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Preface 
 

Heat conduction is a fundamental phenomenon encountered in many industrial and 
biological processes as well as in everyday life. Economizing of energy consumption in 
different heating and cooling processes or ensuring temperature limitations for proper 
device operation requires the knowledge of heat conduction physics and mathematics. 
The fundamentals of heat conduction were formulated by J. Fourier in his outstanding 
manuscript Théorie de la Propagation de la Chaleur dans les Solides presented to the 
Institut de France in 1807 and in the monograph ThéorieAnalytique de la Chaleur (1822). 
The two century evolution of the heat conduction theory resulted in a wide range of 
methods and problems that have been solved or have to be solved for successful 
development of the world community.  

The content of this book covers several up-to-date approaches in the heat conduction 
theory such as inverse heat conduction problems, non-linear and non-classic heat 
conduction equations, coupled thermal and electromagnetic or mechanical effects and 
numerical methods for solving heat conduction equations as well. The book is 
comprised of 14 chapters divided in four sections. 

In the first section inverse heat conduction problems are discuss. The section is started 
with a review containing classification of inverse heat conduction problems alongside 
with the methods for their solution. The genetic algorithm, neural network and 
particle swarm optimization techniques, and the Marching Algorithm are considered 
in the next two chapters. In Chapter 4 the inverse heat conduction problem is used for 
evaluating from experimental data the local heat transfer coefficient for jet 
impingement with plane surface. 

The first two chapter of the second section are devoted to construction of analytical 
solutions of nonlinear heat conduction problems when nonlinear terms are included in 
the heat conduction equation (Chapter 5) or the nonlinearity appears through 
boundary conditions and/or temperature dependence of the heat conduction equation 
coefficients (Chapter 6). In the last two chapters of this section wavelike solutions are 
attained due to construction of a hyperbolic heat conduction equation (Chapter 7) or 
because of time varying boundary conditions (Chapter 8). 



XII Preface

The third section is devoted to combined effects of heat conduction and 
electromagnetic interactions in plasmas (Chapter 9) or pyroelectric material (Chapter 
10), elastic deformations (Chapter 11) and hydrodynamics (Chapter 12). 

Two chapters in the last section are dedicated to numerical methods for solving heat 
conduction problems, namely the particle transport Monte Carlo method (Chapter 13) 
and a meshless version of the boundary element method (Chapter 14). 

Dr. Prof. Vyacheslav S. Vikhrenko 
Belarusian State Technological University, 

Belarus 



Part 1 

Inverse Heat Conduction Problems 



 1 

Inverse Heat Conduction Problems 
Krzysztof Grysa 

Kielce University of Technology 
Poland 

1. Introduction  
In the heat conduction problems if the heat flux and/or temperature histories at the surface 
of a solid body are known as functions of time, then the temperature distribution can be 
found. This is termed as a direct problem. However in many heat transfer situations, the 
surface heat flux and temperature histories must be determined from transient temperature 
measurements at one or more interior locations. This is an inverse problem. Briefly speaking 
one might say the inverse problems are concerned with determining causes for a desired or 
an observed effect.  
The concept of an inverse problem have gained widespread acceptance in modern applied 
mathematics, although it is unlikely that any rigorous formal definition of this concept exists. 
Most commonly, by inverse problem is meant a problem of determining various quantitative 
characteristics of a medium such as density, thermal conductivity, surface loading, shape of a 
solid body etc. , by observation over physical fields in the medium or – in other words -  a 
general framework that is used to convert observed measurements into information about a 
physical object or system that we are interested in. The fields may be of natural appearance or 
specially induced, stationary or depending on time, (Bakushinsky & Kokurin, 2004).  
Within the class of inverse  problems, it is the subclass of indirect measurement problems 
that characterize the nature of inverse problems that arise in applications. Usually 
measurements only record some indirect aspect of the phenomenon of interest. Even if the 
direct information is measured, it is measured as a correlation against a standard and this 
correlation can be quite indirect. The inverse problems are difficult because they ussually 
are extremely sensitive to measurement errors. The difficulties are particularly pronounced 
as one tries to obtain the maximum of information from the input data.  
 A formal mathematical model of an inverse problem can be derived with relative ease. 
However, the process of solving the inverse problem is extremely difficult and the so-called 
exact solution practically does not exist. Therefore, when solving an inverse problem the 
approximate methods like iterative procedures, regularization techniques, stochastic and 
system identification methods, methods based on searching an approximate solution in a 
subspace of the space of  solutions (if the one is known), combined techniques or straight 
numerical methods are used.  

2. Well-posed and ill-posed problems 
The concept of well-posed or correctly posed problems was introduced in (Hadamard, 
1923). Assume that a problem is defined as 
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 Au=g   (1) 

where u  U, g  G, U and G are metric spaces and A is  an operator so that AUG. In 
general u can be a vector that characterize a model of phenomenon and g can be the 
observed attribute of the phenomenon.  
A well-posed problem must meet the following requirements: 
 the solution of equation (1) must exist for any gG, 
 the solution of equation (1) must be unique, 
 the solution of equation (1) must be stable with respect to perturbation on the right-

hand side, i.e. the operator A-1 must be defined throughout the space G and be 
continuous.  

If one of the requirements is not fulfilled the problem is termed as an ill-posed. For ill-
posed problems the inverse operator A-1 is not continuous in its domain AU G which 
means that the solution of the equation (1) does not depend continuously on the input 
data g  G, (Kurpisz & Nowak, 1995; Hohage, 2002; Grysa, 2010). In general we can say 
that the (usually approximate) solution of an ill-posed problem does not necessarily 
depend continuously on the measured data and the structure of the solution can have a 
tenuous link to the measured data. Moreover, small measurement errors can be the source  
for unacceptable perturbations in the solution. The best example of the last statement is  
numerical differentiation of a solution of an inverse problem with noisy input data. Some 
interesting remarks on the inverse and ill-posed problems can be found in (Anderssen, 
2005). 
Some typical inverse and ill-posed problems are mentioned in (Tan & Fox, 2009).  

3. Classification of the inverse problems 
Engineering field problems are defined by governing partial differential or integral 
equation(s), shape and size of the domain, boundary and initial conditions, material 
properties of the media contained in the field and by internal sources and external forces or 
inputs. As it has been mentioned above, if all of this information is known, the field problem 
is of a direct type and generally considered as well posed and solvable. In the case of heat 
conduction problems the governing equations and possible boundary and initial conditions 
have the following form: 

   v
Tc k T Q
t
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where ( / , / , / )x y z        stands for gradient differential operator in 3D;  denotes 
density of mass, [kg/m3]; c is the constant-volume specific heat, [J/kg K]; T is temperature, 
[K]; k denotes thermal conductivity, [W/m K]; vQ is the rate of heat generation per unit 
volume, [W/m3], frequently termed as source function; / n  means differentiation along 
the outward normal; hc denotes the heat transfer coefficient, [W/m2 K]; Tb , qb and T0 are 
given functions and Te stands for environmental temperature, tf – final time. The boundary 
  of the domain  is divided into three disjoint parts denoted with subscripts D for 
Dirichlet, N for Neumann and R for Robin boundary condition; D N RS S S    . 
Moreover, it is also possible to introduce the fourth-type or radiation boundary condition, 
but here this condition will not be dealt with.  
 The equation (2) with conditions (3) to (6) describes an initial-boundary value problem for 
transient heat conduction. In the case of stationary problem the equation (2) becomes a 
Poisson equation or – when the source function vQ  is equal to zero – a Laplace equation. 
Broadly speaking, inverse problems may be subdivided into the following categories: 
inverse conduction, inverse convection, inverse radiation and inverse phase change 
(melting or solidification) problems as well as all combination of them (Özisik & Orlande, 
2000). Here we have adopted classification based on the type of causal characteristics to be 
estimated:  
1. Boundary value determination inverse problems, 
2. Initial value determination inverse problems, 
3. Material properties determination inverse problems, 
4. Source determination inverse problems 
5. Shape determination inverse problems.  

3.1 Boundary value determination inverse problems 
In this kind of inverse problem on a part of a boundary the condition is not known. Instead, 
in some internal points of the considered body some results of temperature measurements 
or anticipated values of temperature or heat flux are prescribed. The measured or 
anticipated values are called internal responses. They can be known on a line or surface 
inside the considered body or in a discrete set of points. If the internal responses are known 
as  values of heat flux, on a part of the boundary a temperature has to be known, i.e. 
Dirichlet or Robin condition has to be prescribed. In the case of stationary problems an 
inverse problem for Laplace or Poisson equation has to be solved. If the temperature field 
depends on time, then the equation (2) becomes a starting point. The additional condition 
can be formulated as  

    , , , , , ,aT x y z t T x y z t    for    , ,x y z L   ,  t(0, tf]  (7) 

or 

  , , ,i i i i ikT x y z t T    for    , ,i i ix y z  , tk(0, tf], i=1,2,…, I; k=1,2,..,K  (8) 

with  Ta being a given function and  Tik known from e.g. measurements. As examples of such 
problems can be presented papers (Reinhardt et al., 2007; Soti et al., 2007; Ciałkowski & 
Grysa, 2010) and many others. 
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3.2 Initial value determination inverse problems 
In this case an initial condition is not known, i.e. in the condition (6) the function T0  is not 
known. In order to find the initial temperature distribution a temperature field in the whole 
considered domain for fixed t>0 has to be known, i.e. instead of the condition (6) a condition 
like   

      0, , , , ,    for   , ,inT x y z t T x y z x y z   and   tin(0, tf]  (9) 

has to be specified, compare (Yamamoto & Zou, 2001; Masood et al., 2002). In some papers 
instead of the condition (9) the temperature measurements on a part of the boundary are 
used, see e.g. (Pereverzyev et al., 2005).  

3.3 Material properties determination inverse problems 
Material properties determination makes a wide class of inverse heat conduction problems. 
The coefficients can depend on spatial coordinates or on temperature. Sometimes 
dependence on time is considered. In addition to the coefficients mentioned in part 3 also 
the thermal diffusivity, /a k c , [m/s2] is the one frequently being determined. In the case 
when thermal conductivity depends on temperature, Kirchhoff substitution is useful, 
(Ciałkowski & Grysa, 2010a). Also in the case of material properties determination some 
additional information concerning temperature and/or heat flux in the domain has to be 
known, usually the temperature measurements taken at the interior points, compare (Yang, 
1998; Onyango et al., 2008; Hożejowski et al., 2009).  

3.4 Source determination inverse problems 
In the case of source determination, vQ , one can identify intensity of the source, its location 
or both. The problems are considered for steady state and for transient heat conduction. In 
many cases as an extra condition the temperature data are given at chosen points of the 
domain  , usually as results of measurements, see condition (8). As an additional condition 
can be also adopted measured or anticipated temperature and heat flux on a part of the 
boundary. A separate class of problems are those concerning moving sources, in particular 
those with unknown intensity. Some examples of such problems can be found in papers 
(Grysa & Maciejewska, 2005; Ikehata, 2007; Jin & Marin, 2007; Fan & Li, 2009).  

3.5 Shape determination inverse problems 
In such problems, in contrast to other types of inverse problems, the location and shape of 
the boundary of the domain of the problem under consideration is unknown. To 
compensate for this lack of information, more information is provided on the known part of 
the boundary. In particular, the boundary conditions are overspecified on the known part, 
and the unknown part of the boundary is determined by the imposition of a specific 
boundary condition(s) on it.  
The shape determination inverse problems can be subivided into two class.  
The first one can be considered as a design problem, e.g. to find such a shape of a part of the 
domain boundary, for which the temperature or heat flux achieves the intended values. The 
problems become then extremely difficult especially in the case when the boundary is 
multiply connected. 
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The second class is termed as Stefan problem. The Stefan problem consists of the 
determination of temperature distribution within a domain and the position of the moving 
interface between two phases of the body when the initial condition, boundary conditions 
and thermophysical properties of the body are known. The inverse Stefan problem consists 
of the determination of the initial condition, boundary conditions and thermophysical 
properties of the body. Lack of a portion of input data is compensated with certain 
additional information. 
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problems are very important, because they provide closed form expressions for the heat flux in 
terms of temperature measurements, give considerable insight into the characteristics of 
inverse problems, and provide standards of comparison for approximate methods. 

4.1 Analytical methods of solving the steady state inverse problems 
In 1D steady state problems in a slab in which the temperature is known at two or more 
location, thermal conductivity is known and no heat source acts, a solution of the inverse 
problem can be easily obtained. For this situation the Fourier’s law, being a differential 
equation to integrate directly,  indicates that the temperature profile must be linear, i.e.  

   / conT x ax b qx k T     ,  (10) 

with two unkowns, q (the steady-state heat flux) and Tcon (a constant of integration). 
Suppose the temperature is measured at J locations,  1 2, ,..., Jx x x , below the upper surface 

(with x-axis directed from the surface downward) and the experimental temperature 
measurements are Yj , j = 1,2,…,J . The steady-state heat flux and the integration constant can 
be calculated by minimizing the least square error between the computed and experimental 
temperatures. In order to generalize the analysis, assume that some of the sensors are more 
accurate than others, as indicated by the weighting factors, wj ,  j = 1,2,…,J . A weighted least 
square criterion is defined as 
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Equations (12) involve two sensitivity coefficients which can be evaluated from (10), 

 / /j jT x q x k     and  / 1j conT x T   , j = 1,2,…,J , (Beck et al., 1985). Solving the 

system of equations (12) for the unknown heat flux gives  

 

2 2 2 2

1 1 1 1
2

2 2 2 2

1 1 1

J J J J

j j j j j j j j
j j j j

J J J

j j j j j
j j j

w w x Y w x w Y

q k

w w x w x

   

  

     
     
     
      

    
    
    
    

   

  
. (13) 

Note, that the unknown heat flux is linear in the temperature measurements.  
Constants a and b  in equation (10) could be developed by fitting a weighted least square 
curve to the experimental temperature data. Differentiating the curve according to the 
Fouriers’a law leads also to formula (13).  
In the case of 2D and 3D steady state problems with constant thermophysical properties, the 
heat conduction equation becomes a Poisson equation. Any solution of the homogeneous 
(Laplace) equation can be expressed as a series of harmonic functions. An approximate 
solution, u, of an inverse problem can be then presented as a linear combination of a finite 
number of polynomials or harmonic functions plus a particular solution of the Poisson equation: 
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where Hk’s stand for harmonic functions, k denotes the k-th coefficient of the linear 
combination of the harmonic functions, k = 1,2,…,K, and partT  stands for a particular 
solution of the Poisson equation. If the experimental temperature measurements Yj, 
j = 1,2,…,J, are known, coefficients of the combination,  k , can be obtained by minimization 
an objective functional  
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where j x ; w1, w2, w3 – weights. Note that for harmonic functions the first integral vanishes.  

4.2 Burggraf solution  
Considering 1D transient boundary value inverse problem in a flat slab Burggraf obtained 
an exact solution in the case when the time-dependant temperature response was known 
at one internal point, (Burggraf, 1964). Assuming that    *, *T x t T t   and    *, *q x t q t  

are known and are of class C  in the considered domain, Burggraf found an exact 
solution to the inverse problem for a flat slab, a sphere and a circular cylinder in the 
following form: 
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with a standing for thermal diffusivity, /a k c , [m/s2]. The functions  nf x  and  ng x  
have to fulfill the conditions 
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It is interesting  that no initial condition is needed to determine the solution. This 
follows from the assumption that the functions  *T t  and  *q t are defined for [0, ).t   
The solutions of 1D inverse problems in the form of infinite series or polynomials was also 
proposed in (Kover'yanov, 1967) and in other papers.  

4.3 Laplace transform approach  
The Laplace transform approach is an integral technique that replaces time variable and the 
time derivative by a Laplace transform variable. This way in the case of 1D transient 
problems, the partial differential equation converts to the form of an ordinary differential 
equation. For the latter it is not difficult to find a solution in a closed form. However, in the 
case of inverse problems inverting of the obtained solutions to the time-space variables is 
practically impossible and usually one looks for approximate solutions, (Woo & Chow, 1981; 
Soti et al., 2007; Ciałkowski & Grysa, 2010). The Laplace transform is also useful when 2D 
inverse problems are considered (Monde et al., 2003)  
The Laplace transform approach usually is applied for simple geometry (flat slab, halfspace, 
circular cylinder, a sphere, a rectangle and so on).  

4.4 Trefftz method  
The method known as “Trefftz method” was firstly presented in 1926, (Trefftz, 1926). In the 
case of any direct or inverse problem an approximate solution is assumed to have a form of 
a linear combination of functions that satisfy the governing partial linear differential 
equation (without sources). The functions are termed as Trefftz functions or T-functions. In 
the space of solutions of the considered equation they form a complete set of functions. The 
unknown coefficients of the linear combination are then determined basing on approximate 
fulfillment the boundary, initial and other conditions (for instance prescribed at chosen 
points inside the considered body), finally having a form of a system of algebraic equations 
(Ciałkowski & Grysa, 2010a).  
T-functions usually are derived for differential equation in dimensionless form. The 
equation (2) with zero source term and constant material properties can be expressed in 
dimensionless form as follows: 
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The Laplace transform approach usually is applied for simple geometry (flat slab, halfspace, 
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the space of solutions of the considered equation they form a complete set of functions. The 
unknown coefficients of the linear combination are then determined basing on approximate 
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points inside the considered body), finally having a form of a system of algebraic equations 
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T-functions usually are derived for differential equation in dimensionless form. The 
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where ξ  stands for dimensionless spatial location and τ = k/c denotes dimensionless time 
(Fourier number). In further consideration we will use notation x =( x, y, z) and t for 
dimensionless coordinates.  
For dimensionless heat conduction equation in 1D the set of T-functions read 
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where [n/2] = floor(n/2) stands for the greatest previous integer of n/2. T-functions in 2D are 
the products of proper T-functions for the 1D heat conduction equations: 

  , , ( , ) ( , )m n k kV x y t v x t v y t ,   0,1,...n   ; 0,...,k n ;   1
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The 3D T-functions are built in a similar way.  
Consider an inverse problem formulated in dimensionless coordinates as follows: 

                                             2 /T T                           in (0, ]f , 

                                             1T g                                    on (0, ]D fS  , 

                                             2/T n g                           on (0, ]N fS  ,                                       (20) 

                                             3/T n BiT Big               on (0, ]R fS  , 

                                             4T g                                    on int intS T , 

                                             T h                                     on  for  t = 0, 

where intS  stands for a set of points inside the considered region, int (0, )fT   is a set of 

moments of time, the functions  gi , i=1,2,3,4  and h are of proper class of differentiability in 
the domains in which they are determined and D N RS S S    . Bi=hcl/k denotes the Biot 
number (dimensionless heat transfer coefficient) and l stands for characteristic length. The 
sets intS  and intT  can be continuous (in the case of anticipated or smoothed or described by 
continuous functions input data) or discrete. Assume that g1 in not known and g4 describes 
results of measurements on int intS T . An approximate solution of the problem is expressed 
as a linear combination of the T-functions 
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 with k standing for T-functions. The objective functional can be written down as  
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In the contrary to the formula (15), the integral containing residuals of the governing 

equation fulfilling,   
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     , does not appear here because u, as a linear 

combination of T-functions, satisfies the equation (20)1. Minimization of the functional  I u  
(being in fact a function of K unknown coefficients, 1 ,..., K  ) leads to a system of K 
algebraic equations for the unknowns. The solution of this system leads to an approximate 
solution, (21), of the considered problem. Hence, for  , (0, )D fS  x  one obtains 

approximate form of the functions g1.  
It is worth to mention that approximate solution of the considered problem can also be 
obtained in the case when, for instance, the function h  is unknown. In the formula (21) the 
last term is then omitted, but the minimization of the functional  I u  can be done. The final 
result has physical meaning, because the approximate solution (21) consists of functions  
satisfying the governing partial differential equation.  
The greater the number of T-functions in (21), the better the approximation of the solutions 
takes place. However, with increasing K, conditioning of the algebraic system of equation 
that results from minimization of I(u) can become worse. Therefore, the set intS  has to be 
chosen very carefully.  
Since the system of algebraic equations for the whole domain may be ill-conditioned, a 
finite element method with the T-functions as base functions is often used to solve the 
problem.  

4.5 Function specification method  
The function specification method, originally proposed in (Beck, 1962), is particularly useful 
when the surface heat flux is to be determined from transient measurements at interior 
locations. In order to accomplish this, a functional form for the unknown heat flux is 
assumed. The functional form contains a number of unknown parameters that are estimated 
by employing the least square method. The function specification method can be also 
applied to other cases of inverse problems, but efficiency of the method for those cases is 
often not satisfactory.  
As an illustration of the method, consider the 1D problem 

 2 2/ /a T x T t         for (0, )x l  and  t(0, tf], 

 / ( )k T x q t       for x = 0 and  t(0, tf],    (23) 

   / ( )k T x f t      for x = l  and  t(0, tf], 
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  0T T x          for (0, )x l  and  t = 0 . 

For further analysis it is assumed that q(t) is not known. Instead, some measured 
temperature histories are given at interior locations: 

   ,,j k i kT x t U ,     
1,...,

0,j j J
x l


 ,      1,..., 0,k fk Kt t


 .  

The heat flux is more difficult to calculate accurately than the surface temperature. When 
knowing the heat flux it is easy to determine temperature distribution. On the contrary, if 
the unknown boundary characteristics were assumed as temperature, calculating the heat 
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 In order to solve the problem, it  is  assumed  that  the  heat flux is also expressed in discrete 
form as a stepwise functions in the intervals (tk-1, tk) . It is assumed that the temperature 
distribution and the heat flux are known at times tk-1, tk-2, … and it is desired to determine 
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Now we assume that the unknown temperature field depends continuously on the 
unknown heat flux q. Let us denote /Z T q   and differentiate the formulas (23) with 
respect to q. We arrive to a direct problem 
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The direct problem (24) can be solved using different methods. Let us introduce now the 
sensitivity coefficients defined as 
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The temperature  , ,i k i mT T x t  can be expanded in a Taylor series about arbitrary but 
known values of heat flux *

kq . Neglecting the derivatives with order higher than one we 
obtain 

    
*

,* * * *
, , , ,

k k

i k
i k i k k k i k i k k k

k q q

T
T T q q T Z q q

q



     


     (26) 

Making use of (24) and (25), solving (26) for heat flux component qk and taking into 
consideration the temperature history only in one location, x1 ,  we arrive to the formula 
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In the case when future temperature measurements are employed to calculate qk , we use 
another formula (Beck et al, 1985, Kurpisz &Nowak, 1995), namely 
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The case of many interior locations for temperature measurements is described e.g. in 
(Kurpisz &Nowak, 1995). 
The detailed algorithm for 1D inverse problems with one interior point with measured 
temperature history is presented below: 
1. Substitute k=1 and assume * 0kq  over time interval 10 t t  , 

2. Calculate *
1, 1k rT   for 1,2,...,r R , R K , assuming 1 1...k k k Rq q q     ; *

1, 1k rT    
should be calculated, employing any numerical method to the following problem: 
differential equation (23)1, boundary condition (23)2 with *

kq  instead of q(t), boundary 

condition (23)3 and initial condition *
1 1k kT T  , where 1kT   has been computed for the 

time interval 2 1k kt t t    or is an initial condition (23)4 when k = 1, 
3. Calculate qk  from equation (27) or (28), 
4. Determine the complete temperature distribution, using equation (26), 
5. Substitute 1k k  and *

1k kq q   and repeat the calculations from step 2. 
For nonlinear cases an iterative procedure should be involved for step 2 and 3. 

4.6 Fundamental solution method  
The fundamental solution method, like the Trefftz method,  is useful to approximate the 
solution of multidimensional inverse problems under arbitrary geometry. The method uses 
the fundamental solution of the corresponding heat equation to generate a basis for 
approximating the solution of the problem.  
 Consider the problem described by equation (20)1 , Dirichlet and Neumann conditions (20)2 
and (20)3 and initial condition (20)6. The dimensionless time is here denoted as t. Let Ω be a 
simply connected domain in Rd, d = 2,3. Let   1

M
i i  x  be a set of locations with noisy 

measured data ( )k
iY of exact temperature  ( ) ( )k k

i i iT t Yx , 1,2,...,i M , 1,2,..., ik J , where 
( ) (0, ]k

fit t  are discrete times. The absolute error between the noisy measurement and exact 
data is assumed to be bounded for all measurement points at all measured times. The 
inverse problem is formulated as: reconstruct T and /T n  on (0, )R fS t  from (20)1, (20)2 , 

(20)3 and (20)6 and the scattered noisy measurements ( )k
iY , 1,2,...,i M ,  1,2,..., ik J . It is 

worth to mention that with reconstructed T and /T n  on (0, )R fS t  it is easy to identify 
heat transfer coefficient, hc ,  on SR . 
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The fundamental solution of (20)1 in Rd  is given by 
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1, exp

44 dF t H t
tt

 
  
 
 

x
x  (29) 

where H(t) is the Heaviside function. Assuming that * ft t is a constant, the function 

   , , *t F t t  x x  is a general solution of (20)1 in the solution domain (0, )ft .  

We denote the measurement points to be   
1

,
m

j j j
t


x , 

1

M

i
i

m J


  , so that a point at the same 

location but with different time is treated as two distinct points. In order to solve the 
problem one has to choose collocation points. They are chosen as  

   
1

,
m n

j j j m
t



 
x on the initial region  0 ,  

   
1

,
m n p

j j j m n
t

 

  
x  on the surface (0, ]D fS t , and 

   
1

,
m n p q

j j j m n p
t

  

   
x  on the surface (0, ]N fS t .  

Here, n, p and q denote the total number of collocation points for initial condition (20)6 , 
Dirichlet boundary condition (20)2 and Neumann boundary condition (20)3, respectively. 
The only requirement on the collocation points are pairwisely distinct in the (d +1)-
dimensional space  ,tx , (Hon & Wei, 2005, Chen et al., 2008).  

To illustrate the procedure of choosing collocation points let us consider an  
inverse problem in a square (Hon & Wei, 2005):   1 2 1 2, : 0 1,   0 1x x x x      , 

  1 2 1 2, : 1,   0 1DS x x x x    ,   1 2 1 2, : 0 1,   1NS x x x x    ,  \R D NS S S   . 
Distribution of the measurement points and collocation points is shown in Figure 1.  
An approximation T  to the solution of the inverse problem under the conditions (20)2 , (20)3 
and (20)6 and the noisy measurements ( )k

iY  can be expressed by the following linear 
combination: 

    
1

,  ,
n m p q

j j j
j

T t t t 
  



  x x x  ,  (30) 

where    , , *t F t t  x x , F is given by (29) and j  are unknown coefficients to be 

determined.  
For this choice of basis functions  , the approximated solution T  automatically satisfies the 
original heat equation (20)1. Using the conditions (20)2 , (20)3 and (20)6 , we then obtain the 
following system of linear equations for the unknown coefficients j : 

 A b     (31) 
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Fig. 1. Distribution of measurement points and collocation points. Stars represent collocation 
points matching Dirichlet data, squares represent collocation points matching Neumann 
data, dots represent collocation points matching initial data and circles denotes points with 
sensors for internal measurement.  
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  (33) 

where  1,2,...,i n m p   ,  1 ,...,( )k n m p m n p q       ,  1,2,...,j n m p q    , 
respectively. The first m rows of the matrix A  leads to values of measurements, the next n 
rows – to values of the right-hand side of the initial condition and, of course, time variable is 
then equal to zero, the next p rows leads to values of the right-hand side of the Dirichlet 
condition and the last q rows - to values of the right-hand side of Neumann condition.  
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The solvability of the system (31) depends on the non-singularity of the matrix A, which is 
still an open research problem. 
Fundamental solution method belongs to the family of Trefftz method. Both methods, 
described in part 4.4 and 4.6, frequently lead to ill-conditioned system of algebraic equation. 
To solve the system of equations, different techniques are used. Two of them, namely single 
value decomposition and Tikhonov regularization technique, are briefly presented in the 
further parts of the chapter. 

4.7 Singular value decomposition 
The ill-conditioning of the coefficient matrix A (formula (32) in the previous part of the 
chapter) indicates that the numerical result is sensitive to the noise of the right hand side  
b (formula (33)) and the number of collocation points. In fact, the condition number of the 
matrix A increases dramatically with respect to the total number of collocation points.  
The singular value decomposition usually works well for the direct problems but usually 
fails to provide a stable and accurate solution to the system (31). However, a number of 
regularization methods have been developed for solving this kind of ill-conditioning 
problem, (Hansen, 1992; Hansen & O’Leary, 1993). Therefore, it seems useful to present the 
singular value decomposition method here.  
Denote N = n + m + p + q. The singular value decomposition of the N N matrix A is a 
decomposition of the form 

 
1

 
N

T T
i i i

i
A W V 



  w v  (34) 

with   1 2, ,..., NW  w w w  and  1 2, ,..., NV  v v v  satisfying  T T
NW W V V I  . Here, the 

superscript T denotes transposition of a matrix. It is known that  1 2, ,..., Ndiag      has 
non-negative diagonal elements satisfying inequality 

 1 2 ... 0N        (35) 

The values i  are called the singular values of A and the vectors iw  and iv  are called left 
and right singular vectors of A, respectively, (Golub & Van Loan, 1998). The more rapid is 
the decrease of singular values in (35), the less we can reconstruct reliably for a given noise 
level. Equivalently, in order to get good reconstruction when the singular values decrease 
rapidly, an extremely high signal-to-noise ratio in the data is required. 
For the matrix A the singular values decay rapidly to zero and the ratio between the largest 
and the smallest nonzero singular values is often huge. Based on the singular value 
decomposition, it is easy to know that the solution for the system (31) is given by 

 
1

TN
i

i
ii

b



 w v


   (36) 

When there are small singular values, such approach leads to a very bad reconstruction of 
the vector  . It is better to consider small singular values as being effectively zero, and to 
regard the components along such directions as being free parameters which are not 
determined by the data.  
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However, as it was stated above, the singular value decomposition usually fails for the 
inverse problems. Therefore it is better to use here Tikhonov regularization method. 

4.8 Tikhonov regularization method 
This is perhaps the most common and well known of regularization schemes, (Tikhonov & 
Arsenin, 1977). Instead of looking directly for a solution for an ill-posed problem (31) we 
consider a minimum of a functional  

 
2 22

0J A b          
     (37) 

with 0 being a known vector, . denotes the Euclidean norm, and 2 is called the 
regularization parameter. The necessary condition of minimum of the functional (37) leads 
to the following system of equation: 
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Taking into account (34) after transformation one obtains the following form of the 
functional J: 

 
 

     

22 2
0

22 222 2
0 0

T T TJ W V WW b VV

W V J

    

 

       

          y c y y y c y y y

   
  (38) 

where TV y  , 0
TV y  , TW bc  and the use has been made from the properties 

T T
NW W V V I  . Minimization of the functional  J y  leads to the following vector 

equation: 
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If 0  0  the Tikhonov regularized solution for equation (31) based on singular value 
decomposition of the N N  matrix A can be expressed as 
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The determination of a suitable value of the regularization parameter 2  is crucial and is 
still under intensive research. Recently  the L-curve criterion is frequently used to choose a 
good regularization parameter, (Hansen, 1992; Hansen & O’Leary, 1993). Define a curve L 
by 

   22
log ,logL A b            

     (41) 

A suitable regularization parameter 2  is the one near the “corner” of the L-curve, (Hansen 
& O’Leary, 1993; Hansen, 2000).  

4.9 The conjugate gradient method 
The conjugate gradient method is a straightforward and powerful iterative technique for 
solving linear and nonlinear inverse problems of parameter estimation. In the iterative 
procedure, at each iteration a suitable step size is taken along a direction of descent in order 
to minimize the objective function. The direction of descent is obtained as a linear 
combination of the negative gradient direction at the current iteration with the direction of 
descent of the previous iteration. The linear combination is such that the resulting angle 
between the direction of descent and the negative gradient direction is less than 90o and the 
minimization of the objective function is assured, (Özisik & Orlande, 2000). 
As an example consider the following problem in a flat slab with the unknown heat source 

 pg t  in the middle plane: 

   2 2/ 0.5 /pT x g t x T t         in  0 1x  , for 0t   

 / 0T x      at 0x   and at 1x  ,  for 0t   (42) 

 ,0 0T x    for 0t  , in  0 1x   

where     is the Dirac delta function. Application of the conjugate gradient method can be 

organized in the following steps (Özisik & Orlande, 2000): 
 The direct problem, 
 The inverse problem, 
 The iterative procedure, 
 The stopping criterion, 
 The computational algorithm. 
The direct problem. In the direct problem associated with the problem (42) the source 
strength,  pg t , is known. Solving the direct problem one determines the transient 

temperature field  ,T x t  in the slab.  

The inverse problem. For solution of the inverse problem we consider the unknown energy 
generation function  pg t  to be parameterized in the following form of linear combination 

of trial functions  jC t (e.g. polynomials, B-splines, etc.): 
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jP  are unknown parameters, 1,2,...,j N . The total number of parameters, N, is specified. 

The solution of the inverse problem is based on minimization of the ordinary least square 
norm,  S P : 
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where  1 2, ,...,T
NP P PP ,    ,i iT T tP P  states for estimated temperature at time it , 

 i iY Y t  denotes measured temperature at time it , I is a total number of measurements, 
I N . The parameters estimation problem is solved by minimization of the norm (44).  
The iterative procedure. The iterative procedure for the minimization of the norm S(P) is 
given by 

 1k k k k  P P d  (45) 

where k is the search step size, 1 2, ,...,k k k k
Nd d d   d  is the direction of descent and k is the 

number of iteration. kd  is a conjugation of the gradient direction,  kS P , and the direction 

of descent of the previous iteration, 1kd : 

   1k k k kS    d P d .  (46) 

Different expressions are available for the conjugation coefficient k . For instance the 
Fletcher-Reeves expression is given as 
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         P P    for  1,2,...,j N  . (48) 

Note that if 0k  for all iterations k, the direction of descent becomes the gradient direction 
in (46) and the steepest-descent method is obtained.  
The search step k is obtained by minimizing the function  1kS P  with respect to k . It 

yields the following expression for k : 
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The determination of a suitable value of the regularization parameter 2  is crucial and is 
still under intensive research. Recently  the L-curve criterion is frequently used to choose a 
good regularization parameter, (Hansen, 1992; Hansen & O’Leary, 1993). Define a curve L 
by 

   22
log ,logL A b            

     (41) 

A suitable regularization parameter 2  is the one near the “corner” of the L-curve, (Hansen 
& O’Leary, 1993; Hansen, 2000).  
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The stopping criterion. The iterative procedure does not provide the conjugate gradient 
method with the stabilization necessary for the minimization of   S P  to be classified as 
well-posed. Such is the case because of the random errors inherent to the measured 
temperatures. However, the method may become well-posed if the Discrepancy Principle is 
used to stop the iterative procedure, (Alifanov, 1994): 

  1kS  P  (50) 

where the value of the tolerance ε  is chosen so that sufficiently stable solutions are obtained, 
i.e. when the residuals between measured and estimated temperatures are of the same order 
of magnitude of measurement errors, that is    ,i meas i iY t T x t   , where i  is the 
standard deviation of the measurement error at time ti . For i const    we obtain I  . 
Such a procedure gives the conjugate gradient method an iterative regularization character. If 
the measurements are regarded as errorless, the tolerance ε can be chosen as a sufficiently 
small number, since the expected minimum value for the  S P  is zero. 

The computation algorithm. Suppose that temperature measurements  1 2, ,..., IY Y YY are 

given at times ti , 1,2,...,i I , and an initial guess  0P is available for the vector of unknown 
parameters P. Set k = 0 and then 
Step 1. Solve the direct heat transfer problem (42) by using the available estimate kP  and 
obtain the vector of estimated temperatures    1 2, ,...,k

IT T TT P . 

Step 2. Check the stopping criterion given by equation (50). Continue if not satisfied.  
Step 3. Compute the gradient direction  kS P  from equation (48) and then the conjugation 

coefficient k  from (47). 
Step 4. Compute the direction of descent kd  by using equation (46). 
Step 5. Compute the search step size k  from formula (49). 
Step 6. Compute the new estimate 1kP  using (45). 
Step 7. Replace k by k+l and return to step 1. 

4.10 The Levenberg-Marquardt method 
The Levenberg-Marquardt method, originally devised for application to nonlinear 
parameter estimation problems, has also been successfully applied to the solution of linear 
ill-conditioned problems. Application of the method can be organized as  for conjugate 
gradient. As an example we will again consider the problem (42).  
The first two steps, the direct problem and the inverse problem, are the same as for 
the conjugate gradient method. 
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The iterative procedure. To minimize the least squares norm, (44), we need to equate to 
zero the derivatives of S(P) with respect to each of the unknown parameters 
 1 2, ,..., NP P P ,that is, 
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Let us introduce the Sensitivity or Jacobian matrix, as follows: 
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where N = total number of unknown parameters, I= total number of measurements. The 
elements of the sensitivity matrix are called the sensitivity coefficients, (Özisik & Orlande, 
2000). The results of differentiation (51) can be written down as follows:  

    2 0T     J P Y T P   (53) 

For linear inverse problem the sensitivity matrix is not a function of the unknown 
parameters. The equation (53) can be solved then in explicit form (Beck & Arnold, 1977): 

   1T T
P J J J Y   (54) 

In the case of a nonlinear inverse problem, the matrix J has some functional dependence on the 
vector P. The solution of equation (53) requires then an iterative procedure, which is 
obtained by linearizing the vector T(P) with a Taylor series expansion around the current 
solution at iteration k. Such a linearization is given by 

      k k k  T P T P J P P    (55) 

where  kT P  and kJ  are the estimated temperatures and the sensitivity matrix evaluated at 

iteration k, respectively. Equation (55) is substituted into (54) and the resulting expression is 
rearranged to yield the following iterative procedure to obtain the vector of unknown 
parameters P (Beck & Arnold, 1977): 

 1 1[( ) ] ( ) [ ( )]k k k T k k T k   P P J J J Y T P   (56) 

The iterative procedure given by equation (56) is called the Gauss method. Such method is 
actually an approximation for the Newton (or Newton-Raphson) method. We note that 
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Step 3. Compute the gradient direction  kS P  from equation (48) and then the conjugation 

coefficient k  from (47). 
Step 4. Compute the direction of descent kd  by using equation (46). 
Step 5. Compute the search step size k  from formula (49). 
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The Levenberg-Marquardt method, originally devised for application to nonlinear 
parameter estimation problems, has also been successfully applied to the solution of linear 
ill-conditioned problems. Application of the method can be organized as  for conjugate 
gradient. As an example we will again consider the problem (42).  
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where N = total number of unknown parameters, I= total number of measurements. The 
elements of the sensitivity matrix are called the sensitivity coefficients, (Özisik & Orlande, 
2000). The results of differentiation (51) can be written down as follows:  

    2 0T     J P Y T P   (53) 

For linear inverse problem the sensitivity matrix is not a function of the unknown 
parameters. The equation (53) can be solved then in explicit form (Beck & Arnold, 1977): 

   1T T
P J J J Y   (54) 

In the case of a nonlinear inverse problem, the matrix J has some functional dependence on the 
vector P. The solution of equation (53) requires then an iterative procedure, which is 
obtained by linearizing the vector T(P) with a Taylor series expansion around the current 
solution at iteration k. Such a linearization is given by 

      k k k  T P T P J P P    (55) 

where  kT P  and kJ  are the estimated temperatures and the sensitivity matrix evaluated at 

iteration k, respectively. Equation (55) is substituted into (54) and the resulting expression is 
rearranged to yield the following iterative procedure to obtain the vector of unknown 
parameters P (Beck & Arnold, 1977): 

 1 1[( ) ] ( ) [ ( )]k k k T k k T k   P P J J J Y T P   (56) 

The iterative procedure given by equation (56) is called the Gauss method. Such method is 
actually an approximation for the Newton (or Newton-Raphson) method. We note that 



 
Heat Conduction – Basic Research 

 

22

equation (54), as well as the implementation of the iterative procedure given by equation 
(56), require the matrix TJ J to be nonsingular, or 

 0T J J   (57) 

where  .  is the determinant. 

Formula (57) gives the so called Identifiability Condition, that is, if the determinant of TJ J  is 
zero, or even very small, the parameters Pj , for 1,2,...,j N ,  cannot be determined by 
using the iterative procedure of equation (56). 
Problems satisfying T J J 0 are denoted ill-conditioned. Inverse heat transfer problems are 

generally very ill-conditioned, especially near the initial guess used for the unknown 
parameters, creating difficulties in the application of equations (54) or (56). The Levenberg-
Marquardt method alleviates such difficulties by utilizing an iterative procedure in the 
form, (Özisik & Orlande, 2000): 

 1 1[( ) ] ( ) [ ( )]k k k T k k k k T k     P P J J J Y T P   (58) 

where k is a positive scalar named damping parameter and k is a diagonal matrix. 
The purpose of the matrix term k k   is to damp oscillations and instabilities due to the ill-
conditioned character of the problem, by making its components large as compared to those 
of TJ J  if necessary. k is made large in the beginning of the iterations, since the problem is 
generally ill-conditioned in the region around the initial guess used for iterative procedure, 
which can be quite far from the exact parameters. With such an approach, the matrix TJ J  is 
not required to be non-singular in the beginning of iterations and the Levenberg-Marquardt 
method tends to the steepest descent method, that is , a very small step is taken in the negative 
gradient direction. The parameter k  is then gradually reduced as the iteration procedure 
advances to the solution of the parameter estimation problem, and then the Levenberg-
Marquardt method tends to the Gauss method given by (56).  
The stopping criteria. The following criteria were suggested in (Dennis & Schnabel, 1983) to 
stop the iterative procedure of the Levenberg-Marquardt Method given by equation (58): 

 1
1

kS  P        

   2[ ( )]k k  J Y T P  (59) 

1
3

k k   P P  

where 1 , 2  and 3 are user prescribed tolerances and . denotes the Euclidean norm.  
The computational algorithm. Different versions of the Levenberg-Marquardt method can be 
found in the literature, depending on the choice of the diagonal matrix d and on the form 
chosen for the variation of the damping parameter k (Özisik & Orlande, 2000). [l-91. Here  
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 [( ) ]k k T kdiag  J J .   (60) 

Suppose that temperature measurements  1 2, ,..., IY Y YY are given at times ti , 1,2,...,i I , 

and an initial guess  0P is available for the vector of unknown parameters P. Choose a value 
for 0 , say, 0 = 0.001 and set k=0. Then, 
Step 1. Solve the direct heat transfer problem (42) with the available estimate kP  in order to 
obtain the vector    1 2, ,...,k

IT T TT P . 

Step 2. Compute ( )kS P from the equation (44). 

Step 3. Compute the sensitivity matrix kJ from (52) and then the matrix k  from (60), by 
using the current value of kP . 
Step 4. Solve the following linear system of algebraic equations, obtained from (58): 

 [( ) ] ( ) [ ( )]k T k k k k k T k    J J P J Y T P  (61) 

in order to compute 1k k k  P P P . 
Step 5. Compute the new estimate 1kP  as 

 1k k k   P P P   (62) 

Step 6. Solve the exact problem (42) with the new estimate 1kP  in order to find  1kT P . 

Then compute 1( )kS P . 

Step 7. If 1( ) ( )k kS S P P , replace k  by  10 k  and return to step 4. 

Step 8. If 1( ) ( )k kS S P P , accept the new estimate 1kP  and eplace k  by  0,1 k . 
Step 9. Check the stopping criteria given by (59). Stop the iterative procedure if any of them 
is satisfied; otherwise, replace k by k+1 and return to step 3. 

4.11 Kalman filter method 
Inverse problems can be regarded as a case of system identification problems. System 
identification has enjoyed outstanding attention as a research subject. Among a variety of 
methods successfully applied to them, the Kalman filter, (Kalman, 1960; Norton, 
1986;Kurpisz. & Nowak, 1995), is particularly suitable for inverse problems.  
The Kalman filter is a set of mathematical equations that provides an efficient computational 
(recursive) solution of the least-squares method. The Kalman filtering technique has been 
chosen extensively as a tool to solve the parameter estimation problem. The technique is 
simple and efficient, takes explicit measurement uncertainty incrementally (recursively), 
and can also take into account a priori information, if any. 
The Kalman filter estimates a process by using a form of feedback control. To be precise, it 
estimates the process state at some time and then obtains feedback in the form of noisy 
measurements. As such, the equations for the Kalman filter fall into two categories: time 
update and measurement update equations. The time update equations project forward (in 
time) the current state and error covariance estimates to obtain the a priori estimates for the 
next time step. The measurement update equations are responsible for the feedback by 
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Inverse problems can be regarded as a case of system identification problems. System 
identification has enjoyed outstanding attention as a research subject. Among a variety of 
methods successfully applied to them, the Kalman filter, (Kalman, 1960; Norton, 
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The Kalman filter is a set of mathematical equations that provides an efficient computational 
(recursive) solution of the least-squares method. The Kalman filtering technique has been 
chosen extensively as a tool to solve the parameter estimation problem. The technique is 
simple and efficient, takes explicit measurement uncertainty incrementally (recursively), 
and can also take into account a priori information, if any. 
The Kalman filter estimates a process by using a form of feedback control. To be precise, it 
estimates the process state at some time and then obtains feedback in the form of noisy 
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next time step. The measurement update equations are responsible for the feedback by 
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incorporating a new measurement into the a priori estimate to obtain an improved a posteriori 
estimate. The time update equations are thus predictor equations while the measurement 
update equations are corrector equations.  
The standard Kalman filter addresses the general problem of trying to estimate x∈ℜ of a 
dynamic system governed by a linear stochastic difference equation, (Neaupane & 
Sugimoto, 2003) 

4.12 Finite element method 
The finite element method (FEM) or finite element analysis (FEA) is based on the idea of 
dividing the complicated object into small and manageable pieces. For example a two-
dimensional domain can be divided and approximated by a set of triangles or  rectangles (the 
elements or cells). On each element the function is approximated by a characteristic form.  
The theory of FEM is well know and described in many monographs, e.g. (Zienkiewicz, 
1977; Reddy & Gartling, 2001). The classic FEM ensures continuity of an approximate 
solution on the neighbouring elements. The solution in an element is built in the form of 
linear combination of shape function. The shape functions in general do not satisfy the 
differential equation which describes the considered problem. Therefore, when used to solve 
approximately an inverse heat transfer problem, usually leads to not satisfactory results.  
The FEM leads to promising results when T-functions (see part 4.4) are used as shape 
functions. Application of the T-functions as base functions of FEM to solving the inverse 
heat conduction problem was reported in (Ciałkowski, 2001). A functional leading to the 
Finite Element Method with Trefftz functions may have other interpretation than usually 
accepted. Usually the functional describes mean-square fitting of the approximated 
temperature field to the initial and boundary conditions. For heat conduction equation the 
functional is interpreted as mean-square sum of defects in heat flux flowing from element to 
element, with condition of continuity of temperature in the common nodes of elements. Full 
continuity between elements is not ensured because of finite number of base functions in 
each element. 
However, even the condition of temperature continuity in nodes may be weakened. Three 
different versions of the FEM with T-functions (FEMT) are considered in solving inverse 
heat conduction problems: (a) FEMT with the condition of continuity of temperature in the 
common nodes of elements, (b) no temperature continuity at any point between elements 
and (c) nodeless FEMT.  
Let us discuss the three approaches on an example of a dimensionless 2D transient 
boundary inverse problem in a square  ( , ) : 0 1,  0 1x y x y      , for t > 0. Assume that 
for 0y  the boundary condition is not known; instead measured values of temperature, 

ikY , are known at points  1 , ,b i ky t . Furthermore, 
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(a) FEMT with the condition of continuity of temperature in the common nodes of elements 
(Figure 2). We consider time-space finite elements. The approximate temperature in a j-th 
element,  , ,jT x y t , is a linear combination of the T-functions, ( , , )mV x y t : 
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where N is the number of nodes in the j-th element and [V(x, y, t)] is the column matrix 
consisting of the T-functions. The continuity of the solution in the nodes leads to the 
following matrix equation  in the element: 

  [ ][ ]V C T   (65) 

In (65) elements of matrix [ ]V  stand for values of the T-functions, ( , , )mV x y t , in the 
 nodal points, i.e.  , ,rs s r r rV V x y t , r,s = 1,2,…,N. The column matrix 

1 2[ ] [ , ,..., ]j j Nj TT T T T  consists of temperatures (mostly unknown) of the nodal points with 
ijT  standing for value of  temperature in the i-th node, i = 1,2,…,N. The unknown 

coefficients of the linear combination (63) are the elements of the  column matrix [C]. Hence 
we obtain 

    1[ ]C V T   and finally   1( , , ) ([ ] [ ]) [ , , ]j TT x y t V T V x y t   (66) 

It is clear, that in each element the temperature ( , , )jT x y t  satisfies the heat conduction 

equation. The elements of matrix 1([ ] [ ])TV T  can be calculated from minimization of the 
objective functional, describing  the mean-square fitting of the approximated temperature 
field to the initial and boundary conditions. 
 

 
Fig. 2. Time-space elements in the case of temperature continuous in the nodes. 

(b) No temperature continuity at any point between elements (Figure 3). The approximate 
temperature in a j-th element,  , ,jT x y t , is a linear combination of the T-functions (63), 
too. In this case in order to ensure the physical sense of the solution we minimize 
inaccuracy of the temperature on the borders between elements. It means that the 
functional describing the mean-square fitting of the approximated temperature field to 
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incorporating a new measurement into the a priori estimate to obtain an improved a posteriori 
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the initial and boundary conditions includes the temperature jump on the borders 
between elements. For the case 
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Fig. 3. Time-space elements in the case of temperature discontinuous in the nodes. 

(c) Nodeless FEMT. Again,  , ,jT x y t , is a linear combination of the T-functions. The time 

interval is divided into subintervals. In each subinterval the domain  is divided into J 
subdomains (finite elements) and in each subdomain j , j=1, 2,…, J (with i i   ) the 
temperature is approximated with the linear combination of the Trefftz functions according 
to the formula (64). The dimensionless time belongs to the considered subinterval. In the 
case of the first subinterval an initial condition is known. For the next subintervals initial 
condition is understood as the temperature distribution in the subdomain j at the final  
moment of time in the previous subinterval. The mean-square method is used to minimize 
the inaccuracy of the approximate solution on the boundary, at the initial moment of time 
and on the borders between elements. This way the unknown coefficients of the 
combination, j

mc , can be calculated. Generally, the coefficients j
mc  depend on the time 

subinterval number, (Grysa & Lesniewska, 2009).  
In (Ciałkowski et al., 2007) the FEM with Trefftz base functions (FEMT) has been compared 
with the classic FEM approach. The FEM solution of the inverse problem for the square 
considered was analysed. For the FEM the elements with four nodes and, consequently, the 
simplest set of base functions: (1,  ,  ,  )x y xy have been applied. 
Consider an inverse problem in a square (compare the paragraph before the equation (63)). 
Using FEM to solve the inverse problem gives acceptable solution only for the first row of 
elements. Even for exact values of the given temperature the results are encumbered with 
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relatively high error. For the next row of the elements, the FEM solution is entirely not 
acceptable. When the distance b  greater than the size of the element, an instability of the 
numerical solution appears independently of the number of finite elements. Paradoxically, 
the greater number of elements, the sooner the instability appears even though the accuracy 
of solution in the first row of elements becomes better. The classic FEM leads to much worse 
results than the FEMT because the latter makes use of the Trefftz functions which satisfy the 
energy equation. This way the physical meaning of the results is ensured.  

4.13 Energetic regularization in FEM 
Three kinds of physical aspects of heat conduction can be applied to regularize an 
approximate solution obtained with the use of finite element method, (Ciałkowski et al., 
2007). The first is minimization of heat flux jump between the elements, the second is 
minimization of the defect of energy dissipation on the border between elements and the 
third is the minimization of the intensity of entropy production between elements. Three 
kinds of regularizing terms for the objective functional are proposed:  
- minimizing the heat flux inaccuracy between elements: 
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- minimizing numerical entropy production between elements: 
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- minimizing the defect of energy of dissipation between elements: 

 
,

2

, 0

ln ln
e

i j

t
ji

i j
i ji j

TTdt T T d
n n

 
  
   

 
    (70) 

with tf being the final moment of the considered time interval, (Ciałkowski et al., 2007; Grysa 
& Leśniewska, 2009),  and ,i j standing for the border between i-th and j-th element. 

Notice that entropy production functional and energy dissipation functional are not 
quadratic functions of the coefficients of the base functions in elements. Hence, minimizing 
the objective functional leads to a non-linear system of algebraic equations. It seems to be 
the only disadvantage when compared with minimizing mean-square defects of heat flux 
(formula (68)); the latter leads to a system of linear equations. 

4.14 Other methods 
Many other methods are used to solve the inverse heat conduction problems. Many iterative 
methods for approximate solution of inverse problems are  presented in monograph 
(Bakushinsky & Kokurin, 2004). Numerical methods for solving inverse problems of 
mathematical physics are presented in monograph (Samarski & Vabishchevich, 2007). Among 
other methods it is worth to mention boundary element method (Białecki et al., 2006; Onyango 
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relatively high error. For the next row of the elements, the FEM solution is entirely not 
acceptable. When the distance b  greater than the size of the element, an instability of the 
numerical solution appears independently of the number of finite elements. Paradoxically, 
the greater number of elements, the sooner the instability appears even though the accuracy 
of solution in the first row of elements becomes better. The classic FEM leads to much worse 
results than the FEMT because the latter makes use of the Trefftz functions which satisfy the 
energy equation. This way the physical meaning of the results is ensured.  

4.13 Energetic regularization in FEM 
Three kinds of physical aspects of heat conduction can be applied to regularize an 
approximate solution obtained with the use of finite element method, (Ciałkowski et al., 
2007). The first is minimization of heat flux jump between the elements, the second is 
minimization of the defect of energy dissipation on the border between elements and the 
third is the minimization of the intensity of entropy production between elements. Three 
kinds of regularizing terms for the objective functional are proposed:  
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with tf being the final moment of the considered time interval, (Ciałkowski et al., 2007; Grysa 
& Leśniewska, 2009),  and ,i j standing for the border between i-th and j-th element. 

Notice that entropy production functional and energy dissipation functional are not 
quadratic functions of the coefficients of the base functions in elements. Hence, minimizing 
the objective functional leads to a non-linear system of algebraic equations. It seems to be 
the only disadvantage when compared with minimizing mean-square defects of heat flux 
(formula (68)); the latter leads to a system of linear equations. 

4.14 Other methods 
Many other methods are used to solve the inverse heat conduction problems. Many iterative 
methods for approximate solution of inverse problems are  presented in monograph 
(Bakushinsky & Kokurin, 2004). Numerical methods for solving inverse problems of 
mathematical physics are presented in monograph (Samarski & Vabishchevich, 2007). Among 
other methods it is worth to mention boundary element method (Białecki et al., 2006; Onyango 
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et al., 2008), the finite difference method (Luo & Shih, 2005; Soti et al., 2007), the theory of 
potentials method (Grysa, 1989), the radial basis functions method (Kołodziej et al., 2010), the 
artificial bee colony method (Hetmaniok et al., 2010), the Alifanov iterative regularization 
(Alifanov, 1994), the optimal dynamic filtration, (Guzik & Styrylska, 2002),  the control volume 
approach (Taler & Zima, 1999), the meshless methods ((Sladek et al., 2006) and many other. 

5. Examples of the inverse heat conduction problems  
5.1 Inverse problems for the cooled gas turbine blade 
Let us consider the following stationary problem concerning the gas turbine blade (Figure 
4): find temperature distribution on the  inner boundary i  of the blade cross-section,

i
T  , 

and heat transfer coefficient variation along i , with the condition 

  0 0T TT T s T       (71) 

where T  stands for temperature measurement tolerance and s  is a normalized coordinate 
of a perimeter length (black dots in Figure 4 denote the beginning and the end of the inner 
and outer perimeter, coordinate is counted counterclockwise). Heat transfer coefficient 
distribution  at the outer surface, 

o
ch  , is known, Tfo = 1350 oC, Tfi=780oC, T0 = 1100 oC , T , 

standing for temperature measurement tolerance, does not exceed 1oC. Moreover, the inner 
and outer fluid temperature Tfo and Tfi are known, (Ciałkowski et al., 2007a). The 
unknowns: ?

i
T    , ?

i
ch    The solution has to be found in the class of functions fulfilling 

the energy equation 

   0k T     (72)  

 

 
Fig. 4. An outline of a turbine blade. 

with k assumed to be a constant. To solve the problem we use FEM with the shape functions 
belonging to the class of harmonic functions. It means that we can express an approximate 
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solution of a stationary heat conduction problem in each element as a linear combination of 
the T-functions suitable for the equation (72). The functional with a term minimizing the 
heat flux inaccuracy between elements reads 
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   (73) 

In order to simplify the problem, temperature on the outer and inner surfaces was then 
approximated with 5 and 30  Bernstein polynomials, respectively, in order to simplify the 
problem. The area of the blade cross-section was divided into 99 rectangular finite elements 
with 16 nodes (12 on the boundary of each element and 4 inside). 16 harmonic (Trefftz) 
functions were used as base functions. All together 4x297 unknowns were introduced. 
Calculations were carried out with the use of PC with 1.6 GHz processor. Time of 
calculation was 1,5 hours using authors’ own computer program in Fortran F90. The results 
are presented at Figures 5 and 6.  
 

  

 
Fig. 5. Temperature [oC] (upper) and heat flux (lower) distribution on the outer (red squares) 
and inner (dark blue dots) surfaces of the blade.  
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solution of a stationary heat conduction problem in each element as a linear combination of 
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Oscillations of temperature of the inner blade surface (Figure 5 left) is due to the number 
of Bernstein polynomials: it was too small. However, thanks to a small number of the 
polynomials a small number of unknown values of temperature could be taken for 
calculation. The same phenomenon appears in Figure 5 right for heat flux on the inner 
blade surface as well as in Figure 6 for the heat transfer coefficients values. The distance 
between peaks of the curves for the inner and outer surfaces in Figure 6 is a result of 
coordinate normalization of the inner and outer surfaces perimeter length. The 
normalization was done in such a way that only  for s = 0 (s =1) points on both surfaces 
correspond to each other. The other points with the same value of the coordinate s for the 
outer and inner surface generally do not correspond to each other (in the case of peaks the 
difference is about 0,02). 
 

 
Fig. 6. Heat transfer coefficient over inner (dark blue squares) and outer (red dots — given; 
brown dots — calculated) surfaces of the blade. 

5.2 Direct solution of a heat transfer coefficient identification problem 
Consider a  1D dimensionless problem of heat conduction in a thermally isotropic flat slab 
(Grysa, 1982): 

 2 2/ /T x T t         for (0,1)x  and  t(0, tf], 
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 / 0T x              for x = 0 and  t(0, tf],  (74) 

                / 1, fk T x Bi T t T t          for x = 1  and  t(0, tf], 

0T           for     (0,1)x   and  t = 0 . 

If the upper surface temperature (for x = 1) cannot be measured directly then in order to find 
the Biot number, temperature responses at some inner points of the slab or even 
temperature of the lower surface  (x = 0) have to be known. Hence, the problem is ill-posed. 
Employing the Laplace transformation to the problem (74) we obtain 

    cosh,
sinh coshf

Bi x sT x s T s
s s Bi s




    or     

      cosh 1 1 sinh, ,
cosh coshf

x s sT s T x s T x s
s Bis s s s

     (75) 

The equation (75) is then used to find the formula describing the Biot number, Bi. Then, the 
inverse Laplace transformation yields: 
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  (76) 

Here asterisk denotes convolution,  H   is the Heaviside function and  2 1 / 2n n   , 
n = 1,2,… . 
If the temperature is known on the boundary x = 0 (e.g. from measurements), values of Bi 
(because of noisy input data having form of a function of time) can be calculated from  
formula (76). Of course, formula (76) is obtained with the assumption that Bi = const. 
Therefore, the results have to be averaged in the considered time interval. 

6. Final remarks  
It is not possible to present such a broad topic like inverse heat conduction problems in one 
short chapter. Many interesting achievements were discussed very briefly, some were 
omitted. Little attention was paid to stochastic methods. Also, the non-linear issues were 
only mentioned when discussing some methods of solving inverse problems. For lack of 
space only few examples could be  presented.  
The inverse heat conduction problems have been presented in many monographs and 
tutorials. Some of them are mentioned in references, e.g. (Alifanov, 1994; Bakushinsky & 
Kokurin, 2004; Beck & Arnold, 1977; Grysa, 2010; Kurpisz & Nowak, 1995; Özisik & 
Orlande, 2000;  Samarski & Vabishchevich, 2007; Duda & Taler, 2006; Hohage, 2002; Bal, 
2004; Tan & Fox, 2009).  
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    cosh,
sinh coshf

Bi x sT x s T s
s s Bi s




    or     

      cosh 1 1 sinh, ,
cosh coshf

x s sT s T x s T x s
s Bis s s s

     (75) 

The equation (75) is then used to find the formula describing the Biot number, Bi. Then, the 
inverse Laplace transformation yields: 
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  (76) 

Here asterisk denotes convolution,  H   is the Heaviside function and  2 1 / 2n n   , 
n = 1,2,… . 
If the temperature is known on the boundary x = 0 (e.g. from measurements), values of Bi 
(because of noisy input data having form of a function of time) can be calculated from  
formula (76). Of course, formula (76) is obtained with the assumption that Bi = const. 
Therefore, the results have to be averaged in the considered time interval. 

6. Final remarks  
It is not possible to present such a broad topic like inverse heat conduction problems in one 
short chapter. Many interesting achievements were discussed very briefly, some were 
omitted. Little attention was paid to stochastic methods. Also, the non-linear issues were 
only mentioned when discussing some methods of solving inverse problems. For lack of 
space only few examples could be  presented.  
The inverse heat conduction problems have been presented in many monographs and 
tutorials. Some of them are mentioned in references, e.g. (Alifanov, 1994; Bakushinsky & 
Kokurin, 2004; Beck & Arnold, 1977; Grysa, 2010; Kurpisz & Nowak, 1995; Özisik & 
Orlande, 2000;  Samarski & Vabishchevich, 2007; Duda & Taler, 2006; Hohage, 2002; Bal, 
2004; Tan & Fox, 2009).  
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1. Introduction 
In an inverse heat conduction problem (IHCP), the boundary conditions, initial conditions, 
or thermo-physical properties of material are not fully specified, and they are determined 
from measured internal temperature profiles. The challenge is that the effect of changes in 
boundary conditions are normally damped or lagged, i.e. the varying magnitude of the 
interior temperature profile lags behind the changes in boundary conditions and is generally 
of lesser magnitude. Therefore, such a problem would be a typically ill-posed and would 
normally be sensitive to the measurement errors. Also, in the uniqueness and stability of the 
solution are not generally guaranteed (Beck et al., 1985; Alifanov, 1995; Ozisik, 2000).  
Inverse heat conduction problems, like most of the inverse problems encountered in science 
and engineering may be reformulated as an optimization problem. Therefore, many 
available techniques of solving the optimization problems are available as methods of 
solving the IHCPs. However, the corresponding objective function of the inverse problems 
can be highly nonlinear or non-monotonic, may have a very complex form, or in many 
practical applications, its analytical expression may be unknown. The objective function 
usually involves the squared difference between measured and estimated unknown 
variables. If Y and T are the vectors of the measured and estimated temperatures, then the 
objective function will be in the form of 

 U = [Y – T]T [Y – T]  (1) 

However, normally there is need for another term, called “regularization” in order to 
eliminate the oscillations in the results and make the solution more stable. The effect of this 
term and the strategy of choosing it will be discussed in details in the subsequent chapters. 
The above equation is only valid, if the measured temperatures and the associated errors 
have the following statistical characteristics (Beck & Arnold, 1977): 
 The errors are additive, i.e. 

   Yi = Ti + εi (2) 

where εi is the random error associated with the ith measurement. 
 The temperature errors have zero mean. 
 The errors have constant variance. 
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 The errors associated with different measurements are uncorrelated. 
 The measurement errors have a normal (Gaussian) distribution. 
 The statistical parameters describing the errors, such as their variance, are known. 
 Measured temperatures are the only variables that contain measurement errors. 

Measured time, positions, dimensions, and all other quantities are all accurately known. 
 There is no more prior information regarding the quantities to be estimated. If such 

information is available, it should be utilized to improve the estimates. 
While classical methods, such as the least square regularization method (Beck et al., 1985; 
Beck et al., 1996), the sequential function specification method (Alifanov, 1995; Beck et al., 
1996; Blanc et al., 1998), the space marching method (Al-Khalidy, 1998), conjugate gradient 
method (Abou khachfe & Jarny, 2001; Huang & Wang, 1999), steepest descent method 
(Huang et al., 2003), and the model reduction algorithm (Battaglia, 2002; Girault et al., 2003) 
are vastly studied in the literature, and applied to the problems in thermal engineering 
(Bass, 1980; Osman, 1190; Kumagai et al., 1995; Louahia-Gualous et al., 2003; Kim & Oh, 
2001; Pietrzyk & Lenard, 1990; Alifanov et al., 2004; Gadala & Xu, 2006), there are still some 
unsolved problems: 
 The solution often shows some kinds of overshoot and undershoot, which may result in 

non-physical answers. 
 Very high heat flux peak values such as those experienced in jet impingement cooling 

are normally damped and considerably underestimated. 
 Results are very sensitive to the quality of input. Measurement errors are intrinsic in 

laboratory experiments, so we need a more robust approach in solving the inverse 
problem. 

 The time step size that can be used with these methods is bounded from below, and 
cannot be less than a specific limit (Beck et al., 1985). This causes temporal resolutions that 
are not sufficient for some real world applications, where changes happen very fast. 

More recent optimization techniques may be used in the solution of the IHCPs to aid in 
stability, solution time, and to help in achieving global minimum solutions. Some of these 
techniques are briefly reviewed in the following section:  
Genetic algorithm 

This technique has been widely adopted to solve inverse problems (Raudensky et al., 1995; 
Silieti et al., 2005; Karr et al., 2000). Genetic algorithms (GAs) belong to the family of 
computational techniques originally inspired by the living nature. They perform random 
search optimization algorithms to find the global optimum to a given problem. The main 
advantage of GAs may not necessarily be their computational efficiency, but their 
robustness, i.e. the search process may take much longer than the conventional gradient-
based algorithms, but the resulting solution is usually the global optimum. Also, they can 
converge to the solution when other classical methods become unstable or diverge. 
However, this process can be time consuming since it needs to search through a large tree of 
possible solutions. Luckily, they are inherently parallel algorithms, and can be easily 
implemented on parallel structures.  

Neural networks 

Artificial neural networks can be successfully applied in the solution of inverse heat 
conduction problems (Krejsa et al., 1999; Shiguemori et al., 2004; Lecoeuche et al., 2006). 
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They are capable of dealing with significant non-linearities and are known to be effective in 
damping the measurement errors. 
Self-learning finite elements 

This methodology combines neural network with a nonlinear finite element program in an 
algorithm which uses very basic conductivity measurements to produce a constitutive 
model of the material under study. Through manipulating a series of neural network 
embedded finite element analyses, an accurate constitutive model for a highly nonlinear 
material can be evolved (Aquino & Brigham, 2006; Roudbari, 2006). It is also shown to 
exhibit a great stability when dealing with noisy data. 
Maximum entropy method 

This method seeks the solution that maximizes the entropy functional under given 
temperature measurements. It converts the inverse problem to a non-linear constrained 
optimization problem. The constraint is the statistical consistency between the measured 
and estimated temperatures. It can guarantee the uniqueness of the solution. When there is 
no error in the measurements, maximum entropy method can find a solution with no 
deterministic error (Kim & Lee, 2002). 
Proper orthogonal decomposition 

Here, the idea is to expand the direct problem solution into a sequence of orthonormal basis 
vectors, describing the most essential features of spatial and temporal variation of the 
temperature field. This can result in the filtration of the noise in the field under study 
(Ostrowski et al., 2007). 
Particle Swarm Optimization (PSO) 

This is a population based stochastic optimization technique, inspired by social behavior of 
bird flocking or fish schooling. Like GA, the system is initialized with a population of 
random solutions and searches for optima by updating generations. However, unlike GA, 
PSO has no evolution operators such as crossover and mutation. In PSO, the potential 
solutions, called particles, fly through the problem space by following the current optimum 
particles. Compared to GA, the advantages of PSO are the ease of implementation and that 
there are few parameters to adjust. Some researchers showed that it requires less 
computational expense when compared to GA for the same level of accuracy in finding the 
global minimum (Hassan et al., 2005).  
In this chapter, in addition to the classical function specification method, we will study the 
genetic algorithm, neural network, and particle swarm optimization techniques in more 
details. We will investigate their strengths and weaknesses, and try to modify them in order 
to increase their efficiency and effectiveness in solving inverse heat conduction problems. 

2. Function specification methods 
As mentioned above, in order to stabilize the solution to the ill-posed IHCP, it is very 
common to include more variables in the objective function. A common choice in inverse 
heat transfer problems is to use a scalar quantity based on the boundary heat fluxes, with a 
weighting parameter α, which is normally called the regularization parameter. The 
regularization term can be linked to the values of heat flux, or their first or second 
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derivatives, with respect to time or space. Previous research (Gadala & Xu, 2006) has shown 
that using the heat flux values (zeroth-order regularization) is the most suitable choice. The 
objective function then will be 
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where i
mT and c

iT  are the vectors of expected (measured) and calculated temperatures at the 
ith time step, respectively, each having J spatial components; α is the regularization 
coefficient; and qi is the boundary heat flux. It is important to notice that in the inverse 
analysis, the number of spatial components is equal in the measured and calculated 
temperature vectors; i.e. the spatial resolution of the recovered boundary heat flux vector is 
determined by the number of embedded thermocouples. 
Due to the fact that inverse problems are generally ill-posed, the solution may not be unique 
and would be in general sensitive to measurement errors. To decrease such sensitivity and 
improve the simulation, a number of future time steps (nFTS) are utilized in the analysis of 
each time step. This means that in addition to the measured temperature at the present time 

step Ti, the measured temperatures at future time steps, FTSniii TTT  ,....,, 21 , are also used 
to approximate the heat flux qi. In this process, a temporary assumption would be usually 
considered for the values of FTSniii qqq  ,....,, 21 . The simplest and the most widely used one 

is to assume iki qq   for FTSnk 1 , which is also used in our work. In this chapter, a 
combined function specification-regularization method is used, which utilizes both concepts 
of regularization, and future time steps (Beck & Murio, 1986). 
Mathematically we may express k

cT , the temperature at the kth time step and at location c  as 
an implicit function of the heat flux history and initial temperature: 
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The values with a ‘*’ superscript in the above may be considered as initial guess values. 
The first derivative of temperature     with respect to heat flux qi is called the sensitivity 
matrix: 
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The optimal solution for Eq. (3) may be obtained by setting 0/  qF , which results in the 
following set of equations (note that q /F  should be calculated with respect to each 
component qi, with i=1, 2N): 
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where 
*jq is the initial guess of heat fluxes, Tci*  is the calculated temperature vector with 

the initial guess values.  
Recalling equations (6) and (7), equation (8) may be rearranged and written in the following 
form: 
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where X is the total sensitivity matrix for multi-dimensional problem and has the following 
form: 
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By solving Eq. (9), the heat flux update will be calculated and added to the initial guess. In 
this chapter, a fully sequential approach with function specification is used. First, the newly 

calculated
n1q is used for all time steps in the computation window after the first iteration, 

i.e., constant function specification is used for this computation window. Then, the 
computation window moves one time step at the next sequence after obtaining a convergent 
solution in the current sequence.  
One important consideration in calculating the sensitivity values is the nonlinearity. The 
whole sensitivity matrix is independent of the heat flux only if the thermal properties of the 
material are not changing with temperature. For most materials, the thermophysical 
properties are temperature dependent. In such case, all properties should be updated at the 
beginning of each time step, which is time consuming especially for large size models. 
Moreover, such changes in properties would not be very large and would not significantly 
change the magnitude of the sensitivity coefficients. Also, updating the material properties 
at the beginning of each time step would be based on the temperatures Tk* obtained from 
the initially given values of heat flux q*, which is essentially an approximation. So, we may 
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By solving Eq. (9), the heat flux update will be calculated and added to the initial guess. In 
this chapter, a fully sequential approach with function specification is used. First, the newly 

calculated
n1q is used for all time steps in the computation window after the first iteration, 

i.e., constant function specification is used for this computation window. Then, the 
computation window moves one time step at the next sequence after obtaining a convergent 
solution in the current sequence.  
One important consideration in calculating the sensitivity values is the nonlinearity. The 
whole sensitivity matrix is independent of the heat flux only if the thermal properties of the 
material are not changing with temperature. For most materials, the thermophysical 
properties are temperature dependent. In such case, all properties should be updated at the 
beginning of each time step, which is time consuming especially for large size models. 
Moreover, such changes in properties would not be very large and would not significantly 
change the magnitude of the sensitivity coefficients. Also, updating the material properties 
at the beginning of each time step would be based on the temperatures Tk* obtained from 
the initially given values of heat flux q*, which is essentially an approximation. So, we may 
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update the sensitivity matrix every M steps (in our numerical experiments, M=10). The 
results obtained under this assumption were very close to those obtained by updating the 
values at each step, so the assumption is justified. 
To obtain an appropriate level of regularization, the number of future time steps (or more 
accurately, the size of look-ahead time window, i.e. the product of the number of future time 
steps and time step size) and the value of the regularization parameter must be chosen with 
respect to the errors involved in the temperature readings. The residual principle (Alifanov, 
1995; Woodbury & Thakur, 1996) has been used to determine these parameters based on the 
accuracy of thermocouples in the relative temperature range. 

3. Genetic algorithm 
Genetic algorithm is probably the most popular stochastic optimization method. It is also 
widely used in many heat transfer applications, including inverse heat transfer analysis 
(Gosselin et al., 2009). Figure 1 shows a flowchart of the basic GA. GA starts its search from 
a randomly generated population. This population evolves over successive generations 
(iterations) by applying three major operations. The first operation is “Selection”, which 
mimics the principle of “Survival of the Fittest” in nature. It finds the members of the 
population with the best performance, and assigns them to generate the new members for 
future generations. This is basically a sort procedure based on the obtained values of the 
objective function. The number of elite members that are chosen to be the parents of the next 
generation is also an important parameter. Usually, a small fraction of the less fit solutions 
are also included in the selection, to increase the global capability of the search, and prevent 
a premature convergence. The second operator is called “Reproduction” or “Crossover”, 
which imitates mating and reproduction in biological populations. It propagates the good 
features of the parent generation into the offspring population. In numerical applications, 
this can be done in several ways. One way is to have each part of the array come from one 
parent. This is normally used in binary encoded algorithms. Another method that is more 
popular in real encoded algorithms is to use a weighted average of the parents to produce 
the children. The latter approach is used in this chapter. The last operator is “Mutation”, 
which allows for global search of the best features, by applying random changes in random 
members of the generation. This operation is crucial in avoiding the local minima traps. 
More details about the genetic algorithm may be found in (Davis, 1991; Goldberg, 1989). 
Among the many variations of GAs, in this study, we use a real encoded GA with roulette 
selection, intermediate crossover, and uniform high-rate mutation (Davis, 1991). The 
crossover probability is 0.2, and the probability of adjustment mutation is 0.9. These settings 
were found to be the most effective based on our experience with this problem. A mutation 
rate of 0.9 may seem higher than normal. This is because we start the process with a random 
initial guess, which needs a higher global search capability. However, if smarter initial 
guesses are utilized, a lower rate of mutation may be more effective. Genes in the present 
application of GA consist of arrays of real numbers, with each number representing the 
value of the heat flux at a certain time step, or a spatial location. 

4. Particle Swarm Optimization 
We start by giving a description of the basic concepts of the algorithm. Then a brief 
description of the three variations of the PSO algorithm that are used in this study is given. 
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Finally we investigate some modifications in PSO algorithm to make it a more robust and 
efficient solver for the inverse heat conduction problem. 
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Fig. 1. Flowchart of a General Implementation of Genetic Algorithm (GA). 

4.1 Basic concepts 
Particle swarm optimization (PSO) is a high-performance stochastical search algorithm that 
can also be used to solve inverse problems. The method is based on the social behavior of 
species in nature, e.g., a swarm of birds or a school of fish (Eberhart & Kennedy, 1995). 
In the basic PSO algorithm, if a member of the swarm finds a desirable position, it will 
influence the traveling path of the rest of the swarm members. Every member searches in its 
vicinity, and not only learns from its own experience (obtained in the previous iterations), 
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update the sensitivity matrix every M steps (in our numerical experiments, M=10). The 
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which imitates mating and reproduction in biological populations. It propagates the good 
features of the parent generation into the offspring population. In numerical applications, 
this can be done in several ways. One way is to have each part of the array come from one 
parent. This is normally used in binary encoded algorithms. Another method that is more 
popular in real encoded algorithms is to use a weighted average of the parents to produce 
the children. The latter approach is used in this chapter. The last operator is “Mutation”, 
which allows for global search of the best features, by applying random changes in random 
members of the generation. This operation is crucial in avoiding the local minima traps. 
More details about the genetic algorithm may be found in (Davis, 1991; Goldberg, 1989). 
Among the many variations of GAs, in this study, we use a real encoded GA with roulette 
selection, intermediate crossover, and uniform high-rate mutation (Davis, 1991). The 
crossover probability is 0.2, and the probability of adjustment mutation is 0.9. These settings 
were found to be the most effective based on our experience with this problem. A mutation 
rate of 0.9 may seem higher than normal. This is because we start the process with a random 
initial guess, which needs a higher global search capability. However, if smarter initial 
guesses are utilized, a lower rate of mutation may be more effective. Genes in the present 
application of GA consist of arrays of real numbers, with each number representing the 
value of the heat flux at a certain time step, or a spatial location. 

4. Particle Swarm Optimization 
We start by giving a description of the basic concepts of the algorithm. Then a brief 
description of the three variations of the PSO algorithm that are used in this study is given. 
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4.1 Basic concepts 
Particle swarm optimization (PSO) is a high-performance stochastical search algorithm that 
can also be used to solve inverse problems. The method is based on the social behavior of 
species in nature, e.g., a swarm of birds or a school of fish (Eberhart & Kennedy, 1995). 
In the basic PSO algorithm, if a member of the swarm finds a desirable position, it will 
influence the traveling path of the rest of the swarm members. Every member searches in its 
vicinity, and not only learns from its own experience (obtained in the previous iterations), 
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but also benefits from the experiences of the other members of the swarm, especially from 
the experience of the best performer. The original PSO algorithm includes the following 
components (Clerc, 2006):  
 Particle Position Vector x: For each particle, this vector stores its current location in the 

search domain. These are the values for which the value of the objective function is 
calculated, and the optimization problem is solved. 

 Particle Velocity Vector v: For every particle, this vector determines the magnitude and 
direction of change in the position of that particle in the next iteration. This is the factor 
that causes the particles to move around the search space. 

 Best Solution of a Particle p: For each particle, this is the position that has produced the 
lowest value of the objective function (the best solution with the lowest error in our 
case). So if f is the objective function that is supposed to be minimized; i is the index for 
each particle, and m is the iteration counter, then: 

   
0

arg minm s
i i

s m
p f x

 
   (12) 

 Best Global Solution g: This is the best single position found by all particles of the swarm, 
i.e., the single p point that produces the lowest value for the objective function, among 
all the swarm members. In other words, if n is the swarm size, then: 
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The number of particles in the swarm (n) needs to be specified at the beginning. Fewer 
particles in the swarm results in lower computational effort in each iteration, but possibly 
higher number of iterations is required to find the global optimum. On the other hand, a 
larger population will have a higher computational expense in each iteration, but is 
expected to require less iterations to reach the global optimum point. Earlier studies have 
shown that a smaller population is normally preferred (Alrasheed et al., 2008; Karray & de 
Silva, 2004). This was also observed in our study; however, its effect seems to be 
insignificant.  
The steps involved in the basic PSO algorithm are detailed below (Clerc, 2006): 
1. Randomly initialize the positions and velocities for all of the particles in the swarm. 
2. Evaluate the fitness of each swarm member (objective function value at each position 

point). 
3. At iteration m, the velocity of the particle i, is updated as: 

    1
0 1 1 2 2

m m m m m m
i i i i iv c v c r p x c r g x       (14) 

where m
ix and m

iv are the position and velocity of particle i at the m-th iteration, respectively; 
m
ip and mg are the best positions found up to now by this particle (local memory) and by the 

whole swarm (global memory) so far in the iterations, respectively; c0 is called the inertia 
coefficient or the self-confidence parameter and is usually between zero and one; c1 and c2 
are the acceleration coefficients that pull the particles toward the local and global best 
positions; and r1 and r2 are random vectors in the range of (0,1). The ratio between these 
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three parameters controls the effect of the previous velocities and the trade-off between the 
global and local exploration capabilities.  
1. Update the position of each particle using the updated velocity and assuming unit time: 

 1 1m m m
i i ix x v    (15) 

2. Repeat (2) – (4) until a convergence criterion (an acceptable fitness value or a certain 
maximum number of iterations) is satisfied. 

There are some considerations that must be taken into account when updating velocity of 
particles (step 3 of the above algorithm). First, we need a value for the maximum velocity. A 
rule of thumb requires that, for a given dimension, the maximum velocity, ,maxiv , should be 

equal to one-half the range of possible values for the search space. For example, if the search 
space for a specific dimension is the interval [0, 100], we will take a maximum velocity of 50 
for this dimension. If the velocity obtained from Equation (14) is higher than ,maxiv , then we 

will substitute the maximum velocity instead of 1m
iv  . The reason for having this maximum 

allowable velocity is to prevent the swarm from “explosion” (divergence). Another popular 
way of preventing divergence is a technique called “constriction”, which dynamically scales 
the velocity update (Clerc, 2006). The first method was used in a previous research by the 
authors (Vakili & Gadala, 2009). However, further investigation showed that a better 
performance is obtained when combining the constriction technique with limiting the 
maximum velocity. In this chapter, the velocity updates are done using constriction and can 
be written as: 

     1
1 1 2 2

m m m m m m
i i i i iv K v c r p x c r g x              (16) 

where K is the constriction factor, and is calculated as (Clerc, 2006): 
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where φ = c1 + c2. Here, following the recommendations in (Clerc, 2006), the initial values for 
c1 and c2 are set to 2.8 and 1.3, respectively. These values will be modified in subsequent 
iterations, as discussed below.  
As mentioned above, the relation between the self-confidence parameter, c0, and the 
acceleration coefficients, c1 and c2, determines the trade-off between the local and global 
search capabilities. When using the constriction concept, the constriction factor is 
responsible for this balance. As we progress in time through iterations, we get closer to the 
best value. Thus, a reduction in the value of the self-confidence parameter will limit the 
global exploration, and a more localized search will be performed. In this study, if the value 
of the best objective function is not changed in a certain number of iterations (10 iterations in 
our case), the value of K is multiplied by a number less than one (0.95 for our problems) to 
reduce it (i.e. 0.95new oldK K ). These numbers are mainly based on the authors’ experience, 
and the performance is not very sensitive to their exact values. Some other researchers have 
used a linearly decreasing function to make the search more localized after the few initial 
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but also benefits from the experiences of the other members of the swarm, especially from 
the experience of the best performer. The original PSO algorithm includes the following 
components (Clerc, 2006):  
 Particle Position Vector x: For each particle, this vector stores its current location in the 

search domain. These are the values for which the value of the objective function is 
calculated, and the optimization problem is solved. 

 Particle Velocity Vector v: For every particle, this vector determines the magnitude and 
direction of change in the position of that particle in the next iteration. This is the factor 
that causes the particles to move around the search space. 

 Best Solution of a Particle p: For each particle, this is the position that has produced the 
lowest value of the objective function (the best solution with the lowest error in our 
case). So if f is the objective function that is supposed to be minimized; i is the index for 
each particle, and m is the iteration counter, then: 
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 Best Global Solution g: This is the best single position found by all particles of the swarm, 
i.e., the single p point that produces the lowest value for the objective function, among 
all the swarm members. In other words, if n is the swarm size, then: 
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The number of particles in the swarm (n) needs to be specified at the beginning. Fewer 
particles in the swarm results in lower computational effort in each iteration, but possibly 
higher number of iterations is required to find the global optimum. On the other hand, a 
larger population will have a higher computational expense in each iteration, but is 
expected to require less iterations to reach the global optimum point. Earlier studies have 
shown that a smaller population is normally preferred (Alrasheed et al., 2008; Karray & de 
Silva, 2004). This was also observed in our study; however, its effect seems to be 
insignificant.  
The steps involved in the basic PSO algorithm are detailed below (Clerc, 2006): 
1. Randomly initialize the positions and velocities for all of the particles in the swarm. 
2. Evaluate the fitness of each swarm member (objective function value at each position 
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3. At iteration m, the velocity of the particle i, is updated as: 
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three parameters controls the effect of the previous velocities and the trade-off between the 
global and local exploration capabilities.  
1. Update the position of each particle using the updated velocity and assuming unit time: 
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2. Repeat (2) – (4) until a convergence criterion (an acceptable fitness value or a certain 
maximum number of iterations) is satisfied. 

There are some considerations that must be taken into account when updating velocity of 
particles (step 3 of the above algorithm). First, we need a value for the maximum velocity. A 
rule of thumb requires that, for a given dimension, the maximum velocity, ,maxiv , should be 

equal to one-half the range of possible values for the search space. For example, if the search 
space for a specific dimension is the interval [0, 100], we will take a maximum velocity of 50 
for this dimension. If the velocity obtained from Equation (14) is higher than ,maxiv , then we 

will substitute the maximum velocity instead of 1m
iv  . The reason for having this maximum 

allowable velocity is to prevent the swarm from “explosion” (divergence). Another popular 
way of preventing divergence is a technique called “constriction”, which dynamically scales 
the velocity update (Clerc, 2006). The first method was used in a previous research by the 
authors (Vakili & Gadala, 2009). However, further investigation showed that a better 
performance is obtained when combining the constriction technique with limiting the 
maximum velocity. In this chapter, the velocity updates are done using constriction and can 
be written as: 

     1
1 1 2 2

m m m m m m
i i i i iv K v c r p x c r g x              (16) 

where K is the constriction factor, and is calculated as (Clerc, 2006): 

  
2

2

2 4
K

  


  
 (17) 

where φ = c1 + c2. Here, following the recommendations in (Clerc, 2006), the initial values for 
c1 and c2 are set to 2.8 and 1.3, respectively. These values will be modified in subsequent 
iterations, as discussed below.  
As mentioned above, the relation between the self-confidence parameter, c0, and the 
acceleration coefficients, c1 and c2, determines the trade-off between the local and global 
search capabilities. When using the constriction concept, the constriction factor is 
responsible for this balance. As we progress in time through iterations, we get closer to the 
best value. Thus, a reduction in the value of the self-confidence parameter will limit the 
global exploration, and a more localized search will be performed. In this study, if the value 
of the best objective function is not changed in a certain number of iterations (10 iterations in 
our case), the value of K is multiplied by a number less than one (0.95 for our problems) to 
reduce it (i.e. 0.95new oldK K ). These numbers are mainly based on the authors’ experience, 
and the performance is not very sensitive to their exact values. Some other researchers have 
used a linearly decreasing function to make the search more localized after the few initial 



 
Heat Conduction – Basic Research 

 

46

iterations (Alrasheed et al., 2008). These techniques are called “dynamic adaptation”, and are 
very popular in the recent implementations of PSO (Fan & Chang, 2007). 
Also, in updating the positions, one can impose a lower and an upper limit for the values, 
usually based on the physics of the problem. If the position values fall outside this range, 
several treatments are possible. In this study, we set the value to the limit that has been 
passed by the particle. Other ideas include substituting that particle with a randomly chosen 
other particle in the swarm, or penalizing this solution by increasing the value of the 
objective function. 
Figure 2 shows a flowchart of the whole process. Figure 3 gives a visual representation of 
the basic velocity and position update equations. 

4.2 Variations 
Unfortunately, the basic PSO algorithm may get trapped in a local minimum, which can result 
in a slow convergence rate, or even premature convergence, especially for complex problems 
with many local optima. Therefore, several variants of PSO have been developed to improve 
the performance of the basic algorithm (Kennedy et al., 2001). Some variants try to add a 
chaotic acceleration factor to the position update equation, in order to prevent the algorithm 
from being trapped in local minima (Alrasheed et al., 2007). Others try to modify the velocity 
update equation to achieve this goal. One of these variants is called the Repulsive Particle 
Swarm Optimization (RPSO), and is based on the idea that repulsion between the particles can 
be effective in improving the global search capabilities and finding the global minimum 
(Urfalioglu, 2004; Lee et al., 2008). The velocity update equation for RPSO is 

    1
0 1 1 2 2 3 3

m m m m m m
i i i i j i rv c v c r p x c r p x c r v        (18) 

where m
jp is the best position of a randomly chosen other particle among the swarm, c3 is an 

acceleration coefficient, r3 is a random vector in the range of (0,1), and rv is a random 
velocity component. Here c2 is -1.43, and c3 is 0.5. These values are based on 
recommendations in (Clerc, 2006). The newly introduced third term on the right-hand side 
of Eq. 18., with always a negative coefficient ( 2c ), causes a repulsion between the particle 
and the best position of a randomly chosen other particle. Its role is to prevent the 
population from being trapped in a local minimum. The fourth term generates noise in the 
particle’s velocity in order to take the exploration to new areas in the search space. 
Once again, we are gradually decreasing the weight of the self-confidence parameter. Note 
that the third term on the right-hand side of Eq. (1), i.e., the tendency toward the global best 
position, is not included in a repulsive particle swarm algorithm in most of the literature.  
The repulsive particle swarm optimization technique does not benefit from the global best 
position found. A modification to RPSO that also uses the tendency towards the best global 
point is called the “Complete Repulsive Particle Swarm Optimization” or CRPSO (Vakili & 
Gadala, 2009). The velocity update equation for CPRSO will be: 

      1
0 1 1 2 2 3 3 4 4

m m m m m m m m
i i i i i j i rv c v c r p x c r g x c r p x c r v          (19) 

In CRPSO, by having both an attraction toward the particle’s best performance, and a 
repulsion from the best performance of a random particle, we are trying to create a balance 
between the local and global search operations. 
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Fig. 2. Flowchart of the basic particle swarm optimization procedure. 
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Fig. 3. Velocity and position updates in the basic particle swarm optimization algorithm. 

Both RPSO and CRPSO were previously tested in solving inverse heat conduction problems 
by the authors (Vakili & Gadala, 2009). It was found that CRPSO shows better performance 
than the basic and repulsive PSO algorithms. In handling the noisy data, however, RPSO 
was the most efficient variation, followed closely by CRPSO. It was concluded then that the 
CRPSO variation is the suitable choice for IHCPs. Also, in (Vakili & Gadala, 2011), several 
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iterations (Alrasheed et al., 2008). These techniques are called “dynamic adaptation”, and are 
very popular in the recent implementations of PSO (Fan & Chang, 2007). 
Also, in updating the positions, one can impose a lower and an upper limit for the values, 
usually based on the physics of the problem. If the position values fall outside this range, 
several treatments are possible. In this study, we set the value to the limit that has been 
passed by the particle. Other ideas include substituting that particle with a randomly chosen 
other particle in the swarm, or penalizing this solution by increasing the value of the 
objective function. 
Figure 2 shows a flowchart of the whole process. Figure 3 gives a visual representation of 
the basic velocity and position update equations. 

