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This book focuses on the applications of robust and adaptive control approaches  
to practical systems. 

The proposed control systems hold two important features: 

(1) The system is robust with the variation in plant parameters and disturbances

(2) The system adapts to parametric uncertainties even in the unknown plant structure 
by self-training and self-estimating the unknown factors.

The various kinds of robust adaptive controls represented in this book are composed of 
sliding mode control, model-reference adaptive control, gain-scheduling, H-infinity, 
model-predictive control, fuzzy logic, neural networks, machine learning, and so on. 
The control objects are very abundant, from cranes, aircrafts, and wind turbines to 

automobile, medical and sport machines, combustion engines, and electrical machines.
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Preface

We would like to introduce to the readers a monograph related to robust adaptive control and
its application. The book presents the recent studies on applications of robust and adaptive
control approaches to practical systems. Being a generalized concept, robust adaptive con‐
trol indicates the control techniques that make the systems stable, work well, and robust de‐
spite the actions of uncertainties and disturbances. In addition, the controlled systems tend
to the adaptive features, in which the systems show the ability in self-changing and self-ad‐
justing the control structures to adapt to the influences of uncertainties. Robust control re‐
quires the information of all plant parameters, and these parameters must lie in the
deterministic boundaries. Meanwhile, adaptive control does not need to know many system
parameters even the system structure because the adaption mechanisms are integrated for
dealing with parametric uncertainties, parameter estimation, and structural approximation.
Robust control simply keeps the consistence of system responses, while adaptive control
makes the systems to self-learn or self-train to achieve the control objectives. In this regard,
adaptive control is more superior to robust control. Otherwise, robust control holds the
strong points that adaptive control does not have. Robust control can treat well the prob‐
lems of quick varying parameters, while adaptive control is only effective in case of slow
parametric uncertainties. In addition, robust control is better for control problems with dis‐
turbances and modeling imprecision. The combination of robust control methods and adap‐
tive control techniques leads to the robust adaptive control systems having two key
advantages:

(I) Robustness: The control system is robust with the large variation in plant parameters and
disturbances.

(II) Adaptation: The control system does not need the knowledge of plant parameters even
the plant model. The adaptation behavior will automatically find the proper estimated pa‐
rameters even synthetizing the approximated model to support the controller working well.

Tending to robust adaptive control systems, the studies in this book consisting of 17 chap‐
ters are classified into four groups as follows:

(1) Advanced sliding mode control (SMC): As a key approach of robust controls, SMC has been
largely applied in designing the control systems with robust features. SMC does not require
much accuracy of plant model. It treats well the systems having widely varying parameters
and disturbances. However, chattering phenomenon of system responses is a challenge that
needs to be solved completely in conventional SMC. Chapter 1 integrates the fuzzy approach
into two robust control methods composed of SMC and H-infinity to construct two adaptive
robust controllers for reducing the vibration of vehicle seat suspension systems under the
excitation of several road profiles. Chapter 2 designs the guidance system for aircrafts based
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on SMC and simulates the two complex operation cases. Chapter 3 proposes an SMC control‐
ler for multimotor drive systems, integrates the high-gain observer, and considers the influ‐
ence of nonlinearities such as backlash, friction, and elasticity. Chapter 4 utilizes the stator
flux–oriented SMC to regulate torque and reactive power of doubly fed induction generator.

(2) Model reference adaptive control (MRAC): Dissimilar to SMC whereas the control structure
is fixed, MRAC systems tend to adaptation behavior in terms of parametric uncertainties by
self-varying the control structures. In fact, the control structures are parameterized with re‐
spect to varying plant parameters, and the adaptation mechanisms are constituted to ap‐
proximate these uncertainties. Chapter 5 develops a MRAC-based robust tracking system
and an autopilot for quadrotors considering the parametric uncertainties composed of trans‐
lational mass and inertial mass with the presence of wind disturbances. Chapter 6 applies
MRAC to construct an attitude control system for unmanned quadcopters when faced with
unknown plant parameters, the action of disturbances, and the influence of nonlinearities in
actuators. Chapter 7 designs the control algorithms for DC motors on the basis of compound
MRAC, whereas the system robustness is investigated by using simulation. Chapter 8 en‐
hances MRAC for quadrotor unmanned aerial vehicles with the foundation of neural net‐
works and machine learning. On the basis of improved MRAC, Chapter 9 analyzes and
designs an adaptive controller including SMC observers and parametric estimators for ther‐
mo-acoustic oscillations of Rijke-type systems with the presence of dynamic model uncer‐
tainty and unknown disturbances.

(3) The other robust adaptive control approaches: In this part, the other adaptive techniques such
as gain-scheduling and fuzzy logic together with robust controls such as H-infinity are unti‐
tled for analyzing and designing the control systems. Chapter 10 synthesizes the robust
adaptive controllers for a class of mechanical linear systems with adjustable time-varying
parameters taking uncertainties and perturbation into account. Chapter 11 provides two
kinds of adaptive robust control strategies for wind turbines using fuzzy logic, data-driven,
and model-based approaches fully considering the stochastic disturbances and load uncer‐
tainties. Using model predictive control together with MRAC, Chapter 12 develops the proc‐
ess control system for biomass fuel cocombustion. Chapter 13 improves an adaptive
embedded control system for measuring yield strength of plate-formed materials, in which a
cerebellar model articulation controller (CMAC) is integrated in feedforward loop, and a
proportional-derivative structure is equipped on feedback loop for training CMAC. With
high applicability in medical practice and sport science, Chapter 14 proposes an adaptive
control system for regulating the heart rate during treadmill exercises.

(4) Control of overhead cranes—the underactuated systems: We usually face with underactuated
systems in control engineering practice. Overhead crane is an underactuated system, where‐
as the number of actuators is lesser than that of outputs. For 2D motion, only two actuators
composed of trolley-moving motors and cargo-hosting motors are utilized for controlling
three outputs. For 3D motion, three motors are applied for driving five outputs composed of
trolley motion, bridge motion, cargo hoisting displacement, and two cargo swing angles.
Control of such a system is harder than full-actuator systems and meets many challenges.
This part introduces the robust and adaptive control techniques applied for overhead cranes
and the symbolic underactuated mechanical systems. Chapter 15 proposes a robust nonlin‐
ear controller integrating state observer by using Lyapunov-based design, in which controll‐
ability and observability are also investigated. Chapter 16 constitutes a distributed mass
model of overhead crane with flexible handling cable and proposes two nonlinear control‐

XIV Preface

lers on the basis of Lyapunov candidate and its barrier version. Finally, Chapter 17 uses the
input-to-state stable method together with Lyapunov stability for constructing the robust
control algorithms. The robustness of crane system when facing with parametric uncertain‐
ties and disturbances is also analyzed and investigated.

This book is formed by the recent studies of many authors around the world. As an editor, I
would like to thank all the authors for their excellent contributions to the book. I am also
sincerely grateful to Mr. Slobodan at IntechOpen who helped me to manage the editorial
process positively and effectively. Hopefully, the readers will find many useful information
and professional knowledge in this book.

Le Anh Tuan
Associate Professor at Automotive Engineering Department

Vietnam Maritime University, Haiphong, Vietnam
Research Professor at Center of Wind Energy System

Kunsan National University, Gunsan, South Korea

Preface XI
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Chapter 1
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Provisional chapter

Robust Adaptive Controls of a Vehicle Seat
Suspension System

Do Xuan Phu, Ta Duc Huy and

Seung Bok Choi

Additional information is available at the end of the chapter

Abstract

This work proposes two novel adaptive fuzzy controllers and applies them to vibration
control of a vehicle seat suspension system subjected to severe road profiles. The first
adaptive controller is designed by considering prescribed performance of the sliding
surface and combined with adaptation laws so that robust stability is guaranteed in the
presence of external disturbances. As for the second adaptive controller, both the H-
infinity controller and sliding mode controller are combined using inversely fuzzified
values of the fuzzy model. In order to evaluate control performances of the proposed
two adaptive controllers, a semi-active vehicle suspension system installed with a
magneto-rheological (MR) damper is adopted. After determining control gains, two
controllers are applied to the system and vibration control performances such as dis-
placement at the driver’s position are evaluated and presented in time domain. In this
work, to demonstrate the control robustness two severe road profiles of regular bump
and random step wave are imposed as external disturbances. It is shown that both
adaptive controllers can enhance ride comfort of the driver by reducing the displace-
ment and acceleration at the seat position. This excellent performance is achieved from
each benefit of each adaptive controller; accurate tracking performance of the first
controller and fast convergence time of the second controller.

Keywords: adaptive fuzzy control, sliding mode control, H-infinity control,
prescribed performance of the sliding surface, vibration control, seat
suspension system

1. Introduction

Nowadays, modern control-based technical devices such as robotics, assistive machines and
home appliances are popularly used to improve the level of human being’s life. In these devices,
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distribution, and eproduction in any medium, provided the original work is properly cited.
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control algorithm is one of the most important components which brings comfortable require-
ments to the consumer. The development of control algorithms in recent years is abundantly
being undertaken from the aspect of classical control to salient characteristics of intelligent
control. The classical control methods are frequently combined with modern control technique
to resolve parameter uncertainties and disturbances those are existed in most of control devices.
A controller which is formulated using more than two different control schemes is called “a
hybrid controller” or “composite controller” [1, 2]. Among many candidates of the hybrid
controller, the type of hybrid adaptive controller is the most popular since its structure is
relatively simple and its control performance is very robust against the uncertainties or/and
external disturbances. A hybrid adaptive control with fuzzy model and wavelet neural networks
was presented in [1, 3] in which the sliding mode control was used to connect the parameters of
the fuzzy model and the neural networks. This method is the typical model to develop the
adaptive control in the last few years. Besides of uncertain nonlinear system, the problem of
unknown input nonlinearity such as dead-zone or backlash-like hysteresis was also studied
through the hybrid adaptive control [4]. It has been also shown that the neural works can be
designed for a good performance of the hybrid adaptive control to deal with the uncertain
system [5]. A hybrid adaptive controller possessing the robustness against input and parameter
uncertainties was studied using the sliding mode controller associated with the fuzzy model [6,
7]. When a hybrid adaptive controller is formulated, in general the adaptation laws are simulta-
neously calculated. Furthermore, the back-stepping method was integrated with the fuzzy mode
to achieve high performance of the hybrid adaptive controller [8].

As mentioned earlier, both the fuzzy model and the neural networks model are frequently
used for the formulation of high performance of a hybrid adaptive controller [9]. Recently, a
modified type of the fuzzy model called interval type 2 was combined with the back-stepping
method to design of a hybrid adaptive control [10, 11]. It is remarked that the fixed fuzzy
model always provides a safe choice in design of a hybrid adaptive control. However, this
choice may cause a large error in finding the final values. To resolve this problem, an adaptive
interval type 2 fuzzy neural network was developed on the basis of the online technique which
can strengthen the flexibility of design parameters against the uncertainties [12]. Besides the
above, there are many approaches to formulate new hybrid adaptive controllers such as
output feedback control approach to take account for unknown hysteresis [13]. From the
aspect of experimental implementation of hybrid adaptive controllers, several dynamic sys-
tems featuring magneto-rheological (MR) mount and MR damper are adopted for vibration
control [2, 14–18]. Most of hybrid adaptive controllers used in these experimental realizations
have been formulated by combining the models of interval type 2 fuzzy and interval type 2
fuzzy neural networks, and the control techniques of H-infinity control and sliding mode
control. The advantage of using the interval type 2 fuzzy model is its flexibility in which
optimized fuzzy values can be achieved unlike the classical fuzzy rule with the fixed value
[19]. In order to improve the fuzzy model, clustering method [20] and data-driven for fuzzy
rules [21] were also introduced.

As a subsequent work to develop a new hybrid adaptive controller, in this work two different
new hybrid adaptive controllers are developed and their control performances are evaluated
by investigation on vibration control of a semi-active seat suspension system installed with
MR damper. The first hybrid adaptive controller is designed by combing online interval type 2
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fuzzy neural networks model and prescribed performance of the sliding surface associated
with adaptation laws to guarantee robust stability (HAC-PP in short). The second hybrid
adaptive controller is formulated by combining inversely fuzzified value with H-infinity con-
trol to minimize computational cost algorithm (HAC-IFV in short).The stability of both adap-
tive controllers are rigorously proved based on the Lyapunov stability and appropriate control
gains are determined to evaluate vibration control performance. It is shown that both pro-
posed adaptive controllers are very effective and robust for controlling unwanted vibrations or
excitations from the road profiles. These are validated by presenting control results showing
significant reduction of both the displacement and acceleration at the seat position subjected to
external excitations.

2. Formulation of HAC-PP

As mentioned in Introduction, the online interval type 2 fuzzy neural networks (OIT2FNN in
short) model is used to formulate two adaptive controllers. The rule base of OIT2FNN can be
expressed as follows [22].
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sets. The calculation process of OIT2FNN is clearly explained in [22]. The defuzzified output is
then determined by

gf ¼
gl þ gr

2
¼ θT

l ξ
f
l þ θT

r ξ
f
r

2
(2)

In the above, θT
l ¼ wl

1 w
l
2 w

l
3…wl

n

� �
and θT

r ¼ wr
1 w

r
2 w

r
3…wr

n

� �
are the weighting vectors, which

symbolize the relation of the rule layer and type-reduction, and the weighted firing strength
vectors given by

ξfl ¼
f
1

Pn
i¼1

f
i

f
2

Pn
i¼1

f
i

f
3

Pn
i¼1

f
i

…
f
n

Pn
i¼1

f
i

2
664

3
775

T

, ξfr ¼
f 1
Pn
i¼1

f i

f 2
Pn
i¼1

f i

f 3
Pn
i¼1

f i

…
f n
Pn
i¼1

f i

2
664

3
775

T

As a problem formulation, consider a single-input and single-output (SISO) nonlinear system
governed by the following equation:

_x ¼ f xð Þ þ g xð Þu tð Þ þ d tð Þ (3)

where f(x)∈Rn and g(x)∈Rn are two unknown non-linear function vectors, u(t)∈R1 is control
function, d(t)∈Rn is an external disturbance vector, |d(t)| ≤δd where δd∈Rn is upper bound
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of d(t), x ¼ x1; x2;…; xn½ � ¼ x1; _x1;…; x1 n�1ð Þ� �T ∈Rn is the state vector of the system. The first
sliding surface ss is defined as follows:

ss ¼ k1x1 þ k2x2 þ k3x3 þ…þ knxn ¼
Xn

i¼1

kixi (4)

where, K = [kn, kn� 11, kn� 2,…, k1] is defined as the coefficients such that all of the roots of the
polynomial σn + kn� 1σ

n� 1 + kn� 2σ
n� 2 +… + k1 are in the open left-half complex plane. The

sliding surface (4) is rewritten using the state variables as follows:

xn ¼ �k1x1 � k2x2 � k3x3 �…� kn�1xn�1 þ ss (5)

A new vector ~x is defined by ~x ¼ x1 x2 x3…xn�1½ �T, and thus the system (3) is rewritten as
follows:

_~x ¼ S1~x þ ST
2 ss (6)

where,

S1 ¼

0 1 0 … 0
0 0 1 … 0
: : : … :

�k1 �k2 �k3 … �kn�1

2
6664

3
7775,S2 ¼

0
0
:

1

2
6664

3
7775

The tracking error is defined as e = x1� xd with the desired states of xd. Then the error perfor-
mance function is defined as follows [23]:

λ tð Þ ¼ λ 0ð Þ � λ∞ð Þe�lt þ λ∞ (7)

where, l > 0, 0 < |e(0)| <λ(0),λ∞ > 0,λ∞ <λ(0) then λt > 0 and λ(t) tend to λ∞ exponentially. In
order to guarantee fast convergence of tracking error, and obtain a certain convergence accu-
racy, the tracking error is set as follows:

e tð Þ ¼ λ tð ÞS ϕ
� �

(8)

In the above, the prescribed error performance function S(ϕ) found as follows:

S ϕ
� � ¼ e tð Þ

λ tð Þ (9)

The function S(ϕ) must satisfy the following conditions.

(i) S(ϕ) is smooth continuous and monotone increasing function

iið Þ � 1 < S ϕ
� �

< 1 (10)

(iii) limϕ! +∞S(ϕ) = 1 and limϕ! �∞S(ϕ) = � 1
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From the above conditions (10), the function S(ϕ) can be determined as follows:

S ϕ
� � ¼ eϕ � e�ϕ

eϕ þ e�ϕ (11)

Then using Eq. (8), the tracking error is obtained by

�λ tð Þ < λ tð ÞS ϕ
� �

< λ tð Þ⇔ � λ tð Þ < e tð Þ < λ tð Þ (12)

Hence, the tracking error can be summarized as Ξ = {e∈R : |e(t)| <λ ∀ t ≥ 0 and e(t) <λ∞

for t!∞}. On the other hand, the inverse function of (11) is expressed as:

ϕ ¼ 1
2
ln

1þ S
1� S

¼ 1
2
ln

1þ e λ=ð Þ
1� e λ=ð Þ ¼

1
2
ln

λþ e
λ� e

¼ 1
2
ln λþ eð Þ � ln λ� eð Þ½ � (13)

Hence, the derivatives of Eq. (13) are obtained as:

_ϕ ¼ 1
2

_λ þ _e
λþ e

�
_λ � _e
λ� e

" #
(14)

€ϕ ¼ M1 þM2 þM3€e (15)

where,

M1 ¼
€λ λþ eð Þ � _λ þ _e

� �2
2 λþ eð Þ2 ,M2 ¼ �

€λ λ� eð Þ � _λ � _e
� �2

2 λ� eð Þ2 ,M3 ¼ λþ e

2 λþ eð Þ2 þ
λ� e

2 λ� eð Þ2
 !

:

In order to realize ϕ! 0, the second sliding surface is defined as follows:

σs ¼ _ϕ þ csϕ (16)

where cs > 0. The derivative of Eq. (16) is obtained as:

_σs ¼ €ϕ þ cs _ϕ ¼ M1 þM2 þM3 f xð Þ þ g xð Þu tð Þ þ d tð Þ � €xdð Þ þ cs _ϕ (17)

The lumped uncertainty of system is defined as:

w ¼ M3~γ f ξf þM3~γgξguþM3d tð Þ (18)

where γf = f(x)� f∗(x), γg = g(x)� g∗(x). Using Eqs. (17) and (18), the derivative Eq. (17) is
rewritten as:

_σs ¼ M1 þM2 þM3f ∗ xð Þ þM3g∗ xð Þu tð Þ �M3€xd þ cs _ϕ þ w (19)

Based on Eq. (2), the relationship between Eq. (19) and OIT2FNN is expressed as follows:
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_σs ¼ M1 þM2 þM3θf
∗ξf þM3θg

∗ξgu�M3€xd þ cs _ϕ þ w (20)

where

θ∗
f ¼ arg minθf ∈Δθf supx∈Δx f xð Þ � f ∗ xð Þj j� �

, θ∗
g ¼ arg minθg ∈Δθg supx∈Δx g xð Þ � g∗ xð Þj j� �

, Δθf =

{θf∈Rn, kθfk ≤Θf}, Δθg = {θg∈Rn, kθgk ≤Θg}, Δx = {x∈Rn, kxk ≤Θx}

Now, an equivalent control is determined from Eq. (20) based on the assumption _σs ≈ 0:

u1 ¼ 1

M3bθgξg
�M1 �M2 �M3bθ f ξf þM3€xd � cs _ϕ
� �

(21)

The equivalent control u1 cannot control the system because it cannot compensate the error
from the fuzzy approximation. To guarantee the robustness and stability in control, a robust
control part u2 should be introduced as follows:

u2 ¼ 1

M3bθgξg
�
Xn�1

i¼1

P n�1ð Þixi � σs
β
þ 1
2
M3Γξz~xPS2ST

2P~x
TÞ

 
(22)

Then, the total control u of the system is determined as follows:

u ¼ u1 þ u2 (23)

The control u2 is the combination of two sliding surfaces ss and σs. The value Γ is the adaptive
parameter where its boundary is given by ΔΓ = {Γ∈R, kΓk ≤ΘΓ,σsΓξfz ≤ρ}, and ΘΓ is constant
boundary. The matrix P =PT ≥ 0 in which its result is a solution of Riccati-like equation given by

PS1 þ ST
1 PþQ� σsΓξzPS2ST

2 Pþ ρPS2ST
2 P ¼ 0 (24)

where, ρ ≥σsΓξz, ρ is the prescribed attenuation level, Q =QT ≥ 0, ξz is consequent membership
value of the OIT2FNN. When the value ρ =σsΓξz, the Riccati-like equation is rewritten as:

PS1 þ ST
1 PþQ ¼ 0 (25)

Now, Eq. (20) can be analyzed as follows:

_σs ¼ M1 þM2 þM3~γ f ξf þM3~γgξgu�M3€xd þ cs _ϕ þ wþ M3bθ f ξf þM3bθgξgu
h i

(26)

where ~γf ¼ θf
∗ � bθf , ~γg ¼ θg

∗ � bθg. Using Eqs. (23) and (26), Eq. (26) is rewritten by

_σs ¼ �
Xn�1

i¼1

P n�1ð Þixi � σs
β
þ 1
2
M3Γξz~xPS2ST

2P~x
T � þ M3~γf ξf þM3~γgξguþ w

h i"
(27)

Now, the stability of the proposed adaptive control system can be solidly proved with
Eqs. (21)–(23) and adaptation laws as follows:
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_~γ f ¼ �μ1M3σsξf ; _~γg ¼ �μ2M3σsξgu; _Γ ¼ �μ3M3σsξz~xPS2ST
2P~x

T (28)

In order to make a proof, in this work the following Lyapunov function candidate is proposed.

Lv ¼ 1
2
σ2s þ 1

2
~xP~xT þ 1

2μ1
~γ2

f þ
1

2μ2
~γ2

g þ
1

2μ3
Γ2 (29)

The derivative of Eq. (29) is then obtained by

_Lv ¼ σs _σs þ 1
2

_~xP~xTþ 1
2
~xP _~xTþ 1

μ1
~γf

_~γ f þ
1
μ2

~γg
_~γg þ

1
μ3

Γ _Γ (30)

Substituting Eq. (27) into Eq. (30), Eq. (30) is rewritten as follows:

_Lv ¼ M3σs~γ f ξf þ
1
μ1

~γf
_~γ

� �
þ M3σs~γgξguþ 1

μ2
~γg

_~γg

� �

þ M3Γξzσs~xPS2ST
2P~x

T þ 1
μ3

Γ _Γ � þ σsw� σ2s
β

� 1
2
ρPS2ST

2P� 1
2
~xTQ~xT

� �� (31)

It is noted that Eq. (24) is used in finding Eq. (31). Substituting Eq. (28) into Eq. (31), the
following is achieved.

_Lv ¼ � 1
2
~xTQ~xT � 1

2
σsffiffiffi
β

p � ffiffiffi
β

p
w

 !2

þ βw2

2
4

3
5� 1

2
ρPS2ST

2P ≤ � 1
2
~xTQ~xT þ βw2 (32)

Eq. (32) cannot use for conclusion of stability. Hence, it will be integrated from t = 0 to t =T, we
have:

Lv 0ð Þ � Lv Tð Þ þ β
ðT

0

w2dt ≥
1
2

ðT

0

~xQ~xTdt (33)

where, Lv 0ð Þ ¼ 1
2σ

2
s 0ð Þ þ 1

2 ~x 0ð ÞP~xT 0ð Þ þ 1
2μ1

~γ2
f 0ð Þ þ 1

2μ2
~γ2

g 0ð Þ þ 1
2μ3

Γ2 0ð Þ. The value Lv(T) is

always positive, so Eq. (33) is determined as:

Lv 0ð Þ þ β
ðT

0

w2dt ≥
1
2

ðT

0

~xQ~xTdt ≥ 0 (34)

From Eqs. (32) and (34), the stability is guaranteed.

From the boundedness of the parameters ~γ f and ~γg, the closed sets are defined as

Ξ1¼ ~γf ~γf

���
���≤ℵf

���
on
, Ξ2¼ ~γg ~γg

���
���≤ℵg

���
on
, Ξδ1¼ ~γf ~γf

���
���≤ℵf þδ1

���
on
, Ξδ2¼ ~γg ~γg

���
���≤ℵgþδ2

���
on
.

In here, ℵf, ℵg, δ1, δ2 are the choosing parameters. Hence, the adjusted adaptation laws are
redefined as follows:
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_σs ¼ M1 þM2 þM3θf
∗ξf þM3θg

∗ξgu�M3€xd þ cs _ϕ þ w (20)

where

θ∗
f ¼ arg minθf ∈Δθf supx∈Δx f xð Þ � f ∗ xð Þj j� �

, θ∗
g ¼ arg minθg ∈Δθg supx∈Δx g xð Þ � g∗ xð Þj j� �

, Δθf =

{θf∈Rn, kθfk ≤Θf}, Δθg = {θg∈Rn, kθgk ≤Θg}, Δx = {x∈Rn, kxk ≤Θx}
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u1 ¼ 1

M3bθgξg
�M1 �M2 �M3bθ f ξf þM3€xd � cs _ϕ
� �

(21)

The equivalent control u1 cannot control the system because it cannot compensate the error
from the fuzzy approximation. To guarantee the robustness and stability in control, a robust
control part u2 should be introduced as follows:

u2 ¼ 1

M3bθgξg
�
Xn�1

i¼1

P n�1ð Þixi � σs
β
þ 1
2
M3Γξz~xPS2ST

2P~x
TÞ

 
(22)

Then, the total control u of the system is determined as follows:

u ¼ u1 þ u2 (23)
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2
M3Γξz~xPS2ST

2P~x
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(27)

Now, the stability of the proposed adaptive control system can be solidly proved with
Eqs. (21)–(23) and adaptation laws as follows:
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_~γ f ¼ �μ1M3σsξf ; _~γg ¼ �μ2M3σsξgu; _Γ ¼ �μ3M3σsξz~xPS2ST
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T (28)
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2
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1

2μ2
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g þ
1

2μ3
Γ2 (29)
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_Lv ¼ M3σs~γ f ξf þ
1
μ1

~γf
_~γ

� �
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From Eqs. (32) and (34), the stability is guaranteed.
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on
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���≤ℵg

���
on
, Ξδ1¼ ~γf ~γf

���
���≤ℵf þδ1

���
on
, Ξδ2¼ ~γg ~γg

���
���≤ℵgþδ2

���
on
.

In here, ℵf, ℵg, δ1, δ2 are the choosing parameters. Hence, the adjusted adaptation laws are
redefined as follows:
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_~γ f ¼

�μ1M3σsξf if ~γf

�� �� < ℵf or ~γf

�� �� ¼ ℵf and M3σsξf ~γf ≥ 0
� �

�μ1M3σsξf þ μ1

~γ f

���
���
2
� ℵf

� �
M3σsξf ~γf

δ1 ~γf

���
���
2 if ~γf

�� �� ¼ ℵf andM3σsξf ~γf < 0

8>>>><
>>>>:

(35)

_~γg ¼

�μ2M3σsξgu if ~γg

���
��� < ℵg or ~γg

���
��� ¼ ℵg and M3σsξgu~γg ≥ 0

� �

�μ2M3σsξguþ μ2

~γg

���
���
2
� ℵg

� �
M3σsξgu~γg

δ2 ~γg

���
���
2 if ~γg

���
��� ¼ ℵg and M3σsξgu~γg < 0

8>>>>><
>>>>>:

(36)

_Γ ¼

�μ3M3σsξz~xPS2ST
2P~x

T if Γk k < ΘΓ or Γk k ¼ ΘΓ þ δ3 and M3σsξz~xPS2ST
2P~x

TΓ ≥ 0
� �

�μ3M3σsξz~xPS2ST
2P~x

T þ μ3

Γk k2 �ΘΓ

� �
M3σsξz~xPS2ST

2P~x
TΓ

δ3 Γk k2

if Γk k ¼ ΘΓ and M3σsξz~xPS2ST
2P~x

TΓ < 0

8>>>>>><
>>>>>>:

(37)

Figure 1. Control flow chart of the HAC-PP.
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In the above, δ1, δ2 and δ3 are choosing parameters related boundaries of f(x), g(x) and Γ. It is
noted here that in order to utilize the states of the system, the Luenberger observer [24] has
been used in this work. Figure 1 presents a flow chart of the HAC-PP showing the combination
of each controller and the prescribed performance.

3. Formulation of HAC-IFV

As a first step to design the controller, consider the system (3) rewritten by

_x ¼ f0 xð Þ þ g0 xð Þu tð Þ þD (38)

where, the function f0(x) and g0(x) are the functions of f(x) and g(x) which are determined as:

f xð Þ ¼ f0 xð Þ þ δf xð Þ; 0 < δf xð Þj j < δfk k∞, g xð Þ ¼ g0 xð Þ þ δg xð Þ; 0 < δg xð Þj j < δgk k∞:

f0 xð Þ ¼ x2;…; xn; f 0
� �T, g0 xð Þ ¼ 0;…; 0; g0

� �T,δf ¼ 0; 0;…; δf 0
� �T,δg ¼ 0; 0;…; δg0

� �T
:

In the above, δf and δg are two positive vectors. It is noted that D =δf +δgu(t) +d(t) denotes
the uncertain disturbance and D = [0, 0,…,D0]

T. In order to formulate the controller, the fol-
lowing assumption is made: There exists a constant gm∈ℜ+ to satisfy |g(x)| > gm. Without
loss of generality, it is assumed that the equation g(x) > gm. The error between a desired
output xd and the measured output x is e = xd� x. Hence, the error vector is defined by
E ¼ e0; e1; e2;…; en½ � ¼ e; _e; €e;…; e n�1ð Þ� �

. The sliding surface ss can be written as s(x, t) =KTE,

and its derivative is found as _s x; tð Þ ¼ KT _E ¼KT _xd�KT _x. Using this derivative function of the
sliding surface and Eq. (38), the initial control law u is determined by:

u ¼ 1
g0 xð Þ �f 0 xð Þ þ _xd þKTEþD0

� �
(39)

Assuming the disturbance of D ≈ 0, then Eq. (39) can be rewritten as:

u ¼ 1
g0 xð Þ �f 0 xð Þ þ _xd þKTE

� �
(40)

The relationship of Eq. (40) and OIT2FNN is expressed by

u ¼ 1
g00 xð Þ �f 00 xð Þ þ _xd þKTE

� �
(41)

where, f00(x) and g00(x) are the fuzzified functions of f(x) and g(x), respectively. The derivative
of E is expressed through Eqs. (40) and (41) as follows:
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Figure 1. Control flow chart of the HAC-PP.
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In the above, δ1, δ2 and δ3 are choosing parameters related boundaries of f(x), g(x) and Γ. It is
noted here that in order to utilize the states of the system, the Luenberger observer [24] has
been used in this work. Figure 1 presents a flow chart of the HAC-PP showing the combination
of each controller and the prescribed performance.

3. Formulation of HAC-IFV

As a first step to design the controller, consider the system (3) rewritten by

_x ¼ f0 xð Þ þ g0 xð Þu tð Þ þD (38)

where, the function f0(x) and g0(x) are the functions of f(x) and g(x) which are determined as:

f xð Þ ¼ f0 xð Þ þ δf xð Þ; 0 < δf xð Þj j < δfk k∞, g xð Þ ¼ g0 xð Þ þ δg xð Þ; 0 < δg xð Þj j < δgk k∞:

f0 xð Þ ¼ x2;…; xn; f 0
� �T, g0 xð Þ ¼ 0;…; 0; g0

� �T,δf ¼ 0; 0;…; δf 0
� �T,δg ¼ 0; 0;…; δg0

� �T
:

In the above, δf and δg are two positive vectors. It is noted that D =δf +δgu(t) +d(t) denotes
the uncertain disturbance and D = [0, 0,…,D0]

T. In order to formulate the controller, the fol-
lowing assumption is made: There exists a constant gm∈ℜ+ to satisfy |g(x)| > gm. Without
loss of generality, it is assumed that the equation g(x) > gm. The error between a desired
output xd and the measured output x is e = xd� x. Hence, the error vector is defined by
E ¼ e0; e1; e2;…; en½ � ¼ e; _e; €e;…; e n�1ð Þ� �

. The sliding surface ss can be written as s(x, t) =KTE,

and its derivative is found as _s x; tð Þ ¼ KT _E ¼KT _xd�KT _x. Using this derivative function of the
sliding surface and Eq. (38), the initial control law u is determined by:

u ¼ 1
g0 xð Þ �f 0 xð Þ þ _xd þKTEþD0

� �
(39)

Assuming the disturbance of D ≈ 0, then Eq. (39) can be rewritten as:

u ¼ 1
g0 xð Þ �f 0 xð Þ þ _xd þKTE

� �
(40)

The relationship of Eq. (40) and OIT2FNN is expressed by

u ¼ 1
g00 xð Þ �f 00 xð Þ þ _xd þKTE

� �
(41)

where, f00(x) and g00(x) are the fuzzified functions of f(x) and g(x), respectively. The derivative
of E is expressed through Eqs. (40) and (41) as follows:

Robust Adaptive Controls of a Vehicle Seat Suspension System
http://dx.doi.org/10.5772/intechopen.71422

11



_E ¼ _xd � _x ¼ g00 xð Þ � g0 xð Þ� �
uþ f 00 xð Þ � f 0 xð Þ� ��KTE

¼ S1Eþ S2 g00 xð Þ � g xð Þ� �
uþ f 00 xð Þ � f xð Þ� �� � (42)

Define the minimum approximation error due to fuzzy approximation as follows.

w ¼ f ∗00 xð Þ � f xð Þ� �þ g∗00 xð Þ � g xð Þ� �
u (43)

Substituting functions of f00(x), g00(x) and (43) into Eq. (42) yields the following equation.

_E ¼ S1Eþ S2 θ∗
f � θf

� �
ξf þ θ∗

g � θg

� �
ξguþ w

h i
(44)

Let γf ¼ θ∗
f � θf

� �
, γg ¼ θ∗

g � θg

� �
. From Eq. (44), the equivalence control u1 established

without the minimum approximation error w is defined as follows:

u1 ¼ 1
bγgξg

�bγf ξf
� �

(45)

where, bγf and bγg are the estimates of γf and γg, respectively. The control u1 cannot use for

control the system because of the error from the fuzzy approximation. To deal with this
problem, a new robust compensator based on the inversely fuzzified value is suggested as
follows:

u2 ¼ � 1
Γξz

ETPS2 (46)

where, Γ is a constant, and P =PT ≥ 0 is the solution of the following Riccati-like equation.

PS1 þ ST
1 PþQ� 1

Γξz
PS2ST

2 Pþ ρPS2ST
2 P ¼ 0 (47)

where, ρ ≥ 1
Γξz

, ρ is the prescribed attenuation level, Q =QT ≥ 0, ξz is consequent membership

value of the OIT2FNN. When the value ρ ¼ 1
Γξz

, the Riccati-like equation is obtain as given in

Eq. (25). It is noteworthy that Eq. (25) is objective to guarantee the stability of the system. If this
condition is obtained, the fuzzy approximation error is removed, and then the control u1 is the
main controller to retain the stability of the system. From Eqs. (45) and (46), the final fuzzy
control of the system is determined as follows:

u ¼ u1 þ u2 ¼ 1
bγgξg

�bγf ξf
� �

� 1
Γξz

ETPS2 (48)

Now, substituting Eq. (48) into (44) yields he following.
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_E ¼ S1Eþ S2 ~γf ξf þ ~γgξgu1 þ gou2 þ w
h i

(49)

where, ~γf ¼ γf � bγf , ~γg ¼ γg � bγg. Consider the Lyapunov function candidate of the system as

follows:

V ¼ 1
2
ETPEþ 1

2α1
~γ2
f þ

1
2α2

~γ2
g (50)

The derivative of Eq. (50), and then substituting Eq. (25) into the derivative, the result is
obtained as follows:

_V ¼� 1
2
ETQE� gm

Γξz
ETPS2
� �2 þ ETPS2wþ 1

α1
α1ETPS2ξf � _~γ f

� �
~γ f

þ 1
α2

α2ETPS2ξgu1 � _~γg

� �
~γg

(51)

From Eq. (51), adaptation laws are established as follows:

_~γf ¼ �α1ETPS2ξf (52)

_~γg ¼ �α2ETPS2ξgu1 (53)

Applying Eqs. (52) and (53), Eq. (51) can be written as follows:

_V ≤ � 1
2
ETQE� gm

Γξz
ETPS2
� �2 þ ETPS2w

¼ � 1
2
ETQE�

ffiffiffiffiffiffiffiffi
gm
Γξz

r
ETPS2 � wm

2ρ

� �2

þ 1
4ρ

wm
2 ≤ � 1

2
ETQEþ 1

4ρ
wm

2
(54)

where, wm ¼ wffiffiffiffigmp .

Now, the integration of (54) from t = 0 to t =T yields the following equation.

V 0ð Þ � V Tð Þ þ 1
4ρ

ðT

0

wm
2dt ≥

1
2

ðT

0

ETQEdt (55)

The value of V(T) ≥ 0, and thus Eq. (55) is rewritten as follows:

V 0ð Þ þ 1
4ρ

ðT

0

wm
2dt ≥

1
2

ðT

0

ETQEdt (56)

where, V 0ð Þ ¼ 1
2E

T 0ð ÞPE 0ð Þ þ 1
2α1

~γ2
f 0ð Þ þ 1

2α2
~γ2
g 0ð Þ. Hence the H-infinity tracking performance

is achieved. From the boundedness of the parameters, ~γf and ~γg are guaranteed by closed sets
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_E ¼ _xd � _x ¼ g00 xð Þ � g0 xð Þ� �
uþ f 00 xð Þ � f 0 xð Þ� ��KTE

¼ S1Eþ S2 g00 xð Þ � g xð Þ� �
uþ f 00 xð Þ � f xð Þ� �� � (42)

Define the minimum approximation error due to fuzzy approximation as follows.
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u (43)

Substituting functions of f00(x), g00(x) and (43) into Eq. (42) yields the following equation.

_E ¼ S1Eþ S2 θ∗
f � θf
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ξf þ θ∗

g � θg
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ξguþ w

h i
(44)

Let γf ¼ θ∗
f � θf

� �
, γg ¼ θ∗

g � θg

� �
. From Eq. (44), the equivalence control u1 established

without the minimum approximation error w is defined as follows:

u1 ¼ 1
bγgξg

�bγf ξf
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(45)

where, bγf and bγg are the estimates of γf and γg, respectively. The control u1 cannot use for

control the system because of the error from the fuzzy approximation. To deal with this
problem, a new robust compensator based on the inversely fuzzified value is suggested as
follows:

u2 ¼ � 1
Γξz

ETPS2 (46)

where, Γ is a constant, and P =PT ≥ 0 is the solution of the following Riccati-like equation.

PS1 þ ST
1 PþQ� 1

Γξz
PS2ST

2 Pþ ρPS2ST
2 P ¼ 0 (47)

where, ρ ≥ 1
Γξz

, ρ is the prescribed attenuation level, Q =QT ≥ 0, ξz is consequent membership

value of the OIT2FNN. When the value ρ ¼ 1
Γξz

, the Riccati-like equation is obtain as given in

Eq. (25). It is noteworthy that Eq. (25) is objective to guarantee the stability of the system. If this
condition is obtained, the fuzzy approximation error is removed, and then the control u1 is the
main controller to retain the stability of the system. From Eqs. (45) and (46), the final fuzzy
control of the system is determined as follows:

u ¼ u1 þ u2 ¼ 1
bγgξg

�bγf ξf
� �

� 1
Γξz

ETPS2 (48)

Now, substituting Eq. (48) into (44) yields he following.
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_E ¼ S1Eþ S2 ~γf ξf þ ~γgξgu1 þ gou2 þ w
h i

(49)

where, ~γf ¼ γf � bγf , ~γg ¼ γg � bγg. Consider the Lyapunov function candidate of the system as

follows:

V ¼ 1
2
ETPEþ 1

2α1
~γ2
f þ

1
2α2

~γ2
g (50)

The derivative of Eq. (50), and then substituting Eq. (25) into the derivative, the result is
obtained as follows:

_V ¼� 1
2
ETQE� gm

Γξz
ETPS2
� �2 þ ETPS2wþ 1

α1
α1ETPS2ξf � _~γ f

� �
~γ f

þ 1
α2

α2ETPS2ξgu1 � _~γg

� �
~γg

(51)

From Eq. (51), adaptation laws are established as follows:

_~γf ¼ �α1ETPS2ξf (52)

_~γg ¼ �α2ETPS2ξgu1 (53)

Applying Eqs. (52) and (53), Eq. (51) can be written as follows:

_V ≤ � 1
2
ETQE� gm

Γξz
ETPS2
� �2 þ ETPS2w

¼ � 1
2
ETQE�

ffiffiffiffiffiffiffiffi
gm
Γξz

r
ETPS2 � wm

2ρ

� �2

þ 1
4ρ

wm
2 ≤ � 1

2
ETQEþ 1

4ρ
wm

2
(54)

where, wm ¼ wffiffiffiffigmp .

Now, the integration of (54) from t = 0 to t =T yields the following equation.
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ETQEdt (55)

The value of V(T) ≥ 0, and thus Eq. (55) is rewritten as follows:
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ETQEdt (56)

where, V 0ð Þ ¼ 1
2E
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2α2
~γ2
g 0ð Þ. Hence the H-infinity tracking performance

is achieved. From the boundedness of the parameters, ~γf and ~γg are guaranteed by closed sets
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Figure 2 presents a flow chart of the HAC-IFV showing the combination process of each
controller with the adaptation laws.

Figure 2. Control flow chart of the HAC-IFV.
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4. Application to seat suspension system

4.1. Control results of the HAC-PP

In order to implement two adaptive controllers, principal parameters of the seat suspension
and MR damper as shown in Figure 3 are given in [25]. And two different road profiles of
random step wave road and regular bump road are adopted to emulate severe external
disturbances as shown in Figure 4. The first excitation is collected from the real road, and the
second excitation is used same as in [25]. The process of simulation is expressed as follows: The
proposed control will be simulated following an objective trajectory, which is control of [25].
Then, the outputs of the proposed control and the objective will be used for calculating error.
This error will be checked by desired prescribed performance. It is remarked that the desired
prescribed performance is different from the applied prescribed performance which is shown

Figure 3. Mechanical model of a vehicle seat suspension system.

Figure 4. Road excitation signals: (a) random step wave road, (b) regular-bump road.
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in Eqs. (7)–(13). The parameters of both the desired and the applied prescribed performance
are listed in Table 1. The damping force of the MR damper is designed 1000 N (�5%) at 2 A.
The fuzzy model is established based on the online model with the centroid vector as shown in
[25]. It is noted that two main variables for the fuzzy models are displacement and accelera-
tion. The fuzzy models include 6 clusters, and then the outputs of fuzzy rules become also 6.
The sigma value for Gaussian function of the fuzzy model is chosen as 0.4 [22, 25], and this
value is not changed through the simulation. The values of the sliding surface [k1, k2] are chose
by [1, 20] for both random step wave road and regular bump road. The constant value Γ of the

Parameter Desired prescribed performance Applied prescribed performance

Initial value λ(0) 0.5 0.5

Infinity value λ∞ 0.001 0.001

Exponential value l 1 0.00047

Table 1. Parameters of desired prescribed performance and applied prescribed performance.

Figure 5. Control results with the HAC-PP at the seat (xs): (a1, a2) random step wave road, (b1, b2) regular bump road.
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Riccati-like equation is chosen by 10 for both roads. The constant cs is 500 and 5000 for regular
bump road and the random step wave road, respectively. In addition, the matrix Q of the
Riccati-like equation is chosen as Q = [�2 0; 0 � 2]. The constants μ1,μ2,μ3 of adaptation
laws are chosen as 10 for two road profiles. The values of ℵf ; ℵg; ΘΓ of the expanded adapta-
tion laws are chosen by 0.1 and the values of δ1, δ2, δ3 are chosen by 0.1. In this simulation, the
initial states for the dynamic states are used as 0:035 2:5½ �, 0:035 2:5½ � for random regular
bump, and random step wave bump, respectively. The initial states for the observer are
0:035 0½ � for two excitations. It is noted that the observer is applied to evaluate the results of
the proposed controller.

Figures 5–8 present control responses of the HAC-PP. It is clearly observed from Figures 5 and
6 that the initial excitation has been significantly reduced by activation the proposed adaptive
controller in terms of both displacement and acceleration. In addition, it is seen that the
proposed control well tracks the objective trajectory which directly indicates high performance
of the prescribed performance of the sliding surface. Figure 7 presents the error of performance
of the proposed adaptive controller which is always less than the boundary of the prescribed

(a1) (a2) 

(b1)                                     (b2) 

Figure 6. Control results with the HAC-PP at the driver (x1): (a1, a2) random step wave road, (b1, b2) regular bump road.
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performance. These results mean that the application of the prescribed performance in design
of the hybrid adaptive controller can improve the quality of control with high robustness
against severe excitations.

4.2. Control results of the HAC-IFV

In simulation of the HAC-IFV, the values of the sliding surface [k1, k2] are chosen by [1, 1.10�5].
The constant value Γ of the Riccati-like equation is chosen by 40, 10 for the regular bump road,
the random step wave road, respectively. The constants α1,α2 of adaptation laws are chosen as
10 for all road profiles. The values of εf, εg of the expanded adaptation laws are chosen by 10
and the values of δ1, δ2 are chosen by 0.05. In this simulation, the initial states for the dynamic
states are used as 0:122 2:5½ �, 0:066 2:5½ �, 0:047 2:5½ � for random bump, random regular
bump, and random step wave bump, respectively. The initial states for the observer are
0:06 0½ � for two excitations. It is noted that the observer is applied to evaluate the results of
the proposed controller. The parameters [k1, k2] are chosen as [1, 1.5] for random regular bump
and [1, 5] for random step wave bump.

Figure 7. Tracking error with the HAC-PP: (a1, a2) random step wave road, (b1, b2) regular bump road.

Adaptive Robust Control Systems18

Figures 8–10 present control responses of the HAC-IFV. As similar to the HAC-PP, the initial
excitations were remarkably reduced by applying the proposed controller. The displacements
at the seat and driver positions are reduced resulting in the improvement of the ride comfort.
In order to demonstrate a salient benefit of the proposed controller, its control response is
compared obtained from the controller proposed in [17, 25]. It is clearly identified that the
convergence time of the displacement of the proposed controller is 2 seconds for both excita-
tions, while that is 15 seconds for the random step wave excitation, 6 seconds for regular bump
excitation in [17, 25]. In Figure 8, the sliding surfaces of three controllers are shown. It is
observed that the proposed control obtains stable motion much faster than the comparative
controls at 0.1 second. It is noted here that the better control responses of the proposed
controller comes from the inversely fuzzified values in given Eqs. (46)–(48). In Eq. (48), the
independent of the inversely fuzzified value helps the controller to increase its robustness. This
new exploration is the outstanding property of the proposed controller in the severe operation
environment subjected to strong and random disturbances.

Figure 8. Control results with the HAC-IFV at the seat (xs): (a1, a2) random step wave road, (b1, b2) regular bump road.
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Figure 9. Control results with the HAC-IFVat the driver (x1): (a1, a2) random step wave road, (b1, b2) regular bump road.

Figure 10. Sliding surface motion of the HAC-IFV (s): (a) random step wave road, (b) regular bump road.
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5. Concluding remarks

In this study, two new adaptive controllers were formulated and their effectiveness was
validated by applying them to vibration control of a semi-active vehicle seat suspension
system featuring MR damper. The first adaptive controller includes two sliding mode controls:
one for initial states of the system and the other for prescribed performance associated with the
parameters of the modified Riccati-like equation. By doing this way, the tracking performance
is enhanced resulting in the improved control responses. The second adaptive controller was
formulated on the basis of the inversely fuzzified value with the H-infinity control to minimize
computational cost algorithm. Hence, by doing this way, the convergence time can be reduced
resulting in high stability of the system subjected to severe external disturbances. It has been
sown that the proposed two adaptive controllers can significantly reduce the excitation from
the road profiles at both the seat and driver positions. In reality, this can enhance the ride
comfort of the driver. Especially, the HAC-PP provides good tracking performance with the
error in range of the defined boundary and the HAC-IFV can reduce the convergence time
compared with two comparative adaptive controllers. It is finally remarked that the develop-
ment of a new hybrid adaptive controller needs to be connected with desired control perfor-
mances to appropriately select each control scheme.
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Abstract

In this chapter, a robust guidance scheme utilizing a line-of-sight (LOS) observation is
presented. Initial relative speed and distance, and error boundaries of them are estimated
in accordance with the interceptor-target relative motion kinematics. A robust guidance
scheme based on the sliding mode control (SMC) is developed, which requires the bound-
aries of the target maneuver, and inevitably has jitter phenomenon. For solving above-
mentioned problems, an estimation to the target acceleration’s boundary is developed for
enhancing robustness of the guidance scheme and the Lyapunov stabilization is analyzed.
The proposed robust guidance scheme’s brief characteristic is to reduce the effect of relative
speed and distance, to reduce the effect of target maneuverability on the guidance precision,
and to strengthen the influence of line-of-sight angular velocity. The proposed scheme’s
performances are validated by the simulations of different target maneuvers under two
worst-case conditions.

Keywords: robust guidance scheme, line-of-sight angular velocity, sliding mode
control, boundary of target maneuver, Lyapunov stability

1. Introduction

The traditional Proportional Navigation Guidance (PNG) schemes including their extensions
have been widely employed in interceptors because of their efficiencies and simplifications
(only need line-of-sight information). PNG makes the normal load of interceptor propor-
tional to the line-of-sight (LOS) angular velocity [1]. Nevertheless, the target can add the
miss distance by acting evading maneuver because the target maneuvers are ahead of the
guidance commands from PNG. For achieving desired interception performances, even for
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the target maneuver, it is necessary to develop advanced guidance schemes [1, 2]. These
advanced guidance schemes usually require more information, like relative speed and dis-
tance, target’s acceleration, or time-to-go.

For passive seekers, which are equipped with electro-optical or infrared sensors, the line-of-
sight angular velocity can be observed only. If an estimation equation is assumed to estimate
target kinematics, relative speed and distance and target’s acceleration will be identified. The
commonly used estimation model is a Kalman filter. At the same time, one must select a
target’s motion model, like the current statistical model, the Singer model, or the interactive
multi-model scheme [3]. For polishing up the estimating performance of the target’s maneu-
vers, observability of the interception problem with LOS angular velocity measurement is
analyzed [4]. It concludes that current homing guidance schemes result in a decrease in
observability of tracking the target. Because relative distance cannot be observed from the
line-of-sight measurement, it is necessary to use a special type of self-motion to solve this
problem. Thus, the method of introducing LOS angular oscillatory motion is presented in [4]
to improve the observability. The oscillatory motion of the LOS angle improves observability,
but the trajectories generated by the guidance schemes are inevitably influenced by this
motion mode and affect final guidance precision. Therefore, the target maneuver estimation is
constrained by a lot of practical limitations.

The sliding mode control (SMC) is robust to disturbances. Therefore, it is employed to develop
adaptive guidance schemes for target’s unpredictable maneuver without requirements to
estimate the target’s acceleration. Recently, many guidance schemes based on the SMC have
been proposed, for instance, the guidance schemes based on the adaptive and optimal SMC [5–
7], the high-order SMC [8, 9], SMC-based integrated guidance and control (IGC) [10, 11], and
SMC with impacting angle constraint [12–14].

SMC-based optimal and adaptive guidance schemes have become a focus since the 1990s. An
adaptive sliding mode guidance (ASMG) scheme is presented in [5] for target maneuvering
and parameter disturbance of the guidance system. In addition, an optimal sliding mode
guidance (OSMG) scheme is deduced from the ASMG, and the optimal guidance coefficients
are given in [6]. In [7], the Fuzzy OSMG (FOSMG) formulated by the OSMG and PNG is stated
by adjusting the weights of the OSMG and PNG using fuzzy logic. It is noted that the FOSMG
owns the advantages of the PNG for nonmaneuvering targets and the OSMG for maneuvering
targets. The ASMG, OSMG, and FOSMG have practical advantages of simple expressions.
Nevertheless, it is essential to identify the target’s normal load to adjust weights of the
FOSMG.

The higher order sliding mode guidance (HOSMG) scheme is a current research highlight. While
the SMC-based first-order guidance is a balance between smoothing jitter and ensuring robust-
ness through switching frequently, the HOSMG generates control commands smoothly to sys-
tems with relative degree arbitrarily. A smooth guidance scheme based on a second-order sliding
mode is developed for solving the uncertainties of the actuator and the target’s maneuver [8]. In
[9], a terminal guidance law with known convergent time is proposed by using the finite-time
mean-square practical convergence as sliding surfaces. It validates that HOSMG is robust to
stochastic noises and bounded uncertainty and does not have high-frequency jitters. The
HOSMG’s flaw exists in converging slowly for real time due to complex algorithms.

Adaptive Robust Control Systems26

Integrated guidance and control (IGC) which is based on the SMC has become an unusual
approach for developing a guidance system. The traditional timescale separation method splits
the guidance system into an inner loop autopilot and an outer loop command system. The IGC
system merges the two loops into a unique loop. Based on self-motion and relative motion
states, the IGC produces commands to aero surfaces straight. Zero effort miss is used to be a
sliding surface for developing the IGC [10, 11]. Due to the complex coupling between guidance
and control states, this method does not spread more widely than an intuitive timescale
separation method.

Based on the SMC, the guidance scheme with impacting angle constraint is designed to solve
the problem of directional impacting. In practical cases, a specific impacting angle is desired to
directionally hit the target or to better detect thee target. Under the impacting angle constraint,
the result from ideal initial attack conditions can meet the interception requirements for
nonmaneuvering and step-maneuvering targets [12–14]. However, the guidance accuracy of
the target’s complicated maneuver will decrease.

To sum up, although guidance schemes based on the SMC and target’s maneuver estimation
algorithms act excellently in simulation, the computation degrees of them have become too
complex to realize. In fact, one needs a simple-expression guidance scheme based on the SMC,
and if not requiring the target acceleration, it will be better. In addition, the discontinuous charac-
teristic induced by the slidingmode part can cause jitter of guidance commands that is detrimental
to the aero fins. The coefficient of sliding mode part indicates target acceleration’s boundary.
Actually, it is hard to get the boundary. If setting the boundary too great, the autopilot might be
saturated; if setting the boundary too tiny, the sliding mode’s presence cannot be guaranteed. With
the target acceleration’s unknown boundary, for ensuring the stability, the simplified guidance
schemes based on the SMC including the FOSMG, OSMG, and ASMG have greater sliding mode
part, which might cause jitter. Adaptive control offers a solution. The unknown parameters can be
estimated in the online identification for the uncertain system. Nevertheless, it has no capability to
suppress disturbances. Thus, the adaptive control to identify the upper boundary of the system
uncertainty is merged with the SMC to suppress disturbances [15].

An interceptor-target pursuit-evasion game which only employs the line-of-sight angular
velocity is under consideration in this chapter. The target maneuver is treated as a bounded
perturbation. More states are demanded, including initial relative speed and distance and
error boundaries of them. It is derived from recursive estimation of relative motion kinemat-
ics and obtains approximations of relative speed and distance. A simplified sliding mode
guidance scheme is given, which requires target acceleration’s boundary and inevitably has
jitter phenomenon. For overcoming the above shortcomings, an adaptive parameter is uti-
lized to estimate target acceleration’s boundary and to adaptively adjust in terms of the line-
of-sight angular velocity; moreover, the Lyapunov stabilization has been analyzed. The
proposed guidance scheme’s brief characteristic is to decrease the effect of relative speed
and distance on the guidance precision and to strengthen the influence of line-of-sight
angular velocity.

This chapter’s rest part is listed hereafter. The problem statement is given in Section 2. Two
robust guidance schemes based on the SMC are presented in Section 3. Section 4 carries out
simulations, and conclusions are given in Section 5.
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2. Pursuit-evasion game

2.1. Relative motion kinematics

The interceptor’s movement consists of two orthogonal channels. The pursuit-evasion game is
decomposed into two 2D channels.

Figure 1 shows the geometric diagram of the interceptor-target relative motion kinematics. A
Cartesian reference system is denoted by “X-O-Y.” The interceptor and target are denoted by
“M” and “T”. The line-of-sight angle is denoted by “q”. The relative distance is denoted by “r”.
Flight path angles of the interceptor and target are denoted by “φm” and “φt”. Velocities of the
interceptor and target are denoted by “Vm” and “Vt”.

Endgame relative motion kinematics are given by

_r ¼ Vt cos φt � q
� �� Vm cos φm � q

� �
,

r _q ¼ Vt sin φt � q
� �� Vm sin φm � q

� �
:

(
(1)

Let the relative speed v ¼ _r. Eq. (2) is obtained as

_v ¼ r _q2 þ _Vt cos φt � q
� �� Vt _φt sin φt � q

� �� �

� _Vm cos φm � q
� �� Vm _φm sin φm � q

� �� �
,

r€q ¼ �2 _r _q þ _Vt sin φt � q
� �þ Vt _φt cos φt � q

� �� �

� _Vm sin φm � q
� �þ Vm _φm cos φm � q

� �� �
:

8>>>>>><
>>>>>>:

(2)

For simplification, we get

_v ¼ r _q2 þ atr � amr, (3)

€q ¼ �2
v
r
_q þ 1

r
atq � 1

r
amq, (4)

where acceleration components of the interceptor and target along the line-of-sight are
denoted by “amr” and “atr”; acceleration components of the interceptor and target orthogonal
to the line-of-sight are denoted by “amq”and “atq”. The equations of them are formulated as

atr ¼ _Vt cos φt � q
� �� Vt _φt sin φt � q

� �
, (5)

amr ¼ _Vm cos φm � q
� �� Vm _φm sin φm � q

� �
, (6)

atq ¼ _Vt sin φt � q
� �þ Vt _φt cos φt � q

� �
, (7)

amq ¼ _Vm sin φm � q
� �þ Vm _φm cos φm � q

� �
: (8)

Assume the line-of-sight angular velocity is accurately observed at each instant. Initial relative
speed and distance and error boundaries of them are obtained as
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r0 ¼ r0 þ ~r0, ∣~r0∣ ≤ δr0 ,
v0 ¼ v0 þ ~v0, ∣~v0∣ ≤ δv0 ,

�
(9)

where initial relative speed and distance are denoted by “v0” and “r0”; observations of v0 and
r0 are denoted by “v0” and “r0”; observation deviations of v0 and r0 are denoted by “~v0” and
“~r0”; upper boundaries of ~v0 and ~r0 are denoted by “δv0” and “δr0”.

Remark 1. v0 and r0 are detected by a radar on ground or aircraft carrier and are sent to the
interceptor via the data link only once. δv0 and δr0 are treated to be maximum observation
deviation of the detector.

2.2. Kinematics simplification

For successfully intercepting the target, the line-of-sight angular velocity should be
constrained [5, 6]. In this chapter, seeker and autopilot loops are not considered. With this
premise, relative equation of the line-of-sight angular velocity _q is obtained as Eq. (4).
However, 1=r and 2v=r in Eq. (4) are obtained as Eq. (3), which indicates relative speed v
alters as r, v, _q, atr, and amr vary, and v0 and r0 are preset. In accordance with the characteristic
of an interceptor’s engine, the thrust along the line of sight almost does not change. More-
over, the target is usually escaping orthogonally to the line of sight to increase the line-of-
sight angular velocity. Although acceleration component of the target along the line-of-sight
is subsistent, the relative speed does not change too much with limited energy and time.
Assume that acceleration components along the line of sight of the target and interceptor are
zero. Simplify Eq. (3) into

_r ¼ v,
_v ¼ r _q2:

�
(10)

Define z1 ¼ r and z2 ¼ v. Equation (10) becomes

_z1 ¼ z2,
_z2 ¼ z1 _q2:

�
(11)

According to Eq. (9), initial states for Eq. (11) to get r0 and v0 are obtained as

Figure 1. Relative motion kinematics.
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constrained [5, 6]. In this chapter, seeker and autopilot loops are not considered. With this
premise, relative equation of the line-of-sight angular velocity _q is obtained as Eq. (4).
However, 1=r and 2v=r in Eq. (4) are obtained as Eq. (3), which indicates relative speed v
alters as r, v, _q, atr, and amr vary, and v0 and r0 are preset. In accordance with the characteristic
of an interceptor’s engine, the thrust along the line of sight almost does not change. More-
over, the target is usually escaping orthogonally to the line of sight to increase the line-of-
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is subsistent, the relative speed does not change too much with limited energy and time.
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zero. Simplify Eq. (3) into
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�
(10)

Define z1 ¼ r and z2 ¼ v. Equation (10) becomes

_z1 ¼ z2,
_z2 ¼ z1 _q2:

�
(11)

According to Eq. (9), initial states for Eq. (11) to get r0 and v0 are obtained as

Figure 1. Relative motion kinematics.
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2 t0ð Þ ¼ v0 � δv0: (14)

Equations (12)–(14) are employed to calculate Eq. (11). Boundaries of v and rare computed as

Δrj j ¼ max z 2ð Þ
1 � z 1ð Þ

1 ; z 1ð Þ
1 � z 3ð Þ
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n o
,
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n o
:
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3. Guidance scheme design

3.1. Guidance scheme based on the sliding mode control

A sliding surface is determined by

s ¼ z 1ð Þ
1 _q: (16)

In accordance with Eq. (16), forcing s to zero represents that _q or r prompts to 0. In terms of
quasi-parallel approach guideline, the line-of-sight angular velocity will be adjusted to 0 to
guarantee that the interceptor hits the target [5, 6].

Theorem 1. A sliding mode control-based guidance (SMCG) scheme described by

amq ¼ N � z 2ð Þ
1

z 3ð Þ
1

 !
z 1ð Þ
2

���
���þ 2 Δvj j

" #
_q þ εsgn _qð Þ, (17)

where z 1ð Þ
2 , z 2ð Þ

1 , and z 3ð Þ
1 are deduced from Eq. (11) with Eqs. (12–14), N > 2 is an integer, Δvj j is

obtained from Eq. (15), and ε is atq’s upper boundary, guarantees that s ¼ z 1ð Þ
1 _q is driven to 0.

Proof. Compute Eq. (11) with Eq. (9) and define v ¼ z 1ð Þ
2 and r ¼ z 1ð Þ

1 .v and r are obtained as

r ¼ rþ ~r, v ¼ vþ ~v, (18)

where derivations between estimations and real values are denoted by “~v” and “~r”.

In terms of the deduction in Section 2, we have

~rj ≤ Δrj j, ~vj ≤ Δvj j:jj (19)

Define a Lyapunov function:

V1 ¼ 0:5s2: (20)

Since v < 0, an approach scheme is defined as
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_s ¼ r
r
{� N � 2þ z 2ð Þ

1

z 3ð Þ
1

� r
r

 !
vj j _q � 2 Δvj j � ~vÞ _q � εsgn _qð Þ � atq

� �
}:

�
(21)

Then,

_V 1 ¼ � r2

r
N � 2þ z 2ð Þ

1

z 3ð Þ
1

� r
r

 !
vj j _q2 � 2

r2

r
ð Δvj j � ~vÞ _q2 � r2

r
εsgn _qð Þ � atq
� �

_q: (22)

Equation (11) is solved with Eq. (12) or (14). Then, we get

0 < z 3ð Þ
1 ≤ r: (23)

Equation (11) is solved with Eq. (9) or (13). Because ∣~r0∣ ≤ δr0, we have

z 2ð Þ
1 ≥ r > 0: (24)

Next, the following is obtained:

z 2ð Þ
1

z 3ð Þ
1

� r
r
≥ 0: (25)

Since N > 2, then

N � 2þ z 2ð Þ
1

z 3ð Þ
1

� r
r
> 0: (26)

Because εsgn _qð Þ � atq > 0, Δvj j � ~v > 0, r > 0, and r > 0, we get _V 1 < 0. Using Lyapunov

stability theory, we can guarantee that V1 ! 0. Finally s ! 0. Since s ¼ z 1ð Þ
1 _q, that is, _q ! 0.

Remark 2. The “sgn” function in Eq. (17) is replaced by the following function to suppress the jitter:

amq ¼ N � z 2ð Þ
1

z 3ð Þ
1

 !
z 1ð Þ
2

���
���þ 2 Δvj j

" #
_q þ ε

_q
∣ _q∣þ Δ

, (27)

where Δ is a tiny positive constant.

3.2. Improved guidance scheme based on the SMCG

ε in Eq. (27) or (17) is unchanged, which indicates that an unchanged upper boundary of atq is
employed to ensure the sliding mode’s subsistence. By this means, the guidance command’s
jitter might exist in the vicinity of the sliding mode although “sgn” is already replaced in
Eq. (27). For smoothing the command, the better way is to use the adaptive approach to
dynamically estimate ε [23, 24].

Proposition 1. An unchanged constant k > 0 exists, so that
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stability theory, we can guarantee that V1 ! 0. Finally s ! 0. Since s ¼ z 1ð Þ
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where Δ is a tiny positive constant.

3.2. Improved guidance scheme based on the SMCG

ε in Eq. (27) or (17) is unchanged, which indicates that an unchanged upper boundary of atq is
employed to ensure the sliding mode’s subsistence. By this means, the guidance command’s
jitter might exist in the vicinity of the sliding mode although “sgn” is already replaced in
Eq. (27). For smoothing the command, the better way is to use the adaptive approach to
dynamically estimate ε [23, 24].

Proposition 1. An unchanged constant k > 0 exists, so that

Adaptive Robust Guidance Scheme Based on the Sliding Mode Control in an Aircraft Pursuit-Evasion Problem
http://dx.doi.org/10.5772/intechopen.72177

31



atq
�� �� ≤ N � 2þ kð Þ vj j _qj j, (28)

where upper boundaries’ estimations of atq are formulated by N � 2þ kð Þ∣v∣ _q.
Theorem 2. An improved sliding mode control-based guidance (ISMCG) scheme described by

amq ¼ N � z 2ð Þ
1

z 3ð Þ
1

þ bk
 !

z 1ð Þ
2

���
���þ 2 Δvj j

" #
_q,

_bk ¼ 1
γ
r2

r
vj j _q2,

8>>>><
>>>>:

(29)

where z 1ð Þ
2 , z 2ð Þ

1 , and z 3ð Þ
1 are deduced from Eq. (11) with Eqs. (12–14), N > 2 is an integer, Δvj j is

obtained from Eq. (15), and γ > 0 is a constant, guarantees that s ¼ z 1ð Þ
1 _q is driven to 0.

Proof. Define ~k ¼ k� bk and the Lyapunov function:

V2 ¼ 0:5 s2 þ γ~k2
� �

: (30)

Then,

_V 2 ¼ � r2

r
z 2ð Þ
1

z 3ð Þ
1

� r
r

 !
vj j _q2 � 2

r2

r
ð Δvj j � ~vÞ _q2 � r2

r
N � 2þ bk
� �

jvj _q � atq
h i

_q þ γ~k _~k: (31)

According to Eq. (28) and _bk ¼ 1
γ
r2
r vj j _q2, we get

_V 2 ≤ � r2

r
z 2ð Þ
1

z 3ð Þ
1

� r
r

 !
vj j _q2 � 2

r2

r
ð Δvj j � ~vÞ _q2 � r2

r
bk � k
� �

vj j _q2 þ γ~k _~k

¼ � r2

r
z 2ð Þ
1

z 3ð Þ
1

� r
r

 !
vj j _q2 � 2

r2

r
Δvj j � ~vÞ _q2:�

In accordance with condition (25), because Δvj j � ~v > 0, r > 0, and r > 0, we get _V 2 < 0. Using

Lyapunov stability theory, we can guarantee that V2 ! 0. Finally s ! 0. Since s ¼ z 1ð Þ
1 _q, that is,

_q ! 0.

Remark 3. r is employed to take the place of the real r in Eq. (29).

4. Simulations

4.1. Initial conditions

Simulations will be conducted to validate the feasibility and superiority of the proposed
schemes in this part. In simulations, the maximum acceleration limit of the interceptor is 10 g
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for verifying the performance of the interceptor with a rather constrained maneuverability.
Assume that the target is less agile than the interceptor. Control systems of them are expressed
by the following first-order systems:

ama sð Þ
amq sð Þ ¼

1
τmsþ 1

, (32)

ata sð Þ
atq sð Þ ¼

1
τtsþ 1

, (33)

where the guidance commands are denoted by “atq” and “amq” and the responses are denoted
by “ata” and “ama”. τt ¼ 0:5 and τm ¼ 0:2.

Initial conditions are preset to r0 ¼ 3000 m, v0 ¼ _r0 ¼ �350 m/s, q0 ¼ 10
�
, _q0 ¼ �3deg=s,

Vt ¼ 500 m/s, and φt ¼ 0
�
. In accordance with the Eq. (9), δv0 ¼ 70 m/s and δr0 ¼ 300 m are given

as upper boundaries of ~vjj and ~rjj . In Eqs. (27) and (29),N = 3, ε = 8 g, Δ = 0.0001, and γ = 125. Two
worst-case conditions of the initial observed relative speed v0 and distance r0 are given.

Condition 1 (C1):

r0 ¼ r0 � δr0, v0 ¼ v0 � δv0: (34)

Condition 2 (C2):

r0 ¼ r0 þ δr0, v0 ¼ v0 þ δv0: (35)

Following maneuver modes of the target, including case 1, case 2, and case 3, are used to test
the performance of the proposed schemes. Assume that the interceptor is detected by the
target in 2 s and then the target begins to escape.

Case 1: Square maneuver in the direction of the axis Y.

aty tð Þ ¼ 0, t ≤ 2s
aty t� 2ð Þ ¼ �aty tð Þ, aty 2ð Þ ¼ 6g: t > 2s

�
(36)

Case 2: Sine maneuver in the direction of the axis Y.

aty tð Þ ¼ 0, t ≤ 2s
aty tð Þ ¼ 8g � sin 3 t� 2ð Þ½ �: t > 2s

�
(37)

Case 3: Step maneuver in the direction of the axis Y.

aty tð Þ ¼ 0, t ≤ 2s
aty tð Þ ¼ 8g: t > 2s

�
(38)
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In accordance with condition (25), because Δvj j � ~v > 0, r > 0, and r > 0, we get _V 2 < 0. Using

Lyapunov stability theory, we can guarantee that V2 ! 0. Finally s ! 0. Since s ¼ z 1ð Þ
1 _q, that is,

_q ! 0.

Remark 3. r is employed to take the place of the real r in Eq. (29).

4. Simulations

4.1. Initial conditions

Simulations will be conducted to validate the feasibility and superiority of the proposed
schemes in this part. In simulations, the maximum acceleration limit of the interceptor is 10 g
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, (32)
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1
τtsþ 1

, (33)

where the guidance commands are denoted by “atq” and “amq” and the responses are denoted
by “ata” and “ama”. τt ¼ 0:5 and τm ¼ 0:2.

Initial conditions are preset to r0 ¼ 3000 m, v0 ¼ _r0 ¼ �350 m/s, q0 ¼ 10
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, _q0 ¼ �3deg=s,

Vt ¼ 500 m/s, and φt ¼ 0
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. In accordance with the Eq. (9), δv0 ¼ 70 m/s and δr0 ¼ 300 m are given

as upper boundaries of ~vjj and ~rjj . In Eqs. (27) and (29),N = 3, ε = 8 g, Δ = 0.0001, and γ = 125. Two
worst-case conditions of the initial observed relative speed v0 and distance r0 are given.

Condition 1 (C1):

r0 ¼ r0 � δr0, v0 ¼ v0 � δv0: (34)

Condition 2 (C2):

r0 ¼ r0 þ δr0, v0 ¼ v0 þ δv0: (35)

Following maneuver modes of the target, including case 1, case 2, and case 3, are used to test
the performance of the proposed schemes. Assume that the interceptor is detected by the
target in 2 s and then the target begins to escape.

Case 1: Square maneuver in the direction of the axis Y.

aty tð Þ ¼ 0, t ≤ 2s
aty t� 2ð Þ ¼ �aty tð Þ, aty 2ð Þ ¼ 6g: t > 2s

�
(36)

Case 2: Sine maneuver in the direction of the axis Y.

aty tð Þ ¼ 0, t ≤ 2s
aty tð Þ ¼ 8g � sin 3 t� 2ð Þ½ �: t > 2s

�
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4.2. Comparisons between the OSMG and the APNG

Compare the ISMCG and SMCG with the APNG and OSMG. The actual target normal load
and relative speed are considered known in the APNG; thereby, neither Condition 1 nor
Condition 2 can affect the APNG. For the OSMG, it owns a simplified formulation which has
robustness to target’s maneuver, and it is popular in practice. Its simplified realization for
online is as follows [6].

amq ¼ �3 _r0 _q þ εsgn _qð Þ≃ � 3v0 _q þ ε
_q

∣ _q∣þ Δ
, (39)

where the initial observed relative speed is denoted by “v0”. ε and Δ have no difference with
those of the SMCG.

