [33]. Collectively these evidences support the concept that aldosterone favors 
atrial fibrillation [38] and that PA patients are more susceptible to heart failure 
with onset of atrial fibrillation [13, 40] because of a ‘stiffer’ LV causing LV diastolic 
dysfunction and fibrosis, which lead to a greater dependency of the LV on the atrial 
kick for its filling.

PA patients also develop more renal damage with development of proteinuria 
and/or chronic kidney disease. In 1988, Danforth et al. first reported moderate to 
severe renal parenchymal damage in renal biopsies of patients with PA [41], a find-
ing confirmed two decades later by Nishimura et al. [42] and, in 2006, by the PAPY 
study, which reported higher albumin excretion rate in PA patients than in matched 
essential hypertensives [14].

The important notion to be considered in this context is that most of the 
hypertension-mediated organ damage associated with PA can be prevented and 
even regressed, at least partially, with a timely diagnosis. For example, in a long-
term observational study, long-term regression of LVH and a decrease incidence of 
AF were documented [43]. Moreover, in the longitudinal phase of the PAPY study, 
we found that incident AF was significantly decreased by adrenalectomy, but not 
by long-term medical treatment [33]. In line with such findings Hundemer et al. 
[40] reported that PA patients with persistently suppressed renin despite treat-
ment with mineralocorticoid receptor antagonists had a higher risk of AF than 
essential hypertensives, or patients on treatment with mineralocorticoid receptor 
antagonists and increased renin (suggesting optimal mineralocorticoid receptor 
blockade), or adrenalectomized PA patients.

A long-term follow-up study by Sechi et al. [44] showed that in PA renal 
damage could be reversed by target treatment, a finding thereafter supported by 
Hundemer et al. [45], who showed that glomerular filtration rate declined more in 
PA patients treated with mineralocorticoid receptor antagonists than in essential 
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hypertension patients and in PA cured with adrenalectomy. Rapid regression of 
microalbuminuria in PA suggests that urinary albumin excretion is, at least in part, 
due to functional rather than structural renal changes, i.e. glomerular hyperfiltra-
tion and decreased intrarenal vascular resistance. Elegant studies by Hall et al. in 
dogs exposed to hyperaldosteronism while renal perfusion pressure was maintained 
constant support this contention [46].

Thus, early screening and identification of PA patients who need surgery is 
needed to prevent/regress morbid events caused by hyperaldosteronism.

4. Screening of PA

The diagnosis of PA requires demonstration of an excessive aldosterone secre-
tion autonomous of the renin-angiotensin system [11]. This implies concomitant 
measurement of plasma aldosterone and renin levels, Na+ and K+ in serum and 
24-hour urine, followed by calculation of the aldosterone-to-renin ratio (ARR) [11]. 
Nowadays, the measurement of direct renin concentration has replaced plasma 
renin activity (PRA) in many laboratories because it is simpler, quicker and more 
accurate in the low range typically seen in PA [47]. However, the optimal cutoff 
value of the ARR is still a matter of debate and for optimal use they should be 
determined at each centre. Based on a prospective validation using a solid diagnosis 
of PA due to APA diagnosed as previously mentioned, we use 2.06 ng/dl/mUI/L 
(=20.6 ng/mUI) if renin is estimated by DRC or 26 ng/dl/ng/ml/h if renin was 
measured as PRA [47]. The aforementioned ARR-App can render the interpretation 
of results straightforward for practicing physicians and avoids the errors that might 
occur with unit conversion and calculations [20].

5. Confirmatory tests

Confirmatory tests are still used in most centres, even though there is clear-cut 
evidence that at the prevalence rate of PA seen in referral centres, i.e. between 11 
and 30%, their negative predictive value largely exceeds their positive predictive 
value [48], and, therefore, these tests function as ‘exclusion tests’. These tests stand 
on the unproven hypothesis that aldosterone secretion is unresponsive to maneuvers 
that perturbate renin. By such premise, they will identify only the subset of PA 
cases that are unresponsive to salt or volume suppression of aldosterone secretion, 
notably a minority of the cases of PA [6, 49].

Therefore, as discussed in depth elsewhere, this is a highly controversial issue 
[49]. Most studies supporting the use of these tests did not follow the STARD recom-
mendations [50]: they attempted to validate the confirmatory tests not against a gold 
reference standard, as the diagnosis of APA, but against another confirmatory test, 
also based on the presumed autonomy of aldosterone secretion from the renin-
angiotensin system [49]. Therefore, they were affected by a tautology bias. The only 
demonstration of CYP11B2-positive nodules at pathology, besides biochemical cure 
of PA after adrenalectomy, provides, in our view, a conclusive diagnosis of PA, which 
can be an APA or unilateral multinodular adrenocortical hyperplasia [5]. Given the 
availability of monoclonal antibodies for human CYP11B2, we recently amended the 
‘four corners’ with the addition of immunohistochemical detection of CYP11B2 in 
the resected adrenal for the diagnosis of APA [3]. Likely considering the complexity 
and the intrinsic inaccuracy of the confirmatory tests, the last Endocrine Society 
guidelines for the first time foresaw the possibility of skipping these tests in patients 
with a florid PA phenotype and to proceed directly to subtyping (see later) [11].
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In a recent large-size study comprising an exploratory and validation cohort, we 
investigated the accuracy of one such ‘confirmatory’ tests, the captopril challenge. 
This study provided unambiguous evidence that when a solid diagnosis of APA 
was used as reference index, the quantitative information conveyed by the ARR 
was accurate enough to avoid use of any confirmatory tests and to skip confirma-
tory tests [51]. In fact, neither the fall of plasma aldosterone concentration after 
captopril administration nor the fall of the ARR value furnished any diagnostic 
gain over baseline ARR values in these two very large cohorts of patients [51]. These 
results call for a simplification of the diagnostic algorithm as depicted in Figure 2. 
This strategy decreases the complexity, costs and time of the diagnostic workup for 
PA and therefore could extend the screening to most hypertensive patients, even in 
municipalities with low levels of access to specialized medical care.

6. Subtyping of PA

The most common forms of PA are unilateral causes of PA, mostly APA and 
rarely unilateral multinodular hyperplasia, and bilateral forms (BAH or IHA).  

Figure 2. 
The flow-chart describes a simplified diagnostic algorithm for the work-up of primary aldosteronism (PA). The 
work up is schematically divided into screening, which is based on measurement of plasma aldosterone and renin 
and levels and calculation of the aldosterone-to-renin ratio (ARR), and subtyping that requires adrenal vein 
sampling (AVS). In the screening, given the important information conveyed by the quantitative value of the 
ARR, this test should not be regarded as positive or negative. Instead its actual value should be used to stratify the 
patients for probability of PA. The ARR value must be assessed in the context of 24-hr Na+ urinary excretion and 
serum K+. See text for explanation. Given the unreliable results of the so called “confirmatory tests”, the authors 
do not recommend their use. A clear-cut advantage of this algorithm is its simplicity with ensuing cutting costs 
and, moreover, its being feasible in most centres. AVS is key for subtyping of primary aldosteronism (PA), which 
is indicated only in patients wishing to accomplish long-term cure. Adrenal imaging by CT should be performed 
preliminarily to AVS for two main reasons: to exclude malignant neoplasms (adrenocortical carcinoma, ACC) 
and to assess the anatomy of adrenal veins which can guide interventionists in performing AVS.
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As unilateral PA is best treated with unilateral laparoscopic adrenalectomy, while 
bilateral forms require lifelong mineralocorticoid receptor antagonists, the distinc-
tion between APA and IHA is crucial for choosing the appropriate treatment [11, 52].

There are at last 10 key reasons why AVS should be used to reliably discriminate 
between unilateral and bilateral PA, as reviewed in depth elsewhere [53]. AVS, 
albeit minimally invasive and safe [54], is technically difficult and expensive 
and potentially affected by several factors [55, 56]. For these reasons it should 
be performed only in properly selected patients and in centres with a skilled 
multidisciplinary team that has extensive expertise [11]. As a preliminary test for 
adrenalectomy, it should be reserved for patients seeking long-term cure of PA with 
surgery, who are reasonable candidates for general anesthesia and adrenalectomy. 
Importantly, AVS should be performed after correction of hypokalaemia, if pres-
ent, and adjustment of antihypertensive medications to allow correct interpretation 
of the AVS results [11]. Patients with genetically confirmed familial forms of PA 
[57] usually have bilateral forms of PA and therefore should not be submitted to this 
test unless they have a CT detectable node.

7. Treatment of PA

The Endocrine Society guidelines [11] state that a lateralized aldosterone 
secretion should be demonstrated before undertaking surgery in patients who are 
candidates for general anesthesia and wish to achieve long-term cure. Laparoscopic 
adrenalectomy is currently the best treatment that it can be performed during a 
short hospital stay at a very low operative risk [58].

Overall, surgery cured PA in 33–72% of patients and resulted in marked 
improvements in 40–50% of patients [54]. This wide variation of results is 
explained by the fact that at some centres adrenalectomy is performed on the basis 
of imaging alone that can be misleading in a substantial proportion of patients [54]. 
When performed after demonstration of lateralized aldosterone, excess adrenal-
ectomy cured or determined a marked improvement of hypertension in ~82% of 
the patients, while practically all were biochemically cured from the hyperaldo-
steronism [54]. Even when antihypertensive treatment cannot be withdrawn after 
adrenalectomy, the number and/or the doses of antihypertensive drugs could be 
markedly decreased, and/or resistant hypertension was resolved at long term [54]. 
Adrenalectomy can also lead to a considerable improvement in several indexes of 
quality of life.

The outcome for blood pressure was found to be predicted by the duration of 
hypertension and vascular remodeling, both of which are associated with delayed 
diagnosis (28). Overall available evidence supports the concept that the sooner 
the diagnosis is made and adrenalectomy performed, the better the outcome [54]. 
Failure to achieve cure of PA can be the result of concurrent essential hypertension 
or an inaccurate diagnosis (AVS not performed or results incorrectly interpreted). 
In fact, both the PASO study [4] and the larger AVIS-2 study (manuscript submit-
ted) showed a huge variability in AVS success even at major referral centres. Due 
to the high prevalence of both PA and primary (essential) hypertension, up to one 
third of patients with PA would be expected to have concurrent primary hyperten-
sion. Adrenalectomy can cure only PA, but not hypertension, in these patients.

For patients who are not candidates for surgery or do not show lateralized aldo-
sterone excess, a treatment based on mineralocorticoid receptor antagonists, such 
as spironolactone, canrenone, potassium canrenoate and eplerenone (which is more 
selective but also more expensive, weaker and shorter acting than the other antago-
nists and is not generally available), is a reasonable alternative to adrenalectomy. 
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Spironolactone was found to regress LVH even at doses (37 mg daily) that did not 
completely normalize BP in both PA and low-renin hypertension, supporting a role 
of aldosterone in LVH development [59]. The occurrence of gynaecomastia and 
impotence, the more annoying side effects of the mineralocorticoid receptor antago-
nists, is dose-dependent, which suggests the use of reduced doses in combination, if 
necessary, with other agents, such as long-acting calcium channel blockers, angio-
tensin-converting enzyme inhibitors or angiotensin receptor blockers. Amiloride 
and triamterene have been also proposed in addition to the first-line treatment with 
mineralocorticoid receptor antagonists if BP control is not optimal [60], but these 
drugs are not available as single agent in some counties, and, moreover, the com-
bined therapy needs monitoring of serum potassium and creatinine. Angiotensin-
converting enzyme inhibitors and angiotensin receptor blockers can be particularly 
useful, as they effectively control the counter-regulatory stimulation of the renin-
angiotensin system triggered by the diuretic action of the mineralocorticoid receptor 
antagonists. Aldosterone synthase inhibitors are also being developed and tested in 
phase III trials as an effective strategy to control hyperaldosteronism [61, 62].

8. Future developments

Mutations in the selectivity filter of potassium channels of the KCNJ5 type and 
other genes involved in the regulation of cytosolic calcium in adrenocortical cells 
[57, 63] play an important role in upregulating aldosterone secretion. Few germline 
mutations associated with bilateral adrenal hyperplasia and severe PA have been 
identified, thus allowing identification of further forms of familial hyperaldo-
steronism (6). These discoveries have triggered enormous investigative efforts, 
whose results, which are difficult to anticipate at this time, might lead to change 
our understanding and our diagnostic and therapeutic approach to PA. For the time 
being, following a few simple rules and a streamlined approach (Figure 2), physi-
cians can successfully and cost-effectively identify and treat many patients with the 
so-called ‘essential’ hypertension whose high blood pressure is instead caused by 
hyperaldosteronism. In these patients the clue to PA is a low plasma renin, which 
responds little nothing to stimulatory maneuvers. Identification of PA is particu-
larly beneficial when hypertension is severe and/or resistant to treatment, because 
specific treatment can bring blood pressure under control despite withdrawal or a 
prominent reduction in the number and dosage of antihypertensive medications.
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Chapter 7

Potential Benefit of 
Mineralocorticoid Receptor 
Antagonists in Kidney Diseases
Jonatan Barrera-Chimal, Lionel Lattenist and Frederic Jaisser

Abstract

Since the last two decades, a major paradigm shift occurred in our understand-
ing of the physiological and pathophysiological roles of the mineralocorticoid 
receptor (MR). Expression of the MR in cells/tissues not involved in sodium/
potassium balance and extracellular volume homeostasis, i.e., the primary role 
of the aldosterone/MR complex, paved the way to the discovery of unsuspected 
implications of MR in a variety of cellular processes and pathological consequences. 
It also opens the possibility for quick translation to the bedside using available MR 
antagonists (MRAs) such as spironolactone, canrenone, or eplerenone or using the 
more recently developed various nonsteroidal MRAs that are not yet marketed. 
Landmark clinical trials like RALES, EPHESUS, or EMPHASIS well established 
that MRAs provide great benefits in patients with heart failure and spironolactone 
or eplerenone have been recommended in these patients. The deep understanding 
provided by preclinical studies in various domains stimulated the possibility to 
extend the use of MRAs to new fields, including renal diseases even if MRAs are 
currently contraindicated or used with great caution in patients with renal function 
impairment due to the higher risk of hyperkalemia associated with MRA therapy 
in this at-risk population. The present review presents preclinical data supporting 
potential indications in renal diseases.

Keywords: aldosterone, renal, hypertension

1.  Pathophysiological basis: MR activation in the kidney—where and 
what are the consequences?

1.1 MR expression in the kidney

Besides the well-known expression of MR in the so-called aldosterone-
sensitive distal nephron (ASDN) encompassing DCT1-2, CNT, and CDD, MR is 
also expressed in a variety of other cell types within the kidney [1–5]. In basal 
condition, MR is expressed in the vasculature in both endothelium [6] and 
smooth muscle cells [1]. MR expression has also been reported in the mesangium 
[7], podocytes [8], fibroblasts [9], and immune cells (macrophages, dendritic 
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Chapter 7

Potential Benefit of 
Mineralocorticoid Receptor 
Antagonists in Kidney Diseases
Jonatan Barrera-Chimal, Lionel Lattenist and Frederic Jaisser

Abstract

Since the last two decades, a major paradigm shift occurred in our understand-
ing of the physiological and pathophysiological roles of the mineralocorticoid 
receptor (MR). Expression of the MR in cells/tissues not involved in sodium/
potassium balance and extracellular volume homeostasis, i.e., the primary role 
of the aldosterone/MR complex, paved the way to the discovery of unsuspected 
implications of MR in a variety of cellular processes and pathological consequences. 
It also opens the possibility for quick translation to the bedside using available MR 
antagonists (MRAs) such as spironolactone, canrenone, or eplerenone or using the 
more recently developed various nonsteroidal MRAs that are not yet marketed. 
Landmark clinical trials like RALES, EPHESUS, or EMPHASIS well established 
that MRAs provide great benefits in patients with heart failure and spironolactone 
or eplerenone have been recommended in these patients. The deep understanding 
provided by preclinical studies in various domains stimulated the possibility to 
extend the use of MRAs to new fields, including renal diseases even if MRAs are 
currently contraindicated or used with great caution in patients with renal function 
impairment due to the higher risk of hyperkalemia associated with MRA therapy 
in this at-risk population. The present review presents preclinical data supporting 
potential indications in renal diseases.

Keywords: aldosterone, renal, hypertension

1.  Pathophysiological basis: MR activation in the kidney—where and 
what are the consequences?
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Besides the well-known expression of MR in the so-called aldosterone-
sensitive distal nephron (ASDN) encompassing DCT1-2, CNT, and CDD, MR is 
also expressed in a variety of other cell types within the kidney [1–5]. In basal 
condition, MR is expressed in the vasculature in both endothelium [6] and 
smooth muscle cells [1]. MR expression has also been reported in the mesangium 
[7], podocytes [8], fibroblasts [9], and immune cells (macrophages, dendritic 
cells, T lymphocytes) [10–13]. In Figure 1, we summarize the effects reported for 
MR antagonists in different target cells within the kidney that represent potential 
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beneficial mechanisms acting against kidney disease progression, and that will be 
detailed below. It is important to mention that MR expression might be upregu-
lated in some pathological conditions such as diabetes [14], heavy proteinuria 
[15], vascular aging [16], and hypertension [17], leading to potential increased 
MR signaling. The specific physiological role of MR in the cells where its expres-
sion has been reported remains to be elucidated; however, it was recently pro-
posed that MR in endothelial, smooth muscle, and inflammatory cells may be an 
evolutionary mechanism to prevent hemorrhage by promoting vasoconstriction 
and thrombosis and to promote wound healing by the activation of inflammation 
and vascular remodeling [18].

1.2 MR activation: what is the ligand?

The classical ligand of the MR is aldosterone, but glucocorticoids can bind 
with similar affinity with that of MR. Of note ligand-receptor dissociation is 
faster for glucocorticoid than aldosterone, resulting in higher transactivation 
potency for aldosterone as compared to glucocorticoids, especially at low con-
centration. However, a selectivity mechanism allows aldosterone to preferentially 
activate the MR in the presence of glucocorticoids, despite much higher local 
concentration of glucocorticoids than aldosterone. The 11β-hydroxysteroid dehy-
drogenase type 2 (11β-HSD2) converts corticosterone/cortisol to compounds with 
low affinity for the MR [19]. The cellular aldosterone/glucocorticoid selectivity 
therefore depends on the expression level/activity of the HSD2. In the kidney, 
cells from the ASDN and endothelium express HSD2, while this is debated for the 
smooth muscle cells [20]. In podocytes, mesangial cells, and immune cells, for 
example, HSD2 is not expressed, therefore supporting the fact that glucocorti-
coids may be the main ligands of MR in these cells. It should be stressed, however, 
that there may be species differences as well as induction of HSD2 expression in 
some pathological conditions, allowing aldosterone to activate MR. This has not 
been carefully analyzed yet [1].

Figure 1. 
MR antagonists display beneficial effects against kidney diseases by acting in several cell types and by different 
mechanisms.
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1.3 Major pathophysiological mechanisms involved in MR and kidney diseases

1.3.1 MR and renal hemodynamic alterations

Experimental evidence in rodent models of acute kidney injury (AKI) supports 
the concept that MR contributes to vascular tone regulation [1]. The benefit of MRA 
in renal ischemia-reperfusion injury is associated with improved renal hemody-
namics and decreased renal vascular resistance [21, 22]. We recently showed that 
MR expressed in mouse smooth muscle cells contributes to renal injury induced 
by ischemia (through a mechanism involving oxidative stress and Rac1 activation) 
[23], as well as in acute CsA nephrotoxicity (due to increased vascular L-type 
calcium channel activity thereby resulting in decreased renal artery vasoconstric-
tion and overall improvement in renal hemodynamics) [24]. Of note, the endothe-
lial MR was not directly involved since endothelial MR gene inactivation had no 
effect in ischemia-reperfusion or CsA-induced renal injuries [23, 24]. Whether MR 
expressed in the renal vasculature contributes to renal injury in other settings like 
diabetes or chronic kidney diseases remains to be explored.

1.3.2 MR and oxidative stress

Multiple in vitro and in vivo studies have shown the significance of oxidative 
stress induced by aldosterone/MR and its detrimental consequences on kidney 
injury. In vivo, the DOCA-salt causes oxidative DNA damage [25], and aldosterone 
infusion produces an MR-dependent increase in NADPH oxidase activity and ROS 
generation in the kidney [26, 27]. MR expressed in the smooth muscle cell may 
have a major role as we recently demonstrated in ischemia-reperfusion injury using 
smooth muscle MR KO mice [23]. In vascular cells, aldosterone increased ROS 
which in turn modifies the cysteinyl thiols in the eNOS-activating region of endo-
thelin-1 B receptor to decrease endothelin-1-stimulated eNOS activity, impairing 
the vasodilatory pathway. These effects have repercussions on renal hemodynamics 
and function in kidney ischemia/reperfusion injury in both rat and mouse [21–23]. 
In rat mesangial cells, aldosterone directly stimulates superoxide anion generation, 
which is accompanied by an increase in NADPH oxidase activity and translocation 
of p47phox and p67phox to the cell membrane [28]. Moreover, recent studies have 
shown that aldosterone induces mesangial cell apoptosis and that the administra-
tion of an antioxidant or MR antagonist attenuates the proapoptotic effects of 
aldosterone [29]. The increase in NADPH oxidase Nox2 plasma levels and urinary 
isoprostanes is also observed in patients with primary aldosteronism as compared to 
essential hypertensive patients [30]. Interestingly, adrenalectomy is associated with 
a reduction in both parameters [30]. Moreover, therapeutic MR antagonism reduced 
oxidative stress in diabetic [31] or kidney transplant patients [32].

1.3.3 MR and inflammation

A role for MR signaling in inflammation has been suggested since early studies 
showing that the treatment of rats with aldosterone and salt causes perivascular 
leukocyte infiltration and increased expression of inflammatory markers [1]. 
More recently, macrophages, dendritic cells, and T lymphocytes have been identi-
fied as MR-expressing cells [1, 11, 33]. The use of genetically modified mouse 
model deficient of MR in myeloid cells revealed that myeloid MR contributes to 
renal injury in a glomerulonephritis mouse model [8]. Moreover, our recent work 
showed that myeloid MR participates to CKD progression induced by AKI [34]. 
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essential hypertensive patients [30]. Interestingly, adrenalectomy is associated with 
a reduction in both parameters [30]. Moreover, therapeutic MR antagonism reduced 
oxidative stress in diabetic [31] or kidney transplant patients [32].
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showing that the treatment of rats with aldosterone and salt causes perivascular 
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showed that myeloid MR participates to CKD progression induced by AKI [34]. 
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The deletion of MR in myeloid cells favored M2 polarization of renal macrophages 
leading to improved tissue repair and prevention of renal scaring, decreased 
function, and interstitial fibrosis. Interestingly MRA administration using the 
nonsteroidal MRA finerenone has similar effects, blunting CKD development after 
ischemia-reperfusion injury in rodents [22, 34] and in the large white pig [34]. The 
role of myeloid MR in the progression of CKD in other models of kidney disease has 
to be further studied. The role of MR expressed in T cell has not been explored in 
kidney disease. However, T-cell MR knockout mice prevented cardiac hypertrophy, 
fibrosis, and dysfunction compared with littermate control mice after abdominal 
aortic constriction suggesting that MR in T cells may also play a pro-inflammatory 
role [13]. In dendritic cells, MR stimulation with aldosterone induces the secretion 
of IL-6 and TGF-β, two pro-inflammatory cytokines able to polarize the adaptive 
immune response toward a Th17 phenotype [35]. MR antagonism with spironolac-
tone reduced heart and kidney damage in a hypertension rat model due to blockade 
of Th17 polarization and the induction of regulatory T cells [36]. Pharmacological 
MR blockade improves the chronic inflammatory state associated with CV disease 
[1, 33]. Altogether, these data suggest that aldosterone/MR modulates innate and 
adaptive immunity, which may have a critical role in end-organ damage.

1.3.4 MR and fibrosis

Fibrosis and extracellular matrix remodeling is a well-documented effect of 
MR activation in various tissues, including the kidney [1]. Aldosterone induces 
pro-fibrotic cytokine production and accumulation of collagen and other extra-
cellular matrix components [9, 37, 38]. Aldosterone administration is associated 
with an increase in renal TGF-β, collagen, and connective tissue growth factor 
expression and medullary and cortical fibrosis [39]. Aldosterone also influences 
the production of plasminogen activator inhibitor-1 leading to glomerulosclerosis 
[40]. MR activation in renal fibroblasts results in rapid activation of growth factor 
receptors and induction of PI3K/MAPK signaling, which stimulates proliferation 
and therefore contributes to fibrosis expansion [41]. Several molecular MR targets 
may be involved in the pro-fibrotic response of Aldo/MR signaling. We recently 
deeply explored the role of neutrophil gelatinase-associated lipocalin (NGAL) that 
we identified as a novel aldosterone/MR target [42]. NGAL induction by the MR 
might be a mechanism for MR-induced fibrosis since mice deficient in NGAL are 
protected from aldosterone-induced kidney fibrosis (Jaisser, unpublished data). 
Galectin-3 also mediates the pro-fibrotic effects of aldosterone-MR, and galectin-3 
KO mice are protected against aldosterone-induced kidney fibrosis [43]. Taken 
together increased MR activation which may promote kidney fibrosis by inducing 
fibroblast proliferation and the production of several pro-fibrotic molecules.

2.  Preclinical data supporting the benefit of MR antagonists (MRA) in 
kidney diseases

2.1  Benefit of MRA on acute kidney injury (AKI) induced by ischemia/
reperfusion (IR)

A reduction of renal blood flow is occurring in several clinical settings, and this 
is a major cause of AKI. A number of studies in rodents and in the Large White Pig 
preclinical model have shown that MR antagonism with steroidal and nonsteroidal 
MRAs prevents and treats AKI induced by IR. In an early study, it was shown that 
spironolactone is a useful strategy to prevent the acute kidney dysfunction and 
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tubular injury induced by bilateral renal IR injury in the rat [44]. The sustained 
reduction in renal blood flow observed after 24 hours in the IR-untreated rats 
was prevented in the spironolactone-treated groups. This was reproduced using 
nonsteroidal MRAs in both rats and mice [21–23] leading to the discovery of a novel 
underlying mechanism related to the limitation of oxidative stress and impaired 
endothelin-B receptor signaling [21, 22]. Importantly MRA also have curative 
effects when administered within the first 3 hours post ischemia-reperfusion [21, 
45, 46]. The benefit of MR antagonists in ischemic AKI was translated into the 
Large White Pig preclinical model in which MR antagonism with soludactone 
(potassium canrenoate, a soluble MRA used in clinics) prevented the effects of AKI 
including kidney dysfunction and structural injuries [23].

2.2 AKI to CKD transition

In recent years, special focus has been given to the chronic consequences of 
an AKI episode. Several clinical and experimental studies have shown that AKI is 
linked with increased risk for CKD development.

In the rat, CKD progression induced by a single event of ischemic AKI (charac-
terized by proteinuria, kidney dysfunction, and severe structural injury including 
interstitial fibrosis, glomerulosclerosis, tubule dilation, and podocyte injury) is 
prevented by spironolactone [45] and finerenone [22, 47]. MR antagonism also 
prevents CKD induced by a mild ischemic period even when administered 3 hours 
after the ischemia episode [48]. The underlying mechanisms rely on the limitation 
of inflammatory events and the promotion of repair mechanisms held by M2-type 
macrophages and interleukin-4 receptor signaling [34]. Importantly, these benefits 
are also observed in the Large White Pig model: short-term soludactone administra-
tion before/after the ischemic event indeed prevents CKD progression at 3 months, 
with a reduction in fibrosis and proteinuria and improved renal function [34]. The 
data indicate that MRA treatment is an encouraging therapeutic option to prevent 
the AKI to CKD transition which identifies the MR expressed in inflammatory cells 
as a specific target in this setting.

2.3 MR antagonism in kidney fibrosis and CKD progression

Kidney fibrosis is a common endpoint of CKD from different origins. 
Accumulating evidences indicate that aldosterone and/or MR signaling plays a 
key role in CKD development in a number of animal models including nephron 
reduction [49, 50], hypertensive models [51, 52], unilateral ureteral obstruction 
[53, 54], and mineralocorticoid/salt models [55]. MR antagonism not only prevents 
glomerulosclerosis in the remnant kidney model but also induces regression of 
glomerulosclerosis as evidenced by Aldigier et al. on kidney biopsy 4 weeks after 
spironolactone treatment initiation in rats already presenting CKD [56]. Eplerenone 
also limited proteinuria in this model [50]. Renal injury observed in the Dahl-
sensitive rat upon salt loading is greatly limited by eplerenone [57, 58] and the 
nonsteroidal MRA CS-3150 [59]. This may be related to a direct effect on podocyte, 
as underlined by Shibata et al., involving activation of Rac1 and possible increased 
Rac1-mediated transactivation of the podocyte MR [60].

2.4 Benefit of MR blockade in diabetic nephropathy

The beneficial effects of MRA in different models of type I and type II diabetic 
nephropathy or kidney injury related to metabolic disorders have been reported. 
Spironolactone administration for 3 weeks reduced renal collagen deposition in 
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STZ-induced diabetic rats [61]. This was thereafter reported for other MRAs such 
as eplerenone [62]. MRAs are also efficient in limiting progression of diabetic 
nephropathy in models of type 2 diabetes. Eplerenone reduced albuminuria, glo-
merular hypertrophy, and mesangial expansion in the db/db mouse model [62]. The 
novel nonsteroidal MRA AZ9977 has similar effects [63]. In the Otsuka Long-Evans 
Tokushima Fatty (OLETF) rats or Zucker obese rats, similar benefits have been 
reported after MRA treatment [64, 65].

2.5 Calcineurin inhibitor toxicity and kidney transplantation

Some studies showed a benefit of MR blockade in acute and chronic CsA 
nephrotoxicity, including effects on preventing structural and functional 
alterations [66–68]. The underlying mechanisms leading to this protection rely 
on hemodynamic effects (blunting the sustained vasoconstriction induced by 
CNI) [24, 68] or renal extracellular matrix remodeling [67]. The effect of MRA 
in experimental kidney transplantation has been tested in a model of chronic 
allograft dysfunction in the Dark-Agouti to Wistar-Furth rat with a reduced vas-
culopathy and glomerular macrophage influx and a trend to reduced proteinuria 
and glomerulosclerosis [69].

2.6 Glomerulonephritis and MR blockade

Although few studies have addressed this issue, it has been reported that spi-
ronolactone and the nonsteroidal MRA BR-4628 are beneficial in mouse models 
of glomerulonephritis [70–72]. The myeloid MR seems to play a key role in the 
kidney since genetic deletion of MR in myeloid cells, but not in podocyte, blunted 
glomerulonephritis development [8].

3. Conclusion

Preclinical evidences clearly support the concept of a benefit of MR antagonism 
to treat or delay kidney diseases from different origins including ischemic kidney 
disease, diabetic and hypertensive nephropathy, glomerulonephritis, and calcineurin 
inhibitor toxicity in the context of kidney transplant. The underlying mechanisms 
rely on improving local hemodynamics and reducing extracellular matrix remodeling 
and local inflammation (Figure 1). Whether this translates in clinics is already largely 
supported by several clinical trials, but definitive answers should be provided by well-
designed, large clinical trials based on hard renal outcomes like limitation of CKD pro-
gression and/or cardiovascular outcomes. A recent study showed that in patients with 
heart failure with preserved ejection fraction, spironolactone treatment decreased the 
relative risk for cardiovascular death, heart failure hospitalization, or aborted cardiac 
arrest, despite an increase in the hyperkalemia risk [73]. Novel therapeutics limiting 
the risk of hyperkalemia upon MRA use is also warranted in these at-risk populations.
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STZ-induced diabetic rats [61]. This was thereafter reported for other MRAs such 
as eplerenone [62]. MRAs are also efficient in limiting progression of diabetic 
nephropathy in models of type 2 diabetes. Eplerenone reduced albuminuria, glo-
merular hypertrophy, and mesangial expansion in the db/db mouse model [62]. The 
novel nonsteroidal MRA AZ9977 has similar effects [63]. In the Otsuka Long-Evans 
Tokushima Fatty (OLETF) rats or Zucker obese rats, similar benefits have been 
reported after MRA treatment [64, 65].

2.5 Calcineurin inhibitor toxicity and kidney transplantation

Some studies showed a benefit of MR blockade in acute and chronic CsA 
nephrotoxicity, including effects on preventing structural and functional 
alterations [66–68]. The underlying mechanisms leading to this protection rely 
on hemodynamic effects (blunting the sustained vasoconstriction induced by 
CNI) [24, 68] or renal extracellular matrix remodeling [67]. The effect of MRA 
in experimental kidney transplantation has been tested in a model of chronic 
allograft dysfunction in the Dark-Agouti to Wistar-Furth rat with a reduced vas-
culopathy and glomerular macrophage influx and a trend to reduced proteinuria 
and glomerulosclerosis [69].

2.6 Glomerulonephritis and MR blockade

Although few studies have addressed this issue, it has been reported that spi-
ronolactone and the nonsteroidal MRA BR-4628 are beneficial in mouse models 
of glomerulonephritis [70–72]. The myeloid MR seems to play a key role in the 
kidney since genetic deletion of MR in myeloid cells, but not in podocyte, blunted 
glomerulonephritis development [8].

3. Conclusion

Preclinical evidences clearly support the concept of a benefit of MR antagonism 
to treat or delay kidney diseases from different origins including ischemic kidney 
disease, diabetic and hypertensive nephropathy, glomerulonephritis, and calcineurin 
inhibitor toxicity in the context of kidney transplant. The underlying mechanisms 
rely on improving local hemodynamics and reducing extracellular matrix remodeling 
and local inflammation (Figure 1). Whether this translates in clinics is already largely 
supported by several clinical trials, but definitive answers should be provided by well-
designed, large clinical trials based on hard renal outcomes like limitation of CKD pro-
gression and/or cardiovascular outcomes. A recent study showed that in patients with 
heart failure with preserved ejection fraction, spironolactone treatment decreased the 
relative risk for cardiovascular death, heart failure hospitalization, or aborted cardiac 
arrest, despite an increase in the hyperkalemia risk [73]. Novel therapeutics limiting 
the risk of hyperkalemia upon MRA use is also warranted in these at-risk populations.
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Abstract

In addition to the well-documented role in the kidney, the mineralocorticoid 
receptor (MR) has been recently identified in different “non-classical” target tissues, 
such as the brain, the heart, vasculature, macrophages/monocytes, and adipose tis-
sue. In this context, the MR is involved in adipocyte fundamental processes such as 
differentiation, autophagy, and adipokine secretion. Excessive activation of the MR 
contributes to metabolic derangements occurring in mice with obesity and metabolic 
syndrome. Interestingly, MR pharmacological blockade in murine models of obesity 
has led to protection from weight gain and adipocyte dysfunctions. Unfortunately, 
there is still a lack of knowledge on the metabolic effects of MR antagonists, and 
larger clinical studies are deemed necessary to clarify the metabolic role of MR 
blockade in humans. This review discusses the role of MR in adipose tissue, focus-
ing on regulation by MR of key cellular processes occurring in the adipocyte. The 
molecular pathways affected by MR activation or blockade in adipose tissue have 
been investigated only in part. Hence, more studies are necessary to get more insights 
in the role of aldosterone/MR in this “non-classical” target tissue and to better 
understand its potential implications in obesity and metabolic syndrome.

Keywords: adipose tissue, autophagy, browning, insulin resistance, obesity

1. Introduction

Mineralocorticoid receptor (MR) activity in the distal nephron plays a well-known 
role in salt homeostasis and blood pressure regulation [1]. Importantly, studies per-
formed since the late 1980s by different laboratories have revealed the presence of MR 
also in non renal tissues (i.e., heart, brain, adipose tissue (AT)) [2–4]. The discovery 
of expression of MR in adipocytes, cardiomyocytes, and vascular cells has promoted 
further research to investigate MR function in the pathophysiology of obesity [5–7], 
cardiovascular disease [8–10], and metabolic syndrome [11]. Both aldosterone and 
glucocorticoids are able to activate MR [12]. Expression of the enzyme 11b-hydroxys-
teroid dehydrogenase type 2 (11b-HSD2) favors MR activation by aldosterone in 
epithelial tissues, whereas in non-epithelial tissues (AT, cardiomyocyte), scarce 
expression of 11b-HSD2 suggests that MR is activated mainly by glucocorticoids [12]. 
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1. Introduction

Mineralocorticoid receptor (MR) activity in the distal nephron plays a well-known 
role in salt homeostasis and blood pressure regulation [1]. Importantly, studies per-
formed since the late 1980s by different laboratories have revealed the presence of MR 
also in non renal tissues (i.e., heart, brain, adipose tissue (AT)) [2–4]. The discovery 
of expression of MR in adipocytes, cardiomyocytes, and vascular cells has promoted 
further research to investigate MR function in the pathophysiology of obesity [5–7], 
cardiovascular disease [8–10], and metabolic syndrome [11]. Both aldosterone and 
glucocorticoids are able to activate MR [12]. Expression of the enzyme 11b-hydroxys-
teroid dehydrogenase type 2 (11b-HSD2) favors MR activation by aldosterone in 
epithelial tissues, whereas in non-epithelial tissues (AT, cardiomyocyte), scarce 
expression of 11b-HSD2 suggests that MR is activated mainly by glucocorticoids [12]. 
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However, it is still controversial whether increased circulating levels of aldosterone 
observed in obesity, metabolic syndrome, and primary aldosteronism (PA) can 
activate MR in non-epithelial tissues [13] and, in particular, in the adipocyte where 
this transcription factor regulates differentiation and modulates oxidative stress and 
adipokine expression [6, 14, 15]. Notably, preclinical studies in murine models of obe-
sity suggest that MR blockade counteracts fat mass expansion and improves insulin 
sensitivity, indicating that pharmacological antagonism of MR may represent a valid 
approach to fight obesity [5, 6], even though human studies have not yet confirmed 
such anti-obesogenic effects for MR antagonists.

Although a deeper comprehension of MR function in the adipose cell, at a molecu-
lar level, requires further research, it appears clear right now that adipocyte-specific 
MR represents a topic of future research on AT dysfunctions and obesity.

This review examines the state of the art of research on adipocyte MR, describes 
AT function, and analyzes the contribution of altered function of MR in the patho-
physiology of obesity and metabolic syndrome.

2. Adipose organ function

Adipose tissue is composed of two distinct types of fat: white adipose tissue (WAT) 
and brown adipose tissue (BAT) with distinct morphology and function. Both types of 
fat affect whole-body metabolism.

The adipose organ represents a multi-depot organ consisting of subcutaneous 
and visceral fat depots with a marked cellular heterogeneity, containing adipo-
cytes, preadipocytes, endothelial cells, fibroblasts, and immune cells [16, 17]. The 
adipocyte is the most relevant cell type in the AT and mammals display at least two 
distinct types of adipocytes, characterized by diverse morphology and physiological 
function. White adipocytes are unilocular spherical cells with a peripheral flattened 
nucleus and a single large cytoplasmic lipid droplet. White adipocytes are cells 
specialized for storing energy in the form of triglycerides and display endocrine 
properties, being able to synthesize and release secretory proteins called “adipo-
kines” involved in regulation of whole-body energy metabolism [16, 17]. On the 
other hand, brown adipocytes display a round central nucleus and a high number 
of cytoplasmic lipid droplets and mitochondria. Mitochondria in brown adipocytes 
are characterized by the expression of uncoupling protein 1 (UCP1) which is the 
hallmark of the brown adipocyte. UCP1 is a unique protein which allows uncoupling 
of oxidative phosphorylation from ATP synthesis, leading to dissipation of chemical 
energy as heat (non-shivering thermogenesis) [18]. WAT has storage and secretory 
function and contains mainly white adipocytes. In the brown adipose tissue (BAT), 
with thermogenic function, the prevalent type of adipocyte is the brown adipocyte. 
BAT function is regulated by the sympathetic nervous system, and its thermogenic 
activity maintains body temperature in the presence of cold exposure or during post-
natal period [19]. Up until a few years ago, BAT function was considered relevant 
only in hibernating mammals and newborn humans, whereas adult humans were 
thought to lack BAT [20]. Notably, studies published in 2007 and 2009 performed 
using fluorodeoxyglucose positron-emission tomography (FDG PET) [21, 22] have 
revealed the presence of functional BAT also in healthy adult humans, detected as 
regions of increased tracer uptake [22, 23]. Human BAT has been detected in the 
supraclavicular and cervical regions, as well as in mediastinal, paravertebral, para-
aortic, and suprarenal regions [21]. Cold exposure results in BAT activation both in 
mice and humans [24, 25] with parallel increase in energy expenditure and reduced 
fat mass, thus suggesting that BAT activity enhancement may be considered a valid 
approach to fight obesity also in humans [26].
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3. Adipose tissue dysfunctions in obesity

Dysfunctional adipose tissue is characterized by enlarged size of the adipocyte, altered 
expression of adipokines, pro-inflammatory polarization of resident macrophages, and 
defective thermogenic capacity.

Altered metabolic regulation of AT leads to excessive WAT expansion through 
two possible mechanisms: increased cell number (hyperplasia) and/or increased 
cell size (hypertrophy) [27]. Deregulated enlargement of adipocyte size promotes 
macrophage recruitment within WAT, through production of chemokines such as 
MCP-1 and IL-8. Macrophage recruitment is also associated with changes in macro-
phage polarization toward a pro-inflammatory phenotype (M1), which contributes 
to insulin sensitivity alteration [28]. Increased content of immune cells such as 
CD8+ T cells and IFN-γ+T-helper type 1 cells, in the AT of obese subjects, may 
contribute to the low-grade chronic inflammation associated with obesity [29]. In 
the obese state, altered expansion of WAT is also accompanied by increased secre-
tion of pro-inflammatory adipokines, such as leptin, TNF-α, and IL-6, paralleled 
by a reduced secretion of anti-inflammatory and insulin-sensitizing adipokines, 
thus promoting obesity-related complications. As discussed above, preclinical and 
human studies suggest that enhanced activity of brown adipocytes by stimulating 
thermogenic function can protect against obesity and associated alterations in 
glucose metabolism and lipid profile [24, 30]. Importantly, reduced amounts of 
BAT have been observed in overweight and obese subjects, indicating that impair-
ment in brown adipocyte activity may favor AT dysfunctions [22]. Indeed, a recent 
study has shown that a specific single-nucleotide T to C variant in the FTO locus 
promotes obesity development through inactivation of genes involved in brown 
adipogenesis, further confirming the importance of the brown fat in counteracting 
AT metabolic alterations [31].

In the adipocyte, MR has a central role in signaling pathways regulating physiol-
ogy and pathophysiology of AT. Research on MR function in AT has been summa-
rized and discussed in the paragraphs below.

4. MR in adipogenesis

MR plays a key role in regulating adipogenesis. Overactivation of MR promotes adi-
pose tissue dysfunction. On the other hand, MR antagonism counteracts white adipocyte 
differentiation and promotes brown adipogenesis.

The role of MR has been studied in adipocyte cultures and in murine models 
of obesity. MR activity has been shown to promote expression of adipocyte mark-
ers and stimulate differentiation of 3T3-L1 adipose cell cultures (Figure 1) [14], 
whereas MR antagonism counteracts adipogenesis in 3T3-L1 cells as well as in pri-
mary human adipocytes [32, 33]. In accordance with these data, primary adipocyte 
cultures obtained from mice knockout for MR have shown impaired adipogenesis 
[34], as well as knockdown of MR in cultures of human preadipocytes represses dif-
ferentiation [32]. Altogether, these data show that MR impaired function represses 
white adipocyte differentiation. Notably, in vivo studies show increased expression 
of MR in adipose tissue of obese mice and humans, suggesting enhanced activity 
of this receptor in the obese state which may contribute to adipocyte dysfunctions 
[11]. Pharmacological MR antagonism in obese mice counteracts weight gain and 
excessive expansion of fat mass [5, 6] and, at a molecular level, prevents altered 
expression of adiponectin, PPAR-γ, and leptin [15] confirming that MR activity 
modulates expression of adipocyte marker genes and regulates AT function. Recent 
data by Feraco et al. have shown that adipocyte-specific MR-KO mice do not show 
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mice and humans [24, 25] with parallel increase in energy expenditure and reduced 
fat mass, thus suggesting that BAT activity enhancement may be considered a valid 
approach to fight obesity also in humans [26].
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3. Adipose tissue dysfunctions in obesity

Dysfunctional adipose tissue is characterized by enlarged size of the adipocyte, altered 
expression of adipokines, pro-inflammatory polarization of resident macrophages, and 
defective thermogenic capacity.

Altered metabolic regulation of AT leads to excessive WAT expansion through 
two possible mechanisms: increased cell number (hyperplasia) and/or increased 
cell size (hypertrophy) [27]. Deregulated enlargement of adipocyte size promotes 
macrophage recruitment within WAT, through production of chemokines such as 
MCP-1 and IL-8. Macrophage recruitment is also associated with changes in macro-
phage polarization toward a pro-inflammatory phenotype (M1), which contributes 
to insulin sensitivity alteration [28]. Increased content of immune cells such as 
CD8+ T cells and IFN-γ+T-helper type 1 cells, in the AT of obese subjects, may 
contribute to the low-grade chronic inflammation associated with obesity [29]. In 
the obese state, altered expansion of WAT is also accompanied by increased secre-
tion of pro-inflammatory adipokines, such as leptin, TNF-α, and IL-6, paralleled 
by a reduced secretion of anti-inflammatory and insulin-sensitizing adipokines, 
thus promoting obesity-related complications. As discussed above, preclinical and 
human studies suggest that enhanced activity of brown adipocytes by stimulating 
thermogenic function can protect against obesity and associated alterations in 
glucose metabolism and lipid profile [24, 30]. Importantly, reduced amounts of 
BAT have been observed in overweight and obese subjects, indicating that impair-
ment in brown adipocyte activity may favor AT dysfunctions [22]. Indeed, a recent 
study has shown that a specific single-nucleotide T to C variant in the FTO locus 
promotes obesity development through inactivation of genes involved in brown 
adipogenesis, further confirming the importance of the brown fat in counteracting 
AT metabolic alterations [31].

In the adipocyte, MR has a central role in signaling pathways regulating physiol-
ogy and pathophysiology of AT. Research on MR function in AT has been summa-
rized and discussed in the paragraphs below.

4. MR in adipogenesis

MR plays a key role in regulating adipogenesis. Overactivation of MR promotes adi-
pose tissue dysfunction. On the other hand, MR antagonism counteracts white adipocyte 
differentiation and promotes brown adipogenesis.

The role of MR has been studied in adipocyte cultures and in murine models 
of obesity. MR activity has been shown to promote expression of adipocyte mark-
ers and stimulate differentiation of 3T3-L1 adipose cell cultures (Figure 1) [14], 
whereas MR antagonism counteracts adipogenesis in 3T3-L1 cells as well as in pri-
mary human adipocytes [32, 33]. In accordance with these data, primary adipocyte 
cultures obtained from mice knockout for MR have shown impaired adipogenesis 
[34], as well as knockdown of MR in cultures of human preadipocytes represses dif-
ferentiation [32]. Altogether, these data show that MR impaired function represses 
white adipocyte differentiation. Notably, in vivo studies show increased expression 
of MR in adipose tissue of obese mice and humans, suggesting enhanced activity 
of this receptor in the obese state which may contribute to adipocyte dysfunctions 
[11]. Pharmacological MR antagonism in obese mice counteracts weight gain and 
excessive expansion of fat mass [5, 6] and, at a molecular level, prevents altered 
expression of adiponectin, PPAR-γ, and leptin [15] confirming that MR activity 
modulates expression of adipocyte marker genes and regulates AT function. Recent 
data by Feraco et al. have shown that adipocyte-specific MR-KO mice do not show 
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changes in AT function or glucose tolerance, under both normal diet and high-fat 
diet (HFD), indicating a negligible role of MR in AT [35]. Nevertheless, these 
transgenic mice express a Cre-recombinase protein (adipoq-Cre) which removes 
MR only in mature adipose cells. This may indicate that MR activity is not required 
in mature adipose cells, suggesting that MR modulation may be crucial in regulating 
early stages of white adipogenesis.

Studies by Lombes and collaborators have shown that MR is expressed in brown 
adipocytes [36] where MR activation represses expression of UCP1 (Figure 1), 
which confers thermogenic function to BAT [37]. In accordance with these data, 
more recent studies by Caprio and colleagues revealed that MR blockade promotes 
brown adipogenesis in cultures of mouse primary preadipocytes derived from 
inguinal AT increasing expression of brown adipocyte markers such as PRDM16, 
CIDEA, and PPAR-γ coactivator 1α (PGC1-α) [5]. Moreover, mice upon pharmaco-
logical MR blockade showed upregulated expression of these markers in BAT, with 
a parallel increase in BAT activity, confirming the impact of MR function on brown 
adipocyte function also in vivo [5].

5. MR involvement in “browning” of adipose tissue

Appearance of brown-like (brite) adipocytes in murine WAT takes place upon cold 
exposure. In mice, treatment with MR antagonist has been shown to promote browning 
and protect against fat mass expansion.

White and brown adipocytes display distinct embryonic origin. White adipocytes 
are derived from myogenic factor 5 (myf5)-negative progenitors, whereas classical 
brown adipocytes (and skeletal muscle cells) are derived from myf5-positive precur-
sors [38]. In addition, studies by Spiegelman and collaborators have identified a third 

Figure 1. 
Involvement of MR in the pathophysiology of adipose tissue. MR overactivation results in detrimental effects 
on adipocyte metabolism. Upregulated activity of adipocyte MR promotes expression of enzymes involved in 
reactive oxygen species (ROS) production and pro-inflammatory adipokines such as TNF-α and IL-6. In the 
adipocyte, increased function of MR stimulates the autophagic flux which, in turn, promotes white adipocyte 
differentiation. Altogether, these effects lead to alterations of adipose tissue metabolism. MR activation also 
represses brown adipogenesis, reducing thermogenic capacity and favoring adipose tissue dysfunctions.
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type of adipocyte, termed “beige” (or “brite”), localized in murine WAT depots [39]. 
These “brown-like” adipocytes display classical brown adipocyte morphological and 
biochemical features (several cytoplasmic lipid droplets and high number of mito-
chondria), even if they are derived from myf5-negative precursors [26]. Importantly, 
β-adrenergic stimulation results in increased levels in UCP1 and uncoupled respira-
tion rate in beige adipocytes, leading to the acquisition of brown fat features by WAT 
[39], a process known as “browning,” and several preclinical studies have shown 
that browning protects mice against glucose and AT dysfunctions. Transgenic mice 
with fat tissue-specific overexpression of PRDM16, a transcriptional regulator 
involved in brown adipocyte development, displayed brite adipocyte formation in 
inguinal WAT. These mice also showed increased energy expenditure and improved 
glucose tolerance with high-fat feeding and parallel reduction in weight gain and 
fat mass [40]. Accordingly, another study showed that transgenic mice lacking 
PRDM16 in AT display defective browning, obesity, and insulin resistance, strongly 
indicating that brite adipocyte function, at least in mice, affects AT metabolism and 
whole-body energy expenditure [41]. Treatment of mice fed with HFD with the MR 
antagonists spironolactone (spiro) or drospirenone resulted in browning of white fat 
depots, reduced weight gain, and decreased fat mass expansion, as well as improved 
glucose tolerance [5]. In this study, transcriptional induction of a thermogenic gene 
program by MR antagonism was observed both in mice and in primary cultures of 
mouse adipocytes treated with spiro and drospirenone, indicating that MR blockade-
mediated browning is cell autonomous.

However, further studies are required to better understand the molecular 
mechanisms regulated by MR which affect the thermogenic gene program of brite 
adipocytes.

The negative causal link between MR signaling and browning of WAT has been 
confirmed by Pisani et al. with Task1 −/− mice lacking the TWIK-related acid-
sensitive K+ channel. These mice displayed increased WAT mass and impaired 
browning, as well as reduced BAT activity upon adrenergic stimulation. In brown 
adipocytes from Task1 −/− mice, MR antagonist treatment was able to rescue 
defective expression of UCP1, suggesting that the absence of Task1 activity can 
result in enhancement of MR function and subsequent downregulated expression 
of thermogenic genes [42].