4.2 Variations 
Unfortunately, the basic PSO algorithm may get trapped in a local minimum, which can result 
in a slow convergence rate, or even premature convergence, especially for complex problems 
with many local optima. Therefore, several variants of PSO have been developed to improve 
the performance of the basic algorithm (Kennedy et al., 2001). Some variants try to add a 
chaotic acceleration factor to the position update equation, in order to prevent the algorithm 
from being trapped in local minima (Alrasheed et al., 2007). Others try to modify the velocity 
update equation to achieve this goal. One of these variants is called the Repulsive Particle 
Swarm Optimization (RPSO), and is based on the idea that repulsion between the particles can 
be effective in improving the global search capabilities and finding the global minimum 
(Urfalioglu, 2004; Lee et al., 2008). The velocity update equation for RPSO is 

    1
0 1 1 2 2 3 3

m m m m m m
i i i i j i rv c v c r p x c r p x c r v        (18) 

where m
jp is the best position of a randomly chosen other particle among the swarm, c3 is an 

acceleration coefficient, r3 is a random vector in the range of (0,1), and rv is a random 
velocity component. Here c2 is -1.43, and c3 is 0.5. These values are based on 
recommendations in (Clerc, 2006). The newly introduced third term on the right-hand side 
of Eq. 18., with always a negative coefficient ( 2c ), causes a repulsion between the particle 
and the best position of a randomly chosen other particle. Its role is to prevent the 
population from being trapped in a local minimum. The fourth term generates noise in the 
particle’s velocity in order to take the exploration to new areas in the search space. 
Once again, we are gradually decreasing the weight of the self-confidence parameter. Note 
that the third term on the right-hand side of Eq. (1), i.e., the tendency toward the global best 
position, is not included in a repulsive particle swarm algorithm in most of the literature.  
The repulsive particle swarm optimization technique does not benefit from the global best 
position found. A modification to RPSO that also uses the tendency towards the best global 
point is called the “Complete Repulsive Particle Swarm Optimization” or CRPSO (Vakili & 
Gadala, 2009). The velocity update equation for CPRSO will be: 

      1
0 1 1 2 2 3 3 4 4

m m m m m m m m
i i i i i j i rv c v c r p x c r g x c r p x c r v          (19) 

In CRPSO, by having both an attraction toward the particle’s best performance, and a 
repulsion from the best performance of a random particle, we are trying to create a balance 
between the local and global search operations. 
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Both RPSO and CRPSO were previously tested in solving inverse heat conduction problems 
by the authors (Vakili & Gadala, 2009). It was found that CRPSO shows better performance 
than the basic and repulsive PSO algorithms. In handling the noisy data, however, RPSO 
was the most efficient variation, followed closely by CRPSO. It was concluded then that the 
CRPSO variation is the suitable choice for IHCPs. Also, in (Vakili & Gadala, 2011), several 
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modifications were done on the formulation of inverse heat conduction problem as an 
optimization problem, as well as on the implementation of the PSO algorithm.  

5. Artificial Neural Networks 
Artificial Neural Networks (ANN) are motivated by the efficiency of brain in performing 
computations. These networks are made of a large number of processing units (neurons) 
that are interconnected through weighted connections, similar to synapses in brain. In order 
for the network to perform the expected tasks, it should first go through a “learning” 
process. There are two main categories of learning: supervised, or unsupervised. In 
supervised learning, the network learning is achieved by practicing on pre-designed 
training sets, while in unsupervised learning, the network is presented with a set of 
patterns, and learns to group these patterns into certain categories. The supervised learning 
is useful in function fitting and prediction, while unsupervised learning is more applicable 
to pattern recognition and data clustering. Since the learning process in our application is a 
supervised one, we focus on this type of learning process. 
While there are several major classes of neural networks, in this chapter, we have studied 
only two of them, which are introduced in this section. 

5.1 Feedforward Multilayer Perceptrons (FMLP) 
In a feedforward network, the nodes are arranged in layers, starting from the input layer, 
and ending with the output layer. In between these two layers, a set of layers called hidden 
layers, are present, with the nodes in each layer connected to the ones in the next layer 
through some unidirectional paths. See Fig. 4 for a presentation of the topology. It is 
common to have different number of elements in the input and output vectors. These 
vectors can occur either concurrently (order is not important), or sequentially (order is 
important). In inverse heat conduction applications, normally the order of elements is 
important, so sequential vectors are used. 
 

 
Fig. 4. A feedforward network topology. 

5.2 Radial Basis Function Networks (RBFN) 
The basic RBFN includes only an input layer, a single hidden layer, and an output layer. See 
Fig. 5 for a visual representation. The form of the radial basis function can be generally given by 
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in which x is the input vector, and vi is the vector denoting the center of the receptive field 
unit fi with σi as its unit width parameter. The most popular form of this function is the 
Gaussian kernel function, given as 
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These networks normally require more neurons than the feedforward networks, but they 
can be designed and trained much faster. However, in order to have a good performance, 
the training set should be available in the beginning of the process.  
 

 
Fig. 5. An RBF network topology. 

5.3 Implementation in inverse heat conduction problem 
In order to use the artificial neural networks in the inverse heat conduction problem, we first 
started with a direct heat conduction finite element code, and applied several sets of heat 
fluxes in the boundary. The resulting temperatures in locations inside the domain, which 
correspond to the thermocouple locations in the experiments, were obtained. The neural 
network was then trained using the internal temperature history as an input, and the 
corresponding applied heat flux as the target. The assumption was that this way, the neural 
network should be able to act as an inverse analysis tool, and given a set of measured 
thermocouple readings, be able to reproduce the heat fluxes.  
The obtained results, however, were far from satisfactory. It seemed that the relationship 
between the actual values of temperatures and heat fluxes is a complicated one, which is 
very hard for the neural networks to understand and simulate, at least when using a 
reasonably small number of layers. Thus, we decided to reformulate the problem, and use 
the change in the temperature in each time step as the input. In this formulation, neural 
networks performed much better, and a good quality was achieved in the solution in a 
reasonable amount of time.  
Further investigations showed that if the time step size is varying, we can use a derivative of 
temperature with respect to the heat flux as the input, i.e. divide the temperature change by 
the time step size. The results were again satisfactory, however, more bookkeeping is 
needed, which complicates the implementation and makes the algorithm more prone to 
coding errors. This practice is not normally recommended, unless it can result in a 
considerable reduction in the solution time. 
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6. Test cases 
A block containing nine thermocouples is modeled for each pass of water jet cooling of a 
steel strip. The length of the block is 114.3 mm (9 sections of each 12.7 mm). The width and 
thickness are 12.7 mm and 6.65 mm, respectively. To model the thermocouple hole, a 
cylinder of radius 0.5 mm and height of 5.65 mm is taken out of the block. Isoparametric 
eight-node brick elements are used to discretize the domain. Fig. 6(a) shows the whole 
domain, and Fig. 6(b) is a close-up view of one of the TC holes. 
 

 
(a) 

 

 
 

(b) 

Fig. 6. (a) The whole block consisting of nine thermocouple zones; (b) A close-up view of the 
TC hole from bottom. 

 

(a) 
 

(b) 

Fig. 7. Time history of cooling on a run-out table; (a) Surface heat fluxes; (b) Internal 
temperatures. 

The boundary condition on the top surface is prescribed heat flux which is chosen to 
resemble the one in water cooling of steel strips. Figure 7(a) shows the applied heat fluxes 
on top of one of the thermocouple locations for the whole cooling process, while Figure 7(b) 
shows the history of the temperature drop at the corresponding thermocouple location. 
Figure 8(a) shows a close-up of the applied heat flux at five of the nine thermocouple 
locations. It is very similar to the actual heat flux values on a run-out table with two rows of 
staggered circular jets, impinging on the third and seventh locations (Vakili & Gadala, 2010). 
Figure 8(b) is a close-up view of the temperature history at five of the nine thermocouple 
locations inside the plate, obtained from direct finite element simulation. The other 
boundaries are assumed to be adiabatic. The density, ρ, is 7850 3kg m , Cp is 475 kgKJ , and 
the thermal conductivity, k, is first assumed to be constant and equal to 40 W/m.°C and later 
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changed to be depending on temperature, as will be discussed in section 7.4. These are the 
physical properties of the steel strips that are used in our controlled cooling experiment. 
Results are obtained at the top of the cylindrical hole, which is the assumed position of a 
thermocouple. Inverse analysis is conducted to obtain the transient heat flux profile at the 
top surface of the plate. 
 

 
Fig. 8. (a) The applied heat flux on the top surface; (b) The thermocouple readings used for 
inverse analysis. 

7. Results and discussion 
As the first step in our study of these techniques, we investigate their capability in solving a 
general inverse heat conduction problem. We start by applying the artificial neural networks 
to the inverse heat conduction problem. This is different from GA and PSO, since those 
methods perform a stochastical search and are similar in many aspects, while the artificial 
neural networks are more like a correlation between the inputs and outputs. Fig. 9 shows 
the result of the application of the radial basis function neural networks for the whole 
history of the heat fluxes on the runout table. Temperatures start at 700 ºC and go down to 
176 ºC. The heat flux vs. time profile is plotted in Fig. 9. As can be seen from this figure, 
neural networks are generally capable of dealing with the whole range of the cooling 
history. 
However, this method has limitations, as observed in Fig. 9, and in more details in Fig. 10. 
The latter figure shows a close-up view of each of the 17 peaks of heat flux that happen 
during the cooling process on the run-out table, i.e. the peaks in Fig. 9. The circles are the 
expected heat flux, and the plusses are the result of NNs. The top left sub-figure is the first 
peak heat flux in time, and then it moves to the right, and then to the next row. Note that 
each even sub-figure (2nd, 4th, and so on) is a very smaller peak which is associated with the 
second row of jets. These peaks are not very obvious in Fig. 9, due to the scaling. Going 
through the subfigures of heat fluxes, it is apparent that the success or failure of NNs is not 
that much related to the temperature range, or the magnitude of heat fluxes, but on the 
actual shape of the heat flux profile. If the heat flux has a clear thin peak and two tails before 
and after the peak, the NN is doing a good job. However, the existence of other details in the 
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heat flux profile reduces the quality of the NN predictions. Also, considering the ill-posed 
nature of the problem, and all the complications that are involved, we can generally say that 
in most cases (about 75% of the cases) it does a decent job. Of course, there is the possibility 
of slightly improving the results by trying to modify the performance parameters of the NN, 
but overall we can say that NNs are more useful in getting a general picture of the solution, 
rather than producing a very accurate and detailed answer to the IHCP.  
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Fig. 9. Time History of Heat Fluxes in a Typical Run-Out Table Application; Expected 
Results (Squares) vs. the RBF Network Results (Line). 

 

 
Fig. 10. Individual Heat Flux Peaks vs. Time from a Typical Run-Out Table Application; 
Expected Results (Circles) vs. the RBF Network Results (Pluses) 
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On the other hand, GA and PSO algorithms show reasonably good predictions of the details 
of the missing boundary conditions. Notice that we still need to have some form of 
regularization for these methods to work properly. The figures for the results of GA and 
PSO are not presented here for the sake of brevity, but can be found in (Vakili & Gadala, 
2009). They will be used, however, for comparisons in the next sections. 

7.1 Time step size 
One of the main problems of the classical approaches, such as the sequential function 
specification method studied in this chapter, is their instability when small time steps are 
used. Unlike direct problems where the stability requirement gives the upper limit of the 
time step size, in inverse problems the time step is bounded from below. Fig. 11(a)(Vakili & 
Gadala, 2009) shows the oscillation in the results obtained by the function specification 
method and a time step size of 0.01 (s), which corresponds to the onset of instability. For 
time steps smaller than this, the whole process diverges. PSO, GA, and NNs successfully 
produce, however, the results for the same time step size as presented in Fig. 11(b) for PSO. 
Note that the oscillations here are not due to the instability caused by the time step size, and 
can be improved by performing more iterations. It is, however, important to mention that 
the time requirements for these techniques are much higher than those of the classical 
function specification approaches.  

7.2 Efficiency 
In this section, we compare the solution time required for GA, the three variations of PSO, 
and feed forward and radial basis function neural networks. We assume that there is no 
noise in the solution, and we compare the time that is required to get to certain accuracy in 
the heat flux predictions. Table 1 compares the solution time for different inverse analysis 
algorithms. The fastest solution technique is the gradient-based function specification 
method. The stochastical methods such as GA and PSO variants suffer a high computational 
cost. RBF neural networks perform much faster than GA and PSO, but they are still slower 
than the gradient-based methods, such as function specification. 
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Fig. 11. Heat flux vs. time: (a) classical approach, (b) PSO (Vakili & Gadala, 2009). 
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Fig. 11. Heat flux vs. time: (a) classical approach, (b) PSO (Vakili & Gadala, 2009). 
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 Function Specification 
Method GA PSO RPSO CRPSO FMLP RBFN 

Solution Time (s) 1406 8430 6189 5907 6136 7321 2316 

Table 1. Comparison of the solution time for different inverse analysis algorithms. 

A more detailed comparison between the efficiency of GA and PSO variations can be found 
in (Vakili & Gadala, 2009). 

7.3 Noisy domain solution 
To investigate the behavior of different inverse algorithm variations in dealing with noise in 
the data, a known boundary condition is first applied to the direct problem. The 
temperature at some internal point(s) will be calculated and stored. Then random errors are 
imposed onto the calculated exact internal temperatures with the following equation: 

 m exactT T r    (22) 

where Tm is the virtual internal temperature that is used in the inverse calculations instead 
of the exact temperature, Texact; r is a normally distributed random variable with zero mean 
and unit standard deviation; and σ is the standard deviation. Virtual errors of 0.1% and 1% 
of the temperature magnitude are investigated here.  
We start by studying the effectiveness of the neural networks in handling noisy domains. 
Generally, the stability of the neural networks is on the same order as other inverse 
methods. It may be possible to tune the parameters to make it a little bit more stable, but 
generally it does not look promising in terms of noise resistance, since such modifications 
exist for almost all other methods. Fig. 12 - Fig. 13 show the results of the RBF network 
 

 
Fig. 12. Individual heat flux peaks vs. time from a typical run-out tale application; Expected 
results (blue circles) vs. the RBF network results (red pluses); Artificial noise added: c = ±0.1%. 
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(red pluses) versus the expected results (blue circles) for individual heat flux peaks during 
the cooling history of the plate. The amount of added noise in these figures is ±0.1%and 
±1%, respectively.  
There are several ways to make an inverse algorithm more stable when dealing with noisy 
data. For example, (Gadala & Xu, 2006) have shown that increasing the number of “future 
time steps” in their sequential function specification algorithm resulted in greater stability. 
They have also demonstrated that increasing the regularization parameter, α, improves the 
ability of the algorithm to handle noisy data. However, the latter approach was shown to 
greatly increase the required number of iterations, and in many cases the solution may 
diverge. In this work, we first examine the effect of the regularization parameter, and then 
investigate an approach unique to the PSO method, to improve the effectiveness of the 
inverse algorithm in dealing with noise. 
Fig. 14 shows the effect of varying the regularization parameter value on the reconstructed 
heat flux, using the basic particle swarm optimization technique. Stable and accurate results 
are obtained for a range of values of α = 10-12 to 10-10. These results are very close to those 
reported in (Gadala & Xu, 2006), i.e., the proper values of α are very similar for the 
sequential specification approach and PSO. 
 
 
 
 

 
 

Fig. 13. Individual heat flux peaks vs. time from a typical run-out tale application; 
Expected results (blue circles) vs. the RBF network results (red pluses); Artificial noise 
added: c = ±1%. 
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Another factor that can affect the performance of a PSO inverse approach in dealing with 
noisy data is the value of the self-confidence parameter, c0, or the ratio between this 
parameter and the acceleration coefficients. The acceleration coefficients are set to the 
default value of 1.42. The initial value of the self-confidence parameter, c0, is changed from 
the default value of 0.7. The results are shown below. 
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Fig. 14. Effect of Regularization Parameter; a: α = 10-12; b: α = 10-10 
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Fig. 15. Effect of Self-Confidence Parameter; (a) c0=0.5; (b) c0=1.2 
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As can be seen in Fig. 15 (for α = 10-10), increasing the value of the self-confidence 
parameter results in better handling of the noisy data. This trend was observed for values 
up to approximately 1.3, after which the results become worse, and diverge. One possible 
explanation is that increasing the ratio of the self-confidence parameter with respect to the 
acceleration coefficients results in a more global search in the domain, and therefore 
increases the capability of the method to escape from the local minima caused by the 
noise, and find values closer to the global minimum. This effect was observed to be 
weaker in highly noisy domains. However, in the presence of a moderate amount of noise, 
increasing the self-confidence ratio results in more effectiveness. As can be seen in Table 2, 
the best effectiveness is normally obtained by RPSO, closely followed by CRPSO. 
Considering the higher efficiency of CRPSO, it is still recommended for the inverse heat 
conduction analysis. 
 

C0 0.7 0.8 0.95 1.1 1.2 
PSO 
RPSO 
CRPSO

8.105e+4 7.532e+4 7.079e+4 6.823e+4 6.257e+4 
7.577e+4 7.064e+4 6.685e+4 6.346e+4 5.816e+4 
7.611e+4 6.739e+4 6.117e+4 5.999e+4 5.822e+4 

Table 2. Effect of the Self-Confidence Parameter on the L2 Norm of Error in the Solution 

Table 3 shows the value of L2 norm of error in the solution, for ±1% added noise, and for 
different algorithms. It can be seen that the RBF neural networks perform better than the 
function specification method, and somewhere between the genetic algorithm and PSO 
variants. The most noise resistant algorithms are PSO variants, and the least stable 
algorithm is the gradient-based function specification method.  
 

 Function Specification 
Method GA PSO RPSO CRPSO FMLP RBFN 

L2 Norm of 
Error 9.14e4 6.61e4 5.24e4 4.82e4 5.02e4 8.91e4 5.91e4 

Table 3. The L2 Norm of Error in the Solution in a Noisy Domain for Different Algorithms 

7.4 Effect of non-linearity 
In many applications of inverse heat conduction, the thermophysical properties change 
with temperature. This results in nonlinearity of the problem. In other words, a same drop 
in the temperature values can be caused by different values of heat flux. So, a neural 
network that is trained with the relationship between the temperature change values and 
heat flux magnitudes may not be correctly capable of recognizing this nonlinear pattern, 
and as a result the performance will suffer. To investigate this effect, two kinds of 
expressions are used for thermal conductivity in this study. In one, we assume a constant 
thermal conductivity of  W/m.°C, while in the other a temperature-dependent expression 
is used: 

 Tk  03849.0571.60  W/m.°C (23) 

As expected, the nonlinearity will weaken the performance of both feedforward and radial 
basis function neural networks. The effect is seen as the training of the network stalls after a 



 
Heat Conduction – Basic Research 

 

56

Another factor that can affect the performance of a PSO inverse approach in dealing with 
noisy data is the value of the self-confidence parameter, c0, or the ratio between this 
parameter and the acceleration coefficients. The acceleration coefficients are set to the 
default value of 1.42. The initial value of the self-confidence parameter, c0, is changed from 
the default value of 0.7. The results are shown below. 
 
 
 

 
(a) 

 
(b) 

 
 

Fig. 14. Effect of Regularization Parameter; a: α = 10-12; b: α = 10-10 

 
 
 

 
(a) 

 
(b) 

 
 

Fig. 15. Effect of Self-Confidence Parameter; (a) c0=0.5; (b) c0=1.2 

 
Assessment of Various Methods in Solving Inverse Heat Conduction Problems 

 

57 

As can be seen in Fig. 15 (for α = 10-10), increasing the value of the self-confidence 
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in the temperature values can be caused by different values of heat flux. So, a neural 
network that is trained with the relationship between the temperature change values and 
heat flux magnitudes may not be correctly capable of recognizing this nonlinear pattern, 
and as a result the performance will suffer. To investigate this effect, two kinds of 
expressions are used for thermal conductivity in this study. In one, we assume a constant 
thermal conductivity of  W/m.°C, while in the other a temperature-dependent expression 
is used: 
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basis function neural networks. The effect is seen as the training of the network stalls after a 
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number of epochs. In order to deal with this, increasing the number of hidden layers, 
increasing the number of neurons in each layer, and choosing different types of transfer 
function were investigated. However, none of these methods showed a significant 
improvement in the behavior of the network. The other methods of solving the inverse 
problem are much less sensitive to the effect of nonlinearity. Table 4 compares the error in 
the solution for both the linear and nonlinear cases, if the same numbers of iterations, 
generations, and epochs are used for different methods of solving the inverse heat 
conduction. As it can be seen, the neural networks methods perform very poorly in the 
nonlinear cases, while the other methods, either gradient based or stochastical, are immune 
to the problems caused by nonlinearity. Basically, neural networks, at least in the form that 
is used in this chapter, see nonlinearity as a kind of noise. It should be noted that neural 
networks can be useful in making rough estimates of the answer, or combined with some 
other techniques employed as an inverse solver for nonlinear cases (Aquino & Brigham, 
2006), but on their own, are not a suitable choice for an accurate prediction of the boundary 
conditions in a nonlinear inverse heat conduction problem. 
 

 Function Specification 
Method GA PSO RPSO CRPSO FMLP RBFN 

Linear 1.81e2 7.62e2 3.85e2 3.42e2 3.17e2 9.90e2 5.35e2 
Nonlinear 2.14e2 7.71e2 4.46e2 5.12e2 4.26e2 3.57e4 2.76e4 

Table 4. The L2 norm of error in the solution in an exact domain for different algorithms. 

8. Conclusion 
In this chapter, we introduced a gradient-based inverse solver to obtain the missing 
boundary conditions based on the readings of internal thermocouples. The results show that 
the method is very sensitive to measurement errors, and becomes unstable when small time 
steps are used. Then, we tried to find algorithms that are capable of solving the inverse heat 
conduction problem without the shortcomings of the gradient-based methods.  
The artificial neural networks are capable of capturing the whole thermal history on the run-
out table, but are not very effective in restoring the detailed behavior of the boundary 
conditions. Also, they behave poorly in nonlinear cases and where the boundary condition 
profile is different.  
GA and PSO are more effective in finding a detailed representation of the time-varying 
boundary conditions, as well as in nonlinear cases. However, their convergence takes 
longer. A variation of the basic PSO, called CRPSO, showed the best performance among the 
three versions. The effectiveness of PSO was also studied in the presence of noise. PSO 
proved to be effective in handling noisy data, especially when its performance parameters 
were tuned. The proper choice of the regularization parameter helped PSO deal with noisy 
data, similar to the way it helps the classical function specification approaches. An increase 
in the self-confidence parameter was also found to be effective, as it increased the global 
search capabilities of the algorithm. RPSO was the most effective variation in dealing with 
noise, closely followed by CRPSO. The latter variation is recommended for inverse heat 
conduction problems, as it combines the efficiency and effectiveness required by these 
problems. 
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number of epochs. In order to deal with this, increasing the number of hidden layers, 
increasing the number of neurons in each layer, and choosing different types of transfer 
function were investigated. However, none of these methods showed a significant 
improvement in the behavior of the network. The other methods of solving the inverse 
problem are much less sensitive to the effect of nonlinearity. Table 4 compares the error in 
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search capabilities of the algorithm. RPSO was the most effective variation in dealing with 
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1. Introduction

Consider the heat conduction in a nonhomogeneous insulated rod of a unit length, with the
ends kept at zero temperature at all times. Our main interest is in the identification and
identifiability of the discontinuous conductivity (thermal diffusivity) coefficient a(x), 0 ≤
x ≤ 1. The identification problem consists of finding a conductivity a(x) in an admissible set
K for which the temperature u(x, t) fits given observations in a prescribed sense.
Under a wide range of conditions one can establish the continuity of the objective function
J(a) representing the best fit to the observations. Then the existence of the best fit to data
conductivity follows if the admissible set K is compact in the appropriate topology. However,
such an approach usually does not guarantee the uniqueness of the found conductivity a(x).
Establishing such a uniqueness is referred to as the identifiability problem. For an extensive
survey of heat conduction, including inverse heat conduction problems see (Beck et al., 1985;
Cannon, 1984; Ramm, 2005)
From physical considerations the conductivity coefficients a(x) are assumed to be in

Aad = {a ∈ L∞(0, 1) : 0 < ν ≤ a(x) ≤ μ}. (1)

The temperature u(a) = u(x, t; a) inside the rod satisfies

ut − (a(x)ux)x = f (x, t), Q = (0, 1)× (0, T),
u(0, t) = q1(t), u(1, t) = q2(t), t ∈ (0, T),
u(x, 0) = g(x), x ∈ (0, 1),

(2)

where g ∈ H = L2(0, 1), q1, q2 ∈ C1[0, ∞). Suppose that one is given an observation z(t) =
u(p, t; a) of the heat conduction process (2) for t1 < t < t2 at some observation point 0 < p <
1. From the series solution for (2) and the uniqueness of the Dirichlet series expansion (see
Section 5), one can, in principle, recover all the eigenvalues of the associated Sturm-Lioville
problem. If one also knows the eigenvalues for the heat conduction process with the same
coefficient a and different boundary conditions, then classical results of Gelfand and Levitan
(Gelfand & Levitan, 1955) show that the conductivity a(x) can be uniquely identified from the
knowledge of the two spectral sequences.
Alternatively, the conductivity is identifiable if the entire spectral function is known (i.e. the
eigenvalues and the values of the derivatives of the normalized eigenfunctions at x = 0).
However, such results have little practical value, since the observation data z(t) always
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contain some noise, and therefore one cannot hope to adequately identify more than just a
few first eigenvalues of the problem.
A different approach is taken in (Duchateau, 1995; Kitamura & Nakagiri, 1977; Nakagiri, 1993;
Orlov & Bentsman, 2000; Pierce, 1979). These works show that one can identify a constant
conductivity a in (2) from the measurement z(t) taken at one point p ∈ (0, 1). These works
also discuss problems more general than (2), including problems with a broad range of
boundary conditions, non-zero forcing functions, as well as elliptic and hyperbolic problems.
In (Elayyan & Isakov, 1997; Kohn & Vogelius, 1985) and references therein identifiability
results are obtained for elliptic and parabolic equations with discontinuous parameters in a
multidimensional setting. A typical assumption there is that one knows the normal derivative
of the solution at the boundary of the region for every Dirichlet boundary input. For more
recent work see (Benabdallah et al., 2007; Demir & Hasanov, 2008; Isakov, 2006).
In our work we examine piecewise constant conductivities a(x), x ∈ [0, 1]. Suppose that the
conductivity a is known to have sufficiently separated points of discontinuity. More precisely,
let a ∈ PC(σ) defined in Section 2. Let u(x, t; a) be the solution of (2). The eigenfunctions and
the eigenvalues for (2) are defined from the associated Sturm-Liouville problem (5).
In our approach the identifiability is achieved in two steps:
First, given finitely many equidistant observation points {pm}M−1

m=1 on interval (0, 1) (as
specified in Theorem 5.5), we extract the first eigenvalue λ1(a) and a constant nonzero
multiple of the first eigenfunction Gm(a) = C(a)ψ1(pm ; a) from the observations zm(t; a) =
u(pm, t; a). This defines the M-tuple

G(a) = (λ1(a), G1(a), · · · , GM−1(a)) ∈ RM. (3)

Second, the Marching Algorithm (see Theorem 5.5) identifies the conductivity a from G(a).
We start by recalling some basic properties of the eigenvalues and the eigenfunctions for (2) in
Section 2. Our main identifiability result is Theorem 5.5. It is discussed in Section 5. The
continuity properties of the solution map a → G(a) are established in Section 4, and the
continuity of the identification map G−1(a) is proved in Section 8. Computational algorithms
for the identification of a(x) from noisy data are presented in Section 10.
This exposition outlines main results obtained in (Gutman & Ha, 2007; 2009). In
(Gutman & Ha, 2007) the case of distributed measurements is considered as well.

2. Properties of the eigenvalues and the eigenfunctions

The admissible set Aad is too wide to obtain the desired identifiability results, so we restrict it
as follows.

Definition 2.1. (i) a ∈ PSN if function a is piecewise smooth, that is there exists a finite
sequence of points 0 = x0 < x1 < · · · < xN−1 < xN = 1 such that both a(x) and
a�(x) are continuous on every open subinterval (xi−1, xi), i = 1, · · · , N and both can be
continuously extended to the closed intervals [xi−1, xi ], i = 1, · · · , N. For definiteness,
we assume that a and a� are continuous from the right, i.e. a(x) = a(x+) and a�(x) =
a�(x+) for all x ∈ [0, 1). Also let a(1) = a(1−).

(ii) Define PS = ∪∞
N=1PSN .

(iii) Define PC ⊂ PS as the class of piecewise constant conductivities, and PCN = PC ∩
PSN . Any a ∈ PCN has the form a(x) = ai for x ∈ [xi−1, xi), i = 1, 2, · · · , N.

(iv) Let σ > 0. Define

PC(σ) = {a ∈ PC : xi − xi−1 ≥ σ, i = 1, 2, · · · , N},
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where x1, x2, · · · , xN−1 are the discontinuity points of a, and x0 = 0, xN = 1.

Note that a ∈ PC(σ) attains at most N = [[1/σ]] distinct values ai, 0 < ν ≤ ai ≤ μ.
For a ∈ PSN the governing system (2) is given by

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ut − (a(x)ux)x = f (x, t), x �= xi, t ∈ (0, T),
u(0, t) = q1(t), u(1, t) = q2(t), t ∈ (0, T),
u(xi+, t) = u(xi−, t), t ∈ (0, T),
a(xi+)ux(xi+, t) = a(xi−)ux(xi−, t), t ∈ (0, T),
u(x, 0) = g(x), x ∈ (0, 1).

(4)

The associated Sturm-Liouville problem for (4) is
⎧⎪⎪⎨
⎪⎪⎩

(a(x)ψ(x)�)� = −λψ(x), x �= xi,
ψ(0) = ψ(1) = 0,
ψ(xi+) = ψ(xi−),
a(xi+)ψx(xi+) = a(xi−)ψx(xi−).

(5)

For convenience we collect basic properties of the eigenvalues and the eigenfunctions of (5).
Additional details can be found in (Birkhoff & Rota, 1978; Evans, 2010; Gutman & Ha, 2007).

Theorem 2.2. Let a ∈ PS . Then

(i) The associated Sturm-Liouville problem (5) has infinitely many eigenvalues

0 < λ1 < λ2 < · · · → ∞.

The eigenvalues {λk}∞
k=1 and the corresponding orthonormal set of eigenfunctions {ψk}∞

k=1
satisfy

λk =
� 1

0
a(x)[ψ�

k(x)]
2dx, (6)

λk = inf

�� 1
0 a(x)[ψ�(x)]2dx� 1

0 [ψ(x)]
2dx

: ψ⊥span{ψ1, . . . , ψk−1} ⊂ H1
0(0, 1)

�
. (7)

The normalized eigenfunctions {ψk}∞
k=1 form a basis in L2(0, 1). Eigenfunctions {ψk/

√
λk}∞

k=1
form an orthonormal basis in

Va = {ψ ∈ H1
0(0, 1) :

� 1

0
a(x)[ψ�(x)]2dx < ∞}.

(ii) Each eigenvalue is simple. For each eigenvalue λk there exists a unique continuous, piecewise
smooth normalized eigenfunction ψk(x) such that ψ�

k(0+) > 0, and the function a(x)ψ�
k(x) is

continuous on [0, 1].

(iii) Eigenvalues {λk}∞
k=1 satisfy Courant min-max principle

λk = min
Vk

max

�� 1
0 a(x)[ψ�(x)]2dx� 1

0 [ψ(x)]
2dx

: ψ ∈ Vk

�
,

where Vk varies over all subspaces of H1
0(0, 1) of finite dimension k.
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(iv) Eigenvalues {λk}∞
k=1 satisfy the inequality

νπ2k2 ≤ λk ≤ μπ2k2.

(v) First eigenfunction ψ1 satisfies ψ1(x) > 0 for any x ∈ (0, 1).

(vi) First eigenfunction ψ1 has a unique point of maximum q ∈ (0, 1) : ψ1(x) < ψ1(q) for any
x �= q.

Proof. (i) See (Evans, 2010).

(ii) On any subinterval (xi, xi+1) the coefficient a(x) has a bounded continuous derivative.
Therefore, on any such interval the initial value problem (a(x)v�(x))� + λv = 0, v(xi) =
A, v�(xi) = B has a unique solution. Suppose that two eigenfunctions w1(x) and
w2(x) correspond to the same eigenvalue λk. Then they both satisfy the condition
w1(0) = w2(0) = 0. Therefore their Wronskian is equal to zero at x = 0. Consequently,
the Wronskian is zero throughout the interval (x0, x1), and the solutions are linearly
dependent there. Thus w2(x) = Cw1(x) on (x0, x1), w2(x1−) = Cw1(x1−) and
w�

2(x1−) = Cw�
1(x1−). The linear matching conditions imply that w2(x1+) = Cw1(x1+)

and w�
2(x1+) = Cw�

1(x1+). The uniqueness of solutions implies that w2(x) = Cw1(x)
on (x1, x2), etc. Thus w2(x) = Cw1(x) on (0, 1) and each eigenvalue λk is simple.
In particular λ1 is a simple eigenvalue. The uniqueness and the matching conditions
also imply that any solution of (a(x)v�(x))� + λv = 0, v(0) = 0, v�(0) = 0 must
be identically equal to zero on the entire interval (0, 1). Thus no eigenfunction ψk(x)
satisfies ψ�

k(0) = 0. Assuming that the eigenfunction ψk is normalized in L2(0, 1) it
leaves us with the choice of its sign for ψ�

k(0). Letting ψ�
k(0) > 0 makes the eigenfunction

unique.

(iii) See (Evans, 2010).

(iv) Suppose a(x) ≤ b(x) for x ∈ [0, 1]. The min-max principle implies λk(a) ≤ λk(b). Since
the eigenvalues of (7) with a(x) = 1 are π2k2 the required inequality follows.

(v) Recall that ψ1(x) is a continuous function on [0, 1]. Suppose that there exists p ∈ (0, 1)
such that ψ1(p) = 0. Let wl(x) = ψ1(x) for 0 ≤ x < p, and wl(x) = 0 for p ≤ x ≤ 1.
Let wr(x) = ψ1(x) − wl(x), x ∈ [0, 1]. Then wl , wr are continuous, and, moreover,
wl , wr ∈ H1

0(0, 1). Also

∫ 1

0
wl(x)wr(x)dx = 0, and

∫ 1

0
a(x)w�

l(x)w
�
r(x)dx = 0.

Suppose that wl is not an eigenfunction for λ1. Then

∫ 1

0
a(x)[w�

l(x)]
2dx > λ1

∫ 1

0
[wl(x)]

2dx.

Since ∫ 1

0
a(x)[w�

r(x)]
2dx ≥ λ1

∫ 1

0
[wr(x)]2dx

we have

λ1 =

∫ 1
0 a(x)[ψ�

1(x)]
2dx∫ 1

0 [ψ1(x)]2dx
=

∫ 1
0 a(x)([w�

l(x)]
2 + [w�

r(x)]
2)dx∫ 1

0 ([wl(x)]2 + [wr(x)]2)dx
>
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∫ 1
0 (λ1[wl(x)]2 + λ1[wr(x)]2)dx∫ 1

0 ([wl(x)]2 + [wr(x)]2)dx
= λ1.

This contradiction implies that wl (and wr) must be an eigenfunction for λ1. However,
wl(x) = 0 for p ≤ x ≤ 1, and as in (ii) it implies that wl(x) = 0 for all x ∈ [0, 1] which is
impossible. Since ψ�

1(0) > 0 the conclusion is that ψ1(x) > 0 for x ∈ (0, 1).

(vi) From part (ii), any eigenfunction ψk is continuous and satisfies

(a(x)ψ�
k(x))

� = −λkψk(x)

for x �= xi . Also function a(x)ψ�
k(x) is continuous on [0, 1] because of the matching

conditions at the points of discontinuity xi, i = 1, 2, · · · , N − 1 of a. The integration
gives

a(x)ψ�
k(x) = a(p)ψ�

k(p)− λk

∫ x

p
ψk(s)ds,

for any x, p ∈ (0, 1).
Let p ∈ (0, 1) be a point of maximum of ψk. If p �= xi then ψ�

k(p) = 0. If p = xi ,
then ψ�

k(xi−) ≥ 0 and ψ�
k(xi+) ≤ 0. Therefore limx→p a(x)ψ�

k(x) = 0, and ψ�
k(p+) =

ψ�
k(p−) = 0 since a(x) ≥ ν > 0. In any case for such point p we have

a(x)ψ�
k(x) = −λk

∫ x

p
ψk(s)ds, x ∈ (0, 1). (8)

Since ψ1(x) > 0, a(x) > 0 on (0, 1) equation (8) implies that ψ�
1(x) > 0 for any 0 ≤ x < p

and ψ�
1(x) < 0 for any p < x ≤ 1. Since the derivative of ψ1 is zero at any point of

maximum, we have to conclude that such a maximum p is unique.

3. Representation of solutions

First, we derive the solution of (4) with f = q1 = q2 = 0. Then we consider the general case.

Theorem 3.1. (i) Let g ∈ H = L2(0, 1). For any fixed t > 0 the solution u(x, t) of

ut − (a(x)ux)x = 0, Q = (0, 1)× (0, T),
u(0, t) = 0, u(1, t) = 0, t ∈ (0, T),
u(x, 0) = g(x), x ∈ (0, 1)

(9)

is given by

u(x, t; a) =
∞

∑
k=1

�g, ψk�e−λktψk(x),

and the series converges uniformly and absolutely on [0, 1].

(ii) For any p ∈ (0, 1) function
z(t) = u(p, t; a), t > 0

is real analytic on (0, ∞).

Proof. (i) Note that the eigenvalues and the eigenfunctions satisfy

ν�ψ�
k�2 ≤

∫ 1

0
a(x)[ψ�

k(x)]
2dx = λk�ψk�2 = λk.
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Thus

�ψ�
k� ≤

√
λk√
ν

,

and

|ψk(x)| ≤
� x

0
|ψ�

k(s)|ds ≤ �ψ�
k� ≤

√
λk√
ν

.

Bessel’s inequality implies that the sequence of Fourier coefficients �g, ψk� is bounded.
Therefore, denoting by C various constants and using the fact that the function s →√

se−σs is bounded on [0, ∞) for any σ > 0 one gets

|�g, ψk�e−λktψk(x)| ≤ C
√

λk√
ν

e−
λkt

2 e−
λkt

2 ≤ Ce−
λkt

2 .

From (iv) of Theorem 2.2 λk ≥ νπ2k2. Thus

∞

∑
k=1

|�g, ψk�e−λktψk(x)| ≤ C
∞

∑
k=1

e−
νπ2k2 t

2 ≤ C
∞

∑
k=1

�
e−

νπ2t
2

�k
< ∞.

By Weierstrass M-test the series converges absolutely and uniformly on [0, 1].

(ii) Let t0 > 0 and p ∈ (0, 1). From (i), the series ∑∞
k=1�g, ψk�e−λkt0 ψk(p) converges

absolutely. Therefore ∑∞
k=1�g, ψk�e−λksψk(p) is analytic in the part of the complex plane

{s ∈ C : Re s > t0}, and the result follows.

Next we establish a representation formula for the solutions u(x, t; a) of (4) under more general
conditions. Suppose that u(x, t; a) is a strong solution of (4), i.e. the equation and the initial
condition in (4) are satisfied in H = L2(0, 1). Let

Φ(x, t; a) =
q2(t)− q1(t)� 1

0
1

a(s) ds

� x

0

1
a(s)

ds + q1(t). (10)

Then v(x, t; a) = u(x, t; a)− Φ(x, t; a) is a strong solution of
⎧⎪⎪⎨
⎪⎪⎩

vt − (avx)x = −Φt + f , 0 < x < 1, 0 < t < T,
v(0, t) = 0, 0 < t < T,
v(1, t) = 0, 0 < t < T,
v(x, 0) = g(x)− Φ(x, 0), 0 < x < 1.

(11)

Accordingly, the weak solution u of (4) is defined by u(x, t; a) = v(x, t; a) + Φ(x, t; a) where
v is the weak solution of (11). For the existence and the uniqueness of the weak solutions for
such evolution equations see (Evans, 2010; Lions, 1971).
Let V = H1

0(0, 1) and X = C[0, 1].

Theorem 3.2. Suppose that T > 0, a ∈ PS , g ∈ H, q1, q2 ∈ C1[0, T] and f (x, t) = h(x)r(t)
where h ∈ H and r ∈ C[0, T]. Then

(i) There exists a unique weak solution u ∈ C((0, T]; X) of (4).
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(ii) Let {λk, ψk}∞
k=1 be the eigenvalues and the eigenfunctions of (5). Let gk = �g, ψk�, φk(t) =

�Φ(·, t), ψk� and fk(t) = � f (·, t), ψk� for k = 1, 2, · · · . Then the solution u(x, t; a), t > 0 of
(4) is given by

u(x, t; a) = Φ(x, t; a) +
∞

∑
k=1

Bk(t; a)ψk(x), (12)

where

Bk(t; a) = e−λkt(gk − φk(0; a)) +
∫ t

0
e−λk(t−τ)( fk(τ)− φ�

k(τ; a))dτ (13)

for k = 1, 2, · · · .

(iii) For each t > 0 and a ∈ PS the series in (12) converges in X. Moreover, this convergence is
uniform with respect to t in 0 < t0 ≤ t ≤ T and a ∈ PS .

Proof. Under the conditions specified in the Theorem the existence and the uniqueness of
the weak solution v ∈ C([0, T]; H) ∩ L2([0, T]; V) of (11) is established in (Evans, 2010; Lions,
1971). By the definition u = v+Φ. Thus the existence and the uniqueness of the weak solution
u of (4) is established as well.
Let {ψk}∞

k=1 be the orthonormal basis of eigenfunctions in H corresponding to the
conductivity a ∈ PS . Let Bk(t) = �v(·, t), ψk�. To simplify the notation the dependency of
Bk on a is suppressed. Then v = ∑∞

k=1 Bk(t)ψk in H for any t ≥ 0, and

B�
k(t) + λkBk(t) = −φ�

k(t) + fk(t), Bk(0) = gk − φk(0).

Therefore Bk(t) has the representation stated in (13).
Let 0 < t0 < T. Our goal is to show that v defined by v = ∑∞

k=1 Bk(t)ψk is in C([t0, T]; X). For
this purpose we establish that this series converges in X = C[0, 1] uniformly with respect to
t ∈ [t0, T] and a ∈ Aad.
Note that V is continuously embedded in X. Furthermore, since 0 < ν ≤ a(x) ≤ μ the original
norm in V is equivalent to the norm � · �Va defined by �w�2

Va
=

∫ 1
0 a|w�|2dx. Thus it is enough

to prove the uniform convergence of the series for v in Va. The uniformity follows from the
fact that the convergence estimates below do not depend on a particular t ∈ [t0, T] or a ∈ Aad.
By the definition of the eigenfunctions ψk one has �aψ�

k, ψ�
j� = λk�ψk, ψj� for all k and j.

Thus the eigenfunctions are orthogonal in Va. In fact, {ψk/
√

λk}∞
k=1 is an orthonormal basis

in Va, see (Evans, 2010). Therefore the series ∑∞
k=1 Bk(t)ψk converges in Va if and only if

∑∞
k=1 λk|Bk(t)|2 = �v(·, t; a)�2

Va
< ∞ for any t > 0. This convergence follows from the fact that

the function s → √
se−σs is bounded on [0, ∞) for any σ > 0, see (Gutman & Ha, 2009).

4. Continuity of the solution map

In this section we establish the continuous dependence of the eigenvalues λk, eigenfunctions
ψk and the solution u of (4) on the conductivities a ∈ PS ⊂ Aad, when Aad is equipped with
the L1(0, 1) topology. For smooth a see (Courant & Hilbert, 1989).

Theorem 4.1. Let a ∈ PS , PS ⊂ Aad be equipped with the L1(0, 1) topology, and {λk(a)}∞
k=1

be the eigenvalues of the associated Sturm-Liouville system (5). Then the mapping a → λk(a) is
continuous for every k = 1, 2, · · · .

Proof. Let a, â ∈ PS , {λk, ψk}∞
k=1 be the eigenvalues and the eigenfunctions corresponding to

a, and {λ̂k, ψ̂k}∞
k=1 be the eigenvalues and the eigenfunctions corresponding to â. According
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to Theorem 2.2 the eigenfunctions form a complete orthonormal set in H. Since
� 1

0 aψ�
jψ

�dx =

λj
� 1

0 ψjψdx for any ψ ∈ H1
0(0, 1) we have

� 1
0 aψ�

iψ
�
jdx = 0 for i �= j.

Let Wk = span{ψj}k
j=1. Then Wk is a k-dimensional subspace of H1

0(0, 1), and any ψ ∈ Wk has

the form ψ(x) = ∑k
j=1 αjψj(x), αj ∈ R. From the min-max principle (Theorem 2.2(iii))

λ̂k ≤ max
ψ∈Wk

� 1
0 â(x)[ψ�(x)]2dx� 1

0 [ψ(x)]
2dx

.

Note that

max
ψ∈Wk

� 1
0 a(x)[ψ�(x)]2dx� 1

0 [ψ(x)]
2dx

= max

⎧
⎨
⎩

∑k
j=1 α2

j λj

∑k
j=1 α2

j

: αj ∈ R, j = 1, 2, · · · , k

⎫
⎬
⎭ = λk.

Therefore

λ̂k ≤ max
ψ∈Wk

� 1
0 a(x)[ψ�(x)]2dx� 1

0 [ψ(x)]
2dx

+ max
ψ∈Wk

� 1
0 (â(x)− a(x))[ψ�(x)]2dx� 1

0 [ψ(x)]
2dx

≤ λk + �a − â�L1 max
αj

�∑k
j=1 αjψ

�
j�2

∞

∑k
j=1 α2

j

,

where � · �∞ is the norm in L∞(0, 1). Estimates from Theorem 3.1 and the Cauchy-Schwarz
inequality give

| ∑k
j=1 αjψ

�
j(x)|2

∑k
j=1 α2

j

≤ ∑k
j=1 α2

j ∑k
j=1 |ψ�

j(x)|2

∑k
j=1 α2

j

≤ λ2
kk

ν2 ≤ (μπ2k2)2k
ν2 = C(k).

Therefore
|λk − λ̂k| ≤ C(k)�a − â�L1

and the desired continuity is established.

The following theorem is established in (Gutman & Ha, 2007).

Theorem 4.2. Let a ∈ PS , PS ⊂ Aad be equipped with the L1(0, 1) topology, and {ψk(x; a)}∞
k=1

be the unique normalized eigenfunctions of the associated Sturm-Liouville system (5) satisfying the
condition ψ�

k(0+; a) > 0. Then the mapping a → ψk(a) from PS into X = C[0, 1] is continuous for
every k = 1, 2, · · · .

Theorem 4.3. Let a ∈ PS ⊂ Aad equipped with the L1(0, 1) topology, and u(a) be the solution of
the heat conduction process (4), under the conditions of Theorem 3.2. Then the mapping a → u(a)
from PS into C([0, T]; X) is continuous.

Proof. According to Theorem 3.2 the solution u(x, t; a) is given by u(x, t; a) = v(x, t; a) +
Φ(x, t; a), where v(x, t; a) = ∑∞

k=1 Bk(t; a)ψk(x) with the coefficients Bk(t; a) given by (13).
Let

vN(x, t; a) =
N

∑
k=1

Bk(t; a)ψk(x).
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By Theorems 4.1 and 4.2 the eigenvalues and the eigenfunctions are continuously dependent
on the conductivity a. Therefore, according to (13), the coefficients Bk(t, a) are continuous
as functions of a from PS into C([0, T]; X). This implies that a → vN(a) is continuous. By
Theorem 3.2 the convergence vN → v is uniform on Aad as N → ∞ and the result follows.

5. Identifiability of piecewise constant conductivities from finitely many
observations

Series of the form ∑∞
k=1 Ck e−λkt are known as Dirichlet series. The following lemma shows

that a Dirichlet series representation of a function is unique. Additional results on Dirichlet
series can be found in Chapter 9 of (Saks & Zygmund, 1965).

Lemma 5.1. Let μk > 0, k = 1, 2, . . . be a strictly increasing sequence, and 0 ≤ T1 < T2 ≤ ∞.
Suppose that either

(i) ∑∞
k=1 |Ck | < ∞,

or

(ii) γ > 0, μk ≥ γk2, k = 1, 2, . . . , and supk |Ck| < ∞.
Then

∞

∑
k=1

Ck e−μkt = 0 for all t ∈ (T1, T2)

implies Ck = 0 for k = 1, 2, . . . .

Proof. In both cases the series ∑∞
k=1 Ck e−μkz converges uniformly in Re z > 0 region of the

complex plane, implying that it is an analytic function there. Thus

∞

∑
k=1

Ck e−μkt = 0 for all t > 0.

Suppose that some coefficients Ck are nonzero. Without loss of generality we can assume
C1 �= 0. Then

0 = eμ1t
∞

∑
k=1

Ck e−μkt = C1 +
∞

∑
k=2

Ck e(μ1−μk)t → C1, t → ∞,

which is a contradiction.

Remark. According to Theorem 3.1 for each fixed p ∈ (0, 1) the solution z(t) = u(p, t; a) of (4)
is given by a Dirichlet series. The series coefficients Ck = �g, vk�vk(p) are square summable,
therefore they form a bounded sequence. The growth condition for the eigenvalues stated in
(iv) of Theorem 2.2 shows that Lemma 5.1(ii) is applicable to the solution z(t).
Functions a ∈ PCN have the form a(x) = ai for x ∈ [xi−1, xi), i = 1, 2, · · · , N. Assuming
f = q1 = q2 = 0, in this case the governing system (4) is

ut − aiuxx = 0, x ∈ (xi−1, xi), t ∈ (0, T),
u(0, t) = u(1, t) = 0, t ∈ (0, T),
u(xi+, t) = u(xi−, t), t ∈ (0, T),
ai+1ux(xi+, t) = aiux(xi−, t), t ∈ (0, T),
u(x, 0) = g(x), x ∈ (0, 1),

(14)
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αj

�∑k
j=1 αjψ

�
j�2

∞

∑k
j=1 α2

j

,

where � · �∞ is the norm in L∞(0, 1). Estimates from Theorem 3.1 and the Cauchy-Schwarz
inequality give

| ∑k
j=1 αjψ

�
j(x)|2

∑k
j=1 α2

j

≤ ∑k
j=1 α2

j ∑k
j=1 |ψ�

j(x)|2

∑k
j=1 α2

j

≤ λ2
kk

ν2 ≤ (μπ2k2)2k
ν2 = C(k).

Therefore
|λk − λ̂k| ≤ C(k)�a − â�L1
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where g ∈ L2(0, 1) and i = 1, 2, · · · , N − 1. The associated Sturm-Liouville problem is

aiψ
��(x) = −λψ(x), x ∈ (xi−1, xi),

ψ(0) = ψ(1) = 0,
ψ(xi+) = ψ(xi−),
ai+1ψ�(xi+) = aiψ

�(xi−)

(15)

for i = 1, 2, · · · , N − 1.
The central part of the identification method is the Marching Algorithm contained in Theorem
5.5. Recall that it uses only the M-tuple G(a), see (3). That is we need only the first eigenvalue
λ1 and a nonzero multiple of the first eigenfunction ψ1 of (15) for the identification of the
conductivity a(x).
Suppose that p∗ ∈ (xi−1, xi). Then ψ1 can be expressed on (xi−1, xi) as

ψ1(x) = A cos

(√
λ1
ai

(x − p∗) + γ

)
, −π

2
< γ <

π

2

with A > 0. The range for γ in the above representation follows from the fact that ψ1(p∗) =
A cos γ > 0 by Theorem 2.2(5).
The identifiability of piecewise constant conductivities is based on the following three
Lemmas, see (Gutman & Ha, 2007).

Lemma 5.2. Suppose that δ > 0. Assume Q1, Q3 ≥ 0, Q2 > 0 and 0 < Q1 + Q3 < 2Q2. Let

Γ =
{
(A, ω, γ) : A > 0, 0 < ω <

π

2δ
, −π

2
< γ <

π

2

}
.

Then the system of equations

A cos(ωδ − γ) = Q1, A cos γ = Q2, A cos(ωδ + γ) = Q3

has a unique solution (A, ω, γ) ∈ Γ given by

ω =
1
δ

arccos
Q1 + Q3

2Q2
, γ = arctan

(
Q1 − Q3

2Q2 sin ωδ

)
,

A =
Q2

cos γ
.

Lemma 5.3. Suppose that δ > 0, 0 < p ≤ x1 < p + δ < 1, 0 < ω1, ω2 < π/2δ.
Let w(x), v(x), x ∈ [p, p + δ] be such that

w(x) = A1 cos ω1x + B1 sin ω1x,

v(x) = A2 cos ω2x + B2 sin ω2x.

Suppose that

v(x1) = w(x1), ω2
1v�(x1) = ω2

2w�(x1),
v�(x1) > 0, v(x1) > 0.

Then

(i) Conditions v(p + δ) = w(p + δ), v�(p + δ) ≥ 0 and ω1 ≤ ω2 imply ω1 = ω2.
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(ii) Conditions v(p + δ) = w(p + δ), w�(p + δ) ≥ 0 and ω1 ≥ ω2 imply ω1 = ω2.

Lemma 5.4. Let δ > 0, 0 < η ≤ 2δ, ω1 �= ω2 with 0 < ω1δ, ω2δ < π/2. Also let A, B > 0,
0 ≤ p < p + η ≤ 1 and

w(x) = A cos[ω1(x − p) + γ1],

v(x) = B cos[ω2(x − p − η) + γ2]

with |γ1|, |γ2| < π/2. Then system

w(q) = v(q), (16)

ω2
2w�(q) = ω2

1v�(q), (17)

w(q) > 0, v(q) > 0 (18)

admits at most one solution q on [p, p + η]. This unique solution q can be computed as follows:
If γ1 ≥ 0 then

q = p +
1
ω 1

⎡
⎣arctan

⎛
⎝ω1

����
�����

B2 − A2

A2ω2
2 − B2ω2

1

�����

⎞
⎠− γ1

⎤
⎦ . (19)

If γ2 ≤ 0 then

q = p + η +
1
ω 2

⎡
⎣− arctan

⎛
⎝ω2

����
�����

B2 − A2

A2ω2
2 − B2ω2

1

�����

⎞
⎠− γ2

⎤
⎦ . (20)

Otherwise compute q1 and q2 according to formulas (19) and (20) and discard the one that does not
satisfy the conditions of the Lemma.

By the definition of a ∈ PC there exist N ∈ N and a finite sequence 0 = x0 < x1 < · · · <
xN−1 < xN = 1 such that a is a constant on each subinterval (xn−1, xn), n = 1, · · · , N. Let
σ > 0. The following Theorem is our main result.

Theorem 5.5. Given σ > 0 let an integer M be such that

M ≥ 3
σ

and M > 2
�

μ

ν
.

Suppose that the initial data g(x) > 0, 0 < x < 1 and the observations zm(t) = u(pm, t; a), pm =
m/M for m = 1, 2, · · · , M − 1 and 0 ≤ T1 < t < T2 of the heat conduction process (14) are given.
Then the conductivity a ∈ Aad is identifiable in the class of piecewise constant functions PC(σ).
Proof. The identification proceeds in two steps. In step I the M-tuple G(a) is extracted from
the observations zm(t). In step II the Marching Algorithm identifies a(x).
Step I. Data extraction.
By Theorem 3.1 we get

zm(t) =
∞

∑
k=1

gke−λktψk(pm), m = 1, 2, · · · , M − 1, (21)

where gk = �g, ψk� for k = 1, 2, · · · . By Theorem 2.2(5) ψ1(x) > 0 on interval (0, 1). Since g
is positive on (0, 1) we conclude that g1ψ1(pm) > 0. Since zm(t) is represented by a Dirichlet
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series, Lemma 5.1 assures that all nonzero coefficients (and the first term, in particular) are
defined uniquely.
An algorithm for determining the first eigenvalue λ1, and the coefficient g1ψ1(pm) from (21)
is given in Section 10. Repeating this process for every m one gets the values of

Gm = g1ψ1(pm) > 0, pm = m/M (22)

for m = 1, 2, · · · , M − 1. This determines the M-tuple G(a), see (3). Because of the zero
boundary conditions we let G0 = GM = 0.
Step II. Marching Algorithm.
The algorithm marches from the left end x = 0 to a certain observation point pl−1 ∈ (0, 1) and
identifies the values an and the discontinuity points xn of the conductivity a on [0, pl−1]. Then
the algorithm marches from the right end point x = 1 to the left until it reaches the observation
point pl+1 ∈ (0, 1) identifying the values and the discontinuity points of a on [pl+1, 1]. Finally,
the values of a and its discontinuity are identified on the interval [pl−1, pl+1].
The overall goal of the algorithm is to determine the number N − 1 of the discontinuities
of a on [0, 1], the discontinuity points xn , n = 1, 2, · · · , N − 1 and the values an of a on
[xn−1, xn], n = 1, 2, · · · , N (x0 = 0, xN = 1). As a part of the process the algorithm determines
certain functions Hn(x) defined on intervals [xn−1, xn ], n = 1, 2, · · · N. The resulting function
H(x) defined on [0, 1] is a multiple of the first eigenfunction v1 over the entire interval [0, 1].
An illustration of the Marching Algorithm is given in Figure 1.

0.2 0.4 0.6 0.8 1.0
x

0.5

1.0

1.5

2.0

v

Fig. 1. Conductivity identification by the Marching Algorithm. The dots are a multiple of the
first eigenfunction at the observation points pm. The algorithm identifies the values of the
conductivity a and its discontinuity points

(i) Find l, 0 < l < M such that Gl = max{Gm : m = 1, 2, · · · , M − 1} and Gm < Gl for any
0 ≤ m < l.

(ii) Let i = 1, m = 0.

(iii) Use Lemma 5.2 to find Ai, ωi and γi from the system
⎧
⎨
⎩

Ai cos(ωiδ − γi) = Gm,
Ai cos γi = Gm+1,
Ai cos(ωiδ + γi) = Gm+2.

(23)
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Let
Hi(x) = Ai cos(ωi(x − pm+1) + γi).

(iv) If m + 3 ≥ l then go to step (vii). If Hi(pm+3) �= Gm+3, or Hi(pm+3) = Gm+3 and
H�

i (pm+3) ≤ 0 then a has a discontinuity xi on interval [pm+2, pm+3). Proceed to the next
step (v).
If Hi(pm+3) = Gm+3 and H�

i (pm+3) > 0 then let m := m + 1 and repeat this step (iv).

(v) Use Lemma 5.2 to find Ai+1, ωi+1 and γi+1 from the system
⎧⎨
⎩

Ai+1 cos(ωi+1δ − γi+1) = Gm+3,
Ai+1 cos γi+1 = Gm+4,
Ai+1 cos(ωi+1δ + γi+1) = Gm+5.

(24)

Let
Hi+1(x) = Ai+1 cos(ωi+1(x − pm+4) + γi+1).

(vi) Use formulas in Lemma 5.4 to find the unique discontinuity point xi ∈ [pm+2, pm+3).
The parameters and functions used in Lemma 5.4 are defined as follows. Let p =
pm+2, η = δ. To avoid a confusion we are going to use the notation Ω1, Ω2, Γ1, Γ2
for the corresponding parameters ω1, ω2, γ1, γ2 required in Lemma 5.4. Let Ω1 =
ωi, Ω2 = ωi+1. For w(x) use function Hi(x) recentered at p = pm+2, i.e. rewrite Hi(x)
in the form

w(x) = Hi(x) = A cos(Ω1(x − pm+2) + Γ1), |Γ1| < π/2.

For v(x) use function Hi+1 recentered at p + η = pm+3, i.e.

v(x) = Hi+1(x) = B cos(Ω2(x − pm+3) + Γ2), |Γ2| < π/2.

Let i := i + 1, m := m + 3. If m < l then return to step (iv). If m ≥ l then go to the next
step (vii).

(vii) Do steps (ii)-(vi) in the reverse direction of x, advancing from x = 1 to x = pl+1.
Identify the values and the discontinuity points of a on [pl+1, 1], as well as determine
the corresponding functions Hi(x).

(viii) Using the notation introduced in (vi) let Hj(x) be the previously determined function
H on interval [pl−2, pl−1]. Recenter it at p = pl−1, i.e. w(x) = Hj(x) =

A cos(Ω1(x − pl−1) + Γ1). Let Hj+1(x) be the previously determined function H on
interval [pl+1, pl+2]. Recenter it at pl+1: v(x) = Hj+1(x) = B cos(Ω2(x − pl+1) + Γ2). If
Ω1 = Ω2 then stop, otherwise use Lemma 5.4 with η = 2δ, and the above parameters to
find the discontinuity xj ∈ [pl−1, pl+1]. Stop.

The justification of the Marching Algorithm is given in (Gutman & Ha, 2007).

6. Identifiability of piecewise constant conductivity with one discontinuity

The Marching Algorithm of Theorem 5.5 requires measurements of the system at possibly
large number of observation points. Our next Theorem shows that if a piecewise constant
conductivity a is known to have just one point of discontinuity x1, and its values a1 and
a2 are known beforehand, then the discontinuity point x1 can be determined from just one
measurement of the heat conduction process.
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Fig. 1. Conductivity identification by the Marching Algorithm. The dots are a multiple of the
first eigenfunction at the observation points pm. The algorithm identifies the values of the
conductivity a and its discontinuity points

(i) Find l, 0 < l < M such that Gl = max{Gm : m = 1, 2, · · · , M − 1} and Gm < Gl for any
0 ≤ m < l.

(ii) Let i = 1, m = 0.

(iii) Use Lemma 5.2 to find Ai, ωi and γi from the system
⎧
⎨
⎩
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Ai cos γi = Gm+1,
Ai cos(ωiδ + γi) = Gm+2.

(23)
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Theorem 6.1. Let p ∈ (0, 1) be an observation point, g(x) > 0 on (0, 1), and the observation zp(t) =
u(xp, t; a), t ∈ (T1, T2) of the heat conduction process (14) be given. Suppose that the conductivity
a ∈ Aad is piecewise constant and has only one (unknown) point of discontinuity x1 ∈ (0, 1). Given
positive values a1 �= a2 such that a(x) = a1 for 0 ≤ x < x1 and a(x) = a2 for x1 ≤ x < 1 the point
of discontinuity x1 is constructively identifiable.

Proof. Arguing as in the previous Theorem

zp(t) =
∞

∑
k=1

gke−λktψk(p), 0 ≤ T1 < t < T2,

where gk = �g, ψk� for k = 1, 2, · · · . Since g1ψ1(p) > 0 the uniqueness of the Dirichlet series
representation implies that one can uniquely determine the first eigenvalue λ1 and the value
of Gp = g1ψ1(p).
Without loss of generality one can assume that a1 > a2. In this case we show that the first
eigenvalue λ1 is strictly increasing as a function of the discontinuity point x1 ∈ [0, 1]. Indeed,
suppose that

0 ≤ xa
1 < xb

1 ≤ 1,

that is

a(x) =
{

a1 , 0 < x < xa
1

a2 , xa
1 < x < 1 and b(x) =

{
a1 , 0 < x < xb

1
a2 , xb

1 < x < 1
.

By Theorem 2.2(i)

λb
1 =

∫ 1
0 b(x)[ψ�

1,b(x)]
2dx

∫ 1
0 [ψ1,b(x)]2dx

>

∫ 1
0 a(x)[ψ�

1,b(x)]
2dx

∫ 1
0 [ψ1,b(x)]2dx

≥ inf
ψ∈H1

0(0,1)

∫ 1
0 a(x)[ψ�(x)]2dx∫ 1

0 [ψ(x)]
2dx

= λa
1

provided that the derivative ψ�
1,b(x) of the first eigenfunction ψ1,b(x) is not identically zero

on (xa
1, xb

1). But, from (b(x)ψ�
1,b(x))

� = −λb
1ψ1,b(x), the assumption ψ�

1,b(x) = 0 on (xa
1, xb

1)

implies ψ1,b(x) = 0 on (xa
1, xb

1). However, this is impossible, since ψ1,b(x) > 0 on (0, 1).
Thus there exists a unique conductivity of the type sought in the Theorem for which its first
eigenvalue is equal to λ1, i.e. a is identifiable.
Now the unique discontinuity point x1 of a can be determined as follows. Let

ω1 =

√
λ1
a1

, ω2 =

√
λ1
a2

.

Then the first eigenfunction ψ1 is given by

ψ1(x) =
{

A sin ω1x, 0 < x < x1,
B sin ω2(1 − x), x1 < x < 1 (25)

for some A, B > 0. The matching conditions at x1 give

A sin ω1x1 = B sin ω2(1 − x1) and
A

ω1
cos ω1x1 =

B
ω2

cos ω2(1 − x1).
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Since ψ1(x1) > 0 we have 0 < ω1x1 < π and 0 < ω2(1 − x1) < π. Therefore x1 satisfies

1
ω1

cot ω1x =
1

ω2
cot ω2(1 − x).

The existence and the uniqueness of the solution x1 of the above nonlinear equation follows
from the monotonicity and the continuity of the cotangent functions. Practically, the value of
x1 can be found by a numerical method.

7. Identifiability with non-zero boundary conditions

Let a ∈ PS , and u(x, t; a) be the unique solution of the heat conduction process (4). Next
Theorem describes some conditions under which the identifiability for (4) is possible.

Theorem 7.1. Given σ > 0 let an integer M be such that

M ≥ 3
σ

and M > 2
√

μ

ν
.

Suppose that the observations zm(t; a) = u(pm, t; a) for pm = m/M, m = 1, 2, · · · , M − 1 and
t > 0 of the heat conduction process (4) are given. Then the conductivity a ∈ Aad is identifiable in the
class of piecewise constant functions PC(σ) in each one of the following four cases.

(i) f = 0, q1 = 0, q2 = 0, g > 0, g ∈ L2(0, 1).

(ii) g = 0, q1 = 0, q2 = 0, f (x, t) = h(x)r(t) �= 0, h > 0, h ∈ L2(0, 1), r ∈ C[0, ∞).

(iii) g = 0, f = 0, q2 = 0, q1 �= 0, q1(0) = 0, q1 ∈ C1[0, ∞).

(iv) g = 0, f = 0, q1 = 0, q2 �= 0, q2(0) = 0, q2 ∈ C1[0, ∞).

Proof. Case (i) is considered in Theorem 5.5. In case (ii) of the Theorem let

ym(t) =
∞

∑
k=1

�h, ψk�ψk(pm)e−λkt. (26)

Then ym(t) is the solution of (4) with g = h, f = 0 and zero boundary conditions, observed
at pm ∈ (0, 1). It is shown in Theorem 3.2 that such a solution is a continuous function for
t > 0. Furthermore, using the estimate |ψk(x)| ≤

√
λk/

√
ν established in Theorem 3.1, and

the Cauchy-Schwarz inequality we get

∫ ∞

0
|ym(t)|dt ≤

∞

∑
k=1

1
λ k

|hk||ψk(pm)| ≤ 1√
ν

∞

∑
k=1

|hk|√
λk

≤ C�h� < ∞. (27)

Therefore ym(t) ∈ L1[0, ∞).
Returning to the observation zm(t), Theorem 3.2 shows that it is given by

zm(t) = u(pm, t) =
∫ t

0

[
∞

∑
k=1

�h, ψk�ψk(pm)e−λk(t−τ)

]
r(τ) dτ.

That is

zm(t) =
∫ t

0
ym(t − τ)r(τ) dτ.
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Since ym(t) ∈ L1[0, ∞) and r(t) is continuous and bounded on [0, ∞), Titchmarsh Theorem
(Titchmarsh, 1962), Theorem 152, Chap. XI, p. 325, implies that this Volterra integral equation
is uniquely solvable for ym(t).
Since h > 0 is assumed to be in L2(0, 1), one has C(a) = �h, ψ1(a)� �= 0. The uniqueness of the
Dirichlet series representation (26) and rest of the argument is the same as in the proof of case
(i).
In case (iii) of the Theorem function Φ(x, t; a) has the form Φ(x, t; a) = q1(t)ξ(x; a), where

ξ(x; a) = 1 − 1∫ 1
0

1
a(s) ds

∫ x

0

1
a(s)

ds.

Note that ξ(x; a) is bounded, continuous and strictly positive on (0, 1). Thus ξ ∈ L2(0, 1). Let
ξk = �ξ(x; a), ψk(x; a)� for k = 1, 2, .... Then φk(t; a) = q1(t)ξk, φk(0; a) = 0 and φ�

k(t; a) =
q�1(t)ξk.
Let

ym(t) = −
∞

∑
k=1

ξkψk(pm)e−λkt. (28)

Arguing as in case (ii), we conclude that ym(t) is continuous on [0, ∞) and ym(t) ∈ L1[0, ∞).
Also, by Theorem 3.2

zm(t) = u(pm, t) = −
∫ t

0

[
∞

∑
k=1

ξkψk(pm)e−λk(t−τ)

]
q�1(τ) dτ.

That is

zm(t) =
∫ t

0
ym(t − τ)q�1(τ) dτ.

Since ym(t) ∈ L1[0, ∞) and q�1(t) is continuous and bounded on [0, ∞), Titchmarsh Theorem
(Titchmarsh, 1962), Theorem 152, Chap. XI, p. 325, implies that this Volterra integral equation
is uniquely solvable for ym(t).
Since ξ1 > 0 and ψ1(pm) > 0, the uniqueness of the Dirichlet series representation (28)
implies that the M-tuple G(a) is recoverable from the observations zm(t). In this case C(a) =
�ξ(x; a), ψ1(x; a)�. Finally, the Marching Algorithm identifies the unknown conductivity a.
Case (iv) of the Theorem is treated in the same way as case (iii).

8. Continuity of the identification map

The Marching Algorithm establishes the identifiability of the conductivity a ∈ PC(σ) from
the data G(a). In other words, the inverse mapping G−1 is well defined on G(PC(σ)). To
prove our main result that the identifiability map G−1 is continuous, first we show that the
set PC(σ) ⊂ Aad is compact in L1(0, 1). A proof of this result can be found in (Gutman & Ha,
2009).

Theorem 8.1. Let Aad be equipped with the L1(0, 1) topology. Let N ∈ N and σ > 0. Then

(i) Set PCN ⊂ Aad is compact.

(ii) Set PC(σ) ⊂ Aad is compact.

Theorem 8.2. Let Aad be equipped with the L1(0, 1) topology, and the data map G : PC(σ) → RM

be defined as in (3). Then the identifiability map G−1 : G(PC(σ)) → PC(σ) is continuous.
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Proof. Theorem 7.1 shows that in every case specified there the data map a → G(a) is defined
everywhere on PC(σ) and that the conductivity a is identifiable from G(a), i.e. G is invertible
on G(PC(σ)). By Theorem 8.1 the set PC(σ) is compact in L1(0, 1). Thus the Theorem would
be established if the injective map a → G(a) were shown to be continuous.
Recall that G(a) = (λ1(a), G1(a), · · · , GM−1(a)) ∈ RM. The continuity of a → λ1(a) was
established in Theorem 4.1. In every case of Theorem 7.1 the data Gm has the form Gm(a) =
C(a)ψ1(pm; a), where pm are the observation points. By Theorem 4.2 the mapping a → ψ1(·; a)
is continuous from PC(σ) ⊂ L1(0, 1) into C[0, 1]. Thus the evaluation maps a → ψ1(pm ; a) ∈
R are continuous for every pm ∈ [0, 1].
To see that a → C(a) is continuous we have to examine it separately for each case of Theorem
7.1. In case (i) C(a) = �g, ψ1(a)�, where g ∈ L2(0, 1) is a fixed initial condition. The continuity
of the inner product and of a → ψ1(·; a) imply the continuity of C(a). In case (ii) C(a) =
�h, ψ1(a)� for an h ∈ L2(0, 1) and the continuity of C(a) follows. In cases (iii) and (iv) the
continuity of C(a) is established similarly.

9. Identifiability with a known heat flux

Let Π be the set of piecewise constant functions on [0, 1] with finitely many discontinuity
points,

Π = {a(x) : 0 < ν ≤ a(x) ≤ μ, a(x) = aj, x ∈ [xj−1, xj), j = 1, 2, ..., n} (29)

with x0 = 0 and xn = 1.
Consider the following heat conduction problem in an inhomogeneous bar of the unit length
with a conductivity a ∈ Π:

⎧⎨
⎩

ut = (a(x)ux)x, (x, t) ∈ Q = (0, 1)× (0, ∞),
u(0, t) = g(t), u(1, t) = 0, t ∈ (0, ∞),
u(x, 0) = 0, x ∈ (0, 1).

(30)

Suppose that the extra data f (t) = a(0)ux(0, t) �≡ 0, i.e., the heat flux through the left end of
the bar, is known.
The inverse problem (IP) for (29)-(30) is:
IP: Given f (t) and g(t) for all t > 0, find a(x).
In this Section we establish the identifiability for the IP. Additional details including a fast
computational algorithm can be found in (Gutman & Ramm, 2010) and (Hoang & Ramm,
2009).
The main idea of the proof is to apply a "layer peeling" argument. Suppose that two
conductivities a, b ∈ Π satisfy (30) with the same data f (t) and g(t) for t > 0. Let both a and
b have no discontinuities on an interval [0, y], 0 < y ≤ 1. Then we can show that a(x) = b(x)
for x ∈ [0, y]. A repeated application of this argument shows that a = b on the entire interval
[0, 1]. See (Hoang & Ramm, 2009) for further refinements of this result, in particular for the
data f , g available only on a finite interval (0, T).
The main tool for the uniqueness proof is Property C (completeness of the products
of solutions for (30)). We will use the following Property C result established in
(Hoang & Ramm, 2009).

Theorem 9.1. Let PC[0, 1] be the set of piecewise-constant functions on [0, 1]. Let q1, q2 ∈ PC[0, 1]
be two positive functions. Suppose that ψ1(x, k) and ψ2(x, k) satisfy

− ψ��
j (x, k) + k2q2

j (x)ψj(x, k) = 0, ψj(1, k) = 1, ψ�
j(1, k) = 0, j = 1, 2. (31)
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Since ym(t) ∈ L1[0, ∞) and r(t) is continuous and bounded on [0, ∞), Titchmarsh Theorem
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is uniquely solvable for ym(t).
Since h > 0 is assumed to be in L2(0, 1), one has C(a) = �h, ψ1(a)� �= 0. The uniqueness of the
Dirichlet series representation (26) and rest of the argument is the same as in the proof of case
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In case (iii) of the Theorem function Φ(x, t; a) has the form Φ(x, t; a) = q1(t)ξ(x; a), where

ξ(x; a) = 1 − 1∫ 1
0

1
a(s) ds

∫ x

0

1
a(s)

ds.

Note that ξ(x; a) is bounded, continuous and strictly positive on (0, 1). Thus ξ ∈ L2(0, 1). Let
ξk = �ξ(x; a), ψk(x; a)� for k = 1, 2, .... Then φk(t; a) = q1(t)ξk, φk(0; a) = 0 and φ�

k(t; a) =
q�1(t)ξk.
Let

ym(t) = −
∞

∑
k=1

ξkψk(pm)e−λkt. (28)

Arguing as in case (ii), we conclude that ym(t) is continuous on [0, ∞) and ym(t) ∈ L1[0, ∞).
Also, by Theorem 3.2

zm(t) = u(pm, t) = −
∫ t

0

[
∞

∑
k=1

ξkψk(pm)e−λk(t−τ)

]
q�1(τ) dτ.

That is

zm(t) =
∫ t

0
ym(t − τ)q�1(τ) dτ.
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8. Continuity of the identification map

The Marching Algorithm establishes the identifiability of the conductivity a ∈ PC(σ) from
the data G(a). In other words, the inverse mapping G−1 is well defined on G(PC(σ)). To
prove our main result that the identifiability map G−1 is continuous, first we show that the
set PC(σ) ⊂ Aad is compact in L1(0, 1). A proof of this result can be found in (Gutman & Ha,
2009).

Theorem 8.1. Let Aad be equipped with the L1(0, 1) topology. Let N ∈ N and σ > 0. Then

(i) Set PCN ⊂ Aad is compact.

(ii) Set PC(σ) ⊂ Aad is compact.

Theorem 8.2. Let Aad be equipped with the L1(0, 1) topology, and the data map G : PC(σ) → RM

be defined as in (3). Then the identifiability map G−1 : G(PC(σ)) → PC(σ) is continuous.
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Proof. Theorem 7.1 shows that in every case specified there the data map a → G(a) is defined
everywhere on PC(σ) and that the conductivity a is identifiable from G(a), i.e. G is invertible
on G(PC(σ)). By Theorem 8.1 the set PC(σ) is compact in L1(0, 1). Thus the Theorem would
be established if the injective map a → G(a) were shown to be continuous.
Recall that G(a) = (λ1(a), G1(a), · · · , GM−1(a)) ∈ RM. The continuity of a → λ1(a) was
established in Theorem 4.1. In every case of Theorem 7.1 the data Gm has the form Gm(a) =
C(a)ψ1(pm; a), where pm are the observation points. By Theorem 4.2 the mapping a → ψ1(·; a)
is continuous from PC(σ) ⊂ L1(0, 1) into C[0, 1]. Thus the evaluation maps a → ψ1(pm ; a) ∈
R are continuous for every pm ∈ [0, 1].
To see that a → C(a) is continuous we have to examine it separately for each case of Theorem
7.1. In case (i) C(a) = �g, ψ1(a)�, where g ∈ L2(0, 1) is a fixed initial condition. The continuity
of the inner product and of a → ψ1(·; a) imply the continuity of C(a). In case (ii) C(a) =
�h, ψ1(a)� for an h ∈ L2(0, 1) and the continuity of C(a) follows. In cases (iii) and (iv) the
continuity of C(a) is established similarly.

9. Identifiability with a known heat flux

Let Π be the set of piecewise constant functions on [0, 1] with finitely many discontinuity
points,

Π = {a(x) : 0 < ν ≤ a(x) ≤ μ, a(x) = aj, x ∈ [xj−1, xj), j = 1, 2, ..., n} (29)

with x0 = 0 and xn = 1.
Consider the following heat conduction problem in an inhomogeneous bar of the unit length
with a conductivity a ∈ Π:

⎧⎨
⎩

ut = (a(x)ux)x, (x, t) ∈ Q = (0, 1)× (0, ∞),
u(0, t) = g(t), u(1, t) = 0, t ∈ (0, ∞),
u(x, 0) = 0, x ∈ (0, 1).

(30)

Suppose that the extra data f (t) = a(0)ux(0, t) �≡ 0, i.e., the heat flux through the left end of
the bar, is known.
The inverse problem (IP) for (29)-(30) is:
IP: Given f (t) and g(t) for all t > 0, find a(x).
In this Section we establish the identifiability for the IP. Additional details including a fast
computational algorithm can be found in (Gutman & Ramm, 2010) and (Hoang & Ramm,
2009).
The main idea of the proof is to apply a "layer peeling" argument. Suppose that two
conductivities a, b ∈ Π satisfy (30) with the same data f (t) and g(t) for t > 0. Let both a and
b have no discontinuities on an interval [0, y], 0 < y ≤ 1. Then we can show that a(x) = b(x)
for x ∈ [0, y]. A repeated application of this argument shows that a = b on the entire interval
[0, 1]. See (Hoang & Ramm, 2009) for further refinements of this result, in particular for the
data f , g available only on a finite interval (0, T).
The main tool for the uniqueness proof is Property C (completeness of the products
of solutions for (30)). We will use the following Property C result established in
(Hoang & Ramm, 2009).

Theorem 9.1. Let PC[0, 1] be the set of piecewise-constant functions on [0, 1]. Let q1, q2 ∈ PC[0, 1]
be two positive functions. Suppose that ψ1(x, k) and ψ2(x, k) satisfy

− ψ��
j (x, k) + k2q2

j (x)ψj(x, k) = 0, ψj(1, k) = 1, ψ�
j(1, k) = 0, j = 1, 2. (31)
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Then the set of products {ψ1(x, k)ψ2(x, k)}k>0 is dense in PC[0, 1]. That is, if h ∈ PC[0, 1] and

∫ 1

0
h(x)ψ1(x, k)ψ2(x, k)dx = 0 (32)

for any k > 0, then h = 0.

Theorem 9.2. Problem IP has at most one solution a ∈ Π.

Proof. Following Hoang & Ramm (2009), problem (30) is restated in terms of the Laplace
transform

v(x, s; a) = (Lu)(x, s; a) =
∫ ∞

0
u(x, t; a)e−stdt, s > 0.

Let G(s) = L(g(t)) and F(s) = L( f (t)). Thus (30) with the extra condition a(0)ux(0, t) = f (t)
becomes

(a(x)v�)� − sv = 0, 0 < x < 1,

v(0, s; a) = G(s), a(0)v�(0, s; a) = F(s), (33)
v(1, s; a) = 0.

Let

k =
√

s, ψ(x, k) = a(x)v�(x, s; a), and q(x) =

√
1

a(x)
.

Then, using k2v(x, s; a) = ψ�(x, k), system (33) is rewritten as

− ψ��(x, k) + k2q2(x)ψ(x, k) = 0, 0 < x < 1, (34)

ψ(0, k) = F(k2), ψ�(0, k) = k2G(k2), ψ�(1, k) = 0.

Let ψ1(x, k) and ψ2(x, k) be the solutions of (34) for two positive piecewise-constant functions
q1(x) and q2(x) correspondingly. That is,

− ψ��
1 (x, k) + k2q2

1(x)ψ1(x, k) = 0, 0 < x < 1, (35)

ψ1(0, k) = F(k2), ψ�
1(0, k) = k2G(k2), ψ�

1(1, k) = 0,

and

− ψ��
2 (x, k) + k2q2

2(x)ψ2(x, k) = 0, 0 < x < 1, (36)

ψ2(0, k) = F(k2), ψ�
2(0, k) = k2G(k2), ψ�

2(1, k) = 0.

Multiply equation (35) by ψ2(x, k) and integrate it over [0, 1]. Then use an integration by parts
and the boundary conditions in (35) and (36) to obtain

k2
∫ 1

0
q2

1ψ1ψ2dx = ψ�
1ψ2|10 −

∫ 1

0
ψ�

1ψ�
2dx = −k2G(k2)F(k2)−

∫ 1

0
ψ�

1ψ�
2dx. (37)

Similarly,

k2
∫ 1

0
q2

2ψ1ψ2dx = −k2G(k2)F(k2)−
∫ 1

0
ψ�

1ψ�
2dx. (38)
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Subtracting (38) from (37) gives

∫ 1

0
(q2

1 − q2
2)ψ1ψ2dx = 0

for any k > 0.
Given nonzero F and G, consider (35) as an initial value problem for ψ1 at x = 0. Its solution
ψ1(x, k) must satisfy ψ1(1, k) �= 0, because of the condition ψ�

1(1, k) = 0. The same goes
for ψ2(x, k). Now we can conclude that the set of products {ψ1(x, k)ψ2(x, k)}k>0 is dense in
PC[0, 1] by Theorem 9.1. Therefore q1 = q2. Thus (34) has a unique solution q ∈ PC[0, 1].
Consequently (33) has a unique solution a ∈ Π, and the Theorem is proved.

10. Computational algorithms

The main objective of this research is the development of a theoretical framework for the
parameter identifiability described in previous sections. Nevertheless, from a practical
perspective it is desirable to develop an algorithm for such an identifiability incorporating
the new insights gained in the theoretical part. The main new element of it is the separation
of the identification process into the following two parts. First, the observation data is
used to recover the M-tuple G(a), i.e. the first eigenvalue of (5), and a multiple of the first
eigenfunction at the observation points pm, see (3). In the second step this input is used to
recover the conductivity distribution. We emphasize that only one (first) eigenvalue and the
eigenfunction are needed for the identification. For other methods for inverse heat conduction
problems see (Beck et al., 1985) and the references therein.
Before considering noise contaminated observation data zm(t), let us assume that zm(t) are
known precisely on an interval I = (t0, T), t0 ≥ 0. In case (i) of Theorem 7.1 the observations
are given by the Dirichlet series

zm(t) =
∞

∑
k=1

�g, ψk�e−λktψk(pm). (39)

We have not implemented yet other cases of Theorem 7.1.
In principle, functions zm(t) are analytic for t > 0. Therefore they can be uniquely extended
to (0, ∞) from I. Then the first eigenvalue λ1 and the data sequence {Gm =< g, ψ1 >

ψ1(pm)}M−1
m=1 can be recovered from the Dirichlet series (39) representing zm(t) by

λ1 = − 1
h

lim
t→∞

ln
zm(t + h)

zm(t)
, Gm = lim

t→∞
eλ1tzm(t), (40)

where h > 0.
The second step of the algorithm, i.e. the identification of the conductivity a is accomplished
by the Marching Algorithm. Numerical experiments show that it provides the perfect
identification only if G(a) is known precisely. However, even for noiseless data zm(t), the
numerical identification of G(a) from the Dirichlet series (39) representing zm(t) can only be
accomplished with a significant error. This numerical evidence is presented in (Gutman & Ha,
2009).
Hence a different algorithm is needed for the practically important case of noise contaminated
data. It should also take into account the severe ill-posedness of the identification of data from
Dirichlet series, see (Acton, 1990). Our numerical experiments confirm that even the second
eigenvalue of the associated Sturm-Liouville problem cannot be reliably identified even for
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are given by the Dirichlet series

zm(t) =
∞

∑
k=1

�g, ψk�e−λktψk(pm). (39)

We have not implemented yet other cases of Theorem 7.1.
In principle, functions zm(t) are analytic for t > 0. Therefore they can be uniquely extended
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lim
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The second step of the algorithm, i.e. the identification of the conductivity a is accomplished
by the Marching Algorithm. Numerical experiments show that it provides the perfect
identification only if G(a) is known precisely. However, even for noiseless data zm(t), the
numerical identification of G(a) from the Dirichlet series (39) representing zm(t) can only be
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Hence a different algorithm is needed for the practically important case of noise contaminated
data. It should also take into account the severe ill-posedness of the identification of data from
Dirichlet series, see (Acton, 1990). Our numerical experiments confirm that even the second
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noiseless data. It is the distinct advantage of the proposed algorithm that it uses only the
first eigenvalue λ1 for the conductivity identification. In what follows LMA refers to the
Levenberg-Marquardt algorithm for the nonlinear least squares minimization, and BA to the
Brent algorithm for a single variable nonlinear minimization, see (Press et al., 1992) for details.
First, consider a simple regression type algorithm for the identification of the M-tuple G(a).
In step 1, for each observation data zm(t) we find λ and c to best fit zm(t) in the objective
function Ψ(λ, c; m) defined by (41). In step 2 the obtained eigenvalues λ(m) are averaged over
the middle third of the observation points, since such data would presumably be less affected
by noise. The result of the averaging is the sought eigenvalue λ1. In step 3, the averaged
eigenvalue λ1 is kept fixed, and the functions Ψ(λ1, c; m) are minimized in variable c only.
The resulting values Gm form the M-tuple G(a).

Regression Algorithm for λ1 identification.
Let the data consist of the observations zm(tj), j = 1, 2, . . . J, m = 1, 2, . . . , M − 1.

(i) Let λ, c ∈ R and

Ψ(λ, c; m) =
J

∑
j=1

(ce−λtj − zm(tj))
2. (41)

Let
Ψ(λ, cm(λ); m) = min

c∈R
Ψ(λ, c; m).

Note that such a minimizer cm(λ) can be found directly by

cm(λ) =
∑J

j=1 zm(j)e−λtj

∑J
j=1 e−2λtj

.

For each m = 1, . . . , M − 1 apply BA to find a λ(m) such that

Ψ(λ(m), cm(λ
(m)); m) = min

λ∈R
Ψ(λ, cm(λ); m).

(ii) Let k = card{[[M/3]], . . . , [[2M/3]]} and

λ1 =
1
k

[[2M/3]]

∑
m=[[M/3]]

λ
(m)
1 .

(iii) Keep λ1 fixed. For each m = 1, . . . , M − 1 find Gm = cm(λ1) such that

Ψ(λ1, Gm; m) = min
c∈R

Ψ(λ1, c; m).

(iv) Let G(a) = {λ1, G1, . . . , GM−1}.

One may assume that fitting the data zm(t) using two exponents as in (43) could result in
a better estimate for the eigenvalue λ1. To examine this assumption let us consider a more
complicated algorithm which we call the LMA Algorithm for λ1 identification. This algorithm
proceeds as follows (see details below).
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(i). This step is the same as step (i) in the regression algorithm above, i.e. we minimize the
functions Ψ(λ, c; m) in both λ and c for m = 1, . . . , M − 1. Call the minimizers by μ(m) and
cm(μ(m)) respectively.
(ii). Apply the LMA to minimize Φ(μ, ν, c, b; m) defined in (43). Use the initial guess
μ(m), 4μ(m), cm(λ), 0 for the variables μ, ν, c, b correspondingly. Call the results of these

minimizations for the variable μ by λ
(m)
1 . The initial value 4μ(m) for the second eigenvalue

is used because of Theorem 2.2(iii). A direct application of the LMA without the initial values
obtained in Step (i) did not produce consistent results. Now the data zm(t) is approximated

by the first two terms of the Dirichlet series (39). Thus, for each m there is an estimate λ
(m)
1 for

the first eigenvalue λ1.

(iii). Let λ1 be an average of the computed values λ
(m)
1 . We used the middle third of the indices

m since the maximum of our initial data g(x) was attained in the middle of the interval [0, 1].
Hence these observations were relatively less affected by the noise.
(iv-v). Repeat the minimizations of Steps (i) and (ii), but keep λ1 frozen. Let Gm be the values
of the coefficients c that minimize Φ(λ1, ν, c, b; m). This is the best fit to the data zm(t) by the
first two terms of the Dirichlet series (39) with the fixed first eigenvalue λ1. By now the first
part of the identification algorithm is completed, since we have recovered the first eigenvalue
λ1 and a multiple Gm of the first eigenfunction ψ1(pm), m = 1, 2, . . . , M − 1.

LMA Algorithm for λ1 identification.
Let the data consist of the observations zm(tj), j = 1, 2, . . . J, m = 1, 2, . . . , M − 1.

(i) Let λ, c ∈ R and

Ψ(λ, c; m) =
J

∑
j=1

(ce−λtj − zm(tj))
2. (42)

Let
Ψ(λ, cm(λ); m) = min

c∈R
Ψ(λ, c; m).

Note that such a minimizer cm(λ) can be found directly by

cm(λ) =
∑J

j=1 zm(j)e−λtj

∑J
j=1 e−2λtj

.

For each m = 1, ..., M − 1 apply BA to find a μ(m) such that

Ψ(μ(m), cm(μ
(m)); m) = min

λ∈R
Ψ(λ, cm(λ); m).

(ii) Let

Φ(μ, ν, c, b; m) =
J

∑
j=1

(ce−μtj + be−νtj − zm(tj))
2. (43)

Apply the LMA to minimize Φ(μ, ν, c, b; m) using the initial guess
μ(m), 4μ(m), cm(μ(m)), 0 for the variables μ, ν, c, b correspondingly. Let

Φ(λ
(m)
1 , νm , cm, bm; m) = min

μ,ν,c,b
Φ(μ, ν, c, b; m).

83Identifiability of Piecewise Constant Conductivity



20 Will-be-set-by-IN-TECH

noiseless data. It is the distinct advantage of the proposed algorithm that it uses only the
first eigenvalue λ1 for the conductivity identification. In what follows LMA refers to the
Levenberg-Marquardt algorithm for the nonlinear least squares minimization, and BA to the
Brent algorithm for a single variable nonlinear minimization, see (Press et al., 1992) for details.
First, consider a simple regression type algorithm for the identification of the M-tuple G(a).
In step 1, for each observation data zm(t) we find λ and c to best fit zm(t) in the objective
function Ψ(λ, c; m) defined by (41). In step 2 the obtained eigenvalues λ(m) are averaged over
the middle third of the observation points, since such data would presumably be less affected
by noise. The result of the averaging is the sought eigenvalue λ1. In step 3, the averaged
eigenvalue λ1 is kept fixed, and the functions Ψ(λ1, c; m) are minimized in variable c only.
The resulting values Gm form the M-tuple G(a).

Regression Algorithm for λ1 identification.
Let the data consist of the observations zm(tj), j = 1, 2, . . . J, m = 1, 2, . . . , M − 1.

(i) Let λ, c ∈ R and

Ψ(λ, c; m) =
J

∑
j=1

(ce−λtj − zm(tj))
2. (41)

Let
Ψ(λ, cm(λ); m) = min

c∈R
Ψ(λ, c; m).

Note that such a minimizer cm(λ) can be found directly by

cm(λ) =
∑J

j=1 zm(j)e−λtj

∑J
j=1 e−2λtj

.

For each m = 1, . . . , M − 1 apply BA to find a λ(m) such that

Ψ(λ(m), cm(λ
(m)); m) = min

λ∈R
Ψ(λ, cm(λ); m).

(ii) Let k = card{[[M/3]], . . . , [[2M/3]]} and

λ1 =
1
k

[[2M/3]]

∑
m=[[M/3]]

λ
(m)
1 .

(iii) Keep λ1 fixed. For each m = 1, . . . , M − 1 find Gm = cm(λ1) such that

Ψ(λ1, Gm; m) = min
c∈R

Ψ(λ1, c; m).

(iv) Let G(a) = {λ1, G1, . . . , GM−1}.