The expression of the APNG is obtained as [16]

amq ¼ N0∣v∣ _q þN0 atq
2
, (40)

where the actual target normal load and the relative speed are denoted by “atq” and “v”. An
optimal value of the constant N0 is 3 [16].

Schemes Case 1 Case 2 Case 3

Condition 1 Condition 2 Condition 1 Condition 2 Condition 1 Condition 2

APNG 0.0831 0.0831 2.7448 2.7448 0.0173 0.0173

OSMG 0.0525 0.0819 0.0129 0.1148 0.0010 0.0015

ISMCG 0.0050 0.0003 0.0010 0.0019 0.0020 0.0036

SMCG 0.0289 0.0645 0.1115 0.1253 0.0010 0.0013

Table 1. Comparisons of miss distances (m).

Figure 2. Guidance commands and line-of-sight angular velocities in case 1 under condition 1. (a) Guidance commands
(b) Line-of-sight angular velocities.
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Figure 3. Guidance commands and line-of-sight angular velocities in case 1 under condition 2. (a) Guidance commands
(b) Line-of-sight angular velocities.

Figure 4. Guidance commands and line-of-sight angular velocities in case 2 under condition 1. (a) Guidance commands
(b) Line-of-sight angular velocities.

Figure 5. Guidance commands and line-of-sight angular velocities in case 2 under condition 2. (a) Guidance commands
(b) Line-of-sight angular velocities.

Adaptive Robust Guidance Scheme Based on the Sliding Mode Control in an Aircraft Pursuit-Evasion Problem
http://dx.doi.org/10.5772/intechopen.72177

35



4.2. Comparisons between the OSMG and the APNG

Compare the ISMCG and SMCG with the APNG and OSMG. The actual target normal load
and relative speed are considered known in the APNG; thereby, neither Condition 1 nor
Condition 2 can affect the APNG. For the OSMG, it owns a simplified formulation which has
robustness to target’s maneuver, and it is popular in practice. Its simplified realization for
online is as follows [6].

amq ¼ �3 _r0 _q þ εsgn _qð Þ≃ � 3v0 _q þ ε
_q

∣ _q∣þ Δ
, (39)

where the initial observed relative speed is denoted by “v0”. ε and Δ have no difference with
those of the SMCG.

The expression of the APNG is obtained as [16]

amq ¼ N0∣v∣ _q þN0 atq
2
, (40)

where the actual target normal load and the relative speed are denoted by “atq” and “v”. An
optimal value of the constant N0 is 3 [16].

Schemes Case 1 Case 2 Case 3

Condition 1 Condition 2 Condition 1 Condition 2 Condition 1 Condition 2

APNG 0.0831 0.0831 2.7448 2.7448 0.0173 0.0173

OSMG 0.0525 0.0819 0.0129 0.1148 0.0010 0.0015

ISMCG 0.0050 0.0003 0.0010 0.0019 0.0020 0.0036

SMCG 0.0289 0.0645 0.1115 0.1253 0.0010 0.0013

Table 1. Comparisons of miss distances (m).

Figure 2. Guidance commands and line-of-sight angular velocities in case 1 under condition 1. (a) Guidance commands
(b) Line-of-sight angular velocities.

Adaptive Robust Control Systems34

Figure 3. Guidance commands and line-of-sight angular velocities in case 1 under condition 2. (a) Guidance commands
(b) Line-of-sight angular velocities.

Figure 4. Guidance commands and line-of-sight angular velocities in case 2 under condition 1. (a) Guidance commands
(b) Line-of-sight angular velocities.

Figure 5. Guidance commands and line-of-sight angular velocities in case 2 under condition 2. (a) Guidance commands
(b) Line-of-sight angular velocities.

Adaptive Robust Guidance Scheme Based on the Sliding Mode Control in an Aircraft Pursuit-Evasion Problem
http://dx.doi.org/10.5772/intechopen.72177

35



The missing distance is illustrated in Table 1, and the guidance commands and the line-of-
sight angular velocities are shown in Figures 2–7. As shown in Table 1, these four guidance
schemes all accomplish the interception task with the constraint ∣amq∣ ≤ 10 g. In case 2, APNG’s
miss distances are comparatively greater, because Eq. (40) is deduced assuming atq is
unchanged [17]. Nevertheless, the target might have a complicated maneuvering kind of
escape. For the APNG, there is a greater miss distance to case 2, rather than to case 1 and case
3. It indicates the ANPG’s limitations on intercepting unconventional maneuvering targets.
Table 1 also illustrates that the ISMCG owns the smallest miss distance in case 1 and case 2 for
complicated types of target maneuvers, and the SMCG behaves like the OSMG. In case 3 for
step maneuver targets, the miss distances of ISMGC, SMCG, and OSMG are small, and there is
a little difference in performance of them.

Figure 6. Guidance commands and line-of-sight angular velocities in case 3 under condition 1. (a) Guidance commands
(b) Line-of-sight angular velocities.

Figure 7. Guidance commands and line-of-sight angular velocities in case 3 under condition 2. (a) Guidance commands
(b) Line-of-sight angular velocities.
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From Figures 2–7, the APNG is not very appropriate to intercept complicated maneuvering
targets because line-of-sight angular velocities of the APNG are greater. As a whole, the plots
of the OSMG and the SMCG have little difference between each other. Their line-of-sight
angular velocities are very small before the end of case 1 and case 2. Nevertheless, although
continuous functions are employed to take the place of the “sgn” functions in the OSMG and
the SMCG, guidance commands of the OSMCG and the SMCG all have jitters, which are

Figure 8. δatq and ∣atq ∣ of the ISMCG. (a) case 1 (C1); (b) case 1 (C2); (c) case 2 (C1); (d) case 2 (C2); (e) case 3 (C1); and (f)
case 3 (C2).
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The missing distance is illustrated in Table 1, and the guidance commands and the line-of-
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3. It indicates the ANPG’s limitations on intercepting unconventional maneuvering targets.
Table 1 also illustrates that the ISMCG owns the smallest miss distance in case 1 and case 2 for
complicated types of target maneuvers, and the SMCG behaves like the OSMG. In case 3 for
step maneuver targets, the miss distances of ISMGC, SMCG, and OSMG are small, and there is
a little difference in performance of them.
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detrimental to aero fins. Line-of-sight angular velocities of the ISMCG are less than those of the
APNGwith the actual target’s acceleration. From Figures 2(a), 3(a), 4(a), and 5(a), in case 1 and
case 2, ISMCG’s guidance commands are smoother than others, which are appropriate for
continuous aero surfaces to track. From Figures 2(b), 3(b), 4(b), and 5(b), because the ISMCG
uses an adaptive estimation to identify atq’s upper boundary, line-of-sight angular velocities of
the ISMCG are not as moderate as those of the SMCG; however, from Table 1, line-of-sight
angular velocities in the endgame of the ISMCG are less than those of the SMCG and the
OSMG in case 1 and case 2. From Figures 6 and 7, the guidance commands and line-of-sight
angular velocities of OSMG, SMCG, and ISMCG have little differences and are superior to
those of the APNG in case 3.

From Figure 8, it illustrates the δatq identified by the ISMCG in three cases under two condi-

tions. Compared with ∣atq∣, in the initial 2 s, δatq is larger since _q and bk are larger, and then, the
tracking error decreases since the ISMCG restrains the line-of-sight angular velocity. Because
δatq is not the estimation of atq, tracking phases are considered and tracking errors are not
concerned. Tracking phases reflect that estimations lag behind the actual target maneuver;

thereby, it decides whether the compensation bk is timely and can influence the guidance
precision. With tracking phases under consideration, δatq mostly tracks ∣atq∣ with a tiny time
delay. In fact, for the step maneuver target in case 3, from Figure 8(e, f), δatq tracks ∣atq∣well. As
shown in Table 1, small tracking phases obtain small miss distances.

5. Conclusions

In this chapter, robust guidance schemes are presented, which require states such as initial
relative speed, relative distance, and error boundaries of them besides line-of-sight angular
velocity. Proposed schemes’ performances are validated by simulating under uncertainties for
different target’s maneuver modes. Two guidance schemes hit and kill maneuverable targets
with fairly limited maneuverability. By comparisons with the APNG and OSMG, the ISMCG is
superior, and the OSMG and SMCG perform similarly, whereas the APNG’s miss distances are
greater. Moreover, guidance commands of the APNG and ISMCG are smoother than those of
the OSMG and SMCG for complicated maneuver modes of the target. In conclusion, ISMCG’s
advantage is that the guidance scheme is not required to obtain the target acceleration under
uncertain conditions for different target maneuvers.

The future work concentrates on adapting the interceptor’s maximum maneuverability to be a
constraint condition in the proposed guidance scheme. Anti-saturation design is studied to
address the control-saturation problem in Eq. (4) [18–20].
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Abstract

Multimotor drive systems have been widely used in many modern industries. It is a
nonlinear, multi-input, multi-output (MIMO) and strong-coupling complicated system,
including the effect of friction, elastic, and backlash. The control law for this drive system
much depends on the determining of the tension. However, it is hard to obtain this
tension in practice by using a load cell or a pressure meter due to the accuracy of sensors
or external disturbance. In order to solve this problem, a high-gain observer is proposed
to estimate the state variables in this drive system, such as speeds and tension. An emer-
ging proposed technique in the control law is the use of high-gain observers together with
adaptive sliding mode control scheme to obtain a separation principle for the stabilization
of whole system. The theory analysis and simulation results point out the good effective-
ness of the proposed output feedback for the drive system.

Keywords: high-gain observer, multimotor drive systems, sliding mode control,
tension, output feedback controller

1. Introduction

Multimotor drive systems have been researched by many researchers in the recent times. The
control law based on neural network technique has been proposed by Yaojie Mi et al. (see [1–
4], for examples). However, it is hard to find the corresponding networks as well as learning
rules. Besides, the model of this system is approximately described as a linear system to use the
transfer function to design the control law. Furthermore, the tracking ability or the stabilization
of the whole system is not still solved under the effects of observer using neural network
technique. In the multimotor drive control systems, it is necessary to obtain the belt tension to
design the suitable state feedback control law. However, it is hard to measure this belt tension
by using sensors, and the observer based on high-gain technique is proposed in our work.
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Besides, the state feedback control design based on sliding mode control technique enables to
remove efficient disturbances and uncertainties. Therefore, a high-gain observer is proposed to
estimate the tension in this system and combine with the state feedback controller to obtain the
output feedback control law satisfying the separation principle. The stability of whole system is
obtained by the output feedback control law and verified by theory analysis and simulations.

This work is composed of 7 sections. In Section 2, the problem statements are shown and the
dynamic equations of the two-motor system are described by the effect of friction, backlash,
and elastic. Sections 3–5 describe the output feedback control design. Then, the high-gain
observer for multimotor system is explained. Next, the sliding mode control of this system
and the ability to satisfy the separation principle of output feedback controller are discussed.
In Section 6, simulation results are shown. The conclusion is summarized in Section 7.

2. Problem statements

In [1], themultimotor system (in Figure 1) using two inductionmotor is described by the following
dynamic Eq. (1), and the nomenclatures used in these equations are summarized in Table 1:

dx01
dt

¼ np1
J1

u1 � x01
� � np1Tr1

Lr1
φ2
r1 � TL1 þ r1x03

� �� �

dx02
dt

¼ np2
J2

u2 � x02
� � np2Tr2

Lr2
φ2
r2 � TL2 � r2x03

� �� �

dx03
dt

¼ K
T

1
np1

r1k1x01 �
1
np2

r2k2x02

 !
� x03

T

8>>>>>>>>><
>>>>>>>>>:

(1)

Figure 1. The two-motor drive system.
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where

x0 ¼ x01; x
0
2; x

0
3

� �T ¼ ωr1;ωr2; F½ �T ∈R3 is state variable and u ¼ u1;u2ð Þ ¼ ω1;ω2ð Þ∈R2 is a con-
trol variable.

However, due to the effects by backlash and elastic (Figure 1), we extend this model to obtain
the equivalent diagram (Figure 2) and the following dynamic Eqs. (2) and (3):

Δ _φ1 ¼
1
T

ω1 � ωr1ð Þ

Δ _φ2 ¼
1
T

ω2 � ωr2ð Þ

_ωr1 ¼ JL1
1

KTC1
f 11 Δφ1

� �þ KC1Δω1f 12 Δφ1

� �� TL1 þ r1F21ð Þ
� �

_ωr2 ¼ JL2
1

KTC2
f 21 Δφ2

� �þ KC2Δω2f 22 Δφ2

� �� TL2 þ r2F12ð Þ
� �

_F ¼ C12 r1ωr1 � r2ωr2 1þ 1
C12:l

F
� �� �

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

(2)

We denote x1 ¼
x11
x12

� �
¼ Δφ1

Δφ2

� �
∈R2; x2 ¼

x21
x22

� �
¼ ωr1

ωr2

� �
∈R2; x3 ¼

x31
x32

� �
¼ F21

F12

� �
∈R2

to obtain the following dynamic equation described in state-space representation:

K ¼ E V= Transfer function

E Young’s Modulus of belt

V Expected line velocity

T ¼ L0
AV

Time constant of tension variation

L0, A Distance between racks, section area (m2)

npi Number of pole-pairs in the ith motor

J1, J2, JL1, JL2 Inertia moment of motors and loads (kgm2)

T,TL , φr Motor, load torque (Nm), flux of rotor (Wb)

Lr Self-induction of rotor (H)

r, k,ωr,ω, F (in Eq. (1)) Radius of roller, velocity ratio, electric angle velocity of rotor, angle velocity of stator,
belt tension

ω1, ω2, ωr1, ωr2 (in Eqs. (2)
and (3))

The angle velocity of motor and load

c1, c2, b1, b2 Stiffness and friction coefficient

Δω1,Δω2 The errors of angle speed in presence of backlash and elastic

Table 1. Dynamic parameters.
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dx01
dt

¼ np1
J1

u1 � x01
� � np1Tr1

Lr1
φ2
r1 � TL1 þ r1x03

� �� �

dx02
dt

¼ np2
J2

u2 � x02
� � np2Tr2

Lr2
φ2
r2 � TL2 � r2x03

� �� �

dx03
dt

¼ K
T

1
np1

r1k1x01 �
1
np2

r2k2x02

 !
� x03

T

8>>>>>>>>><
>>>>>>>>>:

(1)

Figure 1. The two-motor drive system.
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where

x0 ¼ x01; x
0
2; x

0
3

� �T ¼ ωr1;ωr2; F½ �T ∈R3 is state variable and u ¼ u1;u2ð Þ ¼ ω1;ω2ð Þ∈R2 is a con-
trol variable.

However, due to the effects by backlash and elastic (Figure 1), we extend this model to obtain
the equivalent diagram (Figure 2) and the following dynamic Eqs. (2) and (3):

Δ _φ1 ¼
1
T

ω1 � ωr1ð Þ

Δ _φ2 ¼
1
T

ω2 � ωr2ð Þ

_ωr1 ¼ JL1
1

KTC1
f 11 Δφ1

� �þ KC1Δω1f 12 Δφ1

� �� TL1 þ r1F21ð Þ
� �

_ωr2 ¼ JL2
1

KTC2
f 21 Δφ2

� �þ KC2Δω2f 22 Δφ2

� �� TL2 þ r2F12ð Þ
� �

_F ¼ C12 r1ωr1 � r2ωr2 1þ 1
C12:l

F
� �� �

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

(2)

We denote x1 ¼
x11
x12

� �
¼ Δφ1

Δφ2

� �
∈R2; x2 ¼

x21
x22

� �
¼ ωr1

ωr2

� �
∈R2; x3 ¼

x31
x32

� �
¼ F21

F12

� �
∈R2

to obtain the following dynamic equation described in state-space representation:

K ¼ E V= Transfer function

E Young’s Modulus of belt

V Expected line velocity

T ¼ L0
AV

Time constant of tension variation

L0, A Distance between racks, section area (m2)

npi Number of pole-pairs in the ith motor

J1, J2, JL1, JL2 Inertia moment of motors and loads (kgm2)

T,TL , φr Motor, load torque (Nm), flux of rotor (Wb)

Lr Self-induction of rotor (H)

r, k,ωr,ω, F (in Eq. (1)) Radius of roller, velocity ratio, electric angle velocity of rotor, angle velocity of stator,
belt tension

ω1, ω2, ωr1, ωr2 (in Eqs. (2)
and (3))

The angle velocity of motor and load

c1, c2, b1, b2 Stiffness and friction coefficient

Δω1,Δω2 The errors of angle speed in presence of backlash and elastic

Table 1. Dynamic parameters.
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_x1 ¼ 1
T

u� x2ð Þ

_x2 ¼ JL
1

KTC
f 1 x1ð Þ þ KC u� x2ð Þf 2 x1ð Þ � TL þ r:x3ð Þ

� �

_x3 ¼ C12 r1x21 � r2x22 1þ 1
C12:l

x3

� �� �

y ¼ x3

8>>>>>>>>><
>>>>>>>>>:

(3)

Remark 1:

The dynamic Eqs. (2) and (3) and Figures 1 and 2 are described by the effect of friction,
backlash, and elastic and pointed out the nonlinear property of multimotor systems.

The control objective is to find the synchronous speeds u ¼ u1;u2ð Þ ¼ ω1;ω2ð Þ∈ℝ2 to obtain
that the desired value are tracked by tensions in the presence of friction and elastic. In order to
implement this work, a new scheme is proposed to design an output feedback controller
involving a high-gain observer and a sliding mode control law. Moreover, the effectiveness to
satisfy the separation principle is pointed out in multimotor control system.

Figure 2. The equivalent diagram of the two-motor drive system.
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3. Observer design

As mentioned above, the main motivation of the work is to find an equivalent high-gain
observer for the class of multimotor systems. In the following, one will present the proposed
high-gain observer to estimate the tension in this system and provide a full analysis of obser-
vation error convergence.

MISO systems are described as follows:

d
dt
x ¼ Axþ γ x; u; yð Þ þ φ u; yð Þ

y ¼ cTxþ ξ uð Þ

8<
: (4)

where γ x; u; yð Þ satisfy the global Lipschitz condition γ x; uð Þ � γ bx; uð Þj j ≤α x� bxj j and

A ¼

0 1 0 … 0

0 0 1 0

… ⋮

0 1

0 0 … 0

2
666666664

3
777777775
, cT ¼ 1, 0, … 0½ �.

Lemma 1 [5]: The classical high-gain observer is pointed out by the following equations:

d
dt
bx ¼ Abx þ L y� cTbx� �þ γ bx; uð Þ (5)

where L ¼
h1ε�1

⋮
hnε�n

2
64

3
75 and ε is a small enough positive number and hn, hn�1,…, h1are coefficients

of a Hurwitz polynomial (6)

P sð Þ ¼ hn þ hn�1sþ…þ h1sn�1 þ sn (6)

Remark 1:

The classical high-gain observer is the next development of Lipschitz observer with the addi-

tional contents of the coefficient ε to obtain a < λmin Qð Þ
2λmax Pð Þ without solving the LMIs problem.

However, the previous observer (5) is only suitable to systems with one output. In order to
design for multi-output systems, Farza et al. develop many observers for a class of MIMO
nonlinear systems [6–9]. Based on the proposed high-gain observer that is pointed out in (7)
[4], we obtain the observer (8) for multimotor systems (3):
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_x_ ¼ f u; s; x_
� �

�

θCq
1In1

θ2Cq
2

∂f 1
∂x2 u; s; xð Þ
h iþ

⋮

θqCq
q

Yq�1

i¼1

∂f k
∂xkþ1 u; s; xð Þ

" #þ

0
BBBBBBBB@

1
CCCCCCCCA
C x_ �x
� �

(7)

_bx1 ¼ 1
T

u� bx2ð Þ � 3θ bx3 � x3ð Þ

_bx2 ¼ JL
1

KTC
f 1 bx1ð Þ þ KC u� bx2ð Þf 2 bx1ð Þ � TL þ r:bx3ð Þ

� �
þ θ2

T
bx3 � x3ð Þ

_bx3 ¼ C12 r1bx21 � r2bx22 1þ 1
C12:l

bx
3

� �� �
þ rJLθ

3 bx3 � x3ð Þ

y ¼ x3

8>>>>>>>>>>>><
>>>>>>>>>>>>:

(8)

Remark 2: The convergence of observer error based on the high-gain observer (8) is pointed
out in [3, 4].

4. Sliding mode control

In this section, the main work is to find a state feedback control law based on the sliding mode
control technique for the class of multimotor systems.

Nonlinear systems are described as follows:

d
dt
x ¼ Axþ B uþ ud x; tð Þð Þ (9)

where ud x; tð Þ is the nonlinear term in system.
Lemma 2 [10]: The sliding mode controller is described as follows

u ¼ � S:Axþ βsgn σð Þ� �
(10)

based on the sliding surface:

x : σ ¼ Sx ¼ 0f g,
S ¼ BTX�1B

� ��1
BTX�1X

(11)

with X is satisfied, the LMI problem as follows:

IIT AXþ XAT� �
II < 0, X > 0, II ¼ 1 0 0½ �T (12)

Adaptive Robust Control Systems46

Remark 3. We obtain the sliding mode control for multimotor systems (2) based on Lemma 3
because it belongs to the class of systems (9).

5. Observer-integrated sliding mode control

After we obtain the output feedback control law combined between slidingmode controller and
high-gain observer, the main work is to point out the ability to obtain the separation principle of
the proposed solution.

Consider the nonlinear systems:

d
dt
x ¼ Axþ f x; u; tð Þ

y ¼ Cx

8<
: (13)

with f x; u; tð Þ satisfying the global Lipschitz condition

f x; u; tð Þ � f x0; u; tð Þj j ≤ a x� x0j j ∀x; x0; uð Þ (14)

Lemma 3 [5]: If there exists a control Lyapunov function V xð Þ and the corresponding control
input u ¼ r xð Þ satisfy

∂V
∂x

f x; u; tð Þ � f x
0
; u; t

� �h i����
���� ≤ b x� x

0�� ��2, ∀x, x0
> 0 (15)

Then the output feedback control law using the observer (16) and (17) and the state feedback
controller u ¼ r xð Þ is described as above:

dbx
dt

¼ Abx þ f bx; u; tð Þ þ L y� Cbxð Þ (16)

where L is the matrix is satisfied all the real parts of eigenvalues of A� LCð Þ that is negative
and matrices P,Q satisfy the Lyapunov equation

A� LCð ÞTPþ P A� LCð Þ ¼ �Q (17)

and

a <
λmin Qð Þ � b
2λmax Pð Þ (18)

Theorem 1. The whole system (Figure 1) is asymptotically stable by the output feedback
control law with the high-gain observer (8) and the nonlinear state feedback controller (10).
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Remark 3. We obtain the sliding mode control for multimotor systems (2) based on Lemma 3
because it belongs to the class of systems (9).

5. Observer-integrated sliding mode control

After we obtain the output feedback control law combined between slidingmode controller and
high-gain observer, the main work is to point out the ability to obtain the separation principle of
the proposed solution.
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Proof: Using the Lyapunov candidate function V xð Þ ¼ xTPx, we obtain the inequality (15)
based on x being the state trajectory of multimotor system (5).
Remark 4. This result is a development from the results in [1–4], because the separation
principle of output feedback controller has not been implemented in previous researches.

6. Simulation results

In this section, we consider several simulation results to demonstrate the effectiveness of the
proposed output feedback control law based on the two-motor system as shown in Table 2.
Figures 3 and 4 show the high-performance behavior of velocity based on the proposed high-gain

np1 4

J1 50 kgm2

Lr1 0.2 H

TL1 30 Nm

np2 4

J2 55 kgm2

Lr2 0.3 H

TL2 25 Nm

Table 2. Multimotor system parameters.

Figure 3. The velocity of motor 1 and estimation of it.
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observer. Moreover, we obtain the high tracking performance of tension in the presence of
friction and elastic (Figure 5). Furthermore, Figures 6 and 7 show the tracking performance
behavior of velocity based on adaptive sliding mode control law in the presence of disturbance
(Figure 9). Figures 8 and 10 show the high tracking performance behavior of velocity based on
adaptive sliding mode control law without disturbance.

Figure 4. The velocity of motor 2 and estimation of it.

Figure 5. The tension of system and estimation of it.
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Figure 6. The behavior of the first motor’s speed in the presence of disturbance.

Figure 7. The behavior of the second motor’s speed in the presence of disturbance.
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Figure 8. The behavior of the first motor’s speed without disturbance.

Figure 9. The behavior of the second motor’s speed without disturbance.

High-Gain Observer–Based Sliding Mode Control of Multimotor Drive Systems
http://dx.doi.org/10.5772/intechopen.71656

51



Figure 6. The behavior of the first motor’s speed in the presence of disturbance.

Figure 7. The behavior of the second motor’s speed in the presence of disturbance.

Adaptive Robust Control Systems50

Figure 8. The behavior of the first motor’s speed without disturbance.

Figure 9. The behavior of the second motor’s speed without disturbance.
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7. Conclusions

This chapter described an output feedback control law based on the combination between
high-gain observer and sliding mode control for the two-motor system in the presence of
elastic, backlash, and friction. The proposed control law allows to obtain the separation prin-
ciple in the presence of friction and elastic due to the tuning of parameter in proposed high-
gain observer. The effectiveness of the proposed control scheme was pointed out by theory
analysis and simulation results.
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Abstract

Doubly-fed induction generator (DFIG) is the most implemented electric machine in
wind energy conversion systems (WECSs) due to reduced size converter, active and
reactive power control, and economic factors. However, the power electronic stage
needs an accurate controller that allows to follow the stator power regulation despite
the presence of disturbances. On the other hand, sliding-mode control (SMC) offers a
fast-dynamic response and provides insensitivity to matched and bounded disturbance/
uncertainties, and its natural discontinuous control signals can be used for direct
switching of power electronic devices. Switching frequency must be maintained inside
acceptable values to avoid exceeding the maximum admissible switching frequency of
semiconductors. The contribution of this chapter is a stator-flux–oriented SMC with a
hysteresis band that limits the switching frequency of power electronic devices to a set
value. Furthermore, the proposed SMCs ensure robustness against bounded low-
voltage grid faults. Unlike other nonmodulated techniques like direct torque control
(DTC), there is no necessity of modifying the controller structure for withstanding low-
depth voltage dips. The controller injects negative sequence voltage/currents to compen-
sate the unbalanced conditions. The advantages of the proposed SMC control are validated
via simulations.

Keywords: doubly-fed induction generator, sliding mode control

1. Introduction

In recent years, wind energy has been established as the fastest growing energy source among
renewables. From a global perspective, more than 90 countries have been involved in the
installation of new renewable wind power plants [1]. In 2015, the new global installed capacity
hit the record for an increase of approximately 64 GW. During 2016, more than 54 GW were
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installed for a total of approximately 487 GW by the end of 2016. Conservative prognoses
forecast an increment of 60 GW in 2017 with a continuous annual grow of about 75 GW by
2021. With the continued improvement in wind turbines technology and ecological concerns,
the wind power is now a serious competitor against heavily subsidized energy industries [1, 2].

Doubly-fed induction generator (DFIG) is a wound-rotor induction machine with voltage
injection in the rotor winding. This allows a limited speed control of the electric machine,
which is sufficient to implement maximum aerodynamic efficiency by maintaining the tip-
speed ratio at the nominal value at most operational conditions of the turbine.

The success of DFIG in wind energy applications lies in the reduced power converter, which is
typically about 25–30% of the nominal power of the electric machine; furthermore, by current
injection in the rotor, it is possible to control the reactive power injected to the electric grid,
which is very important for minimizing cooper loses or reactive power compensation [3]. More
than 70% of the installed wind turbines use DFIG. However, this machine is very sensitive to
voltage variations in the grid because the stator is directly connected to the grid [4], in contrast
to other variable-speed machines that are connected through a full-size power converter.

Sliding mode control (SMC) is a nonlinear control technique that ensures finite-time conver-
gence of the sliding surface to zero guarantying robustness against bounded disturbances and
parameter variations [9]. The main disadvantage of SMC is the chattering effect (high frequency
oscillations with finite amplitude) caused by unmodeled dynamics and discretization [9]. On the
other hand, power electronics are controlled by means of the injection of discontinuous signals
matching with the discontinuous nature of conventional SMC; therefore, conventional SMC can
be used for direct switching of power electronics on DFIG applications, avoiding modulation.
SMC has been successfully implemented in DFIG control and tested under unbalanced condi-
tions and harmonics [11, 15–18]. However, the proposals given in [16, 17] require modulation,
and the tested faults are moderate since these do not represent a brusque variation in the stator
voltage. The SMC presented in [15–18] works under unbalanced conditions but implementation
of the SMC regarding the commutation of the power electronics is not discussed.

In this chapter, it is presented a SMC with the following advantages: (a) do not required
modulation; (b) do not require modifications of the controller structure to withstand stator
voltage perturbances (compared with classical control approach as direct-torque-control [DTC],
see [5]); and (c) the controller can regulate torque and reactive power even under unbalanced
conditions, which is equivalent to negative current regulation. Therefore, the proposed SMC
offers a very simple alternative that requires neither symmetrical decomposition nor pulse width
modulation and is not affected by parameter variation. Furthermore, the DFIG systemwith SMC
is characterized in the frequency domain for estimating the commutation frequency of power
electronics. A maximum switching frequency value is ensured by means of the addition of
hysteresis in the sign function. The hysteresis value is computed applying the Tsypkin’s method,
a theoretically exact technique to analyze nonlinear systems [12, 14]. Due to the nature of the
power converter, the voltage gain seen by the controller is variable in time, which makes difficult
to maintain the switching frequency constant. However, it is possible to compute a maximum
switching frequency value (minimum hysteresis value), which provides a commutation fre-
quency inside of the acceptable values given in the datasheet of the power electronics.
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The chapter presents the dynamic modeling of the electric machine and the wind turbine,
the controller design, frequency domain characterization, and finally, fault-ride through
capability is evaluated analyzing the regulated current from a sequence components point
of view.

2. Aerodynamic model of wind turbine

Horizontal axis wind turbines are used to extract mechanical power from the wind resource
based on the lifting force of the rotor blades. The mechanical power is a function of the
kinematic energy of the wind and the power coefficient:

Pwind ¼ 1
2
CP Λ;γð ÞρAV3 (1)

The power coefficient is a function of the tip speed ratio and the pitch angle. Since very
complex aerodynamic analyses are required to characterize turbine blades, the power coeffi-
cient is usually approximated using mathematical expressions such as [7]:

CP ¼ c1 c2κ� c3γ� c4γc5 � c6ð Þe�c7κ (2)

where κ ¼ 1
Λþ0:06 γ � 0:035

1þγ3 and c1 to c7 are coefficients dependent on the blades geometry.

The tip speed ratio is the relationship between the tangential speed of the blades tip and the
wind speed if it is expressed using the DFIG mechanical speed and the gearbox ratio we
obtain:

Figure 1. Power coefficient as a function of tip speed ratio and pitch angle.

Stator-Flux-Oriented Sliding Mode Control for Doubly Fed Induction Generator
http://dx.doi.org/10.5772/intechopen.70714

57



installed for a total of approximately 487 GW by the end of 2016. Conservative prognoses
forecast an increment of 60 GW in 2017 with a continuous annual grow of about 75 GW by
2021. With the continued improvement in wind turbines technology and ecological concerns,
the wind power is now a serious competitor against heavily subsidized energy industries [1, 2].

Doubly-fed induction generator (DFIG) is a wound-rotor induction machine with voltage
injection in the rotor winding. This allows a limited speed control of the electric machine,
which is sufficient to implement maximum aerodynamic efficiency by maintaining the tip-
speed ratio at the nominal value at most operational conditions of the turbine.

The success of DFIG in wind energy applications lies in the reduced power converter, which is
typically about 25–30% of the nominal power of the electric machine; furthermore, by current
injection in the rotor, it is possible to control the reactive power injected to the electric grid,
which is very important for minimizing cooper loses or reactive power compensation [3]. More
than 70% of the installed wind turbines use DFIG. However, this machine is very sensitive to
voltage variations in the grid because the stator is directly connected to the grid [4], in contrast
to other variable-speed machines that are connected through a full-size power converter.

Sliding mode control (SMC) is a nonlinear control technique that ensures finite-time conver-
gence of the sliding surface to zero guarantying robustness against bounded disturbances and
parameter variations [9]. The main disadvantage of SMC is the chattering effect (high frequency
oscillations with finite amplitude) caused by unmodeled dynamics and discretization [9]. On the
other hand, power electronics are controlled by means of the injection of discontinuous signals
matching with the discontinuous nature of conventional SMC; therefore, conventional SMC can
be used for direct switching of power electronics on DFIG applications, avoiding modulation.
SMC has been successfully implemented in DFIG control and tested under unbalanced condi-
tions and harmonics [11, 15–18]. However, the proposals given in [16, 17] require modulation,
and the tested faults are moderate since these do not represent a brusque variation in the stator
voltage. The SMC presented in [15–18] works under unbalanced conditions but implementation
of the SMC regarding the commutation of the power electronics is not discussed.

In this chapter, it is presented a SMC with the following advantages: (a) do not required
modulation; (b) do not require modifications of the controller structure to withstand stator
voltage perturbances (compared with classical control approach as direct-torque-control [DTC],
see [5]); and (c) the controller can regulate torque and reactive power even under unbalanced
conditions, which is equivalent to negative current regulation. Therefore, the proposed SMC
offers a very simple alternative that requires neither symmetrical decomposition nor pulse width
modulation and is not affected by parameter variation. Furthermore, the DFIG systemwith SMC
is characterized in the frequency domain for estimating the commutation frequency of power
electronics. A maximum switching frequency value is ensured by means of the addition of
hysteresis in the sign function. The hysteresis value is computed applying the Tsypkin’s method,
a theoretically exact technique to analyze nonlinear systems [12, 14]. Due to the nature of the
power converter, the voltage gain seen by the controller is variable in time, which makes difficult
to maintain the switching frequency constant. However, it is possible to compute a maximum
switching frequency value (minimum hysteresis value), which provides a commutation fre-
quency inside of the acceptable values given in the datasheet of the power electronics.

Adaptive Robust Control Systems56

The chapter presents the dynamic modeling of the electric machine and the wind turbine,
the controller design, frequency domain characterization, and finally, fault-ride through
capability is evaluated analyzing the regulated current from a sequence components point
of view.

2. Aerodynamic model of wind turbine

Horizontal axis wind turbines are used to extract mechanical power from the wind resource
based on the lifting force of the rotor blades. The mechanical power is a function of the
kinematic energy of the wind and the power coefficient:

Pwind ¼ 1
2
CP Λ;γð ÞρAV3 (1)

The power coefficient is a function of the tip speed ratio and the pitch angle. Since very
complex aerodynamic analyses are required to characterize turbine blades, the power coeffi-
cient is usually approximated using mathematical expressions such as [7]:

CP ¼ c1 c2κ� c3γ� c4γc5 � c6ð Þe�c7κ (2)

where κ ¼ 1
Λþ0:06 γ � 0:035

1þγ3 and c1 to c7 are coefficients dependent on the blades geometry.

The tip speed ratio is the relationship between the tangential speed of the blades tip and the
wind speed if it is expressed using the DFIG mechanical speed and the gearbox ratio we
obtain:

Figure 1. Power coefficient as a function of tip speed ratio and pitch angle.

Stator-Flux-Oriented Sliding Mode Control for Doubly Fed Induction Generator
http://dx.doi.org/10.5772/intechopen.70714

57



Λ ¼ ωmr
ηV

(3)

Pitch angle is normally used for aerodynamically reduce power extraction when the wind
speed is above the nominal value. For normal operation, it is maintained constant, while the
rotor speed is controlled by the DFIG to maintain the tip speed ratio constant, for the blades
model shown in Figure 1, the nominal pitch angle is zero and the nominal tip speed ratio is 8
for a maximum power coefficient of approximately 0.41. The parameters used to generate the
displayed function are c1 = 0.5 ; c2 = 116 ; c3 = 0.4 ; c4 = 0 ; c6 = 5 ; c7 = 21:

3. Dynamic modeling of the DFIG

The dynamic equivalent circuit of DFIG can be expressed in an arbitrary reference frame
rotating at a speed equal to ω [6, 8]:

vsd ¼ dλsd

dt
� ωλsq þ Rsisd (4)

vsq ¼
dλsq

dt
þ ωλsd þ Rsisq (5)

vrd ¼ dλrd

dt
� ω� ωmð Þλrq þ Rrird (6)

vrq ¼
dλrq

dt
þ ω� ωmð Þλrd þ Rrirq (7)

λsd ¼ Lsisd þ Lmird (8)

λsq ¼ Lsisq þ Lmirq (9)

λrd ¼ Lrird þ Lmisd (10)

λrq ¼ Lrirq þ Lmisq (11)

The electromagnetic torque can be expressed as an interaction between rotor current and stator
magnetic flux:

Tem ¼ 3PLm
2Ls

irdλsq � irqλsd
� �

(12)

A common expression of the stator reactive power in terms of the stator voltage and rotor
current is:

Qs ¼
3Lm
2Ls

vsdirq � vsqird
� �þ 3

2Ls
λsdvsq � λsqvsd
� �

(13)

The second term of Eq. (13) is the reactive power required to magnetize the electric machine.
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The basic scheme of a wind turbine is shown in Figure 2. A back-to-back power converter is
necessary to send the required voltage to the rotor. In the grid side, it is also necessary a
converter since the power flow must be bidirectional, from the electric machine to the grid at
super-synchronous operation of the machine and from the electric grid to the machine at sub-
synchronous operation. Grid side converter is usually controlled by cascade controller, which
maintains DC-link voltage constant by regulating the grid current. The reactive power can also
be controlled; hence, the wind turbine operates at unitary power factor, or it can inject reactive
power to the grid similarly to an electrically excited synchronous generator. For purposes of this
work, let us consider that the DC-link voltage is maintained constant by the grid-side controller.

3.1. Rotor-side power converter model

DFIG rotors are typically connected in star with the neutral connection isolated, the voltage if
measured from phase a to the neutral point of the rotor star will be a combination of the phase
voltages, which can be summarized using the following matrix equation:

van
vbn
vcn

2
64

3
75 ¼ VDC

3

2 �1 �1
�1 2 �1
�1 �1 2

2
64

3
75

S1
S2
S3

2
64

3
75

zfflffl}|fflffl{S123

(14)

Each component of the vector S1,2,3 has only two valid states, 0 or 1. Then, each phase voltage
has six different possible values: � 2

3VDC, � 1
3VDC, 0: The rotor side converter can be analyzed

as a discontinuous sign function with variable gain.

4. Sliding mode controller design

It is well known from vector control that orienting the machine model presented in Section 3 in
the stator flux reference frame is an effective way for decoupling active power (or torque) and
reactive power control by means of rotor current regulation. In normal operation, the stator

Figure 2. Basic scheme of DFIG-based wind turbine.
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Λ ¼ ωmr
ηV

(3)
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voltage vector will lead the stator flux by approximately 90 degrees neglecting voltage drop
due to the stator resistance. From Eqs. (12) and (13) oriented at the stator flux direction, i.e.,
λsq = 0 and vsd = 0, we obtain a decoupled control system: Tem ¼ � 3PLm

2Ls
λsdirq and Qs ¼ � 3Lm

2Ls

vsqird þ 3
2Ls

λsdvsq: However, under unbalanced conditions, the phase shift between voltage and

flux will not be constant; therefore, robust control is necessary to withstand this perturbation.

From Eq. (8), the direct axis component of stator current can be expressed as:

isd ¼ λsd � Lmird
Ls

(15)

Substituting Eq. (15) in Eq. (10):

λrd ¼ L0rird þ
Lm
Ls

λsd (16)

where L0r ¼ Lr � L2m
Ls
.

The quadrature component of rotor flux can be obtained in a similar way:

λrq ¼ L0rirq þ
Lm
Ls

λsq (17)

Substituting Eqs. (16) and (17) in (6) and (7) and solving for dird
dt and dirq

dt :

dird
dt

¼ 1
L0r

vrd � Rrird � Lm
Ls

dλsd

dt
þ ωrL0rirq þ

Lm
Ls

ωrλsq

� �
(18)

dirq
dt

¼ 1
L0r

vrq � Rrirq � Lm
Ls

dλsq

dt
� ωrL0rird �

Lm
Ls

ωrλsd

� �
(19)

where ωr =ωs�ωm. Since the reference frame selected rotate at a synchronous speed, ωr is
equivalent to the rotor current angular speed and the slip angular frequency.

In Figure 3, the equivalent system for current regulation is shown. Under normal operation, the
stator flux induces a voltage in the quadrature axis loop. The induced voltage is proportional to
the slip and affects only the active power (or torque) regulation loop. Under a grid fault, the stator
flux is directly affected and can be analyzed as another perturbation affecting the current regula-
tion. Analyzing the flux in positive, negative, and natural fluxes, we can see the influence of the
induced voltage (perturbation) to the current regulation loop. The positive sequence flux has an
induced voltage proportional to sωs, the slip is less than 0.3 for this type of machine; therefore, the
induced voltage is low. The natural flux does not rotate; therefore, the induced voltage is propor-
tional to the mechanical speed of the machine, and the negative flux rotates opposite to the
reference frame orientation, the induced voltage is very large, proportional to near twice the
synchronous speed (2� s)ωs [8]. If the grid fault is very large, no control strategy could withstand
this kind of perturbation, since the induced voltage may be larger than the rotor voltage. For that
reason, external protection devices are required, and the simplest one is the crowbar.
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SMC is robust against bounded disturbances and parameter variations; hence, it is a good
alternative to control perturbed plants as the DFIG model shown in Figure 3. As we want to
control the torque and reactive power, the following sliding surfaces are selected:

σTem ¼ Tem � T∗
em; σQs

¼ Qs �Q∗
s (20)

where T∗
em and Q∗

s are the desired (reference) value of torque and reactive power, considering
that the reference values are much slower than the dynamics of the system and that the stator
flux is perfectly aligned with the reference frame d axis:

_σTem ¼ _Tem ¼ � 3PLm
2Ls

_irqλsd þ irq _λsd
� �

(21)

On the other hand, the voltage vector may have a d component due to voltage perturbation:

_σQs
¼ _Qs ¼

3Lm
2Ls

_vsdirq þ vsd _irq � _vsq ird � vsq _ird
� �þ 3

2Ls
_λsdvsq þ λsd _vsq
� �

(22)

Substituting Eqs. (18) and (19) in (22) and (23):

_σTem ¼ kPλsd Rrirq þ Lm
Ls

ωrλsd þ ωrL0rird

� �zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{FTem

�kPλsdvrq
zfflfflfflfflfflffl}|fflfflfflfflfflffl{dTem

�kPL0rirq _λsd

zfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflffl{PTem

(23)

_σQs
¼ kvsq Rrirq � ωrL0rirq

� �zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{FQs

�kvsqvrd
zfflfflfflfflffl}|fflfflfflfflffl{dQs

þkvsq
Lm
Ls

_λsd þ L0r
vsq

_vsdirq þ vsd _irq � _vsq ird
� �� �

þ 3
2Ls

_λsdvsq þ λsd _vsq
� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
PQs

(24)

Figure 3. Equivalent current plant including stator flux perturbation.
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voltage vector will lead the stator flux by approximately 90 degrees neglecting voltage drop
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flux will not be constant; therefore, robust control is necessary to withstand this perturbation.

From Eq. (8), the direct axis component of stator current can be expressed as:

isd ¼ λsd � Lmird
Ls

(15)

Substituting Eq. (15) in Eq. (10):

λrd ¼ L0rird þ
Lm
Ls

λsd (16)

where L0r ¼ Lr � L2m
Ls
.

The quadrature component of rotor flux can be obtained in a similar way:

λrq ¼ L0rirq þ
Lm
Ls

λsq (17)

Substituting Eqs. (16) and (17) in (6) and (7) and solving for dird
dt and dirq

dt :

dird
dt

¼ 1
L0r

vrd � Rrird � Lm
Ls
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dt
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Lm
Ls

ωrλsq
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(18)

dirq
dt
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Ls
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dt
� ωrL0rird �

Lm
Ls

ωrλsd
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the slip and affects only the active power (or torque) regulation loop. Under a grid fault, the stator
flux is directly affected and can be analyzed as another perturbation affecting the current regula-
tion. Analyzing the flux in positive, negative, and natural fluxes, we can see the influence of the
induced voltage (perturbation) to the current regulation loop. The positive sequence flux has an
induced voltage proportional to sωs, the slip is less than 0.3 for this type of machine; therefore, the
induced voltage is low. The natural flux does not rotate; therefore, the induced voltage is propor-
tional to the mechanical speed of the machine, and the negative flux rotates opposite to the
reference frame orientation, the induced voltage is very large, proportional to near twice the
synchronous speed (2� s)ωs [8]. If the grid fault is very large, no control strategy could withstand
this kind of perturbation, since the induced voltage may be larger than the rotor voltage. For that
reason, external protection devices are required, and the simplest one is the crowbar.
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SMC is robust against bounded disturbances and parameter variations; hence, it is a good
alternative to control perturbed plants as the DFIG model shown in Figure 3. As we want to
control the torque and reactive power, the following sliding surfaces are selected:

σTem ¼ Tem � T∗
em; σQs

¼ Qs �Q∗
s (20)

where T∗
em and Q∗

s are the desired (reference) value of torque and reactive power, considering
that the reference values are much slower than the dynamics of the system and that the stator
flux is perfectly aligned with the reference frame d axis:

_σTem ¼ _Tem ¼ � 3PLm
2Ls

_irqλsd þ irq _λsd
� �

(21)

On the other hand, the voltage vector may have a d component due to voltage perturbation:

_σQs
¼ _Qs ¼

3Lm
2Ls

_vsdirq þ vsd _irq � _vsq ird � vsq _ird
� �þ 3

2Ls
_λsdvsq þ λsd _vsq
� �

(22)

Substituting Eqs. (18) and (19) in (22) and (23):

_σTem ¼ kPλsd Rrirq þ Lm
Ls

ωrλsd þ ωrL0rird

� �zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{FTem

�kPλsdvrq
zfflfflfflfflfflffl}|fflfflfflfflfflffl{dTem

�kPL0rirq _λsd

zfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflffl{PTem

(23)

_σQs
¼ kvsq Rrirq � ωrL0rirq

� �zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{FQs

�kvsqvrd
zfflfflfflfflffl}|fflfflfflfflffl{dQs

þkvsq
Lm
Ls

_λsd þ L0r
vsq

_vsdirq þ vsd _irq � _vsq ird
� �� �

þ 3
2Ls

_λsdvsq þ λsd _vsq
� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
PQs

(24)

Figure 3. Equivalent current plant including stator flux perturbation.
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where k ¼ 3Lm
2LsL0r

, expressing Eqs. (23) and (24) in matrix form:

_σTem

_σQs

� �
¼ FTem

FQs

� �
� k

0 Pλsd

vsq 0

� �
vrd
vrq

� �
þ PTem

PQs

� �
(25)

Under normal conditions, all the terms dependent on vsd, _vsd, _vsq and _λsd are equal to zero.
Under abnormal conditions those terms can be analyzed as perturbations PTem and PQs

. The
control signals vrd and vrq appears in the first derivate of the sliding surface, thus the relative
degree of the control system is one. Then, finite time convergence to the sliding surface and
robustness against bounded disturbance/uncertainties can be achieved using the control signal:

vrd
vrq

� �
¼ �Md sgn σQs

� �

�Mq sgn σTem

� �
" #

(26)

where Md ,Mq > 0. A detailed description of Md and Mq computation is given in section 4.1.

Remark: A discontinuous function is intentionally selected because the nature of the rotor-side
power converter is discontinuous as well; therefore, the control signal can be easily used
directly from the controller algorithm to the power converter without modulation. On the
contrary, any continuous control; e.g. saturation, sigmoid function, etc. employed to smooth
the discontinuous control in Eq. (26) must be modulated to be implementable in a power
converter; therefore, chattering will be present no matter the control strategy used.

The desired voltage need to be send through the rotor-side power converter. The voltage seen
from the stator flux reference frame is obtained using park transform:

vrd
vrq

� �
¼ cosθd � sinθd

sinθd cosθd

� �
2
3

1 �1=2 �1=2
0

ffiffiffi
3

p
=2 � ffiffiffi

3
p

=2

� �zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{T
van
vbn
vcn

2
64

3
75 (27)

where the reference frame angle is θd =θm�θsf.

Using Eqs. (14) (25) and (27), it is possible to establish a relationship between dq and abc
quantities:

σTem

σQs

� �
¼ �k

0 Pλsd

vsq 0

� �
T
VDC

3

2 �1 �1
�1 2 �1
�1 �1 2

2
64

3
75

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{D

σa
σb
σc

2
64

3
75 (28)

Since the matrix D is not square, the Moore-Penrose pseudo-inverse is used:

σa
σb
σc

2
64

3
75

zfflffl}|fflffl{σabc

¼ Dþ σTem

σQs

� �
(29)
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where:

Dþ ¼ DT DDT� ��1 ¼ � 3
kVDC

1
Pλsd

sinθd
1
vsq

cosθd

1
Pλsd

sin θd þ 2π=3ð Þ 1
vsq

cos θd þ 2π=3ð Þ
1

Pλsd
sin θd � 2π=3ð Þ 1

vsq
cos θd � 2π=3ð Þ

2
66666664

3
77777775

The constant term 3
kVDC

, which contains parameters of the electric machine, can be removed

from the transformation matrix, since the controller will only evaluate the sign of σabc, thus the
controller is robust against parametric uncertainties; under normal conditions, the stator flux
direct component (λsd) and stator voltage quadrature component (vsq) are constant. In Figure 4
is shown the basic scheme of the presented controller. The output of Eq. (29) is the equivalent
abc sliding surface, then a function similar to sign is used to evaluate the switch state (0 means
lower leg activated and 1 means upper leg activated). The resulting control system does not
require modulation since the switching state is determined directly from the control system.

4.1. Sliding mode existence condition

For a relative degree one system

_σ ¼ F xð Þ þ d xð Þu x∈Rnð Þ (30)

With a scalar control

u ¼ �M sgn σð Þ (31)

The condition for satisfying the existence of the sliding mode is [9]:

Figure 4. Basic scheme of SMC.
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where k ¼ 3Lm
2LsL0r

, expressing Eqs. (23) and (24) in matrix form:

_σTem
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¼ FTem

FQs

� �
� k

0 Pλsd

vsq 0

� �
vrd
vrq
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þ PTem

PQs

� �
(25)

Under normal conditions, all the terms dependent on vsd, _vsd, _vsq and _λsd are equal to zero.
Under abnormal conditions those terms can be analyzed as perturbations PTem and PQs

. The
control signals vrd and vrq appears in the first derivate of the sliding surface, thus the relative
degree of the control system is one. Then, finite time convergence to the sliding surface and
robustness against bounded disturbance/uncertainties can be achieved using the control signal:

vrd
vrq

� �
¼ �Md sgn σQs

� �

�Mq sgn σTem

� �
" #

(26)

where Md ,Mq > 0. A detailed description of Md and Mq computation is given in section 4.1.

Remark: A discontinuous function is intentionally selected because the nature of the rotor-side
power converter is discontinuous as well; therefore, the control signal can be easily used
directly from the controller algorithm to the power converter without modulation. On the
contrary, any continuous control; e.g. saturation, sigmoid function, etc. employed to smooth
the discontinuous control in Eq. (26) must be modulated to be implementable in a power
converter; therefore, chattering will be present no matter the control strategy used.

The desired voltage need to be send through the rotor-side power converter. The voltage seen
from the stator flux reference frame is obtained using park transform:

vrd
vrq

� �
¼ cosθd � sinθd

sinθd cosθd

� �
2
3

1 �1=2 �1=2
0

ffiffiffi
3

p
=2 � ffiffiffi

3
p

=2

� �zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{T
van
vbn
vcn

2
64

3
75 (27)

where the reference frame angle is θd =θm�θsf.

Using Eqs. (14) (25) and (27), it is possible to establish a relationship between dq and abc
quantities:

σTem

σQs

� �
¼ �k

0 Pλsd

vsq 0

� �
T
VDC

3

2 �1 �1
�1 2 �1
�1 �1 2

2
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3
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zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{D

σa
σb
σc

2
64

3
75 (28)

Since the matrix D is not square, the Moore-Penrose pseudo-inverse is used:

σa
σb
σc

2
64

3
75

zfflffl}|fflffl{σabc

¼ Dþ σTem

σQs

� �
(29)
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where:

Dþ ¼ DT DDT� ��1 ¼ � 3
kVDC

1
Pλsd

sinθd
1
vsq

cosθd

1
Pλsd

sin θd þ 2π=3ð Þ 1
vsq

cos θd þ 2π=3ð Þ
1

Pλsd
sin θd � 2π=3ð Þ 1

vsq
cos θd � 2π=3ð Þ

2
66666664

3
77777775

The constant term 3
kVDC

, which contains parameters of the electric machine, can be removed

from the transformation matrix, since the controller will only evaluate the sign of σabc, thus the
controller is robust against parametric uncertainties; under normal conditions, the stator flux
direct component (λsd) and stator voltage quadrature component (vsq) are constant. In Figure 4
is shown the basic scheme of the presented controller. The output of Eq. (29) is the equivalent
abc sliding surface, then a function similar to sign is used to evaluate the switch state (0 means
lower leg activated and 1 means upper leg activated). The resulting control system does not
require modulation since the switching state is determined directly from the control system.

4.1. Sliding mode existence condition

For a relative degree one system

_σ ¼ F xð Þ þ d xð Þu x∈Rnð Þ (30)

With a scalar control

u ¼ �M sgn σð Þ (31)

The condition for satisfying the existence of the sliding mode is [9]:

Figure 4. Basic scheme of SMC.
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d xð ÞM > ∣F xð Þ∣ (32)

The stator-flux–oriented SMC has a very similar form of system of Eq. (30). Then, existence of
SMC is ensured if the following conditions are met:

Mq,min > jðFTem þ PTemÞ=dTem j;  Md,min > jðFQs
þ PQs

Þ=dQs
j (33)

Therefore, choosingMd andMq using Eq. (33) ensures finite convergence to the sliding variable
and insensitivity to bounded disturbance/uncertainties. The only requirement to compute the
gains Md and Mq is the knowledge of the bounds of the system and the disturbance/uncer-
tainties, ∣FQs ,Tem∣, ∣dQs ,Tem∣ and ∣PQs ,Tem∣. Note that real implementation of control gains in
Eqs. (33) depends of DC-link voltage VDC, which is variable in practice, and it must be ensured
that VDC is regulated correctly to ensure a robust performance of the rotor side of the DFIG
system.

4.2. Switching frequency limitation

In Figure 4 it is shown the scheme of an ideal sliding mode controller; however, it requires
infinite switching frequency, which is not possible in real physical systems, therefore, the most
common solution for this issue is to include a hysteresis loop to the ideal sign function [10]
since hysteresis makes the switching frequency finite. Note that sigmoid functions and satura-
tion can be implemented to reduce switching frequency as well as attenuate chattering. How-
ever, these functions are continuous and/or contain linear parts requiring modulation for its
application to power electronics, while a sign function with hysteresis can be injected without
modulation.

A widely used method to determine limit cycles and the oscillation frequency is the sinusoidal
describing function (DF), which can be used for segmented nonlinear system composed by a
linear system and a nonlinear part [12], that is the case of a linear plant controlled by a relay-
based control system (see Figure 5). A requirement for applying DF is that the linear system
L(s) must have a low-pass filter behavior. Furthermore, only the first harmonic is considered in
the analysis. However, for relative degree-one systems as the one presented in this chapter, this
technique is not suitable [12]. DF will predict no oscillations because it ignores the contribution
of the harmonics. On the other hand, Tsypkin’s method is an exact method in which one can

Figure 5. Relay-based control of a linear system.
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select the number of harmonics to be considered, and it can be applied to estimate oscillations
in relative degree one systems. Therefore, the DFIG system with SMC presented in this chapter
is analyzed in the frequency domain using Tsypkin’s method.

Expressing Eqs. (4)–(11) in matrix form:

_x ¼ Axþ Bu; y ¼ Cx (34)

where:

x ¼ isd isq ird irq
� �T ; u ¼ vsd vsq vrd vrq

� �T ;

A ¼ 1
L0rLs

�RsLr ωmL2m þ ωsL0rLs

�ωmL2m � ωsL0rLs �RsLr

RrLm ωmLmLr

�ωmLmLr RrLm

RsLm � ωmLsLm

ωmLsLm RSLm

�RrLs �ωmLrLs þ ωsL0rLs

ωmLrLs � ωsL0rLs �RrLs

2
6666664

3
7777775
;

B ¼ 1
L0rLs

Lr 0

0 Lr

�Lm 0

0 �Lr

�Lm 0

0 �Lm

Ls 0

0 Ls

2
666664

3
777775
; C ¼ 0 0

0 0

1 0

0 1

" #
.

The system presents a nonlinearity due to the mechanical speed ωm, which is dependent on the
electromagnetic torque and the mechanical equation; however, since the time scales of the
electrical quantities is much smaller than the time scale of the mechanical system, we are going
to study system of Eq. (34) as a set of linear systems varying the mechanical speed in a range of
�30% about the synchronous speed. Other supposition is that the system is fully decoupled,
that is, vrd controls ird and vrq controls irq. So, we can obtain both transfer functions from the
diagonal elements of the following matrix equation:

G sð Þ ¼ C sI � Að Þ�1BþD (35)

where I is a 4 x 4 identity matrix. The diagonal transfer functions will be relative degree one
systems with four poles and three zeros:

L sð Þ ¼ Ird sð Þ
Vrd sð Þ ¼

Irq sð Þ
Vrq sð Þ ¼

a3s3 þ a2s2 þ a1sþ a0
d4s4 þ d3s3 þ d2s2 þ d1sþ d0

(36)

Tsypkin’s locus is defined as [12]:

T jωð Þ ¼
X∞

n odd

Re L1 jnωð Þ½ � þ j
X∞

n odd

1
n
Im L1 jnωð Þ½ � (37)

The conditions required to predict a limit cycle oscillating at an angular frequency ω0 are [12]:
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d xð ÞM > ∣F xð Þ∣ (32)
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þ PQs

Þ=dQs
j (33)

Therefore, choosingMd andMq using Eq. (33) ensures finite convergence to the sliding variable
and insensitivity to bounded disturbance/uncertainties. The only requirement to compute the
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tainties, ∣FQs ,Tem∣, ∣dQs ,Tem∣ and ∣PQs ,Tem∣. Note that real implementation of control gains in
Eqs. (33) depends of DC-link voltage VDC, which is variable in practice, and it must be ensured
that VDC is regulated correctly to ensure a robust performance of the rotor side of the DFIG
system.

4.2. Switching frequency limitation

In Figure 4 it is shown the scheme of an ideal sliding mode controller; however, it requires
infinite switching frequency, which is not possible in real physical systems, therefore, the most
common solution for this issue is to include a hysteresis loop to the ideal sign function [10]
since hysteresis makes the switching frequency finite. Note that sigmoid functions and satura-
tion can be implemented to reduce switching frequency as well as attenuate chattering. How-
ever, these functions are continuous and/or contain linear parts requiring modulation for its
application to power electronics, while a sign function with hysteresis can be injected without
modulation.

A widely used method to determine limit cycles and the oscillation frequency is the sinusoidal
describing function (DF), which can be used for segmented nonlinear system composed by a
linear system and a nonlinear part [12], that is the case of a linear plant controlled by a relay-
based control system (see Figure 5). A requirement for applying DF is that the linear system
L(s) must have a low-pass filter behavior. Furthermore, only the first harmonic is considered in
the analysis. However, for relative degree-one systems as the one presented in this chapter, this
technique is not suitable [12]. DF will predict no oscillations because it ignores the contribution
of the harmonics. On the other hand, Tsypkin’s method is an exact method in which one can

Figure 5. Relay-based control of a linear system.
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select the number of harmonics to be considered, and it can be applied to estimate oscillations
in relative degree one systems. Therefore, the DFIG system with SMC presented in this chapter
is analyzed in the frequency domain using Tsypkin’s method.

Expressing Eqs. (4)–(11) in matrix form:

_x ¼ Axþ Bu; y ¼ Cx (34)

where:

x ¼ isd isq ird irq
� �T ; u ¼ vsd vsq vrd vrq
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The system presents a nonlinearity due to the mechanical speed ωm, which is dependent on the
electromagnetic torque and the mechanical equation; however, since the time scales of the
electrical quantities is much smaller than the time scale of the mechanical system, we are going
to study system of Eq. (34) as a set of linear systems varying the mechanical speed in a range of
�30% about the synchronous speed. Other supposition is that the system is fully decoupled,
that is, vrd controls ird and vrq controls irq. So, we can obtain both transfer functions from the
diagonal elements of the following matrix equation:

G sð Þ ¼ C sI � Að Þ�1BþD (35)

where I is a 4 x 4 identity matrix. The diagonal transfer functions will be relative degree one
systems with four poles and three zeros:

L sð Þ ¼ Ird sð Þ
Vrd sð Þ ¼

Irq sð Þ
Vrq sð Þ ¼

a3s3 þ a2s2 þ a1sþ a0
d4s4 þ d3s3 þ d2s2 þ d1sþ d0

(36)

Tsypkin’s locus is defined as [12]:

T jωð Þ ¼
X∞

n odd

Re L1 jnωð Þ½ � þ j
X∞

n odd

1
n
Im L1 jnωð Þ½ � (37)

The conditions required to predict a limit cycle oscillating at an angular frequency ω0 are [12]:
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Im T jω0ð Þ½ � ¼ π
4

L ∞ð Þ � δ
M

� �
(38)

Re T jω0ð Þ½ � < π
4ω0

lim
s!∞

sL1 sð Þ½ � (39)

In Figure 6 it is shown the graphical solution for a DFIG with the characteristics shown in
Table 1, the mechanical speed has minor influence at high frequencies; therefore, it is valid to
consider the DFIG as a linear system (note that the number of pole pairs is not considered in
(34); therefore, the mechanical speed reported is the one of an equivalent two pole machine).
Supposing that the power inverter has a maximum switching frequency of f max ¼ 4000 Hz !
ω0 ¼ 8000π rad

s , from Eq. (38), we can calculate the hysteresis width. We know that the maxi-

mum gain the system can have is Mmax ¼ 2
3Vdc, then the hysteresis loop that will ensure a

maximum switching frequency of 4000 Hz is:

δ ¼ ð0:3094Þð4Þ
π

� 2
3
600 ¼ 157:57 A

However, the control system was designed to direct control torque and reactive power, so we
need to calculate the hysteresis width of those quantities, which can be easily done since the
control system is decoupled, and the current direct and quadrature components are directly
related with reactive power and torque, respectively.

Figure 6. Graphical solution using Tsypkin’s method.
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δQs
¼ 3Lmvsq

2Ls
δ; δTem ¼ 3PLmλsd

2Ls
δ (40)

Moreover, as can be seen from Figure 6 and Eqs. (38) and (39), the addition of hysteresis can be
used to attenuated chattering since the hysteresis width is directly proportional to amplitude
of chattering while it is inversely proportional to the frequency.

4.3. Step-by-step design

The design of the SMC proposed in this section can be summarized in the next step-by-step
algorithm:

1. Select the sliding mode surfaces for torque and reactive power using Eq. (20).

2. Choose the gains, Md and Mq, of the controller in Eq. (26) using the conditions given in
Eq. (33) to guarantying robustness.

3. Compute a hysteresis value for the torque and reactive power controllers (sign functions)
using Eqs. (40) to ensure an acceptable switching frequency in the power electronics.

Then, following the step-by-step process described in this subsection, a robust SMC to regulate
torque and reactive power in DFIG systems can be designed. Furthermore, practical imple-
mentation is considered in the design since a method to compute a hysteresis value, limiting
undesired high frequency commutation in power electronics, is provided.

5. Complex power and torque under unbalanced conditions

The active and reactive power can be obtained from electrical quantities seen from a stationary
reference frame:

Nominal power = 2 MW

Voltage = 690 V / 50 Hz

DC-link voltage = 1200 V

Stator/rotor turns ratio = 1/2

Mutual inductance (Lm) = 2.5 mH

Stator inductance (Ls) = 2.58 mH

Rotor inductance (Lr) = 2.58 mH

Stator resistance (Rs) = 2.6 mΩ

Rotor resistance (Rr) = 2.9 mΩ|

Pole pairs (P) = 2

Table 1. Machine parameters used in simulation.

Stator-Flux-Oriented Sliding Mode Control for Doubly Fed Induction Generator
http://dx.doi.org/10.5772/intechopen.70714

67



Im T jω0ð Þ½ � ¼ π
4

L ∞ð Þ � δ
M

� �
(38)

Re T jω0ð Þ½ � < π
4ω0

lim
s!∞

sL1 sð Þ½ � (39)

In Figure 6 it is shown the graphical solution for a DFIG with the characteristics shown in
Table 1, the mechanical speed has minor influence at high frequencies; therefore, it is valid to
consider the DFIG as a linear system (note that the number of pole pairs is not considered in
(34); therefore, the mechanical speed reported is the one of an equivalent two pole machine).
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ω0 ¼ 8000π rad

s , from Eq. (38), we can calculate the hysteresis width. We know that the maxi-

mum gain the system can have is Mmax ¼ 2
3Vdc, then the hysteresis loop that will ensure a

maximum switching frequency of 4000 Hz is:

δ ¼ ð0:3094Þð4Þ
π

� 2
3
600 ¼ 157:57 A

However, the control system was designed to direct control torque and reactive power, so we
need to calculate the hysteresis width of those quantities, which can be easily done since the
control system is decoupled, and the current direct and quadrature components are directly
related with reactive power and torque, respectively.

Figure 6. Graphical solution using Tsypkin’s method.
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δQs
¼ 3Lmvsq

2Ls
δ; δTem ¼ 3PLmλsd

2Ls
δ (40)

Moreover, as can be seen from Figure 6 and Eqs. (38) and (39), the addition of hysteresis can be
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3. Compute a hysteresis value for the torque and reactive power controllers (sign functions)
using Eqs. (40) to ensure an acceptable switching frequency in the power electronics.

Then, following the step-by-step process described in this subsection, a robust SMC to regulate
torque and reactive power in DFIG systems can be designed. Furthermore, practical imple-
mentation is considered in the design since a method to compute a hysteresis value, limiting
undesired high frequency commutation in power electronics, is provided.

5. Complex power and torque under unbalanced conditions

The active and reactive power can be obtained from electrical quantities seen from a stationary
reference frame:

Nominal power = 2 MW

Voltage = 690 V / 50 Hz

DC-link voltage = 1200 V

Stator/rotor turns ratio = 1/2

Mutual inductance (Lm) = 2.5 mH

Stator inductance (Ls) = 2.58 mH

Rotor inductance (Lr) = 2.58 mH

Stator resistance (Rs) = 2.6 mΩ

Rotor resistance (Rr) = 2.9 mΩ|

Pole pairs (P) = 2

Table 1. Machine parameters used in simulation.
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Ps ¼ 3
2
Re vs

! ıs
!� �

¼ 3
2

vsαisα þ vsβisβ
� �

(41)

Qs ¼
3
2
Im vs

! ıs
!� �

¼ 3
2

vsβisα � vsαisβ
� �

(42)

where the operator x! is the complex conjugate.

In case of unbalanced conditions, the symmetrical components methods can be used for
simplifying analysis, since zero sequence does not produce complex power, only positive and
negative sequences are analyzed:

vs
! ¼ v!s1 þ v!s2 ¼ vsα1 þ vsα2 þ j vsβ1 þ vsβ2

� �
(43)

is
! ¼ i

!
s1 þ i

!
s2 ¼ isα1 þ isα2 þ j isβ1 þ isβ2

� �
(44)

Substituting (43) and (44) in Eqs. (41) and (42) yields:

Ps ¼ 3
2

vsα1isα1 þ vsβ1isβ1
� �zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{Ps11

þ3
2

vsα1isα2 þ vsβ1isβ2
� �zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{Ps12

þ3
2

vsα2isα1 þ vsβ2isβ1
� �zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{Ps21

þ3
2

vsα2isα2 þ vsβ2isβ2
� �zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{Ps22

(45)

Qs ¼
3
2

vsβ1isα1 � vsα1isβ1
� �zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{Qs11

þ3
2

vsβ1isα2 � vsα1isβ2
� �zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{Qs12

þ3
2

vsβ2isα1 � vsα2isβ1
� �zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{Qs21

þ3
2

vsβ2isα2 � vsα2isβ2
� �zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{Qs22

(46)

On the other hand, electromagnetic torque can be obtained using the well-known equation:

Tem ¼ 3P
2
Im λs

!
ıs
!� �

(47)

Using the symmetrical components theory, an unbalance condition can be modeled with
invariant positive and negative sequence components; therefore, at steady state, the derivate
term of Eqs. (4) and Eq. (5) are zero leading to the following positive and negative stator flux
components:

λ
!

s1 ¼ v!s1 � Rs ı
!

s1

jωs
; λ

!
s2 ¼ v!s2 � Rs ı

!
s2

�jωs
(48)

Substituting Eqs. (43) and (44) and (48) in (47):

Tem ¼ 3P
2ωs

Re v!s1 ı
!
s1 þ v!s1 ı

!
s2 � v!s2 ı

!
s1 � v!s2 ı

!
s2 � Rs ı!s1

���
���
2
� ı!s2

���
���
2

� �� �
(49)

Comparing Eq. (50) with Eq. (45), it is easy to see that the same terms appear in both equations:
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Tem ¼ P
ωs

Ps11 þ Ps12 � Ps21 � Ps22 þ 3Rs

2
ı!s2

���
���
2
� ı!s1

���
���
2

� �� �
(50)

The terms Ps12 and Ps21 are the cause of oscillation in torque and power when an unbalanced
dip occurs. Since the condition for canceling torque oscillations (Ps12 =Ps21) is opposite to the
condition for canceling active power oscillations (Ps12 = �Ps21), it is not possible to cancel both
at the same time. It is preferable to cancel torque oscillations; otherwise the mechanical
components may be severely damaged. On the other hand, to cancel reactive power oscilla-
tions, the following condition must be met Qs12 = �Qs21.

6. Simulation results

To test the controller, a DFIG was simulated using the parameters displayed in Table 1. The
blades model surface is shown in Figure 1 with gearbox ratio (η = 85.8) rotor radius (r = 40 m)
and air density (ρ = 1.25 kg\m3). The nominal wind speed of 12 m/s, the nominal tip speed
ratio Λopt = 7.9533 and the maximum power coefficient is Cp ,max = 0.4109. The pitch controller is
ideal chopping the extracted aerodynamic power to the nominal power (2 MW) for wind
speed above the nominal value. Considering that the maximum switching frequency of the
converter is 7000 Hz; from Figure 6 the desired hysteresis width is δ = 90.04A; therefore,
δQs

= 128� 103 and δTem
= 811.

The following electromagnetic torque reference is used for maintaining the tip-speed ratio at
the optimal value without measuring wind speed:

Tref ¼ �
1
2πρR

5Cp,max

Λ2
optη3

ω2
m (51)

On the other hand, the reactive power reference is maintained at zero.

The wind speed profile is shown in Figure 7 II, the wind speed was taken from real measure-
ments reported by the Department of Wind Energy, Technical University of Denmark [19] with
values oscillating in all the operational range of the wind speed.

The power extracted by the blades is shown in Figure 7 III, during the high wind speed
periods, the ideal pitch controller maintains the extracted power at the nominal value of
2 MW, while the mechanical speed is controlled during the rest of the time to optimize power
extraction as shown in Figure 7 IV. The rotor converter nominal power limits the operational
speed of the wind turbine Pr ≈ sPs.

The references are followed even under unbalanced grid conditions, a two-phase voltage dip is
simulated at the terminals of the electric machine, the voltage dip is 20% of the nominal value.
In Figure 7 I, it is displayed the detail of the voltage dip. The voltage dip starts at 95 seconds
and ends at 98 seconds of the simulation, the time axis in Figure 7 I is chopped from 95.05 to
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Ps ¼ 3
2
Re vs

! ıs
!� �

¼ 3
2

vsαisα þ vsβisβ
� �

(41)

Qs ¼
3
2
Im vs

! ıs
!� �

¼ 3
2

vsβisα � vsαisβ
� �

(42)

where the operator x! is the complex conjugate.