6. Regulation of autophagy by MR in adipose cells

The process of autophagy has been shown to regulate white and brown adipogenesis. 
Modulation of MR activity regulates the autophagic flux which, in turn, affects white 
and brown adipocyte differentiation.

In the eukaryotic cells, autophagy regulates organelle and protein turnover 
maintaining cellular homeostasis and function [43]. Increased autophagic flux 
has been observed during adipocyte differentiation [44, 45]. Recent research has 
identified genes involved in autophagy regulation (atg). In particular, the role of 
atg5 and atg7 has been analyzed both in transgenic mice and in adipocyte cultures 
[45, 46]. Impaired adipose differentiation, i.e., altered morphology and decreased 
lipid droplet accumulation, has been observed in autophagy-related 5 (atg5)−/− 
mouse embryonic fibroblasts (MEFs), and, accordingly, newborn mice lacking 
atg5 display reduced fat mass [45]. Likewise, both 3T3-L1 preadipocytes lacking 
atg7 and atg7−/− MEFs display impaired adipogenesis, showing that also atg7 
affects adipocyte maturation [46, 47]. Interestingly, Singh et al. have analyzed the 
metabolic profile of atg7-knockout mice showing that these mice have reduced WAT 
amount, paralleled by increased interscapular BAT. Moreover, browning of WAT 
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biochemical features (several cytoplasmic lipid droplets and high number of mito-
chondria), even if they are derived from myf5-negative precursors [26]. Importantly, 
β-adrenergic stimulation results in increased levels in UCP1 and uncoupled respira-
tion rate in beige adipocytes, leading to the acquisition of brown fat features by WAT 
[39], a process known as “browning,” and several preclinical studies have shown 
that browning protects mice against glucose and AT dysfunctions. Transgenic mice 
with fat tissue-specific overexpression of PRDM16, a transcriptional regulator 
involved in brown adipocyte development, displayed brite adipocyte formation in 
inguinal WAT. These mice also showed increased energy expenditure and improved 
glucose tolerance with high-fat feeding and parallel reduction in weight gain and 
fat mass [40]. Accordingly, another study showed that transgenic mice lacking 
PRDM16 in AT display defective browning, obesity, and insulin resistance, strongly 
indicating that brite adipocyte function, at least in mice, affects AT metabolism and 
whole-body energy expenditure [41]. Treatment of mice fed with HFD with the MR 
antagonists spironolactone (spiro) or drospirenone resulted in browning of white fat 
depots, reduced weight gain, and decreased fat mass expansion, as well as improved 
glucose tolerance [5]. In this study, transcriptional induction of a thermogenic gene 
program by MR antagonism was observed both in mice and in primary cultures of 
mouse adipocytes treated with spiro and drospirenone, indicating that MR blockade-
mediated browning is cell autonomous.

However, further studies are required to better understand the molecular 
mechanisms regulated by MR which affect the thermogenic gene program of brite 
adipocytes.

The negative causal link between MR signaling and browning of WAT has been 
confirmed by Pisani et al. with Task1 −/− mice lacking the TWIK-related acid-
sensitive K+ channel. These mice displayed increased WAT mass and impaired 
browning, as well as reduced BAT activity upon adrenergic stimulation. In brown 
adipocytes from Task1 −/− mice, MR antagonist treatment was able to rescue 
defective expression of UCP1, suggesting that the absence of Task1 activity can 
result in enhancement of MR function and subsequent downregulated expression 
of thermogenic genes [42].

6. Regulation of autophagy by MR in adipose cells

The process of autophagy has been shown to regulate white and brown adipogenesis. 
Modulation of MR activity regulates the autophagic flux which, in turn, affects white 
and brown adipocyte differentiation.

In the eukaryotic cells, autophagy regulates organelle and protein turnover 
maintaining cellular homeostasis and function [43]. Increased autophagic flux 
has been observed during adipocyte differentiation [44, 45]. Recent research has 
identified genes involved in autophagy regulation (atg). In particular, the role of 
atg5 and atg7 has been analyzed both in transgenic mice and in adipocyte cultures 
[45, 46]. Impaired adipose differentiation, i.e., altered morphology and decreased 
lipid droplet accumulation, has been observed in autophagy-related 5 (atg5)−/− 
mouse embryonic fibroblasts (MEFs), and, accordingly, newborn mice lacking 
atg5 display reduced fat mass [45]. Likewise, both 3T3-L1 preadipocytes lacking 
atg7 and atg7−/− MEFs display impaired adipogenesis, showing that also atg7 
affects adipocyte maturation [46, 47]. Interestingly, Singh et al. have analyzed the 
metabolic profile of atg7-knockout mice showing that these mice have reduced WAT 
amount, paralleled by increased interscapular BAT. Moreover, browning of WAT 
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has been also detected in atg7-KO mice. Indeed, WAT of atg7-KO mice displayed 
higher levels of UCP1 and PGC-1α, a master regulator of mitochondrial biogenesis, 
and higher levels of mitochondrial enzymes. Therefore, this study suggests that 
impaired autophagy leads to the formation of brite adipocytes in WAT. Recent 
data from Caprio and collaborators have shown that MR regulates the autophagic 
flux in murine adipocytes (Figure 1) [5]. Both in 3T3-L1 cells and primary murine 
adipocytes, aldosterone treatment increases autophagy, whereas MR blockade 
reduces the autophagic flux. In mice fed with HFD, pharmacological antagonism of 
MR leads to reduced AT autophagic flux inducing, in turn, browning of WAT. These 
data confirm the effects of impaired autophagy on browning of WAT observed in 
atg7-KO mice [46]. Evidence of a causal link between impairment in autophagy and 
induction of browning has been also demonstrated by treating murine adipocytes 
with either spiro or bafilomycin (autophagy inhibitor) or everolimus (autophagy 
activator) [5]. Both spiro and bafilomycin reduce autophagic flux with a concomi-
tant increase in UCP1 levels, which indicates brown conversion of the adipose cell. 
Cotreatment with everolimus prevented UCP1 increase induced by spiro, indicat-
ing that decrease of autophagy is required for brown adipose conversion, whereas 
autophagy activation inhibits such process [5].

7. Metabolic effects of MR antagonism on adipose tissue metabolism

Overactivity of adipocyte MR contributes to the development of adipose tissue 
dysfunctions. Pharmacological blockade of MR counteracts adipocyte oxidative stress and 
adipocyte hypertrophy, improving insulin sensitivity and stimulating BAT activity.

Preclinical evidence suggests that increased expression of MR plays a role in AT 
dysfunctions. Increased levels of MR transcript have been detected in AT of obese 
humans and mice [11]. Data by Jaisser and collaborators has shown that adipocyte-
specific MR overactivity leads to obesity and metabolic syndrome features in 
mice overexpressing MR in adipocytes (adipo-MROE mice) [11]. In particular, 
upregulated expression of MR in mouse adipocytes leads to increase in body 
weight and visceral AT hypertriglyceridemia, hypercholesterolemia, and impaired 
insulin response. Interestingly, in adipo-MROE mice, adipocyte area was increased 
and positively correlated with the MR expression in visceral AT. Hypertrophy of 
the adipocyte is a well-known feature of dysfunctional AT associated with local 
and systemic inflammation and impaired insulin sensitivity [48]. Accordingly, 
increased activity of MR promoted adipocyte hypertrophy associated with negative 
effects on glucose metabolism of adipo-MROE mice [11]. A recent study by Feraco 
et al. has investigated the effects of adipocyte-specific MR ablation on mouse AT 
and glucose metabolism. Mice lacking adipocyte MR (adipo-MRKO mice) do not 
show changes in fat mass, glucose, and lipid profile, suggesting that MR removal, at 
least in the mature adipocyte, does not alter AT function [35]. As discussed above, 
in adipo-MRKO mice the enzyme adipoq-Cre removes MR in mature adipocytes 
but does not alter MR function in preadipocytes, indicating that removal of MR 
in the early stages of adipogenesis may indeed affect AT and explain the metabolic 
effects of pharmacological blockade of MR observed in mice [5]. Accordingly with 
this hypothesis, treatment of preadipocyte cultures with MR antagonist represses 
differentiation [33].

Pharmacological antagonism of MR in obese mice protects against weight gain, 
fat mass expansion, and local inflammation [5, 6]. In the AT MR blockade coun-
teracts adipocyte size enlargement, reduces the expression of pro-inflammatory 
adipokines (Figure 1), and promotes adiponectin production. In addition, MR 
antagonism reduces the expression of enzymes involved in reactive oxygen species 
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(ROS) production and, in parallel, increases the expression of ROS-eliminating 
enzymes, leading to decreased oxidative stress [6]. Increased oxidative stress has 
been detected in AT of murine models of obesity (mice fed with HFD or ob/ob 
mice), and mitochondrial dysfunction associated with obesity can contribute to 
production of ROS leading to carbonylation and impaired function of proteins such 
as IRS, contributing to AT dysfunction and insulin resistance [49]. In accordance 
with this, pharmacological blockade of MR reduces oxidative stress and improves 
insulin resistance in obese mice [6]. As mentioned above, treatment of mice fed 
with HFD with MR antagonists counteracts fat mass expansion and promotes 
also browning of WAT associated with improved glucose homeostasis. Therefore, 
preclinical studies with MR antagonists suggest that MR blockade counteracts AT 
dysfunctions dampening inflammation and oxidative stress and favoring brite 
adipocyte formation, at least in mice.

An increase in circulating levels of aldosterone is frequently observed in obese 
subjects, and recent data by Huby et al. suggest that leptin can contribute to the 
elevation of aldosterone [50]. This study reveals that the adipokine leptin can 
increase adrenal expression of the aldosterone synthase and plasma aldosterone 
levels, supporting the presence of a cross talk between AT and adrenal gland. 
In fact, increased secretion of leptin from the AT of obese subjects can lead to 
upregulated production of aldosterone which, in turn, may activate MR function 
in the adipocyte, further promoting leptin expression, fat expansion, and oxidative 
stress. Thus, in obesity, adipocyte MR might be overactivated by high plasma levels 
of aldosterone which further reinforces the dysregulated function of AT. There 
are very few studies that have investigated the role of adipocyte MR in humans. 
Karashima et al. have reported that treatment with MR antagonists for 12 months 
in subjects with primary aldosteronism (PA) led to reduction in blood pressure and 
visceral fat mass without changes in subcutaneous AT HOMA-IR, or in lipid profile 
[51]. To date, there are no other studies describing any effect of MR antagonism on 
human WAT. On the other hand, a recent study has shown that treatment with spiro 
in healthy adult subjects increases BAT volume and activity [52], indicating that MR 
blockade results in BAT function enhancement also in humans. These data suggest 
that the increase in thermogenic activity of BAT by MR antagonist-based therapies 
may represent a valuable approach to treat obesity.

8. Conclusion

A number of studies have shown that MR regulates AT physiology and can also 
contribute to the pathophysiology of obesity. In the adipocyte, MR has been shown 
to modulate transcript levels of adipogenic transcription factors, adipokines, and 
enzymes involved in ROS production (Figure 1) and scavenging. Notably, in murine 
models of obesity, treatment with MR antagonist is capable of counteracting exces-
sive expansion, increased inflammation, and oxidative stress of AT. Moreover, in 
adipocyte cultures and obese mice, MR blockade can reduce the autophagic flux and 
promotes brown adipogenesis, upregulating BAT activity and inducing browning 
of WAT, a process that exerts favorable effects against glucose intolerance and AT 
dysfunction. Recent data have also shown that treatment with MR antagonist is able 
to enhance BAT activity in humans, further supporting the potential of MR antago-
nists as novel pharmacological agents in programs of metabolic rehabilitation for 
subjects with obesity and metabolic syndrome. However, the molecular mechanisms 
downstream MR, which mediate the mentioned effects on adipocyte function, are 
poorly known. Indeed, deeper understanding of the molecular pathways modulated 
by MR is necessary to design efficient therapies against AT dysfunctions and obesity.
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and positively correlated with the MR expression in visceral AT. Hypertrophy of 
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been detected in AT of murine models of obesity (mice fed with HFD or ob/ob 
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stress. Thus, in obesity, adipocyte MR might be overactivated by high plasma levels 
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human WAT. On the other hand, a recent study has shown that treatment with spiro 
in healthy adult subjects increases BAT volume and activity [52], indicating that MR 
blockade results in BAT function enhancement also in humans. These data suggest 
that the increase in thermogenic activity of BAT by MR antagonist-based therapies 
may represent a valuable approach to treat obesity.

8. Conclusion

A number of studies have shown that MR regulates AT physiology and can also 
contribute to the pathophysiology of obesity. In the adipocyte, MR has been shown 
to modulate transcript levels of adipogenic transcription factors, adipokines, and 
enzymes involved in ROS production (Figure 1) and scavenging. Notably, in murine 
models of obesity, treatment with MR antagonist is capable of counteracting exces-
sive expansion, increased inflammation, and oxidative stress of AT. Moreover, in 
adipocyte cultures and obese mice, MR blockade can reduce the autophagic flux and 
promotes brown adipogenesis, upregulating BAT activity and inducing browning 
of WAT, a process that exerts favorable effects against glucose intolerance and AT 
dysfunction. Recent data have also shown that treatment with MR antagonist is able 
to enhance BAT activity in humans, further supporting the potential of MR antago-
nists as novel pharmacological agents in programs of metabolic rehabilitation for 
subjects with obesity and metabolic syndrome. However, the molecular mechanisms 
downstream MR, which mediate the mentioned effects on adipocyte function, are 
poorly known. Indeed, deeper understanding of the molecular pathways modulated 
by MR is necessary to design efficient therapies against AT dysfunctions and obesity.
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Chapter 9

Investigating the Role of
Mineralocorticoid Receptor
Signaling in Cancer Biology
in the Genomic Era
Ozlen Konu and Seniye Targen

Abstract

In the last decades, advances that take place in the next-generation sequencing
and bioinformatics research have helped reveal tissue- and cancer-specific gene
expression patterns and mutation landscapes. Indeed, such data are now easily
accessible via online genome browsers and different types and levels of public data
compendia. Appropriate use of these tools eventually can lead to better patient
stratification for diagnosis, prognosis, and therapy of cancers. Mineralocorticoid
receptor (MR), encoded by NR3C2 gene, has long been implicated in the develop-
ment and progression of multiple cancers. Nevertheless, MR has remained rela-
tively understudied at the genomic and transcriptomic levels. In this review, we
present the current, literature-based state of knowledge on the role of MR primarily
in epithelial cancers. At the same time, we summarize the gene expression, muta-
tion, and copy number variation data on MR obtained from The Cancer Genome
Atlas (TCGA). We also show that MR expression could be a promising prognostic
marker in different cancers using online tools for survival data analysis. Accord-
ingly, this review strongly demonstrates the emerging potential of studying MR
using available tools from the genomics/transcriptomics field for improving cancer
diagnosis and prognostication.

Keywords: mineralocorticoid receptor, aldosterone, epithelial cancers, genomics,
transcriptomics, prognosis, The Cancer Genome Atlas, www.cbioportal.org

1. Introduction

MR/NR3C2 belongs to the steroid receptor family and it adopts important roles
in human physiology and pathology. Although MR has long been studied in renal
and cardiovascular contexts, identification of MR in multiple epithelial cancers and
presence of cross talk between steroid receptors in cancer-related processes make
MR a promising candidate for cancer diagnosis and prognosis. Nevertheless, a
focused yet comprehensive literature review about MR’s expression in cancers and
established role in cancer-associated hallmarks is lacking. Our literature search
reveals that MR is expressed in cancerous as well as adjacent and/or normal tissue
although the expression of MR can become deregulated during cancer development.
Moreover, we provide an account of changes in ligand-dependent or -independent
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In the last decades, advances that take place in the next-generation sequencing
and bioinformatics research have helped reveal tissue- and cancer-specific gene
expression patterns and mutation landscapes. Indeed, such data are now easily
accessible via online genome browsers and different types and levels of public data
compendia. Appropriate use of these tools eventually can lead to better patient
stratification for diagnosis, prognosis, and therapy of cancers. Mineralocorticoid
receptor (MR), encoded by NR3C2 gene, has long been implicated in the develop-
ment and progression of multiple cancers. Nevertheless, MR has remained rela-
tively understudied at the genomic and transcriptomic levels. In this review, we
present the current, literature-based state of knowledge on the role of MR primarily
in epithelial cancers. At the same time, we summarize the gene expression, muta-
tion, and copy number variation data on MR obtained from The Cancer Genome
Atlas (TCGA). We also show that MR expression could be a promising prognostic
marker in different cancers using online tools for survival data analysis. Accord-
ingly, this review strongly demonstrates the emerging potential of studying MR
using available tools from the genomics/transcriptomics field for improving cancer
diagnosis and prognostication.
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1. Introduction

MR/NR3C2 belongs to the steroid receptor family and it adopts important roles
in human physiology and pathology. Although MR has long been studied in renal
and cardiovascular contexts, identification of MR in multiple epithelial cancers and
presence of cross talk between steroid receptors in cancer-related processes make
MR a promising candidate for cancer diagnosis and prognosis. Nevertheless, a
focused yet comprehensive literature review about MR’s expression in cancers and
established role in cancer-associated hallmarks is lacking. Our literature search
reveals that MR is expressed in cancerous as well as adjacent and/or normal tissue
although the expression of MR can become deregulated during cancer development.
Moreover, we provide an account of changes in ligand-dependent or -independent
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MR signaling in association with cell proliferation, apoptosis, and senescence of
cancer cells. We also identify future directions that can help target novel aspects of
MR signaling for mechanistic studies as well as cancer therapeutics. In addition, we
point out an emergent need for analyzing the range of genomic alterations and
variability in MR expression and its potential association with prognosis across
epithelial solid tumors using the existing genomic and transcriptomic resources. We
exemplify the extent of variability in MR expression within and among patients
based on the patient data found in The Cancer Genome Atlas (TCGA) [1]. More-
over, we demonstrate the profound potential of MR expression as a biomarker for
cancer prognostication, i.e., estimation of the likelihood of developing future risks
for cancer over a time period using TCGA datasets [2].

2. A concise literature review on MR in cancer biology

Herein an overview of the scientific literature on MR is provided using examples
mainly from cancers of epithelial origin including the lung, colon, liver, kidney,
pancreas, prostate, breast, and adrenal gland, revealing the understudied aspects of
MR in the context of cancer biology.

2.1 Lung cancer

The presence of MR protein in lung cancer tissues has opened new avenues for
MR research. Suzuki et al. [3] demonstrated by immunohistochemistry (IHC) that
primary lung cancer tissues expressed MR protein along with HSD11B2 enzyme,
required for MR receptor specificity through conversion of cortisol to cortisone.
However, MR and HSD11B2 proteins, although present and significantly correlated
with each other in lung adenocarcinomas, were non-existent in squamous cell, small
cell, or large-cell carcinomas [3]. Next, Jeong and colleagues [4] studied gene
expression signatures of all 48 nuclear receptors (NRs) including MR in non-small-
cell lung cancers (NSCLCs) and corresponding normal lung tissues and found that
short heterodimer partner (SHP) and progesterone receptor (PGR) predicted sur-
vival in patients with early-stage lung tumors. In the same study, the prognostic role
of NRs was also investigated in corresponding normal tissues; and higher expres-
sions of MR and nerve growth factor-induced gene B3, NGFIB3, were identified as
predictors of good prognosis for survival and disease recurrence [4]. Furthermore,
increasing aldosterone levels in the presence of VEGF inhibitors also proved to be a
better indicator of prognosis in NSCLC patients [5]. However, future epidemiolog-
ical as well as mechanistic studies are needed to address the cross talk between
antiangiogenic drugs and MR signaling in lung cancer.

2.2 Colorectal cancer

In colon cancer, an observed decrease in the expression of MR in cancerous
tissue in comparison to the adjacent normal mucosa has attributed MR a tumor
suppressive role [6]. Tiberio et al. [7] further investigated how MR expression
correlated with patient survival in colorectal carcinomas. In this study, the expres-
sions of MR and tumor microvessel density marker protein CD34 were evaluated in
tumor and normal colorectal mucosa by IHC, and an inverse correlation of expres-
sion was detected between them in colorectal cancers. Kaplan–Meier survival anal-
ysis has led to a conclusion that MR could be a tumor suppressor whose decreased
expression is correlating well with poor patient survival based on a relatively small
number of patients [7]. Recently, spironolactone, an MR antagonist, has also arisen
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as a tumor suppressor in colon carcinoma yet independent of MR and through RXRγ
receptor signaling [8]. Moreover, recent studies showed that HSD11B2 inhibition,
and hence potential dysregulation of MR signaling, could modify gut microbiota,
known to be an important factor in colon carcinogenesis [9]. A better understand-
ing of MR cross talk with other nuclear receptors and interaction with gut
microbiota from patients treated with MR antagonists is needed in the future.

2.3 Breast cancer

MR expression in normal and diseased breast tissues was initially identified in
the 1990s [10, 11]. MR and HSD11B2 proteins were shown to co-localize predomi-
nantly in the duct epithelia and to exhibit higher expressions in invasive ductal
carcinoma than invasive lobular carcinoma [11]. More recently a study by Conde
et al. [12] found that MR expression was peculiar to the cytoplasm of benign and
cancerous breast lesions, whereas GR/NR3C1 expression was nuclear in benign
breast lesions but showed cytoplasmic as well as nuclear distribution in cancer
tissues. These findings might suggest a potential deregulation of GR signaling in
malignant tissues, while the effects of MR on tumor development could be less
ligand-dependent and/or ligand-insensitive in breast cancer. However, this remains
to be assessed.

Induction of growth of lobulo-alveolar structures in mouse mammary gland by
MR ligand aldosterone also pointed to the importance of MR signaling in breast
biology [13–15]. Furthermore, the presence of progesterone, a potential MR ligand,
in the breast tissue highlighted the significance of MR in breast cancers [16]. In
addition, in vitro culturing of breast cancer cell lines provided further opportunities
for understanding the impact of MR signaling in tumor growth. For example, in the
breast cancer cell line PMC42 with detectable MR and HSD11B2 expression levels,
aldosterone, alone, did not have an effect on cell proliferation yet when given
together with the anti-mineralocorticoid spironolactone resulted in a significant
decrease in cell numbers [17]. In another study, aldosterone and cortisol exerted
progesterone-like effects such as induction of focal adhesion and reduced cell
growth in the progesterone receptor-transfected MDA-MB-231 breast cancer cell
line [18]. Recently, genomic and non-genomic actions of aldosterone through
G-coupled estrogen receptor (GPER) and MR signaling pathways were demon-
strated [19]. Rapid aldosterone exposure activated EGFR and ERK1/2 transduction
pathway through MR and GPER in the HER2+ breast cancer cell line SkBr3 and
breast tumor-derived endothelial cells [19]. Furthermore, direct interactions among
GPER and MR as well as GPER and EGFR were shown, while a long-term exposure
to aldosterone increased cell growth which could be inhibited by the silencing of
MR expression [19]. These findings indicated possible contributions of GPER activ-
ity in the MR-dependent aldosterone signaling and EGFR activation in the regula-
tion of cancer cell growth. However, the relationship between aldosterone and other
modulators of GPER, e.g., estrogen, remains to be investigated in breast cancer. MR
receptors can exhibit affinity to aldosterone and cortisol as well as other potential
ligands likely to be found in the milieu of breast cancer, and thus studying MR, GR,
GPER, and/or other receptor crosstalk could be important for better evaluating
mammary gland physiology and pathology.

2.4 Liver cancer

As in the lung and colon cancers, MR expression was shown to be downregulated
in a large cohort of liver cancer patient tissues [20]. Furthermore, in the same study,
overexpression of MR suppressed cancer progression by inhibition of proliferation
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MR signaling in association with cell proliferation, apoptosis, and senescence of
cancer cells. We also identify future directions that can help target novel aspects of
MR signaling for mechanistic studies as well as cancer therapeutics. In addition, we
point out an emergent need for analyzing the range of genomic alterations and
variability in MR expression and its potential association with prognosis across
epithelial solid tumors using the existing genomic and transcriptomic resources. We
exemplify the extent of variability in MR expression within and among patients
based on the patient data found in The Cancer Genome Atlas (TCGA) [1]. More-
over, we demonstrate the profound potential of MR expression as a biomarker for
cancer prognostication, i.e., estimation of the likelihood of developing future risks
for cancer over a time period using TCGA datasets [2].

2. A concise literature review on MR in cancer biology

Herein an overview of the scientific literature on MR is provided using examples
mainly from cancers of epithelial origin including the lung, colon, liver, kidney,
pancreas, prostate, breast, and adrenal gland, revealing the understudied aspects of
MR in the context of cancer biology.

2.1 Lung cancer

The presence of MR protein in lung cancer tissues has opened new avenues for
MR research. Suzuki et al. [3] demonstrated by immunohistochemistry (IHC) that
primary lung cancer tissues expressed MR protein along with HSD11B2 enzyme,
required for MR receptor specificity through conversion of cortisol to cortisone.
However, MR and HSD11B2 proteins, although present and significantly correlated
with each other in lung adenocarcinomas, were non-existent in squamous cell, small
cell, or large-cell carcinomas [3]. Next, Jeong and colleagues [4] studied gene
expression signatures of all 48 nuclear receptors (NRs) including MR in non-small-
cell lung cancers (NSCLCs) and corresponding normal lung tissues and found that
short heterodimer partner (SHP) and progesterone receptor (PGR) predicted sur-
vival in patients with early-stage lung tumors. In the same study, the prognostic role
of NRs was also investigated in corresponding normal tissues; and higher expres-
sions of MR and nerve growth factor-induced gene B3, NGFIB3, were identified as
predictors of good prognosis for survival and disease recurrence [4]. Furthermore,
increasing aldosterone levels in the presence of VEGF inhibitors also proved to be a
better indicator of prognosis in NSCLC patients [5]. However, future epidemiolog-
ical as well as mechanistic studies are needed to address the cross talk between
antiangiogenic drugs and MR signaling in lung cancer.

2.2 Colorectal cancer

In colon cancer, an observed decrease in the expression of MR in cancerous
tissue in comparison to the adjacent normal mucosa has attributed MR a tumor
suppressive role [6]. Tiberio et al. [7] further investigated how MR expression
correlated with patient survival in colorectal carcinomas. In this study, the expres-
sions of MR and tumor microvessel density marker protein CD34 were evaluated in
tumor and normal colorectal mucosa by IHC, and an inverse correlation of expres-
sion was detected between them in colorectal cancers. Kaplan–Meier survival anal-
ysis has led to a conclusion that MR could be a tumor suppressor whose decreased
expression is correlating well with poor patient survival based on a relatively small
number of patients [7]. Recently, spironolactone, an MR antagonist, has also arisen
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as a tumor suppressor in colon carcinoma yet independent of MR and through RXRγ
receptor signaling [8]. Moreover, recent studies showed that HSD11B2 inhibition,
and hence potential dysregulation of MR signaling, could modify gut microbiota,
known to be an important factor in colon carcinogenesis [9]. A better understand-
ing of MR cross talk with other nuclear receptors and interaction with gut
microbiota from patients treated with MR antagonists is needed in the future.

2.3 Breast cancer

MR expression in normal and diseased breast tissues was initially identified in
the 1990s [10, 11]. MR and HSD11B2 proteins were shown to co-localize predomi-
nantly in the duct epithelia and to exhibit higher expressions in invasive ductal
carcinoma than invasive lobular carcinoma [11]. More recently a study by Conde
et al. [12] found that MR expression was peculiar to the cytoplasm of benign and
cancerous breast lesions, whereas GR/NR3C1 expression was nuclear in benign
breast lesions but showed cytoplasmic as well as nuclear distribution in cancer
tissues. These findings might suggest a potential deregulation of GR signaling in
malignant tissues, while the effects of MR on tumor development could be less
ligand-dependent and/or ligand-insensitive in breast cancer. However, this remains
to be assessed.

Induction of growth of lobulo-alveolar structures in mouse mammary gland by
MR ligand aldosterone also pointed to the importance of MR signaling in breast
biology [13–15]. Furthermore, the presence of progesterone, a potential MR ligand,
in the breast tissue highlighted the significance of MR in breast cancers [16]. In
addition, in vitro culturing of breast cancer cell lines provided further opportunities
for understanding the impact of MR signaling in tumor growth. For example, in the
breast cancer cell line PMC42 with detectable MR and HSD11B2 expression levels,
aldosterone, alone, did not have an effect on cell proliferation yet when given
together with the anti-mineralocorticoid spironolactone resulted in a significant
decrease in cell numbers [17]. In another study, aldosterone and cortisol exerted
progesterone-like effects such as induction of focal adhesion and reduced cell
growth in the progesterone receptor-transfected MDA-MB-231 breast cancer cell
line [18]. Recently, genomic and non-genomic actions of aldosterone through
G-coupled estrogen receptor (GPER) and MR signaling pathways were demon-
strated [19]. Rapid aldosterone exposure activated EGFR and ERK1/2 transduction
pathway through MR and GPER in the HER2+ breast cancer cell line SkBr3 and
breast tumor-derived endothelial cells [19]. Furthermore, direct interactions among
GPER and MR as well as GPER and EGFR were shown, while a long-term exposure
to aldosterone increased cell growth which could be inhibited by the silencing of
MR expression [19]. These findings indicated possible contributions of GPER activ-
ity in the MR-dependent aldosterone signaling and EGFR activation in the regula-
tion of cancer cell growth. However, the relationship between aldosterone and other
modulators of GPER, e.g., estrogen, remains to be investigated in breast cancer. MR
receptors can exhibit affinity to aldosterone and cortisol as well as other potential
ligands likely to be found in the milieu of breast cancer, and thus studying MR, GR,
GPER, and/or other receptor crosstalk could be important for better evaluating
mammary gland physiology and pathology.

2.4 Liver cancer

As in the lung and colon cancers, MR expression was shown to be downregulated
in a large cohort of liver cancer patient tissues [20]. Furthermore, in the same study,
overexpression of MR suppressed cancer progression by inhibition of proliferation
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and induction of cell cycle arrest eventually leading to apoptosis. Aldosterone’s
effect on tumor growth was also tested, and its antiproliferative and apoptotic
effects were reversed by spironolactone. All of these significantly implicated an
evidence for decreased MR signaling in liver cancer pathogenesis [20]. Additionally,
this study showed that MR suppressed the Warburg effect [20] by which cancer
cells gain growth advantage over normal cells [21] leading to novel insights about
MR signaling through cancer research.

Apart from cancer, fibrosis is another significant pathology of the liver. Fibrosis,
the leading factor of liver carcinogenesis, occurs due to the accumulation of
fibrogenic cells and extracellular matrix (ECM) proteins in excess [22, 23]. ECM is
central to sustain cellular homeostasis and integrity, and deregulation of ECM is
considered as a hallmark of cancer [24]. The role of aldosterone on ECM synthesis
and potentially on liver fibrosis was previously shown in rats, although independent
of MR itself [25]. On the other hand, spironolactone was shown to act as a potent
provocateur of liver regeneration following partial hepatectomy [26]. As a result,
these studies demonstrate the current need for better understanding the role of
ligand-dependent and ligand-independent signaling of MR in different facets of
liver pathologies including fibrosis, regeneration, and carcinoma.

2.5 Renal cancer

MR and aldosterone signaling have been extensively studied in kidney physiol-
ogy and pathology for decades [27, 28] and to some degree, in renal carcinomas.
Initially, the protein expressions of MR and HSD11B2 were characterized in a large
cohort of renal cell neoplasms of different cellular origins using IHC. In this study,
co-expression HSD11B2 and MR was shown in normal distal nephron, in chromo-
phobe renal cell carcinoma (chRCC) and oncocytoma of distal nephron origin [29].
In renal cell carcinoma, aldosterone led to upregulation of KRAS oncogene
(KRAS4A splice variant) resulting in increased survival and cell proliferation [30].
Yet another study revealed that aldosterone exerted its migratory/metastatic actions
through G-protein-coupled estrogen receptor (GPER) in a murine renal cortical
adenocarcinoma cell line and also in mice in vivo [31]. These findings implicated
important oncogenic pathways and their crosstalk with MR and aldosterone signal-
ing in renal cancers.

Hypertension is a well-established risk factor in kidney cancers potentially due
to the genotoxic nature of aldosterone [32, 33]. Indeed, supraphysiological levels of
aldosterone treatment induced DNA breaks and chromosomal aberrations in epi-
thelial porcine kidney cells, whereas MR blockade by antagonists prevented forma-
tion of such aberrations [34]. Genotoxic effects of aldosterone were investigated
further in the DOCA-salt-treated rat model used for inducing MR-dependent
hypertension. DOCA-salt treatment caused inflammation, oxidative stress, DNA
damage, and increased kidney cell proliferation [35]. Another study highlighted
aldosterone-dependent induction of oxidative stress and DNA damage as well as
activation of MR-dependent NFKB signaling pathway in kidney tubule cells [36].
Queisser et al. [37] further addressed the downstream signaling pathways triggered
by aldosterone-induced oxidative stress both in vitro (porcine kidney cells with
proximal tubular properties) and in vivo (rat kidneys). In these models, aldosterone
treatment resulted in MR-dependent activation of ERK1/2 and its target, STAT3;
and hence aldosterone exposure led to higher proliferation rates while diminishing
apoptosis [37]. Accordingly, the role of aldosterone-induced MR signaling in dereg-
ulation of DNA damage response needs to be studied also in other epithelial cancers
in more detail.
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Senescence, evasion of which is another hallmark of cancer [38], was studied in
the context of aldosterone signaling in different renal models. For example,
p16INK4a, a cyclin-dependent kinase inhibitor and a cellular senescence marker
[39, 40], was induced in the kidneys and hearts of DOCA-salt-treated rats [41].
These effects could be reversed by antihypertensives and spironolactone,
suggesting a potential role of MR signaling in the regulation of the senescent phe-
notype [41]. In another study, senescence was investigated in aldosterone-infused
rats and cultured human proximal tubular cells. In both models, aldosterone-
induced senescence-like characteristics were marked by senescence-associated
beta-galactosidase staining, p21/Cdkn1a and p53 overexpression, and SIRT1
under-expression. MR blockade either using eplerenone (in vivo) or through gene
silencing (in vitro) sufficiently reversed the aldosterone-induced senescence-like
characteristics [42]. In line with this study, Kitada et al. [43] also showed the
presence of aldosterone-induced senescence, characterized by increased p21
expression and beta-galactosidase staining, in human proximal tubular cells.
Furthermore, a prolonged exposure to aldosterone triggered p21-mediated cytokine
release, e.g., TNF alpha, which in turn led to apoptosis [43]. All of these have
implicated MR signaling through interaction with aldosterone in the induction of
senescence, an inherent autoregulatory mechanism of proliferating cells with
established tumor suppressive activity. The role of MR/aldosterone-induced
senescence in epithelial cancers however needs to be further studied since this can
provide an effective route for therapeutic invention.

2.6 Pancreas cancer

Recently, MR has been ascribed a tumor suppressive role also in pancreatic
ductal adenocarcinoma (PDAC) [44]. In PDAC patients, dysregulated expression of
macrophage migration inhibitory factor (MIF) was associated with disease aggres-
siveness, and MIF-driven upregulation of miR-301b was shown to suppress MR
expression [44]. In turn, MR expression resulted in the inhibition of epithelial to
mesenchymal transition (EMT) and increased chemotherapeutic drug
(gemcitabine) sensitivity. Consistently, survival data analysis further associated
downregulation of MR expression with poor survival in PDAC patients [44]. How-
ever, PDAC remains one of the cancers receiving less attention in the MR field;
future studies can address the role of genomic and non-genomic effects of MR
signaling in PDAC.

2.7 Prostate cancer

Detection of 11 beta-hydroxysteroid dehydrogenase enzyme [45] and a func-
tional MR in the androgen-dependent prostate cancer cell line LNCaP cells dates
back to the early 1990s [46]. More recently, Dovio et al. [47] assessed GR and MR
expression together with HSD11B-1 and HSD11B-2 enzyme activity upon inflam-
matory stimulus (IL1B stimulation) or basal conditions in the androgen-dependent
and androgen-independent prostate cancer cell lines. Diverse expression patterns of
MR, GR, and HSD11B enzyme activities were detected among cell lines, while
downstream effects of IL1B exposure were inhibited by cortisol or dexamethasone
in a cell line-dependent manner [47].

Another lead for the role of mineralocorticoids in prostate cancer has come from
abiraterone acetate (AA), an androgen synthesis inhibitor, used for metastatic
castration-resistant prostate cancer (mCRPC), which results in secondary mineral-
ocorticoid excess [48]. Androgen-induced conformational changes in androgen
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and induction of cell cycle arrest eventually leading to apoptosis. Aldosterone’s
effect on tumor growth was also tested, and its antiproliferative and apoptotic
effects were reversed by spironolactone. All of these significantly implicated an
evidence for decreased MR signaling in liver cancer pathogenesis [20]. Additionally,
this study showed that MR suppressed the Warburg effect [20] by which cancer
cells gain growth advantage over normal cells [21] leading to novel insights about
MR signaling through cancer research.

Apart from cancer, fibrosis is another significant pathology of the liver. Fibrosis,
the leading factor of liver carcinogenesis, occurs due to the accumulation of
fibrogenic cells and extracellular matrix (ECM) proteins in excess [22, 23]. ECM is
central to sustain cellular homeostasis and integrity, and deregulation of ECM is
considered as a hallmark of cancer [24]. The role of aldosterone on ECM synthesis
and potentially on liver fibrosis was previously shown in rats, although independent
of MR itself [25]. On the other hand, spironolactone was shown to act as a potent
provocateur of liver regeneration following partial hepatectomy [26]. As a result,
these studies demonstrate the current need for better understanding the role of
ligand-dependent and ligand-independent signaling of MR in different facets of
liver pathologies including fibrosis, regeneration, and carcinoma.

2.5 Renal cancer

MR and aldosterone signaling have been extensively studied in kidney physiol-
ogy and pathology for decades [27, 28] and to some degree, in renal carcinomas.
Initially, the protein expressions of MR and HSD11B2 were characterized in a large
cohort of renal cell neoplasms of different cellular origins using IHC. In this study,
co-expression HSD11B2 and MR was shown in normal distal nephron, in chromo-
phobe renal cell carcinoma (chRCC) and oncocytoma of distal nephron origin [29].
In renal cell carcinoma, aldosterone led to upregulation of KRAS oncogene
(KRAS4A splice variant) resulting in increased survival and cell proliferation [30].
Yet another study revealed that aldosterone exerted its migratory/metastatic actions
through G-protein-coupled estrogen receptor (GPER) in a murine renal cortical
adenocarcinoma cell line and also in mice in vivo [31]. These findings implicated
important oncogenic pathways and their crosstalk with MR and aldosterone signal-
ing in renal cancers.

Hypertension is a well-established risk factor in kidney cancers potentially due
to the genotoxic nature of aldosterone [32, 33]. Indeed, supraphysiological levels of
aldosterone treatment induced DNA breaks and chromosomal aberrations in epi-
thelial porcine kidney cells, whereas MR blockade by antagonists prevented forma-
tion of such aberrations [34]. Genotoxic effects of aldosterone were investigated
further in the DOCA-salt-treated rat model used for inducing MR-dependent
hypertension. DOCA-salt treatment caused inflammation, oxidative stress, DNA
damage, and increased kidney cell proliferation [35]. Another study highlighted
aldosterone-dependent induction of oxidative stress and DNA damage as well as
activation of MR-dependent NFKB signaling pathway in kidney tubule cells [36].
Queisser et al. [37] further addressed the downstream signaling pathways triggered
by aldosterone-induced oxidative stress both in vitro (porcine kidney cells with
proximal tubular properties) and in vivo (rat kidneys). In these models, aldosterone
treatment resulted in MR-dependent activation of ERK1/2 and its target, STAT3;
and hence aldosterone exposure led to higher proliferation rates while diminishing
apoptosis [37]. Accordingly, the role of aldosterone-induced MR signaling in dereg-
ulation of DNA damage response needs to be studied also in other epithelial cancers
in more detail.

130

Aldosterone-Mineralocorticoid Receptor - Cell Biology to Translational Medicine

Senescence, evasion of which is another hallmark of cancer [38], was studied in
the context of aldosterone signaling in different renal models. For example,
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macrophage migration inhibitory factor (MIF) was associated with disease aggres-
siveness, and MIF-driven upregulation of miR-301b was shown to suppress MR
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2.7 Prostate cancer

Detection of 11 beta-hydroxysteroid dehydrogenase enzyme [45] and a func-
tional MR in the androgen-dependent prostate cancer cell line LNCaP cells dates
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and androgen-independent prostate cancer cell lines. Diverse expression patterns of
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downstream effects of IL1B exposure were inhibited by cortisol or dexamethasone
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abiraterone acetate (AA), an androgen synthesis inhibitor, used for metastatic
castration-resistant prostate cancer (mCRPC), which results in secondary mineral-
ocorticoid excess [48]. Androgen-induced conformational changes in androgen
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receptor (AR) could be inhibited in the presence of mineralocorticoids (corticoste-
rone or deoxycorticosterone). However, administration of corticosterone alone
resulted in repression of AR transcriptional activity and cellular growth at concen-
trations present in the serum of AA-administered patients [49]. Pia et al. [50]
focusing on identifying ways of eliminating adrenocorticotropic hormone (ACTH)-
dependent AA-induced mineralocorticoid excess showed that a low effective dose
of glucocorticoid together with MR antagonist and salt deprivation could be an ideal
treatment. Indeed, the use of prednisone, a synthetic glucocorticoid, could over-
come the effects of secondary mineralocorticoid excess in mCRPC patients treated
with abiraterone [51]. Effect of eplerenone-abiraterone co-administration on sec-
ondary mineralocorticoid excess syndrome and progression-free survival (PFS) was
evaluated and compared to prednisone-abiraterone co-administered in patients. No
significant difference was obtained by means of mineralocorticoid excess syndrome
characteristics and PFS between these two experimental groups; and this has raised
AA-eplerenone as an alternative therapy for overcoming prednisone-induced side
effects [52]. Enzalutamide is another antiandrogen drug used for treating metastatic
prostate cancer patients; however, resistance gained against enzalutamide therapy
remains a challenge. GR signaling induces antiandrogen resistance by hijacking AR
function [53, 54]; hence, the therapeutic effects of enzalutamide-corticosteroid co-
administration were addressed in prostate cancer cells [55]. Dexamethasone
decreased the therapeutic effects of enzalutamide as well as increasing resistance.
However, prednisolone and aldosterone diminished resistance to enzalutamide.
Consistently, silencing of MR resulted in enhanced resistance to enzalutamide and
AR activity [55]. Moreover, the effects of diverse antihypertensive medication on
prostate cancer survival following radical prostatectomy were tested in the Finnish
population, and overall, the antihypertensive treatment was associated with
increased death risk [56]. These findings clearly establish the importance of AR and
MR cross talk and complex ligand interactions in prostate cancer, which could be
further studied in other cancers and cancer subtypes where AR signaling can
play a role.

2.8 Adrenocortical cancer

Adrenal incidentalomas include adrenocortical adenomas, adrenocortical carci-
nomas, and pheochromocytoma [57, 58]. Aldosterone-producing adenomas (APA,
i.e., benign tumors of the adrenal glands) account for 35% of the diseases of the
primary aldosteronism spectrum [59, 60]. Somatic mutations occurring in KCNJ5,
CACNA1D, ATP1A1, ATP2B3, and CTNNB1 genes give rise to sporadic APA [61].
In addition to the abovementioned mutations, regulatory RNAs such as miRNAs
have also been shown to be important in modulating aldosterone levels and tumor-
igenesis [62–64]. On the other hand, adrenocortical cancers (ACC), some of which
are hormone-producing, occur relatively rarely, and patients with ACC exhibit
poor prognosis with a median survival of 5.5 years [65]. In the adrenocortical cell
line H295R, aldosterone in vitro is shown to upregulate T-type calcium channel
expression and currents, an effect reversed by spironolactone [66]. H295R cells
have also been shown to express components of aldosterone signaling pathway
including ENaC subunits, NEDD4L, SGK1, MR, and HSD11B2 [66, 67]. Although
several factors, such as age, resection margin and proliferation scores, uterine
steroid profiles, CpG island hypermethylation status, as well as levels of selected
biomarkers, have been tested for their contribution in ACC prognosis, the impor-
tance of MR expression status is yet to be evaluated in ACC patients [65, 68, 69].
Future studies should investigate the role of activation/inactivation of
MR-aldosterone signaling in diagnosis/prognosis of ACC for which significant
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amounts of genomic and transcriptomic data have recently become available
(please see the next section for details).

3. Cancer genome and transcriptome analyses for MR using online tools

The advent of whole-genome sequencing and development and availability of
genome browsers, such as UCSC genome browser [70, 71] and Ensembl [72, 73], in
the early 2000s have enabled researchers to identify genes/genomic intervals that
are important in human physiology and pathology. This is mainly done by associa-
tion of genome fragments with informative tracks that range from expression
values to the presence of copy number and single nucleotide variations (CNVs and
SNVs, respectively). Cataloging and annotation of the human genome with regard
to genomic and transcriptomic variation have also revolutionized cancer research
[74, 75]. The NIH-driven giant effort named The Cancer Genome Atlas (TCGA) has
published its first results in 2008 on the genomic and transcriptomic landscape of
gliomas [76]. Over the years, TCGA has expanded to house thousands of cancer
genomes/transcriptomes/proteomes from tens of different cancers allowing
researchers from all over the world to have unlimited access to cancer-related
datasets [1]. Many different web-based tools nowadays use TCGA and Catalog of
Somatic Mutations in Cancer (COSMIC) [77] as primary resources and build on
them to extract data from user-provided queries and/or to perform gene-specific or
genome-wide secondary analyses, such as cbioportal.org [78, 79]. These webservers
make use of a wide range of information and incorporate quantitative and statistical
analyses and visualization tools and help users with little or no programming expe-
rience perform cancer bioinformatics analyses.

The expression of MR along with those of other nuclear receptors has been
studied in a recent TCGA PanCancer transcriptomics study of bladder, breast,
colon, head and neck, liver, and prostate cancers; and MR expression is shown to be
downregulated in all [80]. To demonstrate the potential of TCGA in revealing the
importance of MR in cancer research, we have used www.cbioportal.org webserver
[78, 79] to visualize the next-generation RNA sequencing data from different can-
cers of TCGA provisional datasets for MR and showed that MR mRNA is expressed
differentially across many tumor types (Figure 1). Among these, chromophobe
renal cell carcinoma (chRCC) has the highest expression of MR followed by thyroid
carcinoma (THCA), pheochromocytoma and paragangliomas (PCPG), and adreno-
cortical carcinoma (ACC), while carcinomas of the bladder, breast, cervix, esopha-
gus, head, and neck exhibit high variability (Figure 1). It is also apparent that
genomic alterations (gains and shallow deletions) are common in many of these
TCGA dataset patients (Figure 1). Future analyses can focus on how these alter-
ations are associated with MR expression in different cancers, especially in
chRCC and ACC.

Overall, the observed rate of somatic mutations of MR has been shown to be
significantly lower with respect to the expected rate suggesting MR does not toler-
ate well mutations with functional constraints [81]. On the other hand, functional
mutations of MR have been identified in different contexts including renal
pseudohypoaldosteronism as well as hypertension [81, 82]. In addition, relatively
different residues in the DNA-binding domain of MR seem to be affected between
type I pseudohypoaldosteronism and cancers [83]. Herein we have compiled the
MRmutation landscape for cancers found in TCGA provisional datasets (cbioportal.
org) showing the number (95 missense, 19 truncating totaling 0.9% somatic muta-
tion frequency) as well as the distribution of mutations across the MR protein
sequence (984 amino acids long) and the DNA-binding domain zinc finger, C4 type

133

Investigating the Role of Mineralocorticoid Receptor Signaling in Cancer Biology in the Genomic…
DOI: http://dx.doi.org/10.5772/intechopen.87233



receptor (AR) could be inhibited in the presence of mineralocorticoids (corticoste-
rone or deoxycorticosterone). However, administration of corticosterone alone
resulted in repression of AR transcriptional activity and cellular growth at concen-
trations present in the serum of AA-administered patients [49]. Pia et al. [50]
focusing on identifying ways of eliminating adrenocorticotropic hormone (ACTH)-
dependent AA-induced mineralocorticoid excess showed that a low effective dose
of glucocorticoid together with MR antagonist and salt deprivation could be an ideal
treatment. Indeed, the use of prednisone, a synthetic glucocorticoid, could over-
come the effects of secondary mineralocorticoid excess in mCRPC patients treated
with abiraterone [51]. Effect of eplerenone-abiraterone co-administration on sec-
ondary mineralocorticoid excess syndrome and progression-free survival (PFS) was
evaluated and compared to prednisone-abiraterone co-administered in patients. No
significant difference was obtained by means of mineralocorticoid excess syndrome
characteristics and PFS between these two experimental groups; and this has raised
AA-eplerenone as an alternative therapy for overcoming prednisone-induced side
effects [52]. Enzalutamide is another antiandrogen drug used for treating metastatic
prostate cancer patients; however, resistance gained against enzalutamide therapy
remains a challenge. GR signaling induces antiandrogen resistance by hijacking AR
function [53, 54]; hence, the therapeutic effects of enzalutamide-corticosteroid co-
administration were addressed in prostate cancer cells [55]. Dexamethasone
decreased the therapeutic effects of enzalutamide as well as increasing resistance.
However, prednisolone and aldosterone diminished resistance to enzalutamide.
Consistently, silencing of MR resulted in enhanced resistance to enzalutamide and
AR activity [55]. Moreover, the effects of diverse antihypertensive medication on
prostate cancer survival following radical prostatectomy were tested in the Finnish
population, and overall, the antihypertensive treatment was associated with
increased death risk [56]. These findings clearly establish the importance of AR and
MR cross talk and complex ligand interactions in prostate cancer, which could be
further studied in other cancers and cancer subtypes where AR signaling can
play a role.

2.8 Adrenocortical cancer

Adrenal incidentalomas include adrenocortical adenomas, adrenocortical carci-
nomas, and pheochromocytoma [57, 58]. Aldosterone-producing adenomas (APA,
i.e., benign tumors of the adrenal glands) account for 35% of the diseases of the
primary aldosteronism spectrum [59, 60]. Somatic mutations occurring in KCNJ5,
CACNA1D, ATP1A1, ATP2B3, and CTNNB1 genes give rise to sporadic APA [61].
In addition to the abovementioned mutations, regulatory RNAs such as miRNAs
have also been shown to be important in modulating aldosterone levels and tumor-
igenesis [62–64]. On the other hand, adrenocortical cancers (ACC), some of which
are hormone-producing, occur relatively rarely, and patients with ACC exhibit
poor prognosis with a median survival of 5.5 years [65]. In the adrenocortical cell
line H295R, aldosterone in vitro is shown to upregulate T-type calcium channel
expression and currents, an effect reversed by spironolactone [66]. H295R cells
have also been shown to express components of aldosterone signaling pathway
including ENaC subunits, NEDD4L, SGK1, MR, and HSD11B2 [66, 67]. Although
several factors, such as age, resection margin and proliferation scores, uterine
steroid profiles, CpG island hypermethylation status, as well as levels of selected
biomarkers, have been tested for their contribution in ACC prognosis, the impor-
tance of MR expression status is yet to be evaluated in ACC patients [65, 68, 69].
Future studies should investigate the role of activation/inactivation of
MR-aldosterone signaling in diagnosis/prognosis of ACC for which significant

132

Aldosterone-Mineralocorticoid Receptor - Cell Biology to Translational Medicine

amounts of genomic and transcriptomic data have recently become available
(please see the next section for details).