One may assume that fitting the data zm(t) using two exponents as in (43) could result in
a better estimate for the eigenvalue λ1. To examine this assumption let us consider a more
complicated algorithm which we call the LMA Algorithm for λ1 identification. This algorithm
proceeds as follows (see details below).
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(i). This step is the same as step (i) in the regression algorithm above, i.e. we minimize the
functions Ψ(λ, c; m) in both λ and c for m = 1, . . . , M − 1. Call the minimizers by μ(m) and
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(ii). Apply the LMA to minimize Φ(μ, ν, c, b; m) defined in (43). Use the initial guess
μ(m), 4μ(m), cm(λ), 0 for the variables μ, ν, c, b correspondingly. Call the results of these

minimizations for the variable μ by λ
(m)
1 . The initial value 4μ(m) for the second eigenvalue

is used because of Theorem 2.2(iii). A direct application of the LMA without the initial values
obtained in Step (i) did not produce consistent results. Now the data zm(t) is approximated

by the first two terms of the Dirichlet series (39). Thus, for each m there is an estimate λ
(m)
1 for

the first eigenvalue λ1.

(iii). Let λ1 be an average of the computed values λ
(m)
1 . We used the middle third of the indices

m since the maximum of our initial data g(x) was attained in the middle of the interval [0, 1].
Hence these observations were relatively less affected by the noise.
(iv-v). Repeat the minimizations of Steps (i) and (ii), but keep λ1 frozen. Let Gm be the values
of the coefficients c that minimize Φ(λ1, ν, c, b; m). This is the best fit to the data zm(t) by the
first two terms of the Dirichlet series (39) with the fixed first eigenvalue λ1. By now the first
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λ1 and a multiple Gm of the first eigenfunction ψ1(pm), m = 1, 2, . . . , M − 1.
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Ψ(λ, c; m) =
J

∑
j=1

(ce−λtj − zm(tj))
2. (42)

Let
Ψ(λ, cm(λ); m) = min

c∈R
Ψ(λ, c; m).

Note that such a minimizer cm(λ) can be found directly by

cm(λ) =
∑J

j=1 zm(j)e−λtj

∑J
j=1 e−2λtj

.

For each m = 1, ..., M − 1 apply BA to find a μ(m) such that

Ψ(μ(m), cm(μ
(m)); m) = min

λ∈R
Ψ(λ, cm(λ); m).

(ii) Let

Φ(μ, ν, c, b; m) =
J

∑
j=1

(ce−μtj + be−νtj − zm(tj))
2. (43)

Apply the LMA to minimize Φ(μ, ν, c, b; m) using the initial guess
μ(m), 4μ(m), cm(μ(m)), 0 for the variables μ, ν, c, b correspondingly. Let

Φ(λ
(m)
1 , νm , cm, bm; m) = min

μ,ν,c,b
Φ(μ, ν, c, b; m).

83Identifiability of Piecewise Constant Conductivity



22 Will-be-set-by-IN-TECH

(iii) Let k = card{[[M/3]], . . . , [[2M/3]]} and

λ1 =
1
k

[[2M/3]]

∑
m=[[M/3]]

λ
(m)
1 .

(iv) Find cm(λ1), m = 1, 2, . . . , M (as in Step 1) such that

Ψ(λ1, cm(λ1); m) = min
c∈R

Ψ(λ1, c; m).

(v) Apply the LMA to minimize Φ(λ1, ν, c, b; m) in variables ν, c, b using the initial guess
4λ1, cm(λ1), 0 for the variables ν, c, b correspondingly. Let

Φ(λ1, νm, Gm, bm; m) = min
ν,c,b

Φ(λ1, ν, c, b; m).

(vi) Let G(a) = {λ1, G1, . . . , GM−1}.

The second part of the algorithm identifies the conductivity ā from the M-tuple G(a). As
we have already mentioned the Marching Algorithm provides a perfect identification for
noiseless data, otherwise one has to find ā by a nonlinear minimization.

Identification of piecewise constant conductivity.
The data is the M-tuple G(a) = {λ1, G1, . . . , GM−1}.

(i) Fix N > 0. Form the objective function Π(a) by

Π(a) = min
c∈R

M

∑
m=1

(cGm − ψ1(pm; a))2, (44)

for the conductivities a ∈ AN ⊂ Aad having at most N − 1 discontinuity points on the
interval [0, 1].

(ii) Use Powell’s minimization method in K = 2N − 1 variables (N − 1 discontinuity points
and N conductivity values) to find

Π(ā) = min
a∈AN

Π(a).

The minimizer ā is the sought conductivity.

The function ψ1(pm; a) in step (i) of the above algorithm is the first normalized eigenfunction
of the Sturm-Liouville problem (5) corresponding to the conductivity a ∈ AN . Powell’s
minimization method, a shooting method for the computation of the eigenvalues and the
eigenfunctions, and numerical experiments are presented in (Gutman & Ha, 2009).

11. Conclusions

While in most parameter estimation problems one can hope only to achieve the best fit to
data solution, sometimes it can be shown that such an identification is unique. In such case
it is said that the sought parameter is identifiable within a certain class. In our recent work
(Gutman & Ha, 2007; 2009) we have shown that piecewise constant conductivities a ∈ PC(σ)
are identifiable from observations zm(t; a) of the heat conduction process (2) taken at finitely
many points pm.
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Let G(a) = {λ1(a), G1(a), · · · , GM−1(a)}, where he values Gm(a) are a constant nonzero
multiple of the first eigenfunction ψ1(a). In principle, if G(a) is known, then the identification
of the conductivity a can be accomplished by the Marching Algorithm. Theorem 7.1 shows
under what conditions the M-tuple G(a) can be extracted from the observations zm(t), thus
assuring the identifiability of a.
It is shown in Theorem 8.2 that the Marching Algorithm not only provides the unique
identification of the conductivity a, but that the identification is also continuous (stable). This
result is based on the continuity of eigenvalues, eigenfunctions, and the solutions with respect
to the L1(0, 1) topology in the set of admissible parameters Aad, see Section 4.
Numerical experiments show that, because of the ill-posedness of the identification of
eigenvalues from a Dirichlet series representation, one can only identify G(a) with some
error. Thus the Marching Algorithm would not be practically useful. In Section 10 we
presented algorithms for the identification of conductivities from noise contaminated data.
Its main novel point is, in agreement with the theoretical developments, the separation of the
identification process into two separate parts. In part one the first eigenvalue and a multiple
of the first eigenfunction are extracted from the observations. In the second part a general
minimization method is used to find a conductivity which corresponds to the recovered
eigenfunction.
The first eigenvalue and the eigenfunction in part one of the algorithm are found from the
Dirichlet series representation of the solution of the heat conduction process. The numerical
experiments in (Gutman & Ha, 2009) confirm that even for noiseless data the second
eigenvalue cannot be reliably found. These experiments showed that in our tests a simple
regression type algorithm identified λ1 better than a more complex Levenberg-Marquardt
algorithm. The last part of the algorithm employs Powell’s nonlinear minimization method
because it does not require numerical computation of the gradient of the objective function.
The numerical experiments show that the conductivity identification was achieved with a
15-18% relative error for various noise levels in the observations.
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(iii) Let k = card{[[M/3]], . . . , [[2M/3]]} and

λ1 =
1
k

[[2M/3]]

∑
m=[[M/3]]

λ
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Π(ā) = min
a∈AN

Π(a).
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1. Introduction 
Jet impingement heat transfer has been used extensively in many industrial applications for 
cooling because it provides high local heat transfer coefficients at low flow rates. Several 
experimental and theoretical studies on liquid jet impingement heat transfer have been 
reported in the literature (Louahlia & Baonga, 2008, Chen et al., 2002, Lin & Ponnappan, 
2004, Liu & Zhu, 2004, Pan & Webb, 1995). Numerous studies are conducted in average heat 
transfer, but local heat transfer analysis for steady and unsteady states has not been much 
attention. Jet impingement heat transfer is influenced by different physical parameters such 
as: (i) the velocity turbulent fluctuations (Oliphant et al. 1998, Stevens & Webb, 1989), (ii) the 
difference between the temperatures of inlet jet and heat exchange surface (Siba et al. 2003, 
MA et al. 1997), (iii) the surface geometry and the jet orientation (MA et al. 1997b, Elison & 
Webb, 1994), (iv) the liquid flow rate and Prandtl number (Elison & Webb, 1994, Fabbri et al. 
2003, Stevens & Webb, 1993), and (v) the nozzle diameter (Stevens & Webb, 1993, 1992). 

2. Hydrodynamic characteristics of the jet impinging on a horizontal surfarce 
When a liquid jet impinges on a horizontal surface, three distinct regions can be identified as 
shown in Figure 1. The first zone is the free jet region where the flow is accelerated because 
of the gravitational force. The second zone is the impingement region where the interaction 
between the jet and the heat exchange surface produces a strong deceleration of the flow. 
After this zone, the liquid wets the surface and flows in a parallel direction to the heat 
exchange surface. Heat transfer efficiency in each zone is related to the flow velocity and its 
structure. In the impingement zone, jet diameter could be measured using flurescence 
induced laser (Baonga et al. 2006) combined to the images processing. In this method, liquid 
impinging the heat exchange surface is illuminated by a laser sheet in the axial direction as 
shown by Figure 2. Rhodamine B with low concentration must be used as the fluerescent 
substance added to the liquid jet. In this case, fluorescent substance becomes visible when 
liquid jet is illuminated with light. A CCD camera can be used to record the flow video 
images. Video images are treated in order to extract the profiles of the jet as shown by 
Figure 1. 
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1. Introduction 
Jet impingement heat transfer has been used extensively in many industrial applications for 
cooling because it provides high local heat transfer coefficients at low flow rates. Several 
experimental and theoretical studies on liquid jet impingement heat transfer have been 
reported in the literature (Louahlia & Baonga, 2008, Chen et al., 2002, Lin & Ponnappan, 
2004, Liu & Zhu, 2004, Pan & Webb, 1995). Numerous studies are conducted in average heat 
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difference between the temperatures of inlet jet and heat exchange surface (Siba et al. 2003, 
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2003, Stevens & Webb, 1993), and (v) the nozzle diameter (Stevens & Webb, 1993, 1992). 

2. Hydrodynamic characteristics of the jet impinging on a horizontal surfarce 
When a liquid jet impinges on a horizontal surface, three distinct regions can be identified as 
shown in Figure 1. The first zone is the free jet region where the flow is accelerated because 
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Fig. 2. Flow visualization system. 

2.1 Axial flow structure 
For inlet Reynolds number ranging from 1520 to 5900 (the corresponding values of the inlet 
mean velocity are in the range of 3.24 to 12.5 m/s), Figure 3 shows effect of the jet flow rate 
on the distribution of the jet diameter along the axial direction. The nozzle diameter is of 
4 mm. The nozzle-heat exchange surface spacing is of 13 mm. Reynolds number is 
calculated as follow :  

 
i L

4mRe
d 




 (1) 

where: di is the inner diameter of the nozzle, L  is the dynamic viscosity, m  is the total 
mass flow rate of the jet. Physical properties are used at the inlet jet temperature measured 
at the nozzle exit.  
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Fig. 3. Evolution of the jet diameter along the z direction. 

It can be seen from figure 3 that for the same axial position (z), the jet diameter increases 
with inlet Reynolds number because gravitational force increases with flow velocity and 
becomes higher than surface tension force at the jet free surface. For lower Reynolds 
number (Re=1521), it shows that instability starts and waves appears on the jet free 
surface because capillarity force increases and becomes non-negligible compared to 
gravitational force. 
Along the falling jet, no evaporation has been produced and the mass flow rate is conserved. 
In this case, axial distribution of the flow velocity can be deduced from the following 
equation: 

    2

L j
d z

m V z
4

    (2) 

At each axial position (z),  jV z  is the average velocity of the jet,  d z  is the jet diameter, 

L  is the jet density. Figure 4 shows evolution of  j j ,inletV z / V  from the injection zone to 

the heat exchange surface for various inlets Reynolds numbers. j ,inletV  refers liquid velocity 
of the jet at the nozzle exit. For each Reynolds number, velocity is high near the 
impingement zone where the jet diameter is low. The free jet is accelerated after the nozzle 
exit because the gravity force effect is very pronounced. After this zone, the jet velocity 
decelerates quickly because liquid flow is retained on the heat exchange surface under the 
effect of the capillarity force and the wall friction. 
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2.2 Wall parallel flow structure 
Turning now to the characterisation of the local liquid layer depth near the heat exchange 
surface and the velocity profile along the radial direction where the heat transfer occurs.  
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Figure 5 shows an example of the local liquid layer depth (  r ) measured for three values 
of the inlet Reynolds number (Re=6733, Re=3408, and Re=2791). The nozzle diameter is of 
2.2 mm for theses experiments. The jet inlet temperature is of 32°C and the nozzle-heat 
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exchange surface spacing is of 95 mm. Figure 5 shows three distinct zones: the impingement 
zone, the zone where the liquid layer depth is approximately uniform, and the final zone 
where a hydraulic jump is formed. The radius, at which the liquid layer depth increases, is 
termed as the hydraulic jump radius. For higher Reynolds number, hydraulic jump is not 
appeared on the heat exchange surface because it is certainly higher than the radius of the 
heat exchange surface. Location of hydraulic jump on the surface is an interest physical 
phenomenon. In the previous work, some authors (Stevens & Webb, 1992, 1993, Liu et al. 
1991, 1989, Watson, 1964) show the influence of the jet mass flow rate on the hydraulic jump 
radius that is defined at the radius location where the liquid layer depth attains a highest 
value in the parallel flow (Figure 6a). 
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Fig. 6. a- Schematic of the hydraulic jump radius, b- Dimensionless hydraulic jump radius. 
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For Reynolds number ranging from 700 to 5000, Figure 6b shows dimensionless hydraulic 
jump radius as a function of Reynolds number. It shows that the hydraulic jump radius 
increases with the Reynolds number because flow is accelerated in the radial direction and 
the hydraulic jump is moved far from the stagnation zone. The difference between the 
present results and the experimental data of Stevens and Webb can be due to the uncertainty 
in the data of Stevens and Webb estimated of ±0.5 cm. The present results are defined with a 
maximum uncertainty of 2% and revealed an approximation dependence of the hydraulic 
jump radius on the Reynolds number as 0.62Re : 

 hyd 0.62

i

R
0.046Re

d
  (3) 

Equation (3) estimates hydraulic jump radius with a maximum uncertainty of ±7%. 
Distribution of the liquid velocity along the radial direction is determined by assuming 
conservation of the mass flow rate of liquid jet. For parallel flow: 

    L jm U r 2 r r     (4) 

Where L  is the jet density,  jU r  is the jet average velocity in the radial direction, r is the 

radial coordinate,  r  is the liquid layer depth on the surface. 
Figure 7 shows profiles of dimensionless velocity and shows for each inlet Reynolds 
number, radial velocity profiles reaches a maximum value which is very pronounced for 
higher Reynolds number. 
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Fig. 7. Local evolution of the dimensionless radial velocity. 
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Fig. 8. Comparison of the experimental results with Watson’s theory: (a) liquid layer depth 
(b) dimensionless radial mean velocity. 

For the same radial position, Figure 7 shows effect of the hydraulic jump on the flow 
velocity. It shows that in the zone of the hydraulic jump, radial velocity is the lowest and 
approximately uniform for Re=3408 and Re=2791. For all data, the maximum dimensionless 
velocity is obtained for radius ranging from 2 to 4 times nozzle diameter. In the previous 
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For the same radial position, Figure 7 shows effect of the hydraulic jump on the flow 
velocity. It shows that in the zone of the hydraulic jump, radial velocity is the lowest and 
approximately uniform for Re=3408 and Re=2791. For all data, the maximum dimensionless 
velocity is obtained for radius ranging from 2 to 4 times nozzle diameter. In the previous 



 
Heat Conduction – Basic Research 

 

94

work, Stevens and Webb (1989) found this maximum at r/di of 2.5 for the horizontal 
impinging jet on the vertical surface. Figure 7 also indicates that in the parallel flow, radial 
velocity is not uniform and it is lower than inlet jet velocity at the nozzle exit. The present 
results contradicts the assumption of some authors (Liu et al. 1989, Liu et al. 1991) assuming 
that the flow is fully developed before the hydraulic jump, and the free surface velocity is 
equal to the exit average jet velocity. 
Experimental results are compared with the laminar and the turbulent theories predictions 
defined by Watson (1964) in figures 8a and b. It shows that laminar theory provides the best 
agreement with experimental data but sub-estimates the liquid layer depth. However, the 
turbulent theory underestimates liquid velocity along the radial direction and sub-estimates 
the liquid layer depth.  
For all experiences showed in this section, it can be seen that when a circular liquid free jet 
strikes a flat plate, it spreads radially in very thin film along the heated surface, and the 
hydraulic jump that is associated with a Rayleigh-Taylor instability, can be appeared. Three 
distinct regions are identified and flow velocity is varied along the jet. Therefore, local 
distribution of heat flux and heat transfer coefficient is variable following the liquid layer 
depth and flow velocity.  
There has been little information available in the published literature on local heat 
transfer for cooling using evaporation of impinging free liquid jet. The reason is that the 
liquid film spreads radially on the heated surface in very thin film, and determination of 
local heat flux on the wetted surface requires measurement of the temperature profiles 
along the axial and radial directions without perturbing the flow. Therefore, inverse heat 
conduction problem (IHCP) has been solved in order to determine locally distribution of 
thermal boundary conditions at the wetted surface using only temperatures measured 
inside the wall. 

3. Determination of the thermal boundary conditions 
In the previous work (Chen et al., 2001, Martin & Dulkravich, 1998, Louahlia-Gualous et al., 
2003, Louahlia & El Omari, 2006), IHCP is used to estimate the thermal boundary conditions 
in various applications of science and engineering when direct measurements are difficult. 
IHCP could determine the precise results with numerical computations and simple 
instrumentation inside the wall.  
In this study, experiments were investigates using a disk heated at its lower surface. The 
disk is 50 mm in diameter and 8 mm thick (Figure 9). It is thermally insulated with Teflon 
on all faces except the cooling face in order to prevent the heat loss. Liquid jet impactes 
perpendicularly in the center of the heat exchange surface (top surface of the disk). 
Temperatures inside the experimental disk are measured using 7 Chromel-Alumel 
thermocouples of 200 µm diameter (uncertainty of 0.2°C). As shown in Figure 9, 
thermocouples are placed at 0.6 mm below the wetted surface at radial intervals of 
3.5 mm.  
The experimental disk is heated continually and the wall temperatures are monitored. When 
thermal steady state is reached, the heat exchange surface is quickly cooled with the liquid 
jet. Time-dependent local wall temperatures are recorded, until the experimental disk 
reaches a new steady state. The local surface temperature and heat flux are determined by 
solving IHCP using these measurements. 
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Fig. 9. Physical model. 

Physical model of a unsteady heat conduction process is given by the following system of 
equations: 

        2 2
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 T (R,z, t) 0
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, where f0 t t  , 0 z E   (6) 
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T (r,E, t) Q (r,E,t)
z


 


, where : f0 t t  , 0 r R   (8) 

 T(r,0, t) f(r, t) , where : f0 t t  , 0 r R   (9) 

Distribution of local heat flux wQ (r,E,t)  at the heat exchange surface (z=E) is unknown. It is 
estimated by solving the IHCP using temperatures meas n nT (r ,z , t)  measured at nodes (rn, zn) 
inside the disk (Figure 9). Solution of the inverse problem is based on the minimization of 
the residual functional defined as: 

  
f

0

tN 2
n n

n 1 t

J(C(T), (T)) T(X ,t;C(T), (T)) f (t) dt min


       (10) 

where n n wT(r ,z ;Q )  are temperatures at the sensor locations computed from the direct 
problem (4-9). Minimization is carried out by using conjugate gradient algorithm (Alifanov 
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where n n wT(r ,z ;Q )  are temperatures at the sensor locations computed from the direct 
problem (4-9). Minimization is carried out by using conjugate gradient algorithm (Alifanov 
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et al., 1995). Heat flux wQ (r,E,t)  is approximated in the form of a cubic B-spline and the 
IHCP is reduced to the estimation of a vector of B-Spline parameters. Conjugate gradient 
procedure is iterative. For each iteration, successive improvements of desired parameters 
are built. Descent parameter is computed using a linear approximation as follows: 
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Variation of temperature at the sensor locations it
n n w(r ,z , t; Q )   resulting from the 

variation of heat flux ( , , )wQ r E t  is determined by solving variational problem. Variation of 

functional  wJ Q  resulting from temperature variation is given by: 
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Let ( , , )r z t , ( , )r t , (z, t) , ( , )z t , (r,z)  and ( , )r t  be the Lagrange multipliers.  
The necessary condition of the optimization problem is obtained from the following 
equation: 
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where w wL(Q , Q )   is the variation of Lagrangian functional. Equation (19) requires that all 
coefficients of the temperature variation  r,z, t  be equal to 0. To satisfy this condition the 
necessary conditions of optimization are defined in the form of adjoint problem. 
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et al., 1995). Heat flux wQ (r,E,t)  is approximated in the form of a cubic B-spline and the 
IHCP is reduced to the estimation of a vector of B-Spline parameters. Conjugate gradient 
procedure is iterative. For each iteration, successive improvements of desired parameters 
are built. Descent parameter is computed using a linear approximation as follows: 
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is the Dirac Function, S(r,z, t)  is the deviation between temperature measurements and 
computed temperatures. S(r,z, t)  is equal to 0 everywhere in the physical domain except at 
sensor locations n n(r ,z ) .  
The Dirac function is defined by 
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where (0) 1  ,   0r   for r 0  and   0z   for 0z    
If the direct problem and the adjoint problem are verified, variation of the Lagrangian 
functional becomes: 
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Integration by parts gives, the variation of functional becomes using Eqs (21-26): 
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Substituting Eqs. (25) and (17) into Eq. (31), w wJ(q , q )   becomes: 
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3.3 Algorithm 
The following iterative procedure is adopted to solve the inverse heat conduction  
problem: 
i. solution of the direct problem, 
ii. calculation of the residual functional, 
iii. solution of the adjoint problem, 
iv. calculation of the components of the functional gradient, 
v. calculation of the parameter in descent direction, 
vi. calculation of the component of descent direction, 
vii. solution of the variational problem to determine the descent parameter, 
viii. the new value of the heat flux density is corrected. 
If the convergence criteria is not satisfied the iterative procedure is repeated until the 
functional is minimized. The minimal value of the functional depends on the temperature 
measurement errors.  
The direct problem, adjoint problem, and variational problem are solved using the control 
volume method (Patankar, 1980) and the implicit fractional-step time scheme proposed by 
(Brian, 1961).  

3.4 Regularization 
The inverse problem is ill-posed and numerical solution depends on the fluctuation 
occurring in the measurements. The iterations are stopped at the optimal value of the 
residual functional which satisfies the criteria: 
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Here, 2
n n(r ,z , t)  is the standard deviation of measurement errors for the temperatures 

measured at locations n n(r ,z ) . 

4. Inverse estimation of the boundary conditions 
4.1 Numerical verification of the solution procedure 
The numerical procedure is verified by using a known heat flux varying with time and the 
radius of the disk. Heat flux is imposed at the top surface of the disk (z = E) as shown in 
Figure 10 by the continuous curve. The bottom surface (z=0) is assumed to be at the constant 
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temperature of T(r,0,t)= 40°C. For each numerical application, time step size is chosen with 
respect to delta Fourier number condition defined by the following equation: 

 
 2

p meas

tFo 0.001
C E H

 
 
 

 (37) 

The delta Fourier number is based on the sensor depth, thermal characteristics of the solid, 
and time step (Williams & Beck, 1995, Beck & Brown, 1996). 
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Fig. 10. Heat flux variation with radius on the top surface. Verification of the IHCP: solid 
line (“measurements”), symbols (“estimations using inverse method”). 

In order to validate inverse estimation procedure, it is assumed that temperatures calculated 
from the direct problem at the measurement points are used as the measured temperatures 
( meas n n n n nT (r ,z , t) f (r ,z , t) ) for solving ICHP. Figure 10 shows that the estimated heat flux is 
closed with the exact heat flux for different times. This validation is carried out for the 
number of approximation parameters equal to 9x9. The maximum deviation between the 
computed temperatures and the simulated measured temperatures is of 0.03°C. The 
evolution of the residual functional wJ(Q )  is a function of the number of iterations that are 
continued till the convergence criteria is satisfied. 

4.2 Inverse estimation of evaporation local heat transfer for jet impingement 
4.2.1 Evaporation local heat transfer for unsteady state 
For inlet Reynolds number of 7600, Figure 11 shows an example of temporal temperatures 
measured for different radial locations at 0.6 mm below the heat exchange surface. During 
experiments, heat flux imposed inside the experimental disk is 45 W, the nozzle-heat 
exchange surface spacing is 30 mm, and the liquid inlet temperature is 42°C. At the steady 
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state, wall temperatures are 78°C. When the heat exchange surface is wetted, the wall 
temperatures decrease continually and reach a stable value during a short period. 
Temperature at the stagnation zone is lower than the temperature measured far from the 
impingement zone. IHCP is solved using temperatures measured at Hmeas = 7.4mm (Figure 
11) in order to estimate the local surface temperature and heat flux. These local thermal 
characteristics are estimated using the temperatures measured at the bottom surface (z=0) as 
the boundary condition to solve the direct problem.  
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Fig. 11. Temperatures measured inside the solid at z = Hmeas. 

Figures 12 and 13 show, respectively, the unsteady evolution of the predicted surface heat 
flux and temperature at different radial locations on the cooling surface (z = E =8 mm). 
Surface temperature is low in the stagnation and in impingement zone where heat flux is 
high. The difference between the wall and liquid temperatures is high at the moment when 
the liquid jet impinges the heat exchange surface. After this, heat flux decreases with time 
and follows the same trend for each radial location. Heat flux decreases after the 
impingement zone because liquid spreads along the radial direction as a very thin film. The 
experimental data for each radial location and inlet Reynolds number, follows the same 
trend. For brevity, theses curves are not shown in this figure.  
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state, wall temperatures are 78°C. When the heat exchange surface is wetted, the wall 
temperatures decrease continually and reach a stable value during a short period. 
Temperature at the stagnation zone is lower than the temperature measured far from the 
impingement zone. IHCP is solved using temperatures measured at Hmeas = 7.4mm (Figure 
11) in order to estimate the local surface temperature and heat flux. These local thermal 
characteristics are estimated using the temperatures measured at the bottom surface (z=0) as 
the boundary condition to solve the direct problem.  
 
 
 
 
 
  T [°C] 

Time [s]

50

55

60

65

70

75

80

0 20 40 60 80 100 120

r/R = 0.88
r/R = 0.76
r/R = 0.46
r/R = 0

Time [s]

50

55

60

65

70

75

80

0 20 40 60 80 100 120

r/R = 0.88
r/R = 0.76
r/R = 0.46
r/R = 0

 
 
 
 

Fig. 11. Temperatures measured inside the solid at z = Hmeas. 

Figures 12 and 13 show, respectively, the unsteady evolution of the predicted surface heat 
flux and temperature at different radial locations on the cooling surface (z = E =8 mm). 
Surface temperature is low in the stagnation and in impingement zone where heat flux is 
high. The difference between the wall and liquid temperatures is high at the moment when 
the liquid jet impinges the heat exchange surface. After this, heat flux decreases with time 
and follows the same trend for each radial location. Heat flux decreases after the 
impingement zone because liquid spreads along the radial direction as a very thin film. The 
experimental data for each radial location and inlet Reynolds number, follows the same 
trend. For brevity, theses curves are not shown in this figure.  



 
Heat Conduction – Basic Research 

 

102 

  Qw [kW/m²] 

Time [s]

0

20

40

60

80

100

120

140

160

180

200

0 20 40 60 80 100 120

r/R = 0
r/R = 0.118
r/R = 0.2352
r/R = 0.4704
r/R = 0.6468
r/R = 0.8232

Time [s]

0

20

40

60

80

100

120

140

160

180

200

0 20 40 60 80 100 120

r/R = 0
r/R = 0.118
r/R = 0.2352
r/R = 0.4704
r/R = 0.6468
r/R = 0.8232

 
Fig. 12. Heat flux inversely predicted at the top surface. 
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Fig. 13. Temperatures inversely predicted at the top surface. 

For both sides of the disk, radial distributions of the surface heat flux and heat transfer 
coefficients are presented in Figures 14a and 14b for different times. Local heat flux and heat 
transfer coefficients are not uniform along the radial direction, and they are high in the 
impingement zone.  
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(b) 

Fig. 14. Radial distribution inversely predicted at the top surface (z = E) : (a) heat flux and 
(b) heat transfer coefficient. 

After the impingement zone, heat transfer decreases because the liquid jet covers the entire 
heat exchange surface. Therefore, local liquid flow rate decreases in spite of the decrease of 
the film thickness. When the radius r becomes higher than approximately 0.018 mm, heat 
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For both sides of the disk, radial distributions of the surface heat flux and heat transfer 
coefficients are presented in Figures 14a and 14b for different times. Local heat flux and heat 
transfer coefficients are not uniform along the radial direction, and they are high in the 
impingement zone.  
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(b) 

Fig. 14. Radial distribution inversely predicted at the top surface (z = E) : (a) heat flux and 
(b) heat transfer coefficient. 

After the impingement zone, heat transfer decreases because the liquid jet covers the entire 
heat exchange surface. Therefore, local liquid flow rate decreases in spite of the decrease of 
the film thickness. When the radius r becomes higher than approximately 0.018 mm, heat 
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transfer is reduced because of the hydraulic jump formation where the velocity of the flow 
becomes relatively negligible. At each time, the local heat flux and heat transfer coefficient 
follow the same trend. Beyond 64s, the curves of the heat flux and those of the heat transfer 
coefficient are independent on the time because of the steady state. 

4.2.2 Evaporation local heat transfer for steady state 
For steady state, Figure 15 shows the local distributions of the surface temperature and heat 
transfer coefficient. For each radial location, the local heat transfer coefficient is determined 
from the surface heat flux and temperature as follows: 

 w,r
r

s,r e

Q
h

T T



 (38) 

where hr is the local heat transfer coefficient, Qw,r is the local heat flux, Ts,r is the local surface 
temperature, and Te is the liquid temperature at the nozzle exit.  
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Fig. 15. Local thermal characteristics for steady state. 

The surface temperature is low in the stagnation zone compared to all the zones of the heat 
exchange surface. The maximum heat transfer coefficient is occurred in the stagnation point. 
For different flow rates, Figure 16 illustrates the unsteady evolution of the surface 
temperatures for two radial locations. The first one is at the stagnation point where the 
surface temperature is low. The second is far from the impingement zone (at r=0.82R), 
where the heat transfer coefficient is deteriorated because of the hydraulic jump. The surface 
temperature in this zone is higher than in the stagnation point. It is shown that the surface 
temperature is less influenced by the flow rate at the stagnation zone than for r=0.82R where 
the film thickness is small. The normalized heat transfer coefficient is determined as the 
fraction of the local heat transfer coefficient and h0 that is defined at the stagnation zone 
(Figure 17). For each tested flow rate, the heat transfer coefficient decreases from h0 to 50% 
of h0 at radial location approximately equal to 0.6R. 
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Fig. 16. Local surface temperatures inversely predicted at the top surface. 
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5. Conclusion 
Various theoretical and experimental investigations on convective local heat transfer have 
been published in the literature where local heat transfer coefficient is determined from total 
heat flux or using direct estimation (Fourier’s law). In this case, heat flux is assumed to be 
dissipated only in the axial direction and constant along the heat exchange surface.  
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coefficient are independent on the time because of the steady state. 

4.2.2 Evaporation local heat transfer for steady state 
For steady state, Figure 15 shows the local distributions of the surface temperature and heat 
transfer coefficient. For each radial location, the local heat transfer coefficient is determined 
from the surface heat flux and temperature as follows: 
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where hr is the local heat transfer coefficient, Qw,r is the local heat flux, Ts,r is the local surface 
temperature, and Te is the liquid temperature at the nozzle exit.  
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Fig. 15. Local thermal characteristics for steady state. 

The surface temperature is low in the stagnation zone compared to all the zones of the heat 
exchange surface. The maximum heat transfer coefficient is occurred in the stagnation point. 
For different flow rates, Figure 16 illustrates the unsteady evolution of the surface 
temperatures for two radial locations. The first one is at the stagnation point where the 
surface temperature is low. The second is far from the impingement zone (at r=0.82R), 
where the heat transfer coefficient is deteriorated because of the hydraulic jump. The surface 
temperature in this zone is higher than in the stagnation point. It is shown that the surface 
temperature is less influenced by the flow rate at the stagnation zone than for r=0.82R where 
the film thickness is small. The normalized heat transfer coefficient is determined as the 
fraction of the local heat transfer coefficient and h0 that is defined at the stagnation zone 
(Figure 17). For each tested flow rate, the heat transfer coefficient decreases from h0 to 50% 
of h0 at radial location approximately equal to 0.6R. 
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Fig. 17. The normalized heat transfer coefficient distribution as a function of water jet flow 
rate. 

5. Conclusion 
Various theoretical and experimental investigations on convective local heat transfer have 
been published in the literature where local heat transfer coefficient is determined from total 
heat flux or using direct estimation (Fourier’s law). In this case, heat flux is assumed to be 
dissipated only in the axial direction and constant along the heat exchange surface.  
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In this work, local heat transfer is analyzed by solving inverse heat conduction problem and 
using only sensors responses placed inside the experimental disk. Iterative regularization 
method is used to solve the inverse problem under analysis. Solution procedure is based on 
the conjugate gradient method used to minimize the residual functional and the residual 
discrepancy principal as the regularizing stopping criterion.  
For each radial location, local heat transfer coefficient is determined using local heat flux 
and surface temperature. The heat flux and heat transfer coefficient are high in the 
impingement zone and decrease after this zone because liquid flow spreads along the radial 
direction as a very thin film. At each time, surface temperature is low in the stagnation zone 
and the highest heat transfer coefficient occurs in the stagnation zone and falls off with the 
radial location because local flow rate decreases. For different tested flow rates, the heat 
transfer coefficient decreases from h0 to 50% of h0 at the radial location approximately equal 
to 0.6R. 
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1. Introduction 
“The most incomprehensible thing about the world is that it is at all comprehensible” (Albert 
Einstein), but the question is how do we fully understand incomprehensible things? 
Nonlinear science provides some clues in this regard (He, 2009). 
The world around us is inherently nonlinear. For instance, nonlinear evolution equations 
(NLEEs) are widely used as models to describe complex physical phenomena in various 
fields of sciences, especially in fluid mechanics, solid-state physics, plasma physics, plasma 
waves, and biology. One of the basic physical problems for these models is to obtain their 
travelling wave solutions. In particular, various methods have been utilized to explore 
different kinds of solutions of physical models described by nonlinear partial differential 
equations (PDEs). For instance, in the numerical methods, stability and convergence should 
be considered, so as to avoid divergent or inappropriate results. However, in recent years, a 
variety of effective analytical and semi-analytical methods have been developed to be used 
for solving nonlinear PDEs, such as the variational iteration method (VIM) (He, 1998; He et 
al., 2010), the homotopy perturbation method (HPM) (He, 2000, 2006), the homotopy 
analysis method (HAM) (Abbasbandy, 2010), the tanh-method (Fan, 2002; Wazwaz, 2005, 
2006), the sine-cosine method (Wazwaz, 2004), and others. Likewise, He and Wu (2006) 
proposed a straightforward and concise method called the Exp-function method to obtain 
the exact solutions of NLEEs. The method, with the aid of Maple or Matlab, has been 
successfully applied to many kinds of NLEE (He & Zhang, 2008; Kabir & Khajeh, 2009; 
Borhanifar & Kabir, 2009, 2010; Borhanifar et al., 2009; Kabir et al., 2011). Lately, the (G′/G)-
expansion method, first introduced by Wang et al. (2008), has become widely used to search 
for various exact solutions of NLEEs (Bekir & Cevikel, 2009; Zhang et al., 2009; Zedan, 2010; 
Kabir et al., 2011). The results reveal that the two recent methods are powerful techniques 
for solving nonlinear partial differential equations (NPDEs) in terms of accuracy and 
efficiency. This is important, since systems of NPDEs have many applications in 
engineering. 
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The generalized forms of the nonlinear heat conduction equation can be given as 

 ( ) 0, 0 , 1n n
t xxu a u u u a n       (1.1) 

and in (2 + 1)-dimensional space 

  ( ) ( ) 0.n n n
t xx yyu a u a u u u       (1.2) 

The heat equation is an important partial differential equation which describes the 
distribution of heat (or variation in temperature) in a given region over time. The heat 
equation is a consequence of Fourier's law of cooling. In this chapter, we consider the heat 
equation with a nonlinear power-law source term. The equations (1.1) and (1.2) describe 
one-dimensional and two-dimensional unsteady thermal processes in quiescent media or 
solids with the nonlinear temperature dependence of heat conductivity. In the above 
equations, u= u(x,y,t) is temperature as a function of space and time; tu  is the rate of change 
of temperature at a point over time; xxu  and yyu  are the second spatial derivatives (thermal 

conductions) of temperature in the x and y directions, respectively; also xu  and yu  are the 

temperature gradient. 
Many authors have studied some types of solutions of these equations. Wazwaz (2005) used 
the tanh-method to find solitary solutions of these equations and a standard form of the 
nonlinear heat conduction equation (when 3n   in Eq. (1.1)). Also, Fan (2002) applied the 
solutions of Riccati equation in the tanh-method to obtain the travelling wave solution when 

2n   in Eq. (1.1). More recently, Kabir et al. (2009) implemented the Exp-function method 
to find exact solutions of Eq. (1.1), and obtained more general solutions in comparison with 
Wazwaz’s results. 
Considering all the indispensably significant issues mentioned above, the objective of this 
paper is to investigate the travelling wave solutions of Eqs. (1.1) and (1.2) systematically, 
by applying the (G'/G)-expansion and the Exp-function methods. Some previously 
known solutions are recovered as well, and, simultaneously, some new ones are also 
proposed. 

2. Description of the two methods 
2.1 The (G'/G)-expansion method 
Suppose that a nonlinear PDE, say in two independent variables x and t, is given by 

 ( , , , , , , ) 0,t x xx tt txP u u u u u u    (2.1) 

or in three independent variables x, y and t, is given by 

 ( , , , , , , , , , ) 0,t x y xx yy tt tx tyP u u u u u u u u u   (2.2) 

where P is a polynomial in its arguments, which include nonlinear terms and the highest 
order derivatives. 
Introducing a complex variable   defined as 
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 ( , ) ( ) , ( )u x t U k x ct      (2.3) 

or 

 ( , , ) ( ) , ( )u x y t U k x y ct        (2.4) 

Eq. (2.1) and (2.2) reduce to the ordinary differential equations (ODEs) 

 
2 2 2 2( , , , , , , ) 0,P U kcU kU k U k c U k cU          (2.5) 

and 

 
2 2 2 2 2 2( , , , , , , , , , ) 0,P U kcU kU kU k U k U k c U k cU k cU             (2.6) 

respectively, where k  and c  are constants to be determined later. According to the (G'/G)-
expansion method, it is assumed that the travelling wave solution of Eq. (2.5) or (2.6) can be 

expressed by a polynomial in 
'G

G
 
 
 

 as follows: 

 0
1

'( ) , 0
im

i m
i

GU
G

   


    
 

    (2.7) 

where 0 , and i , for 1, 2, ... ,i m , are constants to be determined later, and ( )G   
satisfies a second-order linear ordinary differential equation (LODE): 

 
2

2
( ) ( ) ( ) 0d G dG G

dd
   


     (2.8) 

where   and   are arbitrary constants. Using the general solutions of Eq. (2.8), we 
have 
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and it follows from (2.7) and (2.8), that 
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' ' ' ,
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  (2.10) 

and so on. Here, the prime denotes the derivative with respective to  . 
To determine u explicitly, we take the following four steps: 
Step 1. Determine the integer m by substituting Eq. (2.7) along with Eq. (2.8) into Eq. (2.5) or 
(2.6), and balancing the highest-order nonlinear term(s) and the highest-order partial 
derivative. 
Step 2. Substitute Eq. (2.7) with the value of m determined in Step 1, along with Eq. (2.8) into 

Eq. (2.5) or (2.6) and collect all terms with the same order of 'G
G

 
 
 

 together; the left-hand 

side of Eq. (2.5) or (2.6) is converted into a polynomial in 
'G

G
 
 
 

. Then set each coefficient of 

this polynomial to zero to derive a set of algebraic equations for 0, ,k c   and i , for 

1, 2, ... ,i m . 
Step 3. Solve the system of algebraic equations obtained in Step 2, for 0, ,k c   and i , for 

1, 2, ... ,i m , by use of Maple. 
Step 4. Use the results obtained in the above steps to derive a series of fundamental 

solutions ( )u  of Eq. (2.5) or (2.6) depending on 'G
G

 
 
 

; since the solutions of Eq. (2.8) have 

been well known for us, we can obtain exact solutions of Eqs. (2.1) and (2.2). 

2.2 The Exp-function method 
According to the classic Exp-function method, it is assumed that the solution of ODEs (2.5) 
or (2.6) can be written as 

 

exp( )
exp( ) exp( )

( ) ,
exp( ) exp( )

exp( )

g

n
n f f g

q
p q

m
m p

a n
a f a g

u
b p b q

b m


 


 



 





  
 

  






   (2.11) 

where , ,f g p and q  are positive integers which are unknown, to be further determined, and 

na and mb  are unknown constants. 
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3. A generalized form of the nonlinear heat conduction equation 
3.1 Application of the (G'/G)-expansion method 
Introducing a complex variable   defined as Eq. (2.3), Eq. (1.1) becomes an ordinary 
differential equation, which can be written as 

 2( ) 0, 0n nkcU ak U U U a        (3.1) 

or, equivalently, 

 2 2 2 2 1( 1) 0,n n nkcU ak n n U U ak nU U U U           (3.2) 

To get a closed-form analytic solution, we use the transformation (Kabir & Khajeh, 2009; 
Wazwaz, 2005) 

 
1
1( ) ( ),nU V 


  (3.3) 

which will convert Eq. (3.2) into 

  
2 2 2 2 2 3 2 2( 1) (1 2 ) ( 1) ( 1) ( 1) 0,kc n V V ak n n V ak n n VV n V n V             (3.4) 

According to Step 1, considering the homogeneous balance between VV  and 2V V  in Eq. 
(3.4) gives 

 2 2 3 1,m m     (3.5) 

so that 

 1.m     (3.6) 

Suppose that the solutions of (3.4) can be expressed by a polynomial in 
'G

G
 
 
 

 as follows: 

  0 1 1
'( ) , 0.GV

G
       

    (3.7) 

where 0  and 1 , are constants which are unknown, to be determined later. 
Substituting Eq. (3.7) along with Eq. (2.8) into Eq. (3.4) and collecting all terms with the same 

power of 'G
G

 
 
 

 together, the left-hand side of Eq. (3.4) is converted into a polynomial in 

'G
G

 
 
 

. Equating each coefficient of this polynomial to zero yields a set of simultaneous 

algebraic equations for 0 , 1 , , ,k c   and  . Solving the system of algebraic equations 
with the aid of Maple 12, we obtain the following. 
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Case A: When 2 4 0    

Case A-1. 

 0 12 2 2

1 1 1 1, , . ,
2 2 4 4 4

nk c a
n a

 
     


     

  
   (3.8) 

where   and   are arbitrary constants. 
By using Eq. (3.8), expression (3.7) can be written as 

  
2 2

1 1 '( ) ,
2 2 4 4

GV
G


   

     
  

  (3.9) 

Substituting the general solution of (2.9) into Eq. (3.9), we get the generalized travelling 
wave solution as follows: 

  

2 2

1 2

2 2

1 2

4 4sinh cosh
2 21( ) 1 ,

2 4 4cosh sinh
2 2

C C
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C C

    


    

           
           
           

          

 (3.10) 

where 
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1 1.
4

n x at
n a


 


  


. 

inserting Eq. (3.10) into Eq. (3.3), it yields the following exact solution of Eq. (1.1): 
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1 1sinh cosh
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nn nC x at C x at
n a n au x t
n nC x at C x at
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  (3.11) 

in which 1C  and 2C  are arbitrary parameters that can be determined by the related initial 
and boundary conditions. 
Now, to obtain some special cases of the above general solution, we set 2 0C  ; then (3.11) 
leads to the formal solitary wave solution to (1.1) as follows: 

  
1
11 1( , ) 1 tanh

2 2

nnu x t x at
n a


         

   
, (3.12) 
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and, when 1 0C  , the general solution (3.11) reduces to 

   
1
11 1( , ) 1 coth

2 2

nnu x t x at
n a


         

   
, (3.13) 

Comparing the particular cases of our general solution, Eqs. (3.12) and (3.13), with 
Wazwaz’s results (2005), Eqs. (73) and (74), it can be seen that the results are exactly the 
same. 
Case A-2. 

 0 12 2 2

1 1 1 1, , . ,
2 2 4 4 4

nk c a
n a

 
     

 
      

  
  (3.14) 

Inserting Eq. (3.14) into (3.7) yields 
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  (3.15) 

Substituting the general solution of (2.9) into Eq. (3.15), we obtain 
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where  2

1 1.
4

n x at
n a


 


 


 . 

Substituting Eq. (3.16) into the transformation (3.3) leads to the generalized solitary wave 
solution of Eq. (1.1) as follows: 
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nn nC x at C x at
n a n au x t
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   (3.17) 

Similarly, to derive some special cases of the above general solution (3.17), we choose 
2 0C  ; then (3.17) leads to 

  
1
11 1( , ) 1 tanh

2 2

nnu x t x at
n a


        

   
 ,  (3.18) 
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Similarly, to derive some special cases of the above general solution (3.17), we choose 
2 0C  ; then (3.17) leads to 
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and, when 1 0C  , the general solution (3.17) reduces to 
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n a


        

   
 ,  (3.19) 

Validating our results, Eqs. (3.18) and (3.19), with Wazwaz’s solutions (2005), Eqs. (71) and 
(72), we can conclude that the results are exactly the same. 

Case B: When 2 4 0    

Case B-1. 

  0 12 2 2

1 1, , . ,
2 2 4 4 4

i i n ik c a
n a

 
     


     

  
  (3.20) 

Inserting Eq. (3.20) into (3.7) results 

 2 2

1 '( ) ,
2 2 4 4

i i GV
G


   

     
  

  (3.21) 

Substituting the general solution of (2.9) for 2 4 0    into Eq. (3.21), we get 

 

2 2

1 2

2 2

1 2

4 4sin cos
2 21( ) 1 ,

2 4 4cos sin
2 2

C C

V i

C C

    


    

            
           
           

          

 (3.22) 

where  

 2

1 .
4

n i x at
n a


 


  


. 

Using the following transformation, 

  
2 2

2 2

,

4 4sinh sin ,
2 2

4 4cosh cos .
2 2

i

i

 

   
 

   
 



        
   
   
       
   
   

  (3.23) 

in Eq. (3.22) and substituting the result into (3.3), we obtain the following exact solution of 
Eq. (1.1): 
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1
1

1 2

1 2

1 1sinh cosh
1 2 2( , ) 1

1 12 cosh sinh
2 2

nn nC x at C i x at
n a n au x t
n nC x at C i x at
n a n a


                 

       
                        

 (3.24) 

We note that if we set 2 0C   and 1 0C   in the general solution (3.24), we can recover the 
solutions (3.12) and (3.13), respectively. 
Case B-2. 

  0 12 2 2

1 1, , . ,
2 2 4 4 4

i i n ik c a
n a

 
     

 
      

  
  (3.25) 

Inserting Eq. (3.25) into (3.7) leads to 

 
2 2

1 '( ) ,
2 2 4 4

i i GV
G


   

     
  

 (3.26) 

Substituting the general solution of (2.9) for 2 4 0    into Eq. (3.26), we have 

 

2 2

1 2

2 2

1 2

4 4sin cos
2 21( ) 1 ,

2 4 4cos sin
2 2

C C

V i

C C

    


    

            
           
           

          

  (3.27) 

in which  2

1 .
4

n i x at
n a


 


 


 . 

Using the transformation (3.23) into Eq. (3.27), and substituting the result into (3.3) yields 
the following exact solution: 

 
   

   

1
1

1 2

1 2

1 1sinh cosh
1 2 2( , ) 1

1 12 cosh sinh
2 2

nn nC x at C i x at
n a n au x t
n nC x at C i x at
n a n a


               

       
                      

 

 
 (3.28) 

Similarly, if we set 2 0C   and 1 0C   in the general solution (3.28), we arrive at the same 
solutions (3.18) and (3.19), respectively. 

3.2 Application of the Exp-function method 
In order to determine values of f  and p , we balance the term 3v  with vv  in Eq. (3.4); we have 

  3 1

2

exp(3 ) ,
exp(3 )

c fv
c p











  (3.29) 
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and, when 1 0C  , the general solution (3.17) reduces to 

  
1
11 1( , ) 1 coth

2 2

nnu x t x at
n a


        

   
 ,  (3.19) 

Validating our results, Eqs. (3.18) and (3.19), with Wazwaz’s solutions (2005), Eqs. (71) and 
(72), we can conclude that the results are exactly the same. 

Case B: When 2 4 0    

Case B-1. 

  0 12 2 2

1 1, , . ,
2 2 4 4 4

i i n ik c a
n a

 
     


     

  
  (3.20) 

Inserting Eq. (3.20) into (3.7) results 

 2 2

1 '( ) ,
2 2 4 4

i i GV
G


   

     
  

  (3.21) 

Substituting the general solution of (2.9) for 2 4 0    into Eq. (3.21), we get 

 

2 2

1 2

2 2

1 2

4 4sin cos
2 21( ) 1 ,

2 4 4cos sin
2 2

C C

V i

C C

    


    

            
           
           

          

 (3.22) 

where  

 2

1 .
4

n i x at
n a


 


  


. 

Using the following transformation, 

  
2 2

2 2

,

4 4sinh sin ,
2 2

4 4cosh cos .
2 2

i

i

 

   
 

   
 



        
   
   
       
   
   

  (3.23) 

in Eq. (3.22) and substituting the result into (3.3), we obtain the following exact solution of 
Eq. (1.1): 
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1
1

1 2

1 2

1 1sinh cosh
1 2 2( , ) 1

1 12 cosh sinh
2 2

nn nC x at C i x at
n a n au x t
n nC x at C i x at
n a n a


                 

       
                        

 (3.24) 

We note that if we set 2 0C   and 1 0C   in the general solution (3.24), we can recover the 
solutions (3.12) and (3.13), respectively. 
Case B-2. 

  0 12 2 2

1 1, , . ,
2 2 4 4 4

i i n ik c a
n a

 
     

 
      

  
  (3.25) 

Inserting Eq. (3.25) into (3.7) leads to 

 
2 2

1 '( ) ,
2 2 4 4

i i GV
G


   

     
  

 (3.26) 

Substituting the general solution of (2.9) for 2 4 0    into Eq. (3.26), we have 

 

2 2

1 2

2 2

1 2

4 4sin cos
2 21( ) 1 ,

2 4 4cos sin
2 2

C C

V i

C C

    


    

            
           
           

          

  (3.27) 

in which  2

1 .
4

n i x at
n a


 


 


 . 

Using the transformation (3.23) into Eq. (3.27), and substituting the result into (3.3) yields 
the following exact solution: 

 
   

   

1
1

1 2

1 2

1 1sinh cosh
1 2 2( , ) 1

1 12 cosh sinh
2 2

nn nC x at C i x at
n a n au x t
n nC x at C i x at
n a n a


               

       
                      

 

 
 (3.28) 

Similarly, if we set 2 0C   and 1 0C   in the general solution (3.28), we arrive at the same 
solutions (3.18) and (3.19), respectively. 

3.2 Application of the Exp-function method 
In order to determine values of f  and p , we balance the term 3v  with vv  in Eq. (3.4); we have 

  3 1

2

exp(3 ) ,
exp(3 )

c fv
c p











  (3.29) 
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  3

4

exp([2 3 ] ) ,
exp(5 )

c f pvv
c p




  



    (3.30) 

where ic  are determined coefficients only for simplicity. Balancing the highest order of the 
Exp-function in Eqs. (3.29) and (3.30), we have 

 3 2 2 3 ,f p f p      (3.31) 

which leads to the result 

 ,p f   (3.32) 

Similarly, to determine values of g  and q , we have 

 3 1

2

exp( 3 ) ,
exp( 3 )

d gv
d q




 


 

    (3.33) 

   3

4

exp( [2 3 ] ) ,
exp( 5 )

d g qvv
d p




   
 


    (3.34) 

where id  are determined coefficients for simplicity. Balancing the lowest order of the Exp-
function in Eqs. (3.33) and (3.34), we have 

   3 2 2 3 ,g q g q     (3.35) 

which leads to the result 

   .q g  (3.36) 

Case A: 1, 1p f q g     

We can freely choose the values of p  and q . For simplicity, we set 1p f   and 1q g  , 
so Eq. (2.11) reduces to 

  1 0 1

0 1

exp( ) exp( )( ) ,
exp( ) exp( )

a a av
b b

 
 





  


  
  (3.37) 

Substituting Eq. (3.37) into Eq. (3.4), and making use of Maple, we arrive at 

  4 3 2 1 0 1

2 3 4

1 [ exp(4 ) exp(3 ) exp(2 ) exp( ) exp( )

exp( 2 ) exp( 3 ) exp( 4 )] 0,

c c c c c c
A

c c c

    

  



  

     

      
 (3.38) 

in which 

 4
0 1[exp( ) exp( )] ,A b b       (3.39) 
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And the nc  are coefficients of exp( )n . Equating to zero the coefficients of all powers of 

exp( )n  yields a set of algebraic equations for 0 0 1 1 1, , , , ,a b a a b k  , and c . Solving the 
system of algebraic equations with the aid of Maple 12, we obtain: 

Case 1. 

 0 0 1 1 1 1 1
10, 0, 0, , , ,

2
na b a a b b b k c a
n a   


           (3.40) 

Substituting Eq. (3.40) into (3.37) and inserting the result into the transformation (3.3), we 
get the generalized solitary wave solution of Eq. (1.1) as follows: 

 

1
11

1

exp( )( , ) ,
exp( ) exp( )

nbu x t
b


 








 
    

 (3.41) 

where  1
2
n x at
n a

 
    and 1b  is an arbitrary parameter which can be determined by 

the initial and boundary conditions. 
If we set 1 1b   and 1 1b    in (3.41), the solutions (3.18) and (3.19) can be recovered, 
respectively. 

Case 2. 

  0 0 1 1 1 1
10, 0, 1, 0, , ,

2
na b a a b b k c a
n a  


           (3.42) 

By the same procedure as illustrated above, we obtain 

 

1
1

1

exp( )( , ) ,
exp( ) exp( )

n
u x t

b


 






 
    

  (3.43) 

in which  1
2
n x at
n a

 
    and 1b  is a free parameter. 

If we set 1 1b   and 1 1b    in (3.43), then it can be easily converted to the same solutions 
(3.12) and (3.13), respectively. 

Case 3. 

  1 1 0 0 0 0 1 0 0
10, 0, , , , ,na b a a b b a a b k c n a

n a 


          (3.44) 

and consequently we get 
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  3

4
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 3 1

2

exp( 3 ) ,
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    (3.33) 

   3

4

exp( [2 3 ] ) ,
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d g qvv
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which leads to the result 

   .q g  (3.36) 
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We can freely choose the values of p  and q . For simplicity, we set 1p f   and 1q g  , 
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  1 0 1

0 1

exp( ) exp( )( ) ,
exp( ) exp( )

a a av
b b

 
 





  


  
  (3.37) 

Substituting Eq. (3.37) into Eq. (3.4), and making use of Maple, we arrive at 

  4 3 2 1 0 1

2 3 4

1 [ exp(4 ) exp(3 ) exp(2 ) exp( ) exp( )

exp( 2 ) exp( 3 ) exp( 4 )] 0,

c c c c c c
A

c c c

    

  



  

     

      
 (3.38) 

in which 

 4
0 1[exp( ) exp( )] ,A b b       (3.39) 
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And the nc  are coefficients of exp( )n . Equating to zero the coefficients of all powers of 

exp( )n  yields a set of algebraic equations for 0 0 1 1 1, , , , ,a b a a b k  , and c . Solving the 
system of algebraic equations with the aid of Maple 12, we obtain: 

Case 1. 

 0 0 1 1 1 1 1
10, 0, 0, , , ,

2
na b a a b b b k c a
n a   


           (3.40) 

Substituting Eq. (3.40) into (3.37) and inserting the result into the transformation (3.3), we 
get the generalized solitary wave solution of Eq. (1.1) as follows: 

 

1
11

1

exp( )( , ) ,
exp( ) exp( )

nbu x t
b


 








 
    

 (3.41) 

where  1
2
n x at
n a

 
    and 1b  is an arbitrary parameter which can be determined by 

the initial and boundary conditions. 
If we set 1 1b   and 1 1b    in (3.41), the solutions (3.18) and (3.19) can be recovered, 
respectively. 

Case 2. 

  0 0 1 1 1 1
10, 0, 1, 0, , ,

2
na b a a b b k c a
n a  


           (3.42) 

By the same procedure as illustrated above, we obtain 

 

1
1

1

exp( )( , ) ,
exp( ) exp( )

n
u x t

b


 






 
    

  (3.43) 

in which  1
2
n x at
n a

 
    and 1b  is a free parameter. 

If we set 1 1b   and 1 1b    in (3.43), then it can be easily converted to the same solutions 
(3.12) and (3.13), respectively. 

Case 3. 

  1 1 0 0 0 0 1 0 0
10, 0, , , , ,na b a a b b a a b k c n a

n a 


          (3.44) 

and consequently we get 



 
Heat Conduction – Basic Research 

 

122 

 

1
10 0 0

0

exp( )( , ) ,
exp( )

na a bu x t
b





  

   
  (3.45) 

where  1n x n at
n a

 
    and 0 0,a b , are arbitrary parameters; for example, if we put 

0 0b  , solution (3.45) reduces to 

  
1
10( , ) cosh sinh ,nu x t a  


      (3.46) 

Case 4. 

 
1 0 0 0 0 1 0 0 0 1 0 0 00, , , ( ), ( ),

1 ,

a a a b b b a a b a a a b
nk c a
n a

         


      (3.47) 

and 

 

1
10 0 0 0

0 0 0 0

( )exp( )( , ) ,
exp( ) ( )exp( )

na a a bu x t
b a a b


 


   

      
  (3.48) 

where  1n x at
n a

 
    and 0a , 0b  are free parameters; for example, if we set 

0 01, 0a b   in Eq. (3.48), it can be easily converted to 

 

1
11( , ) (1 coth csc ) ,

2
nu x t h 


     

  (3.49) 

Case 5. 

 1 0 0 0 1 1
11, 0, , 0, 0, ,na a b b b a k c a

n a 


          (3.50) 

and finally we obtain 

 

1
1

0

exp( )( , ) .
exp( )

n
u x t

b





 

   
  (3.51) 

in which  1n x at
n a

 
    and 0b  is a free parameter. 

Case B:  2, 1p f q g     
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Since the values of g  and f  can be freely chosen, we can put 2p f  and 1q g  , the 
trial function, Eq. (2.11) becomes 

  2 1 0 1

1 0 1

exp(2 ) exp( ) exp( )( ) ,
exp(2 ) exp( ) exp( )

a a a av
b b b

  


  




   


   
 (3.52) 

By the same manipulation as illustrated above, we have the following sets of solutions: 

Case 1. 

 1 0 0 0 1 1 2 1
10, , 0, 0, 0, 0, 0, ,

2
na a a b b a a b k c n a
n a 


              (3.53) 

Substituting Eq. (3.53) into (3.52), we have 

 0( ) exp( 2 ),v a     (3.54) 

Substituting Eq. (3.54) into Eq. (3.3), we get the generalized solitary wave solution of Eq. 
(1.1) as 

 
1
1

0( , ) [ exp( 2 )] ,nu x t a 

   (3.55) 

where 1 ( )
2
n x n at
n a

 
    and 0a  is an arbitrary parameter. Using the transformation 

exp( ) cosh sinh
exp( ) cosh sinh

  
  
 

   
, Eq. (3.55) yields the same solution (3.46). 

Case 2. 

 1 0 0 0 0 1 1 2 1
10, , , 0, 0, 0, 0, ,

2
na a b b b b a a b k c a
n a 


             (3.56) 

Substituting Eq. (3.56) into (3.52), we have 

 0

0
( ) ,

exp(2 )
bv

b






 (3.57) 

Inserting Eq. (3.57) into (3.3), it admits to the generalized solitary wave solution of Eq. (1.1) 
as follows: 

 

1
10

0
( , ) ,

exp(2 )
nbu x t

b


 

   
  (3.58) 

where 
1 ( )

2
n x at
n a

 
    and 0b  is a free parameter. 
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1
10 0 0

0

exp( )( , ) ,
exp( )

na a bu x t
b





  

   
  (3.45) 

where  1n x n at
n a

 
    and 0 0,a b , are arbitrary parameters; for example, if we put 

0 0b  , solution (3.45) reduces to 

  
1
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1 0 0 0 0 1 0 0 0 1 0 0 00, , , ( ), ( ),

1 ,

a a a b b b a a b a a a b
nk c a
n a

         


      (3.47) 

and 

 

1
10 0 0 0

0 0 0 0

( )exp( )( , ) ,
exp( ) ( )exp( )

na a a bu x t
b a a b


 


   

      
  (3.48) 

where  1n x at
n a

 
    and 0a , 0b  are free parameters; for example, if we set 

0 01, 0a b   in Eq. (3.48), it can be easily converted to 

 

1
11( , ) (1 coth csc ) ,

2
nu x t h 


     

  (3.49) 

Case 5. 

 1 0 0 0 1 1
11, 0, , 0, 0, ,na a b b b a k c a

n a 


          (3.50) 

and finally we obtain 

 

1
1

0

exp( )( , ) .
exp( )

n
u x t

b





 

   
  (3.51) 

in which  1n x at
n a

 
    and 0b  is a free parameter. 
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Since the values of g  and f  can be freely chosen, we can put 2p f  and 1q g  , the 
trial function, Eq. (2.11) becomes 

  2 1 0 1

1 0 1

exp(2 ) exp( ) exp( )( ) ,
exp(2 ) exp( ) exp( )

a a a av
b b b

  


  




   


   
 (3.52) 

By the same manipulation as illustrated above, we have the following sets of solutions: 

Case 1. 

 1 0 0 0 1 1 2 1
10, , 0, 0, 0, 0, 0, ,

2
na a a b b a a b k c n a
n a 


              (3.53) 

Substituting Eq. (3.53) into (3.52), we have 

 0( ) exp( 2 ),v a     (3.54) 

Substituting Eq. (3.54) into Eq. (3.3), we get the generalized solitary wave solution of Eq. 
(1.1) as 

 
1
1

0( , ) [ exp( 2 )] ,nu x t a 

   (3.55) 

where 1 ( )
2
n x n at
n a

 
    and 0a  is an arbitrary parameter. Using the transformation 

exp( ) cosh sinh
exp( ) cosh sinh

  
  
 

   
, Eq. (3.55) yields the same solution (3.46). 

Case 2. 

 1 0 0 0 0 1 1 2 1
10, , , 0, 0, 0, 0, ,

2
na a b b b b a a b k c a
n a 


             (3.56) 

Substituting Eq. (3.56) into (3.52), we have 

 0

0
( ) ,

exp(2 )
bv

b






 (3.57) 

Inserting Eq. (3.57) into (3.3), it admits to the generalized solitary wave solution of Eq. (1.1) 
as follows: 

 

1
10

0
( , ) ,

exp(2 )
nbu x t

b


 

   
  (3.58) 

where 
1 ( )

2
n x at
n a

 
    and 0b  is a free parameter. 



 
Heat Conduction – Basic Research 

 

124 

We note that if we set 0 0a b  in Eq. (3.48), we can recover the solution (3.58). 

Case 3. 

 1 0 0 1 1 1 1 2 1
10, 0, 0, , , 0, 0, ,

3
na a b b b a b a b k c a
n a   


             (3.59) 

Substituting Eq. (3.59) into (3.52) we obtain 

 1

1

exp( )( ) ,
exp(2 ) exp( )

bv
b


 







 
  (3.60) 

and by inserting Eq. (3.60) into (3.3), we get the generalized solitary wave solution of (1.1) as 

  

1
11

1

exp( )( , ) ,
exp(2 ) exp( )

nbu x t
b


 








 
    

 (3.61) 

in which 1 ( )
3
n x at
n a

 
    and 1b  is a free parameter that can be determined by the 

initial and boundary conditions. 

4. The generalized nonlinear heat conduction equation in  
two dimensions 
4.1 Application of the (G'/G)-expansion method 
Using the wave variable (2.4) transforms Eq. (1.2) to the ODE 

 22 ( ) 0, 0n nkcU ak U U U a         (4.1) 

or, equivalently, 

 2 2 2 2 12 ( 1) 2 0,n n nkcU ak n n U U ak nU U U U           (4.2) 

Then we use the transformation (3.3), which will convert Eq. (4.2) into 

 2 2 2 2 2 3 2 2( 1) 2 (1 2 ) 2 ( 1) ( 1) ( 1) 0,kc n V V ak n n V ak n n VV n V n V              (4.3) 

By the same manipulation as illustrated in Section 3.1, we obtain the following sets of 
solutions. 

Case A: When 2 4 0    

Case A-1. 

 0 12 2 2

1 1 1 1, , . , 2
2 22 4 4 4

nk c a
n a

 
     


     

  
  (4.4) 
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By the same procedure as illustrated in Case A-1 of Section 3.1, Eqs. (3.9) and (3.10), we can 
finally find the generalized solitary wave solution of Eq. (1.2) as 

 
   

   

1
1

1 2

1 2

1 1sinh 2 cosh 2
1 2 2 2 2( , , ) 1

1 12 cosh 2 sinh 2
2 2 2 2

nn nC x y at C x y at
n a n au x y t
n nC x y at C x y at
n a n a


                   

       
                          

 (4.5) 

in which 1C  and 2C  are arbitrary parameters that can be determined by the related initial 
and boundary conditions. 
Now, to obtain some special cases of the above general solution, we set 2 0C  ; then (4.5) 
leads to 

  
1
11 1( , , ) 1 tanh 2

2 2 2

nnu x y t x y at
n a


          

   
,  (4.6) 

and, when 1 0C  , the exact solution (4.5) reduces to 

  
1
11 1( , , ) 1 coth 2

2 2 2

nnu x y t x y at
n a


          

   
,  (4.7) 

Comparing the particular cases of our general solution, Eqs. (4.6) and (4.7), with Wazwaz’s 
results (2005), Eqs. (87) and (88), it can be seen that the results are exactly the same. 
Case A-2. 

 0 12 2 2

1 1 1 1, , . , 2
2 22 4 4 4

nk c a
n a

 
     

 
      

  
   (4.8) 

By the similar process as illustrated in Case A-2 of Section 3.1, Eqs. (3.15) and (3.16), we can 
easily gain the following exact solution of Eq. (1.2): 

   

   

1
1

1 2

1 2

1 1sinh 2 cosh 2
1 2 2 2 2( , , ) 1

1 12 cosh 2 sinh 2
2 2 2 2

nn nC x y at C x y at
n a n au x y t
n nC x y at C x y at
n a n a


                 

       
                        

 

 
(4.9) 

Similarly, to derive some special cases of the above general solution, we choose 2 0C  ; then 
(4.9) leads to the formal solitary wave solution as follows: 

  
1
11 1( , , ) 1 tanh 2

2 2 2

nnu x y t x y at
n a


         

   
 ,  (4.10) 



 
Heat Conduction – Basic Research 

 

124 

We note that if we set 0 0a b  in Eq. (3.48), we can recover the solution (3.58). 
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1

exp( )( ) ,
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bv
b


 







 
  (3.60) 

and by inserting Eq. (3.60) into (3.3), we get the generalized solitary wave solution of (1.1) as 

  

1
11

1

exp( )( , ) ,
exp(2 ) exp( )

nbu x t
b


 








 
    

 (3.61) 

in which 1 ( )
3
n x at
n a

 
    and 1b  is a free parameter that can be determined by the 

initial and boundary conditions. 

4. The generalized nonlinear heat conduction equation in  
two dimensions 
4.1 Application of the (G'/G)-expansion method 
Using the wave variable (2.4) transforms Eq. (1.2) to the ODE 

 22 ( ) 0, 0n nkcU ak U U U a         (4.1) 

or, equivalently, 

 2 2 2 2 12 ( 1) 2 0,n n nkcU ak n n U U ak nU U U U           (4.2) 

Then we use the transformation (3.3), which will convert Eq. (4.2) into 

 2 2 2 2 2 3 2 2( 1) 2 (1 2 ) 2 ( 1) ( 1) ( 1) 0,kc n V V ak n n V ak n n VV n V n V              (4.3) 

By the same manipulation as illustrated in Section 3.1, we obtain the following sets of 
solutions. 

Case A: When 2 4 0    

Case A-1. 

 0 12 2 2

1 1 1 1, , . , 2
2 22 4 4 4

nk c a
n a

 
     


     

  
  (4.4) 
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By the same procedure as illustrated in Case A-1 of Section 3.1, Eqs. (3.9) and (3.10), we can 
finally find the generalized solitary wave solution of Eq. (1.2) as 

 
   

   

1
1

1 2

1 2

1 1sinh 2 cosh 2
1 2 2 2 2( , , ) 1

1 12 cosh 2 sinh 2
2 2 2 2

nn nC x y at C x y at
n a n au x y t
n nC x y at C x y at
n a n a


                   

       
                          

 (4.5) 

in which 1C  and 2C  are arbitrary parameters that can be determined by the related initial 
and boundary conditions. 
Now, to obtain some special cases of the above general solution, we set 2 0C  ; then (4.5) 
leads to 

  
1
11 1( , , ) 1 tanh 2

2 2 2

nnu x y t x y at
n a


          

   
,  (4.6) 

and, when 1 0C  , the exact solution (4.5) reduces to 

  
1
11 1( , , ) 1 coth 2

2 2 2

nnu x y t x y at
n a


          

   
,  (4.7) 

Comparing the particular cases of our general solution, Eqs. (4.6) and (4.7), with Wazwaz’s 
results (2005), Eqs. (87) and (88), it can be seen that the results are exactly the same. 
Case A-2. 

 0 12 2 2

1 1 1 1, , . , 2
2 22 4 4 4

nk c a
n a

 
     

 
      

  
   (4.8) 

By the similar process as illustrated in Case A-2 of Section 3.1, Eqs. (3.15) and (3.16), we can 
easily gain the following exact solution of Eq. (1.2): 

   

   

1
1

1 2

1 2

1 1sinh 2 cosh 2
1 2 2 2 2( , , ) 1

1 12 cosh 2 sinh 2
2 2 2 2

nn nC x y at C x y at
n a n au x y t
n nC x y at C x y at
n a n a


                 

       
                        

 

 
(4.9) 

Similarly, to derive some special cases of the above general solution, we choose 2 0C  ; then 
(4.9) leads to the formal solitary wave solution as follows: 

  
1
11 1( , , ) 1 tanh 2

2 2 2

nnu x y t x y at
n a


         

   
 ,  (4.10) 
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and, when 1 0C  , the general solution (4.9) reduces to 

  
1
11 1( , , ) 1 coth 2

2 2 2

nnu x y t x y at
n a


         

   
 , (4.11) 

Validating our results, Eqs. (4.10) and (4.11), with Wazwaz’s solutions (2005), Eqs. (85) and 
(86), it can be seen that the results are exactly the same. 

Case B: When 2 4 0    

Case B-1. 

   0 12 2 2

1 1, , . , 2
2 22 4 4 4

i i n ik c a
n a

 
     


     

  
   (4.12) 

By the same manipulation as illustrated in Case B-1 of Section 3.1, Eqs. (3.21)-(3.23), we can 
finally obtain the following exact solution: 

   

   

1
1

1 2

1 2

1 1sinh 2 cosh 2
1 2 2 2 2( , , ) 1

1 12 cosh 2 sinh 2
2 2 2 2

nn nC x y at C i x y at
n a n au x y t
n nC x y at C i x y at
n a n a


                   

       
                          

(4.13) 

We note that, if we set 2 0C   and 1 0C   in the general solution (4.13), we can recover the 
solutions (4.6) and (4.7), respectively. 

Case B-2. 

 0 12 2 2

1 1, , . , 2
2 22 4 4 4

i i n ik c a
n a

 
     

 
      

  
  (4.14) 

Similar to Case B-2 of Section 3.1, we can find the following result: 

   

   

1
1

1 2

1 2

1 1sinh 2 cosh 2
1 2 2 2 2( , , ) 1

1 12 cosh 2 sinh 2
2 2 2 2

nn nC x y at C i x y at
n a n au x y t
n nC x y at C i x y at
n a n a


                 

       
                        

 

 
(4.15) 

In particular, if we take 2 0C   and 1 0C   in the general solution (4.15), we arrive at the 
same solutions (4.10) and (4.11), respectively. 

4.2 Application of the Exp-function method 
By the same manipulation as illustrated in Section 3.2, we obtain the following sets of 
solutions. 
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Case 1. 

 1 1 1 0 0 1 1
1, 0, 0, 0, , , 2

2 2
na a a a b b a k c a
n a   


           (4.16) 

Substituting Eq. (4.16) into (3.37) and inserting the result into the transformation (3.3), we 
get the generalized solitary wave solution of Eq. (1.2) as follows: 

 

1
11

1

exp( )( , , ) ,
exp( ) exp( )

nau x y t
a


 








 
    

 (4.17) 

where  1 2
2 2
n x y at
n a

 
     and 1a  is an arbitrary parameter which can be 

determined by the initial and boundary conditions. 
If we set 1 1a   and 1 1a    in (4.17), the solutions (4.10) and (4.11) can be recovered, 
respectively. 

Case 2. 

 0 0 1 1 1 1
10, 0, 1, 0, , , 2

2 2
na b a a b b k c a
n a  


          (4.18) 

By the same process as illustrated in the previous case, we obtain 

 

1
1

1

exp( )( , , ) ,
exp( ) exp( )

n
u x y t

b


 






 
    

 (4.19) 

in which  1 2
2 2
n x y at
n a

 
     and 1b  is a free parameter. 

If we set 1 1b   and 1 1b    in (4.19), then it can be easily converted to the same solutions 
(4.6) and (4.7), respectively. 

Case 3. 

 1 1 1 0 1 0
1, 0, 0, 0, 0, , 2

2 2
na a a a b b k c n a
n a  


          (4.20) 

and consequently we get 

     
11
111 1( , , ) exp( 2 ) cosh 2 sinh 2 ,nnu x y t a a  


          (4.21) 

where  1 2
2 2
n x y n at
n a

 
     and 1a  is an arbitrary parameter. 
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and, when 1 0C  , the general solution (4.9) reduces to 

  
1
11 1( , , ) 1 coth 2

2 2 2

nnu x y t x y at
n a


         

   
 , (4.11) 

Validating our results, Eqs. (4.10) and (4.11), with Wazwaz’s solutions (2005), Eqs. (85) and 
(86), it can be seen that the results are exactly the same. 

Case B: When 2 4 0    

Case B-1. 

   0 12 2 2

1 1, , . , 2
2 22 4 4 4

i i n ik c a
n a

 
     


     

  
   (4.12) 

By the same manipulation as illustrated in Case B-1 of Section 3.1, Eqs. (3.21)-(3.23), we can 
finally obtain the following exact solution: 

   

   

1
1

1 2

1 2

1 1sinh 2 cosh 2
1 2 2 2 2( , , ) 1

1 12 cosh 2 sinh 2
2 2 2 2

nn nC x y at C i x y at
n a n au x y t
n nC x y at C i x y at
n a n a


                   

       
                          

(4.13) 

We note that, if we set 2 0C   and 1 0C   in the general solution (4.13), we can recover the 
solutions (4.6) and (4.7), respectively. 

Case B-2. 

 0 12 2 2

1 1, , . , 2
2 22 4 4 4

i i n ik c a
n a

 
     

 
      

  
  (4.14) 

Similar to Case B-2 of Section 3.1, we can find the following result: 

   

   

1
1

1 2

1 2

1 1sinh 2 cosh 2
1 2 2 2 2( , , ) 1

1 12 cosh 2 sinh 2
2 2 2 2

nn nC x y at C i x y at
n a n au x y t
n nC x y at C i x y at
n a n a


                 

       
                        

 

 
(4.15) 

In particular, if we take 2 0C   and 1 0C   in the general solution (4.15), we arrive at the 
same solutions (4.10) and (4.11), respectively. 

4.2 Application of the Exp-function method 
By the same manipulation as illustrated in Section 3.2, we obtain the following sets of 
solutions. 
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Case 1. 

 1 1 1 0 0 1 1
1, 0, 0, 0, , , 2

2 2
na a a a b b a k c a
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Substituting Eq. (4.16) into (3.37) and inserting the result into the transformation (3.3), we 
get the generalized solitary wave solution of Eq. (1.2) as follows: 
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11

1

exp( )( , , ) ,
exp( ) exp( )

nau x y t
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 (4.17) 

where  1 2
2 2
n x y at
n a

 
     and 1a  is an arbitrary parameter which can be 

determined by the initial and boundary conditions. 
If we set 1 1a   and 1 1a    in (4.17), the solutions (4.10) and (4.11) can be recovered, 
respectively. 

Case 2. 

 0 0 1 1 1 1
10, 0, 1, 0, , , 2

2 2
na b a a b b k c a
n a  


          (4.18) 

By the same process as illustrated in the previous case, we obtain 

 

1
1

1

exp( )( , , ) ,
exp( ) exp( )

n
u x y t
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 (4.19) 

in which  1 2
2 2
n x y at
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     and 1b  is a free parameter. 

If we set 1 1b   and 1 1b    in (4.19), then it can be easily converted to the same solutions 
(4.6) and (4.7), respectively. 

Case 3. 

 1 1 1 0 1 0
1, 0, 0, 0, 0, , 2

2 2
na a a a b b k c n a
n a  


          (4.20) 

and consequently we get 

     
11
111 1( , , ) exp( 2 ) cosh 2 sinh 2 ,nnu x y t a a  
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2 2
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     and 1a  is an arbitrary parameter. 
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Case 4. 

 
2

1 0
1 0 0 1 1 1 0

0

11, , 0, , , , 2
2

b a na a a a b b b k c a
a n a


  

 
          (4.22) 

and 

  

1
1

0
2

1 0
1

0

exp( )( , , ) ,
exp( ) exp( )

n

au x y t
b a b

a



 







 
  
 

   
 

 (4.23) 

where  1 2
2

n x y at
n a

 
     and 0a , 1b  are free parameters. 

Case 5. 

 
2

1 0
1 1 1 0 0 1 1 0

0

10, , , , , , 2
2

a a na a a a a b a b k c a
a n a


   

 
          (4.24) 

and finally we obtain 

  

1
1

0 1
2

1 0
1

0

exp( )( , , )
exp( ) exp( )

n

a au x y t
a a a

a



 









 
   
 

   
 

 (4.25) 

in which 1 ( 2 )
2

n x y at
n a

 
     and 0 1,a a  are free parameters. 

Remark 1. We have verified all the obtained solutions by putting them back into the original 
equations (1.1) and (1.2) with the aid of Maple 12. 
Remark 2. The solutions (3.12), (3.13), (3.18), (3.19), (4.6), (4.7), (4.10), (4.11) have been 
obtained by the tanh method (Wazwaz, 2005); the other solutions are new and more general 
solutions for the generalized forms of the nonlinear heat conduction equation. 

5. Conclusions 
To sum up, the purpose of the study is to show that exact solutions of two generalized forms 
of the nonlinear heat conduction equation can be obtained by the (G'/G)-expansion and the 
Exp-function methods. The final results from the proposed methods have been compared 
and verified with those obtained by the tanh method. New exact solutions, not obtained by 
the previously available methods, are also found. It can be seen that the Exp-function 
method yields more general solutions in comparison with the other method. Overall, the 
results reveal that the (G'/G)-expansion and the Exp-function methods are powerful 
mathematical tools to solve the nonlinear partial differential equations (NPDEs) in the terms 
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of accuracy and efficiency. This is important, since systems of NPDEs have many 
applications in engineering. 
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1. Introduction 
To provide efficient investigations for engineering problems related to heating/cooling 
process in solids, the effect of thermosensitivity (the material characteristics depend on the 
temperature) should be taken into consideration when solving the heat conductivity 
problems (Carslaw & Jaeger, 1959; Noda, 1986; Nowinski, 1962; Podstrihach & Kolyano, 
1972). It is important to construct the solutions to the aforementioned heat conduction 
problems in analytical form. This requirement is motivated, for instance, by the need to 
solve the thermoelasticity problems for thermosensitive bodies, for which the determined 
temperature is a kind of input data, and thus, is desired in analytical form. 
In general, the model of a thermosensitive body leads to a nonlinear heat conductivity 
problem. It is mentioned in (Carslaw & Jaeger, 1959) that the exact solutions of such 
problems  can be determined when the temperature or heat flux is given on the surface by 
assuming the material to be “simply nonlinear” (thermal conductivity t  and volumetric 
volumetric heat capacity vc  depend on the temperature, but the relation, called thermal 
diffusivity t va c , is assumed to be constant). For construction of the solution in this case, 
it is sufficient to use the Kirchhoff’s transformation to obtain the corresponding linear 
problem for the Kirchhoff’s variable. This problem can be solved (Ditkin & Prudnikov, 1975; 
Galitsyn & Zhukovskii, 1976; Sneddon, 1951) by application of classical methods (separation 
of variables, integral transformations, etc.). The solutions to the heat conductivity problems 
for crystal bodies, whose thermal characteristics are proportional to the third power of the 
absolute temperature, can be constructed in a similar manner for the case of radiation heat 
exchange with environment.  
In the case of complex heat exchange, the Kirchhoff transform makes the heat conductivity 
problem to be linear only in part. In the heat conductivity problem for the Kirchhoff’s 
variable, the heat conduction equation is nonlinear due to dependence of the thermal 
diffusivity on the Kirchhoff’s variable. The boundary condition of the complex heat 
exchange is also nonlinear due to a nonlinear expression of the temperature on the surface. 
Herein we discuss several approaches, developed by the authors for determining 
temperature distribution in thermosensitive bodies of classical shape under complex 
(convective, radiation or convective-radiation) heat exchange on the surface (Kushnir & 
Popovych, 2006, 2007, 2009; Kushnir & Protsiuk, 2009; Kushnir et al., 2001, 2008; Popovych, 
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1972). It is important to construct the solutions to the aforementioned heat conduction 
problems in analytical form. This requirement is motivated, for instance, by the need to 
solve the thermoelasticity problems for thermosensitive bodies, for which the determined 
temperature is a kind of input data, and thus, is desired in analytical form. 
In general, the model of a thermosensitive body leads to a nonlinear heat conductivity 
problem. It is mentioned in (Carslaw & Jaeger, 1959) that the exact solutions of such 
problems  can be determined when the temperature or heat flux is given on the surface by 
assuming the material to be “simply nonlinear” (thermal conductivity t  and volumetric 
volumetric heat capacity vc  depend on the temperature, but the relation, called thermal 
diffusivity t va c , is assumed to be constant). For construction of the solution in this case, 
it is sufficient to use the Kirchhoff’s transformation to obtain the corresponding linear 
problem for the Kirchhoff’s variable. This problem can be solved (Ditkin & Prudnikov, 1975; 
Galitsyn & Zhukovskii, 1976; Sneddon, 1951) by application of classical methods (separation 
of variables, integral transformations, etc.). The solutions to the heat conductivity problems 
for crystal bodies, whose thermal characteristics are proportional to the third power of the 
absolute temperature, can be constructed in a similar manner for the case of radiation heat 
exchange with environment.  
In the case of complex heat exchange, the Kirchhoff transform makes the heat conductivity 
problem to be linear only in part. In the heat conductivity problem for the Kirchhoff’s 
variable, the heat conduction equation is nonlinear due to dependence of the thermal 
diffusivity on the Kirchhoff’s variable. The boundary condition of the complex heat 
exchange is also nonlinear due to a nonlinear expression of the temperature on the surface. 
Herein we discuss several approaches, developed by the authors for determining 
temperature distribution in thermosensitive bodies of classical shape under complex 
(convective, radiation or convective-radiation) heat exchange on the surface (Kushnir & 
Popovych, 2006, 2007, 2009; Kushnir & Protsiuk, 2009; Kushnir et al., 2001, 2008; Popovych, 
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1993a, 1993b; Popovych & Harmatiy, 1996, 1998; Popovych & Sulym, 2004; Popovych et al. 
2006). Note that the necessity of these investigations is emphasized in (Carslaw & Jaeger, 
1959). 

2. The step-by-step linearization method for solving the one-dimensional 
transient heat conductivity problems with simple thermal non-linearity 
Let us consider the step-by-step method for determining one-dimensional transient 
temperature field ( , )t x  , which can be found from the following non-linear heat conduction 
equation:  

 1 ( ) ( )m
t vm

t tx t c t W
x xx




         
,   (1) 

where ( )t t  is the thermal conductivity; ( )vc t  is the volumetric heat capacity; 0; 1; 2m   
corresponds to Cartesian, cylindrical and spherical coordinate systems, respectively; 

, 0,a x b a a b      . The thermosensitive body of consideration is made of a material 
with simple nonlinearity. The density of heat sources W  is a function of coordinate x  and 
time   . Let the surface x a , for instance, is exposed to convective-radiation heat exchange  
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with the environment of constant temperature at , where ( )a t  is the temperature 
dependent coefficient of heat exchange between the surface and the environment;  ( )a t  is 
the temperature dependent emittance;   is the Stefan-Boltzmann constant. The surface 
x b  is heated with constant temperature bt  or constant heat flux bq :  

 t   or    ( ) .b bx b
x b

tt t t q
x





 


 (3) 

At the initial moment of time, the temperature is uniformly distributed within the body: 

 0 pt t   . (4) 

The key point of the solution method for the formulated non-linear heat conductivity 
problem (1)–(4), which is presented below, consists in the step-by-step linearization 
involving the Kirchhoff transformation along with linearization of the nonlinear term in the 
boundary conditions by means of the spline approximation. 
By introducing the dimensionless coordinates 0x x l , temperature 0T t t , and  time 

2
0Fo a l  (the Fourier number), we can present the functional parameters ( )t t , ( )vc t , 

( )a t , and ( )a t  in the form 0( ) ( )t T   , where 0  is a reference value and ( )T  
stands for the dimensionless function; 0t  is a reference temperature and 0l  is a characteristic 
dimension. The density of heat sources can be presented as 0 ( ,Fo)W q q x , where 0q  is the 
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dimensional constants, ( ,Fo)q x  is the dimensionless function describing the time variation 
of the heat sources. As a result, the problem (1)–(4) takes the form 

 1 ( ) ( ) Po ( ,Fo)
Fo

m
t vm

T Tx T c T q x
x xx

          
, (5) 
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 Fo 0 pT T  .  (8) 

Here 2
0 0 0 0 0/( )tP q l t   (the Pomerantsev number), (0)

0 0Bia a tr   (the Biot number), 
(0) 3

0 0 0Ska a tl t   (the Starc number),   0 0 0Ki /( )b b tq l t   (the Kirpichev number), 

0/b bT t t , 0p pT t t . 

Let us apply the Kirchhoff’s integral transformation (Carslaw & Jaeger, 1959; Noda, 1986; 
Podstrihach & Kolyano, 1972) 

 *( )
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to the problem (5)–(8). By taking into account the feature of simple nonlinearity 

( ( ) ( )t vT c T  ) and expressions ( ) ,t
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, the equation  

 1 Po ( ,Fo)
Fo

m
m x q x

x xx
          

 (10) 

follows from the nonlinear heat conductivity equation (5). The boundary condition of 
convective-radiation heat exchange (6) can be partially linearized and presented as  

  ( ) 0a
x a

Q T
x
 



    
, (11) 

where        4 4( ) Bi ( ) ( ) Sk ( ) ( ( ) )a a a a a a aQ T T T T T T T           . The boundary condi-
tions (7) and initial condition (8) yield  
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where ( )
b

p

T

b t
T

T dT   , ( )T   denotes the temperature expressed through the Kirchhoff’s 

variable and determined for certain  ( )t T  by means of the integral equation (9).  
Application of the Kirchhoff’s variable allows us to linearize the nonlinear heat 
conductivity equation (5) and the second boundary condition (7) completely, whereas the 
convective-radiation heat exchange condition is linearized in a part. Due to the nonlinear 
expression    ( )aQ T  , it is impossible to apply any classical method to solve the 
boundary problem (10)–(13). Therefore, it is necessary to linearize the boundary condition 
(11). In (Nedoseka, 1988; Podstrihach & Kolyano, 1972), the convective heat exchange 
condition has been considered. Therefore, the nonlinear expression ( )T  is simply 
replaced by  . As a result, the nonlinear convective heat exchange condition on   
becomes linear. However, it has been shown in (Kushnir & Popovych, 2009; Popovych, 
1993b; Popovych & Harmatiy, 1996) that this unsubstantiated linearization leads to the 
numerically or physically incorrect results. In our case, when we take into account the 
radiation constituent (which is nonlinear even for a non-thermosensitive material) and 
dependence of the heat transfer coefficient and emittance on the temperature, the 
considered substitution does not provide the complete linearization of the condition (11). 
Instead, the boundary condition (11) can be linearized by means of interpolation of the 
nonlinear expression  ( )aQ T   by special splines with order 0 or 1. For x a , the 
expression  ( )aQ T   is a function of Fo only. Let us select a finite set of points 
Fo ( 1, ;i i n 0 1 20 Fo Fo Fo Fo )n     , which divides the region of time variation into 

1n   intervals. Let us construct the spline (0)(Fo)aS with order 0, whose values coincide 
with the values of expression  (Fo) ( )a a x a

Q Q T 


  at  Fo Foi  and  
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  ( ) ( ) ( ) ( ) ( ) 4 4Bi ( )( ) Sk ( ) ( )a a a a a
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on the every interval of interpolation. Here ( )a
iT  ( 1 , )i n  are the values of temperature  

( ,Fo)T x , which are to be found on the surface x a  at the moments of time Foi  (the 
unknown parameters of spline approximation), ( )S   denotes the asymmetric unit 
Heaviside function (H. Korn & T. Korn, 1977). 
Having presented the nonlinear expression  ( )a x a

Q T 


 by spline (14), the boundary 

condition (11) becomes linear 

 (0)(Fo) 0 a
x a

S
x





 


.  (16) 

Similarly, the first-order spline (0)(Fo)aS , whose values coincide with values of expression 

(Fo)aQ  at the points iFo  and on every segment of decomposition approximates (Fo)aQ  by 
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the linear polynom ( ) ( ) ( )(Fo) Foa a a
i i iP k b  , can be constructed by the abovementioned 

decomposition. This spline can be written as  
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Here the coefficients ( ) ( ),a a
i ik b  of polynom ( )(Fo)a

iP  are calculated by formulae  
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where  ( )a
iQ  is expressed through ( )a

iT  by means of formula (15). 

If  ( )a x a
Q T 


 is expressed as the first-order spline (17), then boundary condition (11) 

becomes linear  
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Having solved the obtained linear problem (10), (12), (13), (16) or (10), (12), (13), (19) by 
means of the classical methods, the Kirchhoff’s variable is found as a function of x  and Fo . 
Besides the input data of the problem, this variable contains iFo  and unknown values 

( ) ( ,Fo )a
iiT T a : 

 ( ) ( )
1 1( , Fo ,Fo , ,Fo , , , )a a

n nx T T    . (20) 

By substitution   into the expression for ( )T   (for specific dependence ( )t T ), the formula 
for determination of the temperature  

 ( ) ( )
1 1( , Fo ,Fo , ,Fo , , ,a a

n nT f x T T     (21) 

can be obtained at arbitrary point x  and arbitrary moment of time Fo . For determination of 
unknown values ( )a

iT  in the expressions for temperature (21), the collocation method is 
used. Assuming Fo Foi ( 1, )i n  in (21), the system of equation for determination ( )a

iT   
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 (22) 

is obtained. The structure of system (22) makes it possible to determine all unknown values  
( )a
iT , starting from ( )

1
aT . Substitution of values, determined from (22), into the formula (21) 

completes the solution procedure. 
The temperature at given point x  and moment of time can be calculated in accordance to 
the following scheme: 
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is obtained. The structure of system (22) makes it possible to determine all unknown values  
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1
aT . Substitution of values, determined from (22), into the formula (21) 

completes the solution procedure. 
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a. to divide the time axis by Foi and then to determine the approximation parameters ( )a
iT   

from the system (22); as a result, the value of temperature (21) ( )a
nT  is obtained; 

b. to divide every interval in two; to compute the values of parameters ( )a
iT  for this new 

time-segmentation and then to obtain the values of temperature ( )
1

a
nT  ; 

c. to calculate the difference ( ) ( )
1

a a
nnT T  . If 1n nT T    , where   is the accuracy, then 

the calculation is over. Otherwise, we shall return to the stage b.  
The temperature can be computed with any given accuracy   for arbitrary segmentation of 
the time axis. However, the increasing of number of time-segments decreases the 
convergence of the proposed scheme. An appropriate choice of the initial moment of time 
can be done by means of the estimated ‘a priory’ time-dependence of the temperature on the 
surface x a . We can also use the solution of corresponding boundary value problem for 
the body of the same shape with constant characteristics. Then the initial choice for values 
Foi  can be used as the appropriate one  for the thermosensitive body.  
The method of step-by-step linearization is applicable for determination of the temperature 
fields in thermosensitive plates, half-space, solid and hollow cylinders or spheres, space 
with cylindrical or spherical cavities, on the surfaces of which, the conditions of convective, 
radiation or convective-radiation heat exchange may be given. This method has been 
efficiently used for solving the two-dimensional steady problem in thermosensitive body.  