In case of unbalanced conditions, the symmetrical components methods can be used for
simplifying analysis, since zero sequence does not produce complex power, only positive and
negative sequences are analyzed:

vs
! ¼ v!s1 þ v!s2 ¼ vsα1 þ vsα2 þ j vsβ1 þ vsβ2

� �
(43)

is
! ¼ i

!
s1 þ i

!
s2 ¼ isα1 þ isα2 þ j isβ1 þ isβ2

� �
(44)

Substituting (43) and (44) in Eqs. (41) and (42) yields:

Ps ¼ 3
2

vsα1isα1 þ vsβ1isβ1
� �zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{Ps11

þ3
2

vsα1isα2 þ vsβ1isβ2
� �zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{Ps12

þ3
2

vsα2isα1 þ vsβ2isβ1
� �zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{Ps21

þ3
2

vsα2isα2 þ vsβ2isβ2
� �zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{Ps22

(45)

Qs ¼
3
2

vsβ1isα1 � vsα1isβ1
� �zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{Qs11

þ3
2

vsβ1isα2 � vsα1isβ2
� �zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{Qs12

þ3
2

vsβ2isα1 � vsα2isβ1
� �zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{Qs21

þ3
2

vsβ2isα2 � vsα2isβ2
� �zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{Qs22

(46)

On the other hand, electromagnetic torque can be obtained using the well-known equation:

Tem ¼ 3P
2
Im λs

!
ıs
!� �

(47)

Using the symmetrical components theory, an unbalance condition can be modeled with
invariant positive and negative sequence components; therefore, at steady state, the derivate
term of Eqs. (4) and Eq. (5) are zero leading to the following positive and negative stator flux
components:

λ
!

s1 ¼ v!s1 � Rs ı
!

s1

jωs
; λ

!
s2 ¼ v!s2 � Rs ı

!
s2

�jωs
(48)

Substituting Eqs. (43) and (44) and (48) in (47):

Tem ¼ 3P
2ωs

Re v!s1 ı
!
s1 þ v!s1 ı

!
s2 � v!s2 ı

!
s1 � v!s2 ı

!
s2 � Rs ı!s1

���
���
2
� ı!s2

���
���
2

� �� �
(49)

Comparing Eq. (50) with Eq. (45), it is easy to see that the same terms appear in both equations:

Adaptive Robust Control Systems68

Tem ¼ P
ωs

Ps11 þ Ps12 � Ps21 � Ps22 þ 3Rs

2
ı!s2

���
���
2
� ı!s1

���
���
2

� �� �
(50)

The terms Ps12 and Ps21 are the cause of oscillation in torque and power when an unbalanced
dip occurs. Since the condition for canceling torque oscillations (Ps12 =Ps21) is opposite to the
condition for canceling active power oscillations (Ps12 = �Ps21), it is not possible to cancel both
at the same time. It is preferable to cancel torque oscillations; otherwise the mechanical
components may be severely damaged. On the other hand, to cancel reactive power oscilla-
tions, the following condition must be met Qs12 = �Qs21.

6. Simulation results

To test the controller, a DFIG was simulated using the parameters displayed in Table 1. The
blades model surface is shown in Figure 1 with gearbox ratio (η = 85.8) rotor radius (r = 40 m)
and air density (ρ = 1.25 kg\m3). The nominal wind speed of 12 m/s, the nominal tip speed
ratio Λopt = 7.9533 and the maximum power coefficient is Cp ,max = 0.4109. The pitch controller is
ideal chopping the extracted aerodynamic power to the nominal power (2 MW) for wind
speed above the nominal value. Considering that the maximum switching frequency of the
converter is 7000 Hz; from Figure 6 the desired hysteresis width is δ = 90.04A; therefore,
δQs

= 128� 103 and δTem
= 811.

The following electromagnetic torque reference is used for maintaining the tip-speed ratio at
the optimal value without measuring wind speed:

Tref ¼ �
1
2πρR

5Cp,max

Λ2
optη3

ω2
m (51)

On the other hand, the reactive power reference is maintained at zero.

The wind speed profile is shown in Figure 7 II, the wind speed was taken from real measure-
ments reported by the Department of Wind Energy, Technical University of Denmark [19] with
values oscillating in all the operational range of the wind speed.

The power extracted by the blades is shown in Figure 7 III, during the high wind speed
periods, the ideal pitch controller maintains the extracted power at the nominal value of
2 MW, while the mechanical speed is controlled during the rest of the time to optimize power
extraction as shown in Figure 7 IV. The rotor converter nominal power limits the operational
speed of the wind turbine Pr ≈ sPs.

The references are followed even under unbalanced grid conditions, a two-phase voltage dip is
simulated at the terminals of the electric machine, the voltage dip is 20% of the nominal value.
In Figure 7 I, it is displayed the detail of the voltage dip. The voltage dip starts at 95 seconds
and ends at 98 seconds of the simulation, the time axis in Figure 7 I is chopped from 95.05 to
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97.95 s, in order to better see the stator voltage waveform during the fault. As demonstrated in
Section 5, it is not possible to maintain both torque and reactive power constant during
unbalanced conditions; therefore, the stator reactive power is affected (see Figure 7 VI) since
the controller forces the electromagnetic torque to be constant. As a result, the controller injects
a negative sequence current to the rotor in order to cancel torque oscillations out (see Figure 7
VII), it is worth mention that other control strategies as vector control requires a double control
loop for controlling positive and negative sequence separated [13], which not only complicates
the current regulation algorithm but also requires sequence decoupling of rotor current, a very
complex issue that is avoided by using a robust control strategy.

Finally, the filtered rotor voltage is displayed in Figure 7 VIII. The controller does not require
modulation and automatically injects negative sequence voltage to regulate torque and reac-
tive power under unbalanced conditions.

7. Conclusions

A stator-flux–oriented sliding mode control, which regulates torque and reactive power in
DFIG, is presented. The controller is not dependent on electric machine parameters and do
not require modulation, injecting the desired voltage vector directly to a two-level power
converter. Despite the proposed SMC controller has a variable switching frequency, which is
not desired in practical applications, the switching frequency is limited by a hysteresis loop in
the torque and reactive power controllers. The hysteresis value is calculated by means of the
frequency domain characterization of the DFIG system with SMC, via Tsypkin’s method.

Figure 7. Simulation results: I stator voltage, II wind speed profile, III extracted aerodynamic wind power, IV rotor speed,
V electromagnetic torque, VI stator active and reactive power, VII rotor current, VIII rotor filtered voltage.
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Then, the safe operation of the power converter regarding commutation frequency is ensured.
Furthermore, the proposed SMC is capable to reject stator flux variations providing a desired
operation even under unbalanced grid conditions. Compared with classical control techniques
as DTC, the presented SMC does not require the modification of the control loop. The equa-
tions for compute the control gains that ensure robustness and existence of SMC are given.
Simulations validating the advantages of the proposed SMC are shown.

Nomenclature

v Voltage [V]

i Current [A]

λ Magnetic flux [Wb]

s, r Stator, rotor sub index

d, q Direct, quadrature reference frame axis component

α, β Alpha, beta reference frame axis component

Lm Magnetic inductance [H]

Ls Stator inductance [H]

Lr Rotor inductance [H]

P Number of pole pairs.

Ps,Qs Stator active, reactive power [W, VA]

Tem Electromagnetic torque [N∙m]

VDC DC-link voltage [V]

ωs Synchronous speed [rad/s]

θsf Stator flux angular position [rad]

ωm Rotor speed [rad/s]

θm Rotor mechanical angle [rad]

ωr Rotor electrical speed [rad/s]

s Slip

Pwind Aerodynamic power [W]

CP Power coefficient

γ Pitch angle [deg]

Λ Tip-speed ratio
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the controller forces the electromagnetic torque to be constant. As a result, the controller injects
a negative sequence current to the rotor in order to cancel torque oscillations out (see Figure 7
VII), it is worth mention that other control strategies as vector control requires a double control
loop for controlling positive and negative sequence separated [13], which not only complicates
the current regulation algorithm but also requires sequence decoupling of rotor current, a very
complex issue that is avoided by using a robust control strategy.

Finally, the filtered rotor voltage is displayed in Figure 7 VIII. The controller does not require
modulation and automatically injects negative sequence voltage to regulate torque and reac-
tive power under unbalanced conditions.
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A stator-flux–oriented sliding mode control, which regulates torque and reactive power in
DFIG, is presented. The controller is not dependent on electric machine parameters and do
not require modulation, injecting the desired voltage vector directly to a two-level power
converter. Despite the proposed SMC controller has a variable switching frequency, which is
not desired in practical applications, the switching frequency is limited by a hysteresis loop in
the torque and reactive power controllers. The hysteresis value is calculated by means of the
frequency domain characterization of the DFIG system with SMC, via Tsypkin’s method.
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V electromagnetic torque, VI stator active and reactive power, VII rotor current, VIII rotor filtered voltage.
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Then, the safe operation of the power converter regarding commutation frequency is ensured.
Furthermore, the proposed SMC is capable to reject stator flux variations providing a desired
operation even under unbalanced grid conditions. Compared with classical control techniques
as DTC, the presented SMC does not require the modification of the control loop. The equa-
tions for compute the control gains that ensure robustness and existence of SMC are given.
Simulations validating the advantages of the proposed SMC are shown.

Nomenclature

v Voltage [V]

i Current [A]

λ Magnetic flux [Wb]

s, r Stator, rotor sub index

d, q Direct, quadrature reference frame axis component

α, β Alpha, beta reference frame axis component

Lm Magnetic inductance [H]

Ls Stator inductance [H]

Lr Rotor inductance [H]

P Number of pole pairs.

Ps,Qs Stator active, reactive power [W, VA]

Tem Electromagnetic torque [N∙m]

VDC DC-link voltage [V]

ωs Synchronous speed [rad/s]

θsf Stator flux angular position [rad]

ωm Rotor speed [rad/s]

θm Rotor mechanical angle [rad]

ωr Rotor electrical speed [rad/s]

s Slip

Pwind Aerodynamic power [W]

CP Power coefficient

γ Pitch angle [deg]

Λ Tip-speed ratio
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ρ Air density [kg/m3]

A Turbine transverse area [m2]

r Turbine radius [m]

V Wind speed [m/s]

η Gearbox ratio

s Complex frequency variable
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Abstract

Quadrotor helicopters are drawing considerable attention both for their mobility and their
potential to perform multiple tasks in complete autonomy. Moreover, the numerous limi-
tations characterizing these aircraft, such as their underactuation, make quadrotors ideal
testbeds for innovative theoretical approaches to the problem of controlling autonomous
mechanical systems. In this chapter, we propose a robust model reference adaptive control
architecture and design an autopilot for quadrotors, which guarantees satisfactory output
tracking despite uncertainties in the vehicle’s mass, matrix of inertia, and location of the
center of mass. The feasibility of our results is supported by a detailed analysis of the
quadrotor’s equations of motion. Specifically, considering the vehicle’s equations of motion
as a time-varying nonlinear dynamical system and avoiding the common assumption that
the vehicle’s Euler angles are small at all times, we prove that the proposed autopilot
guarantees satisfactory output tracking and verifies sufficient conditions for a weak form
of controllability of the closed-loop system known as strong accessibility. A numerical
example illustrates the applicability of the theoretical results presented and clearly shows
how the proposed autopilot outperforms in strong wind conditions autopilots designed
using a commonly employed proportional-derivative control law and a conventional
model reference adaptive control law.

Keywords: robust model reference adaptive control, e-modification, quadrotors, autopilot
design, output tracking

1. Introduction

Quadrotor helicopters, also known as “quadrotors,” are currently employed in diverse scenarios,
which range from search and rescue missions to infrastructure inspection, precision agriculture,
and wildlife monitoring ([1, Ch. 1], [2, 3]). Employing quadrotors in enclosed industrial environ-
ments or inproximityof untrainedpersonnel is still consideredas a challenge for thehigh reliability
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required to these aircraft. Additional complexity in the use of quadrotors for commercial applica-
tions, such as parcel delivery, is that users demand satisfactory trajectory following capabilities
without tuning the controller’s gains prior to eachmission, whenever the payload is changed.

Autopilots for commercial-off-the-shelf quadrotors are currently designed assuming that the
vehicle’s and the payload’s inertial properties are known and constant in time. Moreover, it is
assumed that the propulsion system is able to deliver maximum thrust whenever needed. These
assumptions considerably simplify the design of control algorithms for quadrotor helicopters,
but also undermine these vehicles’ reliability in challenging work conditions, such as in case the
propulsion system is partly damaged or the payload is not rigidly attached to the vehicle. For
instance, the authors in [4] show that if the payload’s mass and matrix of inertia vary in time,
then autopilots for quadrotors designed using classical control techniques, such as the
proportional-derivative control, are inadequate to guarantee satisfactory trajectory tracking.

In recent years, numerous authors, such as Bouadi et al. [5]; Dydek et al. [6]; Jafarnejadsani
et al. [7]; Loukianov [8]; Mohammadi & Shahri [9]; Zheng et al. [10], to name a few, employed
nonlinear robust control techniques, such as sliding mode control, model reference adaptive
control (MRAC), adaptive sliding mode control, and L1 adaptive control, to design autopilots
for quadrotors that are able to account for inaccurate modeling assumptions and compensate
failures in the propulsion system. These autopilots are generally designed assuming perfect
knowledge of the location of the quadrotor’s center of mass, supposing that the vehicle’s Euler
angles are small at all times, and neglecting the inertial counter-torque. Furthermore, in several
cases also the aerodynamic force and the corresponding moment are omitted. Because of these
simplifying assumptions, these autopilots are inadequate for aircraft performing aggressive
maneuvers, flying in adverse weather conditions, and transporting payloads not rigidly
connected to the vehicle’s frame [11]. The vehicle’s guidance system is usually delegated to
avoiding obstacles detected by proximity sensors and cameras installed aboard. For details,
see the recent works by Faust et al. [12]; Gao & Shen [13]; Lin & Saripalli [14].

In the first part of this chapter, we present the equations of motion of quadrotors and analyze
those properties needed to design effective nonlinear robust controls that enable output track-
ing. Specifically, we present the equations of motion of quadrotors without assuming a priori
that the Euler angles are small and without neglecting the inertial counter-torque and the
gyroscopic effect. Since the inertial counter-torque cannot be expressed as an algebraic func-
tion of the quadrotor’s state and control vectors, we account for this effect as an unmatched
time-varying disturbance on the vehicle’s dynamics and hence, we consider the equations of
motion of a quadrotor as a nonlinear time-varying dynamical system. Successively, we verify
for the first time sufficient conditions for the strong accessibility of quadrotors’ altitude and
rotational dynamics; strong accessibility [15] is a weak form of controllability for nonlinear
time-varying dynamical systems. As a result of this analysis, we show that a conservative
control law for quadrotors must prevent rotations of a �π/2 angle about either of the two
horizontal axes of the body reference frame; otherwise, the vehicle may be uncontrollable.

In the second part of this chapter, we present a robust autopilot for quadrotors, which is based
on a version of the e-modification of the MRAC architecture [16]. This autopilot is character-
ized by numerous unique features. For instance, we assume that the quadrotor’s inertial
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properties, such as mass, moment of inertia, and location of the center of mass are unknown.
Moreover, we assume that the quadrotor’s reference frame is centered at an arbitrary point,
which does not necessarily coincide with the vehicle’s center of mass. In addition, we suppose
that the coefficients characterizing the aerodynamic force and moment are unknown. In order
to reduce the rotational kinematic and dynamic equations to a form that is suitable for MRAC,
we employ an output-feedback linearization approach so that the controlled rotational dynam-
ics is captured by a linear dynamical system, whose virtual input is designed using the
proposed robust MRAC architecture.

We design the autopilot’s outer loop so that it regulates the vehicle’s position in the inertial frame
and the inner loop so that it regulates the vehicle’s attitude. In conventional autopilots for
quadrotors, the outer loop regulates the vehicle’s position in the horizontal plane and the inner
loop controls the quadrotor’s altitude and orientation. As in conventional architectures, our
outer loop defines the reference pitch and roll angles for the inner loop to track. However, our
control architecture allows us to verify a priori that the reference pitch and roll angles meet the
sufficient conditions for strong accessibility of the quadrotor’s altitude and rotational dynamics.
Conventional autopilots’ outer loop may generate large reference pitch and roll angles that are
not guaranteed to lay in the vehicle’s reachable set.

The conventional MRAC architecture ([17], Ch. 9) is designed to regulate time-invariant dynami-
cal systems and, for this reason, autopilots for quadrotors based on the classical MRAC are unable
to account for time-varying terms in the vehicle’s dynamics, such as the inertial counter-torque.
Moreover, autopilots for quadrotors based on the classical MRAC architecture are robust to both
matched and parametric uncertainties, but not unmatched uncertainties, such as aerodynamic
forces. The autopilots presented in this chapter, instead, are robust to unmatched uncertainties as
well and account for the fact that quadrotors are inherently time-varying dynamical systems.

A numerical example illustrates our theoretical framework by designing a control law that
allows a quadrotor to follow a circular trajectory, although the vehicle’s inertial properties are
unknown, one of the motors is suddenly turned off, the payload is dropped over the course of
the mission, and the wind blows at 16 m/s, which is usually considered as a prohibitive
velocity for conventional quadrotors. In this example, we clearly show how the proposed
robust control algorithm outperforms both the classical proportional-derivative (PD) control
and the conventional MRAC. Indeed, it is shown that quadrotors implementing autopilots
based on the PD framework crash as soon as one motor is turned off. Moreover, we verify that
quadrotors implementing autopilots based on the classical MRAC framework [6] are unable to
fly in the presence of wind gusts faster than 6 m/s. Lastly, we show that, to fly in a wind
blowing at 16 m/s, our autopilot requires a control effort that is smaller than the one required
by a conventional MRAC-based autopilot to fly in a 6 m/s wind.

2. Notation and definitions

In this section, we establish the notation and the definitions used in this chapter. LetR denote the
set of real numbers, Rn the set of n� 1 real column vectors, and Rn�m the set of n�m real
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matrices. We write 1n for the n� n identity matrix, 0n�m for the zero n�mmatrix, andAT for the

transpose of the matrix A∈Rn�m. Given a = [a1, a2, a3]
T∈R3, a� ≜

0 �a3 a2
a3 0 �a1
�a2 a1 0

2
64

3
75 denotes

the cross product operator. We write ∥ � ∥ for the Euclidean vector norm and ∥ � ∥F for the Frobenius
matrix norm, that is, given B∈Rn�m, ∥B∥F ≜ tr BBT� �� �1

2. The Fréchet derivative of the continu-
ously differentiable function V :Rn!R at x is denoted by V

0
(x)≜ ∂V(x)/∂x.

Definition 2.1 ([18], Def. 6.8). The Lie derivative of the continuously differentiable function
V :Rn!R along the vector field f :Rn!Rn is defined as

Lf V xð Þ≜V 0 xð Þf xð Þ, x∈Rn: (1)

The zeroth-order and the higher-order Lie derivatives are, respectively, defined as

L0f V xð Þ≜V xð Þ, Lkf V xð Þ≜Lf Lk�1
f V xð Þ

� �
, x∈Rn, k ≥ 1: (2)

Given the continuously differentiable functions f, g :Rn!Rn, the Lie bracket of f(�) and g(�) is
defined as

adf g xð Þ≜ ∂g xð Þ
∂x

f xð Þ � ∂f xð Þ
∂x

g xð Þ, x∈Rn: (3)

To recall the definition of uniform ultimate boundedness, consider the nonlinear time-varying
dynamical system

_x tð Þ ¼ f t; x tð Þð Þ, x t0ð Þ ¼ x0, t ≥ t0, (4)

where x(t)∈Rn, t ≥ t0, f : [t0,∞)�Rn!Rn is jointly continuous in its arguments, f(t, �) is locally
Lipschitz continuous in x uniformly in t for all t in compact subsets of t∈ [t0,∞), and 0 = f (t, 0),
t ≥ t0.

Definition 2.2 ([19], Def. 4.6). The nonlinear time-varying dynamical system (4) is uniformly
ultimately bounded with ultimate bound b > 0 if there exists c > 0 independent of t0 and for every
a∈ (0, c), there exists T =T (a, c) ≥ 0, independent of t0, such that if ∥x0 ∥ ≤ a, then ∥x(t) ∥ ≤ b,
t ≥ t0 +T.

3. Robust MRAC for output tracking

In order to enable robust output tracking, in this section we present a robust nonlinear control
law that is based on the e-modification of the conventional model reference adaptive control
[16]. This control law guarantees that after a finite-time transient, the plant’s measured output
tracks a given reference signal within some bounded error despite model uncertainties and
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external disturbances. In practice, the proposed controller guarantees uniform ultimate bound-
edness of the output tracking error.

Consider the nonlinear time-varying plant and the plant sensors’ dynamics

_xp tð Þ ¼ Apxp tð Þ þ BpΛ u tð Þ þΘTΦ xp tð Þ� �� �þ bξ tð Þ, xp t0ð Þ ¼ xp,0, t ≥ t0, (5)

_y tð Þ ¼ εCpxp tð Þ � εy tð Þ, y t0ð Þ ¼ Cpxp,0, (6)

where xp tð Þ∈Dp ⊆Rnp , t ≥ t0, denotes the plant’s trajectory, 0np�1 ∈Dp, u(t)∈Rm denotes the
control input, y(t)∈Rm denotes the measured output, ε > 0, Ap∈Rnp� np is unknown, Bp∈Rnp�m,
Cp∈Rm� np, Λ∈Rm�m is diagonal, positive-definite, and unknown, Θ∈RN�m is unknown, the

regressor vector Φ :RnP!RN is Lipschitz continuous in its argument, and bξ : t0;∞½ Þ ! Rnp is

continuous in its argument and unknown. We assume that ∥bξ tð Þ∥ ≤bξmax, t ≥ t0, and Λ is such
that the pair (Ap,BpΛ) is controllable and Λmin1m ≤Λ, for some Λmin > 0. Both Λ and ΘTΦ(xp),
xp ∈Dp, capture the plant’s matched and parametric uncertainties, such as malfunctions in the

control system; the term bξ �ð Þ captures the plant’s unmatched uncertainties, such as external
disturbances.

Eq. (6) models the plant sensors as linear dynamical systems, whose uncontrolled dynamics is
exponentially stable and characterized by the parameter ε > 0 ([20], Ch. 2). Given the reference
signal ycmd : [t0,∞)!Rm, which is continuous with its first derivative, define ycmd,2 tð Þ≜ _ycmd tð Þ,
t ≥ t0, and assume that both ycmd(�) and ycmd, 2(�) are bounded, that is, kycmd(t)k ≤ ymax, 1, t ≥ t0,
and kycmd, 2(t)k ≤ ymax, 2, for some ymax, 1, ymax, 2 > 0.

The following theorem provides a robust MRAC for the nonlinear time-varying dynamical
system (5) and (6) such that the measured output y(�) is able to eventually track the reference
signal ycmd(�) with bounded error, that is, there exist b > 0 and c > 0 independent of t0, and for
every a∈ (0, c), there exists a finite-time T =T(a, c) ≥ 0, independent of t0, such that if ∥y(t0)�
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For the statement of this result, let n≜ np +m and x tð Þ≜ xTp tð Þ; y tð Þ � ycmd tð Þ� �Th iT
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Ap 0np�m
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" #
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� �
, B1 ≜

0np�m
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� �
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ξ tð Þ≜B1 ycmd,2 tð Þ þ εycmd tð Þ
h i
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0m�np

" #
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2
64

3
75 denotes
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0
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� �
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t ≥ t0 +T.

3. Robust MRAC for output tracking

In order to enable robust output tracking, in this section we present a robust nonlinear control
law that is based on the e-modification of the conventional model reference adaptive control
[16]. This control law guarantees that after a finite-time transient, the plant’s measured output
tracks a given reference signal within some bounded error despite model uncertainties and
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external disturbances. In practice, the proposed controller guarantees uniform ultimate bound-
edness of the output tracking error.

Consider the nonlinear time-varying plant and the plant sensors’ dynamics

_xp tð Þ ¼ Apxp tð Þ þ BpΛ u tð Þ þΘTΦ xp tð Þ� �� �þ bξ tð Þ, xp t0ð Þ ¼ xp,0, t ≥ t0, (5)

_y tð Þ ¼ εCpxp tð Þ � εy tð Þ, y t0ð Þ ¼ Cpxp,0, (6)
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system (5) and (6) such that the measured output y(�) is able to eventually track the reference
signal ycmd(�) with bounded error, that is, there exist b > 0 and c > 0 independent of t0, and for
every a∈ (0, c), there exists a finite-time T =T(a, c) ≥ 0, independent of t0, such that if ∥y(t0)�
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, B1 ≜
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� �
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" #
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_xref tð Þ ¼ Aref xref tð Þ þ Bref ycmd tð Þ, xref t0ð Þ ¼ xp,0
Cpxp,0 � ycmd t0ð Þ

" #
, t ≥ t0, (9)

where Aref ¼
Aref ,1 0np�m

0m�np Aref,2

" #
, Aref, 1∈Rnp�np is Hurwitz, Aref, 2∈Rm�m is Hurwitz, and

Bref∈Rn�m is such that the pair (Aref,Bref) is controllable.

Theorem 3.1 Consider the nonlinear time-varying dynamical system given by Eqs. (5) and (6), the
augmented dynamical system (8), and the linear time-invariant reference dynamical model (9). Define
e(t)≜ x(t)� xref(t), t ≥ t0, and let

γ t; xp; x
� � ¼ bKT

x tð Þxþ bKT
cmd tð Þycmd tð Þ � bΘT

tð ÞΦ xp
� �

, t; xp; x
� �

∈ t0;∞½ Þ �Dp �D, (10)

where

_bKx tð Þ ¼ �Γx x tð ÞeT tð ÞPBþ σ1 BTPe tð Þ�� ��bKx tð Þ
h i

, bKx t0ð Þ ¼ 0n�m, t ≥ t0, (11)

_bKcmd tð Þ ¼ �Γcmd ycmd tð ÞeT tð ÞPBþ σ2 BTPe tð Þ�� ��bKcmd tð Þ
h i

, bKcmd t0ð Þ ¼ 0m�m, (12)

_bΘ tð Þ ¼ ΓΘ Φ xp tð Þ� �
eT tð ÞPB� σ3 BTPe tð Þ�� ��bΘ tð Þ

h i
, bΘ t0ð Þ ¼ 0N�m, (13)

the learning gain matrices Γx∈Rn� n, Γcmd∈Rm�m, and ΓΘ∈RN�N are symmetric positive-
definite, P∈Rn� n is the symmetric positive-definite solution of the Lyapunov equation

0 ¼ AT
refPþ PAref þQ, (14)

Q∈Rn� n is symmetric positive-definite, and σ1, σ2, σ3 > 0. If there exists Kx∈Rn�m and
Kcmd∈Rm�m such that

Aref ¼ Aþ BΛKT
x , (15)

Bref ¼ BΛKT
cmd, (16)

then the nonlinear time-varying dynamical system (8) with u(t) =γ(t, xp(t), x(t)), t ≥ t0, is uni-
formly ultimately bounded and (7) is verified.

Proof: Let ΔKx ≜ bKx � Kx, ΔKcmd ≜ bKcmd � Kcmd, and ΔΘ≜ bΘ �Θ and consider the Lyapunov
function candidate

V e;ΔKx;ΔKcmd;ΔΘð Þ ¼ eTPeþ tr ΔKT
xΓ

T
xΔKx þ ΔKT

cmdΓ
T
cmdΔKcmd þ ΔΘTΓT

ΘΔΘ
� �

Λ
� �

,

e;ΔKx;ΔKcmd;ΔΘð Þ∈Rn � Rn�m � Rm�m � RN�m, (17)

where tr(�) denotes the trace operator. The error dynamics is given by

Adaptive Robust Control Systems82

_e tð Þ ¼ Arefe tð Þ þ BΛ ΔKT
xx tð Þ þ ΔKT

cmdycmd tð Þ � ΔΘTΦ xp tð Þ� �� �þ ξ tð Þ, e t0ð Þ ¼ 0, t ≥ t0,

(18)

and using the same arguments as in ([17], pp. 324-325), one can prove that

_V e;ΔKx;ΔKcmd;ΔΘð Þ < 0 e;ΔKx;ΔKcmd;ΔΘð Þ∈Ω, (19)

for some compact set Ω⊂Rn�Rn�m�Rm�m�RN�m. Thus, it follows from Theorem 4.18 of
Khalil [19] that the nonlinear dynamical system given by (18) and (11)–(13) is uniformly
ultimately bounded.

Next, let xref tð Þ ¼ xTref,1 tð Þ; xTref,2 tð Þ
h iT

, t ≥ t0, verify (9), where xref, 1(t)∈Rnp and xref, 2(t)∈Rm. It

follows from the uniform ultimate boundedness of (18) that

y tð Þ � ycmd tð Þ � xref,2 tð Þ�� �� ≤bb, t ≥T þ t0, (20)

for some bb > 0 and T ≥ 0, which are independent of t0. Moreover, since Aref is block-diagonal
and Hurwitz, B1 = [0m� np

,�1m]
T, and ycmd(�) is bounded, it follows from (9) that xref, 2(�) is

uniformly bounded ([18], 245), that is, kxref, 2(t)k ≤ b2, t ≥ t0, for some b2 ≥ 0 independent of t0.

Thus, it follows from (20) that (7) is verified with b ¼ bb þ b2. □

It is important to notice that although the matrix Ap, which characterizes the plant’s uncontrolled
linearized dynamics, is unknown and hence, the augmented matrix A is unknown, the structure
of the matrix Ap is usually known. Thus, in problems of practical interest it is generally possible
to verify the matching conditions (15) and (16), although the matrix A is unknown ([17], Ch. 9).

Remark 3.1 If the adaptive gains bKx �ð Þ, bKcmd �ð Þ, and bΘ �ð Þ verify (11)–(13), respectively, with
σ1 =σ2 = σ3 = 0, then the control law (10) reduces to the conventional model reference adaptive
control law for the augmented dynamical system (8) ([17], p. 298). However, conventional
MRAC does not guarantee uniform ultimate boundedness of the closed-loop system in the

presence of the matched uncertainty bξ �ð Þ ([17], pp. 317-319).

4. Modeling assumptions on quadrotors’ dynamics

Let I ¼ O;X;Y;Zf g denote an orthonormal reference frame fixed with the Earth and centered at
some point O, and let J ¼ A; x tð Þ; y tð Þ; z tð Þf g, t ≥ t0, denote an orthonormal reference frame fixed
with the quadrotor and centered at some point A, which is arbitrarily chosen. The axes of the
reference frames I and J form two orthonormal bases ofR3 and if a vector a∈R3 is expressed in I,
then this vector is denoted by aI. Alternatively, if a∈R3 is expressed in J, then no superscript is
used. In this chapter, we consider the reference frame I as an inertial reference frame; quadrotors
move at subsonic velocities and are usually operated at altitudes considerably lower than 10
kilometers and hence, the error induced by this modeling assumption is negligible ([21], Ch. 5).
The Z axis is chosen so that the quadrotor’s weight is given by FIg ¼ mQgZ, wheremQ>0 denotes
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" #
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" #
, Aref, 1∈Rnp�np is Hurwitz, Aref, 2∈Rm�m is Hurwitz, and
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tð ÞΦ xp
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, bΘ t0ð Þ ¼ 0N�m, (13)

the learning gain matrices Γx∈Rn� n, Γcmd∈Rm�m, and ΓΘ∈RN�N are symmetric positive-
definite, P∈Rn� n is the symmetric positive-definite solution of the Lyapunov equation
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refPþ PAref þQ, (14)

Q∈Rn� n is symmetric positive-definite, and σ1, σ2, σ3 > 0. If there exists Kx∈Rn�m and
Kcmd∈Rm�m such that

Aref ¼ Aþ BΛKT
x , (15)

Bref ¼ BΛKT
cmd, (16)

then the nonlinear time-varying dynamical system (8) with u(t) =γ(t, xp(t), x(t)), t ≥ t0, is uni-
formly ultimately bounded and (7) is verified.

Proof: Let ΔKx ≜ bKx � Kx, ΔKcmd ≜ bKcmd � Kcmd, and ΔΘ≜ bΘ �Θ and consider the Lyapunov
function candidate

V e;ΔKx;ΔKcmd;ΔΘð Þ ¼ eTPeþ tr ΔKT
xΓ

T
xΔKx þ ΔKT

cmdΓ
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ΘΔΘ
� �

Λ
� �

,

e;ΔKx;ΔKcmd;ΔΘð Þ∈Rn � Rn�m � Rm�m � RN�m, (17)

where tr(�) denotes the trace operator. The error dynamics is given by
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(18)

and using the same arguments as in ([17], pp. 324-325), one can prove that
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for some compact set Ω⊂Rn�Rn�m�Rm�m�RN�m. Thus, it follows from Theorem 4.18 of
Khalil [19] that the nonlinear dynamical system given by (18) and (11)–(13) is uniformly
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, t ≥ t0, verify (9), where xref, 1(t)∈Rnp and xref, 2(t)∈Rm. It

follows from the uniform ultimate boundedness of (18) that
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for some bb > 0 and T ≥ 0, which are independent of t0. Moreover, since Aref is block-diagonal
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T, and ycmd(�) is bounded, it follows from (9) that xref, 2(�) is

uniformly bounded ([18], 245), that is, kxref, 2(t)k ≤ b2, t ≥ t0, for some b2 ≥ 0 independent of t0.

Thus, it follows from (20) that (7) is verified with b ¼ bb þ b2. □

It is important to notice that although the matrix Ap, which characterizes the plant’s uncontrolled
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of the matrix Ap is usually known. Thus, in problems of practical interest it is generally possible
to verify the matching conditions (15) and (16), although the matrix A is unknown ([17], Ch. 9).

Remark 3.1 If the adaptive gains bKx �ð Þ, bKcmd �ð Þ, and bΘ �ð Þ verify (11)–(13), respectively, with
σ1 =σ2 = σ3 = 0, then the control law (10) reduces to the conventional model reference adaptive
control law for the augmented dynamical system (8) ([17], p. 298). However, conventional
MRAC does not guarantee uniform ultimate boundedness of the closed-loop system in the

presence of the matched uncertainty bξ �ð Þ ([17], pp. 317-319).

4. Modeling assumptions on quadrotors’ dynamics

Let I ¼ O;X;Y;Zf g denote an orthonormal reference frame fixed with the Earth and centered at
some point O, and let J ¼ A; x tð Þ; y tð Þ; z tð Þf g, t ≥ t0, denote an orthonormal reference frame fixed
with the quadrotor and centered at some point A, which is arbitrarily chosen. The axes of the
reference frames I and J form two orthonormal bases ofR3 and if a vector a∈R3 is expressed in I,
then this vector is denoted by aI. Alternatively, if a∈R3 is expressed in J, then no superscript is
used. In this chapter, we consider the reference frame I as an inertial reference frame; quadrotors
move at subsonic velocities and are usually operated at altitudes considerably lower than 10
kilometers and hence, the error induced by this modeling assumption is negligible ([21], Ch. 5).
The Z axis is chosen so that the quadrotor’s weight is given by FIg ¼ mQgZ, wheremQ>0 denotes
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the vehicle’s mass and g denotes the gravitational acceleration; the X and Y axes are chosen
arbitrarily. The axis z(�) points down and the axis x(�) is aligned to one of the quadrotor’s arms;
see Figure 1.

The attitude of the reference frame J with respect to the reference frame I is captured by the
roll, pitch, and yaw angles using a 3-2-1 rotation sequence ([22], Ch. 1). In particular, we denote
by ψ : [t0,∞)! [0, 2π) the yaw angle and ϕ,θ : t0;∞½ Þ ! � π

2 ;
π
2

� �
the roll and pitch angles,

respectively. The angular velocity of J with respect to I is denoted by ω : [t0,∞)!R3 ([22], Def.
1.9). The position of the point A with respect to the origin O of the inertial reference frame I is
denoted by rA : [t0,∞)!R3 and the velocity of Awith respect to I is denoted by vA : [t0,∞)!R3.

The position of the quadrotor’s center of mass C with respect to the reference point A is
denoted by rC∈R3. The matrix of inertia of the quadrotor, excluding its propellers, with
respect to A is denoted by I∈R3� 3 and the matrix of inertia of each propeller with respect
to A is denoted by IP∈R3� 3. The spin rate of the ith propeller is denoted by ΩP, i : [t0,∞)!R,
i = 1,…, 4. In this chapter, we model the quadrotor’s frame as a rigid body and propellers as
thin disks. Moreover, we assume that the vehicle’s inertial properties, such as the mass mQ,
the inertia matrix I, and the location of the center of mass rC, are constant, but unknown. The
quadrotor’s estimated mass is denoted by bmQ > 0 and the quadrotor’s estimated matrix of

inertia with respect to A is given by the symmetric, positive-definite matrix bI ∈R3�3.
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Figure 1. Schematic representation of a quadrotor helicopter.
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5. Quadrotors’ equations of motion

In this section, we present the equations of motion of quadrotors. Specifically, a quadrotor’s
translational kinematic equation is given by ([22], Ex. 1.12)

_rIA tð Þ ¼ R ϕ tð Þ;θ tð Þ;ψ tð Þ� �
vA tð Þ, rIA t0ð Þ ¼ rIA,0, t ≥ t0, (21)

where

R ϕ;θ;ψ
� �

≜
cosψ � sinψ 0
sinψ cosψ 0
0 0 1

2
64

3
75

cosθ 0 sinθ
0 1 0
� sinθ 0 cosθ

2
64

3
75

1 0 0
0 cosϕ � sinϕ
0 sinϕ cosϕ

2
64

3
75,

ϕ;θ;ψ
� �

∈ �π
2
;
π
2

� �
� �π

2
;
π
2

� �
� 0; 2π½ Þ,

and the rotational kinematic equation is given by ([22], Th. 1.7)

_ϕ tð Þ
_θ tð Þ
_ψ tð Þ

2
64

3
75 ¼ Γ ϕ tð Þ;θ tð Þ� �

ω tð Þ,
ϕ t0ð Þ
θ t0ð Þ
ψ t0ð Þ

2
64

3
75 ¼

ϕ0

θ0

ψ0

2
64

3
75, (22)

where

Γ ϕ;θ
� �

≜
1 sinϕ tanθ cosϕ tanθ
0 cosϕ � sinϕ
0 sinϕ secθ cosϕ secθ

2
64

3
75, ϕ;θ

� �
∈ �π

2
;
π
2

� �
� �π

2
;
π
2

� �
:

Under the modeling assumptions outlined in Section 4, a quadrotor’s translational dynamic
equation is given by [4]

FT tð Þ þ Fg ϕ tð Þ;θ tð Þ� �þ F vA tð Þð Þ ¼
mQ _vA tð Þ þ ω� tð ÞvA tð Þ þ _ω� tð ÞrCþω� tð Þω� tð ÞrC�, vA t0ð Þ ¼ vA,0, t ≥ t0,½ (23)

where FT(t) = [0, 0, u1(t)]
T denotes the thrust force, that is, the force produced by the propellers

that allows a quadrotor to hover,

Fg ϕ;θ
� � ¼ mQg � sinθ; cosθ sinϕ; cosθ cosϕ

� �T, ϕ;θ
� �

∈ �π
2
;
π
2

� �
� �π

2
;
π
2

� �
, (24)

denotes the quadrotor’s weight, and F :R3!R3 denotes the aerodynamic force acting on the
quadrotor [23]. The rotational dynamic equation of a quadrotor is given by [4]
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the vehicle’s mass and g denotes the gravitational acceleration; the X and Y axes are chosen
arbitrarily. The axis z(�) points down and the axis x(�) is aligned to one of the quadrotor’s arms;
see Figure 1.

The attitude of the reference frame J with respect to the reference frame I is captured by the
roll, pitch, and yaw angles using a 3-2-1 rotation sequence ([22], Ch. 1). In particular, we denote
by ψ : [t0,∞)! [0, 2π) the yaw angle and ϕ,θ : t0;∞½ Þ ! � π

2 ;
π
2

� �
the roll and pitch angles,

respectively. The angular velocity of J with respect to I is denoted by ω : [t0,∞)!R3 ([22], Def.
1.9). The position of the point A with respect to the origin O of the inertial reference frame I is
denoted by rA : [t0,∞)!R3 and the velocity of Awith respect to I is denoted by vA : [t0,∞)!R3.

The position of the quadrotor’s center of mass C with respect to the reference point A is
denoted by rC∈R3. The matrix of inertia of the quadrotor, excluding its propellers, with
respect to A is denoted by I∈R3� 3 and the matrix of inertia of each propeller with respect
to A is denoted by IP∈R3� 3. The spin rate of the ith propeller is denoted by ΩP, i : [t0,∞)!R,
i = 1,…, 4. In this chapter, we model the quadrotor’s frame as a rigid body and propellers as
thin disks. Moreover, we assume that the vehicle’s inertial properties, such as the mass mQ,
the inertia matrix I, and the location of the center of mass rC, are constant, but unknown. The
quadrotor’s estimated mass is denoted by bmQ > 0 and the quadrotor’s estimated matrix of

inertia with respect to A is given by the symmetric, positive-definite matrix bI ∈R3�3.
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Figure 1. Schematic representation of a quadrotor helicopter.
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5. Quadrotors’ equations of motion

In this section, we present the equations of motion of quadrotors. Specifically, a quadrotor’s
translational kinematic equation is given by ([22], Ex. 1.12)

_rIA tð Þ ¼ R ϕ tð Þ;θ tð Þ;ψ tð Þ� �
vA tð Þ, rIA t0ð Þ ¼ rIA,0, t ≥ t0, (21)

where

R ϕ;θ;ψ
� �

≜
cosψ � sinψ 0
sinψ cosψ 0
0 0 1

2
64

3
75

cosθ 0 sinθ
0 1 0
� sinθ 0 cosθ

2
64

3
75

1 0 0
0 cosϕ � sinϕ
0 sinϕ cosϕ

2
64

3
75,

ϕ;θ;ψ
� �

∈ �π
2
;
π
2

� �
� �π

2
;
π
2

� �
� 0; 2π½ Þ,

and the rotational kinematic equation is given by ([22], Th. 1.7)

_ϕ tð Þ
_θ tð Þ
_ψ tð Þ

2
64

3
75 ¼ Γ ϕ tð Þ;θ tð Þ� �

ω tð Þ,
ϕ t0ð Þ
θ t0ð Þ
ψ t0ð Þ

2
64

3
75 ¼

ϕ0

θ0

ψ0

2
64

3
75, (22)

where

Γ ϕ;θ
� �

≜
1 sinϕ tanθ cosϕ tanθ
0 cosϕ � sinϕ
0 sinϕ secθ cosϕ secθ

2
64

3
75, ϕ;θ

� �
∈ �π

2
;
π
2

� �
� �π

2
;
π
2

� �
:

Under the modeling assumptions outlined in Section 4, a quadrotor’s translational dynamic
equation is given by [4]

FT tð Þ þ Fg ϕ tð Þ;θ tð Þ� �þ F vA tð Þð Þ ¼
mQ _vA tð Þ þ ω� tð ÞvA tð Þ þ _ω� tð ÞrCþω� tð Þω� tð ÞrC�, vA t0ð Þ ¼ vA,0, t ≥ t0,½ (23)

where FT(t) = [0, 0, u1(t)]
T denotes the thrust force, that is, the force produced by the propellers

that allows a quadrotor to hover,

Fg ϕ;θ
� � ¼ mQg � sinθ; cosθ sinϕ; cosθ cosϕ

� �T, ϕ;θ
� �

∈ �π
2
;
π
2

� �
� �π

2
;
π
2

� �
, (24)

denotes the quadrotor’s weight, and F :R3!R3 denotes the aerodynamic force acting on the
quadrotor [23]. The rotational dynamic equation of a quadrotor is given by [4]
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MT tð Þ þMg ϕ tð Þ;θ tð Þ� �þM ω tð Þð Þ ¼ mQr�C _vA tð Þ þ ω� tð ÞvA tð Þ½ � þ I _ω tð Þ þ ω� tð ÞIω tð Þ

þ IP
X4

i¼1

 0; 0;Ω̇
P, i tð Þ

h iT
þ ω� tð ÞIP

X4

i¼1

 0; 0;ΩP, i tð Þ½ �T, ω t0ð Þ ¼ ω0, t≥ t0,
(25)

where MT(t) = [u2(t), u3(t), u4(t)]
T denotes the moment of the forces induced by the propellers,

Mg ϕ;θ
� �

≜ r�CFg ϕ;θ
� �

, ϕ;θ
� �

∈ � π
2 ;

π
2

� �� � π
2 ;

π
2

� �
, denotes the moment of the quadrotor’s

weight with respect to A, and M :R3!R3 denotes the moment of the aerodynamic force with

respect to A. The terms IP
P4

i¼1  0; 0;Ω̇
Pi

tð Þ
h iT

, t ≥ t0, and ω� tð ÞIP
P4

i¼1  0; 0;ΩPi tð Þ
� �T in (25) are

known as inertial counter-torque and gyroscopic effect, respectively. In this chapter, we refer to
(21)–(23) and (25) as the equations of motion of a quadrotor helicopter.

We model the aerodynamic force and the moment of the aerodynamic force as

F vAð Þ ¼ �∥vA∥KFvA, vA ∈R3, (26)

M ωð Þ ¼ �∥ω∥KMω, ω∈R3, (27)

where KF,KM∈R3� 3 are diagonal, positive-definite, and unknown; for details, refer to [23]. The
aerodynamic force (26) is expressed in the reference frame J. The next result allows expressing
F(�) in the reference frame I.

Proposition 5.1 Consider the translational kinematic equation (21) and let (26) capture the aerody-
namic forces acting on a quadrotor. It holds that

FI vAð Þ ¼ � _rIA
�� ��R ϕ;θ;ψ

� �
KFRT ϕ;θ;ψ

� �
_rIA, _rA;ϕ;θ;ψ
� �

∈R3 � �π
2
;
π
2

� �
� �π

2
;
π
2

� �
� 0; 2π½ Þ:

(28)

Proof: It follows from (26) that

FI vAð Þ ¼ �∥vA∥ KFvA½ �I ¼ �∥vA∥R ϕ;θ;ψ
� �

KFvA (29)

for all vA;ϕ;θ;ψ
� �

∈R3 � � π
2 ;

π
2

� �� � π
2 ;

π
2

� �� 0; 2π½ Þ, and it follows from (21) that

FI vAð Þ ¼ �∥vA∥R ϕ;θ;ψ
� �

KFR�1 ϕ;θ;ψ
� �

_rIA: (30)

Eq. (28) now follows from (30), since R(�, � , �) is an orthogonal matrix and hence, per defini-
tion, R�1(ϕ,θ,ψ) =RT(ϕ,θ,ψ), ϕ;θ;ψ

� �
∈ � π

2 ;
π
2

� �� � π
2 ;

π
2

� �� 0; 2π½ Þ, ([22], Def. A.13) and

∥vA∥ ¼ RT ϕ;θ;ψ
� �

_rA
�� �� ¼ ∥ _rA∥ ([24], p. 132). □

Eq. (26) captures the aerodynamic drag acting on a quadrotor in absence of wind. If the wind
velocity vIW : t0;∞½ Þ ! R3 is not identically equal to zero, then it follows from (28) that the
aerodynamic force is given by
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FI t; vAð Þ ¼ � vIw tð Þ � _r
I
A

���
���R ϕ;θ;ψ
� �

KFRT ϕ;θ;ψ
� �

vIw tð Þ � _r
I
A

h i
,

t; _rA;ϕ;θ;ψ
� �

∈ t0;∞½ Þ � R3 � �π
2
;
π
2

� �
� �π

2
;
π
2

� �
� 0; 2π½ Þ:

(31)

It is reasonable to assume that the wind velocity does not affect the moment of the aerody-
namic force (27).

A quadrotor’s control vector is given by u(t) = [u1(t), u2(t), u3(t), u4(t)]
T, t ≥ t0, that is, the third

component of the thrust force FT(�) and the moment of the forces induced by the propellers
MT(�). One can verify that ([1], Ch. 2)

u1 tð Þ
u2 tð Þ
u3 tð Þ
u4 tð Þ

2
6664

3
7775 ¼

1 1 1 1
0 l 0 �l
l 0 �l 0
�cT cT �cT cT

2
6664

3
7775

T1 tð Þ
T2 tð Þ
T3 tð Þ
T4 tð Þ

2
6664

3
7775, t ≥ t0, (32)

where Ti : [t0,∞)!R, i = 1,…, 4, denotes the component of the force produced by the ith pro-
peller along the �z(�) axis of the reference frame J, l > 0 denotes the length of each propeller’s
arm, and cT > 0 denotes each propeller’s drag coefficient.

Remark 5.1 The state vector for the equations of motion of a quadrotor (21)–(23) and (25) is

defined as rTA; v
T
A;ϕ;θ;ψ;ω

T
� �T ∈R12 and the inertial counter-torque IP

P4
i¼1  0; 0;Ω̇

Pi
tð Þ

h iT
,

t ≥ t0, can be explicitly related through algebraic expressions to neither the state vector x nor
the control input u. Thus, the inertial counter-torque must be considered as a time-varying
term in a quadrotor’s rotational dynamic equations. Furthermore, it is common practice not to

relate the gyroscopic effect ω� tð ÞIP
P4

i¼1  0; 0;ΩPi tð Þ
� �T, t ≥ t0, with the control input u through

(32) ([1], Ch. 2). Hence, also the gyroscopic effect must be accounted for as a time-varying
term in a quadrotor’s equations of motion. For these reasons, (21)–(23) and (25) are a
nonlinear time-varying dynamical system.

6. Proposed control system for quadrotors

In this section, we outline a control strategy for quadrotors and verify that this strategy does
not defy the vehicle’s limits given by its controllability and underactuation.

6.1. Proposed control strategy

The configuration of a quadrotor, whose frame is modeled as a rigid body, is uniquely identi-
fied by the position in the inertial space of the reference point A, that is, rIA tð Þ ¼ rX tð Þ; rY tð Þ;½
rZ(t)]

T, t ≥ t0, and the Euler angles ϕ(t), θ(t), and ψ(t). Observing the equations of motion of a
quadrotor (21)–(23) and (25), one can show that the four control inputs u1(�),…, u4(�) are unable
to instantaneously and simultaneously accelerate the six independent generalized coordinates
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MT tð Þ þMg ϕ tð Þ;θ tð Þ� �þM ω tð Þð Þ ¼ mQr�C _vA tð Þ þ ω� tð ÞvA tð Þ½ � þ I _ω tð Þ þ ω� tð ÞIω tð Þ

þ IP
X4

i¼1

 0; 0;Ω̇
P, i tð Þ

h iT
þ ω� tð ÞIP

X4

i¼1

 0; 0;ΩP, i tð Þ½ �T, ω t0ð Þ ¼ ω0, t≥ t0,
(25)

where MT(t) = [u2(t), u3(t), u4(t)]
T denotes the moment of the forces induced by the propellers,

Mg ϕ;θ
� �

≜ r�CFg ϕ;θ
� �

, ϕ;θ
� �

∈ � π
2 ;

π
2

� �� � π
2 ;

π
2

� �
, denotes the moment of the quadrotor’s

weight with respect to A, and M :R3!R3 denotes the moment of the aerodynamic force with

respect to A. The terms IP
P4

i¼1  0; 0;Ω̇
Pi

tð Þ
h iT

, t ≥ t0, and ω� tð ÞIP
P4

i¼1  0; 0;ΩPi tð Þ
� �T in (25) are

known as inertial counter-torque and gyroscopic effect, respectively. In this chapter, we refer to
(21)–(23) and (25) as the equations of motion of a quadrotor helicopter.

We model the aerodynamic force and the moment of the aerodynamic force as

F vAð Þ ¼ �∥vA∥KFvA, vA ∈R3, (26)

M ωð Þ ¼ �∥ω∥KMω, ω∈R3, (27)

where KF,KM∈R3� 3 are diagonal, positive-definite, and unknown; for details, refer to [23]. The
aerodynamic force (26) is expressed in the reference frame J. The next result allows expressing
F(�) in the reference frame I.

Proposition 5.1 Consider the translational kinematic equation (21) and let (26) capture the aerody-
namic forces acting on a quadrotor. It holds that

FI vAð Þ ¼ � _rIA
�� ��R ϕ;θ;ψ

� �
KFRT ϕ;θ;ψ

� �
_rIA, _rA;ϕ;θ;ψ
� �

∈R3 � �π
2
;
π
2

� �
� �π

2
;
π
2

� �
� 0; 2π½ Þ:

(28)

Proof: It follows from (26) that

FI vAð Þ ¼ �∥vA∥ KFvA½ �I ¼ �∥vA∥R ϕ;θ;ψ
� �

KFvA (29)

for all vA;ϕ;θ;ψ
� �

∈R3 � � π
2 ;

π
2

� �� � π
2 ;

π
2

� �� 0; 2π½ Þ, and it follows from (21) that

FI vAð Þ ¼ �∥vA∥R ϕ;θ;ψ
� �

KFR�1 ϕ;θ;ψ
� �

_rIA: (30)

Eq. (28) now follows from (30), since R(�, � , �) is an orthogonal matrix and hence, per defini-
tion, R�1(ϕ,θ,ψ) =RT(ϕ,θ,ψ), ϕ;θ;ψ

� �
∈ � π

2 ;
π
2

� �� � π
2 ;

π
2

� �� 0; 2π½ Þ, ([22], Def. A.13) and

∥vA∥ ¼ RT ϕ;θ;ψ
� �

_rA
�� �� ¼ ∥ _rA∥ ([24], p. 132). □

Eq. (26) captures the aerodynamic drag acting on a quadrotor in absence of wind. If the wind
velocity vIW : t0;∞½ Þ ! R3 is not identically equal to zero, then it follows from (28) that the
aerodynamic force is given by
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FI t; vAð Þ ¼ � vIw tð Þ � _r
I
A

���
���R ϕ;θ;ψ
� �

KFRT ϕ;θ;ψ
� �

vIw tð Þ � _r
I
A

h i
,

t; _rA;ϕ;θ;ψ
� �

∈ t0;∞½ Þ � R3 � �π
2
;
π
2

� �
� �π

2
;
π
2

� �
� 0; 2π½ Þ:

(31)

It is reasonable to assume that the wind velocity does not affect the moment of the aerody-
namic force (27).

A quadrotor’s control vector is given by u(t) = [u1(t), u2(t), u3(t), u4(t)]
T, t ≥ t0, that is, the third

component of the thrust force FT(�) and the moment of the forces induced by the propellers
MT(�). One can verify that ([1], Ch. 2)

u1 tð Þ
u2 tð Þ
u3 tð Þ
u4 tð Þ

2
6664

3
7775 ¼

1 1 1 1
0 l 0 �l
l 0 �l 0
�cT cT �cT cT

2
6664

3
7775

T1 tð Þ
T2 tð Þ
T3 tð Þ
T4 tð Þ

2
6664

3
7775, t ≥ t0, (32)

where Ti : [t0,∞)!R, i = 1,…, 4, denotes the component of the force produced by the ith pro-
peller along the �z(�) axis of the reference frame J, l > 0 denotes the length of each propeller’s
arm, and cT > 0 denotes each propeller’s drag coefficient.

Remark 5.1 The state vector for the equations of motion of a quadrotor (21)–(23) and (25) is

defined as rTA; v
T
A;ϕ;θ;ψ;ω

T
� �T ∈R12 and the inertial counter-torque IP

P4
i¼1  0; 0;Ω̇

Pi
tð Þ

h iT
,

t ≥ t0, can be explicitly related through algebraic expressions to neither the state vector x nor
the control input u. Thus, the inertial counter-torque must be considered as a time-varying
term in a quadrotor’s rotational dynamic equations. Furthermore, it is common practice not to

relate the gyroscopic effect ω� tð ÞIP
P4

i¼1  0; 0;ΩPi tð Þ
� �T, t ≥ t0, with the control input u through

(32) ([1], Ch. 2). Hence, also the gyroscopic effect must be accounted for as a time-varying
term in a quadrotor’s equations of motion. For these reasons, (21)–(23) and (25) are a
nonlinear time-varying dynamical system.

6. Proposed control system for quadrotors

In this section, we outline a control strategy for quadrotors and verify that this strategy does
not defy the vehicle’s limits given by its controllability and underactuation.

6.1. Proposed control strategy

The configuration of a quadrotor, whose frame is modeled as a rigid body, is uniquely identi-
fied by the position in the inertial space of the reference point A, that is, rIA tð Þ ¼ rX tð Þ; rY tð Þ;½
rZ(t)]

T, t ≥ t0, and the Euler angles ϕ(t), θ(t), and ψ(t). Observing the equations of motion of a
quadrotor (21)–(23) and (25), one can show that the four control inputs u1(�),…, u4(�) are unable
to instantaneously and simultaneously accelerate the six independent generalized coordinates
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rX(�), rY(�), rZ(�), ϕ(�), θ(�), and ψ(�), and hence quadrotors are underactuated mechanical sys-
tems ([25], Def. 2.9). However, it follows from (21)–(23) and (25) that the control inputs u1(�),
…, u4(�) are able to instantaneously and simultaneously accelerate the independent generalized
coordinates rZ(�), ϕ(�), θ(�), and ψ(�), which uniquely capture the vehicle’s altitude and orienta-
tion dynamics.

In practical applications, quadrotors are employed to transport detection devices, such as anten-
nas or cameras, that must be taken to some specific location and pointed in some given direction.
For this reason, one usually needs to regulate a quadrotor’s position rIA �ð Þ and yaw angle ψ(�). To
meet this goal despite quadrotors’ underactuation, we apply the following control strategy. Let
[rX, ref (t), rY, ref (t), rZ, ref (t)]

T∈R3, t ≥ t0, denote the quadrotor’s reference trajectory, let ψref (t)∈ [0, 2π)
denote the quadrotor’s reference yaw angle, and assume that rX, ref (�), rY, ref (�), rZ, ref (�), and ψref (�),
are continuous with their first two derivatives and bounded with their first derivatives. It follows
from Example 1.4 of [22] that (21) and (23) are equivalent to

€rIA tð Þ ¼
uX tð Þ
uY tð Þ
uZ tð Þ

2
64

3
75þm�1

Q FI vA tð Þ;ω tð Þð Þ � €rIC tð Þ þ μI tð Þ, rIA t0ð Þ
vIA t0ð Þ

" #
¼ rIA,0

vIA,0

" #
, t ≥ t0, (33)

where [26]

μI tð Þ≜m�1
Q u1 tð Þ R ϕ tð Þ;θ tð Þ;ψ tð Þ� �� R ϕref tð Þ;θref tð Þ;ψref tð Þ

� �h i
Z, (34)

ϕref tð Þ≜ sin �1
uX tð Þ sinψref tð Þ � uY tð Þ cosψref tð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2X tð Þ þ u2Y tð Þ þ u2Z tð Þ
q , (35)

θref tð Þ≜ tan �1
uX tð Þ cosψref tð Þ þ uY tð Þ sinψref tð Þ

uZ tð Þ : (36)

Thus, a feedback control law for the virtual control input [uX(�), uY(�), uZ(�)]T is designed so that,
after a finite-time transient, rA(�) tracks [rX, ref(�), rY, ref(�), rZ, ref(�)]T with bounded error. Further-
more, a feedback control law for the control input [u2(�), u3(�),u4(�)]T is designed so that, after a
finite-time transient, [ϕ(�),θ(�),ψ(�)]T tracks [ϕref(�),θref(�),ψref(�)]T with bounded error. Since the
quadrotor’s mass mQ is unknown, we compute the component of the quadrotor’s thrust along
the z(�) axis of the reference frame J as

u1 tð Þ ¼ bmQ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2X tð Þ þ u2Y tð Þ þ u2Z tð Þ

q
, t ≥ t0: (37)

Figure 2 provides a schematic representation of the proposed control strategy.

Eqs. (35) and (36) constrain the nonlinear dynamical system given by (33), (22), and (25) and
enforce its underactuation. Note that (36) is well-defined, since uZ(t) 6¼ 0, t ≥ t0, is a necessary
condition for a quadrotor to fly, and (35) is well-defined since u1(t) 6¼ 0, t ≥ t0, is a necessary
condition to fly and
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uX tð Þ sinψref tð Þ � uY tð Þ cosψref tð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2X tð Þ þ u2Y tð Þ þ u2Z tð Þ

q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2X tð Þ þ u2Y tð Þ
u2X tð Þ þ u2Y tð Þ þ u2Z tð Þ

s
cos ψref tð Þ þ α tð Þ

� �
≤ 1,

where α(t)≜ tan�1(uY(t)/uX(t)). Alternative control strategies, which rely on the assumption
that the roll and pitch angles are small, are provided by Islam et al. [27]; Kotarski et al. [28];
Liu & Hedrick [29].

6.2. Strong accessibility of quadrotors

In this section, we prove that quadrotors are not controllable whenever the z(�) axis is parallel
to the horizontal plane. Specifically, it is well-known that θ tð Þ∈ � π

2 ;
π
2

� �
, t ≥ t0, is a necessary

condition for a 3-2-1 rotation sequence to uniquely identify a quadrotor’s orientation in space
and guarantee finiteness of the yaw rate for finite angular velocities ([22], p. 19). In the
following, we verify for the first time the conditions for quadrotors’ strong accessibility [15],
which is a weaker form of controllability for nonlinear dynamical systems [30–32], and prove
that if ϕ t∗ð Þ ¼ π

2

�� �� for some t∗ ≥ t0, then the quadrotor may not be controllable, that is, there may
not exist a continuous control input that is able to regulate the vehicle’s altitude and orienta-
tion dynamics at t = t∗.

To the authors’ best knowledge, the controllability of quadrotors’ altitude and orientation
dynamics has been studied considering simplified models, which assume that the vehicle’s
pitch and roll angles are small at all times [5, 33]. Moreover, existing results on the control-
lability of quadrotors neglect the fact that, as discussed in Remark 5.1, these vehicles are
time-varying dynamical systems and rely on sufficient conditions for the controllability of
time-invariant dynamical systems [30, 34].

In the following, we recall the notions of reachable set and strong accessibility for the nonlinear
time-varying dynamical system

Position Control

T1, T2, T3, T4Eq. (31)

Attitude Control

Eqs. (34), (35)
u1

uX , uY , uZ

φref , θref

rX,ref , rY,ref , rZ,ref

ψref

u2, u3, u4

rA

φ, θ, ψ

(20), (21), (22), (24)

Eq. (36)

Eqs.

Control System

Eq. (32)

Eqs. (22), (24)

Figure 2. Proposed control scheme for a quadrotor.

Robust Adaptive Output Tracking for Quadrotor Helicopters
http://dx.doi.org/10.5772/intechopen.70723

89



rX(�), rY(�), rZ(�), ϕ(�), θ(�), and ψ(�), and hence quadrotors are underactuated mechanical sys-
tems ([25], Def. 2.9). However, it follows from (21)–(23) and (25) that the control inputs u1(�),
…, u4(�) are able to instantaneously and simultaneously accelerate the independent generalized
coordinates rZ(�), ϕ(�), θ(�), and ψ(�), which uniquely capture the vehicle’s altitude and orienta-
tion dynamics.

In practical applications, quadrotors are employed to transport detection devices, such as anten-
nas or cameras, that must be taken to some specific location and pointed in some given direction.
For this reason, one usually needs to regulate a quadrotor’s position rIA �ð Þ and yaw angle ψ(�). To
meet this goal despite quadrotors’ underactuation, we apply the following control strategy. Let
[rX, ref (t), rY, ref (t), rZ, ref (t)]

T∈R3, t ≥ t0, denote the quadrotor’s reference trajectory, let ψref (t)∈ [0, 2π)
denote the quadrotor’s reference yaw angle, and assume that rX, ref (�), rY, ref (�), rZ, ref (�), and ψref (�),
are continuous with their first two derivatives and bounded with their first derivatives. It follows
from Example 1.4 of [22] that (21) and (23) are equivalent to

€rIA tð Þ ¼
uX tð Þ
uY tð Þ
uZ tð Þ

2
64

3
75þm�1

Q FI vA tð Þ;ω tð Þð Þ � €rIC tð Þ þ μI tð Þ, rIA t0ð Þ
vIA t0ð Þ

" #
¼ rIA,0

vIA,0

" #
, t ≥ t0, (33)

where [26]

μI tð Þ≜m�1
Q u1 tð Þ R ϕ tð Þ;θ tð Þ;ψ tð Þ� �� R ϕref tð Þ;θref tð Þ;ψref tð Þ

� �h i
Z, (34)

ϕref tð Þ≜ sin �1
uX tð Þ sinψref tð Þ � uY tð Þ cosψref tð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2X tð Þ þ u2Y tð Þ þ u2Z tð Þ
q , (35)

θref tð Þ≜ tan �1
uX tð Þ cosψref tð Þ þ uY tð Þ sinψref tð Þ

uZ tð Þ : (36)

Thus, a feedback control law for the virtual control input [uX(�), uY(�), uZ(�)]T is designed so that,
after a finite-time transient, rA(�) tracks [rX, ref(�), rY, ref(�), rZ, ref(�)]T with bounded error. Further-
more, a feedback control law for the control input [u2(�), u3(�),u4(�)]T is designed so that, after a
finite-time transient, [ϕ(�),θ(�),ψ(�)]T tracks [ϕref(�),θref(�),ψref(�)]T with bounded error. Since the
quadrotor’s mass mQ is unknown, we compute the component of the quadrotor’s thrust along
the z(�) axis of the reference frame J as

u1 tð Þ ¼ bmQ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2X tð Þ þ u2Y tð Þ þ u2Z tð Þ

q
, t ≥ t0: (37)

Figure 2 provides a schematic representation of the proposed control strategy.

Eqs. (35) and (36) constrain the nonlinear dynamical system given by (33), (22), and (25) and
enforce its underactuation. Note that (36) is well-defined, since uZ(t) 6¼ 0, t ≥ t0, is a necessary
condition for a quadrotor to fly, and (35) is well-defined since u1(t) 6¼ 0, t ≥ t0, is a necessary
condition to fly and
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uX tð Þ sinψref tð Þ � uY tð Þ cosψref tð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2X tð Þ þ u2Y tð Þ þ u2Z tð Þ

q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2X tð Þ þ u2Y tð Þ
u2X tð Þ þ u2Y tð Þ þ u2Z tð Þ

s
cos ψref tð Þ þ α tð Þ

� �
≤ 1,

where α(t)≜ tan�1(uY(t)/uX(t)). Alternative control strategies, which rely on the assumption
that the roll and pitch angles are small, are provided by Islam et al. [27]; Kotarski et al. [28];
Liu & Hedrick [29].

6.2. Strong accessibility of quadrotors

In this section, we prove that quadrotors are not controllable whenever the z(�) axis is parallel
to the horizontal plane. Specifically, it is well-known that θ tð Þ∈ � π

2 ;
π
2

� �
, t ≥ t0, is a necessary

condition for a 3-2-1 rotation sequence to uniquely identify a quadrotor’s orientation in space
and guarantee finiteness of the yaw rate for finite angular velocities ([22], p. 19). In the
following, we verify for the first time the conditions for quadrotors’ strong accessibility [15],
which is a weaker form of controllability for nonlinear dynamical systems [30–32], and prove
that if ϕ t∗ð Þ ¼ π

2

�� �� for some t∗ ≥ t0, then the quadrotor may not be controllable, that is, there may
not exist a continuous control input that is able to regulate the vehicle’s altitude and orienta-
tion dynamics at t = t∗.

To the authors’ best knowledge, the controllability of quadrotors’ altitude and orientation
dynamics has been studied considering simplified models, which assume that the vehicle’s
pitch and roll angles are small at all times [5, 33]. Moreover, existing results on the control-
lability of quadrotors neglect the fact that, as discussed in Remark 5.1, these vehicles are
time-varying dynamical systems and rely on sufficient conditions for the controllability of
time-invariant dynamical systems [30, 34].

In the following, we recall the notions of reachable set and strong accessibility for the nonlinear
time-varying dynamical system

Position Control

T1, T2, T3, T4Eq. (31)

Attitude Control

Eqs. (34), (35)
u1

uX , uY , uZ

φref , θref

rX,ref , rY,ref , rZ,ref

ψref

u2, u3, u4

rA

φ, θ, ψ

(20), (21), (22), (24)

Eq. (36)

Eqs.

Control System

Eq. (32)
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Figure 2. Proposed control scheme for a quadrotor.
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_x tð Þ ¼ f t; x tð Þð Þ þ G x tð Þð Þu tð Þ, x t0ð Þ ¼ x0, t ≥ t0, (38)

where x(t)∈Rn, t ≥ t0, u(t)∈Rm is continuous, and both f : [t0,∞)�Rn!Rn and G :Rn!Rn�m

are continuously differentiable.

Definition 6.1 ([15]). Consider the nonlinear time-varying dynamical system (38), let M be
a real analytic manifold of dimension n, and let y∈M and t1, t2 ≥ t0. The reachable set R(y, t1,
t2) of (38) from (y, t1) at t2 is the set of all states that can be reached at time t2 by following
the solution of (38) with initial condition y, initial time t1, and some continuous control
input u(�). The nonlinear time-varying dynamical system (38) is strongly accessible at y∈M
at time t1 if R(y, t1, t2) has a non-empty interior in M for every t2 > t1. The nonlinear time-
varying dynamical system (38) is strongly accessible on M if it is strongly accessible at every
y∈M and every t1 ≥ t0.

In practice, Definition 6.1 states that if the nonlinear time-varying dynamical system (38)
is strongly accessible on M, then for every point in the reachable set of (38), there exists a
continuous control input such that the system’s trajectory is contained both in the reach-
able set and the manifold M at all times. The next theorem provides sufficient conditions
for the strong accessibility of the nonlinear dynamical system (38). For the statement of
this result, consider the augmented time-invariant dynamical system

_~x tð Þ ¼ ~f ~x tð Þð Þ þ ~G ~x tð Þð Þu tð Þ, ~x 0ð Þ ¼ xT0 ; t0
� �T

, t ≥ 0, (39)

where ~x ≜ xT; t
� �T, ~f ~xð Þ≜ f T xð Þ; 1� �T

, ~G ~xð Þ≜ GT xð Þ; 0n�1
� �T

, and recall that the controllability
matrix of the augmented time-invariant dynamical system (39) is defined as [15]

C ~xð Þ≜ ~g1 ~xð Þ;…; ~gm ~xð Þ; ad~f ~g1 ~xð Þ;…; ad~f ~gm ~xð Þ
h i

, ~x ∈Rn � t0;∞½ Þ, (40)

where ~G ~xð Þ ¼ ~g1 ~xð Þ;…~gm ~xð Þ� �
.

Theorem 6.1 ([15]). Consider the nonlinear dynamical system (38). If rank C ~xð Þ ¼ n for all
~x ∈M� t0;∞½ Þ, then (38) is strongly accessible.

It follows from (21)–(23) and (25) that a quadrotor’s altitude and orientation are captured by

(38) with n = 8, m = 4, x ¼ rZ;ϕ;θ;ψ; _rZ;ωT
� �T, f : t0;∞½ Þ �D� R4 ! R4, D ¼ 0;∞½ Þ � � π

2 ;
π
2

� ��
� π

2 ;
π
2

� �� 0; 2π½ Þ � R� R3, and

G xð Þ ¼ m�1
Q

04�1 04�3

cosϕ cosθ 01�3

03�1 mQΓ ϕ;θ
� �

I�1

2
64

3
75; (41)

the explicit expression for f(�, �) is omitted for brevity. In this case, the controllability matrix C �ð Þ
of the fully actuated, augmented time-invariant dynamical system (39) is such that
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det C ~xð Þ ¼ cosϕ
m2

Qdet
2 I

, ~x ∈R8 � t0;∞½ Þ, (42)

and it follows from Theorem 6.1 that ϕ tð Þ∈ � π
2 ;

π
2

� �
, t ≥ t0, is a sufficient condition to guarantee

that a quadrotor’s altitude rZ(t) and orientation [ϕ(t),θ(t),ψ(t)]T can be regulated by some

continuous control input u(t), while _rZ tð Þ; _ϕ tð Þ; _θ tð Þ; _ψ tð Þ� �T
remain bounded at all times; in

practice, to preserve controllability, a conservative control law for quadrotors must prevent
rotations of an angle of �π/2 about the x(�) axis of the reference frame J. Note that it follows
from (35) that ϕref tð Þ∈ � π

2 ;
π
2

� �
, t ≥ t0, and hence the reference roll angle verifies sufficient

conditions for strong accessibility of quadrotors’ altitude and orientation dynamics.

7. Nonlinear robust control of quadrotors

In this section, we apply the results presented in Sections 3–6 to design control laws so that a
quadrotor can follow a given trajectory with bounded error. Specifically, we design a control
law for u(�) so that a quadrotor can track both the given reference trajectory [rX, ref(t), rY, ref(t),
rZ, ref(t)]

T, t ≥ t0, and the reference yaw angle ψref(t). In practice, we design control laws both for
the virtual control input [uX(t), uY(t), uZ(t)]

T, t ≥ t0, and the moment of the propellers’ thrust
[u2(t), u3(t), u4(t)]

T, so that a quadrotor tracks [rX, ref(t), rY, ref(t), rZ, ref(t)]
T, the reference roll angle

(35), the reference pitch angle (36), and the reference yaw angle ψref(t).