3. Cancer genome and transcriptome analyses for MR using online tools

The advent of whole-genome sequencing and development and availability of
genome browsers, such as UCSC genome browser [70, 71] and Ensembl [72, 73], in
the early 2000s have enabled researchers to identify genes/genomic intervals that
are important in human physiology and pathology. This is mainly done by associa-
tion of genome fragments with informative tracks that range from expression
values to the presence of copy number and single nucleotide variations (CNVs and
SNVs, respectively). Cataloging and annotation of the human genome with regard
to genomic and transcriptomic variation have also revolutionized cancer research
[74, 75]. The NIH-driven giant effort named The Cancer Genome Atlas (TCGA) has
published its first results in 2008 on the genomic and transcriptomic landscape of
gliomas [76]. Over the years, TCGA has expanded to house thousands of cancer
genomes/transcriptomes/proteomes from tens of different cancers allowing
researchers from all over the world to have unlimited access to cancer-related
datasets [1]. Many different web-based tools nowadays use TCGA and Catalog of
Somatic Mutations in Cancer (COSMIC) [77] as primary resources and build on
them to extract data from user-provided queries and/or to perform gene-specific or
genome-wide secondary analyses, such as cbioportal.org [78, 79]. These webservers
make use of a wide range of information and incorporate quantitative and statistical
analyses and visualization tools and help users with little or no programming expe-
rience perform cancer bioinformatics analyses.

The expression of MR along with those of other nuclear receptors has been
studied in a recent TCGA PanCancer transcriptomics study of bladder, breast,
colon, head and neck, liver, and prostate cancers; and MR expression is shown to be
downregulated in all [80]. To demonstrate the potential of TCGA in revealing the
importance of MR in cancer research, we have used www.cbioportal.org webserver
[78, 79] to visualize the next-generation RNA sequencing data from different can-
cers of TCGA provisional datasets for MR and showed that MR mRNA is expressed
differentially across many tumor types (Figure 1). Among these, chromophobe
renal cell carcinoma (chRCC) has the highest expression of MR followed by thyroid
carcinoma (THCA), pheochromocytoma and paragangliomas (PCPG), and adreno-
cortical carcinoma (ACC), while carcinomas of the bladder, breast, cervix, esopha-
gus, head, and neck exhibit high variability (Figure 1). It is also apparent that
genomic alterations (gains and shallow deletions) are common in many of these
TCGA dataset patients (Figure 1). Future analyses can focus on how these alter-
ations are associated with MR expression in different cancers, especially in
chRCC and ACC.

Overall, the observed rate of somatic mutations of MR has been shown to be
significantly lower with respect to the expected rate suggesting MR does not toler-
ate well mutations with functional constraints [81]. On the other hand, functional
mutations of MR have been identified in different contexts including renal
pseudohypoaldosteronism as well as hypertension [81, 82]. In addition, relatively
different residues in the DNA-binding domain of MR seem to be affected between
type I pseudohypoaldosteronism and cancers [83]. Herein we have compiled the
MRmutation landscape for cancers found in TCGA provisional datasets (cbioportal.
org) showing the number (95 missense, 19 truncating totaling 0.9% somatic muta-
tion frequency) as well as the distribution of mutations across the MR protein
sequence (984 amino acids long) and the DNA-binding domain zinc finger, C4 type

133

Investigating the Role of Mineralocorticoid Receptor Signaling in Cancer Biology in the Genomic…
DOI: http://dx.doi.org/10.5772/intechopen.87233



(zf-C4; 602–669), and ligand-binding domain of NR (753–934) (Figure 2A). How-
ever, it is important to note that TCGA datasets are dynamic in nature such that
new samples as well as mutation/CNV annotations are continually being added.
www.cbioportal.org webserver also offers two separate and large multi-cancer

Figure 2.
Mutation landscape and distribution of genetic alterations in MR. (a) Schema showing the location of MR
mutations and the two functional domains of MR. (b) The bar graph showing the percentages of mutations,
amplifications, and deletions in TCGA provisional datasets. Source: cbioportal.org.

Figure 1.
Boxplots of MR/NR3C2 expression across different TCGA provisional datasets obtained from cbioportal.org.
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collections, i.e., TCGA PanCancer and curated TCGA/non-TCGA (curated set of
non-redundant) datasets. Upon analysis of these two collections, the numbers of
observed missense mutations in the MR gene increase to 193 and 281, and truncat-
ing mutations to 34 and 48, respectively. It is also possible to download functional
annotations for these mutations that include scores showing the impact of muta-
tions, e.g., analyzed through MutationAssessor.org [84, 85]. Accordingly, in the
curated TCGA/non-TCGA dataset collection, we have identified, among all 334
mutations, 6 high-impact mutations, all of which are located in the zf-C4 domain
(Table 1). Functional analysis of MR mutation landscape thus can help researchers
select high-impact variants for future validation studies using MutationAssessor
as well as other tools linked with www.cbioportal.org, e.g., SIFT [86] and
PolyPhen-2 [87].

Moreover, using TCGA provisional datasets, we analyzed whether MR accumu-
lated different rates of genetic alterations in different cancers (Figure 2B). The
mean proportion of genetic alterations per cancer was 0.024 (0.017–0.031, 95%
confidence interval, CI). The results in percentages showed that around 7% of
uterine carcinosarcoma patients exhibited genomic alterations (mutation, amplifi-
cation; 7.02% in 57 cases), while the second and third ranking cancers were those of
esophageal carcinoma (5.38% in 186 cases) and stomach adenocarcinomas (5.23% in
478 cases) (Figure 2B). As mentioned above the ranking of these cancers in terms
of percent genomic alterations can be dynamic depending on which data collection
has been used. For example, when using TCGA PanCancer sample collection, which
reports a more complete mutation/CNV annotation information, the first ranking
cancer with the highest percentage of genetic alterations has become melanoma
(8.71% out of 448 skin cutaneous melanoma) followed by uterine carcinomas
(7.75% out of 529 uterine corpus endometrial carcinoma and 7.02% out of 57 uterine
carcinosarcomas). Future studies may focus on uterine carcinomas and melanoma
to address the mechanisms and effects of these observed alterations.

4. Investigating the role of MR in cancer patient stratification and
prognosis using genomics resources

Survival analysis is often used for studying the association of an event of inter-
est, e.g., death and disease recurrence, with another clinical or biological variable
[88]. Analysis of TCGA-associated survival data (overall survival (OS) and/or
relapse-free survival (RFS)) is available through several online webservers includ-
ing GEPIA [89], OncoLnc [90], Kaplan–Meier Plotter [91], and KM-Express [92].
These tools help evaluate survival of cancer patients whose genomic/transcriptomic
and clinical data are stored in TCGA, by using Cox coefficient statistics, hazard ratio
(HR) and/or logrank tests, and Kaplan–Meier plots. GEPIA, which has previously

Table 1.
High-impact MR mutations based on MutationAssessor in curated TCGA and non-TCGA dataset collection
(www.cbioportal.org).
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been used in prognostic identification of several biomarkers in ACC [93, 94], per-
forms survival statistics in addition to providing other functionalities such as co-
expression analysis and diagnostic marker prediction. We analyzed data from all
cancers available in GEPIA and showed that an NR3C2/MR expression higher than
the median level predicted a significantly better prognosis (OS) and low HR in
adrenocortical carcinoma (ACC), kidney renal clear cell carcinoma (KIRC), breast
invasive carcinoma (BRCA), colon adenocarcinoma (COAD), brain lower-grade
glioma (LGG), and liver hepatocellular carcinoma (LIHC) (logrank p-value <0.1;
Figure 3).

Figure 3.
MR expression-based overall survival (OS) analyses performed using GEPIA. Adrenocortical carcinoma
(ACC), breast invasive carcinoma (BRCA), colorectal adenocarcinoma (COAD), kidney renal clear cell
carcinoma, low-grade glioma (LGG), and liver hepatocellular carcinoma (LIHC). The statistics and their
associated p-values are shown on graphs, while groups (red and blue) are separated by the median expression
level of MR.
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Similar analyses can be performed using other webservers, such as KM plotter
(http://kmplot.com/analysis/), which allows for auto-selection of an expression
threshold that performs best in the logrank test. Recently, KM plotter has also made
possible the stratification of TCGA PanCancer patient data according to different
clinical and demographic variables including gender [95]. For example, we tested
the significance of association between MR expression and OS using the best
cutoff option separately for females and males, in renal cancers, KIRC and KIRP.
Accordingly, we found that sexual dimorphism in MR expression can play a role in
association with OS, warranting further investigation (Figure 4). Importantly, it is
also possible to study MR expression and its role in RFS using the same tools. Our
findings through GEPIA and KM plotter help confirm that downregulation of MR/
NR3C2 expression can be significantly associated with cancer progress as has been
previously reported in the literature. In conclusion, large-scale expression analysis
in association with clinical data such as time to death or recurrence can thus reveal
the importance of MR expression in epithelial and other solid tumors yet warrants
further mechanistic studies.

5. Conclusion

A comprehensive look at the history of MR in cancer research strongly impli-
cates the dysregulation of MR signaling in the development and progression of
epithelial cancers. However, the interactions with its natural ligand aldosterone
and/or with other potential ligands, such as tissue-specific progesterone as well as
the growing evidence on the presence of receptor cross talk, complicate the “tumor
suppressive” role often attributed to MR. MR’s relatively well-established effects in
renal tissue senescence, oxidative stress and DNA damage, as well as its emerging

Figure 4.
KM plotter analysis of kidney renal clear cell carcinoma (KIRC) and kidney renal papillary cell carcinoma
(KIRP) for all, female and male patients, separately.
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associated p-values are shown on graphs, while groups (red and blue) are separated by the median expression
level of MR.
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Similar analyses can be performed using other webservers, such as KM plotter
(http://kmplot.com/analysis/), which allows for auto-selection of an expression
threshold that performs best in the logrank test. Recently, KM plotter has also made
possible the stratification of TCGA PanCancer patient data according to different
clinical and demographic variables including gender [95]. For example, we tested
the significance of association between MR expression and OS using the best
cutoff option separately for females and males, in renal cancers, KIRC and KIRP.
Accordingly, we found that sexual dimorphism in MR expression can play a role in
association with OS, warranting further investigation (Figure 4). Importantly, it is
also possible to study MR expression and its role in RFS using the same tools. Our
findings through GEPIA and KM plotter help confirm that downregulation of MR/
NR3C2 expression can be significantly associated with cancer progress as has been
previously reported in the literature. In conclusion, large-scale expression analysis
in association with clinical data such as time to death or recurrence can thus reveal
the importance of MR expression in epithelial and other solid tumors yet warrants
further mechanistic studies.

5. Conclusion

A comprehensive look at the history of MR in cancer research strongly impli-
cates the dysregulation of MR signaling in the development and progression of
epithelial cancers. However, the interactions with its natural ligand aldosterone
and/or with other potential ligands, such as tissue-specific progesterone as well as
the growing evidence on the presence of receptor cross talk, complicate the “tumor
suppressive” role often attributed to MR. MR’s relatively well-established effects in
renal tissue senescence, oxidative stress and DNA damage, as well as its emerging

Figure 4.
KM plotter analysis of kidney renal clear cell carcinoma (KIRC) and kidney renal papillary cell carcinoma
(KIRP) for all, female and male patients, separately.
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potential in the regulation of Warburg effect and fibrosis/regeneration in liver
tissue represent novel avenues to pursue especially in the context of cancer therapy.
In addition, the genome-wide availability of CNV, SNV, and mRNA expression
profiles from cancer patients enables comparisons within and between different
tumors providing an enhanced level of accessibility to researchers in the field of
cancer biology. Indeed, online examination of the interaction between different
data sources such as expression and patient survival data is now effectively possible
for MR and can be extended to other genes participating in MR signaling. Genera-
tion of large-scale genome-wide data along with the development of tools that help
analyze and integrate such data is likely to further enhance our understanding of
MR in the development and progression of different cancers.
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Chapter 10

MR/GR Signaling in the Brain 
during the Stress Response
Edo R. de Kloet and Onno C. Meijer

Abstract

This contribution is about mineralocorticoid receptors (MRs) in their capacity 
as mediators of glucocorticoid action in the brain. This paradox has evolved because 
MRs are promiscuous and bind with high-affinity cortisol and corticosterone as well 
as aldosterone, deoxycorticosterone, and progesterone. The MRs “see,” however, pre-
dominantly glucocorticoids, because of their 100–1000-fold excess over aldosterone; 
bioavailability is further enhanced because of local regeneration of glucocorticoids by 
11βOH-steroid dehydrogenase (HSD-1). In contrast to these glucocorticoid-preferring  
MR, the evolutionary later appearance of aldosterone-selective MR in epithelial cells 
depends on co-localization with the oxidase 11β-hydroxysteroid-dehydrogenase type 
2 (HSD-2) in a few hundred neurons in the nucleus tractus solitarii (NTS), which 
innervate frontal brain regions to regulate cognitive, emotional, and motivational 
aspects of salt appetite. The glucocorticoid-MRs and classical glucocorticoid recep-
tors (GRs) mediate in a complementary manner the glucocorticoid coordination of 
circadian events and mediate the regulation of stress coping and adaptation. If an 
individual is exposed to a threat, MRs are crucial for the selection of a particular cop-
ing style, which is via GR activation subsequently stored in the memory for future 
use. Our contribution is concluded with the notion that an imbalance in MR- and 
GR-mediated actions increases susceptibility to stress-related disorders.

Keywords: stress, brain, behavior, inflammation, glucocorticoid receptors, 
mineralocorticoid receptors

1. Introduction

The naturally occurring glucocorticoids, cortisol and corticosterone (the latter 
only in rodents), are secreted as end products of the hypothalamus-pituitary-
adrenal (HPA) axis. The glucocorticoids have two modes of operation. Firstly, the 
hormones synchronize and coordinate circadian and sleep-related events. This 
action is based on hourly ultradian pulses with increasing amplitude toward the 
start of the active period with the goal to generate the necessary energy for the day 
to come. The hourly pulses maintain responsivity to the glucocorticoids. The fre-
quency and amplitude of the glucocorticoid pulses may change as is the case during, 
e.g., inflammatory disorders and depression, or may become irregular as part of the 
aging process. High glucocorticoid concentrations prevent the onset of sleep [1–3].

Secondly, the glucocorticoids mediate the response to stress. A “stress reac-
tion” can be due to physical stimuli such as pain, blood loss, and infection or can 
be psychogenic. Anticipation is an important component of the psychogenic stress 
reaction. Hence, the prediction of an upcoming event and the ability to exert 
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control are essential for effective coping irrespective whether it concerns an adverse 
experience or a reward. Actually, stress is the “spice of life” and essential for adapta-
tion and survival. However, the most severe stressor is characterized by inability to 
predict upcoming events and uncertainty during a threat. If uncertainty because of 
lack of control persists, the very same glucocorticoids that promote adaptation are 
now disruptive, facilitate breakdown of adaptation, reduce resilience, and enhance 
vulnerability to disease [4].

Glucocorticoid secretion from the adrenocortical zona fasciculata is under the 
control of pituitary adrenocorticotropic hormone (ACTH) that is cleaved from the 
large precursor molecule: pro-opiomelanocortin (POMC). The anterior pituitary 
synthesis of POMC is driven by corticotropin-releasing hormone (CRH) from 
neurosecretory cells of the paraventricular nucleus (PVN) in the hypothalamus; co-
localized vasopressin amplifies the CRH-induced release of ACTH. Physical stress-
ors directly activate CRH neurons via ascending neuronal projections of the brain 
stem. Psychological stressors are processed in higher brain regions for appraisal, 
decision-making, and choice of coping style to deal with the stressor. At last, the 
stress reaction dissipates and the experience is stored in the memory [5].

2. Corticosteroid receptors

The action of glucocorticoids is mediated by two types of corticosteroid 
receptors. One type is, surprisingly, the mineralocorticoid receptor (MR). This 
receptor was first identified in 1968 by Bruce McEwen: retention of 3H-labeled 
corticosterone was observed in hippocampal neurons at 1 hour after administra-
tion of the tracer to an adrenalectomized (ADX) rat [6]. 3H-aldosterone given to 
ADX animals showed essentially the same neuroanatomical distribution pattern as 
3H-corticosterone. The MR was cloned: immunoreactive (ir) MR protein and MR 
gene expression showed the same distribution pattern as radioligand binding in the 
hippocampus [7, 8].

The GR was initially not detected by in vivo radioligand binding studies for two 
reasons. Firstly, the amount of radiolabeled corticosterone tracer was insufficient 
to occupy GR, because this receptor binds cortisol and corticosterone with a tenfold 
lower-affinity than the high-affinity MR. Second, our in vivo tracer studies with 
the high-affinity GR ligand, dexamethasone, did not provide a signal in the brain 
because the synthetic steroid was exported by multidrug resistance P-glycoprotein 
localized in the blood-brain barrier. When pure glucocorticoids became available, 
we managed to identify distinct populations of MR and GR in vitro. GR was found 
widely distributed in the brain and highly expressed in the typical stress centers. 
MR and GR are abundant and co-localized in limbic neurons [9, 10].

The MRs actually occur as glucocorticoid-preferring and aldosterone-selective 
variations in receptor function. Aldosterone-selectivity occurs solely in epithelial 
cells engaged in Na homeostasis. In a collaborative study with Edwards et al., we 
discovered in 1988 that aldosterone selectivity hinges on co-expression with the 
enzyme 11β-hydroxysteroid-dehydrogenase type 2 (HSD-2), which breaks down 
the naturally occurring glucocorticoids, cortisol and corticosterone, into their inac-
tive 11-dehydro congeners [11]. The Australian group led by John Funder reached 
the same conclusion [12]. In the brain, the aldosterone-selective MRs involved in salt 
homeostasis are mostly restricted to neurons of the nucleus tractus solitarii (NTS) 
and the circumventricular organs. The MR-NTS neurons project to limbic forebrain 
regions, notably the locus coeruleus area involved in arousal and the bed nucleus of 
the stria terminalis (BNST). Via the BNST hub, the NTS neurons can affect emo-
tions, memory performance, and reward processing [13–15].
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A pharmacological amount of aldosterone, administered to rats, is anxiogenic 
and causes changes in coping with stress [16]. Such an effect can be explained by 
overstimulation of the aldosterone-responsive brain network. In fact, patients 
suffering from essential hypertension have an enhanced aldosterone secretion 
following stress exposure [17]. It would be of interest, therefore, to further explore 
this line of research, particularly in light of the persistent evidence of excess 
mineralocorticoids and aberrant MRs as risk factors for mood disorders [18, 19], 
also in patients with Conn’s syndrome [20]. In addition, the brain aldosterone MRs 
were found to be causal in hypertension in case a high-salt diet was offered [21], see 
overview on aldosterone and mineralocorticoid receptors [22].

The majority of MRs that are abundantly expressed in limbic-frontocortical 
neurons were identified as glucocorticoid-preferring. This is because cortisol and 
corticosterone are present in a 100–1000-fold excess over aldosterone, thus 
competing out aldosterone binding, even though part of the circulating gluco-
corticoid is bound to corticosteroid-binding globulin (CBG). Accordingly, these 
glucocorticoid-preferring MRs predominantly “see” the naturally occurring 
glucocorticoids, cortisol and corticosterone. Moreover, glucocorticoid preference 
is further enhanced by co-expression with HSD-1, which regenerates locally bioac-
tive glucocorticoids from the inactive 11-dehydro congener [23]. Finally, MRs are 
promiscuous in that they bind in addition to glucocorticoids and aldosterone also 
progesterone and deoxycorticosterone. This promiscuity may be related to the fact 
that evolutionary the MRs preceded the GRs, progesterone receptors and androgen 
receptors [24].

Thus, some 30 years ago, we felt as if we were “digging gold.” We knew the 
precise localization of MR and GR in the brain and that these receptors did bind the 
same hormones—cortisol and corticosterone—but with an order of a magnitude 
difference in affinity. This was the start of a systematic search for their molecular, 
cellular, neuroendocrine, and behavioral function, together with the group of 
Marian Joëls in Amsterdam. This helped to define better the temporal, spatial, 
and contextual domains of the stress response that are so extremely important 
for understanding stress coping and adaptation [25–28]. Before discussing MR/
GR function, we will first briefly summarize the main aspects of their role in the 
molecular and cellular mechanisms of glucocorticoids.

3. Molecular mechanisms of MR-/GR-mediated actions

The non-genomic effects notwithstanding (see Section 4) MR and GR are best 
understood as transcription factors involved in the regulation of gene expression. 
Classically, their differential effects have been related to (besides cell-specific 
expression) transcriptional effects that are independent of the highly homologous 
DNA-binding domain. For example, an important part of the anti-inflammatory 
actions of GR activation depends on interactions of GR monomers with pro-
inflammatory transcription factors such as the “nuclear factor kappa-light-chain-
enhancer of activated B cells” (NF-κB), a process called transrepression, and these 
interactions are much weaker for MR [29]. Recently, the interaction of the GR 
monomer with NF-κB was challenged with the discovery of GR binding to “cryptic” 
DNA sequences within the genomic NF-κB response elements (κBREs) that mediate 
GR-driven repression of inflammatory gene expression [30].

Recent studies that evaluated MR and GR binding to the DNA in the hippocam-
pus indicate that the receptors interact with the DNA via their—homologous— 
DNA-binding domains [31–33]. MR and GR share 96% homology in their DNA-
binding domain, and both recognize the same “GRE” sequence in the DNA to 
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which they bind as homo- or heterodimers. Yet, they differ in other parts of the 
protein, in particular in their large N-terminal domain. The best known target 
genes that are shared between MR and GR are FKBP5, Sgk1, GILZ, and PER1. For 
these genes, GR activation seems to extend the MR-mediated action by an order of 
magnitude, as shown in dose-response studies.

Based on genome-wide profiling, many corticosterone-responsive hippocampal 
mRNAs—also in laser-dissected subregions—are known, allowing the identifica-
tion of specific signaling pathways [34–37]. In other brain areas, information 
is more sparse, but likely will differ substantially, as patterns of MR and/or 
GR-responsive target genes overlap only partially between different cell types [38]. 
This cell specificity seems to be the consequence of a different chromatin organiza-
tion and of cell-specific expression of coregulatory proteins that modulate the 
effects of MR and GR, once these are bound to the DNA [39, 40].

In view of their very different effects in the hippocampus, MR and GR should 
have unique target genes, and this assumption indeed recently has been material-
ized in three independent studies [31, 32, 41]. A unique signature of MR binding 
to DNA loci was discovered and found associated with the NeuroD transcription 
factor [33]. Also GR binding appeared associated to some extent with NeuroD, 
possibly as a result of heterodimer formation with MR [42]. Furthermore, current 
data suggest that NeuroD can interact with other unidentified proteins in the tran-
scriptional complex that is formed upon MR binding to DNA. Such a MR-Neuro-D 
complex seems to confine specificity to cortisol action.

In spite of this progress in understanding receptor-specific cortisol actions, 
there is no single GR or MR target gene known to be responsible solely for circuit 
activation underlying a particular behavioral response during stress adaptation. 
Rather, MR and GR seem to be master regulators that mediate in complementary 
manner downstream regulatory networks in a cell- and context-specific fashion 
[37, 43]. Moreover, the transcriptional response of the hippocampal genome to 
corticosterone depends strongly on the recent past of the individual. About half of 
the significantly regulated mRNA’s were found to be different between animals with 
a recent history of stress, as compared to control animals [37, 44].

4. Cellular mechanisms of MR-/GR-mediated action

In hippocampal CA1 neurons, in particular the membrane properties affected 
by norepinephrine (NE), serotonin (5HT), and glutamate are affected by corticos-
terone in a U-shaped dose-response curve [45, 46]. Thus, the activation of 5HT1A 
receptors produced during absence of corticosterone a large increase in conduc-
tance of an inwardly rectifying K-channel, causing the membrane to hyperpolarize. 
MR activation with a low concentration of corticosterone minimized the 5HT1A 
hyperpolarization response [47]. When corticosterone levels increased and gradu-
ally occupied GR, the hyperpolarization response returned, but not in GRdim/dim 
mutants [48], in which cannot dimerize because of point mutation in their DNA 
domain [49]. A similar U-shaped dose response was found for the accommodation 
of firing frequency upon steady depolarization of cells by NE and for the Ca influx 
via L-type voltage-dependent channels [46, 50–52].

The U-shaped dose-response curve is not a common phenomenon in the brain, 
since it is dependent on the presence of both receptor types. Even if both receptors 
are present, such as in the dentate gyrus, other membrane properties are affected 
than in the CA1 neurons. In the dentate gyrus MR activation increased the field 
potential, and the single cell response showed activation of glutamatergic recep-
tors, and both responses were not further affected by additional GR activation 
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[46]. These cellular effects in CA1 and dentate gyrus have not been explained by 
transcriptional regulation. For instance, 5HT1A mRNA expression in CA1 cells was 
not affected by adrenalectomy, while it was in an MR-dependent fashion in dentate 
gyrus neurons [53].

The dentate gyrus is one of the two brain regions where neurogenesis occurs 
throughout life. In the absence of steroids, the turnover of these neurons increases, 
showing increased neurogenesis and apoptotic cell death. Both processes are normal-
ized if the animals are replaced with low doses of corticosterone, just sufficient to 
occupy MR. Glucocorticoids suppress proliferation and migration of the newborn 
neurons via GRs. Lentiviral GR knockdown in the dentate progenitor cells accelerates 
neuronal differentiation and migration. The newborn neurons showed increased 
synaptic contacts and increased excitability and migrated further in establishing 
functional integration in the hippocampal circuitry. Accordingly, contextual fear-
motivated behavior was impaired [54].

Regarding the non-genomic actions, MR mediates the rapid and transient 
increase of miniature excitatory postsynaptic currents (mEPSC) after treatment 
with corticosterone. The putative membrane MR is localized presynaptically and 
activates the release probability of glutamate. The rapid effects were eliminated 
after genetic deletion of the MR gene or with MR antagonists [55]. These effects are 
exerted by both aldosterone and corticosterone, and the dose-response curve sug-
gests a lower affinity of steroid binding to the membrane than to nuclear MR. The 
membrane MR—in spite of much effort—has not been physically demonstrated yet 
[56–58] and likely is similar to the nuclear variant. The MR-enhanced increase of 
glutamate release downregulates the presynaptic metabotropic glutamate receptors 
(mGluR2) [59].

The nature of the membrane-mediated MR effects shows, however, large 
regional differences in the brain. For instance, in contrast to the rapid transient rise 
in excitability, the excitation is long-lasting in basolateral amygdala (BLA) neurons 
due to cooperation with genomic GR-mediated actions. Moreover, the duration of 
BLA excitation is further prolonged if—as is the case during stress—these cells are 
also exposed to NE, which can be mimicked by the β-adrenergic agonist isopro-
terenol. Interestingly, such a prolonged increased excitability of the BLA protects 
against the effect of a second MR-mediated corticosterone pulse, probably via rapid 
endocannabinoid action linked to the membrane GR [60]. These composite cellular 
responses were defined as a manifestation of “corticosterone metaplasticity” and 
may explain why emotions are so strongly remembered [61, 62].

Thus, the data demonstrate that glucocorticoid actions may vary between cell 
groups. This variety in responses also has consequences for the influence of stress 
exposure and stress hormones on long-term potentiation (LTP), a cellular model 
of memory performance. It demonstrates that stress does not a priori disturb LTP, 
since the outcome depends on the context, the previous experiences, the phase of 
the stress response, and the analyzed brain regions [63]. In the hippocampus, MR 
is essential for neuronal viability and maintenance of excitatory transmission. If, 
with increasing corticosterone concentrations, GR becomes occupied, this receptor 
restores transiently raised excitability.

5. Functional cooperation of MR and GR

MRs and GRs cooperate in glucocorticoid regulation, and below we will distin-
guish four different phases of this cooperation in stress coping and adaptation (see 
Figure 1). This distinction is based on temporal and contextual features of mem-
brane and genomic glucocorticoid actions. The conditional nature is an important 
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of memory performance. It demonstrates that stress does not a priori disturb LTP, 
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criterion, since it assigns a specificity to glucocorticoid action. The temporal action 
is also critical. The rapid non-genomic actions wax and wane in correspondence 
with glucocorticoid concentrations. The genomic actions develop minutes to hours 
after glucocorticoid exposure and may last for days or even a lifetime. The latter 
concerns aspects of programming of brain circuitry for later life by epigenetic pro-
cesses at glucocorticoid targets or even the receptors themselves [66]. The following 
phases in glucocorticoid action can be distinguished:

Phase 1—basal is the basal state in which during the circadian/ultradian cycle, 
mostly genomic MRs are occupied during the trough, and, subsequently, when glu-
cocorticoid levels show their hourly increases, the hormone progressively activates 
additional GRs. The continuous MR activation is a determinant of the threshold or 
sensitivity of the stress response system. The transient GR activation by the hourly 
pulses maintains responsivity to sudden changes in glucocorticoid secretion as they 
occur in response to stress [3, 9, 67].

Phase 2—onset is the onset of the stress reaction when a novel experience is 
anticipated or actually happens and triggers sympathetic activation and CRH 
release. Non-genomic MRs that are rapidly activated by a stress-induced increase 
in circulating glucocorticoids enhance attention and vigilance to optimize sensory 
processing in support of perception and appraisal of novel information [68]. 
MR activation promotes memory retrieval in the hippocampus to deploy the 
previously used strategy in stress coping and enhances in amygdala emotional 
expressions of fear and aggression [69, 70]. MR activation also facilitates the 
choice of coping style. For instance, under mild stress conditions, most indi-
viduals will opt for a coping strategy involving the hippocampus (thinking). 
However, when stressors become more severe and less controllable, increasingly 
an emotion-driven habitual amygdala-striatal stimulus-response coping strategy 
is preferred (doing). The switch from “thinking to doing” depends on limbic 
MR. Corticosterone administration promotes habit formation, while MR antago-
nists prevent the switch and the slower, costlier hippocampal cognitive strategy 

Figure 1. 
Four phases of MR/GR signaling in the brain during the stress response. Phase 1: “Basal” MR/GR signaling 
during ultradian/circadian activity is a determinant of the sensitivity of the stress response. Phase 2: “Onset” 
of the stress reaction non-genomic MR-mediated actions promotes appraisal processes, retrieval of previously 
stored information, selection of coping style, and encoding of the experience for learning, all directed to defend 
the “self.” Phase 3: “Termination” is the negative feedback action of GR-mediated glucocorticoid action aimed 
to prevent defense reactions from overshooting. Via GR, the experience is contextualized in the hippocampus 
and rationalized in the prefrontal cortex, with more “altruistic” solutions that increase motivation to assign 
a valence to social solutions and rewards. Phase 4: “Priming” refers to memory storage of the experience for 
future use (adapted from [27, 28, 64, 65]).
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is maintained. Finally, via MRs the context of the experience and the selected 
coping style are encoded for learning [71–73].

Phase 3—termination marks a further increase of glucocorticoid secretion and 
progressive activation of the lower-affinity membrane and genomic GRs, which 
are in limbic-frontocortical structures co-localized with MRs [25, 28]. The MRs are 
continuously involved in appraisal processes to monitor the outcome of the stress-
coping strategy. GR function limits defense reactions to prevent these from over-
shoot that may cause damage, if not dampened [74]. These defense mechanisms 
are now abolished, and it is time for rationalization and contextualization of the 
experience and for assessment of valence as occurs in social interactions [27, 75]. At 
the same time, GR activation drives via a mitochondrial mechanism energy alloca-
tion to cells and circuits in need to facilitate recovery from the stressor [76]. This is 
a life-sustaining action since complete GR knockouts do not survive, while GRdim/

dim do. After all, lack of glucocorticoids is not compatible with life as is illustrated by 
adrenalectomy and in the case of Addison’s disease. Phase 3 is also characterized by 
increased motivational arousal, emotional expressions, and reinforcement learn-
ing, accompanied by increased gene expression of key components in the amygdala 
(re: enhanced CRH expression) and ventral striatum—frontocortical circuitry (re: 
increased dopaminergic function) [77–81].

Phase 4—priming GR activation in the limbic-frontocortical circuits promotes 
storage of contextual and emotional-loaded information in the memory. This 
consolidation process takes a couple of hours after the stressful experience [82]. 
Synaptic adaptations occur which can be measured with fMRI and are characterized 
by genome-wide transcriptional signatures [83–85]. Growth factors such as BDNF 
participate by acting in the dentate neurogenic niche; also growth factor actions in 
e.g. mPFC and mesolimbic dopaminergic systems [86, 87] are all involved. Hence, 
GR-activated memory storage prepares for the future, so that stored information 
can be retrieved again in the proper context. During phases 3 and 4, the individual’s 
homeostasis is restored and behavioral adaptation is promoted [4].

Using optogenetics combined with neuroanatomical tracing, the top-down  
organization of the brain’s coping circuitry is rapidly unraveled today. Accordingly, the  
prelimbic mPFC sends excitatory projections to the lateroventral (av)-BNST, 
which operates as an inhibitory GABAergic hub over downstream neuroendocrine, 
autonomic, and behavioral responses [88]. Stressors activate the excitatory output 
of the mPFC, which translates into BNST-dependent inhibition of CRH neurons 
in the PVN and results in suppression of the HPA axis response. In another group 
of CRH neurons, the BNST input attenuates the sympathetic output. A separate 
pathway of the BNST projects to the ventrolateral periaqueductal (vl-PAG) where 
passive coping is promoted at the expense of the initial active coping strategy [89, 
90]. Active coping refers to fight or flight, which, when the situation is appraised 
as inescapable, causes a reorganization of prelimbic to infralimbic mPFC circuitry 
that is aimed to restrain the emotional and autonomic responses [91–94]. Passive 
conservation withdrawal behavior is promoted allowing recuperation and storage 
of energy resources [95, 96].

This coping circuit is modulated in function by contextual information from 
the hippocampus, by emotional- and fear-input from the amygdala, visceral and 
autonomous inputs from the brain stem, and motivational arousal associated with 
valence assessment from the ventral striatum. The coping circuit and its modulat-
ing inputs are all targets of the glucocorticoids that convey environmental and 
physiological information. This bottom-up control exerted by the glucocorticoids 
is mediated by the MR and GR in a complementary manner along the four differ-
ent phases of stress coping and adaptation [64] (see Figure 1). The action of the 
glucocorticoid during stress coping and adaptation has led to the formulation of 
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cocorticoid levels show their hourly increases, the hormone progressively activates 
additional GRs. The continuous MR activation is a determinant of the threshold or 
sensitivity of the stress response system. The transient GR activation by the hourly 
pulses maintains responsivity to sudden changes in glucocorticoid secretion as they 
occur in response to stress [3, 9, 67].

Phase 2—onset is the onset of the stress reaction when a novel experience is 
anticipated or actually happens and triggers sympathetic activation and CRH 
release. Non-genomic MRs that are rapidly activated by a stress-induced increase 
in circulating glucocorticoids enhance attention and vigilance to optimize sensory 
processing in support of perception and appraisal of novel information [68]. 
MR activation promotes memory retrieval in the hippocampus to deploy the 
previously used strategy in stress coping and enhances in amygdala emotional 
expressions of fear and aggression [69, 70]. MR activation also facilitates the 
choice of coping style. For instance, under mild stress conditions, most indi-
viduals will opt for a coping strategy involving the hippocampus (thinking). 
However, when stressors become more severe and less controllable, increasingly 
an emotion-driven habitual amygdala-striatal stimulus-response coping strategy 
is preferred (doing). The switch from “thinking to doing” depends on limbic 
MR. Corticosterone administration promotes habit formation, while MR antago-
nists prevent the switch and the slower, costlier hippocampal cognitive strategy 
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is maintained. Finally, via MRs the context of the experience and the selected 
coping style are encoded for learning [71–73].

Phase 3—termination marks a further increase of glucocorticoid secretion and 
progressive activation of the lower-affinity membrane and genomic GRs, which 
are in limbic-frontocortical structures co-localized with MRs [25, 28]. The MRs are 
continuously involved in appraisal processes to monitor the outcome of the stress-
coping strategy. GR function limits defense reactions to prevent these from over-
shoot that may cause damage, if not dampened [74]. These defense mechanisms 
are now abolished, and it is time for rationalization and contextualization of the 
experience and for assessment of valence as occurs in social interactions [27, 75]. At 
the same time, GR activation drives via a mitochondrial mechanism energy alloca-
tion to cells and circuits in need to facilitate recovery from the stressor [76]. This is 
a life-sustaining action since complete GR knockouts do not survive, while GRdim/

dim do. After all, lack of glucocorticoids is not compatible with life as is illustrated by 
adrenalectomy and in the case of Addison’s disease. Phase 3 is also characterized by 
increased motivational arousal, emotional expressions, and reinforcement learn-
ing, accompanied by increased gene expression of key components in the amygdala 
(re: enhanced CRH expression) and ventral striatum—frontocortical circuitry (re: 
increased dopaminergic function) [77–81].

Phase 4—priming GR activation in the limbic-frontocortical circuits promotes 
storage of contextual and emotional-loaded information in the memory. This 
consolidation process takes a couple of hours after the stressful experience [82]. 
Synaptic adaptations occur which can be measured with fMRI and are characterized 
by genome-wide transcriptional signatures [83–85]. Growth factors such as BDNF 
participate by acting in the dentate neurogenic niche; also growth factor actions in 
e.g. mPFC and mesolimbic dopaminergic systems [86, 87] are all involved. Hence, 
GR-activated memory storage prepares for the future, so that stored information 
can be retrieved again in the proper context. During phases 3 and 4, the individual’s 
homeostasis is restored and behavioral adaptation is promoted [4].

Using optogenetics combined with neuroanatomical tracing, the top-down  
organization of the brain’s coping circuitry is rapidly unraveled today. Accordingly, the  
prelimbic mPFC sends excitatory projections to the lateroventral (av)-BNST, 
which operates as an inhibitory GABAergic hub over downstream neuroendocrine, 
autonomic, and behavioral responses [88]. Stressors activate the excitatory output 
of the mPFC, which translates into BNST-dependent inhibition of CRH neurons 
in the PVN and results in suppression of the HPA axis response. In another group 
of CRH neurons, the BNST input attenuates the sympathetic output. A separate 
pathway of the BNST projects to the ventrolateral periaqueductal (vl-PAG) where 
passive coping is promoted at the expense of the initial active coping strategy [89, 
90]. Active coping refers to fight or flight, which, when the situation is appraised 
as inescapable, causes a reorganization of prelimbic to infralimbic mPFC circuitry 
that is aimed to restrain the emotional and autonomic responses [91–94]. Passive 
conservation withdrawal behavior is promoted allowing recuperation and storage 
of energy resources [95, 96].

This coping circuit is modulated in function by contextual information from 
the hippocampus, by emotional- and fear-input from the amygdala, visceral and 
autonomous inputs from the brain stem, and motivational arousal associated with 
valence assessment from the ventral striatum. The coping circuit and its modulat-
ing inputs are all targets of the glucocorticoids that convey environmental and 
physiological information. This bottom-up control exerted by the glucocorticoids 
is mediated by the MR and GR in a complementary manner along the four differ-
ent phases of stress coping and adaptation [64] (see Figure 1). The action of the 
glucocorticoid during stress coping and adaptation has led to the formulation of 
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the MR/GR balance hypothesis, which states that “upon imbalance of the MR- and 
GR-mediated actions, the initiation and/or management of the stress response 
becomes compromised. At a certain threshold this may lead to a condition of neuro-
endocrine dysregulation and impaired behavioral adaptation, which potentially can 
aggravate stress-related deterioration and promote vulnerability” [9, 25, 28, 97–99].

6. Implications for pathogenesis and treatment of stress-related diseases

Physical or psychogenic stressors promote activation of circuits that underlie 
appraisal and decision-making processes, which are important for selection of an 
appropriate coping style to support physiological and behavioral adaptations. The 
most severe psychogenic stressor is lack of control and inability to predict, with an 
uncertain fearful feeling [96, 100]. The brain can adapt to this situation by prolifera-
tion of the emotional amygdala and atrophy of the hippocampus, ventral striatum, 
and prefrontal cortex [101–104]. Glucocorticoid secretion remains elevated and energy 
resources are drained. Essential defense mechanisms become compromised, and 
when then confronted with a novel stressor, coping fails, breakdown of adaptation is 
facilitated, and vulnerability to mood and anxiety disorders increases [105, 106].

Adverse (early) life experience and unfavorable socioeconomic conditions are 
important predisposing factors for such stress-related disorders [107]. Also genetic 
variants and epigenetic modifications are increasingly recognized as biomarkers 
of susceptibility and vulnerability. For instance, for MR, two functional SNPs 
(rs2070951 and rs5522) constitute a block of four haplotypes. Haplotype 2 generates 
in vitro the highest MR-binding capacity and transactivation. Carriers of haplotype 
2 display a preferential habit rather than cognitive strategy in coping with stress. 
Haplotype 2 (C/A frequency 35%) is associated with optimism and protection to 
depression and predicts a higher efficacy of antidepressants [73, 108–110]. Actually, 
the MR is a promising target to facilitate the action of antidepressants [111].

Progress is made in exploiting the relevance of the MR/GR balance for devising 
preventive or curative strategies in the treatment of mental health. For instance, 
it is recognized that patients under dexamethasone therapy have very low levels 
of endogenous circulating glucocorticoids. While dexamethasone is a potent GR 
ligand, the MR becomes depleted of endogenous hormone, because of suppression 
of the HPA axis. Refill of the MR with cortisol add-on largely eliminates the psycho-
logic/psychiatric side effects of dexamethasone therapy [112–115]. Alternatively, 
the glucocorticoid/progesterone antagonist mifepristone is applied for treatment 
of hyperglycemia in patients suffering from Cushing’s syndrome [116]. Recently, 
selective GR modulators (SGRMs) became available that can target metabolism but 
do not show side effects on pituitary ACTH release [117–119].

7. Concluding remarks

Glucocorticoids, acting via brain MRs and GRs, coordinate multiple functions 
over time with one single goal: to promote stress coping and adaptation. Imbalance 
in the MR-/GR-mediated signaling pathways increases susceptibility to stress-related 
mental and neurodegenerative disorders. These imbalances develop under conditions 
of chronic stress when top-down control exerted by the mPFC over the stress-coping 
circuitry is compromised and the cost of bottom-up glucocorticoid action exceeds its 
benefit. New SGRMs are being developed that target the tissue- and context-specific 
action of glucocorticoids in specific domains of cognition, emotion, and motivation 
and which may assist in targeted therapies of stress-related mental disorders.
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and prefrontal cortex [101–104]. Glucocorticoid secretion remains elevated and energy 
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it is recognized that patients under dexamethasone therapy have very low levels 
of endogenous circulating glucocorticoids. While dexamethasone is a potent GR 
ligand, the MR becomes depleted of endogenous hormone, because of suppression 
of the HPA axis. Refill of the MR with cortisol add-on largely eliminates the psycho-
logic/psychiatric side effects of dexamethasone therapy [112–115]. Alternatively, 
the glucocorticoid/progesterone antagonist mifepristone is applied for treatment 
of hyperglycemia in patients suffering from Cushing’s syndrome [116]. Recently, 
selective GR modulators (SGRMs) became available that can target metabolism but 
do not show side effects on pituitary ACTH release [117–119].

7. Concluding remarks

Glucocorticoids, acting via brain MRs and GRs, coordinate multiple functions 
over time with one single goal: to promote stress coping and adaptation. Imbalance 
in the MR-/GR-mediated signaling pathways increases susceptibility to stress-related 
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Abstract

The mineralocorticoid hormone aldosterone has been investigated almost exclu-
sively with respect to cardiovascular function, as the main effects of aldosterone 
are related to water-electrolyte balance and the control of the blood pressure. This 
overview is focused on less traditional and long-time neglected effects of aldosterone 
on the brain and behavior. Preclinical studies by our research group brought evi-
dence on causal relationships between aldosterone and anxiety as well as aldosterone 
and depression-like behavior. Aldosterone was found to be anxiogenic and depresso-
genic in a rat model. Preclinical studies also indicate that aldosterone may be an early 
marker of depression onset. Aldosterone is known to be an important component of 
the stress response, and we have shown that its role is particularly important during 
early postnatal period in pups. Studies in patients with major depressive disorder 
revealed that an unfavorable therapy outcome is predicted by a higher salivary 
aldosterone/cortisol ratio. Our clinical studies showed that salivary aldosterone 
concentrations reflect the severity, duration of the depressive episode, and treatment 
outcome in patients with major depressive disorder. Moreover, the patients with 
depression fail to exert known daily rhythmicity of aldosterone release.

Keywords: aldosterone, anxiety, depression, stress, rhythm

1. Introduction

The mineralocorticoid hormone aldosterone is typically viewed as the principal 
regulator of sodium and potassium balance thus playing a major role in maintaining 
extracellular volume homeostasis. The classical genomic actions of aldosterone are 
mediated by mineralocorticoid receptor (MR). The MR and its kin, the glucocor-
ticoid receptor (GR), evolved from an ancestral corticoid receptor in a cyclostome 
(jawless fish) throughout gene duplication and divergence. Distinct orthologs of the 
MR and GR initially appeared in cartilaginous fishes, such as sharks, skates, rays, 
and chimeras. Aldosterone first appears in lungfish, lobe-finned fish that are fore-
runners of terrestrial vertebrates [1, 2]. The evolution of the relationship between 
aldosterone and MR likely occurred in response to dramatic changes associated with 
transition from aquatic to terrestrial life. In the ocean, aquatic organisms had the 
burden of fighting constant salt loading, whereas the prospect of a terrestrial exis-
tence presented the opposite problem, preventing their emergence from the sea. It 
is likely that the aldosterone-MR relationship was a part of the solution to maintain 
ion balance during this transition from water to land [3]. Further sequence diver-
gence of the MR and GR in terrestrial vertebrates led to emergence of aldosterone 
as a selective ligand for the MR [4]. The first studies with recombinant human MR 
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burden of fighting constant salt loading, whereas the prospect of a terrestrial exis-
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gence of the MR and GR in terrestrial vertebrates led to emergence of aldosterone 
as a selective ligand for the MR [4]. The first studies with recombinant human MR 



Aldosterone-Mineralocorticoid Receptor - Cell Biology to Translational Medicine

166

yielded an unexpected discovery [5] that human MR has strong binding affinities 
for several corticosteroids (aldosterone, cortisol, corticosterone, and 11-deoxycor-
ticosterone) and for progesterone. Although these steroids show similar affinity for 
human MR, transcriptional activation of human MR by these steroids is different. 
Compared to glucocorticoids, aldosterone is a stronger activator of the MR [6]. The 
ability of aldosterone to activate human, rat, and mouse MRs is complicated by the 
substantially higher concentration of glucocorticoids.

Given the fact the glucocorticoids circulate at much higher concentrations than 
aldosterone, glucocorticoids would be expected to predominantly occupy the MRs 
under most conditions [7]. In the peripheral epithelial tissues, the specificity of MR for 
aldosterone is achieved by the enzyme 11β-hydroxysteroid dehydrogenase type 2 (11β-
HSD2) which converts glucocorticoids to inactive metabolites, thus allowing aldoste-
rone to bind to the MR. In the brain, the situation is much more complicated. Central 
action of aldosterone via MR is limited due to almost negligible levels of 11β-HSD2 in 
the brain. The lack of 11β-HSD2 in MR-rich regions suggests that the majority of brain 
MRs are likely to be fully occupied by glucocorticoids [8]. From these reasons, possible 
central effects of aldosterone have been neglected for a long time. Nevertheless, over 
the last 20 years, there is growing body of evidence that certain brain areas contain 
MRs that bind preferentially mineralocorticoids. This was demonstrated in the nucleus 
tractus solitarius, the subcommissural organ, and the ventrolateral subdivision of the 
ventromedial nucleus of the hypothalamus [9–13]. Importantly, nonclassical effects of 
aldosterone mediated via nongenomic actions [14] and de novo synthesis of aldoste-
rone within the brain should also be considered [15].

Studies by Ron De Kloet group published more than 30 years ago were not in 
favor of aldosterone effects on exploratory activity or forced extinction paradigm 
of a passive avoidance response in rats [16]. Pretreatment with aldosterone blocked 
the serotonin response to corticosterone [17]. It should be noted, however, that 
aldosterone was administered in a single injection to acutely adrenalectomized rats. 
The authors concluded that that the time interval between acute aldosterone admin-
istration and behavioral testing (1 hr) was too long for the appearance of behavioral 
effects of aldosterone. Until 2008, nothing was known about repeated or chronic 
aldosterone treatment on behavior related to anxiety or depression in normal intact 
rodents.

Writing this overview was motivated by the new evidence on atypical effects of 
aldosterone gathering during the last few years, when we have started our research 
on aldosterone and the brain. In spite of the generally accepted view on the absence 
of the central effect of aldosterone, we have decided to perform research in the 
field. The main focus of this mini-review is given on aldosterone action in the 
central nervous system from two points of view, namely, the pathophysiology of 
mood disorders from translational point of view and the significance of aldosterone 
during the development.

2. Nothing dared nothing won

The scientific work is based on testing the hypotheses formulated on the basis of 
thoroughly verified facts obtained in several laboratories using various experimen-
tal approaches. It might happen, however, that even not yet satisfactory confirmed 
evidence evokes the desire to lead the research in a new direction. This happened to 
us, and we have to formulate a hypothesis on anxiogenic and depressogenic action 
of aldosterone about 10 years ago. At that time, the arguments to formulate such a 
hypothesis were rather vague and certainly inadequate, but we were full of enthusi-
asm and courage.
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Our scientific interest in atypical effects of aldosterone on mental functions 
was motivated by scattered data published 15 years ago by the authors Murck et al. 
[18] and Emanuele et al. [19]. In small groups of depressed patients, they observed 
increased plasma aldosterone concentrations. However, causal relationship between 
aldosterone and mood disorders has not been approached. Our first original data on 
this topic were obtained in animal studies.

In the first series of experiments, we have tested the hypothesis that prolonged 
elevation of circulating aldosterone induces increased anxiety-like behavior in rats. 
Subchronic treatment with aldosterone (2 μg/100 g body weight/day for 2 weeks) 
via subcutaneous osmotic minipumps was applied to induce a mild hyperaldo-
steronism. Rodents do not, of course, tell the researchers that they feel anxious, 
but there are behavioral tests in which anxiety level can be assessed. In these tests, 
we have shown that aldosterone-treated animals exhibited increased anxiety-like 
behavior [20]. Anxiogenic effect of aldosterone was manifested by a significantly 
reduced frequency of entries and time spent in the open arms in the elevated plus 
maze test as well as reduced number of entries and time spent in the central area of 
the open-field test in aldosterone-treated rats compared to controls. Aldosterone 
treatment negatively influenced both the conventional spatiotemporal measures 
of anxiety and the ethological parameters related to anxiety and risk assessment 
behavior [20].

The role of aldosterone in anxiety-like behavior was supported by the results 
obtained using a different approach, demonstrating an anxiolytic action of an aldo-
sterone antagonist. As an aldosterone antagonist, the selective MR blocker eplere-
none, a clinically used drug for the treatment of heart failure and hypertension, 
was used [21]. Mild anxiolytic effects were observed after a single administration 
of eplerenone at the dose of 100 mg/kg body weight [22]. Anxiolytic effects of MR 
blockade were completely demonstrated following repeated treatment with eplere-
none [23]. Eplerenone administered for 11 days (50 mg/kg body weight twice daily) 
influenced ethological indicators of anxiety. More importantly, significant differ-
ences were found in classical spatiotemporal measures, as the eplerenone-treated 
rats entered more often and spent more time in the open arms of the elevated plus 
maze. Another original finding is the effect of subchronic MR blockade on hippo-
campal concentrations of brain-derived neurotrophic factor (BDNF), a marker of 
brain plasticity. Stress-induced alterations in BDNF have been identified as a strong 
candidate modulating stress-related pathology [24, 25]. On the contrary, chronic 
treatment with antidepressants was shown to increase BDNF levels [26]. We have 
demonstrated that eplerenone treatment prevented stress-induced decrease in hip-
pocampal concentrations of BDNF, suggesting a positive influence of MR blockade 
on brain plasticity [23].