3. Method of linearizing parameters  
The method of step-by-step linearization makes it possible to determine the solutions to the 
two-dimensional heat conductivity problems in thermosensitive bodies with simple 
nonlinearity, when the nonlinear term in the condition of complex heat exchange for the 
Kirchhoff’s variable depends on one (spatial or time) variable only. In this section, we 
consider an efficient method for solving the steady-state and transient heat conductivity 
problems of arbitrary dimension those describe the propagation of heat in thermosensitive 
bodies with simple nonlinearity under the convective heat exchange with environment.  
Let the body occupies region D with surface S. The surface (whole or a part) is subjected  to 
the convective heat exchange with the environment of temperature pt . From the moment of 
time 0  , the heat sources ( , , , )W x y z   are acting in the body. The temperature in the 
body shall be determined from the following heat conduction equation:  

                div ( )grad ( )t v
tt t c t W



 


 (23) 

and the boundary  

 t
s

( ) ( ) 0c
tt t t
n

      
 (24) 

and initial  

   0 pt t    (25) 
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conditions, where   is the constant heat transfer coefficient; n  is the external normal to 
surface S . 
By making use of the above-introduced presentation for the material characteristics, heat 
sources, and dimensionless variables, the boundary value problem (23)–(25) can be reduced 
to the dimensionless form. After application of the Kirchhoff’s transformation, the following 
boundary value problem for variable    

 divgrad Po ( , , ,Fo)
Fo

q X Y Z 
 


, (26) 

  Bi ( ) 0c
s

T T
n
      

, (27) 

  Fo 0 0     (28) 

is obtained, where 0 0 0, ,X x l Y y l Z z l    are dimensionless coordinates; 
0 , ( , , ,Fo)n n l q X Y Z  is the dimensionless function of heat sources. As a result, the initial 

problem is partially linearized, meanwhile the condition (27) remains nonlinear. The latter 
conditions have been obtained from the conditions of convective heat exchange due to 
nonlinear expression  ( )T   on the surface  S . For solving the problem (26)–(28) by using an 
analytical method, it is necessary to linearize this condition. Let us prove the possibility of 
such linearization.  
Consider the simplest case of linear dependence of heat conductivity coefficient on the 
temperature: 

   ( ) ( ) 1 ( )t to t to pt T k T T          ,     (29) 

where k  is a constant. From the equation (9), the formula 

   2( ) ( )
2p p
kT T T T      (30) 

follows, where  

   1( ) ( 1 2 1) pT k k T     . (31) 

From the physical standpoint, the square root is chosen to be positive. After substitution of 
the equation  (31) into the boundary condition (27), the last one takes the form  

 1 2 1Bi 0p c
s

k T T
n k
     
         

. (32) 

Be decomposing the square root in (32) into the series and restricting this series with two 
terms, the boundary condition  

  Bi ( ) 0c p
s

T T
n
       

 (33) 



 
Heat Conduction – Basic Research 

 

136 

a. to divide the time axis by Foi and then to determine the approximation parameters ( )a
iT   

from the system (22); as a result, the value of temperature (21) ( )a
nT  is obtained; 

b. to divide every interval in two; to compute the values of parameters ( )a
iT  for this new 

time-segmentation and then to obtain the values of temperature ( )
1

a
nT  ; 

c. to calculate the difference ( ) ( )
1

a a
nnT T  . If 1n nT T    , where   is the accuracy, then 

the calculation is over. Otherwise, we shall return to the stage b.  
The temperature can be computed with any given accuracy   for arbitrary segmentation of 
the time axis. However, the increasing of number of time-segments decreases the 
convergence of the proposed scheme. An appropriate choice of the initial moment of time 
can be done by means of the estimated ‘a priory’ time-dependence of the temperature on the 
surface x a . We can also use the solution of corresponding boundary value problem for 
the body of the same shape with constant characteristics. Then the initial choice for values 
Foi  can be used as the appropriate one  for the thermosensitive body.  
The method of step-by-step linearization is applicable for determination of the temperature 
fields in thermosensitive plates, half-space, solid and hollow cylinders or spheres, space 
with cylindrical or spherical cavities, on the surfaces of which, the conditions of convective, 
radiation or convective-radiation heat exchange may be given. This method has been 
efficiently used for solving the two-dimensional steady problem in thermosensitive body.  

3. Method of linearizing parameters  
The method of step-by-step linearization makes it possible to determine the solutions to the 
two-dimensional heat conductivity problems in thermosensitive bodies with simple 
nonlinearity, when the nonlinear term in the condition of complex heat exchange for the 
Kirchhoff’s variable depends on one (spatial or time) variable only. In this section, we 
consider an efficient method for solving the steady-state and transient heat conductivity 
problems of arbitrary dimension those describe the propagation of heat in thermosensitive 
bodies with simple nonlinearity under the convective heat exchange with environment.  
Let the body occupies region D with surface S. The surface (whole or a part) is subjected  to 
the convective heat exchange with the environment of temperature pt . From the moment of 
time 0  , the heat sources ( , , , )W x y z   are acting in the body. The temperature in the 
body shall be determined from the following heat conduction equation:  

                div ( )grad ( )t v
tt t c t W



 


 (23) 

and the boundary  

 t
s

( ) ( ) 0c
tt t t
n

      
 (24) 

and initial  

   0 pt t    (25) 

 
Heat Conduction Problems of Thermosensitive Solids under Complex Heat Exchange  

 

137 

conditions, where   is the constant heat transfer coefficient; n  is the external normal to 
surface S . 
By making use of the above-introduced presentation for the material characteristics, heat 
sources, and dimensionless variables, the boundary value problem (23)–(25) can be reduced 
to the dimensionless form. After application of the Kirchhoff’s transformation, the following 
boundary value problem for variable    
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Fo

q X Y Z 
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T T
n
      

, (27) 

  Fo 0 0     (28) 

is obtained, where 0 0 0, ,X x l Y y l Z z l    are dimensionless coordinates; 
0 , ( , , ,Fo)n n l q X Y Z  is the dimensionless function of heat sources. As a result, the initial 

problem is partially linearized, meanwhile the condition (27) remains nonlinear. The latter 
conditions have been obtained from the conditions of convective heat exchange due to 
nonlinear expression  ( )T   on the surface  S . For solving the problem (26)–(28) by using an 
analytical method, it is necessary to linearize this condition. Let us prove the possibility of 
such linearization.  
Consider the simplest case of linear dependence of heat conductivity coefficient on the 
temperature: 

   ( ) ( ) 1 ( )t to t to pt T k T T          ,     (29) 

where k  is a constant. From the equation (9), the formula 
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From the physical standpoint, the square root is chosen to be positive. After substitution of 
the equation  (31) into the boundary condition (27), the last one takes the form  
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Be decomposing the square root in (32) into the series and restricting this series with two 
terms, the boundary condition  
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is obtained. The solution of equation (26) with boundary conditions (28), (33) is an 
approximate solution to the boundary value problem (26), (28), (32). To determine the exact 
solution, the equation (26) is to be solved under initial condition (28) and the following 
linear boundary condition  

  Bi (1 ) ( ) 0c p
s

T T
n
         

  (34) 

instead of the nonlinear condition (32), where   is an unknown constant (linearized 
parameter). Note that the boundary condition (34) coincides at 0   with the condition 
(33). Since the problem (26), (28), (34) is linear, the appropriate classical analytical method 
can be used for its solution. In addition to the original parameters of the problem 
( Po,Bi, , ,c pT T  dimensions of the body, coordinates and time), the solution involves the 

unknown linearized parameter  : 

  ( , , ,Fo, )X Y Z   . (35) 

For an arbitrary value of  , the solution (35) meets the equation (26) and the initial 
condition (28). In order the solution (35) to satisfy the nonlinear conditions (32) and (34), the 
parameter   is to be the solution of the equation  

1 2 1 (1 ) 0
s

k
k
  

  
   

  
. 

After some transformations, this equation can be given as 

 2
2

(1 )s k



 


.     (36) 

This equation holds for every moment of time Fo . After the paramenter   is found, we 
substitute it into (35). In such manner, the expression for Kirchhoff’s variable is obtained. 
The temperature in the body is then calculated by means of the relation (31).  
Note that the boundary condition (34) can be represented as  

  Bi ( ) 0c
s

T
n
       

, (37) 

where Bi Bi(1 ); ( ) (1 )c c pT T T       . This condition can be interpreted as a condition 

of convective heat exchange with certain parameters (the Biot number Bi  and the 
temperature cT  of external environment) depending on the unknown parameter  .  
The equation (36) is nonlinear. It provides analytical solutions only for some cases of steady-
state problems with substantional use of the numerical methods. Therefore, these solutions 
can be regarded as  analytico-numerical solutions.  
Let us consider the non-linear dependence of the heat conductivity coefficient on the 
temperature. For linearization of the boundary condition (27), we shall find the Kirhoff’s 
variable for the case when the surface temperature of the thermosensitive body is equal to 
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the surface temperature of the body with constant characteristics. The latter temperature is 
to be found from the problem: 

 divgrad Po ( , , ,Fo)
Fo

H
H

TT q X Y Z
 


, (38) 
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H c
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T T T
n

     
 , (39) 
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where ,H H o HT t t t  is temperature of the body with constant characteristics.  
By subtraction equations of the problem (26)–(28) from corresponding equation of the 
problem (38)–(40) and taking into account that ( ) Hs sT T  , we obtain: 
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   Fo 0( )  H pT T   .   (43) 

The boundary value problem (41)-(43) is a problem of heat conductivity in the body with the 
surface S  and uniform initial temperature pT . The heat sources are absent and the 

boundary of the body is thermoinsulated. The evident solution of this problem is 
H pT T  . Consequently, if in the problem (26)–(28) for the Kirchhoff’s variable the surface 

temperature for the thermosensitive body is replaced with the surface temperature for the 
body with constant characteristics (whose thermal diffusivity is equal to the thermal 
diffusivity of thermosensitive body and the heat conductivity coefficient is equal to the 
reference value of the heat conductivity coefficient 0t ), then H pT T   . 

Thus, if the surface temperature ( ) sT   of the thermosensitive body in the condition (27) is 

equal to the corresponding temperature of the body with constant characteristics, then the 
boundary value problem for the Kirchhoff’s variable   should be solved with the condition 
(33). Then the solution of this problem presents the difference of the temperature in the 
same-shape body with constant characteristics and the initial temperature:  

  H pT T   . (44) 

As it was mentioned above, the substitution of ( )T   for pT   in the case of linear 

dependence of the heat conductivity coefficient on the temperature is equivalent to keeping 
only two terms in the series, into which the square root in expression for the temperature 
through the Kirhoff’s variable has been decomposed. This linearization does not guarantee a 
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(33). Then the solution of this problem presents the difference of the temperature in the 
same-shape body with constant characteristics and the initial temperature:  

  H pT T   . (44) 
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sufficient solution approximation. To overcome this difficulty, we consider the boundary 
value problem for the variable   with the linear condition (37) instead of the nonlinear 
condition (27), which involves an additional parameter   . Having solved the obtained 
linear problem, the Kirhoff’s variable   is found as a function of the coordinates and 
parameter  . The parameter   should be chosen in the way to satisfy the nonlinear 
condition (27) with any given accuracy. Thus for determination of the temperature field in 
the body with simple nonlinearity for arbitrary temperature dependence of heat 
conductivity coefficient under convective heat exchange between the surface and 
environment, the corresponding solution of the nonlinear heat conductivity problem can be 
determined by following the proposed algorithm of the method of linearized parameters:  
- to present the problem in dimensionless form; 
- to linearize the problem in part by using integral Kihhoff transformation;  
- to linearize the problem completely by linearizing the nonlinear condition on 

Kirchhoff’s variable   obtained from condition of convective heat exchange due to 
replacement of nonlinear expression ( )T   by (1 ) pT    with unknown parameter 

 ;  
- to solve the obtained linear boundary value problem for variable   by means of an 

appropriate classical method;  
- to satisfy with given accuracy the nonlinear condition for variable   by using the 

parameter  ;  
- to determine the temperature using the obtained Kirchhoff’s variable. 
The main feature of the method of linearizing parameters consists in a possibility to obtain 
the solution of linearized boundary value problem for the Kirchhoff’s variable in a 
thermosensitive body by solving the heat conductivity problem in the body with constant 
characteristics under convective heat exchange. This solution is obtained from (44) by 
setting Bi Bi(1 )    and  ( ) 1c c pT T T      instead of BiHT  and cT , respectively.  

4. The method of linearizing parameters for the steady-state heat conduction 
problems in piecewise-homogeneous thermosensitive bodies  
Determination of the temperature fields in piecewise-homogeneous bodies subjected to 
intensive thermal loadings is an initial stage that precedes the determination of steady-state 
or transient thermal stresses in the mentioned bodies. Let us assume that the elements of 
piecewise-homogeneous body are in the ideal thermal contact and the limiting surface is 
under the condition of complex heat exchange with environment. Mathematical model for 
determination of the temperature fields in such structures leads to the coupled problem for 
a set of nonlinear heat conduction equations with temperature-dependent material 
characteristics in the coupled elements. By making use of the Kirhoff’s integral 
transformation for each element by assuming the thermal conductivity to be constants, the 
problem can be partially linearized. The nonlinearities remain due to the thermal contact 
conditions on the interfaces and the conditions of complex heat exchange on the surfaces. To 
obtain an analytical solution to the coupled problem for the Kirchhoff’s variable, it is 
necessary to linearize this problem. The possible ways of such a linearization and, thus, 
determination of the general solution to the heat conduction problems in piecewise-
homogeneous bodies are considered below in this section.  
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Let us adopt the method of linearizing parameters to solution of the steady-state heat 
conduction problems for coupled bodies of simple shape, for instance, n -layer 
thermosensitive cylindrical pipe. The pipe is of inner and outer radii 0r r  and nr r , 
respectively, with constant temperatures bt  and Ht  on the inner and outer surfaces. The 
layers of different temperature-dependent heat conduction coefficients are in the ideal 
thermal contact. The cylindrical coordinate system , ,r z  is chosen with z -axis coinciding 
with the axis of pipe. The temperature field in this pipe can be determined from the set of 
heat conduction equations  

  ( )1 ( ) 0, 1,i i
t i

dtd r t i n
r dr dr


 

  
 

 , (45) 

with the  boundary conditions 

  
0

1 ,
n
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    , = , 1, 1ir r i n   ,    (47) 

where ( )( )i
t it  denotes the heat conduction coefficient of the layers. We introduce the 

dimensionless values 0 0i iT t t , r r   and ( )( )i
t it  ( ) ( )

0 ( )i i
t it T  , where the constituents 

with the indices “0” are dimensional constants and the asterisked terms are dimensionless 
functions, 0t  is the reference temperature. In the dimensionless form, the problem (45)–(47)  
appears  as  

  ( )1 ( ) 0, 1,i i
t i

dTd T i n
d d


  

 
  

 
 ,  (48) 

   1 1 ,
n

b n HT T T T   
   , (49) 

  ( ) ( 1)( ) ( 1) 1
1 10 0, ( ) ( )i ii ii i

i i t i t it t
dT dTT T T T
d d

   
 

   
   , , 1, 1i i n    . (50) 

Consider the heat conduction coefficients in the form of linear dependence on the 
temperature ( )( )

0( ) (1 )ii
t i i itt k T   , where ik  are constants. By introducing the Kirchhoff’s 

variable 
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in each layer, the following problem on  Kirchhoff’s variable  
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sufficient solution approximation. To overcome this difficulty, we consider the boundary 
value problem for the variable   with the linear condition (37) instead of the nonlinear 
condition (27), which involves an additional parameter   . Having solved the obtained 
linear problem, the Kirhoff’s variable   is found as a function of the coordinates and 
parameter  . The parameter   should be chosen in the way to satisfy the nonlinear 
condition (27) with any given accuracy. Thus for determination of the temperature field in 
the body with simple nonlinearity for arbitrary temperature dependence of heat 
conductivity coefficient under convective heat exchange between the surface and 
environment, the corresponding solution of the nonlinear heat conductivity problem can be 
determined by following the proposed algorithm of the method of linearized parameters:  
- to present the problem in dimensionless form; 
- to linearize the problem in part by using integral Kihhoff transformation;  
- to linearize the problem completely by linearizing the nonlinear condition on 

Kirchhoff’s variable   obtained from condition of convective heat exchange due to 
replacement of nonlinear expression ( )T   by (1 ) pT    with unknown parameter 

 ;  
- to solve the obtained linear boundary value problem for variable   by means of an 

appropriate classical method;  
- to satisfy with given accuracy the nonlinear condition for variable   by using the 

parameter  ;  
- to determine the temperature using the obtained Kirchhoff’s variable. 
The main feature of the method of linearizing parameters consists in a possibility to obtain 
the solution of linearized boundary value problem for the Kirchhoff’s variable in a 
thermosensitive body by solving the heat conductivity problem in the body with constant 
characteristics under convective heat exchange. This solution is obtained from (44) by 
setting Bi Bi(1 )    and  ( ) 1c c pT T T      instead of BiHT  and cT , respectively.  

4. The method of linearizing parameters for the steady-state heat conduction 
problems in piecewise-homogeneous thermosensitive bodies  
Determination of the temperature fields in piecewise-homogeneous bodies subjected to 
intensive thermal loadings is an initial stage that precedes the determination of steady-state 
or transient thermal stresses in the mentioned bodies. Let us assume that the elements of 
piecewise-homogeneous body are in the ideal thermal contact and the limiting surface is 
under the condition of complex heat exchange with environment. Mathematical model for 
determination of the temperature fields in such structures leads to the coupled problem for 
a set of nonlinear heat conduction equations with temperature-dependent material 
characteristics in the coupled elements. By making use of the Kirhoff’s integral 
transformation for each element by assuming the thermal conductivity to be constants, the 
problem can be partially linearized. The nonlinearities remain due to the thermal contact 
conditions on the interfaces and the conditions of complex heat exchange on the surfaces. To 
obtain an analytical solution to the coupled problem for the Kirchhoff’s variable, it is 
necessary to linearize this problem. The possible ways of such a linearization and, thus, 
determination of the general solution to the heat conduction problems in piecewise-
homogeneous bodies are considered below in this section.  
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is obtained from the problem (48)-(50). Here  (1)

0

( )
bT

b t T dT   ; н
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0
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T

n
t T dT  



. 

The initially nonlinear heat conduction problem is partially linearized due to application of 
the Kirchhoff’s variables. However, the conditions for temperature, that reflects the 
temperature equalities of the neighbouring layers, remain nonlinear (the first group of 
conditions (54)). By integrating the set of equations (52) with boundary conditions (53) and 
contact conditions (54), the set of transcendent equation can be obtained for determination 
of constant of integration. This set can be solved numerically. The efficiency of numerical 
methods depends on the appropriate initial approximation. Unfortunately, it is very 
complicated to determine the definition domain for the solution of this set of equations and 
thus to present a constructive algorithm for determination of the initial approximation.  
The possible way around this problem is to decompose the square root in the first 
conditions (54) into series by holding only two terms. Then, instead of mentioned 
conditions, the following approximated conditions are obtained: 

 1 at , 1, 1i i i i n       . (55) 

Application of the conditions (55), instead of exact ones, separates the interfacial conditions. 
This fact allows us to consider the boundary problem (52)–(54) replacing the conditions (54) 
by the following ones:  

 1 1(1 ) (1 )  at , 1, 1i i i i i i n            ,  (56) 

where i  are unknown constants (linearizing parameters). By substitution 
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where н н(1 ) ; (1 ) ;b i b n            ( )
0 1i
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It can be shown (Podsdrihach et al., 1984) that the boundary value problem (58)–(60) is 
equivalent to the problem  

 1 ( ) 0dd
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Substitution of (63) into (62) yields 
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For the Kirchhoff’s variables, we have 
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Besides the initial data, the solution (66) contains n  arbitrary constants i  and satisfies the 
equation (52), boundary conditions (53) and the second group of the contact conditions (54). 
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It can be shown (Podsdrihach et al., 1984) that the boundary value problem (58)–(60) is 
equivalent to the problem  
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For the Kirchhoff’s variables, we have 
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Besides the initial data, the solution (66) contains n  arbitrary constants i  and satisfies the 
equation (52), boundary conditions (53) and the second group of the contact conditions (54). 
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The linearized parameters i  will be selected to satisfy the first group of the conditions (54). 
By assuming that one of the linearizing parameters i , for instance, is equal to zero, the 
following set of 1n   equations can be obtained  

    1 1 11 2 1 / 1 2 1 / , 1, 1
i i

i i i i i ik k k k i n                (67) 

for determination of the rest 1n   linearizing parameters. The solution should be found in a 
neighborhood of zero. From the set (67), we determine the values of linearization 
parameters and thus the Kirchhoff’s variables. Then the temperature in layers is  

 1( 1 2 1)i i i iT k k    .  (68) 

For example, we consider the two-layer pipe ( 2)n  . The Kirchhoff’s variables for this case 
are expressed as  
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where  (2) (1)
0 0t tK   ; 1  is equal to  zero, and 2  is denoted as  . The value of   shall be 

obtained from the equation  
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. (70) 

If the heat conduction coefficients of the layers ( ) ( 1, 2)i
t i   are constants, then the 

temperature in each layer is determined by formula  

 н1 2ln , lnbT NK T T N T      , (71) 

where    н
(2) (1)

1 2( 1) ln ln ,b t tN T T K K          . 

Let the first layer of thickness 11 ( )e e   is made of steel C12 and the second layer of 

thickness 2 2
2( )e e e  is made of steel C8 (Sorokin et al., 1989). Let  700 Cbt   , н 0 Ct   , 

and  0 bt t . The heat conduction coefficients in the temperature range 0...700 C  are given 

in the form of linear relations: (1) 47.5(1 0.37 )t T    [ ( )]W m K , (2)
t   64.5(1 0.49 T)  

[ ( )]W m K . Then 1 0.37k   , (1)
0 47.5t  , 2 0.49k   , (2)

0 64.5t  , 1.36K  , 1bT  , н 0T  , 
0.815b  , н 0  . At reference values, the linearized parameter   (determined from 

equation (70)), is equal to 0.0249 . 
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Thermosensitive layers Layers with constant 
characteristics 

  0,0249   0 (1) (2)
tc tc   (1) (2)

0 0t t   

T  Ct  T  Ct  T  Ct  T  Ct  
1 1 700 1 700 1 700 1 700 

1,34 0,7945 556,1 0,7924 554,7 0,8369 585,9 0,8314 582,0 
1,69 0,6500 455,0 0,6466 452,6 0,7077 495,4 0,6978 488,5 
2,03 0,5395 377,7 0,5352 374,6 0,6055 423,9 0,5922 414,6 
2,37 0,4506 315,4 0,4455 311,9 0,5193 363,5 0,5031 352,1 

0e   0,3764 263,5 0,3707 259,5 0,4429 310,0 0,4241 296,9 
0e   0,3765 263,6 0,3810 266,7 0,4429 310,0 0,4241 296,9 

3,65 0,2570 179,9 0,2600 182,0 0,3124 218,6 0,2991 209,4 
4,59 0,1701 119,1 0,1720 120,4 0,2109 147,6 0,2019 141,3 
5,52 0,1023 71,6 0,1037 72,4 0,1292 90,4 0,1237 86,6 
6,49 0,0468 32,8 0,0473 33,1 0,0602 42,1 0,0576 40,4 

2e  0 0 0 0 0 0 0 0 

Table 1. Distribution of temperature in a two layer pipe along its radius 

Table 1 presents the temperature values in two-layer pipe versus its radius. In the first four 
columns, the values of dimensionless and real temperature T  and t , respectively, are 
given; the first and second columns present the temperature values, obtained by method of 
linearizing parameters (formulae (68)-(70)); the third and fourth columns present the 
approximate values of the temperature, obtained by holding only two terms in the series 
into which  the square roots in the first group of the conditions (54) were decomposed 
(formulae (68), (69) at 0  ). The maximum difference between the exact and approximate 
values of temperature falls within 1.5%. But the approximate solution has a gap 7.2 C  on 
the interface. This fact shows that the condition of the ideal thermal contact is not satisfied, 
which is physically improper result. In the last four columns, the values of dimensionless 
and real temperature in the pipe with constant thermal characteristics are presented. The 
values in the fifth and sixth columns describe the case when the heat conduction coefficients 

have the mean value in the temperature region 0...700 C  i.e. 
700

(1) (1)

0

1 ( ) 38.7
700tc t t dt    

[ ( )]W m K , (2) 1
700tc 

700
(2)

0

( ) 48.7t t dt   [ ( )]W m K ; the seventh and eighth columns 

present the maximum values of the heat conduction coefficients in the considered 
temperature range (1) (2)(1) (2)

0 0,t tt t     . Thus, the maximum difference between the values 
of the temperature computed for the mean values of the heat conduction coefficients is 
about 15% ( 48 C)  . If the temperature is computed for the maximum values of the heat 
conduction coefficients, this difference is about 10% ( 37 C)  . 
To simplify the explanation of the linearized parameters method for solving the heat 
conductivity problem in the coupling thermal sensitive bodies, the constant temperatures on 
bounded surfaces of piecewise-homogeneous bodies were considered. If the conditions of 
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parameters and thus the Kirchhoff’s variables. Then the temperature in layers is  
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If the heat conduction coefficients of the layers ( ) ( 1, 2)i
t i   are constants, then the 

temperature in each layer is determined by formula  

 н1 2ln , lnbT NK T T N T      , (71) 
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Let the first layer of thickness 11 ( )e e   is made of steel C12 and the second layer of 

thickness 2 2
2( )e e e  is made of steel C8 (Sorokin et al., 1989). Let  700 Cbt   , н 0 Ct   , 

and  0 bt t . The heat conduction coefficients in the temperature range 0...700 C  are given 

in the form of linear relations: (1) 47.5(1 0.37 )t T    [ ( )]W m K , (2)
t   64.5(1 0.49 T)  

[ ( )]W m K . Then 1 0.37k   , (1)
0 47.5t  , 2 0.49k   , (2)

0 64.5t  , 1.36K  , 1bT  , н 0T  , 
0.815b  , н 0  . At reference values, the linearized parameter   (determined from 

equation (70)), is equal to 0.0249 . 
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Table 1 presents the temperature values in two-layer pipe versus its radius. In the first four 
columns, the values of dimensionless and real temperature T  and t , respectively, are 
given; the first and second columns present the temperature values, obtained by method of 
linearizing parameters (formulae (68)-(70)); the third and fourth columns present the 
approximate values of the temperature, obtained by holding only two terms in the series 
into which  the square roots in the first group of the conditions (54) were decomposed 
(formulae (68), (69) at 0  ). The maximum difference between the exact and approximate 
values of temperature falls within 1.5%. But the approximate solution has a gap 7.2 C  on 
the interface. This fact shows that the condition of the ideal thermal contact is not satisfied, 
which is physically improper result. In the last four columns, the values of dimensionless 
and real temperature in the pipe with constant thermal characteristics are presented. The 
values in the fifth and sixth columns describe the case when the heat conduction coefficients 

have the mean value in the temperature region 0...700 C  i.e. 
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0 0,t tt t     . Thus, the maximum difference between the values 
of the temperature computed for the mean values of the heat conduction coefficients is 
about 15% ( 48 C)  . If the temperature is computed for the maximum values of the heat 
conduction coefficients, this difference is about 10% ( 37 C)  . 
To simplify the explanation of the linearized parameters method for solving the heat 
conductivity problem in the coupling thermal sensitive bodies, the constant temperatures on 
bounded surfaces of piecewise-homogeneous bodies were considered. If the conditions of 
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convective heat exchange are given, then the final linearization of the obtained nonlinear 
conditions on Kirchhoff’s variables may be fulfilled using the method of linearizing 
parameters.  
The method of linearizing parameters can be successfully used for solution of the transient 
heat conduction problems.  

5. Determination of the temperature fields by means of the step-by-step 
linearization method  

To illustrate the step-by-step linearization method, consider the solution of the centro-
symmetrical transient heat conduction problem. Let us consider the thermosensitive hollow 
sphere of inner radius 1r  and outer radius 2r . The sphere is subjected to the uniform 
temperature distribution pt  and, from the moment of time 0  , to the convective-radiation 
heat exchange trough the surfaces 1r r  and 2r r  with environments of constant 
temperatures 1ct  and 2ct , respectively. The transient temperature field in the sphere shall be 
determined from nonlinear heat conduction equation  

  2
2

1 ( ) ( )t v
t tr t c t

r rr



        

, (72) 

with boundary and initial conditions  

   4 4( ) ( 1) ( )( ) ( )( ) 0
j

j
t j cj j cj

r r

tt t t t t t t
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 ( 1,2)j  ,   (73) 

  0 pt t   .  (74) 

Let us construct the solution to the problem (72)–(74) for the material with simple nonlinearity 
( ( ) ( ) const)t va t c t  . The temperature-dependent characteristics of the material are given 

as 0( ) ( )t T   , where the values with indices zero are dimensional and the asterisked 
terms are dimensionless functions of the dimensionless temperature 0T t t  ( 0t  denotes the 
reference temperature). Let the thickness of spherical wall 0 2 1r r r   be the characteristic 

dimension, and 0r r  , 2
0Fo a r , ( )

0 0Bi j
j a tr   (Biot number), and ( ) 3

0 0 0Sk j
j a tr t   

(Starc number). Then the problem (72)–(74) takes the dimensionless form  
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 Fo 0 pT T  ,  (77) 
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where 0cj cjT t t . By application of the Kirchhoff transformation (9) to the nonlinear 

problem (75)–(77), the following problem for   

 
2

2
( ) ( )

Fo
 


 



, (78) 

  ( )( 1) ( ) 0 ( 1,2)
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,    (79) 

 Fo 0 0     (80) 

is obtained, where 

          4( ) 4( ) Bi ( ) ( ( ) ) Sk ( ) ( )j
j j cj j j cjQ T T T T T T T           . (81) 

The heat conduction equation for the Kirchhoff’s variable   is linear, meanwhile the 
conditions of convective-radiation heat exchange are partially linearized with the 
nonlinearities in the expressions  ( ) ( )jQ T  . These expressions depend on the temperature 
which is to be determined on the surfaces j  . The temperature of the sphere ( ,Fo)T   

on each surface j   is continuous and monotonic function of time. Because every 

continuous and monotonic function is an uniform limit of a linear combination of unit 
functions, these functions can be interpolated by means of the splines of order 0 as 

 
1

( ) ( ) ( ) ( ) (j)
1

1
(Fo) ( ) (Fo Fo )

jm
j j j j

i i i i
i

Q Q Q Q S





     , (82) 

   ( ) ( ) ( ) ( ) ( ) 4 4( ) Bi ( )( ) Sk ( )(( ) )j j j j j
j j cj j j cji i i i iQ T T T T T T T       ,     (83) 

where ( ) ( )
1 , ( 2, )j j

p jiT T T i m   are unknown parameters of spline interpolation for the 

temperature which is to be determined on the surfaces j   at 1Fo Fo Fo(j) (j)
i i    and 
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 is asymmetric unit function (H. Korn & T. Korn, 1977; 

Podstrihach et al., 1984), Fo(j)
i  are the points of segmentation of the time axis (0;Fo) . After 

substitution of the expression (82) into the boundary conditions (79), the boundary value 
problem (78)–(80) becomes linear. For its solving, the Laplace integral transformation can be 
used (Ditkin & Prudnikov, 1975). As a result, the Laplace transforms of the Kirhoff’s 
variables are determined as   
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The inverse Laplace transformation can be found by means of the Vashchenko-
Zakharchenko expansion theorem of and shift theorem (Lykov, 1967). As a result, the 
following expression for Kirchhoff’s variable 
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is obtained, where 
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n  are roots of characteristic equation  

 2
1 2(1 )tg      . (87) 

For example, let the heat conduction coefficient be a linear function of the temperature 
( ) 1t T kT   . Then on the basis of formula (9),  

  1 21 (1 ) 2pT k kT k    . (88) 

The determined temperature is a function of coordinate   and time Fo ; it contains 

1 22( )m m  approximation parameters:  1m  values of the temperature  (1)
iT  on the surface 

1   (due to the expressions of (1)
iQ ) and (1)Foi  and  2m  values of the temperature (2)

iT  

on the surface 2   (due to the expressions of (2)
iQ )  and (2)Foi . The collocation method 

has been used to determine the approximation parameters. If j   in (88), the expression 

of the temperature on the surface j   are determined as 
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After solving this set of equations and substituting the values ( ) ( 1,2 )j
iT j   into (88), the 

expression for the temperature can be obtained. 
For approximation of the nonlinear expressions  ( ) ( )jQ T  , we use the same segmentation 

of the time axis 1 2(m m m  , (1) (2)Fo Foi i  Fo )i  on the sphere surfaces j  . In this case, 
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iT  and (2) ( 2, )iT i m  are presented. After 

solving the first and second equations, the values (1)
2T  and (2)

2T  are determined. After 
substitution of these values into the third and fourth equations, the following two unknown 
values can be determined. The same procedure shall be repeated until all ( ) ( 1,2 )j

iT j   are 
determined.  
Consider the transient temperature field in a solid thermosensitive sphere with simple 
nonlinearity under convective-radiation heat exchange between surface and environment 
of constant temperature ct . The solution of such heat conduction problem can be obtained 
from solution of the problem for a hollow sphere. Putting 1 0   and 2 1   in (85) and 
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n  are roots of characteristic equation  

 2
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For example, let the heat conduction coefficient be a linear function of the temperature 
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can be obtained for the solid sphere, where 
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If the Kirchhoff’s variable is obtained, then the temperature in the sphere can be calculated 
by means of the formula (88). 
For the case when Sk 0  and the heat exchange coefficient is independent of the 
temperature ( ( ) 1)T  , then formula (91) yields 
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The unknown parameters of spline approximation ( 2, )iT i m  are determined from the set 

of equations (93) in the following manner. From the first equation of this set, 2T can be 
found as  
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where 2
01 Bi (1,0); 2p pL T kT     . Then the solutions of second, third, and all the 

following equations can be written as 
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To linearize the nonlinear boundary condition  
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the substitution of the nonlinear expression ( )T   by   (Nedoseka, 1988; Podstrihach & 
Kolyano, 1972) can be employed. Then the Kirchhoff’s variable can be given as  
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where n  are roots of the characteristic equation  

   1 Bi tg   . (99) 

Let us provide the numerical implementation of the proposed solution method to determine 
the time-variation of the temperature on the surface 1   of solid sphere exposed to the 
condition of convective heat exchange. We assume ct  = 300ºС (573 K) and this value is also 
chosen to be the reference temperature; the initial temperature is pt  20ºC (293 K); the Biot 

number is Bi 10 . In the expression ( ) (1 )t tot kT    we set to  50,2 W/(mºK) and 
0,018k  . The results of computation are shown in Figure 1.  

 

 
Fig. 1. Dependence of ( )T  on Fo           

 

 
Fig. 2. Dependence of ( )T  on   

In Figure 2, the dependence of the temperature on the radial coordinate at the moment  of 
time Fo 0,1  is shown for some values of the Biot number. The solid lines correspond to 
the solution of the heat conduction problem, obtained by using the step-by-step method, i.e., 
when the Kirchhoff’s variable is computed by the formula (94). The dash-dot line 
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corresponds to the solution of the problem when the boundary condition is linearized by 
changing ( )T   for  . In this case, the Kirchhoff’s variable is calculated by formula (98). The 
dashed line presents the solution of corresponding linear problem when thermal 
characteristics are constant. In the considered case, neglecting the temperature dependence 
in thermal properties leads to the increasing of the temperature values. In the same time, the 
unsubstantiated linearization of boundary condition increases the temperature and leads to 
physically improper results. As it follows from the figures, at some moments of time, the 
temperature on surface of sphere is greater than the temperature of heating environment. 
The authors (Nedoseka, 1988; Podstrihach & Kolyano, 1972) did not give much attention to 
this matter because mainly they considered the temperature fields in thermosensitive bodies 
due to the internal heat sources. In this case increasing of the temperature is unbounded.  

6. Conclusion  
In this chapter, the formulations of non-linear heat conduction problems for the bodies with 
temperature-dependent characteristics (thermosensitive bodies) are given. The efficient 
analytico-numerical methods for solution of the formulated problems are developed. 
Particularly, the step-by-step linearization method is proposed for solution of one-
dimensional transient problems of heat conduction, which describe the temperature fields in 
thermosensitive structure members of simple nonlinearity under complex (convective, 
radiation  or convective-radiation) heat exchange boundary conditions. The coefficient of 
heat exchange and emissivity of the surface, that is under heat exchange with environment, 
are also dependent on the temperature. The method provides: 
- reduction of the heat conduction problem to the corresponding dimensionless 

problem; 
- partial linearization of the obtained problem by means of the Kirchhoff’s transform; 
- complete linearization of the nonlinear condition on the  Kirchhoff’s variable  , that 

has been obtained from the condition of complex heat exchange due to approximation 
of the nonlinear term by specially constructed spline of zero or first order; 

- construction of the solution to the linearized boundary value problem for   by means 
of the appropriate analytical method; 

- determination of the temperature in question by means of the inverse Kirchhoff’s 
transform; 

- determination of the unknown parameters of spline-approximation, those remain in the 
expression for the temperature, by means of the collocation method. 

The method is verified by the solutions of transient heat conduction problems for 
thermosensitive solid and hollow spheres subjected to heating (cooling) due to the heat 
exchange over the limiting surface. This method can be efficiently used fro solution of two-
dimensional steady-state heat conduction problems. 
The efficient method of linearizing parameters is proposed for determination of the 
temperature fields in structure members with simple nonlinearity due to convective heat 
exchange through the limiting surfaces for an arbitrary dependence of the heat conduction 
coefficient on the temperature. The main feature of this method consists in the fact that the 
complete linearization of the nonlinear condition for the Kirchhoff’s variable   (obtained 
form the condition of convective heat exchange) is achieved by substitution of the nonlinear 
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term ( )T   by (1 ) pT    with unknown parameter  . This parameter can be found by 

satisfaction of the nonlinear condition for   with required accuracy. 
The method of linearizing parameters is adopted to solution of the nonlinear steady-state 
and transient heat conduction problems for contacting thermosensitive bodies of simple 
geometrical shape under conditions of the ideal thermal contact at the interfaces and 
complex heat exchange on the limiting surfaces. Its approbation is provided for the n-layer 
cylindrical pipe under given temperatures on its inner and outer surfaces. It these surfaces 
are subjected to the convective heat exchange, then the complete linearization of the 
obtained nonlinear conditions for the Kirchhoff’s variable   can be done by means of the 
method of linearizing parameters. 
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1. Introduction

In the new technologies the development towards the small scales initiates and encourages the
reformulation of those well-known transport equations, like heat and electric conduction, that
were applied for bulk materials. The reason of it is that there are several physical evidences
for the changes of the behavior of the signal propagation as the sample size is decreasing
(Anderson & Tamma, 2006; Cahill et al., 2003; Chen, 2001; Liu & Asheghi, 2004; Schwab et al.,
2000; Vázquez et al., 2009). The constructed different mathematical models clearly belong to
the phenomena of the considered systems. However, presently, there is no a well-trodden way
how to establish the required formulations in general. A great challenge is to establish and
exploit the Lagrangian and Lorentz invariant formulation of the thermal energy propagation,
since, on the one hand, the connection with other field theories including the interactions of
fields can be done on this level, on the other hand, these provide the finite physical action
and signal propagation. The results of the presented theory ensures a deeper insight into the
phenomena, thus hopefully it will contribute to the technical progress in the near future.
It is an old and toughish question how to introduce the finite speed propagation of action in
such physical processes like the thermal energy propagation (Eckart, 1940; Joseph & Preziosi,
1989; Jou et al., 2010; Márkus & Gambár, 2005; Sandoval-Villalbazo & García-Colín, 2000;
Sieniutycz, 1994; Sieniutycz & Berry, 2002). There is no doubt that the solution must exist
somehow and the suitable description should be Lorentz invariant. Moreover, this Lorentz
invariant formulation needs to involve anyway the Fourier heat conduction as the classical
limit. The elaborated theory ensures that in the case of Lorentz invariant formulation both
the speed of the signal and the action propagation is finite. Furthermore, for the Fourier heat
conduction the temperature propagation is finite, however, the speed of action is infinite.
This chapter treats the consequent mathematical formulation of a suitable relativistic invariant
description of the above problem and its consequences, connections with other topics are also
treated. As the author hopes it will be noticeable step-by-step that this synthesis theory may
have a prominent role in the phenomena of nature. The construction of the Lorentz invariant
thermal energy propagation, the Klein-Gordon equation with negative "mass term" providing
the expected propagation modes, the limit to the classical heat conduction and the related
dynamic phase transition between the dissipative – non-dissipative dynamic phase transitions
are discussed in a coherent frame within Sec. 2. Two mechanical analogies are shown in
Sec. 3 for the two kinds of Klein-Gordon type equations to see the distinct behavior due to
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the speed of the signal and the action propagation is finite. Furthermore, for the Fourier heat
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description of the above problem and its consequences, connections with other topics are also
treated. As the author hopes it will be noticeable step-by-step that this synthesis theory may
have a prominent role in the phenomena of nature. The construction of the Lorentz invariant
thermal energy propagation, the Klein-Gordon equation with negative "mass term" providing
the expected propagation modes, the limit to the classical heat conduction and the related
dynamic phase transition between the dissipative – non-dissipative dynamic phase transitions
are discussed in a coherent frame within Sec. 2. Two mechanical analogies are shown in
Sec. 3 for the two kinds of Klein-Gordon type equations to see the distinct behavior due to
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the opposite sign of the mass term. On the one hand, it will be convincing to see how the
negative "mass term" can govern the above mentioned change in the dynamics, and, on the
other hand, it clarifies the physical role of the similar term in the Lorentz invariant propagation
studied in Sec. 2. It is assumable that the efficiency of the relativistic invariant theory can be
demonstrated via other physical phenomena. The spectacular description of the inflationary
cosmology with the inflaton-thermal field coupling, the resulted time evolution of the inflaton
field and the dynamic temperature show this fact clearly in Sec. 4. Finally, to achieve a deeper
insight into the soul of this new theory and to be sure that the causality principle is completed,
for this reason the Wheeler propagator is calculated in Sec. 5 as well. The main ideas, results
of the chapter and some concluding remarks are summarized in Sec. 6. Finally, Sec. 7 is for
the acknowledgment.

2. Lorentz invariant thermal energy propagation

The mathematical description is based on the least action principle (Hamilton’s principle)

S =
∫

L d3xdt = extremum, (1)

i.e., there exists a Lagrange density function L by which the calculated action S is extremal
for the real physical processes. The Hamiltonian formulation can be also achieved for certain
differential equations involving non-selfadjoint operators like the first time derivative in the
classical Fourier heat conduction. Then such potential functions are required to introduce
by which the Lagrange functions can be expressed and the whole Hamiltionian theory can
be constructed (Gambár & Márkus, 1994; Gambár, 2005; Márkus, 2005). The long scientific
experience on this topic showed that the theories are comparable and connectable on this —
Lagrangian-Hamiltonian — level, thus in the further development of the theory it is useful
to apply this idea and scheme. In order to generate a dynamic temperature and the related
covariant Klein-Gordon type field equation, to describe the heat propagation with finite speed
— less than the speed of light — of action an abstract scalar potential field has been introduced
(Gambár & Márkus, 2007). In this case the thermal energy propagation has wave-like modes.
It is important to emphasize that, on the other hand, this scalar field can be connected to the
usual (local equilibrium) temperature and the Fourier’s heat conduction in the classical limit.
This treating is an attempt to point out that the dynamic phase transition (Ma, 1982) between
the two kinds of propagation, between a wave and a non-wave, or with another context it is
better to say — between a non-dissipative and a dissipative thermal process — has a more
general role and manifestation in the processes.
As a starting point the Lagrange functions are given for both the Lorentz invariant heat
propagation (Márkus & Gambár, 2005) and for the classical heat conduction (Fourier’s heat
conduction) (Gambár & Márkus, 1994). The first description is based on a Klein-Gordon
type equation formulated by a negative "mass term". It will be shown that this pertains
to a repulsive potential, which repulsive interaction produces a tachyon solution leading
to the so-called spinodal instability which effect is often applied in modern field theories
(Borsányi et al., 2000; 2002; 2003). Now, the Hamiltonian descriptions are written side by
side — to prepare the later comparison — showing how the Lorentz invariant solution
provides the classical solution in the limit of speed of light. The relevant Lagrangians, Lw
for the wave-like solution (Márkus & Gambár, 2005) and Lc for the classical heat conduction
(Gambár & Márkus, 1994) restricting our examination for the one dimensional case, are
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where ϕ is a four times differentiable and Lorentz invariant scalar field that generates the
measurable thermal field, and c denotes the speed of light, λ is the heat conductivity, cv is the
specific heat. Applying the calculus of variation the corresponding Euler-Lagrange equations
as equations of motion for the field ϕ can be obtained
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It is expected that the above scalar field is able to define the measurable physical quantities,
namely, in the present case, the temperature. Let the temperature T be a Lorentz invariant
temperature, which is defined from a dynamical point of view, thus it can be considered as
the dynamic temperature. Furthermore, temperature T denotes the usual local equilibrium
temperature
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Eliminating the potentials in Equations (3a) and (3b) by the help of the corresponding
Equations (4a) and (4b), for the relevant case, a differential equation for the time evolution
of the temperature can be obtained
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Here, Equation (5a) — the hyperbolic one — is a Klein-Gordon type equation with a negative
"mass term" −(c2c2

v/4λ2)T which means a kind of repulsive interaction. This term is
responsible for the tachyon solution leading to a spinodal instability as it will be also seen
in Sec. 3 in the case of classical Klein-Gordon equation of the mechanical analogy. On the
other hand, Equation (5b) — the parabolic one — pertains to the Fourier’s heat equation. The
signal propagation mechanism can be examined by the calculation of the dispersion relations
for both cases
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Here, the diffusivity parameter D = λ/cv is introduced to simplify the forms. The dispersion
relation in Equation (6a) pertains to the Klein-Gordon wave equation in Equation (5a) from
which we obtain the phase velocity w f

w f (k) =
ω

k
= c

√
1 − c2

4D2k2 . (7)

The dispersion relation in Equation (6b) belongs to the classical (non-wave) Fourier’s heat
conduction. The models can be compared by the calculation of the group velocities since these
pertain to the signal propagations. Thus, from Equation (6a) the group velocity vg = dω/dk
of the wave-like propagation can be directly calculated. Then, tending to the infinity with the
speed of light, the group velocity vT of the classical heat conduction can be obtained, as it is
expected

vg =
dω

dk
=

c√
1 − c2

4D2 k2

−→ dω

dk

∣∣∣∣
c→∞

= −i2Dk; vT = 2Dk � c. (8)

This limit shows clearly that the Lorentz invariant description covers both cases, and the
wave-like and the non-wave heat propagation can be discussed in the same frame.
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Fig. 1. Phase transition between the non-wave (dissipative) [left] and the wave
(non-dissipative) solution [right]. The critical transition point is at x0 = Dk0 = c/2. The
value of diffusity is taken D = 1. The phase velocity w f of the wave-like propagation is
always smaller than the speed of light.

It can be recognized that there is a value of the wave number k when the discriminant changes
its sign in Equation (7) at the value k0 = c/2D. Now, the solutions can be split into two
parts. On the one hand, we can consider the case k > k0, when the solution is real and
wave-like (non-dissipative), and on the other hand, we take the case k < k0, when the solution
is imaginary and non-wave (dissipative). The real and the imaginary part of the phase velocity
w f can be written for both cases

w f =
ω

k
= c

√
1 − c2

4D2k2 < c k > k0, (9a)
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4D2k2 − 1 k < k0. (9b)

The above physical discussion can be easily followed in Fig. 1.
In order to couple the thermal field given in Equation (2a) with other fields (like the inflaton
field in the cosmology shown in Sec. 4) it is worthy to reformulate it for this later use. It has
been shown in the literature (Márkus & Gambár, 2005) that the quantization of the thermal
field generates quasi particles and these particles may have a mass

M0 =
h̄

2D
, (10)

where h̄ is the Planck constant. Moreover, the Planck units are applied for the present case
(c = 1; h̄ = 1). Then the 3D Lagrangian given by Eq. (2a) should be rewritten
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M4
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where Δ is the Laplace operator.

3. Mechanical analogies for the two kinds of Klein-Gordon equations

It is instructive to study the set-up of the classical model of the Klein-Gordon equation
(Morse & Feshbach, 1953) to make comparisons and conclusions on the physical meaning
of the relevant terms that may appear similarly in a more general and abstract theory. The
mechanical model is a stretched string with little vertically oriented springs along the string
which pull back the spring to the equilibrium position as it is shown in Fig. 2(a). The equation
of motion of the string can be formulated applying the Lagrangian formalism. To achieve this,
the kinetic and potential energy terms are needed to calculate. The string has a kinetic energy
from its movement

T =
1
2

�A
� �

∂Ψ
∂t

�2
dx, (12)

where Ψ is the displacement from the equilibrium position, � is the density, A is the cross
section of the string. The mass element is dm = �Adx. The either of the potential energy
terms comes from the small deformation (elongation) of the stretching which is

V = F
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⎤
⎦ dx ∼ 1

2
F
� �

∂Ψ
∂x

�2
dx, (13)

F is the stretching force. The other attractive potential energy term pertains to the little springs
which is

Vs =
1
2

ka

�
Ψ2dx. (14)

Here, ka is the spring direction coefficient density along the string as is shown in Fig 2(a). The
Lagrangian of the system can be formulated with the usual construction L = T − V − Vs, by
which the Euler-Lagrange equation as equation of motion — a Klein-Gordon equation with
positive "mass term" —
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Fig. 1. Phase transition between the non-wave (dissipative) [left] and the wave
(non-dissipative) solution [right]. The critical transition point is at x0 = Dk0 = c/2. The
value of diffusity is taken D = 1. The phase velocity w f of the wave-like propagation is
always smaller than the speed of light.

It can be recognized that there is a value of the wave number k when the discriminant changes
its sign in Equation (7) at the value k0 = c/2D. Now, the solutions can be split into two
parts. On the one hand, we can consider the case k > k0, when the solution is real and
wave-like (non-dissipative), and on the other hand, we take the case k < k0, when the solution
is imaginary and non-wave (dissipative). The real and the imaginary part of the phase velocity
w f can be written for both cases

w f =
ω

k
= c

√
1 − c2

4D2k2 < c k > k0, (9a)
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Im w f =
ω

k
= c

�
c2

4D2k2 − 1 k < k0. (9b)

The above physical discussion can be easily followed in Fig. 1.
In order to couple the thermal field given in Equation (2a) with other fields (like the inflaton
field in the cosmology shown in Sec. 4) it is worthy to reformulate it for this later use. It has
been shown in the literature (Márkus & Gambár, 2005) that the quantization of the thermal
field generates quasi particles and these particles may have a mass

M0 =
h̄

2D
, (10)

where h̄ is the Planck constant. Moreover, the Planck units are applied for the present case
(c = 1; h̄ = 1). Then the 3D Lagrangian given by Eq. (2a) should be rewritten

Lw =
1
2
(Δϕ)2 +

1
2

�
∂2 ϕ

∂t2

�2

− ∂2 ϕ

∂t2 Δϕ − 1
2

M4
0 ϕ2, (11)

where Δ is the Laplace operator.

3. Mechanical analogies for the two kinds of Klein-Gordon equations

It is instructive to study the set-up of the classical model of the Klein-Gordon equation
(Morse & Feshbach, 1953) to make comparisons and conclusions on the physical meaning
of the relevant terms that may appear similarly in a more general and abstract theory. The
mechanical model is a stretched string with little vertically oriented springs along the string
which pull back the spring to the equilibrium position as it is shown in Fig. 2(a). The equation
of motion of the string can be formulated applying the Lagrangian formalism. To achieve this,
the kinetic and potential energy terms are needed to calculate. The string has a kinetic energy
from its movement

T =
1
2

�A
� �

∂Ψ
∂t

�2
dx, (12)

where Ψ is the displacement from the equilibrium position, � is the density, A is the cross
section of the string. The mass element is dm = �Adx. The either of the potential energy
terms comes from the small deformation (elongation) of the stretching which is

V = F
� ⎡

⎣
�

1 +
�

∂Ψ
∂x

�2
− 1

⎤
⎦ dx ∼ 1

2
F
� �

∂Ψ
∂x

�2
dx, (13)

F is the stretching force. The other attractive potential energy term pertains to the little springs
which is

Vs =
1
2

ka

�
Ψ2dx. (14)

Here, ka is the spring direction coefficient density along the string as is shown in Fig 2(a). The
Lagrangian of the system can be formulated with the usual construction L = T − V − Vs, by
which the Euler-Lagrange equation as equation of motion — a Klein-Gordon equation with
positive "mass term" —
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∂2Ψ
∂t2 − F

�A
∂2Ψ
∂x2 +

ka

�A
Ψ = 0. (15)

can be deduced. Now, if a "repulsive" potential is imagined at the places of the springs shown
in Fig. 2(b) then a Klein-Gordon type equation with negative "mass term" (Gambár & Márkus,
2008) is obtained

∂2Ψ
∂t2 − F

�A
∂2Ψ
∂x2 − ka

�A
Ψ = 0. (16)

(a) A stretched string (green line) with
an additional attractive interaction by
the springs ka

(b) A stretched string (green line) with
an additional "repulsive" interaction by
the springs ka

(c) A stretched string (green line) on a
rotating disc; ω0 is the angular velocity

Fig. 2. The three physical situations of the stretched string; the acting force is F for each cases.
The equations of motion due to the attractive or "repulsive" interactions pertain to the
different figures: Equation (15) for Fig. (a); Equation (16) for Fig. (b); Equation (18) for Fig.
(c).

The structure of this equation is exactly the same as in the case of Lorentz invariant thermal
energy propagation in Equation (5a). Since, it is clear from this mechanical example that the
negative sign of the third term in Equation (16) pertains to a repulsive interaction, thus, this is
the reson why the negative "mass term" may relate to a repulsive interaction in the relativistic
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case in Equation (5a), in general. Maybe, it is complicated to prepare a device to ensure the
repulsive interaction from little springs. However, if the stretched string is placed on the
diameter of a rotating disk — shown in Fig. 2(c) that moves with the angular velocity ω0, then
the centrifugal force can produce the similar repulsive interaction.
The centrifugal potential of a point-like mass m moving on a circle with a radius r

− 1
2

mr2ω2
0

can be generalized to the present case. This gives the potential Vrot pertaining to the rotational
motion of the string

Vrot = − 1
2

�Aω2
0

∫
Ψ2dx. (17)

The relevant Lagrangian is L = T − V − Vrot, by which the calculated equation of motion can
be obtained

∂2Ψ
∂t2 − F

�A
∂2Ψ
∂x2 − ω2

0Ψ = 0. (18)

The same mathematical structure can be immediately recognized comparing this equation
with the Equations (5a) and (16). This means that these three equations must involve the
similar physical behavior: the spinodal instability and the dynamic phase transition (Gambár,
2010). All together these examples clearly prove the physical reality of the Klein-Gordon
equation with negative "mass term" in nature.
Finally, for the completeness the dispersion relation for Equation (18) can be also calculated

Ω(k, ω0) =

√
F

�A
k2 − ω2

0. (19)

This formula shows again the same physical behavior clearly as it has been found in Equation
(6a). The phase velocity is

wph =
Ω
k

=

√
F

�A
−

(ω0

k

)2
. (20)

It is easy to recognize that for small angular velocity ω0 while
√

F
�A

>
ω0

k
(21)

is completed, then wave modes exist. The opposite case is when
√

F
�A

<
ω0

k
, (22)

there are no wave modes. The physical meaning is that, above a certain value of ω0, the
centrifugal force elongates the string to infinity, the string cannot have vibrating modes. The
change in the propagation modes is an angular velocity controlled dynamic phase transition
that divides the dissipative – non-dissipative transition like in Equations (7), (9a) and (9b) for
the thermal case.
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4. Inflationary cosmology with the dynamic temperature

It is a great challenge to experience and understand how the Lorentz invariant propagating
thermal energy field ϕ can interact with other physical fields. In this way new physical
relations, considerations and explanations may be expected for the relevant phenomena.
As an advanced example, to point out the strength of the formulation, the thermal and
cosmological inflaton fields are coupled within the Lagrangian framework (Márkus et al.,
2009).

4.1 Linde’s model of the inflaton field
In the present model the cosmological model is based on the Einstein’s equation in the
Friedman-Robertson-Walker metric. Now, the action S can be expressed as

S =
∫ √−g̃LFRW d4x, (23)

where the expression
√−g̃ = a3 is the Friedman-Robertson-Walker metric. Here, the a(t) =

R(t)/R0 is taken as the ’radius’ of the universe. The Lagrange density function LFRW of the
inflaton field φ

LFRW =

(
1
2

(
∂φ

∂t

)2
− 1

2a2 (∇φ)2 − V(φ)

)
(24)

is the starting point in the description; ∇ is the gradient operator. Then, the equation of motion
for the inflaton can be calculated

∂2φ

∂t2 − 1
a2 Δφ + 3H

∂φ

∂t
= − δV(φ)

δφ
, (25)

where δV(φ)/δφ means a functional derivative. The Hubble parameter H(t) is defined by

H =
ȧ
a

. (26)

The fate of the universe depends on the potential V(φ). The hybrid inflation model suggested
by Linde (Felder et al., 1999; 2001; Linde, 1982; 1994) introduces an additional scalar field σ (in
fact the Higgs field) into the effective potential

V(σ, φ) = − 1
2a2 (∇φ)2 +

1
2

m2φ2 +
1
2

g2φ2σ2 +
1

4λ
(M2 − λσ2)2. (27)

Here, the first term on the right hand side pertains to the second term — the space derivate
term — on the left hand side in Equation (25). The second term generates the inflation
process, the third one couples the inflaton field to the introduced additional field σ and the last
one produces mass generation through the spontaneous symmetry breaking. The canonical
momentum of the inflaton field can be calculated

Πφ =
∂LFRW

∂φ̇
= φ̇. (28)

Then the Hamiltonian H̃ of the field which is the energy density can be obtained
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H̃ = Πφφ̇ − LFRW =

(
1
2

(
∂φ

∂t

)2
+

1
2a2 (∇φ)2 + V(φ)

)
. (29)

It is often used different notations for H̃

H̃ = �φ = T00, (30)

where T00 is called as the time-time component of the energy-momentum tensor. Furthermore,
the Einstein’s equation can be expressed in the FRW metric as

(
ȧ
a

)2
=

8πG
3

�, (31)

where G is the gravitational constant and � is the mass density. Substituting the energy density
�φ and the Planck mass

Mpl =

√
h̄c

8πG
(32)

into Equation (31) and applying Planck units, the Friedman’s equation can be written in the
following form

H2 =
1

3M2
pl

�φ, (33)

which corresponds to a flat universe. If it is assumed that the universe is growing
homogeneously in the space we can neglect those terms where the spatial derivates (∇ and Δ)
appear in Equation (25), then an ordinary differential equation can be obtained

d2φ0

dt2 + 3H
dφ0

dt
= − δV(φ0)

δφ0
, (34)

the ’field variable’ φ0 depends on the time parameter only. In this case the energy density �φ

has a simplified form

�φ =

(
1
2

(
dφ0

dt

)2
+ V(φ)

)
, (35)

by which the equation H2 = (1/3M2
pl)�φ naturally also remains valid, i.e.,

H2 =
1

3M2
pl

(
1
2

(
dφ0

dt

)2
+ V(φ)

)
. (36)

Soon it will be seen that the above equations, (35) and (36), with the modifying effect of
the thermal field ϕ0 will become those equations which are going to be considered as the
time-evolution equations of the inflaton field.

4.2 The coupling of the fields
The introduction of the dynamic temperature and the laws of thermodynamics into the theory
of cosmology requires the same mathematical frame of the description. Now, the tool is ready
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to make this willing. The interaction of the thermal potential field ϕ [see Equation (11)] and
the inflaton field φ [see Equation (24)] can be constructed by adding the Lagrangians of the
different fields

Lint =

(
1

2a4 (Δϕ)2 +
1
2

(
∂2 ϕ

∂t2

)2

− 1
a2

∂2 ϕ

∂t2 Δϕ − 1
2

M4
0 ϕ2

)
+

(
1
2

(
∂φ

∂t

)2
− 1

2a2 (∇φ)2 − V(φ, ϕ)

)
. (37)

This Lagrangian Lint of the coupled inflaton-thermal field by the following interaction
potential can also realize the spontaneous symmetry breaking

V(φ, ϕ) =
1
2

m2φ2 +
1
2

g2
0φ2 ϕ2, (38)

where m denotes the mass of the inflaton, and g0 is the coupling constant, moreover, this
description can involve the temperature of the inflaton field (Márkus et al., 2009). This fact
is very interesting, since at this stage, there is no need for the Higgs field and the mass
generation.
After all, applying the calculus of variation, two Euler-Lagrange equations as equations of
motion are arisen from the variation with respect to the variables φ and ϕ

∂2φ

∂t2 − 1
a2 Δφ + 3

ȧ
a

∂φ

∂t
= − δV(φ, ϕ)

δφ
, (39)

and

1
a4 ΔΔϕ +

∂4 ϕ

∂t4 + 6
ȧ
a

∂3 ϕ

∂t3 +
1
a3

∂2(a3)

∂t2
∂2 ϕ

∂t2 − 2
a2 Δ

∂2 ϕ

∂t2 − ä
a3 Δϕ − 2

ȧ
a3 Δ

∂ϕ

∂t
− M4

0 ϕ

=
δV(φ, ϕ)

δϕ
. (40)

An important remark is needed here. Since, for the cases when the Lagrangian
contains second order time derivatives the Hamiltonian H̃ must be expressed as follows
(Gambár & Márkus, 1994; Márkus & Gambár, 1991),

H̃ =
∂ϕ

∂t
∂L
∂ϕ̇

− ∂ϕ

∂t
∂

∂t
∂L
∂ϕ̈

+
∂2 ϕ

∂t2
∂L
∂ϕ̈

− L. (41)

By substituting the Lagrangian Lint from Equation (37), the Hamiltonian — energy density
regarding the whole space with all interactions — can be calculated

�φ,ϕ = H̃ = − ∂ϕ

∂t
∂3 ϕ

∂t3 +
∂ϕ

∂t
∂

∂t

(
1
a2

)
Δϕ +

1
a2

∂ϕ

∂t
∂

∂t
Δϕ +

1
2

(
∂2 ϕ

∂t2

)2

− 1
2a4 (Δϕ)2 +

1
2

M4
0 ϕ2 +

1
2

(
∂φ

∂t

)2
+

1
2a2 (∇φ)2 + V(φ, ϕ). (42)

In the case of a rapidly growing universe in a homogeneous space, the terms containing the
operators ∇ and Δ can be omitted, thus the obtained field equations are simplified to the
following coupled nonlinear ordinary differential equations:
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d2φ0

dt2 + 3H
dφ0

dt
= −

(
m2 + g2

0 ϕ2
0

)
φ0, (43)

d4 ϕ0

dt4 + 6H
d3 ϕ0

dt3 = M4
0 ϕ0 + g2

0φ2
0 ϕ0 (44)

and

H2 =
1

3M2
pl

[
1
2

(
d2 ϕ0

dt2

)2

− dϕ0

dt
d3 ϕ0

dt3 +
1
2

(
dφ0

dt

)2
+

1
2

M4
0 ϕ2

0 +
1
2

m2φ2
0 +

1
2

g2
0φ2

0 ϕ2
0

]
. (45)

Here, the field φ0 and ϕ0 depend on time only. The three coupled nonlinear ordinary
differential equations, Equations (43), (44) and (45), can be considered as the equations of
motion of the inflationary model. It is easy to recognize that Equation (45) can be considered
as the modified version of Friedman’s equation given in Equation (33). The temperature
generated by the thermal field ϕ0 can then be expressed as [see Equation (4a) and taking
into account Equation (10) with Planck units]

T =
d2 ϕ0

dt2 + M2
0 ϕ0. (46)

4.3 On the time evolution of the fields
The mathematical and numerical examinations show that the solution of these coupled
differential equations describes fairly well the time evolution of the inflationary universe
including its thermodynamical behavior. Due to the complicated nonlinear Equations (43-45)
the solutions can be achieved by numerical calculations for the time-dependence of the scalar
fields and the dynamic temperature T. These equations are needed to solve simultaneously
for the scalar field φ0 and the thermal potential ϕ0 first. After then the time evolution equation
for the (thermo)dynamic temperature can be obtained.
In the present model there are two adjustable parameters, namely, the mass M0 of the thermal
field and the coupling constant g0. The time scales of the temperature and the scalar inflaton
field can be synchronized by the change of values for these two parameters. The mass of
the scalar field m is chosen in the same order of magnitude as it is proposed by Linde Linde
(1994), namely, m = 80GeV. The two fitted parameters are M0 = 52.2GeV and g0 = 0.12GeV.
It is important to set relevant initial conditions to find reasonable numerical solutions for
Equations (43) – (45). Thus, a big acceleration is assumed at the beginning of the expansion
and the thermal field has a given initial value. This results an initial value for the temperature
T0 ∼ 2.5 × 106GeV ∼ 1019K. (Presently, the exact magnitude of the temperature has not too
much importance, since another value can be obtained by rescaling, i.e., it does not touch the
shape of the temperature function. However, it is sure, that this value is rather far from the
theoretically possible ∼ 1.4 × 1032K value (Lima & Trodden, 1996; Márkus & Gambár, 2004).)
In order to ensure the thermal and the inflaton field decay the first time derivatives of them
are needed to be negative.
After finding a set of the numerical solutions, two main stages can be distinguished for the
time evolution of the inflaton field φ0. The first short period is when it decreases rapidly.
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to make this willing. The interaction of the thermal potential field ϕ [see Equation (11)] and
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different fields
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(
1

2a4 (Δϕ)2 +
1
2
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∂2 ϕ

∂t2

)2

− 1
a2

∂2 ϕ

∂t2 Δϕ − 1
2

M4
0 ϕ2

)
+

(
1
2

(
∂φ

∂t

)2
− 1

2a2 (∇φ)2 − V(φ, ϕ)

)
. (37)

This Lagrangian Lint of the coupled inflaton-thermal field by the following interaction
potential can also realize the spontaneous symmetry breaking

V(φ, ϕ) =
1
2

m2φ2 +
1
2

g2
0φ2 ϕ2, (38)

where m denotes the mass of the inflaton, and g0 is the coupling constant, moreover, this
description can involve the temperature of the inflaton field (Márkus et al., 2009). This fact
is very interesting, since at this stage, there is no need for the Higgs field and the mass
generation.
After all, applying the calculus of variation, two Euler-Lagrange equations as equations of
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ȧ
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∂φ

∂t
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ȧ
a
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=
δV(φ, ϕ)

δϕ
. (40)

An important remark is needed here. Since, for the cases when the Lagrangian
contains second order time derivatives the Hamiltonian H̃ must be expressed as follows
(Gambár & Márkus, 1994; Márkus & Gambár, 1991),

H̃ =
∂ϕ

∂t
∂L
∂ϕ̇

− ∂ϕ

∂t
∂

∂t
∂L
∂ϕ̈

+
∂2 ϕ

∂t2
∂L
∂ϕ̈

− L. (41)

By substituting the Lagrangian Lint from Equation (37), the Hamiltonian — energy density
regarding the whole space with all interactions — can be calculated

�φ,ϕ = H̃ = − ∂ϕ

∂t
∂3 ϕ

∂t3 +
∂ϕ

∂t
∂

∂t

(
1
a2

)
Δϕ +

1
a2

∂ϕ

∂t
∂

∂t
Δϕ +

1
2

(
∂2 ϕ

∂t2

)2
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2a4 (Δϕ)2 +

1
2

M4
0 ϕ2 +

1
2

(
∂φ

∂t

)2
+

1
2a2 (∇φ)2 + V(φ, ϕ). (42)

In the case of a rapidly growing universe in a homogeneous space, the terms containing the
operators ∇ and Δ can be omitted, thus the obtained field equations are simplified to the
following coupled nonlinear ordinary differential equations:
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2
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0φ2

0 ϕ2
0

]
. (45)

Here, the field φ0 and ϕ0 depend on time only. The three coupled nonlinear ordinary
differential equations, Equations (43), (44) and (45), can be considered as the equations of
motion of the inflationary model. It is easy to recognize that Equation (45) can be considered
as the modified version of Friedman’s equation given in Equation (33). The temperature
generated by the thermal field ϕ0 can then be expressed as [see Equation (4a) and taking
into account Equation (10) with Planck units]
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d2 ϕ0

dt2 + M2
0 ϕ0. (46)

4.3 On the time evolution of the fields
The mathematical and numerical examinations show that the solution of these coupled
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field can be synchronized by the change of values for these two parameters. The mass of
the scalar field m is chosen in the same order of magnitude as it is proposed by Linde Linde
(1994), namely, m = 80GeV. The two fitted parameters are M0 = 52.2GeV and g0 = 0.12GeV.
It is important to set relevant initial conditions to find reasonable numerical solutions for
Equations (43) – (45). Thus, a big acceleration is assumed at the beginning of the expansion
and the thermal field has a given initial value. This results an initial value for the temperature
T0 ∼ 2.5 × 106GeV ∼ 1019K. (Presently, the exact magnitude of the temperature has not too
much importance, since another value can be obtained by rescaling, i.e., it does not touch the
shape of the temperature function. However, it is sure, that this value is rather far from the
theoretically possible ∼ 1.4 × 1032K value (Lima & Trodden, 1996; Márkus & Gambár, 2004).)
In order to ensure the thermal and the inflaton field decay the first time derivatives of them
are needed to be negative.
After finding a set of the numerical solutions, two main stages can be distinguished for the
time evolution of the inflaton field φ0. The first short period is when it decreases rapidly.
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This follows the second rather long time interval in which the inflaton field oscillates with
decreasing amplitude. Both of these processes can be recognized well in Fig. 3.
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t

50

100

150
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Fig. 3. The time evolution of the inflaton field φ0(t) is shown. The short decreasing
(deacying) period is followed by a rather long damped oscillating process. Time is in
arbitrary units.
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Fig. 4. The time evolution of the thermal field ϕ0(t). The field decays in the first period and
reaches its minimal value. It begins to increase monotonically when the inflaton field φ0(t)
starts to oscillate. Time is in arbitrary units.

It is noticable that the above described behavior of the inflaton field is in line with Linde’s
cosmology model (Felder et al., 2002; Linde, 1982; 1990; 1994) based on a potential energy
expression given by V(φ0) = (m2/2)φ2

0 + V0 with V0 > 0 which is similar to Equation
(38), here. The physically coupled thermal field ϕ0 produces a completely different behavior.
During inflation era, the field ϕ0 decreases. Probably, the reason of this effect is strongly the
radius and the volume increase of the universe. Once it reaches a minimum which happens
about the same time when field φ0 starts to oscillate. After then, the thermal field increases
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monotonically since the decaying inflaton field φ0 with a time delay pumps up it as plotted in
Fig. 4.
The temperature field T is coupled to the thermal field ϕ0 by Equation (46), thus
mathematically this can be obtained directly. The time evolution of the temperature can be
followed in Fig. 5. In the first era of the inflation process the temperature decreases. After
reaching its minimal value, which is at the same instantaneous of the minimum of the thermal
field, it increases quite rapidly. This period of the cosmology is known as the reheating process
of the universe. The present elaboration of the model can describe and reproduce to this stage
of the life of the early universe.
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t
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T�t�

Fig. 5. The time evolution of the temperature field T(t). The temperature follows the change
of the thermal field ϕ0. It decreases in the first period of the expansion while its reaches a
minimal value. The, due to the pumping of the inflaton field φ0 into the thermal field ϕ0, the
temperature starts increasing. This growing temperature period can be identified as the
reheating process in Linde’s cosmology model. Time is in arbitrary units.
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Fig. 6. The time evolution of the energy density ρφ0 ϕ0(t). As it is expected the energy density
decreases monotonically during the expansion. Time is in arbitrary units.

Since the whole energy of the universe is conserved during the expansion, the energy density
is needed to decrease. This tendency can be seen in Fig. 6. Finally, the radius a(t) of the
universe is plotted in Fig. 7.
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Since the whole energy of the universe is conserved during the expansion, the energy density
is needed to decrease. This tendency can be seen in Fig. 6. Finally, the radius a(t) of the
universe is plotted in Fig. 7.
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Fig. 7. The time evolution of the radius a(t) of the universe. As it is expected the radius
increases monotonically during the expansion. Time is in arbitrary units.

The presented model of the inflationary period is not complete in that sense that e.g., the
Higgs mechanism is dropped by the elimination of the fourth term of the effective potential in
Equation (27) comparing with the applied potential in Equation (38). However, hopefully, the
strength of the theory can be read out from the most spectacular results: the thermal field can
generate not only the spontaneous symmetry breaking involving the correct time evolution
of the inflaton field, but it ensures a really dynamic Lorentz invariant thermodynamic
temperature. The further development of this cosmological model would be to add the
particle generator Higgs mechanism again.

5. Wheeler propagator of the Lorentz invariant thermal energy propagation

As it has been shown previously that the Lorentz invariant description involves different
physically realistic propagation modes. However, the development of the theory is needed
to learn more about propagation, the transition amplitude and the completeness of causality,
i.e., the field equation in Equation (5a) does not violate the causality principle.

5.1 The Green function
A common way to examine these questions is based on the Green function method.
Mathematically, the solution of the equation

1
c2

∂2G
∂t2 − ∂2G

∂x2 − c2c2
v

4λ2 G = −δn(x − x�) (47)

for the Green function G is needed to find. The n-dimensional source function is δn(x − x�) =
δn−1(r − r�)δ(t − t�) which can be expressed by the delta function

δn(x − x�) = 1
(2π)n

∫
dnkeik(x−x�). (48)

Here, the vector k = (k, ω0) is n-dimensional; the n − 1 dimensional k pertains to the space
and the 1-dimensional ω0 is to time. Moreover, the d’Alembert operator is
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� =
1
c2

∂2

∂t2 − Δ. (49)

To shorten the formulations the following abbreviation is also introduced

m2 =
c2c2

v
4λ2 . (50)

Now, Equation (47) has a simpler form

(�− m2)G = δn(x − x�). (51)

Since, the equality holds

(�− m2)−1eik(x−x�) = − eik(x−x�)

k2 − m2 , (52)

then we obtain

(�− m2)−1δn(x − x�) = − 1
(2π)n

∫
dnk

eik(x−x�)

k2 − m2 . (53)

After all, the Green function can be formally expressed as

G(x, x�) = 1
(2π)n

∫
dnk

eik(x−x�)

k2 − m2 . (54)

To calculate this integral the zerus points of the denominator k2 − m2 = p2 − p2
0 − m2 = 0 are

needed, from which

p0 = ±
√

p2 − m2. (55)

can be obtained. After then, the propagator should be expressed in proper way taking
Equation (54)

G(p) =
1

p2 − p2
0 − m2

. (56)

In the sense of the theory the retarded Gret(p) = 1/(p2 − p2
0 − m2)ret and the advanced

Gadv(p) = 1/(p2 − p2
0 − m2)adv propagators are needed to be expressed for the tachyons due

to the presence of the imaginary poles. Now, the construction of the Wheeler propagator
(Wheeler, 1945; 1949) can be expounded as a half sum of the above propagators

G(p) =
1
2

Gadv(p) +
1
2

Gret(p). (57)

5.2 The Bochner’s theorem
The calculation of propagators is based on the Bochner’s theorem (Bochner, 1959;
Bollini & Giambiagi, 1996; Bollini & Rocca, 1998; 2004; Jerri, 1998). It states that if the function
f (x1, x2, ..., xn) depends on the variable set (x1, x2, ..., xn) then its Fourier transformed is —
without the factor 1/(2π)n/2 —
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2
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The calculation of propagators is based on the Bochner’s theorem (Bochner, 1959;
Bollini & Giambiagi, 1996; Bollini & Rocca, 1998; 2004; Jerri, 1998). It states that if the function
f (x1, x2, ..., xn) depends on the variable set (x1, x2, ..., xn) then its Fourier transformed is —
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g(y1, y2, ..., yn) =
∫

dnx f (x1, x2, ..., xn)eixiyi (i = 1, ..., n). (58)

However, it is useful to introduce the variables x = (x2
1 + x2

2 + ... + x2
n)

1/2 and y = (y2
1 +

y2
2 + ... + y2

n)
1/2 instead of the original sets. Now, the examinations are restricted to the

spherically symmetric functions f (x) and g(y). In these cases the above Fourier transform
given by Equation (58) can be calculated by applying the Hankel (Bessel) transformation by
which we obtain

g(y, n) =
(2π)n/2

yn/2−1

∫ ∞

0
f (x)xn/2 Jn/2−1(xy)dx. (59)

Here, Jα is a first kind α order Bessel function. Later it will be very useful to calculate the
function f with causal functions depending on the momentum space p thus we write

f (x, n) =
(2π)n/2

xn/2−1

∫ ∞

0
g(p)pn/2 Jn/2−1(xp)dp. (60)

It can be seen that the singularity at the origin depends on n analytically.

5.3 Calculation of the Wheeler propagator
To obtain the Wheeler propagator, first, e.g., the integral in Equation (54) for the advanced
propagator can be calculated

Gadv(x) =
1

(2π)n

∫
dn−1 peipr

∫

adv
dp0

e−ip0x0

p2 − p2
0 − m2

. (61)

The path of integration runs parallel to the real axis and below both the poles for the advanced
propagator. (For the retarded propagator the path runs above the poles.) Thus, considering
the propagator Gadv(p) for x0 > 0 the path is closed on the lower half plane giving null result.
In the opposite case, when x0 < 0, there is a non-zero finite contribution of the residues at the
poles

p0 = ±ω =
√

p2 − m2 i f p2 ≥ m2 (62)

and

p0 = ±iω� =
√

p2 − m2 i f p2 ≤ m2. (63)

After applying the Cauchy’s residue theorem for the integration with respect to p0 we obtain
an n − 1 order integral

Gadv(x) = − H(−x0)

(2π)n−1

∫
dn−1 peipr sin[(p2 − m2 + i0)

1
2 x0]

(p2 − m2 + i0)
1
2

, (64)

where H is the Heaviside’s function. The retarded propagator can be similarly obtained

Gret(x) =
H(x0)

(2π)n−1

∫
dn−1peipr sin[(p2 − m2 + i0)

1
2 x0]

(p2 − m2 + i0)
1
2

. (65)
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Considering the form of the propagator in Equation (57) and taking the propagators in
Equations (64) and (65) we obtain the Wheeler-propagator

G(x) =
Sgn(x0)

2(2π)n−1

∫
dn−1peipr sin[(p2 − m2 + i0)

1
2 x0]

(p2 − m2 + i0)
1
2

. (66)

To evaluate the above propagators the integrals can be rewritten by the Hankel transformation
based on Bochner’s theorem [Equation (59)]

1
(2π)n−1

∫
dn−1 peipr sin[(p2 − m2 + i0)

1
2 x0]

(p2 − m2 + i0)
1
2

=

1

(2π)
n−1

2

1

x
n−1

2 −1

∫ ∞

0
p

n−1
2

sin(p2 − m2)
1
2 x0

(p2 − m2)
1
2

J n−1
2 −1(xp) dp, (67)

where p =
√

p2
1 + p2

2 + ... + p2
n−1 and r =

√
x2

1 + x2
2 + ...+ x2

n−1. The following integrals
(Gradshteyn & Ryzhik, 1994) are applied for the above calculations such as

∫ ∞

0
dy yγ+1

sin
(

a
√

b2 + y2
)

√
b2 + y2

Jγ(cy) =

√
π

2
b

1
2 +γcγ(a2 − c2)−

1
4 − 1

2 γ J−γ− 1
2
(b
√

a2 − c2), (68)

if 0 < c < a, Re b > 0, −1 < Re γ < 1/2, and

∫ ∞

0
dy yγ+1

sin
(

a
√

b2 + y2
)

√
b2 + y2

Jγ(cy) = 0, (69)

if 0 < a < c, Re b > 0, −1 < Re γ < 1
2 . The parameters of the model can be fitted by

a = x0, b = im = i
ccv

2λ
, c = r, γ =

n
2
− 3

2
. (70)

and we consider the relation between the Bessel functions

Jα(ix) = iα Iα(x), (71)

where Iα(x) is the modified Bessel function. Now, we can express the advanced Wheeler
propagator Equation (64) of the tachyonic thermal energy propagation

Wadv(x) = H(−x0)
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)
. (72)

The calculation for the retarded propagator can be similarly elaborated by Equations (65) and
(67)

Wret(x) = H(x0)
π
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)
. (73)

Comparing the results of Equations (72) and (73) it can be seen that we can write one common
formula easily to express the complete propagator. Thus the Wheeler-propagator in the n
dimensional space-time — remembering the construction in Equation (57) — is
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g(y1, y2, ..., yn) =
∫

dnx f (x1, x2, ..., xn)eixiyi (i = 1, ..., n). (58)

However, it is useful to introduce the variables x = (x2
1 + x2

2 + ... + x2
n)

1/2 and y = (y2
1 +

y2
2 + ... + y2

n)
1/2 instead of the original sets. Now, the examinations are restricted to the

spherically symmetric functions f (x) and g(y). In these cases the above Fourier transform
given by Equation (58) can be calculated by applying the Hankel (Bessel) transformation by
which we obtain

g(y, n) =
(2π)n/2

yn/2−1

∫ ∞

0
f (x)xn/2 Jn/2−1(xy)dx. (59)

Here, Jα is a first kind α order Bessel function. Later it will be very useful to calculate the
function f with causal functions depending on the momentum space p thus we write

f (x, n) =
(2π)n/2
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0
g(p)pn/2 Jn/2−1(xp)dp. (60)

It can be seen that the singularity at the origin depends on n analytically.

5.3 Calculation of the Wheeler propagator
To obtain the Wheeler propagator, first, e.g., the integral in Equation (54) for the advanced
propagator can be calculated
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The path of integration runs parallel to the real axis and below both the poles for the advanced
propagator. (For the retarded propagator the path runs above the poles.) Thus, considering
the propagator Gadv(p) for x0 > 0 the path is closed on the lower half plane giving null result.
In the opposite case, when x0 < 0, there is a non-zero finite contribution of the residues at the
poles

p0 = ±ω =
√

p2 − m2 i f p2 ≥ m2 (62)

and

p0 = ±iω� =
√
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After applying the Cauchy’s residue theorem for the integration with respect to p0 we obtain
an n − 1 order integral
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where H is the Heaviside’s function. The retarded propagator can be similarly obtained
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. (65)
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Considering the form of the propagator in Equation (57) and taking the propagators in
Equations (64) and (65) we obtain the Wheeler-propagator
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To evaluate the above propagators the integrals can be rewritten by the Hankel transformation
based on Bochner’s theorem [Equation (59)]
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√
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(Gradshteyn & Ryzhik, 1994) are applied for the above calculations such as
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if 0 < c < a, Re b > 0, −1 < Re γ < 1/2, and
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if 0 < a < c, Re b > 0, −1 < Re γ < 1
2 . The parameters of the model can be fitted by
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and we consider the relation between the Bessel functions

Jα(ix) = iα Iα(x), (71)

where Iα(x) is the modified Bessel function. Now, we can express the advanced Wheeler
propagator Equation (64) of the tachyonic thermal energy propagation
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The calculation for the retarded propagator can be similarly elaborated by Equations (65) and
(67)

Wret(x) = H(x0)
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Comparing the results of Equations (72) and (73) it can be seen that we can write one common
formula easily to express the complete propagator. Thus the Wheeler-propagator in the n
dimensional space-time — remembering the construction in Equation (57) — is
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The calculated Wheeler propagator in the 3 + 1 dimensional space-time can be expressed for
the thermal energy propagation

W(4)(r, x0) =
1

8π

( ccv
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)
(x2

0 − r2)−
1
2 I−1

( ccv
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(x2
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1
2

)
. (75)

The expected causality can be immediately recognized from the plot of the propagator in Fig.
8, since it differs to zero just within the light cone.
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Fig. 8. The causal Wheeler propagator in the space-time — in arbitrary units — which is zero
out of the light cone.

Finally, it is important to mention and emphasize that the participating particles of the above
treated thermal energy propagation cannot be observable directly as Bollini’s and Rocca’s
detailed studies (Bollini & Rocca, 1997a;b; Bollini et al., 1999) show. This is a consequence
of the fact that the tachyons do not move as free particles, thus they can be considered as
the mediators of the dynamic phase transition (Gambár & Márkus, 2007; Márkus & Gambár,
2010).

6. Summary and concluding remarks

This chapter of the book is dealing with the hundred years old open question of how it
could be formulated and exploited the Lorentz invariant description of the thermal energy
propagation. The relevant field equation as the leading equation of the theory providing the
finite speed of action is a Klein-Gordon type equation with negative "mass term". It has been
shown via the dispersion relations that the classical Fourier heat conduction equation is also
involved, naturally. The tachyon solution of this kind of Klein-Gordon equation ensures that
both wave-like (non-dissipative, oscillating) and the non-wave-like (dissipative, diffusive)
signal propagations are present. The two propagation modes are divided by a spinodal
instability pertaining to a dynamic phase transition. It is important to emphasize that in this
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way, finally, the concept of the dynamic temperature has been introduced.
Then, a mechanical system is discussed to point out clearly that Klein-Gordon equations with
the same mathematical structure and similar physical meaning can be found in the other
disciplines of physics, too. The model involves a stretched string put on the diameter of a
rotating disc. Collecting the kinetic and potential energy terms and formulating the Lagrange
function of the problem, it has been shown that the equation of motion as Euler-Lagrange
equation is exactly the above mentioned Klein-Gordon equation. The calculated dispersion
relation points out unambiguously that the dynamics is similar to the case of Lorentz invariant
heat conduction. The motion is vibrating (oscillating) below a system parameter dependent
angular velocity, or diffusive (decaying) above this value.
The great challenge is to embed the concept of dynamic temperature into the general
framework of physics. One of the aims via this step is to introduce the second law of
thermodynamics by which the most basic law of nature may appear in the physical theories.
Thus, such categories like dissipation, irreversibility, direction of processes can be handled
directly within a description. This was the motivation to elaborate the coupling of the inflaton
and the thermal field. As it can be concluded from the results, the introduced thermal field can
generate the spontaneous symmetry breaking in the theory — without the Higgs mechanism
— due to its property including the spinodal instability and the dynamic phase transition.
The inflation decays into the thermal field by which the reheating process can start during
the expansion of the universe. The time evolution of the inflation field is reproduced so well
as it is known from the relevant cosmological models. It is important to emphasize that the
thermal field generates a really dynamic temperature. A further progress could be achieved
by the adding again the Higgs mechanism to generate massive particles in the space. This
elaboration of the model remains for a future work.
Finally, it is an important step to justify that the above theory of thermal propagation
completes the requirement of the causality. This question comes up due to the tachyon
solutions. The arisen doubts can be eliminated in the knowledge of the propagator of the
process. The relevant causal Wheeler propagator can be deduced by a longer, direct, analytic
mathematical calculation applying the Bochner’s theorem. The results clearly shows that
the causality is completed since the propagator is within the light cone, i.e., the theory is
consistent.
The presented theory of this chapter is put into the general framework of the physics
coherently. These results mean a good base how to couple the thermodynamic field with the
other fields of physics. Hopefully, it opens new perspectives towards in the understanding of
irreversibility and dissipation in the field theoretical processes.
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1. Introduction  
People experiences heat propagation since ancient times. The mathematical foundations of 
this phenomenon were established nearly two centuries ago with the early works of Fourier 
[Fourier, 1952]. During this time the equations describing the conduction of heat in solids 
have proved to be powerful tools for analyzing not only the transfer of heat, but also an 
enormous array of diffusion-like problems appearing in physical, chemical, biological, earth 
and even economic and social sciences [Ahmed & Hassan, 2000]. This is because the 
conceptual mathematical structure of the non-stationary heat conduction equation, also 
known as the heat diffusion equation, has inspired the mathematical formulation of several 
other physical processes in terms of diffusion, such as electricity flow, mass diffusion, fluid 
flow, photons diffusion, etc [Mandelis, 2000; Marín, 2009a]. A review on the history of the 
Fourier´s heat conduction equations and how Fourier´s work influenced and inspired others 
can be found elsewhere [Narasimhan, 1999].  
But although Fourier´s heat conduction equations have served people well over the last two 
centuries there are still several phenomena appearing often in daily life and scientific 
research that require special attention and carefully interpretation. For example, when very 
fast phenomena and small structure dimensions are involved, the classical law of Fourier 
becomes inaccurate and more sophisticated models are then needed to describe the thermal 
conduction mechanism in a physically acceptable way [Joseph & Preziosi, 1989, 1990]. 
Moreover, the temperature, the basic parameter of Thermodynamics, may not be defined at 
very short length scales but only over a length larger than the phonons mean free paths, 
since its concept is related to the average energy of a system of particles [Cahill, et al., 2003; 
Wautelet & Duvivier, 2007]. Thus, as the mean free path is in the nanometer range for many 
materials at room temperature, systems with characteristic dimensions below about 10 nm 
are in a nonthermodynamical regime, although the concepts of thermodynamics are often 
used for the description of heat transport in them. To the author´s knowledge there is no yet 
a comprehensible and well established way to solve this very important problem about the 
definition of temperature in such systems and the measurement of their thermal properties 
remains a challenging task. On the other hand there are some aspects of the heat conduction 
through solids heated by time varying sources that contradict common intuition of many 
people, being the subject of possible misinterpretations. The same occurs with the 
understanding of the role of thermal parameters governing these phenomena.  
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understanding of the role of thermal parameters governing these phenomena.  
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Thus, this chapter will be devoted to discuss some questions related to the above mentioned 
problems starting with the presentation of the equations governing heat transfer for 
different cases of interest and discussing their solutions, with emphasis in the role of the 
thermal parameters involved and in applications in the field of materials thermal 
characterization.  
The chapter will be distributed as follows. In the next section a brief discussion of the 
principal mechanisms of heat transfer will be given, namely those of convection, radiation 
and conduction. Emphasis will be made in the definition of the heat transfer coefficients for 
each mechanism and in the concept of the overall heat transfer coefficient that will be used 
in later sections. Section 2 will be devoted to present the general equation governing non-
stationary heat propagation, namely the well known (parabolic) Fourier’s heat diffusion 
equation, in which further discussions will be mainly based. The conditions will be 
discussed under which this equation can be applied. The modified Fourier’s law, also 
known as Cattaneo’s Equation [Cattaneo, 1948], will be presented as a useful alternative 
when the experimental conditions are such that it becomes necessary to consider a 
relaxation time or build-up time for the onset of the thermal flux after a temperature 
gradient is suddenly imposed on the sample. Cattaneo’s equation leads them to the 
hyperbolic heat diffusion equation. Due to its intrinsic importance it will be discussed with 
some detail. In Section 3 three important situations involving time varying heat sources will 
be analyzed, namely: (i) a sample periodically and uniformly heated at one of its surfaces, 
(ii) a finite sample exposed to a finite duration heat pulse, and (iii) a finite slab with 
superficial continuous uniform thermal excitation. In each case characteristic time and 
length scales will be defined and discussed. Some apparently paradoxical behaviors of the 
thermal signals and the role playing by the characteristic thermal properties will be 
explained and physical implications in practical fields of applications will be presented too. 
In Section 4 our conclusions will be drawn.  