It follows form (33) that if the aerodynamic force is modeled as in (31), then a quadrotor’s
translational kinematic and dynamic equations are given by

_xp,P tð Þ ¼ Ap,Pxp,P tð Þ þ Bp,PΛP

uX tð Þ
uY tð Þ
uZ tð Þ

2
64

3
75þΘT

PΦ xp,P tð Þ� �
0
B@

1
CAþ bξP tð Þ,

xp,P t0ð Þ ¼ rTA,0; vIA,0
� �T� �T

, t ≥ t0, (43)

_yP tð Þ ¼ εCp,Pxp,P tð Þ � εyP tð Þ, yP t0ð Þ ¼ Cp,Pxp,P t0ð Þ, (44)

where xp,P tð Þ ¼ rIA tð Þ� �T
; _rIA tð Þ� �Th iT

, t ≥ t0, Ap,P ¼ 03�3 13
03�3 03�3

� �
, Bp,P ¼ 03�3

13

� �
, ΛP ¼ m�1

Q 13,

Cp, P = [13, 03� 3], bξP tð Þ∈R6, 13; 03�3½ �bξP tð Þ ¼ 03�3, and

03�3; 13½ �bξP tð Þ ¼ m�1
Q vIW tð Þ � _r

I
A tð Þ

���
���Bp,PR ϕ tð Þ;θ tð Þ;ψ tð Þ� �

�KFRT ϕ tð Þ;θ tð Þ;ψ tð Þ� �
vIW tð Þ � _r

I
A tð Þ

h i
þ μI tð Þ � €rIC tð Þ: (45)

Robust Adaptive Output Tracking for Quadrotor Helicopters
http://dx.doi.org/10.5772/intechopen.70723

91



_x tð Þ ¼ f t; x tð Þð Þ þ G x tð Þð Þu tð Þ, x t0ð Þ ¼ x0, t ≥ t0, (38)

where x(t)∈Rn, t ≥ t0, u(t)∈Rm is continuous, and both f : [t0,∞)�Rn!Rn and G :Rn!Rn�m

are continuously differentiable.

Definition 6.1 ([15]). Consider the nonlinear time-varying dynamical system (38), let M be
a real analytic manifold of dimension n, and let y∈M and t1, t2 ≥ t0. The reachable set R(y, t1,
t2) of (38) from (y, t1) at t2 is the set of all states that can be reached at time t2 by following
the solution of (38) with initial condition y, initial time t1, and some continuous control
input u(�). The nonlinear time-varying dynamical system (38) is strongly accessible at y∈M
at time t1 if R(y, t1, t2) has a non-empty interior in M for every t2 > t1. The nonlinear time-
varying dynamical system (38) is strongly accessible on M if it is strongly accessible at every
y∈M and every t1 ≥ t0.

In practice, Definition 6.1 states that if the nonlinear time-varying dynamical system (38)
is strongly accessible on M, then for every point in the reachable set of (38), there exists a
continuous control input such that the system’s trajectory is contained both in the reach-
able set and the manifold M at all times. The next theorem provides sufficient conditions
for the strong accessibility of the nonlinear dynamical system (38). For the statement of
this result, consider the augmented time-invariant dynamical system

_~x tð Þ ¼ ~f ~x tð Þð Þ þ ~G ~x tð Þð Þu tð Þ, ~x 0ð Þ ¼ xT0 ; t0
� �T

, t ≥ 0, (39)

where ~x ≜ xT; t
� �T, ~f ~xð Þ≜ f T xð Þ; 1� �T

, ~G ~xð Þ≜ GT xð Þ; 0n�1
� �T

, and recall that the controllability
matrix of the augmented time-invariant dynamical system (39) is defined as [15]

C ~xð Þ≜ ~g1 ~xð Þ;…; ~gm ~xð Þ; ad~f ~g1 ~xð Þ;…; ad~f ~gm ~xð Þ
h i

, ~x ∈Rn � t0;∞½ Þ, (40)

where ~G ~xð Þ ¼ ~g1 ~xð Þ;…~gm ~xð Þ� �
.

Theorem 6.1 ([15]). Consider the nonlinear dynamical system (38). If rank C ~xð Þ ¼ n for all
~x ∈M� t0;∞½ Þ, then (38) is strongly accessible.

It follows from (21)–(23) and (25) that a quadrotor’s altitude and orientation are captured by

(38) with n = 8, m = 4, x ¼ rZ;ϕ;θ;ψ; _rZ;ωT
� �T, f : t0;∞½ Þ �D� R4 ! R4, D ¼ 0;∞½ Þ � � π

2 ;
π
2

� ��
� π

2 ;
π
2

� �� 0; 2π½ Þ � R� R3, and

G xð Þ ¼ m�1
Q

04�1 04�3

cosϕ cosθ 01�3

03�1 mQΓ ϕ;θ
� �

I�1

2
64

3
75; (41)

the explicit expression for f(�, �) is omitted for brevity. In this case, the controllability matrix C �ð Þ
of the fully actuated, augmented time-invariant dynamical system (39) is such that
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det C ~xð Þ ¼ cosϕ
m2

Qdet
2 I

, ~x ∈R8 � t0;∞½ Þ, (42)

and it follows from Theorem 6.1 that ϕ tð Þ∈ � π
2 ;

π
2

� �
, t ≥ t0, is a sufficient condition to guarantee

that a quadrotor’s altitude rZ(t) and orientation [ϕ(t),θ(t),ψ(t)]T can be regulated by some

continuous control input u(t), while _rZ tð Þ; _ϕ tð Þ; _θ tð Þ; _ψ tð Þ� �T
remain bounded at all times; in

practice, to preserve controllability, a conservative control law for quadrotors must prevent
rotations of an angle of �π/2 about the x(�) axis of the reference frame J. Note that it follows
from (35) that ϕref tð Þ∈ � π

2 ;
π
2

� �
, t ≥ t0, and hence the reference roll angle verifies sufficient

conditions for strong accessibility of quadrotors’ altitude and orientation dynamics.

7. Nonlinear robust control of quadrotors

In this section, we apply the results presented in Sections 3–6 to design control laws so that a
quadrotor can follow a given trajectory with bounded error. Specifically, we design a control
law for u(�) so that a quadrotor can track both the given reference trajectory [rX, ref(t), rY, ref(t),
rZ, ref(t)]

T, t ≥ t0, and the reference yaw angle ψref(t). In practice, we design control laws both for
the virtual control input [uX(t), uY(t), uZ(t)]

T, t ≥ t0, and the moment of the propellers’ thrust
[u2(t), u3(t), u4(t)]

T, so that a quadrotor tracks [rX, ref(t), rY, ref(t), rZ, ref(t)]
T, the reference roll angle

(35), the reference pitch angle (36), and the reference yaw angle ψref(t).

It follows form (33) that if the aerodynamic force is modeled as in (31), then a quadrotor’s
translational kinematic and dynamic equations are given by

_xp,P tð Þ ¼ Ap,Pxp,P tð Þ þ Bp,PΛP

uX tð Þ
uY tð Þ
uZ tð Þ

2
64

3
75þΘT

PΦ xp,P tð Þ� �
0
B@

1
CAþ bξP tð Þ,

xp,P t0ð Þ ¼ rTA,0; vIA,0
� �T� �T

, t ≥ t0, (43)

_yP tð Þ ¼ εCp,Pxp,P tð Þ � εyP tð Þ, yP t0ð Þ ¼ Cp,Pxp,P t0ð Þ, (44)

where xp,P tð Þ ¼ rIA tð Þ� �T
; _rIA tð Þ� �Th iT

, t ≥ t0, Ap,P ¼ 03�3 13
03�3 03�3

� �
, Bp,P ¼ 03�3

13

� �
, ΛP ¼ m�1

Q 13,

Cp, P = [13, 03� 3], bξP tð Þ∈R6, 13; 03�3½ �bξP tð Þ ¼ 03�3, and

03�3; 13½ �bξP tð Þ ¼ m�1
Q vIW tð Þ � _r

I
A tð Þ

���
���Bp,PR ϕ tð Þ;θ tð Þ;ψ tð Þ� �

�KFRT ϕ tð Þ;θ tð Þ;ψ tð Þ� �
vIW tð Þ � _r

I
A tð Þ

h i
þ μI tð Þ � €rIC tð Þ: (45)
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Although ΘT
PΦ xp,P �ð Þ� �

follows neither from (33) nor (28), this nonlinear term has been intro-
duced to account for failures of the control system; in this section, we assume that

Φ zð Þ ¼ tanh z, z∈Rn, (46)

which is globally Lipschitz continuous. Since any quadrotor’s velocity and acceleration are

bounded, it follows from (45) that also the unmatched uncertainty bξP �ð Þ is bounded. Eq. (44)
captures the plant sensor’s dynamics ([20], Ch. 2).

It follows from (22) and (25) that a quadrotor’s rotational dynamics is captured by

_ϕ tð Þ
_θ tð Þ
_ψ tð Þ
_ω tð Þ

2
66664

3
77775
¼ f ϕ tð Þ;θ tð Þ;ψ tð Þ;ω tð Þ� �þ 03�3

bI�1

" # u2 tð Þ
u3 tð Þ
u4 tð Þ

2
64

3
75þ bξA tð Þ,

ϕ t0ð Þ;θ t0ð Þ;ψ t0ð Þ;ωT t0ð Þ� �T ¼ ϕ0;θ0;ψ0;ω
T
0

� �T
, t ≥ t0, (47)

where f ϕ;θ;ψ;ω
� � ¼ ωTΓT ϕ;θ

� �
; �bI�1

ω�bIω
� �T� �T

, bξA tð Þ∈R6, 13; 03�3½ �bξA tð Þ ¼ 03,

03�3; 13½ �bξA tð Þ ¼ I�1r�C Fg ϕ tð Þ;θ tð Þ� ��mQ€r
I
A tð Þ

h i
þ I�1M ω tð Þð Þ þ bI�1

ω� tð ÞbI � I�1ω� tð ÞI
h i

ω tð Þþ

I �bI
� �

u2 tð Þ; u3 tð Þ; u4 tð Þ½ �T � I�1IP
X4

i¼1


0
0
Ω
̇
P, i tð Þ

2
64

3
75� I�1ω� tð ÞIP

X4

i¼1


0
0
ΩP, i tð Þ

2
64

3
75; (48)

Fg(�, �) is given by (24), rA(�) verifies (43), andM(�) is given by (27). Let xp,A ¼ ϕ; _ϕ;θ; _θ;ψ; _ψ
� �T

,

η xp,A
� � ¼ _ϕ; _θ; _ψ

� �T
, β xp,A
� � ¼ L2f ϕ; L

2
f θ; L

2
f ψ;

h iT
, and v∈R3; the explicit expression of β(�) is

omitted for brevity. By proceeding as in Example 6.3 of [35], one can prove that the nonlinear
dynamical system (47) is feedback linearizable ([31], Ch. 5). Specifically, (47) with

u2; u3; u4½ �T ¼ bIΓ�1 ϕ;θ
� �

η xp,A
� �� β xp,A

� �þ v
� �

,

xp,A; v
� �

∈ �π
2
;
π
2

� �
� R� �π

2
;
π
2

� �
� R� 0; 2π½ Þ � R� R3, (49)

is equivalent to

_xp,A tð Þ ¼ Ap,Axp,A tð Þ þ Bp,AΛA v tð Þ þΘT
AΦ xp,A tð Þ� �� �þ bξA tð Þ,

xp,A t0ð Þ ¼ ϕ0;
_ϕ0;θ0; _θ0;ψ0;

_ψ0

� �T
, t ≥ t0, (50)
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_yA tð Þ ¼ εCp,Axp,A tð Þ � εyA tð Þ, yA t0ð Þ ¼ Cp,Axp,A t0ð Þ, (51)

where

Ap,A ¼

0 1 0 0 0 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 1 0 0
0 0 0 0 0 1
0 0 0 0 0 1

2
666666664

3
777777775
, Bp,A ¼

0 0 0
1 0 0
0 0 0
0 1 0
0 0 0
0 0 1

2
666666664

3
777777775
, Cp,A ¼

1 0 0
0 0 0
0 1 0
0 0 0
0 0 1
0 0 0

2
666666664

3
777777775

T

, (52)

_ϕ0;
_θ0; _ψ0

� �T ¼ Γ ϕ0;θ0
� �

ω0, Λ∈R3� 3 is diagonal positive-definite, and Φ(�) given by (46).
Although ΛA= 13 [35], we assume that ΛA is unknown and accounts for failures of the propulsion
system and erroneous modeling assumptions. Similarly, the term ΘT

AΦ xp,A �ð Þ� �
has been intro-

duced to capture matched uncertainties. Since any quadrotor’s angular velocity, angular acceler-
ation, and propeller’s spin rate are bounded, it follows from (48) that also the unmatched

uncertainty bξA �ð Þ is bounded. Eq. (51) captures the plant sensor’s dynamics ([20], Ch. 2).

The next theorem provides feedback control laws both for [uX(�), uY(�), uZ(�)]T and [u2(�), u3(�),
u4(�)]T so that the measured output signal yP(�) tracks the reference signal

ycmd,P tð Þ ¼ rX, ref tð Þ; rY, ref tð Þ; rZ, ref tð Þ½ �T, t ≥ t0, (53)

and the measured output signal yA(�) tracks the reference signal

ycmd,A tð Þ ¼ ϕref tð Þ;θref tð Þ;ψref tð Þ
� �T, (54)

where ϕref(�) and θref(�) are given by (35) and (36), respectively, with some bounded error despite
model uncertainties, external disturbances, and failures of the propulsion system. For the state-
ment of this result, consider both the nonlinear dynamical system given by (43) and (44) and the
nonlinear dynamical system given by (50) and (51), and note that these systems are equivalent to
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Although ΘT
PΦ xp,P �ð Þ� �

follows neither from (33) nor (28), this nonlinear term has been intro-
duced to account for failures of the control system; in this section, we assume that

Φ zð Þ ¼ tanh z, z∈Rn, (46)

which is globally Lipschitz continuous. Since any quadrotor’s velocity and acceleration are

bounded, it follows from (45) that also the unmatched uncertainty bξP �ð Þ is bounded. Eq. (44)
captures the plant sensor’s dynamics ([20], Ch. 2).
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Fg(�, �) is given by (24), rA(�) verifies (43), andM(�) is given by (27). Let xp,A ¼ ϕ; _ϕ;θ; _θ;ψ; _ψ
� �T
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2
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h iT
, and v∈R3; the explicit expression of β(�) is

omitted for brevity. By proceeding as in Example 6.3 of [35], one can prove that the nonlinear
dynamical system (47) is feedback linearizable ([31], Ch. 5). Specifically, (47) with
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_yA tð Þ ¼ εCp,Axp,A tð Þ � εyA tð Þ, yA t0ð Þ ¼ Cp,Axp,A t0ð Þ, (51)
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has been intro-
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ation, and propeller’s spin rate are bounded, it follows from (48) that also the unmatched

uncertainty bξA �ð Þ is bounded. Eq. (51) captures the plant sensor’s dynamics ([20], Ch. 2).
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Theorem 7.1 Consider the nonlinear dynamical system given by (43) and (44), the nonlinear dynamical
system given by (50) and (51), the reference signals (53) and (54), the augmented dynamical system (8),
the reference dynamical model (9), the feedback control law γ(�, � , �) given by (10), and the adaptation laws
(11)–(13). If there exist Kx∈R18� 6 and Kcmd∈R6� 6 such that (15) and (16) and satisfied, then (8) with
u =γ(t, xp, x) is uniformly ultimately bounded. Furthermore, there exist b > 0 and c > 0 independent of t0,
and for every a∈ (0, c), there exists a finite-time T =T(a, c) ≥ 0, independent of t0, such that if ∥yP(t0)�
ycmd,P(t0) ∥ ≤ a and ∥yA(t0)� ycmd,A(t0) ∥ ≤ a, then

∥yP tð Þ � ycmd,P tð Þ∥ ≤ b, t ≥ t0 þ T, (55)

∥yA tð Þ � ycmd,A tð Þ∥ ≤ b: (56)

Lastly, the thrust force generated by the quadrotor’s propellers is such that

u1 tð Þ ¼ bmQ γP t; xp tð Þ; x tð Þ� ��� ��, t ≥ t0, (57)

and the moment of the thrust force generated by the quadrotor’s propellers is given by

u2 tð Þ
u3 tð Þ
u4 tð Þ

2
64

3
75 ¼ bIΓ�1 ϕ tð Þ;θ tð Þ� �

η xp,A tð Þ� �� β xp,A tð Þ� �þ γA t; xp tð Þ; x tð Þ� �� �
, (58)

where γ t; xp; x
� � ¼ γT

P t; xp; x
� �

;γT
A t; xp; x
� �� �T, (t, xp, x)∈ [t0,∞)�R12�R18, γP(t, xp, x)∈R3, and

γA(t, xp, x)∈R3.

Proof: Uniform ultimate boundedness of (8) with u =γ(t, xp, x) is a direct consequence of Theo-
rem 3.1. Thus, both the nonlinear dynamical system given by (43) and (44) with [uX,uY,
uZ]

T =γP(t, xp, x), t; xp; x
� �

∈ t0;∞½ Þ �Dp �D, and the nonlinear dynamical system given by
(50) and (51) with [u2, u3, u4]

T =γA(t, xp, x) are uniformly ultimately bounded. Consequently, it
follows from Definition 2.2 that there exist b > 0 and c > 0 independent of t0, and for every
a∈ (0, c), there exists a finite-time T =T(a, c) ≥ 0, independent of t0, such that if ∥yP(t0)� ycmd,

P(t0) ∥ ≤ a and ∥yA(t0)� ycmd,A(t0) ∥ ≤ a, then (55) and (56) are satisfied. Lastly, (57) directly
follows from (37), and (58) directly follows from (49).

8. Illustrative numerical example

In this section, we provide a numerical example to illustrate both the applicability and the
advantages of the theoretical results presented in this chapter. Specifically, we design a
nonlinear robust control algorithm that allows a quadrotor helicopter to follow a circular
trajectory, although the vehicle’s inertial properties are unknown, one of the motors is sud-
denly turned off, the payload is dropped over the course of the mission, and the wind blows at
strong velocity.
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Consider a quadrotor of mass mQ = 1 kg and matrix of inertia I = 13 kg m2, let the propellers be

characterized by the matrix of inertia Ip ¼
0:025 0 0
0 0:025 0
0 0 0:05

2
64

3
75kg m2, and let that the sen-

sor’s dynamics be characterized by ε = 10. We assume that the vehicle’s mass and matrix of

inertia are unknown and estimated to be bmQ ¼ 1:25 kg and bI ¼ 0:8 � 13 kg m2, respectively.
Moreover, we assume that the aerodynamic force (31) and the aerodynamic moment (27) are
characterized by KF =KM = 0.01 � 13, which we assume unknown, and the wind velocity is given

by vIW tð Þ ¼ 16; 0; 0½ �T m=s, t ≥ t0; it is worthwhile to note that this wind speed is considered as
excessive for quadrotors equipped with conventional autopilots.

Figure 3 shows the quadrotor’s trajectory obtained applying the control laws (57) and (58) to
track a circular path of radius 0.3 m at an altitude of 0.75 m despite the fact that the quadrotor’s
payload of 0.5 kg is dropped at t ≥ 40 s and one of the motors is turned off at t = 90 s. These
results have been obtained by setting σ1 =σ2 =σ3 = 2, Γcmd =100 � 16, and Γx and ΓΘ as block-
diagonal matrices, whose non-zero blocks are Γx, (1, 1) = 1000 � 19, Γx, (2, 2) = 2000 � 19, ΓΘ, (1, 1) = 200 � 19,
abd Γ

Θ, (2, 2)
= 1600 � 19.

Figure 3. Reference trajectory and trajectory followed by the quadrotor implementing the proposed control algorithm.
The vehicle is disturbed by some wind constantly blowing at 16 m/s.
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Theorem 7.1 Consider the nonlinear dynamical system given by (43) and (44), the nonlinear dynamical
system given by (50) and (51), the reference signals (53) and (54), the augmented dynamical system (8),
the reference dynamical model (9), the feedback control law γ(�, � , �) given by (10), and the adaptation laws
(11)–(13). If there exist Kx∈R18� 6 and Kcmd∈R6� 6 such that (15) and (16) and satisfied, then (8) with
u =γ(t, xp, x) is uniformly ultimately bounded. Furthermore, there exist b > 0 and c > 0 independent of t0,
and for every a∈ (0, c), there exists a finite-time T =T(a, c) ≥ 0, independent of t0, such that if ∥yP(t0)�
ycmd,P(t0) ∥ ≤ a and ∥yA(t0)� ycmd,A(t0) ∥ ≤ a, then

∥yP tð Þ � ycmd,P tð Þ∥ ≤ b, t ≥ t0 þ T, (55)

∥yA tð Þ � ycmd,A tð Þ∥ ≤ b: (56)

Lastly, the thrust force generated by the quadrotor’s propellers is such that

u1 tð Þ ¼ bmQ γP t; xp tð Þ; x tð Þ� ��� ��, t ≥ t0, (57)

and the moment of the thrust force generated by the quadrotor’s propellers is given by

u2 tð Þ
u3 tð Þ
u4 tð Þ

2
64

3
75 ¼ bIΓ�1 ϕ tð Þ;θ tð Þ� �

η xp,A tð Þ� �� β xp,A tð Þ� �þ γA t; xp tð Þ; x tð Þ� �� �
, (58)

where γ t; xp; x
� � ¼ γT

P t; xp; x
� �

;γT
A t; xp; x
� �� �T, (t, xp, x)∈ [t0,∞)�R12�R18, γP(t, xp, x)∈R3, and

γA(t, xp, x)∈R3.

Proof: Uniform ultimate boundedness of (8) with u =γ(t, xp, x) is a direct consequence of Theo-
rem 3.1. Thus, both the nonlinear dynamical system given by (43) and (44) with [uX,uY,
uZ]
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� �

∈ t0;∞½ Þ �Dp �D, and the nonlinear dynamical system given by
(50) and (51) with [u2, u3, u4]

T =γA(t, xp, x) are uniformly ultimately bounded. Consequently, it
follows from Definition 2.2 that there exist b > 0 and c > 0 independent of t0, and for every
a∈ (0, c), there exists a finite-time T =T(a, c) ≥ 0, independent of t0, such that if ∥yP(t0)� ycmd,

P(t0) ∥ ≤ a and ∥yA(t0)� ycmd,A(t0) ∥ ≤ a, then (55) and (56) are satisfied. Lastly, (57) directly
follows from (37), and (58) directly follows from (49).

8. Illustrative numerical example

In this section, we provide a numerical example to illustrate both the applicability and the
advantages of the theoretical results presented in this chapter. Specifically, we design a
nonlinear robust control algorithm that allows a quadrotor helicopter to follow a circular
trajectory, although the vehicle’s inertial properties are unknown, one of the motors is sud-
denly turned off, the payload is dropped over the course of the mission, and the wind blows at
strong velocity.
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sor’s dynamics be characterized by ε = 10. We assume that the vehicle’s mass and matrix of

inertia are unknown and estimated to be bmQ ¼ 1:25 kg and bI ¼ 0:8 � 13 kg m2, respectively.
Moreover, we assume that the aerodynamic force (31) and the aerodynamic moment (27) are
characterized by KF =KM = 0.01 � 13, which we assume unknown, and the wind velocity is given

by vIW tð Þ ¼ 16; 0; 0½ �T m=s, t ≥ t0; it is worthwhile to note that this wind speed is considered as
excessive for quadrotors equipped with conventional autopilots.

Figure 3 shows the quadrotor’s trajectory obtained applying the control laws (57) and (58) to
track a circular path of radius 0.3 m at an altitude of 0.75 m despite the fact that the quadrotor’s
payload of 0.5 kg is dropped at t ≥ 40 s and one of the motors is turned off at t = 90 s. These
results have been obtained by setting σ1 =σ2 =σ3 = 2, Γcmd =100 � 16, and Γx and ΓΘ as block-
diagonal matrices, whose non-zero blocks are Γx, (1, 1) = 1000 � 19, Γx, (2, 2) = 2000 � 19, ΓΘ, (1, 1) = 200 � 19,
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Figure 3. Reference trajectory and trajectory followed by the quadrotor implementing the proposed control algorithm.
The vehicle is disturbed by some wind constantly blowing at 16 m/s.
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Figure 4 shows both the quadrotor’s altitude as function of time and the altitude of an
identical quadrotor implementing an autopilot based on the classical PD framework [36] and
flying in absence of wind. It is clear how the quadrotor implementing our control algorithm is
able to fly at the desired altitude despite the fact that the payload is dropped at t = 40 s and a
motor is turned off at t = 90 s. The quadrotor implementing the PD algorithm is unable to reach
the desired altitude because of the large error in the vehicle’s mass’ estimate. Moreover, this
quadrotor reaches a considerably higher altitude after the payload is dropped and crashes
after one of the propellers is turned off.

The first plot in Figure 5 shows the control inputs (57) and (58). The second plot in Figure 5
shows the control inputs computed using a conventional MRAC framework [6] for a
quadrotor tracking the same circular path despite a wind blowing at 6 m/s; numerical simula-
tions show that quadrotors implementing the conventional MRAC framework are unable to
fly in the presence of wind gusts faster than 6 m/s. It is clear that our autopilot requires a
control effort that is smaller than the effort required by a conventional MRAC-based autopilot
to fly in weaker wind.
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Figure 4. Altitude of a quadrotor implementing the proposed control algorithm and altitude of an identical quadrotor
implementing an autopilot based on the classical PD control.
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9. Conclusion

In this chapter, we presented a robust MRAC architecture, which we employed to design
autopilots for quadrotor helicopters. The proposed autopilot is the first to account for the fact
that quadrotors are nonlinear time-varying dynamical systems, the exact location of the vehi-
cle’s center of mass is usually unknown, and the aircraft reference frame is centered at some
point that does not necessarily coincide with the vehicle’s barycenter. Moreover, our autopilot
does not rely on the assumption that the Euler angles are small at all times and accounts both
for the inertial counter-torque and the gyroscopic effect.

The applicability of our theoretical results has been illustrated by a numerical example and it is
clearly shown how the proposed autopilot is able to track a given reference trajectory despite the
fact that the payload is dropped during the mission, one of the motors is turned off, and the
wind blows at the prohibitive velocity of 16 m/s. It is also shown that quadrotors implementing
autopilots based on the classical PD framework crash if one of the propellers stops functioning.
Lastly, it is shown that our autopilot requires a control effort that is smaller than the effort
required by conventional MRAC-based autopilots to fly in less strong wind.

Acknowledgements

This workwas supported in part by theNOAA/Office of Oceanic andAtmospheric Research under
NOAA-University of Oklahoma Cooperative Agreement #NA16OAR4320115, U.S. Department
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Abstract

This chapter presents an adaptive control technique to stabilize the attitude dynamics of
unmanned aerial vehicle (UAV) type quadrotor in the presence of disturbances and/or
uncertainties in the parameters due to changes in the payload, nonlinear actuators, and
change in environmental conditions. To address the above problem, MRAC (model refer-
ence adaptive control) strategy is used. In this schema, a cost function is defined as a
function of the error between the output of the system and a desired response from a
reference model. Based on this error, the controller parameters are updated. To guarantee
the global asymptotic stability of the system, Lyapunov’s theory is applied. Simulation
results using MATLAB-Simulink platform are presented to demonstrate the convergence
of the controller parameters.

Keywords: Quadrotor UAV, adaptive control, Lyapunov’s method, aircraft, attitude
control

1. Introduction

Unmanned aerial vehicles (UAVs) are aircrafts that do not require a pilot on board to be
controlled. In the beginning, they were solely used for military purposes. One of the first
applications of these vehicles was aerial photography. In the 1883, an Englishman named
Douglas Archibald provided one of the world’s first reconnaissance UAVs. However, it was
not until the World War I that UAVs became recognized systems. Since then, they are being
widely used in military missions such as surveillance of enemy activity, airfield base security,
airfield damage assessment, elimination of unexploded bombs, etc.
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In the last decades, advances in technology and costs reduction permitted to adopt this technol-
ogy in civil applications such as aerial photography, video and mapping, pollution and land
monitoring, powerline inspection, fire detection, agriculture, and among other applications [1].

Quadrotors are a kind of mini-UAV’s with vertical take-off and landing, controlled completed
through four rotors mounted on each end of the crossed axes, which provide lift forces for the
quadrotormove, this vehicle is very popular in the research community due to their special features
like strong coupling subsystems, unknown physical parameters, and nonparametric uncertainties
in inputs and external disturbances. Therefore, a suitable control system for stabilizing the closed
loop control system is required; to do this, various control techniques, linear and nonlinear, have
been implemented such as control PD [2, 3], control PID [4, 5], control of position and orientation
by vision [6], sliding mode control [1, 7], fuzzy logic [8, 9], and adaptive control in [10].

The dynamic behavior of quadrotor has been published in varying complexity [11, 12]; partic-
ularly, the model we used is based on [13], where an extended mathematical description by the
full consideration of nonlinear coupling between the axes is presented. We assume elastic
deformations sufficient stiffness and realistic flight maneuvers were omitted, mass distribu-
tions of the quadrotor are symmetrical in the x-y plane, drag factor and thrust factor of the
quadrotor are constant, and air density around the quadrotor is constant.

In this work, we develop an adaptive control strategy to stabilize the attitude dynamics of a
quadrotor UAV. The adaptive control permit deals with modeling errors and disturbance
uncertainty, variations of the mass, inertia, actuators faults, nonlinear aerodynamics, etc.

This chapter is organized as follows: Section 2 presents the mathematical model of the
quadrotor obtained using Newton-Euler equations. Section 3 provides brief introduction about
the adaptive control theory and the methodology used is based to obtain the adaptive law
equations. In Section 4, simulations and analysis are presented to verify the performance of
MRAC schema, and finally in Section 5, conclusions of this work are presented.

2. Mathematical model

2.1. ESC + motor + propeller

The rotors of quadrotor are modeled by

Ti ¼ K
ωM

sþ ωM
ui (1)

vi ¼ ωM

sþ ωM
ui (2)

For i = (1, 2…, 4), where ui represents the PWM input, the gain K > 0 and ωM are the rotor
bandwidth, vi is the actuator dynamics. We assume K and ωM are the same for all rotors [5].

2.2. Description of Quadrotor system

The configurations of quadrotor are described in Figure 1 and consist of a body-fixed frame
denoted by Fb = {Fbx,Fby,Fbz}, the center mass that coincident with the body-frame origin denoted
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by Cm, the earth-fixed inertial frame is denoted by Fe= {Fex, Fey, Fez}, the position in earth-fixed
inertial frame is given by a vector rI = (x,y, z)

T, four rotors denoted each one asMiwith i= (1, 2,…, 4).

To obtain the position of CM in the NED (North-East-Down) coordinate system with respect to
the inertial frame Fe, we use the Euler angles (roll ϕ, pitch θ, yaw ψ) combined in a vector
Ω = (ϕ,θ,ψ)T, where roll angle is generated by differential thrust betweetM2 andM4, pitch angle
is generated by differential thrust betweenM1 andM3, and yaw angle is generated by diferential
torque between clock wise and anticlock wise rotors, i.e., (M1�M2 +M3�M4). This kind of
device is considered an underactuated system with six degree of freedom (DOF). Rotation
matrix R is used to map from Fb to Fe, applying three consecutive rotations denoted by

Rz ¼
Cψ �Sψ 0

Sψ Cψ 0

0 0 1

0
BB@

1
CCA

Ry ¼
Cθ 0 Sθ

0 1 0

�Sθ 0 Cθ

0
BB@

1
CCA

Rx ¼

1 0 0

0 Cϕ �Sϕ

0 Sϕ Cϕ

0
BBB@

1
CCCA

R ¼ Rz;Ry;Rx
� � ¼

CψCθ CψSθSϕ � SψCϕ CψSθCϕ þ SψSϕ

SψCθ SψSθSϕ þ CψCϕ SψSθCϕ � CψSϕ

�Sθ CθSϕ CθCϕ

0
BBB@

1
CCCA

(3)

where S and C refer to sin and cos function, respectively.

Figure 1. Quadrotor configuration.
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2.3. Rigid body dynamics

The dynamics of a rigid body under external forces and moments in the fb can be formulated as
follows [14]

m _v ¼
X

Fi (4)

J _W þW � JW ¼
X

Mi (5)

where i = (1, 2,…, 4), ∑Fi∈R3 represent the sum of thrust forces from each rotor, ∑Mi∈R3

represent the sum of moments acting on the vehicle, v is the velocity in the Fb, m is the
quadrotor mass, W = (wx,wy,wz)T determines the angular velocity vector which has its origin
in at the center of mass of the rigid body, and J is the inertial tensor of the symmetric rigid body
around its center of mass.

To obtain the thrust force contribution of each rotor applied to Fb, we use the following formula

Fi ¼ f xi þ f yi þ f zi ¼ �k ω2
i (6)

with fxi force from rotor i applied in Fb respect x axes, fyi force from rotor i applied in Fb respect y
axes and fzi force from rotor i applied in Fb respect z axes, ωi as rotor’s angle speed, k as propor-
tional gain relatedwith air density, the geometry of the rotor blade and its pitch angles. As fxi and fyi
is zero, since they form an angle of 90 degrees respect to the rotor thrust, rewriting Eq. (6), we have

Fi ¼ �kω2
i 0 0 1½ �T (7)

By transforming Fi to Fe and making use of the principle of linear momentum, the following
equations can be introduced for a quadrotor of mass m under gravity g:

€r ¼ 0 0 g½ �T þ R
X4
1

Fi
m

� �
(8)

The rotatory moment of the body is described by Eq. (4) can be rewrite as

J _W þW � JW ¼ MB �MG (9)

where MB is the vector of external torques and is composed of the thrust differences and drag
moments of the individual rotors and under considerations of the rotatory directions and can
be calculated by

MB ¼
Lb ω2

2 � ω2
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where d is called drag factor and it is related with the air resistance, L is a parameter which
represents the length of the lever between center of mass and the four rotors. MG is the vector
of gyroscopic torques generated due to the propellers rotational movements and can be
calculated by the follow formula

MG ¼ JR W �
0
0
1

0
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1
CA

0
B@

1
CA ω1 � ω2 þ ω3 � ω4ð Þ (11)

where JR represents the inertia of rotating rotors. The follow equations permit us to determine
the rate of change of the Euler angles in the inertial frame Fe

_Ω ¼ H Φð ÞW ¼

1 tanθ sinϕ tanθ cosϕ
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0
sinϕ
cosθ

cosϕ
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The relationship that maps rotor angular velocities to forces and moments on the vehicle is
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(13)

where the variable u1 = F1 + F2 + F3 + F4. The variables u2 and u3 correspond the forces from
rotors necessary to generate the pitch and roll moments, and u4 represents the yaw
moment.

The translation motion is obtained combining Eqs. (3), (7), (8), and (13), as a result, we have the
follow equations

€r ¼
€x

€y

€z

2
6664

3
7775 ¼

� CψSθCϕ þ SψSϕ
� � u1

m

� SψSθCϕ � CψSϕ
� � u1

m

g� CθCϕ
� � u1

m

0
BBBBBBB@

1
CCCCCCCA

(14)

On the other hand, if we assume small perturbations in hover flight, _Ω ≈W and combining
Eqs. (9), (11), and (13), we obtain the follow equations
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2.3. Rigid body dynamics
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On the other hand, if we assume small perturbations in hover flight, _Ω ≈W and combining
Eqs. (9), (11), and (13), we obtain the follow equations
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€ϕ ¼ _θ _ψ
Jy � Jz
Jx

� �
� Jr

Jx

� �
_θh uð Þ þ L

Jx
u2

€θ ¼ _ϕ _ψ
Jz � Jx
Jy

 !
þ Jr

Jy

 !
_ϕh uð Þ þ L

Jy
u3

€ψ ¼ _ϕ _θ
Jx � Jy

Jz

� �
� 1
Jz
u4

(15)

2.4. Linearization of quadrotor dynamics

To simplify the earlier equations, we have linearized the rotatory system around hover state
assuming small change in Euler angles, u1 ≈mg in x and y directions, cos(α) = 1, sin(α) =α and
neglected the gyroscopic torques; therefore,

€x ¼ �θg

€y ¼ ϕg

€z ¼ u1 �mg

€ϕ ¼ L
Jx
u2

€θ ¼ L
Jy
u3

€ψ ¼ 1
Jz
u4

(16)

This work only considers the angular momentum corresponding to the orientation of the
vehicle, so that the displacement in (x, y, z) axes will not be used for mathematical analysis.

Therefore, the transfer function for dynamic correspondence of orientation is expressed as

ϕ sð Þ ¼ L
s2Jx

u2

θ sð Þ ¼ L
s2Jy

u3

ψ sð Þ ¼ 1
s2Jz

u4

(17)

and adding rotor’s model, we have

G s; e�τsð Þ ¼

Kp1

s2 sþ aϕ
� � 0 0

0
Kp2

s2 sþ aθð Þ 0

0 0
Kp3

s2 sþ aψ
� �

0
BBBBBBBB@

1
CCCCCCCCA

(18)
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where Kp1 =Lkϕ/Jx, Kp2 =Lkθ/Jy, Kp3 = Lkψ/Jz. These parametres were computed for a X4-flyer and
have the following values: Kp1 =Kp2 = 33.23, Kp3 = 16.95, aϕ = aθ = aψ = 4.1 and τ = 0.017. This
mathematical model will be used to synthesize the control law to stabilize the closed-loop
system [15].

The overall control schema is showed in Figure 2, where position and attitude control are
presented. This schema consist in two loops, first one is used to perform the quadrotor tracking of
desired trajectory rd, while the second one is used to achieve the desired Euler (ϕd,θd,ψd). Due that
we are only interested in attitude control, the above schema is redrawn as is showed in Figure 3.

3. Adaptive controller design

The adaptive control is an advance control technique which provides a systematic approach
for automatic adjustment of controllers in real time, in order to achieve or to maintain a desired
level of control system performance, when the parameters of the plant dynamic model are
unknown and/or change in time [16]. Two different approaches can be distinguished: indirect
and direct approaches. In the first approach, the plant parameters are estimate online and used

Figure 2. Overall control system.

Figure 3. Attitude control system of a quadrotor.
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to calculate the controller parameters. In the second, the plant model is parameterized in terms
of the controller parameters that are estimated directly without intermediate calculations
involving plant parameter estimates [17].

The model reference adaptive control or MRAC is a direct adaptive strategy which consists of
some adjustable controller parameters and an adjusting mechanism to adjust them. The goal of
the MRAC approach is adjusting the controller parameters so that the output of the plant
tracks the output of the reference model having the same reference input. The MRAC schema
is combine two loops: the inner or primary loop where controller and plant are feedback as in
normal loop and outer loop or also called adjustment loop where some adaptive mechanisms
and a model reference are used to obtain the some performance [18]. In Figure 4, an overall
MRAC schema is presented.

This section presents the design of an adaptive controller MRAC using the Lyapunov‘s stabil-
ity theory. This allows us to ensure the tracking trajectory of an X4 to our reference model and
makes the system insensitive to parameter variation and external disturbances, leading the
state error to zero. Based on this, the process model can be represented by state space as
follows:

_x ¼ Apxþ Bpu (19)

y ¼ Cx (20)

where Ap and Bp represent the matrix and the vector of unknown constant parameters of the
system, u is the output signal of the controller, and x is the state vector.

The reference model is defined as follows:

_xm ¼ Amxm þ Bmuc (21)

Figure 4. MRAC control schema.
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y ¼ Cmxm (22)

Then, the control law is selected as:

u ¼ Lruc � Lx ¼ θ4uc � θ1x1 � θ2x2 � θ3x3 (23)

where Lr and L are the matrix containing the parameters of the controller, which can be freely
selected, and uc is the reference signal.

Substituting (Eq. (22)) in (Eq. (18)), the closed loop system is expressed as follows:

_x ¼ Ap � BpL
� �

xþ BpLruc ¼ A θð Þxþ B θð Þuc (24)

Now we introduce the error equation as follows

e ¼ x� xm (25)

Differentiating the error with respect to time, we obtain:

de
dt

¼ dx
dt

� dxm
dt

¼ Axþ Bu� Amxm � Bmuc (26)

and adding Amx and subtracting to the left side of the equation

de
dt

¼ Ameþ A� Amð Þxþ B� Bmð Þuc (27)

The error goes to zero if Am is stable and

A θð Þ � Am ¼ 0 (28)

B θð Þ � Bm ¼ 0 (29)

If we assume that the closed-loop system can be described by (Eq. (14)), where the matrices A
and B depend on the parameter θ, and it is some combination of Lr and L, then we can define
the following Lyapunov function for the parameter adaptation law:

V ¼ eTPeþ tr A θð Þ � Amð ÞTQa A θð Þ � Amð Þ þ tr B θð Þ � Bmð ÞTQb B θð Þ � Bmð Þ (30)

where P∈R3x3 is a positive definite matrix and V is a positive definite function. If its first
derivative to time V is not positive definite, then V is Lyapunov function. Nowwe can solve the
derivative of V to time t.

dV
dt

¼ eTPAmeþ eTAT
mPeþ 2tr A� Amð ÞT Qa

_A þ PexT
� �

þ 2tr B� Bmð ÞT Qb
_B þ PeucT

� �
(31)

where Q is a positive definite matrix such that meet the follow equation:
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AT
mPþ PAm ¼ �Q (32)

Therefore, if we choose a stable Am matrix, we will get always a P and Q positive definite
matrix.

Accordingly, the derivative to time of function V is

dV
dt

¼ �eTQe (33)

Where the function V is a Lyapunov function negative semi-definite ensures the output error
between the real system and the reference model will tend to be zero, and the system is
asymptotically stable.

Thus, we obtain the following parameter adaptation laws

dθ1

dt
¼ p11e1x1 þ p12e2x1 þ p13e3x1 (34)

dθ2

dt
¼ p11e1x2 þ p12e2x2 þ p13e3x2 (35)

Figure 5. MRAC control of quadrotor: block diagram.
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dθ3

dt
¼ p11e1x3 þ p12e2x3 þ p13e3x3 (36)

dθ4

dt
¼ � p11e1rþ p12e2rþ p13e3r

� �
(37)

Then, the resulting control diagram is shown in Figure 5.

4. Simulation and analysis

This section presents several simulations test made to prove the performance of MRAC con-
troller to stabilize a mini-UAV quadrotor. As mentioned before, only orientation dynamic
(angle position, angular velocity and acceleration) are considered. Analyzing Eq. (18), it is easy
to see that roll, pitch, and yaw dynamics are very similar; for this reason, only roll moment is
used as example in simulation.

The test begins considering controller parameters are unknown and by using an online adap-
tive mechanism to determine the values that permit the convergence of plant response to
reference model response. It is important to note that the MRAC approach seeks to keep the
tracking error (x� xm) equal to zero by an adjustment of the controller parameters and do not
to seek to identify the real parameters of the plant.

Figures 6–8 shows a comparative between the states response of the plant and the state
response of the model reference, where can be observer than all states of the plant converge
asymptotical to the reference model states. To verify this, the Figures 9–11 are presented; these
figures show the tracking error of states goes to zero. Additionally, in Figure 12, the reference
input is compared to the plant and model reference output.

Figure 6. Comparison between x1 and xm1.
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Figure 8. Comparison between x3 and xm3.

Figure 7. Comparison between x2 and xm2.

Figure 9. Error between x1 to xm1.
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Figure 11. Error between x3 to xm3.

Figure 10. Error between x2 to xm2.

Figure 12. Roll response.
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Figure 11. Error between x3 to xm3.

Figure 10. Error between x2 to xm2.

Figure 12. Roll response.
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Figure 13 shows the variations of the controller parameters during the adjustment process.
This mechanism started many times is necessary to assure the perfect tracking of the plant to
the desire response. Finally, in Figure 14, the simulation diagram is presented.

Figure 13. Tuning of controller parameters.

Figure 14. Simulink diagram.
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5. Conclusions

This work presents an adaptive control technique to stabilize the attitude of a quadrotor UAV
using MRAC schema, which requires no information of the plant model. The asymptotic
stability was demonstrated using the well-known Lyapunov’s theory, obtaining in this way
the adaptation law of the controller parameters. Simulations results demonstrate that the
adaptive control approach proposed have a good performance to perform the asymptotic
tracking of model reference output. It is important to note that the adaptive mechanism is
started only when it is needed.
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Figure 13 shows the variations of the controller parameters during the adjustment process.
This mechanism started many times is necessary to assure the perfect tracking of the plant to
the desire response. Finally, in Figure 14, the simulation diagram is presented.

Figure 13. Tuning of controller parameters.

Figure 14. Simulink diagram.
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5. Conclusions

This work presents an adaptive control technique to stabilize the attitude of a quadrotor UAV
using MRAC schema, which requires no information of the plant model. The asymptotic
stability was demonstrated using the well-known Lyapunov’s theory, obtaining in this way
the adaptation law of the controller parameters. Simulations results demonstrate that the
adaptive control approach proposed have a good performance to perform the asymptotic
tracking of model reference output. It is important to note that the adaptive mechanism is
started only when it is needed.
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Abstract

The objective of this chapter is to develop a compoundModel Reference Adaptive Control
(MRAC) of the dc motor by using the Matlab/Simulink software. The purpose of the
chapter is to serve as a tutorial for the students or researchers in the field correlating step
by step the presented theory with the Matlab/Simulink programming environment. The
supraunitary relative degree model reference adaptive control is proposed as a solution to
the parameters variation of the electric drives. The numerical simulation results confirm
the robustness of the proposed solution at unmodelled dynamics or parameter variation
of the process. The conventional control of the dc drive based on the cascaded loops is also
treated in this chapter.

Keywords: dc motor, PI control, adaptive control, Matlab-Simulink, supraunitary
relative degree

1. Introduction

The conventional control of the dc motor supposes the use of the modulus and symmetric
criteria, adapted to the fast processes (Kessler variant), by the optimum choosing of the tuning
parameters of the corresponding controllers. Therefore, the cascaded control loops are the
most appropriate choice for the conventional dc drive system. The advantages of using the
conventional drive are: the complex process is divided into simple subprocesses having only
one significant time constant compensated by an independent controller; it assures the mini-
mum time response; thanks to the feedback path of the control loop, the stability of the dc
drive system is maintained; the null steady state error; the fast compensation of the dc drive
perturbations.

The main disadvantage of the conventional control is its inadaptability to the parameters
variations of the processes. Taking into account that the normal operation of the processes is
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assured through the electric motors, the values of the electric parameters are not constant. It is
well-known that the parameters of the controllers depend on the parameters of the process.
Therefore, a change of the process parameters conducts to the deterioration of the drive system
performances. Moreover, the uncertainness of the parameters and the structural mismatch of
the processes are the main barriers of avoiding the use of the conventional control. In these
particular cases the conventional control, even the robust control is inefficient due to the
invariance of the controller parameters. An adaptive control is desired in order to maintain
the imposed performances on the electric drive. Consequently, an additional adaptive loop is
inserted to the conventional feedback system. The purpose of inserting the adaptive loop is to
update the controller parameters related to the parameter variations of the process or to the
modified structure of the physical process. According to the exogenous variation (reference
and perturbation), the adaptive mechanism of the regulation part is performed by the minimi-
zation of the specific performance criterion. The result of the designed regulation algorithm
consists of a new set of the controller parameters. The closed loop adaptive systems (widely
spread) assure the appropriate control correlation with the process uncertainness (modified
parameters or structure). The adaptive loop delivers the real time control based on the designed
on-line controller.

The signals in Figure 1 are defined as follows: r- the reference signal; ym- the output signal of
the reference model; u- the adaptive control; y-the output of the process (the measurable
signals); e0 – the tracking error vector; θp – the parameters of the process.

In this manner, the structural mismatch and the parametric uncertainness are compensated. In
the mechatronic domain or the rolling mill the adaptive control is mandatory.

The name of the adaptive control structure comes from the use of the on-line parameters
estimator. Based on it, the process parameters are provided by measuring the control, the
process output and the tracking error. Taking into account the reference signal and the process
parameters, the adaptive algorithm delivers the appropriate estimation of the control.

There are two types of the adaptive control structures [2]. The adaptive control can be in
explicit (indirect) form or in implicit (direct) form. The indirect adaptive control delivers the
estimation of the process parameters. The direct adaptive control delivers the estimation of the
controller parameters.

Figure 1. The principle of the adaptive control [1].
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In this chapter the adaptive control with supraunitary relative degree is introduced through
the dc drive system.

The design procedure of the adaptive control is based on the strictly positive real (SPR) concept.

In order to attain the SPR condition, the equivalent transfer function should satisfy the follow-
ing tasks:

1. strictly stable (the poles are situated in the left half plane of the complex space);

2. the relative degree must be 0 or 1;

3. Re[Hm(jω)] ≥ 0, for any ω > 0, i.e., the transfer function of the reference model, Hm(s),
should be minimum of phase (without dead time and zero situated in the right half plane).

The model reference adaptive control (MRAC) contains three aspects:

1. MRAC in simple form;

2. variable structure form; and

3. compound MRAC.

In order to obtain a perfect tracking, lim
t!0

e0 tð Þ ! 0, the asymptotic limit of the tracking error

vanishes, and the relative degree of the reference model should be greater or at least of the
same order with the relative degree of the process:

n∗m ≥n∗p (1)

2. Conventional dc drive system

In this Section the control methodology of the conventional dc drive system is presented.

The drive system consists of the full controlled dc motor connected to the load. At the high
power, the controlled six pulses full bridge ac-dc power converter is involved; at the low –
medium power the full bridge dc-dc power converter connected in series with the
uncontrolled ac-dc power rectifier is used. From the point of view of commutation, there is a
substantial difference between the above presented solutions: while at low and medium
power, the force commutation is used (based on the high frequency switching power transis-
tors), at high power, the natural commutation is used (based on thyristors).

In order to design the conventional control for fast processes, the entire system should be
modeled under certain assumptions:

2.1. Assumptions for mathematical modeling of the dc motor

The magnetizing flux is maintained at the rated value; the permeability of the ferromagnetic
core is infinite; the unsaturated magnetic circuit is considered, a compensated dc motor is
taken into consideration; there are auxiliaries poles; the brushes are situated on the neutral
axis; and the brush droop voltage is neglected.
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2.2. Assumptions for the ac-dc/dc-dc power converters

The uninterrupted conduction is taken into account (a high value for the additional armature
inductance is designed), the conduction droop voltage on the power semiconductors and the
switching time are negligible.

2.3. Assumptions for the load

The load torque is considered as mathematical model of the process, the load is reduced
appropriately to the dc motor shaft (by using both equivalent inertia moment and reduced
equivalent speed by taking into account the specific transmission ratio).

2.4. Assumption for the conventional control

Taking into account that the mathematical model of the dc motor is of the second order, the
two state variables are deducted (armature current, iA, and the speed, ωm). The mathematical
model is characterized by two different time constants: Tm>>TA (the electromechanical time
constant, Tm, is greater with one order than the electromagnetic ones, TA). This conclusion
leads to the cascaded control with two loops: the armature current loop (the inner loop), and
the angular velocity (the outer loop). By considering that the angular velocity should be
controlled and the armature current should be limited at the maximum value, the angular
velocity is the dc motor output. Taking into account that the dc motor is supplied by the six
pulses ac-dc full bridge power converter, the modulus criterion is applied for tuning inner
loop, and the symmetrical optimum for the outer loop (Kessler variant). The adequate opera-
tional block diagram is deducted according to Figure 2.

The dc drive is constituted by two parts: the power and the control. A unified [0, 10]V voltage
system is taken into account with respect to the control part. Therefore, for the maximum value
of 10 V the maximum allowable speed at the rated flux is obtained (i.e., n* = 1,2 nr, by taken
into consideration the 20% speed overshoot introduced by the Kessler criterion).

It is well-known that the symmetrical criterion supposes the ramp reference for the speed loop.
In order to transform the step reference analogue signal from the potentiometer into ramp
signal, an adequate filter has been designed with the following transfer function:

Figure 2. The conventional control of the dc drive.
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Hfn sð Þ ¼ 1
1þ sTFn

, (2)

where TFn is the time constant of the speed transducer.

The corresponding Simulink block diagram is shown below in Figure 3.

The control design procedure starts with the armature current loop design (inner loop). The
imposed performances for the inner closed loop are:

I. the steady state regime:

a. null steady state error εst = 0;

b. the rejection of the perturbation influence (load torque is the main perturbation).

II. the dynamic regime:

a. current overshoot, σ = 4.3%;

b. response time depends on the cutting frequency of the loop: tr = 2.35/ωcI;

c. phase margin of the current loop: γ = 63�260.

In order to satisfy the above mentioned performances the modulus criterion is used. The
Kessler criterion guarantees of the above mentioned performances on condition that the open
loop transfer function of the inner loop has the form:

HcutI sð Þ ¼ 1
2sTΣI 1þ sTΣIð Þ (3)

where, TΣI – the parasitic time constant of the current loop is considerably lower than the
armature time constant:

TΣI ¼ TFI þ TTI << TA (4)

Figure 3. Simulink block diagram of the dc drive system.
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in which TFI is the current filter time constant, and TTI is the current transducer time constant.

According to modulus criterion, the Proportional Integral (PI) controller is suitable to control
the armature current:

HRI sð Þ ¼ 1þ sτ1
sτ2

, (5)

with the appropriately controller parameters:

τ2 ¼ TA (6)

τ2 ¼ 2TΣIKdKTI
1
RA

: (7)

Eq. (8) contains the mathematical model of the dc-dc power converter:

Kd ¼ UAr

10
, (8)

and the attenuation factor of the current transducer (obtained by imposing the time response
of the current loop) has the form:

KTI ¼ 10
IAmax

V
A

� �
: (9)

The closed loop armature current transfer function is as follows:

HoI sð Þ ¼ 1
kTI 1þ 2sTΣIð Þ (10)

The equivalent block diagram of the dc drive system is shown in Figure 4.

Taking into account the reduced block diagram of the dc drive system (Figure 4), the symmet-
rical optimum criterion could be applied.

According to symmetrical optimum criterion, by using the following open loop transfer func-
tion (Kessler) the required performances of the closed loop system are attained:

Figure 4. The operational model of the dc drive system.
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By considering a dc motor with the following nameplate data: rated power Pr = 5.1 kW, the
maximum armature voltage Ur = 440 V, the nominal armature current IAr = 17.8 A, the
reduced moment of inertia J = 0.02 kgm2, the viscous force Fv = 0.0006 Nms/rad, rated
speed nr = 2700 rpm, the simulation results are obtained (Figure 6a–d). The motor data can
be obtained based on the nameplate values by using the detailed Matlab software provided
in [3].

Figure 6a–d shows the 0.7Tr load starting simulation results of the dc conventional control
based on the dc-dc full bridge power converter. Figure 6a contains the obtained armature
voltage of the dc motor. The armature current varies according to Figure 6b, the speed varies
as in Figure 6c under rated value of the load torque Tl = 22.8 Nm (Figure 6d). The load torque
is applied at t = 0.5 s.

3. Adaptive control

There are three assumptions available [4, 5]: the mathematical model of the process is linear,
strictly proper and of minimum phase, having the supraunitary relative degree n*p = 2n∗p ¼ 2;

the reference model has the relative degree greater than one (n*m = 2), is stable and of minimum
phase; the reference signal should be bounded limit, being a continuous function. The second
order mathematical model of the dc motor is used in this chapter. This supposes the transfer
function of the process has the form:

Hp sð Þ ¼ kp
Np sð Þ
Dp sð Þ : (18)

Figure 6. The dc drive numerical simulations results under load step variation.
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At the same time, the pole excess is known:

∂ Dp sð Þ� �� ∂ Np sð Þ� � ¼ n∗p > 1: (19)

Taking into account that the relative degree of the process is supraunitary, the second order of
the reference model is chosen, n*m = n*p.

Hm sð Þ ¼ km
Nm sð Þ
Dm sð Þ : (20)

Due to the supraunitary relative degree, the strictly real positive condition for the reference
model cannot be accomplished. This condition that the tracking error differs from the identifi-
cation error [2–6] implies, in this case, the use of the augmented error.

The augmented error depends on the gain factor knowing.

3.1. The case of knowing only the sign of kp factor

In order to obtain a stable system the following signals vector is inserted:

v1 ¼
vu
vy
yp

2
64

3
75, (21)

The dynamic filters (Λ, h) are placed on the command vu and on the output of the process vyp:

vou tð Þ ¼ Λvu tð Þ þ hu tð Þ
voy tð Þ ¼ Λvy tð Þ þ hyp tð Þ

(
(22)

The solution of the dynamical filter is implemented in Matlab as in Figure 7 (applied only for
the first equation).

The (Λ, h) pair is chosen in controllable canonical form, Λ∈ℜ(np� 1)� (np� 1), h∈ℜnp, such that:

det sI�Λð Þ ¼ Nm sð Þ � λ1 sð Þ, (23)

in which: λ1(s) is an arbitrary Hurwitz polynomial having the degree [7]:

Figure 7. L-h (Λ, h) vu filter block.
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∂ Nm sð Þλ1 sð Þ½ � ¼ np � 1: (24)

Therefore, the λ1(s) polynomial is a design component.

The Hurwitz polynomial L(s) is chosen such that the transfer function Hm(s)L(s) becomes SPR.
The degree of the L(s) is ∂[L(s)] = n*m�1. If the L(s) is Hurwitz polynomial, then L�1 is stable.

The parameters vectors v, ξ∈ℜ2np consist of

v ¼

vu
vyp
yp
r

2
6664

3
7775, ξ ¼ L�1 sð Þ v tð Þ½ �, (25)

The v1, ξ1∈ℜ2np� 1 are defined as follows:

v1 ¼
vu
vyp
yp

2
64

3
75, ξ1 ¼

ξn
ξy
ξp

2
64

3
75: (26)

The auxiliary error is computed on-line:

ea ¼ θTξ� L�1 sð Þ θT tð Þv tð Þ� �
, (27)

where:
ξ tð Þ ¼ L�1 sð Þ v tð Þ½ �: (28)

The augmented error is defined as:

ec ¼ e0 þHm sð ÞL sð Þ K1ea � ξT1 ξ1ec
� �

, (29)

and the on-line gradient adjustable parameter K1 depends only by the augmented error:

K
o
1 ¼ �ecea (30)

3.2. The parametric adjustment laws for the compound adaptive control

3.2.1. Gradient

The gradient law [2–4] is expressed as:

θ
o
g ¼ �γgsign Kp

� �
ecξ tð Þ 1

1þ ξTξ
(31)

ea ¼ θg þ θv
� �Tξ� L�1 sð Þ θg þ θv

� �Tv tð Þ
h i

(32)

ξ tð Þ ¼ L�1 sð Þ v tð Þ½ �;where ξ ¼
ξu
ξyp
ξp

2
64

3
75: (33)
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3.2.2. Deduction of the variable structure parameter θv

The parameter θv can be deducted by using the following [2]:

θv ¼ θv eKecξ � 1
� �

= eKecξ þ 1
� �� �

sign Kp
� �

(34)

θ
o

v ¼ �λθv � γv ξecj j: (35)

The block diagram of obtaining the augmented error is depicted in Figure 8, in which Φ is the
vector of the parameter estimation errors

Φ ¼ θ� θ0 (36)

The vector of the parameter θ is obtained by using the compound structure: θ = θg + θv.

In the adaptive control, there is a commutation function; usually the signum function conducts
toward a sliding mode regime such that the evolution to the equilibrium point is very fast.
Therefore, the compound adaptive law is used:

u tð Þ ¼ θg þ θv
� �Tvþ �γpsign Kp

� �
ξe0 þ θ

o

v
eKξe0 � 1
eKξe0 þ 1

� �T
ξ: (37)

The adaptive control provides robust characteristics to external disturbances and to
unmodelled dynamics.

3.3. The stability of the solution

The perturbation of the dc drive system can leads to the instability of the system. The signals in
the variable structure law are bounded. Therefore, the adaptive control assures a global
stability [4].

4. Numerical simulation results

Taken into account the dc machine from the conventional control, operating at the constant flux,
a speed cycle is applied in order to test the compound adaptive control. The speed cycle contains
the dynamic regimes (starting, braking, reversing) and the steady state regime (Figures 9–22).
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Figure 8. The block diagram of the augmented error determination ec.
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Figure 9. The Simulink implementation of the compound adaptive dc drive with supraunitary degree and with unknown
gain.

Figure 10. The Simulink implementation of the augmented error deduction ea_vu.
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Figure 11. The speed cycle. At t = 12 s, the rated load torque is applied.
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Figure 14. The adaptive control. At t = 12 s, the rated load torque is applied.
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Figure 16. The adaptive mechanism of the parameter vector θ obtained by using the compound structure: θrv variable
structure.
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Figure 19. The adaptive mechanism of the parameter vector θ obtained by using the compound structure: θug gradient
control.
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Figure 21. The adaptive mechanism of the parameter vector θ obtained by using the compound structure: θpg gradient-
process output.
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5. Conclusions

The conventional control and the compound adaptive control have been investigated by using
a dc drive system. The complete methodology of tuning the controller parameters for the
conventional control is provided. Under the assumptions mentioned in this chapter, the dc
drive system has been implemented in Matlab-Simulink software. The adequate numerical
simulation results have been obtained (Figure 6) for. Therefore, the regulation capability of the
PI controller is tested under a variation of the load torque for a starting. Both, the dynamic and
steady state regimes are investigated. In Figure 6b, the maximum load torque of the dc motor
is used for a starting under the 70% load conditions. The maximum limit is maintained during
the dynamic regime, the torque decreases in steady state due to the armature current decreas-
ing. The constant parameter values have been considered. In case of the gradient and variable
structure laws, the adaptive system is more robust to parameter uncertain or to unmodelled
dynamics of the dc drive, and the increased regulation performances are obtained. The
supraunitary relative degree model reference adaptive control has been considered.
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the dynamic regime, the torque decreases in steady state due to the armature current decreas-
ing. The constant parameter values have been considered. In case of the gradient and variable
structure laws, the adaptive system is more robust to parameter uncertain or to unmodelled
dynamics of the dc drive, and the increased regulation performances are obtained. The
supraunitary relative degree model reference adaptive control has been considered.

Acknowledgements

This work was supported by a grant of the Romanian National Authority for Scientific
Research, CNDI–UEFISCDI, project number PN-II-PT-PCCA-2011-3.2-1680.

Author details

Marian Găiceanu

Address all correspondence to: marian.gaiceanu@ieee.org

Integrated Energy Conversion Systems and Advanced Control of Complex Processes Research
Center, Dunarea de Jos University of Galati, Romania

References

[1] Didactical Pedagogical House, editor. Automatizări electronice. 1993rd ed. Bucuresti:
Dumitrache, I.; 1993

[2] Filipescu A. Robustness in compound adaptive controlling with sigmoid function for
supraunitary relative degree of the plant model. In: The 9'th Symposium on Modelling
and Identification systems, SIMSIS9'96; 1996; Galati. Romania; 1996. pp. 45-52

[3] Gaiceanu M. Embedded control of the DC drive system for education. In: Yildirim S,
editor. Design, Control and Applications of Mechatronic Systems in Engineering. Croatia:
InTechOpen; 2017. DOI: 10.5772/67461. Available from: https://www.intechopen.com/

Matlab-Simulink-Based Compound Model Reference Adaptive Control for DC Motor
http://dx.doi.org/10.5772/intechopen.71758

133



books/design-control-and-applications-of-mechatronic-systems-in-engineering/embedded-
control-of-the-dc-drive-system-for-education

[4] Narendra KS, Annaswamy AM, editors. Stable Adaptive Systems. 1989th ed. Englewood
Cliffs, NJ: Prentice Hall; 1989

[5] Gaiceanu M, Solea R, Codres B, Eni C. Efficient DC drive system by using adaptive
control. In: Book Group Author(s): IEEE Conference: International Conference on Optimi-
zation of Electrical and Electronic Equipment (OPTIM) Location: ROMANIA Date: MAY
22-24, 2014 Sponsor(s): IEEE Ind Elect Soc; IEEE Ind Applicat Soc; IEEE Power Elect Soc;
Transilvania Univ Brasov, 2014 INTERNATIONAL CONFERENCE ON OPTIMIZATION
OF ELECTRICAL AND ELECTRONIC EQUIPMENT (OPTIM); MAY 22-24, 2014; Brasov.
Romania: IEEE; 2014. pp. 381-388

[6] Gaiceanu M, Eni C, Coman M. The model reference adaptive control of the DC electric
drive system. Advanced Materials Research. 2014;875-877:2030-2035

[7] Filipescu A. Two new adjustment laws for variable structure and compound robust adap-
tive control. In: SIMSIS9’96; 24-25 Oct 1996; Galati. pp. 53-60

Adaptive Robust Control Systems134

Chapter 8

Model Reference Adaptive Control of Quadrotor UAVs:

A Neural Network Perspective

Nikhil Angad Bakshi

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.71487

Provisional chapter

Model Reference Adaptive Control of Quadrotor UAVs:
A Neural Network Perspective

Nikhil Angad Bakshi

Additional information is available at the end of the chapter

Abstract

Adaptive models and online learning are two equivalent topics under different umbrellas
of research – control systems and machine learning. This chapter will tackle one such
application of a neural network-based model reference adaptive controller on a quadrotor
unmanned aerial vehicle while stating the general principles behind each design decision
so the knowledge can be generalized to other practical applications. The application-
oriented presentation of this chapter will run parallel to most research and development
processes in the field, where the physical system or a simulator is usually available and a
simple control system (such as PID) has already been implemented as a baseline. The
black-box nature of a neural network can truly be leveraged to improve performance after
reading this chapter. Several practical considerations when approaching such a problem
have been discussed together with their general and implemented solutions. The simula-
tion results for the problem have been presented to demonstrate the success of this control
strategy.
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1. Introduction

Artificial intelligence is a term that, very paradoxically, holds a prerequisite for the absence of
intelligence, which the designer must then overcome. Intelligence can be viewed as the ability
of a system to perceive its environment, reason upon the acquired knowledge and perform an
action or task based on this information to meet its objective.

When the possible states of the environment are predictable the designer can create an intelli-
gent system that performs well for all possible situations. However the world is a messy place
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and more often than not the environment is unpredictable and knowing or encoding such
information into the system a priori is impractical.

The set of actions of a system and its objective, on the other hand, is usually known a priori, so it
logically follows that one should design a system that should be able to learn how to deal with
new situations to meet its objective given the limited set of actions.

Formally, the system or agent should improve its performance as measured by a metric (P) on
a task (T) with increasing experience (E). This brings us to machine learning (ML).

At this point, let us note that an adaptable control system is one that modifies the control law so
that the system remains stable and the control objective is met.

Whether one looks at it from the perspective of ML, in that the system is initially poor at
meeting the objective and hence it changes system parameters to improve or from the control
theory perspective that the environment or system has changed and the control objective is not
met demanding a change in the control law, we are describing a similar situation.

This chapter is written using the attitude and altitude controller of a quadrotor unmanned aerial
vehicle (UAV) as a running example however every idea will be presented generally at first
and then tied back to the practical example in consideration.

2. Quadrotor system

A quadrotor UAV (refer Figure 1) has four motors that independently provide thrust (as
indicated by F1, F2, F3 and F4) and based on these thrusts the UAV can change its attitude (roll
f, pitch θ and yaw ψ) and altitude (z). This chapter will focus on the inner loop control of the
attitude and altitude variables and is based on the work of Bakshi and Ramachandran [1].

Figure 1. Quadrotor coordinate system [2].
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The horizontal coordinates of the UAV (x, y) can be controlled using an outer loop on this inner
loop but that is not covered here, we shall assume that the environment of the quadrotor is
boundless in all directions except the datum in z, i.e. the ground.

The quadrotor model that has been used is based on work done by Bouabdallah et al. [2].
Following Bouabdallah, the earth-fixed frame E and the body-fixed frame B are as seen in
Figure 1. The aerodynamic forces and moments considered in the model are based on the
work of Gary Fay as in Ref. [3].

A dynamic model for the quadrotor is used for the purpose of simulation in this chapter so that
the control strategy that has been presented here can be thoroughly evaluated.

2.1. Quadrotor parameters

The quadrotor parameters are based on the work of Bouabdallah [4] (Table 1).

Design Variable Value Units Description

m 0:53 kg Mass

L 0:23 m Craft diameter

Jr 6� 10�5 kg:m2 Rotor inertia

Ixx 6:23� 10�3 kg:m2 Moment of inertia along x

Iyy 6:23� 10�3 kg:m2 Moment of inertia along y

Izz 1:12� 10�2 kg:m2 Moment of inertia along z

b 3:13� 10�5 N:s2 Thrust factor in hover

d 7:50� 10�5 N:s2 Drag factor in hover

N 2 — Number of blades

R 0:15 m Propeller radius

c 0:04 m Chord

θ0 0:26 rad Pitch of incidence

θtw 0:05 rad Twist pitch

a 5:70 — Lift slope

Cd 0:05 — Airfoil drag coefficient

Ac 0:01 m2 Helicopter center hub area

r 1:29 kg=m3 Air density

ϑ 1:80� 10�5 Pa:s Air viscosity

V 3:04� 10�4 m3 Volume

Table 1. Quadrotor parameters [4].
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2.2. Moments and forces on the quadrotor system

See Table 2.

2.3. Equations of motion

Ixx €w � _θ _ψ Iyy � Izz
� �þ Jr _θΩr þ l �T2 þ T4ð Þ � h

X4

i¼1

Hyi

 !
þ �1ð Þiþ1

X4

i¼1

Rmxi (1)

Rolling moments Body gyro effect _θ _ψ Iyy � Izz
� �

Propeller gyro effect Jr _θΩr

Roll actuators action l �T2 þ T4ð Þ
Hub moment due to sideward flight h

P4
i¼1 Hyi

� �

Rolling moment due to forward flight �1ð Þiþ1P4
i¼1 Rmxi

Pitching moments Body gyro effect _w _ψ Izz � Ixxð Þ
Propeller gyro effect Jr _wΩr

Pitch actuators action l T1 � T3ð Þ
Hub moment due to forward flight h

P4
i¼1 Hxi

� �

Rolling moment due to sideward flight �1ð Þiþ1P4
i¼1 Rmyi

Yawing moments Body gyro effect _w _θ Ixx � Iyy
� �

Inertial counter-torque Jr _Ωr

Counter-torque unbalance �1ð ÞiP4
i¼1 Qi

Hub force unbalance in forward flight l Hx2 �Hx4ð Þ
Hub force unbalance in sideward flight l �Hy1 þHy3

� �

Forces along z axis Actuators action
cψcw

P4
i¼1

Ti

Weight mg

Forces along x axis Actuators action
cψcw

P4
i¼1

Ti

Hub force in x axis �P
4

i¼1
Hxi

Friction 1
2CxAcr _x _xj j

Forces along y axis Actuators action �cψswþ sψsθcwð Þ P4
i¼1

Ti

� �

Hub force in y axis �P
4

i¼1
Hyi

Friction 1
2CyAcr _y _yj j

Table 2. Quadrotor moments and forces summary [4].
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X4

i¼1

Ti (4)

m€x � sψswþ cψsθcwð Þ
X4

i¼1

Ti �
X4

i¼1

Hxi � 1
2
CxAcr _x _xj j (5)

m€y � �cψswþ sψsθcwð Þ
X4

i¼1

Ti �
X4

i¼1

Hyi � 1
2
CyAcr _y _yj j (6)

2.4. Rotor dynamics

A first order closed loop transfer function is used to reproduce the dynamics between the
propeller’s speed set point and its true speed as in Ref. [2].

G sð Þ ¼ 0:936
0:178sþ 1

(7)

2.5. Summary of model

The following is a breakdown of the basic understanding of a quadrotor UAV system required
for the purposes of this chapter:

a. The sum of the four thrusts (as indicated by F1, F2, F3 and F4 in Figure 1) along the z axis is
responsible for countering the weight of the craft. Any surplus or shortage of the total
thrust along z will result in motion in the z-direction.

b. An imbalance in the forces F2 and F4 will result in a rolling motion along the x-axis,
similarly imbalance in F1 and F3 will result in a pitching motion along the y-axis. Note
that the very act of rolling or pitching tilts the craft such that the motor thrusts are no
longer effected purely in the z-direction, causing the craft to descend, therefore the total
thrust must be summarily increased so that the component along z is maintained.

c. The rotations of motors 1 and 3 are in the same direction and the opposite of motors 2 and
4. To achieve a yawing motion increased thrust must be applied to a diametrically oppo-
site pair (say 1 and 3) and reduced thrust on the other pair (2 and 4).

d. Various second order effects come into play, which have been modeled but understanding
them is not crucial to this chapter.

e. This model dynamically calculates the thrust and drag coefficients which results in
increased accuracy with the real world scenario.
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3. Objective

The basic inner loop controller of any helicopter deals with maintaining a specified height
above ground, i.e. altitude, and maintaining a particular pose, or attitude. The attitude in turn
allows the helicopter to translate in the x-y plane assuming altitude is held constant.