In the next series of experiments, we focused our attention on depression-like 
behavior. We have used the same rat model of hyperaldosteronism previously 
and assessed symptoms of depressive behavior using the sucrose preference test 
and the forced swim test. The results clearly demonstrated that the subchronic 
increase in circulating aldosterone exerts depressogenic effects [27]. Aldosterone 
treatment induced an anhedonic state manifested by decreased sucrose preference. 
Depressogenic action of aldosterone was confirmed also in the forced swimming 
test. Animals treated with aldosterone spent significantly longer time in immobility 
and showed significantly decreased latency to become immobile [27]. Our results 
on depression-like behavior induced by aldosterone treatment in rats were con-
firmed by the authors Bay-Richter et al. [28]. As a result of our collaboration with 
colleagues from the USA, we revealed that hyperaldosteronism induces changes in 
expression of genes that have been shown to be associated with a major depressive 
disorder in humans [27].
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Supporting data on the role of aldosterone in the development of depressive 
behavior have also been obtained in another animal model of depression. We have 
established a new and novel animal model of depression based on diet-induced 
tryptophan depletion in female rats [29]. Diet-induced tryptophan depletion 
resulted in a significant reduction of brain serotonin and induction of depression-
like behavior manifested by increased immobility in the forced swim test [30]. 
Interestingly, the depression-like state was associated with a significant increase 
in serum aldosterone concentrations. We showed that aldosterone secretion had 
increased already after 4 days of tryptophan depletion, prior to the rise in serum 
corticosterone. This finding suggests that aldosterone may be more important than 
corticosterone in the development of a depression-like state and aldosterone may 
constitute an early marker for the onset of depression-like behavior [30].

In a very recent study by Geerling et al. [13], the authors characterized a hall-
mark of aldosterone-sensitive HSD2 neurons in the nucleus of the solitary tract. 
They showed that axons of HSD2 neurons project to the parabrachial complex/
pre-locus coeruleus and the ventrolateral bed nucleus of the stria terminalis, two 
neural hubs with a crucial function in salt appetite (salt hunger) and accompanying 
arousal. They suggested that downstream targets of HSD2 neurons promote sodium 
appetite, but they may also influence stress coping and mood circuits to produce 
dysphoric, anhedonic, and anorexic symptoms of hyperaldosteronism.

Our evidence of a causal relationship between hyperaldosteronism and anxiety- 
and depression-like behaviors in animals represents a breakthrough in the research 
on aldosterone action in the central nervous system and reveals a new area of 
research with potential clinical significance.

3. Translation of experimental data to clinical research

Animal models can be useful tools in biomedical research, but undoubtedly, it 
has frequently been observed that effects found in animal models cannot be trans-
lated to the clinic [31]. It is therefore essential that knowledge gained from animal 
studies should be carefully confirmed in human studies.

To be able to translate the knowledge obtained in animal models to clinical 
research, we have initially introduced a methodology to measure aldosterone concen-
trations in saliva [32]. Determination of steroids in saliva has become a valuable alter-
native due to the noninvasiveness and laboratory independence of sampling. While 
assays for salivary cortisol are widely used, the availability of assays for measurement 
of aldosterone in saliva has been limited. Concentrations of aldosterone in saliva 
represent approximately one-third of the total level in plasma, and they correlate 
well with plasma values [33, 34]. We have modified the methodology of aldosterone 
radioimmunoassay by concentrating the saliva and validated the method by a low-
dose ACTH test and by confirmation of daily rhythm and sex differences [35].

We have provided the first original data on the relationship between aldosterone 
and trait anxiety in humans. We have shown that the relationship between aldoste-
rone and trait anxiety is determined by sex and the phase of the menstrual cycle in 
women [32]. Negative correlation between salivary aldosterone concentrations and 
trait anxiety was observed in women in the luteal phase, while a positive association 
was found in women in the follicular phase of the menstrual cycle.

In recent years, we have performed several studies to clarify the role of aldo-
sterone in depressive disorder. We have conducted a pilot study in patients with 
a major depressive disorder in collaboration with Marburg University, Germany. 
Biomarkers of MR function were examined in order to characterize their rela-
tionship to clinical treatment outcome after 6 weeks in 30 patients with major 
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depression [36, 37]. Although the number of patients was not very high, there was a 
significant association between salivary aldosterone concentrations and the severity 
of depressive symptoms. A negative correlation between aldosterone concentrations 
in saliva and improvement in clinical state of patients was revealed. Interestingly, a 
higher ratio of aldosterone to cortisol concentrations at baseline was predictive for 
poorer clinical outcome after 6 weeks of treatment [36].

Supporting data came also from other researcher groups. In patients with pri-
mary hyperaldosteronism, a higher occurrence of anxiety and depressive symptoms 
compared to healthy volunteers was demonstrated [38–40]. A population study 
in humans revealed that the combination of the chronic stress of living alone and 
depressive symptomatology was accompanied by high levels of aldosterone [41]. On 
the other hand, Hallberg et al. [42] found lower concentrations of aldosterone in 
patients with major depression with suicidal behavior than suicidal patients without 
depression and non-suicidal depressive patients.

The most complete results so far have been obtained by examining 60 patients with 
major depressive disorder in a study performed in collaboration with clinical psy-
chiatrists, particularly the Department of Psychiatry, Faculty of Medicine, Comenius 
University and University Hospital Bratislava, Slovakia [43]. The sample consisted of 37 
postmenopausal women and 23 men suffering from major depressive disorder. Morning 
and evening samples of saliva were obtained during depressive episode (admission to 
the hospital) and after reaching clinical remission (discharge). Results showed several 
notable original findings. Salivary aldosterone concentrations were higher at the time of 
admission to the hospital than those at the time of discharge, i.e., after improvement of 
the clinical state. It is well known that aldosterone secretion shows a daily rhythm [35, 
44, 45] with the highest values in the morning and the lowest at evening. The patients 
with depression failed to exert known daily rhythmicity of aldosterone release [43]. An 
intriguing finding was the observation of the relationship between morning aldoste-
rone concentrations and the duration of the current depressive episode. When patients 
were stratified according to the length of the depressive episode, women with a shorter 
duration of the depressive episode (up to 12 weeks) exhibited significantly higher 
aldosterone concentrations than women with a longer episode (over 16 weeks). In men, 
this difference was not observed. We have also demonstrated that morning salivary 
aldosterone concentrations are particularly higher in patients with severe depressive 
episode than those with moderate depressive episode. These findings strongly support 
the role of aldosterone in the pathophysiology of depressive disorder. Concentrations of 
aldosterone in the saliva appear to reflect the clinical outcome, duration, and severity of 
depressive episode in a sex-dependent manner [43].

4. Aldosterone during the development

In pups, the main physiological role of the renin-angiotensin-aldosterone 
system is to maintain water-electrolyte balance, while the hypothalamic-pituitary-
adrenocortical (HPA) axis regulates energy metabolism. Prenatal and early postnatal 
brain development is a very complex process that can be endangered by a number 
of endogenous and exogenous stimuli. This is a serious problem given the neurode-
velopmental background of several psychiatric disorders [46, 47]. Environmental 
stimuli that may interfere with the normal development of the central nervous 
system include excessive exposure to stressful situations. Exposure to stressors at 
the time of brain development may cause a repeated elevation in concentrations of 
glucocorticoids which are known to exert negative effects. Of the stress hormones, 
the neurotoxic effect is attributed, in particular, to glucocorticoids. Increased levels 
of glucocorticoids adversely affect neurogenesis and brain plasticity [25].
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As was already mentioned, animal models represent a useful tool in the research 
in the field of neurodevelopmental disorders. Long time ago, scientists have 
discovered that there is a physiological mechanism in the rodents protecting the 
developing brain from neurotoxic glucocorticoids. During the first 2 weeks of life 
(from about days 2–14), rat pups show reduced capacity to secrete corticosterone 
in response to several stimuli [48–50]. This period was called the stress non-
responsive period. Later, after introducing more sophisticated analytical methods 
for plasma corticosterone analysis, it has been found that a small increase occurred 
and the period was renamed to stress hyporesponsive period. In this period, cor-
ticosterone response to stress stimuli is several times lower than that in adult rats. 
This phenomenon is associated with dramatically reduced corticosteroid-binding 
globulin (CBG) levels [51, 52]. This occurs as a result of reduced half-life of CBG in 
plasma and decreased CBG production by the liver in the neonates [53, 54]. Thus, 
corticosterone circulates mainly in the free form during the stress hyporesponsive 
period, since CBG levels are negligible. During the stress hyporesponsive period, 
the adrenal gland is hyporesponsive to adrenocorticotropic hormone. Numerous 
studies have demonstrated that maternal factors, such as maternal care and feed-
ing, are critical for the regulation of the pup’s HPA axis and the maintenance of the 
stress hyporesponsive period [50]. It has been demonstrated that maternal depriva-
tion during the stress hyporesponsive period causes a rapid rise in corticosterone 
concentrations [50] and profoundly affects GR epigenetics [55]. This type of studies 
would be welcome for aldosterone and the MR as well, since these are understudied. 
No information on possible similar reduction of aldosterone in response to stressors 
during the stress hyporesponsive period was available.

In a joint project with the Institute of Experimental Medicine, Hungarian 
Academy of Sciences, we have demonstrated that 10-day rat pups showed increased 
rather than reduced response of aldosterone to several acute stress stimuli. Stress-
induced rise in aldosterone concentrations was significantly higher in pups com-
pared to that in adulthood as well as compared to the rise in corticosterone [56]. 
In adult rats, the response was quite opposite; the increase in stress-induced aldo-
sterone concentrations was only mild, whereas the elevation of corticosterone was 
much more pronounced. The physiological significance of increased aldosterone 
secretion during stress in the early postnatal period is supported by our findings 
of altered expression of mineralocorticoid and glucocorticoid receptors in the 
hypothalamus, hippocampus, and prefrontal cortex and in particular by increased 
expression of 11β-HSD2 [56].

It may be suggested that the main physiological importance of higher aldoste-
rone secretion in pups is related to the maintenance of water-electrolyte balance 
during the perinatal period. MRs are present in the heart, blood vessels, adipocytes, 
and macrophages. It is possible to assume that during the perinatal period, aldoste-
rone takes over the regulatory role of glucocorticoids in certain cellular processes 
and molecular mechanisms. Experiments in vasopressin-deficient Brattleboro 
rats excluded the possible important role of vasopressin. It appears that the shift 
from a more pronounced aldosterone to corticosterone rise during stress occurs 
after 40 postnatal days [57]. It is therefore clear that during rodent development, 
aldosterone is the more important stress hormone of the adrenal cortex than 
corticosterone.
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much more pronounced. The physiological significance of increased aldosterone 
secretion during stress in the early postnatal period is supported by our findings 
of altered expression of mineralocorticoid and glucocorticoid receptors in the 
hypothalamus, hippocampus, and prefrontal cortex and in particular by increased 
expression of 11β-HSD2 [56].

It may be suggested that the main physiological importance of higher aldoste-
rone secretion in pups is related to the maintenance of water-electrolyte balance 
during the perinatal period. MRs are present in the heart, blood vessels, adipocytes, 
and macrophages. It is possible to assume that during the perinatal period, aldoste-
rone takes over the regulatory role of glucocorticoids in certain cellular processes 
and molecular mechanisms. Experiments in vasopressin-deficient Brattleboro 
rats excluded the possible important role of vasopressin. It appears that the shift 
from a more pronounced aldosterone to corticosterone rise during stress occurs 
after 40 postnatal days [57]. It is therefore clear that during rodent development, 
aldosterone is the more important stress hormone of the adrenal cortex than 
corticosterone.
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Mineralocorticoid Receptor
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Abstract

The mineralocorticoid receptor (MR), a ligand-activated transcription factor, 
plays an important role in the pathophysiology of cardiovascular disease. Epigenetic 
mechanisms such as DNA methylation or histone modifications in addition to the 
DNA sequence are decisive regulators of cell type-specific transcriptional activ-
ity and gene expression by controlling chromatin accessibility. In this review, we 
summarise the current knowledge about the impact of MR on gene expression in 
cardiovascular cells. We discuss studies investigating the interaction of MR with 
epigenetic mechanisms or other transcription factors and their implications for the 
cardiovascular system. Finally, we compare mechanisms of transcriptional regula-
tion by MR and other nuclear transcription factors. In conclusion, MR is an impor-
tant regulator of gene expression in cardiovascular cells. Potential mechanisms of 
cell type-specific transcriptional regulation by MR include interaction with other 
transcription factors or co-regulators, tethering and post-translational modifica-
tions of the MR. Further studies will be needed to clarify the interplay of MR and 
epigenetic mechanisms.

Keywords: mineralocorticoid receptor, epigenetics, chromatin, gene expression,  
cell types

1. Introduction

Mineralocorticoid receptor (MR) antagonists are a cornerstone in the current 
pharmacological therapy of chronic heart failure [1, 2]. MR in renal epithelial cells 
plays an important role for ion homeostasis and blood pressure control, but MR is 
also expressed in extrarenal tissue including different cell types of the heart and the 
vasculature [3]. This understanding has subsequently triggered intense research 
on the molecular basis of MR activity in the cardiovascular system. The MR is a 
member of the nuclear receptor (NR) family, which consists of different DNA-
binding transcription factors [4]. As a ligand-activated transcription factor, MR 
controls the expression of its target genes. Despite increasing evidence for rapid, 
non-genomic effects of MR, regulation of gene expression is still regarded as a key 
feature of MR action. The MR holds a unique position among steroid-activated 
nuclear receptors as it binds two ligands, aldosterone as the main ligand as well 
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as cortisol (corticosterone in rodents) with similar affinity. Indeed, progesterone 
which acts as an antagonist at the human MR [5] and, according to recent studies, 
has also activating properties at chicken and zebrafish MR [6] could also be seen 
as a third ligand to the MR. Despite their diverse range of action, nuclear receptors 
share a common, highly conserved structure [7]. A ligand-induced conformational 
change of the ligand-binding domain (LDB) leads to the activation of the receptor. 
Upon translocation into the nucleus, NR modulates transcription by interacting 
with specific DNA sequences. Eukaryote DNA is not linear but wrapped up in a 
complex with histones forming the chromatin. Histones are subjected to a variety of 
reversible post-translational modifications, which, in turn, can change chromatin 
density, accessibility and high-order chromatin structure and thereby determine 
transcription factor binding and gene expression [8].

Epigenetics is an emerging topic in cardiovascular research. The heart and 
the vasculature are composed of numerous different cell types including cardiac 
myocytes, endothelial cells, vascular smooth muscle cells, fibroblasts, immune 
cells and others [9]. These different cell types show marked heterogeneity in their 
specific transcriptomes [10–13]. Transcriptome analyses of different cell types of 
the heart revealed transcriptional changes during development and disease [12, 
13], and these changes were associated with distinct alterations in the epigenome. 
For example, dysregulation of histone modifications or DNA methylation has been 
linked to numerous diseases of the cardiovascular system, such as atherosclerosis 
[14–16], hypertension [17, 18] or heart failure [19–22]. Based on these findings 
pharmacological targeting of epigenetic modifiers has been proposed for treatment 
of cardiovascular disease and successfully tested in preclinical models [23, 24].

Epigenetic modifications, such as histone modifications or DNA methylation, 
have been identified as decisive regulators of transcription factor activity, as chro-
matin compaction determines the cell-specific accessibility of DNA [4]. Vice versa, 
NR can alter the chromatin structure through recruitment of cofactors, which act 
as chromatin remodelers [25]. Chromatin immunoprecipitation (ChIP) assays with 
subsequent deep sequencing represent a powerful technique for genome-wide anal-
ysis of histone modifications or other DNA-associated proteins [26]. The combina-
tion of different histone modifications, often referred to as the histone code, gives 
information on proximal and distal regulatory DNA elements, including promoters 
and enhancers. Promoters are often located in close proximity to the transcrip-
tion start site (TSS) and associated with monomethylation of histone 3 at lysin 4 
(H3K4me1), while enhancers are usually distal to TSS and marked by trimethylation 
of H3K4 (H3K4me3). Active promoter or enhancer sites are marked by acetylation 
of histone 3 at lysin 27 (H3K27ac); in contrast, H3K9me3 and H3K27me3 mark 
heterochromatic or repressed regions [27]. Epigenetic modifications are reversible, 
being recognised, established or removed by reader, writer and eraser proteins. For 
example, acetylation of histones is regulated by two counteracting enzymes which 
add (histone acetyltransferases, HAT) acetyl groups to lysine residues or remove 
them (histone deacetylases HDAC) [28].

DNA methylation of CpGs is the only known epigenetic mechanism directly 
targeting the DNA and plays an important role in gene silencing when being 
recognised by reader proteins such as methyl-CpG-binding protein 2 (MeCP2) 
that act as transcriptional repressors [29]. DNA methylation is established and 
maintained during mitosis by DNA methyltransferases (DNMT) [29]. Oxidation of 
methylcytosines to hydroxylmethylcytosines, which is an intermediate step towards 
demethylation, is mediated by members of the ten-eleven translocation (TET) 
enzyme family. This occurs predominantly in promoter and enhancer regions with 
low CpG density, resulting in low methylated regions and can be used to identify 
active regulatory regions [29, 30]. CpG-rich regions, also referred to as CpG islands, 
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in the promoter of constitutively active genes are typically unmethylated [29]. This 
allows to use DNA methylation as a stable mark of cell lineage during development 
[31]. Analysis of the DNA methylome of murine cardiomyocytes revealed distinct 
DNA methylation pattern during cardiomyocyte development and disease [32]. 
Demethylation of cardiac gene bodies correlated with active histone marks and 
increased gene expression. Interestingly, by comparison of the DNA methylome of 
healthy and failing cardiomyocytes, the DNA methylation pattern of failing car-
diomyocytes was bearing a partial resemblance to foetal cardiomyocytes; however, 
changes were not major [32]. A similar result could be observed in human failing 
cardiac myocytes. Pathological gene expression in heart failure was accompanied by 
changes in active histone marks, whereas the DNA methylation pattern remained 
mostly the same [33]. Similarly, changes in the transcriptome of cardiac myocytes 
following myocardial infarction were accompanied by altered accessibility of 
chromatin [12].

Given the important role of epigenetics in transcriptional regulation, interaction 
of MR with epigenetic modifications; with epigenetic reader, writer or eraser pro-
teins; or with other transcription factors might control the cell type-specific impact 
of MR on gene expression and function. In this review article, we will summarise 
what is known about MR-dependent gene expression, epigenetic mechanisms and 
their interaction with MR in cardiovascular cells.

2.  Impact of aldosterone and MR on gene expression in the 
cardiovascular system

A series of experimental studies during the past years revealed distinct MR 
functions in cardiac myocytes, fibroblasts, endothelial cells, vascular smooth 
muscle cells and immune cells [3, 34, 35]. These studies provided evidence that 
the beneficial effect of MR antagonists in heart failure is directly related to MR 
in cardiovascular cells and independent from MR in renal epithelial cells. Several 
attempts have been made to understand the downstream signalling events following 
MR activation and to identify direct MR target genes in different cells or tissues of 
the cardiovascular system.

Early studies on cultured fibroblasts revealed an upregulation of collagen by 
aldosterone [36, 37] and by this suggested MR-dependent gene expression in car-
diovascular cells. Later studies applied microarray or RNA-sequencing techniques 
to systematically detect MR-responsive genes. Similar to fibroblasts, aldosterone 
induced the expression of collagen types I and III in cultured smooth muscle cells 
from the coronary artery [38]. In mouse aorta, aldosterone regulated the expression 
of genes related to vascular function, such as oxidative stress, extracellular matrix 
and angiogenesis [39]. Treatment of EAhy926 endothelial cells expressing MR after 
retroviral transfection with aldosterone leads to regulation of only 17 transcripts 
[40]. In contrast, 133 genes were found up- or downregulated by aldosterone in 
human umbilical vein endothelial cells with naïve MR expression but not after MR 
knockdown [41]. These genes were associated leukocyte migration and angiogen-
esis. Interestingly, aldosterone treatment had opposing effects on endothelial cell 
gene expression when compared to treatment with vascular endothelial cell growth 
factor, a potent pro-angiogenic factor [41].

In a H9C2 cardiac myocyte cell line stably expressing MR, 53 transcripts were 
detected to be differentially regulated after treatment with aldosterone, the major-
ity of them being upregulated [42]. Among the upregulated transcripts were genes 
related to extracellular matrix deposition such as Adamts1 (A disintegrin and metal-
loprotease with thrombospondin motifs), Pai-1 (plasminogen-activator inhibitor 1) 
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example, acetylation of histones is regulated by two counteracting enzymes which 
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[31]. Analysis of the DNA methylome of murine cardiomyocytes revealed distinct 
DNA methylation pattern during cardiomyocyte development and disease [32]. 
Demethylation of cardiac gene bodies correlated with active histone marks and 
increased gene expression. Interestingly, by comparison of the DNA methylome of 
healthy and failing cardiomyocytes, the DNA methylation pattern of failing car-
diomyocytes was bearing a partial resemblance to foetal cardiomyocytes; however, 
changes were not major [32]. A similar result could be observed in human failing 
cardiac myocytes. Pathological gene expression in heart failure was accompanied by 
changes in active histone marks, whereas the DNA methylation pattern remained 
mostly the same [33]. Similarly, changes in the transcriptome of cardiac myocytes 
following myocardial infarction were accompanied by altered accessibility of 
chromatin [12].

Given the important role of epigenetics in transcriptional regulation, interaction 
of MR with epigenetic modifications; with epigenetic reader, writer or eraser pro-
teins; or with other transcription factors might control the cell type-specific impact 
of MR on gene expression and function. In this review article, we will summarise 
what is known about MR-dependent gene expression, epigenetic mechanisms and 
their interaction with MR in cardiovascular cells.

2.  Impact of aldosterone and MR on gene expression in the 
cardiovascular system

A series of experimental studies during the past years revealed distinct MR 
functions in cardiac myocytes, fibroblasts, endothelial cells, vascular smooth 
muscle cells and immune cells [3, 34, 35]. These studies provided evidence that 
the beneficial effect of MR antagonists in heart failure is directly related to MR 
in cardiovascular cells and independent from MR in renal epithelial cells. Several 
attempts have been made to understand the downstream signalling events following 
MR activation and to identify direct MR target genes in different cells or tissues of 
the cardiovascular system.

Early studies on cultured fibroblasts revealed an upregulation of collagen by 
aldosterone [36, 37] and by this suggested MR-dependent gene expression in car-
diovascular cells. Later studies applied microarray or RNA-sequencing techniques 
to systematically detect MR-responsive genes. Similar to fibroblasts, aldosterone 
induced the expression of collagen types I and III in cultured smooth muscle cells 
from the coronary artery [38]. In mouse aorta, aldosterone regulated the expression 
of genes related to vascular function, such as oxidative stress, extracellular matrix 
and angiogenesis [39]. Treatment of EAhy926 endothelial cells expressing MR after 
retroviral transfection with aldosterone leads to regulation of only 17 transcripts 
[40]. In contrast, 133 genes were found up- or downregulated by aldosterone in 
human umbilical vein endothelial cells with naïve MR expression but not after MR 
knockdown [41]. These genes were associated leukocyte migration and angiogen-
esis. Interestingly, aldosterone treatment had opposing effects on endothelial cell 
gene expression when compared to treatment with vascular endothelial cell growth 
factor, a potent pro-angiogenic factor [41].

In a H9C2 cardiac myocyte cell line stably expressing MR, 53 transcripts were 
detected to be differentially regulated after treatment with aldosterone, the major-
ity of them being upregulated [42]. Among the upregulated transcripts were genes 
related to extracellular matrix deposition such as Adamts1 (A disintegrin and metal-
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or Tnx (tenascin-X) [42]. Studies using selective MR or GR antagonists confirmed 
MR-dependent expression of these genes in H9C2 cells [43, 44]. In heart tissue 
from untreated mice overexpressing MR in cardiac myocytes, microarray analysis 
revealed 24 transcripts upregulated and 22 transcripts downregulated. Again, the 
expression of Adamts1 and Pai-1 was induced by MR overexpression [43]. Vice 
versa, MR deletion from cardiac myocytes leads to differential regulation of 158 
genes in heart tissue, including upregulation of Nppa (atrial natriuretic peptide 
type A); however, there was no clear reduction of genes related to collagen synthesis 
in this study [45]. In doxorubicin-treated mice, MR deletion from cardiac myocytes 
prevented the repressive effect of doxorubicin on gene expression, likely by a post-
transcriptional mechanism [46]. One well-investigated gene that is upregulated 
in heart tissue by cardiac myocyte MR overexpression or aldosterone treatment 
is neutrophil-gelatinase-associated lipocalin (Ngal) [47]. Interestingly, Ngal was 
upregulated by aldosterone in endothelial cells and vascular smooth muscle cells as 
well [47].

Taken together, there is an overlap of several genes that were similarly regulated 
by MR in different cardiovascular cells or tissues including Sgk1 [41–43, 45], Tsc22d3 
[40, 41], Adamts1 [41–43], Fkbp5 [40, 41, 43], Klf9 [39–41], Ngal [47] or Per1 [41, 
48, 49], indicating a common signature of MR-regulated genes. Interestingly, 
these genes are well-related to the pathophysiological impact of MR on fibrosis and 
inflammation in the cardiovascular system.

3. Regulation of MR transcriptional activity

Transcriptional activity of MR is regulated at different levels: ligand binding, 
nuclear translocation, chromatin state and MR-DNA interaction. The main focus 
of this article will be on chromatin state and MR-DNA interaction; however, some 
specificities of cardiovascular cell types should be noticed: First, as MR binds to 
aldosterone or glucocorticoids with similar affinity, different mechanisms exist that 
allow ligand-specificity of MR. One of them is co-expression of 11β-hydroxysteroid 
dehydrogenase type 2 (11βHSD2), an enzyme converting glucocorticoids to deri-
vates that are inactive at the MR (for review, see [50]). In the cardiovascular system, 
11βHSD2 is highly expressed in endothelial cells, low expressed in cardiac myocytes 
and smooth muscle cells and probably absent in immune cells [51]. Second, while 
in most cell types unliganded MR is predominantly located at the cytoplasm and 
shuttles into the nucleus upon ligand binding, MR has been described to be con-
stitutively located at the nucleus in cardiac myocytes [52]. Immunohistochemical 
analysis of heart tissue revealed nuclear localization of the MR, and subfractional 
analysis showed that the vast majority of MR was chromatin-bound irrespective of 
plasma aldosterone or glucocorticoid levels. The subcellular distribution depended 
on the balance of heat shock protein 90 expression and the synergy of two nuclear 
localization signals. Interestingly, transcriptional activation of chromatin-bound 
MR nevertheless required the presence of a ligand [52].

4. Validation of MR-responsive genes

To further elucidate the role of MR in transcriptional regulation, it has been 
aimed to identify genes that are direct MR targets by proofing MR binding to a 
corresponding regulatory region by ChIP experiments. In a human embryonic 
kidney cell line (HEK293) stably transfected with myc-tagged hMR, Cnksr3 was 
identified as a novel MR target gene containing MR binding sites (MBS) upstream 
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of the transcription start site using ChIP in conjunction with microarray analysis 
(ChIP-chip). Cnksr3 was described as highly expressed in response to aldosterone, 
mediating ENaC activity and thereby influencing transepithelial Na+ transport in 
renal collecting duct cells [53]. Ueda et al. combined ChIP with high-throughput 
sequencing for a genome-wide analysis of MR target genes in renal distal con-
voluted tubular cells and identified 1113 MR binding sites associated with 1414 
genes [54]. Combining data from a microarray study 186 genes were considered to 
be aldosterone-responsive, showing an increase in mRNA expression levels after 
aldosterone stimulation and a decrease in expression by inhibitory treatment with 
spironolactone. Interestingly, only 25 genes showed an overlap between both assays 
and were thus classified as MR target genes, among those the well-known target 
genes Sgk1, Fkbp5 and Tsc22d3 [54]. Of note, strong enrichment of MR does not 
necessarily translate into increased expression of target genes. In another study, 
analysis of renal MR target genes revealed four commonly acknowledged target of 
MR signalling in renal cells such as Scnn1a, Fkbp5, Zbtb16 and Per1 and nine other 
genes not associated with MR signalling before [55]. MR target genes could be 
subcategorized according to their different kinetics of MR-dependent activation 
of gene expression into early, intermediate and late response genes [55]. However, 
molecular mechanisms of MR signalling are highly cell-specific, as distinct target 
genes could be found in one experiment but not reproduced in another [54, 55], 
whereas other MR target genes seem to be independent from tissue or cell type such 
as Fkbp5 or Per1 [54–57].

MR binding sites seem to be widespread across the genome, an equal propor-
tion (almost 40%) of all identified peaks were located either within introns or 
intergenic. Surprisingly, only 40 of all approximately 1000 MBS were found within 
promoter regions and 11% within enhancer regions [55]. Among the 13 genes corre-
lating to the highest MR binding peak scores in human renal cells, LINC00963 was 
not regulated by MR, despite high aldosterone-induced MR recruitment. As the MR 
binding site was located far from the nearest TSS, the involvement of this remote 
MBS in transcriptional regulation of another gene through long-range chromatin 
interactions is possible [55, 58].

For cardiovascular cells, available studies are restricted to MR binding in the 
promoter region of certain target genes. Cav1.2, a voltage-gated calcium channel, 
could be identified as an MR target in the cardiovascular system using mutational 
and in silico analysis. An aldosterone-dependent recruitment of MR to the alterna-
tive cardiac Cacna1c P1-promoter was observed, subsequently regulating expression 
of cardiac Cav1.2 transcripts in cardiac myocytes as well as in vascular smooth 
muscle cells, underlining the importance of aldosterone signalling in vascular reac-
tivity and regulation of blood pressure [59]. In a similar approach, MR-dependent 
regulation of Icam1 in cultured endothelial cells was demonstrated using a reporter 
assay with different promoter fragments [60].

5. Mineralocorticoid receptor response elements

The canonical GRE DNA motif consists of two inverted palindromic half sites, 
separated by a 3 bp spacer [AGAACAnnnTGTTCT (Figure 1)] [61]. Different varia-
tions of this motif exist in human renal cells with the bases C5 and G11 remaining 
essential for MR binding. Strong sequence degeneration of the classic consensus 
motif correlated with low MR enrichment and therefore disrupted MR interaction 
[55]. A small percentage of 7.4% MBS contained the classic consensus MRE motif; 
the larger part of all identified MRE consisted of half sites or a combination out 
of palindromic sequences and half-MREs [55]. Of note, not all MR binding sites 
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of the transcription start site using ChIP in conjunction with microarray analysis 
(ChIP-chip). Cnksr3 was described as highly expressed in response to aldosterone, 
mediating ENaC activity and thereby influencing transepithelial Na+ transport in 
renal collecting duct cells [53]. Ueda et al. combined ChIP with high-throughput 
sequencing for a genome-wide analysis of MR target genes in renal distal con-
voluted tubular cells and identified 1113 MR binding sites associated with 1414 
genes [54]. Combining data from a microarray study 186 genes were considered to 
be aldosterone-responsive, showing an increase in mRNA expression levels after 
aldosterone stimulation and a decrease in expression by inhibitory treatment with 
spironolactone. Interestingly, only 25 genes showed an overlap between both assays 
and were thus classified as MR target genes, among those the well-known target 
genes Sgk1, Fkbp5 and Tsc22d3 [54]. Of note, strong enrichment of MR does not 
necessarily translate into increased expression of target genes. In another study, 
analysis of renal MR target genes revealed four commonly acknowledged target of 
MR signalling in renal cells such as Scnn1a, Fkbp5, Zbtb16 and Per1 and nine other 
genes not associated with MR signalling before [55]. MR target genes could be 
subcategorized according to their different kinetics of MR-dependent activation 
of gene expression into early, intermediate and late response genes [55]. However, 
molecular mechanisms of MR signalling are highly cell-specific, as distinct target 
genes could be found in one experiment but not reproduced in another [54, 55], 
whereas other MR target genes seem to be independent from tissue or cell type such 
as Fkbp5 or Per1 [54–57].

MR binding sites seem to be widespread across the genome, an equal propor-
tion (almost 40%) of all identified peaks were located either within introns or 
intergenic. Surprisingly, only 40 of all approximately 1000 MBS were found within 
promoter regions and 11% within enhancer regions [55]. Among the 13 genes corre-
lating to the highest MR binding peak scores in human renal cells, LINC00963 was 
not regulated by MR, despite high aldosterone-induced MR recruitment. As the MR 
binding site was located far from the nearest TSS, the involvement of this remote 
MBS in transcriptional regulation of another gene through long-range chromatin 
interactions is possible [55, 58].

For cardiovascular cells, available studies are restricted to MR binding in the 
promoter region of certain target genes. Cav1.2, a voltage-gated calcium channel, 
could be identified as an MR target in the cardiovascular system using mutational 
and in silico analysis. An aldosterone-dependent recruitment of MR to the alterna-
tive cardiac Cacna1c P1-promoter was observed, subsequently regulating expression 
of cardiac Cav1.2 transcripts in cardiac myocytes as well as in vascular smooth 
muscle cells, underlining the importance of aldosterone signalling in vascular reac-
tivity and regulation of blood pressure [59]. In a similar approach, MR-dependent 
regulation of Icam1 in cultured endothelial cells was demonstrated using a reporter 
assay with different promoter fragments [60].

5. Mineralocorticoid receptor response elements

The canonical GRE DNA motif consists of two inverted palindromic half sites, 
separated by a 3 bp spacer [AGAACAnnnTGTTCT (Figure 1)] [61]. Different varia-
tions of this motif exist in human renal cells with the bases C5 and G11 remaining 
essential for MR binding. Strong sequence degeneration of the classic consensus 
motif correlated with low MR enrichment and therefore disrupted MR interaction 
[55]. A small percentage of 7.4% MBS contained the classic consensus MRE motif; 
the larger part of all identified MRE consisted of half sites or a combination out 
of palindromic sequences and half-MREs [55]. Of note, not all MR binding sites 
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contain an MRE consensus motif. The majority of peaks lacked the MRE implying 
interaction of MR with the DNA directly by binding to specific DNA sequences 
different from the consensus motif, indirectly via protein–protein interactions or 
possibly through tethering as known for GR (Figure 1) [55, 62, 63]. Indeed, an 
aldosterone-dependent trans-activation of AP-1 could recently be proven in human 
cells, underlining this hypothesis [64]. Interestingly, all MBS in rat hippocampal 
tissue contained an MRE [57], suggesting that the mode of MR-DNA interaction 
might be cell- or tissue-specific.

When analysing MRE it has to be taken into account that MR and GR share a 
common consensus sequence. Both receptors are simultaneously expressed in vari-
ous tissues and interact with each other. For example, MR and GR are able to form 
homodimers as well as heterodimers in rat hippocampal tissue after acute stress 
challenges [56]. The binding of homodimers of the respective receptors or MR/GR 
heterodimers seems to be gene-specific. Using a tandem ChIP approach, it could be 
pointed out that MR and GR mainly bind as MR/MR and GR/GR homodimers at 
the GRE of Sgk1, whereas MR/GR heterodimer formation could be proven for the 

Figure 1. 
Proposed modes of MR-DNA interaction. Mineralocorticoid receptors can directly bind to MR response 
elements consisting of a 15 bp palindromic DNA sequence (A) or to composite elements when interacting 
with a neighbouring transcription factor (B). Indirect MR-DNA interaction can be facilitated by tethering to 
another transcription factor (C). MR-DNA interaction is modulated by co-regulatory transcription factors or 
post-translational modifications of the MR (D). MR, mineralocorticoid receptor; TF, transcription factor; CR, 
co-regulator; ac, acetylation; P, phosphorylation.
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Per1 GRE in addition to homodimers of both receptors. Notably, at the Fkbp5 GRE 
MR seems to bind only in a heterocomplex with GR [56], indicating distinct mecha-
nisms controlling binding of receptors to GRE, such as local chromatin accessibility 
or interactions with co-regulators [65]. Interactions of MR/GR heterodimers with 
the Per1 promoter in response to aldosterone or cortisol stimulation could also be 
detected in a human renal cell line [49]. In an extensive time-course ChIP-qPCR 
study, the authors provide evidence for different dynamics in MR or GR recruitment 
to the promoter region of a given target gene. MR recruitment kinetics onto the 
Per1 promoter was ligand-dependent. Aldosterone induces a distinct kinetic pattern 
differing from MR-GR recruitment kinetics [49], suggesting different dynamics as 
mechanisms for receptor selectivity. MR/GR heterodimer show distinct dissociating 
rates differing from MR/MR or GR/GR homodimers [66], resulting in a stronger 
GRE binding and a synergistic effect on controlling transcriptional activity of each 
receptor [49, 56]. However, contrasting results have been reported. MR/GR het-
erodimers either enhanced [56] or inhibited [67] transcription of given target genes 
when compared to respective homodimers. In cardiac myocytes, Per1 was upregu-
lated by both cortisol and aldosterone. The impact of aldosterone was enhanced in 
the presence of the CLOCK transcription factor, suggesting a cooperative effect of 
both transcription factors on Per1 expression [48]. Meinel et al. demonstrated an 
interaction of MR with the transcription factor specificity protein 1 (SP1) leading 
to the binding of an alternative MRE in the promoter region of epidermal growth 
factor receptor (EGFR) gene. The SP-1-dependent transactivation of EGFR through 
MR could also be demonstrated in cultured smooth vascular cells [68].

Comparison of GR-ChIP data with MR-ChIP data from rat hippocampal tissue 
revealed 918 MR-specific binding sites, 1450 GR-specific and 475 binding sites 
shared by MR and GR, all containing the GRE motif [57]. In all MR-exclusive 
binding sites, an additional motif, corresponding to the Atoh1 binding sequence, 
was present, and the protein was not expressed in hippocampal tissue. However, 
in Atoh1 belonging to the basic helix–loop–helix (bHLH) family of transcription 
factors, the brain-specific NeuroD family members could be identified as potential 
candidates for interaction with MR, thus ensuring MR specificity at MR-exclusive 
binding sites [57]. Different studies point at a role of differences in the nucleotide 
sequence of GREs in mediating distinct transcriptional activity of MR and GR 
[56, 59, 68], as some GRE do not enhance binding of the receptors [56], other GRE 
sequences favouring MR binding [69] or exclusively binding MR [68]. The ability 
to bind negative glucocorticoid response elements (nGRE) and therefore repress-
ing transcription of given target genes is restricted to GR signalling and not shared 
with other steroid receptors [70]. Despite having a common ancestral with the 
capacity of binding nGRE, the ability was lost in the MR due to different mutations 
at independent timepoints and enhanced in the GR lineage, resulting and contrib-
uting to the capability of MR and GR to show specific and distinct transcriptional 
signatures even though being highly homologous. Nevertheless, repressing effects 
on transcriptional activities are not unique for GR as MR are likewise able to 
trans-repress NFκB signalling through tethering effects without interfering with 
DNA binding of the complex, putting an interesting angle to the pro- and antiin-
flammatory effects of MR and GR. However, trans-repressing effects of MR are 
notably weaker than those of GR [64]. Of note, in addition to the beforementioned 
activating protein-protein interactions of MR on inflammatory AP-1 signalling, 
suppressing effects on AP-1 activities in a DNA-sequence-specific manner—and 
therefore target gene-specific—could also be elucidated, stressing out the necessity 
of identifying cell type-specific target genes of MR in order to dissect augmenting 
effects of MR from repressing effects for the development of potential new MR 
antagonists [64].
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Per1 GRE in addition to homodimers of both receptors. Notably, at the Fkbp5 GRE 
MR seems to bind only in a heterocomplex with GR [56], indicating distinct mecha-
nisms controlling binding of receptors to GRE, such as local chromatin accessibility 
or interactions with co-regulators [65]. Interactions of MR/GR heterodimers with 
the Per1 promoter in response to aldosterone or cortisol stimulation could also be 
detected in a human renal cell line [49]. In an extensive time-course ChIP-qPCR 
study, the authors provide evidence for different dynamics in MR or GR recruitment 
to the promoter region of a given target gene. MR recruitment kinetics onto the 
Per1 promoter was ligand-dependent. Aldosterone induces a distinct kinetic pattern 
differing from MR-GR recruitment kinetics [49], suggesting different dynamics as 
mechanisms for receptor selectivity. MR/GR heterodimer show distinct dissociating 
rates differing from MR/MR or GR/GR homodimers [66], resulting in a stronger 
GRE binding and a synergistic effect on controlling transcriptional activity of each 
receptor [49, 56]. However, contrasting results have been reported. MR/GR het-
erodimers either enhanced [56] or inhibited [67] transcription of given target genes 
when compared to respective homodimers. In cardiac myocytes, Per1 was upregu-
lated by both cortisol and aldosterone. The impact of aldosterone was enhanced in 
the presence of the CLOCK transcription factor, suggesting a cooperative effect of 
both transcription factors on Per1 expression [48]. Meinel et al. demonstrated an 
interaction of MR with the transcription factor specificity protein 1 (SP1) leading 
to the binding of an alternative MRE in the promoter region of epidermal growth 
factor receptor (EGFR) gene. The SP-1-dependent transactivation of EGFR through 
MR could also be demonstrated in cultured smooth vascular cells [68].

Comparison of GR-ChIP data with MR-ChIP data from rat hippocampal tissue 
revealed 918 MR-specific binding sites, 1450 GR-specific and 475 binding sites 
shared by MR and GR, all containing the GRE motif [57]. In all MR-exclusive 
binding sites, an additional motif, corresponding to the Atoh1 binding sequence, 
was present, and the protein was not expressed in hippocampal tissue. However, 
in Atoh1 belonging to the basic helix–loop–helix (bHLH) family of transcription 
factors, the brain-specific NeuroD family members could be identified as potential 
candidates for interaction with MR, thus ensuring MR specificity at MR-exclusive 
binding sites [57]. Different studies point at a role of differences in the nucleotide 
sequence of GREs in mediating distinct transcriptional activity of MR and GR 
[56, 59, 68], as some GRE do not enhance binding of the receptors [56], other GRE 
sequences favouring MR binding [69] or exclusively binding MR [68]. The ability 
to bind negative glucocorticoid response elements (nGRE) and therefore repress-
ing transcription of given target genes is restricted to GR signalling and not shared 
with other steroid receptors [70]. Despite having a common ancestral with the 
capacity of binding nGRE, the ability was lost in the MR due to different mutations 
at independent timepoints and enhanced in the GR lineage, resulting and contrib-
uting to the capability of MR and GR to show specific and distinct transcriptional 
signatures even though being highly homologous. Nevertheless, repressing effects 
on transcriptional activities are not unique for GR as MR are likewise able to 
trans-repress NFκB signalling through tethering effects without interfering with 
DNA binding of the complex, putting an interesting angle to the pro- and antiin-
flammatory effects of MR and GR. However, trans-repressing effects of MR are 
notably weaker than those of GR [64]. Of note, in addition to the beforementioned 
activating protein-protein interactions of MR on inflammatory AP-1 signalling, 
suppressing effects on AP-1 activities in a DNA-sequence-specific manner—and 
therefore target gene-specific—could also be elucidated, stressing out the necessity 
of identifying cell type-specific target genes of MR in order to dissect augmenting 
effects of MR from repressing effects for the development of potential new MR 
antagonists [64].
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6. Co-regulators of MR activity

MR transcriptional activity in the nucleus is finely controlled by a variety of 
different mechanisms, including the recruitment of co-regulators, a heteroge-
neous group of non-receptor proteins (Figure 1) [71]. Co-regulators modulate 
the transcriptional activity of the receptor by either acting as coactivators or as 
corepressors [72]. They predominantly interact at specific regions in the NTD 
and at the LBD. The NTD represents the least conserved region across the steroid 
receptor family and thereby harbouring most potential for differential recruit-
ment of co-regulators [73]. The LDB is conserved between different species and 
harbours a ligand-dependent activation function site (AF-2), which is exposed 
upon conformational changes induced by ligand binding of the receptor [74]. AF-2 
as a docking platform is essential for co-regulator binding. Many co-regulator 
molecules interact via an LxxLL (L stands for a leucine, x for any other amino acid) 
motif with the AF-2 region [50], e.g. the first identified and well-characterised 
NR co-regulator steroid receptor coactivator-1 (SRC-1) [73]. Among the over 400 
putative co-regulators discovered in screening assays, a few MR-specific interac-
tion partners could be characterised such as the elongation factor eleven-nineteen 
lysine-rich leukaemia (ELL). ELL is able to differentially regulate MR and GR, 
selectively enhancing MR transcriptional activity and repressing GR-mediated 
transactivation [75]. GEMIN4 represents an MR corepressor, attenuating MR tran-
scriptional activity in a cell- and gene-specific manner, as a repressive effect could 
be demonstrated in human embryonic kidney cells but not in a rat cardiomyocyte 
cell line [76]. However, GEMIN4 actions are not restricted to MR, leaving NF-YC as 
the only described MR-specific corepressor [77]. Just recently, a specific MR cofac-
tor modulation has been proposed as a molecular mechanism for the differential 
antifibrotic properties of the novel nonsteroidal MR antagonist finerenone when 
compared to steroidal MR antagonists [78].

7. Post-translational modification of the MR

Post-translational modifications such as phosphorylation, ubiquitination, 
sumoylation or acetylation are described to influence MR transactivation [79]. 
Phosphorylation of MR has contrasting effects, as it has reported early that 
phosphorylation of MR is necessary for aldosterone binding and enhancing the 
DNA-binding ability of MR [80, 81]. On the other hand, phosphorylation of MR on 
serine and threonine residues mediated by cyclin-dependent kinase 5 (CDK5) was 
shown to attenuate MR transcriptional activity, whereas nuclear receptor accumu-
lation was not altered, suggesting impaired interaction of MR with co-regulators 
[82]. Recently, the ubiquitously expressed casein kinase 2 (CK2) was identified 
as a positive modulator of MR transcriptional activity by direct phosphorylation 
of the receptor and potentially by changing the phosphorylation status of other 
MR-co-regulators [83]. Interestingly, phosphorylation of MR is also implied as a cell 
type-specific mechanism, modulating MR activity. Hyperkalaemia was found to 
increase MR phosphorylation at S843 and subsequently prevent ligand-binding and 
receptor activation, a phosphorylation site specific in renal intercalated cells [84]. 
Intriguingly, the phosphorylation of MR can also regulate the ubiquitylation state 
and the subsequent degradation of the protein [85].

The epigenetic writer proteins HDACs are generally perceived as corepressors 
of nuclear receptors [86]. The attenuating effects on gene transcription of the 
earliest described corepressors, nuclear receptor corepressor (NCoR) and silencing 

185

Transcriptional Regulation and Epigenetics in Cardiovascular Cells: Role of the…
DOI: http://dx.doi.org/10.5772/intechopen.87230

mediator of retinoid and thyroid receptor corepressor (SMRT) rely on the subse-
quent recruitment of HDACs [72]. Different studies could reveal that increased 
acetylation of MR, induced by HDAC inhibition, interferes with MR recruitment 
onto the DNA and attenuates transactivation of MR target genes [87, 88]. HDAC3 
is acting as a coactivator in this context, as deacetylation of MR in the hinge region 
restores transcriptional activities of the receptor [88]. The treatment with HDAC 
inhibitors has also been linked to reduced antifibrotic effects in DOCA-salt-induced 
hypertensive rats and decreased expression of inflammatory markers in spontane-
ously hypertensive rats [17, 88, 89].

8. Summary

In summary, the distinct biological effects of MR in different cardiovascular 
cells are associated with changes in gene expression. Epigenetic modifications and 
modifying enzymes have been identified as crucial regulators of gene expression 
and cellular function in the cardiovascular system; however, presently available 
data on MR-dependent gene expression in the cardiovascular system is predomi-
nantly derived from experiments on cultured cells, in some cases after artificial 
overexpression of the MR, or tissue analysis. Analyses of complex tissues consisting 
of a dynamically changing mixture of multiple cell types can lead to ambigu-
ous results. To date there is no ChIP-seq data published describing genome-wide 
MR-DNA interactions in cardiovascular cells. Studies in renal epithelial cells or 
brain tissue indicate that MR-DNA interaction can occur in promoter regions as well 
as at distal enhancer sites, but it remains speculative whether the insights from renal 
epithelial cells can be applied to the cardiovascular system as well.

This implies the necessity to perform cell type-specific studies from primary 
cardiovascular cells in homeostasis and different states of disease in order to 
identify distinct changes in gene expression and (epigenetic) mechanisms regulat-
ing MR activity in a given cell type (Figure 2). Utilisation of cell type-specific 
bulk or single-cell RNA-sequencing as well as integrated analysis of locus-specific 
histone modifications and DNA methylation, spatial organisation of the chromatin, 
MR-DNA binding and MR post-translational modification would allow a compre-
hensive insight into regulation of transcription by MR in cardiovascular cells and 
might lead to novel concepts for selective MR-targeting therapeutics.

Figure 2. 
Proposed epigenetic determents of MR transcriptional activity. Transcriptional activity of the 
mineralocorticoid receptor is determined by DNA methylation and histone modifications governing chromatin 
accessibility and activation status of promoter and distal enhancer regions. Transactivation of MR-bound 
promoter or enhancer regions involves spatial chromatin organisation and other transcription factors. MR, 
mineralocorticoid receptor; TF, transcription factor; ac, acetylation; me, methylation.
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Chapter 13

MicroRNAs in Aldosterone 
Production and Action
Scott M. MacKenzie, Josie van Kralingen, Hannah Martin 
and Eleanor Davies

Abstract

The secretion of aldosterone by the adrenal cortex is a tightly regulated process. 
Loss of this control can result in severe hypertension and end-organ damage, so 
detailed understanding of the various mechanisms by which the body regulates 
aldosterone biosynthesis is key. The emergence of microRNAs (miRNAs) as nega-
tive regulators of numerous physiological processes has naturally led to their study 
in the context of aldosterone production. We summarise several studies that have 
demonstrated a significant role for microRNAs in aldosterone biosynthesis and 
action, thereby presenting a possible therapeutic role in the treatment of common 
forms of hypertension such as primary aldosteronism. Furthermore, the presence 
of microRNAs in the circulation offers the prospect of accessible and informative 
biomarkers that may simplify the currently protracted and technically difficult 
diagnosis of such conditions.

Keywords: aldosterone, microRNA, hypertension, adrenal cortex

1. Introduction

High blood pressure, or hypertension, is a major risk factor for coronary disease, 
heart failure and stroke. Hypertension is a contributing factor in over 7 million 
deaths per year, which provides strong motivation to understand the systems 
regulating normal blood pressure and how such control can be lost. Our own stud-
ies have focused on the role of the hormone aldosterone, a key determinant of blood 
pressure, and the various factors regulating its secretion from the adrenal gland.

Aldosterone is synthesised in the adrenal cortex and acts on specific mineralo-
corticoid receptors (MR), principally in epithelial tissue, to regulate fluid balance, 
electrolyte homeostasis and blood pressure. Excess secretion of aldosterone, 
as in primary aldosteronism (PA), leads to severe hypertension with markedly 
increased risk of myocardial infarction, stroke and left ventricular hypertrophy [1]. 
Originally believed to be a rare condition (principally due to practical difficulties 
in accurate diagnosis), the reported frequency of PA in all hypertensives has risen 
steadily over the years and is now generally regarded to lie somewhere between 10 
and 20%; PA is therefore the single most common form of secondary hyperten-
sion [2]. Independent of its effects on blood pressure, excess aldosterone also has 
detrimental effects on various target organs including the renal and cardiovascular 
systems [3]. Such negative effects are not necessarily confined to PA; even when 
present in minimal excess, aldosterone associates with higher blood pressure and 
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substantial cardiovascular morbidity [4]. Although major advances have been made 
in understanding aldosterone and its regulation in the 60 years since its discovery, 
many aspects remain incompletely understood. New factors capable of regulating 
aldosterone secretion are still emerging, and evidence generated by ourselves and 
others indicate that we must add microRNA (miRNA) to this list.

In this article we summarise the major findings to date regarding miRNA and its 
effects on aldosterone secretion and action. We also anticipate the future direction 
and outcomes of such studies—including the possible role for miRNA in the accu-
rate diagnosis of PA and other subtypes of hypertension—and related therapeutic 
strategies that could be employed to modify hormone production and action in such 
patients to yield major health benefits.