2. Heat transfer mechanisms 
Any temperature difference within a physical system causes a transfer of heat from the 
region of higher temperature to the one of lower. This transport process takes place until the 
system has become uniform temperature throughout. Thus, the flux of heat,  (units of W), 
should be some function of the temperatures, Tl and T2, of both the regions involved (we 
will suppose that T2 > T1). The mathematical form of the heat flux depends on the nature of 
the transport mechanism, which can be convection, conduction or radiation, or a coupling of 
them. The dependence of the heat flux on the temperature is in general non linear, a fact that 
makes some calculations quite difficult. But when small temperature variations are 
involved, things become much simpler. Fortunately, this is the case in several practical 
situations, for example when the sun rays heat our bodies, in optical experiments with low 
intensity laser beams and in the experiments that we will describe here later. 
Heat convection takes place by means of macroscopic fluid motion. It can be caused by an 
external source (forced convection) or by temperature dependent density variations in the 
fluid (free or natural convection). In general, the mathematical analysis of convective heat 
transfer can be difficult so that often the problems can be solved only numerically or 
graphically [Marín, et al., 2009]. But convective heat flow, in its most simple form, i.e. heat 
transfer from surface of wetted area A and temperature T2, to a fluid with a temperature T1 , 
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for small temperature differences, T=T2-T1, is given by the (linear with temperature) 
Newton’s law of cooling, 

 conv=hconvT (1)  

The convective heat transfer coefficient, hconv, is a variable function of several parameters of 
different kinds but independent on T.  
On the other hand heat radiation is the continuous energy interchange by means of 
electromagnetic waves. For this mechanism the net rate of heat flow, rad, radiated by a 
body surrounded by a medium at a temperature T1, is given by the Stefan-Boltzmann Law.  

 rad= e A(T24- T14) (2) 

where  is the Stefan-Boltzmann constant, A is the surface area of the radiating object and e 
is the total emissivity of its surface having absolute temperature T2.  
A glance at Eq. (2) shows that if the temperature difference is small, then one should expand 
it as Taylor series around T1 obtaining a linear relationship: 

 rad=4 e A T13 (T2-T1)=hradT (3) 

If we compare this equation with Eq. (1) we can conclude that in this case hrad=4 e A T13 can 
be defined as a radiation heat transfer coefficient. 
On the other hand, heat can be transmitted through solids mainly by electrical carriers 
(electrons and holes) and elementary excitations such as spin waves and phonons (lattice 
waves). The stationary heat conduction through the opposite surfaces of a sample is 
governed by Fourier’s Law 

 cond=-kAT  (4) 

The thermal conductivity, k (W/mK), is expressed as the quantity of heat transmitted per 
unit time, t, per unit area, A, and per unit temperature gradient. For one-dimensional steady 
state conduction in extended samples of homogeneous and isotropic materials and for small 
temperature gradients, Fourier’s law can be integrated in each direction to its potential form. 
In rectangular coordinates it reads: 

  Φ���� = �� �����
����� =

����
� = ��

����� = ℎ������  (5) 

Here Tl and T2 represent two planar isotherms at positions x1 and x2, respectively, L=x2-x1, 
and 

  ����� = �
�� =

�
�����  (6) 

is the thermal resistance against heat conduction (thermal resistance for short) of the sample. 
The Eq. (5) is often denoted as Ohm’s law for thermal conduction following analogies 
existing between thermal and electrical phenomena. Comparing with Eq. (1) we see that the 
parameter hcond has been incorporated in Eq. (6) as the conduction heat transfer coefficient. 
Using 

 H=hconv+hrad=1/R  (7) 
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heat transfer scientists define the dimensionless Biot number as: 

 �� = �
����� =

�����
�    (8) 

as the fraction of material thermal resistance that opposes to convection and radiation heat 
looses. 

3. The heat diffusion equation 
Eq. 4 represents a very simple empirical law that has been widely used to explain heat 
transport phenomena appearing often in daily life, engineering applications and scientific 
research. In terms of the heat flux density (q=/A) it lauds: 

   �� = −�∇����  (9) 

When combined with the law of energy conservation for the heat flux  

   ���� = −div(��) � �      (10) 

where Q represents the internal heat source and  

  ∂E/∂t = ρc∂T/∂t  (11) 

is the temporal change in internal energy, E, for a material with density ρ and specific heat c, 
and assuming constant thermal conductivity, Fourier’s law leads to another important 
relationship, namely the non-stationary heat diffusion equation also called second Fourier’s 
law of conduction. It can be written as: 

 ∇�� − �
�
��
�� = −�

�  (12) 

with 

   α = k/ρc (13) 

as the thermal diffusivity. 
Fourier’s law of heat conduction predicts an infinite speed of propagation for thermal 
signals, i.e. a behavior that contradicts the main results of Einstein´s theory of relativity, 
namely that the greatest known speed is that of the electromagnetic waves propagation in 
vacuum. Consider for example a flat slab and apply at a given instant a supply of heat to 
one of its faces. Then according to Eq. (9) there is an instantaneous effect at the rear face. 
Loosely speaking, according to Eq. (9), and also due to the intrinsic parabolic nature of the 
partial differential Eq. (12), the diffusion of heat gives rise to infinite speeds of heat 
propagation. This conclusion, named by some authors the paradox of instantaneous heat 
propagation, is not physically reasonable.  
This contradiction can be overcome using several models, the most of them inspired in the 
so-called CV model. 
This model takes its name from the authors of two pioneering works on this subject, namely 
that due to Cattaneo [Cattaneo, 1948] and that developed later and (apparently) 
independently by Vernotte [Vernotte, 1958]. The CV model introduces the concept of the 
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relaxation time, , as the build-up time for the onset of the thermal flux after a temperature 
gradient is suddenly imposed on the sample.  
Suppose that as a consequence of the temperature existing at each time instant, t, the heat 
flux appears only in a posterior instant, t +. Under these conditions Fourier’s Law adopts 
the form: 

  ��(�� � � �) = −�∇����(�� �) (14) 

For small  (as it should be, because otherwise the first Fourier´s law would fail when 
explaining every day phenomena) one can expand the heat flux in a Taylor Serie around  = 
0 obtaining, after neglecting higher order terms: 

 ��(�� � � �) = ��(�� �) � � ����(���)��    (15) 

Substituting Eq. (15) in Eq. (14) leads to the modified Fourier´s law of heat conduction or CV 
equation that states: 

  � ������ � �� = −�∇���T.  (16) 

Here the time derivative term makes the heat propagation speed finite. Eq. (16) tells us that 
the heat flux does not appear instantaneously but it grows gradually with a build-up time, τ. 
For macroscopic solids at ambient temperature this time is of the order of 10−11s so that for 
practical purposes the use of Eq. (1) is adequate, as daily experience shows. 
Substituting Eq. (17) into the energy conservation law (Eq. (10)) one obtains: 

 ∇�� − �
�
��
�� −

�
��

���
��� = − �

� �� � � �����.   (17) 

Here u = (α/)1/2 represents a (finite) speed of propagation of the thermal signal, which 
diverges only for the unphysical assumption of τ = 0. 
Eq. (16) is a hyperbolic instead of a parabolic (diffusion) equation (Eq. (12)) so that the wave 
nature of heat propagation is implied and new (non-diffusive) phenomena can be advised. 
Some of them will be discussed in section (3.1).  
The CV model, although necessary, has some disadvantages, among them: i). The 
hyperbolic differential Eq. (7) is not easy to be solved from the mathematical point of view 
and in the majority of the physical situations has non analytical solutions. ii) The relaxation 
time of a given system is in general an unknown variable. Therefore care must be taken in 
the interpretation of its results. Nevertheless, several examples can be found in the 
literature.  
As described with more detail elsewhere [Joseph & Preziosi, 1989, 1990] other authors [Band 
& Meyer, 1948], proposed exactly the same Eq. (7) to account for dissipative effects in liquid 
He II, where temperature waves propagating at velocity u were predicted [Tisza, 1938; 
Landau, 1941; Peshkov, 1944)] and verified. Due to these early works the speed u is often 
called the second sound velocity. More recently Tzou reported on phenomena such as 
thermal wave resonance [Tzou, 1991] and thermal shock waves generated by a moving heat 
source [Tzou, 1989]. Very rapid heating processes must be explained using the CV model 
too, such as those taking place, for example, during the absorption of energy coming from 
ultra short laser pulses [Marín, et al., 2005] and during the gravitational collapse of some 
stars [Govender, et al., 2001]. In the field of nanoscience and nanotechnology thermal time 
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heat transfer scientists define the dimensionless Biot number as: 

 �� = �
����� =

�����
�    (8) 

as the fraction of material thermal resistance that opposes to convection and radiation heat 
looses. 

3. The heat diffusion equation 
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When combined with the law of energy conservation for the heat flux  

   ���� = −div(��) � �      (10) 

where Q represents the internal heat source and  

  ∂E/∂t = ρc∂T/∂t  (11) 

is the temporal change in internal energy, E, for a material with density ρ and specific heat c, 
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with 

   α = k/ρc (13) 

as the thermal diffusivity. 
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relaxation time, , as the build-up time for the onset of the thermal flux after a temperature 
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For macroscopic solids at ambient temperature this time is of the order of 10−11s so that for 
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diverges only for the unphysical assumption of τ = 0. 
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nature of heat propagation is implied and new (non-diffusive) phenomena can be advised. 
Some of them will be discussed in section (3.1).  
The CV model, although necessary, has some disadvantages, among them: i). The 
hyperbolic differential Eq. (7) is not easy to be solved from the mathematical point of view 
and in the majority of the physical situations has non analytical solutions. ii) The relaxation 
time of a given system is in general an unknown variable. Therefore care must be taken in 
the interpretation of its results. Nevertheless, several examples can be found in the 
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called the second sound velocity. More recently Tzou reported on phenomena such as 
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ultra short laser pulses [Marín, et al., 2005] and during the gravitational collapse of some 
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constants, c, characterizing heat transfer rates depend strongly on particle size and on its 
thermal diffusivity. One can assume that for spherical particles of radius R, these times scale 
proportional to R2/α [Greffet, 2004; Marín, 2010; Wolf, 2004]. As for condensed matter the 
order of magnitude of α is 10-6m2/s, for spherical particles having nanometric diameters, for 
example between 100 and 1 nm, we obtain for these times values ranging from about 10 ns 
to 1ps, which are very close to the above mentioned relaxation times. At these short time 
scales Fourier’s laws do not work in their initial forms.  
In the next sections some interesting problems involving time varying heat sources will be 
discussed assuming that the conditions for the parabolic approach are well fulfilled, and, 
when required, these conditions will be deduced.  

4. Some non-stationary problems on heat conduction 
While the parabolic Fourier´s law of heat conduction (4) describes stationary problems, with 
the thermal conductivity as the relevant thermophysical parameter, time varying heat 
conduction phenomena, which appear often in praxis, are described by the heat diffusion 
equation (12), being the thermal diffusivity the important parameter in such cases. Thermal 
conductivity can be measured using stationary methods based in Eq. (4), whose principal 
limitation is that precise knowledge of the amount of heat flowing through the sample and 
of the temperature gradient in the normal direction to this flow is necessary, a difficult task 
when small specimens are investigated. Therefore the use of non-stationary or dynamic 
methods becomes many times advantageous that allow, in general, determination of the 
thermal diffusivity. Thus knowledge of the specific heat capacity (per unit volume) is 
necessary if the thermal conductivity is to be obtained as well, as predicted by Eq. (13). 
Although this can be a disadvantage, often available specific heat data are used, so that it is 
not always necessary to determine experimentally it in order to account for the thermal 
conductivity. This is because specific heat capacity is less sensitive to impurities and 
structure of materials and comparatively independent of temperature above the Debye 
temperature than thermal conductivity and diffusivity. More precise, C is nearly a constant 
parameter for solids. In a plot of thermal conductivity versus thermal diffusivity we can see 
that solid materials typically fall along the line C3106 J/m3K at room temperature. This 
experimentally proved fact is a consequence of the well known Dulongs and Petit’s classical 
law for the molar specific heat of solids and of the consideration that the volume occupied 
per atom is about 1.410-29 m3 for almost all solids. In other words, the almost constant value 
of C can be explained by taking into account its definition as the product of the density (ρ) 
and the specific heat (c). The specific heat is defined as the change in the internal energy per 
unit of temperature change; thus, if the density of a solid increases (or decreases) the solid 
can store less (or more) energy. Therefore, as the density increases, the specific heat must 
decrease and then the product C=ρc stays constant and, according to Eq. 13, the behavior of 
the thermal conductivity is similar to that of the diffusivity. In accurate work, however, 
particularly on porous materials and composites, it is highly recommendable to measure 
also C. This is because some materials have lower-than-average volumetric specific heat 
capacity. Sometimes this happens because the Debye temperature lies well above room 
temperature and heat absorption is not classical. Deviations are observed in porous 
materials too, whose conductivity is limited partially by the gas entrapped in the porosity, 
in low density solids, which contain fewer atoms per unit volume so that ρC becomes low, 
and in composites due to heat fluxes through series and parallel arrangements of layers and 
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through embedded regions from different materials that strongly modified their effective 
thermal properties values, as has been described elsewhere [Salazar, 2003]. Although there 
are several methods for measurement of C their applications are often limited because they 
involve temperature variations that can affect thermal properties during measurement, in 
particular in the vicinity of phase transitions and structural changes. Fortunately there is 
another parameter involved in non-stationary problems and that can be also measured 
using dynamic techniques. While thermal diffusivity is defined as the ratio between the 
thermal conductivity and the specific heat capacity, this new parameter, named as thermal 
effusivity, e, but also called thermal contact parameter by some authors [Boeker & van 
Grondelle, 1999], is related to their product, as follows:  

  ε = (k C) ½  (18) 

It is worth to be noticed that while the two expressions contain the same parameters, they 
are quite different. Diffusivity is related to the speed at which thermal equilibrium can be 
reached, while effusivity is related to the heated body surface temperature and it is the 
property that determines the contact temperature between two bodies in touch to one 
another, as will be seen below. Measuring both quantities provides the thermal conductivity 
without the need to know the specific heat capacity (note that Eqs. (13) and (18) lead to 
k=εα1/2). Dynamic techniques for thermal properties measurement can be divided in three 
classes, namely those involving pulsed, periodical and transient heat sources. There are also 
phenomena encounter in daily life that also involve these kinds of heating sources. This 
section will be devoted to analyze and discuss the solution of the heat diffusion equation in 
the presence of these sources. In each case characteristic time and length scales will be 
presented, the role playing by the characteristic thermal properties will be discussed as well 
as physical implications in practical fields of applications.  

4.1 A sample periodically and uniformly heated at one of its surfaces 
Consider an isotropic homogeneous semi-infinite solid, whose surface is heated uniformly 
(in such a way that the one-dimensional approach used in what follows is valid) by a source 
of periodically modulated intensity I0(1+cos(t))/2, where I0 is the intensity, =2f is the 
angular modulation frequency, and t is the time (this form of heating can be achieved in 
praxis using a modulated light beam whose energy is partially absorbed by the sample and 
converted to heat [Almond & Patel, 1996] but other methods can be used as well, e.g. using 
joule´s heating [Ivanov et al., 2010]). The temperature distribution T(x,t) within the solid can 
be obtained by solving the homogeneous (parabolic) heat diffusion equation, which can be 
written in one dimension as 

  �
��(���)
��� − �

�
��(���)
�� = 0  (19) 

The solution of physical interest for most applications (for example in photothermal (PT) 
techniques [Almond & Patel, 1996]) is the one related to the time dependent component. If 
we separate this component from the spatial distribution, the temperature can be expressed 
as: 

  �(�� �) = ����(�)���(���)�    (20) 

Substituting Eq. (20) into Eq. (19) leads to 
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constants, c, characterizing heat transfer rates depend strongly on particle size and on its 
thermal diffusivity. One can assume that for spherical particles of radius R, these times scale 
proportional to R2/α [Greffet, 2004; Marín, 2010; Wolf, 2004]. As for condensed matter the 
order of magnitude of α is 10-6m2/s, for spherical particles having nanometric diameters, for 
example between 100 and 1 nm, we obtain for these times values ranging from about 10 ns 
to 1ps, which are very close to the above mentioned relaxation times. At these short time 
scales Fourier’s laws do not work in their initial forms.  
In the next sections some interesting problems involving time varying heat sources will be 
discussed assuming that the conditions for the parabolic approach are well fulfilled, and, 
when required, these conditions will be deduced.  

4. Some non-stationary problems on heat conduction 
While the parabolic Fourier´s law of heat conduction (4) describes stationary problems, with 
the thermal conductivity as the relevant thermophysical parameter, time varying heat 
conduction phenomena, which appear often in praxis, are described by the heat diffusion 
equation (12), being the thermal diffusivity the important parameter in such cases. Thermal 
conductivity can be measured using stationary methods based in Eq. (4), whose principal 
limitation is that precise knowledge of the amount of heat flowing through the sample and 
of the temperature gradient in the normal direction to this flow is necessary, a difficult task 
when small specimens are investigated. Therefore the use of non-stationary or dynamic 
methods becomes many times advantageous that allow, in general, determination of the 
thermal diffusivity. Thus knowledge of the specific heat capacity (per unit volume) is 
necessary if the thermal conductivity is to be obtained as well, as predicted by Eq. (13). 
Although this can be a disadvantage, often available specific heat data are used, so that it is 
not always necessary to determine experimentally it in order to account for the thermal 
conductivity. This is because specific heat capacity is less sensitive to impurities and 
structure of materials and comparatively independent of temperature above the Debye 
temperature than thermal conductivity and diffusivity. More precise, C is nearly a constant 
parameter for solids. In a plot of thermal conductivity versus thermal diffusivity we can see 
that solid materials typically fall along the line C3106 J/m3K at room temperature. This 
experimentally proved fact is a consequence of the well known Dulongs and Petit’s classical 
law for the molar specific heat of solids and of the consideration that the volume occupied 
per atom is about 1.410-29 m3 for almost all solids. In other words, the almost constant value 
of C can be explained by taking into account its definition as the product of the density (ρ) 
and the specific heat (c). The specific heat is defined as the change in the internal energy per 
unit of temperature change; thus, if the density of a solid increases (or decreases) the solid 
can store less (or more) energy. Therefore, as the density increases, the specific heat must 
decrease and then the product C=ρc stays constant and, according to Eq. 13, the behavior of 
the thermal conductivity is similar to that of the diffusivity. In accurate work, however, 
particularly on porous materials and composites, it is highly recommendable to measure 
also C. This is because some materials have lower-than-average volumetric specific heat 
capacity. Sometimes this happens because the Debye temperature lies well above room 
temperature and heat absorption is not classical. Deviations are observed in porous 
materials too, whose conductivity is limited partially by the gas entrapped in the porosity, 
in low density solids, which contain fewer atoms per unit volume so that ρC becomes low, 
and in composites due to heat fluxes through series and parallel arrangements of layers and 
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through embedded regions from different materials that strongly modified their effective 
thermal properties values, as has been described elsewhere [Salazar, 2003]. Although there 
are several methods for measurement of C their applications are often limited because they 
involve temperature variations that can affect thermal properties during measurement, in 
particular in the vicinity of phase transitions and structural changes. Fortunately there is 
another parameter involved in non-stationary problems and that can be also measured 
using dynamic techniques. While thermal diffusivity is defined as the ratio between the 
thermal conductivity and the specific heat capacity, this new parameter, named as thermal 
effusivity, e, but also called thermal contact parameter by some authors [Boeker & van 
Grondelle, 1999], is related to their product, as follows:  

  ε = (k C) ½  (18) 

It is worth to be noticed that while the two expressions contain the same parameters, they 
are quite different. Diffusivity is related to the speed at which thermal equilibrium can be 
reached, while effusivity is related to the heated body surface temperature and it is the 
property that determines the contact temperature between two bodies in touch to one 
another, as will be seen below. Measuring both quantities provides the thermal conductivity 
without the need to know the specific heat capacity (note that Eqs. (13) and (18) lead to 
k=εα1/2). Dynamic techniques for thermal properties measurement can be divided in three 
classes, namely those involving pulsed, periodical and transient heat sources. There are also 
phenomena encounter in daily life that also involve these kinds of heating sources. This 
section will be devoted to analyze and discuss the solution of the heat diffusion equation in 
the presence of these sources. In each case characteristic time and length scales will be 
presented, the role playing by the characteristic thermal properties will be discussed as well 
as physical implications in practical fields of applications.  

4.1 A sample periodically and uniformly heated at one of its surfaces 
Consider an isotropic homogeneous semi-infinite solid, whose surface is heated uniformly 
(in such a way that the one-dimensional approach used in what follows is valid) by a source 
of periodically modulated intensity I0(1+cos(t))/2, where I0 is the intensity, =2f is the 
angular modulation frequency, and t is the time (this form of heating can be achieved in 
praxis using a modulated light beam whose energy is partially absorbed by the sample and 
converted to heat [Almond & Patel, 1996] but other methods can be used as well, e.g. using 
joule´s heating [Ivanov et al., 2010]). The temperature distribution T(x,t) within the solid can 
be obtained by solving the homogeneous (parabolic) heat diffusion equation, which can be 
written in one dimension as 
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The solution of physical interest for most applications (for example in photothermal (PT) 
techniques [Almond & Patel, 1996]) is the one related to the time dependent component. If 
we separate this component from the spatial distribution, the temperature can be expressed 
as: 

  �(�� �) = ����(�)���(���)�    (20) 

Substituting Eq. (20) into Eq. (19) leads to 
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  �
��(���)
��� � ���(�) = 0     (21) 

where 

  � = ���
� = (���)

�    (22) 

is the thermal wave number and µ represents the thermal diffusion length defined as 

  � = ���
�     (23) 

Using the boundary condition 

 � ��(���)
�� �

���
= �� ���� ���(���)� ,  (24) 

the Eq. (21) can be solved and Eq. (19) leads to 

  �(�� �) = ��
��√� ��� ��

�
���� ���� ��� �

�
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����   (25) 

This solution represents a mode of heat propagation through which the heat generated in 
the sample is transferred to the surrounding media by diffusion at a rate determined by the 
thermal diffusivity. Because this solution has a form similar to that of a plane attenuated 
wave it is called a thermal wave. Although it is not a real wave because it does not transport 
energy as normally waves do [Salazar, 2006], the thermal wave approach has demonstrated 
to be useful for the description of several experimental situations, as will be seen later.  
Suppose that we have an alternating heat flux, related to a periodic oscillating temperature 
field. The analogy between thermal and electrical phenomena described in Section 1 when 
dealing with Fourier´s law can be followed to define the thermal impedance Zt as the 
temperature difference between two faces of a thermal conductor divided by the heat flux 
crossing the conductor. Then the thermal impedance becomes the ratio between the change 
in thermal wave amplitude and the thermal wave flux. At the surface of the semi-infinite 
medium treated with above one gets, 

  �� = �(�����)�����
����(���)�� �

���
    (26) 

where Tamb is the ambient (constant) temperature (it was settled equal to zero for simplicity). 
Substituting Eq. (25) in Eq. (26) one obtains after a straightforward calculation [Marín, 
2009b]: 

  �� = ���
�√� =

�
�√� ��� ���

�
��   (27) 

Note that, contrary to thermal resistance (see Eq. (6)), which depends on thermal 
conductivity, in the thermal impedance definition the thermal effusivity becomes the 
relevant parameter.  
Using Eq. (27) the Eq. (25) can be rewritten as: 

  �(�� �) = ��
� ����� ��
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Eq. (25) shows that the thermal diffusion length, µ, gives the distance at which an 
appreciable energy transfer takes place and that there is a phase lag between the excitation 
and the thermal response of the sample given by the term x/+/4 in the exponential term. 
Note that the thermal wave behaviour depends on the values of both, thermal effusivity, 
with determines the wave amplitude at x=0, and the thermal diffusivity, from which the 
attenuation and wave velocity depend.  
Among other characteristics [Marín et al., 2002] a thermal wave described by Eq. (24) has a 
phase velocity, vf==(2)1/2. Because Eq. (21) is a linear ordinary differential equation 
describing the motion of a thermal wave, then the superposition of solutions will be also a 
solution of it (often, as doing above, the temperature distribution is approximated by just 
the first harmonic of that superposition because the higher harmonics damp out more 
quickly due to the damping coefficient increase with frequency). This superposition 
represents a group of waves with angular frequencies in the interval, +d travelling in 
space as “packets” with a group velocity vg=2vf [Marín et al., 2006]. It is worth to notice that 
both, phase and group velocities depend on the modulation frequency in such a way that if 
 tends to infinite, they would approach infinite as well, what is physically inadmissible.  
This apparent contradiction can be explained using the same arguments given in section 2. 
Starting from the hyperbolic heat diffusion equation (Eq. (17)) without internal heat sources, 
and making the separation of variables given by Eq. (20), the equation to be solve becomes  

   �
��(���)
��� − ����(�) = 0  (29) 

with the boundary condition at the surface [Salazar, 2006] 

    −� ��(���)
�� �

���
= �� ���� (1 � ���)�     (30) 

Eq. (29) is similar to Eq. (21) but with the complex wave number given by [Marín, 2007a] 

   �� = ���
���

��
� − 1   (31) 

where 

     �� = �
�   (32) 

Two limiting cases can be examined. First, for low modulation frequencies so that  <<l 
the wave number becomes equal to q (Eq. (22)) and the solution becomes a thermal wave 
given by Eq. (25). But for high frequencies, i.e. for >>l, the wave number becomes 
q´=i/u, and the solution of the problem has the form [Salazar, 2006.] 

  �(�� �) = ��
��� ��� �−
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��� ��� �

�
� � − ���   (33) 

Thus according to the hyperbolic solution the amplitude of the surface temperature does not 
depend on the modulation frequency and depends on the specific heat capacity and the 
propagation velocity u=(/)1/2. There is not a phase lag, i.e. the excitation source and the 
surface temperature are in phase. Moreover, the penetration depth becomes also 
independent on the modulation frequency and depends on the wave propagation velocity. 
This case represents a form of heat transfer, which takes place through a direct coupling of 
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the sample is transferred to the surrounding media by diffusion at a rate determined by the 
thermal diffusivity. Because this solution has a form similar to that of a plane attenuated 
wave it is called a thermal wave. Although it is not a real wave because it does not transport 
energy as normally waves do [Salazar, 2006], the thermal wave approach has demonstrated 
to be useful for the description of several experimental situations, as will be seen later.  
Suppose that we have an alternating heat flux, related to a periodic oscillating temperature 
field. The analogy between thermal and electrical phenomena described in Section 1 when 
dealing with Fourier´s law can be followed to define the thermal impedance Zt as the 
temperature difference between two faces of a thermal conductor divided by the heat flux 
crossing the conductor. Then the thermal impedance becomes the ratio between the change 
in thermal wave amplitude and the thermal wave flux. At the surface of the semi-infinite 
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where Tamb is the ambient (constant) temperature (it was settled equal to zero for simplicity). 
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Using Eq. (27) the Eq. (25) can be rewritten as: 

  �(�� �) = ��
� ����� ��

�
�� ��� �

�
� � ���   (28) 

 
Time Varying Heat Conduction in Solids  185 

Eq. (25) shows that the thermal diffusion length, µ, gives the distance at which an 
appreciable energy transfer takes place and that there is a phase lag between the excitation 
and the thermal response of the sample given by the term x/+/4 in the exponential term. 
Note that the thermal wave behaviour depends on the values of both, thermal effusivity, 
with determines the wave amplitude at x=0, and the thermal diffusivity, from which the 
attenuation and wave velocity depend.  
Among other characteristics [Marín et al., 2002] a thermal wave described by Eq. (24) has a 
phase velocity, vf==(2)1/2. Because Eq. (21) is a linear ordinary differential equation 
describing the motion of a thermal wave, then the superposition of solutions will be also a 
solution of it (often, as doing above, the temperature distribution is approximated by just 
the first harmonic of that superposition because the higher harmonics damp out more 
quickly due to the damping coefficient increase with frequency). This superposition 
represents a group of waves with angular frequencies in the interval, +d travelling in 
space as “packets” with a group velocity vg=2vf [Marín et al., 2006]. It is worth to notice that 
both, phase and group velocities depend on the modulation frequency in such a way that if 
 tends to infinite, they would approach infinite as well, what is physically inadmissible.  
This apparent contradiction can be explained using the same arguments given in section 2. 
Starting from the hyperbolic heat diffusion equation (Eq. (17)) without internal heat sources, 
and making the separation of variables given by Eq. (20), the equation to be solve becomes  
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with the boundary condition at the surface [Salazar, 2006] 

    −� ��(���)
�� �

���
= �� ���� (1 � ���)�     (30) 

Eq. (29) is similar to Eq. (21) but with the complex wave number given by [Marín, 2007a] 

   �� = ���
���

��
� − 1   (31) 

where 

     �� = �
�   (32) 

Two limiting cases can be examined. First, for low modulation frequencies so that  <<l 
the wave number becomes equal to q (Eq. (22)) and the solution becomes a thermal wave 
given by Eq. (25). But for high frequencies, i.e. for >>l, the wave number becomes 
q´=i/u, and the solution of the problem has the form [Salazar, 2006.] 

  �(�� �) = ��
��� ��� �−

��
��� ��� �

�
� � − ���   (33) 

Thus according to the hyperbolic solution the amplitude of the surface temperature does not 
depend on the modulation frequency and depends on the specific heat capacity and the 
propagation velocity u=(/)1/2. There is not a phase lag, i.e. the excitation source and the 
surface temperature are in phase. Moreover, the penetration depth becomes also 
independent on the modulation frequency and depends on the wave propagation velocity. 
This case represents a form of heat transfer, which takes place through a direct coupling of 
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vibrational modes (i.e. the acoustic phonon spectrum) of the material. At these high 
frequencies (short time scale) ballistic transport of heat can be dominant.  
Measurement of the periodical temperature changes induced in a sample by harmonic 
heating is the basis of the working principle of the majority of the so-called photothermal 
(PT) techniques [Marín, 2009c]. These are methods widely used for thermal characterization 
because the thermal signal is dependent on thermal properties such as thermal diffusivity 
(see Eq. (29)). As mentioned above the time constant  in condensed mater is related to the 
phonon relaxation time, which is in the picosecond range, so that the limiting frequency 
becomes about l=1012Hz. Typical modulation frequencies used in PT experiments are 
between some Hz and several kHz, i.e. <<l, so that the more simpler parabolic approach 
is valid. This offers several advantages related with their use for thermal characterization of 
materials in situations where heat transport characteristic times are comparable to the 
relaxation time,  [Marín, 2007b].  
Following the above discussion in what follows the parabolic thermal wave approach will 
be used to explain a particular phenomenon observed in some experiments realized with PT 
techniques, which contradicts intuitively expectation. Suppose that a solid sample is 
subjected to periodical modulated heating at certain frequencies. Using different detection 
schemas some authors [Caerels et al., 1998) 2452-2458 ; Sahraoui et al., 2002; S. Longuemart 
et al., 2002; Depruester et al., 2005; Lima et al., 2006; Marin et al., 2010] have observed that 
when a sample is in contact with a liquid the resulting sample’s temperature may be larger 
than that due to the bare sample, for certain values of the modulation frequencies. This 
contradicts the expected behavior that in the presence of a liquid the developed heat will 
always flow through the sample to the liquid, which acts as a heat sink.  
In the PT techniques the periodical heating is mainly generated by impinging intensity 
modulated light (e.g. a laser beam) on a sample. When light energy is absorbed and 
subsequently totally or partially transformed into as heat, it results in sample heating, 
leading to temperature changes as well as changes in the thermodynamic parameters of the 
sample and its surroundings. Measurements of these changes are ultimately the basis for all 
photothermal methods. The temperature variations could be detected directly using a 
pyroelectric transducer in the so called Photopyroelectric (PPE) method [Mandelis & Zver, 
1985]. The sample’s temperature oscillations can be also the cause of periodical black body 
infrared electromagnetic waves that are radiated by the sample and that can be measured 
using an appropriate sensor in the PT radiometry [Chen et al., 1993] In the photoacoustic 
(PA) method the sample is enclosed in a gas (example air) tight cell. The temperature 
variations in the sample following the absorption of modulated radiation induce pressure 
fluctuations in the gas, i.e. acoustic waves, that can be detected by a sensitive microphone 
already coupled to the cell [Vargas & Miranda, 1980]. Other detection schemes have been 
devised too. 
Consider the experimental setup schematically showed in Fig. 1. A glass sample covers one 
of the two openings of a PA cell, while the other is closed by a transparent glass window 
through which a modulated laser light beam impinges on the inner, metal coated (to 
warrant full absorption of the light) sample’s surface, generating periodical heating (the so-
called thermal waves) and hence a pressure fluctuation in a PA air chamber, which is 
detected with a microphone already enclosed in the PA cell. The microphone signal is fed 
into a Lock-in amplifier for measurement of its amplitude as a function of the modulation 
frequency, f.  
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Using this schema  Lima et al [Lima et al., 2006);] and Marín et al [Marin et al., 2010)] have 
measured the PA signal as a function of the modulation frequency for a bare glass substrate, 
and then they have deposited about 100 L of liquid and repeated the same measurement.  
In Fig. 2 (a) the normalized signal amplitude (the ratio of the amplitude signal due to the 
substrate-liquid system and that due to the bare substrate) is showed as a function of f for 
the case of a distilled water liquid sample. One can see that in certain frequency intervals the 
normalized signal becomes greater than 1, a fact that, as discussed before, contradicts the 
intuitively awaited behavior.  
In order to explain this apparent paradox the mentioned authors resorted to the thermal 
wave model supposing that, as other kind of waves do, they  experiences reflection, 
refraction and interference. Consider two regions, 1 and 2, and a plane thermal wave (Eq. 
(24)) incident from region 1 that is partially reflected and transmitted at the interface.  
One can show that for normal incidence the reflection and transmission coefficients can be 
written as [Bennett & Patty, 1982]: 

   ��� = �����
�����    (34) 

and 

  ��� = �
�����   (35) 

where 

   ��� = ��
��     (36) 

is the ratio of the media thermal effusivities. Thermal effusivity can be also regarded, 
therefore, as a measure of the thermal mismatch between the two media. 
 

 
Fig. 1. Schema of a photothermal experimental setup with photoacoustic detection. In the 
experiment described here the glass substrate was 180 m thick and it was coated with a 2 
m thick layer of Cu deposited by thermal evaporation in vacuum. The PA cell cylindrical 
cavity have a 5mm diameter and is 5 mm long. The light source was an Ar-ion laser beam of 
50 mW modulated in intensity at 50% duty cycle with a mechanical chopper. An electret 
microphone was coupled to the cell through a 1mm diameter duct located at the cell wall. 
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vibrational modes (i.e. the acoustic phonon spectrum) of the material. At these high 
frequencies (short time scale) ballistic transport of heat can be dominant.  
Measurement of the periodical temperature changes induced in a sample by harmonic 
heating is the basis of the working principle of the majority of the so-called photothermal 
(PT) techniques [Marín, 2009c]. These are methods widely used for thermal characterization 
because the thermal signal is dependent on thermal properties such as thermal diffusivity 
(see Eq. (29)). As mentioned above the time constant  in condensed mater is related to the 
phonon relaxation time, which is in the picosecond range, so that the limiting frequency 
becomes about l=1012Hz. Typical modulation frequencies used in PT experiments are 
between some Hz and several kHz, i.e. <<l, so that the more simpler parabolic approach 
is valid. This offers several advantages related with their use for thermal characterization of 
materials in situations where heat transport characteristic times are comparable to the 
relaxation time,  [Marín, 2007b].  
Following the above discussion in what follows the parabolic thermal wave approach will 
be used to explain a particular phenomenon observed in some experiments realized with PT 
techniques, which contradicts intuitively expectation. Suppose that a solid sample is 
subjected to periodical modulated heating at certain frequencies. Using different detection 
schemas some authors [Caerels et al., 1998) 2452-2458 ; Sahraoui et al., 2002; S. Longuemart 
et al., 2002; Depruester et al., 2005; Lima et al., 2006; Marin et al., 2010] have observed that 
when a sample is in contact with a liquid the resulting sample’s temperature may be larger 
than that due to the bare sample, for certain values of the modulation frequencies. This 
contradicts the expected behavior that in the presence of a liquid the developed heat will 
always flow through the sample to the liquid, which acts as a heat sink.  
In the PT techniques the periodical heating is mainly generated by impinging intensity 
modulated light (e.g. a laser beam) on a sample. When light energy is absorbed and 
subsequently totally or partially transformed into as heat, it results in sample heating, 
leading to temperature changes as well as changes in the thermodynamic parameters of the 
sample and its surroundings. Measurements of these changes are ultimately the basis for all 
photothermal methods. The temperature variations could be detected directly using a 
pyroelectric transducer in the so called Photopyroelectric (PPE) method [Mandelis & Zver, 
1985]. The sample’s temperature oscillations can be also the cause of periodical black body 
infrared electromagnetic waves that are radiated by the sample and that can be measured 
using an appropriate sensor in the PT radiometry [Chen et al., 1993] In the photoacoustic 
(PA) method the sample is enclosed in a gas (example air) tight cell. The temperature 
variations in the sample following the absorption of modulated radiation induce pressure 
fluctuations in the gas, i.e. acoustic waves, that can be detected by a sensitive microphone 
already coupled to the cell [Vargas & Miranda, 1980]. Other detection schemes have been 
devised too. 
Consider the experimental setup schematically showed in Fig. 1. A glass sample covers one 
of the two openings of a PA cell, while the other is closed by a transparent glass window 
through which a modulated laser light beam impinges on the inner, metal coated (to 
warrant full absorption of the light) sample’s surface, generating periodical heating (the so-
called thermal waves) and hence a pressure fluctuation in a PA air chamber, which is 
detected with a microphone already enclosed in the PA cell. The microphone signal is fed 
into a Lock-in amplifier for measurement of its amplitude as a function of the modulation 
frequency, f.  
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Using this schema  Lima et al [Lima et al., 2006);] and Marín et al [Marin et al., 2010)] have 
measured the PA signal as a function of the modulation frequency for a bare glass substrate, 
and then they have deposited about 100 L of liquid and repeated the same measurement.  
In Fig. 2 (a) the normalized signal amplitude (the ratio of the amplitude signal due to the 
substrate-liquid system and that due to the bare substrate) is showed as a function of f for 
the case of a distilled water liquid sample. One can see that in certain frequency intervals the 
normalized signal becomes greater than 1, a fact that, as discussed before, contradicts the 
intuitively awaited behavior.  
In order to explain this apparent paradox the mentioned authors resorted to the thermal 
wave model supposing that, as other kind of waves do, they  experiences reflection, 
refraction and interference. Consider two regions, 1 and 2, and a plane thermal wave (Eq. 
(24)) incident from region 1 that is partially reflected and transmitted at the interface.  
One can show that for normal incidence the reflection and transmission coefficients can be 
written as [Bennett & Patty, 1982]: 
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Denoting with s the glass substrate of thickness L, which is sandwiched between two 
regions, namely 1 (the metallic coating) and 2 (the liquid sample or air). Supposing also that 
the surface of region 1 opposite to s is heated uniformly (so that a one dimensional analysis 
can be valid) by a light source of periodically modulated intensity, I0. Because its thickness is 
much smaller than L it can be also supposed that region 1 acts only as a thin superficial light 
absorbing layer, where a thermal wave will be generated following the periodical heating 
and launched through the glass substrate. Consider the propagation of a thermal wave 
described by Eq. (25) through the substrate. The so-called thermal wave model shows that 
the thermal waves will propagate towards the interface between the sample and region 2 
and back towards the sample’s surface, 1. On striking the boundaries they will be partially 
reflected and transmitted, so that interference between the corresponding wave trains takes 
place. Because the PA signal will be proportional to the temperature at the glass-metal 
interface the interest is in the resulting temperature at x=0, which can be obtained by 
summing all the waves arriving at this point. The result is [Marín et al., 2010] (the time 
dependent second exponential term of Eq. (25) will be omitted from now on for sake of 
simplicity): 

 �(0) � �� �� � ��� ���(�����)
������(�����)�    (37) 

where T0 is a frequency dependent term, =Rs1Rs2, and Rs1 and Rs2 are the normal incidence 
thermal wave reflection coefficients at the s-1 and s-2 interfaces respectively. 
The solid line in Fig. 2 represents the normalized signal as a function of f calculated using 
the above expression for the system composed of a glass substrate (L=180m, s=1480 
Ws1/2m-2K-1, s=3.510-6 m2/s), a Copper (Cu=37140 Ws1/2m-2K-1) metallic layer as region 
1, and water w=1580 Ws1/2m-2K-1) as a liquid sample (for air the value a=5.5 Ws1/2m-2K-1 
was taking). The theoretical obtained results for higher frequencies [Marín et al., 2010] 
showed in part (b) of the same figure that the frequency intervals with amplitude ratios 
greater than unity are awaited to appear in a periodical manner, a typical result for wave 
phenomena.  
A similar result has been reported by Depriester et al [Depriester et al., 2005] in the context 
of the photothermal infrared radiometry technique, and by Caerels et al [Caerels et al., 1998], 
Longuemart et al [Longuemart et al., 2002] and Sahraoui et al [Sahraoui et al., 2002) using a 
photopyroelectric (PPE) technique. The measurement configuration is very similar as that 
described above for the PA method. The analyzed sample is placed in intimate thermal 
contact with one of the metal coated surfaces of the sensor (usually a polyvinyledene 
difluoride (PVDF) polymer film with metalized surfaces serving as electrodes or a 
pyroelectric ceramic crystal (e.g., LiTaO3), while a periodical intensity modulated light beam 
impinges on its opposite metalized side, which acts as a light absorber. Following the 
absorption of light energy, the PE sensor temperature fluctuates periodically at the 
modulation frequency of the incident beam thereby generating a voltage, whose amplitude 
at a given frequency can be measured using a Lock-in amplifier. Recently Marin et al [Marín 
et al., 2011] used this last approach in order to explain the increase of the normalized PPE 
signal above unity for some frequencies.  
The good agreement between experiment and theory shows that the described behavior can 
be explained as caused by a thermal wave interference phenomenon. The thermal wave  
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Fig. 2. (a): Normalized signal amplitude as a function of f. Circles: experimental points. Solid 
curve and (b): Result of theoretical simulation using Eq. (37). Reproduced from [Central Eur. 
J. Phys, 2010, 8, 4, 634-638].  

approach could be helpful not only in the field of PA and PT techniques but it can be also 
used for the analysis of the phenomenon of heat transfer in the presence of modulated heat 
sources in multilayer structures, which appear frequently in men’s made devices (for 
example semiconductor heterostructures lasers and LEDs driven by pulsed, periodical 
electrical current sources). 

4.2 A finite sample exposed to a finite duration heat pulse 
Considering a semi-infinite homogeneous medium exposed to a sudden temperature 
change at its surface at x=0 from T0 to T1. For the calculation of the temperature field created 
by a heat pulse at t=0 one has to solve the homogeneous heat diffusion equation (19) with 
the boundary conditions 

  T(x = 0, t  0) = T1 ;  T(x > 0, t=0) = T0.  (38) 

The solution for t>0 is [Carlslaw & Jaeger 1959]: 

  �(�� �) = �� + (�� � ��)��� � �
�√���   (39) 

where erf is the error function. 
Using Fourier’s law (Ec. (9)) one may obtain from the above equation for the heat flow  

 �(�� �) = �(�����)
√�� ��� �� ��

���
�   (40) 

This expression describes a Gaussian spread of thermal energy with characteristic width 

   �� = 2√��     (41) 

This characteristic distance is the thermal diffusion length (for pulsed excitation) and has a 
similar meaning as the thermal diffusion length defined by Eq. (23).  
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Denoting with s the glass substrate of thickness L, which is sandwiched between two 
regions, namely 1 (the metallic coating) and 2 (the liquid sample or air). Supposing also that 
the surface of region 1 opposite to s is heated uniformly (so that a one dimensional analysis 
can be valid) by a light source of periodically modulated intensity, I0. Because its thickness is 
much smaller than L it can be also supposed that region 1 acts only as a thin superficial light 
absorbing layer, where a thermal wave will be generated following the periodical heating 
and launched through the glass substrate. Consider the propagation of a thermal wave 
described by Eq. (25) through the substrate. The so-called thermal wave model shows that 
the thermal waves will propagate towards the interface between the sample and region 2 
and back towards the sample’s surface, 1. On striking the boundaries they will be partially 
reflected and transmitted, so that interference between the corresponding wave trains takes 
place. Because the PA signal will be proportional to the temperature at the glass-metal 
interface the interest is in the resulting temperature at x=0, which can be obtained by 
summing all the waves arriving at this point. The result is [Marín et al., 2010] (the time 
dependent second exponential term of Eq. (25) will be omitted from now on for sake of 
simplicity): 
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where T0 is a frequency dependent term, =Rs1Rs2, and Rs1 and Rs2 are the normal incidence 
thermal wave reflection coefficients at the s-1 and s-2 interfaces respectively. 
The solid line in Fig. 2 represents the normalized signal as a function of f calculated using 
the above expression for the system composed of a glass substrate (L=180m, s=1480 
Ws1/2m-2K-1, s=3.510-6 m2/s), a Copper (Cu=37140 Ws1/2m-2K-1) metallic layer as region 
1, and water w=1580 Ws1/2m-2K-1) as a liquid sample (for air the value a=5.5 Ws1/2m-2K-1 
was taking). The theoretical obtained results for higher frequencies [Marín et al., 2010] 
showed in part (b) of the same figure that the frequency intervals with amplitude ratios 
greater than unity are awaited to appear in a periodical manner, a typical result for wave 
phenomena.  
A similar result has been reported by Depriester et al [Depriester et al., 2005] in the context 
of the photothermal infrared radiometry technique, and by Caerels et al [Caerels et al., 1998], 
Longuemart et al [Longuemart et al., 2002] and Sahraoui et al [Sahraoui et al., 2002) using a 
photopyroelectric (PPE) technique. The measurement configuration is very similar as that 
described above for the PA method. The analyzed sample is placed in intimate thermal 
contact with one of the metal coated surfaces of the sensor (usually a polyvinyledene 
difluoride (PVDF) polymer film with metalized surfaces serving as electrodes or a 
pyroelectric ceramic crystal (e.g., LiTaO3), while a periodical intensity modulated light beam 
impinges on its opposite metalized side, which acts as a light absorber. Following the 
absorption of light energy, the PE sensor temperature fluctuates periodically at the 
modulation frequency of the incident beam thereby generating a voltage, whose amplitude 
at a given frequency can be measured using a Lock-in amplifier. Recently Marin et al [Marín 
et al., 2011] used this last approach in order to explain the increase of the normalized PPE 
signal above unity for some frequencies.  
The good agreement between experiment and theory shows that the described behavior can 
be explained as caused by a thermal wave interference phenomenon. The thermal wave  
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approach could be helpful not only in the field of PA and PT techniques but it can be also 
used for the analysis of the phenomenon of heat transfer in the presence of modulated heat 
sources in multilayer structures, which appear frequently in men’s made devices (for 
example semiconductor heterostructures lasers and LEDs driven by pulsed, periodical 
electrical current sources). 

4.2 A finite sample exposed to a finite duration heat pulse 
Considering a semi-infinite homogeneous medium exposed to a sudden temperature 
change at its surface at x=0 from T0 to T1. For the calculation of the temperature field created 
by a heat pulse at t=0 one has to solve the homogeneous heat diffusion equation (19) with 
the boundary conditions 

  T(x = 0, t  0) = T1 ;  T(x > 0, t=0) = T0.  (38) 

The solution for t>0 is [Carlslaw & Jaeger 1959]: 
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�√���   (39) 

where erf is the error function. 
Using Fourier’s law (Ec. (9)) one may obtain from the above equation for the heat flow  

 �(�� �) = �(�����)
√�� ��� �� ��

���
�   (40) 

This expression describes a Gaussian spread of thermal energy with characteristic width 

   �� = 2√��     (41) 

This characteristic distance is the thermal diffusion length (for pulsed excitation) and has a 
similar meaning as the thermal diffusion length defined by Eq. (23).  
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If Eq. (40) is scaled to three dimensions one can show that after a time t has elapsed the heat 
outspread over a sphere of radius. Suppose that a spherical particle of radius R is heated in 
the form described above by a heat pulse at its surface. The particle requires for cooling a 
time similar to that the necessary for the heat to diffuse throughout its volume. The heat flux 
at the opposite surface of the particle could be expressed as 

  �(� = ��) = ����� �� ���� �
��      (42) 

with q0 as a time independent constant and a characteristic thermal time constant given by 

   �� = ��
�    (43) 

This time depend strongly on particle size and on its thermal diffusivity,  [Greffet, 2007; Wolf, 
2004; Marín, 2010]. As for most condensed matter samples the order of magnitude of  is 10-6 
m2/s, for a sphere of diameter 1 cm one obtain c=100 s and for a sphere with a radius of 6400 
km, such as the Earth, this time is of around 1012 years, both values compatible with daily 
experience. But for spheres having diameters between 100 and 1 nm , these times values 
ranging from about 10 ns to 1 ps, i.e. they are very close to the relaxation times, , for which 
Fourier’s Law of heat conduction is not more valid and the hyperbolic approach must be used 
as well. The above equations enclose the basic principle behind a well established method for 
thermal diffusivity measurement known as the Flash technique [Parker et al., 1961]. A sample 
with well known thickness is rapidly heated by a heat pulse while its temperature evolution 
with time is measured. From the thermal time constant the value of  can be determined 
straightforwardly. Care must be taken with the heat pulse duration if the parabolic approach 
will be used accurately. For time scales of the order of the relaxation time the solutions of the 
hyperbolic heat diffusion equation can differ strongly from those obtained with the parabolic 
one as has been shown elsewhere [Marín, et al.2005)]. 
Now, coming back to Eq. (40), one can see that the heat flux at the surface of the heated 
sample (x=0) is 

  �(� = �� �) = �(�����)
√��    (44) 

Thus the heat flow is not proportional to the thermal conductivity of the material, as under 
steady state conditions (see Eq. (23)), but to its thermal effusivity [Bein & Pelzl, 1989]. If two 
half infinite materials with temperatures T1 and T2 (T1>T2) touch with perfect thermal 
contact at t=0, the mutual contact interface acquires a contact temperature Tc in between. 
This temperature can be calculated from Eq. (44) supposing that heat flowing out from the 
hotter surface equals that flowing into the cooler one, i.e. 

  ��(�����)√�� = ��(�����)
√��    (45) 

or 

 �� = ���������
�����      (46) 

According to this result, if 1 = 2, Tc lies halfway between T1 and T2, while if 1 > 2, Tc will be 
closer to T1 and if 1 < 2, Tc will be closer to T2. The Eq. (46) shows that our perception of the 
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temperature is often affected by several variables, such as the kind of material we touch, its 
absolute temperature and the time period of the “experiment”, among others (note that the 
actual value of the contact temperature can be affected by factors such as objects surfaces 
roughness that have not taking into account in the above calculations). For example, at room 
temperature wooden objects feels warmer to the rapidly touch with our hands than those 
made of a metal, but when a sufficient time has elapsed both seem to be at the same 
temperature. Many people have the mistaken notion that the relevant thermophysical 
parameter for the described phenomena is the thermal conductivity instead of the thermal 
effusivity, as stated by Eq. (46). The source of this common mistake is the coincidence that in 
solids, a high effusivity material is also a good heat conductor. The reason arises from the 
almost constancy of the specific heat capacity of solids at room temperature explained at the 
beginning of this section. Using Eq. (13) the Eq. (18) can be written as 2=Ck. Then if 2 is 
plotted as a function of k for homogeneous solids one can see that all points are placed close 
to a straight line [Marín, 2007]. 
If we identify region 1 with our hand at T1=370C and the other with a touched object at a 
different temperature, T2, the contact temperature that our hand will reach upon contact can 
be calculated using Eq. (46) and tabulated values of the thermal effusivities. Calculation of 
the contact temperature between human skin at 370C and different bodies at 200C as a 
function of their thermal effusivities show [E Marín, 2007] that when touching a high 
thermal conductivity object such as a metal (e.g. Cu), as metal >> skin, the temperature of the 
skin drops suddenly to 20 0C and one sense the object as being “cold”. On the other hand, 
when touching a body with a lower thermal conductivity, e.g. a wood’s object (wood < skin) 
the skin temperature remains closest to 37 0C, and one sense the object as being “warm”. 
This is the reason why a metal object feels colder than a wooden one to the touch, although 
they are both at the same, ambient equilibrium temperature. This is also the cause why 
human foot skin feels different the temperature of floors of different materials which are at 
the same room temperature and the explanation of why, when a person enters the cold 
water in a swimming pool, the temperature immediately felt by the swimmer is near its 
initial, higher, body temperature [Agrawal, 1999].  
In Fig. 3 the calculated contact temperature between human skin at 370C and bodies of 
different materials at 10000C (circles) and 00C (squares) are represented as a function of their 
thermal effusivities. One can see that the contact temperature tends to be, in both cases, 
closer than that of the skin. This is one of the reasons why our skin is not burning when we 
make a suddenly (transient) contact to a hotter object or freezing when touching a very cold 
one (despite we fill that the object is hotter or colder, indeed).  
Before concluding this subsection the following question merits further analysis. How long 
can be the contact time,l,  so that the transient analysis performed above becomes valid? 
The answer has to do with the very well known fact that when the skin touches very hot or 
cold objects a very thin layer of gas (with thickness L) is produced (e.g. water vapour 
exhaled when the outer layers of the skin are heated or evaporated from ice when it is 
heated by a warmer hand). This time can be calculated following a straightforward 
calculation starting from Eq. (44) and Fourier´s law in the form given by Eq. (5). It lauds 
[Marín ,2008]:  

  �� = ����
������ ������������

�
   (47) 
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If Eq. (40) is scaled to three dimensions one can show that after a time t has elapsed the heat 
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  �(� = ��) = ����� �� ���� �
��      (42) 

with q0 as a time independent constant and a characteristic thermal time constant given by 

   �� = ��
�    (43) 

This time depend strongly on particle size and on its thermal diffusivity,  [Greffet, 2007; Wolf, 
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  �(� = �� �) = �(�����)
√��    (44) 
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  ��(�����)√�� = ��(�����)
√��    (45) 

or 

 �� = ���������
�����      (46) 
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temperature is often affected by several variables, such as the kind of material we touch, its 
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  �� = ����
������ ������������

�
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It is represented in Fig. (4) for different thicknesses of the gas (supposed to be air) layer 
using for the skin temperature the value T2=370C.  
 

 
Fig. 3. Contact temperatures as a function of thermal effusivity calculated using Eq. (45) 
when touching with the hand at 37 0C objects of different materials at 0 0C (circles) and 
10000C (squares). Reproduced with permission from [Latin American Journal of Physics 
Education 2, 1, 15-17 (2008)]. Values of the thermal effusivities have been taken from 
[Salazar, 2003] 
 

 
Fig. 4. The time required for the skin to reach values of the contact temperature of 00C and 
1000C without frostbitten or burning up respectively (see text), as a function of the 
hypothetical thickness of the gas layer evaporated at its surface. The solid and dotted curves 
correspond to the case of touching a cold (-1960C) and a hot (6000C) object, respectively 
Reproduced with permission from [Latin American Journal of Physics Education 2, 1, 15-17 
(2008)]. 

The solid curve corresponds to the case of a cold touched object and the dotted line to that of 
the hotter ones. For the temperature of a colder object the value T1=-1960C (e.g. liquid 
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Nitrogen) was taking. The corresponding limiting contact temperature will be Tc=00C (Eq. 
(46)). In the case of the hot object the value T1=6000C (Tc=1000C) was taking. From the figure 
one can conclude that for gas layer thicknesses smaller than 1mm the time required to heat the 
skin to 1000C by contact with an object at 6000C is lower than 3s, a reasonable value. On the 
other hand, for the same layer thickness, liquid Nitrogen can be handled safely for a longer 
period of time which, in the figure, is about 25 s. These times are of course shorter, because the 
generated gas layers thicknesses are in reality much shorter than the here considered value. 
The above examples try to clarify the role played by thermal effusivity in understanding 
thermal physics concepts. According to the definition of thermal conductivity, under steady-
state conditions a good thermal conductor in contact with a thermal reservoir at a higher 
temperature extracts from it more energy per second than a poor conductor, but under 
transient conditions the density and the specific heat of the object also come into play 
through the thermal effusivity concept. Thermal effusivity is not a well known heat 
transport property, although it is the relevant parameter for surface heating or cooling 
processes. 

4.3 A finite slab with superficial continuous uniform thermal excitation 
The following phenomenon also contradicts common intuition of many people: As a result 
of superficial thermal excitation the front surface of a (thermally) thick sample reaches a 
higher equilibrium temperature than a (thermally) thin one [Salazar et al., 2010; Marín et al., 
2011]. Consider a slab of a solid sample with thickness L at room temperature, T0, is 
uniformly and continuously heated at its surface at x=0. The heating power density can be 
described by the function: 

 � = �0��������� � 0
��������� � 0  (48) 

where P0 is a constant.  
The temperature field in a sample, �(�� �), can be obtained by solving the one-dimensional 
heat diffusion problem (Eq. (19)) with surface energy losses, i.e., the third kind boundary 
condition: 
During heating the initial condition lauds 

  ��↑(�� � = 0) = �↑(�� � = 0) � ���� = 0  (49) 

and the boundary conditions are: 

 ���↑(0� �) � � ���↑(���)
�� �

���
= ��   (50) 

and 

 ���↑(�� �) � � ���↑(���)
�� �

���
= 0  (51) 

The heat transfer coefficients at the front (heated) and at the rear surface of the sample have 
been assumed to be the same and are represented by the variable H (see Eq. (7)).  
When heating is interrupted, the equations (49) to (60) become 

  ��↓(�� � = 0) = �↓(�� � = 0) � ���� = ���   (52) 
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Nitrogen) was taking. The corresponding limiting contact temperature will be Tc=00C (Eq. 
(46)). In the case of the hot object the value T1=6000C (Tc=1000C) was taking. From the figure 
one can conclude that for gas layer thicknesses smaller than 1mm the time required to heat the 
skin to 1000C by contact with an object at 6000C is lower than 3s, a reasonable value. On the 
other hand, for the same layer thickness, liquid Nitrogen can be handled safely for a longer 
period of time which, in the figure, is about 25 s. These times are of course shorter, because the 
generated gas layers thicknesses are in reality much shorter than the here considered value. 
The above examples try to clarify the role played by thermal effusivity in understanding 
thermal physics concepts. According to the definition of thermal conductivity, under steady-
state conditions a good thermal conductor in contact with a thermal reservoir at a higher 
temperature extracts from it more energy per second than a poor conductor, but under 
transient conditions the density and the specific heat of the object also come into play 
through the thermal effusivity concept. Thermal effusivity is not a well known heat 
transport property, although it is the relevant parameter for surface heating or cooling 
processes. 

4.3 A finite slab with superficial continuous uniform thermal excitation 
The following phenomenon also contradicts common intuition of many people: As a result 
of superficial thermal excitation the front surface of a (thermally) thick sample reaches a 
higher equilibrium temperature than a (thermally) thin one [Salazar et al., 2010; Marín et al., 
2011]. Consider a slab of a solid sample with thickness L at room temperature, T0, is 
uniformly and continuously heated at its surface at x=0. The heating power density can be 
described by the function: 

 � = �0��������� � 0
��������� � 0  (48) 

where P0 is a constant.  
The temperature field in a sample, �(�� �), can be obtained by solving the one-dimensional 
heat diffusion problem (Eq. (19)) with surface energy losses, i.e., the third kind boundary 
condition: 
During heating the initial condition lauds 

  ��↑(�� � = 0) = �↑(�� � = 0) � ���� = 0  (49) 

and the boundary conditions are: 

 ���↑(0� �) � � ���↑(���)
�� �

���
= ��   (50) 

and 

 ���↑(�� �) � � ���↑(���)
�� �

���
= 0  (51) 

The heat transfer coefficients at the front (heated) and at the rear surface of the sample have 
been assumed to be the same and are represented by the variable H (see Eq. (7)).  
When heating is interrupted, the equations (49) to (60) become 

  ��↓(�� � = 0) = �↓(�� � = 0) � ���� = ���   (52) 



 
Heat Conduction – Basic Research 194 

  ���↓(0, �) − � ���↓(�,�)
�� �

���
= 0   (53) 

and 

  ���↓(�, �) − � ���↓(�,�)
�� �

���
= 0  (54) 

respectively, where Teq is the equilibrium temperature that the sample becomes when 
thermal equilibrium is reached during illumination, being the initial sample temperature 
when illumination is stopped. 
The solution of this problem is [Valiente et al., 2006] 

  ��↓(�, �) = −∑ ��������� ������� cos���� + s�����������     (55) 

and 

 ��↑(�, �) = �����(�����)��
����� + ∑ ��������� ������� cos���� + s�����������   (56) 

where  = a2, 

   �� = ���� �
�
   (57) 

  ��� � =
��
���

�
����

�
��

�   (58) 

and 

   �� = − �
‖��‖ � �(�)��(�) ���

�   (59) 

with 

 ‖��‖� = � ������� cos���� + s�������
�
���

�   (60) 

In order to examine under which condition a sample can be considered as a thermally thin 
and thick slab the thermodynamic equilibrium limit must be analyzed, i.e. the limit of 
infinitely long times.  
Introducing the Biot Number defined in Eq. (8) and taking t after a straightforward 
calculation the following results are obtained: 
At x=0: 

  ��↑(0,∞) = ��
�
����
����   (61) 

and 

  ��↑(�,∞) = ��
�

�
����  (62)  

Two limiting cases can be analyzed: 
a. Very large Biot number (Bi>>2): 
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In this case Eq. (61) becomes 

 ��↑(0,∞) = ��
�   (63) 

while from Eq. (62) one has 

  ��↑(�,∞) = ��
�

�
��    (64)  

For their quotient one can write 

 ��↑(�,�)
��↑(�,�) =

�
��    (65) 

There is a thermal gradient across the sample so that the rear sample temperature becomes 
k/LH times lower than the front temperature. Note that the temperature difference will 
decrease as the heat losses do, as awaited looking at daily experience. 
b. Very small Biot number (Bi<<1): 
In this case both Eq. (61) and Eq. (62) lead to 

 ��↑(0,∞) = ��↑(�,∞) = ��
��  (66) 

Thus, the equilibrium temperature becomes the same at both sample´s surfaces. The sample 
can be considered thin enough so that there is not a temperature gradient across it. Thus, the 
condition for a very thin sample is just: 

   �� ≪ 1  (67) 

With words, following the Biot´s number definition given in section 1, the temperature 
gradient across the sample can be neglected when the conduction heat transfer through its 
opposite surfaces of the samle is greater than convection and radiation losses.  
The results presented above explain the phenomenon that the equilibrium temperature 
becomes greater for a thicker sample. Denoting the front (heated side) sample´s temperature 
of a thick sample (Bi >> 1) at t as uthick, and that of a thin ones (Bi  << 1) as uthin. Their 
quotient is: 

 �↑�����(�,�)
�↑����(�,�) = 2  (68) 

Here Lthick means that this is a thickness for which the sample is thermally thick. This means 
that after a sufficient long time the front surface temperature of a thick sample becomes two 
times higher than that for a thin sample. As discussed elsewhere [Marín et al., 2011] 
The here presented results can have practical applications in the field of materials thermal 
characterization. When the thermally thin condition is achieved, the rise temperature 
becomes [Salazar et al., 2010; Valiente et al., 2006]  

   ��↑ = ��
�� �1 � ��� �� �

����  (69) 

while when illumination is interrupted the temperature decreases as  

  ��↓ = ��
�� ��� ��

�
���   (70) 

where 
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  �� = �������2�   (71) 

and Lthin means that the sample thickness is such that it is thermally thin. If the front and/or 
rear temperatures (remember that both are the same for a thermally thin sample) are 
measured as a function of time during heating (and/or cooling) the value of r can be 
determined by fitting to the Eq. (69) (and/or Eq. (70)) and then, using Eq. (71), the specific 
heat capacity can be calculated if the sample´s thickness is known. This is the basis of the so-
called temperature relaxation method for measurement of C [Mansanares et al., 1990]. As we 
see from Eq. (71) precise knowledge of H is necessary. 
On the other hand, from Eq. (65) follows that measurement of the asymptotic values of rear 
and front surface temperatures of a thermally thick sample leads to: 

   � = � �↑�����
�↑����� =

�
�� =

�
�������  (72) 

from which thermal conductivity could be determined. Note that the knowledge of the H 
value is here necessary too. 
From Eqs. (71) and (72) the thermal diffusivity value can be determined straightforwardly 
without the necessity of knowing H, i.e. it can calculated from the quotient [Marín et al., 
2011]: 

  �� =
��

������������ = 2 �
�����������   (73) 

Fig. 5 shows a kind of Heisler Plot [Heisler, 1947] of the percentile error associated to the 
thermally thick approximation as a function of the sample’s thickness using a typical value 
of H=26 W/m2 [Salazar et al., 2010] for a sample of plasticine (k=0.30 W/mK) and for a 
sample of cork (k=0.04 W/mK).  
 
 

 
 

Fig. 5. Heisler Plots for Plasticine (solid line) and Cork (dashed line). 
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Note that for a 5 cm thick plasticine sample this error becomes about 20 %, while a 
considerable decrease is achieved for a low conductivity sample such as cork with the same 
thickness. These errors become lower for thicker samples, but rear surface temperature 
measurement can become difficult. Thus it can be concluded that practical applications of 
this method for thermal diffusivity measurement  can be achieved better for samples with 
thermal conductivities ranging between 10-2 and 10-1 W/mK. Although limited, in this range 
of values are included an important class of materials such as woods, foams, porous 
materials, etc. For these the thermally thick approximation can be reached with accuracy 
lower than 10 % for thicknesses below about 2-3 cm.  
Thermal diffusivity plays a very important role in non-stationary heat transfer problems 
because its value is very sensible to temperature and to structural and compositional 
changes in materials so that the development of techniques for its measurement is always 
impetuous. The above described method is simple and inexpensive, and renders reliable 
and precise results [Lara-Bernal et al., 2011]. The most important achievement of the 
method is that it cancels the influence of the heat losses by convection and radiation 
which is a handicap in other techniques because the difficulties for their experimental 
quantification. 

5. Conclusion  
Heat conduction in solids under time varying heating is a very interesting and important 
part of heat transfer from both, the phenomenological point of view and the practical 
applications in the field of thermal properties characterization. In this chapter a brief 
overview has been given for different kinds of thermal excitation. For each of them some 
interesting physical situations have been explained that are often misinterpreted by a 
general but also by specialized people. The incompatibility of the Fourier´s heat 
conduction model with the relativistic principle of the upper limit for the propagation 
velocity of signals imposed by the speed of light in vacuum was discussed, with emphasis 
of the limits of validity this approach and the corrections needed in situations where it is 
not applicable. Some applications of the thermal wave’s analogy with truly wave fields 
have been described as well as the principal peculiarities of the heat transfer in the 
presence of pulsed and transient heating. It has been shown that although the four 
fundamental thermal parameters are related to one another by two equations, each of 
them has its own meaning. While static and stationary phenomena are governed by 
parameters like specific heat and thermal conductivity respectively, under non-stationary 
conditions the thermal effusivity and diffusivity are the more important magnitudes. 
While the former plays a fundamental role in the case of a body exposed to a finite 
duration short pulse of heat and in problems involving the propagation of oscillating 
wave fields at interfaces between dissimilar media, thermal diffusivity becomes the most 
important thermophysical parameter to describe the mathematical form of the thermal 
wave field inside a body heated by a non-stationary Source. It is worth to be noticed that 
the special cases discussed here are not the only of interest for thermal science scientists. 
There are several open questions that merit particular attention. For example, due to 
different reasons (e.g. the use of synchronous detection in PT techniquess and 
consideration of only the long-term temperature distribution once the system has 
forgotten its initial conditions in the transient methods), in the majority of the works the 
oscillatory part of the generated signal and the transient contribution have been analyzed 
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and Lthin means that the sample thickness is such that it is thermally thin. If the front and/or 
rear temperatures (remember that both are the same for a thermally thin sample) are 
measured as a function of time during heating (and/or cooling) the value of r can be 
determined by fitting to the Eq. (69) (and/or Eq. (70)) and then, using Eq. (71), the specific 
heat capacity can be calculated if the sample´s thickness is known. This is the basis of the so-
called temperature relaxation method for measurement of C [Mansanares et al., 1990]. As we 
see from Eq. (71) precise knowledge of H is necessary. 
On the other hand, from Eq. (65) follows that measurement of the asymptotic values of rear 
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from which thermal conductivity could be determined. Note that the knowledge of the H 
value is here necessary too. 
From Eqs. (71) and (72) the thermal diffusivity value can be determined straightforwardly 
without the necessity of knowing H, i.e. it can calculated from the quotient [Marín et al., 
2011]: 
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Fig. 5 shows a kind of Heisler Plot [Heisler, 1947] of the percentile error associated to the 
thermally thick approximation as a function of the sample’s thickness using a typical value 
of H=26 W/m2 [Salazar et al., 2010] for a sample of plasticine (k=0.30 W/mK) and for a 
sample of cork (k=0.04 W/mK).  
 
 

 
 

Fig. 5. Heisler Plots for Plasticine (solid line) and Cork (dashed line). 
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Note that for a 5 cm thick plasticine sample this error becomes about 20 %, while a 
considerable decrease is achieved for a low conductivity sample such as cork with the same 
thickness. These errors become lower for thicker samples, but rear surface temperature 
measurement can become difficult. Thus it can be concluded that practical applications of 
this method for thermal diffusivity measurement  can be achieved better for samples with 
thermal conductivities ranging between 10-2 and 10-1 W/mK. Although limited, in this range 
of values are included an important class of materials such as woods, foams, porous 
materials, etc. For these the thermally thick approximation can be reached with accuracy 
lower than 10 % for thicknesses below about 2-3 cm.  
Thermal diffusivity plays a very important role in non-stationary heat transfer problems 
because its value is very sensible to temperature and to structural and compositional 
changes in materials so that the development of techniques for its measurement is always 
impetuous. The above described method is simple and inexpensive, and renders reliable 
and precise results [Lara-Bernal et al., 2011]. The most important achievement of the 
method is that it cancels the influence of the heat losses by convection and radiation 
which is a handicap in other techniques because the difficulties for their experimental 
quantification. 

5. Conclusion  
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part of heat transfer from both, the phenomenological point of view and the practical 
applications in the field of thermal properties characterization. In this chapter a brief 
overview has been given for different kinds of thermal excitation. For each of them some 
interesting physical situations have been explained that are often misinterpreted by a 
general but also by specialized people. The incompatibility of the Fourier´s heat 
conduction model with the relativistic principle of the upper limit for the propagation 
velocity of signals imposed by the speed of light in vacuum was discussed, with emphasis 
of the limits of validity this approach and the corrections needed in situations where it is 
not applicable. Some applications of the thermal wave’s analogy with truly wave fields 
have been described as well as the principal peculiarities of the heat transfer in the 
presence of pulsed and transient heating. It has been shown that although the four 
fundamental thermal parameters are related to one another by two equations, each of 
them has its own meaning. While static and stationary phenomena are governed by 
parameters like specific heat and thermal conductivity respectively, under non-stationary 
conditions the thermal effusivity and diffusivity are the more important magnitudes. 
While the former plays a fundamental role in the case of a body exposed to a finite 
duration short pulse of heat and in problems involving the propagation of oscillating 
wave fields at interfaces between dissimilar media, thermal diffusivity becomes the most 
important thermophysical parameter to describe the mathematical form of the thermal 
wave field inside a body heated by a non-stationary Source. It is worth to be noticed that 
the special cases discussed here are not the only of interest for thermal science scientists. 
There are several open questions that merit particular attention. For example, due to 
different reasons (e.g. the use of synchronous detection in PT techniquess and 
consideration of only the long-term temperature distribution once the system has 
forgotten its initial conditions in the transient methods), in the majority of the works the 
oscillatory part of the generated signal and the transient contribution have been analyzed 
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separately, with no attention to the combined signal that appears due to the well known 
fact that when a thermal wave is switched on, it takes some time until phase and 
amplitude have reached their final values. Nevertheless, it is expected that this chapter 
will help scientists who wish to carry out theoretical or experimental research in the field 
of heat transfer by conduction and thermal characterization of materials, as well as 
students and teachers requiring a solid formation in this area.  
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Heat Transfer and Reconnection Diffusion in
Turbulent Magnetized Plasmas

A. Lazarian
Department of Astronomy, University of Wisconsin-Madison
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1. Introduction

It is well known that magnetic fields constrain motions of charged particles, impeding the
diffusion of charged particles perpendicular to magnetic field direction. This modification
of transport processes is of vital importance for a wide variety of astrophysical processes
including cosmic ray transport, transfer of heavy elements in the interstellar medium, star
formation etc. Dealing with these processes one should keep in mind that, in realistic
astrophysical conditions, magnetized fluids are turbulent. In this review we single out a
particular transport process, namely, heat transfer and consider how it occurs in the presence
of the magnetized turbulence. We show that the ability of magnetic field lines to constantly
change topology and connectivity is at the heart of the correct description of the 3D magnetic
field stochasticity in turbulent fluids. This ability is ensured by fast magnetic reconnection
in turbulent fluids and puts forward the concept of reconnection diffusion at the core of
the physical picture of heat transfer in astrophysical plasmas. Appealing to reconnection
diffusion we describe the ability of plasma to diffuse between different magnetized eddies
explaining the advection of the heat by turbulence. Adopting the structure of magnetic field
that follows from the modern understanding of MHD turbulence, we also discuss thermal
conductivity that arises as electrons stream along stochastic magnetic field lines. We compare
the effective heat transport that arise from the two processes and conclude that, in many
astrophysically-motivated cases, eddy advection of heat dominates. Finally, we discuss the
concepts of sub and superdiffusion and show that the subdiffusion requires rather restrictive
settings. At the same time, accelerated diffusion or superdiffusion of heat perpendicular to
the mean magnetic field direction is possible on the scales less than the injection scale of the
turbulence.

2. Main idea and structure of the review

Heat transfer in turbulent magnetized plasma is an important astrophysical problem which
is relevant to the wide variety of circumstancies from mixing layers in the Local Bubble (see
Smith & Cox 2001) and Milky way (Begelman & Fabian 1990) to cooling flows in intracluster
medium (ICM) (Fabian 1994). The latter problem has been subjected to particular scrutiny
as observations do not support the evidence for the cool gas (see Fabian et al. 2001). This is
suggestive of the existence of heating that replenishes the energy lost via X-ray emission. Heat
transfer from hot outer regions is an important process to consider in this context.
It is well known that magnetic fields can suppress thermal conduction perpendicular to their
direction. However, this is true for laminar magnetic field, while astrophysical plasmas are
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generically turbulent (see Armstrong et al 1994, Chepurnov & Lazarian 2010). The issue of
heat transfer in realistic turbulent magnetic fields has been long debated (see Bakunin 2005
and references therein).
Below we argue that turbulence changes the very nature of the process of heat transfer.
To understand the differences between laminar and turbulent cases one should consider
both motion of charged particles along turbulent magnetic fields and turbulent motions of
magnetized plasma that also transfer heat. The description of both processes require the
knowledge of the dynamics of magnetic field lines and the structure of the magnetic field lines
in turbulent flows. The answers to these questions are provided by the theories of magnetic
reconnection and magnetic turbulence. To provide the quantitative estimates of the heat
transfer the review addresses both theories, discussing the generic process of reconnection
diffusion which describes the diffusion induced by the action of turbulent motions in the
presence of reconnection. We stress the fundamental nature of the process which apart from
heat transfer is also important e.g. for removing magnetic field in star formation process
(Lazarian 2005).
In §2 we discuss the omnipresence of turbulence in astrophysical fluids, introduce major ideas
of MHD turbulence theory and turbulent magnetic reconnection in §3 and §4, respectively,
relate the concept of reconnection diffusion to the processes of heat transfer in magnetized
plasmas in §5. We provide detailed discussion of heat conductivity via streaming electrons in
§6, consider heat advection by turbulent eddies in §7, and compare the efficiencies of the latter
two processes in §8. Finally, we discuss heat transfer on scales smaller than the turbulence
injection scale in §9 and provide final remarks in §10.

3. Magnetized turbulent astrophysical media

Astrophysical plasmas are known to be magnetized and turbulent. Magnetization of these
fluids most frequently arises from the dynamo action to which turbulence is an essential
component (see Schekochihin et al. 2007). In fact, it has been shown that turbulence in
weakly magnetized conducting fluid converts about ten percent of the energy of the cascade
into the magnetic field (see Cho et al. 2009). This fraction does not depend on the original
magnetization and therefore magnetic fields will come to equipartition with the turbulent
motions in about 10 eddy turnover times.
We deal with magnetohydrodynamic (MHD) turbulence which provides a correct fluid-type
description of plasma turbulence at large scales1. Astrophysical turbulence is a direct
consequence of large scale fluid motions experiencing low friction. This quantity is described
by Reynolds number Re ≡ LV/ν, where L is the scale of fluid motions, V is the velocity at this
scale and ν is fluid viscosity. The Reynolds numbers are typically very large in astrophysical
flows as the scales are large. As magnetic fields decrease the viscosity for the plasma motion
perpendicular to their direction, Re numbers get really astronomically large. For instance, Re
numbers of 1010 are very common for astrophysical flow. For so large Re the inner degrees of
fluid motion get excited and a complex pattern of motion develops.
The drivers of turbulence, e.g. supernovae explosions in the interstellar medium, inject energy
at large scales and then the energy cascades down to small scales through a hierarchy of eddies
spanning up over the entire inertial range. The famous Kolmogorov picture (Kolmogorov
1941) corresponds to hydrodynamic turbulence, but, as we discuss further, a qualitatively
similar turbulence also develops in magnetized fluids/plasmas.

1 It is possible to show that in terms magnetic field wandering that is important, as we see below, for heat
transfer the MHD description is valid in collisionless regime of magnetized plasmas (Eyink, Lazarian
& Vishniac (2011).
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Simulations of interstellar medium, accretion disks and other astrophysical environments also
produce turbulent picture, provided that the simulations are not dominated by numerical
viscosity. The latter requirement is, as we see below, is very important for the correct
reproduction of the astrophysical reality with computers.
The definitive confirmation of turbulence presence comes from observations, e.g. observations
of electron density fluctuations in the interstellar medium, which produce a so-called Big
Power Law in the Sky (Armstrong et al. 1994, Chepurnov & Lazarian 2010), with the spectral
index coinciding with the Kolmogorov one. A more direct piece of evidence comes from
the observations of spectral lines. Apart from showing non-thermal Doppler broadening,
they also reveal spectra of supersonic turbulent velocity fluctuations when analyzed with
techniques like Velocity Channel Analysis (VCA) of Velocity Coordinate Spectrum (VCS)
developed (see Lazarian & Pogosyan 2000, 2004, 2006, 2008) and applied to the observational
data (see Padoan et al. 2004, 2009, Chepurnov et al. 2010) rather recently.
All in all, the discussion above was aimed at conveying the message that the turbulent state
of magnetized astrophysical fluids is a rule and therefore the discussion of any properties
of astrophysical systems should take this state into account. We shall show below that
both magnetic reconnection and heat transfer in magnetized fluids are radically changed by
turbulence.

4. Strong and weak Alfvenic turbulence

For the purposes of heat transfer, Alfvenic perturbations are most important. Numerical
studies in Cho & Lazarian (2002, 2003) showed that the Alfvenic turbulence develops
an independent cascade which is marginally affected by the fluid compressibility. This
observation corresponds to theoretical expectations of the Goldreich & Sridhar (1995) theory
that we briefly describe below (see also Lithwick & Goldreich 2001). In this respect we
note that the MHD approximation is widely used to describe the actual magnetized plasma
turbulence over scales that are much larger than both the mean free path of the particles and
their Larmor radius (see Kulsrud 2004 and ref. therein). More generally, the most important
incompressible Alfenic part of the plasma motions can described by MHD even below the
mean free path (see Eyink et al. 2011 and ref. therein).
While having a long history of ideas, the theory of MHD turbulence has become testable
recently due to the advent numerical simulations (see Biskamp 2003) which confirm (see
Cho & Lazarian 2005 and ref. therein) the prediction of magnetized Alfvénic eddies being
elongated in the direction of magnetic field (see Shebalin, Matthaeus & Montgomery 1983,
Higdon 1984) and provided results consistent with the quantitative relations for the degree of
eddy elongation obtained in Goldreich & Sridhar (1995, henceforth GS95).
The hydrodynamic counterpart of the MHD turbulence theory is the famous Kolmogorov
theory of turbulence. In that theory, energy is injected at large scales, creating large eddies
which correspond to large Re numbers and therefore do not dissipate energy through
viscosity2 but transfer energy to smaller eddies. The process continues till the cascade reaches
the eddies that are small enough to dissipate energy over an eddy turnover time. In the
absence of compressibility the hydrodynamic cascade of energy is ∼ v2

l /τcasc,l = const, where
vl is the velocity at the scale l and the cascading time for the eddies of size l is τcask,l ≈ l/vl .
From this the well known relation vl ∼ l1/3 follows.

2 Reynolds number Re ≡ LV/ν = (V/L)/(ν/L2) which is the ratio of the eddy turnover rate
τ−1

eddy = V/L and the viscous dissipation rate τ−1
dis = η/L2. Therefore large Re correspond to negligible

viscous dissipation of large eddies over the cascading time τcasc which is equal to τeddy in Kolmogorov
turbulence.
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Modern MHD turbulence theory can also be understood in terms of eddies. However, in the
presence of dynamically important magnetic field, eddies cannot be isotropic. Any motions
bending magnetic field should induce a back-reaction and Alfven waves propagating along
the magnetic field. At the same time, one can imagine eddies mixing magnetic field lines
perpendicular to the direction of magnetic field. For the latter eddies the original Kolmogorov
treatment is applicable resulting perpendicular motions scaling as vl l

1/3
⊥ , where l⊥ denotes

scales measured perpendicular to magnetic field and correspond to the perpendicular size of
the eddy. These mixing motions induce Alfven waves which determine the parallel size of the
magnetized eddy. The key stone of the GS95 theory is critical balance, i.e. the equality of the
eddy turnover time l⊥/vl and the period of the corresponding Alfven wave ∼ l�/VA, where
l� is the parallel eddy scale and VA is the Alfven velocity. Making use of the earlier expression

for vl one can easily obtain l� ∼ l2/3
⊥ , which reflects the tendency of eddies to become more

and more elongated as energy cascades to smaller scales.
While the arguments above are far from being rigorous they correctly reproduce the basic
scalings of magnetized turbulence when the velocity equal to VA at the injection scale L. The
most serious argument against the picture is the ability of eddies to perform mixing motions
perpendicular to magnetic field. We shall address this issue in §3 but for now we just mention
in passing that strongly non-linear turbulence does not usually allow the exact derivations. It
is numerical experiments that proved the above scalings for incompressible MHD turbulence
(Cho & Vishniac 2000, Maron & Goldreich 2001, Cho, Lazarian & Vishniac 2002) and for the
Alfvenic component of the compressible MHD turbulence (Cho & Lazarian 2002, 2003, Kowal
& Lazarian 2010).
It is important to stress that the scales l⊥ and l� are measured in respect to the system
of reference related to the direction of the local magnetic field "seen" by the eddy. This
notion was not present in the original formulation of the GS95 theory and was added in
Lazarian & Vishniac (1999) (see also Cho & Vishniac 2000, Maron & Goldreich 2001, Cho et
al. 2002). In terms of mixing motions that we mentioned above it is rather obvious that the
free Kolmogorov-type mixing is possible only in respect to the local magnetic field of the eddy
rather than the mean magnetic field of the flow.
GS95 theory assumes the isotropic injection of energy at scale L and the injection velocity equal
to the Alfvén velocity in the fluid VA, i.e. the Alfvén Mach number MA ≡ (δV/VA) = 1. This
model can be easily generalized for both MA < 1 and MA > 1 at the injection (see Lazarian &
Vishniac 1999 and Lazarian 2006, respectively). Indeed, if MA > 1, instead of the driving scale
L for one can use another scale, namely lA, which is the scale at which the turbulent velocity
gets equal to VA. For MA � 1 magnetic fields are not dynamically important at the largest
scales and the turbulence at those scales follows the isotropic Kolmogorov cascade vl ∼ l1/3

over the range of scales [L, lA]. This provides lA ∼ LM−3
A . If MA < 1, the turbulence obeys

GS95 scaling (also called “strong” MHD turbulence) not from the scale L, but from a smaller
scale ltrans ∼ LM2

A (Lazarian & Vishniac 1999), while in the range [L, ltrans] the turbulence is
“weak”.
The properties of weak and strong turbulence are rather different. The weak turbulence
is wave-like turbulence with wave packets undergoing many collisions before transferring
energy to small scales3. On the contrary, the strong turbulence is eddy-like with cascading
happening similar to Kolmogorov turbulence within roughly an eddy turnover time. One
also should remember that the notion "strong" should not be associated with the amplitude
of turbulent motions, but only with the strength of the non-linear interaction. As the weak

3 Weak turbulence, unlike the strong one, allows an exact analytical treatment (Gaultier et al. 2002).
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turbulence evolves, the interactions of wave packets increases as the ratio of the parallel to
perpendicular scales of the packets increases making the turbulence strong. In this case, the
amplitude of the perturbations may be very small.
While there ongoing debates whether the original GS95 theory should be modified to better
describe MHD turbulence, we believe that, first of all, we do not have compelling evidence
that GS95 is not adequate4. Moreover, the proposed additions to the GS95 model do not
change the nature of the physical processes that we present below.
The quantitative picture of astrophysical turbulence sketched in this section gives us a way to
proceed with the quantitative description of key processes necessary to describe heat transfer.
The interaction of fundamental MHD modes within the cascade of compressible magnetized
turbulence is described in Cho & Lazarian (2005), but this interaction is not so important for
the processes of heat transfer that we discuss below.

5. Magnetic reconnection of turbulent magnetic flux

Magnetic reconnection is a fundamental process that violates magnetic flux being frozen in
within highly conductive fluids. Intuitively one may expect that magnetic fields in turbulent
fluids cannot be perfectly frozen in. Theory that we describe below provide quantitative
estimates of the violation of frozen in condition within turbulent fluids.
We would like to stress that the we are discussing the case of dynamically important magnetic
field, including the case of weakly turbulent magnetic field. The case of weak magnetic field
which can be easily stretched and bended by turbulence at any scale up to the dissipation one
is rather trivial and of little astrophysical significance5. At the same time, at sufficiently small
scales magnetic fields get dynamically important even for superAlfvenic turbulence.
Within the picture of eddies mixing perpendicular to the local magnetic field that we
provided in the previous section, it is suggestive that magnetized eddies can provide
turbulent advection of heat similar to the ordinary hydrodynamic eddies. This is rather
counter-intuitive notion in view of the well-entrenched idea of flux being frozen in
astrophysical fluids. As it is explained in Eyink et al. (2011) the frozen-in condition is not
a good approximation for the turbulent fluids6. The violation of the perfect frozenness of the
magnetic field in plasmas also follows from LV99 model of reconnection (see discussion in
Vishniac & Lazarian 1999).
A picture of two flux tubes of different directions which get into contact in 3D space is the
generic framework to describe magnetic reconnection. The upper panel of Figure 1 illustrates
why reconnection is so slow in the textbook Sweet-Parker model. Indeed, the model considers
magnetic fields that are laminar and therefore the frozen-in condition for magnetic field
is violated only over a thin layer dominated by plasma resistivity. The scales over which
the resistive diffusion is important are microscopic and therefore the layer is very thin, i.e.
Δ � Lx, where Lx is the scale at which magnetic flux tubes come into contact. The latter

4 Recent work by Beresnyak & Lazarian (2010) shows that present day numerical simulations are unable
to reveal the actual inertial range of MHD turbulence making the discussions of the discrepancies of the
numerically measured spectrum and the GS95 predictions rather premature. In addition, new higher
resolution simulations by Beresnyak (2011) reveal the predicted −5/3 spectral slope.

5 In the case of dynamically unimportant field, the magnetic dissipation and reconnection happens on
the scales of the Ohmic diffusion scale and the effects of magnetic field on the turbulent cascade are
negligible. However, turbulent motions transfer an appreciable portion of the cascading energy into
magnetic energy (see Cho et al. 2010). As a result, the state of intensive turbulence with negligible
magnetic field is short-lived.

6 Formal mathematical arguments on how and why the frozen-in condition fails may be found in Eyink
(2011).
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Modern MHD turbulence theory can also be understood in terms of eddies. However, in the
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3 Weak turbulence, unlike the strong one, allows an exact analytical treatment (Gaultier et al. 2002).
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a good approximation for the turbulent fluids6. The violation of the perfect frozenness of the
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A picture of two flux tubes of different directions which get into contact in 3D space is the
generic framework to describe magnetic reconnection. The upper panel of Figure 1 illustrates
why reconnection is so slow in the textbook Sweet-Parker model. Indeed, the model considers
magnetic fields that are laminar and therefore the frozen-in condition for magnetic field
is violated only over a thin layer dominated by plasma resistivity. The scales over which
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Fig. 1. Upper panel: Sweet-Parker reconnection. Δ is limited by resistivity and small. Middle
panel: reconnection according to LV99 model. Δ is determined by turbulent field wandering
and can be large. Lower panel: magnetic field reconnect over small scales. From Lazarian,
Vishniac & Cho (2004).

is of the order of the diameter of the flux tubes and typically very large for astrophysical
conditions. During the process of magnetic reconnection all the plasma and the shared
magnetic flux7 arriving over an astrophysical scale Lx should be ejected through a microscopic
slot of thickness Δ. As the ejection velocity of magnetized plasmas is limited by Alfven
velocity VA, this automatically means that the velocity in the vertical direction, which is
reconnection velocity, is much less than VA.
The LV99 model generalizes the Sweet-Parker one by accounting for the existence of magnetic
field line stochasticity (Figure 1 (lower panels)). The depicted turbulence is sub-Alfvenic
with relatively small fluctuations of the magnetic field. At the same time turbulence induces
magnetic field wandering. This wandering was quantified in LV99 and it depends on the
intensity of turbulence. The vertical extend of wandering of magnetic field lines that at any
point get into contact with the field of the other flux tube was identified in LV99 with the
width of the outflow region. Note, that magnetic field wandering is a characteristic feature of
magnetized turbulence in 3D. Therefore, generically in turbulent reconnection the outflow is
no more constrained by the narrow resistive layer, but takes place through a much wider area
Δ defined by wandering magnetic field lines. The extend of field wandering determines the
reconnection velocity in LV99 model.
An important consequence of the LV99 reconnection is that as turbulence amplitude increases,
the outflow region and therefore reconnection rate also increases, which entails the ability of

7 Figure 1 presents only a cross section of the 3D reconnection layer. A shared component of magnetic
field is going to be present in the generic 3D configurations of reconnecting magnetic flux tubes.
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reconnection to change its rate depending on the level of turbulence. The latter is important
both for understanding the dynamics of magnetic field in turbulent flow and for explaining
flaring reconnection events, e.g. solar flares.
We should note that the magnetic field wandering is mostly due to Alfvenic turbulence. To
describe the field wondering for weakly turbulent case LV99 extended the GS95 model for
a subAlfvenic case. The same field wandering8, as we discuss later, is important for heat
transfer by electrons streaming along magnetic field lines.
The predictions of the turbulent reconnection rates in LV99 were successfully tested 3D
numerical simualtions in Kowal et al. (2009) (see also Lazarian et al. 2010 for an example
of higher resolution runs). This testing provided stimulated work on the theory applications,
e.g. its implication for heat transfer. One should keep in mind that the LV model assumes that
the magnetic field flux tubes can come at arbitrary angle, which corresponds to the existence
of shared or guide field within the reconnection layer9.
Alternative models of magnetic reconnection appeal to different physics to overcome the
constraint of the Sweet-Parker model. In the Petcheck (1964) model of reconnection the
reconnection layer opens up to enable the outflow which thickness does not depend on
resistivity. To realize this idea inhomogeneous resistivity, e.g. anomalous resisitivity
associated with plasma effects, is required (see Shay & Drake 1998). However, for turbulent
plasmas, the effects arising from modifying the local reconnection events by introducing
anomalous resistivity are negligible as confirmed e.g. in Kowal et al. (2009). Other effects, e.g.
formation and ejection of plasmoids (see Shibata & Tanuma 2001, Lorreiro et al. 2008) which
may be important for initially laminar environments are not likely to play the dominant role
in turbulent plasmas either. Therefore in what follows dealing with turbulent transfer of hear
we shall appeal to the LV99 model of reconnection.