The standard approach is decentralized or cascaded PID controllers for the various control
variables (in this case: roll f, pitch θ, yaw ψ, altitude z), these controllers will have to be tuned
for each particular quadrotor UAV. In general, any non-adaptive controller will need to be
tuned to a particular quadrotor.

In this chapter we employ neural networks to design an adaptive controller that is system
unspecific, i.e. it should work for any quadrotor system. It learns the system parameters online,
i.e. in-flight. The challenge is to keep the system stable during online learning.

4. Indirect model reference adaptive control

Indirect adaptive control is when the controller estimates the plant to predict its state variables
and these are used to modify the controller parameters.

Direct adaptive control is when there is no plant identification, instead the controller parame-
ters are modified on the basis of the error the system has with the reference.

MRAC is a direct adaptive control method (refer Figure 2), however in this chapter we shall be
taking a mixed approach to the problem.

In MRAC we define a reference model that responds to the input signal (r) as we would like our
plant to respond. The controller generates a control signal (u) based on its control law which it
expects will make the plant output (y) follow the reference output (yref ). Depending on the

deviation (or error), the adjustmentmechanismwill update the control law (bymodifying param-
eters) of the controller. This process is repeated iteratively so that the plant follows the reference.

The beauty of the approach taken in this chapter is that we needn’t formalize the control logic.
We will delve deeper into neural networks before returning to the problem at hand. For the

Figure 2. MRAC block diagram. Image courtesy of Wikipedia under CC license.
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time being we will leave the ‘reference model, ‘adjustment mechanism’ and the ‘controller’ as
black boxes, they will be revisited in Section 6.

5. Neural networks

5.1. Introduction to machine learning

A formal definition of ML is:

A computer program is said to learn from experience E with respect to some task T and some
performance measure P, if its performance on T, as measured by P, improves with experience E.

-Tom Mitchell1 (1998)

Neural networks are one such machine learning algorithm. This sub-section will briefly cover
the two broad categories of machine learning algorithms. Bear in mind that this chapter will
elaborate on neural networks used in a supervised learning setting.

5.1.1. Supervised learning

In supervised learning, the data is tagged with the correct values for prediction/classification
associated to it. The algorithm learns by minimizing the error between its results and the
correct results. This is the most common form of machine learning and the easiest, however
labeled data is not easy to come by as its curation and tagging is usually expensive.

Neural networks, support vector machines (SVMs), linear/logistic regression and decision
trees are a few examples of supervised learning algorithms and the applications could be
classification of images, weather prediction, sentiment detection, face recognition, etc.

5.1.2. Unsupervised learning

In unsupervised learning, the task is to find patterns or meaning in untagged data such as
classifying similar data together without actually knowing what those classes may represent
(clustering) or we take data in some low level/uncompressed representation and learn a high
level/compressed representation with minimum information loss or we have a lot of data
which mostly subscribes to a particular pattern and we would like to detect the outliers
(anomaly detection).

K-means clustering, autoencoders (NN based) and principal component analysis are a few
algorithms used for unsupervised learning tasks.

5.2. History and intuition of neural networks

In the twentieth century scientists were able to definitively identify the primary unit of the
brain – the neuron. One theory of the time was that information is not pre-loaded in the brain
of a newly born child, only the basic structure and connections between the neurons in its
brain exist, the brain learns to function by strengthening/weakening various neural pathways.

1
Machine Learning, Tom Mitchell, McGraw Hill, 1997.
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3. Objective
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Figure 2. MRAC block diagram. Image courtesy of Wikipedia under CC license.
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time being we will leave the ‘reference model, ‘adjustment mechanism’ and the ‘controller’ as
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5. Neural networks

5.1. Introduction to machine learning

A formal definition of ML is:

A computer program is said to learn from experience E with respect to some task T and some
performance measure P, if its performance on T, as measured by P, improves with experience E.

-Tom Mitchell1 (1998)

Neural networks are one such machine learning algorithm. This sub-section will briefly cover
the two broad categories of machine learning algorithms. Bear in mind that this chapter will
elaborate on neural networks used in a supervised learning setting.

5.1.1. Supervised learning

In supervised learning, the data is tagged with the correct values for prediction/classification
associated to it. The algorithm learns by minimizing the error between its results and the
correct results. This is the most common form of machine learning and the easiest, however
labeled data is not easy to come by as its curation and tagging is usually expensive.

Neural networks, support vector machines (SVMs), linear/logistic regression and decision
trees are a few examples of supervised learning algorithms and the applications could be
classification of images, weather prediction, sentiment detection, face recognition, etc.

5.1.2. Unsupervised learning

In unsupervised learning, the task is to find patterns or meaning in untagged data such as
classifying similar data together without actually knowing what those classes may represent
(clustering) or we take data in some low level/uncompressed representation and learn a high
level/compressed representation with minimum information loss or we have a lot of data
which mostly subscribes to a particular pattern and we would like to detect the outliers
(anomaly detection).

K-means clustering, autoencoders (NN based) and principal component analysis are a few
algorithms used for unsupervised learning tasks.

5.2. History and intuition of neural networks

In the twentieth century scientists were able to definitively identify the primary unit of the
brain – the neuron. One theory of the time was that information is not pre-loaded in the brain
of a newly born child, only the basic structure and connections between the neurons in its
brain exist, the brain learns to function by strengthening/weakening various neural pathways.

1
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Therefore it was theorized that the neuron, which either fires or does not, can be modeled as a
function that has multiple inputs, a single output (which may be connected to several other
neurons) and only ‘fires’ when the sum of inputs exceeds a certain threshold. The connections
between neurons have weights, which strengthen or weaken a connection between two neurons.

“Neurons that wire together, fire together”
-Donald Hebb (1949)

The above quotation may be familiar. It is based on Donald Hebb’s theory to explain neural
adaptation and learning and this forms the basis of learning in modern-day artificial neural
networks.

5.3. Formalization

As shown in Figure 3, a basic neural network consists of layers of nodes (or neurons) where
each node has a connection to all the nodes of the next layer, and takes input from each of the
nodes in the previous layer. Each of the connections has a real number weight associated with
it. Every neuron does some simple computation (we will restrict ourselves to the sigmoid
activation and linear activation) on the sum of its inputs to yield an output value.

The above definition is that of multilayer perceptron (MLP) network which is the most basic
form of a feed forward neural network.

Let us assume that x is the input (vector) for this neural network, the dimension of x is 6� 1. Let
theweight of the connections between the input layer and the first hidden layer be represented by

the matrix θ 1ð Þ, each value in the matrix will be referenced as θ 1ð Þ
ij . The dimension of θ 1ð Þ is 6� 4.

σ zð Þ ¼ 1
1þ e�z (8)

Eq. (8) shows us the sigmoid activation function that will be applied on every node in the
hidden layers. If z is a vector then applying the sigmoid activation function will result in a

Figure 3. A depiction of a basic neural network. Image courtesy of Michael A. Nielson. Neural networks and deep
learning. Determination Press, 2015.
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vector of the same dimension. Sigmoid function is a continuous differentiable function, which
is bounded between 0 and 1.

a 1ð Þ ¼ σ θ 1ð Þ
� �T

xþ b 1ð Þ
� �

(9)

Eq. (9) shows us the first step in forward propagation. a 1ð Þ is known as the activation of the first
hidden layer. As a sanity-check we can see the dimension of a 1ð Þ is 4� 1, which is congruent
with what we expect.

Neural networks have a bias unit (not shown in Figure 3), which is a neuron that is always
firing and is connected to every node in the next layer but does not take input from the

previous layer. Mathematically it can be represented as the additive term b 1ð Þ of dimension
4� 1 shown in Eq. (9).

a 2ð Þ ¼ σ θ 2ð Þ
� �T

a 1ð Þ þ b 2ð Þ
� �

(10)

ypredicted ¼ a 3ð Þ ¼ z 3ð Þ ¼ θ 3ð Þ
� �T

a 2ð Þ þ b 3ð Þ (11)

Eqs. (10) and (11) complete the forward propagation. Eq. (11) can include a sigmoid activation
too if the desired output is between 0 and 1 like in a classification problem. No activation
function is also known as linear activation.

The neural network learns by optimizing an objective function (or cost function) such as the
squared-error cost function for dealing with regression problems as in this text.

J θð Þ ¼ 1
2m

Xm

i¼1
ypredicted

ið Þ � y ið Þ
� �2

(12)

where y ið Þ is vector of the target values of output layer. In our example it is 1� 1 but in general
the neural network can have multiple outputs. In an offline setting we have all our data
beforehand, indicated here by m examples and we compute cost iterated over all y ið Þ.

As seen in Figure 4 the sigmoid function is approximately linear between �2 and 2 and is
almost a flat line beyond �4 and 4. This has 3 implications:

1. It gives us a convenient differentiable function that is nearly binary

2. If the input of a neuron is too extreme the neuron becomes saturated and therefore
information gets attenuated going through the network if it is too deep.

3. In the case of saturated nodes, backpropagating, which involves computing the gradient,
becomes ineffective, as the gradient at the extremes is nearly zero.

Due to the latter two points it is beneficial to ensure that the weights of the network are small.
If the weights have large values then the network is sure those connections are very important
which makes it hard for it to learn otherwise. Therefore, it makes sense to keep weights small
so the network is responsive to new information. To accomplish this we incorporate the
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weights into the cost function. In L1 regularization we add the modulus of the weights to the
cost function in Eq. (12). In L2 regularization we add the squares of the weights to the cost
function resulting in Eq. (13).

J θð Þ ¼ 1
2m

Xm

i¼1
ypredicted

ið Þ � y ið Þ
� �2

þ λ
2
:
XL�1

l¼1

Xsl
i¼1

Xslþ1

j¼1
θ lð Þ
ij

� �2
(13)

where L is the total number of layers in the neural network, sl is the number of nodes in the lth

layer. Note that regularization is not done on the weights from the bias node. λ is the regular-
ization parameter that helps us control the extent to which we want to penalize the neural
network for the size of its weights.

Gradient descent is used to train the neural network, which means running several iterations
making small adjustments to the parameters θ in the direction that minimizes the cost func-
tion. The weight update equation is shown in Eq. (14).

θ lð Þ ≔θ lð Þ � α:
δJ

δθ lð Þ , l ¼ 1,…, L� 1 (14)

where α is the learning rate that controls the size of the adjustment, it must not be too small,
else the learning will take very long, and it must not be too large, else the network will not

converge. θ lð Þ is a matrix and therefore the derivative term is also a matrix.

The backpropagation algorithm is used to calculate the derivative term. The intuition is to
calculate the error term at every node in the network from the output layer backwards and

use this to compute the derivative. We shall denote the error vector as δ lð Þ where l denotes the
layer number. Eq. (15) denotes the error in the output layer of our example network.

δ 4ð Þ ¼ y� a 3ð Þ (15)

Except for the output layer the error term is defined as:

Figure 4. Graph of sigmoid function.
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δ lð Þ ¼ θ lð Þ
� �T

δ lþ1ð Þ⋄σ0 a 3ð Þ
� �

, l∈ 2;…; L� 1f g (16)

where σ’(.) denotes the derivative of the sigmoid function, ⋄ signifies an element-wise multi-

plication and L is the total number of layers in the network, here L ¼ 4. Note that δ 1ð Þ can be
calculated but error on our inputs does not have any significance.

σ0 a 3ð Þ
� �

¼ σ a 3ð Þ
� �

⋄ 1� σ a 3ð Þ
� �� �

(17)

Eq. (18) is the derivative of the cost function (without the regularization term) computed using
the errors previously found. The mathematical proof2 of backpropagation is beyond the scope
of this chapter. The final gradient averaged over all training examples with the regularization
term is Eq. (19)

δJ

δθ lð Þ ¼ δ lþ1ð Þ a lð Þ
� �T

(18)

δJ

δθ lð Þ ¼
1
m
∙
Xm

i¼1
δ lþ1ð Þ a lð Þ

� �T� �
þ λ ∙θ lð Þ (19)

The weights of the network are randomly initialized to small positive or negative real values. If
one were to initialize all the weights to the same value (say zero) then the gradient calculated at
every node in a layer would be the same, and we’d end up with a neural network with lots of
redundancies. Note that if there were no hidden layers this would not be the case but the
power of the algorithm significantly goes down without them.

5.4. Limitations

Neural networks have large time and space requirements. Assume an n hidden layer fully
connected neural network with m neurons in each hidden layer. We have n� 1ð Þ �m�m
parameters just in the hidden layers. This number is for the basic MLP network and more
sophisticated implementations (deep learning) will have even more parameters.

For example, ILSVRC3 evaluates algorithms for object detection and image classification at
large scale to measure the progress of computer vision for large scale image indexing for
retrieval and annotation. Over the years, deep neural networks have been used to solve the
problem statement with better accuracy every year. AlexNet [5] had 60 million parameters and
took two weeks to train on 2 GPUs in 2012 with 16.4% classification error using convolutional
neural networks. GoogLeNet [6] had 4 million parameters achieving classification error of 6.66%
in 2014 with the advent of their inception module in the convolutional neural network. So, even
as the situation continues to improve, neural networks are still time and memory intensive.

2
The concise proof can be found in chapter 2 of the book by Michael A. Nielson, “Neural Networks and Deep Learning”,
Determination Press, 2015
3
http://www.image-net.org/challenges/LSVRC/
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The second problem is predictability. Just as the human brain is an enigma that man has been
trying to understand and find patterns in, the fact remains, humans are still unpredictable to
quite an extent. Similarly, as far as machine learning algorithms go, neural networks are a black
box and no one fully understands the functions that have been mapped in them once trained.
Therefore no one can predict when they might fail and it is not always possible to justify the
results produced as opposed to a rule-based classification method such as decision trees. Yet,
neural networks have proved to be a great tool and are widely used by organizations today.

6. System design

Figure 5 depicts the block diagram of our system. The feedback is implied through the conglom-
erate controller/plant emulator artificial neural network (ANN) using the backpropagation algo-
rithm.

The plant (quadrotor) block is simulated based on the model described in Section 2.

Two errors are generated:

Model error: yplant � ymodel (20)

Reference error: yreference � yplant ≈ yreference � ymodel (21)

When approaching convergence, both errors tend to zero and the approximation in the refer-
ence error becomes increasingly accurate. The extended ANN has two functions – making an
adaptive estimate of the next state of the plant given the current state and computing the
control signals required by the plant to minimize reference error.

Figure 5. Block diagram of model reference adaptive control using artificial neural networks.
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6.1. Selecting the reference model

The reference model consists of transfer functions for roll, pitch, yaw and z of the quadrotor.
The transfer functions are as follows:

roll and pitch: G sð Þ ¼ 0:5
sþ 0:5

(22)

yaw: G sð Þ ¼ 0:5
sþ 0:5

(23)

z: G sð Þ ¼ 1
sþ 1

(24)

The transfer functions are chosen to have a quick response to changing set points. Quadrotors are
non-linear systems, yetwemodel the reference using first order transfer functions becausewe hold
machine learning algorithms to the standard of an expert human operator. An expert helicopter
pilot would not oscillate to attain a target altitude or attitude and neither should our controller.

6.2. Designing the plant emulator block

The plant emulator ANN predicts the next state of the plant given the control signal of the
controller and the current state of the plant, thereby providing a channel for backpropagation
to compute the errors on the control signals.

The plant emulator ANN needs to be pre-trained to a certain extent to ensure stability of the
quadrotor while the controller ANN is learning in the air. Additionally the design of the plant
emulator should be optimal for the application – accurate enough to model complexities and
agile enough to respond quickly. Refer to Figure 6 for the final plant emulator ANN.

To verify a good design for the plant emulator ANN, data was collected over several simula-
tions run with varying set points for roll, pitch, yaw and z, separately and simultaneously. The
control signals and plant states were mapped gathering a dataset of 8000 entries. This data was
used to train the plant emulator ANN; hence set points were not mapped. In these simulations,
de-centralized PID controllers were used for roll, pitch and yaw channels while a cascaded PID
controller was used for the z channel.

The standard procedure in an offline setting is to divide the available tagged data into three parts
(randomizing them if each entry is independent, which is not the case here) - the training set
(~60%), the cross validation set (~20%) and the test set (~20%). The error on the cross validation
set is monitored to select the hyperparameters (like λ or α) of the network and the test error
(generalization error) is used to gauge its performance on unseen data. For the purpose of offline
pre-training in this chapter, the true test is the actual system; hence we divide the data into
training and cross validation sets only to make those design choices that are fixed in-flight.

6.2.1. Selecting the inputs and outputs of the network

The naive approach to this problem would be to demand all states of the plant – x, y, z,f,
θ and ψ, their derivates and double derivatives as output and to give as input, the previous
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Model Reference Adaptive Control of Quadrotor UAVs: A Neural Network Perspective
http://dx.doi.org/10.5772/intechopen.71487

147



states of these 18 variables and the control signals. This playing-it-safe approach is costly as we
place an undue burden on our algorithm.

Firstly – what is the output required from our network? The plant emulator should accurately
predict the next state of the control variables of the system. Therefore the output should be the
four control variables - z,f, θ and ψ.

Secondly – what information would a human expert require to calculate the output? The
previous states of z,f, θ and ψ, their derivatives and the control signals would be required.
Note that we do not need to give system information like the mass/inertia as input. The neural
network will deduce such information based on the data. Interestingly, these 12 inputs are
insufficient, _x and _y are required to model the dynamic thrust and drag coefficients by the
model and therefore they must be given as inputs here.

If the initial choice of input/output variables is suboptimal leading to poor performance of the
network, this step must be revisited.

Figure 6. The double hidden layer plant emulator artificial neural network: First layer is the input, second and third
layers are for computation, they comprise nodes with sigmoid activation applied and fourth layer is the output.
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6.2.2. Selecting depth of the network – accuracy vs. agility

A two hidden layer network was selected due to its ability to model most non-linear practical
systems [7]. Increasing depth increases complexity of the network, which increases number of
parameters and reduces agility of the network.

The field of deep learning is dedicated to using neural networks with deeper architectures,
which are very powerful as we saw in Section 5.4. However, in deeper networks some of the
design principles change, for example, in Section 5.3 the possibility of attenuation of informa-
tion was pointed out in sigmoid-based neural networks, therefore in deeper implementations
the rectified linear unit (ReLU) activation function is preferred. Architectural changes are also
prevalent in deep learning such as convolutional/recursive/recurrent neural networks. Refer to
Ref. [8] for more detailed reading on deep learning.

6.2.3. Selecting the width of the network

Performance with rectangular configurations in neural networks has been found to be equal to
or better than performance with pyramid or inverted pyramid configurations [7] and therefore
we have same number of hidden units in both hidden layers of our network.

As part of pre-training, the neural network performance was mapped against number of
hidden units as seen in Figure 7 and the elbow of the curve was found at 44 nodes (without
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Figure 7. Costs on training and cross validation sets against hidden layer size.
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the bias node) in each hidden layer. The elbow is the point beyond which the performance is
unlikely to improve however the speed is sure to slow down with every node increased.

For this pre-training we stipulate to the cost function in Eq. (13) as we are training offline.

6.2.4. Cost function for online learning

To allow for real valued outputs, the ANN output layer has linear activation (read: no activa-
tion) applied while the hidden layers have sigmoid activation applied. The squared error cost
function was used with regularization as shown in Eq. (25)

J ¼
ðyplant � ymodelÞ2

2
þ λ

2
:
XL�1

l¼1

Xsl
i¼1

Xslþ1

j¼1
θ lð Þ
ij

� �2
(25)

Notice the difference with Eq. (13), there is no term in m as the learning happens with one data

point at a time, i.e. online. The θ lð Þ
ij term, which is a subset of the set of weights, must not be

confused with θ the pitch angle of the quadrotor.

6.2.5. Backpropagation and learning

The backpropagation equations are as follows:

error in final layer: δ Lð Þ ¼ ymodel � yplant (26)

error in hidden layers: δ lð Þ ¼ θ lð Þ
� �T

δ lþ1ð Þ ⋄ a lð Þ ⋄ 1� a lð Þ
� �

, l 6¼ L (27)

derivative:
δJ

δθ lð Þ ¼ δ lþ1ð Þ a lð Þ
� �T

þ λ � θ lð Þ (28)

where ⋄ signifies element-wise multiplication. Notice the derivative term is Eq. (19) withm ¼ 1.
This distinction differentiates stochastic gradient descent from batch gradient descent (when we
have all our data beforehand.) The parameter update equation is the same as Eq. (14).

The weights learned in offline pre-training were used to initialize the weights when actual
testing was done. While the error was large to start with, the weights were biased in the correct
direction. This is essential as the plant emulator ANN is the conduit for backpropagation to
generate the error in the control signals and random corrections to the control signal based on
a purely untrained plant emulator ANN right after take-off will destabilize and ground the
craft before it has a chance to complete learning.

6.3. Designing the controller block

Figure 8 depicts the controller ANN. This segmented neural network does not resemble
standard MLP networks as it is highly modified. This section will be structured differently
from the previous one as it deals mainly with practical aspects and online learning.

We have a much broader understanding of a subject than we may be able to comfortably
express in math. The easy approach to ML is to expect the neural network to learn
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Figure 8. Segmented controller ANNwith no hidden layers and constant multiplied constant offset sigmoid activation on
output layer.
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Figure 8 depicts the controller ANN. This segmented neural network does not resemble
standard MLP networks as it is highly modified. This section will be structured differently
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Figure 8. Segmented controller ANNwith no hidden layers and constant multiplied constant offset sigmoid activation on
output layer.
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everything and we only provide the framework. However, this approach is unlikely to get
the best results. For example, we know that a change in the z set point should not cause a
change in the roll control signal, we can either make a fully connected neural network
with hidden layers and expect the neural network to learn this by reducing the cross
weights to zero or we can simply eliminate those connections ourselves. Taking the former
approach revealed the learning was too slow and the quadrotor would take-off, somersault
and crash as the changing z set point would cause the roll and pitch control signals to
change too.

Such intuitions are application specific. It would greatly benefit the algorithm by reconciling
our human understanding with the control system being designed.

The initial design of the controller ANN was very similar to the plant emulator ANN, it had
two hidden layers, the inputs were the state of the plant and the state of the reference model,
the outputs were the control signals which were unbounded and real valued. To summarize: 8
inputs, 4 outputs and 2 hidden layers.

At the very outset, it is clear that we should input the reference error directly rather than
expecting the ANN to waste precious time learning that it has to minimize the difference
between the state of the plant and the state of the reference model. Additionally an optimal
number of nodes in the hidden layers cannot be experimented with as the testing is directly on
the system (read: simulation) and the quadrotor would crash almost immediately after take-
off. The adaptability of the controller is insufficient to keep up with the dynamically unstable
nature of the quadrotor and the unbounded control signal gives noisy and, often, spurious
commands to the motors thereby destabilizing the system.

A systematic approach was used to solve all the above issues:

1. The errors in the control variables were directly fed to the ANN, the second order effects
were represented by appropriately adding inputs as per Eqs. (1–6).

2. The hidden layers were removed to make the ANN responsive and learn fast.

3. The output nodes were fed only those inputs that affected the state variable they con-
trolled. Thus independence was achieved.

4. To make the control signal bounded, a constant-multiplied, constant-offset sigmoid func-
tion was used in the output layer.

5. A training regime was formulated so that each segment of the controller learned sequen-
tially instead of simultaneously allowing for stability during online learning.

6. Feature scaling, gradient scaling and directed initialization were implemented specifically
to aid in learning in the online setting.

7. The derivative term of the reference error was added to the cost function.

6.3.1. Controller summary

The controller ANN comprises four segments. The output node activations are:
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yn ¼ A:
1

1þ e� θnð ÞTXn
þ B ¼ A:σ θnð ÞTXn

� �
þ B (29)

where A and B are real constants and n E 1; 2; 3; 4f g signifies each de-centralized controller.

1. Z Controller: This has a bias unit and four inputs - reference error in z, derivative of
reference error in z, roll and pitch. Roll and pitch changes during a stable hover cause the
quadrotor to deviate, to avoid this the absolute value of the corresponding angles are fed
into the z controller. Its output is the z control signal. A ¼ 8, B ¼ 4.

2. Roll Controller: This has three inputs - reference error in roll, derivative of reference error
in roll and derivative of pitch. The derivative of the pitch is to counter the coupling effect
of roll and pitch. Its output is the roll control signal. A ¼ 0:01, B ¼ �0:005.

3. Pitch Controller: This has three inputs - reference error in pitch, derivative of reference
error in pitch and derivative of roll. The derivative of the roll is to counter the coupling
effect of roll and pitch. Its output is the pitch control signal. A ¼ 0:01, B ¼ �0:005.

4. Yaw Controller: This has two inputs - reference error in yaw and derivative of reference
error in yaw. Yaw variation due to roll and pitch changes are minute enough to be
compensated for by the controller. Its output is the yaw control signal. A ¼ 0:6, B ¼ �0:3.

6.3.2. Cost function and backpropagation

J ¼
yreference � yplant
� �2

2:σr2
þ

_yreference � _yplant
� �2

2:σd2
þ λ

2
:
Xwθψz

c

Xsl
i¼1

Xslþ1

j¼1
θ cð Þ
ij

� �2
(30)

σx denotes the standard deviation of the respective component and should not be confused
with the sigmoid activation function. With this cost function, the rules have been bent. The
derivative terms are not outputs of the neural network, yet we are attempting to minimize
them. This modification proved to be a difference-maker in achieving online stability.

error in final layer: δ Lð Þ ¼
yplant � yref

σr2
þ

_yplant � _yref

σd2
(31)

error in hidden layers: δ lð Þ ¼ θ lð Þ
� �T

δ lþ1ð Þ⋄a lð Þ⋄ 1� a lð Þ
� �

, l 6¼ L (32)

error in control signals: δ cð Þ ¼ A∙ θ cð Þ
� �T

δ 1ð Þ⋄a cð Þ⋄ 1� a cð Þ
� �

(33)

derivative:
δJ

δθ cð Þ ¼ δ cð Þ X cð Þ
� �T

þ λ∙θ cð Þ, c∈ w;θ;ψ; zf g (34)

λ is optional depending on the λ value used for the plant emulator ANN, i.e. if λplant is high
(0.1) then λcontroller can be set to zero as early stopping (the network stops learning as gradient
becomes negligible) occurs within 6000 iterations. Of the 14 inputs to the plant emulator ANN,
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everything and we only provide the framework. However, this approach is unlikely to get
the best results. For example, we know that a change in the z set point should not cause a
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weights to zero or we can simply eliminate those connections ourselves. Taking the former
approach revealed the learning was too slow and the quadrotor would take-off, somersault
and crash as the changing z set point would cause the roll and pitch control signals to
change too.

Such intuitions are application specific. It would greatly benefit the algorithm by reconciling
our human understanding with the control system being designed.

The initial design of the controller ANN was very similar to the plant emulator ANN, it had
two hidden layers, the inputs were the state of the plant and the state of the reference model,
the outputs were the control signals which were unbounded and real valued. To summarize: 8
inputs, 4 outputs and 2 hidden layers.

At the very outset, it is clear that we should input the reference error directly rather than
expecting the ANN to waste precious time learning that it has to minimize the difference
between the state of the plant and the state of the reference model. Additionally an optimal
number of nodes in the hidden layers cannot be experimented with as the testing is directly on
the system (read: simulation) and the quadrotor would crash almost immediately after take-
off. The adaptability of the controller is insufficient to keep up with the dynamically unstable
nature of the quadrotor and the unbounded control signal gives noisy and, often, spurious
commands to the motors thereby destabilizing the system.

A systematic approach was used to solve all the above issues:

1. The errors in the control variables were directly fed to the ANN, the second order effects
were represented by appropriately adding inputs as per Eqs. (1–6).

2. The hidden layers were removed to make the ANN responsive and learn fast.

3. The output nodes were fed only those inputs that affected the state variable they con-
trolled. Thus independence was achieved.

4. To make the control signal bounded, a constant-multiplied, constant-offset sigmoid func-
tion was used in the output layer.

5. A training regime was formulated so that each segment of the controller learned sequen-
tially instead of simultaneously allowing for stability during online learning.

6. Feature scaling, gradient scaling and directed initialization were implemented specifically
to aid in learning in the online setting.

7. The derivative term of the reference error was added to the cost function.

6.3.1. Controller summary

The controller ANN comprises four segments. The output node activations are:
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effect of roll and pitch. Its output is the pitch control signal. A ¼ 0:01, B ¼ �0:005.
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error in yaw. Yaw variation due to roll and pitch changes are minute enough to be
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σx denotes the standard deviation of the respective component and should not be confused
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derivative terms are not outputs of the neural network, yet we are attempting to minimize
them. This modification proved to be a difference-maker in achieving online stability.
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λ is optional depending on the λ value used for the plant emulator ANN, i.e. if λplant is high
(0.1) then λcontroller can be set to zero as early stopping (the network stops learning as gradient
becomes negligible) occurs within 6000 iterations. Of the 14 inputs to the plant emulator ANN,
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only error in control signals are calculated. Here we see that the backpropagation calculation
remains the same with two approximations:

1. ymodel is the output of the network, not yplant yet we backpropagate using yplant

2. _yplant is being backpropagated through the network meant for yplant

The reasons for the first approximation are twofold: firstly, we want the controller ANN to
learn as if the plant emulator ANN got its prediction correct for better learning, and secondly,
as the system converges ymodel will very nearly equal yplant making the approximation asymp-

totically accurate.

The reason for the second approximation is that it was experimentally found that without
information of velocities the controller was not able to distinguish whether the plant was
converging to or diverging from the reference when error was the same. This information was
encoded into the controller by this modification and supplying the derivative of the reference
error to each controller segment. Overhauling the network to incorporate the derivative terms
as part of the output of the plant emulator ANN would make the system slower due to the
increased complexity as it would have to learn the relation between a state and its derivative.
This way the two error terms are additive and embody our intuition well - let us assume the
error in z is moderate but the error in velocity of z is large, a larger correction would be effected
in that iteration of learning, speeding it along. Conversely, if the reference error is large and the
craft is approaching the reference too fast, the additive nature of the derivative term would
negate any further positive adjustment due to the error in z thereby covering up the gap in
intelligence.

6.4. Speed-ups for online learning

1. Feature Scaling: The inputs to the controller are divided by their respective standard
deviations, since the values expected vary in magnitude and the weights of the network
are regularized regardless of magnitude of input. In order to calculate the standard
deviation in an online setting without losing significant information to truncation in data
storage the following equations are used (as presented in Ref. [9]):

Initialize M1 ¼ x1 and S1 ¼ 0 (35)

ComputeMk ¼ Mk�1 þ xk �Mk�1ð Þ
k

, Sk ¼ Sk�1 þ xk �Mk�1ð Þ � xk �Mkð Þ (36)

Current value σ ¼ Sk
k� 1

, k E 2; n½ � (37)

The scaling is done selectively on the reference error and derivative of the reference error
in each controller segment. This is done to scale up and give equal weight to the two errors
while not magnifying higher order effects in the control signal.

2. Directed Initialization: Since there are no hidden layers and a single output for each
segment there is no risk of redundancy in uniform initialization. Initializing all weights to
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zero does not affect speed of convergence in comparison to random initialization in case of z
and yaw. Therefore either can be used. For roll and pitch, learning is prone to instability and
therefore we set the initial values of the weights to 1 or �1 depending on the sign of the
weight required for stability. We have termed this directed initialization. This simplification of
establishing parity in weights is effective as the inputs have been scaled.

3. Gradient Scaling: With the above two modifications, chances that the nodes, post sig-
moid activation, will be saturated are high. Therefore, the gradient is divided by its σ
(standard deviation) (calculated as shown in Point 1.) Gradient scaling is not compulsory
for z.

4. Sequence of Training: The z and yaw controller weights are zero or random initialized.
The pitch controller weights are directed initialized. The controllers are then trained
sequentially. The order followed is:

a. The z set point is varied from zero to a non-zero hover value.

b. The pitch set point is varied from � π
3 to π

3.

c. The roll controller weights are set to the same values as the pitch controller.

d. The yaw set point is varied from �π to π.

7. Performance evaluation

The testing was carried out as outlined above and the results were plotted. Figure 9 depicts the
first episode of training of the z controller, which converges within 10 seconds (at 100 Hz) and
accurately follows the reference thereafter. α ¼ 0:01.

Figure 10 depicts the first episode of training of the pitch controller. Deviation from the
reference is only due to the limitation on the maximum thrust the controller can demand (5
mN) due to bounding sigmoid function on control signal. α ¼ 10.

Figure 11 depicts the first episode of training of the yaw controller. Oscillations steadily
decrease as training proceeds and the entire range of �π to π is covered. α ¼ 3.

Figure 12 depicts simultaneous control of all four states, with controller weights continued
forward from the first episode of training and plant ANN weights reset to initial estimate
derived from offline training (accounting for the initial overshoot in z.) This result shows that
the controller tracks well under simultaneous control signals from all four channels.

Figure 13 demonstrates the controller’s robustness to mass and moment of inertia variations.
At t ¼ 25 sec the mass of all four motors are increased by 50 g leading to a 40% increase in
total mass. The plant emulator learns these changes mid-flight enabling the controller to
maintain tracking. The deviations in yaw are due to the inability of motors to meet increased
thrust demands with increased moment of inertia. At t ¼ 75 sec the mass and moments of
inertia are reset to original values.
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only error in control signals are calculated. Here we see that the backpropagation calculation
remains the same with two approximations:

1. ymodel is the output of the network, not yplant yet we backpropagate using yplant

2. _yplant is being backpropagated through the network meant for yplant

The reasons for the first approximation are twofold: firstly, we want the controller ANN to
learn as if the plant emulator ANN got its prediction correct for better learning, and secondly,
as the system converges ymodel will very nearly equal yplant making the approximation asymp-

totically accurate.

The reason for the second approximation is that it was experimentally found that without
information of velocities the controller was not able to distinguish whether the plant was
converging to or diverging from the reference when error was the same. This information was
encoded into the controller by this modification and supplying the derivative of the reference
error to each controller segment. Overhauling the network to incorporate the derivative terms
as part of the output of the plant emulator ANN would make the system slower due to the
increased complexity as it would have to learn the relation between a state and its derivative.
This way the two error terms are additive and embody our intuition well - let us assume the
error in z is moderate but the error in velocity of z is large, a larger correction would be effected
in that iteration of learning, speeding it along. Conversely, if the reference error is large and the
craft is approaching the reference too fast, the additive nature of the derivative term would
negate any further positive adjustment due to the error in z thereby covering up the gap in
intelligence.

6.4. Speed-ups for online learning

1. Feature Scaling: The inputs to the controller are divided by their respective standard
deviations, since the values expected vary in magnitude and the weights of the network
are regularized regardless of magnitude of input. In order to calculate the standard
deviation in an online setting without losing significant information to truncation in data
storage the following equations are used (as presented in Ref. [9]):

Initialize M1 ¼ x1 and S1 ¼ 0 (35)

Compute Mk ¼ Mk�1 þ xk �Mk�1ð Þ
k

, Sk ¼ Sk�1 þ xk �Mk�1ð Þ � xk �Mkð Þ (36)

Current value σ ¼ Sk
k� 1

, k E 2; n½ � (37)

The scaling is done selectively on the reference error and derivative of the reference error
in each controller segment. This is done to scale up and give equal weight to the two errors
while not magnifying higher order effects in the control signal.

2. Directed Initialization: Since there are no hidden layers and a single output for each
segment there is no risk of redundancy in uniform initialization. Initializing all weights to
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zero does not affect speed of convergence in comparison to random initialization in case of z
and yaw. Therefore either can be used. For roll and pitch, learning is prone to instability and
therefore we set the initial values of the weights to 1 or �1 depending on the sign of the
weight required for stability. We have termed this directed initialization. This simplification of
establishing parity in weights is effective as the inputs have been scaled.

3. Gradient Scaling: With the above two modifications, chances that the nodes, post sig-
moid activation, will be saturated are high. Therefore, the gradient is divided by its σ
(standard deviation) (calculated as shown in Point 1.) Gradient scaling is not compulsory
for z.

4. Sequence of Training: The z and yaw controller weights are zero or random initialized.
The pitch controller weights are directed initialized. The controllers are then trained
sequentially. The order followed is:

a. The z set point is varied from zero to a non-zero hover value.

b. The pitch set point is varied from � π
3 to π

3.

c. The roll controller weights are set to the same values as the pitch controller.

d. The yaw set point is varied from �π to π.

7. Performance evaluation

The testing was carried out as outlined above and the results were plotted. Figure 9 depicts the
first episode of training of the z controller, which converges within 10 seconds (at 100 Hz) and
accurately follows the reference thereafter. α ¼ 0:01.

Figure 10 depicts the first episode of training of the pitch controller. Deviation from the
reference is only due to the limitation on the maximum thrust the controller can demand (5
mN) due to bounding sigmoid function on control signal. α ¼ 10.

Figure 11 depicts the first episode of training of the yaw controller. Oscillations steadily
decrease as training proceeds and the entire range of �π to π is covered. α ¼ 3.

Figure 12 depicts simultaneous control of all four states, with controller weights continued
forward from the first episode of training and plant ANN weights reset to initial estimate
derived from offline training (accounting for the initial overshoot in z.) This result shows that
the controller tracks well under simultaneous control signals from all four channels.

Figure 13 demonstrates the controller’s robustness to mass and moment of inertia variations.
At t ¼ 25 sec the mass of all four motors are increased by 50 g leading to a 40% increase in
total mass. The plant emulator learns these changes mid-flight enabling the controller to
maintain tracking. The deviations in yaw are due to the inability of motors to meet increased
thrust demands with increased moment of inertia. At t ¼ 75 sec the mass and moments of
inertia are reset to original values.
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Figure 10. Directed initialized weights of pitch controller follows reference fairly well; any deviations occur due to thrust
saturation.
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Figure 9. Starting with random weights the controller stabilizes the quadrotor to follow the reference.
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Figure 11. Zero initialized yaw controller reduces oscillations over time while tracking throughout.
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Figure 12. Simultaneous control of roll, pitch, yaw and z shows tracking with minimal error; yaw deviates slightly due to
thrust saturation with large roll and pitch, however overshoot is acceptable.

Model Reference Adaptive Control of Quadrotor UAVs: A Neural Network Perspective
http://dx.doi.org/10.5772/intechopen.71487

157



Figure 10. Directed initialized weights of pitch controller follows reference fairly well; any deviations occur due to thrust
saturation.

0 100 200 300 400 500 600
−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

Time (x102 ms)

H
ei

gh
t (

in
 m

et
re

s)

 

 

Z actual
Z reference

Figure 9. Starting with random weights the controller stabilizes the quadrotor to follow the reference.

Adaptive Robust Control Systems156

0 500 1000 1500
−4

−3

−2

−1

0

1

2

3

A
ng

le
 (

in
 r

ad
ia

ns
)

Time (x102 ms)

 

 
Yaw actual
Yaw reference
Roll and Pitch actual

Figure 11. Zero initialized yaw controller reduces oscillations over time while tracking throughout.

0 500 1000 1500
0

0.1

0.2

0.3

0.4

Time (x102 ms)

R
ol

l a
ng

le
 (

in
 r

ad
ia

ns
)

Roll

 

 
Actual
Reference

0 500 1000 1500
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Time (x102 ms)

P
itc

h 
an

gl
e 

(in
 r

ad
ia

ns)

Pitch

 

 
Actual
Reference

0 500 1000 1500
−0.5

0

0.5

1

1.5

2

Time (x102 ms)

Y
aw

 a
ng

le
 (

in
 r

ad
ia

ns)

Yaw

 

 
Actual
Reference

0 500 1000 1500
−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

Time (x102 ms)

H
ei

gh
t (

in
 m

)

Z (Altitiude)

 

 

Actual
Reference

Figure 12. Simultaneous control of roll, pitch, yaw and z shows tracking with minimal error; yaw deviates slightly due to
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8. In closing

The tracking results of the quadrotor UAV system show the versatility of the control strategy.
Once a framework is designed it can be applied to different systems with the same dynamics,
i.e. can be applied to any quadrotor UAV, within certain limits, and will converge to stability,
indicating robustness. It also withstands varying system parameters during operation due to
changing environmental conditions or payloads, indicating adaptability.

A well-established and highly cited SIMULINKmodel was used for the simulations to prove the
feasibility and good performance of this control strategy on a quadrotor UAV system. The system
dynamics incorporated in this model include dynamically modeled thrust and drag coefficients,
more reflective of a real-world scenario. Going forward, a disturbance rejection study can be done
and the controller can be run on hardware to test it under real-world conditions.

Design choices for the neural network in terms of depth, width and choice of inputs were made
based on real (read: simulated) data. The methodical process for this was outlined and applied
to the quadrotor UAV system to justify the decisions made.
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Figure 13. At t ¼ 25 sec , the mass of all four motors is increased by 50 g; at t ¼ 75 sec , mass and moments of inertia are
reset to original values; results indicate the adaptive nature of the controller.
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In real world systems, such as in UAVs where on-board processing is limited, processing time
is a major factor and several methods for speed-ups were discussed which are computationally
light. Even dynamically unstable systems such as UAVs could be stabilized using an untrained
controller in-flight by devising a training regime.
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Figure 13. At t ¼ 25 sec , the mass of all four motors is increased by 50 g; at t ¼ 75 sec , mass and moments of inertia are
reset to original values; results indicate the adaptive nature of the controller.
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Abstract

Adaptive nonlinear control of self-excited oscillations in Rijke-type thermoacoustic sys-
tems is considered. To demonstrate the methodology, a well-accepted thermoacoustic
dynamic model is introduced, which includes arrays of sensors and monopole-like
actuators. To facilitate the derivation of the adaptive control law, the dynamic model is
recast as a set of nonlinear ordinary differential equations, which are amenable to
control design. The control-oriented nonlinear model includes unknown, unmeasurable,
nonvanishing disturbances in addition to parametric uncertainty in both the thermo-
acoustic dynamic model and the actuator dynamic model. To compensate for the unmo-
deled disturbances in the dynamic model, a robust nonlinear feedback term is included
in the control law. One of the primary challenges in the control design is the presence of
input-multiplicative parametric uncertainty in the dynamic model for the control actua-
tor. This challenge is mitigated through innovative algebraic manipulation in the regu-
lation error system derivation along with a Lyapunov-based adaptive control law. To
address practical implementation considerations, where sensor measurements of the
complete state are not available for feedback, a detailed analysis is provided to demon-
strate that system observability can be ensured through judicious placement of pressure
(and/or velocity) sensors. Based on this observability condition, a sliding-mode observer
design is presented, which is shown to estimate the unmeasurable states using only the
available sensor measurements. A detailed Lyapunov-based stability analysis is pro-
vided to prove that the proposed closed-loop active thermoacoustic control system
achieves asymptotic (zero steady-state error) regulation of multiple thermoacoustic
modes in the presence of the aforementioned model uncertainty. Numerical Monte
Carlo-type simulation results are also provided, which demonstrate the performance of
the proposed closed-loop control system under various sets of operating conditions.
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1. Introduction

Rijke-type instability is a widely investigated example of a thermoacoustic phenomenon,
which describes the generation of potentially unstable pressure oscillations that results from
the dynamic coupling between unsteady heat transfer and acoustics [1, 2]. The resulting
oscillations in Rijke-type systems can degrade performance and even cause structural damage
in combustion systems. Based on this fact, thermoacoustic instability is a primary challenge
that must be addressed in the design and manufacture of land-based gas turbines and aircraft
engines [3–11]. Other applications for which thermoacoustic oscillations are a concern include
boilers, furnaces, ramjet engines, and rocket motors. The myriad practical engineering appli-
cations impacted by Rijke-type instability necessitate the design of reliable control systems to
regulate the potentially catastrophic effects of thermoacoustic oscillations.

Control design methods for thermoacoustic oscillation suppression systems can be separated
into two main categories: passive control and active control approaches. Passive control
methods [12–18] can employ acoustic dampers, such as Helmholtz resonators [13] or acoustic
liners [12], or they can be achieved by physically redesigning the system by changing the
location of the heat source, for example. Passive approaches offer the virtues of simplicity and
inexpensive maintenance; however, the performance of passive control methods can only be
ensured over a relatively narrow range of operating conditions [4]. To expand the usable range
of operating conditions, active control methods offer the capability to automatically adjust the
level of control actuation in response to sensor stimuli.

Active control methods are usually implemented in closed-loop configurations, where sensor
measurements are utilized in a feedback loop to automatically drive the input signal to the
actuators. Figure 1 provides an example of functional schematic of a closed-loop thermoacoustic
oscillation suppression system. The two primary strategies for achieving closed-loop active
control of thermoacoustic oscillations include (1) using a monopole-like acoustic source such as
a loudspeaker to control the acoustic field [19] or (2) using a secondary fuel injector to control the
unsteady heat release rate [20, 21]. Several active control approaches to suppress thermoacoustic
oscillations have been presented in recent research literature.

Standard linear control systems for thermoacoustic oscillation suppression are based on stabiliz-
ing the closed-loop system through causing the dominant eigenmodes to exponentially decay.
However, for realistic thermoacoustic systems where the eigenmodes are nonorthogonal, con-
trolling only the dominant eigenmode can result in the excitation of other modes as a result of the
coupling between the acoustic modes. To address this challenge, a transient growth controller
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system, where the system dynamic model includes unmodeled nonlinearities and parametric
uncertainty in the system dynamics and actuator dynamics. To achieve the result, a well-
accepted thermoacoustic model is utilized, which employs arrays of sensors and monopole-like
actuators. To facilitate the control design, the original dynamic equations are recast in a control-
amenable form, which explicitly includes the effects of unmodeled, nonvanishing external dis-
turbances and linear time delay. A sliding-mode observer-based nonlinear control law is then
derived to regulate oscillations in the thermoacoustic system. A primary challenge in the control
design is the presence of input-multiplicative parametric uncertainty in the control-oriented
model. This challenge is handled through innovative algebraic manipulation in the regulation
error system derivation alongwith a Lyapunov-based adaptive law. A rigorous Lyapunov-based
stability analysis is used to prove that the closed-loop system achieves asymptotic regulation of a
thermoacoustic system consisting of multiple modes. Numerical Monte Carlo-type simulation
results are also provided, which demonstrate the performance of the proposed closed-loop active
thermoacoustic oscillation suppression system.

2. Thermoacoustic system model

The thermoacoustic system model that will be utilized in this chapter consists of a horizontal
Rijke tube with multiple actuators. The model is identical to that studied in our previous work
in [22–24, 27].

Consider the system shown in Figure 2, where the actuators are modeled as multiple monopole-
like moving pistons. It will be assumed that K ≥ 1 actuators are available for control purposes.
To facilitate the following observer and control design and analysis, a block diagram is also
provided in Figure 3.

To facilitate the subsequent model development, nondimensional system variables are defined as

u ¼ ~u
u0

, p ¼ ~p
γM0p0

, _Qs ¼
_~Qs

γp0u0
, (1)

x ¼ ~x
L0

, t ¼
~tc0
L0

,
δ x� xf
� �

L0
¼ ~δ ~x � ~xf Þ,

�
(2)

where the above tilde notation denotes the dimensional quantities and the subscript 0 denotes
the mean values. In Eqs. (1) and (2), x∈R denotes the location along the duct (the actuators are
located at xak∈R, for k = 1 , … ,K, and the heat source is located at xf), t∈R≥0 denotes
nondimensional time, p(x, t)∈R is the acoustic pressure, u(x, t)∈R denotes the velocity, M∈R
is the Mach number, c∈R is the speed of sound, L0∈R is the length of the duct, and γ∈R is
the ratio of specific heats.

By using the nondimensionalized variables defined in Eqs. (1) and (2), the thermoacoustic
system with K actuators can be expressed as
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∂u
∂t

þ ∂p
∂x

¼ 0, (3)

∂p
∂t

þ ζpþ ∂u
∂x

¼ γ� 1ð Þ _Qsδ x� xf
� �þ γ

XK

k¼1

αakvakδ x� xakð Þ, (4)

In the expressions in Eqs. (3) and (4), ζ∈R denotes a damping coefficient; thus, the term ζp
physically expresses losses resulting from the effects of friction and thermo-viscous damping,
and αak∈R represents a dimensionless area ratio that can be explicitly defined as αak =Sak/S for

k = 1 , … ,K. The nondimensional heat release rate _Qs ∈R is explicitly defined as [19].

Figure 2. A control-oriented schematic of a combustion system with actuators modeled as monopole-like moving pistons.

Figure 3. A block diagram illustrating the main components of the proposed robust and adaptive thermoacoustic
oscillation control system.
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_Qs ¼ K

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∣
1
3
þ uf t� τð Þ∣

r
�

ffiffiffi
1
3

r" #
, (5)

where

K ¼ 2Lw Tw � T0
� �
ffiffiffiffiffiffiffi
3u0

p
Sγp0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πλcvρ0

dw
2

r
: (6)

In Eq. (6), dw, Lw, and Tw∈R denote the diameter, length, and temperature of the heated wire,
respectively; ρ∈R denotes air density; T∈R is temperature; λ is thermal conductivity; cv∈R
denotes the specific heat capacity at constant volume; and τ∈R represents the time delay
between the initial velocity field perturbation (i.e., the actuation) and the resulting effect on
the heat release. Readers are referred to [22] for details on the numerical values of the physical
parameters used for the thermoacoustic model being considered in this chapter. The gas is
assumed to be inviscid, perfect, and nonconductive.

The acoustic pressure p and velocity u inside the duct can be expressed as a superposition of
the duct natural modes as

p x; tð Þ ¼ �
XN

j¼1

 sin jπxð Þ
jπ

ηj tð Þ, (7)

u x; tð Þ ¼
XN

j¼1

 cos jπxð Þηj tð Þ, (8)

where N∈ℕ denotes the number of modes considered in the numerical discretization.

The actuation signal vak∈R of the kth monopole-like source (e.g., a loudspeaker) [28] can now
be expressed as

vak ¼ Rku xakð Þ þ Skp xakð Þ, (9)

where Rk and Sk ∈R are dimensionless control parameters of the actuators. After using the
expressions in Eqs. (4)–(8), the discretized governing equations are obtained as

€η j

jπ
þ jπηj þ ζj

_η j

jπ
¼ �2 γ� 1ð Þ _Qs xf ; t� τ

� �
sin jπxf
� �� 2γ

XK

k¼1

αakva xak; tð Þ sin jπxakð Þ: (10)

In Eq. (10), ζ represents the overall damping in the system [29, 30]. For the model under
consideration here, the terms p and ∂u

∂x are taken to be zero at the ends of the duct. Moreover, it
is assumed that no acoustic energy is dissipated in the thermal and viscous boundary layers at
the duct walls [29–31].
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3. Control-oriented model derivation

To facilitate the presentation of the main ideas, we consider a thermoacoustic system with two
modes (i.e., N = 2). However, the theoretical development presented here can be directly
extended to address N modes.

In the following discussion, the vector of modes (i.e., the state vector) will be annotated as
η(t)≜ [η1(t), η2(t)]

T, and define

Ψ xð Þ ¼ cos πxð Þ; cos 2πxð Þ½ �T, (11)

Φ xð Þ ¼ sin πxð Þ; sin 2πxð Þ½ �T : (12)

Assuming that ∣uf (t� τ)∣ < 1/3, the heat release rate can be approximated as

_Qs xf ; t� τ
� �

≈

ffiffiffi
3

p
K

2
ΨT

f η t� τð Þ, (13)

where Ψf≜Ψ(xf).

By following a derivation procedure similar to that presented in [24], the dynamics of the duct
natural modes can be expressed as

M€η þ D� γ� 1ð ÞK
ffiffiffi
3

p
τΦfΨT

f

� �
_η þ M�1 þ γ� 1ð ÞK

ffiffiffi
3

p
ΦfΨT

f

� �
η� h η; _ηð Þ � τd ¼ Bv, (14)

where

M ¼ diag
1
π
;
1
2π

� �
, D ¼ diag

ζ1
π
;
ζ2
2π

� �
: (15)

In Eq. (14), η(t) = [η1(t), η2(t)]
T∈R2 is a vector containing the natural modes, h η; _ηð Þ∈R2 is an

unknown nonlinear function, and τd(t)∈R2 is a general unknown bounded disturbance. To
facilitate the control development in the following analysis, the dynamic equation in Eq. (14) is
rewritten in the control-oriented form:

M€η þ Cd _η þKη� h η; _ηð Þ � τd ¼ Bv, (16)

where the uncertain constant terms Cd and K∈R2� 2 are defined as

Cd ¼ D� γ� 1ð ÞK
ffiffiffi
3

p
τΦfΨT

f , (17)

K ¼ M�1 þ γ� 1ð ÞK
ffiffiffi
3

p
ΦfΨT

f : (18)

Also, in Eq. (16), the uncertain constant control input gain matrix B∈R2�2 is defined via the
relationship:
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Bv ¼ �2γ
XK

k¼1

αakRkΦ xakð ÞΨT xakð Þ
" #

ηþ 2γ
XK

k¼1

αakSkΦ xakð ÞΦT xakð ÞM
" #

_η (19)

where v(t)∈R2 is a subsequently defined auxiliary control signal.

Remark 1Note that Eq. (19) highlights one of the primary challenges in the control design presented in
this chapter. Specifically, the input-multiplicative parametric uncertainty in B presents a nontrivial
control design challenge, which will be mitigated in the proposed control method through the use of a
novel Lyapunov-based adaptive law.

Assumption 1 The unknown nonlinear disturbance τd(t) satisfies

τd tð Þk k ≤ ζ, ∀t ≥ 0, (20)

where ζ∈R denotes a positive bounding parameter.

4. Control development

In this section, a rigorous regulation error system development will be utilized to develop a
nonlinear control system, which will be proven to effectively compensate for the inherent
parametric uncertainty in the dynamic model of the thermoacoustic system in addition to the
uncertain actuator model. Moreover, the proposed controller compensates for unmodeled,
norm-bounded disturbances present in the dynamic model (e.g., the disturbances could repre-
sent unmodeled nonlinearities resulting from time delays due to the finite heat release rate).

4.1. Open-loop error system

The robust and adaptive nonlinear control design presented here is motivated by the desire to
eliminate the transient growth of acoustical energy in a thermoacoustic dynamic system. To
present the control design methodology, we consider a simplified N = 2 mode scenario, which
will be shown to regulate the modes η1(t) and η2(t) to zero in the sense that

η tð Þk k, _η tð Þk k ! 0: (21)

To mathematically describe the regulation control objective, an auxiliary regulation error
signal r(t)∈R2 is defined as

r ¼ _η þ αη, (22)

where α∈R denotes a positive, constant control gain. After taking the time derivative of
Eq. (22), multiplying the result by M, and using Eq. (16), the regulation error dynamics can be
expressed as
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M _r ¼ �Dd _η �Kηþ h η; _ηð Þ þ Bvþ τd: (23)

To address the case where the constant matrices Dd =Cd +Mα, K, and B are uncertain, the
dynamics can be linearly parameterized as

Y1θ1 ¼ �Dd _η �Kη, (24)

Y2θ2 ¼ Bv: (25)

In Eqs. (24) and (25), Y1 η; _ηð Þ∈R2�p1 and Y2(v)∈R2� p2 are measurable regression matrices,
and θ1∈Rp1 and θ2∈Rp2 are vectors containing the uncertain constant parameters inDd,K, and
B. The constants p1 and p2∈ℕ denote the number of uncertain parameters in the vectors θ1 and
θ2, respectively.

To facilitate the subsequent Lyapunov-based adaptive control law development to compensate

for the input-multiplicative uncertain matrix B, an estimate bθ2 tð Þ∈Rp2 of the uncertain vector
θ2 is defined via the linear parameterization:

Y2bθ2 ¼ bBv: (26)

In Eq. (26), bB tð Þ∈ℝ2�2 denotes a time-varying estimate of the uncertain constant matrix B. By

adding and subtracting the term bB tð Þv tð Þ in Eq. (23) and using Eqs. (24) and (26), the open-
loop error dynamics can be expressed as

M _r ¼ Y1θ1 þ h η; _ηð Þ þ Y2~θ2 þ bBvþ τd, (27)

where ~θ2 tð Þ∈Rp2 denotes the parameter estimate mismatch, which is defined as

~θ2 ≜θ2 � bθ2: (28)

The error dynamics in Eq. (27) are now in a form amenable for the design of a robust and
adaptive control law, which compensates for the parametric uncertainty and unmodeled non-
linearities present in the system dynamics.

Assumption 2 The unknown nonlinear term h η; _ηð Þ can be upper bounded as

h η; _ηð Þk k ≤ρ zk kð Þ zk k, (29)

where ρ(�)∈R is a positive, globally invertible nondecreasing function and z(t)∈R4 is defined
as

z tð Þ ¼ ηT tð Þ rT tð Þ� �T
: (30)

In Eq. (29), k�k denotes the standard Euclidean norm of the vector argument.
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this chapter. Specifically, the input-multiplicative parametric uncertainty in B presents a nontrivial
control design challenge, which will be mitigated in the proposed control method through the use of a
novel Lyapunov-based adaptive law.

Assumption 1 The unknown nonlinear disturbance τd(t) satisfies

τd tð Þk k ≤ ζ, ∀t ≥ 0, (20)

where ζ∈R denotes a positive bounding parameter.

4. Control development

In this section, a rigorous regulation error system development will be utilized to develop a
nonlinear control system, which will be proven to effectively compensate for the inherent
parametric uncertainty in the dynamic model of the thermoacoustic system in addition to the
uncertain actuator model. Moreover, the proposed controller compensates for unmodeled,
norm-bounded disturbances present in the dynamic model (e.g., the disturbances could repre-
sent unmodeled nonlinearities resulting from time delays due to the finite heat release rate).

4.1. Open-loop error system

The robust and adaptive nonlinear control design presented here is motivated by the desire to
eliminate the transient growth of acoustical energy in a thermoacoustic dynamic system. To
present the control design methodology, we consider a simplified N = 2 mode scenario, which
will be shown to regulate the modes η1(t) and η2(t) to zero in the sense that

η tð Þk k, _η tð Þk k ! 0: (21)

To mathematically describe the regulation control objective, an auxiliary regulation error
signal r(t)∈R2 is defined as

r ¼ _η þ αη, (22)

where α∈R denotes a positive, constant control gain. After taking the time derivative of
Eq. (22), multiplying the result by M, and using Eq. (16), the regulation error dynamics can be
expressed as

Adaptive Robust Control Systems168

M _r ¼ �Dd _η �Kηþ h η; _ηð Þ þ Bvþ τd: (23)

To address the case where the constant matrices Dd =Cd +Mα, K, and B are uncertain, the
dynamics can be linearly parameterized as

Y1θ1 ¼ �Dd _η �Kη, (24)

Y2θ2 ¼ Bv: (25)

In Eqs. (24) and (25), Y1 η; _ηð Þ∈R2�p1 and Y2(v)∈R2� p2 are measurable regression matrices,
and θ1∈Rp1 and θ2∈Rp2 are vectors containing the uncertain constant parameters inDd,K, and
B. The constants p1 and p2∈ℕ denote the number of uncertain parameters in the vectors θ1 and
θ2, respectively.

To facilitate the subsequent Lyapunov-based adaptive control law development to compensate

for the input-multiplicative uncertain matrix B, an estimate bθ2 tð Þ∈Rp2 of the uncertain vector
θ2 is defined via the linear parameterization:

Y2bθ2 ¼ bBv: (26)

In Eq. (26), bB tð Þ∈ℝ2�2 denotes a time-varying estimate of the uncertain constant matrix B. By

adding and subtracting the term bB tð Þv tð Þ in Eq. (23) and using Eqs. (24) and (26), the open-
loop error dynamics can be expressed as

M _r ¼ Y1θ1 þ h η; _ηð Þ þ Y2~θ2 þ bBvþ τd, (27)

where ~θ2 tð Þ∈Rp2 denotes the parameter estimate mismatch, which is defined as

~θ2 ≜θ2 � bθ2: (28)

The error dynamics in Eq. (27) are now in a form amenable for the design of a robust and
adaptive control law, which compensates for the parametric uncertainty and unmodeled non-
linearities present in the system dynamics.

Assumption 2 The unknown nonlinear term h η; _ηð Þ can be upper bounded as

h η; _ηð Þk k ≤ρ zk kð Þ zk k, (29)

where ρ(�)∈R is a positive, globally invertible nondecreasing function and z(t)∈R4 is defined
as

z tð Þ ¼ ηT tð Þ rT tð Þ� �T
: (30)

In Eq. (29), k�k denotes the standard Euclidean norm of the vector argument.
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Assumption 2 is mild in the sense that inequality (29) is satisfied for a wide range of nonlinear
function h η; _ηð Þ.

4.2. Closed-loop error system

Based on the open-loop error system in Eq. (27), the control input v(t) is designed as

v ¼ bB�1 �Y1bθ1 � ks þ 1ð Þr� βsgn rð Þ � η
� �

, (31)

where ks∈R denotes a positive, constant control gain and β∈R2� 2 is a positive-definite,
diagonal control gain matrix. In Eq. (31), sgn(�) denotes a vector form of the standard signum
function.

After substituting the control input expression in Eq. (34) into the open-loop dynamics in
Eq. (27), the closed-loop error system is obtained as

M _r ¼ Y1~θ1 þ Y2~θ2 þ h η; _ηð Þ � η� ks þ 1ð Þr� βsgn rð Þ þ τd, (32)

where ~θ1 tð Þ∈Rp1 is the parameter estimate mismatch defined as

~θ1 ≜θ1 � bθ1: (33)

Based on Eq. (32) and the subsequent stability analysis, the parameter estimates bθ1 tð Þ and bθ2 tð Þ
are generated online according to the adaptive laws:

_bθ 1 ¼ proj Γ1YTr
� �

, _bθ 2 ¼ proj Γ2YT
2 r

� �
, (34)

where Γ1∈Rp1� p1 and Γ2∈Rp2� p2 are positive-definite adaptation gains.

Remark 2 The function proj(�) in Eq. (34) denotes a normal projection algorithm, which ensures that
the following inequalities are satisfied:

θ1 ≤ bθ1 ≤θ1, θ2 ≤ bθ2 ≤θ2, (35)

where θ1,θ1,θ2 and θ2 ∈R represent known, constant lower and upper bounds of the elements of
bθ1 tð Þ and bθ2 tð Þ, respectively. In the current result, the use of the proj(�) function is primarily motivated
by the desire to avoid singularities in the matrix estimate and facilitate the matrix inverse calculation in
Eq. (31).

To facilitate the following stability analysis, the control gain matrix β will be selected to satisfy
the sufficient condition:

λmin β
� �

> ζ, (36)

where ζ is introduced in Eq. (20) and λmin{�} denotes the minimum eigenvalue of the argument.
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5. Stability analysis

Theorem 1 The control law in Eq. (31) with adaptive laws defined as in Eq. (34) ensures asymptotic
regulation of the thermoacoustic modes η1(t) and η2(t) in the sense that

η tð Þk k ! 0 as t ! ∞ (37)

provided that ks is selected as sufficiently large (see the subsequent stability proof) and β is selected to
satisfy inequality (36).

Proof. Let V η; r; bθ1;
bθ2; t

� �
∈R be defined as the nonnegative function:

V tð Þ≜ 1
2
ηTηþ 1

2
rTMrþ 1

2
~θT
1Γ

�1
1

~θ1 þ 1
2
~θT
2Γ

�1
2

~θ2: (38)

After taking the time derivative of Eq. (38) and using Eq. (32), _V tð Þ can be expressed as

_V tð Þ ¼ ηT r� αηð Þ þ rT h η; _ηð Þ � η� ks þ 1ð Þr� βsgn rð Þ þ τd
� �

þrT Y1~θ1 þ Y2~θ2
� �� ~θ

T
1Γ

�1
1

_bθ 1 � ~θ
T
2Γ

�1
2

_bθ 2

, (39)

where Eq. (22) was utilized. After substituting the adaptive laws in Eq. (34) and canceling
common terms, _V tð Þ can be expressed as

_V tð Þ ¼ �αηTηþ rT h η; _ηð Þ � ks þ 1ð Þr� βsgn rð Þ þ τd
� �

: (40)

By using inequalities of Eqs. (20) and (29), the expression in Eq. (40) can be upper bounded as

_V tð Þ ≤ � α ηk k2 � ks rk k2 � ρ zk kð Þ zk k rk k
� �

� rk k2 � βrT sgn rð Þ þ ζ rk k: (41)

After completing the squares for the parenthetic terms in Eq. (41), the upper bound on _V tð Þ can
be expressed as

_V tð Þ ≤ � α ηk k2 � rk k2 � β rj j þ ζ rk k � ks rk k � ρ zk kð Þ
2ks

zk k
� �2

þ ρ2 zk kð Þ
4ks

zk k2, (42)

where the fact that rTsgn(r) = |r| was utilized. After using inequality (36), the upper bound in
Eq. (42) can be expressed as

_V tð Þ ≤ � λ0 � ρ2 zk kð Þ
4ks

� �
zk k2, (43)

where λ0≜min {α, 1} and the triangle inequality (i.e., |r| ≥ krk ∀r∈Rn) was utilized. Based on

Eq. (43), _V ≤ � c zk k2, for some positive constant c, inside the set R, where R is defined as
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Remark 2 The function proj(�) in Eq. (34) denotes a normal projection algorithm, which ensures that
the following inequalities are satisfied:
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where θ1,θ1,θ2 and θ2 ∈R represent known, constant lower and upper bounds of the elements of
bθ1 tð Þ and bθ2 tð Þ, respectively. In the current result, the use of the proj(�) function is primarily motivated
by the desire to avoid singularities in the matrix estimate and facilitate the matrix inverse calculation in
Eq. (31).

To facilitate the following stability analysis, the control gain matrix β will be selected to satisfy
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where ζ is introduced in Eq. (20) and λmin{�} denotes the minimum eigenvalue of the argument.
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5. Stability analysis

Theorem 1 The control law in Eq. (31) with adaptive laws defined as in Eq. (34) ensures asymptotic
regulation of the thermoacoustic modes η1(t) and η2(t) in the sense that

η tð Þk k ! 0 as t ! ∞ (37)

provided that ks is selected as sufficiently large (see the subsequent stability proof) and β is selected to
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� �
∈R be defined as the nonnegative function:

V tð Þ≜ 1
2
ηTηþ 1

2
rTMrþ 1

2
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1Γ

�1
1
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2
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2Γ

�1
2

~θ2: (38)
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1Γ

�1
1
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2Γ

�1
2
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By using inequalities of Eqs. (20) and (29), the expression in Eq. (40) can be upper bounded as

_V tð Þ ≤ � α ηk k2 � ks rk k2 � ρ zk kð Þ zk k rk k
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� rk k2 � βrT sgn rð Þ þ ζ rk k: (41)

After completing the squares for the parenthetic terms in Eq. (41), the upper bound on _V tð Þ can
be expressed as
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2ks
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4ks
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where the fact that rTsgn(r) = |r| was utilized. After using inequality (36), the upper bound in
Eq. (42) can be expressed as

_V tð Þ ≤ � λ0 � ρ2 zk kð Þ
4ks

� �
zk k2, (43)

where λ0≜min {α, 1} and the triangle inequality (i.e., |r| ≥ krk ∀r∈Rn) was utilized. Based on

Eq. (43), _V ≤ � c zk k2, for some positive constant c, inside the set R, where R is defined as
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R≜ zjz < ρ�1 2
ffiffiffiffiffiffiffiffiffi
λ0ks

p� �n o
: (44)

The expressions in Eqs. (38) and (43) can be used to prove that η(t), r(t), ~θ1 tð Þ, and ~θ2 tð Þ∈L∞ in
R and Eq. (22) can then be used to prove that _η tð Þ∈L∞ inR. Given that η(t) and r(t)∈L∞ inR,
Eq. (31) can be used along with Eq. (35) to prove that v(t)∈L∞ in R. Since η(t), _η tð Þ, and
v(t)∈L∞ in R, Y1 η; _ηð Þ and Y2(v)∈L∞ in R. Given that η(t), r(t), _η tð Þ, Y1 η; _ηð Þ, and Y2(v)∈L∞

in R, Eq. (32) can be used along with Eq. (35) to show that _r tð Þ∈L∞ in R. Since _η tð Þ and
_r tð Þ∈L∞ in R, η(t) and r(t) are uniformly continuous in R. It then follows from Eq. (30) that

z(t) is uniformly continuous inR. Given that η(t), r(t), ~θ1 tð Þ, and ~θ2 tð Þ∈L∞ inR, V(t)∈L∞ inR,

and Eq. (43) can be integrated to prove that
Ð∞
0  z tð Þk k2dt∈L∞ in R. Thus, z(t)∈L∞ ∩L2 in R.

Barbalat’s lemma can now be invoked to prove that kz(t)k!0 as t!∞. Hence, kη(t)k!0 as t!∞
in R, where the set R can be made arbitrarily large by increasing the control gain ks—a
semiglobal result.

6. Sliding-mode observer design

In practical thermoacoustic systems, the full state of the dynamic system is not directly mea-
surable, and so it must be estimated through direct sensor measurements of velocity and
pressure. This section presents an observer design, which is utilized to estimate the complete
state of the system. The necessary observability condition can easily be satisfied through
judicious sensor placement.

Let x ¼ ηT ; _ηTM
� �T denote the state. For simplicity in the subsequent development, only one

sensor is assumed to be available at location xs. Then, the system can be rewritten as

_x tð Þ ¼ Ax tð Þ þ Bx t� τð Þ þGu tð Þ, (45)

y ¼ Cx, (46)

where

A ¼ 0 M�1

�M�1 �D

" #
, B ¼ 0 0

�W 0

� �
, G ¼ 0

I

� �
, (47)

where

W ¼
ffiffiffi
3

p
γ� 1ð ÞKΦfΨT

f , (48)

and the output matrix C is determined by the sensor choice and its location. The output
equation for the velocity sensor case is given by
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y ¼ u xs; tð Þ ¼ ΨT
s η, (49)

and thus

C ¼ ΨT
s 01�2

� �
: (50)

For the pressure sensor case, we have

y ¼ p xs; tð Þ ¼ �ΦT
s _η, (51)

and hence

C ¼ 01�2 �ΦT
s M:

� �
: (52)

It is assumed that the sensor location xs is chosen such that the systems (45) and (46) subject to
τ = 0 are observable, i.e.,

rank CT ETCT ET� �2
CT ET� �3

CT
h i

¼ 4, (53)

where E =A +B.

It can be shown that there exists a coordinate transformation of the forms z = [z1, z2]
T =Tx, z1∈R,

and z2∈R3, such that the systems (45) and (46) in the new variables take the following form:

_z tð Þ ¼ ~Az tð Þ þ ~Bz t� τð Þ þ ~Gu tð Þ, (54)

y tð Þ ¼ z1 tð Þ, (55)

where ~A ¼ TAT�1, ~B ¼ TBT�1, and ~G ¼ TG .