2. Aldosterone biosynthesis

Aldosterone biosynthesis is confined to the adrenocortical zona glomerulosa 
(ZG) and in normal circumstances is principally controlled by the renin-angiotensin 
system (RAS) and potassium status. Synthesis consists of a series of enzymatic 
reactions commencing with the conversion of cholesterol by the side-chain cleavage 
enzyme, CYP11A1. The terminal reactions in aldosterone biosynthesis are catalysed 
by the enzyme aldosterone synthase, the product of the CYP11B2 gene, which is 
expressed only in the ZG. Its expression is principally controlled by angiotensin 
II (AngII) and potassium through transcription factor binding of its 5′ regulatory 
region [5]. The key second messenger in this process is calcium; influx of Ca2+ 
through channels in the ZG cell membrane raises aldosterone production by various 
means that include stimulation of CYP11B2 transcription and increased availability 
of the cofactor NADH. Extensive study of the CYP11B2 gene has shown it to be 
highly polymorphic, with multiple genetic sequence variations present across its 
introns and in the untranslated regions (UTRs) lying to the 5′ and 3′ ends of the 
locus. Certain of these 5′ and intronic variants associate with altered gene activity 
and also with raised plasma aldosterone, increased urinary excretion of aldosterone 
metabolites and high blood pressure, demonstrating that relatively subtle changes 
in expression of this gene can have significant cardiovascular effects. The discovery 
of microRNAs and their role in post-transcriptional repression of specific genes, 
principally through sites located in the 3’ UTR, has now focused interest on that 
region of CYP11B2.

3. MicroRNA

miRNAs are a class of endogenous, small (~20–25 nucleotides), single-stranded 
non-coding RNA molecules which act to post-transcriptionally regulate expression 
of specific target mRNAs. They are often regarded as having only subtle ‘fine-
tuning’ roles in gene expression but are nevertheless capable of significant effects 
including roles in human disease, including numerous cancers [6, 7].

Synthesis of miRNA is a multistep process (see Figure 1), beginning with the 
transcription in the nucleus from miRNA genes located mainly in intergenic or 
intronic chromosomal regions of chromosomes, although some are also pres-
ent in exons [8, 9]. This produces primary transcripts (pri-miRNA), which are 
processed by Drosha endonuclease into pre-miRNAs ~70 nucleotides in size. Due 
to self-complementary nucleotide binding, these pre-miRNAs have distinctive 
‘hairpin loop’ structures and are transported by Exportin-5 from the nucleus to the 
cytoplasm, where they are processed further by Dicer to form a miRNA duplex. 
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The strand of the miRNA duplex with lower thermodynamic stability (usually the 
3′ arm) is termed the passenger strand; this is removed, resulting in the formation 
of the mature miRNA [10]. It was initially thought that the passenger strand had 
no biological function and was automatically targeted for degradation, but recent 
studies show that passenger strands can have a functional role in mRNA regulation, 
prompting their study in current miRNA research [11, 12]. The mature miRNA 
then recruits a ribonucleoprotein complex called the miRNA-induced silenc-
ing complex (miRISC). At the core of the mammalian miRISC is one of the four 
Argonaute proteins (AGO1–4) and a 182 kDa protein, GW182. While the miRNA 
sequence determines which mRNAs are targeted for repression, it is the miRISC 
proteins that actually mediate the silencing [13]. The miRISC post-transcriptionally 
represses gene expression by initiating decay of target mRNAs and/or inhibiting 
their translation. It achieves this by recognising and binding to specific sequences 
on the target mRNA, usually in its 3’UTR, that is complementary to the miRNA 
seed site (located at nucleotides 2–8 of the miRNA, at its 5′ end). If the mRNA is 
sufficiently complementary to the miRNA, it will be cleaved by the slicer AGO 
and these cleaved mRNA fragments targeted for degradation [14, 15]. If binding is 
imperfect, AGO is unable to cleave the mRNA. However, complementary binding 
beyond the seed sequence can also initiate silencing; in this case the GW182 protein 
recruits deadenylation factors which destabilise the mRNA through the removal of 
its polyadenylated tail, again targeting it for degradation. Although the majority 
of miRNA-controlled gene silencing is achieved by mRNA cleavage or destabilisa-
tion, translation can also be repressed. This mechanism is less well understood but 
is thought to involve miRNA interaction with factors essential to the initiation of 
translation, such as cytoplasmic poly(A)-binding protein (PABPC) and cap-binding 
complex eIF4F [16].

While miRNA-mediated regulation is typically mild in nature, individual 
miRNAs can have significant and diverse biological effect due to their ability to 
target numerous different mRNA species within the same cell [17] and even several 

Figure 1. 
Overview of miRNA biogenesis and post-transcriptional repression mechanisms. MicroRNA genes are 
transcribed in the nucleus as primary transcripts (pri-miRNA) before being processed into ~70 nucleotide 
pre-miRNAs by Drosha endonuclease. The pre-miRNA is transported from the nucleus into the cytoplasm 
by Exportin-5 where it is processed further by dicer. The mature miRNA (red) is then loaded into Argonaute 
1–4 and assembled into the miRNA-induced silencing complex (miRISC), which is subsequently guided to 
the 3’UTR of the target mRNA. mRNA translation is inhibited by miRISC through one or more repressive 
mechanisms, including mRNA cleavage, degradation and translational repression.
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substantial cardiovascular morbidity [4]. Although major advances have been made 
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non-coding RNA molecules which act to post-transcriptionally regulate expression 
of specific target mRNAs. They are often regarded as having only subtle ‘fine-
tuning’ roles in gene expression but are nevertheless capable of significant effects 
including roles in human disease, including numerous cancers [6, 7].

Synthesis of miRNA is a multistep process (see Figure 1), beginning with the 
transcription in the nucleus from miRNA genes located mainly in intergenic or 
intronic chromosomal regions of chromosomes, although some are also pres-
ent in exons [8, 9]. This produces primary transcripts (pri-miRNA), which are 
processed by Drosha endonuclease into pre-miRNAs ~70 nucleotides in size. Due 
to self-complementary nucleotide binding, these pre-miRNAs have distinctive 
‘hairpin loop’ structures and are transported by Exportin-5 from the nucleus to the 
cytoplasm, where they are processed further by Dicer to form a miRNA duplex. 
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components within a single pathway [18]. Indeed, it is believed that the majority 
of protein-coding genes are regulated in some way by miRNAs given that >60% of 
human protein-coding genes contain a minimum of one conserved miRNA-binding 
site [19].

The naming of miRNAs follows a specific set of rules. Each miRNA name identi-
fies first its source species (e.g. ‘hsa’ for human and ‘mmu’ for mouse) and is num-
bered according to its order of submission to the miRNA database [20], with mature 
sequences labelled ‘miR’ and precursor hairpins ‘mir’ [21]. Identical sequences 
found in different species are assigned the same numbers, while identical sequences 
found within the same species but arising from different genomic locations are 
given numerical suffixes (e.g. hsa-miR-1-1, hsa-miR-1-2). miRNAs of similar 
sequence are grouped into a miRNA ‘family’ and are allocated an additional lower-
case letter to aid identification (e.g. hsa-miR-320a, hsa-miR-320b, hsa-miR-320c). 
Finally, given that mature miRNAs derive from a ‘hairpin’ precursor, the current 
nomenclature assigns either a -5p or -3p suffix, depending upon whether the 
miRNA was generated from the 5′ or 3′ arm of that hairpin (e.g. hsa-miR-34c-5p 
and hsa-miR-34c-3p).

4. Extracellular microRNAs

In addition to acting within the cell where they are transcribed, miRNAs can be 
released from those cells and have been detected in various bodily fluids, includ-
ing the bloodstream. This has raised interest in the potential utility of circulating 
miRNAs as disease biomarkers [22, 23]. The majority of miRNAs within the cir-
culation are associated with AGO2 in nuclease-resistant complexes. miRNAs also 
circulate within exosomes, which are small membrane vesicles that form within 
multivesicular bodies and are secreted upon fusion with the plasma membrane. 
Exosomes contain specific miRNAs rather than the complete spectrum of miRNAs 
of a cell, indicating as yet unknown mechanisms for their recognition, packaging 
and secretion. miRNAs may also be incorporated into high-density lipoprotein 
and low-density lipoprotein particles although this process is again not fully 
understood. Secreted miRNAs can, in principle, be transferred from one tissue to 
another through the circulation, but it is unclear whether a miRNA species taken 
up by a cell in this way can achieve sufficient levels to inhibit its target transcripts 
significantly. This mechanism of action raises the intriguing possibility that extra-
cellular  miRNAs participate in long-range signalling between tissues, in a manner 
analogous to endocrine systems. In this regard, miRNAs have been reported to act 
as agonists of Toll-like receptors and to trigger downstream pathway activation in 
target cells [24]. Distinctive expression patterns of extracellular miRNAs have also 
been associated with a variety of cardiovascular disorders, including atheroscle-
rosis, myocardial infarction, heart failure, hypertension and type 2 diabetes [22]. 
However, whether these miRNAs participate in the disease process or simply serve 
as markers of disease progression has not been established. Greater patient cohorts 
will be needed to reach firm conclusions regarding the diagnostic and prognostic 
power of extracellular miRNAs.

5. MicroRNAs and corticosteroid production

Various studies have demonstrated the importance of microRNAs to adrenal 
development and maintenance in animal models [25, 26], but their effects on the 
human adrenal gland are less well defined. As far as secretion of corticosteroids 
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such as aldosterone is concerned, miRNAs could have direct influence through 
the post-transcriptional repression of corticosteroidogenic or other related 
genes, which has been investigated. In 2008, Romero et al. identified miR-21 as 
a key modulator of aldosterone production. Overexpression of miR-21 in vitro 
significantly increased aldosterone production and cell proliferation in the H295R 
human adrenocortical carcinoma cell line [27]. These findings supported a role for 
miR-21 in both corticosteroid production and oncogenesis but possible target genes 
of miR-21 or a regulatory mechanism by which it increases aldosterone produc-
tion and cell proliferation were not described. However, subsequent studies have 
demonstrated that miRNAs target numerous stages of the aldosterone biosynthesis 
pathway.

We have carried out comprehensive analysis of miRNA effects on aldosterone 
and cortisol production, as well as identifying and confirming target genes. We 
used a siRNA approach to knock down expression of Dicer, the protein essential to 
miRNA maturation, in H295R cells and studied its effects on cellular levels of ste-
roidogenic mRNAs. Interestingly, only those encoding cytochrome P450 enzymes in 
the pathway (CYP11A1, CYP21A1, CYP17A1, CYP11B1, CYP11B2) were significantly 
increased in the absence of miRNA [28, 29]. Steroid production was also corre-
spondingly changed, with levels of the end products aldosterone and cortisol—as 
well as many intermediate compounds in their biosynthesis—all increased relative 
to control cells (DOC, corticosterone, 18-OH corticosterone).

We then used a combination of bioinformatic prediction and experimental 
in vitro experimentation in H295R cells to confirm miRNA-24 as a direct regula-
tor of CYP11B1 and CYP11B2 expression via sites in the mRNA 3’UTRs. We also 
observed changes in aldosterone and cortisol production rates that correlated with 
miRNA-altered levels of CYP11B1 (11β-hydroxylase) and CYP11B2 (aldosterone 
synthase). These experimental results were consistent with canonical miRNA 
action, whereby reduced levels of the mature miRNA result in less target mRNA 
degradation and therefore more abundant steroid product due to higher gene 
expression. These data therefore demonstrated a significant regulatory role for 
miRNAs in human steroidogenesis. Furthermore, other studies show miR-24 to 
be upregulated following MR activation in the kidney, leading to the proposal that 
it might form part of a feedback loop to the adrenal gland, repressing CYP11B2 
expression when aldosterone levels are high [30].

Subsequent studies have expanded the array of miRNAs known to regulate 
directly the expression of late enzymes in this pathway: Nusrin and colleagues 
showed that miR-10b also negatively regulates both CYP11B1 and CYP11B2 expres-
sions in H295R cells, subsequently modulating aldosterone and cortisol production 
[31]. We found that miRNAs -125a-5p and -125b-5p modulate CYP11B2 (but not 
CYP11B1) in H295R cells [29], as did Maharjan et al. with miR-766 [32], although 
either study determined the effect of this on aldosterone production or whether 
cortisol remains unaffected. Looking to steroidogenic enzymes earlier in the 
pathway, we demonstrated a direct regulatory effect of miR-320a-3p on CYP11A1 
and CYP17A1 in H295R cells [29]. Furthermore, Hu and colleagues reported that 
miR-132 regulates steroidogenesis by inhibiting StAR protein expression, thereby 
inhibiting basal progestin production and stimulating 20α-OHP production in 
Y1 mouse adrenocortical cells [33]. They also demonstrated a secondary method 
of miR-132 regulation in Y1 cells, through which miRNA overexpression reduces 
methyl-DNA-binding (MECP2) protein and alters levels of 3β-HSD and 20α-HSD; 
this stimulates the conversion of progesterone to its inactive metabolite, 20α-OHP 
{Hu:2017iz}. The same group also showed negative regulation of HDL cholesteryl 
ester uptake and HDL-stimulated progesterone production by miR-125a and 
miR-455, acting via scavenger receptor class B type I (SR-B1), although this work 



Aldosterone-Mineralocorticoid Receptor - Cell Biology to Translational Medicine

198
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was primarily carried out in Leydig testicular cells {Hu:2012by}. It is therefore clear 
that miRNAs—including those mentioned above and likely many more, as yet 
 undiscovered—regulate steroidogenesis within the adrenal cortex, at many differ-
ent points, although the full impact of these individual regulatory miRNAs acting 
concurrently across the entirety of the corticosteroid pathway is yet to be assessed.

Studies have also expanded to examine non-steroidogenic genes with regula-
tory influence. Decreased expression of TWIK-related acid-sensitive K+ (TASK-2) 
channels is associated with increased CYP11B2 and StAR expression and with raised 
aldosterone levels; miR-34 and miR-23 reduce TASK-2 expression by direct bind-
ing of its mRNA 3’UTR [34]. Regulation of RAS genes by the miRNA has also been 
shown, with miR-181a and miR-663 both binding the 3’-UTR of the renin transcript 
[35]. The same study showed both of these miRNAs to be downregulated in the 
renal cortex of hypertensive subjects relative to normotensives, providing a pos-
sible mechanistic factor. Separately, miR-483 has been shown to repress four RAS 
components, including angiotensinogen [18]. Furthermore, angiotensin II (AngII) 
causes downregulation of miR-483 itself in vascular smooth muscle cells, implying 
that RAS activation could derepress itself through reduction of miR-483.

In addition to understanding which miRNAs target which elements of corti-
costeroid production and regulation, if miRNA-mediated control is to be fully 
understood, then we must improve our understanding of how production of the 
individual miRNAs is itself regulated. It is intuitively obvious that levels of these 
miRNAs should fluctuate in response to physiological demands and there are 
plentiful instances of this from various studies. Of the miRNAs already mentioned 
here, it is known that miR-21 expression is increased in H295R cells following 
angiotensin II stimulation [27], that miR-10b levels increase in response to hypoxia 
in H295R cells [31] and that miR-212 and miR-132 are more abundant in adrenal 
cells in vitro and the adrenal gland in vivo in response, respectively, to cAMP and 
ACTH  stimulation [33].

6. Adrenal microRNAs

Numerous studies have profiled circulating or adrenal tissue miRNA expression 
in patients with adrenal carcinoma and/or aldosterone-producing adenoma (APA), 
confirming that miRNA expression is altered by these conditions relative to healthy 
controls [28, 29, 34, 36–51].

Notably, of the 11 miRNAs that have been shown to regulate corticosteroid 
biosynthesis in adrenal tissue (above), 8 are dysregulated in patients with benign 
adenoma or adrenal carcinoma: miRNAs -10b, −24 and -125a are downregulated 
in APA tissue [28, 29]; miR-125b is downregulated in carcinoma vs. benign adrenal 
tumour tissue [43]; miR-21, miR-320a-3p and miR-34 are significantly increased 
in adenoma tissue [28, 29, 41] and miR-21 is further increased in carcinoma tissue 
[41]; serum levels of miR-34a are raised in patients with adrenocortical carcinoma 
relative to patients with benign adrenocortical neoplasm [42]. TASK-2 expression 
is reduced in APA tissue relative to healthy adrenal tissue and negatively correlates 
with miR-23 and miR-34 levels [34]. Given that APA increases aldosterone secre-
tion, it is perhaps unsurprising that miRNAs known to modulate corticosteroid 
biosynthesis, such as miR-24, show altered expression. Interestingly, one of the two 
genomic locations from which miR-24 is transcribed is a cluster on chromosome 9, 
where miR-24 is produced alongside miR-23b and miR-27b; our studies show all 
three to be downregulated in APA, which is consistent with this clustering and 
implies that many and diverse biological effects could result from the change in 
regulation to all three microRNAs [28]. Overall, existing studies of miRNA changes 

201

MicroRNAs in Aldosterone Production and Action
DOI: http://dx.doi.org/10.5772/intechopen.87226

in adrenal tumours add weight to the hypothesis that miRNA targeting of tran-
scription is a common feature of such conditions and is likely to be of relevance to 
adrenal pathology generally.

Expression of several other miRNAs has also been found to be altered in multiple 
independent studies of adrenal disease. Most notably miR-483 is increased in tumour 
[36, 38, 41, 43, 47] and circulating (i.e. plasma or extracellular vesicle) [38, 42, 44, 48] 
samples from patients with adrenocortical carcinoma when compared to samples 
from patients with adrenocortical adenomas or healthy controls. miR-210 [37, 41, 
48, 49] and miR-184 [48, 49] levels are also increased in tumour and plasma samples 
from patients with adrenocortical carcinoma in comparison to patients with adreno-
cortical adenoma or healthy controls and in some cases are increased in adrenocortical 
adenoma vs. healthy controls [41]. Other miRNAs are downregulated in tumour and 
serum samples of patients with adrenocortical carcinoma or adrenocortical adenoma 
relative to patients with adrenocortical adenoma or to healthy controls, respectively: 
these include miR-195 [38, 41, 43, 47] and miR-335 [38, 47]. However, little work 
has been done to assess the biological impact of these miRNAs on the regulation of 
corticosteroid biosynthesis in the context of these diseases, and this remains an obvi-
ous priority area of future study. Clearly defined miRNA profiles that are specific to 
certain tumour types clearly have the potential to facilitate and expedite the differen-
tial diagnosis of adrenocortical tumours and enhance our understanding of disease 
pathogenesis (reviewed by Singh et al.) [52].

7. MicroRNA and the mineralocorticoid receptor

As the nuclear receptor to which aldosterone binds in all aldosterone-responsive 
tissues, the mineralocorticoid receptor is clearly a key factor in mediating the hor-
mone’s effects and is itself subject to miRNA regulation. In silico analysis predicts 
the NR3C2 gene, which encodes the MR and contains between 23 and 411 distinct 
miRNA-binding sites in its 3’UTR, depending on the prediction algorithm utilised. 
Of these predicted miRNAs, five were selected for further experimental validation; 
two—miRNA-124 and miRNA-135a—were subsequently confirmed to bind the 
NR3C2 3’UTR, as evidenced by a reduction in luciferase activity following NR3C2 
3′UTR luciferase reporter and miRNA expression vector cotransfection. Neither 
miRNA decreased NR3C2 mRNA level, suggesting miRNA-124 and miRNA-135a are 
involved solely in translational inhibition of MR [53]. Interestingly, miRNA-124 has 
also been identified as a regulator of the glucocorticoid receptor (GR), associated 
with cortisol action [54]. Given its brain-specific expression [55], miRNA-124 can-
not directly influence aldosterone biosynthesis but may have a role in the regulation 
of its production and action through centrally mediated systems. It is currently the 
subject of much investigation in light of its apparently beneficial effects post-stroke 
[56–59]. A role in neuronal differentiation has been proposed, and it is possible that 
the beneficial effects of miRNA-124 are achieved through downregulation of MR 
expression or activation, mirroring the beneficial effects of MR antagonists.

In addition to demonstrating that MR is regulated by miRNA, other studies 
identify MR as a mediator of miRNA expression. For example, aldosterone treat-
ment of aortal or vascular smooth muscle cells (SMCs) causes downregulation 
of miRNA-29b, but this effect can be prevented through MR blockade with the 
antagonist eplerenone [60]. Interestingly, this MR-regulated change does not occur 
in mouse endothelial cells, which demonstrates the cell specificity of this MR effect 
in the vasculature. As with miRNA-124, the benefits of miRNA-29b delivery to the 
brain post-stroke is currently being investigated [61, 62], although other reports 
suggest it may actually promote neuronal cell death [63].



Aldosterone-Mineralocorticoid Receptor - Cell Biology to Translational Medicine

200

was primarily carried out in Leydig testicular cells {Hu:2012by}. It is therefore clear 
that miRNAs—including those mentioned above and likely many more, as yet 
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in adrenal tumours add weight to the hypothesis that miRNA targeting of tran-
scription is a common feature of such conditions and is likely to be of relevance to 
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[36, 38, 41, 43, 47] and circulating (i.e. plasma or extracellular vesicle) [38, 42, 44, 48] 
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antagonist eplerenone [60]. Interestingly, this MR-regulated change does not occur 
in mouse endothelial cells, which demonstrates the cell specificity of this MR effect 
in the vasculature. As with miRNA-124, the benefits of miRNA-29b delivery to the 
brain post-stroke is currently being investigated [61, 62], although other reports 
suggest it may actually promote neuronal cell death [63].
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Another key factor in MR action is the enzyme 11β-hydroxysteroid dehydroge-
nase type 2 (11β-HSD2). As cortisol is capable of binding MR and circulates at levels 
far higher than aldosterone, 11β-HSD2 effectively confers aldosterone selectivity 
on tissues where it is expressed (such as the renal tubule), by converting cortisol 
to inactive cortisone; this leaves aldosterone free to bind MR without significant 
competition. 11β-HSD2 activity is therefore important, and its loss can result in 
salt-sensitive hypertension. Although direct inhibition of 11β-HSD2 expression 
by miRNAs targeting the 3’UTR of its mRNA has been demonstrated in rats, the 
existence and importance of such regulation in human aldosterone-selective tissues 
is yet to be confirmed [64].

Despite the various inconsistencies and gaps in our current knowledge, such 
ongoing studies of miRNA targeting, action and expression are likely to provide 
valuable insights into aldosterone action in the future.

8.  MicroRNAs as biomarkers and therapeutic targets in endocrine 
pathologies

Excessive aldosterone production and the consequent activation of MR are now 
generally accepted to be important and common factors in the pathogenesis of 
hypertension and a number of related comorbidities. Given that specific changes 
in miRNA expression and regulation are associated with certain disease states and 
that miRNAs can be released into extracellular fluids, the potential exists to use 
circulating microRNAs as biomarkers for conditions that are otherwise difficult 
to diagnose. This includes various endocrine pathologies, including PA, where 
the difficulty of accurately identifying and distinguishing aldosterone-producing 
adenoma and bilateral adrenal hyperplasia (BAH) is acknowledged to have 
restricted diagnosis and effective treatment. Given that miRNAs are known to 
regulate corticosteroid biosynthesis and that adrenal miRNA expression is altered 
in cases of adrenal pathology, it is reasonable to hypothesise that changes in the 
array of circulating miRNAs might result from diseases affecting corticosteroid 
regulation or other forms of adrenal function. A current ongoing initiative in this 
regard—which arose in part from the COST ADMIRE network—is the ENS@T-HT 
study. This is an EU-funded Horizon 2020 research and innovation project designed 
to define specific ‘omics’ for various forms of endocrine hypertension, including 
PA, Cushing’s syndrome and phaeochromocytoma. Our particular focus as part of 
this project has been the profiling of circulating miRNAs in patient plasma, with the 
aim of identifying signature miRNAs of diagnostic value. Initial miRNA profiling 
has now been completed in archived samples, and analysis is under way to develop 
a signature for testing in a new study population. This study is part of a wave of 
current diagnostic initiatives aiming to improve diagnosis and better target patient 
treatment through a stratified medicine approach. MicroRNA is likely to be a focus 
of many such projects which share the implicit assumption that if miRNA profile is 
altered by disease, then manipulation of miRNA might also form part of an effective 
treatment. The longer-term aspiration of such studies— including ENS@T-HT—is 
therefore the progression from diagnostic applications to therapeutics.

The therapeutic potential of miRNAs is derived from the ability to inhibit 
miRNA function with antimiRs. These are small oligonucleotides that can be 
delivered subcutaneously or intravenously and inhibit the interaction of miR-
NAs with their targets by binding the miRNA seed site with high affinity [65]. 
Pharmacokinetic and pharmacodynamic studies of antimiR action suggest they are 
taken up from the circulation by endocytosis and accumulate within endosomes or 
multivesicular bodies, but much remains unknown about the precise mechanisms 
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of action and cellular handling of antimiRs. In contrast to classical drugs, the action 
of antimiRs appears to be delayed, often taking several days to exert an effect. This 
reflects the time required to rebalance the proteome of a target cell as a consequence 
of the relatively modest changes in numerous miRNA targets. Conversely, the 
actions of antimiRs are long-lived, owing to their high stability and accumulation 
within intracellular depots from which they are slowly released. They show efficacy 
at doses acceptable for therapeutic development, and further chemical modifica-
tions may enhance their uptake, stability and/or action.

An additional challenge with respect to the development of miRNA-based drugs 
is the inability to correlate target engagement with mechanism and therapeutic 
efficacy. Because of their many targets and the summation of relatively small 
repressive effects that contribute to the therapeutic actions of miRNAs, it is dif-
ficult or impossible to directly ascribe the activity of an antimiR to a specific target. 
An individual miRNA may have a beneficial activity in one tissue and an adverse 
activity in another. Therefore local delivery systems are likely to be useful in reduc-
ing off-target effects. While the sustained activity of antimiRs allows for effective 
treatment, the long-term consequences of antimiR accumulation in different tissues 
and the inability to rapidly reverse their activity or eliminate the presence of a toxic 
antimiR raise obvious concerns. AntimiRs accumulate predominantly in the liver 
and kidney, necessitating substantially higher doses to achieve efficacy in other tis-
sues. This poses challenges with respect to achieving sufficient intracellular concen-
trations that evoke a therapeutic effect without causing liver and renal toxicity.

Of course, miRNAs may also play beneficial rather than pathogenic roles so 
strategies for elevating their levels are also required, including the administration 
of miRNA mimics. These are double-stranded synthetic oligonucleotides that are 
processed into single-stranded miRNAs when introduced into cells. However, the 
delivery of miRNA mimics still requires significant optimisation [66]. Lipid for-
mulations for enhancing uptake may help in this regard, while adenoviral delivery 
methods may assist targeting to the tissue of choice. As with antimiRs, though, it is 
crucial to avoid repression of nontarget mRNAs or toxic accumulation of mimics.

Finally, a further factor needs to be considered regarding miRNA and its role 
in the personalisation or stratification of diagnosis and therapy: genetic polymor-
phisms. Although single-nucleotide polymorphisms that occur in protein-encoding 
or upstream regulator regions of genes are commonly accepted to contribute—
sometimes dramatically—to disease phenotype, it is increasingly recognised that 
polymorphisms in miRNA genes themselves or in those transcribed but untrans-
lated regions of the genes that they target might contribute to interindividual 
phenotypic variability and possibly predispose to disease [67]. This may become a 
major factor in the future ‘personalisation’ of medicine and effective targeting of 
therapeutic agents.

9. Conclusion

MiRNAs are providing us with fresh insights into aldosterone regulation, action 
and pathology while offering the prospect of new diagnostic and therapeutic 
approaches. It is apparent that miRNAs are important regulators of adrenal func-
tion and have the ability to regulate the expression of multiple enzymes within the 
corticosteroidogenic pathway, modifying the steroid profile as a result. Consistent 
changes in miRNA expression in APA or adrenocortical carcinoma tissue relative 
to healthy controls imply a role in the pathogenesis of these diseases and/or their 
resulting dysregulation. While the effect of each individual miRNA may be small, 
as numerous miRNAs can target the steroidogenic pathway in the adrenal cortex 
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and are altered in disease, the sum of multiple small individual effects could result 
in significant changes to corticosteroid synthesis within the adrenal cortex. The 
specificity with which miRNAs target their effect is potentially mirrored by the 
specificity with which dysregulated miRNAs might themselves be therapeutically 
targeted. The ability to do so raises the tantalising possibility of a new generation of 
therapeutic ‘magic bullets’. However, much remains to be learned about the precise 
mechanisms by which an individual miRNA affects different physiological path-
ways within single and different tissues and cell types. This may add significantly 
to the complexity and consequences of manipulating miRNA for therapeutic ends. 
A deeper understanding as well as a ‘systems biology’ approach is required to fully 
explain miRNA activity under conditions of homeostasis and disease. Despite these 
challenges and uncertainties, it seems likely that some of the numerous miRNAs 
currently implicated in cardiovascular disease will eventually emerge as viable 
biomarkers and possibly drug targets, although the timescale and the reach of such 
miRNA-based approaches cannot yet be predicted.
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Chapter 14

Post-Translational Modification of 
MR Activity
Diego Alvarez de la Rosa and Natalia Serrano-Morillas

Abstract

The mineralocorticoid receptor (MR) is a ligand-activated transcription factor 
that transduces the effects of aldosterone and glucocorticoids in a tissue- and cell 
type-specific ways. Differential regulation of MR by post-translational modifica-
tions (PTMs) has been proposed to play a key role in modulating its function. In 
addition, modifications of other proteins that physically or functionally interact 
with MR add an additional layer of regulation to aldosterone or glucocorticoid sig-
naling. In this chapter, we will summarize the main post-translational modifications 
of MR described so far, discussing their possible implications in the physiologi-
cal and pathological roles of the receptor. We will also discuss post-translational 
modulation of other proteins impacting MR function such as heat shock protein 90 
or 11ß-hydroxysteroid dehydrogenase type 2.

Keywords: mineralocorticoid receptor, aldosterone, glucocorticoids,  
steroid receptors, protein modification, phosphorylation, Ubiquitylation, 
SUMOylation, acetylation

1. Introduction

The mineralocorticoid receptor (MR) is widely expressed and performs differ-
ent physiological and pathological roles depending not only on the activating ligand 
(aldosterone vs. glucocorticoids) but also on context [1–3]. This includes co-expression 
or not with 11ß-hydroxysteroid dehydrogenase (11ßHSD2) to control local levels of glu-
cocorticoids [4, 5], differential interaction with co-regulators [6] or the physiological 
mechanism behind the increased circulating levels of aldosterone [7], to name a few.

Multiple levels of regulation controlling MR activity have been described. 
Transcription of the Nr3c2 gene, coding for the receptor, is modulated by different 
stimuli and depends on two alternative promoters [1, 8]. Transcriptional control 
depending on epigenetic mechanisms has also been described [1]. MR transcripts 
undergo alternative splicing, although the physiological significance of these variants 
is uncertain [9]. Post-translational control includes regulation of MR mRNA stability 
by proteins such as Tis11b and HuR [10, 11] or siRNAs such as miR-124 and miR-135a 
[12–14]. Some MR polymorphisms have been shown to produce different transla-
tional efficiencies in vitro [15]. Once synthesized, MR activation depends on ligand 
availability, which in turn can be modulated by co-expression of 11ßHSD2, which 
creates a low glucocorticoid-microenvironment by metabolizing biologically active 
glucocorticoids to their 11-keto, biologically inactive derivatives [4, 5]. Activation 
also depends on the interaction of MR with co-chaperones, including Hsp70 and 
Hsp90 [16–18]. MR can also be activated in a ligand-independent manner by the 
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GTPase Rac1 [19] or by signaling through the angiotensin II receptor 1 [20]. Once 
activated, MR forms homodimers or, potentially, heterodimers with related steroid 
receptors including the glucocorticoid receptor (GR) [21, 22], translocates to the 
nucleus and interacts with DNA to modulate gene transcription with the help of co-
regulators. This provides the biological readout of hormone signaling and involves 
multiple and complex regulatory steps. In addition, MR activation can initiate rapid 
signaling events outside the nucleus that modulate cell response and are essential to 
facilitate transcriptional responses [23, 24].

Every step of MR activation and its impact on cell responses is subject to be 
modulated by post-translational modifications (PTMs) of the receptor itself or of 
other proteins physically or functionally interacting with it. PTMs of MR have been 
previously reviewed in detailed [25] (Figure 1). It has long been known that MR is 
a phosphoprotein [26, 27] and multiple MR residues have been described as poten-
tial phosphorylation targets [25]. Most of these amino acids are serine residues, 
although threonine phosphorylation has been detected using phospho-specific 
antibodies [28]. One study reported phosphorylation in threonine residues T731 
and S737 [29], although the functional impact of these modifications has not been 
studied. Of note, in a more recent study analyzing MR phosphopeptides by liquid 
chromatography with tandem mass spectrometry, Shibata et al. described 16 differ-
ent phosphorylated serine residues, but found no evidence of threonine or tyrosine 
phosphorylation [7]. In addition, other chemical modifications of MR have been 
described, including ubiquitylation [30–33], SUMOylation [32, 34, 35], acetyla-
tion [36] and oxidation [37]. In this chapter, we will update the main known PTMs 
directly or indirectly affecting MR and focus on their consequences on MR activity.

2. Post-translational modifications that alter MR stability

The abundance of naïve MR likely impacts the potency of receptor-mediated 
cell responses. There are numerous examples in the literature describing alteration 
of MR steady-state abundance in different physiological or pathological situations 
[2]. Changes in receptor abundance can arise from changes in its synthesis or in its 
degradation rates. In addition, an activation-induced MR degradation also seems 
to participate in controlling hormone responses [33]. Several MR PTMs have been 
shown to affect receptor half-life in the cell, both in the basal state and after hor-
monal stimulation.

Basal level of MR expression appears to be controlled by ubiquitylation 
(Figure 2). In the naïve state, MR is monoubiquitylated at an unknown lysine. This 
modification is stabilized by association to Tsg101 (tumor suppressor gene 101), 
increasing the half-life of the receptor [31]. This mechanism is shared by related 

1 All amino acid numbers in this chapter refer to the human MR sequence (UniProt P08235).

Figure 1. 
Schematic representation of MR protein domains and the location of post-translational modifications with 
demonstrated functional effects. NTD, NH2-terminal domain; DBD, DNA-binding domain; H, hinge domain; 
LBD, ligand-binding domain; AF, activation function. Phosphorylation sites (p) are shown with black letters; 
acetylation sites (ac) are shown in blue and SUMOylation sites (SUMO) are shown in red. The length of each 
domain and the position of each site are drawn to scale.
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steroid receptors such as the androgen, glucocorticoid and estrogen receptors 
[38–40]. In addition, it has been shown that poly-ubiquitylation occurs when Hsp90 
activity diminishes and the cytosolic heterocomplex recruits ubiquitin-ligase CHIP 
decreasing receptor expression level [41]. Taken together, these data suggest that 
equilibrium between mono- and poly-ubiquitylation contributes to regulating naïve 
MR abundance.

Ligand activation of MR induces receptor degradation through the protea-
some, acting as a brake to attenuate aldosterone responses [33]. Subsequent studies 

Figure 2. 
Schematic representation of well-characterized post-translational modifications affecting mineralocorticoid 
receptor ligand binding, stability, nuclear translocation or transcriptional activity. MR domain are colored as 
in Figure 1. L, ligand.
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demonstrated that MR is poly-ubiquitylated in response to hormonal stimulation 
[30–32, 42], a signal that triggers proteasomal-mediated degradation. Interestingly, 
it has been proposed that the equilibrium between mono- and poly-ubiquitylation of 
MR is regulated by phosphorylation. Remarkably, MR antagonists such as spirono-
lactone and finerenone totally block aldosterone-induced receptor phosphorylation, 
preventing the increased degradation rate associated to activation [43]. Aldosterone 
rapidly induces ERK1/2-mediated phosphorylation of MR at six different serine resi-
dues in the NTD (S196, S227, S238, S263, S287 and S361; Figure 1). The combined 
effect of these six phosphoserine residues is to promote the removal of mono- 
ubiquitylation from MR, triggering receptor destabilization [31]. Ubiquitin-specific 
protease 2-45 (USP2-45), an aldosterone-induced protein in the mouse distal neph-
ron [44], is responsible for the ligand-induced loss of MR mono-ubiquitylation, 
simultaneously destabilizing MR/Tsg101 interaction [30] (Figure 2). in agreement 
with the model described above data obtained with usp2 gene knockout mice showed 
increase expression of MR, although this change in abundance does not produce 
apparent alterations in sodium balance or blood pressure [45].

According to the model described above, phosphatases opposing MR ligand-
induced phosphorylation should contribute to stabilize the receptor. Interestingly, 
it has recently been described that protein phosphatase 1α (PP1α) indeed stabi-
lizes MR [42]. This study described PP1α as an MR cytosolic interaction partner. 
However, the effect of PP1α on MR appears to be indirect, mediated the dephos-
phorylation of ubiquitin ligase MDM2, which is inactivated, precluding MDM2-
mediated MR proteasomal degradation [42] (Figure 2).

Modification of additional residues in MR contributes to the receptor stability. 
For instance, Ruhs et al. recently described that MR phosphorylation at residue 
S459 (Figure 1), catalyzed by casein kinase 2 (CK2), not only facilitates MR-DNA 
interaction, increasing aldosterone-induced gene transcription (see below), but 
also promotes rapid degradation of MR [46]. The mechanism involved in enhanced 
MR degradation by S459 phosphorylation is unknown.

As mentioned above, it has been previously shown that MR stability is con-
trolled by Hps90 activity. When the co-chaperone is pharmacologically inhibited 
with tanespimycin, MR stability decreases through increase ubiquitylation medi-
ated by CHIP [41]. In contrast, a different inhibitor of Hsp90, geldanamycin, did 
not produce any alterations in MR levels [17]. To further explore the role on Hsp90 
on MR activation and stability, we tested the possible role of acetylation of Hsp90 
at residue K295 [47], a modification that impairs interaction with co-chaperones 
and client proteins [48]. Surprisingly, we could not find any evidence for Hsp90 
acetylation-induced alterations in MR stability [47], although this PTM did affect 
nuclear translocation dynamics (see below).

3.  Post-translational modifications that directly or indirectly control 
ligand binding to MR

Ligand binding capacity of MR is not an exclusively intrinsic property of the 
ligand-binding domain (LBD) of this receptor. It has long been known that MR 
association to the chaperone Hsp90 is essential for aldosterone binding [49, 50]. 
In addition, the full-length MR sequence is required to bind aldosterone with high 
affinity, suggesting that areas outside the LBD contribute to folding of the recep-
tor in a competent state [51]. The idea that PTMs may contribute to regulate MR 
ligand binding came from the observation that phosphatase treatment of cytosolic 
extracts greatly diminish aldosterone binding to MR [27]. This suggested that basal 
phosphorylation in serine/threonine residues is essential for the competency of the 
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receptor to bind ligands. However, these experiments did not allow distinguishing 
whether the phosphorylation takes place in the receptor itself or in other proteins 
of the cytosolic heterocomplex containing the naïve receptor. More recently, direct 
evidence implicating phosphorylation on ligand binding to MR has emerged. 
Phosphorylation of MR at residue S843 has been shown to diminish the affinity 
of the receptor for aldosterone and corticosterone [7]. This process is mediated 
by protein kinase ULK1 [52]. Interestingly, phosphomimetic mutants cannot be 
activated by aldosterone or cortisol even when the concentration of the hormones 
is one to two orders of magnitude higher than the calculated Kd, indicating that 
phosphorylation affects not only ligand binding but also ligand-induced recep-
tor activation [53]. Importantly, phosphorylation of MR at residue S843 acts as a 
dominant-negative modification, inhibiting wild type receptors upon dimerization, 
which greatly amplifies the impact of this event on total MR activity [53].

Ligand binding to MR is also affected by oxidation. It has long been known that 
MR is a highly unstable protein and this has been ascribed to sulfhydryl oxidation, 
which prevents aldosterone binding [37, 54]. In particular, cysteine 849 and 942 
appear to be responsible for this effect, since site-directed mutagenesis at these posi-
tions eliminate steroid binding to the receptor [55]. This phenomenon appears to be 
relevant in vivo, since inhibition of glutathione synthetase in mice abrogated aldoste-
rone binding to kidney MR [56]. Since oxidative stress decreases aldosterone binding 
and activation and aldosterone binding decreases with age, it has been suggested that 
oxidation of MR could be an important mediator of aging in the kidney [57].

In classic aldosterone tissues like the kidney or the distal colon and in certain 
neurons, glucocorticoid accessibility to MR is crucially controlled by co-expression 
of 11ßHSD2, which metabolizes glucocorticoids to produce biologically inactive, 
11-keto derivatives [4]. Therefore, transcriptional or post-transcriptional modu-
lations of this enzyme potentially have a large impact on MR activity. We have 
recently described that 11ßHSD2 is modified by SUMOylation at residue K266 
[58] (Figure 2). While the effect of SUMOylation on enzymatic activity is mild, its 
impact on MR activation process is puzzling. In spite of being enzymatically active, 
non-SUMOylatable mutant 11ßHSD2-K266R was unable to prevent MR nuclear 
translocation when cells were treated with cortisol, unlike the wild type enzyme 
[58]. The same was detected when 11ßHSD2 SUMOylation is reversed by co-
expression of sentrin-specific protease 1 (SENP1), a protease that catalyzes SUMO 
deconjugation. However, MR translocated to the nucleus under these conditions 
does not increase transcriptional response to cortisol and shows diminished recruit-
ment of co-activators [58]. Therefore, 11ßHSD2 SUMOylation drastically alters the 
ability of this enzyme to regulate MR subcellular localization, although the molecu-
lar mechanisms involved in this effect remain to be elucidated.

4. Post-translational modifications that alter MR nuclear translocation

Long-term, genomic actions of MR depend on its nuclear localization and inter-
action with chromatin. While some steroid receptor (ER and PR) are constitutively 
nuclear, naïve MR is considered to be mainly cytosolic, where it forms part of a het-
erocomplex with chaperones and other proteins, translocating to the nucleus after 
ligand binding. In fact, it is most common to find MR evenly distributed between 
nucleus and cytosol, with a clear nuclear shift when exposed to ligands. This mode 
of action fits well with data obtained in some models of cultured cell lines, such 
as COS-7 cells or HEK cells [17, 43, 47, 59] and native tissues [60–62]. In certain 
tissues and cell types, MR can be found in the nucleus even in the absence of ligand 
[18, 60, 61]. Therefore, it appears that nuclear translocation plays an important role 
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tissues and cell types, MR can be found in the nucleus even in the absence of ligand 
[18, 60, 61]. Therefore, it appears that nuclear translocation plays an important role 
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in MR regulation, although the physiological relevance of this step may strongly 
vary between different tissues or cell types.

Nuclear translocation has been studied with much more detail in the case of 
other steroid receptors, including GR, which shares significant sequence homology 
with MR. In the case of GR, two independent nuclear translocation pathways have 
been proposed, one that depends on Hsp90 and the attachment of the ligand-bound 
heterocomplex to microtubules and one where monomers or dimers of GR translocate 
independently of this machinery [63]. In the case of MR, there is strong evidence indi-
cating that nuclear translocation occurs in an Hsp90-dependent way, with dissociation 
between the chaperone and the receptor occurring in the nucleus [16, 17]. Inhibition 
of Hsp90 abrogates hormone binding to MR and nuclear translocation of the receptor, 
although cells with low levels of Hsp90 expression such as cardiomyocytes present 
constitutively nuclear MR that can be activated by aldosterone or cortisol [18]. This 
result suggested that fine-tuning of Hsp90 activity could play a role in controlling MR 
subcellular localization. Therefore, we decided to explore the role of Hsp90 acetyla-
tion at residue K295 in MR nuclear translocation [47]. This modification, regulated by 
histone deacetylase 6 (HDAC6), inhibits Hsp90 and has been shown to decrease GR 
and AR activity [48]. In the case of MR, increased acetylation of Hsp90 does not affect 
ligand binding or transcriptional activity, but alters subcellular dynamics, accelerating 
MR nuclear import. Given the differential effects of Hsp90 K295 acetylation on MR 
and GR, it has been proposed that this modification may balance corticosteroid signal-
ing between both receptors when co-expressed in the same cell [47].

Nuclear translocation of MR critically depends on nuclear localization signals 
(NLS) present in the sequence of the receptor. Three independent NLS has been 
identified in MR: NL0, 1 and 2 [64]. Among these three, NL0 has been implicated in 
nuclear localization of the naïve receptor. NL0 was mapped to amino acids 550–602 
of human MR. In this area, a cluster of five serine residues and one threonine between 
amino acids 590 and 602 is important for NL0 activity, since its deletion significantly 
decreases naïve MR nuclear localization, although it does not abrogate ligand-induced 
translocation [64]. Interestingly, phosphomimicking mutation S601D (Figures 1 
and 2) eliminated NL0 activity, resulting in a fully cytosolic MR localization in the 
absence of ligand. Conversely, non-phosphorylatable mutant S601A resulted in a 
significant nuclear shift of naïve MR [64]. Therefore, phosphorylation/dephosphory-
lation balance at S601 may be an important mechanism for controlling MR subcellular 
distribution in the absence of ligand. The effect of this equilibrium on the physiology 
of the receptor remains to be studied. Both in vitro and in vivo experiments indicate 
that a protein phosphatase from the PP1/PP2A subgroup regulates ligand-induced 
MR trafficking into the nucleus [65], although it is unclear whether this results from 
dephosphorylation of MR or other associated proteins such as Hsp90.

Aldosterone-induced nuclear translocation is potentiated by Rac1-mediated 
phosphorylation of p21-activated kinase 1 (PAK1) (Figure 2). This signaling path-
way is relevant in the development of chronic kidney disease [19] and in cardiac 
remodeling and inflammation induced by blood pressure variability in the context 
of hypertension [66]. It remains to be determined whether PAK1 directly phosphor-
ylates MR and whether it promotes its activity in addition to receptor translocation, 
as it has been described with estrogen receptors [67].

5.  Post-translational modifications controlling MR activation and 
modulating gene transcription

In addition to the mechanisms discussed above modulating MR ligand binding, 
stability and subcellular localization, additional PTMs regulate the ability of MR to 
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modulate gene transcription, potentially altering the efficacy of the receptor with-
out altering its affinity for agonists. This possibility was suggested after studying a 
human polymorphism introducing the mutation Y73C, which increases MR trans-
activation in response to aldosterone by twofold, without changing the EC50 [68]. 
Residue Y73 is placed in AF1a and therefore could modulate interaction with tran-
scriptional co-activators. However, there are no further reports demonstrating that 
this potential phosphorylation site is actually modified in the protein. Le Moellic 
et al. proposed a possible role for phosphorylation in controlling MR transcriptional 
activity [28]. This study found that protein kinase C α (PKCα) mediates rapid MR 
phosphorylation at serine/threonine residues after stimulation with aldosterone, 
which presumably acts through a membrane receptor [28]. Blocking PKCα during 
this early, non-genomic phase precludes the development of the genomic phase. 
However, whether this effect is directly due to lack of activation of MR or, alterna-
tively modulation of other aspects of the receptor such as aldosterone binding or 
nuclear translocation was not studied.

More direct evidence of phosphorylation involvement in controlling MR activ-
ity came from studying the effect of cyclin-dependent kinase 5 (CKD5) on the 
receptor. CKD5 has been proposed to phosphorylate two residues in the NTD of 
MR (S1282, T159 and S250; Figure 1), producing a very powerful decrease in MR 
transcriptional activity without affecting nuclear translocation [69] (Figure 2). 
The phosphorylation is mediated by direct interaction of the CKD5/p35 or CKD5/
p25 complexes with MR LBD in an aldosterone-dependent way [69]. T159 and S250 
phosphorylation could be confirmed by mass spectrometry, while phosphorylation 
at residue S128 was inferred from mutagenesis studies. Mutation of all three resi-
dues to alanine was necessary to abolish CKD5-dependent MR inhibition [69].

As indicated above, CK2-dependent MR S459 phosphorylation (Figure 1) facili-
tates MR-DNA interaction, at least in an in vitro assay, and increases aldosterone- 
induced gene transcription [46]. This effect is partially mediated by the NTD of 
the receptor, where the phosphorylation site is located, possibly by promoting 
MR-CK2 interaction in a process that needs Hsp90 activity. Interestingly, phospho-
mimetic mutation S459D not only increased aldosterone-induced responses but also 
resulted in ligand-independent transcriptional activation (Figure 2). Modeling a 
pro-inflammatory environment by treating cultured cells with a cytokine cocktail 
increased CK2 expression, resulting in enhanced MR modification, leading to 
increase receptor activity and activating NFκB signaling and thus enhancing the 
expression of proinflammatory genes [46]. This could provide a mechanism to 
help explain the deleterious effects of MR activity in the context of inflamma-
tion, as demonstrated in endothelial cells [71]. The mechanism underlying altered 
MR activity by CK2 phosphorylation remains unclear. The authors speculated 
that S459 phosphorylation could induce a conformational change that promotes 
MR-DNA interaction or alternatively enhance MR association with transcriptional 
co- activators [46]. The latter possibility is plausible, since residue S459 lies in AF-1b 
within the NTD, a region involved in the interaction between MR and transcrip-
tional co-regulators in a ligand-independent manner [72].

MR acetylation at residue K677 (Figures 1 and 2) inhibits its transcriptional 
activity by preventing MR and RNA polymerase II recruitment to target gene 
promoters. Surprisingly, K677 acetylation did not affect MR nuclear translocation 
[36], even though this residue is located in NL1. This study and subsequent work by 

2 Human MR has serine residues at positions 127 and 129, but not at position 128. The authors refer to this 
residue as residing “in the perfect motif of CDK5 phosphorylation site” [69], which is [S/T]PX[K/R/H] 
[70]. Residue S129 fits this description and therefore it is likely that the authors refer to it instead of residue 
128, which is a methionine.
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in MR regulation, although the physiological relevance of this step may strongly 
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activation in response to aldosterone by twofold, without changing the EC50 [68]. 
Residue Y73 is placed in AF1a and therefore could modulate interaction with tran-
scriptional co-activators. However, there are no further reports demonstrating that 
this potential phosphorylation site is actually modified in the protein. Le Moellic 
et al. proposed a possible role for phosphorylation in controlling MR transcriptional 
activity [28]. This study found that protein kinase C α (PKCα) mediates rapid MR 
phosphorylation at serine/threonine residues after stimulation with aldosterone, 
which presumably acts through a membrane receptor [28]. Blocking PKCα during 
this early, non-genomic phase precludes the development of the genomic phase. 
However, whether this effect is directly due to lack of activation of MR or, alterna-
tively modulation of other aspects of the receptor such as aldosterone binding or 
nuclear translocation was not studied.

More direct evidence of phosphorylation involvement in controlling MR activ-
ity came from studying the effect of cyclin-dependent kinase 5 (CKD5) on the 
receptor. CKD5 has been proposed to phosphorylate two residues in the NTD of 
MR (S1282, T159 and S250; Figure 1), producing a very powerful decrease in MR 
transcriptional activity without affecting nuclear translocation [69] (Figure 2). 
The phosphorylation is mediated by direct interaction of the CKD5/p35 or CKD5/
p25 complexes with MR LBD in an aldosterone-dependent way [69]. T159 and S250 
phosphorylation could be confirmed by mass spectrometry, while phosphorylation 
at residue S128 was inferred from mutagenesis studies. Mutation of all three resi-
dues to alanine was necessary to abolish CKD5-dependent MR inhibition [69].