6. Reconnection diffusion and heat transfer

In the absence of the frozen-in condition in turbulent fluids one can talk about reconnection
diffusion in magnetized turbulent astrophysical plasmas. The concept of reconnection
diffusion is based on LV99 model and was first discussed in Lazarian (2005) in terms of
star formation10. However, reconnection diffusion is a much broader concept applicable to
different astrophysical processes, including heat transfer in magnetized plasmas. In what
follows we shall discuss several processes that enable heat transfer perpendicular to the mean
magnetic field in the flow.
The picture frequently presented in textbooks may be rather misleading. Indeed, it is widely
assumed that magnetic field lines always preserve their identify in highly conductive plasmas
even in turbulent flows. In this situation the diffusion of charged particles perpendicular to
magnetic field lines is very restricted. For instance, the mass loading of magnetic field lines

8 As discussed in LV99 and in more details in Eyink et al. (2011) the magnetic field wandering, turbulence
and magnetic reconnection are very tightly related concepts. Without magnetic reconnection, properties
of magnetic turbulence and magnetic field wandering would be very different. For instance, in the
absence of fast reconnection, the formation of magnetic knots arising if magnetic fields were not able to
reconnect would destroy the self-similar cascade of Alfvenic turbulence. The rates predicted by LV99
are exactly the rates required to make Goldreich-Sridhar model of turbulence self-consistent.

9 The model in LV99 is three dimensional and it is not clear to what extend it can be applied to
2D turbulence (see discussion in ELV11 and references therein). However, the cases of pure 2D
reconnection and 2D turbulence are of little practical importance.

10 Indeed, the issue of flux being conserved within the cloud presents a problem for collapse of clouds
with strong magnetic field. These clouds also called subcritical were believed to evolve with the rates
determined by the relative drift of neutrals and ions, i.e. the ambipolar diffusion rate.
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is of the order of the diameter of the flux tubes and typically very large for astrophysical
conditions. During the process of magnetic reconnection all the plasma and the shared
magnetic flux7 arriving over an astrophysical scale Lx should be ejected through a microscopic
slot of thickness Δ. As the ejection velocity of magnetized plasmas is limited by Alfven
velocity VA, this automatically means that the velocity in the vertical direction, which is
reconnection velocity, is much less than VA.
The LV99 model generalizes the Sweet-Parker one by accounting for the existence of magnetic
field line stochasticity (Figure 1 (lower panels)). The depicted turbulence is sub-Alfvenic
with relatively small fluctuations of the magnetic field. At the same time turbulence induces
magnetic field wandering. This wandering was quantified in LV99 and it depends on the
intensity of turbulence. The vertical extend of wandering of magnetic field lines that at any
point get into contact with the field of the other flux tube was identified in LV99 with the
width of the outflow region. Note, that magnetic field wandering is a characteristic feature of
magnetized turbulence in 3D. Therefore, generically in turbulent reconnection the outflow is
no more constrained by the narrow resistive layer, but takes place through a much wider area
Δ defined by wandering magnetic field lines. The extend of field wandering determines the
reconnection velocity in LV99 model.
An important consequence of the LV99 reconnection is that as turbulence amplitude increases,
the outflow region and therefore reconnection rate also increases, which entails the ability of

7 Figure 1 presents only a cross section of the 3D reconnection layer. A shared component of magnetic
field is going to be present in the generic 3D configurations of reconnecting magnetic flux tubes.
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reconnection to change its rate depending on the level of turbulence. The latter is important
both for understanding the dynamics of magnetic field in turbulent flow and for explaining
flaring reconnection events, e.g. solar flares.
We should note that the magnetic field wandering is mostly due to Alfvenic turbulence. To
describe the field wondering for weakly turbulent case LV99 extended the GS95 model for
a subAlfvenic case. The same field wandering8, as we discuss later, is important for heat
transfer by electrons streaming along magnetic field lines.
The predictions of the turbulent reconnection rates in LV99 were successfully tested 3D
numerical simualtions in Kowal et al. (2009) (see also Lazarian et al. 2010 for an example
of higher resolution runs). This testing provided stimulated work on the theory applications,
e.g. its implication for heat transfer. One should keep in mind that the LV model assumes that
the magnetic field flux tubes can come at arbitrary angle, which corresponds to the existence
of shared or guide field within the reconnection layer9.
Alternative models of magnetic reconnection appeal to different physics to overcome the
constraint of the Sweet-Parker model. In the Petcheck (1964) model of reconnection the
reconnection layer opens up to enable the outflow which thickness does not depend on
resistivity. To realize this idea inhomogeneous resistivity, e.g. anomalous resisitivity
associated with plasma effects, is required (see Shay & Drake 1998). However, for turbulent
plasmas, the effects arising from modifying the local reconnection events by introducing
anomalous resistivity are negligible as confirmed e.g. in Kowal et al. (2009). Other effects, e.g.
formation and ejection of plasmoids (see Shibata & Tanuma 2001, Lorreiro et al. 2008) which
may be important for initially laminar environments are not likely to play the dominant role
in turbulent plasmas either. Therefore in what follows dealing with turbulent transfer of hear
we shall appeal to the LV99 model of reconnection.

6. Reconnection diffusion and heat transfer

In the absence of the frozen-in condition in turbulent fluids one can talk about reconnection
diffusion in magnetized turbulent astrophysical plasmas. The concept of reconnection
diffusion is based on LV99 model and was first discussed in Lazarian (2005) in terms of
star formation10. However, reconnection diffusion is a much broader concept applicable to
different astrophysical processes, including heat transfer in magnetized plasmas. In what
follows we shall discuss several processes that enable heat transfer perpendicular to the mean
magnetic field in the flow.
The picture frequently presented in textbooks may be rather misleading. Indeed, it is widely
assumed that magnetic field lines always preserve their identify in highly conductive plasmas
even in turbulent flows. In this situation the diffusion of charged particles perpendicular to
magnetic field lines is very restricted. For instance, the mass loading of magnetic field lines

8 As discussed in LV99 and in more details in Eyink et al. (2011) the magnetic field wandering, turbulence
and magnetic reconnection are very tightly related concepts. Without magnetic reconnection, properties
of magnetic turbulence and magnetic field wandering would be very different. For instance, in the
absence of fast reconnection, the formation of magnetic knots arising if magnetic fields were not able to
reconnect would destroy the self-similar cascade of Alfvenic turbulence. The rates predicted by LV99
are exactly the rates required to make Goldreich-Sridhar model of turbulence self-consistent.

9 The model in LV99 is three dimensional and it is not clear to what extend it can be applied to
2D turbulence (see discussion in ELV11 and references therein). However, the cases of pure 2D
reconnection and 2D turbulence are of little practical importance.

10 Indeed, the issue of flux being conserved within the cloud presents a problem for collapse of clouds
with strong magnetic field. These clouds also called subcritical were believed to evolve with the rates
determined by the relative drift of neutrals and ions, i.e. the ambipolar diffusion rate.
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Fig. 2. Diffusion of plasma in inhomogeneous magnetic field. 3D magnetic flux tubes get into
contact and after reconnection plasma streams along magnetic field lines. Right panel: XY
projection before reconnection, upper panel shows that the flux tubes are at angle in X-Z
plane. Left Panel: after reconnection.

does not change to a high degree and density and magnetic field compressions follow each
other. All these assumptions are violated in the presence of reconnection diffusion.
We shall first illustrate the reconnection diffusion process showing how it allows plasma to
move perpendicular to the mean inhomogeneous magnetic field (see Figure 2). Magnetic flux
tubes with entrained plasmas intersect each other at an angle and due to reconnection the
identity of magnetic field lines change. Before the reconnection plasma pressure Pplasma in
the tubes is different, but the total pressure Pplasma + Pmagn is the same for two tubes. After
reconnection takes place, plasma streams along newly formed magnetic field lines to equalize
the pressure along two new flux tubes. The diffusion of plasmas and magnetic field takes
place. The effect of this process is to make magnetic field and plasmas more homogeneously
distributed in the absence of the external fields11. In terms of heat transfer, the process mixes
up plasma at different temperatures if the temperatures of plasma volumes along different
magnetic flux tubes were different.
If turbulence had only one scale of motions its action illustrated by Figure 2 would create every
flux tube columns of hot and cold gas exchanging heat with each other through the diffusion
of charged particles along magnetic field lines. This is not the case, however, for a turbulence

11 If this process acts in the presence of gravity, as this is the case of star formation, the heavy fluid (plasma)
will tend to get to the gravitating center changing the mass to flux ratio, which is important to star
formation processes. In other words, reconnection diffusion can do the job that is usually associated
with the action of ambipolar diffusion (see numerical simulations in Santos de Lima et al. (2010).
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Fig. 3. Exchange of plasma between magnetic eddies. Eddies carrying magnetic flux tubes
interact through reconnection of the magnetic field lines belonging to two different eddies.
This enables the exchange of matter between eddies and induces a sort of turbulent
diffusivity of matter and magnetic field.

with an extended inertial cascade. Such a turbulence would induce mixing depicted in Figure
2 on every scale, mixing plasma at smaller and smaller scales.
When plasma pressure along magnetic field flux tubes is the same, the connection of flux
tubes which takes place in turbulent media as shown in Figure 3 is still important for heat
transfer. The reconnected flux tubes illustrate the formation of the wandering magnetic field
lines along which electron and ions can diffuse transporting heat. For the sake of simplicity,
we shall assume that electrons and ions have the same temperature. In this situation, the
transfer of heat by ions is negligible and for the rest of the presentation we shall talk about the
transport of heat by electrons moving along wandering field lines12.
Consider the above process of reconnection diffusion in more detail. The eddies 1 and 2
interact through the reconnection of the magnetic flux tubes associated with eddies. LV99
model shows that in turbulent flows reconnection happens within one eddy turnover time,
thus ensuring that magnetic field does not prevent free mixing motions of fluid perpendicular
to the local direction of magnetic field. As a result of reconnection, the tube 1low11up

transforms into 2low12up and a tube 2low22up transforms into 1low21up. If eddy 1 was

12 This is true provided that the current of diffusing hot electrons is compensated by the current of
oppositely moving cold electrons, the diffusivity of electrons along wandering magnetic field lines
is dominant compared with the diffusivity and heat transfer by protons and heavier ions. If there is
no compensating current, electrons and ions are coupled by electric field and have to diffuse along
wandering magnetic fields together and at the same rate. This could be the case of diffusion of plasmas
into neutral gas. However, we do not discuss these complications here
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diffusivity of matter and magnetic field.

with an extended inertial cascade. Such a turbulence would induce mixing depicted in Figure
2 on every scale, mixing plasma at smaller and smaller scales.
When plasma pressure along magnetic field flux tubes is the same, the connection of flux
tubes which takes place in turbulent media as shown in Figure 3 is still important for heat
transfer. The reconnected flux tubes illustrate the formation of the wandering magnetic field
lines along which electron and ions can diffuse transporting heat. For the sake of simplicity,
we shall assume that electrons and ions have the same temperature. In this situation, the
transfer of heat by ions is negligible and for the rest of the presentation we shall talk about the
transport of heat by electrons moving along wandering field lines12.
Consider the above process of reconnection diffusion in more detail. The eddies 1 and 2
interact through the reconnection of the magnetic flux tubes associated with eddies. LV99
model shows that in turbulent flows reconnection happens within one eddy turnover time,
thus ensuring that magnetic field does not prevent free mixing motions of fluid perpendicular
to the local direction of magnetic field. As a result of reconnection, the tube 1low11up

transforms into 2low12up and a tube 2low22up transforms into 1low21up. If eddy 1 was

12 This is true provided that the current of diffusing hot electrons is compensated by the current of
oppositely moving cold electrons, the diffusivity of electrons along wandering magnetic field lines
is dominant compared with the diffusivity and heat transfer by protons and heavier ions. If there is
no compensating current, electrons and ions are coupled by electric field and have to diffuse along
wandering magnetic fields together and at the same rate. This could be the case of diffusion of plasmas
into neutral gas. However, we do not discuss these complications here
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Fig. 4. Heat diffusion depends on the scale of the hot spot. Different regimes emerge
depending on the relation of the hot spot to the sizes of maximal and minimal eddies present
in the turbulence cascade. Mean magnetic field B is directed perpendicular to the plane of
the drawing. Eddies perpendicular to magnetic field lines correspond to Alfvenic turbulence.
The plots illustrate heat diffusion for different regimes. Upper plot corresponds to the heat
spot being less than the minimal size of turbulent eddies; Middle plot corresponds to the heat
spot being less than the damping scale of turbulence; Lower plot corresponds to the heat spot
size within the inertial range of turbulent motions.

associated with hotter plasmas and eddy 2 with colder plasmas, then the newly formed
magnetic flux tubes will have both patches of hot and cold plasmas. For the hierarchy of
eddies the shedding of entrained plasmas into hot and cold patches along the same magnetic
field lines allows electron conductivity to remove the gradients, conducting heat. This is the
process of turbulent advection of heat in magnetized plasmas.
The difference between the processes depicted in Figures 2 and 3 is due to the fact that the
process in Figure 2 is limited by the thermal velocity of particles, while the process in Figure
3 depends upon the velocity of turbulent eddies only. In actual plasmas in the presence
of temperature gradients plasmas along different elementary flux tubes will have different
temperature and therefore two processes will take place simultaneously.
Whether the motion of electrons along wandering magnetic field lines or the dynamical
mixing induced by turbulence is more important depends on the ratio of eddy velocity to
the sonic one, the ratio of the turbulent motion scale to the mean free path of electrons and the
degree of plasma magnetization. Strong magnetization both limits the efficiency of turbulent
mixing perpendicular to magnetic field lines and the extent to which plasma streaming along
magnetic field lines moves perpendicular to the direction of the mean field. However, but
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reduction of heat transfer efficiency is different for the two processes. We provide quantitative
treatment of these processes in the next section.
An interesting example of practical interest is related to the diffusion of heat from a hot spot.
This case of reconnection diffusion is illustrated by Figure 4. In this situation heat transfer
depends on whether the scale of turbulent motions is larger or smaller than the hot spot.
Consider this situation in more detail. Turbulence is characterized by its injection scale Lmax,
its dissipation scale Lmin and its inertial range [Lmin, Lmax]. The heat transfer depends on
what scales we consider the process. Figure 4 illustrates our point. Consider a hot spot of
the size a in turbulent flow and consider Alfvenic eddies perpendicular to magnetic field
lines. If turbulent eddies are much smaller than a, which is the case when a � Lmin they
extend the hot spot acting in a random walk fashion. For eddies much larger than the hot
spot, i.e. a � Lmin they mostly advect hot spot. If a is the within the inertial range of
turbulent motions, i.e. Lmin < a < Lmax then a more complex dynamics of turbulent motions
is involved. This is also the case where the field wandering arising from these motions is
the most complex. Turbulent motions with the scale comparable with the hot spot induce a
process of the accelerated Richardson diffusion (see more in §10).
In terms of practical simulation of reconnection diffusion effects, it is important to keep in
mind that the LV99 model predicts that the largest eddies are the most important for providing
outflow in the reconnection zone and therefore the reconnection will not be substantially
changed if turbulence does not have an extended inertial range. In addition, LV99 predicts
that the effects of anomalous resistivity arising from finite numerical grids do not change the
rate of turbulent reconnection. We note that both effects were successfully tested in Kowal et
al. (2009).

7. Heat conduction through streaming of electrons

7.1 General considerations
As magnetic reconnection was considered by many authors even more mysterious than the
heat transfer in plasmas, it is not surprising that the advection of heat by turbulent eddies
was not widely discussed. Instead for many year the researchers preferred to consider heat
transfer by plasma conductivity along turbulent magnetic field lines (see Chandran & Cowley
1998, Malyshkin & Kulsrud 2001). This conductivity is mostly due to electrons streaming
along magnetic field lines. Turbulent magnetic field lines allow streaming electrons to diffuse
perpendicular to the mean magnetic field and spread due to the magnetic field wandering
that we discussed earlier. Therefore the description of magnetic field wandering obtained in
LV99 is also applicable for describing the processes of heat transfer.
We start with the case of trans-Alfvenic turbulence considered by Narayan & Medvedev
(2001, henceforth NM01). They appeal to magnetic field wandering and obtained estimates of
thermal conductivity by electrons for the special case of turbulence velocity VL at the energy
injection scale L that is equal to the Alfven velocity VA. As we discussed earlier this special
case is described by the original GS95 model and the Alfven Mach number MA ≡ (VL/VA) =
1. We note that this case is rather restrictive, as the intracuster medium (ICM) is superAlfvenic,
i.e. MA > 1, while other astrophysical situations, e.g. solar atmosphere, are subAlfvenic,
i.e. MA < 1. Different phases of interstellar medium (ISM) (see Draine & Lazarian 1998
and Yan, Lazarian & Draine 2004 for lists of idealized ISM phases) present the cases of both
superAlfvenic and subAlfvenic turbulence.
As we discussed above, the generalization of GS95 model of turbulence for subAlfvenic case
is provided in LV99. This was employed in Lazarian (2006) to describe heat conduction for
magnetized turbulent plasmas with MA < 1. In addition, Lazarian (2006) considered heat
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Fig. 4. Heat diffusion depends on the scale of the hot spot. Different regimes emerge
depending on the relation of the hot spot to the sizes of maximal and minimal eddies present
in the turbulence cascade. Mean magnetic field B is directed perpendicular to the plane of
the drawing. Eddies perpendicular to magnetic field lines correspond to Alfvenic turbulence.
The plots illustrate heat diffusion for different regimes. Upper plot corresponds to the heat
spot being less than the minimal size of turbulent eddies; Middle plot corresponds to the heat
spot being less than the damping scale of turbulence; Lower plot corresponds to the heat spot
size within the inertial range of turbulent motions.

associated with hotter plasmas and eddy 2 with colder plasmas, then the newly formed
magnetic flux tubes will have both patches of hot and cold plasmas. For the hierarchy of
eddies the shedding of entrained plasmas into hot and cold patches along the same magnetic
field lines allows electron conductivity to remove the gradients, conducting heat. This is the
process of turbulent advection of heat in magnetized plasmas.
The difference between the processes depicted in Figures 2 and 3 is due to the fact that the
process in Figure 2 is limited by the thermal velocity of particles, while the process in Figure
3 depends upon the velocity of turbulent eddies only. In actual plasmas in the presence
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mixing induced by turbulence is more important depends on the ratio of eddy velocity to
the sonic one, the ratio of the turbulent motion scale to the mean free path of electrons and the
degree of plasma magnetization. Strong magnetization both limits the efficiency of turbulent
mixing perpendicular to magnetic field lines and the extent to which plasma streaming along
magnetic field lines moves perpendicular to the direction of the mean field. However, but
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conduction by tubulence with MA > 1 as well as heat advection by turbulence and compares
the efficiencies of electron heat conduction and the heat transfer by turbulent motions.
Let us initially disregard the dynamics of fluid motions on diffusion, i.e. consider diffusion
induced by particles moving along wandering turbulent magnetic field lines, which motions
we disregard for the sake of simplicity. Magnetized turbulence with a dynamically important
magnetic field is anisotropic with eddies elongated along (henceforth denoted by �) the
direction of local magnetic field, i.e. l⊥ < l�, where ⊥ denotes the direction of perpendicular
to the local magnetic field. Consider isotropic injection of energy at the outer scale L and
dissipation at the scale l⊥,min. This scale corresponds to the minimal dimension of the
turbulent eddies.
Turbulence motions induce magnetic field divergence. It is easy to notice (LV99, NM01)
that the separations of magnetic field lines at small scales less than the damping scale of
turbulence, i.e. for r0 < l⊥,min, are mostly influenced by the motions at the smallest scale. This
scale l⊥,min results in Lyapunov-type growth ∼ r0 exp(l/l�,min). This growth is similar to that
obtained in earlier models with a single scale of turbulent motions (Rechester & Rosenbluth
1978, henceforth RR78, Chandran & Cowley 1998). Indeed, as the largest shear that causes
field line divergence is due to the marginally damped motions at the scale around l⊥,min
the effect of larger eddies can be neglected and we are dealing with the case of single-scale
"turbulence" described by RR78.
The electron Larmor radius presents the minimal perpendicular scale of localization. Thus it
is natural to associate r0 with the size of the cloud of electrons of the electron Larmor radius
rLar,particle. Applying the original RR78 theory (see also Chandran & Cowley 1998) they found
that the electrons should travel over the distance

LRR ∼ l�,min ln(l⊥,min/rLar,e) (1)

to get separated by l⊥,min.
Within the single-scale "turbulent model" which formally corresponds to Lss = l�,min = l⊥,min
the distance LRR is called Rechester-Rosenbluth distance. For the ICM parameters the
logarithmic factor in Eq. (1) is of the order of 30, and this causes 30 times decrease of thermal
conductivity for the single-scale models13.
The single-scale "turbulent model" is just a toy model to study effects of turbulent motions.
One can use this model, however, to describe what is happening below the scale of the smallest
eddies. Indeed, the shear and, correspondingly, magnetic field line divergence is maximal for
the marginally damped eddies at the dissipation scale. Thus for scales less than the damping
scale the action of the critically damped eddies is dominant.
In view of above, the realistic multi-scale turbulence with a limited (e.g. a few decades)
inertial range the single scale description is applicable for small scales up to the damping
scale. The logarithmic factor stays of the same order but instead of the injection scale Lss
for the single-scale RR model, one should use l�,min for the actual turbulence. Naturally, this
addition does not affect the thermal conductivity, provided that the actual turbulence injection
scale L is much larger than l�,min. Indeed, for the electrons to diffuse isotropically they should
spread from rLar,e to L. Alfvenic turbulence operates with field lines that are sufficiently stiff,
i.e. the deviation of the field lines from their original direction is of the order unity at scale
L and less for smaller scales. Therefore to get separated from the initial distance of l⊥,min to
a distance L (see Eq. (5) with MA = 1), at which the motions get uncorrelated, the electrons

13 For the single-scale model LRR ∼ 30L and the diffusion over distance Δ takes LRR/Lss steps, i.e. Δ2 ∼
LRRL, which decreases the corresponding diffusion coefficient κe,single ∼ Δ2/δt by the factor of 30.
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should diffuse the distance slightly larger (as field lines are not straight) than
√

2L. This is
much larger than the extra travel distance ∼ 30l�,min originating from sub-diffusive behavior
at scales less than the turbulence damping scale. Explicit calculations in NM01 support this
intuitive picture.

7.2 Diffusion for MA > 1
Turbulence with MA > 1 evolves along hydrodynamic isotropic Kolmogorov cascade, i.e.
Vl ∼ VL(l/L)1/3 over the range of scales [L, lA], where

lA ≈ L(VA/VL)
3 ≡ LM−3

A , (2)

is the scale at which the magnetic field gets dynamically important, i.e. Vl = VA. This scale
plays the role of the injection scale for the GS95 turbulence, i.e. Vl ∼ VA(l⊥/lA)

1/3, with
eddies at scales less than lA geting elongated in the direction of the local magnetic field. The
corresponding anisotropy can be characterized by the relation between the semi-major axes
of the eddies

l� ∼ L(l⊥/L)2/3M−1
A , MA > 1, (3)

where � and ⊥ are related to the direction of the local magnetic field. In other words, for
MA > 1, the turbulence is still isotropic at the scales larger to lA, but develops (l⊥/lA)

1/3

anisotropy for l < lA.
If particles (e.g. electrons) mean free path λ � lA, they stream freely over the distance of
lA. For particles initially at distance l⊥,min to get separated by L, the required travel is the
random walk with the step lA, i.e. the mean-squared displacement of a particle till it enters
an independent large-scale eddy Δ2 ∼ l2

A(L/lA), where L/lA is the number of steps. These
steps require time δt ∼ (L/lA)lA/C1ve, where vparticle is electron thermal velocity and the
coefficient C1 = 1/3 accounts for 1D character of motion along magnetic field lines. Thus the
electron diffusion coefficient is

κe ≡ Δ2/δt ≈ (1/3)lAve, lA < λ, (4)

which for lA � λ constitutes a substantial reduction of diffusivity compared to its
unmagnetized value κunmagn = λve. We assumed in Eq. (4) that L � 30l�,min (see §2.1).
For λ � lA � L, κe ≈ 1/3κunmagn as both the LRR and the additional distance for electron to
diffuse because of magnetic field being stiff at scales less than lA are negligible compared to L.
For lA → L, when magnetic field has rigidity up to the scale L, it gets around 1/5 of the value
in unmagnetized medium, according to NM01.

7.3 Diffusion for MA < 1
It is intuitively clear that for MA < 1 turbulence should be anisotropic from the injection scale
L. In fact, at large scales the turbulence is expected to be weak14 (see Lazarian & Vishniac
1999, henceforth LV99). Weak turbulence is characterized by wavepackets that do not change
their l�, but develop structures perpendicular to magnetic field, i.e. decrease l⊥ . This cannot
proceed indefinitely, however. At some small scale the GS95 condition of critical balance, i.e.
l�/VA ≈ l⊥/Vl , becomes satisfied. This perpendicular scale ltrans can be obtained substituting
the scaling of weak turbulence (see LV99) Vl ∼ VL(l⊥/L)1/2 into the critical balance condition.

14 The terms “weak” and “strong” turbulence are accepted in the literature, but can be confusing. As we
discuss later at smaller scales at which the turbulent velocities decrease the turbulence becomes strong.
The formal theory of weak turbulence is given in Galtier et al. (2000).
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This provides ltrans ∼ LM2
A and the corresponding velocity Vtrans ∼ VL MA. For scales less

than ltrans the turbulence is strong and it follows the scalings of the GS95-type, i.e. Vl ∼
VL(L/l⊥)−1/3M1/3

A and
l� ∼ L(l⊥/L)2/3M−4/3

A , MA < 1. (5)

For MA < 1, magnetic field wandering in the direction perpendicular to the mean magnetic
field (along y-axis) can be described by d�y2�/dx ∼ �y2�/l� (LV99), where15 l� is expressed by
Eq. (5) and one can associate l⊥ with 2�y2�

�y2�1/2 ∼ x3/2

33/2L1/2 M2
A, l⊥ < ltrans (6)

For weak turbulence d�y2�/dx ∼ LM4
A (LV99) and thus

�y2�1/2 ∼ L1/2x1/2M2
A, l⊥ > ltrans. (7)

Fig. 5 confirms the correctness of the above scaling numerically.
Eq. (6) differs by the factor M2

A from that in NM01, which reflects the gradual suppression
of thermal conductivity perpendicular to the mean magnetic field as the magnetic field gets
stronger. Physically this means that for MA < 1 the magnetic field fluctuates around the
well-defined mean direction. Therefore the diffusivity gets anisotropic with the diffusion
coefficient parallel to the mean field κ�,particle ≈ 1/3κunmagn being larger than coefficient for
diffusion perpendicular to magnetic field κ⊥,e.
Consider the coefficient κ⊥,e for MA � 1. As NM01 showed, particles become uncorrelated if
they are displaced over the distance L in the direction perpendicular to magnetic field. To do
this, a particle has first to travel LRR (see Eq. (1)), where Eq. (5) relates l�,min and l⊥,min. Similar
to the case in §2.1, for L � 30l�,min, the additional travel arising from the logarithmic factor is
negligible compared to the overall diffusion distance L. At larger scales electron has to diffuse
∼ L in the direction parallel to magnetic field to cover the distance of LM2

A in the direction
perpendicular to magnetic field direction. To diffuse over a distance R with random walk of
LM2

A one requires R2/L2M4
A steps. The time of the individual step is L2/κ�,e. Therefore the

perpendicular diffusion coefficient is

κ⊥,e = R2/(R2/[κ�,e M4
A]) = κ�,e M4

A, MA < 1, (8)

An essential assumption there is that the particles do not trace their way back over the
individual steps along magnetic field lines, i.e. LRR << L. Note, that for MA of the order
of unity this is not accurate and one should account for the actual 3D displacement. This
introduces the change by a factor of order unity (see above).

8. Transfer of heat through turbulent motions

As we discussed above, turbulent motions themselves can induce advective transport of heat.
Appealing to LV99 model of reconnection one can conclude that turbulence with MA ∼ 1
should be similar to hydrodynamic turbulence, i.e.

κdynamic ≈ CdynLVL, MA > 1, (9)

15 The fact that one gets l�,min in Eq. (1) is related to the presence of this scale in this diffusion equation.

218 Heat Conduction – Basic Research Heat Transfer and Reconnection Diffusion in Turbulent Magnetized Plasmas 15

Fig. 5. Root mean square separation of field lines in a simulation of inviscid MHD
turbulence, as a function of distance parallel to the mean magnetic field, for a range of initial
separations. Each curve represents 1600 line pairs. The simulation has been filtered to
remove pseudo-Alfvén modes, which introduce noise into the diffusion calculation. From
Lazarian, Vishniac & Cho 2004.

where Cdyn ∼ 0(1) is a constant, which for hydro turbulence is around 1/3 (Lesieur 1990). This
was confirmed in Cho et al. (2003) (see Figure 6 and also Cho & Lazarian 2004) where MHD
calculations were performed for transAlfvenic turbulence with MA ∼ 1. As large scale eddies
of superAlfvenic turbulence are essentially hydrodynamic, the correspondence between the
ordinary hydrodynamic heat advection and superAlfvenic one should only increase as MA
increases.
If we deal with heat transport, for fully ionized non-degenerate plasmas we assume Cdyn ≈
2/3 to account for the advective heat transport by both protons and electrons16. Thus eq. (9)
covers the cases of both MA > 1 up to MA ∼ 1. For MA < 1 one can estimate κdynamic ∼ d2ω,
where d is the random walk of the field line over the wave period ∼ ω−1. As the weak
turbulence at scale L evolves over time τ ∼ M−2

A ω−1, �y2� is the result of the random walk

16 This becomes clear if one uses the heat flux equation q = −κc � T, where κc = nkBκdynamic/electr,
n is electron number density, and kB is the Boltzmann constant, for both electron and advective heat
transport.
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this, a particle has first to travel LRR (see Eq. (1)), where Eq. (5) relates l�,min and l⊥,min. Similar
to the case in §2.1, for L � 30l�,min, the additional travel arising from the logarithmic factor is
negligible compared to the overall diffusion distance L. At larger scales electron has to diffuse
∼ L in the direction parallel to magnetic field to cover the distance of LM2

A in the direction
perpendicular to magnetic field direction. To diffuse over a distance R with random walk of
LM2

A one requires R2/L2M4
A steps. The time of the individual step is L2/κ�,e. Therefore the

perpendicular diffusion coefficient is

κ⊥,e = R2/(R2/[κ�,e M4
A]) = κ�,e M4

A, MA < 1, (8)

An essential assumption there is that the particles do not trace their way back over the
individual steps along magnetic field lines, i.e. LRR << L. Note, that for MA of the order
of unity this is not accurate and one should account for the actual 3D displacement. This
introduces the change by a factor of order unity (see above).

8. Transfer of heat through turbulent motions

As we discussed above, turbulent motions themselves can induce advective transport of heat.
Appealing to LV99 model of reconnection one can conclude that turbulence with MA ∼ 1
should be similar to hydrodynamic turbulence, i.e.

κdynamic ≈ CdynLVL, MA > 1, (9)

15 The fact that one gets l�,min in Eq. (1) is related to the presence of this scale in this diffusion equation.

218 Heat Conduction – Basic Research Heat Transfer and Reconnection Diffusion in Turbulent Magnetized Plasmas 15

Fig. 5. Root mean square separation of field lines in a simulation of inviscid MHD
turbulence, as a function of distance parallel to the mean magnetic field, for a range of initial
separations. Each curve represents 1600 line pairs. The simulation has been filtered to
remove pseudo-Alfvén modes, which introduce noise into the diffusion calculation. From
Lazarian, Vishniac & Cho 2004.

where Cdyn ∼ 0(1) is a constant, which for hydro turbulence is around 1/3 (Lesieur 1990). This
was confirmed in Cho et al. (2003) (see Figure 6 and also Cho & Lazarian 2004) where MHD
calculations were performed for transAlfvenic turbulence with MA ∼ 1. As large scale eddies
of superAlfvenic turbulence are essentially hydrodynamic, the correspondence between the
ordinary hydrodynamic heat advection and superAlfvenic one should only increase as MA
increases.
If we deal with heat transport, for fully ionized non-degenerate plasmas we assume Cdyn ≈
2/3 to account for the advective heat transport by both protons and electrons16. Thus eq. (9)
covers the cases of both MA > 1 up to MA ∼ 1. For MA < 1 one can estimate κdynamic ∼ d2ω,
where d is the random walk of the field line over the wave period ∼ ω−1. As the weak
turbulence at scale L evolves over time τ ∼ M−2

A ω−1, �y2� is the result of the random walk

16 This becomes clear if one uses the heat flux equation q = −κc � T, where κc = nkBκdynamic/electr,
n is electron number density, and kB is the Boltzmann constant, for both electron and advective heat
transport.
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Fig. 6. Comparison of the heat diffusion with time for hydro turbulence (left panel) and
MHD transAlfvenic turbulence (right panel). Different curves correspond to different runs.
From Cho et al. (2003).

with a step d, i.e. �y2� ∼ (τω)d2. According to eq.(6) and (7), the field line is displaced over
time τ by �y2� ∼ LM4

AVAτ. Combining the two one gets d2 ∼ LM3
AVLω−1, which provides

κweak
dynamic ≈ CdynLVL M3

A, which is similar to the diffusivity arising from strong turbulence at

scales less than ltrans, i.e. κ
strong
dynamic ≈ CdynltransVtrans. The total diffusivity is the sum of the two,

i.e. for plasma
κdynamic ≈ (β/3)LVL M3

A, MA < 1, (10)

where β ≈ 4.

9. Relative importance of two processes

9.1 General treatment
Figure 7 illustrates the existing ideas on processes of heat conduction in astrophysical plasmas.
They range from the heat insulation by unrealistically laminar magnetic field (see panel (a)),
to heat diffusion in turbulent magnetic field (see panel (b)) and to heat advection by turbulent
flows (see panel (c)). The relative efficiencies of the two latter processes depend on parameters
of turbulent plasma.
In thermal plasma, electrons are mostly responsible for thermal conductivity. The schematic
of the parameter space for κparticle < κdynamic is shown in Fig 8, where the the Mach number
Ms and the Alfven Mach number MA are the variables. For MA < 1, the ratio of diffusivities
arising from fluid and particle motions is κdynamic/κparticle ∼ βαMS MA(L/λ) (see Eqs. (8)
and (10)), the square root of the ratio of the electron to proton mass α = (me/mp)1/2, which
provides the separation line between the two regions in Fig. 2, βαMs ∼ (λ/L)MA. For
1 < MA < (L/λ)1/3 the mean free path is less than lA which results in κparticle being some
fraction of κunmagn, while κdynamic is given by Eq. (9). Thus κdynamic/κparticle ∼ βαMs(L/λ),
i.e. the ratio does not depend on MA (horisontal line in Fig. 2). When MA > (L/λ)1/3 the
mean free path of electrons is constrained by lA. In this case κdynamic/κparticle ∼ βαMs M3

A (see
Eqs. (9) and (4)) . This results in the separation line βαMs ∼ M−3

A in Fig. 8.
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Fig. 7. (a) The textbook description of confinement of charged particles in magnetic fields; (b)
diffusion of particles in turbulent fields; (c) advection of heat from a localized souce by
eddies in MHD numerical simulations. From Cho & Lazarian 2004.

9.2 Application to ICM plasmas
Consider plasmas in clusters of galaxies to illustrate the relative importance of two processes
of heat transfer. Below we shall provide evidence that magnetized Intracluster Medium (ICM)
is turbulent and therefore our considerations above should be applicable.
It is generally believed that ICM plasma is turbulent. However, naive estimates of diffusivity
for collisionless plasma provide numbers which may cast doubt on this conclusion. Indeed,
in unmagnatized plasma with the ICM temperatures T ∼ 108 K and and density 10−3 cm−3

the kinematic viscosity ηunmagn ∼ vionλion, where vion and λion are the velocity of an ion and
its mean free path, respectively, would make the Reynolds number Re ≡ LVL/ηunmagn of the
order of 30. This is barely enough for the onset of turbulence. For the sake of simplicity we
assume that ion mean free path coincides with the proton mean free path and both scale as
λ ≈ 3T2

3 n−1
−3 kpc, where the temperature T3 ≡ kT/3 keV and n−3 ≡ n/10−3 cm−3. This

provides λ of the order of 0.8–1 kpc for the ICM (see NM01). We shall argue that the above
low estimate of Re is an artifact of our neglecting magnetic field.
In general, a single value of Re uniquely characterizes hydrodynamic flows. The case of
magnetized plasma is very different as the diffusivities of protons parallel and perpendicular
to magnetic fields are different. The diffusion of protons perpendicular to the local magnetic
field is usually very slow. Such a diffusion arises from proton scattering. Assuming the
maximal scattering rate of an proton, i.e. scattering every orbit (the so-called Bohm diffusion
limit) one gets the viscosity perpendicular to magnetic field η⊥ ∼ vionrLar,ion, which is much
smaller than ηunmagn, provided that the ion Larmor radius rLar,ion � λion. For the parameters
of the ICM this allows essentially inviscid fluid motions17 of magnetic lines parallel to each
other, e.g. Alfven motions.

17 A regular magnetic field Bλ ≈ (2mkT)1/2c/(eλ) that makes rLar,ion less than λ and therefore η⊥ <
νunmagn is just 10−20 G. Turbulent magnetic field with many reversals over rLar,ion does not interact
efficiently with a proton, however. As the result, the protons are not constrained until lA gets
of the order of rLar,ion. This happens when the turbulent magnetic field is of the order of 2 ×
10−9(VL/103km/s) G. At this point, the step for the random walk is ∼ 2 × 10−6 pc and the Reynolds
number is 5 × 1010.
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Fig. 6. Comparison of the heat diffusion with time for hydro turbulence (left panel) and
MHD transAlfvenic turbulence (right panel). Different curves correspond to different runs.
From Cho et al. (2003).
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i.e. for plasma
κdynamic ≈ (β/3)LVL M3
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where β ≈ 4.

9. Relative importance of two processes

9.1 General treatment
Figure 7 illustrates the existing ideas on processes of heat conduction in astrophysical plasmas.
They range from the heat insulation by unrealistically laminar magnetic field (see panel (a)),
to heat diffusion in turbulent magnetic field (see panel (b)) and to heat advection by turbulent
flows (see panel (c)). The relative efficiencies of the two latter processes depend on parameters
of turbulent plasma.
In thermal plasma, electrons are mostly responsible for thermal conductivity. The schematic
of the parameter space for κparticle < κdynamic is shown in Fig 8, where the the Mach number
Ms and the Alfven Mach number MA are the variables. For MA < 1, the ratio of diffusivities
arising from fluid and particle motions is κdynamic/κparticle ∼ βαMS MA(L/λ) (see Eqs. (8)
and (10)), the square root of the ratio of the electron to proton mass α = (me/mp)1/2, which
provides the separation line between the two regions in Fig. 2, βαMs ∼ (λ/L)MA. For
1 < MA < (L/λ)1/3 the mean free path is less than lA which results in κparticle being some
fraction of κunmagn, while κdynamic is given by Eq. (9). Thus κdynamic/κparticle ∼ βαMs(L/λ),
i.e. the ratio does not depend on MA (horisontal line in Fig. 2). When MA > (L/λ)1/3 the
mean free path of electrons is constrained by lA. In this case κdynamic/κparticle ∼ βαMs M3

A (see
Eqs. (9) and (4)) . This results in the separation line βαMs ∼ M−3

A in Fig. 8.
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Fig. 7. (a) The textbook description of confinement of charged particles in magnetic fields; (b)
diffusion of particles in turbulent fields; (c) advection of heat from a localized souce by
eddies in MHD numerical simulations. From Cho & Lazarian 2004.

9.2 Application to ICM plasmas
Consider plasmas in clusters of galaxies to illustrate the relative importance of two processes
of heat transfer. Below we shall provide evidence that magnetized Intracluster Medium (ICM)
is turbulent and therefore our considerations above should be applicable.
It is generally believed that ICM plasma is turbulent. However, naive estimates of diffusivity
for collisionless plasma provide numbers which may cast doubt on this conclusion. Indeed,
in unmagnatized plasma with the ICM temperatures T ∼ 108 K and and density 10−3 cm−3

the kinematic viscosity ηunmagn ∼ vionλion, where vion and λion are the velocity of an ion and
its mean free path, respectively, would make the Reynolds number Re ≡ LVL/ηunmagn of the
order of 30. This is barely enough for the onset of turbulence. For the sake of simplicity we
assume that ion mean free path coincides with the proton mean free path and both scale as
λ ≈ 3T2

3 n−1
−3 kpc, where the temperature T3 ≡ kT/3 keV and n−3 ≡ n/10−3 cm−3. This

provides λ of the order of 0.8–1 kpc for the ICM (see NM01). We shall argue that the above
low estimate of Re is an artifact of our neglecting magnetic field.
In general, a single value of Re uniquely characterizes hydrodynamic flows. The case of
magnetized plasma is very different as the diffusivities of protons parallel and perpendicular
to magnetic fields are different. The diffusion of protons perpendicular to the local magnetic
field is usually very slow. Such a diffusion arises from proton scattering. Assuming the
maximal scattering rate of an proton, i.e. scattering every orbit (the so-called Bohm diffusion
limit) one gets the viscosity perpendicular to magnetic field η⊥ ∼ vionrLar,ion, which is much
smaller than ηunmagn, provided that the ion Larmor radius rLar,ion � λion. For the parameters
of the ICM this allows essentially inviscid fluid motions17 of magnetic lines parallel to each
other, e.g. Alfven motions.

17 A regular magnetic field Bλ ≈ (2mkT)1/2c/(eλ) that makes rLar,ion less than λ and therefore η⊥ <
νunmagn is just 10−20 G. Turbulent magnetic field with many reversals over rLar,ion does not interact
efficiently with a proton, however. As the result, the protons are not constrained until lA gets
of the order of rLar,ion. This happens when the turbulent magnetic field is of the order of 2 ×
10−9(VL/103km/s) G. At this point, the step for the random walk is ∼ 2 × 10−6 pc and the Reynolds
number is 5 × 1010.
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Fig. 8. Parameter space for particle diffusion or turbulent diffusion to dominate: application
to heat transfer. Sonic Mach number Ms is ploted against the Alfven Mach number MA. The
heat transport is dominated by the dynamics of turbulent eddies is above the curve (area
denoted "dynamic turbulent transport") and by thermal conductivity of electrons is below
the curve (area denoted "electron heat transport"). Here λ is the mean free path of the
electron, L is the driving scale, and α = (me/mp)1/2, β ≈ 4. Example of theory application: The
panel in the right upper corner of the figure illustrates heat transport for the parameters for a
cool core Hydra cluster (point “F”), “V” corresponds to the illustrative model of a cluster core
in Ensslin et al. (2005). Relevant parameters were used for L and λ. From Lazarian (2006).

In spite of the substantial progress in understading of the ICM (see Enßlin, Vogt & Pfrommer
2005, henceforth EVP05, Enßlin & Vogt 2006, henceforth EV06 and references therein), the
basic parameters of ICM turbulence are known within the factor of 3 at best. For instance, the
estimates of injection velocity VL varies in the literature from 300 km/s to 103 km/s, while the
injection scale L varies from 20 kpc to 200 kpc, depending whether the injection of energy by
galaxy mergers or galaxy wakes is considered. EVP05 considers an illustrative model in which
the magnetic field with the 10 μG fills 10% of the volume, while 90% of the volume is filled
with the field of B ∼ 1 μG. Using the latter number and assuming VL = 103 km/s, L = 100
kpc, and the density of the hot ICM is 10−3 cm−3, one gets VA ≈ 70 km/s, i.e. MA > 1. Using
the numbers above, one gets lA ≈ 30 pc for the 90% of the volume of the hot ICM, which is
much less than λion. The diffusivity of ICM plasma gets η = vionlA which for the parameters
above provides Re ∼ 2 × 103, which is enough for driving superAlfvenic turbulence at the
outer scale L. However, as lA increases as ∝ B3, Re gets around 50 for the field of 4 μG, which
is at the border line of exciting turbulence18. However, the regions with higher magnetic fields

18 One can imagine dynamo action in which superAlfvenic turbulence generates magnetic field till lA gets
large enough to shut down the turbulence.
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(e.g. 10 μG) can support Alfvenic-type turbulence with the injection scale lA and the injection
velocities resulting from large-scale shear VL(lA/L) ∼ VL M−3

A .
For the regions of B ∼ 1 μG the value of lA is smaller than the mean free path of electrons
λ. According to Eq. (4) the value of κelectr is 100 times smaller than κSpitzer. On the contrary,
κdynamic for the ICM parameters adopted will be ∼ 30κSpitzer, which makes the heat transfer
by turbulent motions the dominant process. This agrees well with the observations in Voigt
& Fabian (2004). Fig. 2 shows the dominance of advective heat transfer for the parameters of
the cool core of Hydra A ( B = 6 μG, n = 0.056 cm−3, L = 40 kpc, T = 2.7 keV according to
EV06), point “F”, and for the illustrative model in EVP05, point “V”, for which B = 1 μG (see
also Lazarian 2006).
Note that our stationary model of MHD turbulence is not directly applicable to transient
wakes behind galaxies. The ratio of the damping times of the hydro turbulence and the
time of straightening of the magnetic field lines is ∼ M−1

A . Thus, for MA > 1, the magnetic
field at scales larger than lA will be straightening gradually after the hydro turbulence has
faded away over time L/VL. The process can be characterized as injection of turbulence at
velocity VA but at scales that increase linearly with time, i.e. as lA + VAt. The study of heat
transfer in transient turbulence and magnetic field “regularly” stretched by passing galaxies
is an interesting process that requires further investigation.

10. Richardson diffusion and superdiffusion on small scales

All the discussion above assumed that we deal with diffusion within magnetized plasmas
over the scales much larger than the turbulence injection scale L. Below we show that on the
scales less than L we deal with non-stationary processes.

10.1 Richardson-type advection of heat
The advection of heat on scales less than the turbulent injection scale L happens through
smaller scale eddies. Thus the earlier estimate of turbulent diffusion of heat in terms of the
injection velocity and the injection scale does not apply. In the lab system of reference the
transfer of heat is difficult to describe and one should use the Lagrangian description.
One can consider two-particle turbulent diffusion or Richardson diffusion by dealing with
the separation �(t) = x(t)− x�(t) between a pair of Lagrangian fluid particles (see Eyink et
al. 2011). It was proposed by Richardson (1926) that this separation grows in turbulent flow
according to the formula

d
dt
��i(t)�j(t)� = �κdynanic,ij(�)� (11)

with a scale-dependent eddy-diffusivity κdynamic(�). In hydrodynamic turbulence Richardson
deduced that κdynamic(�) ∼ ε1/3�4/3 (see Obukhov 1941) and thus �2(t) ∼ εt3. An analytical
formula for the 2-particle eddy-diffusivity was derived by Batchelor (1950) and Kraichnan
(1966):

κdynamic,ij(�) =
∫ 0

−∞
dt�δUi(�, 0)δUj(�, t)� (12)

with δUi(�, t) ≡ Ui(x + �, t)− Ui(x, t) the relative velocity at time t of a pair of fluid particles
which were at positions x and x + � at time 0.
How can one understand these results? Consider a hot spot of the size l in a turbulent
flow. The spot is going to be mostly expanded by turbulent eddies of size l. The turbulent
velocity u(l) = d

dt l(t) for Kolmogorov turbulence is proportional to l1/3. Performing formal
integration one gets an asymptotic solution for large time scales l2(t) ∼ t3, which corresponds

223Heat Transfer and Reconnection Diffusion in Turbulent Magnetized Plasmas



18 Will-be-set-by-IN-TECH

Fig. 8. Parameter space for particle diffusion or turbulent diffusion to dominate: application
to heat transfer. Sonic Mach number Ms is ploted against the Alfven Mach number MA. The
heat transport is dominated by the dynamics of turbulent eddies is above the curve (area
denoted "dynamic turbulent transport") and by thermal conductivity of electrons is below
the curve (area denoted "electron heat transport"). Here λ is the mean free path of the
electron, L is the driving scale, and α = (me/mp)1/2, β ≈ 4. Example of theory application: The
panel in the right upper corner of the figure illustrates heat transport for the parameters for a
cool core Hydra cluster (point “F”), “V” corresponds to the illustrative model of a cluster core
in Ensslin et al. (2005). Relevant parameters were used for L and λ. From Lazarian (2006).

In spite of the substantial progress in understading of the ICM (see Enßlin, Vogt & Pfrommer
2005, henceforth EVP05, Enßlin & Vogt 2006, henceforth EV06 and references therein), the
basic parameters of ICM turbulence are known within the factor of 3 at best. For instance, the
estimates of injection velocity VL varies in the literature from 300 km/s to 103 km/s, while the
injection scale L varies from 20 kpc to 200 kpc, depending whether the injection of energy by
galaxy mergers or galaxy wakes is considered. EVP05 considers an illustrative model in which
the magnetic field with the 10 μG fills 10% of the volume, while 90% of the volume is filled
with the field of B ∼ 1 μG. Using the latter number and assuming VL = 103 km/s, L = 100
kpc, and the density of the hot ICM is 10−3 cm−3, one gets VA ≈ 70 km/s, i.e. MA > 1. Using
the numbers above, one gets lA ≈ 30 pc for the 90% of the volume of the hot ICM, which is
much less than λion. The diffusivity of ICM plasma gets η = vionlA which for the parameters
above provides Re ∼ 2 × 103, which is enough for driving superAlfvenic turbulence at the
outer scale L. However, as lA increases as ∝ B3, Re gets around 50 for the field of 4 μG, which
is at the border line of exciting turbulence18. However, the regions with higher magnetic fields

18 One can imagine dynamo action in which superAlfvenic turbulence generates magnetic field till lA gets
large enough to shut down the turbulence.
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(e.g. 10 μG) can support Alfvenic-type turbulence with the injection scale lA and the injection
velocities resulting from large-scale shear VL(lA/L) ∼ VL M−3

A .
For the regions of B ∼ 1 μG the value of lA is smaller than the mean free path of electrons
λ. According to Eq. (4) the value of κelectr is 100 times smaller than κSpitzer. On the contrary,
κdynamic for the ICM parameters adopted will be ∼ 30κSpitzer, which makes the heat transfer
by turbulent motions the dominant process. This agrees well with the observations in Voigt
& Fabian (2004). Fig. 2 shows the dominance of advective heat transfer for the parameters of
the cool core of Hydra A ( B = 6 μG, n = 0.056 cm−3, L = 40 kpc, T = 2.7 keV according to
EV06), point “F”, and for the illustrative model in EVP05, point “V”, for which B = 1 μG (see
also Lazarian 2006).
Note that our stationary model of MHD turbulence is not directly applicable to transient
wakes behind galaxies. The ratio of the damping times of the hydro turbulence and the
time of straightening of the magnetic field lines is ∼ M−1

A . Thus, for MA > 1, the magnetic
field at scales larger than lA will be straightening gradually after the hydro turbulence has
faded away over time L/VL. The process can be characterized as injection of turbulence at
velocity VA but at scales that increase linearly with time, i.e. as lA + VAt. The study of heat
transfer in transient turbulence and magnetic field “regularly” stretched by passing galaxies
is an interesting process that requires further investigation.

10. Richardson diffusion and superdiffusion on small scales

All the discussion above assumed that we deal with diffusion within magnetized plasmas
over the scales much larger than the turbulence injection scale L. Below we show that on the
scales less than L we deal with non-stationary processes.

10.1 Richardson-type advection of heat
The advection of heat on scales less than the turbulent injection scale L happens through
smaller scale eddies. Thus the earlier estimate of turbulent diffusion of heat in terms of the
injection velocity and the injection scale does not apply. In the lab system of reference the
transfer of heat is difficult to describe and one should use the Lagrangian description.
One can consider two-particle turbulent diffusion or Richardson diffusion by dealing with
the separation �(t) = x(t)− x�(t) between a pair of Lagrangian fluid particles (see Eyink et
al. 2011). It was proposed by Richardson (1926) that this separation grows in turbulent flow
according to the formula

d
dt
��i(t)�j(t)� = �κdynanic,ij(�)� (11)

with a scale-dependent eddy-diffusivity κdynamic(�). In hydrodynamic turbulence Richardson
deduced that κdynamic(�) ∼ ε1/3�4/3 (see Obukhov 1941) and thus �2(t) ∼ εt3. An analytical
formula for the 2-particle eddy-diffusivity was derived by Batchelor (1950) and Kraichnan
(1966):

κdynamic,ij(�) =
∫ 0

−∞
dt�δUi(�, 0)δUj(�, t)� (12)

with δUi(�, t) ≡ Ui(x + �, t)− Ui(x, t) the relative velocity at time t of a pair of fluid particles
which were at positions x and x + � at time 0.
How can one understand these results? Consider a hot spot of the size l in a turbulent
flow. The spot is going to be mostly expanded by turbulent eddies of size l. The turbulent
velocity u(l) = d

dt l(t) for Kolmogorov turbulence is proportional to l1/3. Performing formal
integration one gets an asymptotic solution for large time scales l2(t) ∼ t3, which corresponds
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to the Richardson diffusion law. Physically, as the hot spot extends, it is getting sheared by
larger and eddies, which induce the accelerated expansion of the hot spot.
For magnetic turbulence the Kolmogorov-like description is valid for motions induced by
strong Alfvenic turbulence in the direction perpendicular to the direction of the local magnetic
field19. Thus we expect that Richardson diffusion to be applicable to the magnetized
turbulence case.

10.2 Superdiffusion of heat perpendicular to mean magnetic field
The effects related to the diffusion of heat via electron streaming along magnetic field lines
are different when the problem is considered at scales � L and � L. This difference is
easy to understand as on small scales magnetized eddies are very elongated, which means
that the magnetic field lines are nearly parallel. However, as electrons diffuse into larger
eddies, the dispersion of the magnetic field lines in these eddies gets bigger and the diffusion
perpendicular to the mean magnetic field increases20

SuperAlfvenic turbulence:
On scales k−1

� < lA, i.e., on scales at which magnetic fields are strong enough to influence

turbulent motions, the mean deviation of a field in a distance k−1
� = δz is given by LV99 as

< (δx)2 >1/2=
([δz]MA)

3/2

33/2L1/2 , MA > 1 (13)

Thus, for scales much less than L (see also Yan & Lazarian 2008)

κe,⊥ ≈
(

δx
δz

)2
κe,� ∼

[δz]M3
A

33L
κe,� ∼ κ�(k�lA)

−1, MA > 1, (14)

which illustrates the non-stationary regime of superdiffusion, where the diffusion coefficient
changes with the scale k−1

e,� .
SubAlfvenic turbulence:
On scales larger than ltr, the turbulence is weak. The mean deviation of a field in a distance δz
is given by Lazarian (2006):

< (δx)2 >1/2=
[δz]3/2

33/2L1/2 M2
A, MA < 1. (15)

For the scales L > k−1
� = δz we combine Eq. (15) with

δz =
√

kappae,�δt (16)

and get for scales much less than L

κe,⊥ ≈ δx2

δt
=

κe,�δz

33L
M4

A ∼ κe,�(k�L)−1M4
A, (17)

19 The local magnetic field direction fluctuates in the lab system of reference. Thus the results of the
diffusion in the lab system are less anisotropic.

20 Below we consider turbulent scales that are larger than the electron mean free path λe. Heat transfer
at smaller scale is not a diffusive process, but happens at the maximal rate determined by the particle
flux nvth provided that we deal with scales smaller than lA. The perpendicular to magnetic field flux is
determined by the field line deviations on the given scale as we discussed above (see also LV99).
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which for a limiting case of ke,� ∼ L−1 coincides up to a factor with the Eq. (8).
Eqs. (14) and (17) certify that the perpendicular diffusion at scales much less than the injection
scale accelerates as z grows.

10.3 Comparison of processes
Both processes of heat transport at the scales less than the turbulence injection scale are
different from the diffusion at large scales as the rate of transport depends on the scale.
However, the description of heat transport by electrons is more related to the measurements
in the lab system. This follows from the fact that the dynamics of magnetic field lines is not
important for the process and it is electrons which stream along wandering magnetic field
lines. Each of these wandering magnetic field lines are snapshot of the magnetic field line
dynamics as it changes through magnetic reconnection its connectivity in the ambient plasma.
Therefore the description of heat transfer is well connected to the lab system of reference. On
the contrary, the advection of heat through the Richardson diffusion is a process that is related
to the Langrangian description of the fluid. Due to this difference the direct comparison of the
efficiency of processes is not so straightforward.
For example, if one introduces a localized hot spot, electron transport would produce heating
of the adjacent material along the expanding cone of magnetic field lines, while the turbulent
advection would not only spread the hot spot, but also advect it by the action of the largest
eddies.

11. Outlook on the consequences

Magnetic thermal insulation is a very popular concept in astrophysical literature dealing with
magnetized plasmas. Our discussion above shows that in many cases this insulation is very
leaky. This happens due to ubiquitous astrophysical turbulence which induces magnetic field
wandering and interchange of pieces of magnetized plasma enabled by turbulent motions.
Both processes are very closely related to the process of fast magnetic reconnection of
turbulent magnetic field (LV99).
As a result, instead of an impenetrable wall of laminar ordered magnetic field lines, the actual
turbulent field lines present a complex network of tunnels along which electrons can carry
heat. As a result, the decrease of heat conduction amounts to a factor in the range of 1/3
for mildly superAlfvenic turbulence to a factor ∼ 1/5 for transAlfvenic turbulence. The
cases when heat conductivity by electrons may be suppressed to much greater degree include
highly superAlfvenic turbulence and highly subAlfvenic turbulence. In addition, turbulent
motions induce heat advection which is similar to turbulent diffusivity of unmagnetized
fluids.
The importance of magnetic reconnection cannot be stressed enough in relation to the process
of heat transfer in magnetized plasmas. As a consequence of fast magnetic reconnection
plasma does not stay entrained on the same magnetic field lines, as it is usually presented
in textbooks. On the contrary, magnetic field lines constantly change their connectivity and
plasma constantly samples newly formed magnetic field lines enabling efficient diffusion.
Therefore we claim that the advection of heat by turbulence is an example of a more
general process of reconnection diffusion. It can be noticed parenthetically that the turbulent
advection of heat is a well knows process. However, for decades the discussion of the
process avoided in astrophysical literature due the worries of the effect of reconnection that
inevitably should accompany it. The situation has changed with better understanding of
magnetic reconnection in turbulent environments (LV99). It worth pointing out that our
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to the Richardson diffusion law. Physically, as the hot spot extends, it is getting sheared by
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SuperAlfvenic turbulence:
On scales k−1

� < lA, i.e., on scales at which magnetic fields are strong enough to influence

turbulent motions, the mean deviation of a field in a distance k−1
� = δz is given by LV99 as

< (δx)2 >1/2=
([δz]MA)

3/2

33/2L1/2 , MA > 1 (13)

Thus, for scales much less than L (see also Yan & Lazarian 2008)

κe,⊥ ≈
(

δx
δz

)2
κe,� ∼

[δz]M3
A

33L
κe,� ∼ κ�(k�lA)

−1, MA > 1, (14)

which illustrates the non-stationary regime of superdiffusion, where the diffusion coefficient
changes with the scale k−1

e,� .
SubAlfvenic turbulence:
On scales larger than ltr, the turbulence is weak. The mean deviation of a field in a distance δz
is given by Lazarian (2006):

< (δx)2 >1/2=
[δz]3/2

33/2L1/2 M2
A, MA < 1. (15)

For the scales L > k−1
� = δz we combine Eq. (15) with

δz =
√

kappae,�δt (16)

and get for scales much less than L

κe,⊥ ≈ δx2

δt
=

κe,�δz

33L
M4

A ∼ κe,�(k�L)−1M4
A, (17)

19 The local magnetic field direction fluctuates in the lab system of reference. Thus the results of the
diffusion in the lab system are less anisotropic.

20 Below we consider turbulent scales that are larger than the electron mean free path λe. Heat transfer
at smaller scale is not a diffusive process, but happens at the maximal rate determined by the particle
flux nvth provided that we deal with scales smaller than lA. The perpendicular to magnetic field flux is
determined by the field line deviations on the given scale as we discussed above (see also LV99).
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which for a limiting case of ke,� ∼ L−1 coincides up to a factor with the Eq. (8).
Eqs. (14) and (17) certify that the perpendicular diffusion at scales much less than the injection
scale accelerates as z grows.
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Therefore the description of heat transfer is well connected to the lab system of reference. On
the contrary, the advection of heat through the Richardson diffusion is a process that is related
to the Langrangian description of the fluid. Due to this difference the direct comparison of the
efficiency of processes is not so straightforward.
For example, if one introduces a localized hot spot, electron transport would produce heating
of the adjacent material along the expanding cone of magnetic field lines, while the turbulent
advection would not only spread the hot spot, but also advect it by the action of the largest
eddies.

11. Outlook on the consequences

Magnetic thermal insulation is a very popular concept in astrophysical literature dealing with
magnetized plasmas. Our discussion above shows that in many cases this insulation is very
leaky. This happens due to ubiquitous astrophysical turbulence which induces magnetic field
wandering and interchange of pieces of magnetized plasma enabled by turbulent motions.
Both processes are very closely related to the process of fast magnetic reconnection of
turbulent magnetic field (LV99).
As a result, instead of an impenetrable wall of laminar ordered magnetic field lines, the actual
turbulent field lines present a complex network of tunnels along which electrons can carry
heat. As a result, the decrease of heat conduction amounts to a factor in the range of 1/3
for mildly superAlfvenic turbulence to a factor ∼ 1/5 for transAlfvenic turbulence. The
cases when heat conductivity by electrons may be suppressed to much greater degree include
highly superAlfvenic turbulence and highly subAlfvenic turbulence. In addition, turbulent
motions induce heat advection which is similar to turbulent diffusivity of unmagnetized
fluids.
The importance of magnetic reconnection cannot be stressed enough in relation to the process
of heat transfer in magnetized plasmas. As a consequence of fast magnetic reconnection
plasma does not stay entrained on the same magnetic field lines, as it is usually presented
in textbooks. On the contrary, magnetic field lines constantly change their connectivity and
plasma constantly samples newly formed magnetic field lines enabling efficient diffusion.
Therefore we claim that the advection of heat by turbulence is an example of a more
general process of reconnection diffusion. It can be noticed parenthetically that the turbulent
advection of heat is a well knows process. However, for decades the discussion of the
process avoided in astrophysical literature due the worries of the effect of reconnection that
inevitably should accompany it. The situation has changed with better understanding of
magnetic reconnection in turbulent environments (LV99). It worth pointing out that our
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estimates indicate that in many astrophysicaly important cases, e.g. for ICM, the advective
heat transport by dynamic turbulent eddies dominates thermal conductivity.
Having the above processes in hand, one can describe heat transport within magnetized
astrophysical plasmas. For instance, we discussed the heat transfer by particle and turbulent
motions for MA < 1 and MA > 1. It is important that we find that turbulence can
both enhance diffusion and suppress it. We showed that when λ gets larger than lA the
conductivity of the medium ∼ M−3

A and therefore the turbulence inhibits heat transfer,
provided that κe > κdynamic. Along with the plasma effects that we mention below, this effect
can, indeed, support sharp temperature gradients in hot plasmas with weak magnetic field.
As discussed above, rarefied plasma, e.g. ICM plasma, has large viscosity for motions parallel
to magnetic field and marginal viscosity for motions that induce perpendicular mixing. Thus
fast dissipation of sound waves in the ICM does not contradict the medium being turbulent.
The later may be important for the heating of central regions of clusters caused by the AGN
feedback (see Churasov et al. 2001, Nusser, Silk & Babul 2006 and more references in EV06).
Note, that models that include both heat transfer from the outer hot regions and an additional
heating from the AGN feedback look rather promissing (see Ruszkowkski & Begelman 2002,
Piffaretti & Kaastra 2006). We predict that the viscosity for 1 μG regions is less than for 10 μG
regions and therefore heating by sound waves (see Fabian et al. 2005) could be more efficient
for the latter. Note, that the plasma instabilities in collisionless magnetized ICM arising from
compressive motions (see Schekochihin & Cowley 2006, Lazarian & Beresnyak 2006) can
resonantly scatter particles and decrease λ. This decreases further κe compared to κunmagn

but increases Re. In addition, we disregarded mirror effects that can reflect electrons back21

(see Malyshkin & Kulsrud 2001 and references therein), which can further decrease κe. While
there are many instabilities that are described in plasmas with temperature gradient, many
of those are of academic interest, as they do not take into account the existence of ambient
turbulence.
For years the attempts to describe heat transfer in magnetized plasma were focused on finding
the magic number which would be the reduction factor characterizing the effect of magnetic
field on plasmas’ diffusivity. Our study reveals a different and more complex picture. The heat
transfer depends on sonic and Alfven Mach numbers of turbulence and the corresponding
diffusion coefficient vary substantially for plasmas with different level of magnetization and
turbulent excitation. In different astrophysical environments turbulence can both inhibit or
enhance diffusivity depending on the plasma magnetization and turbulence driving.
The issues of “subdiffusivity” or magnetic field retracing their paths was a worrisome issue
that for years impeded the progress in understanding heat transport in plasmas. We claim
that the retracing does happen, but on the scales which are of the order of the eddies at the
dissipation scale. As an electron has a finite Larmor radius in the retracing the same magnetic
field line it experiences the deviations from its original trajectory. On the scale less than the
dissipation scale these deviations grow from the electron Larmor radius in accordance with
Lyapunov exponents, but on larger scale the separation is determined by field wandering only
and does not depend on the Larmor radius. Thus the effect of retracing for heat transfer in
real-world astrophysical turbulence with a substantial separation of the turbulence injection
scale and dissipation scales is marginal.
On the contrary, the issue of "superdiffusivity" may be important for heat transfer on the
scales less than the turbulence injection scale. Richardson diffusion or more correctly its
anisotropic analog present in magnetized plasma (see Eyink et al. 2011) is an example of

21 Many of these papers do not use realistic models of turbulence and therefore overestimate the effect of
electron reflection.
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superdiffusion induced by eddies of increasing size. A similar effect is also true for magnetic
field line wandering. The effect of "superdiffusive" heat transfer requires additional studies.
It is worth mentioning that another parameter that determines the heat flux into the
magnetized volume is the area of the contact of plasmas with different temperatures. For
instance, if the magnetic flux is "shredded", i.e. consists of numerous separated individual flux
tubes, then the heating of plasma within magnetized tubes may be more efficient. For instance,
Fabian et al. (2011) appealed to reconnection diffusion of ambient plasma into "shredded"
magnetic flux of NGC1275 in Perseus cluster in order to explain heating and ionization of the
magnetic filaments.
In view of the discussion above one can conclude that realistically turbulent magnetic fields do
not completely suppress heat conductivity of astrophysical plasmas. The decrease of thermal
conductivity depends on the Alfven Mach number of turbulence. At the same time, turbulent
motions enhance heat transport via heat advection. In special situations, e.g. in very weakly
turbulent magnetic field, the transport of heat in plasmas may still be slow.
Acknowledgments The research is supported by the NSF grant AST 0808118 and the Center
for Magnetic Self Organization in Laboratory and Astrophysical Plasmas (CMSO).
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estimates indicate that in many astrophysicaly important cases, e.g. for ICM, the advective
heat transport by dynamic turbulent eddies dominates thermal conductivity.
Having the above processes in hand, one can describe heat transport within magnetized
astrophysical plasmas. For instance, we discussed the heat transfer by particle and turbulent
motions for MA < 1 and MA > 1. It is important that we find that turbulence can
both enhance diffusion and suppress it. We showed that when λ gets larger than lA the
conductivity of the medium ∼ M−3

A and therefore the turbulence inhibits heat transfer,
provided that κe > κdynamic. Along with the plasma effects that we mention below, this effect
can, indeed, support sharp temperature gradients in hot plasmas with weak magnetic field.
As discussed above, rarefied plasma, e.g. ICM plasma, has large viscosity for motions parallel
to magnetic field and marginal viscosity for motions that induce perpendicular mixing. Thus
fast dissipation of sound waves in the ICM does not contradict the medium being turbulent.
The later may be important for the heating of central regions of clusters caused by the AGN
feedback (see Churasov et al. 2001, Nusser, Silk & Babul 2006 and more references in EV06).
Note, that models that include both heat transfer from the outer hot regions and an additional
heating from the AGN feedback look rather promissing (see Ruszkowkski & Begelman 2002,
Piffaretti & Kaastra 2006). We predict that the viscosity for 1 μG regions is less than for 10 μG
regions and therefore heating by sound waves (see Fabian et al. 2005) could be more efficient
for the latter. Note, that the plasma instabilities in collisionless magnetized ICM arising from
compressive motions (see Schekochihin & Cowley 2006, Lazarian & Beresnyak 2006) can
resonantly scatter particles and decrease λ. This decreases further κe compared to κunmagn

but increases Re. In addition, we disregarded mirror effects that can reflect electrons back21

(see Malyshkin & Kulsrud 2001 and references therein), which can further decrease κe. While
there are many instabilities that are described in plasmas with temperature gradient, many
of those are of academic interest, as they do not take into account the existence of ambient
turbulence.
For years the attempts to describe heat transfer in magnetized plasma were focused on finding
the magic number which would be the reduction factor characterizing the effect of magnetic
field on plasmas’ diffusivity. Our study reveals a different and more complex picture. The heat
transfer depends on sonic and Alfven Mach numbers of turbulence and the corresponding
diffusion coefficient vary substantially for plasmas with different level of magnetization and
turbulent excitation. In different astrophysical environments turbulence can both inhibit or
enhance diffusivity depending on the plasma magnetization and turbulence driving.
The issues of “subdiffusivity” or magnetic field retracing their paths was a worrisome issue
that for years impeded the progress in understanding heat transport in plasmas. We claim
that the retracing does happen, but on the scales which are of the order of the eddies at the
dissipation scale. As an electron has a finite Larmor radius in the retracing the same magnetic
field line it experiences the deviations from its original trajectory. On the scale less than the
dissipation scale these deviations grow from the electron Larmor radius in accordance with
Lyapunov exponents, but on larger scale the separation is determined by field wandering only
and does not depend on the Larmor radius. Thus the effect of retracing for heat transfer in
real-world astrophysical turbulence with a substantial separation of the turbulence injection
scale and dissipation scales is marginal.
On the contrary, the issue of "superdiffusivity" may be important for heat transfer on the
scales less than the turbulence injection scale. Richardson diffusion or more correctly its
anisotropic analog present in magnetized plasma (see Eyink et al. 2011) is an example of

21 Many of these papers do not use realistic models of turbulence and therefore overestimate the effect of
electron reflection.
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superdiffusion induced by eddies of increasing size. A similar effect is also true for magnetic
field line wandering. The effect of "superdiffusive" heat transfer requires additional studies.
It is worth mentioning that another parameter that determines the heat flux into the
magnetized volume is the area of the contact of plasmas with different temperatures. For
instance, if the magnetic flux is "shredded", i.e. consists of numerous separated individual flux
tubes, then the heating of plasma within magnetized tubes may be more efficient. For instance,
Fabian et al. (2011) appealed to reconnection diffusion of ambient plasma into "shredded"
magnetic flux of NGC1275 in Perseus cluster in order to explain heating and ionization of the
magnetic filaments.
In view of the discussion above one can conclude that realistically turbulent magnetic fields do
not completely suppress heat conductivity of astrophysical plasmas. The decrease of thermal
conductivity depends on the Alfven Mach number of turbulence. At the same time, turbulent
motions enhance heat transport via heat advection. In special situations, e.g. in very weakly
turbulent magnetic field, the transport of heat in plasmas may still be slow.
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1. Introduction

Smart materials are different from the usual materials and can sense their environment and
respond, in the flexibility of its properties that can be significantly altered in a controlled
fashion by external stimuli, such as stress, temperature, electric and magnetic fields. Fig. 1
shows the general relationship in smart materials among mechanical, electrical, and thermal
fields. Such characteristics enable technology applications across a wide range of sectors
including electronics, construction, transportation, agriculture, food and packaging, health
care, sport and leisure, white goods, energy and environment, space, and defense.
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Fig. 1. The relationship among mechanical, electrical, and thermal fields.

The most widely used smart materials are piezoelectric ceramics, which expand or contract
when voltage is applied. Pyroelectric material is a kind of smart materials and can be
electrically polarized due to the temperature variation. Fig. 2 indicates the relationship
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1. Introduction

Smart materials are different from the usual materials and can sense their environment and
respond, in the flexibility of its properties that can be significantly altered in a controlled
fashion by external stimuli, such as stress, temperature, electric and magnetic fields. Fig. 1
shows the general relationship in smart materials among mechanical, electrical, and thermal
fields. Such characteristics enable technology applications across a wide range of sectors
including electronics, construction, transportation, agriculture, food and packaging, health
care, sport and leisure, white goods, energy and environment, space, and defense.
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Fig. 1. The relationship among mechanical, electrical, and thermal fields.

The most widely used smart materials are piezoelectric ceramics, which expand or contract
when voltage is applied. Pyroelectric material is a kind of smart materials and can be
electrically polarized due to the temperature variation. Fig. 2 indicates the relationship

10



2 Will-be-set-by-IN-TECH

between pyroelectrics and other smart materials. It follows that a pyroelectric effect cannot
exist in a crystal possessing a center of symmetry. Among the 21 noncentrosymmetrical
crystalline classes only 10 may theoretically show pyroelectric character, (Cady, 1946;
Eringen & Maugin, 1990; Nelson, 1979). It has many applications which occur both in
technology (i.e. infrared detection, imaging, thermometry, refrigeration, power conversion,
memories, biology, geology, etc...) and science (atomic structure of crystals, anharmonicity
of lattice vibrations etc...(Hadni, 1981)). Recently, advanced technical developments have
increased the efficiency of devices by scavenging energy from the environment and
transforming it into electrical energy. When thermal energy is considered and spatial thermal
gradients are present, thermoelectric devices can be used. When thermal fluctuations are
present, the pyroelectric effect can be considered, see (Cuadras et al., 2006; Dalola et al., 2010;
Fang et al., 2010; Gael & et al., 2009; Guyomar et al., 2008; Khodayari et al., 2009; Olsen et al.,
1984; Olsen & Evans, 1983; Shen et al., 2007; Sodano et al., 2005; Xie et al., 2009). The thermal
wave, also called temperature wave, is also found to be a good method to probe in a remote
way near surface boundaries, to measure layer thicknesses and to locate faults (Busse, 1991).

dielectrics

piezoelectrics

pyroelectrics

ferroelectrics

Fig. 2. The relationship of dielectrics, piezoelectrics, pyroelectrics and ferroelectrics.

Therefore, pyroelectric medium can be transformer among mechanical, electrical and thermal
energies. It is with this feature in mind that we have to do research to cover the coupling even
if only one type energy is needed. In this chapter the following works are performed to exploit
pyroelectric material.
Firstly, the general theory of inhomogeneous waves in pyroelectric medium is addressed.
Majhi (Majhi, 1995) studied the transient thermal response of a semi-infinite piezoelectric rod
subjected to a local heat source along the length direction, by introducing a potential function
and applying the Lord and Shulman theory. Sharma and Kumar (Sharma & Kumar, 2000)
studied plane harmonic waves in piezo-thermoelastic materials. He, Tian and Shen (He et al.,
2002) discussed various thermal shock problems of a piezoelectric plate. Baljeet (Baljeet,
2005) formulated the governing differential equations for generalized thermo-piezoelectric
solid by using both L-S and G-L theories and found that the velocities of these plane
waves depend upon properties of material and the angle of propagation. Sharma and Pal
(Sharma & Pal, 2004) discussed the propagation of plane harmonic waves in transversely
isotropic generalized piezothermoelastic materials and found four dispersive modes. The
propagation of Rayleigh waves in generalized piezothermoelastic half-space is investigated
by Sharma and Walis (Sharma & Walia, 2007). Topics of homogeneous and inhomogeneous
waves, reflection/transmission and energy problems in pyroelectrics are firstly researched by
authors (Kuang, 2009; 2010; Kuang & Yuan, 2010; Yuan, 2009; Yuan & Kuang, 2008; 2010).
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The speciality of pyroelectric material lies in its relaxation in corresponding thermal field.
Introduction of relaxation time into the heat conduction theory is about 50 years ago.
Cattaneo (Cattaneo, 1958) and Vernotte (Vernotte, 1958) originally proposed the relaxation
time for heat flux in the heat conduction theory, on basis of which the governing equations
of thermoelasticity with relaxation time were deduced by Kaliski (Kaliski, 1965), and
independently by Lord and Shulman (Lord & Shulman, 1967). Notwithstanding, this theory is
usually called L-S theory. Several years later, Green and Lindsy (Green & Lindsay, 1972) gave
another form of governing equations for thermoelasticity called G-L theory. Further, Joseph
and Preziosi (Joseph & Preziosi, 1989) used two relaxation times: one for heat flux and the
other for temperature gradient, and also obtained a system of equations of thermoelasicity.
Kuang (Kuang, 2009; 2010) proposed an inertial entropy theory and got the governing
equations for thermoelasticity which is different from L-S and G-L theories. For pyroelectrics
the effects of relaxation times on wave velocities and attenuation are estimated by (Kuang,
2009; 2010; Yuan, 2009; Yuan & Kuang, 2008; 2010).
Taking account of the relaxation, we introduce the inhomogeneous wave into pyroelectric
medium here. The difference from the homogeneous wave is that the wave propagation vector
is not coincident with the attenuation vector. The attenuation angle, defined by the angle
between wave propagation vector and attenuation vector, is found to be limited in the range
of (-90◦,90◦). It is found that increasing the attenuation angle will introduce more dissipation
and anisotropy. In our work, four wave modes are found in pyroelectric medium, which are
temperature, quasitransverse I, II and quasilongitudinal due to the coupling state relationship.
Though there is no independent wave mode for the electric field, it can still propagate with
other wave modes. The variations of phase velocities and attenuations with propagation angle
and attenuation angle are discussed. Phase velocity surfaces on anisotropic and isotropic
planes are presented for different attenuation angle. It is found that attenuation angle almost
doesn’t influence the phase velocities of elastic waves in both anisotropic and isotropic planes.
In contrast, the roles it plays on temperature wave are obvious. The effects of the positive and
negative attenuation angles are not the same in anisotropic plane.
The propagation of a wave in any medium is associated with the movement of energy.
Therefore, the energy process in pyroelectrics is researched for the first time.
The energy process especially the dissipation energy is one of the most important dynamic
characteristics of continuous media. Many researches were conducted on this problem. Umov
(Umov, 1874) introduced the concept of the energy flux vector and found the first integral
of energy conservation equations of elasticity theory. Fedorov (Fedorov, 1968) used this
theory and discussed the energy flux, energy density and the energy transport velocity of
plane waves in the elastic theory. In paper of (Kiselev, 1982), the energy fluxes of complex
fields in inhomogeneous media were considered. Based on Umov’s theory of energy flux,
he represented analogous results for complex fields which are characterized by the pair of
complex vector fields. On the basis of the results, the Lagrangian density and Umov vector
were derived. At the same time, the question of additivity of the Umov flux vectors of
longitudinal and transverse waves was also discussed.
For the class of plane inhomogeneous waves propagating in linear viscoelastic media, Buchen
(Buchen, 1971) gave a detailed description of the physical properties and energy associated
with these inhomogeneous waves. The paralleled paper by Borcherdt (Borcherdt, 1973)
adopted a different derivation from Buchen’s and discussed the mathematical framework
for describing plane waves in elastic and linear inelastic media. The expressions for the
energy flux, energy densities, dissipated energy, stored energy were derived from an explicit
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energy conservation relation. Based on the motion equation and its integral form, Červený
(Cerveny & Psencik, 2006) discussed three different types of energy fluxes in anisotropic
dissipative media. The relationships among them, especially their applications in the interface
between dissipative media, were researched in detail. In the field of piezoelectrics, Auld
(Auld, 1973) derived the energy flux in the electromagnetic field and also its form in the
piezoelectric media. Baesu (Baesu et al., 2003) considered non-magnetizable hyperelastic
dielectrics which conduct neither heat nor electricity and also obtained the energy flux with
the linearized theory.
In this chapter, the energy process in pyroelectric medium with generalized heat conduction
theory is studied firstly. According to the derived energy conservation law, the energy
densities, energy dissipated and energy flux are defined. Generally there are several type
velocities in wave theory, such as phase velocity, group velocity and energy velocity. The
phase velocity is related to the phase of the wave. Owing to damping, the usual definition
of group velocity of waves become meaningless and this issue can be solved by considering
the energy of the physical phenomenon of wave propagation (Mainardi, 1973). Regarding the
propagation of the energy, the energy flux may be used in order to quantify the energy velocity
vector and they have the same direction. The energy flux vector has a dynamical definition
and consequently, polarization of the wave (the amplitudes of displacements, temperature
and electric potential) is taken into account. In particular the phase velocity and energy
velocity are compared in the results and discussion section.
We shall use the operation rules: the dot above a letter denotes the time derivative, the index
following the comma in the subscript denotes the partial derivative with respect to relevant
Cartesian coordinate, and the asterisk in the superscript denotes the complex conjugate.

2. The inhomogeneous waves in pyroelectric medium

2.1 The governing equations and state equations
The pyroelectric medium can be influenced by the mechanical, electric and thermal fields.
These fields have their own governing equations. The physical quantities of pyroelectric
medium in these fields are not independent, because they are related by the state equations.
The known fundamental equations for the pyroelectric medium are listed as follows.

1. Mechanical field equations in �3

Equation of motion:
σij,j + bi = ρüi (1)

Geometric property:

ε ij =
1
2
(ui,j + uj,i) (2)

where ui is the displacement vector, σij the stress tensor, bi the body force per unit volume,
ρ the density and ε ij the strain tensor.

2. Electrical field equations under the quasi-static assumption �3

Gauss equation:
Di,i = �e (3)

where Di is the electric displacement. The absence of free charge requires �e = 0. In
quasi-static approximation, the electric field E is derivable from a potential, that is

232 Heat Conduction – Basic Research Energy Transfer in Pyroelectric Material 5

(∇× E)i = 0, Ei = −ϕ,i (4)

where ϕ is the scalar quasi-static electric potential.

3. Thermal field equations in �3

If the temperature disturbance θ � T0, the entropy equation is

ρT0 η̇ = −qi,i (5)

in which T0 is the initial temperature, η is the entropy per unit volume. The thermal flux
vector qi is related to the temperature disturbance θ = T − T0 by

Lqi = −κijθ,j (6)

in which L is an operator defined by

L = 1 + τ
∂

∂t

Equation (6) is called the generalized Fourier heat conduction equation. In these two
equations, κij indicates the heat conduction constant and τ is the relaxation time.
In the above individual field introduces physical quantities, and they are not independent
and should satisfy the state equations, which play roles in two aspects: 1. physically they
reflect the real world interactions among the three fields; 2. they are useful to formulate a
solvable equation system mathematically. The constitutive equations (Yuan & Kuang, 2008)
can be expressed by

σij = cijklεkl − ekijEk − γijθ

Dk = ekijε ij + λikEi + ξkθ (7)

ρη = γijε ij + ξiEi +
ρCθ

T0

In this system of equations, cijkl denotes the elastic stiffness; ekij the piezoelectric tensor; γij
the thermo-mechanical tensor; ρ the density; λik the dielectric permittivity tensor; ξk the
pyroelectric constants’; T0 the initial temperature; C is the specific heat capacity.
Inserting these state equations into Equations (1), (4) and (5) and using Equations (2) and (6),
we obtain

cijkluk,l j + ekijϕ,kj + γijθ,j = ρüi

ekijui,jk − λik ϕ,ik + ξkθ,k = 0

T0γij

(
ε̇ ij+ τε̈ ij

)
+ T0ξi

(
Ėi+ τËi

)
+ ρC

(
θ̇+ τθ̈

)
= κijθ,ij

(8)

which is a system of equations in the unknown fundamental functions: the displacements uk,
the electric potential ϕ, the temperature disturbance θ. There are 7 equations in this system
and also the same number of unknowns, therefore it can be solved.
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Fig. 3. Equiphase plane, equiamplitude plane and exponential variation of the amplitude
along the phase propagation direction.

2.2 The fundamental concepts of inhomogeneous wave theory
When the wave vector is complex, generally speaking, the propagation direction (normal to
the equiphase plane) is different from the attenuation direction (normal to the equiamplitude
plane), see Fig. 3. Any plane wave can be expressed as

f = f0ei(k·x−ωt) = f0ei(kmxm−ωt), k = [k1, k2]
T = P + iA

P = Pn, A = Am, kj = Pj + iAj, k2 = k · k = P2 − A2 + 2iP · A
(9)

where P is the propagation vector, P is its module, and n is the unit vector along the
propagation direction; A is the attenuation vector, A is its module, and m is the unit vector
perpendicular to the plane of constant amplitude. When n = m, we call it homogeneous
wave, otherwise inhomogeneous wave. Hereafter, we assume that θ, transportation angle,
is the angle between n and x2; γ, attenuation angle, is the angle between n and m; and
ϑ(= θ + γ) is the angle between m and x2. Using Equation (9), we obtain

n = [sin θ, cos θ]T, m = [sin (θ + γ) , cos (θ + γ)]T, n · m = cos γ

k1 = P1 + iA1 = Pn1 + iAm1, k2 = P2 + iA2 = Pn2 + iAm2

P =
√

P2
1 + P2

2 , A =
√

A2
1 + A2

2

Due to n = m and γ = 0 in homogeneous wave, we have k1 = (P + iA) sin θ, k2 =
(P + iA) cos θ. Therefore, k is determined by one complex number and a real propagation
angle θ, but in inhomogeneous wave n �= m , we have to use four parameters (P, A, θ, γ) to
determine wave vector.
Unlike propagation angle θ, γ has its boundary to guarantee the waves are of attenuation. On
the basis of non-negative dissipation rate of linear viscoelastic media, Buchen (Buchen, 1971)
verified that γ is in the range of 0◦ to 90◦ and the same conclusion can also be seen in reference
(Borcherdt, 1973). In the present paper, the boundary of attenuation angle γ is determined by
the condition that waves should be attenuate physically.
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2.3 The propagation of inhomogeneous plane waves in infinite medium
For the solution to Equation 8, the general monochromatic plane waves are assumed as

uk = Ukexp [i(xiki − ωt)]
θ = Θexp [i(xiki − ωt)]
ϕ = Ψexp [i(xiki − ωt)]

(10)

where ki is the complex-valued wave vector, ω is the circular frequency, t is the time variable
and Uj, Θ and Ψ are generally the complex amplitudes (or polarizations) of displacements,
temperature and electric potential respectively. The subscript i, k equal to 1, 2, 3. It is noted
that in Equation (10), exp [i(xiki − ωt)] is used, which is different from homogeneous wave
with exp [i(knixi − ωt)]. In other words, in the inhomogeneous wave, kixi can’t be expressed
as knixi.
Inserting Equation (10) into Equation (8) yields a system of Christoffel algebraic equations in
amplitude vector U

Λ (k, ω)U = 0, U = [U1, U2, U3, Ψ, Θ]T (11)

Λ (k, ω, n) =

⎡
⎢⎢⎢⎢⎣

Γ11 (k)− ρω2 Γ12 (k) Γ13 (k) iα∗1 (k) e∗1 (k)
Γ21 (k) Γ22 (k)− ρω2 Γ23 (k) iα∗2 (k) e∗2 (k)
Γ31 (k) Γ32 (k) Γ33 (k)− ρω2 iα∗3 (k) e∗3 (k)
e∗1 (k) e∗2 (k) e∗3 (k) −iξkkk λ∗ (k)
γ∗

1 (k)ω γ∗
2 (k)ω γ∗

3 (k)ω κ∗ (k) ξ∗ (k)

⎤
⎥⎥⎥⎥⎦

(12)

where

Γik (k) = Cijklkjkl , e∗i (k) = ekijkkkj, γ∗
i (k) = T0γijkj

�
ω − iτω2�

ξ∗ (k) = T0ξiki
�−ω+iτω2� , λ∗ (k) = λikkikk, κ∗ (k) = κijkikj − ρC

�
iω+τω2� (13)

Nontrivial solutions for Ui, Θ and Ψ require

det Λ (k, ω) = 0. (14)

which is complex equation in wave vector k for given ω. Decomposing the equation into the
real and imaginary parts, we can obtain a solvable equations in P and A:

�
D�(P, A) = 0
D�(P, A) = 0

and P, A ∈ 0 ∪ R+ (15)

Due to that the equations are very tedious, we would not present them in explicit forms.
Equation (15) are nonlinear and coupling equations in (P, A). According to the definitions
of P and A in Equation (9), the right solution of P and A should be real valued. Therefore,
the domain of θ and γ are determined by the condition that P and A are nonnegative real
numbers(only one direction of wave propagation is considered). The wave propagates with
the velocity cp (=ω/P), with non-negative value in attenuation A. This condition agrees with
the Sommerfeld radiation condition; i.e., vanishing at infinity. When A and P are obtained for
given θ and γ, we can use Equations (9) to determine the inhomogeneous wave vector k. For
each ki, we can get a corresponding amplitude vector U with one undetermined component.
Generally, there are four roots of (P,A) to Equation (15) corresponding to four wave vector
k. For every k, P and A, we have two components (kiα, Pkα, Akα), in which i = 1, 2, 3, 4 and
α = 1, 2. They are related to three elastic waves and one temperature wave; The electric field
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Fig. 3. Equiphase plane, equiamplitude plane and exponential variation of the amplitude
along the phase propagation direction.

2.2 The fundamental concepts of inhomogeneous wave theory
When the wave vector is complex, generally speaking, the propagation direction (normal to
the equiphase plane) is different from the attenuation direction (normal to the equiamplitude
plane), see Fig. 3. Any plane wave can be expressed as

f = f0ei(k·x−ωt) = f0ei(kmxm−ωt), k = [k1, k2]
T = P + iA

P = Pn, A = Am, kj = Pj + iAj, k2 = k · k = P2 − A2 + 2iP · A
(9)

where P is the propagation vector, P is its module, and n is the unit vector along the
propagation direction; A is the attenuation vector, A is its module, and m is the unit vector
perpendicular to the plane of constant amplitude. When n = m, we call it homogeneous
wave, otherwise inhomogeneous wave. Hereafter, we assume that θ, transportation angle,
is the angle between n and x2; γ, attenuation angle, is the angle between n and m; and
ϑ(= θ + γ) is the angle between m and x2. Using Equation (9), we obtain

n = [sin θ, cos θ]T, m = [sin (θ + γ) , cos (θ + γ)]T, n · m = cos γ

k1 = P1 + iA1 = Pn1 + iAm1, k2 = P2 + iA2 = Pn2 + iAm2

P =
√

P2
1 + P2

2 , A =
√

A2
1 + A2

2

Due to n = m and γ = 0 in homogeneous wave, we have k1 = (P + iA) sin θ, k2 =
(P + iA) cos θ. Therefore, k is determined by one complex number and a real propagation
angle θ, but in inhomogeneous wave n �= m , we have to use four parameters (P, A, θ, γ) to
determine wave vector.
Unlike propagation angle θ, γ has its boundary to guarantee the waves are of attenuation. On
the basis of non-negative dissipation rate of linear viscoelastic media, Buchen (Buchen, 1971)
verified that γ is in the range of 0◦ to 90◦ and the same conclusion can also be seen in reference
(Borcherdt, 1973). In the present paper, the boundary of attenuation angle γ is determined by
the condition that waves should be attenuate physically.