The estimate bz of the the state z will now be generated via the observer equation

_bz tð Þ ¼ ~Abz tð Þ þ ~Bbz t� τð Þ þ ~Gu tð Þ þ Lsgn y tð Þ � bz1 tð Þ� �
: (56)

Then, the error dynamics z ¼ z� bz can be written as

_z tð Þ ¼ ~Az tð Þ þ ~Bz t� τð Þ � Lsgn z1 tð Þð Þ: (57)

Partition the system above as

_z1 tð Þ ¼ ~A11z1 tð Þ þ ~A12z2 tð Þ þ ~B11z1 t� τð Þ þ ~B12z2 t� τð Þ � L1 sgn z1 tð Þð Þ, (58)

_z2 tð Þ ¼ ~A21z1 tð Þ þ ~A22z2 tð Þ þ ~B21z1 t� τð Þ þ ~B22z2 t� τð Þ � L2 sgn z1 tð Þð Þ: (59)

The following result can now be stated:
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R≜ zjz < ρ�1 2
ffiffiffiffiffiffiffiffiffi
λ0ks

p� �n o
: (44)
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sensor is assumed to be available at location xs. Then, the system can be rewritten as
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" #
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f , (48)
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τ = 0 are observable, i.e.,
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¼ 4, (53)
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It can be shown that there exists a coordinate transformation of the forms z = [z1, z2]
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and z2∈R3, such that the systems (45) and (46) in the new variables take the following form:
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: (56)

Then, the error dynamics z ¼ z� bz can be written as
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Theorem 2 Let ~E12 ¼ ~A12 þ ~B12 and ~E22 ¼ ~A22 þ ~B22, and assume that the pair ~E22; ~E12

h i
is

observable. Then, the observer gain L1 can be chosen such that the system (57) is asymptotically stable
for all τ∈ [0, τmax] with τmax defined by:

τmax ¼ 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λmax Q�T

1 FTPHQ�1HTPFQ�1
1

� �q , (60)

where F ¼ ~E22 � L2
~E12=L1, H ¼ ~B22 � L2 ~B12=L1, and Q is any symmetric, positive-definite

matrix such that P is a symmetric, positive-definite matrix P solution of the Lyapunov matrix
equation:

FTPþ PF ¼ �Q, (61)

and Q1 is the square root of the matrix Q, i.e.,

QT
1Q1 ¼ Q: (62)

Proof. From Eq. (58), sliding mode exists in an area:

L1 > ∣~A11z1 tð Þ þ ~A12z2 tð Þ þ ~B11z1 t� τð Þ þ ~B12z2 t� τð Þ∣: (63)

Condition (63) guarantees sliding in Eq. (58) along the manifold z1 ¼ 0; thus bη ! η. According
to the equivalent control method [32], the system in sliding mode behaves as if L1 sgn z1ð Þ is
replaced by its equivalent value L1 sgn z1ð Þð Þeq which can be calculated from subsystem (58)

assuming z1 ¼ 0 and _z1 ¼ 0. Hence,

L1 sgn z1ð Þð Þeq ¼ ~A12z2 tð Þ þ ~B12z2 t� τð Þ: (64)

Substitution of Eq. (64) into Eq. (59) yields

_z2 ¼ ~A22 � L2
~A12=L1

� �
z2 tð Þ þ ~B22 � L2 ~B12=L1

� �
z2 t� τð Þ: (65)

Using the fact that the pair ~E22; ~E12=L1
h i

is observable, the observer gain L2 can be chosen such

that the eigenvalues of the matrices ~E22 � L2
~E12=L1 have negative real parts. Thus, the subsystem

(65) is asymptotically stable for τ ≤ τmax. This implies that z ! 0 andbz tð Þ ¼ z tð Þ, and hence, bx ¼ x.

7. Simulation results

A numerical simulation was created for two modes and two actuators (i.e., N =K = 2) to
demonstrate the performance of the control law described by Eqs. (26), (31), and (34). The
simulation utilizes the dynamics described in Eq. (16) for a system with two modes. The
physical parameters used in the simulation are given in Table 1.
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The initial conditions for the modes were selected as η1(0) = 0.07 and η2(0) = 0. The initial
conditions of the velocity and pressure parameters at the location of the heat source are
u(xf, 0) = � 0.1646 and p(xf, 0) = 0 for xf = 0.7. Figure 4 shows the open-loop velocity and
pressure perturbations at the heat source in the absence of control actuation.

In closed-loop operation, the adaptation gain matrices used in the simulation were selected as
Γ1 = 0.1I8 and Γ2 = 0.001I4. The value for the gain α was selected as 1, and the control gain
matrices β and ks were selected as β =diag {2.43, 2.1} , ks =diag {4.5, 2.4}. The results of 20
Monte Carlo-type simulations for the closed-loop operation are shown in Figures 5–10. Figure 5
shows the time evolution of the velocity and pressure values at the heat source location during

ρ 1.025 kg/m3 λ 0.0328 W/m K

cv 719 J/kg K γ 1.4

L0 1 m Lw 2.5 m

c 344 m/s u0 0.3 m/s

T0 295 K Tw 1680 K

dw 0.5� 10�3 m S 1.56� 10�3 m

P0 8.69� 104 Pa αa1 =αa2 0.01

ζ1 0.0440 ζ2 0.1657

Table 1. Physical parameters.

Figure 4. Time response of the velocity u(t) and pressure p(t) at the heat source location during open-loop (uncontrolled)
operation.
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Theorem 2 Let ~E12 ¼ ~A12 þ ~B12 and ~E22 ¼ ~A22 þ ~B22, and assume that the pair ~E22; ~E12

h i
is
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τmax ¼ 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λmax Q�T

1 FTPHQ�1HTPFQ�1
1

� �q , (60)
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FTPþ PF ¼ �Q, (61)
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QT
1Q1 ¼ Q: (62)
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demonstrate the performance of the control law described by Eqs. (26), (31), and (34). The
simulation utilizes the dynamics described in Eq. (16) for a system with two modes. The
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closed-loop controller operation. Figure 6 shows the time history of the modes η1(t) and η2(t)
during closed-loop operation. The results clearly show the capability of the proposed robust and
adaptive control law to drive the states to zero. The commanded control signals are shown in
Figure 7. The control actuation remains within the reasonable limits throughout closed-loop
operation. Figures 8–10 show the time responses of the elements of the parameter estimate

vectors bθ1 tð Þ and bθ2 tð Þ during closed-loop controller operation.

Figure 5. Time response of the velocity u(t) and pressure p(t) during closed-loop controller operation at the heat source
location.

Figure 6. Time response of the oscillation modes η1(t) and η2(t) during closed-loop controller operation.
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Figure 7. Commanded control inputs ν1(t) and ν2(t) during closed-loop controller operation.

Figure 8. Time response of the adaptive parameter estimates bθ11 tð Þ, bθ12 tð Þ, bθ13 tð Þ, and bθ14 tð Þ during closed-loop controller
operation.
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Figure 9. Time response of the adaptive parameter estimates bθ15 tð Þ, bθ16 tð Þ, bθ17 tð Þ, and bθ18 tð Þ during closed-loop controller
operation.

Figure 10. Time response of the adaptive parameter estimates bθ21 tð Þ, bθ22 tð Þ, bθ23 tð Þ, and bθ24 tð Þ during closed-loop controller
operation.
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8. Conclusion

A robust and adaptive nonlinear control method is presented, which asymptotically regulates
thermoacoustic oscillations in a Rijke-type system in the presence of dynamic model uncertainty
and unknown disturbances. To demonstrate the methodology, a well-accepted thermoacoustic
dynamic model is introduced, which includes arrays of sensors and monopole-like actuators.
To facilitate the derivation of the adaptive control law, the dynamic model is recast as a set of
nonlinear ordinary differential equations, which are amenable to control design. To compen-
sate for the unmodeled disturbances in the dynamic model, a robust nonlinear feedback term
is included in the control law. One of the primary challenges in the control design is the
presence of input-multiplicative parametric uncertainty in the dynamic model for the control
actuator. This challenge is mitigated through innovative algebraic manipulation in the regula-
tion error system derivation along with a Lyapunov-based adaptive control law. To address
practical implementation considerations, where sensor measurements of the complete state are
not available for feedback, a detailed analysis is provided to demonstrate that system observ-
ability can be ensured through judicious placement of pressure (and/or velocity) sensors. A
sliding-mode observer design is developed, which is shown to estimate the unmeasurable
states using only the available sensor measurements. A detailed Lyapunov-based stability
analysis is provided to prove that the proposed closed-loop active thermoacoustic control
system achieves asymptotic (zero steady-state error) regulation of multiple thermoacoustic
modes in the presence of the aforementioned model uncertainty. Numerical Monte Carlo-type
simulation results are also provided, which demonstrate the performance of the proposed
closed-loop control system under 20 different sets of operating conditions.
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Abstract

In this chapter, adaptive gain robust control strategies for uncertain dynamical sys-
tems are presented. Firstly, synthesis of centralized adaptive gain robust controllers
for a class of uncertain linear systems is shown. The design problem of the centralized
controller is reduced to the constrained convex optimization problem, and allowable
perturbation regions of unknown parameters are discussed. Next, the result for the
centralized robust controller is extended to uncertain large-scale interconnected sys-
tems, that is, an LMI-based design approach for decentralized adaptive gain robust
controllers is suggested.

Keywords: adaptive gain robust control, adjustable time-varying parameter, allowable
perturbation regions of unknown parameters, LMIs

1. Introduction

It is well known that control systems can be found in abundance in all sectors of industry such
as robotics, power systems, transportation systems space technologies, and many others, and
thus control theory has been well studied. In order to design control systems, designers have to
derive mathematical models for dynamical systems, and there are mainly two types of repre-
sentations for mathematical models, that is, transfer functions and state equations. In other
words, control theory is divided into “classical control” and “modern control” (e.g., see [12]).

Classical control means an analytical theory based on transfer function representations and
frequency responses, and for classical control theory, we can find a large number of useful and
typical results such as Routh-Hurwitz stability criterion [20] based on characteristic equations
in the nineteenth century, Nyquist criterion [28] in the 1930s, and so on. Moreover, by using
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Abstract

In this chapter, adaptive gain robust control strategies for uncertain dynamical sys-
tems are presented. Firstly, synthesis of centralized adaptive gain robust controllers
for a class of uncertain linear systems is shown. The design problem of the centralized
controller is reduced to the constrained convex optimization problem, and allowable
perturbation regions of unknown parameters are discussed. Next, the result for the
centralized robust controller is extended to uncertain large-scale interconnected sys-
tems, that is, an LMI-based design approach for decentralized adaptive gain robust
controllers is suggested.

Keywords: adaptive gain robust control, adjustable time-varying parameter, allowable
perturbation regions of unknown parameters, LMIs

1. Introduction

It is well known that control systems can be found in abundance in all sectors of industry such
as robotics, power systems, transportation systems space technologies, and many others, and
thus control theory has been well studied. In order to design control systems, designers have to
derive mathematical models for dynamical systems, and there are mainly two types of repre-
sentations for mathematical models, that is, transfer functions and state equations. In other
words, control theory is divided into “classical control” and “modern control” (e.g., see [12]).

Classical control means an analytical theory based on transfer function representations and
frequency responses, and for classical control theory, we can find a large number of useful and
typical results such as Routh-Hurwitz stability criterion [20] based on characteristic equations
in the nineteenth century, Nyquist criterion [28] in the 1930s, and so on. Moreover, by using
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classical control ideas, some design methods of controllers such as proportional, derivative,
and integral (PID) controllers and phase lead-lag compensators have also been presented
[21]. In classical control, controlled systems are mainly linear and time-invariant and have a
single input and a single output only. Furthermore, it is well known that design approaches
based on classical control theory need experiences and trial and error. On the other hand, in
the 1960s, state variables and state equations (i.e., state-space representations) have been
introduced by Kalman as system representations, and he has proposed an optimal regulator
theory [14–16] and an optimal filtering one [17]. Namely, controlled systems are represented
by state equations, and controller design problems are reduced to optimization problems
based on the concept of state variables. Such controller design approach based on the state-
space representation has been established as “modern control theory.” Modern control is a
theory of time domain, and whereas the transfer function and the frequency response are of
limited applicability to nonlinear systems, state equations and state variables are equally
appropriate to linear multi-input and multi-output systems or nonlinear one. Therefore,
many existing results based on the state-space representation for controller design problems
have been suggested (e.g., [7, 43]).

Now, as mentioned above, in order to design control systems, the derivation of a mathematical
model for controlled system based on state-space representation is needed. If the mathematical
model describes the controlled system with sufficient accuracy, a satisfactory control perfor-
mance is achievable by using various controller design methods. However, there inevitably
exists some gaps between the controlled system and its mathematical model, and the gaps are
referred to as “uncertainties.” The uncertainties in the mathematical model may cause deteri-
oration of control performance or instability of the control system. From this viewpoint, robust
control for dynamical systems with uncertainties has been well studied, and a large number of
existing results for robust stability analysis and robust stabilization have been obtained [34, 36,
47, 48]. One can see that quadratic stabilization based on Lyapunov stability criterion and H∞

control is a typical robust controller (e.g., [1, 6]). Furthermore, some researchers investigated
quadratic stabilizing control with an achievable performance level in Ref. to such as a qua-
dratic cost function [23, 28, 35, 37], robust H2 control [18, 39], and robust H∞-type disturbance
attenuation [46]. However, these approaches result in worst-case design, and, therefore, these
controllers with a fixed feedback gain which is designed by considering the worst-case varia-
tions of uncertainties/unknown parameters become cautious when the perturbation region of
uncertainties has been estimated larger than the proper region. In contrast with the conven-
tional robust control with fixed gains, several design methods of some robust controllers with
time-varying adjustable parameters have also been proposed (e.g., [3, 24, 36]). In the work of
Maki and Hagino [25], by introducing time-varying adjustable parameters, adaptation mech-
anisms for improving transient behavior have been suggested. Moreover, robust controllers
with adaptive compensation inputs have also been shown [29–31]. In particular, for linear
systems with matched uncertainties, Oya and Hagino [29] have introduced an adaptive com-
pensation input which is determined so as to reduce the effect of unknown parameters.
Furthermore, a design method of a variable gain robust controller based on LQ optimal control
for a class of uncertain linear system has also been shown [32]. These robust controllers have
fixed gains and variable ones tuned by updating laws and are more flexible and adaptive
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compared with the conventional robust controllers with fixed gains only, and one can easily
see that these robust controllers with adjustable parameters differ from gain-scheduling con-
trol techniques [22, 41, 42]. Additionally, these robust controllers with time-varying adjustable
parameters may also be referred to as “variable gain robust controller” or “adaptive gain
robust controller.”

In recent years, a great number of control systems are brought about by present technol-
ogies and environmental and societal processes which are highly complex and large in
dimension, and such systems are referred to as “large-scale complex systems” or “large-
scale interconnected systems.” Namely, large-scale and complex systems are progressing
due to the rapid development of industry, and large-scale interconnected systems can be
seen in diverse fields such as economic systems, electrical systems, and so on. For such
large-scale interconnected systems, it is difficult to apply centralized control strategies
because of calculation amount, physical communication constraints, and so on. Namely, a
notable characteristic of the most large-scale interconnected systems is that centrality fails
to hold due to either the lack of centralized computing capability of or centralized infor-
mation. Moreover, large-scale interconnected systems are controlled by more than one
controller or decision-maker involving decentralized computation. In the decentralized
control strategy, large-scale interconnected systems are divided into several subsystems,
and various types of decentralized control problems have been widely studied [13, 38, 44].
The major problem of large-scale interconnected systems is how to deal with the interac-
tions among subsystems. A large number of results in decentralized control systems can
be seen in the work of Šijjak [38]. Moreover, a framework for decentralized fault-tolerant
control has also been studied [44]. Additionally, decentralized robust control strategies
for uncertain large-scale interconnected systems have also attracted the attention of many
researchers (e.g., [3–5, 11]). Moreover, in the work of Mao and Lin [24], for large-scale
interconnected systems with unmodeled interaction, the aggregative derivation is tracked
by using a model following the technique with online improvement, and a sufficient
condition for which the overall system when controlled by the completely decentralized
control is asymptotically stable has been established. Furthermore, decentralized guar-
anteed cost controllers for uncertain large-scale interconnected systems have also been
suggested [26, 27].

In this chapter, for a class of uncertain linear systems, we show LMI-based design strategies
for adaptive gain robust controllers for a class of uncertain dynamical systems. The adaptive
gain robust controllers consist of fixed gains and adaptive gains which are tuned by time-
varying adjustable parameters. The proposed adaptive gain robust controller can achieve
asymptotical stability but also improving transient behavior of the resulting closed-loop
system. Moreover, by adjusting design parameters, the excessive control input is avoided
[32]. In this chapter, firstly, a design method of the centralized adaptive gain robust stabiliz-
ing controllers for a class of uncertain linear systems has been shown, and the maximum
allowable perturbation region of uncertainties is discussed. Namely, the proposed adaptive
gain robust controllers can achieve robustness for the derived perturbation regions for
unknown parameters. Additionally, the result for the centralized adaptive gain robust stabi-
lizing controllers is extended to the design problem of decentralized robust control systems.
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The contents of this chapter are as follows, where the item numbers in the list accord with the
section numbers:

2. Synthesis of centralized adaptive gain robust controllers.

3. Synthesis of decentralized adaptive gain robust controllers.

4. Conclusions and future works.

The basic symbols are listed below.

Other than the above, we use the following notation and terms: For a matrix A, the transpose of

matrix A and the inverse of one are denoted by AT and A�1, respectively. The notations He Af g
and diag A1;⋯;ANð Þ representAþAT and a block diagonal matrix composed of matricesAi for
i ¼ 1,⋯,N . The n-dimensional identity matrix and n�m-dimensional zero matrix are described
by In and 0n�m, and for real symmetric matricesA and B,A > B resp: A ≥B

� �
means thatA� B

is a positive (resp. nonnegative) definite matrix. For a vector α∈Rn, αj jj j denotes standard
Euclidian norm, and for a matrix A, Aj jj j represents its induced norm. The real part of a complex

number s (i.e., s∈C) is denoted by Re sf g, and the symbols “¼Δ” and “⋆” mean equality by
definition and symmetric blocks in matrix inequalities, respectively.

Furthermore, the following useful lemmas are used in this chapter.

Lemma 1.1. For arbitrary vectors λ and ξ and the matrices G and H which have appropriate

dimensions, the following relation holds:

2λTGΔ tð ÞHξ ≤ 2 GTλ
�� �� Hξk k,

where Δ tð Þ∈Rp�q is a time-varying unknown matrix satisfying Δ tð Þk k ≤ 1.
Proof. The above relation can be easily obtained by Schwartz’s inequality (see [9]).

Lemma 1.2. (Schur complement) For a given constant real symmetric matrix Ξ, the following argu-
ments are equivalent:

(i) Ξ ¼ Ξ11 Ξ12

ΞT
12 Ξ22

� �
> 0.

(ii) Ξ11 > 0 and Ξ22 � ΞT
12Ξ

�1
11 Ξ12 > 0.

R The set of the real number

Rn The set of n-dimensional vectors

Rn�m The set of n�m-dimensional matrices

C The set of complex numbers
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(iii) Ξ22 > 0 and Ξ11 � Ξ12Ξ
�1
22 Ξ

T
12 > 0.

Proof. See Boyd et al. [2].

2. Synthesis of centralized adaptive gain robust controllers

A centralized adaptive gain robust state feedback control scheme for a class of uncertain linear
systems is proposed in this section. The adaptive gain robust controller under consideration is
composed of a state feedback with a fixed gain matrix and a time-varying adjustable parame-
ter. In this section, we show an LMI-based design method of the adaptive gain robust state
feedback controller, and the allowable perturbation region of unknown parameters is
discussed.

2.1. Problem statement

Consider the uncertain linear system described by the following state-space representation:

d
dt
x tð Þ ¼ Aþ Δ tð Þð Þx tð Þ þ Bu tð Þ, (1)

where x tð Þ∈Rn and u tð Þ∈Rm are the vectors of the state (assumed to be available for feedback)
and the control input, respectively. In Eq. (1) the constant matrices A and B mean the nominal
values of the system, and A;Bð Þ is stabilizable pair. Moreover, the matrix Δ tð Þ∈Rn�n represents
unknown time-varying parameters which satisfy ΔT tð ÞΔ tð Þ ≤ δ⋆In , and the elements of
Δ tð Þ∈Rn�n are Lebesgue measurable [1, 34]. Namely, the unknown time-varying matrix
Δ tð Þ∈Rn�n is bounded, and the parameter δ⋆ denotes the upper bound of the perturbation
region for the unknown parameter Δ tð Þ∈Rn�n. Additionally, we suppose that the nominal
system which can be obtained by ignoring the unknown parameter Δ tð Þ in Eq. (1) is given by

d
dt
x tð Þ ¼ Ax tð Þ þ Bu tð Þ: (2)

In Eq. (2), x tð Þ∈Rn and u tð Þ∈Rm are the vectors of the state and the control input for the
nominal system, respectively.

First of all, we design the state feedback control for the nominal system of Eq. (2) so as to
generate the desirable transient behavior in time response for the uncertain linear system of
Eq. (1). Namely, the nominal control input is given as

u tð Þ ¼ Kx tð Þ, (3)

and thus the following nominal closed-loop system is obtained:

d
dt
x tð Þ ¼ AKx tð Þ, (4)
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where AK is a matrix given by AK¼ΔAþ BK. Note that the standard LQ control theory for the
nominal system of Eq. (2) for designing the fixed feedback gain K∈Rm�n is adopted in the
existing result [32]. In this section, for the nominal system of Eq. (2), we derive a state feedback
controller with pole placement constraints [8]. Note that for simplicity the sector constraints
are introduced only in this chapter, and of course, one can adopt some other design constraints
or another controller design approach for designing the fixed gain matrix K∈Rm�n. Therefore,
we consider the matrix inequality condition:

AK þ αInð ÞTP þ P AK þ αInð Þ þQ < 0, (5)

where P ∈Rn�n and Q∈Rn�n are a symmetric positive definite matrix and a symmetric semi-
positive definite matrix, respectively, and the matrix Q∈Rn�n is selected by designers. If the
symmetric positive definite matrix P ∈Rn�n satisfying the matrix inequality of Eq. (5) exists,
then poles for the nominal closed-loop system of Eq. (4) are located into the subspace
Sα ¼ sjRe sf g ≤ � αf g in the complex plane. Namely, the nominal closed-loop system of Eq. (4)

is asymptotically stable, and the quadratic function V x; tð Þ¼ΔxT tð ÞPx tð Þ becomes a Lyapunov
function for the nominal closed-loop system of Eq. (4), because the time derivative of the
quadratic function V x; tð Þ can be expressed as

d
dt
V x; tð Þ < �xT tð Þ Qþ 2αPð Þx tð Þ

< 0, ∀ x tð Þ 6¼ 0:

(6)

Now, we introduce complementary matrices Y ∈Rn�n and W ∈Rm�m which satisfy the rela-

tions Y¼ΔP�1, K ¼ �WBTP, and W ¼ WT > 0, respectively. Then, some algebraic manipula-
tions gives

YAT þ AY � BWTBT � BWBT þ 2αY þ YQY < 0: (7)

Additionally, applying Lemma 1.2 (Schur complement) to Eq. (7), one can easily see that the
matrix inequality condition of Eq. (7) is equivalent to

YAT þ AY � BWTBT � BWBT þ 2αY Y

⋆ �Q�1

 !
< 0: (8)

Thus, the control gain matrix K∈Rm�n is determined as K ¼ �WBTP ¼ �WBTY�1.

Now, for the uncertain linear system of Eq. (1), we define the following control input [37]:

u tð Þ¼Δ 1þ θ x; tð Þð ÞKx tð Þ, (9)

where θ x; tð Þ: Rn � R ! R is an adjustable time-varying parameter [32] which plays the
important role for correcting the effect of uncertainties, that is, the control input u tð Þ∈Rm
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consists of a fixed gain matrix K∈Rm�n and θ x; tð Þ∈R. Note that, the robust control input of
the form of Eq. (9) is called “adaptive gain robust control” in this chapter. Thus, from Eqs. (1)
and (9), the uncertain closed-loop system can be written as

d
dt
x tð Þ ¼ AKx tð Þ þ Δ tð Þx tð Þ þ θ x; tð ÞBKx tð Þ: (10)

From the above, the control objective in this section is to design the adaptive gain robust
control which achieves satisfactory transient behavior. Namely, the control problem is to
derive the adjustable time-varying parameter θ x; tð Þ∈R such that the closed-loop system of
Eq. (10) can achieve the desired transient response. In addition, we evaluate the allowable
perturbation region of the unknown parameter Δ tð Þ∈Rn�n.

2.2. Synthesis of centralized adaptive gain robust state feedback controllers

In this subsection, we deal with design problems for the adjustable time-varying parameter
θ x; tð Þ∈R so that the satisfactory transient response for the uncertain linear system of Eq. (1)
can be achieved. For the proposed adaptive gain robust control, the following theorem gives
an LMI-based design synthesis.

Theorem 1: Consider the uncertain linear system of Eq. (1) and the adaptive gain robust control of
Eq. (9) with the adjustable time-varying parameter θ x; tð Þ∈R.

For a given design parameter ϑ > 0 and the known upper bound δ⋆ for the unknown parameter
Δ tð Þ∈Rn�n, if the scalar parameter γ > 0 exists satisfying

AT
KP þ PAK þ γP2 In

⋆ � γ
δ⋆

In

0
B@

1
CA < 0, (11)

the adjustable time-varying parameter θ x; tð Þ∈R is determined as

θ x; tð Þ ¼

ffiffiffiffiffi
δ⋆

p
Px tð Þk k x tð Þk k

W1=2BTPx tð Þ
�� ��2 if xT tð ÞPBWBTPx tð Þ ≥ϑxT tð Þx tð Þ,

ffiffiffiffiffi
δ⋆

p
Px tð Þk k x tð Þk k
ϑxT tð Þx tð Þ if xT tð ÞPBWBTPx tð Þ < ϑxT tð Þx tð Þ:

8>>>>>>><
>>>>>>>:

(12)

Then, the uncertain closed-loop system of Eq. (10) is asymptotically stable.

Proof. In order to prove Theorem 1, by using symmetric positive definite matrix P ∈Rn�n

which satisfies the standard Riccati equation of Eq. (4), we introduce the quadratic function

V x; tð Þ¼Δ xT tð ÞPx tð Þ, (13)
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nominal system of Eq. (2) for designing the fixed feedback gain K∈Rm�n is adopted in the
existing result [32]. In this section, for the nominal system of Eq. (2), we derive a state feedback
controller with pole placement constraints [8]. Note that for simplicity the sector constraints
are introduced only in this chapter, and of course, one can adopt some other design constraints
or another controller design approach for designing the fixed gain matrix K∈Rm�n. Therefore,
we consider the matrix inequality condition:

AK þ αInð ÞTP þ P AK þ αInð Þ þQ < 0, (5)

where P ∈Rn�n and Q∈Rn�n are a symmetric positive definite matrix and a symmetric semi-
positive definite matrix, respectively, and the matrix Q∈Rn�n is selected by designers. If the
symmetric positive definite matrix P ∈Rn�n satisfying the matrix inequality of Eq. (5) exists,
then poles for the nominal closed-loop system of Eq. (4) are located into the subspace
Sα ¼ sjRe sf g ≤ � αf g in the complex plane. Namely, the nominal closed-loop system of Eq. (4)

is asymptotically stable, and the quadratic function V x; tð Þ¼ΔxT tð ÞPx tð Þ becomes a Lyapunov
function for the nominal closed-loop system of Eq. (4), because the time derivative of the
quadratic function V x; tð Þ can be expressed as

d
dt
V x; tð Þ < �xT tð Þ Qþ 2αPð Þx tð Þ

< 0, ∀ x tð Þ 6¼ 0:

(6)

Now, we introduce complementary matrices Y ∈Rn�n and W ∈Rm�m which satisfy the rela-

tions Y¼ΔP�1, K ¼ �WBTP, and W ¼ WT > 0, respectively. Then, some algebraic manipula-
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YAT þ AY � BWTBT � BWBT þ 2αY Y

⋆ �Q�1

 !
< 0: (8)

Thus, the control gain matrix K∈Rm�n is determined as K ¼ �WBTP ¼ �WBTY�1.

Now, for the uncertain linear system of Eq. (1), we define the following control input [37]:

u tð Þ¼Δ 1þ θ x; tð Þð ÞKx tð Þ, (9)

where θ x; tð Þ: Rn � R ! R is an adjustable time-varying parameter [32] which plays the
important role for correcting the effect of uncertainties, that is, the control input u tð Þ∈Rm
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consists of a fixed gain matrix K∈Rm�n and θ x; tð Þ∈R. Note that, the robust control input of
the form of Eq. (9) is called “adaptive gain robust control” in this chapter. Thus, from Eqs. (1)
and (9), the uncertain closed-loop system can be written as

d
dt
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From the above, the control objective in this section is to design the adaptive gain robust
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Eq. (9) with the adjustable time-varying parameter θ x; tð Þ∈R.

For a given design parameter ϑ > 0 and the known upper bound δ⋆ for the unknown parameter
Δ tð Þ∈Rn�n, if the scalar parameter γ > 0 exists satisfying

AT
KP þ PAK þ γP2 In

⋆ � γ
δ⋆

In

0
B@

1
CA < 0, (11)

the adjustable time-varying parameter θ x; tð Þ∈R is determined as

θ x; tð Þ ¼

ffiffiffiffiffi
δ⋆

p
Px tð Þk k x tð Þk k

W1=2BTPx tð Þ
�� ��2 if xT tð ÞPBWBTPx tð Þ ≥ϑxT tð Þx tð Þ,

ffiffiffiffiffi
δ⋆

p
Px tð Þk k x tð Þk k
ϑxT tð Þx tð Þ if xT tð ÞPBWBTPx tð Þ < ϑxT tð Þx tð Þ:

8>>>>>>><
>>>>>>>:

(12)

Then, the uncertain closed-loop system of Eq. (10) is asymptotically stable.

Proof. In order to prove Theorem 1, by using symmetric positive definite matrix P ∈Rn�n

which satisfies the standard Riccati equation of Eq. (4), we introduce the quadratic function

V x; tð Þ¼Δ xT tð ÞPx tð Þ, (13)
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as a Lyapunov function candidate. Let x tð Þ be the solution of the uncertain closed-loop system
of Eq. (10) for t ≥ t0, and then the time derivative of the quadratic function V x; tð Þ along the
trajectory of the uncertain closed-loop system of Eq. (10) can be written as

d
dt
V x; tð Þ ¼ xT tð Þ AT

KP þ PAK
� �

x tð Þ

þ2xT tð ÞPΔ tð Þx tð Þ þ 2θ x; tð ÞxT tð ÞPBKx tð Þ:
(14)

Firstly, the case of xT tð ÞPBWBTPx tð Þ ≥ϑxT tð Þx tð Þ is considered. In this case, one can see from

the relation Δ tð Þk k ≤
ffiffiffiffiffi
δ⋆

p
, Eq. (14), and Lemma 1.1 that the following inequality holds:

d
dt
V x; tð Þ ≤ xT tð Þ AT

KP þ PAK
� �

x tð Þ þ 2
ffiffiffiffiffi
δ⋆

p
Px tð Þk k x tð Þk k

þ2θ x; tð ÞxT tð ÞPBKx tð Þ:
(15)

Moreover, since the relation K ¼ �WBTP holds, the inequality of Eq. (15) can be rewritten as

d
dt
V x; tð Þ ≤ xT tð Þ AT

KP þ PAK
� �

x tð Þ þ 2
ffiffiffiffiffi
δ⋆

p
Px tð Þk k x tð Þk k

�2θ x; tð ÞxT tð ÞPBWBTPx tð Þ:
(16)

Substituting the adjustable time-varying parameter θ x; tð Þ of Eq. (12) into Eq. (16) gives

d
dt
V x; tð Þ ≤ xT tð Þ AT

KP þ PAK
� �

x tð Þ þ 2
ffiffiffiffiffi
δ⋆

p
Px tð Þk k x tð Þk k

�2xT tð ÞP
ffiffiffiffiffi
δ⋆

p
Px tð Þk k x tð Þk k

W1=2BTPx tð Þ
�� ��2

 !
BWBTPx tð Þ

≤ xT tð Þ AT
KP þ PAK

� �
x tð Þ:

(17)

If the solution of the LMI of Eq. (11) exists, then the inequality

AT
KP þ PAK < 0 (18)

is satisfied. Thus, one can see that the following relation holds:

d
dt
V x; tð Þ < 0, ∀x tð Þ 6¼ 0: (19)

Next, we consider the case of xT tð ÞPBWBTPx tð Þ < ϑxT tð Þx tð Þ. By using the well-known
inequality for any vectors α and β with appropriate dimensions and a positive scalar ζ

2αTβ ≤ ζαTαþ 1
ζ
βTβ, (20)
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we see from Eq. (14) that some algebraic manipulations give

d
dt
V x; tð Þ ≤ xT tð Þ AT

KP þ PAK
� �

x tð Þ þ γxT tð ÞP2x tð Þ þ 1
γ
xT tð ÞΔT tð ÞΔ tð Þx tð Þ

þ 2θ x; tð ÞxT tð ÞPBKx tð Þ

≤ xT tð Þ AT
KP þ PAK þ γP2 þ δ⋆

γ
In

� �
x tð Þ þ 2θ x; tð ÞxT tð ÞPBKx tð Þ

(21)

where γ is a positive constant.

Let us consider the last term of the right-hand side of Eq. (21). We see from Eq. (12) and the
relation K ¼ �WBTP that the last term of the right-hand side of Eq. (21) is nonpositive. Thus, if
the scalar parameter γ exists satisfying

AT
KP þ PAK þ γP2 þ δ⋆

γ
In < 0, (22)

then the following relation for the quadratic function V x; tð Þ holds:
d
dt
V x; tð Þ < 0, ∀x tð Þ 6¼ 0: (23)

Furthermore, applying Lemma 1.2 (Schur complement) to Eq. (22), we find that the matrix
inequality condition of Eq. (22) can be transformed into the LMI of Eq. (11). Namely, the
quadratic function V x; tð Þ of Eq. (13) becomes a Lyapunov function of the uncertain closed-
loop system of Eq. (10) with the adjustable time-varying parameter of Eq. (12), that is,
asymptotical stability of the uncertain closed-loop system of Eq. (10) is ensured. It follows that
the result of this theorem is true.

From the above, we show an LMI-based design strategy for the proposed adaptive gain robust
control. Namely, the design problem of the proposed adaptive gain robust controller can be
reduced to the feasibility of the LMI of Eq. (11). Note that the LMI of Eq. (11) defines a convex
solution set of γ, and therefore one can easily see that various efficient convex optimization
algorithms can be used to test whether the LMI is solvable and to generate particular solution.
Furthermore, the LMI of Eq. (11) can also be exploited to design the proposed adaptive gain
robust controller with some additional requirements. Thus, in this paper, we consider the
allowable region of the unknown parameter Δ tð Þ∈Rn�n and introduce the additional con-
straints γ ¼ δ⋆ and

γ� 1
ε
> 0, (24)

where ε is a positive constant. From the relation of Eq. (24), we find that the minimization of
the parameter ε means the maximization of the upper bound δ⋆. Then, by using Lemma 2
(Schur complement), we find that the LMI of Eq. (11) is equivalent to

AT
KP þ PAK þ γP2 þ In < 0, (25)
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KP þ PAK

� �
x tð Þ:
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If the solution of the LMI of Eq. (11) exists, then the inequality

AT
KP þ PAK < 0 (18)

is satisfied. Thus, one can see that the following relation holds:

d
dt
V x; tð Þ < 0, ∀x tð Þ 6¼ 0: (19)

Next, we consider the case of xT tð ÞPBWBTPx tð Þ < ϑxT tð Þx tð Þ. By using the well-known
inequality for any vectors α and β with appropriate dimensions and a positive scalar ζ

2αTβ ≤ ζαTαþ 1
ζ
βTβ, (20)
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we see from Eq. (14) that some algebraic manipulations give
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dt
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(21)

where γ is a positive constant.

Let us consider the last term of the right-hand side of Eq. (21). We see from Eq. (12) and the
relation K ¼ �WBTP that the last term of the right-hand side of Eq. (21) is nonpositive. Thus, if
the scalar parameter γ exists satisfying

AT
KP þ PAK þ γP2 þ δ⋆

γ
In < 0, (22)

then the following relation for the quadratic function V x; tð Þ holds:
d
dt
V x; tð Þ < 0, ∀x tð Þ 6¼ 0: (23)

Furthermore, applying Lemma 1.2 (Schur complement) to Eq. (22), we find that the matrix
inequality condition of Eq. (22) can be transformed into the LMI of Eq. (11). Namely, the
quadratic function V x; tð Þ of Eq. (13) becomes a Lyapunov function of the uncertain closed-
loop system of Eq. (10) with the adjustable time-varying parameter of Eq. (12), that is,
asymptotical stability of the uncertain closed-loop system of Eq. (10) is ensured. It follows that
the result of this theorem is true.

From the above, we show an LMI-based design strategy for the proposed adaptive gain robust
control. Namely, the design problem of the proposed adaptive gain robust controller can be
reduced to the feasibility of the LMI of Eq. (11). Note that the LMI of Eq. (11) defines a convex
solution set of γ, and therefore one can easily see that various efficient convex optimization
algorithms can be used to test whether the LMI is solvable and to generate particular solution.
Furthermore, the LMI of Eq. (11) can also be exploited to design the proposed adaptive gain
robust controller with some additional requirements. Thus, in this paper, we consider the
allowable region of the unknown parameter Δ tð Þ∈Rn�n and introduce the additional con-
straints γ ¼ δ⋆ and

γ� 1
ε
> 0, (24)

where ε is a positive constant. From the relation of Eq. (24), we find that the minimization of
the parameter ε means the maximization of the upper bound δ⋆. Then, by using Lemma 2
(Schur complement), we find that the LMI of Eq. (11) is equivalent to

AT
KP þ PAK þ γP2 þ In < 0, (25)
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and the constraint of Eq. (24) can be transformed into

γ 1:0
⋆ ε

� �
> 0: (26)

From the above, we consider the following constrained optimization problem:

Minimize
γ>0, ε

ε½ � subject to 25ð Þ and 26ð Þ: (27)

If the optimal solution of the constrained optimization problem of Eq. (27) exists, in which are
denoted by γ⋆ and ε⋆, the proposed adaptive gain robust controller can be done, and the
allowable upper bound of the unknown parameter Δ tð Þ∈Rn�n is given by

δ⋆ ¼ γ⋆: (28)

Consequently, the following theorem for the proposed adaptive gain robust control with
guaranteed allowable region of unknown parameter Δ tð Þ∈Rn�n is developed.

Theorem 2: Consider the uncertain linear system of Eq. (1) and the adaptive gain robust control of
Eq. (8) with the adjustable time-varying parameter θ x; tð Þ∈R.

If the optimal solution γ⋆ of the constrained optimization problem of Eq. (27) exists, then the adjustable
time-varying parameter θ x; tð Þ∈R is designed as Eq. (12), and asymptotical stability of the uncertain
closed-loop system of Eq. (10) is ensured. Moreover, the upper bound δ⋆ for the unknown parameter
Δ tð Þ∈Rn�n is given by Eq. (28).

Remark 1: In this section, the uncertain linear dynamical system of Eq. (1) is considered, and the
centralized adaptive gain robust controller has been proposed. Although the uncertain linear system of
Eq. (1) has uncertainties in the state matrix only, the proposed adaptive gain robust controller can also
be applied to the case that the uncertainties are included in both the system matrix and the input one.
Namely, by introducing additional actuator dynamics and constituting an augmented system,
unknown parameters in the input matrix are embedded in the system matrix of the augmented system
[45]. As a result, the proposed controller design procedure can be applied to such case.

Remark 2: In Theorem 1, the design problem of the proposed adaptive gain robust controller can be
reduced to the feasibility of the LMI of Eq. (11). Namely, in order to design the proposed robust control
system, designers have to solve the LMI of Eq. (11). If the LMI of Eq. (11) is feasible for ∃δ⋆ > 0, then one
can easily see that the LMI of Eq. (11) is always satisfied for the positive scalar ∀δ� < δ⋆. Moreover, if a
positive scalar γ exists satisfying the LMI of Eq. (11) for ∃δþ > δ⋆, then the proposed adaptive gain robust
controller can also be designed, and note that the adaptive gain robust controller for δ⋆ > 0 coincides
exactly with the one for δþ > δ⋆ > 0. Furthermore, one can see from Theorem 2 that the resultant
adaptive gain robust controller derived by solving the constrained convex optimization problem of
Eq. (27) is same, because the solution of LMI of Eq. (8) or one of the constrained convex optimization
problem of Eq. (27) cannot be reflected the resultant controller. Note that in the general controller design
strategies for the conventional fixed gain robust control, the solution of the some constraints can be applied
to the resultant robust controller. This is a fascinating fact for the proposed controller design strategy.
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Remark 3: The proposed adaptive gain robust controller with the adjustable time-varying para-
meter has some advantages as follows: the proposed controller design approach is very simple, and by
selecting the design parameter, the proposed adaptive gain robust control system can achieve good
transient performance which is close to the nominal one or avoid the excessive control input (see [32]).
Besides, the structure of the proposed control system is also simple compared with the existing results
for robust controllers with adjustable parameters (e.g., [29, 30]). However, the online adjustment
strategy for the design parameter ϑ has not been established, and this problem is one of our future
research subjects.

Remark 4: In this section, firstly the nominal control input is designed by adopting pole placement
constraints, and the fixed gain K∈Rm�n can be derived by using the solution of the LMI of Eq. (8).
Note that the quadratic function V x; tð Þ is a Lyapunov function for both the uncertain linear system of
Eq. (1) and the nominal system of Eq. (2), that is, the Lyapunov function for the uncertain linear
system of Eq. (1) and one for the nominal system of Eq. (2) have same level set. Therefore, by selecting
the design parameter ϑ > 0, the proposed adaptive gain robust control system can achieve good
transient performance which is close to the nominal one or avoid the excessive control input.

On the other hand, if the design problem for a state feedback control u tð Þ ¼ Ksx tð Þ is considered, the
quadratic function V x; tð Þ is replaced as Vs x; tð Þ ¼ xT tð ÞPsx tð Þ where Ps ∈Rn�n is a Lyapunov matrix.
Moreover, Ps ∈Rn�n becomes a variable for resultant LMI conditions, and the standard techniques for
the quadratic stabilization can also be used.

2.3. Illustrative examples

In order to demonstrate the efficiency of the proposed control strategy, we have run a simple
example.

Consider the following linear system with unknown parameter Δ tð Þ∈R2�2:

d
dt
x tð Þ ¼ 1:0 4:0

0:0 �1:0

� �
x tð Þ þ Δ tð Þx tð Þ þ 0:0

1:0

� �
u tð Þ: (29)

Firstly, we design the nominal control input u tð Þ ¼ Kx tð Þ. By selecting the design parameters α
and Q in Eq. (5) such as α ¼ 3:0 and Q ¼ 1:0� I2 and solving the LMI of Eq. (8), we obtain the
following solution:

Y ¼
1:0855 �1:5356

⋆ 4:5318

 !
,

W ¼ 2:1708� 101:

(30)

Thus, the following fixed gain matrix can be computed:

K ¼ �1:3017� 101 �9:2008
� �

: (31)
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and the constraint of Eq. (24) can be transformed into
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centralized adaptive gain robust controller has been proposed. Although the uncertain linear system of
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be applied to the case that the uncertainties are included in both the system matrix and the input one.
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[45]. As a result, the proposed controller design procedure can be applied to such case.
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positive scalar γ exists satisfying the LMI of Eq. (11) for ∃δþ > δ⋆, then the proposed adaptive gain robust
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adaptive gain robust controller derived by solving the constrained convex optimization problem of
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Remark 3: The proposed adaptive gain robust controller with the adjustable time-varying para-
meter has some advantages as follows: the proposed controller design approach is very simple, and by
selecting the design parameter, the proposed adaptive gain robust control system can achieve good
transient performance which is close to the nominal one or avoid the excessive control input (see [32]).
Besides, the structure of the proposed control system is also simple compared with the existing results
for robust controllers with adjustable parameters (e.g., [29, 30]). However, the online adjustment
strategy for the design parameter ϑ has not been established, and this problem is one of our future
research subjects.

Remark 4: In this section, firstly the nominal control input is designed by adopting pole placement
constraints, and the fixed gain K∈Rm�n can be derived by using the solution of the LMI of Eq. (8).
Note that the quadratic function V x; tð Þ is a Lyapunov function for both the uncertain linear system of
Eq. (1) and the nominal system of Eq. (2), that is, the Lyapunov function for the uncertain linear
system of Eq. (1) and one for the nominal system of Eq. (2) have same level set. Therefore, by selecting
the design parameter ϑ > 0, the proposed adaptive gain robust control system can achieve good
transient performance which is close to the nominal one or avoid the excessive control input.

On the other hand, if the design problem for a state feedback control u tð Þ ¼ Ksx tð Þ is considered, the
quadratic function V x; tð Þ is replaced as Vs x; tð Þ ¼ xT tð ÞPsx tð Þ where Ps ∈Rn�n is a Lyapunov matrix.
Moreover, Ps ∈Rn�n becomes a variable for resultant LMI conditions, and the standard techniques for
the quadratic stabilization can also be used.
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In order to demonstrate the efficiency of the proposed control strategy, we have run a simple
example.

Consider the following linear system with unknown parameter Δ tð Þ∈R2�2:

d
dt
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x tð Þ þ Δ tð Þx tð Þ þ 0:0

1:0

� �
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Firstly, we design the nominal control input u tð Þ ¼ Kx tð Þ. By selecting the design parameters α
and Q in Eq. (5) such as α ¼ 3:0 and Q ¼ 1:0� I2 and solving the LMI of Eq. (8), we obtain the
following solution:

Y ¼
1:0855 �1:5356

⋆ 4:5318

 !
,

W ¼ 2:1708� 101:

(30)

Thus, the following fixed gain matrix can be computed:

K ¼ �1:3017� 101 �9:2008
� �

: (31)
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Next, we solve the constrained optimization problem of Eq. (27), then the solutions

γ ¼ 3:1612,
ε ¼ 3:1633� 10�1,

(32)

can be derived, and therefore the allowable upper bound of unknown parameter is given as

δ⋆ ¼ 3:1612: (33)

In this example, we consider the following two cases for the unknown parameter Δ tð Þ∈R2�2:

• Case 1) Δ tð Þ ¼ δ⋆ �
0:0 0:0

�7:2289 6:8530

 !
� 10�1 .

• Case 2) Δ tð Þ ¼ δ⋆ � sin 5:0� π� tð Þ � cos 5:0� π� tð Þ
⋆ � sin 5:0� π� tð Þ

� �
.

Note that the unknown parameter of Case 1 satisfies the matching condition [45]. In addition,
for the design parameter ϑ, the numerical simulation for two cases such as ϑ ¼ 1:0� 102 and
ϑ ¼ 5:0� 10�1 is run. Moreover, the initial values of the uncertain system of Eq. (29) and the

nominal system are selected as x 0ð Þ ¼ x 0ð Þ ¼ ð1:0�2:0ÞT . The results of the simulation of this
example are shown in Figures 1–4 and Table 1. In these figures, “Case 1)” and “Case 2)”
represent the time histories of the state variables x1 tð Þ and x2 tð Þ and the control input u tð Þ and
Lyapunov function V x:tð Þ for the proposed adaptive gain robust control, and “nominal”means
the desired time response and the desired control input and Lyapunov function V x; tð Þ for the
nominal system. In Table 1, J e means
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J e ¼Δ
ð∞
0
eT tð Þe tð Þdt, (34)

where e tð Þ is an error vector between the time response and the desired one generated by the

nominal system, that is, e tð Þ¼Δx tð Þ � x tð Þ. Namely, J e of Eq. (34) is a performance index so as to
evaluate the transient performance.

From Figures 1–4 the proposed adaptive gain robust state feedback controller stabilizes the
uncertain linear system of Eq. (29) in spite of uncertainties. Furthermore, we also find that
the proposed adaptive gain robust controller achieves the good transient performance close
to the nominal system.
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where e tð Þ is an error vector between the time response and the desired one generated by the

nominal system, that is, e tð Þ¼Δx tð Þ � x tð Þ. Namely, J e of Eq. (34) is a performance index so as to
evaluate the transient performance.

From Figures 1–4 the proposed adaptive gain robust state feedback controller stabilizes the
uncertain linear system of Eq. (29) in spite of uncertainties. Furthermore, we also find that
the proposed adaptive gain robust controller achieves the good transient performance close
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For Case 1 in this example, one can see from Table 1 that the adaptive gain robust controller
for ϑ ¼ 5:0� 10�1 is more desirable comparing with one for ϑ ¼ 1:0� 102, that is, the error
between the time response and the desired one generated by the nominal system (“nominal” in
figures) is small. But for the result of Case 2), we find that the robust controller with the
parameter ϑ ¼ 1:0� 102 achieves more desirable performance. Additionally, one can see from
Figures 2(a) and 4(a) that by selecting the design parameter ϑ the proposed adaptive gain
robust controller can adjust the magnitude of the control input. In this example, the magnitude
of the control input for ϑ ¼ 1:0� 102 is suppressed comparing with one for ϑ ¼ 5:0� 10�1.
However, the online adjustment way of the design parameter ϑ for the purpose of improving
transient behavior and avoiding excessive control input cannot to developed, and thus it is an
important problem of our research subjects.

Therefore, the effectiveness of the proposed adaptive gain robust controller is shown.

2.4. Summary

In this section, an LMI-based design scheme of the centralized adaptive gain robust state
feedback controller for a class of uncertain linear systems has been proposed, and by simple
numerical simulations, the effectiveness of the proposed robust control strategy has been

ϑ ¼ 1:0� 102 ϑ ¼ 5:0� 10�1

Case 1) 4:2584� 10�2 1.0160� 10�2

Case 2) 9:7403� 10�2 1.0038� 10�1

Table 1. The performance index Ie.
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presented. Since the proposed adaptive gain robust controller can easily be obtained by
solving the constrained convex optimization problem, the proposed design approach is
simple. Moreover, by selecting the design parameter, the proposed adaptive gain robust
controller can achieve good transient performance and/or avoid excessive control input.
Note that there are trade-offs between achieving good transient performance and avoiding
excessive control input.

The future research subject is the extension of proposed robust control scheme to such a broad
class of systems as linear systems with state delays, uncertain systems with some constraints,
and so on. Additionally, we will discuss the online adjustment for the design parameter ϑ and
the design problem for output feedback control systems.

3. Synthesis of decentralized adaptive gain robust controllers

In this section, on the basis of the result derived in Section 2, an LMI-based design method of
decentralized adaptive gain robust state feedback controllers for a class of uncertain large-scale
interconnected systems is suggested. The design problem of the decentralized adaptive gain
robust controller under consideration can also be reduced to the feasibility of LMIs, and the
allowable perturbation region of uncertainties is also discussed.

3.1. Problem statement

Consider the uncertain large-scale interconnected system composed ofN subsystems described as

d
dt
xi tð Þ ¼ Aii tð Þxi tð Þ þ

XN
j ¼ 1
j 6¼ i

Aij tð Þxj tð Þ þ Biui tð Þ, (35)

where xi tð Þ∈Rni and ui tð Þ∈Rmi (i ¼ 1,⋯,N ) are the vectors of the state and the control input

for the ith subsystem, respectively, and x tð Þ ¼ xT1 tð Þ;⋯; xTN tð Þ� �T is the state of the overall
system. The matrices Aii tð Þ∈Rni�ni and Aij tð Þ∈Rni�nj in Eq. (35) are given by

Aii tð Þ ¼ Aii þ Δii tð Þ,

Aij tð Þ ¼ Aij þ Δij tð Þ:
(36)

In Eqs. (35) and (36), the matrices Aii ∈Rni�ni , Aij ∈Rni�nj , and Bi ∈Rni�mi denote the nominal
values of the system, and matrices Δii tð Þ∈Rni�ni and Δij tð Þ∈Rni�nj show unknown parameters

which satisfy ΔT
ii tð ÞΔii tð Þ ≤ r⋆ii Ini and ΔT

ij tð ÞΔij tð Þ ≤ r⋆ij Inj , respectively. Note that the elements of

these unknown parameters are Lebesgue measurable [1, 34]. For Eq. (35), the nominal
subsystem, ignoring the unknown parameters, is given by
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For Case 1 in this example, one can see from Table 1 that the adaptive gain robust controller
for ϑ ¼ 5:0� 10�1 is more desirable comparing with one for ϑ ¼ 1:0� 102, that is, the error
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numerical simulations, the effectiveness of the proposed robust control strategy has been
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presented. Since the proposed adaptive gain robust controller can easily be obtained by
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controller can achieve good transient performance and/or avoid excessive control input.
Note that there are trade-offs between achieving good transient performance and avoiding
excessive control input.
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class of systems as linear systems with state delays, uncertain systems with some constraints,
and so on. Additionally, we will discuss the online adjustment for the design parameter ϑ and
the design problem for output feedback control systems.

3. Synthesis of decentralized adaptive gain robust controllers

In this section, on the basis of the result derived in Section 2, an LMI-based design method of
decentralized adaptive gain robust state feedback controllers for a class of uncertain large-scale
interconnected systems is suggested. The design problem of the decentralized adaptive gain
robust controller under consideration can also be reduced to the feasibility of LMIs, and the
allowable perturbation region of uncertainties is also discussed.

3.1. Problem statement

Consider the uncertain large-scale interconnected system composed ofN subsystems described as

d
dt
xi tð Þ ¼ Aii tð Þxi tð Þ þ

XN
j ¼ 1
j 6¼ i

Aij tð Þxj tð Þ þ Biui tð Þ, (35)

where xi tð Þ∈Rni and ui tð Þ∈Rmi (i ¼ 1,⋯,N ) are the vectors of the state and the control input

for the ith subsystem, respectively, and x tð Þ ¼ xT1 tð Þ;⋯; xTN tð Þ� �T is the state of the overall
system. The matrices Aii tð Þ∈Rni�ni and Aij tð Þ∈Rni�nj in Eq. (35) are given by

Aii tð Þ ¼ Aii þ Δii tð Þ,

Aij tð Þ ¼ Aij þ Δij tð Þ:
(36)

In Eqs. (35) and (36), the matrices Aii ∈Rni�ni , Aij ∈Rni�nj , and Bi ∈Rni�mi denote the nominal
values of the system, and matrices Δii tð Þ∈Rni�ni and Δij tð Þ∈Rni�nj show unknown parameters

which satisfy ΔT
ii tð ÞΔii tð Þ ≤ r⋆ii Ini and ΔT

ij tð ÞΔij tð Þ ≤ r⋆ij Inj , respectively. Note that the elements of

these unknown parameters are Lebesgue measurable [1, 34]. For Eq. (35), the nominal
subsystem, ignoring the unknown parameters, is given by
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d
dt
xi tð Þ ¼ Aiixi tð Þ þ

XN
j ¼ 1
j 6¼ i

Aijxj tð Þ þ Biui tð Þ, (37)

where xi tð Þ∈Rni and ui tð Þ∈Rmi are the vectors of the state and the control input for the ith
nominal subsystem, respectively. Furthermore, the control input for the nominal subsystem of
Eq. (37) is determined as

ui tð Þ ¼ �Kixi tð Þ, (38)

where Ki ∈Rmi�ni is a fixed gain matrix. From Eqs. (37) and (38), the following nominal closed-
loop subsystem is obtained:

d
dt
xi tð Þ ¼ AKixi tð Þ þ

XN
j ¼ 1
j 6¼ i

Aijxj tð Þ, (39)

where AKi¼ΔAii � BiKi.

Now, by using symmetric positive definite matrices P i ∈Rni�ni , we consider the quadratic
function

V x; tð Þ¼Δ
XN

i¼1

V i xi; tð Þ, (40)

V i xi; tð Þ¼Δ xTi tð ÞP ixi tð Þ, (41)

as a Lyapunov function candidate. For the quadratic function V i xi; tð Þ of Eq. (41), its time
derivative along the trajectory of the nominal closed-loop subsystem of Eq. (39) is given by

d
dt
V i xi; tð Þ ¼ xTi tð Þ AT

Ki
P i þ P iAKi

� �
xi tð Þ þ

XN
j ¼ 1
j 6¼ i

2xTi tð ÞP iAijxj tð Þ: (42)

For the second term on the right side of Eq. (42), by using the well-known relation of Eq. (20),
we can obtain the following relation:

d
dt
V i xi; tð Þ ≤ xTi tð Þ AT

Ki
P i þ P iAKi

� �
xi tð Þ þ

XN
j ¼ 1
j 6¼ i

μijx
T
i tð ÞP iAijAT

ijPxi tð Þ þ
XN
j ¼ 1
j 6¼ i

1
μij

xTj tð Þxj tð Þ: (43)

From Eqs. (40) and (43), we have
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d
dt
V x; tð Þ ≤

XN

i¼1

xTi tð Þ AT
Ki
P i þ P iAKi

� �
xi tð Þ þ

XN

i¼1

XN
j ¼ 1

j 6¼ i

μix
T
i tð ÞP iAijAT

ijP ixi tð Þ

þ
XN

i¼1

XN
j ¼ 1

j 6¼ i

1
μij

xTj tð Þxj tð Þ:
(44)

The inequality of Eq. (44) can also be rewritten as

d
dt
V x; tð Þ ≤

XN

i¼1

xTi tð Þ AT
Ki
P i þ P iAKi þ

XN
j ¼ 1
j 6¼ i

μiP iAijAT
ijP i þ

XN
j ¼ 1
j 6¼ i

1
μji

In

0
BB@

1
CCAxi tð Þ: (45)

Therefore, if the matrix inequality

AT
Ki
P i þ P iAKi þ

XN
j ¼ 1
j 6¼ i

μiP iAijAT
ijP i þ

XN
j ¼ 1
j 6¼ i

1
μji

In < 0 (46)

holds, then the following relation for the time derivative of V x; tð Þ is satisfied:
d
dt
V x; tð Þ < 0, ∀x tð Þ 6¼ 0: (47)

Now, as with Section 2, we derive a decentralized controller with pole placement constraints
for the nominal subsystem of Eq. (37). Namely, from Eq. (46), the matrix inequality

AKi þ αiIn
� �T

P i þ P i AKi þ αiIn
� �þ

XN
j ¼ 1
j 6¼ i

μiP iAijAT
ijP i þ

XN
j ¼ 1
j 6¼ i

1
μji

In þQi < 0, (48)

is considered. In Eq. (48), αi ∈R is a positive scalar and is selected by designers.

We introduce symmetric positive definite matrices Y i¼ΔP�1
i and W i ∈Rmi�mi and define the

fixed gain Ki as Ki¼ΔW iBT
i P i. Then for the matrix inequality of Eq. (48), by pre- and post-

multiplying both sides of the matrix inequality of Eq. (48) by Y i, it can be obtained that

AiiY i � BiW iBT
i þ Y iA

T
ii � BiW

T
i B

T
i þ 2αiY i þ

XN
j ¼ 1
j 6¼ i

μijAijAT
ij þ

XN
j ¼ 1
j 6¼ i

1
μji

Y iY i þ Y iQiY i < 0: (49)

Thus, by applying Lemma 1.2 (Schur complement) to Eq. (49), we find that the matrix inequal-
ity of Eq. (49) is equivalent to the following LMI:
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for the nominal subsystem of Eq. (37). Namely, from Eq. (46), the matrix inequality

AKi þ αiIn
� �T

P i þ P i AKi þ αiIn
� �þ

XN
j ¼ 1
j 6¼ i

μiP iAijAT
ijP i þ

XN
j ¼ 1
j 6¼ i

1
μji

In þQi < 0, (48)

is considered. In Eq. (48), αi ∈R is a positive scalar and is selected by designers.

We introduce symmetric positive definite matrices Y i¼ΔP�1
i and W i ∈Rmi�mi and define the

fixed gain Ki as Ki¼ΔW iBT
i P i. Then for the matrix inequality of Eq. (48), by pre- and post-

multiplying both sides of the matrix inequality of Eq. (48) by Y i, it can be obtained that

AiiY i � BiW iBT
i þ Y iA

T
ii � BiW

T
i B

T
i þ 2αiY i þ

XN
j ¼ 1
j 6¼ i

μijAijAT
ij þ

XN
j ¼ 1
j 6¼ i

1
μji

Y iY i þ Y iQiY i < 0: (49)

Thus, by applying Lemma 1.2 (Schur complement) to Eq. (49), we find that the matrix inequal-
ity of Eq. (49) is equivalent to the following LMI:
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Λi Y i;W i;μij

� �
Θi Y ið Þ

⋆ �Γi μij

� �

0
B@

1
CA < 0: (50)

In Eq. (50), matrices Λi Y i;W i;μij

� �
∈Rni�ni , Θi Y ið Þ∈Rni�N ni , and Γi μij

� �
∈RN ni�N ni are given

by

Λi Y i;W i;μij

� �
¼Δ AiiY i � BiW iBT

i þ Y iA
T
ii � BiW

T
i B

T
i þ 2αiY i þ

XN
j ¼ 1

j 6¼ i

μijAijAT
ij ,

Θi Y ið Þ¼Δ Y i Y i … Y i

zfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflffl{N
0
@

1
A,

Γi μij

� �
¼Δ diag Q�1

i ;μ1iIn;μ2iIn;⋯;μi�1iIn;μiþ1iIn;⋯;μN iIn
� �

: (51)

Therefore, if matrices Y i ∈Rni�ni and W i ∈Rmi�mi and positive scalars μij exist, the nominal

closed-loop subsystem is asymptotically stable, and the fixed gain matrix Ki is determined as
Ki ¼ W iBT

i Y
�1
i .

Now, by using the fixed gain matrix Ki ∈Rmi�ni which is designed for the nominal subsystem,
we define the control input

ui tð Þ¼Δ � 1þ θi tð Þð ÞKixi tð Þ, (52)

where θi tð Þ∈R1 is an adjustable time-varying parameter. From Eqs. (35) and (52), the uncer-
tain closed-loop subsystem can be obtained as

d
dt
xi tð Þ ¼ AKixi tð Þ þ Δii tð Þxi tð Þ þ

XN

i¼1

Aij þ Δij tð Þ
� �

xj tð Þ � θi tð ÞBiKixi tð Þ: (53)

From the above discussion, the designed objective in this section is to determine the decentralized
robust control of Eq. (52) such that the resultant overall system achieves robust stability. That is to
design the adjustable time-varying parameter θi tð Þ∈R1 such that asymptotical stability of the
overall system composed ofN subsystems of Eq. (53) is guaranteed.

3.2. Decentralized variable gain controllers

The following theorem shows sufficient conditions for the existence of the proposed decent-
ralized adaptive gain robust control system.

Theorem 3: Consider the uncertain large-scale interconnected system of Eq. (35) and the control input
of Eq. (52).

For a given positive constant ϑi, if positive constants ξii, σij, and εij exist which satisfy the LMIs
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Πi ξii; εij; σij
� �

Ξi

⋆ �Ωi ξii; εij; σij
� �

 !
< 0, (54)

the time-varying adjustable parameters θi tð Þ∈R are determined as

θi tð Þ¼Δ

ffiffiffiffiffiffi
r⋆ii

p
∥P ixi tð Þ∥∥xi tð Þ∥

xTi tð ÞP iBiW iBT
i P ixi tð Þ

if xTi tð ÞP iBiW iBT
i P ixi tð Þ ≥ϑixTi tð Þxi tð Þ,

ffiffiffiffiffiffi
r⋆ii

p
∥P ixi tð Þ∥∥xi tð Þ∥
ϑixTi tð Þxi tð Þ

if xTi tð ÞP iBiW iBT
i P ixi tð Þ < ϑixTi tð Þxi tð Þ,

8>>>><
>>>>:

(55)

where matrices Πi ξi; εij; σij
� �

∈Rni�ni , Ξi ∈Rni� 2N�1ð Þni , and Ωi ξii; εij; σij
� �

∈R 2N�1ð Þni� 2N�1ð Þni are
given by

Πi ξii; εij; σij
� �¼Δ AT

Ki
P i þ P iAKi

� �
þ ξiiP iP i þ

XN
j ¼ 1

j 6¼ i

εijP iAijAT
ijP i þ

XN
j ¼ 1

j 6¼ i

σijP iP i,

Ξi¼Δ In In ⋯ In
zfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflffl{2N�10

@
1
A,

Ωi ξii; εij; σij
� �¼Δ diag ξiir

⋆
ii In; ε1iIn; ε2iIn;⋯; εi�1iIn; εiþ1iIn;⋯; εN iIn; σ1ir

⋆
1iIn; σ2ir

⋆
2iIn;

�

⋯; σi�1ir
⋆
i�1iIn; σiþ1ir

⋆
iþ1iIn;⋯; σN ir

⋆
N iIn

�
: (56)

Then, the overall close-loop system composed of N closed-loop subsystems is asymptotically stable.

Proof. In order to prove Theorem 3, the following Lyapunov function candidate is introduced
by using symmetric positive definite matrices P i ∈Rni�ni which satisfy the LMIs of (50):

V x; tð Þ¼Δ
XN

i¼1

V i xi; tð Þ, (57)

where V i xi; tð Þ is a quadratic function given by

V i xi; tð Þ¼Δ xTi tð ÞP ixi tð Þ: (58)

We can obtain the following relation for the time derivative of the quadratic function V i xi; tð Þ of
Eq. (58):

d
dt
V i xi; tð Þ ¼ xTi tð Þ AT

Ki
P i þ P iAKi

� �
xi tð Þ þ 2xi tð ÞP iΔii tð Þxi tð Þ

þ 2xTi tð ÞP i

XN
j ¼ 1

j 6¼ i

Aij þ Δij tð Þ
� �

xj tð Þ � 2θi tð ÞxTi tð ÞP iBiKixi tð Þ: (59)
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⋆ �Γi μij
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B@
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∈RN ni�N ni are given

by

Λi Y i;W i;μij

� �
¼Δ AiiY i � BiW iBT

i þ Y iA
T
ii � BiW

T
i B

T
i þ 2αiY i þ

XN
j ¼ 1

j 6¼ i

μijAijAT
ij ,

Θi Y ið Þ¼Δ Y i Y i … Y i

zfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflffl{N
0
@

1
A,

Γi μij

� �
¼Δ diag Q�1

i ;μ1iIn;μ2iIn;⋯;μi�1iIn;μiþ1iIn;⋯;μN iIn
� �

: (51)

Therefore, if matrices Y i ∈Rni�ni and W i ∈Rmi�mi and positive scalars μij exist, the nominal

closed-loop subsystem is asymptotically stable, and the fixed gain matrix Ki is determined as
Ki ¼ W iBT

i Y
�1
i .

Now, by using the fixed gain matrix Ki ∈Rmi�ni which is designed for the nominal subsystem,
we define the control input

ui tð Þ¼Δ � 1þ θi tð Þð ÞKixi tð Þ, (52)

where θi tð Þ∈R1 is an adjustable time-varying parameter. From Eqs. (35) and (52), the uncer-
tain closed-loop subsystem can be obtained as

d
dt
xi tð Þ ¼ AKixi tð Þ þ Δii tð Þxi tð Þ þ

XN

i¼1

Aij þ Δij tð Þ
� �

xj tð Þ � θi tð ÞBiKixi tð Þ: (53)

From the above discussion, the designed objective in this section is to determine the decentralized
robust control of Eq. (52) such that the resultant overall system achieves robust stability. That is to
design the adjustable time-varying parameter θi tð Þ∈R1 such that asymptotical stability of the
overall system composed ofN subsystems of Eq. (53) is guaranteed.

3.2. Decentralized variable gain controllers

The following theorem shows sufficient conditions for the existence of the proposed decent-
ralized adaptive gain robust control system.

Theorem 3: Consider the uncertain large-scale interconnected system of Eq. (35) and the control input
of Eq. (52).

For a given positive constant ϑi, if positive constants ξii, σij, and εij exist which satisfy the LMIs
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Πi ξii; εij; σij
� �

Ξi

⋆ �Ωi ξii; εij; σij
� �

 !
< 0, (54)

the time-varying adjustable parameters θi tð Þ∈R are determined as

θi tð Þ¼Δ

ffiffiffiffiffiffi
r⋆ii

p
∥P ixi tð Þ∥∥xi tð Þ∥

xTi tð ÞP iBiW iBT
i P ixi tð Þ

if xTi tð ÞP iBiW iBT
i P ixi tð Þ ≥ϑixTi tð Þxi tð Þ,

ffiffiffiffiffiffi
r⋆ii

p
∥P ixi tð Þ∥∥xi tð Þ∥
ϑixTi tð Þxi tð Þ

if xTi tð ÞP iBiW iBT
i P ixi tð Þ < ϑixTi tð Þxi tð Þ,

8>>>><
>>>>:

(55)

where matrices Πi ξi; εij; σij
� �

∈Rni�ni , Ξi ∈Rni� 2N�1ð Þni , and Ωi ξii; εij; σij
� �

∈R 2N�1ð Þni� 2N�1ð Þni are
given by

Πi ξii; εij; σij
� �¼Δ AT

Ki
P i þ P iAKi

� �
þ ξiiP iP i þ

XN
j ¼ 1

j 6¼ i

εijP iAijAT
ijP i þ

XN
j ¼ 1

j 6¼ i

σijP iP i,

Ξi¼Δ In In ⋯ In
zfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflffl{2N�10

@
1
A,

Ωi ξii; εij; σij
� �¼Δ diag ξiir

⋆
ii In; ε1iIn; ε2iIn;⋯; εi�1iIn; εiþ1iIn;⋯; εN iIn; σ1ir

⋆
1iIn; σ2ir

⋆
2iIn;

�

⋯; σi�1ir
⋆
i�1iIn; σiþ1ir

⋆
iþ1iIn;⋯; σN ir

⋆
N iIn

�
: (56)

Then, the overall close-loop system composed of N closed-loop subsystems is asymptotically stable.