As indicated above, CK2-dependent MR S459 phosphorylation (Figure 1) facili-
tates MR-DNA interaction, at least in an in vitro assay, and increases aldosterone- 
induced gene transcription [46]. This effect is partially mediated by the NTD of 
the receptor, where the phosphorylation site is located, possibly by promoting 
MR-CK2 interaction in a process that needs Hsp90 activity. Interestingly, phospho-
mimetic mutation S459D not only increased aldosterone-induced responses but also 
resulted in ligand-independent transcriptional activation (Figure 2). Modeling a 
pro-inflammatory environment by treating cultured cells with a cytokine cocktail 
increased CK2 expression, resulting in enhanced MR modification, leading to 
increase receptor activity and activating NFκB signaling and thus enhancing the 
expression of proinflammatory genes [46]. This could provide a mechanism to 
help explain the deleterious effects of MR activity in the context of inflamma-
tion, as demonstrated in endothelial cells [71]. The mechanism underlying altered 
MR activity by CK2 phosphorylation remains unclear. The authors speculated 
that S459 phosphorylation could induce a conformational change that promotes 
MR-DNA interaction or alternatively enhance MR association with transcriptional 
co- activators [46]. The latter possibility is plausible, since residue S459 lies in AF-1b 
within the NTD, a region involved in the interaction between MR and transcrip-
tional co-regulators in a ligand-independent manner [72].

MR acetylation at residue K677 (Figures 1 and 2) inhibits its transcriptional 
activity by preventing MR and RNA polymerase II recruitment to target gene 
promoters. Surprisingly, K677 acetylation did not affect MR nuclear translocation 
[36], even though this residue is located in NL1. This study and subsequent work by 

2 Human MR has serine residues at positions 127 and 129, but not at position 128. The authors refer to this 
residue as residing “in the perfect motif of CDK5 phosphorylation site” [69], which is [S/T]PX[K/R/H] 
[70]. Residue S129 fits this description and therefore it is likely that the authors refer to it instead of residue 
128, which is a methionine.
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the same group identified CREB-binding protein (CRE)/p300 as the acetylase and 
HDAC3 as the deacetylase responsible for modifying K677 [36, 73] (Figure 2). The 
molecular basis for the lack of MR binding to target promoters when acetylated at 
residue K677, which is away from the DBD, is unknown.

Addition of small ubiquitin modifier (SUMO) proteins to five different lysine 
residues in MR (Figure 1), all located within a SUMOylation consensus site, has 
been proposed to alter its transcriptional activity and co-regulator recruitment 
[32, 34, 35]. The first description of MR SUMOylation followed the identification of 
protein inhibitor of activated STAT-1 (PIAS1), a SUMO E3 ligase, as an MR interact-
ing partner using a yeast two-hybrid assay using the NTD of the receptor as bait 
[34]. The functional consequences of PIAS1-mediated SUMOylation are complex. 
Co-expression of PIAS1 with MR led to repression of receptor-mediated gene trans-
activation in two different model promoters, the mouse mammary tumor virus pro-
moter (MMTV) and an artificial glucocorticoid response element (GRE) promoter 
[34]. However, introducing non-SUMOylatable mutations in the receptor did not 
produce the expected opposite effects in MMTV, which was unaffected. In contrast, 
the same mutations increased MR activity on the GRE promoter. Taken together, 
these results suggest that the effect of PIAS1 on MR is promoter-dependent and 
may occur through different mechanisms including direct receptor SUMOylation 
and perhaps SUMOylation of transcriptional co-regulators. In addition, PIAS1 may 
exert additional modulatory activities independent of its SUMO ligase activity. This 
possibility is suggested by the observation that a PIAS1 SUMO ligase-dead mutant 
W363A is still able to inhibit androgen receptor transcriptional activity [74]. The 
complexity of SUMOylation-dependent regulation of MR activity is illustrated by 
the fact that the E2 SUMO ligase responsible for its SUMOylation, Ubc9, is able 
to recruit steroid receptor coactivator-1 (SRC-1) to form a complex with MR and 
activate its transcriptional activity independently of addition of SUMO residues to 
the receptor [35]. Therefore, the two enzymes playing a role on MR SUMOylation, 
PIAS1 and Ubc9 (Figure 2), can have opposing effects on the receptor transcrip-
tional activity in a promoter-dependent way, suggesting that many of these actions 
occur through modification/recruitment of co-regulators.

6. Summary and perspectives

Many PTM sites have been identified in MR, but only some of them have been 
experimentally linked to alterations in MR function (Figures 1 and 2). These 
include modulation of MR ligand-binding ability, stability, nuclear translocation 
and gene transactivation. In addition, MR-associated proteins such as Hsp90, 
11ßHSD2 or ubiquitin ligases such as MDM2 are also modulated by PTMs, adding 
further regulatory possibilities for fine-tuning MR activity. This complex picture 
is not unexpected, given the near ubiquitous distribution of MR and the diverse 
functional roles played by this receptor in response to two different types of ligands, 
mineralocorticoids and glucocorticoids. Therefore, it will not be surprising to find 
new PTMs directly or indirectly implicated in the regulation of MR activity. In 
addition, ligand-dependency of MR PTMs needs to be addressed with more detail. 
In principle, changes in MR conformation induced by different ligands could affect 
accessibility to modification sites. Differential PTM in response to different agonists 
or antagonists could potentially underlie divergent effects of MR-mediated signal-
ing events. Generally, detailed characterization of the functional effects of PTMs 
is feasible in cultured cells. However, the main challenge remains to elucidate the 
physiological or pathological importance of these modifications in whole organisms 
and the clinical relevance that they may have in humans.
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Due to the nature of steroid receptors, including MR, they are inherently drug-
gable targets. Excess signaling through MR has now been firmly established as an 
important factor in hypertension, heart failure and ocular diseases, with compelling 
evidence indicating further implication in brain, vascular, renal, metabolic and skin 
diseases [2]. Therefore, there is renewed interest in developing MR modulators with 
tissue-specific characteristics that may reduce or avoid undesirable side effects. 
Given the high degree of homology between LBDs of different steroid receptors, a 
significant effort to develop nonsteroidal inhibitors is underway [75]. In addition, it 
is possible that allosteric inhibitors or small molecules able to modulate MR protein-
protein interactions may provide new strategies to manipulate the system. PTMs 
may have an important effect on drug binding and future drug development, both 
for competitive and allosteric modulators. In fact, recent in silico approaches have 
explored this possibility, exploiting the increasing availability of high-throughput 
PTM screenings and high-resolution protein three-dimensional structures [76]. 
It can be expected that improved PTM screening, combined with structural and 
computational methods will provide new testable hypotheses regarding the regula-
tion of steroid receptors and possible new ways of pharmacological modulation of 
their activities.
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Chapter 15

Aldosterone Regulation of  
Protein Kinase Signaling Pathways 
and Renal Na+ Transport by  
Non-genomic Mechanisms
Warren Thomas and Brian Harvey

Abstract

Aldosterone is the key regulating hormone of whole-body fluid and electrolyte 
homeostasis. Perturbations in aldosterone synthesis and over-activation of the 
mineralocorticoid receptor (MR) can lead to excess salt reabsorption and hyperten-
sion. The cortical collecting duct (CCD) is the main site of action in the kidney 
for aldosterone regulation of whole-body sodium homeostasis through actions 
on the epithelial sodium channel (ENaC) and the Na/K-ATPase (Na/K pump). 
Aldosterone stimulates ENaC trafficking into the apical cell membranes in the CCD 
and enhances channel stability and open probability, as well as activating the baso-
lateral membrane Na/K pump to produce an overall increase in the transepithelial 
reabsorption of sodium. Aldosterone/MR regulates the activity of ENaC in the CCD 
through both rapid non-genomic (secs-mins) and latent genomic (hours-days) sig-
naling pathways. These rapid and slow responses of renal Na+ transport pathways 
to aldosterone are often treated as distinct and separate events. However, recent 
evidence points to a close integration between genomic and non-genomic responses 
to aldosterone to regulate ENaC and Na/K pump activity via protein kinase signal-
ing pathways. Here, we review the integration of aldosterone membrane-initiated 
non-genomic and nuclear genomic regulations of renal sodium transport via 
protein kinase signaling pathways and in particular via protein kinase D isoforms.

Keywords: aldosterone, non-genomic, protein kinase D, ENaC, Na/K pump, 
renal Na+ transport

1. Introduction

The distal nephron of the kidney is the principal site for salt conservation in the 
body, and the dysregulation of Na+ homeostasis can contribute significantly to the 
development of hypertension [1]. Aldosterone is the major salt conservation hormone, 
and increased circulating levels of the hormone in low Na+ diet, salt-wasting, or 
hypovolemia such as in hemorrhage produce increased sodium reabsorption in target 
epithelial tissues of the kidney, distal colon, and sweat gland to restore whole-body salt 
homeostasis and extracellular fluid volume. The kidney and cardiovascular systems are 
the principal organs for aldosterone action to regulate blood pressure. Rapid non-
genomic and latent genomic actions of aldosterone on both renal and cardiac functions 
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have been described. The main ion transport targets for the natriferic actions of aldo-
sterone in the kidney are the epithelial sodium channel ENaC and the Na/K-ATPase 
pump. Aldosterone can also affect other epithelial ion transport systems such as 
potassium and hydrogen ion secretion by activating the ROMK K+ channel and the H+-
ATPase pump, respectively [2]. Aldosterone regulates sodium transport in the kidney 
through its actions on ENaC activity in the distal nephron principal cells of the cortical 
collecting duct (CCD) as well as activating the basolateral membrane Na/K pump, to 
produce an overall increase in the transepithelial uptake of sodium. Aldosterone also 
stimulates K+ recycling at the basolateral membrane through activation of inwardly 
rectifying KATP channels which serves to maintain a favorable cell membrane hyper-
polarization for sustained Na+ influx via ENaC, in addition to matching K+ recycling 
rate with Na/K-ATPase pump activity to preserve epithelial cross talk (maintaining 
equilibrium between apical and basolateral ionic permeabilities) [3].

Aldosterone acts on ENaC via its receptor MR to produce rapid (non-genomic) 
effects on intermediate cell signaling molecules (protein kinases, MAP kinases, SGK, 
Ca2+, pH, etc.) to enhance ENaC membrane trafficking, channel activity, and stabil-
ity followed by a latent (genomic) phase to increase the expression of ENaC channel 
subunits and further stabilization of active channels in the apical membrane [4]. 
For the past 25 years, it was thought that aldosterone and its receptor MR modulated 
renal sodium reabsorption principally by preventing the membrane retrieval and 
degradation of ENaC in the cortical collecting duct via serum glucocorticoid kinase 
(SGK) [5]. However mouse models deficient in or over-expressing SGK did not show 
alterations in blood pressure or renal Na+ excretion, pointing to SGK redundancy or 
other regulatory ENaC pathways more potent than SGK [6]. A novel aldosterone sig-
naling pathway acting through protein kinase D isoforms (PKD) was discovered over 
a decade ago [7] which is pivotal in transducing aldosterone/MR regulation of ENaC 
subcellular trafficking and channel activity in CCD, both by rapid non-genomic and 
latent genomic signaling mechanisms [2, 4]. The role of rapid aldosterone/MR signal-
ing responses in modulating renal sodium reabsorption and whole-body electrolyte 
balance is still poorly understood; however, recent observations demonstrate that 
PKD1 activation by aldosterone rapidly regulates ENaC trafficking, one of the earliest 
physiological responses to the hormone [8]. This review focuses on non-genomic 
aldosterone regulation of ENaC and renal sodium transport by protein kinase signal-
ing pathways and the impact of rapid kinase signaling, in particular protein kinase D, 
on the latent genomic responses to influence renal sodium reabsorption in the CCD.

1.1 Non-genomic actions of aldosterone on ion transporters

Aldosterone tightly regulates epithelial ion transport in the renal CCD by both 
genomic and non-genomic processes (Figure 1). Aldosterone diffuses across the 
basolateral membrane of the CCD cell and binds to MR in the cytosol inducing 
receptor dimerization and the translocation to the nucleus. The hormone-receptor 
complex can bind to GRE response elements and subsequently recruit other tran-
scription factors. During genomic regulation of ion transport, the aldosterone/MR 
complex acts as a ligand-dependent transcription factor that can induce the expres-
sion of several genes including ENaC, Na+/K+-ATPase, ROMK, and SGK [9–11]. 
The binding of aldosterone to MR in the cytosol can also stimulate protein kinase 
signaling pathways. The rapid activation of certain protein kinases such as MAPK 
and PKD occurs through the transactivation of EGFR [12, 13].

Rapid activation of signal transduction cascades is amplified via aldosterone-
stimulated non-transcriptional responses. Current available evidence indicates 
that aldosterone non-genomic responses in CCD are dependent on the interaction 
of aldosterone with cytosolic MR and not via a nonclassical membrane-bound 
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aldosterone receptor [14]. The signaling cascades which are rapidly activated 
through the interaction of MR and aldosterone can be inhibited by MR-specific 
antagonists, for example, spironolactone or eplerenone [15, 16]. There is also 
strong evidence that, under certain conditions, aldosterone/MR can transactivate 
other receptors such as the epithelial growth factor receptor EGFR and G-protein 
estrogen receptor GPER [12, 13, 17].

Non-genomic renal responses to aldosterone have long been described in various 
experimental animal and cell models. A primary focus of non-genomic aldosterone 
research has been the rapid actions of aldosterone on the reabsorption of sodium in 
the distal nephron, in particular rapid regulation of Na+ uptake through ENaC and 
basolateral extrusion of Na+ via the Na/K pump [2, 4, 29, 30]. The active sodium 
transport target for aldosterone was first demonstrated in amphibian urinary bladder 
[31]. One of the earliest reports of rapid actions of aldosterone on sodium trans-
port in the kidney was in 1957 when Cole described the rapid effect of aldosterone 
administration for 30 min to cause a reduction in urinary loss of Na+ and increased 
reabsorption by the renal tubules in response to intravenously administered saline 
in adult male rats [18]. It has also been documented that aldosterone infusion into 
aldosterone-suppressed rats (by adrenalectomy or infusion with sodium bicarbonate) 
resulted in the rapid increase in urinary Na+ excretion [19]. The rapid non-genomic 
actions of aldosterone in vivo were further demonstrated in the intact rat when 
aldosterone induced a rapid increase in urinary Na+ excretion within 15 min [20].

Figure 1. 
Genomic and non-genomic actions of aldosterone on epithelial ion transport. In both pathways, aldosterone 
enters the cytoplasm to bind with MR. A rapid non-genomic signaling pathway is initiated within secs-mins 
(green arrows) which transactivates the EGFR receptor to produce phosphorylation activation of protein 
kinases such as MAPK and PKD. Aldosterone may also interact with other receptors such as GPER or directly 
with specific kinases (PKC and PKA) to modulate intracellular Ca2+ or pH. The non-genomic effects of 
aldosterone result in rapid activation of various ion transporters (ENaC, Na/K pump, Na/H exchanger, 
K+ channels, and H+-ATPase pumps). Genomic responses occur on a longer time scale of hours-days (red 
arrows) and are the result of aldosterone/MR translocation to the nucleus, interaction with DNA steroid 
response elements, mRNA activation/inhibition, and the delayed expression or degradation of ion transporter 
proteins. Cross talk exists between genomic and non-genomic pathways in both directions. The rapid activation 
of protein kinases primes the epithelial cells for the latent genomic response by enhancing the trafficking 
and membrane localization of ion transporters. In addition, non-genomic MAPK and ERK1/2 signaling 
can activate transcription factors such as CREB which facilitates nuclear translocation of MR and gene 
transcription to cause expression of protein kinase signaling intermediates [2, 4].
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of protein kinases primes the epithelial cells for the latent genomic response by enhancing the trafficking 
and membrane localization of ion transporters. In addition, non-genomic MAPK and ERK1/2 signaling 
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Aldosterone has been shown to regulate epithelial K+ channels involved in tran-
sepithelial K+ secretion and K+ recycling. In the frog skin epithelium which shares 
similar functional properties to CCD, aldosterone rapidly activated ATP-sensitive 
K+ (KATP) channels which generate the favorable electrical driving force for apical 
Na+ entry via ENaC, through an increase in the open probability of KATP channels 
within 15 min of stimulation by hormone [21]. The stimulatory effect of aldoste-
rone on KATP channels was caused by activation of a Na+/H+ exchanger shifting 
intracellular pH to more alkaline values at which the KATP channel open probability 
was highest [22]. The non-genomic effects of aldosterone on KATP channels and Na+/
H+ exchanger were very rapid in the frog skin epithelium and renal A6 CCD cells 
(within 10 min) [23].

The regulation of intracellular pH in epithelia such as the renal CCD occurs via 
the Na+/H+ exchanger family (NHE) which is responsible for the exchange of intra-
cellular H+ for extracellular Na+. NHE, specifically the NHE1 isoform, is expressed 
in the basolateral membrane in polarized epithelial cells where it plays a role in the 
regulation of cell volume and cytoplasmic pH. Aldosterone rapidly activates NHE 
isoforms by non-genomic signaling to promote alkalinization of the cytoplasm 
within 20 min in the kidney of amphibians [24]. In MDCK cells, the aldosterone-
dependent increase in pHi is linked to the activation of NHE [25]. The rise in pHi is 
also dependent on the activation of ERK1/2 along with the rapid increase in [Ca2+ i] 
that occurs within 1 min of treatment with aldosterone [26]. Other studies using 
M1-CCD cells showed that aldosterone induced a NHE-dependent increase in the 
recovery of pHi from an acid load within 5 min of hormone treatment. The rapid 
pH recovery response to aldosterone was reduced by PKCα inhibition or by the 
activation of MAPK [27]. NHE also has a role in regulating cell volume as well as the 
induction of proliferation and cell growth. In fact, one of the first pieces of evidence 
for non-genomic actions of aldosterone on the Na+/H+ exchanger was reported for 
cell volume regulation in leukocytes [28].

Another ion transporter target of non-genomic aldosterone signaling in the 
CCD is the V-type H+ pump (H+-ATPase) which is expressed in intercalated cells 
of the CCD and is the major mechanism for aldosterone-regulated acid secretion 
in the kidney. Aldosterone enhances urinary acidification by stimulating H+ efflux 
via the H+-ATPase pump. This response was first described in turtle bladder [32]. 
It was later shown in whole-cell patch clamp recordings of mitochondria-rich cells 
of the frog skin that aldosterone treatment resulted in the rapid exocytotic inser-
tion of H+-ATPase pumps into the luminal membrane within 10 min of hormone 
stimulation [33]. The rapid insertion of H+ pumps into the membrane was sensitive 
to PKC inhibition and disruption of the cytoskeleton. In the kidney, the reabsorp-
tion of bicarbonate coupled with the release of H+ into the renal ultrafiltrate in the 
distal nephron accounts for acid-base regulation. Aldosterone has a crucial role 
in regulating the renal H+-ATPase through non-genomic signaling responses. For 
example, stimulation with aldosterone for 15 min resulted in the MR-dependent 
increase in the excretion of H+ from acidic type A intercalated cells of the outer 
medullary collecting ducts of mice [34]. These responses in the kidney were similar 
to that observed in the frog skin whereby the increase in H+ pump activity was 
dependent on the Ca2+-induced activity of PKC [33]. Moreover, mice injected with 
aldosterone displayed an increase in the expression of H+-ATPase in the apical 
membrane of type A intercalated cells [34] further strengthening the evidence for 
aldosterone in regulating the trafficking of H+-ATPase pumps in the maintenance 
of acid-base homeostasis.

In the renal CCD, K+ enters the principal cells through the Na+/K+-ATPase in the 
basolateral membrane and is then secreted into the lumen via K+ channels along 
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the apical membrane [35]. The main K+ secreting channel in the kidney is ROMK 
which is expressed in the apical membrane of cells in the ASDN [36]. The func-
tion of ROMK is regulated by aldosterone through SGK1 activity which was found 
to regulate cell surface expression of the channel [37]. K+ can also enter the cell 
through K+ channels located in the basolateral membrane of the CCD [38] which 
may occur due to the stimulation of Na+/K+-ATPase by mineralocorticoids [39]. 
ATP-dependent K+ channel (KATP) activity in A6 CCD renal cells was rapidly stimu-
lated by aldosterone (15 min), and this activation modulated the open probability 
of the channel [21]. Aldosterone has also been shown to produce a non-genomic 
inhibition of Ca2+-dependent intermediate conductance channels (IKCa) located in 
the basolateral membrane of colonic crypt cells, and this effect was PKC-dependent 
[40, 41]. Additionally, aldosterone can also activate Na+/H+ exchange through Ca2+- 
and PKC-dependent signaling pathways that results in an upregulation of KATP and 
an inhibition of IKCa channels [42]. Taken together, it is evident that aldosterone 
can induce rapid signaling responses that impact upon several membrane ion 
transporter targets by modulating intrinsic biophysical and electrophysiological 
properties of ion channels, pumps, and exchangers.

1.2 Non-genomic actions of aldosterone on protein kinase signaling pathways

Non-genomic effects of aldosterone produce rapid phosphorylation of a wide 
range of protein kinases such as extracellular stimulus-regulated kinase (ERK) 1/2, 
protein kinase C (PKC isoforms), cAMP-dependent protein kinase A (PKA), and 
protein kinase D isoforms (PKD) (Figure 2) [2, 4, 29, 42–47]. It is vital to under-
stand how aldosterone stimulation of these signaling cascades augments the activity 
of sodium ion transporters ENaC and Na+/K+-ATPase pump in order to establish the 
physiological relevance of non-genomic signaling for transepithelial Na+ reabsorp-
tion processes that are instigated in advance of transcriptional control. For the past 
25 years, it was thought that aldosterone and the mineralocorticoid receptor modu-
lated renal sodium reabsorption principally by activating the epithelial Na+ channel 
ENaC in the cortical collecting duct via serum glucocorticoid kinase (SGK) [5]. 
However, mouse models deficient in or over-expressing SGK do not show altera-
tions in blood pressure or renal Na+ excretion [6], pointing to redundancy or other 
regulatory ENaC pathways more potent than SGK.

Aldosterone has been shown to exert rapid non-genomic effects on the activa-
tion of several kinase families including PKC, PKD, ERK1/2, and MAPK through 
the transactivation of EGFR via the non-receptor tyrosine kinase c-Src [2, 4]. The 
most widely documented mechanism underlying the rapid responses to aldosterone 
is the activation of protein kinase signaling cascades. Several research groups have 
investigated the role of ERK1/2 activation in aldosterone-sensitive models such 
as Madin-Darby canine kidney (MDCK) cells [25], M1-CCD cells [27], vascular 
smooth muscle cells (VSMC) [48], cardiac myocytes [49], and the mesangial cells 
of the glomerulus [50]. The activation of ERK1/2 is linked to the variation of cell 
growth which can occur through hypertrophy [49] or by promoting proliferation 
[51]. The activation of ERK1/2 is modulated by the simultaneous activation of 
other signaling cascades. In MDCK cells, the activation of ERK1/2 occurs within 
5 min and can be sustained over a period of hours (96). However, in M1-CCD cells, 
ERK1/2 activation is linked to the transactivation of EGFR and subsequent activa-
tion of PKD1 which has been shown to be necessary to maintain the cyclical activa-
tion of ERK1/2 beyond 5 min [25]. Additionally, PKD1 involvement in stabilizing 
ERK1/2 activation occurs in response to growth factors and does not require the 
direct phosphorylation of ERK1/2 by PKD1 [52]. Aldosterone can also stimulate 
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the apical membrane [35]. The main K+ secreting channel in the kidney is ROMK 
which is expressed in the apical membrane of cells in the ASDN [36]. The func-
tion of ROMK is regulated by aldosterone through SGK1 activity which was found 
to regulate cell surface expression of the channel [37]. K+ can also enter the cell 
through K+ channels located in the basolateral membrane of the CCD [38] which 
may occur due to the stimulation of Na+/K+-ATPase by mineralocorticoids [39]. 
ATP-dependent K+ channel (KATP) activity in A6 CCD renal cells was rapidly stimu-
lated by aldosterone (15 min), and this activation modulated the open probability 
of the channel [21]. Aldosterone has also been shown to produce a non-genomic 
inhibition of Ca2+-dependent intermediate conductance channels (IKCa) located in 
the basolateral membrane of colonic crypt cells, and this effect was PKC-dependent 
[40, 41]. Additionally, aldosterone can also activate Na+/H+ exchange through Ca2+- 
and PKC-dependent signaling pathways that results in an upregulation of KATP and 
an inhibition of IKCa channels [42]. Taken together, it is evident that aldosterone 
can induce rapid signaling responses that impact upon several membrane ion 
transporter targets by modulating intrinsic biophysical and electrophysiological 
properties of ion channels, pumps, and exchangers.

1.2 Non-genomic actions of aldosterone on protein kinase signaling pathways

Non-genomic effects of aldosterone produce rapid phosphorylation of a wide 
range of protein kinases such as extracellular stimulus-regulated kinase (ERK) 1/2, 
protein kinase C (PKC isoforms), cAMP-dependent protein kinase A (PKA), and 
protein kinase D isoforms (PKD) (Figure 2) [2, 4, 29, 42–47]. It is vital to under-
stand how aldosterone stimulation of these signaling cascades augments the activity 
of sodium ion transporters ENaC and Na+/K+-ATPase pump in order to establish the 
physiological relevance of non-genomic signaling for transepithelial Na+ reabsorp-
tion processes that are instigated in advance of transcriptional control. For the past 
25 years, it was thought that aldosterone and the mineralocorticoid receptor modu-
lated renal sodium reabsorption principally by activating the epithelial Na+ channel 
ENaC in the cortical collecting duct via serum glucocorticoid kinase (SGK) [5]. 
However, mouse models deficient in or over-expressing SGK do not show altera-
tions in blood pressure or renal Na+ excretion [6], pointing to redundancy or other 
regulatory ENaC pathways more potent than SGK.

Aldosterone has been shown to exert rapid non-genomic effects on the activa-
tion of several kinase families including PKC, PKD, ERK1/2, and MAPK through 
the transactivation of EGFR via the non-receptor tyrosine kinase c-Src [2, 4]. The 
most widely documented mechanism underlying the rapid responses to aldosterone 
is the activation of protein kinase signaling cascades. Several research groups have 
investigated the role of ERK1/2 activation in aldosterone-sensitive models such 
as Madin-Darby canine kidney (MDCK) cells [25], M1-CCD cells [27], vascular 
smooth muscle cells (VSMC) [48], cardiac myocytes [49], and the mesangial cells 
of the glomerulus [50]. The activation of ERK1/2 is linked to the variation of cell 
growth which can occur through hypertrophy [49] or by promoting proliferation 
[51]. The activation of ERK1/2 is modulated by the simultaneous activation of 
other signaling cascades. In MDCK cells, the activation of ERK1/2 occurs within 
5 min and can be sustained over a period of hours (96). However, in M1-CCD cells, 
ERK1/2 activation is linked to the transactivation of EGFR and subsequent activa-
tion of PKD1 which has been shown to be necessary to maintain the cyclical activa-
tion of ERK1/2 beyond 5 min [25]. Additionally, PKD1 involvement in stabilizing 
ERK1/2 activation occurs in response to growth factors and does not require the 
direct phosphorylation of ERK1/2 by PKD1 [52]. Aldosterone can also stimulate 
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the prolonged activation of ERK1/2 in CCD cells as this process is coupled to 
Ki-RasA expression where aldosterone can also stimulate Ki-RasA GTPase activity 
within 15 min of treatment [53]. Another non-genomic kinase signaling target of 
aldosterone is the p38 MAPK subfamily. The biphasic activation of p38 in vascular 
smooth muscle cells (VSMC) can occur within 1 min of aldosterone treatment 
[54], which is followed by a second activation phase measurable after 30 min. 
The p38 response in VSMC is dependent on the co-activation of MR and c-Src and 
links p38 to the pro-fibrotic effects of aldosterone on VSMC via the regulation of 
NADPH. Furthermore, MR-dependent activation of p38 in glomerular podocytes 
from rats is also promoted by aldosterone, and this p38 activation contributes to the 
induction of apoptosis [55].

PKC isoforms have diverse roles and regulate critical cellular processes such as 
proliferation and trafficking. The PKC family of kinases are well-established targets 
of rapid aldosterone non-genomic responses [2, 4, 43]. For example, aldosterone 
can promote the activation of PKCα in renal collecting duct cells within 2–5 min 
after treatment. This activation appears to occur in an MR-independent manner 
[56, 57] and involves aldosterone binding directly to the kinase [58] along with a 
simultaneous rise in intracellular Ca2+. Additionally, PKCδ and PKCε can also be 
rapidly activated in response to aldosterone; however, this does not involve the 
direct binding of the hormone to the kinase but is coupled to MR through EGFR 
transactivation [12]. The protein kinase D isoform PKD1 activation by aldosterone 
follows a similar pattern and has been implicated in the induction of proliferation in 
M1-CCD cells following aldosterone treatment [59] as well as in the stimulation of 
hypertrophy in cardiac myocytes [60].

Figure 2. 
Aldosterone-induced protein kinase signaling and their modulation of membrane ion transporters in renal 
CCD. Fundamental signaling intermediates such as protein kinase A (PKA), protein kinase C (PKC), protein 
kinase D (PKD), phosphoinositide 3-kinase (PI3K), serum- and glucocorticoid-activated kinase (SGK), Rho-
activated kinase (ROK), the with no lysine family kinases (WNKs), and the extracellular stimulus-regulated 
kinase (ERK) are rapidly phosphorylated following treatment with aldosterone. Once activated, these signaling 
intermediates modulate the activity of ENaC, ROMK, ATP-sensitive K+ channels (KATP), Na+/H+ exchanger-1 
(NHE1), and the Na/K pump (Na+/K+-ATPase) in the principal cells of the collecting duct. Aldosterone 
induces rapid stimulation of H+-ATPase pumps in the A-type intercalated cells via PKC-dependent trafficking 
of the proton pump into the apical membrane. Large-conductance K+ (BK) channel activity is modulated 
by aldosterone and is involved in the shift of kidney anion exchanger (kAE) activity from the basolateral 
membrane to the apical membrane (modified from [4]).
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Aldosterone can also upregulate serum glucocorticoid kinases; although this 
activation can be rapid within 20 min, it does not appear to be a non-genomic 
response but rather dependent on genomic expression of the kinase. ENaC activity 
is regulated by the aldosterone-targeted kinase serum glucocorticoid kinases which 
is present in all eukaryotes and exits in multiple isoforms, for example, SGK1, 
SGK2, and SGK3. All isoforms have been shown to promote ENaC activity with 
SGK1 and SGK3 being the most potent stimulators of this activity when they have 
been co-expressed in Xenopus oocytes [61, 62]. Aldosterone and other glucocor-
ticoid hormones induce the transcription of SGK1 by acting via nuclear receptors 
that bind to the response elements in the SGK1 gene. The subsequent rapid increase 
in SGK1 at both the protein and mRNA level stimulated ENaC-mediated Na+ cur-
rents in the epithelium of several tissues such as the kidney, lung, colon, and ocular 
epithelial cells [5, 63–65]. A rapid increase in ENaC activity by elevation in the 
channel density at the membrane has been linked to the rapid vesicle trafficking 
that is coupled to the activation of the RhoA small GTPase [66].

Aldosterone can also promote the activation of second messenger responses such 
as mobilization of intracellular Ca2+, the biosynthesis of cAMP, and the release of 
nitric oxide. There are many studies documenting the rapid non-genomic rise in 
intracellular Cai

2+ in response to aldosterone including in CCD cells [67], vascular 
smooth muscle [68], colonic crypts [42], and the brain [69]. The mechanism by 
which Ca2+ influx occurs in both the colon and the renal nephron has not been fully 
described; however, Ca2+ entry into CCD cells was not sensitive to spironolactone, 
and Ca2+ entry into colonic crypt cells was PKC-dependent via L-type voltage gated 
channels [70].

The rapid transient activation of cAMP-PKA signaling by aldosterone has been 
shown in CCD cells, and the phosphorylation of CREB following aldosterone treat-
ment was found to be PKA-dependent [71]. Some research groups have reported 
aldosterone inducing the activation of PKA; however, they also describe an inhibi-
tory effect between the physiological response stimulated by the cAMP activator 
forskolin and that stimulated by aldosterone. There is also evidence suggesting that 
suppressing CREB-dependent transcription occurs via the upregulation of protein 
phosphatase 2β (PP2β) activation by aldosterone [72]. This could be due in part to 
the separate activation of isoforms of adenylate cyclase and PKA by forskolin and 
aldosterone which could result in subcellular compartmentalized signaling. These 
observations point to a negative feedback loop that is intrinsic to aldosterone signal-
ing thus making cells more refractive to further PKA stimulation after the initial 
aldosterone-induced response.

1.3 Transduction of non-genomic aldosterone responses through the MR

As MR is at present the only widely recognized receptor that is specific to 
aldosterone, considerable effort has been put in to understand how nuclear recep-
tors such as MR can initiate rapid non-genomic protein kinase signaling cascades, 
in particular in concert with the transactivation of membrane-associated receptors 
EGFR and GPER [13, 17, 73]. A number of strands of evidence point to MR as being 
the receptor responsible for initiating the aldosterone-induced non-genomic rapid 
signaling cascades in the CCD [74]. The activation of protein kinases such as PKD 
and ERK1/2 by aldosterone can be inhibited with the use of MR-specific antago-
nists such as spironolactone and eplerenone [12, 74]. Moreover, rapid actions of 
aldosterone in MR-null cells can be conferred through exogenous expression of the 
receptor in Chinese hamster ovarian (CHO) and human embryonic kidney (HEK) 
cells [74]. MR can be considered to be a multifunctional receptor. If recombinant 
MR, which lacks its DNA-binding and coactivator-binding domains, is expressed, 
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channel density at the membrane has been linked to the rapid vesicle trafficking 
that is coupled to the activation of the RhoA small GTPase [66].

Aldosterone can also promote the activation of second messenger responses such 
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nitric oxide. There are many studies documenting the rapid non-genomic rise in 
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which Ca2+ influx occurs in both the colon and the renal nephron has not been fully 
described; however, Ca2+ entry into CCD cells was not sensitive to spironolactone, 
and Ca2+ entry into colonic crypt cells was PKC-dependent via L-type voltage gated 
channels [70].

The rapid transient activation of cAMP-PKA signaling by aldosterone has been 
shown in CCD cells, and the phosphorylation of CREB following aldosterone treat-
ment was found to be PKA-dependent [71]. Some research groups have reported 
aldosterone inducing the activation of PKA; however, they also describe an inhibi-
tory effect between the physiological response stimulated by the cAMP activator 
forskolin and that stimulated by aldosterone. There is also evidence suggesting that 
suppressing CREB-dependent transcription occurs via the upregulation of protein 
phosphatase 2β (PP2β) activation by aldosterone [72]. This could be due in part to 
the separate activation of isoforms of adenylate cyclase and PKA by forskolin and 
aldosterone which could result in subcellular compartmentalized signaling. These 
observations point to a negative feedback loop that is intrinsic to aldosterone signal-
ing thus making cells more refractive to further PKA stimulation after the initial 
aldosterone-induced response.

1.3 Transduction of non-genomic aldosterone responses through the MR

As MR is at present the only widely recognized receptor that is specific to 
aldosterone, considerable effort has been put in to understand how nuclear recep-
tors such as MR can initiate rapid non-genomic protein kinase signaling cascades, 
in particular in concert with the transactivation of membrane-associated receptors 
EGFR and GPER [13, 17, 73]. A number of strands of evidence point to MR as being 
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signaling cascades in the CCD [74]. The activation of protein kinases such as PKD 
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aldosterone in MR-null cells can be conferred through exogenous expression of the 
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signaling events can be instigated by a rapid response to aldosterone independent 
of transcriptional activity [75]. In terms of the intermediate phases that couple the 
aldosterone-MR interaction with the rapid activation of protein kinases, there are 
still some questions to be addressed.

Aldosterone/MR can activate non-genomic signaling pathways which regulate 
renal sodium transport and cell proliferation via transactivation of the membrane-
bound epidermal growth factor receptor EGFR [12, 59, 76–79]. Several groups 
have shown a rapid (<5 min) increase in the phosphorylation of EGFR following 
the treatment with aldosterone which induces ERK1/2 activation and an increase 
in intracellular Ca2+ [12, 81]. A major signaling pathway that is known to mediate 
MR transactivation of EGFR is the cytosolic tyrosine kinase c-Src pathway [81, 
82]. When c-Src is activated, it phosphorylates EGFR to activate ERK1/2 signaling, 
and when c-Src is inhibited, the rapid effect of aldosterone is completely abolished 
indicating that aldosterone transactivation of EGRF and MAPK pathways occurs 
via c-Src. Phosphorylated ERK1/2 can provoke several cellular responses that range 
from the activation of Na+/H+ exchange to cell proliferation [83, 84]. The transac-
tivation of EGFR is not unique to aldosterone and is typically an intermediate step 
in the transduction of rapid non-genomic membrane-initiated signaling responses 
stimulated by other steroid hormones such as estrogen [85] and G-protein-coupled 
receptor agonists [86, 87]. Although it is now well established that the transactiva-
tion of EGFR is a fundamental step in linking the initiation of the non-genomic 
aldosterone/MR signal to aldosterone-responsive downstream kinase signaling 
intermediates, it has yet to be determined by which molecular mechanism EGFR 
and its activation are coupled to MR, but it is thought to be ligand-independent EGF. 
EGFR is phosphorylated by c-Src, within 5 min of treatment with aldosterone, and 
c-Src phosphorylation could be a significant transducing signal [82]. Cytoplasmic 
Aldo/MR is recruited into a complex of several proteins including heat shock protein 
90 (Hsp90); this complex dissociates on MR activation allowing c-Src phosphoryla-
tion of EGFR. The aldosterone-induced phosphorylation of EGFR by c-Src can 
be blocked by antagonizing Hsp90 interactions with other proteins using the 
geldanamycin analogue 17-AAG. Inhibiting Hsp90 also suppresses EGFR-dependent 
downstream signaling events initiated by aldosterone which include the activation 
of protein kinase D1 [12] and the ERK1/2 mitogen-activated protein (MAP) kinase 
[25]. The ErbB family of receptor tyrosine kinases (including its member EGFR) can 
also be activated independently of ligand binding via phosphorylation of specific 
residues that are distinct from autophosphorylation sites. For example, EGFR can be 
phosphorylated at Tyr845 by Src tyrosine kinases which result in the activation of 
EGFR without requiring binding of the receptor to EGF [78, 80, 88].

Other receptors have been implicated in transducing the non-genomic aldo-
sterone actions on protein kinases including stimulation at the membrane that 
could be initiated via GPCRs, tyrosine kinases, or an as yet “unknown” membrane-
associated aldosterone receptor [89]. There is also evidence for direct activation of 
specific protein kinases by steroid hormones such as vitamin D binding to catalytic 
domains on the kinase [90], and this appears to be also relevant for aldosterone 
activation of PKCα [91]. Aldosterone can bind directly to the C2 domain of PKCα, 
with a binding affinity of between 0.5 and 1 nM, which results in the autophos-
phorylation of PKCα [58]. There have also been numerous reports proposing 
GPER (GPR30), a G-protein-coupled estrogen receptor, as a novel non-genomic 
aldosterone receptor [17, 92, 93]. Some rapid responses to aldosterone in smooth 
muscle have been linked to GPER-coupled signaling pathway in which the expres-
sion of GPER is required for the MR-independent rapid effects of aldosterone [94]. 
However, the specificity of GPER to bind selectively to steroid hormone ligands 
remains controversial [95].
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2. Protein kinase D signaling

Protein kinase D (PKD) is a serine/threonine kinase that includes three iso-
forms: PKD1/PKCμ, PKD2, and PKD3/PKCν [96]. PKD isoforms contain a tandem 
repeat of zinc finger-like cysteine-rich motifs at the N-terminus that exhibit a 
strong affinity for diacylglycerol (DAG) or phorbol ester as well as a pleckstrin 
homology domain and a C-terminal catalytic domain that has a similar homology 
with calmodulin-dependent kinases. While the PKD family contain a homologous 
catalytic domain, each isoform varies with respect to their subcellular localization, 
expression, and regulation. PKD isoforms are DAG and PKC effectors that facilitate 
the actions of growth factors, hormones, and other stimuli that can activate phos-
pholipase C (PLC). PKDs have a pair of C1 domains that bind to DAG and phorbol 
esters. Membrane-associated DAG can bind to and subsequently activate PKD and 
in turn recruit PKD via its C1 domains. PKC phosphorylates Ser744 and Ser748 in 
the activation loop of PKD. DAG-stimulated PKCs (δ, ε, θ, and η) have been shown 
to be PKD dominant activators. However, Ca+- and DAG-activated PKCs α, βi, and 
βii have also been demonstrated to activate PKD.

PKD isoforms are known to modulate the relative activity of both the ERK and 
JNK pathways whereby they can attenuate the c-Jun phosphorylation and JNK 
activation in response to the activation of EGFR while stimulating the ERK and Ras 
pathways. The PKD family of kinases can regulate budding of secretory vesicles 
from the trans-Golgi network, and this process is required for locomotion and 
localization and activity of the Rac1-dependent leading edge in fibroblasts. In addi-
tion to a major regulatory role in cell trafficking and motility, PKD also stimulates 
the recruitment of integrin to newly formed focal adhesions as well as the invasion 
of cancer cells. Moreover, PKD has been shown to have a role in the regulation of 
apoptosis, the differentiation of T cells in transgenic models, and reintroduction 
of DNA synthesis that can be induced by phorbol esters and regulatory peptides 
that act through Gq-coupled receptors and cardiac hypertrophy [97]. PKD has 
been implicated as a facilitator of stress and multiple disease states, for example, 
human hypertrophic cardiomyopathy, the activation of NFκB which is induced by 
Bcr-Abl in human myeloid leukemia and in oxidative stress responses. PKD isoform 
involvement in facilitating a wide array of both normal and abnormal biological 
actions in different subcellular compartments is most likely to be dependent on 
dynamic alterations in the isoform spatial and temporal localization in combination 
with their substrate specificity. This is particularly relevant for understanding the 
physiological role of non-genomic aldosterone activation of PKD in the regulation 
of renal Na+ transport [2, 4].

Previous studies have shown the PKD isoforms undergo rapid subcellular redis-
tribution in response to cellular stimulation. For example, PKD can be phosphory-
lated and activated by novel PKC isoforms PKCε and PKCη. We have demonstrated 
that the aldosterone activation of PKD1 in CCD cells is PKCε dependent [7, 12].

Both PKD1 and PKD2 are known to translocate from the cytosol to DAG-
containing microenvironments in the plasma membrane which is followed by 
PKC-dependent reverse translocation from the membrane to the cytosol where they 
subsequently accumulate in the nucleus [98]. In contrast to the first two isoforms, 
PKD3 constantly shuttles between the cytoplasm and the nucleus [99]. The PKD 
family members can pool and localize at the Golgi complex and the mitochondria. 
Additionally, PKD1 and PKD2 contain short PDZ-binding motifs in their COOH 
termini, namely, VSIL in PKD1 and ISVL in PKD2, which can form complexes with 
regulatory factors in multiple subcellular locations, thereby controlling various cellular 
activities. The PKD family of kinases are potent regulators of many biological pro-
cesses such as cell proliferation, polarity, migration, differentiation, reorganization of 
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signaling events can be instigated by a rapid response to aldosterone independent 
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intermediates, it has yet to be determined by which molecular mechanism EGFR 
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of protein kinase D1 [12] and the ERK1/2 mitogen-activated protein (MAP) kinase 
[25]. The ErbB family of receptor tyrosine kinases (including its member EGFR) can 
also be activated independently of ligand binding via phosphorylation of specific 
residues that are distinct from autophosphorylation sites. For example, EGFR can be 
phosphorylated at Tyr845 by Src tyrosine kinases which result in the activation of 
EGFR without requiring binding of the receptor to EGF [78, 80, 88].

Other receptors have been implicated in transducing the non-genomic aldo-
sterone actions on protein kinases including stimulation at the membrane that 
could be initiated via GPCRs, tyrosine kinases, or an as yet “unknown” membrane-
associated aldosterone receptor [89]. There is also evidence for direct activation of 
specific protein kinases by steroid hormones such as vitamin D binding to catalytic 
domains on the kinase [90], and this appears to be also relevant for aldosterone 
activation of PKCα [91]. Aldosterone can bind directly to the C2 domain of PKCα, 
with a binding affinity of between 0.5 and 1 nM, which results in the autophos-
phorylation of PKCα [58]. There have also been numerous reports proposing 
GPER (GPR30), a G-protein-coupled estrogen receptor, as a novel non-genomic 
aldosterone receptor [17, 92, 93]. Some rapid responses to aldosterone in smooth 
muscle have been linked to GPER-coupled signaling pathway in which the expres-
sion of GPER is required for the MR-independent rapid effects of aldosterone [94]. 
However, the specificity of GPER to bind selectively to steroid hormone ligands 
remains controversial [95].
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activities. The PKD family of kinases are potent regulators of many biological pro-
cesses such as cell proliferation, polarity, migration, differentiation, reorganization of 



Aldosterone-Mineralocorticoid Receptor - Cell Biology to Translational Medicine

236

the actin cytoskeleton, membrane trafficking, vesicle fission, gene expression, inflam-
mation, and hypertrophy [97]. PKD isoforms are also important players in several 
pathologies associated with both the cardiovascular and renal systems. For example, 
PKD1 has been implicated in cardiac hypertrophy, while PKD1 and PKD2 activations 
have been associated with the proliferation of endothelial cells and angiogenesis.

2.1 Regulation of cell polarity and trafficking by PKD

The establishment and the maintenance of cell polarity are essential for the 
functions of several cell types including epithelial cells. In polarized epithelial cells, 
PKD1 and PKD2 regulate the production of TGN carriers that are intended to locate 
to the basolateral membrane which suggests that PKD isoforms may have a key role 
in the generation of epithelial polarity [100].

PKD has been implicated in the many facets of the regulation of subcellular 
trafficking either by maintenance of the structure in the Golgi or by the regula-
tion of fission at the trans-Golgi network (TGN) [101, 102]. PKD can also regulate 
Golgi to membrane vesicle trafficking by activating phosphatidylinositol (PtdIns) 
4-kinase (PI4KIIIβ) and phosphatidylinositol 4-phosphate 5-kinase (PI4P5K). PKD1 
phosphorylates PI4KIIIβ at the Golgi which in turn promotes vesicle fission and 
subsequently the rate of protein transport to the plasma membrane.

Activated PKD1 phosphorylates and activates phosphatidylinositol 4-kinase IIIb 
(PI4KIIIb) at the cis- and trans-Golgi promoting the synthesis of phosphatidylino-
sitol-4-phosphate (PI4P) in the Golgi membrane. Ceramide transport protein is 
released from the endoplasmic reticulum and binds to PI4P, so transporting lipid 
from the ER to the Golgi. Ceramide is processed at the Golgi to produce sphingo-
myelin and diacylglycerol. DAG recruits PKD1 and novel PKC isoforms as well as 
multiple proteins recruited to sites of PI4P biogenesis in the Golgi. These include 
the arfaptin family proteins. These proteins contain a BAR (Bin/Amphiphysin/Rvs) 
domain with a concave anionic surface that interacts with negatively charged lipid 
membranes to facilitate vesicle fission. Other known substrates for PKD1 include 
actin cytoskeleton regulatory proteins such as cofilin, LIM kinase (LIMK), and 
rhotekin that contribute to actin-dependent intracellular vesicle trafficking.

2.2 Non-genomic aldosterone signaling through protein kinase D pathways

Aldosterone/MR signaling via PKD signaling pathways has been shown to be a 
key regulator of the transduction of non-genomic responses to the hormone [2, 4]. In 
renal CCD cells, PKD1 acts as a potent regulator of ENaC and Na+/K+-ATPase traf-
ficking and activity under basal and aldosterone-stimulated conditions [102]. The 
activation of PKD1 at the trans-Golgi network (TGN) by aldosterone is an important 
regulatory mechanism of ENaC trafficking. Aldosterone rapidly (<5 min) induces 
the interaction between PKD1 and PI4KIIIβ which regulates the signaling of protein 
kinases and the lipid modification that is essential for vesicle fission. The rapid 
phosphorylation activation of PKD1 by aldosterone primes the CCD cells for subse-
quent transcriptional events which increase the expression of ENaC channel subunit 
proteins. Vital roles of other PKD isoforms including PKD2 and PKD3 in the CCD are 
emerging with the identification of novel substrates for this kinase family that include 
other kinases and transcription factors responsible for modulating gene expression 
and intracellular trafficking. All three PKD isoforms are highly expressed in renal 
CCD cells and were found to be localized to principal cells in mouse and rat CCD using 
AQP1 co-localization immunofluorescence assays (Figure 3). Rats fed a low Na+ diet 
for 2 weeks showed increased expression of PKD1 in the CCD principal cells. Confocal 
immunohistochemistry microscopy revealed the basal expression of PKD1 to be 
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mainly in the trans-Golgi network and cytosolic compartment; PKD2 was localized 
almost exclusively at the apical membrane, whereas PKD3 was mainly localized in the 
cytosol and nucleus (Figure 3).

The different PKD isoforms exhibit distinct differences in terms of their subcel-
lular localization, which is also influenced by cell type [103]. We have established 
that PKD1 is expressed throughout the cytosol of principal cells in the renal CCD 
cells with accumulation in the trans-Golgi network proximal to the nucleus (266). 
This structure was identified as the TGN with the use of a specific marker, TGN38. 
PI4KIIIβ is phosphorylated by PKD1 at the TGN with subsequent upregulation 
in vesicle fission, and we found that PI4KIIIβ was also localized to the TGN in 
M1-CCD cells [8]. The TGN association of PI4KIIIβ was not affected by the suppres-
sion of PKD1 expression. Treatment with aldosterone did not affect the distribution 
of PKD1 or PI4KIIIβ at the TGN but did promote the formation of an immuno-
precipitatable complex between these two kinases within 5 min. This complex 
remained stable for at least 30 min, consistent with the sustained autophosphoryla-
tion of PKD1 detectable following treatment with aldosterone [7]. The interaction 
between these two kinases was also observed following the long-term aldosterone 
stimulation ranging between 1 and 24 h.

2.3 Integration of aldosterone genomic and non-genomic actions through PKD 
signaling pathways

Recent work has focused on the physiological role of non-genomic actions of 
aldosterone, its consequences for genomic responses, and the integration or cross 

Figure 3. 
Subcellular distribution of PKD isoforms in rat renal CCD cells. The PKD isoforms are stained with isoform-specific 
fluorescence antibodies in green, the nucleus with DAPI stain in blue, and the plasma membrane with actin in red. 
Following aldosterone treatment, PKD1 rapidly (10 min) localized to apical and basolateral plasma membranes, 
PKD2 moved out of the apical membrane into the cytosol, and PKD3 became concentrated in the nucleus.
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ficking and activity under basal and aldosterone-stimulated conditions [102]. The 
activation of PKD1 at the trans-Golgi network (TGN) by aldosterone is an important 
regulatory mechanism of ENaC trafficking. Aldosterone rapidly (<5 min) induces 
the interaction between PKD1 and PI4KIIIβ which regulates the signaling of protein 
kinases and the lipid modification that is essential for vesicle fission. The rapid 
phosphorylation activation of PKD1 by aldosterone primes the CCD cells for subse-
quent transcriptional events which increase the expression of ENaC channel subunit 
proteins. Vital roles of other PKD isoforms including PKD2 and PKD3 in the CCD are 
emerging with the identification of novel substrates for this kinase family that include 
other kinases and transcription factors responsible for modulating gene expression 
and intracellular trafficking. All three PKD isoforms are highly expressed in renal 
CCD cells and were found to be localized to principal cells in mouse and rat CCD using 
AQP1 co-localization immunofluorescence assays (Figure 3). Rats fed a low Na+ diet 
for 2 weeks showed increased expression of PKD1 in the CCD principal cells. Confocal 
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mainly in the trans-Golgi network and cytosolic compartment; PKD2 was localized 
almost exclusively at the apical membrane, whereas PKD3 was mainly localized in the 
cytosol and nucleus (Figure 3).
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between these two kinases was also observed following the long-term aldosterone 
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talk between rapid and latent hormone responses for regulating renal Na+ reabsorp-
tion [2, 4, 104, 105].