234 Heat Conduction – Basic Research Energy Transfer in Pyroelectric Material 7

2.3 The propagation of inhomogeneous plane waves in infinite medium
For the solution to Equation 8, the general monochromatic plane waves are assumed as

uk = Ukexp [i(xiki − ωt)]
θ = Θexp [i(xiki − ωt)]
ϕ = Ψexp [i(xiki − ωt)]

(10)

where ki is the complex-valued wave vector, ω is the circular frequency, t is the time variable
and Uj, Θ and Ψ are generally the complex amplitudes (or polarizations) of displacements,
temperature and electric potential respectively. The subscript i, k equal to 1, 2, 3. It is noted
that in Equation (10), exp [i(xiki − ωt)] is used, which is different from homogeneous wave
with exp [i(knixi − ωt)]. In other words, in the inhomogeneous wave, kixi can’t be expressed
as knixi.
Inserting Equation (10) into Equation (8) yields a system of Christoffel algebraic equations in
amplitude vector U

Λ (k, ω)U = 0, U = [U1, U2, U3, Ψ, Θ]T (11)

Λ (k, ω, n) =

⎡
⎢⎢⎢⎢⎣

Γ11 (k)− ρω2 Γ12 (k) Γ13 (k) iα∗1 (k) e∗1 (k)
Γ21 (k) Γ22 (k)− ρω2 Γ23 (k) iα∗2 (k) e∗2 (k)
Γ31 (k) Γ32 (k) Γ33 (k)− ρω2 iα∗3 (k) e∗3 (k)
e∗1 (k) e∗2 (k) e∗3 (k) −iξkkk λ∗ (k)
γ∗

1 (k)ω γ∗
2 (k)ω γ∗

3 (k)ω κ∗ (k) ξ∗ (k)

⎤
⎥⎥⎥⎥⎦

(12)

where

Γik (k) = Cijklkjkl , e∗i (k) = ekijkkkj, γ∗
i (k) = T0γijkj

�
ω − iτω2�

ξ∗ (k) = T0ξiki
�−ω+iτω2� , λ∗ (k) = λikkikk, κ∗ (k) = κijkikj − ρC

�
iω+τω2� (13)

Nontrivial solutions for Ui, Θ and Ψ require

det Λ (k, ω) = 0. (14)

which is complex equation in wave vector k for given ω. Decomposing the equation into the
real and imaginary parts, we can obtain a solvable equations in P and A:

�
D�(P, A) = 0
D�(P, A) = 0

and P, A ∈ 0 ∪ R+ (15)

Due to that the equations are very tedious, we would not present them in explicit forms.
Equation (15) are nonlinear and coupling equations in (P, A). According to the definitions
of P and A in Equation (9), the right solution of P and A should be real valued. Therefore,
the domain of θ and γ are determined by the condition that P and A are nonnegative real
numbers(only one direction of wave propagation is considered). The wave propagates with
the velocity cp (=ω/P), with non-negative value in attenuation A. This condition agrees with
the Sommerfeld radiation condition; i.e., vanishing at infinity. When A and P are obtained for
given θ and γ, we can use Equations (9) to determine the inhomogeneous wave vector k. For
each ki, we can get a corresponding amplitude vector U with one undetermined component.
Generally, there are four roots of (P,A) to Equation (15) corresponding to four wave vector
k. For every k, P and A, we have two components (kiα, Pkα, Akα), in which i = 1, 2, 3, 4 and
α = 1, 2. They are related to three elastic waves and one temperature wave; The electric field

235Energy Transfer in Pyroelectric Material



8 Will-be-set-by-IN-TECH

doesn’t have its own wave mode, but, through the constitutive relations, it can propagate with
other four wave modes. After P, A are solved, the phase velocity can be given by

cp =
ω

P
(16)

and also the attenuation A.
Therefore, general solutions in pyroelectric medium equal to the sum of four wave modes,
which are

uk =
4

∑
j=1

U(j)
k e

i
(

k(j)
m xm−ωt

)
=

4

∑
j=1

U(j)
k ei[(P(j)n(j)+iA(j)m(j))·x−ωt] (17)

θ =
4

∑
j=1

Θ(j)e
i
(

k(j)
m xm−ωt

)
ϕ =

4

∑
j=1

Ψ(j)e
i
(

k(j)
m xm−ωt

)

in which j indicates the wave mode.

2.4 Quantitative analysis of pyroelectric media
The material under study is transversely isotropic BaTiO3, in which the isotropic plane is x1-x2
and the anisotropic plane is x1-x3 plane. All the physical constants are rewritten with the help
of Voigt notation, whose rule is that the subscript of a tensor is transformed by {11 → 1, 22 →
2, 33 → 3, 23 → 4, 31 → 5, 12 → 6}.

Coordinate index (11) (12) (13) (33) (44) (66) (15)
Elastic moduli E(1010Pa) 15.0 6.6 6.6 14.6 4.4 4.3
Piezoelectric Charge constant e(C/m2) -4.35 17.5 11.4
Electric permittivity λ(10−9f/m) 9.867 11.15
Thermal expansion tensor α(10−61/K) 8.53 1.99
Pyroelectric constant ξ(10−4C/m2K) 5.53
Thermal conductivity tensor κ(J/m·K·s) 1.1 1.1 3.5

Table 1. Material properties of BaTiO3

The material constants of BiTiO3 studied in this paper are shown in Table 1. The specific heat
capacity C is 500 (J/K·Kg); the relaxation times τ = 10−10s for L-S theory; density ρ = 5700
kg/m3; the prescribed circular frequency ω = 2π × 106 s−1; the thermo-mechanical coupling
coefficients γij are given by

γ11 = γ22 = (c11 + c12)α11 + (c13 + e31)α33, γ33 = 2c13α11 + (c33 + e33)α33

2.4.1 Determination of the boundary of attenuation angle
The condition in Equation (15) requires that the attenuation angle γ should be limited
in the range of (−900, 900) to get attenuate wave, by which we can obtain four wave
modes: quasilongitudinal, quasitransverse I, II and temperature waves. This conclusion is
consistent with previous researchers (Borcherdt, 1973; Buchen, 1971; Kuang, 2002). Their
studies demonstrated that attenuation angle γ is confined in the range of (00, 900) for
isotropic viscoelastic medium. This result can be arrived at by ours, that the positive
and negative attenuation angles come to the same results for isotropic medium. But the
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influences of positive and negative attenuation angles on waves in the anisotropic plane
for the transverse material are different. Attenuation angle introduces more dissipation and
anisotropy (Carcione & Cavallini, 1997).

2.4.2 The velocity surfaces
With the material constants shown in Table 1, the phase velocity surface sections are
calculated. Fig. 4(a),(b) show the sections of phase velocity surfaces in the anisotropic x1-x3
plane and isotropic x1-x2 plane. It is demonstrated that the attenuation angle γ almost doesn’t
change the phase velocities of elastic waves, therefore only the case at γ = 0 is presented.
The elastic wave velocity surfaces, including quasilongitudinal, quasitransverse I,II waves,
show the anisotropic behaviors in the anisotropic x1-x3 plane. It is seen that, in Fig. 4(a),
the quasi-longitudinal waves are the fastest, while the thermal wave are the slowest and the
quasi-transversal waves stand in between them and all of them are related to propagation
angle θ. Instead the role played by attenuation angle γ on temperature wave is obvious as
shown in Fig. 4(b). The influences of the positive and negative attenuation angles are different
in anisotropic x1-x3 plane, but both can reduce the velocity of temperature wave.
On the isotropic x1-x2 plane, Fig. 5(b) implies that the negative and positive attenuation angle
have the same role. Velocities of all waves in isotropic plane don’t depend on the propagation
angle.

(a) Velocity surfaces of elastic waves.

(b) Velocity surfaces of temperature wave.

Fig. 4. Sections of the velocity surfaces in (x1,x3) plane at different attenuation angle γ.
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(a) Velocity surfaces of elastic waves.

(b) Velocity surfaces of temperature waves.

Fig. 5. Sections of the velocity surfaces in (x1,x2) plane at different attenuation angle γ.

3. Dynamic energy balance law in pyroelectric medium

We shall formulate the energy balance laws as consequences of the governing equations
presented in the previous section, see (Yuan, 2010).
I. We consider the scalar product of the velocity u̇i with the motion equation. Multiplying
Equation (1) by u̇i results in

σij,ju̇i + ρbiu̇i = ρüiu̇i

Taking account of the identity

(σij u̇i),j = σij,ju̇i + σij u̇i,j

and, by considering a region Ω with surface element ∂Ω in the configuration of the body,
applying the volume integral and Gaussian Theorem to the previous equation, we obtain

∫

∂Ω

σij u̇injdS +
∫

Ω

ρbiu̇idV =
∫

Ω

σiju̇i,jdV +
∫

Ω

ρüiu̇idV

where nj is the unit outward normal of dS. Let ti = σijnj in the surface integral, and
substituting σij with the constitutive equation Equation (7)1 within the integral operator, this
equation can be rewritten as
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∫

∂Ω

tiu̇idS +
∫

Ω

ρbiu̇idV =
∫

Ω

(
cijkluk,l u̇i,j − ekijEku̇i,j − γijθu̇i,j

)
dV +

∫

Ω

ρüiu̇idV (18)

which can be of the form
∫

∂Ω

tiu̇idS +
∫

Ω

ρbiu̇idV =
∫

Ω

(
Ẇe − ekijEku̇i,j − γijθu̇i,j

)
dV +

∫

Ω

K̇dV (19)

where

Ẇe = cijkluk,l u̇i,j =
1
2

∂

∂t
(cijkluk,lui,j)

which represents the rate of mechanical potential energy density.

K̇ = ρüiu̇i =
1
2

∂

∂t
(ρu̇iu̇i)

which is the rate of kinetic energy density.
II. Multiplying ϕ by the time derivative of Equation (3), integrating the resulting expression
over volume Ω and using the identity equation

(
Ḋk ϕ

)
,k = Ḋk,k ϕ + Ḋk ϕ,k and Gaussian

Theorem, we have

−
∫

∂Ω

ϕḊknkdS −
∫

Ω

EkḊkdV = 0

where nk is the unit outward normal of dS.
Substitution the constitutive equation Equation (7)2 into the above equation yields

−
∫

∂Ω

ϕḊknkdS −
∫

Ω

Ek

(
ekij ε̇ ij + λikĖi + ξk θ̇

)
dV = 0

which is of the form

−
∫

∂Ω

ϕḊknkdS −
∫

Ω

(
ekij ε̇ ijEk + ẆE + ξk θ̇Ek

)
dV = 0 (20)

where the rate of electric energy density is defined as

ẆE =
1
2

∂

∂t
(λikEiEk)

The addition of Equation (19) and Equation (20) yields

∫

∂Ω

tiu̇idS +
∫

Ω

ρbiu̇idV +
∫

Ω

γijθu̇i,jdV −
∫

∂Ω

ϕḊknkdS −
∫

Ω

Ekξk θ̇dV =
∫

Ω

(
Ẇe + K̇ + ẆE

)
dV

(21)
III. Taking the time differential on Equation (7)3 and using Equation (5), we get

T0γijε̇ ij + T0ξi Ėi + ρCθ̇ = −qi,i
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Fig. 5. Sections of the velocity surfaces in (x1,x2) plane at different attenuation angle γ.
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Ḋk ϕ

)
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which is of the form

−
∫

∂Ω

ϕḊknkdS −
∫

Ω

(
ekij ε̇ ijEk + ẆE + ξk θ̇Ek

)
dV = 0 (20)

where the rate of electric energy density is defined as

ẆE =
1
2

∂

∂t
(λikEiEk)

The addition of Equation (19) and Equation (20) yields

∫

∂Ω

tiu̇idS +
∫

Ω

ρbiu̇idV +
∫

Ω

γijθu̇i,jdV −
∫

∂Ω

ϕḊknkdS −
∫

Ω

Ekξk θ̇dV =
∫

Ω

(
Ẇe + K̇ + ẆE

)
dV

(21)
III. Taking the time differential on Equation (7)3 and using Equation (5), we get

T0γijε̇ ij + T0ξi Ėi + ρCθ̇ = −qi,i
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Applying the operator L on both sides of this equation and using Equation (6) yields

κijθ,ij − L(T0γij ε̇ ij + T0ξi Ėi + ρCθ̇) = 0 (22)

Multiplying Equation (22) by θ and apply volume integral on this expression, we obtain
∫

Ω

κijθ,ijθdV −
∫

Ω

T0γijL
(

ε̇ij

)
θdV −

∫

Ω

T0ξiL
(
Ėi
)

θdV −
∫

Ω

ρCL
(
θ̇
)

θdV = 0 (23)

Using the identity (θθ,i),j = θ,jθ,i + θθ,ij and Gaussian Theorem, then we have
∫

Ω

κijθ,ijθdV =
∫

Ω

κij

[
(θθ,i),j − θ,jθ,i

]
dV =

∫

∂Ω

κijnjθθ,idS −
∫

Ω

κijθ,jθ,idV

Inserting this relation into Equation (23) and expanding the result by using the entropy
equation Equation (7)3, we get

1
T0

∫

∂Ω

κijθ,iθnjdS − 1
T0

∫

Ω

κijθ,jθ,idV =
∫

Ω

γijε̇ ijθdV +
∫

Ω

ξi ĖiθdV +
∫

Ω

ρC
T0

θ̇θdV + τ
∫

Ω

ρη̈θ

T0
dV

(24)
Thus the rate of thermal energy density Ẇθ can be expressed as

Ẇθ =
ρC
T0

θ̇θ =
1
2

∂

∂t

(
ρC
T0

θ2
)

Combining Equation (21) and Equation (24) by eliminating
∫
Ω

γij ε̇ ijθdV, finally we obtain

∫

∂Ω

tiu̇idS −
∫

∂Ω

ϕḊknkdS +
1
T0

∫

∂Ω

κijθ,iθnjdS (25)

=
∫

Ω

τ
ρη̈θ

T0
dV +

1
T0

∫

Ω

κijθ,jθ,idV +
∫

Ω

∂

∂t
(Eiξiθ) dV+

∂

∂t

∫

Ω

(We + K + WE + Wθ) dV

which is the energy balance law for pyroelectric medium with generalized Fourier conduction
law for arbitrary time dependent wave field.
As the general energy balance states:

∫

Ω

QdV = −
∮

∂Ω

PinidS − ∂

∂t

∫

Ω

WdV (26)

which is the law governing the energy transformation. The physical significance of Equation
(26) is that the rate of heat or dissipation energy Q equals to the reduction of the rate of
entire energy Ẇ within the volume plus the reduction of this energy flux outward the surface
bounding the volume. Pi is called the energy flux vector(also called the Poyting vector,
Poyting-Umov vector) and its direction indicates the direction of energy flow at that point,
the length being numerically equal to the amount of energy passing in unit time through unit
area perpendicular to P.
In this chapter, important conclusions can be made from Equation (25): the energy density W
in the the pyroelectric medium:
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W = We + K + WE + Wθ

We =
1
2

cijkluk,lui,j, K =
1
2

ρu̇iu̇i, (27)

WE =
1
2

λikEiEk, Wθ=
1
2

ρC
T0

θ2

which is sum of the mechanical potential energy density We, the kinetic energy density K, the
electric energy density WE, the heat energy density Wθ .
The physical meaning of Eiξiθ can be seen from constitutive equation in Equation (7)3, from
which Eiξi is found to contribute entropy. Therefore the result Eiξiθ, by its multiplication with
temperature disturbance θ, is the dissipation due to the pyroelectric effect. Therefore Q the
rate of energy dissipation per unit volume is represented by

Q = τ
ρη̈θ

T0
+

1
T0

κijθ,jθ,i +
∂

∂t
(Eiξiθ) (28)

in which the energy dissipated by the heat conduction is 1
T0

κijθ,jθ,i, the dissipation energy

generated by the relaxation is τ
ρη̈θ
T0

and the last term is due to pyroelectric effect.
The energy flux vector(also called the Poyting vector, Poyting-Umov vector) Pi is defined as

Pi = −σjiu̇j + ϕḊi − κijθ,j
θ

T0
(29)

If the temperature effect is not taken account of, Equations (27), (29) can be degenerated into
the forms in reference (Baesu et al., 2003).

3.1 Energy balance law for the real-valued inhomogeneous harmonic wave
In previous section, we derived the energy balance equation for the pyroelectric medium and
defined the total energy, dissipation energy and energy flux vector explicitly. Keeping in mind
that the real part is indeed the physical part of any quantity, and considering Equation (10),
we can define the corresponding fundamental field functions as

ui =
1
2
[
Uiexp(ixsks)exp (iωt) +U∗

i exp(−ixsk∗s )exp (−iωt)
]

θ =
1
2
[
Θexp(ixiki)exp (iωt) +Θ∗exp(−ixik

∗
i )exp (−iωt)

]
(30)

ϕ =
1
2
[
Ψexp(ixiki)exp (iωt) +Ψ∗exp(−ixik

∗
i )exp (−iωt)

]

which are the real-valued inhomogeneous harmonic waves assumed on the basis of the pair
of complex vector fields for Equation (8).
The velocity of plane of constant phase is defined by

vp = ωP/ �P�2 (31)

and the maximum attenuation is �A�, where � � indicates the norm(or length) of a vector.
The quantities of the rate of energy density, the dissipation energy and the energy flux vector
can be expressed by inserting Equation (30) into Equations (27), (28) and (29).
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The mechanical potential energy density We

We =
1
2

cijklRe
[
UkklU

∗
i k∗j

]
exp (−2xs As)− 1

2
cijklRe

[
UkklUikjexp (2ixsks) exp (2iωt)

]
(32)

The first term on the right-hand side of this equation is time-independent and the second term
is time harmonic with frequency 2ω. The first term, expressed as �We� afterwards, represents
the result of We averaged over one period. From now on, we shall use � � indicates the mean
quantity over one period. The notation Re stands for the real part and Im the imaginary part.
Similarly, the kinetic energy density K takes the form

K =
1
2

ρω2UiU
∗
i exp (−2xs As)− 1

2
ρω2Re [UiUiexp (i2xsks) exp (i2ωt)] (33)

The electric energy density WE

WE =
1
2

λikRe [kik
∗
k ΨΨ∗exp (−2xs As)]− 1

2
λikRe [kikkΨΨexp (i2xsks) exp (i2ωt)] (34)

The heat energy density Wθ

Wθ =
1
2

ρC
T0

{Θ∗Θexp (−2xs As) +Re [ΘΘexp (i2xiki) exp (i2ωt)]} (35)

The rate of energy dissipation density

Q = Q(κ) + Q(τ) + Q(ξ)

where Q(κ) due to the heat conduction

Q(κ) =
1
T0

κijRe
[

kik
∗
j Θ∗Θexp (−2xs As)

]
− 1

T0
κijRe

[
kikjΘΘexp (i2xsks) exp (i2ωt)

]
(36)

Q(τ) because of the relaxation

Q(τ) = τ
ρ

T0

(
γij ε̈ ijθ + ξi Ëiθ +

ρC
T0

θ̈θ

)

= τ
ρ

T0
ω2

{
γijIm

(
UikjΘ

∗
)

exp (−2xs As) + γijIm
[
UikjΘexp (i2xsks) exp (i2ωt)

]
+(37)

+ξiIm (k∗i Ψ∗Θ) exp (−2xs As) + ξi Im [k∗i Ψ∗Θ∗exp (i2xsks) exp (i2ωt)] +

−ΘΘ∗exp (−2xs As)− Re [ΘΘexpi(2xiki)exp (i2ωt)]}
At last, Q(ξ) attributed by the pyroelectric effect

Q(ξ) = 2ξiRe(kiωΨΘ∗)exp (−2xs As) + 2ξiRe [(kiωΨΘ)exp(2ixsks)exp (i2ωt)] (38)

The energy flux vector Pi consists of three different parts: P(u)
i is generated in the elastic field;

P(ϕ)
i in the electric field; P(θ)

i in the thermal field, which are expressed as

P(u)
j = −σjiu̇j

= −ωcjikl {Re (U∗
i Ukkl) exp (−2xs As) + Re [UiUkklexp (i2xsks) exp (i2ωt)]}+ (39)

ωekji {−Re (kkU∗
i Ψ) exp (−2xs As) + Re [kkΨUiexp (i2xsks) exp (i2ωt)]}+

ωγji [[Im (U∗
i Θ) exp (−2xs As)− ωImUiΘexp (i2xsks) exp (i2ωt)]]
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In the electric field, P(ϕ)
j

P(ϕ)
j = ϕḊj

= −ωejmn {Re (UmknΨ∗) exp [−2xs As] +Re [ΨUmknexp [i(2xsks)] expi2ωt]}+ (40)

ωλmj {Re (kmΨΨ∗) exp (−2xs As) + Re [kmΨΨexp (i2xsks) exp (i2ωt)]}+
ωξ j {Im (Θ∗Ψ) exp (−2xs As)− Im [ΘΨexp [i(2xiki)] exp (i2ωt)]}

In the thermal field, P(θ)
j

P(θ)
j = −κijθ,i

θ

T0
=

1
T0

{
−ΘΘ∗κijIm (ki) exp (−2xs As) + Im

[
κijkiΘΘexp (i2xsks) exp (i2ωt)

]}

(41)

It is to be noted that the mean quantities still satisfy Equation (25) of energy balance equation
for pyroelectric medium.
Since the energy flux and the energy density have the dimensions of watt per square meter
and joule per cubic meter respectively, their ratio gives a quantity with dimension of velocity.
This energy velocity vE is defined as the radio of the mean energy flux to the mean energy
density over one period, that is

vE = �P� / �W� (42)

which corresponds to the average local velocity of energy transport. From an experimental
point of view, it is more interesting to define velocity from averaged quantities
(Deschamps et al., 1997).
We can substitute the expressions in Equations (32)-(35) and (39)-(41) into (42), which yields
a lengthy formulation. Comparing the expression of phase velocity in Equation (31) with the
energy velocity in Equation (42), it is obvious that they are different from each other in moduli
as well as directions.

3.2 Results and discussion
According to previous studies, it is already known that there are waves of four modes, which
are quasilongitudinal, quasitransverse I, II and temperature. In this section, we’d like to
discuss phase velocity vp, energy velocity vE related to the four mode waves. They are studied
as functions defined in propagation angle θ and attenuation angle γ. After wave vector k is
determined, Equations (31) and (42) yield the phase velocity and energy velocity respectively.
The material constants under study is transversely isotropic material, see Section 2.4.
The variation of phase and energy velocity of quasilongitudinal wave is presented in Fig. 6
(a) which shows that the phase velocity does not vary with attenuation angle γ , while the
corresponding energy velocity can be influenced by γ. With γ increasing, the energy velocity
turns small. It is also noted that the phase velocity is a little bigger than the energy velocity
for quasilongitudinal wave mode.
The case of temperature wave is shown in Fig. 6 (b). Different from quasilongitudinal wave,
the phase velocity and energy velocity of temperature wave are influenced by propagation
angle θ and attenuation angle γ. Both phase velocity and energy velocity decay with γ. For
given γ, the phase velocity is also bigger than energy velocity.
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(a)

(b)

Fig. 6. Variations of velocity with propagation angle θ at γ=0◦, 30◦ .
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(a)

(b)

Fig. 7. Variations of velocity with propagation angle θ at γ=0◦,30◦.
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(a)
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Fig. 7. Variations of velocity with propagation angle θ at γ=0◦,30◦.
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Plots of the computed velocities of quasitransverse wave I and II are given in Fig. 7. The phase
velocities of both wave modes are almost independent of γ and the energy velocity become
small with γ increasing.

4. Conclusion

In this chapter, the energy process of the pyroelectric medium with generalized heat
conduction theory is addressed in the framework of the inhomogeneous wave results
originally. The characters of inhomogeneous waves lie in that its propagation direction
is different from the biggest attenuation direction. The complex-valued wave vector is
determined by four parameters. The range of attenuation angle should be confined in
(-90◦ ,90◦) to make waves attenuate. Further analysis demonstrates that, in anisotropic plane,
the positive and negative attenuation angle have different influences on waves, while, in the
isotropic plane, they are the same. Based on the governing equations and state equations, the
dynamic energy conservation law is derived. The energy transfer, in an arbitrary instant, is
described explicitly by the energy conservation relation. From this relation, it is found that
energy density in pyroelectric medium consists of the electric energy density, the heat energy
density, the mechanical potential energy density, the kinetic energy density. The heat loss or
dissipation energy is equal to the reduction of the entire energy within a fixed volume plus
the reduction of this energy flux outward the surface bounding this volume. The dissipation
energy in pyroelectric medium are attributed by the heat conduction, relaxation time and
pyroelectric effect. The energy flux is obtained and it can not be influenced by the relaxation
time. The phase velocity and energy velocity of four wave modes in pyroelectric medium
are studied. Results demonstrate that the attenuation angle almost doesn’t influence phase
velocity of quasilongitudinal, quasitransverse I, II wave modes, while plays large role on
the temperature wave. The energy velocities of the four wave modes all decay with the
attenuation angle.
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Cattaneo, C. (1958). Sur une forme de l, équationéliminant le paradoxe d,une propagation

instantanée, Comptes Rend Acad Sc 247: 431–432.
Cerveny, V. & Psencik, I. (2006). Energy flux in viscoelastic anisotropic media, Geophys. J. Int.

166(3): 1299–1317.

246 Heat Conduction – Basic Research Energy Transfer in Pyroelectric Material 19

Cuadras, A., Gasulla, M., Ghisla, A. & Ferrari, V. (2006). Energy harvesting from pzt
pyroelectric cells, Instrumentation and Measurement Technology Conference, 2006. IMTC
2006. Proceedings of the IEEE, pp. 1668–1672.

Dalola, S., Ferrari, V. & Marioli, D. (2010). Pyroelectric effect in pzt thick films for thermal
energy harvesting in low-power sensors, Procedia Engineering 5: 685–688.

Deschamps, M., Poiree, B. & Poncelet, O. (1997). Energy velocity of complex harmonic plane
waves in viscous fluids, Wave Motion 25: 51–60.

Eringen, A. C. & Maugin, G. A. (1990). Electrodynamics of continua, Vol. I, Springer-Verlag, New
York.

Fang, J., Frederich, H. & Pilon, L. (2010). Harvesting nanoscale thermal radiation using
pyroelectric materials, Journal of Heat Transfer 132(9): 092701–10.

Fedorov, F. I. (1968). Theory of Elastic Waves in Crystals, Plenum Press, New York.
Gael, S. & et al. (2009). On thermoelectric and pyroelectric energy harvesting, Smart Materials

and Structures 18(12): 125006.
Green, A. E. & Lindsay, K. A. (1972). Thermoelasticity, Journal of Elasticity 2(1): 1–7.
Guyomar, D., Sebald, G., Lefeuvre, E. & Khodayari, A. (2008). Toward heat energy harvesting

using pyroelectric material, Journal of Intelligent Material Systems and Structures .
Hadni, A. (1981). Applications of the pyroelectric effect, J. Phys. E: Sci. Instrum. 14: 1233–1240.
He, T., Tian, X. & Shen, Y. (2002). Two-dimensional generalized thermal shock problem of a

thick piezoelectric plate of infinte extent, Int. J. Eng. Sci. 40: 2249–2264.
Joseph, D. & Preziosi, L. (1989). Heat waves, Reviews of Modern Physics 61: 41–73.
Kaliski, S. (1965). Wave equation of thermoelasticity, Bull. Acad. Pol. Sci., Ser. Sci . Tech.

13: 211–219.
Khodayari, A., Pruvost, S., Sebald, G., Guyomar, D. & Mohammadi, S. (2009). Nonlinear

pyroelectric energy harvesting from relaxor single crystals, Ultrasonics, Ferroelectrics
and Frequency Control, IEEE Transactions on 56(4): 693–699. 0885-3010.

Kiselev, A. P. (1982). Energy flux of elastic waves, Journal of Mathematical Sciences
19(4): 1372–1375.

Kuang, Z. B. (2002). Nonlinear continuum mechanics, Shanghai Jiaotong University Publishing
House, Shanghai.

Kuang, Z. B. (2009). Variational principles for generalized dynamical theory of
thermopiezoelectricity, Acta Mechanica 203(1): 1–11.

Kuang, Z. B. (2010). Variational principles for generalized thermodiffusion theory in
pyroelectricity, Acta Mechanica 214(3): 275–289.

Kuang, Z. & Yuan, X. (2010). Reflection and transmission of waves in pyroelectric and
piezoelectric materials, Journal of Sound and Vibration 330(6): 1111–1120.

Lord, H. W. & Shulman, Y. (1967). A generalized dynamical theory of thermoelasiticity, J.
Mech. Phys. Solids 15: 299–309.

Mainardi, F. (1973). On energy velocity of viscoelastic waves, Lettere Al Nuovo Cimento
(1971-1985) 6: 443–449.

Majhi, M. C. (1995). Discontinuities in generalized thermoelastic wave propagation in a
semi-infinite piezoelectric rod, J. Tech. Phys 36: 269–278.

Nelson, D. F. (1979). Electric, Optic and Acoustic Interactions in Dielectrics, John Wiley, New
York.

Olsen, R. B., Bruno, D. A., Briscoe, J. M. & Dullea, J. (1984). Cascaded pyroelectric energy
converter, Ferroelectrics 59(1): 205–219.

247Energy Transfer in Pyroelectric Material



20 Will-be-set-by-IN-TECH

Olsen, R. B. & Evans, D. (1983). Pyroelectric energy conversion: Hysteresis loss
and temperature sensitivity of a ferroelectric material, Journal of Applied Physics
54(10): 5941–5944.

Sharma, J. N. & Kumar, M. (2000). Plane harmonic waves in piezo-thermoelastic materials,
Indian J. Eng. Mater. Sci. 7: 434–442.

Sharma, J. N. & Pal, M. (2004). Propagation of lamb waves in a transversely isotropic
piezothermoelastic plate, Journal of Sound and Vibration 270(4-5): 587–610.

Sharma, J. N. & Walia, V. (2007). Further investigations on rayleigh waves in
piezothermoelastic materials, Journal of Sound and Vibration 301(1-2): 189–206.

Shen, D., Choe, S.-Y. & Kim, D.-J. (2007). Analysis of piezoelectric materials for energy
harvesting devices under high-igi vibrations, Japanese Journal of Applied Physics
46(10A): 6755.

Sodano, H. A., Inman, D. J. & Park, G. (2005). Comparison of piezoelectric energy harvesting
devices for recharging batteries, Journal of Intelligent Material Systems and Structures
16(10): 799–807.

Umov, N. A. (1874). The equations of motion of the energy in bodies[in Russian], Odessa.
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1. Introduction 
The advancement in efficient modeling and methodology for thermoelastic analysis of 
structure members requires a variety of the material characteristics to be taken into 
consideration. Due to the critical importance of such analysis for adequate determination of 
operational performance of structures, it presents a great deal of interest for scientists in both 
academia and industry. However, the assumption that the material properties depend on 
spatial coordinates (material inhomogeneity) presents a major challenge for analytical 
treatment of relevant heat conduction and thermoelasticity problems. The main difficulty lies 
in the need to solve the governing equations in the differential form with variable coefficients 
which are not pre-given for arbitrary dependence of thermo-physical and thermo-elastic 
material properties on the coordinate. Particularly, for functionally graded materials, whose 
properties vary continuously from one surface to another, it is impossible, except for few 
particular cases, to solve the mentioned problems analytically (Tanigawa, 1995). The analytical, 
semi-analytical, and numerical methods for solving the heat conduction and thermoelasticity 
problems in inhomogeneous solids attract considerable attention in recent years. The overview 
of the relevant literature is given in our publications (Tokovyy & Ma, 2008, 2008a, 2009, 2009a). 
On the other hand, determination of temperature gradients, stresses and deformations is 
usually an intermediate step of a complex engineering investigation. Therefore analytical 
methods are of particular importance representing the solutions in a most convenient form. 
The great many of existing analytical methods are developed for particular cases of 
inhomogeneity (e.g., in the form of power or exponential functions of a coordinate, etc.). The 
methods applicable for wider ranges of material properties are oriented mostly on 
representation the inhomogeneous solid as a composite consisting of tailored homogeneous 
layers. However, such approaches are inconvenient for applying to inhomogeneous materials 
with large gradients of inhomogeneity due to the weak convergence of the solution with 
increasing the number of layers. 
A general method for solution of the elasticity and thermoelasticity problems in terms of 
stresses has been developed by Prof. Vihak (Vigak) and his followers in (Vihak, 1996; Vihak 
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1. Introduction 
The advancement in efficient modeling and methodology for thermoelastic analysis of 
structure members requires a variety of the material characteristics to be taken into 
consideration. Due to the critical importance of such analysis for adequate determination of 
operational performance of structures, it presents a great deal of interest for scientists in both 
academia and industry. However, the assumption that the material properties depend on 
spatial coordinates (material inhomogeneity) presents a major challenge for analytical 
treatment of relevant heat conduction and thermoelasticity problems. The main difficulty lies 
in the need to solve the governing equations in the differential form with variable coefficients 
which are not pre-given for arbitrary dependence of thermo-physical and thermo-elastic 
material properties on the coordinate. Particularly, for functionally graded materials, whose 
properties vary continuously from one surface to another, it is impossible, except for few 
particular cases, to solve the mentioned problems analytically (Tanigawa, 1995). The analytical, 
semi-analytical, and numerical methods for solving the heat conduction and thermoelasticity 
problems in inhomogeneous solids attract considerable attention in recent years. The overview 
of the relevant literature is given in our publications (Tokovyy & Ma, 2008, 2008a, 2009, 2009a). 
On the other hand, determination of temperature gradients, stresses and deformations is 
usually an intermediate step of a complex engineering investigation. Therefore analytical 
methods are of particular importance representing the solutions in a most convenient form. 
The great many of existing analytical methods are developed for particular cases of 
inhomogeneity (e.g., in the form of power or exponential functions of a coordinate, etc.). The 
methods applicable for wider ranges of material properties are oriented mostly on 
representation the inhomogeneous solid as a composite consisting of tailored homogeneous 
layers. However, such approaches are inconvenient for applying to inhomogeneous materials 
with large gradients of inhomogeneity due to the weak convergence of the solution with 
increasing the number of layers. 
A general method for solution of the elasticity and thermoelasticity problems in terms of 
stresses has been developed by Prof. Vihak (Vigak) and his followers in (Vihak, 1996; Vihak 
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et al., 1998, 2001, 2002; Vigak, 1999; Vigak & Rychagivskii, 2000, 2002). The method consists 
in construction of analytical solutions to the problems of thermoelasticity based on direct 
integration of the original equilibrium and compatibility equations. Originally the 
equilibrium equations are in terms of stresses, and they do not depend on the physical 
stress-strain relations, as well as on the material properties. At the same time the general 
equilibrium relates all the stress-tensor components. This enables one to express all the 
stresses in terms of the governing stresses. The compatibility equations in terms of strain are 
then reduced to the governing equations for the governing stresses. When these equations 
are solved, all the stress-tensor components can be found by means of the aforementioned 
expressions. In addition, the method enables the derivation of: a) fundamental integral 
equilibrium and compatibility conditions for the imposed thermal and mechanical loadings 
and the stresses and strains; b) one-to-one relations between the stress-tensor and 
displacement-vector components. Therefore, when the stress-tensor components are found, 
then the displacement-vector components are also found automatically. Such relations have 
been derived for the case of one-dimensional problem for a thermoelastic hollow cylinder 
(Vigak, 1999a) and plane problems for elastic and thermoelastic semi-plane (Vihak & 
Rychahivskyy, 2001; Vigak, 2004; Rychahivskyy & Tokovyy, 2008). 
Since application of this method rests upon the direct integration of the equilibrium 
equations, the proposed solution scheme offers ample opportunities for efficient analysis of 
inhomogeneous solids. In contrast to homogeneous materials, the compatibility equations in 
terms of stresses are with variable coefficients. This causes that the governing equations, 
obtained on the basis of the compatibility ones, appear as integral equations of Volterra 
type. By following this solution strategy, the one-dimensional thermoelasticity problem for a 
radially-inhomogeneous cylinder has been analyzed (Vihak & Kalyniak, 1999; Kalynyak, 
2000). In the same manner, the two-dimensional elasticity and thermoelasticity problems for 
inhomogeneous cylinders, strips, planes and semi-planes were solved in (Tokovyy & 
Rychahivskyy, 2005; Tokovyy & Ma, 2008, 2008a, 2009, 2009a). The same method has also 
been extended for three-dimensional problems (Tokovyy & Ma, 2010, 2010a). Application of 
this method for analysis of inhomogeneous solids exhibits several advantages. First of all, 
this method is unified for various kinds of inhomogeneity and different shape of domain 
and it does not impose any restriction on the material properties. Moreover, when applying 
the resolvent-kernel algorithm for solution of  the governing Volterra-type integral equation, 
the solutions of corresponding elasticity and thermoelasticity problems for inhomogeneous 
solids appear in the form of explicit functional dependences on the thermal and mechanical 
loadings, which makes them to be rather usable for complex engineering analysis.  
Herein, we consider an application of the direct integration method for analysis of 
thermoelastic response of an inhomogeneous semi-plane within the framework of linear 
uncoupled thermoelasticity (Nowacki, 1962). The solution of this problem consists of two 
stages: i) solution of the in-plane steady-state heat conduction problem under certain 
boundary conditions, and ii) solution of the plane thermal stress problem due to the above 
determined temperature field and appropriate boundary conditions. Solution of both 
problems is reduced to the governing Volterra integral equation. By making use of the 
resolvent-kernel solution technique, the governing equation is solved and the solution of the 
original problem is presented in an explicit form. Due to the later result, the one-to-one 
relationships are set up between the tractions and displacements on the boundary of the 
inhomogeneous semi-plane. Using these relations and the solution in terms of stresses, we 
find solutions for the boundary value problems with displacements or mixed conditions 
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imposed on the boundary. It is shown that these solutions are correct if the tractions satisfy 
the necessary equilibrium conditions, the displacements meet the integral compatibility 
conditions, and the heat sources and heat flows satisfy the integral condition of thermal 
balance. 

2. Analysis of the steady-state heat conduction problem in an 
inhomogeneous semi-plane 
In this section, we consider an application of the direct integration method for solution of the 
in-plane steady-state (stationary) heat conduction problem for a semi-plane whose thermal 
conductivity is an arbitrary function of the depth-coordinate. Having applied the Fourier 
integral transformation to the differential heat conduction equation with variable coefficients, 
this equation is reduced to the Volterra-type integral equation, which then is solved by making 
use of the resolvent-kernel technique. As a result, the temperature distribution is found in an 
explicit functional form that can be efficiently used for analysis of thermal stresses and 
displacements in the semi-plane. 

2.1 Formulation of the heat conduction  problem 
Let us consider the two-dimensional heat conduction problem for semi-plane 

{( , ) ( , ) [0, )}D x y       in the dimensionless Cartesian coordinate system (x, y). In 
assumption of the isotropic material properties, the problem is governed by the following 
heat conduction equation (Hetnarski & Reza Eslami, 2008) 

 ( , ) ( , )( ) ( ) ( , ),T x y T x yk y k y q x y
x x y y

               
 (1) 

where ( , )T x y  is the steady-state temperature distribution, k(y) stands for the coefficient of 
thermal conduction, and q(x, y) denotes the quantity of heat generated by internal heat 
sources in semi-plane D. When the coefficient of thermal conduction is constant, then 
equation (1) presents the classical equation of quasi-static heat conduction (Nowacki, 1962; 
Carslaw & Jaeger, 1959) 

 ( , ) ( , ),T x y W x y    (2) 

where 2 2 2 2/ /x y        and ( , ) ( , ) /W x y q x y k  denotes the density of internal sources 
of heat. In the steady-state case, the temperature ( , )T x y  can be determined from equation 
(1) for ( )k y  or (2) for constk   under certain boundary condition imposed at 0y   
(Nowacki, 1962). We consider the boundary condition in one of the following forms: 
a. the temperature distribution is prescribed on the boundary 

 0( , ) ( ), 0;T x y T x y   (3) 

b. the heat flux over the limiting line 0y   is prescribed on the boundary 

 0
( , ) ( ), 0;T x y x y
y


  


 (4) 
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imposed on the boundary. It is shown that these solutions are correct if the tractions satisfy 
the necessary equilibrium conditions, the displacements meet the integral compatibility 
conditions, and the heat sources and heat flows satisfy the integral condition of thermal 
balance. 

2. Analysis of the steady-state heat conduction problem in an 
inhomogeneous semi-plane 
In this section, we consider an application of the direct integration method for solution of the 
in-plane steady-state (stationary) heat conduction problem for a semi-plane whose thermal 
conductivity is an arbitrary function of the depth-coordinate. Having applied the Fourier 
integral transformation to the differential heat conduction equation with variable coefficients, 
this equation is reduced to the Volterra-type integral equation, which then is solved by making 
use of the resolvent-kernel technique. As a result, the temperature distribution is found in an 
explicit functional form that can be efficiently used for analysis of thermal stresses and 
displacements in the semi-plane. 

2.1 Formulation of the heat conduction  problem 
Let us consider the two-dimensional heat conduction problem for semi-plane 

{( , ) ( , ) [0, )}D x y       in the dimensionless Cartesian coordinate system (x, y). In 
assumption of the isotropic material properties, the problem is governed by the following 
heat conduction equation (Hetnarski & Reza Eslami, 2008) 

 ( , ) ( , )( ) ( ) ( , ),T x y T x yk y k y q x y
x x y y

               
 (1) 

where ( , )T x y  is the steady-state temperature distribution, k(y) stands for the coefficient of 
thermal conduction, and q(x, y) denotes the quantity of heat generated by internal heat 
sources in semi-plane D. When the coefficient of thermal conduction is constant, then 
equation (1) presents the classical equation of quasi-static heat conduction (Nowacki, 1962; 
Carslaw & Jaeger, 1959) 

 ( , ) ( , ),T x y W x y    (2) 

where 2 2 2 2/ /x y        and ( , ) ( , ) /W x y q x y k  denotes the density of internal sources 
of heat. In the steady-state case, the temperature ( , )T x y  can be determined from equation 
(1) for ( )k y  or (2) for constk   under certain boundary condition imposed at 0y   
(Nowacki, 1962). We consider the boundary condition in one of the following forms: 
a. the temperature distribution is prescribed on the boundary 

 0( , ) ( ), 0;T x y T x y   (3) 

b. the heat flux over the limiting line 0y   is prescribed on the boundary 

 0
( , ) ( ), 0;T x y x y
y


  


 (4) 



 
Heat Conduction – Basic Research 

 

252 

c. the heat exchange condition is imposed on the boundary 

 0 0
( , ) ( , ) , 0.T x y T x y y
y

 


  


 (5) 

Here 0  and 0  are constants, 0( )T x  and 0( )x  are given functions. Assuming that the 
temperature field, heat fluxes, and the density of heat sources vanish with | |,x y  , we 
consider finding the solution to equation (1) or (2) under either of the boundary conditions 
(3) – (5) and the supplementary conditions of integrability of the functions in question in 
their domain of definition. 

2.2 Solution of the stated heat conduction problem by reducing to the Volterra-type 
integral equation 
In the case when constk  , it has been shown (Rychahivskyy & Tokovyy, 2008) that for 
construction of a correct solution to equation (2) with boundary condition (4), the following 
necessary condition  

 0( , )d d ( )d
D

W x y x y x x



    (6) 

is to be fulfilled. This condition of thermal balance postulates that the resultant heat flux 
trough the boundary 0y   is equal to the resultant action of internal heat sources within 
domain D. In the case of boundary conditions (3) or (5), the right-hand side of condition (6) 
should be replaced by the integral of the heat flux at 0y  , which is determined by the 
temperature. Due to this reason, condition (6) can be regarded as an efficient tool for 
verification of the solution correctness.   
Note that condition (6) is natural for steady-state thermal processes in bounded solids. 
However, it is not intuitive for non-stationary thermal regimes since then only certain 
distribution of the temperature field is possible inside the solid implying that the heating of 
the solid until an average temperature is not achievable. Thus, condition (6) for a semi-plane 
is a consequence of application of solid mechanics to the oversimplified geometrical model.  
By denoting 

 ( , ) ( , )( , ) ( ) , ( , ) ( )x y
T x y T x yx y k y x y k y

x y
 

   
 

  

in equation (1), when ( )k k y , and following the strategy presented in 
(Rychahivskyy & Tokovyy, 2008), it can be shown that condition (6) holds for the case of 
inhomogeneous material. In addition, the resultant of the temperature is necessarily equal to 
zero 

 ( , )d d 0
D

T x y x y   (7) 

for both homogeneous and inhomogeneous cases.  
Let us construct the solution to equation (1) under boundary conditions (3), (4), or (5) by 
taking conditions (6) and (7) into consideration. Having applied the Fourier integral 
transformation (Brychkov & Prudnikov,  1989) 
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 ( ; ) ( , )exp( )df y s f x y isx x



   (8) 

to the aforementioned equation and boundary conditions, we arrive at the following second 
order ODE 

 
2

2
2

d ( ; ) d ( ) d ( ; )1( ; ) ( ; )
( ) d dd

T y s k y T y ss T y s q y s
k y y yy

 
    

 
 (9) 

that is accompanied with one of the following boundary conditions: 

 0( ; ) ( ), 0;T y s T s y   (10) 

 0
d ( ; ) ( ), 0;

d
T y s s y

y
    (11) 

 0 0
d ( ; ) ( ; ) , 0.

d
T y s T y s y

y
     (12) 

Here s is a parameter of the integral transformation, 2 1i   ,    ,f x y L D . For the sake of 

brevity, the parameter s will be omitted from the arguments of functions in the following 
text.   
A general solution to equation (9) in semi-plane D can be given in the form 

0

( )1( ) exp( | | ) exp( | || |)d
2| | ( )

qT y C s y s y
s k


 




      

     0

1 1 d ( ) d ( ) exp( | || |)d
2| | ( ) d d

k T s y
s k

   
  


   , (13) 

where C is a constant of integration and | |  denotes the absolute-value function. By 
applying the integration by parts to the last integral in equation (13), we can obtain the 
following Volterra-type integral equation of second kind: 

 0

(0) d (0)( ) exp( | | ) *( ) ( ) ( , )d .
2| | (0) d

T kT y C s y q y T K y
s k y

  
 

     
 

  (14) 

Here 

0

( )1*( ) exp( | || |)d ,
2| | ( )

qq y s y
s k


 




    

1 d 1 d ( )( , ) exp( | || |)
( )2| |d d

kK y s y
ks
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applying the integration by parts to the last integral in equation (13), we can obtain the 
following Volterra-type integral equation of second kind: 

 0

(0) d (0)( ) exp( | | ) *( ) ( ) ( , )d .
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Here 

0

( )1*( ) exp( | || |)d ,
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2

2
exp( | || |)1 1 d ( ) d ( ) d ( )| |sgn( ) .

2| | ( ) d d ( )d
s yk k ks y

s k k
  

   

    
        

 (15) 

To solve integral equation (14), different algorithms can be employed, for instance, the 
Picard’s process of successive approximations (Tricomi, 1957; Kalynyak, 2000; 
Tokovyy & Ma, 2008a), the operator series method (Bartoshevich, 1975), the Bubnov-
Galerkin method (Fedotkin et al., 1983), a numerical procedure based on trapezoidal 
integration and a Newton-Raphson method (Frankel, 1991), iterative-collocation method 
(Hącia, 2007), discretization method, special kernels method and projection-iterative method 
(Domke & Hącia, 2007), spline approximations (Kushnir et al., 2002), the quadratic-form 
method (Belik et al. 2008), the greed methods (Peng & Li, 2010). Herein we employ the 
resolvent-kernel algorithm (Pogorzelski, 1966; Porter & Stirling, 1990) in the same manner as 
it has been done in (Tokovyy & Ma, 2008, 2009a). This method allows us to obtain the 
explicit-form analytical solution that is convenient for analysis. As a result, the 
transformation of temperature appears as 

 (0) d (0)( ) ( ) ( ),
2| | (0) d

T kT y C y y
s k y

 
 

   
 

 (16) 

where 

 0
( ) exp( | | ) exp( | | ) ( , )d ,y s y s y   


      (17) 

 0
( ) *( ) *( ) ( , )d ,y q y q y   


    (18) 

and the resolvent-kernel is determined by the recurring kernels as 

 1
0

( , ) ( , ),n
n

y K y 





    (19) 

1 1 0
( , ) ( , ), ( , ) ( , ) ( , )d , 1,2,...n nK y K y K y K y K n      


    

Note that expression (16) is advantageous in comparison with the analogous solutions 
constructed by means of the aforementioned techniques for solution of the Volterra integral 
equations. First of all, solution (16) is obtained in explicit functional form. This fact can be 
efficiently used for complex analysis involving solution of thermoelasticity problem. Next, 
the resolvent (19) is expressed only through the kernel (15) of integral equation (14) 
(“intrinsic” properties of an integral equation) and is non-dependent of the free term 
(“external” properties of an integral equation). Consequently, being computed once for 
certain kernel (which means for certain material properties, obviously), resolvent (19) can be 
employed for various kinds of thermal loading. 
To determine the unknown constant C in equation (16), one of conditions (10) – (12) should 
be employed. Insertion of (16) into condition (10)  yields 
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0 (0) d (0) (0)1 ,
(0) 2| | (0) d (0)
T kC

s k y
 

 
 

   
 

 

and then the temperature can be given as 

 0 (0)( ) ( ) ( ).
(0)

TT y y y
 




   (20) 

In the case of boundary condition (11), the constant C appears as 

1 1

0
d (0) (0) d (0) d (0) d (0) .

d 2| | (0) d d d
T kC q

y s k y y y
  

 
   

     
   

 

Then the temperature can be given as 

 
1

0
d (0) d (0)( ) ( ) ( ).

d d
T y q y y

y y
   


  

    
  

 (21) 

In the case of boundary condition (12), the constant C takes the form 

1

0 00
d (0) d (0) (0) d (0)(0)(0)

d d 2| | (0) d
T kC

y y s k y
    


  

      
  

, 

and, consequently,  

 
1

0 00
d (0) d (0)( ) (0) ( ) ( ).(0)

d d
T y y y

y y
      


  

      
  

 (22) 

Having determined the expressions for the temperature field in the form (20), (21), or (22) 
and applying the formula 

 1( , ) ( ; )exp( )d
2

f x y f y s isx s






   (23) 

of inverse Fourier transformation (Brychkov & Prudnikov, 1989), we can obtain the 
expressions for temperature field in semi-plane D. 
Note that according to the resolvent-kernel theory (Verlan & Sizikov, 1986), the recurring 
kernels 1nK   tend to zero as n  . Thus, for practical computations, the series in 
expression (19) can be truncated. Consequently, 

 1
0

( , ) ( , ) ( , ),
N

N n
n

y y K y  


      (24) 

where N is a natural number which depends on required accuracy of calculation. 



 
Heat Conduction – Basic Research 

 

254 

 
2

2
exp( | || |)1 1 d ( ) d ( ) d ( )| |sgn( ) .

2| | ( ) d d ( )d
s yk k ks y

s k k
  

   

    
        

 (15) 

To solve integral equation (14), different algorithms can be employed, for instance, the 
Picard’s process of successive approximations (Tricomi, 1957; Kalynyak, 2000; 
Tokovyy & Ma, 2008a), the operator series method (Bartoshevich, 1975), the Bubnov-
Galerkin method (Fedotkin et al., 1983), a numerical procedure based on trapezoidal 
integration and a Newton-Raphson method (Frankel, 1991), iterative-collocation method 
(Hącia, 2007), discretization method, special kernels method and projection-iterative method 
(Domke & Hącia, 2007), spline approximations (Kushnir et al., 2002), the quadratic-form 
method (Belik et al. 2008), the greed methods (Peng & Li, 2010). Herein we employ the 
resolvent-kernel algorithm (Pogorzelski, 1966; Porter & Stirling, 1990) in the same manner as 
it has been done in (Tokovyy & Ma, 2008, 2009a). This method allows us to obtain the 
explicit-form analytical solution that is convenient for analysis. As a result, the 
transformation of temperature appears as 

 (0) d (0)( ) ( ) ( ),
2| | (0) d

T kT y C y y
s k y

 
 

   
 

 (16) 

where 

 0
( ) exp( | | ) exp( | | ) ( , )d ,y s y s y   


      (17) 

 0
( ) *( ) *( ) ( , )d ,y q y q y   


    (18) 

and the resolvent-kernel is determined by the recurring kernels as 

 1
0

( , ) ( , ),n
n

y K y 





    (19) 

1 1 0
( , ) ( , ), ( , ) ( , ) ( , )d , 1,2,...n nK y K y K y K y K n      


    

Note that expression (16) is advantageous in comparison with the analogous solutions 
constructed by means of the aforementioned techniques for solution of the Volterra integral 
equations. First of all, solution (16) is obtained in explicit functional form. This fact can be 
efficiently used for complex analysis involving solution of thermoelasticity problem. Next, 
the resolvent (19) is expressed only through the kernel (15) of integral equation (14) 
(“intrinsic” properties of an integral equation) and is non-dependent of the free term 
(“external” properties of an integral equation). Consequently, being computed once for 
certain kernel (which means for certain material properties, obviously), resolvent (19) can be 
employed for various kinds of thermal loading. 
To determine the unknown constant C in equation (16), one of conditions (10) – (12) should 
be employed. Insertion of (16) into condition (10)  yields 

 
Steady-State Heat Transfer and Thermo-Elastic Analysis of Inhomogeneous Semi-Infinite Solids  

 

255 

0 (0) d (0) (0)1 ,
(0) 2| | (0) d (0)
T kC

s k y
 

 
 

   
 

 

and then the temperature can be given as 

 0 (0)( ) ( ) ( ).
(0)

TT y y y
 




   (20) 

In the case of boundary condition (11), the constant C appears as 

1 1

0
d (0) (0) d (0) d (0) d (0) .

d 2| | (0) d d d
T kC q

y s k y y y
  

 
   

     
   

 

Then the temperature can be given as 

 
1

0
d (0) d (0)( ) ( ) ( ).

d d
T y q y y

y y
   


  

    
  

 (21) 

In the case of boundary condition (12), the constant C takes the form 

1

0 00
d (0) d (0) (0) d (0)(0)(0)

d d 2| | (0) d
T kC

y y s k y
    


  

      
  

, 

and, consequently,  

 
1

0 00
d (0) d (0)( ) (0) ( ) ( ).(0)

d d
T y y y

y y
      


  

      
  

 (22) 

Having determined the expressions for the temperature field in the form (20), (21), or (22) 
and applying the formula 

 1( , ) ( ; )exp( )d
2

f x y f y s isx s






   (23) 

of inverse Fourier transformation (Brychkov & Prudnikov, 1989), we can obtain the 
expressions for temperature field in semi-plane D. 
Note that according to the resolvent-kernel theory (Verlan & Sizikov, 1986), the recurring 
kernels 1nK   tend to zero as n  . Thus, for practical computations, the series in 
expression (19) can be truncated. Consequently, 

 1
0

( , ) ( , ) ( , ),
N

N n
n

y y K y  


      (24) 

where N is a natural number which depends on required accuracy of calculation. 
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2.3 Numerical analysis  
To verify the obtained solution to the heat conduction problem, let us examine the case, 
when the semi-plane is heated by a single concentrated internal heat source 

 0 0( , ) ( ) ( ).q x y q x y y    (25) 

Meanwhile the boundary 0y   remains of the constant temperature, 0 0T  . Here 0q  is a 
constant dimensional parameter; ( )   denotes the Dirac delta-function. In this case, the 
temperature should be computed on the basis of expression (20). The coefficient of thermal 
conductivity is assumed to be in the following form 

 0( ) exp( ),k y k y  (26) 

where 0k  and   are constants. Note that for 0  , the thermal conductivity in the form 
(26) is constant, that corresponds to the case of homogeneous material. Then, on the basis of 
expression (19), the resolvent ( , ) 0y    and thus expression (20) presents an exact 
analytical solution 

  0
0 0

0

( ) 1 exp( | || |) exp( | |( ))
2| |

T y k s y y s y y
q s

      . (27) 

Application of the Fourier inversion (23) to formula (27) yields the expression for the 
temperature in the homogeneous semi-plane, as follows: 

 
2 2

00
2 2

0 0

( )1( , ) ln .
4 ( )

x y yk T x y
q x y y

 


 
 (28) 

The full-field distributions of the temperature (28) and the components of corresponding 
heat flux are depicted in Fig. 1 for 0 1y  . Distribution of the temperature (28) versus the 
 

  

Fig. 1. Full-field distributions of (a) the dimensionless temperature 0
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( , )k T x y
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, and (b) trans-

versal 0
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q y




 and (c) longitudinal 0
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 components of the heat flux for 0 1y   
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variable y is shown in Fig. 2 for x = 0.0; 0.5 and different values 0 1.0;2.0;3.0;4.0.y  As we 
can observe in both figures, the thermal state is symmetrical with respect to the line 0x  . 
The temperature vanish when mowing away from the location of the heat source 0(0, )y . 
When approaching the boundary 0y  , the temperature vanish faster than in the opposite 
direction (due to satisfaction of the boundary condition). When the location of the heat 
source is moving away from the boundary, then the thermal state tends to one symmetrical 
with respect to the line 0y y  (Fig. 2) due to the lowering influence of the boundary (in 
analogy to the case of an infinite plane).  
 

 
Fig. 2. Distribution of the temperature (28) versus coordinate y for 0.0;0.5x    

 

 
Fig. 3. The heat flux (29) for different values of 0 1.0;2.0;3.0;4.0y   

 

 
Fig. 4. Dependence of the thermal conductivity on the coordinate y for different values of   

For the obtained temperature, the heat flux trough the boundary 0y   can be found as 
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variable y is shown in Fig. 2 for x = 0.0; 0.5 and different values 0 1.0;2.0;3.0; 4.0.y  As we 
can observe in both figures, the thermal state is symmetrical with respect to the line 0x  . 
The temperature vanish when mowing away from the location of the heat source 0(0, )y . 
When approaching the boundary 0y  , the temperature vanish faster than in the opposite 
direction (due to satisfaction of the boundary condition). When the location of the heat 
source is moving away from the boundary, then the thermal state tends to one symmetrical 
with respect to the line 0y y  (Fig. 2) due to the lowering influence of the boundary (in 
analogy to the case of an infinite plane).  
 

 
Fig. 2. Distribution of the temperature (28) versus coordinate y for 0.0;0.5x    

 

 
Fig. 3. The heat flux (29) for different values of 0 1.0;2.0;3.0;4.0y   

 

 
Fig. 4. Dependence of the thermal conductivity on the coordinate y for different values of   
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By taking formulae (25) and (29) into consideration, it is easy to see that condition (6) is 
satisfied for the considered case. Distribution of the heat flux (29) for different values of 0y  is 
shown in Fig. 3.  As we can see, the heat flux over the boundary is locally distributed with the 
maximum value at 0x   which decreases as the heat source is further from the boundary.  
Now let 0   in (26). For this case, the exact solution can be constructed by following the 
technique presented in (Ma & Lee, 2009; Ma & Chen, 2011). According to this technique, the 
exact solution to the problem (1), (3), (25) can be found in the form 
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where 2 24s      . To obtain the distribution of temperature due to Fourier 
transform (30), the inversion formula (23) can be applied. The distributions of obtained 
temperature and corresponding heat flux are examined for different values of the parameter 
of inhomogeneity: 1  , 1   , and, for comparison with above-discussed homogeneous 
case, 0   (Fig. 4). For 1  , the thermal conductivity grows exponentially from 1 to 
infinity; for 1    it decreases from 1 to 0. 
 

 
Fig. 5. Distribution of the temperature due to transformant (30) versus coordinate y at 

0.0x   for 0, 1    
 

 
Fig. 6. Distribution  of the heat flux across the boundary  y  0  for 0 1.0;3.0y  , 0; 1    

 
Steady-State Heat Transfer and Thermo-Elastic Analysis of Inhomogeneous Semi-Infinite Solids  

 

259 

 
Fig. 7. Distribution of the heat flux for  0 1.0;3.0y  , 0, 1    

The effect of inhomogeneity on the temperature and heat flux over the boundary 0y   is 
shown in Figs. 5 and 6, respectively.  As we observe in Fig. 5, the temperature vanishes with 
y   as faster as the parameter of inhomogeneity   is greater, whereas for 00 y y   
vice-verse.  Consequently, the heat flux over the boundary 0y   is greater for greater 
values of   (Fig. 6).  
Now we consider application of formula (20) for computation of the temperature in the 
inhomogeneous semi-plane. We employ formula (24) instead of (19) in (17) and (18). 
Distribution of the temperature computed by formula (20) for different values of parameter 
N in (24) is shown in Fig. 7. With growing N, the result naturally tends to the exact solution 
(30) and for 5N   they coincide. This result shows that expression (24) provides sufficiently 
good  approximation for the resolvent ( , )y  by holding few terms only.   

3. Analysis of thermal stresses in an inhomogeneous semi-plane 
In this section, the technique for solving the plane thermoelasticity problem for an isotropic 
inhomogeneous semi-plane with boundary conditions for stresses or displacements, as well 
as mixed boundary conditions, is developed by establishing one-to-one relations between 
boundary tractions and displacements. This technique is based on integration of the Cauchy 
relations to express displacements in terms of strains. Then, by taking the physical strain-
stress relations into consideration, the displacements are expressed through the stress-tensor 
components. Finally, by making use of the explicit-form analytical solution to the 
corresponding problem with boundary tractions, the displacements on the boundary can be 
expressed through the tractions. The technique for establishment of the one-to-one relations 
between the tractions and displacements on the boundary, as well as for deriving the 
necessary equilibrium and compatibility conditions in the case of homogeneous semi-plane 
has been developed in (Rychahivskyy & Tokovyy, 2008). 

3.1 Formulation of the problem 
Let us consider the plane quasi-static thermoelasticity problem in inhomogeneous semi-
plane D . In absence of body forces, this problem is governed (Nowacki, 1962) by the 
equilibrium equations 
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the compatibility equation in terms of strains 
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Here , ,x y xy    and , ,x y xy    denote the stress- and strain-tensor components, 
respectively;  
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( ) ( ), plane strain, , plane strain,
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E(y) denotes the Young modulus, ( )y  stands for the Poisson ratio; ( )( )
2(1 ( ))

E yG y
y




 is the 

shear modulus, ( )y  denotes the coefficient of linear thermal expansion; ( , )u x y  and 
( , )v x y  are the dimensionless displacements; ( , )T x y  is the temperature field that is given or 

determined in the form (20), (21), or (22) by means of the technique proposed in the previous 
section. 
We shall construct the solutions of the set of equations (31)–(34) for each of the three 
versions of boundary conditions prescribed on the line 0y  : 
a. in terms of stresses 

 ( , ) ( ), ( , ) ( ), 0;y xyx y p x x y q x y      (35) 

b. in terms of displacements 

 0 0( , ) ( ), ( , ) ( ), 0;u x y u x v x y v x y    (36) 
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c. mixed conditions, when one of the following couples of relations  
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is imposed on the boundary. The boundary tractions and displacements, those are 
mentioned in conditions (35)—(37), as well the temperature field, vanish with | |x  , 
y  . We consider finding the solutions (stresses and displacements) of the stated 
boundary value problems. 

3.2 Construction of the solutions 
3.2.1 Case A: Boundary condition in terms of external tractions  
Let us consider the construction of solution to the  problem (31) – ( 34) under boundary 
conditions (35) with given tractions ( )p x  and ( )q x . The boundary displacements 0( )u x  and 

( )v x  are unknown and, thus, they should be determined in the process of solution. By 
following the solution strategy (Tokovyy & Ma, 2009), the stress-tensor components can be 
expressed trough the in-plane total stress x y     as 
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(38) 

In turn, the total stress can be found as a solution of the Volterra-type integral equation of 
second kind: 

   0
( ) * ( ) ( ) exp( | | ) * ( ) ( ) ( ) ( , )d ,y E y pP y A s y y T y M y     


       (39) 

where 

      
2

20

* ( ) d 1( , ) exp | | | | | | exp | | | | d ,
8 ( )d

E yM y s y s y
G

       


  
           

 
  

 
2

20

1 d 1( ) exp | |( | |) d ,
4| | ( )d

P y s y
s G

  


  
    

 
  

and the constant of integration A is to be found from the following integral condition 

0
( )exp( | | )d

| |
p iqy s y y
s s




    . 



 
Heat Conduction – Basic Research 

 

260 

the compatibility equation in terms of strains 

 
2 22

2 2

( , ) ( , )( , ) ,y xyx x y x yx y
x yy x

   
 

  
 (32) 

the physical thermoelasticity relations 

* ( )1( , ) ( , ) ( , ) *( ) ( , ),
* ( ) * ( )x x y

yx y x y x y y T x y
E y E y


       

 * ( )1( , ) ( , ) ( , ) *( ) ( , ),
* ( ) * ( )y y x

yx y x y x y y T x y
E y E y


       (33) 

1( , ) ( , ),
( )xy xyx y x y

G y
   

and the geometrical Cauchy relations 

 ( , ) ( , ) ( , ) ( , )( , ) , , .x y xy
u x y v x y u x y v x yx y

x y y x
  

   
   

   
 (34) 

Here , ,x y xy    and , ,x y xy    denote the stress- and strain-tensor components, 
respectively;  

2
( ) ( ), plane strain, , plane strain,

1 ( )* ( ) 1 ( ) * ( )
( ), plane stress,( ), plane stress,

( )(1 ( )), plane strain,
* ( )

( ), plane stress,

E y y
yE y y y

yE y

y y
y

y


 



 




 
     
 




 


 

E(y) denotes the Young modulus, ( )y  stands for the Poisson ratio; ( )( )
2(1 ( ))

E yG y
y




 is the 

shear modulus, ( )y  denotes the coefficient of linear thermal expansion; ( , )u x y  and 
( , )v x y  are the dimensionless displacements; ( , )T x y  is the temperature field that is given or 

determined in the form (20), (21), or (22) by means of the technique proposed in the previous 
section. 
We shall construct the solutions of the set of equations (31)–(34) for each of the three 
versions of boundary conditions prescribed on the line 0y  : 
a. in terms of stresses 

 ( , ) ( ), ( , ) ( ), 0;y xyx y p x x y q x y      (35) 

b. in terms of displacements 

 0 0( , ) ( ), ( , ) ( ), 0;u x y u x v x y v x y    (36) 

 
Steady-State Heat Transfer and Thermo-Elastic Analysis of Inhomogeneous Semi-Infinite Solids  

 

261 

c. mixed conditions, when one of the following couples of relations  

 









   

   

  

  

0

0

0

0

( , ) ( ), ( , ) ( ), 0;
( ,0) ( ), ( ,0) ( ), 0;
( ,0) ( ), ( ,0) ( ), 0;
( ,0) ( ), ( ,0) ( ), 0

y

y

xy

xy

x y p x v x y v x y
x p x v x v x y
x q x u x u x y
x q x v x v x y

 (37) 

is imposed on the boundary. The boundary tractions and displacements, those are 
mentioned in conditions (35)—(37), as well the temperature field, vanish with | |x  , 
y  . We consider finding the solutions (stresses and displacements) of the stated 
boundary value problems. 

3.2 Construction of the solutions 
3.2.1 Case A: Boundary condition in terms of external tractions  
Let us consider the construction of solution to the  problem (31) – ( 34) under boundary 
conditions (35) with given tractions ( )p x  and ( )q x . The boundary displacements 0( )u x  and 

( )v x  are unknown and, thus, they should be determined in the process of solution. By 
following the solution strategy (Tokovyy & Ma, 2009), the stress-tensor components can be 
expressed trough the in-plane total stress x y     as 

  

 

0

0

,
| |exp( | | ) ( ) exp( | || |) exp( | |( )) d ,

2
| | exp( | | ) ( ) exp( | || |)sgn( ) exp( | |( )) d .

2

x y

y

xy

sp s y s y s y

i s isp s y s y y s y
s

  

     

      





 

        

        





(38) 

In turn, the total stress can be found as a solution of the Volterra-type integral equation of 
second kind: 
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To solve equation (39), we employ the resolvent-kernel solution technique 
(Tokovyy & Ma, 2009a) with the following resolvent 
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As a result, the in-plane total stress appears in the form 
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Having determined the total stress   by formula (40), the stress-tensor components can be 
computed by means of formulae (38). The displacement-vector components ( , )u x y  and 

( , )v x y , as well as the boundary displacement  0( )u x  and 0( )v x , can be also determined by 
the stresses by means of correct integration of the Cauchy relations (34).  

3.2.2 Integration of the Cauchy relations and determination of the displacement-
vector components in the inhomogeneous semi-plane due to the given boundary 
tractions 
By taking the boundary conditions (36) with unknown boundary displacements 0( )u x  and 

0( )v x  into account, the first and second relations of (34) yield 
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By letting x    in the first equation of (41), we derive the integral condition  

 ( , )d 0x x y x
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which is necessary for compatibility of strains. Analogously, by letting 0y   in the second 
equation of (41), the condition  

 00
( , )d ( )y x y y v x


   (43) 

can be obtained. By substitution of expressions (41) into the third formula of (34), we derive 
following equation 
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which presents the condition of compatibility for strains.  It is easy to see that by 
differentiation by variables x and y, equation (44) can be reduced to the classical 
compatibility equation (32). However, for the equivalence of these two equations, the 
following fitting condition 
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is to be fulfilled. This condition is obtained by integration of equation (32) over x and y with 
conditions (36) and (43) in view and comparison of the result to equation (44).   
To determine the displacement-vector components, we can employ formulae (41) with 
conditions (42), (43), and (45) in view. Having applied the Fourier transformation (8) to the 
mentioned equations, we arrive at the formulae 
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Putting the first and second physical relations of (33) along with (38) and (40) into the 
obtained formulae yields the following expressions: 
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Formulae (47) present the expression for determination of the displacement-vector 
components in the inhomogeneous semi-plane due to given external tractions p  and q , 
and the temperature field ( )T y .  

3.2.3 One-to-one relations between the tractions and displacements on the boundary 
Putting 0y   into (45) and (46), we obtain the relations 
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Having substituted the corresponding physical relations (33) into the latter relations, we 
arrive at the following one-to-one relations  
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The obtained expressions of (48) allow us to determine the displacements on the boundary 
through the given tractions, and vice-versa.  

3.2.4 Case B: Boundary condition in terms of displacement  
Consider the problem of thermoelasticity (31) – (34), (36), where the boundary 
displacements 0( )u x  and 0( )v x  are given, meanwhile, the corresponding boundary 
tractions ( )p x  and ( )q x  are to be determined. By solving (48) with respect to p  and q , we 
find the transforms of tractions on the boundary through the displacements as 
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 (49) 

where 11 22 12 21.a a a a    Having determined the boundary tractions (49), we can find the 
stress-tensor components by formulae (38), (40), and the displacement-vector components 
by formulae (47). 

3.2.5 Case C: Solution of the problem with mixed boundary conditions  
Finally, we consider the thermoelasticity problem (31) – (34) in the semi-plane D, when 
mixed boundary conditions of either the type (37) are imposed on the boundary. For four 
versions of the mixed boundary conditions (37), by making use of one of the relations (48), 
we express the Fourier transform of the unknown traction in terms of the given functions on 
the boundary and the temperature; inserting the expression into (38) and (40), we calculate 
the stresses and eventually the displacements by formula (47).  
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4. Conclusions 
Using the method of direct integration, the explicit-form analytical solutions have been 
found for the equations of in-plane heat conduction and plane thermoelasticity problems in 
an inhomogeneous semi-plane provided the tractions, displacement, and mixed conditions 
are prescribed on the boundary. Due to the fact that the application of technique for 
reducing the aforementioned equations to the governing Volterra-type integral equations 
with further employment of the resolvent-kernel solution algorithm provides us with the 
explicit-form solutions of the thermoelasticity problems, the one-to-one relations between 
the tractions and the displacements on the boundary of the semi-plane are derived. Making 
use of these relations, we have reduced quasi-static boundary value problems of the plane 
theory of thermoelasticity with displacement or mixed boundary conditions to the solution 
of the problem when the tractions are prescribed on the boundary. Application of this 
technique does not impose any restrictions for the functions prescribing the material 
properties (besides existence of corresponding derivatives, at least, in generalized sense). 
But from mechanical point of view, it can be concluded, that the material properties should 
be in agreement with the model of continua mechanics assuring strain-energy within the 
necessary restrictions. 
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1. Introduction 
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judge whether two experimental results in different scales are hydrodynamically equivalent 
or similar to each other. Lie group analysis (Lie, 1970), which is employed in the present 
chapter, is not only a powerful method to seek self-similar solutions of partial differential 
equations (PDE) but also a unique and most adequate technique to extract the group 
invariance properties of such a PDE system. Lig group analysis and dimensional analysis 
are useful methods to find self-similar solutions in a complementary manner. 
An instructive example of self-similarity is given by an idealized problem in the 
mathematical theory of linear heat conduction:  Suppose that an infinitely stretched planar 
space (�� � � � �) is filled with a heat-conducting medium. At the initial instant � = � and 
at the origin of the coordinate � = �, a finite amount of heat ��is supplied instantaneously. 
Then the propagation of the temperature Θ is described by  
 

�Θ
�� = � �

�Θ
��� ,  (1)

 

where � is the constant heat diffusivity of the medium. Then the temperature Θ at an 
arbitrary time t and distance from the origin x is given by  
 

Θ = �
�√4��� e����

��
4��� , (2)

 

where c is the specific heat of the medium. As a matter of fact, it is confirmed with the 
solution (2) that the integrated energy over the space is kept constant regardless of time: 
 

� � Θ(�, �)��
�

��
= � (3)

 

The structure of Eq. (2) is instructive: There exist a temperature scale Θ�(�) and a linear scale 
��(�), both depending on time, 
 

Θ�(�) =
�

�√4��� , � ��
(�) = √�� , (4)

 

such that the spatial distribution of temperature, when expressed in these scales, ceases to 
depend on time at least in appearance: 
 

Θ
Θ� = �(�) , �(�) = e�����

�

4 � , � = �
��. 

(5)
 

Suppose that we are faced with a more complex problem of mathematical physics in two 
independent variables x and t, requiring the solution of a system of partial differential 
equations on a variable �(�, �) of the phenomenon under consideration. In this problem, 
self-similarity means that we can choose variable scales ��(�) and ��(�) such that in the new 
scales, �(�, �) can be expressed by functions of one variable: 

 ��� = ��(�)�(�)�,������ = ����(�) (6) 

The solution of the problem thus reduces to the solution of a system of ordinary differential 
equations for the function �(�). 
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At a certain point of analysis, dimensional consideration called Π-theorem plays a crucial 
role in a complementary manner to the self-similar method. Suppose we have some 
relationship defining a quantity � as a function of n parameters ��, ��, … , ��:  

 	� = �(��, ��, …	��)	. (7) 

If this relationship has some physical meaning, Eq. (7) must reflect the clear fact that 
although the numbers ��, ��, … , �� express the values of corresponding quantities in a 
definite system of units of measurement, the physical law represented by this relation does 
not depend on the arbitrariness in the choice of units. To explain this, we shall divide the 
quantities �, ��, ��, …	��	into two groups. The first group, ��, …	��, includes the governing 
quantities with independent dimensions (for example, length, mass, and time). The second 
group, �, ����, …	��,	contains quantities whose dimensions can be expressed in terms of 
dimensions of the quantities of the first group. Thus, for example, the quantity � has the 
dimensions of the product ������ ��� ��� , the quantity ���� has the dimensions of the product 
������������ ��� 	������, etc. The exponents �, �, …	are obtained by a simple arithmetic. Thus the 
quantities, 
 

	Π = �
������ ��� ���

, Π� =
����

������������ ��� ������
, . . . , Π��� =

��
�������� ��� ����

 (8)
 

turn out to be dimensionless, so that their values do not depend how one choose the units of 
measurement. This fact follows that the dimensionless quantities can be expressed in the 
form, 

 	Π = Φ(Π�, Π�,… , Π���)	, (9) 

where no dimensional quantity is contained. What should be stressed is that in the original 
relation (7), � + � dimensional quantities �, ��, ��, … , ��	are connected, while in the reduced 
relation (9), � � � + �	dimensionless quantities	Π, Π�, Π�, … , Π��� are connected with k 
quantities being reduced from the original relation. 
We now apply dimensional analysis to the heat conduction problem considered above. 
Below we shall use the symbol [a] to give its dimension, as Maxwell first introduced, in 
terms of the unit symbols for length, mass, and time by the letters �, �, and �, respectively. 
For example, velocity v has its dimension [�] = ���. Then the physical quantities describing 
the present system have following dimensions, 

 [�] = �,			[�] = �,			[�] = �����,				[�] = ������,			[�	�] = ������. (10) 

From Eq. (10), in which five dimensional quantities (� + � = �) under the three principal 
dimensions (� = � for �, �, and �), one can construct the following dimensionless system 
with two dimensionless parameters Π and �	(= Π�): 
 

Π = �(�), Π = � �√��
� , � = �

√�� , 
(11)

 

where � is unknown function. Substituting Eq. (11) for Eq. (1), one obtains, 

 		��� + �
� (� + ���) = 0	, (12) 
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where the prime denotes the derivative with respect to �; also the transform relation from 
partial to ordinary derivatives 
 

��(�)
�� = − �

�� �
�(�), ��(�)

�� = 1
√�� �

�(�) , (13)
 

are used. With the help of the boundary condition, ��(0) = 0, and Eq. (3), Eq. (12) is 
integrated to give 
 

�(�) = 1
√4� ����−

��
4 � � (14)

 

Thus Eqs. (11) and (14) reproduce the solution of the problem, Eq. (2). 
What is described above is the simple and essential scenario of the approach in terms of self-
similar solution and dimensional analysis, more details of which can be found, for example, 
in Refs. (Lie, 1970; Barenblatt, 1979; Sedov, 1959; Zel’dovich & Raizer, 1966). In the following 
subsections, we show three specific examples with new self-similar solutions, as reviews of 
previously published papers for readers’ further understanding how to use the dimensional 
analysis and to find self-similar solutions: The first is on plasma expansion of a limited mass 
into vacuum, in which two fluids composed of cold ions and thermal electrons expands via 
electrostatic field (Murakami et al, 2005). The second is on laser-driven foil acceleration due 
to nonlinear heat conduction (Murakami et al, 2007). Finally, the third is an astrophysical 
problem, in which self-gravitation and non-linear radiation heat conduction determine the 
temporal evolution of star formation process in a self-organizing manner (Murakami et al, 
2004).  

2. Isothermally expansion of laser-plasma with limited mass  
2.1 Introduction 
Plasma expansion into a vacuum has been a subject of great interest for its role in basic 
physics and its many applications, in particular, its use in lasers. The applied laser 
parameter spans a wide range, 10�� ≤ ������� ≤ 10��, where ��� is the laser intensity in the units 
of W/cm2 and���� is the laser wavelength normalized by 1���. For ������� ≥ 10��, generation of 
fast ions is governed by hot electrons with an increase in �������. In this subsection, we focus on 
rather lower intensity range, 10�� ≤ ������� ≤ 10��, where the effect of hot electrons is 
negligibly small and background cold electrons can be modeled by one temperature. Typical 
examples of applications for this range are laser driven inertial confinement fusion 
(Murakami et al., 1995; Murakami & Iida, 2002) and laser-produced plasma for an extreme 
ultra violet (EUV) light source (Murakami et al, 2006). As a matter of fact, the experimental 
data employed below for comparison with the analytical model were obtained for the EUV 
study. Theoretically, this topic had been studied only through hydrodynamic models until 
the early 1990s. In such theoretical studies, a simple planar (SP) self-similar solution has 
often been used (Gurevich et al, 1966). In the SP model, a semi-infinitely stretched planar 
plasma is considered, which is initially at rest with unperturbed density ��. At � = 0, a 
rarefaction wave is launched at the edge to penetrate at a constant sound speed �� into the 
unperturbed uniform plasma being accompanied with an isothermal expansion. The density 
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and velocity profiles of the expansion are given by (Landau & Lifshitz, 1959) � �
��	exp	[−(1 + x/ sc t cst)] and � � �� + �/�, respectively. The solution is indeed quite useful 
when using relatively short laser pulses or thick targets such that the density scale can be 
kept constant throughout the process.  
However, in actual laser-driven plasmas, a shock wave first penetrates the unperturbed 
target instead of the rarefaction wave. Once this shock wave reaches the rear surface of a 
finite-sized target and the returning rarefaction wave collides with the penetrating 
rarefaction wave, the entire region of the target begins to expand, and thus the target 
disintegration sets in. If the target continues to be irradiated by the laser even after the onset 
of target disintegration, the plasma expansion and the resultant ion energy spectrum are 
expected to substantially deviate from the physical picture given by the SP solution. Figure 1 
demonstrates a simplified version of the physical picture mentioned above with temporal 
evolution of the density profile obtained by hydrodynamic simulation for an isothermal 
expansion. A spherical target with density and temperature profiles being uniform is 
employed as an example. In Fig. 1, the density is always normalized to unity at the center, 
and the labels assigned to each curve denote the normalized time �/(����), where �� is the 
initial radius. The horizontal Lagrange coordinate is normalized to unity at the plasma edge. 
It can be discerned from Fig. 1 that the profile rapidly develops in the early stage for 
�/(����) ≤ 1. After the rarefaction wave reflects at the center, the density distribution 
asymptotically approaches its final self-similar profile (the thick curve with label “ ”), 
which is expressed in the Gaussian form, � � exp	[−(�/�)�] as will be derived below. The 
initial and boundary conditions employed in Fig. 1 are substantially simplified such that the 
laser-produced shock propagation and resultant interactions with the rarefaction wave are 
not described. However, the propagation speeds of the shock and rarefaction waves are 
always in the same order as the sound speed �� of the isothermally expanding plasma. 
Therefore the physical picture shown in Fig. 1 is expected to be qualitatively valid also for  
 

 
Fig. 1. Temporal evolution of the density profile of a spherical isothermal plasma, which is 
normalized by that at the center; �� and �� are the initial radius and the sound speed, 
respectively. After the rarefaction wave reflects at the center, the density distribution 
asymptotically approaches its final self-similar profile (the thick curve with “ ”). 
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unperturbed uniform plasma being accompanied with an isothermal expansion. The density 
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and velocity profiles of the expansion are given by (Landau & Lifshitz, 1959) � �
��	exp	[−(1 + x/ sc t cst)] and � � �� + �/�, respectively. The solution is indeed quite useful 
when using relatively short laser pulses or thick targets such that the density scale can be 
kept constant throughout the process.  
However, in actual laser-driven plasmas, a shock wave first penetrates the unperturbed 
target instead of the rarefaction wave. Once this shock wave reaches the rear surface of a 
finite-sized target and the returning rarefaction wave collides with the penetrating 
rarefaction wave, the entire region of the target begins to expand, and thus the target 
disintegration sets in. If the target continues to be irradiated by the laser even after the onset 
of target disintegration, the plasma expansion and the resultant ion energy spectrum are 
expected to substantially deviate from the physical picture given by the SP solution. Figure 1 
demonstrates a simplified version of the physical picture mentioned above with temporal 
evolution of the density profile obtained by hydrodynamic simulation for an isothermal 
expansion. A spherical target with density and temperature profiles being uniform is 
employed as an example. In Fig. 1, the density is always normalized to unity at the center, 
and the labels assigned to each curve denote the normalized time �/(����), where �� is the 
initial radius. The horizontal Lagrange coordinate is normalized to unity at the plasma edge. 
It can be discerned from Fig. 1 that the profile rapidly develops in the early stage for 
�/(����) ≤ 1. After the rarefaction wave reflects at the center, the density distribution 
asymptotically approaches its final self-similar profile (the thick curve with label “ ”), 
which is expressed in the Gaussian form, � � exp	[−(�/�)�] as will be derived below. The 
initial and boundary conditions employed in Fig. 1 are substantially simplified such that the 
laser-produced shock propagation and resultant interactions with the rarefaction wave are 
not described. However, the propagation speeds of the shock and rarefaction waves are 
always in the same order as the sound speed �� of the isothermally expanding plasma. 
Therefore the physical picture shown in Fig. 1 is expected to be qualitatively valid also for  
 

 
Fig. 1. Temporal evolution of the density profile of a spherical isothermal plasma, which is 
normalized by that at the center; �� and �� are the initial radius and the sound speed, 
respectively. After the rarefaction wave reflects at the center, the density distribution 
asymptotically approaches its final self-similar profile (the thick curve with “ ”). 
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realistic cases. Below, we present a self-similar solution for the isothermal expansion of 
limited masses (Murakami et al., 2005). The solution explains plasma expansions under 
relatively long laser pulses or small-sized targets so that the solution responds to the above 
argument on target disintegration. Note that other self-similar solutions of isothermal 
plasma expansion have been found for laser-driven two-fluid expansions in light of ion 
acceleration physics (Murakami & Basko, 2006) and heavy-ion-driven cylindrical x-ray 
converter (Murakami et al., 1990), though they are not discussed here. 

2.2 Isothermal expansion 
The plasma is assumed to be composed of cold ions and electrons described by one 
temperature ��, which is measured in units of energy as follows. Furthermore, the electrons 
are assumed to obey the Boltzmann statistics, 

 			�� = ���	���	(�Φ���	) , (15) 

where ���(�) is the temporal electron density at the target center, � is the elementary charge, 
and Φ(�, �) is the electrostatic potential, the zero-point of which is set at the target center, 
i.e., Φ(0, �) = 0. The potential Φ satisfies the Poisson equation, 
 

1
����

�
�� ��

��� �Φ
�� � = ���(�� − ���) , (16)

 

where � is the ionization state; the superscript � stands for the applied geometry such that � 
= 1, 2, and 3 correspond to planar, cylinder, and spherical geometry, respectively. 
Throughout the present analysis, the electron temperature �� and the ionization state � are 
assumed to be constant in space and time.  
An ion in the plasma is accelerated via the electrostatic potential in the form, 
 

��
�� + � ���� = −����

�Φ
�� , (17)

 

where �� is the ion mass and � is the ion velocity. Note that, in the following, we consider 
such a system that the plasma has quasi-neutrality, i.e., �� � ���, where �� and �� are the 
number densities of the ions and the electrons, respectively. Equations (15) and (17) are 
combined to derive a single-fluid description, 
 

��
�� + � ���� = −��

�

�
��
�� , (18)

 

where �� = ������� is the sound speed. Also, a fluid element with mass density �(�, �) =
���� satisfies the following mass conservation law,  
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�����) = 0 . (19)

 
We now seek a self-similar solution to Eqs. (18) and (19) on �(�, �) and �(�, �) under the 
similarity ansatz, 
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� = �� � , � � �
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�
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�(�), (21)

 

where �(�) stands for a time-dependent characteristic system size, and � is the 
dimensionless similarity coordinate; the over-dot in Eq. (20) denotes the derivative with 
respect to time; ��� � �(0,0) and �� � �(0) are the initial central density and the size, 
respectively; �(�) is a positive unknown function with the normalized boundary condition 
�(0) = 1. Then, Eqs. (15) and (21) give 
 

�� � ���(�)�(�) � � �����
� ����

��
�(�), (22)

 

Under the similarity ansatz, Eqs. (20) and (21), the mass conservation, Eq. (19), is 
automatically satisfied. Substituting Eqs. (20) and (21) for Eq. (18), and making use of the 
derivative rules, ���� = ���	(����) and ���� = −������	(����), one obtains the following 
ordinary differential equations in the form of variable separation, 
 

���
���

= − ��
�� = �� , (23)

 

where ��(> 0) is a separation constant, and the prime denotes the derivative with respect to 
�. Without losing generality, the constant �� can be set equal to an arbitrary numerical 
value, because this is always possible with a proper normalization of R and �. Here, just for 
simplicity, we set �� = 2 in Eq. (23). Then the spatial profile of the density, �(�), is 
straightforwardly obtained under �(0) = 1 in the form (True et al., 1981; London & Rosen, 
1986), 

 �(�) = exp(−��)	. (24) 

As was seen in Fig. 1, the density profile of isothermally expanding plasma with a limited 
mass is found to approach asymptotically the solution, Eq. (24), even if it has a different 
profile in the beginning. Meanwhile, �(�) in Eq. (23) cannot be given explicitly as a function 
of time but has the following integrated forms, 

 	�� = 2���ln(����)	, (25) 

 
���
�� =

1
2�

��
√ln � ,

����

�
 (26)

 

where in obtaining Eqs. (25) and (26), the system is assumed to be initially at rest, i.e.,	�� (0) =
0. Here it should be noted that Eqs. (23) - (26) do not explicitly include the geometrical index 
�, and therefore they apply to any geometry.  
Based on the solution given above, some other important quantities are derived as follows. 
First, the total mass of the system ��	is conserved and given with the help of Eqs. (21) and 
(24) in the form, 
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realistic cases. Below, we present a self-similar solution for the isothermal expansion of 
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such a system that the plasma has quasi-neutrality, i.e., �� � ���, where �� and �� are the 
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where �(�) stands for a time-dependent characteristic system size, and � is the 
dimensionless similarity coordinate; the over-dot in Eq. (20) denotes the derivative with 
respect to time; ��� � �(0,0) and �� � �(0) are the initial central density and the size, 
respectively; �(�) is a positive unknown function with the normalized boundary condition 
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Under the similarity ansatz, Eqs. (20) and (21), the mass conservation, Eq. (19), is 
automatically satisfied. Substituting Eqs. (20) and (21) for Eq. (18), and making use of the 
derivative rules, ���� = ���	(����) and ���� = −������	(����), one obtains the following 
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where ��(> 0) is a separation constant, and the prime denotes the derivative with respect to 
�. Without losing generality, the constant �� can be set equal to an arbitrary numerical 
value, because this is always possible with a proper normalization of R and �. Here, just for 
simplicity, we set �� = 2 in Eq. (23). Then the spatial profile of the density, �(�), is 
straightforwardly obtained under �(0) = 1 in the form (True et al., 1981; London & Rosen, 
1986), 

 �(�) = exp(−��)	. (24) 

As was seen in Fig. 1, the density profile of isothermally expanding plasma with a limited 
mass is found to approach asymptotically the solution, Eq. (24), even if it has a different 
profile in the beginning. Meanwhile, �(�) in Eq. (23) cannot be given explicitly as a function 
of time but has the following integrated forms, 
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where in obtaining Eqs. (25) and (26), the system is assumed to be initially at rest, i.e.,	�� (0) =
0. Here it should be noted that Eqs. (23) - (26) do not explicitly include the geometrical index 
�, and therefore they apply to any geometry.  
Based on the solution given above, some other important quantities are derived as follows. 
First, the total mass of the system ��	is conserved and given with the help of Eqs. (21) and 
(24) in the form, 
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 	�� = (4�)������� � �����
� exp(−��) �� = �√��������	, (27) 

with  
 

(4�)� � �
2, (� = 1)
2�, (� = 2)
4�, (� = 3)

= 2����
Γ(��2) , (28)

 

where Γ is the Gamma function. Although the quantitative meaning of �(�) was somewhat 
unclear when first introduced in Eq. (20), it can be now clearly understood by relating it to 
the temporal central density, ��(�) � �(�, �) � �����(�)��, with the help of Eqs. (21) and (27) 
in the form, 
 

�(�) = 1
√� �

��
��(�)�

���
. (29)

 

Additionally the potential Φ and corresponding electrostatic field � = −�Φ are obtained 
from Eqs. (15), (21), (22), and (24) in the following forms, 
 

�Φ
�� = −�� , (30)

 

 
��
�� =

2�
� . (31)

 

The above field quantities contrast well with the fields of the SP solution obtained for a 
semi-infinitely stretched planar plasma: �Φ/Te = −1 − �/��� and eE/Te = 1/cst for  
x/cst ≥ −1 and � � �. It is here worth emphasizing that the electrostatic field increases 
linearly with � for the present model, while it is constant in space for the SP model. 
Furthermore, the kinetic energy of the system ��(�) is given with the help of Eqs. (20), (21) 
and (27) by 
 

�� =
(4�)�
2 �������� � � ����

�

�
exp(−��) �� = �

4���� �, (32)
 

while the internal (thermal) energy of the system ��(�) is kept constant, 
 

�� =
3�����
2��

= 3
2����� . (33)

 

Correspondingly, the power required to keep the isothermal expansion,	�(�) = ������, is 
given from Eqs. (23), (25), and (32) in the form, 

 		���� = ���	(����)	�(����	), (34) 

where �� = 2���������.  
The ion energy spectrum is a physical quantity of high interest. In the present model, the 
kinetic energy of an ion in flight directly relates its location, in other words, the further an 
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ion is located, the faster it flies. Then, the number of ions contained in an infinitesimally 
narrow area of the similarity coordinate between � and � � �� is given by 

 	�� = (��)������������ exp(−��) �� , (35) 

where ���� = ���/��		is the initial number density of the ions at the center. Meanwhile, the 
kinetic energy of an ion at � is � = ���� ���/2, and therefore 

 �� = ���� ����	. (36) 

From Eqs. (35) and (36), the ion energy spectrum is obtained, 
 

���
��̂ =

�̂(���)/�exp(−�̂)
�(�/2) , (37)

 

where �� � �/�� and �̂ � �/�� are normalized quantities with 

 	��(�) = ���� �/2	, (38) 

 	�� = (√���)�����	. (39) 

It should be noted that, for � = 3, the energy spectrum, Eq. (37), coincides with the well-
known Maxwellian energy distribution; this is not just a coincidence because an 
isotropically heated mass always has such a distribution.  
Although the spectrum, Eq. (37), is for the ion number density, another spectrum for the 
energy density, ���/��, is an even more interesting quantity. It can be easily obtained quite 
in the same manner as for ��/�� taking the specific kinetic energy ��/2		into account: 
 

���
��̂ =

����
�(�/2) �̂

�/� exp(−�̂) . (40)
 

The peak value of Eq. (40) is attained at �̂ = �/2, which is three times higher than that of Eq. 
(37) for the spherical case (� = �).  