Proof. In order to prove Theorem 3, the following Lyapunov function candidate is introduced
by using symmetric positive definite matrices P i ∈Rni�ni which satisfy the LMIs of (50):

V x; tð Þ¼Δ
XN

i¼1

V i xi; tð Þ, (57)

where V i xi; tð Þ is a quadratic function given by

V i xi; tð Þ¼Δ xTi tð ÞP ixi tð Þ: (58)

We can obtain the following relation for the time derivative of the quadratic function V i xi; tð Þ of
Eq. (58):

d
dt
V i xi; tð Þ ¼ xTi tð Þ AT

Ki
P i þ P iAKi

� �
xi tð Þ þ 2xi tð ÞP iΔii tð Þxi tð Þ

þ 2xTi tð ÞP i

XN
j ¼ 1

j 6¼ i

Aij þ Δij tð Þ
� �

xj tð Þ � 2θi tð ÞxTi tð ÞP iBiKixi tð Þ: (59)
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Firstly, we consider the case of xTi tð ÞP iBiWiBT
i P ixi tð Þ ≥ϑixTi tð Þxi tð Þ. In this case, one can see from

the relations ΔT
ii tð ÞΔii tð Þ ≤ r⋆ii Ini and ΔT

ij tð ÞΔij tð Þ ≤ r⋆ij Inj , the well-known inequality of Eq. (20), and

Lemma 1.1 that the following relation for the quadratic function V i xi; tð Þ of Eq. (58) can be
obtained:

d
dt
V i xi; tð Þ ≤ xTi tð Þ AT

Ki
P i þ P iAKi

� �
xi tð Þ þ 2

ffiffiffiffiffiffi
r⋆ii

q
P ixi tð Þk k xi tð Þk k

þ
XN
j ¼ 1

j 6¼ i

εijxTi tð ÞP iAijAT
ijP ixi tð Þ þ

XN
j ¼ 1

j 6¼ i

1
εij

xTj tð Þxj tð Þ þ
XN
j ¼ 1

j 6¼ i

σijxTi tð ÞP iP ixi tð Þ

þ
XN
j ¼ 1

j 6¼ i

r⋆ij

σij
xTj tð Þxj tð Þ � 2θi tð ÞxTi tð ÞP iBiKixi tð Þ:

(60)

Substituting the adjustable time-varying parameter θi tð Þ of Eq. (55) into Eq. (60) gives

d
dt
V i xi; tð Þ ≤ xTi tð Þ AT

Ki
P i þ P iAKi

� �
xi tð Þ þ 2

ffiffiffiffiffiffi
r⋆ii

q
P ixi tð Þk k xi tð Þk k

þ
XN
j ¼ 1

j 6¼ i

εijxTi tð ÞP iAijAT
ijP ixi tð Þ þ

XN
j ¼ 1

j 6¼ i

1
εij

xTj tð Þxj tð Þ þ
XN
j ¼ 1

j 6¼ i

σijxTi tð ÞP iP ixi tð Þ

þ
XN
j ¼ 1

j 6¼ i

r⋆ij

σij
xTj tð Þxj tð Þ � 2

ffiffiffiffiffiffi
r⋆ii

p
∥P ixi tð Þ∥∥xi tð Þ∥

xTi tð ÞP iBiW iBT
i P ixi tð Þ

 !
xTi tð ÞP iBiKixi tð Þ

¼ xTi tð Þ AT
Ki
P i þ P iAKi

� �
xi tð Þ þ

XN
j ¼ 1

j 6¼ i

εijxTi tð ÞP iAijAT
ijP ixi tð Þ þ

XN
j ¼ 1

j 6¼ i

1
εij

xTj tð Þxj tð Þ

þ
XN
j ¼ 1

j 6¼ i

σijxTi tð ÞP iP ixi tð Þ þ
XN
j ¼ 1

j 6¼ i

r⋆ij

σij
xTj tð Þxj tð Þ,

(61)

and, thus, we have the following inequality for the function V x; tð Þ of Eq. (57):

d
dt
V x; tð Þ ≤

XN

i¼1

xTi tð Þ AT
Ki
P i þ P iAKi

� �
xi tð Þ þ

XN

i¼1

XN
j ¼ 1

j 6¼ i

εijxi tð ÞP iAijAT
ijP ixi tð Þ

þ
XN

i¼1

XN
j ¼ 1
j 6¼ i

1
εij

xTj tð Þxj tð Þ þ
XN

i¼1

XN
j ¼ 1
j 6¼ i

σijxTi tð ÞP iP ixi tð Þ þ
XN

i¼1

XN
j ¼ 1
j 6¼ i

r⋆ij

σij
xTj tð Þxj tð Þ: (62)

Furthermore, the inequality of Eq. (62) can be rewritten as
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d
dt
V x; tð Þ ≤

XN

i¼1

xTi tð Þ AT
Ki
P i þ P iAKi þ

XN
j ¼ 1

j 6¼ i

εijP iAijAT
ijP i þ

XN
j ¼ 1

j 6¼ i

1
εji

In þ
XN
j ¼ 1

j 6¼ i

σijP iP i þ
XN
j ¼ 1

j 6¼ i

r⋆ji

σji
In

1
CCCAxi tð Þ:

0
BBB@ (63)

Therefore, if the matrix inequality

AT
Ki
P i þ P iAKi þ

XN
j ¼ 1
j 6¼ i

εijP iAijAT
ijP i þ

XN
j ¼ 1
j 6¼ i

1
εji

In þ
XN
j ¼ 1
j 6¼ i

σijP iP i þ
XN
j ¼ 1
j 6¼ i

r⋆ij

σji
In < 0 (64)

holds, then the following relation for the time derivative of V x; tð Þ is satisfied:
d
dt
V x; tð Þ < 0, ∀x tð Þ 6¼ 0: (65)

Next, we consider the case of xTi tð ÞP iBiW iBT
i P ixi tð Þ < ϑixTi tð Þxi tð Þ. In this case, by using the

relations ΔT
ii tð ÞΔii tð Þ ≤ r⋆ii Ini and ΔT

ij tð ÞΔij tð Þ ≤ r⋆ij Inj , and Eq. (20) and substituting the adjustable

time-varying parameter θi tð Þ of Eq. (55) into Eq. (59), we have

d
dt
V i xi; tð Þ ≤ xTi tð Þ AT

Ki
P i þ P iAKi

� �
xi tð Þ þ ξiixTi tð ÞP iP ixi tð Þ þ

r⋆ii
ξii

xTi tð Þxi tð Þ

þ
XN
j ¼ 1

j 6¼ i

εijxi tð ÞP iAijAT
ijP ixi tð Þ þ

XN
j ¼ 1

j 6¼ i

1
εij

xTj tð Þxj tð Þ þ
XN
j ¼ 1

j 6¼ i

σijxTi tð ÞP iP ixi tð Þ

þ
XN
j ¼ 1

j 6¼ i

r⋆ij

σij
xTj tð Þxj tð Þ � 2

ffiffiffiffiffiffi
r⋆ii

p
∥P ixi tð Þ∥∥xi tð Þ∥
ϑixTi tð Þxi tð Þ

 !
xTi tð ÞP iBiKixi tð Þ:

(66)

The last term on the right side of Eq. (66) is less than 0 because the matrix Ki ∈Rmi�ni is defined
as Ki ¼ W iBT

i P i and θi tð Þ is a positive scalar function. Therefore, we find that the following
relation for the quadratic function V i xi; tð Þ is satisfied:

d
dt
V i xi; tð Þ ≤ xTi tð Þ AT

Ki
P i þ P iAKi

� �
xi tð Þ þ ξiixTi tð ÞP iP ixi tð Þ þ

r⋆ii
ξii

xTi tð Þxi tð Þ

þ
XN
j ¼ 1

j 6¼ i

εijxi tð ÞP iAijAT
ijP ixi tð Þ þ

XN
j ¼ 1

j 6¼ i

1
εij

xTj tð Þxj tð Þ þ
XN
j ¼ 1

j 6¼ i

σijxTi tð ÞP iP ixi tð Þ

þ
XN
j ¼ 1

j 6¼ i

r⋆ij

σij
xTj tð Þxj tð Þ:

(67)

Therefore, we see from Eqs. (57) and (67) that the following inequality:
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Firstly, we consider the case of xTi tð ÞP iBiWiBT
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the relations ΔT
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ij tð ÞΔij tð Þ ≤ r⋆ij Inj , the well-known inequality of Eq. (20), and
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Ki
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� �
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r⋆ii

q
P ixi tð Þk k xi tð Þk k

þ
XN
j ¼ 1

j 6¼ i

εijxTi tð ÞP iAijAT
ijP ixi tð Þ þ

XN
j ¼ 1

j 6¼ i

1
εij

xTj tð Þxj tð Þ þ
XN
j ¼ 1

j 6¼ i

σijxTi tð ÞP iP ixi tð Þ

þ
XN
j ¼ 1

j 6¼ i

r⋆ij

σij
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Substituting the adjustable time-varying parameter θi tð Þ of Eq. (55) into Eq. (60) gives

d
dt
V i xi; tð Þ ≤ xTi tð Þ AT
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P i þ P iAKi

� �
xi tð Þ þ 2

ffiffiffiffiffiffi
r⋆ii

q
P ixi tð Þk k xi tð Þk k

þ
XN
j ¼ 1

j 6¼ i

εijxTi tð ÞP iAijAT
ijP ixi tð Þ þ

XN
j ¼ 1

j 6¼ i

1
εij
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j ¼ 1

j 6¼ i

σijxTi tð ÞP iP ixi tð Þ

þ
XN
j ¼ 1

j 6¼ i

r⋆ij

σij
xTj tð Þxj tð Þ � 2

ffiffiffiffiffiffi
r⋆ii

p
∥P ixi tð Þ∥∥xi tð Þ∥

xTi tð ÞP iBiW iBT
i P ixi tð Þ

 !
xTi tð ÞP iBiKixi tð Þ

¼ xTi tð Þ AT
Ki
P i þ P iAKi

� �
xi tð Þ þ

XN
j ¼ 1

j 6¼ i

εijxTi tð ÞP iAijAT
ijP ixi tð Þ þ

XN
j ¼ 1

j 6¼ i

1
εij

xTj tð Þxj tð Þ

þ
XN
j ¼ 1

j 6¼ i

σijxTi tð ÞP iP ixi tð Þ þ
XN
j ¼ 1

j 6¼ i

r⋆ij

σij
xTj tð Þxj tð Þ,

(61)

and, thus, we have the following inequality for the function V x; tð Þ of Eq. (57):

d
dt
V x; tð Þ ≤

XN

i¼1

xTi tð Þ AT
Ki
P i þ P iAKi

� �
xi tð Þ þ

XN

i¼1

XN
j ¼ 1

j 6¼ i

εijxi tð ÞP iAijAT
ijP ixi tð Þ

þ
XN

i¼1

XN
j ¼ 1
j 6¼ i

1
εij

xTj tð Þxj tð Þ þ
XN

i¼1

XN
j ¼ 1
j 6¼ i

σijxTi tð ÞP iP ixi tð Þ þ
XN

i¼1

XN
j ¼ 1
j 6¼ i

r⋆ij

σij
xTj tð Þxj tð Þ: (62)

Furthermore, the inequality of Eq. (62) can be rewritten as
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d
dt
V x; tð Þ ≤

XN

i¼1

xTi tð Þ AT
Ki
P i þ P iAKi þ

XN
j ¼ 1

j 6¼ i

εijP iAijAT
ijP i þ

XN
j ¼ 1

j 6¼ i

1
εji

In þ
XN
j ¼ 1

j 6¼ i

σijP iP i þ
XN
j ¼ 1

j 6¼ i

r⋆ji

σji
In

1
CCCAxi tð Þ:

0
BBB@ (63)

Therefore, if the matrix inequality

AT
Ki
P i þ P iAKi þ

XN
j ¼ 1
j 6¼ i

εijP iAijAT
ijP i þ

XN
j ¼ 1
j 6¼ i

1
εji

In þ
XN
j ¼ 1
j 6¼ i

σijP iP i þ
XN
j ¼ 1
j 6¼ i

r⋆ij

σji
In < 0 (64)

holds, then the following relation for the time derivative of V x; tð Þ is satisfied:
d
dt
V x; tð Þ < 0, ∀x tð Þ 6¼ 0: (65)

Next, we consider the case of xTi tð ÞP iBiW iBT
i P ixi tð Þ < ϑixTi tð Þxi tð Þ. In this case, by using the

relations ΔT
ii tð ÞΔii tð Þ ≤ r⋆ii Ini and ΔT

ij tð ÞΔij tð Þ ≤ r⋆ij Inj , and Eq. (20) and substituting the adjustable

time-varying parameter θi tð Þ of Eq. (55) into Eq. (59), we have

d
dt
V i xi; tð Þ ≤ xTi tð Þ AT

Ki
P i þ P iAKi

� �
xi tð Þ þ ξiixTi tð ÞP iP ixi tð Þ þ

r⋆ii
ξii

xTi tð Þxi tð Þ

þ
XN
j ¼ 1

j 6¼ i

εijxi tð ÞP iAijAT
ijP ixi tð Þ þ

XN
j ¼ 1

j 6¼ i

1
εij

xTj tð Þxj tð Þ þ
XN
j ¼ 1

j 6¼ i

σijxTi tð ÞP iP ixi tð Þ

þ
XN
j ¼ 1

j 6¼ i

r⋆ij

σij
xTj tð Þxj tð Þ � 2

ffiffiffiffiffiffi
r⋆ii

p
∥P ixi tð Þ∥∥xi tð Þ∥
ϑixTi tð Þxi tð Þ

 !
xTi tð ÞP iBiKixi tð Þ:

(66)

The last term on the right side of Eq. (66) is less than 0 because the matrix Ki ∈Rmi�ni is defined
as Ki ¼ W iBT

i P i and θi tð Þ is a positive scalar function. Therefore, we find that the following
relation for the quadratic function V i xi; tð Þ is satisfied:

d
dt
V i xi; tð Þ ≤ xTi tð Þ AT

Ki
P i þ P iAKi

� �
xi tð Þ þ ξiixTi tð ÞP iP ixi tð Þ þ

r⋆ii
ξii

xTi tð Þxi tð Þ

þ
XN
j ¼ 1

j 6¼ i

εijxi tð ÞP iAijAT
ijP ixi tð Þ þ

XN
j ¼ 1

j 6¼ i

1
εij

xTj tð Þxj tð Þ þ
XN
j ¼ 1

j 6¼ i

σijxTi tð ÞP iP ixi tð Þ

þ
XN
j ¼ 1

j 6¼ i

r⋆ij

σij
xTj tð Þxj tð Þ:

(67)

Therefore, we see from Eqs. (57) and (67) that the following inequality:
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d
dt
V x; tð Þ ≤

XN

i¼1

xTi tð Þ AT
Ki
P i þ P iAKi

� �
xi tð Þ þ

XN

i¼1

ξiixTi tð ÞP iP ixi tð Þ þ
XN

i¼1

r⋆ii
ξii

xTi tð Þxi tð Þ

þ
XN

i¼1

XN
j ¼ 1

j 6¼ i

εijxi tð ÞPiAijAT
ij Pixi tð Þ þ

XN

i¼1

XN
j ¼ 1

j 6¼ i

1
εij

xTj tð Þxj tð Þ

þ
XN

i¼1

XN
j ¼ 1

j 6¼ i

σijxTi tð ÞP iP ixi tð Þ þ
XN

i¼1

XN
j ¼ 1

j 6¼ i

r⋆ij

σij
xTj tð Þxj tð Þ

(68)

can be derived. Moreover, one can easily see that the inequality of Eq. (68) can be rewritten as

d
dt
V x; tð Þ ≤

XN

i¼1

xTi tð Þ AT
Ki
P i þ P iAKi þ ξiiP iP i þ

r⋆ii
ξii

In þ
XN
j ¼ 1

j 6¼ i

εijP iAijAT
ijP i

0
BBB@

þ
XN
j ¼ 1
j 6¼ i

1
εji

In þ
XN
j ¼ 1
j 6¼ i

σijP iP i þ
XN
j ¼ 1
j 6¼ i

r⋆ji

σji
In

1
CCAxi tð Þ: (69)

Therefore, if the matrix inequality

AT
Ki
P i þ P iAKi þ ξiiP iP i þ

r⋆ii
ξii

In þ
XN
j ¼ 1

j 6¼ i

εijP iAijAT
ijP i þ

XN
j ¼ 1

j 6¼ i

1
εji

In þ
XN
j ¼ 1

j 6¼ i

σijP iP i

þ
XN
j ¼ 1

j 6¼ i

r⋆ji

σji
In < 0

(70)

holds, then the relation of Eq. (65) for the time derivative of the function V x; tð Þ of Eq. (57) is
satisfied. Due to the 3rd and 4th terms on the left side of Eq. (70) which are positive definite, if the
inequality of Eq. (70) is satisfied, then the inequality of Eq. (64) is also constantly satisfied.

For the matrix inequality of Eq. (70), by applying Lemma 1.2 (Schur complement), one can find
that the matrix inequalities of Eq. (70) are equivalent to the LMIs of Eq. (54). Therefore, by
solving the LMIs of Eq. (54), the adjustable time-varying parameter is given by Eq. (55), and
proposed control input of Eq. (52) stabilizes the overall system of Eq. (35). Thus, the proof of
Theorem 3 is completed.

Next, as mentioned in Section 2, we discuss the allowable region of the unknown parameters
Δii tð Þ∈Rni�ni and Δij tð Þ∈Rni�nj . Thus, the following additional constraints are introduced:
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r⋆ii ¼ ξii,
r⋆ij ¼ σij:

(71)

From the relations of Eq. (71), one can find that the maximization of ξii and σij is equivalent to
the maximization of r⋆ii and r⋆ij . Then, the LMIs of Eq. (54) can be rewritten as

Πi0 ξii; εij; σij
� �

Ξi0

⋆ �Ωi0 εij
� �

 !
< 0, (72)

Πi0 ξii; εij; σij
� �¼ΔAT

Ki
P i þ P iAKi þ ξiiP iP i þN In þ

XN
j ¼ 1

j 6¼ i

εijP iAijAT
ijP i þ

XN
j ¼ 1

j 6¼ i

σijP iP i,

Ξi0¼Δ In In ⋯ In
zfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflffl{N�10

@
1
A,

Ωi0 εij
� �¼Δ diag ε1iIn; ε2iIn;⋯; εi�1iIn; εiþ1iIn;⋯; εN iInð Þ:

(73)

Furthermore, we introduce a positive scalar λ and a complementary matrix Γ∈RN 2�N 2
defined as

Γ¼Δ diag ξ11; ξ22;⋯; ξNN ; σ12; σ13;⋯; σ1N ; σ21; σ23;⋯; σNN�1ð Þ, (74)

and consider the following additional condition:

Γ � 1
λ
IN 2 > 0: (75)

Namely, we can replace the maximization problem of ξii and σij with the minimization prob-
lem of λ. From Eq. (75) and Lemma 1.2 (Schur complement), one can easily see that the
constraint of Eq. (75) can be transformed into

Γ IN 2

⋆ λIN 2

 !
> 0: (76)

Thus, in order to design the proposed decentralized adaptive gain robust controller, the
constrained convex optimization problem

Minimize
ξii>0, εij>0, σij>0

λ½ � subject to 72ð Þ and 76ð Þ (77)

should be solved.

As a result, the following theorem can be obtained:

Theorem 4: Consider the uncertain large-scale interconnected system of Eq. (35) and the control input
of Eq. (52).

If positive constants ξii, εij, σij, and λ exist which satisfy the constrained convex optimization problem
of Eq. (77), the adjustable time-varying parameter θi tð Þ is designed as Eq. (55). Then, the overall
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d
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AT
Ki
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In þ
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j ¼ 1
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εijP iAijAT
ijP i þ

XN
j ¼ 1
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εji
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XN
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σijP iP i

þ
XN
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j 6¼ i

r⋆ji

σji
In < 0

(70)

holds, then the relation of Eq. (65) for the time derivative of the function V x; tð Þ of Eq. (57) is
satisfied. Due to the 3rd and 4th terms on the left side of Eq. (70) which are positive definite, if the
inequality of Eq. (70) is satisfied, then the inequality of Eq. (64) is also constantly satisfied.

For the matrix inequality of Eq. (70), by applying Lemma 1.2 (Schur complement), one can find
that the matrix inequalities of Eq. (70) are equivalent to the LMIs of Eq. (54). Therefore, by
solving the LMIs of Eq. (54), the adjustable time-varying parameter is given by Eq. (55), and
proposed control input of Eq. (52) stabilizes the overall system of Eq. (35). Thus, the proof of
Theorem 3 is completed.

Next, as mentioned in Section 2, we discuss the allowable region of the unknown parameters
Δii tð Þ∈Rni�ni and Δij tð Þ∈Rni�nj . Thus, the following additional constraints are introduced:
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r⋆ii ¼ ξii,
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Πi0 ξii; εij; σij
� �

Ξi0

⋆ �Ωi0 εij
� �

 !
< 0, (72)
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εijP iAijAT
ijP i þ

XN
j ¼ 1

j 6¼ i

σijP iP i,

Ξi0¼Δ In In ⋯ In
zfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflffl{N�10
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1
A,

Ωi0 εij
� �¼Δ diag ε1iIn; ε2iIn;⋯; εi�1iIn; εiþ1iIn;⋯; εN iInð Þ:

(73)

Furthermore, we introduce a positive scalar λ and a complementary matrix Γ∈RN 2�N 2
defined as

Γ¼Δ diag ξ11; ξ22;⋯; ξNN ; σ12; σ13;⋯; σ1N ; σ21; σ23;⋯; σNN�1ð Þ, (74)

and consider the following additional condition:

Γ � 1
λ
IN 2 > 0: (75)

Namely, we can replace the maximization problem of ξii and σij with the minimization prob-
lem of λ. From Eq. (75) and Lemma 1.2 (Schur complement), one can easily see that the
constraint of Eq. (75) can be transformed into

Γ IN 2

⋆ λIN 2

 !
> 0: (76)

Thus, in order to design the proposed decentralized adaptive gain robust controller, the
constrained convex optimization problem

Minimize
ξii>0, εij>0, σij>0

λ½ � subject to 72ð Þ and 76ð Þ (77)

should be solved.

As a result, the following theorem can be obtained:

Theorem 4: Consider the uncertain large-scale interconnected system of Eq. (35) and the control input
of Eq. (52).

If positive constants ξii, εij, σij, and λ exist which satisfy the constrained convex optimization problem
of Eq. (77), the adjustable time-varying parameter θi tð Þ is designed as Eq. (55). Then, the overall
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uncertain closed-loop system of Eq. (53) is asymptotically stable. Furthermore, by using the optimal
solution ξ⋆ii and σ⋆ij for Eq. (77), the upper bound of unknown parameters Δii tð Þ∈Rni�ni and

Δij tð Þ∈Rni�nj is given by

r⋆ii ¼ ξ⋆ii ,
r⋆ij ¼ σ⋆ij :

(78)

3.3. Illustrative examples

To demonstrate the efficiency of the proposed decentralized robust controller, an illustrative
example is provided. In this example, we consider the uncertain large-scale interconnected
system consisting of three two-dimensional subsystems, that is,N ¼ 3. The system parameters
are given as follows:

A11 ¼
�1:0 1:0

0:0 1:0

 !
, A22 ¼

0:0 1:0

�1:0 �1:0

 !
, A33 ¼

1:0 0:0

1:0 �3:0

 !
,

B1 ¼
0:0

1:0

 !
, B2 ¼

1:0

1:0

 !
, B3 ¼

1:0

0:0

 !
,

A12 ¼
0:5 0:0

0:0 1:0

 !
, A13 ¼

0:0 0:5

0:0 0:0

 !
, A21 ¼

0:0 0:0

0:0 0:5

 !
,

A23 ¼
0:0 0:5

1:0 0:0

 !
, A31 ¼

0:5 0:0

0:0 0:0

 !
, A32 ¼

0:0 0:5

0:0 0:5

 !
:

(79)

Firstly, by selecting the design parameters αi ∈R1 and Qi ∈R2�2 i ¼ 1; 2; 3ð Þ as
α1 ¼ α2 ¼ α3 ¼ 1:0 and Q1 ¼ Q2 ¼ Q3 ¼ 2:0� I2 and solving LMIs of Eq. (50), we have the
symmetric positive definite matrices Y i ∈R2�2 and W i ∈R1�1, and positive scalars μij can be

obtained:

Y1 ¼
1:8972 �2:1976

⋆ 8:1021

0
@

1
A� 10�1, W1 ¼ 3:9298,

Y2 ¼
3:4941 4:7825

⋆ 8:8702

0
@

1
A� 10�1, W2 ¼ 2:2200,

Y3 ¼
4:0414� 10�1 3:2732� 10�2

⋆ 3:2709� 10�1

0
@

1
A, W3 ¼ 3:2166,

μ12 ¼ 7:0526� 10�1, μ13 ¼ 4:5522� 10�1, μ21 ¼ 1:3986,

μ23 ¼ 3:2285� 10�1, μ31 ¼ 3:4477, μ32 ¼ 2:0763:

(80)
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Thus, the symmetric positive definite matrices P i ¼ Y�1
i and the fixed gain matrices

Ki ¼ W iBT
i Y

�1
i can be calculated as

P1 ¼
7:6854 2:0845

⋆ 1:7996

 !
, K1 ¼ 8:1918 7:0723ð Þ,

P2 ¼
1:0923� 101 �5:8891

⋆ 4:3025

 !
, K2 ¼ 1:1174� 101 �3:5221

� �
,

P3 ¼
2:4946 �2:4964� 10�1

⋆ 3:0823

 !
, K3 ¼ 8:0240 �8:0297� 10�1

� �
:

(81)

Next, by solving the constrained convex optimization problem of Eq. (77), the following
solution can be obtained:

ξ11 ¼ 3:4167� 10�2, ξ22 ¼ 3:5524� 10�2, ξ33 ¼ 1:5590� 10�1,

ε12 ¼ 8:5122� 10�1, ε13 ¼ 5:9622� 10�1, ε21 ¼ 1:4174,

ε23 ¼ 3:1440� 10�1, ε31 ¼ 9:9709, ε32 ¼ 1:9446,

σ12 ¼ 3:4167� 10�2, σ13 ¼ 3:4167� 10�2, σ21 ¼ 3:5524� 10�2,

σ23 ¼ 3:5524� 10�2, σ31 ¼ 1:5590� 10�1, σ32 ¼ 1:5590� 10�1,

λ ¼ 1:0001:

(82)

Therefore, the allowable upper bound of unknown parameters is given as

r⋆11 ¼ 3:4167� 10�2, r⋆22 ¼ 3:5524� 10�2, r⋆33 ¼ 1:5590� 10�1,

r⋆12 ¼ 3:4167� 10�2, r⋆13 ¼ 3:4167� 10�2, r⋆21 ¼ 3:5524� 10�2,

r⋆23 ¼ 3:5524� 10�2, r⋆31 ¼ 1:5590� 10�1, r⋆32 ¼ 1:5590� 10�1:

(83)

In this example, unknown parameters Δii tð Þ∈R2�2 and Δij tð Þ∈R2�2 are chosen as

Δii tð Þ ¼ r⋆ii �
sin 5:0� π� tð Þ � cos 2:0� π� tð Þ

⋆ cos 5:0� π� tð Þ

 !
,

Δij tð Þ ¼ r⋆ij �
� cos π� tð Þ sin 3:0� π� tð Þ

⋆ sin π� tð Þ

 !
:

(84)

Moreover, the design parameters ϑi i ¼ 1; 2; 3ð Þ, the initial value of the uncertain large-scale
system with system parameters of Eq. (79), and one of the nominal systems are selected as

ϑ1 ¼ ϑ2 ¼ ϑ3 ¼ 1:0� 10�1 and x 0ð Þ ¼ x 0ð Þ ¼ 1:5�1:0�1:0 5:0� 10�1 2:0�1:0� �T
.

The result of this example is shown in Figures 5 and 6. In these figures, x lð Þ
i tð Þ, ui tð Þ, x lð Þ

i tð Þ, and
ui tð Þ denote the lth element (l ¼ 1, 2) of the state xi tð Þ and the control input ui tð Þ for ith
subsystem and one of the states xi tð Þ and the control input ui tð Þ for ith nominal subsystem.
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ϑ1 ¼ ϑ2 ¼ ϑ3 ¼ 1:0� 10�1 and x 0ð Þ ¼ x 0ð Þ ¼ 1:5�1:0�1:0 5:0� 10�1 2:0�1:0� �T
.

The result of this example is shown in Figures 5 and 6. In these figures, x lð Þ
i tð Þ, ui tð Þ, x lð Þ

i tð Þ, and
ui tð Þ denote the lth element (l ¼ 1, 2) of the state xi tð Þ and the control input ui tð Þ for ith
subsystem and one of the states xi tð Þ and the control input ui tð Þ for ith nominal subsystem.
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From these figures, the proposed decentralized adaptive gain robust controller stabilizes the
uncertain large-scale interconnected system with system parameters of Eq. (79). Furthermore,
one can see that each subsystem achieves good transient behavior close to nominal subsystems
by the proposed decentralized robust controller. Thus, the effectiveness of the proposed robust
control strategy is shown.

3.4. Summary

In this section, on the basis of the result of Section 2, we have suggested the decentralized
adaptive gain robust controller for the large-scale interconnected system with uncertainties.

-1.5
-1

-0.5
 0

 0.5
 1

 1.5

 0  0.5  1  1.5  2  2.5  3

St
at
e

1)x(
1 (t)
2)x(
1 (t)

x(1)
1 (t)

x 2)(
1 (t) -1

-0.5
 0

Time t

 0.5
 1

 1.5
 2

 0  0.5  1  1.5  2  2.5  3

St
at
e

1)x(
2 (t)
2)x(
2 (t)
1)x(
2 (t)
2)x(
2 (t)

Time t

(a) (b)

Figure 5. Time histories of xi(t) and xi tð Þ (i = 1, 2). (a) The time histories of x1(t) and x1 tð Þ, (b) Time histories of x2(t) and x2 tð Þ.

-1
-0.5

 0
 0.5

 1
 1.5

 2

 0  0.5  1  1.5  2  2.5  3

1)x(
3 (t)
2)x(
3 (t)
1)x(
3 (t)
2)x(
3

St
at
e

(t)

-40
-30
-20

Time t

-10
 0

 10
 20

 0  0.5  1  1.5  2  2.5  3

u1(t)

u2(t)

u3(t)

u1(t)

u2(t)

C
on
tr
ol
In
pu
t

u3(t)

Time t

(a) (b)

Figure 6. Time histories of x3(t), x3 tð Þ, u(t) and u tð Þ. (a) Time histories of x3(t) and x3 tð Þ, (b) Time histories of u(t) and u tð Þ.

Adaptive Robust Control Systems210

Furthermore, the effectiveness of the proposed controller has been shown via an illustrative
example. The proposed adaptive gain robust controller can be easily designed by solving a
constrained convex optimization problem and adjust the magnitude of the control input for
each subsystem. Therefore, we find that the proposed decentralized robust controller design
method is very useful.

Future research subjects include analysis of conservatism for the proposed controller
design approach and extension of the proposed adaptive gain robust control strategies to
uncertain systems with time delay, decentralized output/observer-based control systems,
and so on.

4. Conclusions and future works

In this chapter, firstly the centralized adaptive gain robust controller for a class of uncertain
linear systems has been proposed, and through a simple numerical example, we have shown
the effectiveness/usefulness for the proposed adaptive gain robust control strategy. Next, for a
class of uncertain large-scale interconnected systems, we have presented an LMI-based design
method of decentralized adaptive gain robust controllers. In the proposed controller robust
synthesis, advantages are as follows: the proposed adaptive gain robust controller can achieve
satisfactory transient behavior and/or avoid the excessive control input, that is, the proposed
robust controller with adjustable time-varying parameters is more flexible and adaptive than
the conventional robust controller with a fixed gain which is derived by the worst-case design
for the unknown parameter variations. Moreover, in this chapter we have derived the allow-
able perturbation region of unknown parameters, and the proposed robust controller can be
obtained by solving constrained convex optimization problems. Although the solution of the
some matrix inequalities can be applied to the resultant robust controller in the general
controller design strategies for the conventional fixed gain robust control, the solutions of the
constrained convex optimization problem derived in this chapter cannot be reflected to the
resultant robust controller. Note that the proposed controller design strategy includes this
fascinating fact.

In Section 2 for a class of uncertain linear systems, we have dealt with a design problem of
centralized adaptive gain robust state feedback controllers. Although the standard LQ regu-
lator theory for the purpose of generating the desired response is adopted in the existing result
[32], the nominal control input is designed by using pole placement constraints. By using the
controller gain for the nominal system, the proposed robust control with adjustable time-
varying parameter has been designed by solving LMIs. Additionally, based on the derived
LMI-based conditions, the constrained convex optimization problem has been obtained for
the purpose of the maximization of the allowable perturbation region of uncertainties
included in the controlled system. Section 3 extends the result for the centralized adaptive
gain robust state feedback controller given in Section 2 to decentralized adaptive gain robust
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From these figures, the proposed decentralized adaptive gain robust controller stabilizes the
uncertain large-scale interconnected system with system parameters of Eq. (79). Furthermore,
one can see that each subsystem achieves good transient behavior close to nominal subsystems
by the proposed decentralized robust controller. Thus, the effectiveness of the proposed robust
control strategy is shown.

3.4. Summary

In this section, on the basis of the result of Section 2, we have suggested the decentralized
adaptive gain robust controller for the large-scale interconnected system with uncertainties.
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Furthermore, the effectiveness of the proposed controller has been shown via an illustrative
example. The proposed adaptive gain robust controller can be easily designed by solving a
constrained convex optimization problem and adjust the magnitude of the control input for
each subsystem. Therefore, we find that the proposed decentralized robust controller design
method is very useful.

Future research subjects include analysis of conservatism for the proposed controller
design approach and extension of the proposed adaptive gain robust control strategies to
uncertain systems with time delay, decentralized output/observer-based control systems,
and so on.

4. Conclusions and future works

In this chapter, firstly the centralized adaptive gain robust controller for a class of uncertain
linear systems has been proposed, and through a simple numerical example, we have shown
the effectiveness/usefulness for the proposed adaptive gain robust control strategy. Next, for a
class of uncertain large-scale interconnected systems, we have presented an LMI-based design
method of decentralized adaptive gain robust controllers. In the proposed controller robust
synthesis, advantages are as follows: the proposed adaptive gain robust controller can achieve
satisfactory transient behavior and/or avoid the excessive control input, that is, the proposed
robust controller with adjustable time-varying parameters is more flexible and adaptive than
the conventional robust controller with a fixed gain which is derived by the worst-case design
for the unknown parameter variations. Moreover, in this chapter we have derived the allow-
able perturbation region of unknown parameters, and the proposed robust controller can be
obtained by solving constrained convex optimization problems. Although the solution of the
some matrix inequalities can be applied to the resultant robust controller in the general
controller design strategies for the conventional fixed gain robust control, the solutions of the
constrained convex optimization problem derived in this chapter cannot be reflected to the
resultant robust controller. Note that the proposed controller design strategy includes this
fascinating fact.

In Section 2 for a class of uncertain linear systems, we have dealt with a design problem of
centralized adaptive gain robust state feedback controllers. Although the standard LQ regu-
lator theory for the purpose of generating the desired response is adopted in the existing result
[32], the nominal control input is designed by using pole placement constraints. By using the
controller gain for the nominal system, the proposed robust control with adjustable time-
varying parameter has been designed by solving LMIs. Additionally, based on the derived
LMI-based conditions, the constrained convex optimization problem has been obtained for
the purpose of the maximization of the allowable perturbation region of uncertainties
included in the controlled system. Section 3 extends the result for the centralized adaptive
gain robust state feedback controller given in Section 2 to decentralized adaptive gain robust
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state feedback controllers for a class of uncertain large-scale interconnected systems. In this
section, an LMI-based controller synthesis of decentralized adaptive gain robust state feed-
back control has also been presented. Furthermore, in order to maximize the allowable region
of uncertainties, the design problem of the decentralized adaptive gain robust controller for
the uncertain large-scale interconnected system has been reduced to the constrained convex
optimization problem.

In the future research, an extension of the proposed adaptive gain robust state feedback
controller to output feedback control systems or observer-based control ones is considered.
Moreover, the problem for the extension to such a broad class of systems as uncertain time-
delay systems, uncertain discrete-time systems, and so on should be tackled. Furthermore, we
will examine the conservativeness of the proposed adaptive gain robust control strategy and
online adjustment way of the design parameter which plays important roles such as avoiding
the excessive control input.

On the other hand, it is well known that the design of control systems is often complicated by
the presence of physical constraints: temperatures, pressures, saturating actuators, within
safety margins, and so on. If such constraints are violated, serious consequences may ensue.
For example, physical components will suffer damage from violating some constraints, or
saturations for state/input constraints may cause a loss of closed-loop stability. In particular,
input saturation is a common feature of control systems, and the stabilization problems of
linear systems with control input saturation have been studied (e.g., [33, 40]). Additionally,
some researchers have investigated analysis of constrained systems and reference managing
for linear systems subject to input and state constraints (e.g., [10, 19]). Therefore, the future
research subjects include the constrained robust controller design reducing the effect of
unknown parameters.
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Abstract

Wind turbine plants are complex dynamic and uncertain processes driven by stochastic
inputs and disturbances, as well as different loads represented by gyroscopic, centrifugal
and gravitational forces. Moreover, as their aerodynamic models are nonlinear, both mod-
elling and control become challenging problems. On one hand, high-fidelity simulators
should contain different parameters and variables in order to accurately describe the main
dynamic system behaviour. Therefore, the development of modelling and control for
wind turbine systems should consider these complexity aspects. On the other hand, these
control solutions have to include the main wind turbine dynamic characteristics without
becoming too complicated. The main point of this chapter is thus to provide two practical
examples of development of robust control strategies when applied to a simulated wind
turbine plant. Experiments with the wind turbine simulator represent the instruments for
assessing the main aspects of the developed control methodologies.

Keywords: wind turbine simulator, data-driven and model-based approaches,
fuzzy identification, online estimation, robustness and reliability

1. Introduction

Wind turbine plants represent complex and nonlinear dynamic systems usually driven by sto-
chastic inputs and different disturbances describing gravitational, centrifugal and gyroscopic
loads. Moreover, their aerodynamic models are uncertain and nonlinear, while wind turbine
rotors are subject to complex turbulent wind fields, especially in large systems, thus yielding to
extreme fatigue loading conditions. In this way, the development of viable, robust and reliable
control solutions for wind turbines can become a challenging issue [1].

Usually, a model-based control design requires an accurate description of the system under
investigation, which has to include different parameters and variables in order to model the
most important nonlinear and dynamic aspects. Moreover, the wind turbine working conditions
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can produce further problems to the design of the control method. In general, commercial
codes are not able to adequately describe the wind turbine overall dynamic behaviour; usually,
special simulation software solutions are used. On the other hand, control schemes have to
manage the most important turbine dynamics, without being too complex and unwieldy.
Control methods for wind turbines usually rely on the signals from sensors and actuators,
with a system that connects these elements together. Hardware or software modules elaborate
these signals to generate the output signals for actuators. The main task of the control law
consists of maintaining safe and reliable working conditions of the wind turbine, while achiev-
ing prescribed control performances and allowing for optimal energy conversion, as shown
e.g. in recent works applied to the same wind turbine model considered in this chapter [2].

Today’s wind turbines can implement several control strategies to allow for the required perfor-
mances. Some turbines use passive control methods, such as in fixed-pitch, stall control machines.
In this case, the system is designed so that the power is limited above rated wind speed through
the blade stall. Therefore, the control of the blades is not required [1]. In this case, the rotational
speed control is proposed, thus avoiding the inaccuracy of measuring thewind speed. Rotorswith
pitch regulation are usually used for constant-speed plants to provide a power control that works
better than the blade stall solution. In these machines, the blade pitching is controlled in order to
provide optimal power conversion with respect to modelling errors, wind gusts and disturbance.
However, when the system works at constant speed and below rated wind speed, the optimal
conversion rate cannot be obtained. Therefore, in order to maximise the power conversion rate,
the rotational speed of the turbine must vary with wind speed. Blade pitch control is thus used
also above the rated wind speed [1]. A different control method can introduce the yaw regulation
to orient the machine into the wind field. A yaw error reference from a nacelle-mounted wind
direction sensor system must be included in order to calculate this reference signal [3].

Regarding the regulation strategies proposed in this chapter, two control design examples are
described and applied to a wind turbine system. The wind turbine model exploited in this
chapter is freely available for the Matlab® and Simulink® environments and already proposed
as benchmark for an international competition regarding the validation of fault diagnosis and
fault-tolerant control approaches [2].

In particular, a first data-driven method relying on a fuzzy identification approach to the
control design is considered. In fact, since the wind turbine mathematical model is nonlinear
with uncertain inputs, fuzzy modelling represents an alternative tool for obtaining the mathe-
matical description of the controlled process. In contrast to purely nonlinear identification
schemes, see, e.g. [4], fuzzy modelling and identification methods are able to directly provide
nonlinear models from the measured input-output signals. Therefore, this chapter suggests to
model the wind turbine plant via Takagi-Sugeno (TS) fuzzy prototypes [5], whose parameters
are obtained by identification procedures. This approach is also motivated by previous works
by the same authors [6].

Regarding the second model-based strategy presented in this chapter, it relies on an adaptive
control scheme [7]. Again, with respect to pure nonlinear control methods [8], it does not
require a detailed knowledge about the model structure. Therefore, this chapter suggests the
implementation of controllers based on adaptive schemes, used for the recursive derivation of
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the controller model. In particular, a recursive Frisch scheme extended to the adaptive case for
control design is considered in this study, as proposed, e.g. in Simani and Castaldi [9], which
makes use of exponential forgetting laws. This allows the online application of the Frisch
scheme to derive the parameters of a time-varying controller.

Finally, the chapter is organised as follows. Section 2 recalls the wind turbine model considered
for control design purposes. Section 3 addresses the data-driven scheme exploited for the deriva-
tion of the fuzzy controller, proposed in Section 3.1. On the other hand, the model-based control
design is considered in Section 3.2, based on its mathematical derivation also described in Section
3. The achieved results and comparisons with different control strategies are outlined in Section 4.

2. Wind turbine simulator model

This section outlines the wind turbine model, whose sampled inputs and outputs will be used
for the proposed control designs, as shown in Section 3.

The wind turbine system exploited in this chapter uses a nonlinear dynamic model representing
the wind acting on the wind turbine blades, thus producing the movement of the low-speed
rotor shaft. The higher speed required by the electric converter is produced by means of a gear
box. The simulator is described in more detail, e.g. in Odgaard et al. [10]. A block scheme of the
wind turbine simulator considered in this chapter is represented in Figure 1.

Both the generator speed and the generator power are controller by means of the two control
inputs representing the generator torque τg(t) and the blade pitch angle β(t). Several signals
can be acquired from the wind turbine simulator. In particular, the signal ωr(t) represents the
rotor speed measurement, whereas ωg(t) represents the converter velocity. Concerning the
electric generator, τg(t) refers to its required torque, which is controlled by the converter.
Therefore, this signal represents the measurement of the torque setpoint, τr(t). The aerody-
namic model defining the aerodynamic torque provides the τaero(t) signal, which is a nonlinear
function of the wind speed v(t). This measurement is very difficult to be acquired correctly, as
described in Odgaard et al. [10].

The aerodynamic model reported in Figure 1 is described as follows:

τaero tð Þ ¼ Cp β tð Þ;λ tð Þ� � rAv3 tð Þ
2ωr tð Þ (1)
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Figure 1. Scheme of the wind turbine process.
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where the variable r represents the air density and A is the effective rotor area. Another
important variable is represented by the so-called tip-speed ratio, which is defined as

λ tð Þ ¼ ωr tð ÞR
v tð Þ (2)

with R the rotor radius. Cp(�) represents the power coefficient that is normally represented via a
two-dimensional map [10]. The expression of Eq. (1) allows the computation of the signal
τaero(t), by means of the estimated wind speed v(t), and the measured β(t) and ωr(t). Due to
the uncertainty of the wind speed, the estimate of τaero(t) is considered affected by an unknown
measurement error, which justifies the robust approaches described in Section 3. Moreover, the
nonlinearity represented by the expressions of Eqs. (1) and (2) motivates the required reliable
and robust control approaches suggested in this chapter.

A two-mass model is exploited to describe the drive-train system, while the hydraulic pitch
system is modelled as second-order transfer function [10]. Moreover, the generator dynamics
are described as a first-order transfer function. More details regarding the considered simula-
tor are in Odgaard et al. [10]. Under these assumptions, the complete state-space description of
the wind turbine model has the form of Eq. (3):

_xc tð Þ ¼ f c xc tð Þ; u tð Þð Þ
y tð Þ ¼ xc tð Þ

�
(3)

where u(t) = [β(t), τg(t)]
T and y(t) = xc(t) = [Pg(t),ωg(t)]

T are the control inputs and the monitored
output measurements, respectively, as shown in Figure 1. Pg(t) is the generator power mea-
surement, whereas fc(�) represents the continuous-time nonlinear function that will be approx-
imated via discrete-time models from N sampled data uk and yk, with the sample index k = 1, 2,
…N, as presented in Section 3. Finally, the model parameters and the map Cp(β,λ) are chosen
in order to represent a realistic turbine [10].

As described in Odgaard et al. [10], the baseline controller developed for this wind turbine
system works in two normal operating conditions, namely, the region 1 corresponding to the
power optimisation (partial load) and the region 2 of constant power production (full load).
The partial load working condition (also known as working region 1), the optimal wind-power
conversion is achieved without any pitching of the blades, which are fixed to 0�. In this case,
λ is constant at its optimal value λopt that is defined by the maximal value of the power
coefficient map Cp when β = 0. Therefore, this working condition is completely defined by
setting τg = τr (i.e. the generator torque is equal to the reference one) with pitch angle β = 0.

The reference torque τr shown in Figure 1 can be written as

τr ¼ Koptω2
r (4)

where:

Kopt ¼ 1
2
rAR3 Cpmax

λ3
opt

(5)

with Cpmax
the maximal value of Cp, related the to λopt, i.e. the optimal tip-speed ratio.
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When the power reference is achieved and the wind speed increases, the controller can be
switched to the control region 2 (full load condition). In this zone, the control objective consists
of tracking the power reference Pr, obtained by regulating β, such that the Cp is decreased. In a
traditional industrial control scheme, usually a PI controller is used to keep ωr at the prescribed
value by changing β; the second input of the controlled is τg.

The baseline controller considered in this chapter was implemented with a sample frequency
at 100 Hz, i.e. Ts = 0.01 s. In full load conditions, i.e. in region 2, the actuated input β is
controlled via the relations of Eq. 6 [10]:

βk ¼ βk�1 þ kp ek þ ki Ts � kp
� �

ek�1

ek ¼ ωgk � ωnom

(
(6)

with the sample index k = 1, 2,…,N. The parameters for this PI speed controller are ki = 0.5 and
kp = 3, with sampling time Ts = 0.01 s, as reported in [10].

To control the further input τg shown in Figure 1, a second PI regulator is used, in the form of
Eq. (7):

τrk ¼ τrk�1 þ kp ek þ ki Ts � kp
� �

ek�1

ek ¼ Pgk � Pr

(
(7)

The parameters for this second PI power controller are ki = 0.014 and kp = 447� 10�6 [10].

Finally, note that in region 1 (partial load, below the rated wind speed), the wind turbine is
regulated only by means of the torque input τg(t). In this situation, the blade pitching system is
not exploited to achieve the optimal power conversion. On the other hand, in region 2 (full
load, above the rated wind speed), the wind turbine control regulates both the blade pitch
angle β(t) and the control torque τg(t). The wind turbine Simulink® simulator considered in this
work includes also saturation blocks limiting the values of these control signals and their rates.

3. Data-driven and model-based designs

This section describes the two approaches considered in this chapter for obtaining the control
laws by using data-driven and model-based methodologies. Once a suitable mathematical
description of the monitored process is provided, the derivation of the controller structure is
sketched in Section 3.1 for the fuzzy approach, whereas Section 3.2 proposes a different
method relying on an adaptive technique.

The first method proposed in this chapter for the derivation of the wind turbine controller is
based on a fuzzy clustering technique to partition the available data into subsets characterised
by linear behaviours. The integration between clusters and linear regression is exploited,
thus allowing for the combination of fuzzy logic techniques with system identification method-
ologies. These tools are already available and implemented in the Matlab® Fuzzy Modelling and
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Identification (FMID) toolbox recalled below [5]. This study proposes the use of TS fuzzy pro-
totypes since they are able to model nonlinear dynamic systems with arbitrary accuracy [5]. The
switching between the local affine submodels is achieved through a smooth function of the
system state defined exploiting the fuzzy set theory and its tools.

In more detail, the fuzzy estimation scheme relies on a two-step algorithm, in which the
working regions are first defined by exploiting the data fuzzy clustering tool, i.e. the
Gustafson-Kessel (GK) method [5]. On the other hand, the second step performs the identifi-
cation of the controller structure and its parameters using the estimation method proposed by
the same authors in Simani et al. [6]. This estimation approach can be considered as a general-
isation of the general least-squares method for hybrid models.

Under these assumptions, the TS fuzzy prototypes have the form of the model of Eq. (8):

ykþ1 ¼

PM
i¼1

μi xkð Þyi
PM
i¼1

μi xkð Þ
(8)

where yi ¼ aTi xþ bi, with ai the parameter vector (regressand) and bi is the scalar offset. x = xk
represents the regressor vector, which contains delayed samples of the signals uk and yk.

The antecedent fuzzy sets μi that determine the switching among the different submodels i are
estimated from the data clusters [5]. The consequent parameters ai and bi are identified from
the data by means of the methodology proposed in Simani et al. [6]. This identification scheme
exploited for the estimation of the TS model parameters has been integrated into the FMID
toolbox for Matlab® by the authors. This approach is preferable when the TS model of Eq. (8) is
used as predictor, since it derives the consequent parameters via the so-called Frisch scheme,
developed for the errors-in-variables (EIV) structures [6].

Once the description of the monitored process is obtained in the form of Eq. (8), the data-driven
approach for the design of the fuzzy controller proposed in this chapter is presented in Section 3.1.

The second approach exploited for obtaining the mathematical description of the wind turbine
system under investigation is based on a recursive methodology, which will be used for the
design of the second control strategy presented in Section 3.2. An online version of the batch
Frisch scheme estimation methodology summarised above is recalled in the remainder of this
section for estimating the parameters of dynamic EIV models. For the derivation of the adapta-
tion law, an online bias-compensating algorithm is also implemented. Thus, the online Frisch
scheme estimation is generalised to enhance its applicability to real-time implementations.
Moreover, by means of an exponential forgetting factor included in the adaptation law, the
algorithm is able to deal with linear parameter-varying (LPV) structures that are exploited in
connectionwith themodel-based design of the adaptive control scheme, presented in Section 3.2.

Thus, the considered scheme is proposed for the online identification of the process modelled
by the following transfer function G(z):
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G zð Þ ¼ A z�1
� �

B z�1ð Þ ¼ b1 z�1 þ…þ bnb z
�nb

1þ a1 z�1 þ…þ ana z�na
(9)

where ai, bi, na and nb represent the unknown parameters and the structure of the model,
defining the polynomials A(z�1) and B(z�1), while z is the discrete-time complex variable.

The parameter vector describing the linear relationship is given by

θ ¼ a1…ana b1…bnb
� �T (10)

whose extended version is defined as in Eq. (11):

θ ¼ 1 θT� �T
(11)

An equivalent expression of the considered relations is obtained by using vector and matrix
notations, in the form of Eq. (12):

ψT
k θ ¼ 0 (12)

where the regressor vector ψk is defined as

ψk ¼ �yk � yk�1…� yk�na uk�1…uk�nb

h iT
(13)

where the subscript k denotes the sample index.

The Frisch scheme provides the estimates of the measurement errors affecting the input and
output signals uk and yk, i.e. σu and σy, and θ for a linear time-invariant dynamic system. Note
that the polynomial orders na and nb in the relation of Eq. 9 are assumed to be fixed in advance.

From the Frisch scheme method, the following expression is considered:

Σψ � Σ~ψ

�
θ ¼ 0

�
(14)

where the noise covariance matrix is given by

Σ~ψ ¼ σy Inaþ1 0

0 σu Inb

" #
(15)

which are approximated by the sample covariance matrix over N samples:

Σ~ψ ≈
1
N

XN

k¼1

ψkψ
T
k (16)

Thus, the Frisch scheme aims at providing suitable noise variances σu and σy such that

Σψ � Σ~ψ

��
results to be a matrix singular positive semidefinite as it is rank-one deficient. On
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Identification (FMID) toolbox recalled below [5]. This study proposes the use of TS fuzzy pro-
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The antecedent fuzzy sets μi that determine the switching among the different submodels i are
estimated from the data clusters [5]. The consequent parameters ai and bi are identified from
the data by means of the methodology proposed in Simani et al. [6]. This identification scheme
exploited for the estimation of the TS model parameters has been integrated into the FMID
toolbox for Matlab® by the authors. This approach is preferable when the TS model of Eq. (8) is
used as predictor, since it derives the consequent parameters via the so-called Frisch scheme,
developed for the errors-in-variables (EIV) structures [6].

Once the description of the monitored process is obtained in the form of Eq. (8), the data-driven
approach for the design of the fuzzy controller proposed in this chapter is presented in Section 3.1.

The second approach exploited for obtaining the mathematical description of the wind turbine
system under investigation is based on a recursive methodology, which will be used for the
design of the second control strategy presented in Section 3.2. An online version of the batch
Frisch scheme estimation methodology summarised above is recalled in the remainder of this
section for estimating the parameters of dynamic EIV models. For the derivation of the adapta-
tion law, an online bias-compensating algorithm is also implemented. Thus, the online Frisch
scheme estimation is generalised to enhance its applicability to real-time implementations.
Moreover, by means of an exponential forgetting factor included in the adaptation law, the
algorithm is able to deal with linear parameter-varying (LPV) structures that are exploited in
connectionwith themodel-based design of the adaptive control scheme, presented in Section 3.2.

Thus, the considered scheme is proposed for the online identification of the process modelled
by the following transfer function G(z):
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defining the polynomials A(z�1) and B(z�1), while z is the discrete-time complex variable.

The parameter vector describing the linear relationship is given by

θ ¼ a1…ana b1…bnb
� �T (10)

whose extended version is defined as in Eq. (11):
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where the subscript k denotes the sample index.

The Frisch scheme provides the estimates of the measurement errors affecting the input and
output signals uk and yk, i.e. σu and σy, and θ for a linear time-invariant dynamic system. Note
that the polynomial orders na and nb in the relation of Eq. 9 are assumed to be fixed in advance.
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the other hand, the system represented by the expression of Eq. (14) can be solved, and θ
represents its solution.

The expression of Eq. (17) is determined:

εk θ
� � ¼ A z�1� �

yk � B z�1� �
uk (17)

while the so-called sample autocovariance is defined in the form of Eq. (18):

rεh,N ¼ 1
N

XN

l¼1

εl θ
� �

εlþh θ
� �

(18)

where the subscript h in Eq. (18) indicates a time-shift.

The online control development requires a recursive estimate of the model parameters
represented by the vector θk of Eq. (9), while the input and output data uk and yk acquired online
by the dynamic process of the wind turbine system. In fact, the adaptive control law computed
at time step k is based on the recursive estimate of a model of the process, which is derived
exploiting the dynamic data up to the sample k. In this way, the algorithm of the Frisch scheme
defined by the expressions of Eqs. (14), (16) and (18) is expressed by means of an online scheme.

Note that the expressions of Eqs. (16) and (18) are required in their recursive form. Therefore,
while the derivation of the online form of the covariance matrix update is easily obtained as in
the form of Eq. (19):

Σ~ψk ¼
k� 1
k

Σ~ψk þ
1
k
ψkψ

T
k (19)

the formulation of the autocovariance expression rεh, k can be obtained recursively for 1 ≤ l ≤ k
only if the approximated expression of Eq. (20) is considered:

εl θk
� �

≈ εl θl
� �

(20)

for l < k. In this way, only the residual εk θk
� �

has to be computed at time step k using the lagged

data in the vector ψk and the updated estimate θk of the model parameters. The online
computation of the expression of the autocovariance matrix of Eq. (21):

rεh, k ¼ k� 1
k

rεk, k�1 þ 1
k
εk θk
� �

εkþh θk
� �

(21)

can be achieved using only the vector εkþh θk
� �

at each time step. The initial values θ0, Σ~ψ0 and

rε0, h for the recursive algorithm are equal to the variables of the classic Frisch scheme batch
procedure.

Since variations of system properties have to be tracked online, in order to cope with time-
varying systems, this chapter considers a further modification of the recursive estimation
scheme. This point can be achieved by placing more emphasis on the more recent data, while
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forgetting the older ones. Therefore, the methodology represented by the expressions of
Eqs. (19) and (21) with the approximation of Eq. (20) is implemented by including the so-
called exponential forgetting factor. This is achieved in practice by defining the new expres-
sions of the sample covariance and autocovariance matrices in the form of Eq. (22):

HΣ~ψk
¼ ω δð ÞΣ~ψk

hεh,k ¼ ω δð Þrεh,k

(
(22)

where ω(δ) is a scaling factor that coincides with k when no adaptation is introduced. In this
way, the updated expressions have the form:

HΣ~ψk
¼ 1� δð ÞHΣ~ψk�1

þ δψkψ
T
k

hεh,k ¼ 1� δð Þhεh, k�1 þ δεk θk
� �

εkþh θk
� �

8<
: (23)

with 0 < δ < 1 representing the forgetting factor. Thus, the adaptive Frisch scheme algorithm is
implemented via Eq. (23) in three steps. First, θ0, Σ~ψ0 and rε0,h with h ≤na are initialised. More-

over, at each recursion step, bymeans of rεh, k, the noise variances σu and σy are computed. Finally,
at each recursion step, θk is determined by solving Eq. (14) via the expression of Eq. (23). In this
way, the vector θk contains the estimates of the model parameter derived at the step k.

The results achieved by the online identification method recalled in this section were obtained
in the Matlab® and Simulink® environments as summarised in Section 4.

Finally, once the parameters θk of the discrete-time linear time-varying model of the nonlinear
dynamic process of Eq. (3) have been computed at each time step k, the adaptive controller is
derived as summarised in Section 3.2.

3.1. Data-driven fuzzy controller derivation

This section describes the derivation of the fuzzy controller model. Once a reasonably accurate
fuzzy description of the considered benchmark has been available, as described above, it is
used offline to directly estimate the nonlinear fuzzy controllers. As already remarked, this
design procedure differs from the approach proposed in Simani [11]. In fact, the control design
proposed in this chapter relies on the so-called model inverse control principle, which is solved
suing the fuzzy identification approach recalled above.

With reference to stable fuzzy systems, whose inverted dynamics are also stable, a nonlinear
controller can be simply designed by inverting the fuzzy model itself. Moreover, when model-
ling errors and disturbances are not present, this controller is able to allow for exact tracking
with zero steady-state errors. However, modelling errors and disturbance effects are always
present in real conditions, which can be tackled by directly identifying the controller model
(i.e. the inverse controlled model) using the FMID approach. Differently from Simani [11], a
robust control strategy is thus achieved by minimising a cost function, which includes the
difference between the desired and controller outputs, and a penalty on the system stability. In
general, a nonconvex optimisation problem has to be solved, which hampers the direct
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the other hand, the system represented by the expression of Eq. (14) can be solved, and θ
represents its solution.

The expression of Eq. (17) is determined:
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where the subscript h in Eq. (18) indicates a time-shift.

The online control development requires a recursive estimate of the model parameters
represented by the vector θk of Eq. (9), while the input and output data uk and yk acquired online
by the dynamic process of the wind turbine system. In fact, the adaptive control law computed
at time step k is based on the recursive estimate of a model of the process, which is derived
exploiting the dynamic data up to the sample k. In this way, the algorithm of the Frisch scheme
defined by the expressions of Eqs. (14), (16) and (18) is expressed by means of an online scheme.

Note that the expressions of Eqs. (16) and (18) are required in their recursive form. Therefore,
while the derivation of the online form of the covariance matrix update is easily obtained as in
the form of Eq. (19):

Σ~ψk ¼
k� 1
k

Σ~ψk þ
1
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ψkψ

T
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the formulation of the autocovariance expression rεh, k can be obtained recursively for 1 ≤ l ≤ k
only if the approximated expression of Eq. (20) is considered:

εl θk
� �

≈ εl θl
� �

(20)

for l < k. In this way, only the residual εk θk
� �

has to be computed at time step k using the lagged

data in the vector ψk and the updated estimate θk of the model parameters. The online
computation of the expression of the autocovariance matrix of Eq. (21):

rεh, k ¼ k� 1
k

rεk, k�1 þ 1
k
εk θk
� �

εkþh θk
� �

(21)

can be achieved using only the vector εkþh θk
� �

at each time step. The initial values θ0, Σ~ψ0 and

rε0, h for the recursive algorithm are equal to the variables of the classic Frisch scheme batch
procedure.

Since variations of system properties have to be tracked online, in order to cope with time-
varying systems, this chapter considers a further modification of the recursive estimation
scheme. This point can be achieved by placing more emphasis on the more recent data, while
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forgetting the older ones. Therefore, the methodology represented by the expressions of
Eqs. (19) and (21) with the approximation of Eq. (20) is implemented by including the so-
called exponential forgetting factor. This is achieved in practice by defining the new expres-
sions of the sample covariance and autocovariance matrices in the form of Eq. (22):

HΣ~ψk
¼ ω δð ÞΣ~ψk

hεh,k ¼ ω δð Þrεh,k

(
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where ω(δ) is a scaling factor that coincides with k when no adaptation is introduced. In this
way, the updated expressions have the form:
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with 0 < δ < 1 representing the forgetting factor. Thus, the adaptive Frisch scheme algorithm is
implemented via Eq. (23) in three steps. First, θ0, Σ~ψ0 and rε0,h with h ≤na are initialised. More-

over, at each recursion step, bymeans of rεh, k, the noise variances σu and σy are computed. Finally,
at each recursion step, θk is determined by solving Eq. (14) via the expression of Eq. (23). In this
way, the vector θk contains the estimates of the model parameter derived at the step k.

The results achieved by the online identification method recalled in this section were obtained
in the Matlab® and Simulink® environments as summarised in Section 4.

Finally, once the parameters θk of the discrete-time linear time-varying model of the nonlinear
dynamic process of Eq. (3) have been computed at each time step k, the adaptive controller is
derived as summarised in Section 3.2.

3.1. Data-driven fuzzy controller derivation

This section describes the derivation of the fuzzy controller model. Once a reasonably accurate
fuzzy description of the considered benchmark has been available, as described above, it is
used offline to directly estimate the nonlinear fuzzy controllers. As already remarked, this
design procedure differs from the approach proposed in Simani [11]. In fact, the control design
proposed in this chapter relies on the so-called model inverse control principle, which is solved
suing the fuzzy identification approach recalled above.

With reference to stable fuzzy systems, whose inverted dynamics are also stable, a nonlinear
controller can be simply designed by inverting the fuzzy model itself. Moreover, when model-
ling errors and disturbances are not present, this controller is able to allow for exact tracking
with zero steady-state errors. However, modelling errors and disturbance effects are always
present in real conditions, which can be tackled by directly identifying the controller model
(i.e. the inverse controlled model) using the FMID approach. Differently from Simani [11], a
robust control strategy is thus achieved by minimising a cost function, which includes the
difference between the desired and controller outputs, and a penalty on the system stability. In
general, a nonconvex optimisation problem has to be solved, which hampers the direct
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application of the proposed approach. However, the optimisation scheme described in Simani
et al. [6] can be exploited, which is based on a parametrised search technique applied at a
higher level to formulate the control objectives and constraints.

In this way, the estimated controller based on the inverse process model and approximated via
a fuzzy prototype is able to describe the complete behaviour of the monitored plant in its
different working conditions (i.e. partial and full load situations). In fact, the rule-based fuzzy
inference system of Eq. (8) has been derived for modelling the wind turbine dynamic process
of Eq. (3) in its equivalent discrete-time form of Eq. (24):

ykþ1 ¼ f xk; ukð Þ (24)

And, in particular, the TS fuzzy representation has the form of Eq. 25:

ykþ1 ¼

PM
i¼1

μ mð Þ
i x mð Þ

k

� �
a mð Þ
i x mð Þ

k þ b mð Þ
i

� �

PM
i¼1

μ mð Þ
i x mð Þ

k

� � (25)

The current state xk = [yk ,…, yk� n + 1, uk� 1,…, uk� n + 1]
T and the input uk represent the inputs

that drive the model of Eq. (25). Its output represents the prediction of the system output at the

next sample yk + 1. The model of Eq. (25) requires the estimated membership functions μ mð Þ
i , the

state x(m) and the parameters a mð Þ
i and b mð Þ

i of the controlled system, which are denoted by the
superscript (m).

Therefore, the input uk generated by the control law feeds the monitored process such that its
output yk + 1 asymptotically follows the desired (reference) output rk + 1. This behaviour is
obtained using the inverse model principle, represented by the expression of Eq. (26):

ukþ1 ¼ f�1 xck; rk
� �

(26)

that is a nonlinear function of the vector xck and the reference rk.

However, in general, with reference to Eq. (26), it is difficult to determine the analytical expres-
sion of the inverse function f�1(�). Therefore, the methodology proposed in this chapter
suggested to exploit the identified fuzzy TS prototype of Eq. (25) to provide the particular state

x mð Þ
k at each time step k. In this way, from this mapping, the inverse mapping ukþ1 ¼ f�1 x cð Þ

k ; rk
� �

is directly identified the form of Eq. (8), if the controlled system is stable, and in particular in the
form of Eq. (27):

ukþ1 ¼

PM
i¼1

μ cð Þ
i x cð Þ

k

� �
a cð Þ
i x cð Þ

k þ b cð Þ
i

� �

PM
i¼1

μ cð Þ
i x cð Þ

k

� � (27)

Adaptive Robust Control Systems226

where the state x cð Þ
k ¼ x mð Þ

k ; rk�1;…; rk�nþ1

h iT
and the reference rk signal represent the inputs of

the identified controller model. The model of Eq. (27) contains the estimated membership

functions μ cð Þ
i and the parameters a cð Þ

i and b cð Þ
i of the identified controller model, which are

denoted by the superscript (c).

In this way, the series connection between the controller model (i.e. the identified inverse
process model) and the process model itself should lead to an identity mapping as in Eq. (28):

ykþ1 ¼ f x mð Þ
k ; uk

� �
¼ f x mð Þ

k ; f�1 x cð Þ
k ; rk

� �� �
¼ rkþ1 (28)

where rkþ1 ¼ f x mð Þ
k ; uk

� �
for a proper value of uk. However, the expression of Eq. (28) holds in

ideal conditions. However, the model-reality mismatch and measurement errors are properly
managed by means of the fuzzy modelling scheme recalled in Section 3. In this way, the

difference ∣rkþ1 � f x mð Þ
k ; uk

� �
∣ can be made arbitrarily small by a suitable selection of the model

parameters, i.e. the fuzzy membership functions μ cð Þ
i , the number of clusters M and the

regressand a cð Þ
i and b cð Þ

i .

Moreover, the fuzzy model of the process is used for providing the state vector x mð Þ
k . Therefore,

the state of the fuzzy controller x cð Þ
k is updated using the process model state x mð Þ

k and the
reference input rk. These computations are performed using standard matrix operations, thus
making the algorithm suitable for real-time implementations [12].

As already remarked, the effects of the model uncertainty and disturbance lead to a different
behaviour of the model with respect to controlled process, thus resulting in a mismatch between
the process outputs yk and their references rk. This mismatch can be compensated by means of
the online mechanism described by the expressions of Eqs. (25) and (27). These issues motivate
the model-based strategy relying on the adaptive algorithm proposed in Section 3.2.

Note finally that the fuzzy controller proposed in this section will replace the baseline wind
turbine regulator of Section 2.

3.2. Model-based adaptive controller derivation

This section describes the model-based adaptive control strategy used in connection with the
online estimation scheme presented above. In more detail, with reference to the wind turbine
system recalled in Section 2, adaptive controllers for processes of the second order (na = n = 2)
are designed. Moreover, the considered adaptive controllers are based on the trapezoidal
method of discretisation.

With reference to Eq. (9), the transfer function of the time-varying controlled system with
na =nb =n = 2 is considered, whose parameters estimated using the online identification appr-
oach recalled above:
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application of the proposed approach. However, the optimisation scheme described in Simani
et al. [6] can be exploited, which is based on a parametrised search technique applied at a
higher level to formulate the control objectives and constraints.

In this way, the estimated controller based on the inverse process model and approximated via
a fuzzy prototype is able to describe the complete behaviour of the monitored plant in its
different working conditions (i.e. partial and full load situations). In fact, the rule-based fuzzy
inference system of Eq. (8) has been derived for modelling the wind turbine dynamic process
of Eq. (3) in its equivalent discrete-time form of Eq. (24):
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And, in particular, the TS fuzzy representation has the form of Eq. 25:
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T and the input uk represent the inputs

that drive the model of Eq. (25). Its output represents the prediction of the system output at the

next sample yk + 1. The model of Eq. (25) requires the estimated membership functions μ mð Þ
i , the

state x(m) and the parameters a mð Þ
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i of the controlled system, which are denoted by the
superscript (m).

Therefore, the input uk generated by the control law feeds the monitored process such that its
output yk + 1 asymptotically follows the desired (reference) output rk + 1. This behaviour is
obtained using the inverse model principle, represented by the expression of Eq. (26):
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(26)

that is a nonlinear function of the vector xck and the reference rk.

However, in general, with reference to Eq. (26), it is difficult to determine the analytical expres-
sion of the inverse function f�1(�). Therefore, the methodology proposed in this chapter
suggested to exploit the identified fuzzy TS prototype of Eq. (25) to provide the particular state

x mð Þ
k at each time step k. In this way, from this mapping, the inverse mapping ukþ1 ¼ f�1 x cð Þ
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is directly identified the form of Eq. (8), if the controlled system is stable, and in particular in the
form of Eq. (27):
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parameters, i.e. the fuzzy membership functions μ cð Þ
i , the number of clusters M and the

regressand a cð Þ
i and b cð Þ

i .

Moreover, the fuzzy model of the process is used for providing the state vector x mð Þ
k . Therefore,

the state of the fuzzy controller x cð Þ
k is updated using the process model state x mð Þ

k and the
reference input rk. These computations are performed using standard matrix operations, thus
making the algorithm suitable for real-time implementations [12].

As already remarked, the effects of the model uncertainty and disturbance lead to a different
behaviour of the model with respect to controlled process, thus resulting in a mismatch between
the process outputs yk and their references rk. This mismatch can be compensated by means of
the online mechanism described by the expressions of Eqs. (25) and (27). These issues motivate
the model-based strategy relying on the adaptive algorithm proposed in Section 3.2.

Note finally that the fuzzy controller proposed in this section will replace the baseline wind
turbine regulator of Section 2.

3.2. Model-based adaptive controller derivation

This section describes the model-based adaptive control strategy used in connection with the
online estimation scheme presented above. In more detail, with reference to the wind turbine
system recalled in Section 2, adaptive controllers for processes of the second order (na = n = 2)
are designed. Moreover, the considered adaptive controllers are based on the trapezoidal
method of discretisation.

With reference to Eq. (9), the transfer function of the time-varying controlled system with
na =nb =n = 2 is considered, whose parameters estimated using the online identification appr-
oach recalled above:
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θk ¼ ba1;ba2;bb1;bb2
h iT

(29)

Note that the subscript k for model and controller parameters will be dropped in order to
simplify equations and formulas.

The control law corresponding to the discrete-time adaptive controller in its difference form of
Eq. (30):

Δek ¼ ek � ek�1

uk ¼ Kp Δek þ Ts

TI

Δek
2

� �
þ uk�1

8<
: (30)

with ek representing the tracking error, with ek = rk� yk, and rk the reference (setpoint) signal. Ts
is sampling time. The controller parameters Kp and TI are here time-varying and derived from
the online model parameters in the vector θk. The control law can be represented also in its
feedback formulation as described by Eq. (31):

uk ¼ q0 ek þ q1 ek�1 þ uk�1 (31)

where the new controller variables q0 and q1 (or Kp and TI) are derived from the relations of
Eq. (32):

q0 ¼ Kp 1þ Ts

2TI

� �

q1 ¼ �Kp 1� Ts

2TI

� �

8>>><
>>>:

(32)

where the parameters Kp and TI are functions of the (time-varying) critical gain and the critical
period of oscillations, respectively, KPu

and Tu:

Kp ¼ 0:6KPu , TI ¼ 0:5Tu (33)

that depend on the time-varying model parameters in the vector θk. In particular, when

considering a second-order model described by its (time-varying) parameters ba2, ba1, bb2 and
bb1, the variables KPu

and Tu required by the Ziegler-Nichols method can be computed at each
time step k from the following relations:

KPu ¼
ba1 � ba2 � 1
bb2 � bb1

Tu ¼ 2πTs

arccosγ
, with γ ¼ ba2

bb1 � ba1bb2
2bb2

8>>><
>>>:

(34)

In this way, the adaptive discrete-time linear controllers of Eq. (30) or (31) are designed on the
basis of the time-varying linear model of Eq. (9) estimated via the online identification scheme
from the data of the nonlinear wind turbine process of Eq. (3).
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Finally, Section 4 will show the achieved results regarding the design and the application of the
adaptive controller to the data from the wind turbine benchmark.

4. Simulation results

This section presents the simulation results achieved with the proposed data-driven and model
methods relying on both the fuzzy modelling technique oriented to the identification of the
fuzzy controller model and the adaptive control strategy using the online estimated models.
The simulations achieved with these regulators are summarised in the following.

Regarding the fuzzy modelling and identification method, the GK clustering algorithm
recalled in Section 3 exploits a number M = 3 of clusters and delays n = 2. These variables were
applied for clustering the first data set consisting of {Pgk,ωgk, βrk}. A number of samples k = 1, 2,
…,N were considered with N = 440� 103. The same number of clusters and shifts were
exploited for clustering the second data set {Pgk,ωgk, τgk}. After this procedure, the structures
of the TS prototypes were derived for each output yk equal to Pgk and ωgk. In this way, the 2
continuous-time outputs y(t) = [ωg(t), τg(t)] of the wind turbine continuous-time model of
Eq. (3) are approximated by two TS fuzzy prototypes of Eq. (8).

The performances of the fuzzy models that are derived using the procedure described above
can be evaluated using the so-called Variance Accounted For (VAF) parameter [5]. In particu-
lar, the TS fuzzy model reconstructing the first output has a VAF index bigger than 90%,
whereas for the second one, it was higher than 99%. This means that the fuzzy prototypes are
able to describe the behaviour of the controlled process with very good precision. These
estimated TS fuzzy models have been used for the derivation of the fuzzy controllers and
applied to the considered wind turbine benchmark.

Two (multiple input single output) MISO fuzzy controller models with two inputs and one
output have been used for the compensation of the blade pitch angle β(t) and the generator
torque τg(t). By using the inverse model principle, they were estimated exploiting the method-
ology recalled in Section 3.1. Again, the GK fuzzy clustering method has led to 2 fuzzy
regulators applied to the data sets {βrk,Pgk,ωgk} and {τgk,Pgk,ωgk}, respectively, with M = 3
clusters and n = 3 lagged signals.

The controller performances were verified and validated via extensive simulations by consid-
ering different data sequences generated via the wind turbine simulator. Table 1 reports the

Recursive algorithm parameter Value

θ 0ð Þ [0.1, 0.15, 0.20, 0.25 0.30, 0.35]T

Σ~ψ 0ð Þ 10�1 I7

δ 0.995

Table 1. Initialisation parameters of the adaptive algorithm.

Robust Control Applications to a Wind Turbine-Simulated System
http://dx.doi.org/10.5772/intechopen.71526

229



θk ¼ ba1;ba2;bb1;bb2
h iT

(29)

Note that the subscript k for model and controller parameters will be dropped in order to
simplify equations and formulas.