The activity of crucial rapid signaling intermediates such as PKD, Rho-
activated kinase (ROK), protein kinase A (PKA), phosphoinositide 3-kinase 
(PI3K), PKC, ERK, SGK, and with no lysine family kinases (WNK) can be modu-
lated by aldosterone. Aldosterone activates some or all of these signaling pathways 
to modulate ENaC channel activity along with other transporters involved in 
transepithelial sodium reabsorption such as the ATP-sensitive K+ channel and 
Na+/K+ pump in principle cells of the CCD. The activation of aldosterone/MR also 
leads to a suppression of Nedd4-2 ubiquitin ligase activity via SGK which promotes 
ENaC abundance in the apical membrane [5]. Aldosterone stimulates transcrip-
tional changes in promoting SGK-1 thus inactivating Nedd4-2. This inactivation 
of Nedd4-2 leads to an increase in ENaC abundance possibly by inhibiting degra-
dation of the channel rather than by membrane insertion or stabilization of the 
channel complex.

The rapid non-genomic signaling responses induced by aldosterone affect mul-
tiple protein kinase signaling pathways, either by directly affecting their activity 
or indirectly through the modulation of MR-dependent transcription. Both PKCδ 
and PKCε can be rapidly activated in response to aldosterone; however, this is not 
reliant on the direct binding of aldosterone to the kinase. The rapid activation is 
instead coupled to MR via the transactivation of EGFR (109). The rapid activation 
of PKD1 in response to aldosterone is now known to be a substrate for novel, Ca2+-
independent PKC isoforms (nPKCs), for example, PKCδ and PKCε. In renal CCD 
cells, aldosterone stimulates PKD1 activation in the same manner as aldosterone-
induced activation of nPKC isoforms. The rapid activation of PKD1 is coupled to 
MR through the transactivation of EGFR [12].

Aldosterone (rapidly <5 min) activates (phosphorylation) PKD1 in CCD cells 
through MR transactivation of the EGF receptor involving downstream PKCδ and 
PKCε and ERK signaling. Aldosterone activation of PKD1 caused translocation of 
ENaC and Na/K-ATPase pump subunits from the trans-Golgi network to apical and 
basolateral membrane domains, respectively, within 15 min, via the PKD1-PI4KIIIβ 
trafficking signaling pathway. Knockdown of PKD1 resulted in a 50% reduction 
in the basal transepithelial Na+ transport rate concomitant with mislocalization 
of ENaC to basolateral membranes and Na/K pumps to apical membranes. PKD1 
knockdown prevented the genomic response of aldosterone-stimulated transepithe-
lial Na+ reabsorption as measured by the amiloride-sensitive short-circuit current 
(SCC) in Ussing chambers [8].

Protein kinase D2 is also rapidly activated by aldosterone to modulate ENaC 
membrane abundance and stability. CCD epithelia in which PKD2 was knocked 
down showed an increased localization and stabilization of ENaC in apical mem-
branes and an increased basal SCC of fivefold above control levels in wild-type CCD 
after 24 h. Paradoxically, aldosterone treatment inhibited SCC by 40% after 24 h 
in PKD2 null M1 cells. However, the SCC levels following aldosterone treatment 
in PKD2 null CCD epithelia were still 30% higher than the SCC levels observed in 
aldosterone-treated wild-type CCD. In addition, PKD2 knockdown has revealed a 
novel inhibitory pathway for aldosterone regulation of ENaC activity which may 
have a physiological function to “brake” over-stimulation of renal Na reabsorption 
in the CCD [109].

The protein kinase D3 isoform appears not to mediate non-genomic aldosterone 
responses. Knockdown of PKD3 in CCD cells did not affect the non-genomic 
responses to aldosterone on ENaC trafficking but reduced the genomic response to 
the hormone to increase the expression of ENaC alpha subunits and SGK [109].
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PKD isoforms are a major critical and essential signal transduction pathway for 
the transduction of both non-genomic and genomic aldosterone/MR regulation 
of Na+ transport in the CCD. PKD signaling integrates non-genomic and genomic 
responses to aldosterone through PKD1-stimulated ENaC and Na/K pump traffick-
ing, PKD2-dependent ENaC membrane stabilization, and PKD3-stimulated ENaC 
subunit expression (Figure 4).

2.4 Mechanisms of PKD activation by aldosterone

PKD isoforms are downstream targets for active PKCs and can be activated by 
agonists of G-protein-coupled receptors. Aldosterone induces both rapid phosphor-
ylation and activation of PKD1 [12]. It has been shown that aldosterone activation 
of PKD1 in CCD cells is PKCε-dependent via aldosterone/MR transactivation of the 
EGF receptor. The molecular mechanisms of aldosterone activation/phosphoryla-
tion of PKD2 and PKD3 isoforms are currently unknown.

2.5 The mineralocorticoid receptor is a non-genomic receptor for aldosterone 
PKD signaling

A number of strands of evidence point to MR as being the receptor responsible for 
initiating the aldosterone-induced rapid activation of PKD signaling cascades. The 
activation of protein kinases such as PKD and ERK1/2 by aldosterone, for example, 
can be inhibited with the use of MR-specific antagonists such as spironolactone and 
eplerenone. MR can be considered to be a multifunctional receptor. If recombinant 
MR which lacks its DNA-binding and coactivator-binding domains is expressed, 
signaling events can be instigated by a rapid response to aldosterone independent of 
transcriptional activity. The aldosterone/MR-induced phosphorylation of PKD1 via 
EGFR transactivation by c-Src can be blocked by antagonizing Hsp90 interactions 
using the geldanamycin analogue 17-AAG. This suppresses EGFR-dependent down-
stream PKD1 signaling events initiated by aldosterone that include the activation of 
ENaC trafficking and the ERK1/2 mitogen-activated protein (MAP) kinase [7, 8].

Figure 4. 
PKD isoforms regulate ENaC and Na/K pump activity by both non-genomic and genomic aldosterone/MR 
signaling in the CCD. PKD signaling integrates non-genomic and genomic responses to aldosterone through 
non-genomic PKD1-stimulated ENaC and Na/K pump trafficking from the trans-Golgi network to apical 
and basolateral membranes, respectively, and PKD2-dependent ENaC membrane stabilization, and genomic 
PKD3-stimulated ENaC subunit expression.



Aldosterone-Mineralocorticoid Receptor - Cell Biology to Translational Medicine

238

talk between rapid and latent hormone responses for regulating renal Na+ reabsorp-
tion [2, 4, 104, 105].

The activity of crucial rapid signaling intermediates such as PKD, Rho-
activated kinase (ROK), protein kinase A (PKA), phosphoinositide 3-kinase 
(PI3K), PKC, ERK, SGK, and with no lysine family kinases (WNK) can be modu-
lated by aldosterone. Aldosterone activates some or all of these signaling pathways 
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tional changes in promoting SGK-1 thus inactivating Nedd4-2. This inactivation 
of Nedd4-2 leads to an increase in ENaC abundance possibly by inhibiting degra-
dation of the channel rather than by membrane insertion or stabilization of the 
channel complex.
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or indirectly through the modulation of MR-dependent transcription. Both PKCδ 
and PKCε can be rapidly activated in response to aldosterone; however, this is not 
reliant on the direct binding of aldosterone to the kinase. The rapid activation is 
instead coupled to MR via the transactivation of EGFR (109). The rapid activation 
of PKD1 in response to aldosterone is now known to be a substrate for novel, Ca2+-
independent PKC isoforms (nPKCs), for example, PKCδ and PKCε. In renal CCD 
cells, aldosterone stimulates PKD1 activation in the same manner as aldosterone-
induced activation of nPKC isoforms. The rapid activation of PKD1 is coupled to 
MR through the transactivation of EGFR [12].

Aldosterone (rapidly <5 min) activates (phosphorylation) PKD1 in CCD cells 
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PKCε and ERK signaling. Aldosterone activation of PKD1 caused translocation of 
ENaC and Na/K-ATPase pump subunits from the trans-Golgi network to apical and 
basolateral membrane domains, respectively, within 15 min, via the PKD1-PI4KIIIβ 
trafficking signaling pathway. Knockdown of PKD1 resulted in a 50% reduction 
in the basal transepithelial Na+ transport rate concomitant with mislocalization 
of ENaC to basolateral membranes and Na/K pumps to apical membranes. PKD1 
knockdown prevented the genomic response of aldosterone-stimulated transepithe-
lial Na+ reabsorption as measured by the amiloride-sensitive short-circuit current 
(SCC) in Ussing chambers [8].

Protein kinase D2 is also rapidly activated by aldosterone to modulate ENaC 
membrane abundance and stability. CCD epithelia in which PKD2 was knocked 
down showed an increased localization and stabilization of ENaC in apical mem-
branes and an increased basal SCC of fivefold above control levels in wild-type CCD 
after 24 h. Paradoxically, aldosterone treatment inhibited SCC by 40% after 24 h 
in PKD2 null M1 cells. However, the SCC levels following aldosterone treatment 
in PKD2 null CCD epithelia were still 30% higher than the SCC levels observed in 
aldosterone-treated wild-type CCD. In addition, PKD2 knockdown has revealed a 
novel inhibitory pathway for aldosterone regulation of ENaC activity which may 
have a physiological function to “brake” over-stimulation of renal Na reabsorption 
in the CCD [109].

The protein kinase D3 isoform appears not to mediate non-genomic aldosterone 
responses. Knockdown of PKD3 in CCD cells did not affect the non-genomic 
responses to aldosterone on ENaC trafficking but reduced the genomic response to 
the hormone to increase the expression of ENaC alpha subunits and SGK [109].
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3. Aldosterone regulation of ENaC activity via PKD signaling pathways

Our research group has published a series of papers describing the molecular 
mechanisms of PKD1 modulation of ENaC Na+ channel trafficking and function 
by aldosterone [2, 4]. Non-genomic aldosterone signaling mainly regulates ENaC 
activity by stimulating ENaC trafficking from the cytosol to the apical membrane 
and by enhancing membrane abundance and membrane stability of functional 
channels. Aldosterone treatment rapidly stimulates the apical translocation of 
ENaCα, ENaCβ, and ENaCγ subunits in wild-type M1-CCD via PKD1 signaling, 
but in PKD1 knockdown cells, aldosterone treatment fails to increase ENaC subunit 
abundance at the apical membrane which remains localized in the cytoplasm. Thus 
the trafficking process of ENaCα, ENaCβ, and ENaCγ to the apical membrane is 
defective in CCD cells suppressed in PKD1 expression and indicates a critical role 
of this protein kinase in regulating subcellular trafficking of ENaC subunits by 
aldosterone. The rapid effects of aldosterone on ENaC subcellular redistribution 
precede the genomic increase in the Na+ transport rate through ENaC in CCD cells 
which is normally detected between 2 and 4 h following treatment with aldosterone 
and peaks between 16 and 24 h. We have previously reported that the formation 
of membrane-bound structures that were found to be rich in ENaC subunits was 
observed following aldosterone stimulation for 5 min. It has been proposed that an 
ER-Golgi intermediate compartment could be the initial site for the post-ER sorting 
of proteins. This is consistent with the subcellular redistribution of ENaC chan-
nel subunits observed within 2 min of aldosterone stimulation. Previous studies 
on ENaC-related acid-sensing ion channel (ASIC) suggested that a functional 
heterodimeric ENaC assembles in the endoplasmic reticulum prior to it undergo-
ing posttranslational modifications as it passes through the Golgi. ENaC is found 
in vesicles throughout the cytoplasm of cells under high Na+ where its depletion or 
exposure to aldosterone results in the subsequent translocation of ENaC to the api-
cal membrane without undergoing transcriptional changes [106]. The rapid surface 
translocation of ENaC and its increased activity has been reported in response to 
agonists; for example, a twofold increase in the amiloride-sensitive short-circuit 
current (SCC, transepithelial Na+ current) was observed after 25 min of treatment 
with forskolin in CCD cells [107]. This increase in SCC coincided with an increase in 
the apical membrane expression of ENaC. Aldosterone/MR controls the transcrip-
tion of ENaCα in renal cells, while the remaining subunits, ENaCβ and ENaCγ, are 
expressed constitutively. We have previously shown that the long-term treatment 
with aldosterone increases the localization of ENaCα and ENaCβ at the apical 
membrane in M1-CCD cells which is dependent on PKD1 expression and activation 
[7]. Further studies showed that aldosterone induces the rapid translocation of 
ENaCβ and ENaCγ to the plasma membrane within 30 min of treatment and that 
this translocation, in common with PKD1 activation, was MR-dependent [8].

Aldosterone also induces a rapid phosphorylation (activation) and redistribution 
of PKD2 from the apical membrane into the cytosol of CCD cells. Genetic suppres-
sion of PKD2 in renal CCD cells results in an increase in the abundance of ENaCγ 
at the apical membrane under both basal and aldosterone-treated conditions. The 
abundant expression of ENaC at the apical membrane is associated with very high 
basal Na+ currents through ENaC in PKD2 knockdown CCD epithelia and reveals 
a tonic inhibition of ENaC function by PKD2 under basal conditions [109]. In its 
inactive state, PKD2 stimulates the retrieval of the ENaCγ channel subunits out of the 
apical membrane back into the cytosol thus de-stabilizing ENaC membrane expres-
sion and activity. Aldosterone treatment removes this tonic endocytosis of ENaC by 
phosphorylating PKD2 causing the kinase to be removed from the membrane and 
inhibiting the retrieval of ENaCγ into the cytosol. In contrast, when PKD2 expression 
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was suppressed by siRNA, the tonic retrieval of ENaC from the apical membrane 
was removed and ENaC expression was stabilized and enhanced at the membrane 
resulting in very large basal ENaC-mediated Na+ currents. Moreover, a paradoxical 
inhibitory effect of aldosterone on ENaC Na+ currents was observed in PKD2 knock-
down CCD cells. Given that ENaC activity is a balance between membrane expression 
and retrieval, the overall regulation of transepithelial sodium transport under basal 
and aldosterone-stimulated conditions is under the influence of the relative effects of 
PKD1, PKD2, and SGK1 on ENaC stability in the membrane (Figure 5).

3.1 Molecular mechanisms of ENaC trafficking regulated by PKD1

Membrane-localized ENaC is subject to constant recycling. The inclusion of ENaC 
into the apical membrane is a prerequisite for its ubiquitination and retrieval into the 
subapical pool or its degradation by the proteasome. Nedd4-2 interacts with ENaC 
through a C-terminal PY internalization motif to facilitate ENaC ubiquitination. The 
surface expression of ENaC may be equally regulated by deubiquitination by DUBs 
and ubiquitination by Nedd4-2. However, only PKD1 and PKD2 isoforms provide 
the composite signaling pathway for the basal control and acute stimulatory effect of 
aldosterone that influences cellular trafficking dynamics controlling ENaC and Na/K 
pump membrane targeting, insertion, stabilization, and retrieval (Figure 6).

Figure 5. 
Effects of PKD1 and PKD2 knockdown on basal and aldosterone-regulated ENaC activity. In wild-type CCD 
cells, aldosterone induces an increase in the ENaC-dependent transepithelial sodium transport measured by 
the amiloride-sensitive short-circuit current (Isc) in M1-CCD epithelia mounted in Ussing chambers. Isc is 
stimulated following aldosterone phosphorylation and activation of PKD1 and SGK1 which together stimulate 
and stabilize the trafficking of ENaC into the apical membrane. Aldosterone also phosphorylates PKD2 which 
decreases the retrieval of ENaC back into the cytosol and contributes to the increase in Isc. When PKD1 is 
suppressed (PKD1 KD), ENaC membrane insertion is decreased, and both basal and aldosterone Isc responses 
are suppressed. Knocking down PKD2 (PKD2 KD) in CCD cells has an inhibitory effect on the retrieval of 
ENaC from the apical membrane thus enhancing the stability of the channel resulting in an elevated basal Isc. 
Paradoxically, hormone stimulation in PKD2 knockdown CCD inhibits Isc and produces a blunted Isc response 
compared to aldosterone-treated wild-type CCD. Thus PKD2 KD unmasks an inhibitory aldosterone signaling 
pathway which reduces functional ENaC activity.
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was suppressed by siRNA, the tonic retrieval of ENaC from the apical membrane 
was removed and ENaC expression was stabilized and enhanced at the membrane 
resulting in very large basal ENaC-mediated Na+ currents. Moreover, a paradoxical 
inhibitory effect of aldosterone on ENaC Na+ currents was observed in PKD2 knock-
down CCD cells. Given that ENaC activity is a balance between membrane expression 
and retrieval, the overall regulation of transepithelial sodium transport under basal 
and aldosterone-stimulated conditions is under the influence of the relative effects of 
PKD1, PKD2, and SGK1 on ENaC stability in the membrane (Figure 5).

3.1 Molecular mechanisms of ENaC trafficking regulated by PKD1

Membrane-localized ENaC is subject to constant recycling. The inclusion of ENaC 
into the apical membrane is a prerequisite for its ubiquitination and retrieval into the 
subapical pool or its degradation by the proteasome. Nedd4-2 interacts with ENaC 
through a C-terminal PY internalization motif to facilitate ENaC ubiquitination. The 
surface expression of ENaC may be equally regulated by deubiquitination by DUBs 
and ubiquitination by Nedd4-2. However, only PKD1 and PKD2 isoforms provide 
the composite signaling pathway for the basal control and acute stimulatory effect of 
aldosterone that influences cellular trafficking dynamics controlling ENaC and Na/K 
pump membrane targeting, insertion, stabilization, and retrieval (Figure 6).

Figure 5. 
Effects of PKD1 and PKD2 knockdown on basal and aldosterone-regulated ENaC activity. In wild-type CCD 
cells, aldosterone induces an increase in the ENaC-dependent transepithelial sodium transport measured by 
the amiloride-sensitive short-circuit current (Isc) in M1-CCD epithelia mounted in Ussing chambers. Isc is 
stimulated following aldosterone phosphorylation and activation of PKD1 and SGK1 which together stimulate 
and stabilize the trafficking of ENaC into the apical membrane. Aldosterone also phosphorylates PKD2 which 
decreases the retrieval of ENaC back into the cytosol and contributes to the increase in Isc. When PKD1 is 
suppressed (PKD1 KD), ENaC membrane insertion is decreased, and both basal and aldosterone Isc responses 
are suppressed. Knocking down PKD2 (PKD2 KD) in CCD cells has an inhibitory effect on the retrieval of 
ENaC from the apical membrane thus enhancing the stability of the channel resulting in an elevated basal Isc. 
Paradoxically, hormone stimulation in PKD2 knockdown CCD inhibits Isc and produces a blunted Isc response 
compared to aldosterone-treated wild-type CCD. Thus PKD2 KD unmasks an inhibitory aldosterone signaling 
pathway which reduces functional ENaC activity.



Aldosterone-Mineralocorticoid Receptor - Cell Biology to Translational Medicine

242

3.2 Molecular mechanisms of ENaC trafficking regulated by PKD2

The rapid non-genomic activation of PKD1 by aldosterone has been dem-
onstrated in renal CCD and the implications this has on renal Na+ absorption in 
terms of trafficking and activity of transporters such as ENaC and Na+/K+-ATPase 
pump. To date, less is known about the role of PKD2 in regulating basal ENaC and 
Na/K pump activity and aldosterone-stimulated renal Na+ reabsorption. There is 
evidence from transcriptomics studies that the Pkd2 gene is expressed in the mouse 
distal convoluted tubule and the collecting duct but not in the connecting tubule 
[108]. PKD2 protein expression had not been described in the kidney before, and 
recent studies have shown the expression of PKD2 in mouse and rat distal renal 
tubules ex vivo and in M1-CCD cells in vitro [109]. The PKD2 isoform was found 
to be ubiquitously expressed along the length of the distal tubule with the highest 
expression in the distal convoluted tubule and the connecting tubule and lower 
levels of expression along the collecting duct. PKD2 was expressed primarily in the 
principle cells and to a lesser extent in the intercalated cells. The distribution of 
PKD2 was also determined in rats fed a normal Na+ diet and a diet poor in Na+ in 
order to elevate plasma levels of aldosterone so as to determine if high aldosterone 
states can cause shifts in the cellular distribution of PKD2 in the distal nephron. 
Under basal conditions, the PKD2 cellular distribution appeared mainly local-
ized at the apical membrane (co-localized with AQP2) and showed the lowest 
expression in the cytosol and was excluded from the nucleus. A similar subcellular 
distribution of PKD2 was observed in confluent M1-CCD monolayers which also 
exhibited high PKD2 expression at the plasma membrane and low expression in the 
cytosol. In high aldosterone states, PKD2 translocates from the apical membrane 
to a cytosolic compartment. Thus PKD2 shows the opposite pattern of subcellular 
expression compared to PKD1 under both basal and aldosterone-stimulated condi-
tions. The mechanism by which aldosterone produces a redistribution of PKD2 
from the plasma membrane may involve PKC which is also rapidly activated by 
aldosterone in CCD.

Figure 6. 
ENaC and Na/K pump membrane targeting under the control of PKD1. PKD1 regulates the correct targeting 
of ENaC and Na+/K+-ATPase to the apical and basolateral membranes, respectively. Knocking down PKD1 
expression in CCD cells results in the defective membrane sorting of ENaC and Na/K pump such that their 
membrane expression polarity is inverted.
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The question arises if PKD2 has a role in regulating the subcellular expres-
sion and trafficking of ENaC channel subunits as has been observed for PKD1 in 
CCD. In other renal tissues, PKD2 has also been shown to function in the basolateral 
transport of proteins, and knocking down PKD2 affects the membrane trafficking 
of E-cadherin and β1-integrin [100]. In polarized MDCK cells, the transient expres-
sion of a PKD2 kinase-dead mutant resulted in the co-accumulation of E-cadherin, 
β1-integrin, and the PKD2 mutant at the TGN. It has also been suggested that PKD2 
is unlike the other two PKD isoforms because the activation of PKD2 was not shown 
to induce its redistribution to the nucleus from the cytoplasm. It has also been 
shown that the activation of NFκB by PKD2 occurs in response to oxidative stress 
and is not dependent on its catalytic activity. This suggests that PKD2 could have a 
distinctive regulatory property in comparison to PKD1 and PKD3.

The role of PKD2 in early rapid signaling responses to aldosterone stimulation in 
Na+ transport has become clearer. Previous work has shown that PKD1 is activated 
in M1-CCD cells within 5 min in response to aldosterone. A similar activation kinet-
ics has been observed for PKD2 in M1-CCD cells where aldosterone stimulated the 
autophosphorylation of PKD2 within 10 min coupled with translocation of PKD2 
from the cell membrane to the cytosol [109]. Moreover, under low Na+ diet and high 
aldosterone states, a similar shift in the cellular distribution of PKD2 occurs in the 
rat distal nephron.

Recent studies have revealed a novel role for PKD2 in the trafficking of ENaC 
channel subunits [109]. Under basal conditions, ENaCγ is mainly localized in 
the cytosol. Upon stimulation with aldosterone, ENaCγ is trafficked to the apical 
membrane, but this response was absent in M1-CCD cells where PKD2 expression 
was knocked down using siRNA. The genetic silencing of PKD2 in M1-CCD cells 
produced a higher basal expression of ENaCγ in the apical membrane and a cor-
responding stimulation of Na+ transport through ENaC. Paradoxically, aldosterone 
treatment produced a redistribution of ENaCγ out of the apical membrane into the 
cytosol and a suppressed Isc response in M1-CCD cells deficient in PKD2 (Figure 5).

Genetic knockdown of PKD2 in M1-CCD cells results in a stimulation of transepi-
thelial Na+ transport under basal conditions. This increase in ENaC activity cor-
responds with an increase in basal expression of ENaCγ in PKD2 knockdown CCD 
when compared to wild-type cells. An inhibition of PKD2-dependent endocytotic 
retrieval of ENaC channel subunits into the cytosol may result in an increase in both 
the total ENaC abundance in the membrane and the increase in channel activity. 
Another possibility for the increase in transepithelial sodium transport in PKD2 
knockdown cells could result from an increase in the PKD1-dependent trafficking of 
ENaC channel subunits. There is also a possibility that PKD1 activity could increase 
in order to compensate for the absence of PKD2 by upregulating PI4KIIIβ trafficking 
and therefore affecting ENaC membrane insertion. Unexpectedly, aldosterone treat-
ment stimulated a retrieval of ENaCγ from the apical membrane into the cytoplasm 
in PKD2-deficient CCD cells. The inhibition of transepithelial Na+ transport by 
aldosterone in PKD2 knockdown CCD presents a paradox for the classical activation 
of ENaC by the hormone in wild-type CCD. One would presume that aldosterone 
could continue to stimulate ENaC activity in the absence of PKD2 in this model due 
to an upregulation of PKD1- and SGK-dependent ENaC trafficking and membrane 
stabilization. However, from these findings, we propose that PKD1 and PKD2 exert 
opposite effects on ENaC membrane abundance and that aldosterone, by activat-
ing PKD2 and removing it from the membrane, releases a tonic inhibition of ENaC 
stability exerted by unphosphorylated PKD2. The translocation and targeting of 
ENaC and Na/K pump to the apical membrane and basolateral membranes and their 
membrane stabilization are dependent on cooperative PKD1 and PKD2 non-genomic 
signaling that may potentiate or synergize with the latent genomic aldosterone 
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distribution of PKD2 was observed in confluent M1-CCD monolayers which also 
exhibited high PKD2 expression at the plasma membrane and low expression in the 
cytosol. In high aldosterone states, PKD2 translocates from the apical membrane 
to a cytosolic compartment. Thus PKD2 shows the opposite pattern of subcellular 
expression compared to PKD1 under both basal and aldosterone-stimulated condi-
tions. The mechanism by which aldosterone produces a redistribution of PKD2 
from the plasma membrane may involve PKC which is also rapidly activated by 
aldosterone in CCD.

Figure 6. 
ENaC and Na/K pump membrane targeting under the control of PKD1. PKD1 regulates the correct targeting 
of ENaC and Na+/K+-ATPase to the apical and basolateral membranes, respectively. Knocking down PKD1 
expression in CCD cells results in the defective membrane sorting of ENaC and Na/K pump such that their 
membrane expression polarity is inverted.
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The question arises if PKD2 has a role in regulating the subcellular expres-
sion and trafficking of ENaC channel subunits as has been observed for PKD1 in 
CCD. In other renal tissues, PKD2 has also been shown to function in the basolateral 
transport of proteins, and knocking down PKD2 affects the membrane trafficking 
of E-cadherin and β1-integrin [100]. In polarized MDCK cells, the transient expres-
sion of a PKD2 kinase-dead mutant resulted in the co-accumulation of E-cadherin, 
β1-integrin, and the PKD2 mutant at the TGN. It has also been suggested that PKD2 
is unlike the other two PKD isoforms because the activation of PKD2 was not shown 
to induce its redistribution to the nucleus from the cytoplasm. It has also been 
shown that the activation of NFκB by PKD2 occurs in response to oxidative stress 
and is not dependent on its catalytic activity. This suggests that PKD2 could have a 
distinctive regulatory property in comparison to PKD1 and PKD3.

The role of PKD2 in early rapid signaling responses to aldosterone stimulation in 
Na+ transport has become clearer. Previous work has shown that PKD1 is activated 
in M1-CCD cells within 5 min in response to aldosterone. A similar activation kinet-
ics has been observed for PKD2 in M1-CCD cells where aldosterone stimulated the 
autophosphorylation of PKD2 within 10 min coupled with translocation of PKD2 
from the cell membrane to the cytosol [109]. Moreover, under low Na+ diet and high 
aldosterone states, a similar shift in the cellular distribution of PKD2 occurs in the 
rat distal nephron.

Recent studies have revealed a novel role for PKD2 in the trafficking of ENaC 
channel subunits [109]. Under basal conditions, ENaCγ is mainly localized in 
the cytosol. Upon stimulation with aldosterone, ENaCγ is trafficked to the apical 
membrane, but this response was absent in M1-CCD cells where PKD2 expression 
was knocked down using siRNA. The genetic silencing of PKD2 in M1-CCD cells 
produced a higher basal expression of ENaCγ in the apical membrane and a cor-
responding stimulation of Na+ transport through ENaC. Paradoxically, aldosterone 
treatment produced a redistribution of ENaCγ out of the apical membrane into the 
cytosol and a suppressed Isc response in M1-CCD cells deficient in PKD2 (Figure 5).

Genetic knockdown of PKD2 in M1-CCD cells results in a stimulation of transepi-
thelial Na+ transport under basal conditions. This increase in ENaC activity cor-
responds with an increase in basal expression of ENaCγ in PKD2 knockdown CCD 
when compared to wild-type cells. An inhibition of PKD2-dependent endocytotic 
retrieval of ENaC channel subunits into the cytosol may result in an increase in both 
the total ENaC abundance in the membrane and the increase in channel activity. 
Another possibility for the increase in transepithelial sodium transport in PKD2 
knockdown cells could result from an increase in the PKD1-dependent trafficking of 
ENaC channel subunits. There is also a possibility that PKD1 activity could increase 
in order to compensate for the absence of PKD2 by upregulating PI4KIIIβ trafficking 
and therefore affecting ENaC membrane insertion. Unexpectedly, aldosterone treat-
ment stimulated a retrieval of ENaCγ from the apical membrane into the cytoplasm 
in PKD2-deficient CCD cells. The inhibition of transepithelial Na+ transport by 
aldosterone in PKD2 knockdown CCD presents a paradox for the classical activation 
of ENaC by the hormone in wild-type CCD. One would presume that aldosterone 
could continue to stimulate ENaC activity in the absence of PKD2 in this model due 
to an upregulation of PKD1- and SGK-dependent ENaC trafficking and membrane 
stabilization. However, from these findings, we propose that PKD1 and PKD2 exert 
opposite effects on ENaC membrane abundance and that aldosterone, by activat-
ing PKD2 and removing it from the membrane, releases a tonic inhibition of ENaC 
stability exerted by unphosphorylated PKD2. The translocation and targeting of 
ENaC and Na/K pump to the apical membrane and basolateral membranes and their 
membrane stabilization are dependent on cooperative PKD1 and PKD2 non-genomic 
signaling that may potentiate or synergize with the latent genomic aldosterone 
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effects on ENaC protein expression and membrane abundance. PKD1 is a crucial 
regulator of the apical membrane-directed trafficking of ENaC. Furthermore, it was 
shown that PKD1 regulates the membrane localization of the Na+/K+-ATPase pump, 
and knocking down PKD1 resulted in the mislocalization of the pump β subunit 
to the apical membrane and bulk accumulation of the pump protein in the cytosol 
rather than in the basolateral membranes [8]. Similarly, aldosterone stimulation of 
PKD1 knockdown M1-CCD cells failed to increase the basolateral membrane abun-
dance of the Na+/K+ pump normally seen in wild-type cells (Figure 7).

3.3 PKD1, PKD2, SGK1, and the regulation of ENaC membrane trafficking and 
stability

The upregulation of SGK1 is the earliest transcriptional and translational 
response that is elicited by aldosterone, whereas PKD1 and PKD2 are the earliest 
activated kinases in the non-genomic response to aldosterone in the regulation 
of ENaC trafficking and stabilization in the apical membrane stabilization. The 
interactions between aldosterone-stimulated PKD1, PKD2, and SGK have not been 
investigated; however, certain predictions to guide future research can be proposed 
and tested (Figure 8). Given that PKD1, PKD2, and SGK would be expected to 
enhance ENaC trafficking, insertion, and stability and to reduce ENaC retrieval 
and degradation following aldosterone treatment, it would be expected that some 
cross talk and coordination would exist between these kinases in their kinetics of 
activation, subcellular localization, and cooperativity. However, from previous 

Figure 7. 
PKD isoforms exert opposite effects on the membrane abundance and localization of ENaC and Na/K pump 
with consequences for Na+ transport. The PKD1 isoform regulates the insertion of ENaC channel subunits into 
the apical membrane of CCD cells. Aldosterone activates the PKD1-dependent trafficking of ENaC subunits 
to the membrane. In contrast, PKD2 exerts a tonic inhibitory effect on ENaC by stimulating the retrieval of 
ENaC from the apical membrane into the cytosol under basal conditions. Stimulating PKD2 with aldosterone 
results in the inhibition of ENaC retrieval back into the cytosol and an increased abundance of ENaC at 
the apical membrane along with an increase in ENaC activity. Genetic knockdown of PKD1 inhibits ENaC 
trafficking into the apical membrane under both basal and aldosterone conditions, whereas knockdown of 
PKD2 releases the tonic inhibition of ENaC activity and suppresses its retrieval by the kinase resulting in a 
higher abundance and membrane stability of ENaC with consequent elevated Na+ reabsorption (IENaC and 
Ipump). Aldosterone produces a paradoxical inhibition of ENaC membrane abundance and depresses Na+ 
reabsorption in PKD2 knockdown CCD.
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work it appears that SGK does not play an essential role in basal or Na+ deprivation-
induced renal Na+ transport or ENaC activity, whereas PKD1 and PKD2 expression 
and activation are absolutely critical for the maintenance of basal and aldosterone-
stimulated ENaC function and transepithelial sodium transport.

3.4 PKD3 regulation of ENaC and renal Na+ transport

To date, the role of PKD3 in the kidney remains unknown. PKD3 is unlike the 
other two isoforms whereby it is present in the nucleus as well as the cytoplasm in 
unstimulated cells. Currently, investigations of PKD3-dependent signaling path-
ways in the kidney are lacking, while studies in other tissues and cell types have 
been reliant on the use of non-specific pharmacological inhibitors or the use of 
small interfering RNA (siRNA). We have used both siRNA and CRISPR/Cas knock-
down of PKD3 in M1-CCD cells to obtain some insights into a potential role for 
PKD3 in the renal transport of sodium. Preliminary data show that PKD3 is primar-
ily localized in the cytoplasm and perinuclear region and translocates to the nucleus 
under aldosterone treatment or low Na+ diet  [109].

PKD3 knockdown resulted in reduced genomic expression of the ENaCα 
subunit and SGK. Long-term treatment with aldosterone (24–48 h) produced a 
reduced sodium transport rate in PKD3 suppressed cells compared to wild-type 
CCD. Knockdown of PKD3 did not interfere with PKD1 nor PKD 2 non-genomic 
signaling in response to aldosterone nor did it significantly affect basal Na+ transport 
rates. It thus appears that PKD3 is a genomic signal pathway for aldosterone regula-
tion of ENaC and SGK and may synergize and reinforce with the non-genomic PKD1 
and PKD2 modulation of ENaC trafficking and membrane stabilization (Figure 9).

Figure 8. 
ENaC membrane insertion, stability, and removal are under the control of interactions between PKD1, 
PKD2, and SGK1. Aldosterone activates PKD1 to stimulate the insertion of ENaC into the apical membrane. 
The PKD1-dependent insertion of ENaC increases endocytosis of preformed ENaC subunits into the apical 
membrane. Additionally, SGK1 is phosphorylated to prevent the ubiquitination of ENaC. In the basal 
unphosphorylated state, PKD2 tonically stimulates the retrieval of ENaC from the apical membrane. When 
PKD2 is phosphorylated by aldosterone, the activated PKD2 may increase deubiquitination thus stabilizing 
ENaC in the membrane. Genetic silencing of PKD2 results in the stabilization of ENaC in the apical 
membrane which may be due to a decrease in the activity of deubiquitinases. Knocking down SGK1 in CCD 
cells stimulates the retrieval of ENaC from the membrane while suppressing PKD1 results in the inhibition of 
ENaC insertion in response to aldosterone.
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work it appears that SGK does not play an essential role in basal or Na+ deprivation-
induced renal Na+ transport or ENaC activity, whereas PKD1 and PKD2 expression 
and activation are absolutely critical for the maintenance of basal and aldosterone-
stimulated ENaC function and transepithelial sodium transport.

3.4 PKD3 regulation of ENaC and renal Na+ transport

To date, the role of PKD3 in the kidney remains unknown. PKD3 is unlike the 
other two isoforms whereby it is present in the nucleus as well as the cytoplasm in 
unstimulated cells. Currently, investigations of PKD3-dependent signaling path-
ways in the kidney are lacking, while studies in other tissues and cell types have 
been reliant on the use of non-specific pharmacological inhibitors or the use of 
small interfering RNA (siRNA). We have used both siRNA and CRISPR/Cas knock-
down of PKD3 in M1-CCD cells to obtain some insights into a potential role for 
PKD3 in the renal transport of sodium. Preliminary data show that PKD3 is primar-
ily localized in the cytoplasm and perinuclear region and translocates to the nucleus 
under aldosterone treatment or low Na+ diet  [109].

PKD3 knockdown resulted in reduced genomic expression of the ENaCα 
subunit and SGK. Long-term treatment with aldosterone (24–48 h) produced a 
reduced sodium transport rate in PKD3 suppressed cells compared to wild-type 
CCD. Knockdown of PKD3 did not interfere with PKD1 nor PKD 2 non-genomic 
signaling in response to aldosterone nor did it significantly affect basal Na+ transport 
rates. It thus appears that PKD3 is a genomic signal pathway for aldosterone regula-
tion of ENaC and SGK and may synergize and reinforce with the non-genomic PKD1 
and PKD2 modulation of ENaC trafficking and membrane stabilization (Figure 9).

Figure 8. 
ENaC membrane insertion, stability, and removal are under the control of interactions between PKD1, 
PKD2, and SGK1. Aldosterone activates PKD1 to stimulate the insertion of ENaC into the apical membrane. 
The PKD1-dependent insertion of ENaC increases endocytosis of preformed ENaC subunits into the apical 
membrane. Additionally, SGK1 is phosphorylated to prevent the ubiquitination of ENaC. In the basal 
unphosphorylated state, PKD2 tonically stimulates the retrieval of ENaC from the apical membrane. When 
PKD2 is phosphorylated by aldosterone, the activated PKD2 may increase deubiquitination thus stabilizing 
ENaC in the membrane. Genetic silencing of PKD2 results in the stabilization of ENaC in the apical 
membrane which may be due to a decrease in the activity of deubiquitinases. Knocking down SGK1 in CCD 
cells stimulates the retrieval of ENaC from the membrane while suppressing PKD1 results in the inhibition of 
ENaC insertion in response to aldosterone.
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4. Conclusions and perspectives

The physiological and pathophysiological roles of PKD isoforms in different 
biological systems are becoming better understood with the identification of 
novel substrates for this family of kinases that also interact with other kinases and 
transcription factors which modulate intracellular trafficking, membrane targeting, 
and stability of ion transport proteins. These PKD isoform-regulated biological 
processes fine-tune the aldosterone/MR-dependent transcriptional events and 
act as important intermediaries between rapid non-genomic signaling and latent 
transcriptional responses activated by aldosterone to regulate renal electrolyte 
homeostasis. The development of PKD isoform-specific knockdown or knockout 
renal CCD cell lines and animal models has the potential to reveal novel rapid non-
genomic and genomic roles for PKD isoforms to regulate basal and aldosterone-
stimulated ENaC and Na+/K+-ATPase pump activity in renal CCD cells.
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Figure 9. 
Regulation of ENaC and Na/K pump by protein kinase D isoforms. PKCδ and PKCε can be rapidly activated in 
response to aldosterone. The rapid activation of PKC is coupled to MR via the transactivation of EGFR through 
c-Src. PKD1 is the downstream of PKCδ and PKCε, and once activated, it is responsible for the trafficking of 
ENaC channel subunits from the cytosol to the apical membrane. PKD2 activation by aldosterone removes a tonic 
inhibition of ENaC membrane stability and increases the stability of ENaC channels in the membrane. PKD3 
activation exerts a stimulatory effect on the expression of ENaC channel subunits and SGK, further amplifying 
and sustaining the non-genomic response to regulate renal Na+ reabsorption and blood volume/pressure.

247

Aldosterone Regulation of Protein Kinase Signaling Pathways and Renal Na+ Transport…
DOI: http://dx.doi.org/10.5772/intechopen.87238

© 2019 The Author(s). Licensee IntechOpen. Distributed under the terms of the Creative 
Commons Attribution - NonCommercial 4.0 License (https://creativecommons.org/
licenses/by-nc/4.0/), which permits use, distribution and reproduction for  
non-commercial purposes, provided the original is properly cited. 

Author details

Warren Thomas1,2 and Brian Harvey1,3*

1 Department of Molecular Medicine, Royal College of Surgeons in Ireland, 
Beaumont Hospital, Dublin, Ireland

2 Perdana University, PU-RCSI School of Medicine, Serdang, Selangor, Malaysia

3 Centro de Estudios Cientificos CECs, Valdivia, Chile

*Address all correspondence to: brianharvey@rcsi.com



Aldosterone-Mineralocorticoid Receptor - Cell Biology to Translational Medicine

246

4. Conclusions and perspectives

The physiological and pathophysiological roles of PKD isoforms in different 
biological systems are becoming better understood with the identification of 
novel substrates for this family of kinases that also interact with other kinases and 
transcription factors which modulate intracellular trafficking, membrane targeting, 
and stability of ion transport proteins. These PKD isoform-regulated biological 
processes fine-tune the aldosterone/MR-dependent transcriptional events and 
act as important intermediaries between rapid non-genomic signaling and latent 
transcriptional responses activated by aldosterone to regulate renal electrolyte 
homeostasis. The development of PKD isoform-specific knockdown or knockout 
renal CCD cell lines and animal models has the potential to reveal novel rapid non-
genomic and genomic roles for PKD isoforms to regulate basal and aldosterone-
stimulated ENaC and Na+/K+-ATPase pump activity in renal CCD cells.

Acknowledgements

This publication is based upon work from the EU COST Action ADMIRE 
BM1301 in Aldosterone and Mineralocorticoid Receptor Physiology and 
Pathophysiology www.admirecosteu.com.

Figure 9. 
Regulation of ENaC and Na/K pump by protein kinase D isoforms. PKCδ and PKCε can be rapidly activated in 
response to aldosterone. The rapid activation of PKC is coupled to MR via the transactivation of EGFR through 
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Abstract

The mineralocorticoid receptor (MR) belongs to the nuclear receptor superfam-
ily and regulates body fluid and electrolyte balance. In the last years, much effort 
has been put into the development of non-steroidal MR antagonists that overcome 
the side effects of the marketed steroid drugs, and can be used for the treatment 
of hypertension and heart failure, among others. Initially, MR was identified in 
epithelial cells, however it also plays important roles in non-epithelial tissues. 
In this sense, it is of interest to discover ligands that might induce different MR 
conformational changes, leading to specific coregulator interactions, which could 
confer tissue-specific effects. Different series of non-steroidal ligands with diverse 
central scaffolds has been described, which shows antihypertensive and cardiorenal 
protective effects. This review covers a description of different non-steroidal MR 
antagonist families, with special focus on compounds under clinical development. 
The analysis of the three-dimensional (3D) structures of non-steroidal MR antago-
nists in complex with the MR ligand-binding domain (LBD), recently reported, 
highlights the interactions crucial for binding. The structure-activity relationships 
of known ligands, together with the insights provided by the 3D structures of ligand 
- LBD MR complexes, could help in the development of non-steroidal MR antago-
nists with improved properties.

Keywords: mineralocorticoid receptor, MR antagonist, structure-activity 
relationship, clinical trials

1. Introduction

The mineralocorticoid receptor (MR) transduces the effects of the steroid 
hormone aldosterone on mineral ion homeostasis, extracellular volume, and blood 
pressure mainly by regulating kidney Na+ reabsorption and K+ and H+ excretion [1]. 
In addition, MR can also act as a high-affinity receptor for glucocorticoids. In aldo-
sterone target tissues such as the kidney distal nephron, glucocorticoid-mediated 
activation of MR is limited by co-expression of 11-β-hydroxysteroid dehydrogenase 
type II (11ßHSD2), which enzymatically limits access of glucocorticoids to the 
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has been put into the development of non-steroidal MR antagonists that overcome 
the side effects of the marketed steroid drugs, and can be used for the treatment 
of hypertension and heart failure, among others. Initially, MR was identified in 
epithelial cells, however it also plays important roles in non-epithelial tissues. 
In this sense, it is of interest to discover ligands that might induce different MR 
conformational changes, leading to specific coregulator interactions, which could 
confer tissue-specific effects. Different series of non-steroidal ligands with diverse 
central scaffolds has been described, which shows antihypertensive and cardiorenal 
protective effects. This review covers a description of different non-steroidal MR 
antagonist families, with special focus on compounds under clinical development. 
The analysis of the three-dimensional (3D) structures of non-steroidal MR antago-
nists in complex with the MR ligand-binding domain (LBD), recently reported, 
highlights the interactions crucial for binding. The structure-activity relationships 
of known ligands, together with the insights provided by the 3D structures of ligand 
- LBD MR complexes, could help in the development of non-steroidal MR antago-
nists with improved properties.

Keywords: mineralocorticoid receptor, MR antagonist, structure-activity 
relationship, clinical trials

1. Introduction

The mineralocorticoid receptor (MR) transduces the effects of the steroid 
hormone aldosterone on mineral ion homeostasis, extracellular volume, and blood 
pressure mainly by regulating kidney Na+ reabsorption and K+ and H+ excretion [1]. 
In addition, MR can also act as a high-affinity receptor for glucocorticoids. In aldo-
sterone target tissues such as the kidney distal nephron, glucocorticoid-mediated 
activation of MR is limited by co-expression of 11-β-hydroxysteroid dehydrogenase 
type II (11ßHSD2), which enzymatically limits access of glucocorticoids to the 
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receptor [2]. High corticosteroid circulating levels can overcome this mechanism, 
producing mineralocorticoid-like effects. Furthermore, MR tissue distribution is 
much broader than originally expected, and in many cells it is unclear if there are 
any mechanisms at all providing aldosterone selectivity over glucocorticoids [3]. It 
is thus reasonable to assume that both aldosterone and glucocorticoids can activate 
MR in a cell type-specific fashion.

The role of MR in blood pressure regulation and K+ homeostasis has been 
therapeutically exploited using steroid analogs with competitive inhibitory activity. 
This strategy is commonly used for treating primary aldosteronism and additional 
clinical situations where a decrease in extracellular volume is advantageous, such 
as essential hypertension and edema associated with congestive heart failure or 
cirrhosis [4]. The interest in MR antagonists has greatly increased in the past two 
decades. The unexpectedly broad tissue distribution of MR prompted research on 
possible additional physiological and pathological roles for this receptor [5]. It is 
now clear that MR has important contributions to the development of fibrosis [6], 
inflammation [7], and oxidative stress [8], greatly expanding the potential role 
of MR in human disease. Aldosterone/MR signaling associated with high NaCl 
intake produces cardiac, vascular, and renal injury independent of changes in blood 
pressure [9]. The benefits of MR antagonists in patients with heart failure resulted 
in the approval of their use to treat this condition [10]. Furthermore adipocyte MR 
activation may be implicated in obesity and metabolic syndrome, opening new pos-
sible applications to MR antagonists [11]. New roles of MR in ocular or skin diseases 
have led to new uses of MR antagonists [5, 12].

Unfortunately, therapeutic interventions aimed at limiting MR actions are 
hampered by adverse side effects. Ligand-binding domain (LBD) sequence conser-
vation between MR and glucocorticoid, progesterone, and androgen receptors (GR, 
PR, and AR) implies frequent ligand cross-reactivity. For instance, spironolactone 
is structurally related to progesterone and acts as a PR agonist and AR antagonist, 
leading to frequent adverse sexual side effects. This has largely been solved by the 
use of eplerenone, a second-generation MR antagonist with weaker affinity for AR 
and PR [13]. The use of MR antagonists is further complicated by their potassium-
sparing characteristics. While this activity is desirable in the context of hyperten-
sive patients treated with loop diuretics [14], it is associated with higher mortality 
in patients with heart failure [15]. Therefore, there is a clear need for developing 
selective MR modulators that preferably have a nonsteroidal nature and may pres-
ent selective beneficial actions without undesired side effects [4].

This review aims to delineate the different chemical structural families that 
have led to MR nonsteroidal antagonists. For a more comprehensive data regarding 
different compounds in each family, a recent review by Martin-Martinez et al. can 
be of interest [16]. In this chapter, we also focused on those compounds that entered 
clinical trials and in the known three-dimensional (3D) structure of nonsteroidal 
compounds bound to the LBD of MR.

2. Nonsteroidal MR ligands

An active search for nonsteroidal MR antagonists has been carried out to 
overcome the side effects observed with steroidal drugs. In general, starting from 
a high-throughput screening (HTS), an initial hit compound is identified. Next, 
a hit to lead optimization process, quite frequently through a structure-based 
design, leads to compounds with improved binding affinity and pharmacokinetic 
(PK) properties. Examples of different nonsteroidal MR antagonist families are 
included in this section. In addition, to facilitate a better understanding through the 
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manuscript, the 2D structures of compounds under clinical trials and/or known 3D 
structures are described in Sections 3 and 4.

The 1,4-dihydropyridine ring (DHP) has proven to be a rather interesting 
scaffold and have been explored by Pfizer, Bayer Pharma, and Merck (Figure 1). 
Their studies showed the importance of the stereochemistry at DHP C4 [17, 18], 
as well as a free DHP amino group [18, 19]. Pfizer described a series of DHP with 
a phenyl group at C4, with small, nonpolar substituents like F, Cl, or CF3 suit-
able at this ring [19]. Although a voluminous substituent at C2 led, in general, 
to lower affinity, the incorporation of tetrazolmethyl group as in 1 resulted in 
better physicochemical properties while maintaining potency and selectivity over 
other nuclear hormone receptors (NHRs, IC50 > 300 nM for PR, GR, and AR). 
Compound 1 reduces blood pressure and renal injury in rats. On the other hand, 
Bayer Pharma, starting from an HTS, and the subsequent optimization, identi-
fied DHP 2 (BR-4628) with a chromenone at DHP C4 as a potent MR antagonist 
with more that 150-fold selectivity over GR, AR and PR and a good PK profile 
in rats [18]. BR-4628 has been proposed to be a bulky antagonist with a passive 
mechanism. Docking studies shown that BR-4628 5-acetyl and C6-methyl groups 
protrude toward the MR helix H12. However, there is also a loss of contacts 
within this region compared to steroid agonist, which might account for the 
inability of this complex to recruit co-regulators [20]. Interestingly, for several 
steroid antagonists, a mechanism based on loss of contacts has been proposed 
with helix H12 leading to a destabilization of the AF2 region, which is involved in 
co-regulator interaction [21]. The moderate selectivity of BR-4628 versus L-type 
Ca2+ channels prevented further development. Afterwards, Bayer studies led to 
a series of heterobicyclic analogs, from which a naphthyridine derivative, named 
finerenone (17, see Figure 5), entered clinical trials. DHP has also been the focus 
of Merck, which patented a series of sub-micromolar binding affinity DHP, as 
derivative 3 [22].

Figure 1. 
DHP and five-membered heterocyclic rings as scaffolds in MR ligands. aCell-based assays. bCompetitive binding 
assays.
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Five-membered heterocyclic rings have also proven to be quite successful moieties 
in the search of nonsteroidal MR antagonists. In particular, the pyrrole ring is found 
in a series of MR ligands developed by Exelixis and Daiichi Sankyo, such as CS-3150 
that entered clinical trials (18, Figure 5) [23]. On the other hand, the pyrazoline ring 
has been explored by Pfizer, as in compound 4 (Figure 1), where the R enantiomer 
showed higher potency. Compound 4, with more than 500-fold selectivity over 
PR, and at least 2000-fold over GR and AR, behaves as an antagonist increasing the 
urinary Na+/K+ ratio in rats [24]. The 3-phenyl-pyrazoline cyclization led to a series of 
conformational restricted pyrazoline derivatives, one of them entered clinical trials, 
PF-3882845 (14, Figure 5) [25]. Additionally, starting from an HTS, Merck identi-
fied a series of MR antagonists based on the oxazolidine-2,4-dione scaffold. Several 
derivatives showed potent MR affinity, as compound 5 (Figure 1), which has signifi-
cant selectivity versus other NHRs (IC50, PR, AR, GR > 5 μm) [26].