2.3 Comparison with experiments 
We apply the analytical model to two different laser experiments focusing on the ion energy 
spectrum. The two experimental results were separately obtained under different conditions 
by means of the time-of-flight method. In both cases, the laser conditions were almost the 
same, i.e., the wavelength �� = 1.0�	��, the irradiation intensity �� = 0.5 − 	1.0 ×
10��	�/���, and the pulse length ���10	�� with a sufficiently large F-number of a focal 
lens. Moreover, the target thicknesses were ���10	��. Once the key laser parameters, �� and 
��, are given, the other basic parameters required for the model analysis are calculated. For 
example, the plasma temperature is roughly estimated from the power balance, ���� ≈
������� (Murakami & Meyer-ter-Vhen, 1991), where �� is the absorption efficiency and ��� is 
the critical mass density: 

 ��	[��] = 2�(�/�)�/�����/��������
�/�, (41) 

where � is the ion mass number. The corresponding sound speed turns out to be in the 
order of 10���/�, and the disintegration time �2��/�� (recall Fig. 1) is calculated to be 



 
Heat Conduction – Basic Research 

 

276 

 	�� = (4�)������� � �����
� exp(−��) �� = �√��������	, (27) 

with  
 

(4�)� � �
2, (� = 1)
2�, (� = 2)
4�, (� = 3)

= 2����
Γ(��2) , (28)

 

where Γ is the Gamma function. Although the quantitative meaning of �(�) was somewhat 
unclear when first introduced in Eq. (20), it can be now clearly understood by relating it to 
the temporal central density, ��(�) � �(�, �) � �����(�)��, with the help of Eqs. (21) and (27) 
in the form, 
 

�(�) = 1
√� �

��
��(�)�

���
. (29)

 

Additionally the potential Φ and corresponding electrostatic field � = −�Φ are obtained 
from Eqs. (15), (21), (22), and (24) in the following forms, 
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The above field quantities contrast well with the fields of the SP solution obtained for a 
semi-infinitely stretched planar plasma: �Φ/Te = −1 − �/��� and eE/Te = 1/cst for  
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while the internal (thermal) energy of the system ��(�) is kept constant, 
 

�� =
3�����
2��

= 3
2����� . (33)

 

Correspondingly, the power required to keep the isothermal expansion,	�(�) = ������, is 
given from Eqs. (23), (25), and (32) in the form, 
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It should be noted that, for � = 3, the energy spectrum, Eq. (37), coincides with the well-
known Maxwellian energy distribution; this is not just a coincidence because an 
isotropically heated mass always has such a distribution.  
Although the spectrum, Eq. (37), is for the ion number density, another spectrum for the 
energy density, ���/��, is an even more interesting quantity. It can be easily obtained quite 
in the same manner as for ��/�� taking the specific kinetic energy ��/2		into account: 
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The peak value of Eq. (40) is attained at �̂ = �/2, which is three times higher than that of Eq. 
(37) for the spherical case (� = �).  

2.3 Comparison with experiments 
We apply the analytical model to two different laser experiments focusing on the ion energy 
spectrum. The two experimental results were separately obtained under different conditions 
by means of the time-of-flight method. In both cases, the laser conditions were almost the 
same, i.e., the wavelength �� = 1.0�	��, the irradiation intensity �� = 0.5 − 	1.0 ×
10��	�/���, and the pulse length ���10	�� with a sufficiently large F-number of a focal 
lens. Moreover, the target thicknesses were ���10	��. Once the key laser parameters, �� and 
��, are given, the other basic parameters required for the model analysis are calculated. For 
example, the plasma temperature is roughly estimated from the power balance, ���� ≈
������� (Murakami & Meyer-ter-Vhen, 1991), where �� is the absorption efficiency and ��� is 
the critical mass density: 
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where � is the ion mass number. The corresponding sound speed turns out to be in the 
order of 10���/�, and the disintegration time �2��/�� (recall Fig. 1) is calculated to be 
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about 1 ns �� ���10���). The normalized radius ���� at the laser turn-off is obtained by Eq. 
(26) as a function of the normalized time ���������). In addition, the scale length of the 
plasma expansion is �����100����� ���10���). Therefore, the present self-similar analysis 
is considered to be applicable to the experiments under consideration. From the above key 
numerical values, the characteristic ion kinetic energy at the laser turn-off defined by Eq. 
(38) is roughly estimated to be �� = 2.5 − 3.5 keV. 
 

 
Fig. 2. Comparison of the experimental result (solid line) and the analytical curve (dashed 
line) obtained by Eq. (37) under planar geometry. Dotted curves for reference are obtained 
by the SP model, Eq. (42). 

In the first case, a laser beam was irradiated on a spherical target with diameter of 500���, 
which was composed of ���-thick plastic shell coated by a 100 nm-thick tin (Sn) layer. In 
this case, the plasma expansion during the laser irradiation can be regarded as quasi-planar, 
because the plasma scale ~100����is appreciably smaller than the laser spot size �500���. 
As mentioned in the introduction, the purpose of the Sn-coat was to observe the 
characteristics of the EUV light and energetic ion fluxes emitted from the Sn plasma. The 
detector was tuned to observe massive Sn ions in the direction of 30 degrees with respect to 
the beam axis. Figure 2 shows the ion energy spectrum comparing the experimental result 
(solid line) and the analytical curve (dashed line) obtained by Eq. (37) with a fitted 
numerical factor �� = 1.7 keV and � = 1 (planar geometry). With respect to the vertical axis, 
the physical quantities are properly normalized such that the peak values stay in the order 
of unity. The fluctuated structure of the experimental data for  � � 10�keV cannot be clearly 
judged as concerns whether the signals simply span the region with less precision of 
diagnosis, or whether they should be attributed to other causes such as carbon ions, protons, 
and photons. In Fig. 2, two other curves (dotted lines) are also plotted for comparison. They 
are obtained by the SP model (Mora, 2003), 
 

��
��̂ ∝

����−√�̂�
√�̂ , (42)

 

where �� = 1.7 keV and �� = 0.1 keV are used to draw the fitted curves to relatively low and 
high energy regions, respectively. It can be seen that it is hard to reproduce the experimental 
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result by Eq. (42). The essential difference of the two analytical models is attributed to their 
density profiles, i.e., � � ��������) for the present model and � � �������) for the SP model. 
This can be elaborated on as follows: The pressure scale decreases with time all over the 
region in the present model, while it is kept constant in time in the SP model. Therefore, the 
ions in the former model are less accelerated due to the pdV work than those in the latter 
model.  
 

 
Fig. 3. Comparison of the experimental result (dots) and the analytical curve (dashed line) 
obtained by Eq. (37) under spherical geometry. 

In the second case, a laser beam was irradiated from a single side with a liquid-Xe jet ejected 
through a nozzle with diameter of 30 ��. The focal spot size was also 30 �� in diameter. 
Therefore, the resultant plasma expansion was very likely unsymmetrical. In this case, 
however, the specific mass can expand into much larger space three-dimensionally than in 
the first case, and thus is regarded as a quasi-spherical expansion �� = 3). Figure 3 shows 
the experimental result and an analytical curve obtained by Eq. (37) with a fitted numerical 
factor �� = 3.0 keV. Again, with respect to the vertical axis, the physical quantities are 
properly normalized such that the peak values stay in the order of unity. The ion fluxes 
were observed at an angle of 45 degrees with respect to the laser beam axis. The 
experimental signals strongly fluctuate at energies close to the lowest detection limit at 
around �����00�eV, but are otherwise well reproduced by the analytical curve.  

3. Laser-driven nonstationary accelerating foil due to nonlinear heat 
conduction  
3.1 Introduction 
When one side of a thin planar foil is heated by an external heat source, typically by laser or 
thermal x-ray radiation, the heated material quickly expands into vacuum with its density 
being reduced drastically - this phenomenon is called “ablation”. In inertial confinement 
fusion (ICF) research, for example, it is indispensable to correctly understand the shell 
acceleration due to ablation. Thereby self-similar solutions play a crucial role in the analysis 
and prediction of the detailed behavior of the shell acceleration. Although some analytical 
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about 1 ns �� ���10���). The normalized radius ���� at the laser turn-off is obtained by Eq. 
(26) as a function of the normalized time ���������). In addition, the scale length of the 
plasma expansion is �����100����� ���10���). Therefore, the present self-similar analysis 
is considered to be applicable to the experiments under consideration. From the above key 
numerical values, the characteristic ion kinetic energy at the laser turn-off defined by Eq. 
(38) is roughly estimated to be �� = 2.5 − 3.5 keV. 
 

 
Fig. 2. Comparison of the experimental result (solid line) and the analytical curve (dashed 
line) obtained by Eq. (37) under planar geometry. Dotted curves for reference are obtained 
by the SP model, Eq. (42). 
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��̂ ∝

����−√�̂�
√�̂ , (42)
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result by Eq. (42). The essential difference of the two analytical models is attributed to their 
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Fig. 3. Comparison of the experimental result (dots) and the analytical curve (dashed line) 
obtained by Eq. (37) under spherical geometry. 
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When one side of a thin planar foil is heated by an external heat source, typically by laser or 
thermal x-ray radiation, the heated material quickly expands into vacuum with its density 
being reduced drastically - this phenomenon is called “ablation”. In inertial confinement 
fusion (ICF) research, for example, it is indispensable to correctly understand the shell 
acceleration due to ablation. Thereby self-similar solutions play a crucial role in the analysis 
and prediction of the detailed behavior of the shell acceleration. Although some analytical 
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models have been proposed to study the shell acceleration due to mass ablation (Gitomer et 
al., 1977; Takabe et al., 1983; Kull, 1989, 1991), most of them have assumed a stationary 
ablation layer. Pakula and Sigel (1985), for example, reported a self-similar solution for the 
ablative heat wave. In the solution, however, the ablation surface is ideally treated such that 
the density goes to infinity, and the surface does not accelerate. Below, we present a new 
self-similar solution (Murakami et al, 2007), which describes non-stationary acceleration 
dynamics of a planar foil target ablatively driven by non-linear heat transfer. The most 
striking differences from the other models are that the target has a decreasing mass with a 
peak density, and that it has a distinct shell/vacuum boundary, where the density and the 
temperature converge to null.   

3.2 Basic equations and similarity ansatz 
Suppose that a planar shell is being accelerated in the positive direction of the x-axis in an 
inertial laboratory frame via the recoil force due to the ablation. The characteristic scale 
length of the shell �(�) decreases with time. Let us assume that the shell is burnt out at the 
origin of the coordinates, i.e., �(0) = 0 at � = 0. One can always find such an inertial frame 
by appropriately choosing relative position and velocity to another reference inertial frame. 
In this case the shell velocity is initially (� � 0) negative, its absolute value gradually 
decreases due to the positive acceleration, and finally the burned-out shell halts at (�, �) =
(0,0). The fluid system is then described by the following equations:  
 

��
�� +

�(��)
�� = 0 , (43)

 

 
��
�� + � ���� = −���� , (44)

 

 

� ����� + � ����� + � ���� =
�
�� ��

��
��� , (45)

 

where � is the mass density, � is the flow velocity, � is the specific internal energy, � is the 
temperature in units of energy, and � is the thermal conductivity. We assume an ideal gas 
equation of state in the form, 

 � = ��,  � = ��(� − �), (46) 

where � is the specific heats ratio. We assume that the thermal conductivity is expressed in 
the following power-law form with m, n, and �� being constants, 

 � = �������. (47) 

We introduce the following well-known similarity ansatz (Guderley, 1942; Lie, 1970) to 
eliminate the temporal dependence of the system and thus to find a self-similar solution: 

 � = ���(�)	,  �(�) = �(−�)�	,  � � �	, (48) 

 		� = ��(−�)����(�)	, (49) 
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   � = (��)�(−�)�(���)�(�)	, (50) 

 

� = �(−�)��(�) , � = 2(� − 1)(� − 1) − 1
1 �� , (51)

 

where � is the self-similar variable; �(�), �(�), and �(�) stand for the self-similar profiles of 
the velocity, temperature, and density, respectively; �, � and � are arbitrary constants. In 
most of numerical calculations in this paper, we employ � = 2 (constant acceleration), 
(�, �) = (0, ��2) (electron heat conductivity) and � = ��� as a reference case. The constraint, 
� � 1, in Eq. (48) stems from Eqs. (49) and (50) in order that � and � do not diverge to 
infinity as � � 0. The limiting value, � = 1, corresponds to a special case, where the 
characteristic scale of � and � are kept constant in time, while � = (2� − 1)�2(� − 1) = ��� 
corresponds to another special case, where the density scale does not change in time, i.e., 
� = 0 [see Eq. (51)]. 
Using ansatz (48) - (51), Eqs. (43) - (45) are reduced to the following set of ordinary 
differential equations: 
 

(� � �)�� � ��� − �
��� = 0 , (52)

 

   (� � �)	�′ � (��� − 1)� � (��)′�� = 0	, (53) 

   (� − 1)��[(� � �)	�′ � 2(��� − 1)�] � ��′ = ����(�������)′ (54) 

where the prime denotes the derivative with respect to �, and 

  � = ����������������� (55) 

is a dimensionless parameter. Solving Eqs. (52) and (53) algebraically for �′ and �′, one finds 
that a singular point appears when � � � = �√� (more details on the singular point will be 
given later). Let ��, ��, ��, and �� be their values at the singular point. Here we introduce re-
normalized variables, ξ, U(ξ), G(ξ), and Θ(ξ): 
 

� = � − ��
���

, � = � − ��
���

, � = �
�� , � = �

�� , (56)
 

At the singular point, � = 0, the re-normalized variables are specified to be 

   �(0) = −1,					�(0) = 1,					�(0) = 1, (57) 

where we employ the flow direction such that �� � �� = −���	. Equations (10) - (12) are then 
transformed to 

   (� � �)	�′ � (�′ − ���)� = 0	, (58) 

   (� � �)	�′ � (��� − 1)� � (��)′�� � �� = 0	, (59) 

   (� − 1)��[(� � �)	�′ � 2(��� − 1)�] � ��′ = �����(�������)′ (60) 

where the prime hereafter denotes the derivative with respect to �, and  
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temperature in units of energy, and � is the thermal conductivity. We assume an ideal gas 
equation of state in the form, 
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where � is the self-similar variable; �(�), �(�), and �(�) stand for the self-similar profiles of 
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(�, �) = (0, ��2) (electron heat conductivity) and � = ��� as a reference case. The constraint, 
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that a singular point appears when � � � = �√� (more details on the singular point will be 
given later). Let ��, ��, ��, and �� be their values at the singular point. Here we introduce re-
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At the singular point, � = 0, the re-normalized variables are specified to be 
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where we employ the flow direction such that �� � �� = −���	. Equations (10) - (12) are then 
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   �� = (1 − ���)��/��� ,  �� = ������������	, (61) 

are dimensionless constants representing the gravity (acceleration) and the heat 
conductivity, respectively. Thus the system is clearly defined by Eqs. (57) - (60). Equations 
(58) and (59) yield 
 

�� = ��
�� � , �� = �

� − (� + �)����, 
(62)

 

where 

 		�� = (� + �)� − �	, (63) 

 

�� = ���� (� + �) + (��� − 1)� + �� + �� . (64)
 

It is clear that G′ and U′ in Eq. (62) are singular when �� = 0. This singular point corresponds 
to the sonic point, where the flow velocity relative to the surface � = ����� is equal to the 
local isothermal sound speed. An integrated curve which is physically acceptable is 
expected to pass this singular sonic point smoothly, the condition of which is given by 

 			�� = �� = 0	. (65) 

Since � = 0 is the singular point, one should start numerical integration at its infinitesimally 
adjacent point. One then needs the four derivatives �′(0), �′(0), �′(0), and �′′(0), which are 
fully provided by relation (65). At � = 0, the derivatives of Eq. (62) are reduced from 
L'Hopital's theorem to 
 

�� = ���
���

, �� = �
� +

���
���

. (66)
 

Thus all the four derivatives at the sonic point are explicitly obtained from Eqs. (57) - (60), 
and (66). 
The present system has another singular point at the vacuum interface, the coordinate at 
which, � = ��, is an eigenvalue of the system. On the vacuum interface the relative flow 
velocity to the free surface vanishes, i.e., �(��) + �� = 0, which can also be interpreted as the 
definition of the free surface. Moreover at � = �� the pressure and thus the density are 
expected to vanish coherently, because practically no heat conduction prevails in this front 
region (typically characterized such that � � 1, � ≪ 1, and (� + �)� ≪ Θ) and thus the 
specific entropy is kept constant in time. It is then shown that Eqs. (16) and (18) (neglecting 
the heat conduction) have the adiabatic integral with an arbitrary constant �� (Zel’dovich & 
Raizer, 1966): 
 

�(� + �)������� = ��, � � 2(1 − �) + �(� − 1)
� + � . (67)

 

The vacuum interface is a singular point of the adiabatic flow of the saddle type (Sanz et al., 
1988), where the spatial profiles in the vicinity of � = �� is worked out from Eqs. (58) - (60) to 
a first-order approximation in (�� − �): 
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� � �(� + 1)� − 2�(��� + (� − 1)��)
(� + �)� (�� − �), (68)

 

 

� + � � −� + 1 − 2���
� (�� − �) (69)

 

 

� � ��(�� − �)�, � � −� + �� + 2
�(� + 1) − 2 , (70)

 

where �� is an arbitrary constant; �� � ��(�� − ��)�� for a relatively high aspect shell, i.e., 
���(�� − ��	) ≫ 1, where �� and �� are their corresponding values at the density peak; �� 
and �� are also eigenvalues of the system as will be given below together with ��. In 
particular, under constant acceleration (� � 2), the velocity becomes constant, � � −��, and 
� � (�� − ��	) apart from a linear temperature profile in space, as one can predict from Eqs. 
(69) and (70). 
 

 
Fig. 4. Eigenstructure of the accelerated shell under a constant gravity (� � 2)� 

3.3 Two dimensional eigenvalue problem and numerical results 
Although one can start the numerical integration at � � � toward the positive direction of �-
axis, it soon turns out  that such numerical integrations  produce physically unacceptable 
pictures under an arbitrary set of the values of �� and �� such that � � � on its way in the 
integration without showing the converging behavior, Eqs. (68) - (70), at the vacuum 
boundary. Therefore the present system is supposed to be an eigenvalue problem, in which 
only some special combinations of �� and �� can produce the converging behavior expected 
as a physically meaningful solution (Murakami et al., 2004).  
Figure 4 shows such an eigenstructure numerically obtained for the density �, the 
temperature Θ, the velocity �, and the pressure � � �Θ under the fixed parameters given in 
Fig. 4. As mentioned earlier, the spatial profiles thus obtained strikingly contrast with ones 
for the stationary ablation models (Gitomer et al., 1977; Takabe et al., 1983; Kull, 1989, 1991).  
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Fig. 5. Magnified view of Fig.4 around the ablation surface. 

Figure 5 shows the magnified view around the ablation surface of Fig. 4, in which the mass 
flux relative to the surface with � � �����, � � 	��� � �)�, is additionally depicted. 
Surprisingly the predicted profiles, (68) - (70), apply not only to the vicinity of the vacuum 
boundary but also to almost all the region beyond the ablation surface (� � ������). This in 
turn supports the earlier argument that the heat conduction in the shell is practically 
negligible. It should also be noted that at � � �� the physical quantities seemingly have a 
sharp jump in their derivatives. However, all those quantities change smoothly but on a 
very narrow range, which can be observed in the further magnified view for � in the upper 
right corner in Fig. 5. The characteristic scale length of the drastic change in the physical 
quantities can be roughly estimated from Eq. (60) to be ���	~	Θ�������	�����		~			������) as 
can be observed in Fig. 5.  

4. Gravitational collapse of radiatively cooling sphere in view of star-
formation  
4.1 Introduction 
Self-similar solutions play a crucial role in astrophysics as well. Below we describe a 
spherically contracting system observed in the star formation processes, in which the effect 
of radiative heart conduction is expected to play an important role. In such a system, 
substantial dissociation and ionization of molecules and atoms proceed with time, and the 
isothermal assumption used in the so-called LP model (Larson, 1969; Penston, 1969) 
becomes inappropriate. A solution introduced here (Murakami et al., 2004) can be clearly 
placed in a thermodynamic perspective as follows: The LP model with the isothermal 
assumption means infinitely large heat conductivity, i.e., �� � �, where �� denotes the 
P��clet number. Meanwhile, there are a number of works based on the perfect adiabaticity, 
i.e., �� � �, which corresponds to zero heat conductivity (Sedov, 1959; Barenblatt, 1979; 
Antonova, 2000). These are two opposed limiting cases, with which the analytical and 
numerical treatment are substantially simplified, and the energy conservation law is often 
expressed in an integrated form or neatly installed in the equation of motion. In contrast, we 
explicitly leave the radiative conduction term in the hydrodynamic system to handle its 
nonlinear effect.  
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An important feature of the present subsection, which is essentially different from the 
conventional ones obtained under the isothermal or adiabatic assumptions, is that all the 
scales of the physical quantities are uniquely determined as a function of time only. This is 
clear from the following argument: When discussing self-similarity within the one-
dimensional framework, one needs four physical quantities to produce a dimensionless 
parameter as a basic self-similar variable, where the system is contained in the class of 
systems of the so-called MLT fundamental units of measurement. Radius r, time t, and the 
gravitational constant G, are apparently the first three quantities in a spherically contracting 
system under self-gravity. The fourth quantity is, for example, the temperature for an 
isothermal system, or the specific entropy for an adiabatic system. Such quantities cannot be 
specified in the absolute value, and therefore they can serve as an external control parameter 
of individual systems. In the present system, however, the fourth quantity is the heat 
diffusion conductivity, ��; the numerical value of which is quite unique, once the conductive 
mechanism is specified. Therefore �� can never be a control parameter, and the resultant 
behavior of the system is unique. 

4.2 Basic equation and similarity ansatz 
The one-dimensional spherical gas-dynamical equations with both self-gravity and 
diffusivity are  
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where p is the pressure, � the density, � the specific internal energy, u the flow velocity, and 
� the gravitational potential. We assume the ideal gas equation of state (EOS) in the form,  
 

(� + 1)��
� � = �

� = (� − 1)�, (75)
 

where kB is the Boltzmann constant, � the mean atomic mass, and � the specific heats ratio; Z 
is the ionization state, and � = 1 is assumed for hydrogen plasma. Equation (74), described 
by the one-temperature model, includes the non-linear heat diffusion term on the right hand 
side, where we assume a power-law dependence for the diffusion coefficient, � = �������, 
with ��, m, and n being constants. For normal physical values, � � 0 and � � 0 are 
assumed. With an intention to apply our solution primarily to the case of radiative heat 

diffusion, we can express � as � = (1�������)���� where 3
0 /    m n

R T  is the Rosseland 
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Fig. 5. Magnified view of Fig.4 around the ablation surface. 

Figure 5 shows the magnified view around the ablation surface of Fig. 4, in which the mass 
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4. Gravitational collapse of radiatively cooling sphere in view of star-
formation  
4.1 Introduction 
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P��clet number. Meanwhile, there are a number of works based on the perfect adiabaticity, 
i.e., �� � �, which corresponds to zero heat conductivity (Sedov, 1959; Barenblatt, 1979; 
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expressed in an integrated form or neatly installed in the equation of motion. In contrast, we 
explicitly leave the radiative conduction term in the hydrodynamic system to handle its 
nonlinear effect.  
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mean opacity, ��� is the Stefan-Boltzmann constant, and �� = ��������� is a constant. In the 
formulae given below, we keep the generality in terms of the parameters, m, n, and �, but 
also show specific forms using the values of the reference set at the same time: � = �, 
� = ����, and  ��	describing the opacity due to inverse bremsstrahlung in a fully ionized 
hydrogen plasma (Zel'dovich & Raizer, 1966) together with � = ���. 
To find a self-similar solution, we here introduce the following group transformation, 

  		� = ��̂,		 � = ���,� � = ����, � = ����, � = ����, � = ���� (76) 

where the hats denote the physical quantities in the scaled system related by the scale factor 
� with the parent system without hats. The constants, a, b, c, d, and e, can be appropriately 
determined by substituting Eq. (76) for Eqs. (71) - (74) such that the transformed system is 
kept symmetric and thus has the same structure as the original one based on the Lie's idea 
(Lie, 1970): 

 		� � � = � = ��� = � � ��� = ��� = (� � ��)�(� � �� � ��)� (77) 

For the reference case, m = 2 and n = 13/2, Eq. (77) gives � = ����, � = ����, � = � = ����, 
and � = �����. Equation (77), together with the following similarity ansatz, enables the 
removal of the temporal dependence from Eqs. (71) - (74),  

 		�(�) = �	|�|���,  �≡r/R(t), (78) 
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where �(�) is the temporal characteristic scale length of the system; A and B are positive 
constants defining the scales of the radius and the density, respectively. Note that the 
relation, ��� = ��, is used for the similarity ansatz of the density in Eq. (84), which holds 
regardless of the values of m and n. Furthermore, it should be noted that, at a glance, the 
ansatz for u and T given in Eqs. (82) and (83) seem to be bounded with each other with the 
similar front factors, ��� and (���)2, respectively. However, these factors are chosen just for 
simplicity, and u and T are kept independent of each other, because the functions, �(�) and 
�(�), are left free until they are self-consistently determined as the solution of the eigenvalue 
problem as shown below. In this paper, we consider a contracting fluid system for �	 � 	� 
which collapses at �	 = 	�, and therefore |	�	| 	= 	��. Then, Eqs. (71), (72), and (74) are 
respectively reduced to the following ordinary differential equations,  
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±�� − (±� − �)��
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(���������)�

��� , (85)
 

where the prime denotes the derivative with respect to �, and concerning the double signs, 
(±), the upper (plus) and lower (minus) sign correspond to �� � �0 and �� � �0, respectively. 
Since Eq. (73) is automatically satisfied, its reduced form does not appear in the above set of 
equations. Thus, the present system is characterized by the two positive dimensionless 
parameters, �� and ��, defined by �� = ���� and �� = (��������)(���)����. It can be 
interpreted that �� and K2 are introduced for simplicity instead of A and B. Equations (83) - 
(85) are second-order ordinary equation system for �, �, and �, and the obvious boundary 
conditions are 

   �(0) = 0,  �(0) = 1,  �(0) = 1,  (��)���� = 0. (86) 

The last relation means that there is no pressure gradient at the center. 

4.3 The self-similar solution as two dimensional eigenvalue problem 
At first glance, the ODE system, Eqs. (83) - (85), together with the boundary condition (86), 
seem to be closed mathematically. However, one can easily find that numerical integration 
of the system produces a physically unacceptable picture under an arbitrary set of the 
values for �� and �� such that the temperature suddenly diverges to infinity at a finite 
radius. Since the physical quantities are expected to change smoothly in space, it is 
conjectured that some special values of �� and ��, which are still unknown, can give such a 
physically acceptable picture. Therefore the present system is supposed to be a two-
dimensional eigenvalue problem, which is essentially different from the one-dimensional 
eigenvalue problems of the previous work.  
To determine a unique set of parameters, �� and ��, we need two more physical conditions. 
The first one is quite an orthodox prescription, in which the right integration curve 
smoothly passes through the singular point, which is located somewhere at a finite distance 
from the center. On this singular point, the fluid velocity is equal to the local sound speed. 
The second parameter is less obvious compared with the first one, but still seems natural 
enough, namely, that both the density and the temperature converge to zero simultaneously 
with an increase in radius. The numerical calculation is started from the center, and 
therefore it is necessary to make clear the asymptotic behavior of the solution in the vicinity 
of the center as follows. 
For the central region, the asymptotic behaviors of the above physical quantities are 
obtained by inserting the following ansatz, 

   � = 1 − ����,  � = 1 − ����,  � = −���,  (� � 1), (87) 
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into Eqs. (83) - (85), where ��, ��, and �� are unknown positive constants, where we make 
use of the symmetry at the center and thus employed only the lowest quadratic terms for � 
and �. After some manipulation, the constants are obtained, 
 

�� =
�(� − �)

3(� −� − 3��) , �� =
(� − �)� −� − � � ���
3(� − �)(� − � − 3��)�� �� = ���� −

�����
4 	 (88)

 

As can be seen in Eq. (88), in order to conduct the numerical calculation starting from the 
center, �� and �� must both be specified as trial values, which are expected to converge to 
their genuine eigenvalues after numerical iteration. Figure 6 shows the first step of the 
solving process, or how a right eigenvalue, ��, is obtained on the �-� plane, where �� = 0.64 
is fixed just as a trial value. As can be seen in Figure 6, there exists an appropriate value of 
��, with which the integrated curve smoothly passes through the singular point, while the 
other integrated curves deviate from the right curve as the integration proceeds toward the 
singular point, resulting in an unacceptable physical picture. In this manner, an appropriate 
eigenvalue �� can be determined as a function of arbitrary ��. 
 

 
Fig. 6. g - � diagram showing the optimization process of the eigenvalue, ��.  

Under the condition that the right integrated curve is to smoothly pass through a singular 
point, the integrations are conducted from the center (� = � = �) with the radius toward 
infinity corresponding to � = � = 0. Fixed parameters are � = �, � = �3��, � = ��3, and 
�� = 0.64. As the second step, one needs to determine �� that satisfies the second 
requirement mentioned earlier, namely, � � 0 and � � 0 at the same time. Figure 7 shows 
how the right eigenvalue, ��, is determined on the �-� plane, where each curve is already 
optimized such that it passes through each singular point. As a result, it turns out that there 
exists a unique pair of the eigenvalues of �� and ��, which satisfies the both requirements.  
Figure 8 shows the eigenstructure for the temperature, � � � the density, � � �, the velocity, 
� � �, and the heat flux, � � −���, under the eigenvalues of the reference system thus 
obtained, where the curves are assigned with labels corresponding to the original physical 
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quantities just for readers' comprehension. The behavior of the velocity for  may seem 
physically unacceptable at least in a rigorous sense. As a matter of fact, however, there are a 
number of examples for implosions and explosions in which the velocity profile is 
approximately linear with the radius (Sedov, 1959; Bernstein, 1978). In addition, the physical 
condition at enough large radii ( ) will not affect the core dynamics for an intermediate 
time period. Therefore, when we restrict our considerations to a finite closed volume 
containing the core, the present self-similar solution is expected to be an approximation of 
the core evolution at higher densities and temperatures. 

 

 
Fig. 7. g -  diagram showing the optimization process of the eigenvalue, .  
 

 
Fig. 8. Eigenstructure of the self-similar solution.  
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Under the condition that the right integrated curve is to converge to , each curve 
has already optimized with respect to  as was shown in Fig. 6. Other fixed parameters are 
the same as in Fig. 6. 
The normalized physical quantities are obtained as a result of the two-dimensional 
eigenvalue problem with fixed parameters, , , and .  

5. Conclusions 
The crucial role of dimensional analysis and self-similarity are discussed in the introduction 
and the three subsequent examples. Self-similar solutions for individual cases have been 
demonstrated to be derivable by applying the Lie group analysis to the set of PDE for the 
hydrodynamic system, taking nonlinear heat conductivity into account as the decisive 
physical ingredient. The scaling laws for thermally conductive fluids are conspicuously 
different from those for adiabatic fluids (not discussed in the present chapter; see references 
by Murakami et al., 2002, 2005 for details). The former has one freedom less than the latter 
due to the additional constraint of thermal conductivity. If a thermo-hydrodynamic system 
comprises multiple heat conduction mechanisms, self-similarity cannot be expected in a 
vigorous sense except for special cases. However, self-similarity and scaling laws can always 
be found at least in an approximate manner, by shedding light on the dominant conduction 
mechanism, which should give the basis of system design and diagnostics for scaled 
experiments for individual cases. The necessity of dimensional analysis and finding self-
similar solutions is encountered in many problems over wide ranges of research. The simple 
general scheme and the examples mentioned in this chapter will help the reader who 
encounters a similar situation in his or her investigation find the underlying physics and 
prepare further theoretical and experimental setup. 
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Under the condition that the right integrated curve is to converge to , each curve 
has already optimized with respect to  as was shown in Fig. 6. Other fixed parameters are 
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by Murakami et al., 2002, 2005 for details). The former has one freedom less than the latter 
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comprises multiple heat conduction mechanisms, self-similarity cannot be expected in a 
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experiments for individual cases. The necessity of dimensional analysis and finding self-
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general scheme and the examples mentioned in this chapter will help the reader who 
encounters a similar situation in his or her investigation find the underlying physics and 
prepare further theoretical and experimental setup. 
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1. Introduction 
Heat conduction [1] is usually modeled as a diffusion process embodied in heat conduction 
equation. The traditional numerical methods [2, 3] for heat conduction problems such as the 
finite difference or finite element are well developed. However, these methods are based on 
discretized mesh systems, thus they are inherently limited in the geometry treatment. This 
chapter describes the Monte Carlo method that is based on particle transport simulation to 
solve heat conduction problems. The Monte Carlo method is “meshless” and thus can treat 
problems with very complicated geometries.  
The method is applied to a pebble fuel to be used in very high temperature gas-cooled 
reactors (VHTGRs) [4], which is a next-generation nuclear reactor being developed. 
Typically, a single pebble contains ~10,000 particle fuels randomly dispersed in graphite–
matrix. Each particle fuel is in turn comprised of a fuel kernel and four layers of coatings. 
Furthermore, a typical reactor would house several tens of thousands of pebbles in the core 
depending on the power rating of the reactor. See Fig. 1. Such a level of geometric 
complexity and material heterogeneity defies the conventional mesh–based computational 
methods for heat conduction analysis. 
Among transport methods, the Monte Carlo method, that is based on stochastic particle 
simulation, is widely used in neutron and radiation particle transport problems such as 
nuclear reactor design. The Monte Carlo method described in this chapter is based on the 
observation that heat conduction is a diffusion process whose governing equation is analogous 
to the neutron diffusion equation [5] under no absorption, no fission and one speed condition, 
which is a special form of the particle transport equation. While neutron diffusion 
approximates the neutron transport phenomena, conversely it is applicable to solve diffusion 
problems by transport methods under certain conditions. Based on this idea, a new Monte 
Carlo method has been recently developed [6-8] to solve heat conduction problems. The 
method employs the MCNP code [9] as a major computational engine. MCNP is a widely used 
Monte Carlo particle transport code with versatile geometrical capabilities. 
Monte Carlo techniques for heat conduction have been reported [10-13] in the past. But most of 
the earlier Monte Carlo methods for heat conduction are based on discretized mesh systems, 
thus they are limited in the capabilities of geometry treatment. Fraley et al[13] uses a 
“meshless” system like the method in this chapter but does not give proper treatment to the 
boundary conditions, nor considers the “diffusion-transport theory correspondence” to be 
described in Section 2.2 in this chapter. Thus, the method in this chapter is a transport theory 
treatment of the heat conduction equation with a methodical boundary correction. The 
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transport theory treatment can easily incorporate anisotropic conduction, if necessary,  in a 
future study. 
 

 
(c) A pebble-bed reactor core 

(a) A pebble fuel element 

(b) A coated fuel particle 

Fig. 1. Cross-sectional view of a pebble fuel (a) consisting several thousands of coated fuel 
particles (b) in a reactor core (c) 

2. Description of method 
2.1 Neutron transport and diffusion equations 
The transport equation that governs the neutron behavior in a medium with total cross 
section ( , )


t r E and differential scattering cross section ( , , )    

 
s r E E is given as [5]: 
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where 

r neutron position,
E neutron energy,

neutron direction,
S neutron source,
(r ,E, ) neutron angular flux.



 















 

 

 
Fig. 2. Angular flux and boundary condition 

Fig. 2 depicts the meaning of angular flux (r ,E, ) 
 and boundary condition. In the 

special case of no absorption, isotropic scattering, and mono-energy of neutrons, Eq. (1) 
becomes 
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with vacuum boundary condition, 

 s(r , )  for n ,    0 0
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where scalar flux is defined as 

 (r ) d (r , ).   
    (2c) 

Let us now consider a “scaled” equation of (2a),  

        
  

   
1 1

4 4s s
S(r )(r , ) (r ) (r , ) (r ) (r ) .
        (3) 

An important result of the asymptotic theory provides correspondence between the 
transport equation and the diffusion equation, i.e., the asymptotic ( )  solution of Eq. (3) 
satisfies the following diffusion equation: 
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  (4a) 

with vacuum boundary condition  

 s(r d) , d extrapolation distance.   0  (4b) 

 It is known that, between the two solutions from transport theory and from diffusion 
theory, a discrepancy appears near the boundary. Thus, the problem domain is extended 
using an extrapolated thickness (typically td one mean free path /  1 ) for boundary layer 
correction, as shown in Fig. 3. 
 

 
 

Fig. 3. Boundary correction with an extrapolated layer 

2.2 Monte Carlo method for heat conduction equation 
Correspondence 
The steady state heat conduction equation for a stationary and isotropic solid is given by [1]: 

 k(r ) T(r ) q (r ) ,     0    (5a) 

with boundary condition 

 sT(r ) , 0  (5b) 

where k(r ) is the thermal conductivity and q (r )  is the internal heat source. 
If we compare Eq. (5) with Eq. (4), it is easily ascertained that Eq. (4) becomes Eq. (5) by 
setting 
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k(r )
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  (6) 

and  

 S q (r ),
  (7) 

with a large  and the problem domain extended by d . 
The Monte Carlo method is extremely versatile in solving Eqs. (1), (2) and (3) with very 
complicated geometry and strong heterogeneity of the medium. Thus, Eq. (3) is solved by 
the Monte Carlo method (with a large  ) to obtain (r )  . The result of (r )  is then translated 
to provide sT(r ) (r ) (r )  

   as the solution of Eq. (5) [See Fig. 3.] 
Here,   1 is a scaling factor rendering the transport phenomena diffusion-like. A large 
scaling factor plays an additional role of reducing the extrapolation distance to the order of a 
mean free path. To choose a proper value for  , we introduce an adjoint problem to perform 
sensitivity studies, specific results for a pebble problem provided later in this section. 
Proof of principles of the method 
In order to confirm or provide proof of principles of the Monte Carlo method described in 
Section 2.2, first we consider a simple heat conduction problem which allows analytic 
solution. The problem consists of one-dimensional slab geometry, isotropic solid, and 
uniformly distributed internal heat source under steady state. The left side has reflective 
boundary condition and the right side has zero temperature boundary condition. Fig. 4(a) 
shows the original problem and Fig. 4(b) shows the extended problem to be solved by the 
Monte Carlo method, incorporating the boundary layer correction. Table 1 provides the 
calculational conditions. 
 

 
Fig. 4. A one-dimensional slab test problem 

 
Thermal 

Conductivity 
( W / cm K  ) 

Internal Heat 
Source( W / cm3 ) 

Extrapolation Thickness 
( mfp ) 

Scaling 
Factor 

0.5 0.01 1 1 

Table 1. Calculation Conditions for Simple Problem 

Figs. 5 and 6 show the Monte Carlo method results with and without the extension by 
extrapolation thickness in comparison with the analytic solution. Note that the result of the 
Monte Carlo method with boundary layer correction is in excellent agreement with the 
analytic solution. 
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Fig. 5. Monte Carlo heat conduction solution with extrapolated layer 

 
 

 
Fig. 6. Monte Carlo heat conduction solution without extrapolated layer 

To test the method on a realistic problem, the FLS (Fine Lattice Stochastic) model and 
CLCS (Coarse Lattice with Centered Sphere) model [14] for the random distribution of 
fuel particles in a pebble are used to obtain the heat conduction solution by the Monte 
Carlo method. Details of this process are described in Table 2 and Fig. 7. The power 
distribution generated in a pebble is assumed uniform within a kernel and across the 
particle fuels. The pebble is surrounded by helium at 1173K with the convective heat 
transfer coefficient h=0.1006( W / cm K 2 ). A Monte Carlo program HEATON [15] was 
written to solve heat conduction problems using the MCNP5 code as the major 
computational engine. 
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Material Kernel Buffer Inner PyC SiC 
Thermal Conductivity 

( /  W cm K ) 0.0346 0.0100 0.0400 0.1830 

Radius 
 ( cm ) 0.02510 0.03425 0.03824 0.04177 

Material Outer PyC Graphite-matrix Graphite-shell 
Thermal Conductivity 

( / W cm K ) 0.0400 0.2500 0.2500 

Radius 
 ( cm ) 0.04576 2.5000 3.0000 

Number of Triso Particles 9394 
Power/pebble 

 (W ) 1893.95 

Table 2. Problem Description for a Pebble 

 

 
Fig. 7. A planar view of a particle random distribution for a pebble problem with the FLS 
model 

Heat conduction solutions for the pebble problem with the data in Table 2 using the Monte 
Carlo method are shown in Table 3 and Fig. 8. The number of histories used was 710 . 
Parallel computation with 60 CPUs (3.2GHz) was used. When the scaling factor  increases, 
the solution of the pebble problem approaches its asymptotic solution (diffusion solution). 
However, the computational time increases rapidly as the scaling factor increases. In Table 3 
and Fig. 8, it is shown that a scaling factor of 10 or 20 is not large enough. 
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Fig. 5. Monte Carlo heat conduction solution with extrapolated layer 

 
 

 
Fig. 6. Monte Carlo heat conduction solution without extrapolated layer 

To test the method on a realistic problem, the FLS (Fine Lattice Stochastic) model and 
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fuel particles in a pebble are used to obtain the heat conduction solution by the Monte 
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particle fuels. The pebble is surrounded by helium at 1173K with the convective heat 
transfer coefficient h=0.1006( W / cm K 2 ). A Monte Carlo program HEATON [15] was 
written to solve heat conduction problems using the MCNP5 code as the major 
computational engine. 
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Scaling 
Factor 

Maximum 
Temp. 
( K ) 

Relative 
Errora 

(%) 

Graphite 
Temp. Near 
Center( K ) 

Relative 
Errora 

(%) 

Computing 
Time 
(sec) 

Translation 
Temp. 
( K ) 

1 1674.21 1.59 158.33 0.71 534 27.08 
10 1556.96 1.14 1533.53 0.34 6,692 2.72 
20 1558.54 1.12 1531.67 0.30 20,297 1.36 
50 1553.22 1.11 1527.07 0.28 99,454 0.54 

a One standard deviation in temperature / mean estimate of temperature by Monte Carlo %100  

Table 3. Results of Fig. 7 Problem 

 

 
Fig. 8. Results along the red line of Fig. 7 vs the scaling factor 

Therefore, it is necessary to determine an effective scaling factor that renders the problem 
more diffusive. This can be done using an adjoint calculation. Using an adjoint calculation, 
the computing time is reduced as the calculation transports particles backward from the 
detector region (at the center of the pebble) to the source region. Additionally, it is possible 
that the changed tally regions used in the adjoint calculation allow effective particle tallies. 
 

Scaling Factor Maximum Temp. 
( K ) 

Standard 
Deviation( K ) 

Computing Time 
(sec) 

1 1685.131 0.409 47 
20 1558.817 0.308 1,427 
50 1553.931 0.304 7,298 
80 1553.586 0.304 17,976 

100 1552.995 0.303 27,240 
120 1552.713 0.303 39,435 

Table 4. Maximum Temperature and Computing Time for Fig. 9 
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In order to confirm the appropriate scaling factor, the problem with the data of Table 2 and 
in Fig. 7 was again tested with a smaller number ( 610 ) of histories compared to the number 
used in the forward calculation. The results depending on the scaling factor are shown in 
Fig. 9 and Table 4. 
Fig. 9 shows that the center temperature of a fuel pebble approaches its asymptotic solution 
(diffusion solution) as the scaling factor increases. Therefore, to obtain a diffusion solution, a 
scaling factor of > 30 (e.g., 50) is required. 
 
 

 
Fig. 9. Center temperature by the adjoint calculation 

2.3 Heat conduction problems 
Given varying-temperature boundary condition 
The first kind of the boundary conditions is the prescribed surface temperature: 

 s sT(r ) f (r ),
   (8) 

where sr


is on a boundary surface. Since the paradigm heat conduction problem that the 
Monte Carlo method can treat is a problem with zero temperature boundary condition (as 
described in Section 2.2), letT be decomposed into *T and T as follows: 

 *T(r ) T (r ) T(r ), 
    (9) 

where *T satisfies the zero boundary condition, and T  is chosen such that it satisfies the 
given boundary condition (8). Eq. (5a) can then be rewritten as: 

 *k(r ) T(r ) k(r ) (T T ) q (r ),        
     (10) 
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or 

 * *k(r ) T (r ) q (r ),   
    (11a) 

where the new source * ( )q r is defined by 

 *q (r ) k(r ) T(r ) q (r ),     
     (11b) 

Eq. (11a) is to be solved for *T by the Monte Carlo method [6-8]. The Monte Carlo method 
cannot deal easily with the gradient term, ( ) k r T  , in Eq. (11b) when the boundary 
condition temperature is not a constant and k(r ) is not smooth enough. In order to evaluate 
the new source term as simply as possible, letT be zero in internally complicated thermal 
conductivity region as shown in Fig. 10. In addition,T and T must be continuous in the 
whole problem domain to render the k(r ) T  

  term treatable. 
 
 
 
 
 
 

 
 
 
 
 

Fig. 10. Solution Decomposition *T T T ,    
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In Ref. [8], the followingT is chosen for a three-dimensional spherical model: 

 s
s

(r r )T U(r ) f (r , , ) ,
(r r )

  




2
0

2
0

  (12) 

where sf (r , , )  is the given boundary condition (8), and indicate polar and azimuthal 
angle, respectively. sr is radius to the boundary surface and there may be internally 
complicated thermal conductivity region inside r0 . 
Convection boundary condition 
A convection boundary condition is usually given by 

 s
b s

T(r )k h(T T(r )),
n


 

1

   (13) 

where 1k is the thermal conductivity of medium 1 (solid), h and bT are the convective heat 
transfer coefficient and the bulk temperature of the convective medium, respectively. This 
condition can be equivalently transformed to a given temperature ( )bT boundary condition 
of a related problem, in which the convective medium is replaced by a hypothetical 
conduction medium with thermal conductivity 

 s

b

rk h n ,
r

 
   

 
2  (14) 

where n is additional thickness beyond s b sr ( n r r )   in a spherical geometry. Here br is 
the radius where bT occurs. 2k involves a geometry factor and 2k ’s for several geometries are 
shown in Table 5 (see Appendix B for the derivation). 
 

Geometry 2k  

Sphere  s
b s

b

rh(r r )
r

 
  

 
 

Cylinder b
s

s

rhr ln
r

 
 
 

 

Slab b sh(x x )  

Table 5. 2k for Several Geometries 
There is no approximation in the 2k expressions for given h if there is no heat source in the 
fluid. The transformed problem can then be solved by the Monte Carlo method in Section 
2.1 with replacement of 0r by sr and sr by br , and bT as the boundary condition. Eq. (13) 
with the right-hand side replaced by Eq. (14) is no more than a continuity expression of heat 
flux on the interface. Fig. 11 shows the concept in this transformation. 
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(a) Original problem 
 
 

 
 

(b) Equivalent problem 
 
 

Fig. 11. Transformation of a convective medium to an equivalent conduction medium 
preserving heat flux 
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Examples 

The method is applied to a pebble fuel with Coarse Lattice with Centered Sphere (CLCS) 
distribution of fuel particle [14]. The description of a pebble fuel is shown in Fig. 12 and 
Table 2. The pebble fuel is surrounded by helium at given bulk temperature with convective 
heat transfer coefficient 20.1006( / ) h W cm K . The number of histories used in the 
Monte Carlo calculation was 710 . 
 
 

 
 

Fig. 12. CLCS distribution 

Test Problem 1 is defined by the following non-constant bulk temperature of the helium 
coolant: 

 ( cos ) K ,  1173 10 1  (15a) 

where is the polar angle, or equivalently 

 z ,
x y z

 
  
   

2 2 2
1173 10 1  (15b) 

where 

 bx y z r ,  2 2 2 2  (15c) 

with 3.1br , ,x y and z in centimeters. 
The results are shown in Figs. 13, 14 and 15. 
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Fig. 13. Temperature distribution along x -direction with 0 y z in Test Problem 1 

 

 
Fig. 14. Temperature distribution along z -direction with 0 x y in Test Problem 1 
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Fig. 15. Comparison of Test Problem 1 and a problem with constant helium bulk 
temperature (1173 K ) 

Test Problem 2 is defined by the following non-constant bulk temperature of the helium 
coolant: 

 (x y z) K    1173 10  (16a) 

where 

 bx y z r ,  2 2 2 2  (16b) 

with 3.1br , ,x y and z in centimeters. 
The results are shown in Figs. 16, 17, and 18. 
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Fig. 14. Temperature distribution along z -direction with 0 x y in Test Problem 1 
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Fig. 16. Temperature distribution along x -direction with 0 y z in Test Problem 2 
 

 
Fig. 17. Temperature distribution along z -direction with 0 x y in Test Problem 2 
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Fig. 18. Temperature distribution along y -direction with 0 x z in Test Problem 2 

3. Applications 
3.1 Comparison between the FLS (Fine Lattice Stochastic) model and analytic bound 
solutions 
In this section, the data of the geometry information and thermal conductivity are identical 
to those in Table 2. Based on the results in the previous section, temperature distributions 
were calculated using a scaling factor of 50. Three triso particle configurations obtained by 
randomly distributed fuels in a pebble were considered (using the FLS model in Ref. 14). 
The tally regions as shown in Fig. 19 were chosen. If a (fine) lattice has a heat source, the 
tally is done over the kernel volume. If the lattice consists of only graphite, tally is done over 
the lattice cubical volume.  
 

 
Fig. 19. Tally regions with and without a heat source 



 
Heat Conduction – Basic Research 

 

310 

 
Fig. 16. Temperature distribution along x -direction with 0 y z in Test Problem 2 
 

 
Fig. 17. Temperature distribution along z -direction with 0 x y in Test Problem 2 
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Fig. 19. Tally regions with and without a heat source 
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Fig. 20 shows the temperature distributions obtained from the Monte Carlo method 
compared to the two analytic bound solutions superimposed with a particle located at the 
center of the pebble based on commonly quoted homogenized models [16]. It is important to 
note that the volumetric analytic solution usually presented in the literature [17] predicts 
lower temperatures than those of 
(thus underestimates) the Monte Carlo results. In the Monte Carlo results, the fuel-kernel 
temperature and graphite-matrix temperature are distinctly calculated. The results are 
summarized in Table 6. 
 

 
Fig. 20. Temperature profiles depending on the triso particle distribution configuration 
compared to two homogenized models 

 

 Max. Temp. 
( K ) 

Average Kernel Temp. 
( K ) 

Average Graphite Temp. 
( K ) 

Case 1 1555.07 1497.84 1487.61 
Case 2 1553.77 1499.63 1480.43 
Case 3 1550.87 1501.89 1489.38 
Average 1553.23 1499.79 1485.80 

Table 6. Maximum, Average Kernel and Graphite Temperatures from Fig. 20 

For a fourth triso particle configuration (Case 4), the tally region was further refined as 
shown in Fig. 21 to provide more accurate graphite-moderator temperature. Essentially, if 
the lattice has a kernel (heat source), the tally is done over the kernel volume and over the 
moderator (graphite and layers) volume separately. Otherwise, if the lattice consists of only 
graphite, the tally is done over the cubical volume. 
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Fig. 21. Tally regions depending on the geometries 

In this problem, geometry information is identical to those shown in Table 2. The distributed 
particle configuration is shown in Fig. 22. The kernel and graphite-moderator temperatures 
are shown in Fig. 23 and Table 7. 
 
 
 

 
 
 

Fig. 22. A planar view of a fourth particle distribution configuration with the FLS model 
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In this problem, geometry information is identical to those shown in Table 2. The distributed 
particle configuration is shown in Fig. 22. The kernel and graphite-moderator temperatures 
are shown in Fig. 23 and Table 7. 
 
 
 

 
 
 

Fig. 22. A planar view of a fourth particle distribution configuration with the FLS model 
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Fig. 23. Temperature distribution along red line for Fig. 22 

 
Maximum temperature ( K ) 1556.70 

Averaged kernel temperature ( K ) 1518.88 
Averaged moderator temperature ( K ) 1484.61 

Surface temperature at 2.5cm ( K ) 1379.82 
Surface temperature at 3.0cm ( K ) 1339.65 

Computing time 43h 35m 9s 

Table 7. Results for the Fourth Configuration Shown in Fig. 23 
 

 
Fig. 24. Cross-sectional views for Fig. 22 
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The temperature profile on the 0z plane along red line is shown in Fig. 23 and Table 7. In 
this FLS model, the maximum fuel temperature appears not at the center point but near the 
central region, as the fuels are concentrated on the right side of the center point on 
the 0z plane, as shown in Fig. 24. Note that the red circle in Fig. 24 denotes particles with 
the dominant effect of the temperature increase on the 0z plane. 

3.2 CLCS (Coarse Lattice with Centered Sphere) model 
The temperature distribution was obtained again for the CLCS (Coarse Lattice with 
Centered Sphere) model [14]. In this model, the tally regions used are shown in Fig. 25. The 
general geometry  
information is identical to that in Table 2, except that there are 9315 triso particles and each 
triso particle takes one lattice cube (and vice versa), as shown in Fig. 26. The resulting 
temperature distribution for the CLCS model is shown in Fig. 27. 
 

 
Fig. 25. Tally regions for the CLCS model 

 

 
Fig. 26. Fuel particle configuration for the CLCS model 
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Fig. 27. Results of cubes along red line for Fig. 26 

4. Concluding remarks 
A Monte Carlo method for heat conduction problems was presented in this chapter. Based 
on the asymptotic theory correspondence between neutron transport and diffusion 
equations, it is shown that the particle transport Monte Carlo simulation can provide 
solutions to the heat conduction problems with two modeling devices introduced: i) 
boundary layer correction by the extended problem domain and ii) scaling factor to increase 
the diffusivity of the problem. 
The Monte Carlo method can be used to solve heat conduction problems with complicated 
geometry (e.g. due to the extreme heterogeneity of a fuel pebble in a VHTGR, which houses 
many thousands of coated fuel particles randomly distributed in graphite matrix). It can 
handle typical boundary conditions, including non-constant temperature boundary 
condition and heat convection boundary condition. The HEATON code was written using 
MCNP as the major engine to solve these types of heat conduction problems. Monte Carlo 
results for randomly sampled configurations of triso fuel particles were presented, showing 
the fuel kernel temperatures and graphite matrix temperatures distinctly. The fuel kernel 
temperatures can be used for more accurate neutronics calculations in nuclear reactor 
design, such as incorporating the Doppler feedback. It was found that the volumetric 
analytic solution commonly used in the literature predicts lower temperatures than those of 
the Monte Carlo results. Therefore, it will lead to inaccurate prediction of the fuel 
temperature under Doppler feedback, which will have important safety implications. 
 An obvious area of further application is the time transient problem. The results of the 
steady-state heterogeneous calculations by Monte Carlo (as described in this chapter) can be 
used to construct a two-temperature homogenized model that is then used in transient 
analysis [18]. 
While the Monte Carlo method has its capability and efficacy of handling heat conduction 
problems with very complicated geometries, the method has its own shortcomings of the 
long computing time and variance due to the statistical results. It also has a limitation in that 
it provides temperatures at specific points rather than at the entire temperature field. 
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Appendix A: Elements of Monte Carlo method 
A.1 Introduction 
In a typical form of the particle transport Monte Carlo method [9,19], we simulate particle 
(e.g., neutron) behavior by following a finite number, say N, of particle histories and tallying 
the appropriate events needed to calculate the quantity of interest. The simulation is 
performed according to the physical events (expressed by each term in the transport 
equation) that a particle would encounter through the use of random numbers. These 
random numbers are usually generated by a pseudo random number generator, that 
provides uniform random number   between 0 and 1. In each particle history, the random 
numbers are generated and used to sample discrete events or continuous variables as the 
case may be according to the probability distribution functions. The results of tally are 
processed to provide estimates for the mean and variance of the quantity of interest, e.g., 
neutron flux, current, reaction rate, or some other quantities. 

A.2 Basic operations of sampling 
A.2.1 Sampling of random events 
The discrete events such as the type of nuclides and collisions are simple to sample. For 
example, suppose that there are in the medium I nuclides with total macroscopic cross 
sections, ( i )

t , i , , ,I  1 2 . Let 

 I ( i )
t ti 


 1 , (A1) 

and 

 
( i )
t
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t

P , i , , ,I .


  1 2  (A2) 

Now draw a random number and if  

 i iP P P P P P ,       1 2 1 1 2   (A3) 

then the i -th nuclide is selected and the neutron collides with nuclide i . After determination 
of the nuclide, the type of collisions (absorption, fission, or scattering, etc.) is determined in 
a similar way. If the event is scattering, the energy and direction of the scattered neutron are 
sampled. In addition, the distance a neutron travels before suffering its next collision is 
sampled. These values are continuous variables and thus determined by sampling according 
to the appropriate probability density function ( )f x . For example, the distance l to next 
collision (within the same medium) is distributed as 

 ( )  t l tf l dl e dl , (A4) 

with its cumulative distribution function 

 t
l lF(l) f ( l )dl e    0 1 . (A5) 

Since ( )F l is uniformly distributed between 0 and 1, we draw a random number and let 
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Fig. 27. Results of cubes along red line for Fig. 26 

4. Concluding remarks 
A Monte Carlo method for heat conduction problems was presented in this chapter. Based 
on the asymptotic theory correspondence between neutron transport and diffusion 
equations, it is shown that the particle transport Monte Carlo simulation can provide 
solutions to the heat conduction problems with two modeling devices introduced: i) 
boundary layer correction by the extended problem domain and ii) scaling factor to increase 
the diffusivity of the problem. 
The Monte Carlo method can be used to solve heat conduction problems with complicated 
geometry (e.g. due to the extreme heterogeneity of a fuel pebble in a VHTGR, which houses 
many thousands of coated fuel particles randomly distributed in graphite matrix). It can 
handle typical boundary conditions, including non-constant temperature boundary 
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MCNP as the major engine to solve these types of heat conduction problems. Monte Carlo 
results for randomly sampled configurations of triso fuel particles were presented, showing 
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temperatures can be used for more accurate neutronics calculations in nuclear reactor 
design, such as incorporating the Doppler feedback. It was found that the volumetric 
analytic solution commonly used in the literature predicts lower temperatures than those of 
the Monte Carlo results. Therefore, it will lead to inaccurate prediction of the fuel 
temperature under Doppler feedback, which will have important safety implications. 
 An obvious area of further application is the time transient problem. The results of the 
steady-state heterogeneous calculations by Monte Carlo (as described in this chapter) can be 
used to construct a two-temperature homogenized model that is then used in transient 
analysis [18]. 
While the Monte Carlo method has its capability and efficacy of handling heat conduction 
problems with very complicated geometries, the method has its own shortcomings of the 
long computing time and variance due to the statistical results. It also has a limitation in that 
it provides temperatures at specific points rather than at the entire temperature field. 
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 F(l)  , (A6) 

that in turn provides 

 
t t

ln( ) ln( )l  
 


   
1 . (A7) 

A.2.2 Geometry tracking 
In typical Monte Carlo codes, the geometries of the problem are created with intersection 
and union of surfaces. In turn, the surfaces are defined by a collection of elementary 
mathematical functions. For example, the geometry in Fig. A1 would be defined by 
functions that represent four straight lines and a circle. 
 

 
Fig. A1. An example of problem geometry with two material media 
 

 
Fig. A2. Geometry tracking 

Suppose that the neutron we follow is now at point A and heading to the direction as in Fig. 
A2. In order to determine next collision point, first we calculate the distance 1( )l to the 

nearest material interface and draw a random numberi , then two cases occur; i) 
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if 1 1  t l
i e , the collision is in region 1 at point  1ln /  i i tl , or ii) if 1 1  t l

i e , it says 

that the collision is beyond region 1, so draw another random number 1 i to determine the 

collision point that may be in region 2 at 1 1 2ln /   i i tl  beyond 1l  along the same 
direction. This process continues until the neutron is absorbed or leaks out of the problem 
boundary. 

A.2.3 Tally of events 
To calculate neutron flux of a region, current through a surface, or reaction rate in a region, 
the events that are usually tallied are i) number of collisions, ii) total track length traveled, or 
iii) number of crossings through a surface. For example, suppose that we like to calculate 
average scalar flux  in a volume element V with total cross section t . From a well-
known relation, 

 tc V  , (A8) 

where c is the number of collisions made by neutrons inV , we can calculate by tallying 
the number of collisions: 

 
t

c
V





1 . (A9) 

We provide sample estimate of c by 
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1
, (A10) 

where nc is the number of collisions made inV during the n-th history and N is a large 
number. In addition, we also provide sample estimate of variance on c by 

 


N

n
n
N

n

ˆS (c c )
N

N ˆ(c c ),
N





 


 






2 2

1

2 2

1

1
1

1

 (A11) 

where 
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It can be easily shown that the sample standard deviation on ĉ is 

 ĉ
S
N

  , (A13) 
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It can be easily shown that the sample standard deviation on ĉ is 
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which suggests to use a large N  for accurate ĉ , since ˆ c  is a measure of uncertainty in the 
estimated ĉ . 
Fig. A3 shows an example for nc ; in the shaded region, 

c ,c ,c ,andc ,   1 2 3 40 1 1 3  

thus 

ĉ

ĉ . ,

S ( . ) . ,

. . .

  

   

 

2 2

1 5 1 25
4

3 11 1 25 1 583
4 4

1 583 0 6291
4

 

 

 
Fig. A3. Tally of number of collisions 

Appendix B: Derivation of equivalent thermal conductivities 

The expressions of 2k (equivalent thermal conductivity) for the convective medium are 
derived in this Appendix for three (sphere, cylinder, slab) geometries. 

B.1 Sphere geometry 
The heat conduction equation in spherical coordinates is, in a region free of heat source, 

 k d dTr .
dr drr

22
2 0  (B1) 
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Thus, 

 dTr c ,
dr

2
1  (B2) 

 dT c ,
dr r

 1
2  (B3) 

 cT c .
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  1
2  (B4) 

From Eq. (B4), 
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and thus 
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The convective boundary condition equation for spherical geometry is, 
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s b
r

dTk h(T T ).
dr

  2  (B7) 

Substituting Eqs. (B3) and (B6) into (B7), we have 
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B.2 Cylinder geometry 
The heat conduction equation in cylindrical coordinates is, in a region free of heat source, 
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r dr dr

2 0  (B9) 
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From Eq. (B12), 
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Substituting Eqs. (B3) and (B6) into (B7), we have 

 s
b s

b

rk h(r r ) .
r

 
   

 
2  (B8) 

B.2 Cylinder geometry 
The heat conduction equation in cylindrical coordinates is, in a region free of heat source, 
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The convective boundary condition equation for cylindrical geometry is,  
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Substituting Eqs. (B11) and (B14) into (B15), we have 
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B.3 Slab geometry 
The heat conduction equation in slab geometry is, in a region free of heat source, 

 d Tk .
dx
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From Eq. (B19), 
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The convection boundary condition equation for slab geometry is, 
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Substituting Eqs. (B18) and (B21) into (B22), we have 
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1. Introduction 
The main advantage of the boundary element method (BEM) formulation for the solution of 
boundary value problems results from the localization of unknowns on the boundary of the 
analyzed domain. The necessary condition for a pure boundary formulation is the 
knowledge of the fundamental solution of the governing differential operator. In addition to 
the reduction of the dimensionality, other advantages of the BEM formulation include good 
conditioning of the discretized equations, high accuracy and the stability of numerical 
computations because of the utilization of fundamental solutions. Sometimes, domain 
integrals are also involved in integral equation formulations; in such cases, the 
advantageousness of the BEM formulation is partially decreased. The most frequent reasons 
for the occurrence of domain integrals are body sources, nonlinear constitutive laws and 
nonvanishing initial conditions in time-dependent problems (Partridge et al., 1992, Sladek 
and Sladek, 2003, Tanaka et al., 2003). 
Since the fundamental solution for a diffusion operator is available in closed form, one 
can attempt to achieve a pure boundary integral formulation for transient heat conduction 
problems considered within the linear theory. This can be easily achieved provided that 
the initial temperature and/or heat sources are distributed uniformly. Then, one can 
convert the domain integrals of the fundamental solution into boundary integrals  using 
the higher-order polyharmonic fundamental solutions (Nowak, 1989, 1994). As regards 
the discretization of the time variable, two time-marching schemes are appropriate in 
formulations with time-dependent fundamental solutions. In one of them, the integration 
is performed from the initial time to the current time, while in the second scheme the 
integration is considered within a single time step, taking the temperature at the end of 
the previous time step as the initial value (pseudo-initial) at the current time step (Ochiai, 
2006). Although the domain integral of the uniform initial temperature can be avoided in 
the first time-marching scheme, the number of boundary integrals increases with 
increasing number of time steps even in this special case. On the other hand, the spatial 
integrations are performed only once and are used at each time step in the second scheme 
provided that a constant length of the time steps is used. The time-marching scheme with 
integration within a single time step increases the efficiency of numerical integration over 
boundary elements. The integral formulation as well as the triple-reciprocity 
approximation are derived in this chapter. The higher-order polyharmonic fundamental 
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computations because of the utilization of fundamental solutions. Sometimes, domain 
integrals are also involved in integral equation formulations; in such cases, the 
advantageousness of the BEM formulation is partially decreased. The most frequent reasons 
for the occurrence of domain integrals are body sources, nonlinear constitutive laws and 
nonvanishing initial conditions in time-dependent problems (Partridge et al., 1992, Sladek 
and Sladek, 2003, Tanaka et al., 2003). 
Since the fundamental solution for a diffusion operator is available in closed form, one 
can attempt to achieve a pure boundary integral formulation for transient heat conduction 
problems considered within the linear theory. This can be easily achieved provided that 
the initial temperature and/or heat sources are distributed uniformly. Then, one can 
convert the domain integrals of the fundamental solution into boundary integrals  using 
the higher-order polyharmonic fundamental solutions (Nowak, 1989, 1994). As regards 
the discretization of the time variable, two time-marching schemes are appropriate in 
formulations with time-dependent fundamental solutions. In one of them, the integration 
is performed from the initial time to the current time, while in the second scheme the 
integration is considered within a single time step, taking the temperature at the end of 
the previous time step as the initial value (pseudo-initial) at the current time step (Ochiai, 
2006). Although the domain integral of the uniform initial temperature can be avoided in 
the first time-marching scheme, the number of boundary integrals increases with 
increasing number of time steps even in this special case. On the other hand, the spatial 
integrations are performed only once and are used at each time step in the second scheme 
provided that a constant length of the time steps is used. The time-marching scheme with 
integration within a single time step increases the efficiency of numerical integration over 
boundary elements. The integral formulation as well as the triple-reciprocity 
approximation are derived in this chapter. The higher-order polyharmonic fundamental 
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solutions and their time integrals are shown in the Appendies. The numerical examples 
given concern the investigation of the accuracy of the proposed BEM formulation using 
the triple-reciprocity approximation of either pseudo-initial temperatures or body heat 
sources. 
In this chapter, the steady and unsteady problems in the one-, two- and three-dimensional 
cases are discussed. In the triple-reciprocity BEM, the distributions of heat generation and 
initial temperature are interpolated using two Poisson equations. These two Poisson 
equations are solved using boundary integral equations. This interpolation method is very 
important in the triple-reciprocity BEM. This numerical process is particularly focused on 
this chapter.  

2. Basic equations 
2.1 Steady heat conduction  
Point and line heat sources can easily be treated by the conventional BEM. In this study an 
arbitrarily distributed heat source 1

SW  is treated. In steady heat conduction problems, the 

temperature T under an arbitrarily distributed heat source 1
SW  is obtained by solving the 

following equation (Carslaw, 1938): 

 2 1
sWT




   ,  (1) 

where  is thermal conductivity. Denoting heat generation by 1 ( )SW q , the boundary integral 
equation for the temperature in the case of steady heat conduction is given by (Brebbia, 
1984) 

 { ( ) 1
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( ) ( , )cT(P) T P,Q ( )} ( )T Q T P Q T Q d Q
n n

 
  

  1
1 1( , ) ( )ST P q W q d


  , (2) 

where 0.5c   on the smooth boundary and 1c   in the domain. The notations  and  
represent the boundary and domain, respectively. The notations p and q become P and Q on 
the boundary.  
In one-dimensional problems, the fundamental solution 1 ( , )T p q  in Eq. (2) used for steady 
temperature analyses and its normal derivative are given by  

    1
1( , )
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T p q r    (3) 
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In two-dimensional problems,  
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and in three-dimensional problems, 

 1
1T (p,q)

4 r
  (7) 

 1
2

( , ) 1
4

T p q r
n nr

  


 
 , (8) 

where r is the distance between the observation point p and the loading point q. As shown in 
Eq. (2),when arbitrary heat generation 1 ( )SW q  exists in the domain, a domain integral is 
necessary. 
In the triple-reciprocity BEM, the distribution of heat generation is interpolated using  integral 
equations. Using these interpolated values, a heat conduction problem with arbitrary heat 
generation can be solved without internal cells by the triple-reciprocity BEM. The conventional 
BEM requires internal cells for the domain integral. The internal cells decrease the 
advantageousness of the BEM, in which the arrangement of data is simple. In the triple-
reciprocity BEM, the fundamental solution of lower order is used. The triple-reciprocity BEM 
requires internal points similarly to the dual reciprocity method (DRM) (Partridge, 1992) as 
shown in Fig. 1, although the boundary values fW  need not be given analytically.     
  

 

    
(a) Internal cells                                (b) Internal points 

Fig. 1. Triple-reciprocity BEM. 

2.2 Interpolation of heat generation    
The distribution of heat generation W is interpolated using integral equations to transform the 
domain integral into the boundary integral. The deformation of a thin plate is utilized to 
interpolate the distribution of the heat source 1

SW , where superscript S indicates a surface 
distribution. The following equations can be used for interpolation (Ochiai, 1995a-c, 1996a, b):  

 2
1 2
S SW W   , (9) 
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2.2 Interpolation of heat generation    
The distribution of heat generation W is interpolated using integral equations to transform the 
domain integral into the boundary integral. The deformation of a thin plate is utilized to 
interpolate the distribution of the heat source 1

SW , where superscript S indicates a surface 
distribution. The following equations can be used for interpolation (Ochiai, 1995a-c, 1996a, b):  
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M
S P
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W W q


   , (10) 

where 3
PW  is a Dirac-type function, which has a value at only one point. The term 2

SW  in 

Eq. (9) corresponds to the sum of curvatures 2 2
1 /SW x   and 2 2

1 /SW y  . From Eqs. (9) 
and (10), the following equation can be obtained: 

 4
1 3

1
( )

M
S P

m
m

W W q


   . (11) 

This equation is the same type of equation as that for the deformation 1
Sw  of a thin 

 plate with point load P, which is 

  4
1

1

M
S m

m

Pw
D

   , (12) 

where the Poisson’s ratio is  =0 and the flexural rigidity is D=1. A natural spline originates 
from the deformation of a thin beam, which is used to interpolate the one-dimensional 
distribution, as shown in Fig. 2. In this chapter, the deformation of a thin plate is utilized to 
interpolate the two-dimensional distribution 1

SW . The deformation 1
Sw  is given, and the force 

of point load P is unknown and is obtained inversely from the deformation of the fictitious 
thin plate, as shown in Fig. 3. The term 2

SW  corresponds to the moment of the beam.  
 

 
Fig. 2. Interpolation using thin beam with unknown point load. 
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(a) Given internal points and boundary 

 

 
(b) Obtained shape 1

SW                        (c) Sum of curvatures 2
SW  

Fig. 3. Interpolation using fictitious thin plate with unknown point load. 

The moment 2
SW  on the boundary is assumed to be 0, the same as in the case of the natural 

spline. This means that the thin plate is simply supported. In this method, the distribution of 
heat generation is assumed to be that for a freeform surface (Ochiai, 1995c). Equations (9) 
and (10) are similar to the equation used to generate a freeform surface using integral 
equations.  

2.3 Representation of heat generation by integral equations  
The distribution of heat generation is represented by an integral equation. The following 
harmonic function 1( , )T p q  and biharmonic function 2( , )T p q  are used for interpolation 
(Ochiai, 1999-2003). 

 1
1 1( , ) [ln( ) ]

2
T p q B

r
   (13) 

 
2

2
1( , ) [ln( ) 1]

8
rT p q B

r
    (14) 

B  is an arbitrary constant. 1( , )T p q  and 2( , )T p q  have the relationship 

 2
2 1( , ) ( , )T p q T p q  . (15) 
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(a) Given internal points and boundary 

 

 
(b) Obtained shape 1

SW                        (c) Sum of curvatures 2
SW  

Fig. 3. Interpolation using fictitious thin plate with unknown point load. 

The moment 2
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spline. This means that the thin plate is simply supported. In this method, the distribution of 
heat generation is assumed to be that for a freeform surface (Ochiai, 1995c). Equations (9) 
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Let the number of 3
PW  be M. The heat generation 1

SW  is given by Green’s theorem and Eqs. 
(9), (10) and (15) as  
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where 0.5c   on the smooth boundary and 1c   in the domain. Moreover, 2
SW  in Eq. (10) 

is similarly given by  
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n n
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m m
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T P q W q


 . (17) 

The integral equations (16) and (17) are used to interpolate the distribution. The thin plate 
spline F(p, q) used to make a freeform surface is defined as (Dyn, 1987, Micchelli, 1986) 

 F(p,q)=r2 ln(r). (18) 

Equations (14) and (18) include the same type of function. Assuming 1 ( ) 0SW Q  , the values 

of 3
PW  and /S

fW n  are obtained using Eqs. (16) and (17).  

2.4 Polyharmonic functions 
The polyharmonic function ( , )fT p q  is defined by 

 2
1f fT T  . (19) 

Therefore, ( , )fT p q  for the Kth dimensional case can be obtained using the next equation  

 1
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   . (20) 

From Eq. (20), ( , )fT p q  for the two-dimensional case can be obtained using the next equation 

 1
1[ ]f fT rT dr dr
r    .  (21) 

The function ( , )fT p q  and its normal derivative for the two-dimensional case are explicitly 

expressed as 
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where (2 1)!! (2 1)(2 3)(2 5)....1f f f f     ，and sgn() is the sign function.  
For the one-dimensional case,  
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For the three-dimensional case, 
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Equations (16) and (17) are similar to the equation used to generate a freeform surface using 
integral equations (Ochiai, 1995c). 
Using Green’s theorem three times and Eqs. (9), (10) and (19), Eq. (2) becomes 
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Let the number of 3
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where 0.5c   on the smooth boundary and 1c   in the domain. Moreover, 2
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2.5 Interpolation for 3D case     
In the three-dimensional case, the following equations are used for smooth interpolation:  

 2
1 2( ) ( )S SW q W q   , (29) 

 2
2 3

1
( ) ( )

M
S P

A m
m

W q W q


   , (30) 

where the function 3
P
AW   expresses the state of a uniformly distributed polyharmonic 

function in a spherical region with radius A. Figure 4 shows the shape of the polyharmonic 
functions; the biharmonic function T2 is not smooth at 0r  . In the three-dimensional case, 
smooth interpolation cannot be obtained solely by using the biharmonic function T2 . To 
obtain smooth interpolation, a polyharmonic function with volume distribution T2A is 
introduced. The function fAT  shown in Fig. 5 is defined as (Ochiai, 2005) 

 
 

 
 

Fig. 4. Polyharmonic functions (Tf, TfA) 

 
2 2

0 0 0
( , ) [ { ( , ) sin } ]

A
fA fT p q T p q a d d da

 
      , (31) 

where A  is a spherical region with radius A, and S is the surface of a spherical shell with 
radius a. The function TfA can be easily obtained using the relationships 

2 2 2 2 cosr R a aR     and sindr aR d   as shown in Fig. 5. Therefore,  

 sin rd dr
aR
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This function is written using r instead of R, similarly to Eqs. (26) and (27), although the 
function obtained from Eq. (31) is a function of R. The newly defined function fAT  can be 

explicitly written as  
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In Fig. 5, A=1. The newly defined functions fAT  used in the chapter can be explicitly written 

as 
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The heat generation 1
SW  is given by Green’s theorem and Eqs. (29)-(31) as  
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Moreover, 2
SW  in Eq. (30) is similarly given by  
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Equations (41) and (42) are similar to the equation used to generate the freeform surface 
using integral equations. Using Green’s theorem three times and Eqs. (29), (30) and (15), Eq. 
(2) becomes 
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2.5 Interpolation for 3D case     
In the three-dimensional case, the following equations are used for smooth interpolation:  
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where the function 3
P
AW   expresses the state of a uniformly distributed polyharmonic 

function in a spherical region with radius A. Figure 4 shows the shape of the polyharmonic 
functions; the biharmonic function T2 is not smooth at 0r  . In the three-dimensional case, 
smooth interpolation cannot be obtained solely by using the biharmonic function T2 . To 
obtain smooth interpolation, a polyharmonic function with volume distribution T2A is 
introduced. The function fAT  shown in Fig. 5 is defined as (Ochiai, 2005) 

 
 

 
 

Fig. 4. Polyharmonic functions (Tf, TfA) 
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where A  is a spherical region with radius A, and S is the surface of a spherical shell with 
radius a. The function TfA can be easily obtained using the relationships 

2 2 2 2 cosr R a aR     and sindr aR d   as shown in Fig. 5. Therefore,  
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This function is written using r instead of R, similarly to Eqs. (26) and (27), although the 
function obtained from Eq. (31) is a function of R. The newly defined function fAT  can be 

explicitly written as  
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In Fig. 5, A=1. The newly defined functions fAT  used in the chapter can be explicitly written 
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The heat generation 1
SW  is given by Green’s theorem and Eqs. (29)-(31) as  
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Equations (41) and (42) are similar to the equation used to generate the freeform surface 
using integral equations. Using Green’s theorem three times and Eqs. (29), (30) and (15), Eq. 
(2) becomes 
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Fig. 5. Notations in three-dimensional problem 

1
1

( ) ( , )( ) { ( , ) ( )} ( )T Q T P QcT P T P Q T Q d Q
n n

 
  

   

 
2

1
1

1

( )
( 1) { ( , )

S
ff

f
f

W Q
T P Q

n






 

 
1( , )

( )} ( )f S
f

T P Q
W Q d Q

n


 


1
3 3

1
( , ) ( )

M
P

A m A m
m

T P q W q



   (43) 

In the same manner, a polyharmonic function with surface distribution fBT  is defined as 

(Ochiai, 2009) 
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The newly defined function fBT  can be explicitly written as 

 
2 1 2 1{( ) ( ) }( , )

2(2 1)!

f f

fB
A r A r AT p q

f r

   



r A  ,  (45) 

  
2 1 2 1{( ) ( ) }( , )

2(2 1)!

f f

fB
A A r A rT p q

f r

   



r A .   (46) 

Additionally, the temperature gradient is given by differentiating Equation (28), and 
expressed as: 
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The function ( , ) /f iT p q x   and its normal derivative for the two-dimensional case are 

explicitly expressed as 
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2.6 Basic equations for unsteady heat conduction  
In unsteady heat conduction problems with heat generation 1 ( , )SW q t , the temperature T is 
obtained by solving  

 2 11
SW TT

t



 

  


 ,  (50) 

where κ and t are the thermal diffusivity and time, respectively. Denoting an arbitrary time 
and the pseudo-initial temperature by   and 0( ,0)T q , respectively, the boundary integral 
equation for the temperature in the case of unsteady heat conduction is expressed as 
(Wrobel, 2002) 
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   , (51) 

where c=0.5 on the smooth boundary and c=1 in the domain. The notations Γ and Ω 
represent the boundary and domain, respectively. The notations p and q become P and Q on 
the boundary. In the case of K-dimensional problems, the time-dependent fundamental 
solution *

1 ( , , , )T p q t   in Eq. (51) used for the unsteady temperature analyses and its normal 
derivative are given by  
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represent the boundary and domain, respectively. The notations p and q become P and Q on 
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where 
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Here, r is the distance between the observation point p and the loading point q. As shown in 
Eq. (51), when an arbitrary pseudo-initial temperature distribution 0( ,0)T q  exists in the 
domain, a domain integral is necessary. Therefore, the triple-reciprocity BEM (Ochiai, 2001) 
is used to avoid internal cells.  
This study reveals that the problem of unsteady heat conduction with many time steps can 
be solved effectively by the triple-reciprocity BEM. Two different numerical procedures can 
be employed for the numerical solution of Eq. (51). One method requires internal cells. At 
the end of each time step, the temperature at a sufficient number of internal points must be 
computed for use as the initial temperature in the next time step. The other method uses the 
history of boundary values, making internal cells unnecessary, if the initial temperature can 
be assumed to be 0. However, the CPU time required for calculation increases rapidly with 
increasing number of time steps. In the presented method, the temperature distributions in 
some time steps are assumed to be pseudo-initial and are interpolated using integral 
equations and internal points. 

2.7 Interpolation of time-dependent value     
Heat generation 1 ( , )SW q t  is assumed to vary within each time step in accordance with the 
time interpolation function such that 

 S SW q t 1 1( , ) W ψ  , (55) 

where ψ  is the time interpolation function. Let us now assume a linear variation of 

1 ( , )SW q t , 
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where 1f f ft t t    . 

The following equations can be used to obtain time-dependent values of heat 
generation 1 ( , )fW q t : 
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An interpolation method for the pseudo-initial temperature distribution using the boundary 
integral equations that avoids the use of internal cells is next shown. The pseudo-initial 
temperature 0( ,0)T q  in Eq. (51) is represented as 0 ( ,0)ST q .  
The following equations can be used for the two-dimensional interpolation (Ochiai, 2001):  

 2 0 0
1 2( ,0) ( ,0)S ST q T q   , (59) 
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2 3

1
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M
S P

m
m

T q T q


   . (60) 

The term 0
2
ST  in Eq. (59) corresponds to the sum of the curvatures 2 0 2

1 /ST x   and 
2 0 2

1 /ST y  . The term ST 0
2  is the unknown strength of a Dirac-type function. From Eqs. (59) 

and (60), the following equation can be obtained.  
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M
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     (61) 

In this study, the deformation of an imaginary thin plate is utilized to interpolate the two-
dimensional distribution 0

1
ST . The deformation 0

1
ST  is given, but the force of the point load 

0
3

PT  is unknown. 0
3

PT  is obtained inversely from the deformation 0
1

ST  of the fictitious thin 

plate, as shown in Fig. 3. 0
2
ST  corresponds to the moment of the thin plate. The moment 

ST 0
2  on the boundary is assumed to be 0, which is the same as that in the natural spline. 

This indicates that the fictitious thin plate is simply supported.  
Using Green’s second identity and Eqs. (59), (60) and (15), we obtain (Ochiai, 2001)  
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where M is the number of 0
3

PT . Moreover, 0
2

ST  in Eq. (60) is similarly given by  
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The integral equations (62) and (63) are used to interpolate the pseudo-initial temperature 

distribution 0
1

ST . On the other hand, the polyharmonic function *( , , , )fT p q t   in the unsteady 

heat conduction problem is defined by  



 
Heat Conduction – Basic Research 

 

336 

 
*

1
2 /2 1

( , , , ) exp( )
8 ( )K

T p q t r r a
n nt


  

  
 

 
,  (53) 

where 

 
2

4 ( )
ra
t 




.  (54) 

Here, r is the distance between the observation point p and the loading point q. As shown in 
Eq. (51), when an arbitrary pseudo-initial temperature distribution 0( ,0)T q  exists in the 
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be employed for the numerical solution of Eq. (51). One method requires internal cells. At 
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history of boundary values, making internal cells unnecessary, if the initial temperature can 
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some time steps are assumed to be pseudo-initial and are interpolated using integral 
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where M is the number of 0
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The integral equations (62) and (63) are used to interpolate the pseudo-initial temperature 

distribution 0
1

ST . On the other hand, the polyharmonic function *( , , , )fT p q t   in the unsteady 

heat conduction problem is defined by  
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Using Green’s theorem twice and Eqs. (54)- (57) and (61), Eq. (51) becomes  

0
3

PT * *
1

1( , , , ) ( , , , )f fT p q t rT p q t dr dr
r

        

2
*

10
1

( , )
( 1) [ ( , , , )

S
t ff

f
f

W Q
T P Q t

n
 

 



 

  
*

1( , , , )
( , )]f S

f
T P Q t

W Q d d
n


 

 


 

*
3( ) 30

1
( , ) ( , , , )

M t P A
m

m
W q T P q t d   

 
  

02
*

1
1

( ,0)
( 1) [ ( , , ,0)

S
ff

f
f

T Q
T P Q t

n



 

   

 
*

1 0( , , ,0)
( ,0)]f S

f
T P Q t

T Q d
n


 


0 *
3 3

1
( ,0) ( , , ,0)

M
P

m m
m

T q T P q t


 . (65) 

Therefore, it is clear that temperature analysis without the use of a domain integral is 
possible, provided that the initial temperature 0

1T  is interpolated using Eqs. (62) and (63). In 

practice, 0
1

ST  and 2 /ST n   are obtained using results from the previous time step; however, 
0
2

ST , 2 /ST n   and 0
3

PT  in Eq. (65) are not obtained in this way. 

2.8 Polyharmonic function for unsteady state   
The two-dimensional polyharmonic function *( , , , )fT p q t   in Eq. (65) is determined as  
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       .  (66) 

*( , , , )fT p q t   in the unsteady state and its normal derivative are concretely given by  
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where E１( ) is the exponential integral function and C is Euler’s constant. 

 
Meshless Heat Conduction Analysis by Triple-Reciprocity Boundary Element Method 

 

339 

Numerical solutions are obtained using the interpolation functions for time and space. If a 
constant time interpolation and time step 1( )k kt t   are used, the time integral can be 

treated analytically. The time integrals for *( , , , )fT p q t   are given as follows: 
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where 
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Assuming that functions ( , )T Q   and ( , )T Q n   remain constant over time in each time 
step, Eq. (65) can be written in matrix form. Replacing ( , )T Q   and ( , )T Q n   with vectors 
Tｆ and Qｆ, respectively, and discretizing Eq. (65), we obtain (Brebbia ,1984)   
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where B0 represents the effect of the pseudo-initial temperature. Adopting a constant time 
step throughout the analysis, the coefficients of the matrix at several time steps need to be 
computed and stored only once. 
If there is heat generation, the following time integrals are used (Ochiai, 2001).  
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Using Green’s theorem twice and Eqs. (54)- (57) and (61), Eq. (51) becomes  
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Therefore, it is clear that temperature analysis without the use of a domain integral is 
possible, provided that the initial temperature 0

1T  is interpolated using Eqs. (62) and (63). In 

practice, 0
1

ST  and 2 /ST n   are obtained using results from the previous time step; however, 
0
2

ST , 2 /ST n   and 0
3

PT  in Eq. (65) are not obtained in this way. 

2.8 Polyharmonic function for unsteady state   
The two-dimensional polyharmonic function *( , , , )fT p q t   in Eq. (65) is determined as  
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*( , , , )fT p q t   in the unsteady state and its normal derivative are concretely given by  
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where E１( ) is the exponential integral function and C is Euler’s constant. 
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Numerical solutions are obtained using the interpolation functions for time and space. If a 
constant time interpolation and time step 1( )k kt t   are used, the time integral can be 

treated analytically. The time integrals for *( , , , )fT p q t   are given as follows: 
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Assuming that functions ( , )T Q   and ( , )T Q n   remain constant over time in each time 
step, Eq. (65) can be written in matrix form. Replacing ( , )T Q   and ( , )T Q n   with vectors 
Tｆ and Qｆ, respectively, and discretizing Eq. (65), we obtain (Brebbia ,1984)   
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where B0 represents the effect of the pseudo-initial temperature. Adopting a constant time 
step throughout the analysis, the coefficients of the matrix at several time steps need to be 
computed and stored only once. 
If there is heat generation, the following time integrals are used (Ochiai, 2001).  
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Additionally, the temperature gradient is given by differentiating Equation (65), and 
expressed as: 
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The derivative of the polyharmonic function *( , , , )fT P q t   and the normal derivative with 

respect to ix  in Eq.(79) are explicitly given by  
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where ii xrr  /, . The time integrals for * /f iT x  and 2 *( , , , ) /f iT P q t x n    in Eq. (79) are 
given as follows: 
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3. Numerical examples 
To verify the accuracy of the present method, unsteady heat conduction in a circular region 
with radius a, as shown in Fig. 6, is treated with a boundary temperature given by  

 [1 cos( )]HT T t  . (92) 

We assume an initial temperature T０=0 C , and R denotes the distance from the center of 
the circular region. A two-dimensional state, in which there is no heat flow in the direction 
perpendicular to the plane of the domain, is assumed. Figure 6 also shows the internal 
points used for interpolation. A thermal diffusivity of   16 mm２/s and a radius of a=10 
mm are assumed. HT =10 C  in Eq. (92) and a frequency of / 2   rad/s are also 
assumed. The BEM results at R=0 and R=8 mm and the exact values are compared in Fig. 7. 
The exact solution for the temperature distribution is given by (Carslaw, 1938) 
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Additionally, the temperature gradient is given by differentiating Equation (65), and 
expressed as: 
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The derivative of the polyharmonic function *( , , , )fT P q t   and the normal derivative with 
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3. Numerical examples 
To verify the accuracy of the present method, unsteady heat conduction in a circular region 
with radius a, as shown in Fig. 6, is treated with a boundary temperature given by  

 [1 cos( )]HT T t  . (92) 

We assume an initial temperature T０=0 C , and R denotes the distance from the center of 
the circular region. A two-dimensional state, in which there is no heat flow in the direction 
perpendicular to the plane of the domain, is assumed. Figure 6 also shows the internal 
points used for interpolation. A thermal diffusivity of   16 mm２/s and a radius of a=10 
mm are assumed. HT =10 C  in Eq. (92) and a frequency of / 2   rad/s are also 
assumed. The BEM results at R=0 and R=8 mm and the exact values are compared in Fig. 7. 
The exact solution for the temperature distribution is given by (Carslaw, 1938) 
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Fig. 6. Circular region with temperature change at the boundary. 
 

 
Fig. 7. Temperature history in circular region. 
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where ber( ) and bei( ) are Kelvin functions, and s  ( s=1, 2, ...) are the roots of 0( ) 0J a  . 
Constant elements are used for boundary and time interpolation.  
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Appendix A (3D) 

The higher-order functions for 3D unsteady heat conduction are 
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where (, )  is an incomplete gamma function of the first kind (Abramowitz, 1970) and 
, /i ir r x   . Using Eqs. (44) and (A-3), the polyharmonic function with a surface 

distribution is obtained as follows: 
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The time integral of Eq. (62) can be obtained as follows: 
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Fig. 6. Circular region with temperature change at the boundary. 
 

 
Fig. 7. Temperature history in circular region. 
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where ber( ) and bei( ) are Kelvin functions, and s  ( s=1, 2, ...) are the roots of 0( ) 0J a  . 
Constant elements are used for boundary and time interpolation.  

 
Meshless Heat Conduction Analysis by Triple-Reciprocity Boundary Element Method 

 

343 

Appendix A (3D) 

The higher-order functions for 3D unsteady heat conduction are 

  *
2 , , ,T p q t  1/2

3/2
1 { (1.5, ) [1 exp( )]}

2
a a a

r



     3/2

1 (0.5, )
2

a
r





  (A-1) 

  *
2

3/2 2
, , , 1 (1.5, )

2
T p q t ra

n nr





 


 
 (A-2) 

)]}exp(1[31),5.1(3),5.2(3),2(6),5.1(3{
12

2/12/112/1
2/3

*
3 aa

a
aaaaaaarT   



                )]}exp(1[21),5.1(2),5.0({
4

2/1
2/3 aa

a
aar

 


                           (A-3) 

  .
n
ra

a
a

n
T








)],5.1(1),5.0([
4

1
2/3

*
3 


. (A-4) 
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and (, )  is an incomplete gamma function of the second kind (Abramowitz, 1970). The time 
integral of Eq. (A-5) can be obtained as follows: 
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For the sake of conciseness, the terms involving 2u  in Eq. (A-5) are omitted. The derivative 
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The time integrals of Eqs. (A-18), (A-20) and (A-22) can be obtained as follows: 
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and (, )  is an incomplete gamma function of the second kind (Abramowitz, 1970). The time 
integral of Eq. (A-5) can be obtained as follows: 
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Appendix B (1D) 

The functions for 1D unsteady heat conduction are 
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where (, )  is an incomplete gamma function of the first kind (Abramowitz, 1970). The time 
integral of Eqs. (49) and (B-1)-(B-4) can be obtained as follows: 
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Appendix C (Linear time interpolation) 

The time integrals of Eq. (62) using linear time interpolation in the two-dimensional case can 
be obtained as follows: 
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where (, )  is an incomplete gamma function of the first kind (Abramowitz, 1970). The time 
integral of Eqs. (49) and (B-1)-(B-4) can be obtained as follows: 
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