On the other hand, it is worth mentioning the benzoxazinone-derived MR 
ligands, which have been also broadly explored. An analysis of the X-ray crystal 
structure of compounds with this bicycle bound to MR LBD provided insights 
regarding their binding determinants to MR, as explained below (Section 4). In 
general, in these series there is an additional aromatic ring linked to position 6 of the 
benzoxazinone moiety, either through linear linkers as in Novartis compound 6 [27] 
or heteroaromatic rings, like in Takeda derivatives 7, 19–22 (Figures 2 and 6) [28, 
29]. Compound 7 behaves as antagonist and shows good selectivity over GR, PR, and 
AR (IC50 > 2.5 μM). It is able to decrease urinary Na+/K+ and has a blood pressure-
lowering effect similar to that of spironolactone in a DOCA-salt hypertensive rat 
model. Interestingly, a carbonyl linker led to AstraZeneca benzoxazinone derivative 
AZD9977, which is currently in clinical trials (15, Figure 5). In a recent publication, 
AstraZeneca describes the thorough structure and property studies that led to the 
identification of this clinical candidate [30]. Additionally, a benzoxazinone derivative 
with a rather different pattern of substituents was developed by Mitsubishi Tanabe 
Pharma leading to apararenone (16, Figure 5), which is also in clinical trials .

Figure 2. 
Benzoxazinone-, indole-, and indazole-derived MR ligands. aCell-based assays. bCompetitive binding assays.
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The indole group was also found as part of two series of potent MR antagonists 
identified by screening methodologies by Eli Lilly (Figure 2). One of them included 
a 3,3-bisaryloxoindol as central scaffold, where, for example, derivative 8 showed 
good selectivity over GR, PR, and AR (more than 390-fold) [31]. The other series 
contained an indole ring, as in compound 9, which was more potent than eplere-
none in lowering blood pressure in a rat hypertension model [32]. A related series 
containing an indazole ring and an aryl sulfonamide were developed by Merck 
Sharp & Dohme Corp., for example, compound 10 (stereochemistry not disclosed) 
that showed a good PK profile in rats [33].

Aryl sulfonamide and urea moieties were also found in compounds 11 and 
12, developed by Sumitomo Dainippon Pharma and Boehiringer Ingelheim, 
respectively (Figure 3) [34, 35]. Recently, a novel byaryl sulfonamide-based MR 
antagonist was identified in an HTS by AstraZeneca (compound 27, Figure 8). A 
combination of structure–activity relationship (SAR) exploration and X-ray crystal 
structure determination subsequently guided the design of related MR antagonist 
28 and 29 (Figure 8) [36].

Tricyclic scaffolds have also been studied, particularly those containing a 
central six- or seven-membered ring flanked by differently substituted phenyl 
moieties. These derivatives are frequently described within patents, and for some 
of them only scarce pharmacological data is available [16]. Thus, Eli Lilly has 
developed different families with interesting properties, among them the diben-
zooxepine 13 (Figure 4), an MR antagonist, with more than 800-fold selectivity 
over GR, AR, and PR. Compound 13 was studied in combination with tadalafil, a 

Figure 3. 
Aryl sulfonamide and urea functionalities in MR ligands. IC50 from competitive binding assays.

Figure 4. 
A tricyclic scaffold in MR antagonist. IC50 from competitive binding assays.
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Figure 6. 
2D and 3D structures of MR benzoxazine-3-one-based antagonist complexes. (A) 2D molecular structures. 
(B) Superimposition of the X-ray crystal structures of MR LBD in complex with aldosterone (in orange) and 
compound 19 (in yellow) (left) and compounds 19 (in yellow), 20 (in red), 21 (in pink), 22 (in blue), and 23 
(in cyan) (right) [75]. The hydrogen bonds and water molecules are depicted as yellow dashed lines and red 
spheres, respectively. IC50 from competitive binding assays.

Figure 5. 
MR antagonist that entered clinical trials. aCell-based assays. bBinding-based assays.
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mild vasodilator, for the treatment of patients with resistant hypertension. These 
studies showed that their combination led to a greater blood pressure reduction 
in patients than monotherapies [37]. Some websites associated this compound 
with LY2623091, which entered clinical trials [38, 39]. Recently, other tricyclic 
derivatives, with a seven-membered heterocyclic central ring and a benzoxazi-
none moiety linked to this ring, have been described by Vitae Pharmaceuticals. An 
example of these latter derivatives is compound 23 whose X-ray crystal structure 
bound to MR LBD has been solved (Figure 6) [40].

3. Nonsteroidal MR antagonists that entered clinical trials

The effort devoted to the search of nonsteroidal MR antagonist has led, to 
the best of our knowledge, to seven compounds entering clinical trials [41–43]. 
However, two of them, namely, LY2623091 from Eli Lilly and PF03882845 from 
Pfizer, have been discontinued. Both derivatives are nonsteroidal MR antagonist, 
selective, and oral bioavailable. LY262309 entered two phase II clinical studies, for  
patients with chronic kidney disease (CKD) or high blood pressure [44–46], 
but according to Adis Insight database, this compound was discontinued [47]. 
PF03882845 (14, Figure 5) entered phase I clinical studies in patients with type 2 
diabetic nephropathy; however the study terminated prematurely due to strategic 
reasons, according to Pfizer [48, 49].

Recently, AZD9977 from AstraZeneca and KBP-5074 from KBP Biosciences have 
entered clinical trials. AZD9977 (15, Figure 5) is a partial MR antagonist in vitro, with 
cardiorenal protection [50]. It separates organ-protective effects from urinary electro-
lyte excretion in rodent models, likely reducing hyperkalemia risk. This profile seems 
to be due to a different pattern of interactions with MR, particularly affecting Met777, 
which influences the AF2 surface. The AF2 region is key for co-regulator interaction, 
and a different recruitment compared to eplerenone was observed for this compound. 
Initial clinical studies showed that AZD9977 was safe and well tolerated; however, com-
pared with rodents, in humans the effects on urinary Na+/K+ were similar to eplerenone 
[51]. Yet four phase I clinical trials have been completed with this compound, all in 
the United Kingdom, the last ones in June 2018 [52]. On the other hand, KBP-5074 is a 
highly selective and potent MR antagonist. Phase I and IIa studies have been completed 
in the United States [53]. These studies evaluated safety, tolerability, and PK in healthy 
volunteers and patients with CKD or renal impairment. A phase IIb trial started in April 
2018 for patients with uncontrolled hypertension and advanced CKD.

To date, the most advanced compounds are esaxerenone (CS-3150), finerenone 
(BAY94-8862), and apararenone (MT-3995). Apararenone (16, Figure 5, Table 1) 
[42, 54, 55], developed by Mitsubishi Tanabe Pharma Corporation, has completed 
seven phase II clinical trials for the treatment of diabetic nephropathy; some studies 
include patients also with albuminuria or with albuminuria and moderately decreased 
in glomerular filtration rate. There is an active phase II clinical trial in patients with 
nonalcoholic steatohepatitis (NASH), which will be completed by April 2019.

Finerenone (17, Figure 5) is a potent, oral bioavailable MR antagonist from 
Bayer, with more than 500-fold selectivity over AR, PR, or GR [18]. Structural 
studies indicated that MR Ala773 and Ser810 are the reasons behind its selectiv-
ity. These studies also suggested that it is a bulky antagonist that inactivates MR 
producing a protrusion of LBD helix H12 and avoiding the recruitment of coactiva-
tors [56]. Furthermore, it has been found that finerenone modulates MR cofactor 
binding different from eplerenone. This selective modulation has been suggested 
as the molecular basis from the different clinical behavior of finerenone compared 
with eplerenone [57]. Interestingly, it behaves as an antagonist of S810L MR, a 
mutant that leads to a severe form of familiar hypertension. In preclinical models 
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highly selective and potent MR antagonist. Phase I and IIa studies have been completed 
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finerenone showed better cardiorenal end-organ protection than spironolactone 
or eplerenone [58]. Its good properties prompted to further advance it to clinical 
trials (Table 2). In a phase II trial (mineralocorticoid receptor antagonist toler-
ability study (ARTS)) including subjects with chronic heart failure and mild or 
moderate CKD, finerenone was at least as effective as spironolactone in decreasing 
ventricular remodeling but with lower incidence of hyperkalemia and renal adverse 
effects [59, 60]. The fact that finerenone distributes equally between cardiac and 
renal tissues in rats, whereas spironolactone and eplerenone show a higher kidney 

NCT number Phase Enrollment Study start/
completion

Location

Efficacy and safety of finerenone in subjects with T2DM and DKD

NCT02540993
FIDELIO-DKD

III 4800 September 2015/
October 2019

Global

Efficacy and safety of finerenone in subjects with T2DM and the clinical diagnosis of DKD

NCT02545049
FIGARO-DKD

III 6400 September 2015/
February 2020

Global

Efficacy and safety of oral doses of BAY94-8862 in subjects with T2DM and the clinical diagnosis of diabetic 
nephropathy

NCT01874431
ARTS-DN

II 823 June 2013/August 
2014

Global

NCT01968668
ARTS-DN Japan

II 96 October 2013/
November 2014

Japan

Phase IIb safety and efficacy of different oral doses of BAY94-8862 in subjects with worsening chronic heart 
failure and left ventricular systolic dysfunction and either T2DM with or without CKD or CKD alone

NCT01807221
ARTS-HF

II 1058 June 2013/December 
2014

Global

NCT01955694
ARTS-HF-Japan

II 72 November 2013/
February 2015

Japan

BAY94–8862 dose finding trial in subjects with chronic heart failure and mild (part A) or moderate (part B) 
CKD

NCT01345656
ARTS

II 458 May 2011/July 2012 Global

Table 2. 
Finerenone (BAY94-8862) phase III and phase II ARTS clinical trials [68].

NCT number Phase Enrollment Study start/completion Location

Efficacy and safety of MT-3995 in patients with NASH

NCT02923154 II 40 September 2016/April 
2019

Japan

Efficacy and safety of MT-3995 in patients with diabetic nephropathy

NCT02517320 II 293 July 2015/January 2017 Japan

An extended treatment study of MT-3995 in patients with diabetic nephropathy

NCT02676401 II 241 February 2016/August 
2017a

Japan

aPrimary completion.

Table 1. 
Apararenone (MT-3995) phase II clinical trials completion after 2016 [55].
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accumulation, might explain the lower incidence of hyperkalemia. The lower 
accumulation, together with its minimal renal elimination, might open opportuni-
ties for the treatment of patients with renal impairment [61, 62]. A subsequent 
phase II study (ARTS-diabetic nephropathy (ARTS-DN)) analyzed the safety 
and efficacy of finerenone in subjects with type 2 diabetes mellitus (T2DM) and 
diabetic nephropathy. In this study the urinary albumin to creatinine ratio (UACR) 
decreased in patients treated with finerenone compared to placebo, with no signifi-
cant differences in adverse effects observed between both groups [63, 64]. In the 
ARTS-heart failure trial (ARTS-HF), different doses of finerenone and eplerenone 
were compared for patients with worsening heart failure with concomitant T2DM 
and/or CKD. Finerenone (10–20 mg dose) showed better outcome, including death, 
cardiovascular hospitalization, or emergency visit [65]. There are two large trials on 
going (FIDELIO-DKD, FIGARO-DKD) including subjects with T2DM and diabetic 
kidney disease (DKD) at doses of 10 or 20 mg of finerenone.

Recently, the administration of finerenone to a rat model of metabolic syndrome 
(Zucker fa/fa) showed that finerenone exerted cardiac protection, as it has been 
previously described for spironolactone. However, only finerenone afforded renal 
protection [66, 67].

Esaxerenone (18, Figure 5) is a highly potent and selective MR antagonist, with 
at least 1000-fold higher selectivity over AR, PR, or GR. It has also long-lasting oral 
activity, longer than steroidal drugs [23]. In addition, it has shown antihypertensive 
and cardiorenal protective effects in Dahl salt-sensitive hypertensive rats with 
superior potency than spironolactone or eplerenone and no apparent hyperkalemia 
[69]. The similar balanced distribution of esaxerenone to the kidney and heart in 
rats might be the reason of its higher organ-protective effects than marketed drugs. 
A subsequent study was performed with a model of hypertensive rats, based on a 
synthetic mineralocorticoid, deoxycorticosterone acetate (DOCA), that induces 
hypertension and renal injury in combination with salt loading (DOCA rats). In this 
model, esaxerenone was able to prevent hypertension and the development of renal 
damage. It has also been suggested that its beneficial actions on renal injury cannot 

NCT number Phase Enrollment Study start/
completion

Location

Study of CS-3150 in patients with severe hypertension

NCT02808026 III 20 June 2016/February 
2017

Japan

Study of CS-3150 in hypertensive patients with type 2 diabetes and albuminuria

NCT02807974 III 51 June 2016/March 
2017

Japan

Study of CS-3150 in combination with ARB or ACE inhibitor in hypertensive patients with moderate renal 
impairment

NCT02807987 III 58 June 2016/May 2017 Japan

Long-term study of CS-3150 as monotherapy or in combination with other antihypertensive drug in Japanese 
patients with essential hypertension

NCT02722265 III 368 March 2016/July, 
2017

Japan

Study of CS-3150 in patients with essential hypertension

NCT02890173
ESAX-HTN

III 1001 September 2016/July, 
2017

Japan

Table 3. 
Esaxerenone (CS-3150) phase III clinical trials [72].
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accumulation, might explain the lower incidence of hyperkalemia. The lower 
accumulation, together with its minimal renal elimination, might open opportuni-
ties for the treatment of patients with renal impairment [61, 62]. A subsequent 
phase II study (ARTS-diabetic nephropathy (ARTS-DN)) analyzed the safety 
and efficacy of finerenone in subjects with type 2 diabetes mellitus (T2DM) and 
diabetic nephropathy. In this study the urinary albumin to creatinine ratio (UACR) 
decreased in patients treated with finerenone compared to placebo, with no signifi-
cant differences in adverse effects observed between both groups [63, 64]. In the 
ARTS-heart failure trial (ARTS-HF), different doses of finerenone and eplerenone 
were compared for patients with worsening heart failure with concomitant T2DM 
and/or CKD. Finerenone (10–20 mg dose) showed better outcome, including death, 
cardiovascular hospitalization, or emergency visit [65]. There are two large trials on 
going (FIDELIO-DKD, FIGARO-DKD) including subjects with T2DM and diabetic 
kidney disease (DKD) at doses of 10 or 20 mg of finerenone.

Recently, the administration of finerenone to a rat model of metabolic syndrome 
(Zucker fa/fa) showed that finerenone exerted cardiac protection, as it has been 
previously described for spironolactone. However, only finerenone afforded renal 
protection [66, 67].

Esaxerenone (18, Figure 5) is a highly potent and selective MR antagonist, with 
at least 1000-fold higher selectivity over AR, PR, or GR. It has also long-lasting oral 
activity, longer than steroidal drugs [23]. In addition, it has shown antihypertensive 
and cardiorenal protective effects in Dahl salt-sensitive hypertensive rats with 
superior potency than spironolactone or eplerenone and no apparent hyperkalemia 
[69]. The similar balanced distribution of esaxerenone to the kidney and heart in 
rats might be the reason of its higher organ-protective effects than marketed drugs. 
A subsequent study was performed with a model of hypertensive rats, based on a 
synthetic mineralocorticoid, deoxycorticosterone acetate (DOCA), that induces 
hypertension and renal injury in combination with salt loading (DOCA rats). In this 
model, esaxerenone was able to prevent hypertension and the development of renal 
damage. It has also been suggested that its beneficial actions on renal injury cannot 
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be only attributed to its antihypertensive effect but also to direct renal protection 
through antifibrotic, anti-inflammatory, and antioxidant actions. Interestingly, this 
compound is also able to restore the established renal damage in DOCA rats [70]. 
Esaxerenone was identified by Exelixis’ research collaboration with Daiichi Sankyo. 
In 2006 they signed an agreement in which Daiichi Sankyo was granted a worldwide 
license. To date, five phase III studies have been completed related to hypertension, 
some of them in addition to type 2 diabetes and albuminuria or moderate renal 
impairment. The combination with other antihypertensive therapies has also been 
studied (Table 3). In February 2018, Exelixis announced that Daiichi Sankyo had sub-
mitted a regulatory application to the Japanese Pharmaceutical and Medical Devices 
Agency for esaxerenone to be approved for the treatment of hypertension [71].

4.  Structural determinants for nonsteroidal MR antagonists  
binding to MR LBD

To the best of our knowledge, to date 12 X-ray crystal structures of nonsteroidal 
ligands bound to MR LBD have been solved. Nine of these reported structures 
correspond to MR antagonists within the benzoxazinone moiety derivatives class 
(Figures 6A and 7A) (PDB IDs: compound 15, 1.82 Å 5MWP [50]; 19, 1.35 Å 3VHV 
[28]; 20, 2.05 Å 2WFF [29]; 21, 1.40 Å 3WFG [29]; 22, 1.10 Å 4PF3 [73]; 23, 2.5 Å 
5HCV [40]; 24, 1.54 Å 6GEV [30]; 25, 1.8 Å 6GG8 [30]; and 26, 1.71 Å 6GGG [30]), 
whereas the remaining three correspond to a sulfonamide aryl moiety (PDB IDs: 27, 
1.86 Å 5L7E; 28, 2.01 Å 5L7G; and 29, 2.12 Å 5L7H) (Figure 8A) [36].

The X-ray crystal structure of MRC808S/S810L-LBD double mutant in complex with 
compound 19 first revealed the binding mode of benzoxazine-3-one derivatives. 
The NH group and the carbonyl oxygen of this moiety form hydrogen bonds to 
Asn770. In addition, the nitrogen atoms of the triazole scaffold establish hydrogen 
bonds to residue Gln776 and through a water molecule to Arg817 (Figure 6B). 
Similarly, aldosterone, the main MR hormone, is also engaged in hydrogen bonding 
with both Gln776 and Arg817 through its C3-ketone moiety, as well as with Asn770 
through its C21-hydroxyl group (Figure 6) [74].

On the other hand, compound 20, which was reported later [29], also forms 
hydrogen bonds to Asn770 through the NH group and the carbonyl oxygen of 
benzoxazine as described for compound 19. In addition, compound 20 forms a new 
hydrogen bond to Thr945 through the carbonyl oxygen of the benzoxazine-3-one 
moiety (Figure 6B). The carbonyl oxygen in the dihydrofuran-2-one scaffold estab-
lishes hydrogen bonds to residues Arg817 and Gln776 through a water molecule. 
Overall, compound 20 binds to MR LBD in a similar way as compound 19. Based 
on these structural considerations, compound 21, a dihydrofuran-2-one derivative, 
was subsequently developed. As expected, the binding mode of compound 21 was 
similar to that of compounds 19 and 20 (Figure 6B).

Later, compound 22, a benzoxazine-3-one derivative with an azole central ring as 
core scaffold, was developed [73]. This molecule is a highly potent MR antagonist and 
also shows remarkable selectivity over other steroid hormone receptors. In addition, it 
exhibits good PK profile and very low partial agonistic activity [3]. The azole central 
ring of compound 22 was selected to avoid the formation of water-mediated hydro-
gen bonding networks, which is known to contribute to partial agonistic activity of 
some previously reported benzoxazine-3-one derivatives [29, 73]. As expected, the 
binding mode of compound 22 is similar to that of compounds 19–21, as observed 
by the solution of the X-ray crystal structure of its complex with MR LBD (PDB ID: 
4PF3) (Figure 6B). The NH group and the carbonyl oxygen of the benzoxazine-3-one 
moiety form hydrogen bonds to Asn770 and Thr945, and the 4-fluorobenzene ring 
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occupies the α-face hydrophobic pocket. The ligand 2,2-difluoropropyl-3-hydroxy 
moiety points out toward the residues Gln776 and Arg817. Its hydroxyl group directly 
forms a hydrogen bond to Gln776. The two fluorine atoms do not form any specific 
hydrogen bonding interactions suggesting that the major contribution of these 
fluorine atoms to the binding is hydrophobic.

In 2016, Vitae Pharmaceuticals developed compound 23, a benzoxazine-3-one 
derivative with a tricyclic scaffold. The X-ray crystal structure of compound 23 in 
complex with MR LBD showed again a binding mode similar to compounds 19–22. 
Similarly, the benzoxazinone moiety is engaged in three hydrogen bonds, two with 
Asn770, through its NH and CO groups, and another one with Thr945 through 
its carbonyl oxygen (Figure 6B). The tricyclic structure does not engage in any 
hydrogen bonding with MR LBD [40].

Recently, compound 15 (AZD9977) has been identified as a novel and selective 
benzoxazine-3-one-based partial MR antagonist [50]. The X-ray crystal structure of 
compound 15 in complex with MRC808S/C910S-LBD double mutant revealed the molec-
ular determinants of its high affinity and selectivity for MR (5MWP). Likewise, 
compound 15 benzoxamide moiety is also involved in hydrogen bonds with Asn770 
and Thr945, whereas compound 15’s amide extension forms hydrogen bonds with 

Figure 7. 
2D and 3D structures of AstraZeneca benzoxazine-3-one-based antagonist complexes. (A) 2D molecular 
structures. (B) Superimposition of the X-ray crystal structures of MR LBD bound to compounds 15 (in cyan), 
24 (in red), and 25 (in light yellow) on the left and 15 (in cyan), 24 (in red), 25 (in light yellow), and 26 (in 
purple) on the right [30, 50]. The hydrogen bonds and water molecules are depicted as yellow dashed lines and 
red spheres, respectively. Ki from competitive binding assays.
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be only attributed to its antihypertensive effect but also to direct renal protection 
through antifibrotic, anti-inflammatory, and antioxidant actions. Interestingly, this 
compound is also able to restore the established renal damage in DOCA rats [70]. 
Esaxerenone was identified by Exelixis’ research collaboration with Daiichi Sankyo. 
In 2006 they signed an agreement in which Daiichi Sankyo was granted a worldwide 
license. To date, five phase III studies have been completed related to hypertension, 
some of them in addition to type 2 diabetes and albuminuria or moderate renal 
impairment. The combination with other antihypertensive therapies has also been 
studied (Table 3). In February 2018, Exelixis announced that Daiichi Sankyo had sub-
mitted a regulatory application to the Japanese Pharmaceutical and Medical Devices 
Agency for esaxerenone to be approved for the treatment of hypertension [71].

4.  Structural determinants for nonsteroidal MR antagonists  
binding to MR LBD

To the best of our knowledge, to date 12 X-ray crystal structures of nonsteroidal 
ligands bound to MR LBD have been solved. Nine of these reported structures 
correspond to MR antagonists within the benzoxazinone moiety derivatives class 
(Figures 6A and 7A) (PDB IDs: compound 15, 1.82 Å 5MWP [50]; 19, 1.35 Å 3VHV 
[28]; 20, 2.05 Å 2WFF [29]; 21, 1.40 Å 3WFG [29]; 22, 1.10 Å 4PF3 [73]; 23, 2.5 Å 
5HCV [40]; 24, 1.54 Å 6GEV [30]; 25, 1.8 Å 6GG8 [30]; and 26, 1.71 Å 6GGG [30]), 
whereas the remaining three correspond to a sulfonamide aryl moiety (PDB IDs: 27, 
1.86 Å 5L7E; 28, 2.01 Å 5L7G; and 29, 2.12 Å 5L7H) (Figure 8A) [36].

The X-ray crystal structure of MRC808S/S810L-LBD double mutant in complex with 
compound 19 first revealed the binding mode of benzoxazine-3-one derivatives. 
The NH group and the carbonyl oxygen of this moiety form hydrogen bonds to 
Asn770. In addition, the nitrogen atoms of the triazole scaffold establish hydrogen 
bonds to residue Gln776 and through a water molecule to Arg817 (Figure 6B). 
Similarly, aldosterone, the main MR hormone, is also engaged in hydrogen bonding 
with both Gln776 and Arg817 through its C3-ketone moiety, as well as with Asn770 
through its C21-hydroxyl group (Figure 6) [74].

On the other hand, compound 20, which was reported later [29], also forms 
hydrogen bonds to Asn770 through the NH group and the carbonyl oxygen of 
benzoxazine as described for compound 19. In addition, compound 20 forms a new 
hydrogen bond to Thr945 through the carbonyl oxygen of the benzoxazine-3-one 
moiety (Figure 6B). The carbonyl oxygen in the dihydrofuran-2-one scaffold estab-
lishes hydrogen bonds to residues Arg817 and Gln776 through a water molecule. 
Overall, compound 20 binds to MR LBD in a similar way as compound 19. Based 
on these structural considerations, compound 21, a dihydrofuran-2-one derivative, 
was subsequently developed. As expected, the binding mode of compound 21 was 
similar to that of compounds 19 and 20 (Figure 6B).

Later, compound 22, a benzoxazine-3-one derivative with an azole central ring as 
core scaffold, was developed [73]. This molecule is a highly potent MR antagonist and 
also shows remarkable selectivity over other steroid hormone receptors. In addition, it 
exhibits good PK profile and very low partial agonistic activity [3]. The azole central 
ring of compound 22 was selected to avoid the formation of water-mediated hydro-
gen bonding networks, which is known to contribute to partial agonistic activity of 
some previously reported benzoxazine-3-one derivatives [29, 73]. As expected, the 
binding mode of compound 22 is similar to that of compounds 19–21, as observed 
by the solution of the X-ray crystal structure of its complex with MR LBD (PDB ID: 
4PF3) (Figure 6B). The NH group and the carbonyl oxygen of the benzoxazine-3-one 
moiety form hydrogen bonds to Asn770 and Thr945, and the 4-fluorobenzene ring 
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occupies the α-face hydrophobic pocket. The ligand 2,2-difluoropropyl-3-hydroxy 
moiety points out toward the residues Gln776 and Arg817. Its hydroxyl group directly 
forms a hydrogen bond to Gln776. The two fluorine atoms do not form any specific 
hydrogen bonding interactions suggesting that the major contribution of these 
fluorine atoms to the binding is hydrophobic.

In 2016, Vitae Pharmaceuticals developed compound 23, a benzoxazine-3-one 
derivative with a tricyclic scaffold. The X-ray crystal structure of compound 23 in 
complex with MR LBD showed again a binding mode similar to compounds 19–22. 
Similarly, the benzoxazinone moiety is engaged in three hydrogen bonds, two with 
Asn770, through its NH and CO groups, and another one with Thr945 through 
its carbonyl oxygen (Figure 6B). The tricyclic structure does not engage in any 
hydrogen bonding with MR LBD [40].

Recently, compound 15 (AZD9977) has been identified as a novel and selective 
benzoxazine-3-one-based partial MR antagonist [50]. The X-ray crystal structure of 
compound 15 in complex with MRC808S/C910S-LBD double mutant revealed the molec-
ular determinants of its high affinity and selectivity for MR (5MWP). Likewise, 
compound 15 benzoxamide moiety is also involved in hydrogen bonds with Asn770 
and Thr945, whereas compound 15’s amide extension forms hydrogen bonds with 

Figure 7. 
2D and 3D structures of AstraZeneca benzoxazine-3-one-based antagonist complexes. (A) 2D molecular 
structures. (B) Superimposition of the X-ray crystal structures of MR LBD bound to compounds 15 (in cyan), 
24 (in red), and 25 (in light yellow) on the left and 15 (in cyan), 24 (in red), 25 (in light yellow), and 26 (in 
purple) on the right [30, 50]. The hydrogen bonds and water molecules are depicted as yellow dashed lines and 
red spheres, respectively. Ki from competitive binding assays.
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Gln776, Arg817, and Ser810 (Figure 6B). An ordered water molecule is also found 
in the ligand-binding pocket, but it does not seem to mediate hydrogen binding 
between this compound and MR LBD. The 3,4-dihydro-2H-1,4-benzoxazine oxygen 
interacts through hydrogen bonding with Ser811. Within the steroid receptor family, 
Ser811 is unique to MR, which might contribute to the selectivity of compound 15. 
The identification of 15 was guided by structure-based design, and in this process 
three X-ray structures were solved, namely, those of MR LBD bound to derivatives 
24, 25, and 26. As it is shown in Figure 7, the binding mode of these compounds is 
rather similar. However, as expected, derivative 24 is not able to interact with Gln776 
or Arg817. On the other hand, the isobutyl substituent of 26 causes a rearrangement 
resulting in an extension of helix H7 and a reposition of helix H6 [30].

Regarding the sulfonamide aryl-based nonsteroidal MR antagonists, in 2017, 
Nordqvist et al. solved the first X-ray crystal structure of this scaffold-containing 
derivatives through hit compound 27 in complex with MR LBD (PDB ID: 5L7E) 
[36]. The 3D structure revealed that the isoxazole is located close to residues Gln776 
and Arg817 (Figure 8). On the other side of the ligand-binding pocket, compound 
27’s sulfonamide NH also interacts directly with Asn770 through hydrogen bond-
ing. One of the sulfonamide oxygen atoms interacts with both Asn770 and Thr945 
through water-mediated hydrogen bond. Interestingly, compound 27 folds back 
upon itself, pivoting on the sulfonamide motif, to form an intramolecular pack-
ing interaction between the two phenyl moieties acquiring a U-shaped binding 
mode. Following the superimposition of its X-ray crystal structure and that of 

Figure 8. 
2D and 3D structures of MR sulfonamide aryl-based antagonist complexes. (A) 2D molecular structures. 
Superimposition of the X-ray crystal structures of MR LBD in complex with (B) compounds 27 (in orange), 
28 (in magenta), and 29 (in yellow), (C) compounds 27 and 28, and (D) compounds 27 and 29 [75]. The 
hydrogen bonds and water molecules are depicted as yellow dashed lines and red spheres, respectively. IC50 from 
human MR reporter gene assays.
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compound 21 (3WFG), it was reasoned to expand the ligand from the isoxazole 
5-methyl substituent toward the area around Met852 which is occupied by a phenyl 
ring of compound 21. Thus, compound 28 was developed with increased binding 
affinity toward MR and selectivity over PR and GR. The X-ray crystal structure of 
MR LBD and compound 28 complex (5L7G) verified that the proposed isoxazole 
orientation of hit compound 27 was retained and the side chain of Met852 moved 
to accommodate the 2,3-difluorophenoxymethyl moiety (Figure 8C). Afterwards, 
a deeper analysis of ligand binding modes inspired the design of compound 29, the 
first potent macrocyclic oxosteroid receptor antagonist. Despite the conformation 
constraints imposed by the macrocyclization, the X-ray crystal structure of the 
complex between MR LBD and compound 29 (5L7H [36]) disclosed that the ligand 
interactions to the receptor stayed the same as those exhibited by compounds 27 
and 28 (Figure 8D). It is worth noting that the water molecule mediating hydro-
gen bond between compounds 27–29 and Ans770 and Thr945 is displaced by the 
benzoxazine scaffold in compounds 15 and 19–25 (Figures 6 and 7). For these latter 
compounds, the benzoxazine scaffold forms a bidentate hydrogen bonding with 
Asn770 and an additional hydrogen bond with Thr945.

5. Conclusions

Since 1959 in which the steroid MR antagonist spironolactone was introduced 
in the market [42], continuous research has been carried out in attempting to 
overcome the undesired side effects of this drug. Eplerenone, a second-generation 
MR antagonist, although more selective for MR, still increases the incidence of 
hyperkalemia. For this reason, the research was turned toward a third generation 
of compounds, comprising nonsteroidal antagonists within different chemotypes, 
which show in general lower side effects. Several examples of this third generation 
have entered clinical trials as compiled in this review. However, in spite of the last 
decades of advances, there are still important questions that need further research. 
Thus, for example, the structural requirements needed for ligands to discriminate 
the recruitment of different co-regulators and, hence, to fine-tune the transcription 
of selected genes are still poorly understood. Undoubtedly, a larger body of knowl-
edge in this field will contribute significantly to the future development of novel 
MR antagonists with improved properties.
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Figure 8. 
2D and 3D structures of MR sulfonamide aryl-based antagonist complexes. (A) 2D molecular structures. 
Superimposition of the X-ray crystal structures of MR LBD in complex with (B) compounds 27 (in orange), 
28 (in magenta), and 29 (in yellow), (C) compounds 27 and 28, and (D) compounds 27 and 29 [75]. The 
hydrogen bonds and water molecules are depicted as yellow dashed lines and red spheres, respectively. IC50 from 
human MR reporter gene assays.
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a deeper analysis of ligand binding modes inspired the design of compound 29, the 
first potent macrocyclic oxosteroid receptor antagonist. Despite the conformation 
constraints imposed by the macrocyclization, the X-ray crystal structure of the 
complex between MR LBD and compound 29 (5L7H [36]) disclosed that the ligand 
interactions to the receptor stayed the same as those exhibited by compounds 27 
and 28 (Figure 8D). It is worth noting that the water molecule mediating hydro-
gen bond between compounds 27–29 and Ans770 and Thr945 is displaced by the 
benzoxazine scaffold in compounds 15 and 19–25 (Figures 6 and 7). For these latter 
compounds, the benzoxazine scaffold forms a bidentate hydrogen bonding with 
Asn770 and an additional hydrogen bond with Thr945.
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MR antagonist, although more selective for MR, still increases the incidence of 
hyperkalemia. For this reason, the research was turned toward a third generation 
of compounds, comprising nonsteroidal antagonists within different chemotypes, 
which show in general lower side effects. Several examples of this third generation 
have entered clinical trials as compiled in this review. However, in spite of the last 
decades of advances, there are still important questions that need further research. 
Thus, for example, the structural requirements needed for ligands to discriminate 
the recruitment of different co-regulators and, hence, to fine-tune the transcription 
of selected genes are still poorly understood. Undoubtedly, a larger body of knowl-
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Chapter 17

COLT: A New Weapon to 
Disseminate Knowledge
Bernard C. Rossier, Michelle Rossier  
and Jean-Pierre Kraehenbühl

Abstract

Too few researchers receive adequate pre- or postgraduate training to conduct a 
rigorous scientific study. In the digital age, new tools are emerging, and the develop-
ment of distance education could improve this worrying situation. In this context, 
Health Science e-Training (HSeT), a nonprofit Swiss foundation, has developed 
new pedagogical concepts and tools under customized online training (COLT). For 
the ADMIRE Cost network, we have used an article-based e-learning (ABL) tool 
that allowed the students to learn how to read in depth and critically a scientific 
article and to rigorously address the problem of scientific reproducibility. The 
evaluation of the program by the students and the tutors has been quite positive. 
In conclusion COLT was well adapted to the needs of the ADMIRE Cost Action, 
a European network in which students from countries separated by thousands of 
miles can work at distance under the online supervision of tutors and then meet in 
a face-to-face session to maximize their learning experience and the interactions 
between peers and tutors.

Keywords: distance learning, article-based e-learning (ABL),  
customized online training (COLT)

1. Introduction

The quality and reproducibility of preclinical and clinical biomedical research 
have recently been strongly questioned [1, 2]. The causes are multiple: deficient 
experimental protocols, inappropriate methods and statistical analysis, and 
incorrect data interpretation. The fundamental problem, however, is deeper: 
too few researchers receive adequate pre- or postgraduate training to conduct a 
rigorous scientific study. The quality of education has been debated for centuries 
and criticized by teachers as well as by the taught. In the digital age, new peda-
gogical concepts [3, 4] are emerging, and the development of distance education 
could improve this worrying situation. Benjamin Franklin has found the formula 
that summarizes the stakes of the problem (Figure 1). This review summarizes 
how the use of new distance learning tools has improved the learning and 
teaching experience of an educational program proposed to the students (MD, 
PhD, MD-PhD students, postdoctoral fellows) of the ADMIRE Cost European 
network.
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2. COLT: a new pedagogical tool

We have developed customized online training (COLT), a new pedagogical 
tool. The distance learning module targets a specific audience: pre-graduate (bach-
elor, master) or postgraduate students (master of advanced studies, diploma of 
advanced studies, certificate of advanced studies). Each distance learning module is 
adapted to the target audience according to the requests of the institution. A matrix 
combines problem-based learning (PBL) and cross-disciplinary approaches. The 
latter offers online “classical” biomedical disciplines (anatomy, histology, physiol-
ogy, pharmacology, genetics, etc.) and self-learning/self-assessments. The distance 
learning is completed with classroom work (courses, seminars, practical work) 
in the so called “blended” teaching. All these features are housed on a website as 
described below.

3. ADMIRE: cost distance website and learning program

3.1 General features of the website

We opened a training website (https://admire.biomedtrain.eu) for the ADMIRE 
network.

Intended audience: the public part of this website is intended as general informa-
tion to all those interested in the ADMIRE Cost e-learning program. The private 
part of this website supports many portals, i.e., (i) a portal for the 31 students 
registered for the entire course, (ii) a portal for the teachers and organizers with 
access to meeting agendas and related documents regarding the organization of the 
module, and (iii) a portal for the seven teachers with examples of various e-learning 
activities developed by HSeT in the module.

Intended mission of the website: the intended mission of the portal was to provide 
(i) organizational and teaching information to the teachers and learners during the 
2016 and 2017 sessions, (ii) e-learning and e-teaching content in the module, (iii) 
several evaluation tools (self-assessment or quizzes) for the students, (iv) several 
online teaching activities such as “article-based learning” or “case-based learning”, 

Figure 1. 
Benjamin Franklin (1706–1790) was an American polymath and one of the founding fathers of the 
USA. Franklin was a leading author, printer, political theorist, politician, freemason, postmaster, scientist, 
inventor, humorist, civic activist, statesman, and diplomat. He pioneered and was the first president of the 
academy and College of Philadelphia which opened in 1751 and later became the University of Pennsylvania. 
His interest in education is emphasized by this famous quote. (Text and image adapted from Wikipedia https://
en.wikipedia.org/wiki/Benjamin_Franklin).
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and (v) a forum as a communication tool between students or between student and 
teachers.

Mandatory activities: recently published articles in the field of the ADMIRE 
network selected by the tutors in an annotated article-based learning (ABL) 
format had to be read critically and in depth by students (individually or in 
groups).

Optional activities: (i) case-based learning (CBL) which uses a web application that 
drives the learner through intriguing clinical cases to be solved, and (ii) histology prac-
tical: a histology practical on the structure of the kidney using a virtual microscope.

3.2 Main goal

The main goal was to study basic principles of the mechanisms of action of aldo-
sterone in classical and nonclassical target cells relevant to the treatment of patients 
suffering from cardiovascular diseases linked to aldosterone-mineralocorticoid 
receptor (MR) signaling pathways. The principles necessary to understand an 
article from the scientific literature were reviewed.

3.3 Learning objectives

At the end of this e-training module, the trainees were asked to:

• describe the basic concepts underlying the aldosterone-MR signaling pathways 
in classical (kidney, colon) and nonclassical (vessels, heart, brain) target cells 
or organs

• describe and apply the basic concepts to solve questions included in ABLs

• critically read, present, and discuss a scientific paper.

3.4 Typical pedagogical scenario of a blended ADMIRE cost e-learning module

The general organization and timeline of a typical pedagogical scenario 
designed for the ADMIRE Cost network are shown in Table 1. The individual and 
team work was organized along a well-defined timeline spanning in this case which 
is 1 month. Mandatory and optional activities were clearly delineated. Online 
activities started on Day 1 by the registration of the students, a demonstration how 
the website works, and an initial quiz to determine the initial level of knowledge of 
the class.

3.5 Article-based learning (ABL)

Five papers [5–9] were selected by the tutors to represent the most inter-
esting and timely questions about the mineralocorticoid receptor signaling 
pathways.

Individual work: each student had to read the annotated version of the 
article and to consider the “thought questions” associated with each section of 
the article (e.g., abstract, introduction, results, discussion, material, and meth-
ods). Annotations enhance the student’s understanding of terms and concepts 
of the paper with links to other helpful resources. If a student was not familiar 
with the article’s topic, he (she) was recommended to read the “related content” 
section. Most of the links in the annotated version of the article are links to this 
section.
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Team work: each group of students had:

1. to identify the strength and weaknesses of their paper

2. to identify the main unanswered question(s) raised by the article

3. to propose experimental strategies to address these questions left open

4. to address the issue of scientific reproducibility

5. to rate the quality of the article on a scale from 1 to 5 (1 = poor; 2 = fair, 
interesting but many flaws in the experimental design and data presentation; 
3 = good, worthwhile reading despite many mistakes and flaws; 4 = excellent, 

Step Students Tutors

1. Online
Day 15

Website open to 
tutors

2. Online
Day 1

Website open to students

• Registration

• How does the website work

• Initial quiz

3. Online
Day 1 to Day 15

Mandatory activities
Individual assignments

• Read five articles

• Read their assigned article-based learning (ABL), and 
answer the thought questions

• Self-learning/self-assessments (online resources)

• Interactions with students and tutors through forum

Interactions with 
students
through forum

4. Online
Day 1 to Day 30

Optional activities

• Case-based learning (CBL)

• Renal histology (annotated) (virtual microscope)

Interactions with 
students
through forum

5. Online
Day 15 to Day 30

Mandatory activities
Team assignments
Each group of students (5–6) work on specific team assignments

• Preparation of their presentation for the face-to-face session

Interactions with 
students
through forum

6. Face-to-face
Day 30

Plenary session

Students and tutors

• Each group presents its ABL

• General discussion led by tutors

7. Online
Day 30

• Final quiz

• Module evaluation questionnaire

Module 
evaluation
questionnaire

8. Online
Day 31 to Day 40

Reporting from HSeT/tutors to the students about

• Their individual and team assignments

• Their results to the quizzes

• Their feedbacks (course evaluation)

Table 1. 
Typical pedagogical scenario of a distance “blended” learning module.
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must be read by scientists in this field; 5 = outstanding, goes beyond its 
specialized field, establishes new paradigms)

6. to prepare an oral presentation for the face-to-face session.

3.6 Related content and self-assessments

Content directly related to the ABL topics was available. For instance, related to 
the paper by Choi et al. [5], the students had access to a number of pages dealing with 
hypertension together with self-assessment quizzes. Having completed the quiz, the 
student received a feedback explaining why she or he did not check the right answer 
and a link to the corresponding page from which the question was issued.

3.7 Online resources

The online resources covered important aspects of renal and cardiovascu-
lar anatomy, histology, cell and molecular biology, genetics, physiology, and 
pathophysiology.

3.8 Optional activities

Optional activities included CBL entitled “Ms Long QT” and “The Walker’s 
Cramp” allowing the students to study the problems of arrhythmias and athero-
sclerosis, respectively. The students could also familiarize themselves with the 
microscopic structure of the kidney thanks to a virtual microscope and relate the 
structure of the organ to its function.

3.9 Distance tutoring (forum) and monitoring

A general forum allowed general interactions between students and tutors 
from Day 1.

Group forums were open to students for their team work and the preparation of 
their presentation. They could interact with their group tutor from Day 15 to Day 30.

3.10 Students and tutors

Forty-two students from 11 countries (Denmark, France, Germany, Hungary, 
Ireland, Italy, Poland, Scotland, Slovenia, Spain, and Turkey) attended the  
2016–2017 courses supervised by seven tutors.

3.11 Face-to-face sessions

There were two face-to-face sessions one in Dublin on March 1, 2017, and one in 
Paris on November 17, 2017, attended by 26 and 16 students, respectively.

3.12 Evaluation of the work of the students

Online quizzes were carried out in the first day of the course and compared 
to the results obtained at the end of the face-to-face return session, allowing to 
objectively quantify the progress made by each trainee. The initial quiz on Day 1 
(fall 2016) (maximum possible score, 120 points) was carried out by 14 students 
with a mean score of 61% (range, 35–85%). According to our experience, this 
score indicated already a rather good level of knowledge in this specific field, 
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not surprisingly taking in account that all student came from laboratories 
highly specialized in the field of mineralocorticoid receptor signaling pathways. 
The final quiz on Day 30 (spring 2017) showed a mean score of 68% (range, 
52–90%) indicating an improvement of 7 points and a narrowing of the range. 
According to our previous experience, we expected 10–15 points of improve-
ment, but the explanation may reside in the student’s motivation probably not 
optimal for reasons described below. The tutors could evaluate the class perfor-
mance for each question and determine the specific weaknesses (questions with 
correct answers <25%) and the strengths (questions with correct answers >75%) 
of the class.

3.13 Evaluation of the e-learning module by students and tutors

The students and the tutors evaluated the online course. Both gave a positive 
evaluation. The benefits were obvious for both students and teachers.

The evaluation of the answers by the students (17 respondents) was scored on 
a qualitative scale (no, rather no, rather yes, yes, no opinion) and was overall quite 
positive for the website navigation (Figure 2), the online resources and self-learn-
ing tools, and the ABL individual and team assignments.

Some of the most interesting individual comments and suggestions are:
“I would incrementally allow access to the online resources- allowing for a gradual 

accumulation of the material. I think this would make studying this material seem less of 
a mountain to climb and if each resource came with an email to state that it was avail-
able it would remind the users that the material is there. I think this would promote a 
wider utilization of these superb learning materials...”

“I think the self-assessments were too difficult and not linked to the resources pro-
vided. Sometimes after reading the resources provided and selecting the answers based 
on the resources you would get the wrong answer. I think the multiple choice should only 
have one answer not multiple correct answers as this made it very confusing to answer...”

Figure 2. 
Evaluation of the e-learning module navigation by the students.
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“I would add video lessons to make easier the comprehension of the most complex 
issues with a global correction of every question we had to answer, it would have help us 
for oral presentation...”

“In my opinion, should be perform in more time. It is really well organized, but at 
least from my point of view we need more time to do all the quizzes/assesments and read 
the articles...”

“I will be happy to see more interaction with tutors...”
“Overall, I have found the e-learning website very useful, user-friendly and well-

organized. The approach taken to teach the course was very fruitful as it was helping 
people from various background of the field. The course has given me the very best 
introduction to the field in the beginning of each topic then it was progressing and 
enabling to gain in-depth knowledge of the field. For improving the website, I would not 
put the quizzes not to the very end and I would rather put each quiz at the end of each 
topic and/slide show not let the student proceed to next chapter/topic until each session is 
completely finished. This will further “pressurize” the e-learning and keep the students 
more actively on the website...”

Most of the remarks, criticisms, and suggestions made by the students and the 
tutors have been considered for further improvements of the module.

On the positive side, “We have to work more but we learn more…” is a common 
remark from students of various backgrounds taking different modules (COLT 
format).

“I would like to maintain my access to the website after the end of the e-learning 
module…” is also a frequent request that we take a sign of success. Our policy has 
always been to grant this access as long as the student wishes.

4. Discussion

A number of new forms of distance learning/teaching have emerged during the 
last 10 years [10, 11]. Many universities and institutions around the world are exam-
ining the potential of online technology to develop new and more efficient teaching 
methods and, ideally, to decrease costs.

4.1 MOOCs

The most prominent and visible e-learning courses are “massive open online 
courses” (MOOCs). There has been a lot of talk about MOOCs, an “educational 
buzzword” according to John Daniel [12]. Are the MOOCs going to transform 
higher education and science as suggested by Mitchell Waldrop [13]? The first 
MOOC was created in Canada in 2008 (G. Siemens and S. Downes) based on 
the theory of connectivism, which favors collaboration and interaction between 
participants, hence the acronym cMOOC [14]. The activities of a cMOOC typi-
cally comprise four elements: (1) to gather/compile the interesting contents, (2) 
to archive them in a personal document by sharing it by a blog, (3) to appropriate 
the contents by explaining its own understanding, and (4) to spread the personal 
work. To succeed in a cMOOC, it is obviously necessary for a participant to do 
more than read and watch videos and requires his or her active participation 
(involvement). A cMOOC is considered to work when it feeds on itself through 
the contributions and contents of the participants, even beyond the course [15]. 
In 2011, S. Thrun (Stanford) launched a first distance course on the Coursera 
platform on the theme of artificial intelligence, open to all and accessible 
worldwide. The success was considerable: more than 160,000 students enrolled. 
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This course was offered in parallel with the classic one given locally to Stanford 
students. This is the beginning of xMOOCs (x referring to the MITx platform 
launched in December 2011 by MIT). The xMOOCs are more traditional in their 
pedagogical approach (the so-called behaviorist). The market is dominated by 
three course providers (Udacity, Coursera, and edX). The teaching materials 
include short video courses, online exercises and tests, student interactions 
(forum), and online peer reviews (Coursera). Some platforms (Coursera) even 
allow the analysis of free text responses. Following the success of xMOOCs 
from major American universities, several initiatives have emerged in Europe 
and Asia. Some projects come from French-speaking universities (i.e., EPFL 
in Switzerland and University of Geneva, using the Coursera platform, or the 
University of Lyon 1 in collaboration with the Catholic University of Louvain 
who has developed their own open-source LMS platform). In February 2014, the 
Class Central site [16] which lists the available MOOCs included 476 courses, 
70% of which use the Coursera platform. Forty-four percent of the courses came 
from computer science and mathematics and only 24% from science, health, and 
medicine. As of 2018, the Class Central site listed over 2700 courses, a very rapid 
increase since 2014. The current limits of xMOOCs are (1) the small percentage 
of students who finish the course and obtain certification (5–15% in general), 
which however in absolute value often represents several thousand students; 
(2) low penetration on the African continent and in countries that do not have 
optimal access to the web; and (3) the difficulty of checking exams allowing 
accreditation. There is also a risk of cultural “imperialism” imposing the con-
cepts of some elite institutions, a threat to cultural diversity.

4.2 Inverted classroom or flipping the lecture

Teachers have also used online lectures open to their students to “flip” their class. 
In other words the students must follow the online lectures and carry out the associ-
ated assignments and quiz before a face-to-face session with the teacher focusing 
on discussing the points that have been the least understood during the online 
session. This model may be cost-effective and efficient and does not require that the 
recorded lecture be made publicly available avoiding the problem of copyrights that 
is encountered with MOOCs.

4.3 COLT and SPOCs

There are other approaches to developing distance education, tailored to the 
needs and culture of each training institution, and that could (it is fashionable) 
be grouped under the acronym COLT described above. How to read a scientific 
article? How to write a scientific article? How to write a research grant applica-
tion? How to design and perform a clinical trial? These are topics that can be 
treated very effectively with the COLT approach. This model of teaching obvi-
ously only affects a small number of students, but at present many institutions 
in Switzerland, Europe, the USA, and Africa have used such a type of teaching 
in collaboration with HSeT. Interestingly a recent report from the University of 
Princeton strongly favors a similar approach they termed “small private online 
courses” (SPOCs). In summary, MOOCS and COLT represent two different but 
complementary approaches. The first should arouse the interest of a very wide 
audience for a theme, while the second allows the deepening and accreditation of 
knowledge acquired by a target audience, admittedly small but most often highly 
motivated.
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4.4 Economic challenges of digital distance education

The economic challenges of digital distance education could be significant and, 
of course, influence access to education and training around the world. In fact, the 
economic model of the MOOCs is still very vague, and J.R. Young [17] has sum-
marized the situation prevailing in the USA: “it is following a common approach of 
Silicon Valley start-ups: build fast and worry about money later.” No one will deny 
that Google, Facebook, and others have been particularly successful in adopting 
this strategy. As far as COLT is concerned, it falls within the usual framework of 
academic teaching and does not require any additional resources, provided that this 
approach replaces conventional teaching and does not add to it.

4.5 Perspectives and future improvements

As mentioned, the motivation of the students could has been higher provided 
they could obtain not only a certificate attesting their attendance to the course but 
a certain number of European Credit Transfer and Accumulation System (ECTS) 
credits if the final examination is passed. ECTS is a standard means for compar-
ing the “volume of learning based on the defined learning outcomes and their 
associated workload” for higher education across the European Union and other 
collaborating European countries. Ideally a European university (some have shown 
some interest) might be asked to take the lead (leading house) and propose to the 
European students a certificate of advanced study (CAS) in the field of aldosterone 
and its receptor. The CAS will be officially accredited by the university and the 
number of ECTS attributed precisely defined. One unsolved difficulty encountered 
by all universities is to determine the equivalence between an ex cathedra hour of 
teaching and the time spent by tutors to teach the students online.

5. Conclusion

In conclusion COLT is well adapted to a European network in which students 
from different countries can work online under the supervision of their tutor and 
then meet in a face-to-face session to maximize the learning experience and interac-
tions between students and tutors.
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