The control law corresponding to the discrete-time adaptive controller in its difference form of
Eq. (30):

Δek ¼ ek � ek�1

uk ¼ Kp Δek þ Ts

TI

Δek
2

� �
þ uk�1

8<
: (30)

with ek representing the tracking error, with ek = rk� yk, and rk the reference (setpoint) signal. Ts
is sampling time. The controller parameters Kp and TI are here time-varying and derived from
the online model parameters in the vector θk. The control law can be represented also in its
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(32)
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8>>><
>>>:

(34)

In this way, the adaptive discrete-time linear controllers of Eq. (30) or (31) are designed on the
basis of the time-varying linear model of Eq. (9) estimated via the online identification scheme
from the data of the nonlinear wind turbine process of Eq. (3).
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lar, the TS fuzzy model reconstructing the first output has a VAF index bigger than 90%,
whereas for the second one, it was higher than 99%. This means that the fuzzy prototypes are
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estimated TS fuzzy models have been used for the derivation of the fuzzy controllers and
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Two (multiple input single output) MISO fuzzy controller models with two inputs and one
output have been used for the compensation of the blade pitch angle β(t) and the generator
torque τg(t). By using the inverse model principle, they were estimated exploiting the method-
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regulators applied to the data sets {βrk,Pgk,ωgk} and {τgk,Pgk,ωgk}, respectively, with M = 3
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The controller performances were verified and validated via extensive simulations by consid-
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values of the percent Normalised Sum of Squared tracking Error (NSSE%) index defined in
Eq. (35):

NSSE% ¼ 100

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PN
k¼1

rk � yk
� �2

PN
k¼1

r2k

vuuuuuut (35)

Noting that in partial load operation (region 1), the performance is represented by the com-
parison between the power produced by the generator, yk =Pgk, with respect to the theoretical
maximum power output, rk =Pr. On the other hand, in full load operation (region 2), the
tracking error is given by the difference between the generator speed, yk =ωgk, and its nominal
value, rk =ωnom. The achieved results show the good properties of the designed fuzzy control-
lers, as represented also in Figure 2.

Figure 2 depicts the signal representing generator speed ωg(t) in bold grey line with respect to
its desired value ωnom in dashed black line. It can be noted that in full load conditions, the
fuzzy controllers derived via the data-driven approach lead to tracking errors smaller than the
wind turbine baseline governor recalled in Section 2. In fact, as shown in Figure 1, the baseline
regulator is working in the interval 2200s < t < 3300s. On the other hand, the fuzzy controllers
are exploited during the interval 3300s < t < 4400s, when the tracking error is much lower.

With reference to the second model-based design approach using adaptive solutions, the two
outputs Pg(t) and ωg(t) of the wind turbine continuous-time nonlinear model of Eq. (3) were
approximated by two second-order time-varying MISO discrete-time models of Eq. (9) with
two inputs and one output. Using these one LPV prototypes, the model-based approach for
determining the adaptive controllers recalled in Section 3.2 was exploited and applied to the
wind turbine benchmark of Section 2. Thus, according to Section 3.2, the parameters of the
adaptive controllers were computed online. In particular, for each output, two second-order
(na =nb = 2) time-varying MISO prototypes were identified, and the adaptive regulator param-
eters in Eq. (30) or (31) were computed analytically at each time step k.
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Figure 2. Generator speed (bold grey line) ωg(t) and its reference (dashed black line) ωnom.
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Also in this case, with reference to the adaptive controller structure of Eq. (30) or (31), the
parameters of the online controllers were tuned via the Ziegler-Nichols rules, applied to the
LPV models. In this way, if both the model online parametric identification and the regulator
tuning procedure are exploited, the parameter adaptation mechanisms should lead to good
control performances.

The experiments with the adaptive regulators were simulated in the same situation of the
fuzzy controllers. In this case, three online regulators were exploited for the compensation of
both the blade pitch angle β(t) and the generator torque τg(t), in region 1 and region 2. The
adaptive algorithm described above runs with initial values for its parameters reported in
Table 1.

With reference to the model-based adaptive approach, Figure 3 depicts the setpoint ωg(t) in
bold grey line with respect to its desired value ωnom in dashed black line. By considering the
full load working conditions, the adaptive regulators have replaced the wind turbine baseline
governor at t ≥ 3300s.

Also for the case of the adaptive regulators, Figure 3 highlights that the model-based approach
leads to interesting performances.

In order to analyse the performance of the proposed adaptive strategy, Table 2 reports also the
NSSE values computed for these controllers.

According to the simulation results summarised in Table 2, good tracking capabilities of the
suggested adaptive controllers seem to be reached, and they are better than the fuzzy regulators.
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Figure 3. ωg(t) tracking capabilities in full load conditions with adaptive controllers.

Controller type Partial load (%) Full load (%)

Fuzzy controller 37.17 17.85

Adaptive controller 28.73 13.67

Table 2. Controllers in partial and load operations: NSSE% values.
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5. Conclusion

The chapter addressed two control examples for a wind turbine dynamic simulator, since it
was proposed as benchmark representing a complex dynamic system driven by stochastic
disturbances and uncertain load conditions. Moreover, the aerodynamic models of these
processes are nonlinear, thus making their modelling a challenging problem. Therefore, the
design of control strategies for these complex processes has to consider these aspects. In this
way, the chapter analysed the design of two data-driven and model-based control methodolo-
gies, which represented viable, reliable and robust control schemes for the proposed wind
turbine benchmark. Experiments with the wind turbine simulator were the practical instru-
ments for assessing the most important characteristics of the developed control methodologies.
The obtained results showed that the considered solutions represent viable, robust and reliable
control applications to real wind turbine systems.

Author details

Silvio Simani1* and Paolo Castaldi2

*Address all correspondence to: silvio.simani@unife.it

1 Department of Engineering, University of Ferrara, Italy

2 Department of Engineering, University of Bologna, Italy

References

[1] Johnson KE, Pao LY, Balas MJ, Fingersh LJ. Control of variable–speed wind turbines:
Standard and adaptive techniques for maximizing energy capture. IEEE Control Systems
Magazine. 2006;26(3):70-81. DOI: 10.1109/MCS.2006.1636311

[2] Odgaard PF, Stoustrup J. A benchmark evaluation of fault tolerant wind turbine control
concepts. IEEE Transactions on Control Systems Technology. 2015;23(3):1221-1228

[3] Zhao W, Stol K. Individual blade pitch for active yaw control of a horizontal–axis wind
turbine. Proceedings of the 45th AIAA Aerospace Sciences Meeting and Exhibit; AIAA;
Reno, NV, USA; 2007

[4] Juditsky A, Hjalmarsson H, Beneviste A, Delyon B, Ljung L, Sjöberg J, Zhang Q. Nonlinear
black–box modelling in system identification: A mathematical foundation. Automatica.
1995;31(12):1691-1724

[5] Babuška R. FuzzyModeling for Control. Boston, USA: Kluwer Academic Publishers; 1998

[6] Simani S, Fantuzzi C, Rovatti R, Beghelli S. Parameter identification for piecewise linear
fuzzy models in noisy environment. International Journal of Approximate Reasoning.
1999;1(22):149-167

Adaptive Robust Control Systems232

[7] Landau Y. Adaptive Control. New York: Marcel Dekker; 1979. ISBN: 0-8247-6548-6

[8] Slotine JE, Li W. Applied Nonlinear Control. Prentice-Hall; 1991

[9] Simani S, Castaldi P. Data-driven and adaptive control applications to a wind turbine
benchmark model. Control Engineering Practice. 2013;21(12):1678-1693. Special Issue
Invited Paper. ISSN: 0967–0661. PII: S0967–0661(13)00155–X. DOI: http://dx.doi.org/
10.1016/j.conengprac.2013.08.009

[10] Odgaard PF, Stoustrup J, Kinnaert M. Fault-tolerant control of wind turbines: A bench-
mark model. IEEE Transactions on Control Systems Technology. 2013;21(4):1168-1182.
ISSN: 1063-6536. DOI: 10.1109/TCST.2013.2259235

[11] Simani S. Application of a data-driven fuzzy control design to a wind turbine benchmark
model. Advances in Fuzzy Systems. 2012. (Web: http://www.hindawi.com/journals/afs/
2012/504368/): 2012:1-12. Invited paper for the special issue: Fuzzy Logic Applications in
Control Theory and Systems Biology (FLACE). ISSN: 1687–7101, e–ISSN: 1687-711X.
DOI: 10.1155/2012/504368

[12] Rovatti R, Fantuzzi C, Simani S. High–speed DSP–based implementation of piecewise–
affine and piecewise–quadratic fuzzy systems. Signal Processing Journal. 2000;80(6):
951-963. Special Issue on Fuzzy Logic applied to Signal Processing. DOI: 10.1016/S0165-
1684(00)00013-X

Robust Control Applications to a Wind Turbine-Simulated System
http://dx.doi.org/10.5772/intechopen.71526

233



5. Conclusion

The chapter addressed two control examples for a wind turbine dynamic simulator, since it
was proposed as benchmark representing a complex dynamic system driven by stochastic
disturbances and uncertain load conditions. Moreover, the aerodynamic models of these
processes are nonlinear, thus making their modelling a challenging problem. Therefore, the
design of control strategies for these complex processes has to consider these aspects. In this
way, the chapter analysed the design of two data-driven and model-based control methodolo-
gies, which represented viable, reliable and robust control schemes for the proposed wind
turbine benchmark. Experiments with the wind turbine simulator were the practical instru-
ments for assessing the most important characteristics of the developed control methodologies.
The obtained results showed that the considered solutions represent viable, robust and reliable
control applications to real wind turbine systems.

Author details

Silvio Simani1* and Paolo Castaldi2

*Address all correspondence to: silvio.simani@unife.it

1 Department of Engineering, University of Ferrara, Italy

2 Department of Engineering, University of Bologna, Italy

References

[1] Johnson KE, Pao LY, Balas MJ, Fingersh LJ. Control of variable–speed wind turbines:
Standard and adaptive techniques for maximizing energy capture. IEEE Control Systems
Magazine. 2006;26(3):70-81. DOI: 10.1109/MCS.2006.1636311

[2] Odgaard PF, Stoustrup J. A benchmark evaluation of fault tolerant wind turbine control
concepts. IEEE Transactions on Control Systems Technology. 2015;23(3):1221-1228

[3] Zhao W, Stol K. Individual blade pitch for active yaw control of a horizontal–axis wind
turbine. Proceedings of the 45th AIAA Aerospace Sciences Meeting and Exhibit; AIAA;
Reno, NV, USA; 2007

[4] Juditsky A, Hjalmarsson H, Beneviste A, Delyon B, Ljung L, Sjöberg J, Zhang Q. Nonlinear
black–box modelling in system identification: A mathematical foundation. Automatica.
1995;31(12):1691-1724

[5] Babuška R. FuzzyModeling for Control. Boston, USA: Kluwer Academic Publishers; 1998

[6] Simani S, Fantuzzi C, Rovatti R, Beghelli S. Parameter identification for piecewise linear
fuzzy models in noisy environment. International Journal of Approximate Reasoning.
1999;1(22):149-167

Adaptive Robust Control Systems232

[7] Landau Y. Adaptive Control. New York: Marcel Dekker; 1979. ISBN: 0-8247-6548-6

[8] Slotine JE, Li W. Applied Nonlinear Control. Prentice-Hall; 1991

[9] Simani S, Castaldi P. Data-driven and adaptive control applications to a wind turbine
benchmark model. Control Engineering Practice. 2013;21(12):1678-1693. Special Issue
Invited Paper. ISSN: 0967–0661. PII: S0967–0661(13)00155–X. DOI: http://dx.doi.org/
10.1016/j.conengprac.2013.08.009

[10] Odgaard PF, Stoustrup J, Kinnaert M. Fault-tolerant control of wind turbines: A bench-
mark model. IEEE Transactions on Control Systems Technology. 2013;21(4):1168-1182.
ISSN: 1063-6536. DOI: 10.1109/TCST.2013.2259235

[11] Simani S. Application of a data-driven fuzzy control design to a wind turbine benchmark
model. Advances in Fuzzy Systems. 2012. (Web: http://www.hindawi.com/journals/afs/
2012/504368/): 2012:1-12. Invited paper for the special issue: Fuzzy Logic Applications in
Control Theory and Systems Biology (FLACE). ISSN: 1687–7101, e–ISSN: 1687-711X.
DOI: 10.1155/2012/504368

[12] Rovatti R, Fantuzzi C, Simani S. High–speed DSP–based implementation of piecewise–
affine and piecewise–quadratic fuzzy systems. Signal Processing Journal. 2000;80(6):
951-963. Special Issue on Fuzzy Logic applied to Signal Processing. DOI: 10.1016/S0165-
1684(00)00013-X

Robust Control Applications to a Wind Turbine-Simulated System
http://dx.doi.org/10.5772/intechopen.71526

233



Chapter 12

Adaptive Robust Control of Biomass Fuel Co-
Combustion Process

Konrad Gromaszek and Andrzej Kotyra

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.71576

Provisional chapter

Adaptive Robust Control of Biomass Fuel
Co-Combustion Process

Konrad Gromaszek and Andrzej Kotyra

Additional information is available at the end of the chapter

Abstract

The share of biomass in energy production is constantly growing. This is caused by
environmental and industry standards and EU guidelines. Biomass is used in the pro-
cess of co-firing in large power plants and industrial installations. In the existing power
stations, biomass is milled and burned simultaneously with coal. However, low-emission
combustion techniques, including biomass co-combustion, have some negative side
effects that can be split into two categories. The direct effects influence the process control
stability, whereas the indirect ones on combustion installations via increased corrosion or
boiler slagging. The effects can be minimised using additional information about the
process. The proper combustion diagnosis as well as an appropriate, robust control
system ought to be applied. The chapter is devoted to the analysis of modern, robust
control techniques for complex power engineering applications.

Keywords: adaptive control, model predictive control, complex system, co-combustion,
energy, controllability, robust

1. Introduction

Regarding the fact that coal is still themain fuel used in electricity generation around the world
and it contains impurities that significantly increase pollutant emissions, new combustion tech-
niques are developed, e.g. air staging, reburning and flue gas circulation [1]. Fossil fuel deple-
tion forces the use of renewable fuels such as biomass; in existing power stations, biomass is
milled and burned simultaneously with coal. However, low-emission combustion techniques,
including biomass co-combustion, have negative effects: directly influence on process control
stability/efficiency and indirectly on combustion installations via increased corrosion or boiler
slagging [2]. These effects can be minimised using additional information about the process that
makes combustion monitoring (diagnosis) system necessary to apply [3].
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Abstract

The share of biomass in energy production is constantly growing. This is caused by
environmental and industry standards and EU guidelines. Biomass is used in the pro-
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stations, biomass is milled and burned simultaneously with coal. However, low-emission
combustion techniques, including biomass co-combustion, have some negative side
effects that can be split into two categories. The direct effects influence the process control
stability, whereas the indirect ones on combustion installations via increased corrosion or
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system ought to be applied. The chapter is devoted to the analysis of modern, robust
control techniques for complex power engineering applications.
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The combustion efficiency of pulverised fuel depends on several parameters. The commonly
applied, low-emission techniques use recirculation vortexes that lengthen the paths of the coal
grains passing through the flame to minimise generation of thermal oxides of nitrogen (NOx).
To make co-combustion of pulverised coal more efficient and environment-friendly, it is nec-
essary to measure its key parameters.

The information taken at the output is delayed and averaged. Although there are several
combustion diagnostic direct techniques, the most of them are expensive or impossible to
utilise under industrial conditions. The radiation emitted by the flame reflects the combustion
process occurring in chemical reactions and physical processes. The fast and minimally inva-
sive optical methods allow to use image processing-based information in process control
system. Such approach gives non-delayed and spatially selective additional information about
the ongoing combustion process. The still and apparent position of flame is the result of
dynamic equilibrium between the local flame propagation speed and the speed of the incom-
ing fuel mixture. It allows assuming that the shape of a flame can be an indicator of the
combustion process, occurring under certain conditions.

As a result, the relationship between the parameters describes the variation of the flame and
the temperature of the exhaust gas in the chamber or the amount of air flow in the secondary
factor. Thus, if the temperature is slowly varying value, having an inert nature, the reasonable
approach is including a single or a set of the image parameters that would provide fast
information to the synthesis of the controller. Due to the incomplete knowledge about the
control plant or various changes in its performance, the control system with fixed parameters
is insufficient. Then, it is recommended to use the adaptive control approach. The required
knowledge of the complex nonlinear object may be achieved using different methods but due
to the process, they ought to be robust and secure. It seems to be a very interesting application
for robust adaptive control algorithms.

2. Process models and uncertainties

Every detailed aspect of the real process cannot be adequately contemplated by mathematical
models. Simplifying assumptions have to be made, especially due to the control purposes,
where models with simple structures and sufficiently small size have to be used regarding to
the available control techniques and real-time considerations. Therefore, mathematical control
models can only describe the dynamics of the process in an approximate way.

Majority of modern control techniques need a control model of the plant with fixed structure
and parameters, which is used throughout the design stage. For an exact description of the
plant (neglecting external disturbances), processes could be controlled by an open-loop con-
troller. However, feedback is necessary for process control because of the external perturba-
tions and model inaccuracies in all real processes.

The objective of robust control is to design controllerswhich preserve stability and performance in
spite of themodelling inaccuracies or uncertainties.Although the use of feedback contemplates the
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inaccuracies of the model simplicity, the term of robust control is used in [4, 5] to describe control
systems that explicitly consider the discrepancies between the model and the real processes.

Depending on the technique used to design the controllers, there are different approaches in
modelling uncertainties. The most extended techniques are frequency response uncertainties
and transfer function parametric uncertainties. Most of the cases assume that the plant can be
exactly described by one of the models belonging to a family. That is, if the family of models is
composed of linear models, the plant is also linear. In case of model predictive control (MPC)
approach, the uncertainties can be defined about the prediction capability of the model.

Frequency uncertainties are usually described by a band around nominal frequency response.
The plant frequency response is presumed to be included in the band. In case of parametric
uncertainties, each coefficient of the transfer function is presumed to be bounded by uncer-
tainties limit. The plant is then presumed to have a transfer function with parameters within
the uncertainty set. There is an assumption that the plant is linear with a frequency response
within the uncertainty band for the first case and the plant is linear and of the same order as
that of the family of models for the case of parametric uncertainties.

The control models in MPC are used to predict what is going to happen: future trajectories.
The appropriate way to describe uncertainties in this context seems to be the model (or a set of
models) that instead of generating a future trajectory may also generate the band of trajectories
in which the process of trajectory will be included when the same input is applied, in spite of
uncertainties. In case of availability of good process model, this band is narrow, and the
uncertainty level is low.

The most general way of posing problem in MPC considers a process whose behaviour is
dictated by the equation:

y tþ 1ð Þ ¼ f y tð Þ;…; y t� ny
� �

; u tð Þ;…; u t� nuð Þ; z tð Þ;…; z t� nzð Þ;ψ� �
(1)

where y(t)∈Y and u(t)∈U are n and m vectors of outputs and inputs, ψ∈Ψ is a vector of
parameters, possibly unknown, and z(t)∈Z is a vector of possibly random variables.

Consider the model or family of models, for the process described by:

by tþ 1ð Þ ¼ bf y tð Þ;…; y t� nnað Þ; u tð Þ;…; u t� nnbð Þ; θð Þ (2)

where by tþ 1ð Þ is the prediction of output vector for instant t + 1 generated by the model bf is a
vector function, usually simplification of f, nna and nnb are the number of past outputs and
inputs considered by the model and θ∈Θ is a vector of uncertainties about the plant. Variables
that are although influencing the plant dynamics are not considered in the model due to the
necessary simplifications or for the other reasons are represented by the z(t).

The dynamics of the plant in (1) are completely described by the family of models (2) if for any
y(t),⋯, y(t� ny)∈Y, u(t),⋯, u(t� nu)∈U, z(t),⋯, z(t� nz)∈Z and ψ∈Ψ, there is a vector of
parameters θi∈Θ such that:
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f y tð Þ;…; y t� ny
� �

; u tð Þ;…; u t� nuð Þ; z tð Þ;…; z t� nzð Þ;ψ� �

¼ bf y tð Þ;…; y t� nnað Þ; u tð Þ;…; u t� nnbð Þ; θð Þ
(3)

The way in which uncertainties parameter θ and its domain Θ are defined mainly depends on

the structures of f and bf and on the degree of certainty about the model. The following are the
most popular structures in MPC approaches [5]:

• Truncated impulse response uncertainties—Suitable when the plant model is nonlinear
and linear (obtained at different operating regimes), so the plant is described by a linear
combination q known stable linear time-invariant plants with unknown weighting θj.

• Matrix fraction description uncertainties—Frequently, the state space description is used
and each of the entries of the transfer matrix is characterised by its static gain, time
constant and dead time. Bounds on the coefficients of matrices A(z�1) and B(z�1) can be
obtained on the gain and time constants. However, uncertainties about the dead time are
difficult to handle. If the uncertainty band about the dead time is smaller, the pure delay
of the discrete-time model does not have to be changed. The fractional delay time can be
modelled by the Pade expansion and the uncertainty bound of these coefficients can be
calculated from the uncertainties of the dead time. It is imperfect for real-time applications
due to min-max problem solving. If the uncertainties only affect polynomial matrix B, the
prediction equation is an affine function of the uncertainty parameter and the resulting
min-max problem is less computationally expensive.

• Global uncertainties—Based on assumption that all modelling errors are globalised in a
vector of parameters, the process can be approximated by a linear model in the sense that
all trajectories will be included in bands that depend on θ(t). If the process variables are
bounded, the global uncertainties are also be bounded.

The objective of prediction control is to compute the future control sequence u(t), u(t + 1),⋯,
u(t +Nu) in such way that the optimal j step ahead predictions y(t + j| t) are driven close to
w(t + j) for the prediction horizon. The way in which system approach the desired trajectories is
indicated by the function J which depends on the present and future control signals and
uncertainties. Usually, for the stochastic type of the uncertainty, the function J minimization
for the most expected situation, supposing that the future trajectories are going to be the future
expected trajectories. In case bounded uncertainties are considered explicitly, bounds on the
predictive trajectories can be calculated and more robust control would be obtained when
controller tried to minimise the objective function for the worst situation, by solving:

min
u∈U

max
θ∈Θ

J u;θð Þ (4)

The function to be minimised is the maximum of the norm that measures how well the process
output follows the reference trajectories.

Different types of norms can be used for this purpose, e.g. quadratic cost function [6], ∞-∞
norm [7] or 1-norm [8].
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In case quadratic cost function of θ for each value of u, used Hessian matrix (see [6]) can be
assured to be positive definite. This implies that the function is convex and there are no local
optimal solutions different from the global optimal solution. One of the main problems of
nonlinear programming algorithms, the presence of local minima, is avoided. Such an
approach can be prohibitive for real-time applications with long costing and control horizons.
Of course, the problem gets more complex when the uncertainties on the input and output
parameters are considered.

Campo and Morari have proved that the ∞-∞ norm reduces min-max problem; therefore, it
requires fewer computation and can be solved using standard algorithms. Although ∞-∞ norm
seems to be appropriate in terms of robustness, it is only concerned with maximum deviation
and the rest of the behaviour is not taken explicitly into account. Other types of norms are
more adequate for measuring the performance. Alwright [8] has shown that this method can
be extended to the 1-norm.

2.1. Robustness by imposing constraints

To guarantee robustness in MPC is imposing the stability conditions for all possible
realisations of uncertainties [9]. The key ingredients of the stabilising MPC are a terminal set
and a terminal cost. The terminal state (i.e. the state at the end of the prediction horizon) is
forced to reach a terminal set that contains the steady state. An associated terminal cost is
added to the cost function.

The robust MPC consists of finding a vector of future control moves such that it minimises an
objective function (including a terminal cost satisfying the stability conditions [9]) and forces
the final state to reach the terminal region for all possible values of uncertainties, that is:

min
u∈U

J x tð Þ; uð Þ subject to∀θ∈Θ
Ru ≤ r þ Vx tð Þ
x tþNð Þ∈ΩT

�
(5)

where the terminal set ΩT is usually defined by a polytope ΩT≜ {x :RTx ≤ rT}. The inequality
Ru ≤ r +Vx(t) contains the operating constraints. If there are operating constraints on the
process output and/or state, vector r is an affine function of the uncertainties θ.

In general, industrial processes are nonlinear, but most of MPC applications are based on the
use of linear models. There are two reasons for this:

• The identification of a linear model based on process data is relatively easy.

• Linear models provide good results when the plant is operating in the neighbourhood of
the operating point. In the MPC appliances, the objective is to keep the process around the
stationary state rather than perform frequent changes from one operating point to
another, and therefore, a precise linear model is enough. The use of linear model together
with a quadratic objective function gives rise to a convex problem whose solution is well
studied and implemented in many commercial products. The existence of algorithms that
can guarantee a convergent solution in a time shorter than sampling time is crucial in
processes with the great number of variables.
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� �
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However, the dynamic response of the resulting linear controllers is unacceptable when
applied to processes that are nonlinear to varying degrees of severity. Despite the fact that in
many situations the process will be operating in the neighbourhood of a steady state, and
therefore a linear representation will be adequate, there are some very important situations
where it does not occur. There are processes for which the nonlinearities are so severe and so
crucial to the closed loop stability that a linear model is not sufficient.

3. Robust control of biomass fuel co-combustion

The design of stabilising controllers for nonlinear controllers with known and unknown
constant parameters has significant improvement within the last decades. It involves design
techniques such as adaptive feedback linearization [10–12], adaptive backstepping [13–15],
robust Lyapunov functions (CLFs and RCLFs) [16–19], nonlinear damping and swapping [14,
20] as well as switching adaptive control [21, 22]. They are applicable for globally stabilising
controllers for single input feedback linearizable systems [10, 11, 22] and parametric-strict-feed-
back systems [13–15]. Despite this, the problem of adaptive control of a big class of nonlinear
systems still remains unexplored.

The procedure presented in Ref. [23] for designing robust adaptive controllers for a large class
of multi-input nonlinear systems with exogenous bounded input disturbances results in
approach that combines the theory of control Lyapunov functions and the switching adaptive
controller to overcome the problem of computing the control law in the case where estimation
model becomes uncontrollable.

It is important that the control law depends on estimates of the Lie derivative LgV, which
depends both on the system vector-fields and robust control Lyapunov function (RCLF) V.
The class of systems for which the proposed approach is applicable can be characterised by the
following assumption: LgV depends linearly on unknown constant parameters, where g denotes
the input vector field and V is CLF (RCLF) for the system.

Contrary to the classical adaptive approach where the control law depends on estimates of the
system vector-fields, in the presented case, it depends on estimates of the RCLF term [23]. LgV
depends on both system vector-fields and RCLF function V.

On the one hand, the main advantage of such approach is that Lyapunov inequalities relating
to the parameter estimation errors and the time derivative of the RCLF are easy to handle. But
on the other hand, the designed controllers depend critically on the knowledge of LgV. In case
of adaptive versions of such controllers, there is the risk of failure regarding to the fact that the
estimate of LgV may have a different sign at certain times than the actual LgV. Similarly, when
the estimate of LgV is close to zero, the actual LgV is not. Such divergences imply uncontrolla-
bility of the estimation model, even if the actual model is not.

To overcome these problems, the switching control law is used, which is modified version of
control law presented in Ref. [22]. Such control law approximately switches between two adap-
tive controllers, which have the following properties: (1) both controllers behave approximately
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the same in the nonadaptive case and (2) when one of these controllers becomes nonimplemen-
table, the other one is implementable.

The proposed approach is significant because it constructs globally stabilising controllers for a
wider class of plants than multi-input feedback linearizable systems and parametric-pure-feedback
systems and can be expressed as:

_x ¼ Fxþ G ϑτ
1l0 xð Þ þ ϑτ

2l1 xð Þ� �
u, (6)

where x∈Rnand u∈Rmdenote the state and the control input vectors, F, G, ϑi, i = 1, 2 are
constant unknown matrices and l0, l1 are continuous matrix functions, non-singular for all x.

The existing adaptive designs guarantee [10–12] closed-loop stability only if the constant
matrices G, ϑ2 are known.

In case of the parametric-pure-feedback system, denoted by:

_x1 ¼ xiþ1 þ θTf i xi;…; xiþ1ð Þ 1 ≤ i ≤n� 1

_xn ¼ θTf n xð Þ þ θTɡn2 xð Þ þ ɡn1 xð Þ� �
u0

(7)

where θ is a vector of unknown constant parameters, x denotes the state vector of the system
and fi, ɡni are continuous functions. The global stability procedures, presented in [13, 15, 20],
guarantee the global stability only if the input vector field θTɡn2(x) +ɡn1(x) is independent θ
and the functions fi are independent of xi + 1.

For the problem formulation, the nonlinear system of the following form is considered:

_x ¼ f xð Þ þ ɡ xð Þuþ ɡw xð Þw, (8)

where x∈Rn, u∈Rmand w∈Rk denote vectors of system states, control inputs and distur-
bances and f, g, gw are C1 vector-fields of appropriate dimensions. We assume that the
disturbance vector w is bounded. The control objective is to find the control input u as a
function of x such that all closed-loop signals are bounded and x! 0 as t!∞. Since w(t) 6¼ 0,
t ≥ 0 and is assumed to be any general unknown bounded continuous time function.

The system (8) is robustly asymptotically stabilizable (RAS) when there exists a control law u = k
(x), where k is appropriate feedback, such that the closed-loop solutions are robustly globally
uniformly asymptotically stabilizable (RGUAS), according to definitions given in [16, 24].

Other approaches involve artificial intelligence methods to guarantee robust adaptive control
for MIMO nonlinear systems. Fuzzy logic controllers have proven to have great potential in
applications to complex or poorly modelled systems. Wang andMendel in [25, 26] have started
studies regarding fuzzy control of uncertain nonlinear systems. According to Wang [26], it is
possible to find control law to achieve a stable control loop system. Chiu [27] proposed a
universal fuzzy approximator for feedback cancellation, and the stability is guaranteed by
Lyapunov’s method. While the system is composed of tunable fuzzy sets, the approach is
called Mamdani fuzzy approximation (MFA) control. Such a MFA controller is often extended
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However, the dynamic response of the resulting linear controllers is unacceptable when
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to robust adaptive controllers due to [28, 29], but this requires a large number of fuzzy rules to
achieve satisfactory approximator. To cope this problem, in [30–33], Takagi-Sugeno fuzzy
approximator (TSFA) is involved. The invertible fuzzy approximated input matrix needs to be
imposed in case of MIMO systems [34–36]. Furthermore, some examples of combining fizzy
adaptive and sliding mode control can be found in [37, 38]. The examples of robust fuzzy
adaptive control schemes with guaranteed H∞ control performance for a specific class of
MIMO nonlinear systems can be found in [39–41].

4. Flame images-based biomass-coal combustion characterisation

The efficiency of pulverised fuel depends on several parameters. The commonly applied, low-
emission techniques of pulverised coal combustion use recirculation vortexes that lengthen the
paths of the coal grains passing through the flame to minimise generation of thermal oxides of
nitrogen (NOx). To make pulverised coal combustion more efficient and environment friendly,
it is necessary to measure its key parameters. The information taken from the output (exhaust
gas collector) is delayed and averaged. In Ref. [42], several combustion diagnostic direct
techniques are presented; the most of them are impossible to utilise under industrial conditions
or are expensive. Fast and minimally invasive optical methods allow using image processing-
based information in process control system [43].

Combustion tests were done in a 0.5 MWth (megawatt of thermal) research facility, enabling
scaled down (10:1) combustion conditions with a swirl burner. The cylindrical shape combus-
tion chamber has the following dimensions: 2.5 m long and 0.7 m in diameter. There is a low-
NOx burner mounted horizontally at the front wall with 0.1 m in diameter. The stand has the
necessary fuel supply systems: primary and secondary air, coal and oil. Previously prepared
pulverised coal is dumped into the coal feeder bunker. Additionally, after passing through the
feeder, straw is mixed with coal.

Two lateral inspection openings on both sides of the combustion chamber provide image
acquisition. The CMOS sensor-based high-speed camera was placed near burner’s nozzle (see
Figure 1), because this area was considered as the crucial one. The 0.7 m length borescope was
engaged in the transfer of the flame images from the inside of the combustion chamber. The
camera acquired up to 500 frames per second at its maximal resolution (1280 � 1024 pixels).
The optical system was cooled with water jacket. Additionally, purging air was used to avoid
dustiness of optical elements of the probe.

To comply with standards, the combustion test included the following steps. First, the com-
bustion chamber was warmed up by burning oil. After reaching the proper temperature level,
the oil supply was switched off [44], and coal and biomass mixture supplied by the primary air
was delivered to the burner. While the primary air was used for fuel feeding, the excess air
coefficient was determined through the secondary air flow.

Several variants were taken into consideration, where thermal power (Pth) and excess air
coefficient (λ) were set independently for known biomass content. It is notable that the λ was
defined as quotient the mass of air to combust 1 kg of fuel to the mass of stoichiometric air.
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The study was conducted for three exact thermal power values (250, 300 and 400 kW) at the
object’s output and certain excess air coefficient (0.65, 0.75, and 0.85).

The tests covered two fuel mixtures containing 10% and 20% of biomass (straw), respec-
tively. The research assumed that biomass physical properties (like particle size, inherent
moisture, etc.) as well as all the image acquisition parameters (such as frame rate, camera
gain and exposure time) remained unchanged. Flame images acquisition covered different
fuels mixtures in every variant of the combustion facility. In order to guarantee online
algorithm controllability, the images pixel amplitude was limited to 0–255 range due to 8-bit
grayscale conversion. The flame area within each frame of the acquired image sequence was
determined on the basis of pixel amplitude to distinguish the flame as far brighter than any
other registered objects within the field of view of the borescope. Thus, a sum of all the pixels
contained within the bright region defined the flame area. Coordinates of flame area centre
(x, y) are calculated as the mean value of the line or column coordinates, respectively, of all
flame area pixels. Flame contour length was defined as a sum of all boundary pixels, assum-
ing that the distance between two neighbouring contour points parallel to the coordinate axes
is rated 1.

Changes of flame area that were obtained for fuel mixtures with 10% and 20% content of
biomass obtained for different values of thermal power and excess air coefficient are presented
in Figures 2 and 3, respectively. Every combustion state defined by set of constant values of
Pth, λ, and biomass content was represented by 2000 images.

Raise of thermal power of combustion facility causes increasing of flame area, as shown in
Figures 2a and 3a.

Rise of thermal load also affects coordinates of the flame area centre, especially the
x-coordinate for coal with 10% of biomass only indicating that the distance between flame
front and burner nozzle increases (Figure 2c). For the other fuel mixture tested, the flame
position was more stable (Figure 3c and d).

Figure 1. View of combustion facility: (a) left side, (b) right side with the installed camera.
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necessary fuel supply systems: primary and secondary air, coal and oil. Previously prepared
pulverised coal is dumped into the coal feeder bunker. Additionally, after passing through the
feeder, straw is mixed with coal.

Two lateral inspection openings on both sides of the combustion chamber provide image
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Figure 1), because this area was considered as the crucial one. The 0.7 m length borescope was
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The optical system was cooled with water jacket. Additionally, purging air was used to avoid
dustiness of optical elements of the probe.

To comply with standards, the combustion test included the following steps. First, the com-
bustion chamber was warmed up by burning oil. After reaching the proper temperature level,
the oil supply was switched off [44], and coal and biomass mixture supplied by the primary air
was delivered to the burner. While the primary air was used for fuel feeding, the excess air
coefficient was determined through the secondary air flow.

Several variants were taken into consideration, where thermal power (Pth) and excess air
coefficient (λ) were set independently for known biomass content. It is notable that the λ was
defined as quotient the mass of air to combust 1 kg of fuel to the mass of stoichiometric air.

Adaptive Robust Control Systems242

The study was conducted for three exact thermal power values (250, 300 and 400 kW) at the
object’s output and certain excess air coefficient (0.65, 0.75, and 0.85).

The tests covered two fuel mixtures containing 10% and 20% of biomass (straw), respec-
tively. The research assumed that biomass physical properties (like particle size, inherent
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Low values of the flame area and contour length as well as sudden drops of coordinates of
flame centre area observed for Pth = 250 kW and λ = 0.85 point to stability problems, which
occurred during combustion tests.

Another important factor is variability of the flame parameters discussed, that were calculated
for each combustion state.

Amount of excess air coefficient significantly affects combustion process. However, the mean
value of flame area has different dependencies on λ for the different values of thermal power.
For Pth = 400 kW, the flame area decreases when excess air coefficient increases for fuel
mixtures with 10% and 20% of biomass.

Variability of flame contour length is almost the same as it does in the case of flame area.

Changes of the flame centre position are different for the examined variants. For biomass
content of 20%, the standard deviation of the discussed parameter is greater, especially for
greater λ and thermal power value.

Comparing the mean values of flame area for the same excess air coefficient, it could be
observed that flame area is larger for fuel mixtures with higher biomass content. This is because
biomass contains more volatile contents comparing to coal.

Figure 2. Flame area (a), contour length (b) and coordinates of flame area centre (c and d) obtained for different states of
combustion process—coal with 10% content of biomass.
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The studies have shown that possible unstable combustion rely to optical parameters (e.g.
flame area, contour length and flame centre coordinates), similarly to higher excess air coeffi-
cients, regardless the thermal power (Figures 2 and 3). Themore biomass was added (Figure 3),
the sudden changes of the discussed parameters were observed. This indicates that unstable
combustion is a serious problem.

The way the flame area was defined, directly influences on the achieved quantitative parame-
ter values of the flame area and its contour length. Mounting the camera perpendicularly to the
burner axis allowed to estimate vital information about combustion process state [44–48].
These were the distance between burner and flame ignition point [45, 48] as well as spread
angle of the flame. In industrial practice for full-scale power boilers, it is hard to install the
camera close to a burner, because it involves disturbances in the boiler shield. So, the alterna-
tive camera set-up was tested.

5. Robust adaptive control of co-combustion process, using optical signals

For the proper boiler’s power operation, the opportunity to assess the quality of combustion is
critical [49]. The combustion flow in layers influences on the speed of chemical reactions, heat

Figure 3. Flame area (a), contour length (b) and coordinates of flame area centre (c and d) obtained for different states of
combustion process—coal with 20% content of biomass.
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transfer efficiency, flame stability and the generation of NOx and CO. According to sources
[49–51], the type of burner, fuel type and the control method have the crucial effect on the
formation of combustion aerodynamics.

Low-emission burners use the reducing properties of enriched flame by the organisation of
under stoichiometric combustion zones using air or fuel staging. However, it should be noted
that dust excess conditions may deteriorate and increase the unburnt loss.

Considering both environmental aspects and factors mentioned above, there is a need for a
novel combustion process control system. Its specific requirements are based on the use of
combustion information obtained both from conventional instrumentation and innovative
techniques.

Ensuring the flame stability and the fault states, detection seems to be the most important
parameters from the technological point of view. It affected the use of video technology and
fibre-optic probes to complete the diagnostic information about the flame for the control
system. In order to provide online, normative, emission constraints, the quantitative informa-
tion on the concentration of nitrogen oxides (NOx), carbon oxides (CO) and sulphur dioxide
(SO2) is equally important. Apart from the importance of the process state appropriate param-
eters selection, the selection and placement of measuring devices in such difficult industrial
conditions stand a separate issue.

The change of the co-combustion process organisation stands the most popular NOx emissions
reducing method. However, it causes negative consequences for the boiler operation. This
results in the higher unburnt loss, increased CO emissions, the increased slagging, evaporator
corrosion and instability of the flame.

Due to the fact that these phenomena are undesirable or even dangerous for the boiler, it is
very difficult to achieve NOx reduction at an appropriate level. Introducing the appropriate
monitoring and control system can be a solution to the problem. The advanced combustion
control systems introduce additional structural modifications and signals in the form of sepa-
rate air flow to individual burners, OFA nozzles and mill load or additional signals from the
exhaust gas analysers such as NOx, CO, and SO2. Due to the fact that the excess air determines
the amount of NOx generated in the coal boiler energy [49, 52], the combustion process control
in a single burner would be the advantage.

The combustion process occurring in chemical reactions and physical processes can be
reflected via radiation emitted by the flame. In the current state of the art, non-delayed and
spatially selective additional information about the ongoing combustion process can be deliv-
ered non-invasively only using optical or acoustic diagnostic methods. It is possible to include
determination of the air-fuel ratio, the quantity of heat release and temperature regarding the
spectrum of flames in the visible emission. The image processing-based approach seems to be
particularly important, because still and the apparent position of the flame stands the result of
a dynamic equilibrium between the local flame propagation speed and the speed of the
incoming fuel mixture. On this basis, it is assumed that the flame front position changes may
be an indicator of this balance imminent distortion, occurring under certain conditions [53–56].
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A potential problem of complex control systems, for example, the combustion process, is
difficult (and thus is not full) measuring the physical-chemical quantities. In the proposed
solution, a classical approach is supplemented with information about the image parameters
flame, registered a high-speed camera.

As a result, the analyses highlighted the relationship between the parameters that describe the
variation of the flame and the temperature of the exhaust gas in the chamber or the amount of
air flow in the secondary factor. Thus, if the temperature is slowly varying size, having an inert
nature, the synthesis of the controller can be used quick-picture (actually a parameter or group
of the image parameters).

Primary air is used mainly for delivering pulverised coal to the burner nozzle, whereas
secondary air is used for regulation purposes. Input parameters, such as the coal-biomass
mixture and air flows, were changed several times during the tests to create various combus-
tion states.

Due to the incomplete knowledge of the control object or its rapid changes in performance, the
adaptive control seems to be a reasonable approach.

The nonlinear autoregressive network with exogenous inputs (NARX) is a recurrent dynamic
network, with feedback connections enclosing several layers of the network. The NARX model
is based on the linear ARX model, which is commonly used in time-series modelling. The
defining equation for the NARX model is as follows:

y tð Þ ¼ f y t� 1ð Þ;…; y t� ny
� �

; u t� 1ð Þ;…; y t� nuð Þ� �
, (9)

where the next value of the dependent output signal y(t) is regressed on previous values of the
output signal and previous values of an independent (exogenous) input signal. The NARX
model can be implemented using a feedforward neural network to approximate the function f.
This implementation also allows for a vector ARX model, where the input and output can be
multidimensional.

The output of the NARX network can be considered as an estimate of the output of the
modelled nonlinear dynamic system. The output is fed back to the input of the feedforward
neural network as part of the standard NARX architecture. Regarding to the fact that the true
output is available during the training of the network, it is possible to create a series-parallel
architecture (see [56]), in which the true output is used instead of feeding back the estimated
output.

The custom architecture used for further analyses is the model reference adaptive control
(MRAC) system. Suchamodel reference control architecture has twosubnetworks (seeFigure 4).
One subnetwork is themodel of the plant to be controlled. The other subnetwork is the controller.
Obtaining the trained NARX plant model, it is possible to create the total MRAC system and
insert the NARX model inside and then add the feedback connections to the feedforward
network. The next stagewas focused on training of controller subnetwork.
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transfer efficiency, flame stability and the generation of NOx and CO. According to sources
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formation of combustion aerodynamics.

Low-emission burners use the reducing properties of enriched flame by the organisation of
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that dust excess conditions may deteriorate and increase the unburnt loss.

Considering both environmental aspects and factors mentioned above, there is a need for a
novel combustion process control system. Its specific requirements are based on the use of
combustion information obtained both from conventional instrumentation and innovative
techniques.

Ensuring the flame stability and the fault states, detection seems to be the most important
parameters from the technological point of view. It affected the use of video technology and
fibre-optic probes to complete the diagnostic information about the flame for the control
system. In order to provide online, normative, emission constraints, the quantitative informa-
tion on the concentration of nitrogen oxides (NOx), carbon oxides (CO) and sulphur dioxide
(SO2) is equally important. Apart from the importance of the process state appropriate param-
eters selection, the selection and placement of measuring devices in such difficult industrial
conditions stand a separate issue.

The change of the co-combustion process organisation stands the most popular NOx emissions
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the amount of NOx generated in the coal boiler energy [49, 52], the combustion process control
in a single burner would be the advantage.

The combustion process occurring in chemical reactions and physical processes can be
reflected via radiation emitted by the flame. In the current state of the art, non-delayed and
spatially selective additional information about the ongoing combustion process can be deliv-
ered non-invasively only using optical or acoustic diagnostic methods. It is possible to include
determination of the air-fuel ratio, the quantity of heat release and temperature regarding the
spectrum of flames in the visible emission. The image processing-based approach seems to be
particularly important, because still and the apparent position of the flame stands the result of
a dynamic equilibrium between the local flame propagation speed and the speed of the
incoming fuel mixture. On this basis, it is assumed that the flame front position changes may
be an indicator of this balance imminent distortion, occurring under certain conditions [53–56].
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A potential problem of complex control systems, for example, the combustion process, is
difficult (and thus is not full) measuring the physical-chemical quantities. In the proposed
solution, a classical approach is supplemented with information about the image parameters
flame, registered a high-speed camera.

As a result, the analyses highlighted the relationship between the parameters that describe the
variation of the flame and the temperature of the exhaust gas in the chamber or the amount of
air flow in the secondary factor. Thus, if the temperature is slowly varying size, having an inert
nature, the synthesis of the controller can be used quick-picture (actually a parameter or group
of the image parameters).

Primary air is used mainly for delivering pulverised coal to the burner nozzle, whereas
secondary air is used for regulation purposes. Input parameters, such as the coal-biomass
mixture and air flows, were changed several times during the tests to create various combus-
tion states.

Due to the incomplete knowledge of the control object or its rapid changes in performance, the
adaptive control seems to be a reasonable approach.

The nonlinear autoregressive network with exogenous inputs (NARX) is a recurrent dynamic
network, with feedback connections enclosing several layers of the network. The NARX model
is based on the linear ARX model, which is commonly used in time-series modelling. The
defining equation for the NARX model is as follows:

y tð Þ ¼ f y t� 1ð Þ;…; y t� ny
� �

; u t� 1ð Þ;…; y t� nuð Þ� �
, (9)

where the next value of the dependent output signal y(t) is regressed on previous values of the
output signal and previous values of an independent (exogenous) input signal. The NARX
model can be implemented using a feedforward neural network to approximate the function f.
This implementation also allows for a vector ARX model, where the input and output can be
multidimensional.

The output of the NARX network can be considered as an estimate of the output of the
modelled nonlinear dynamic system. The output is fed back to the input of the feedforward
neural network as part of the standard NARX architecture. Regarding to the fact that the true
output is available during the training of the network, it is possible to create a series-parallel
architecture (see [56]), in which the true output is used instead of feeding back the estimated
output.

The custom architecture used for further analyses is the model reference adaptive control
(MRAC) system. Suchamodel reference control architecture has twosubnetworks (seeFigure 4).
One subnetwork is themodel of the plant to be controlled. The other subnetwork is the controller.
Obtaining the trained NARX plant model, it is possible to create the total MRAC system and
insert the NARX model inside and then add the feedback connections to the feedforward
network. The next stagewas focused on training of controller subnetwork.
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In order to make the closed-loop MRAC system responding in the same way as the reference
model (used to generate data), the weights from the trained plant model network ought to be
inserted into the appropriate location of the MRAC system. Then to achieve plant an initial
input of zero, the output weights of the controller network were set to zero.

The training of the MRAC system took much longer than the training of the NARX plant model
regarding to the fact that the network is recurrent and dynamic backpropagation was used.
After the network was trained, it was tested by applying a test input to the MRAC network.

There were two MRAC systems designed and compared. The first one used non-optic, mea-
surement-based set of input vectors, respectively quantitatively describe the flow of secondary
air, fuel expense and vectors describing respectively exhaust temperature in the chamber,
recorded in the first measurement point. The second scheme used secondary air flow control
signal and chosen flame image descriptors (Otsu’s method based - flame surface area and
contour length).

Figure 5 shows system response to the system reference input in both cases: with classic
measurements (a) and when a flame image descriptor contour length vector was applied (b).

Simulation results shown in Figure 5 reveal that the plant model output does follow the
reference input with the correct critically damped response, even though the input sequence
was not the same as the input sequence in the training data. The steady state response is not
perfect for each step, but this could be improved with a larger training set and perhaps more
hidden neurons. From the obtained results of the proposed neural adaptive controls, it can be
concluded that control signals are bounded, abrupt changes of system parameters involve
sudden changes of amplitudes of command laws and the outputs of the controlled system.

As mentioned before, imposing constraints can be a way of guaranteeing robustness. The
analysed control system was evaluated by simulating a sudden step change of the load
request. This test replicates the critical situation that occurs when an unexpected change of
power and NOx radicals takes place. The results are presented in Figure 6.

The constraints are satisfied because algorithm checked all possible values of the uncertainties.

Figure 4. MRAC control scheme.
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6. Conclusion

The flame area can be one of the crucial pointers of combustion process state [43–49, 57].
Therefore, it can be easily estimated in a series of images and it could be used in real-time
applications regardless the place of camera mounting. Investigated factors used for combustion

Figure 6. MIMO controller response to sudden change of power load regarding to the relationship between the concen-
trations of NOx, CO, flue gas temperature in the combustion chamber for two reference models m1 and m2.

Figure 5. MRAC system response to the system reference input: (a) without additional information from optical signals
and (b) with flame image descriptor signal included in the control scheme.
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process assessment cannot be used directly in full-scale combustion facilities, due to the fact
that they strongly depend on the burner type and size of combustion chamber.

Radicals (NOx, CO and SO2) emission requirements are becoming more restrictive. As a result,
the optimum control of combustion using low-carbon technologies seems to be very important.

The paper covered the conditions for the development of the combustion process control
system as well as elaborated optimal algorithm. The aim of the algorithm was to optimise the
boiler operation based on information obtained from conventional instrumentation and incor-
porate innovative techniques to assess the quality of the process.

The correction signals introduced by the optimising algorithm are indeed small. The proposed
simulation of the MIMO controller results in better, robust performance. The evaluation of the
control signals indicates a negligible change in magnitude of input signals. Consideration of
uncertainties can be a considerable interest. If a model predictive controller takes into account
the constraints are used, it will solve the problem, keeping the expected values of the output
signals within the feasible region, but due to the external perturbations or uncertainties, this
does not guarantee that any output is going to be bound. In case of uncertainties, MPC
minimises the objective function for the worst situation and keeps the value of the variables
within the constraint region for possible cases of uncertainties.

The increment of the prediction horizon n allows better performance since a greater predic-
tion of the future error is possible. While applying temperature values, its error weight
must be high regarding to the fact that the classical temperature regulation is slow and
responsible for overall performance. Too big value of the control horizon returns undesired
oscillations.

As it was mentioned before, biomass co-combustion process is difficult to control. Research on
using the presented approach extends the possibilities of modern combustion processes and
makes them more flexible to maintain.
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of lives. Solar photovoltaic (PV), as one of the most important renewable energy sources, 
has been widely used in more than a hundred of countries [1]. Solar panels are commonly 
deployed in harsh environments with high temperature, high humidity and strong winds [2], 
and are expected to be functional for over 30 years. Thus the glass panel, where the PV mate-
rial will be located, has to be specially designed to sustain the harsh environments over its 
life of service [3]. As a necessary validation step, the strength and quality of the manufactured 
glass sheet must be tested and qualified, especially before the mass production stage. A rigor-
ous test would require the strength of the solar glass sheet to be verified under a controlled 
environment with simulated temperature, humidity and induced vibration or forces on the 
PV glass sheet. Although commercial solutions exist for the various types of material-strength 
testing, environment simulated glass sheet strength testing is not available. As the booming of 
the PV industry and the increasing researching into stronger and better PV glass sheet, there 
has been a greater demand into the research and development of specially designed PV glass 
sheet test machines. This chapter presented the design of an environment controlled force 
loading machine specifically for solar panel glass sheet strength testing.

The glass sheet testing machine is basically a real-time electro-mechanical control system 
which is composed of actuators for simulated loading generation, sensors for monitoring and 
control feedback, a digital controller for the control of the overall system performance and 
mechanical supporting structures to hold everything together. The key part is the real-time 
digital controller which serves as the brain of such a system. Although computer-based con-
trol system with great computational power is able to host complex control algorithm, testing 
facilities with space, power and budget constraint cannot afford the size, power and cost of the 
computer-based design. Moreover, many extended and long hour testing scenarios require 
great robustness on the control system, where computer with standard operating system can-
not meet the requirement. Embedded control systems with much lower power consumption, 
compact space, less cost and increased robustness is preferred over computer-based systems 
in many custom designed solutions [4–6]. Although embedded control systems have many 
advantages, they usually have limited or reduced computational powers that may not be able 
to host complex control algorithms. This poses challenges into the design of efficient real-time 
control algorithms. Specific embedded system-oriented control techniques must be carried 
out to guarantee control performances. For this reason, a simple and effective control law is 
preferred on the embedded control system and the Cerebellar Model Articulation Controller 
(CMAC) is a good choice.

The CMAC proposed by Albus [7] is a lookup-table adaptive neural network for estimating 
complicated nonlinear functions. The basic idea of CMAC is to quantify states from input, 
find memory addresses of states according to their locations in memory, add the content in 
the memory address, generate the CMAC output, compare the output with desired output 
and update the content in memory based on learning algorithms. Compared with other neu-
ral networks, advantages of the CMAC [8] are: (1) it is based on local learning and stores 
information in local memory, hence weights are changed slightly in each step and its learn-
ing speed is fast and suitable for real-time control; (2) it owns definite generalization prop-
erty, so that the close inputs generate the close outputs, and the different inputs produce the 
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different outputs; (3) it can receive continuous input and produce continuous output; (4) it 
can accelerate the response speed by using addressing mode and (5) it is a nonlinear approxi-
mation and robust to the sequences of training data. Owing to above predominant merits, the 
nonlinear approximating capacity of the CMAC is superior to that of other traditional neural 
networks and is more suitable for real-time control in the real world.

In summary, various CMAC control algorithms have been formed so far, such as CMAC 
feedforward control [9–11], CMAC feedback control [12–14], CMAC optimal control [15, 
16], CMAC fuzzy control [17–22], CMAC H-infinity control [23] and CMAC adaptive con-
trol [24–26]. The previous works can be divided into two categories: one is to improve the 
control structures of the CMAC, such as the CMAC feedforward control; the other is to 
improve the learning algorithms with other intelligent techniques, such as the fuzzy CMAC 
(FCMAC). Although a lot of complicated advanced CMAC control algorithms can well 
perform the control tasks in the simulations or with the computer-based control systems, 
the performances raised by some of them are very limited compared with the basic CMAC 
structure, even several advanced CMAC control algorithms, such as the FCMAC with the 
wavelet, cannot be implemented in real time with an embedded system due to the compli-
cated improvement algorithms.

In this chapter, we adopt CMAC feedforward and PD feedback control, because [10, 11]: 
(1) the CMAC carries out the feedforward part to approximate the inverse model of the 
plant; (2) the PD controller actualizes the feedback part to train the CMAC and guarantee 
the stability of the closed-loop system; (3) compared with other neural networks or other 
complicated CMACs, limited computation cost of the simple and effective CMAC plus PD 
control removes CPU burden, so that the microcontroller can have enough computational 
power available.

Since there is not much effort dealing with the systematic design problem of an embedded-
control glass strength testing machine, the contribution of this chapter is to present a three-step 
systematic design approach to address the embedded control issue: Firstly, the mathematical 
description of the system is studied using both theoretical and experimental method. A math-
ematical model is derived from the physical models of each component used, and an experi-
ment is retrieved by employing Levy’s method to identify parameters of the mathematical 
model. Secondly, an adaptive CMAC feedforward plus PD feedback controller is designed 
and simulated based on the identified system model as a preparation for the embedded sys-
tem implementation. Finally, the proposed algorithm is applied to the embedded system with 
the same parameters as those of simulations, and experiments are conducted to verify both 
the identified model and designed controller. To design a machine systematically for practical 
use, these three steps are closely linked and indispensable. The three-step systematic design 
approach could benefit engineers in measurement and control as a guide.

Rest of this chapter is organized as follows. Section 2 analyses the system requirements 
and formulates a mathematical system model. Section 3 performs the system identification. 
Section 4 proposes the simulation-based controller design. Embedded system-based experi-
ments are conducted in Section 5 and Section 6 concludes this work.
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2. System Modeling

2.1. System analysis

The schematic diagram of the force loader unit is shown in Figures 1 and 2. The loader unit 
consists of one loader and one steel bar, which is connected to the load cell and linear motor 
actuator. The linear motor actuator, used to apply force, consists of a motor with linear motion 
and an encoder. The loader is attached to the steel bar and then through a load cell to the linear 
motor. In short, the force is applied on the material plate by a loader unit which is connected to 
a linear motor actuator through a steel bar, and the applied force is recorded by a force sensor.

The load applied on the material plate varies as a ramp function. The user can select the slope 
of the ramp function by setting the maximum force in a finite time period on the touch screen, 
and can perform the test under different forces ranging from 0 to 300 lbs. The control objective 
is to ensure the applied force track the reference force command for measuring the material 
plate’s yield stress qualified or not.

2.2. Mathematic model of the motor-loader unit

DC motors are widely used as actuators for high-precision servo control owing to its good 
working characteristics and simple mathematical model. Mechanical resonance phenomena 
are ubiquitous because the transmission shaft is not completely rigid and will be distorted 
under force. For the servo-motor-drive system, considering the mechanical resonance phenom-
ena, the double-mass structure model is commonly used to describe such dynamical systems.

Linear motor

Force sensor

Material plate
Loader

Steel bar

Load cell

Force SupportSupport Force

Figure 1. Schematic drawing of the loader unit.
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The electrical equilibrium equation can be written as [27]

   R  a  i +  L  a     
di __ dt   +  K  e    θ   ̇    m   =  u  m    (1)

where Ra is the armature resistance, La is the armature inductance, i is the armature current, 
Ke is the counter-electromotive force coefficient, θm is the motor rotating angle and um is the 
motor voltage.   K  

e
    θ   ̇    

m
    reflects that the back electromotive force (EMF) has a linear relationship 

with the motor speed. Figure 3 illustrates the mechanical parameter of the motor with a load.

The motor output torque Tm is determined by the armature current as

   T  m   =  K  t  i  (2)

Figure 2. Photo of the loader unit.

Figure 3. Motor and load double mass diagram.
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where Kt is the electromagnetism-torque constant.

The torque equilibrium equation of the motor is

   J  m    θ ¨    m   +  B  m    θ   ̇    m   =  T  m   −  T  l    (3)

where Jm is the moment of inertia of the motor, Bm is the viscidity damping coefficient of the 
motor extremity and Tl is the torque of the load extremity. Tl can be represented as

   T  l   =  K  s   ( θ  m   −  θ  l  )   (4)

where θl is the rotating angle of the load shaft and Ks is the mechanical rigidity of the rotating 
shaft.

The torque equilibrium equation of the load is

   J  l    θ ¨    l   +  B  l    θ   ̇    l   =  T  l   −  T  d    (5)

where Jl is the moment of inertia of the load, Bl is the damping coefficient on the load side and 
Td is the disturbance torque, including the friction torque, the coupling torque and the exter-
nal disturbance torque. The displacement of the loader mass generated from the linear motor 
has a linear relationship with the rotating angle of the load shaft, which can be represented as

  Dis =  K  D   ⋅  θ  l    (6)

The force generated on the solar panel glass has an almost linear relationship with the defor-
mation of the glass, which can be represented as

   F  m   =  K  F   ⋅ Dis  (7)

2.3. Mathematical models of other components

The control objective is to track the input command through feedback control based on the 
signal measured by the force sensor. In addition to the motor-loader and the micro controller 
unit (MCU), other components included in the control loop are a digital to analog converter 
(DAC), an amplifier and a load cell. Figure 4 illustrates the open-loop plant structure.

The DAC converter is basically a zero-order hold. Assume the controller’s output is u(t), the 
amplifier’s input is uh(t) and the system’s sampling time is T. The zero-order hold can be 
represented as

   u  h   (t)  = u (kT) , kT ≤ T <  (k + 1) T  (8)

Considering the sampling process, by replacing e−Ts with   e   −Ts  ≈  (− s +   2 __ T  )  /  (s +   2 __ T  )  , the DAC con-
verter and the zero-order hold can be described as
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   G  H   (s)  =   
 u  h   (s) 

 ____ u (s)    ⋅   
1 __ T   =   1 −  e   −Ts  _____ s   ⋅   1 __ T   ≈   T ____ 

  T __ 2   s + 1
   ⋅   1 __ T    (9)

which is a low-pass filter.

In a high-precision servo system, PWM-based amplifiers are commonly used as the motor 
drivers [28]. The PWM power amplifiers can be represented as

   G  A   (s)  =   
 K  a   _____ 

1 +   1 ___ 2  f  s  
   s

    (10)

where Ka is the amplifying multiple and fs is the modulation frequency.

The load cell signal conditioner linearly converts the force into a voltage signal, and its model 
can be simplified as

   G  S   (s)  =  K  Sen    (11)

2.4. Simplified model

Without considering the disturbance torque Td, the angles of the motor and the load have the 
following dynamical relationship

   T  l   =  J  l    θ ¨    l   +  B  l    θ   ̇    l   =  K  s   ( θ  m   −  θ  l  )  ⇒   
 θ  l   (s) 

 _____  θ  m   (s)    =   
 K  s   _________  J  l    s   2  +  B  l   s +  K  s  

    (12)

Ks is very large and the time constant is very small, therefore in the lower frequency range 
θl(s)/θm(s) ≈ 1, θl ≈ θm.

By considering Ks = ∞ and θl ≡ θm, the motor-loader model can be simplified as

   J  a    θ ¨    m   +  B  a    θ   ̇    m   =  T  m    (13)
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where Kt is the electromagnetism-torque constant.
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And the transfer function between the input voltage and output rotational angle is
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2.5. Open-loop transfer function

The mathematical model of the open-loop plant is the cascade of the units described previously:

   G  P   (s)  =  G  H   (s)  ⋅  G  A   (s)  ⋅  G  M   (s)  ⋅  G  S   (s)   (17)

Because the system bandwidth is much lower than the system sampling rate and the mod-
ulation frequency of the PWM amplifier, the time constant of the DAC converter and the 
amplifier is very small. In the lower frequency range, the effect of the DAC converter and the 
amplifier can be omitted. Therefore, the open-loop plant can be simplified as

   G  P   (s)  =   
 b  1  s +  b  0   ________  a  2   s   2  +  a  1  s + 1    (18)

where b0, b1, a1 and a2 are final parameters.

Obvious, it is a second-order model. Only four parameters need to be identified.

3. Parameters identification of the system model

Levy’s method [29] and least square estimation are widely used in system identification. 
Assume that the identified transfer function is given as

   G  P   (s)  =   
 b  0   +  b  1   s + ⋯ + b  m    s   m 

  ____________  1 +  a  1   s + ⋯  a  n    s   n     (19)

where b0, b1, ⋯, bm, a1, a2, ⋯, an are real numbers, m and n are integers, and m ≤ n.

The frequency response is

   G  P   (j𝜔𝜔)  =   
 ( b  0   −  b  2    ω   2  + ⋯)  + j𝜔𝜔 ( b  1   −  b  3    ω   2  + ⋯) 

   _____________________    (1 −  a  2    ω   2  + ⋯)  + j𝜔𝜔 ( a  1   −  a  3    ω   2  + ⋯)    =   
N (j𝜔𝜔) 

 _____ D (j𝜔𝜔)     (20)

For each frequency point ωi(i = 1, 2, ⋯, L), it is assumed that the actual frequency response is 
Re(ωi) + j Im(ωi), and the approximation error is defined as

  ε (j  ω  i  )  = Re ( ω  i  )  + j Im  ( ω  i  )  −   
N (j  ω  i  )  _____ D (j  ω  i  ) 

    (21)
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Define an objective function:

  J =  ∑ 
i=1

  
L
      ‖D (j  ω  i  ) ε (j  ω  i  ) ‖    2   (22)

Minimize the objective function, and prompt ∂J/∂aj = 0 (j = 1, 2, …, n) and ∂J/∂bk = 0 (k = 1, 2, …, 
m), then two matrix equations will be obtained. By solving the matrix equations, we can get the 
estimated parameters b0, b1, ⋯, bm, a1, a2, ⋯, an.

Table 1 shows actual frequency response obtained by experiments. We employ different 
sinusoidal input r(t) = Am sin ωt with different angular frequency ω (from 0.1 to 1 rad/s) 
to excite the open-loop system. By theoretical analysis, the output signals are in the form 
y(t) = Af sin(ωt + Φ). Comparing the output with input sinusoidal signals, we can calcu-
late the values of Af/Am and phase delay angle Φ based on the least square estimation as 
follows.

The output signals can be decomposed as

   y (t)  =  A  f   sin  (𝜔𝜔t + Φ)  =  A  f   cos Φ sin 𝜔𝜔t +  A  f   sin Φ cos 𝜔𝜔t          

         =  [ sin 𝜔𝜔t  cos 𝜔𝜔t ]  [ 
 A  f   cos Φ

   A  f   sin Φ  ] 
    (23)

First, we select the sampling interval t = 0, h, 2h, …, nh, where h is a step time.

Second, by defining Y =   [ y (0)   y (h)   …  y (nh)  ]    T  , c1 = Af cos Φ, c2 = Af sin Φ and  
Ψ =   [ sin  (ω0) 

  
sin  (𝜔𝜔h) 

  
…

  
sin  (𝜔𝜔nh) 

    
cos  (ω0)   cos  (𝜔𝜔h)   …

  
cos  (𝜔𝜔nh)  ]    

 

  , the least square solutions of c1 and c2 can be derived as

   [ 
 c  1     c  2  

  ]  =   ( Ψ   T  Ψ)    −1   Ψ   T  Y  (24)

Third, Af /Am and Φ are calculated as

    
  A ̂    f   ___  A  m     =   

 √ 
_____

  c  1  2  +  c  2  2    ____  A  m    , Φ =  tg   −1  ( c  2   /  c  1  )   (25)

where    A ̂    
f
    is the estimation of Af . 

After Af/Am and Φ are obtained, it is easy to estimate the parameters b0, b1, a1 and a2 in Eq. (18) 
based on Levy’s method. Finally, we get the identified transfer function:

  G (s)  =   − 38.48s − 141.4  _____________  1.523  s   2  + 8.324s + 1    (26)

ω 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 1

Af/Am 16 22 25 27 30 31 40 46 64 122 16

Φ 1.71 1.82 1.78 1.77 1.89 1.92 1.90 2.00 1.94 2.23 1.71

Table 1. Actual frequency response (ω is angular frequency, rad/s; Φ is phase delay, rad).
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4. Simulation-based controller design

4.1. Control scheme

As shown in Figure 5, in the CMAC plus PD control scheme, the PD controller is used to train 
the weights of the CMAC at the early stage of control. The output un of the CMAC and the output 
up of the PD controller are integrated as the control command u to track the desired input com-
mand. Once the system is running, the PD controller will play a main role at the beginning. As 
the weights are tuned by up, un will increase to become the main control command. The fast learn-
ing speed prompts the leading role of control to switch from the PD controller to the CMAC.

CMAC employs the supervisory learning algorithm. At the end of each control step k, the 
controller calculates the corresponding output un(k), compares it with total control output 
u(k), amends the weights and enters into learning process to make error small between the 
total control output and the output of the CMAC. That means the total control output will be 
finally generated by the CMAC only via its learning strategy.

The control law can be described as

   

⎧

 
⎪

 ⎨ 
⎪

 

⎩

 

u (k)  =  u  n   (k)  +  u  P   (k) 

    u  n   (k)  =  ∑ 
i=1

  
c
     w  i   a  i     

 u  P   (k)  =  k  P  e (k)  +  k  D     e (k)  − e (k − 1)  _________  t  s  
  

    (27)

where wi are weights of the CMAC, ai are binary vectors, un(k) is output of the CMAC, uP(k) 
is output of the PD controller, kP and kD are gains, ts is the sampling time and e is the error 
between y and r.

And the learning function of the CMAC is given as

   

⎧

 
⎪

 ⎨ 
⎪

 

⎩

 

E (k)  =   1 __ 2     (u (k)  −  u  n   (k) )    2     a  i   __ c  

   𝛥𝛥w (k)  = η   
u (k)  −  u  n   (k) 

 ________ c    a  i   = η   
 u  P   (k) 

 ____ c    a  i  
    

w (k)  = w (k − 1)  + 𝛥𝛥w (k)  + α (w (k)  − w (k − 1) ) 

    (28)

where E is the adjusting index, η is the learning speed and η ∈ (0, 1), α is the inertial variable 
and α ∈ (0, 1) and c is the generalizing parameter.

Once the system starts running, the controller initializes w = 0, then we have un = 0 and u = uP 
at the beginning. At the early stage, the system is mainly controlled by the PD controller. 
As the CMAC is learning, error e will decreases, which makes un(k) increase to become the 
main control command. Although the CMAC is trained by the output of the PD controller, 
the output of the CMAC is not a simple imitation of the output of the PD controller. The PD 
controller helps the CMAC to improve its performances, restrain disturbance and enhance 
stability of the closed-loop system. If the PD controller works alone, control performances are 
determined by the gain kP to a great extent. If the CMAC and PD controller work together, 
control performances will be independent of kP, which is flexible in a rational span.
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4.2. Simulations

Choose the identified model (26) as the simulation plant to tune the controller and verify its 
performance. The force control is aimed at tracking a ramp command, of which the expres-
sion is given as r(t) =  − 10t, where t is from 0 to 20 s.

The CMAC plus PD controller is tuned and trained by simulations. Figure 6 demonstrates 
that the PD controller plays a main role of control at the beginning. Then the control effect of 
the CMAC will gradually increase via learning from the output of the PD controller. Owing 
to the help of the CMAC, control performances are better than those of the only PD control-
ler. Overshoots are reduced dramatically and control actions are speeded up while choos-
ing the ramp signal as an input. Figure 7(a) shows an overview of control  performances 

Figure 5. CMAC feedforward plus PD feedback control block diagram.
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Figure 6. Output of the controller.
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where E is the adjusting index, η is the learning speed and η ∈ (0, 1), α is the inertial variable 
and α ∈ (0, 1) and c is the generalizing parameter.
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main control command. Although the CMAC is trained by the output of the PD controller, 
the output of the CMAC is not a simple imitation of the output of the PD controller. The PD 
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stability of the closed-loop system. If the PD controller works alone, control performances are 
determined by the gain kP to a great extent. If the CMAC and PD controller work together, 
control performances will be independent of kP, which is flexible in a rational span.
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4.2. Simulations

Choose the identified model (26) as the simulation plant to tune the controller and verify its 
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ler. Overshoots are reduced dramatically and control actions are speeded up while choos-
ing the ramp signal as an input. Figure 7(a) shows an overview of control  performances 

Figure 5. CMAC feedforward plus PD feedback control block diagram.
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from 0 to 20 s. Figure 7(b) is an enlarged view of control performances from 19 to 20s. It 
can be seen that the system output well tracks the input command. Figure 8 further exhibits 
the superiority of the CMAC: the tracking errors are tiny, mostly between −0.2 and 0.2 lbs. 
Since there exists a modeling error between identified system and actual controlled plant, 
the controller’s performances will be further validated in the real material-strength testing 
experiments.
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5. Embedded system-based experiments

5.1. Experiments

For verifying the controller’s adaption to modeling error in the real-time control experiments, 
we implement above control law in C language and download compiled files into the embed-
ded system. The central processing unit is an ARM7-based processor LPC2294. The LPC2294 
is a 32-bit reduced instruction set computer (RISC) processor with low power consumption 
and high performance. Although there is no Float Point Unit (FPU) in this processor, the 70 
million instructions per second (MIPS) processing speed makes it ideal for the real-time con-
trol system. The control step size is set as 50 ms.

The actual force tracking control diagram is shown in Figure 9. The force is applied to the 
glass sheet specimen by a loader which is connected to a linear motor actuator through a steel 
bar. A three point bending test is utilized under this configuration. The load force followed 
a ramp function with time as the independent variable. The slope of the ramp function can 
be programmed through the LCD touch screen. The force range can be from 0 to 300 lbs. 
Displacement of the motor, which also reflected the deformation of the glass sheet specimen, 
is recorded during the test. The signal flow of the control system is as follows. The DAC gen-
erates the control outputs as a voltage signal, which is amplified by a power amplifier and 
exerted on the linear motor. The linear motor then transforms the voltage signal into rotation, 
and generates linear displacements. The force sensor and conditioner measure the displace-
ments and generates charges, which are transformed back to a voltage signal and fed back 
through ADC to the microcontroller.

Figure 9. Actual force tracking control diagram.
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The input command and control parameters are the same as those of simulations. Figure 10(a) 
shows that the output force basically tracks the input command well and the controller imple-
mented on the embedded system can perform the control task in real time within the control 
step size. From Figure 10(b), it can be seen that tracking errors of the experiment are mostly 
between −2.5 and 2.5 lbs, which are larger than those of the simulation. The reason is that 
uncertainties and disturbances always exist in the real world, which mainly reflects in model-
ing error. However, the maximum absolute tracking error is 3.79, and the variance of tracking 
errors is 1.69, which are still acceptable in the actual real-time control environment. Moreover, 
it verifies that the controller tuned by simulations is also available for actual experiments, and 
indirectly proves the effectiveness of identified system model.

5.2. Comparisons

As shown in Figure 11, an inverse model feedforward control is compared with the CMAC 
feedforward control by embedded-system-based experiments. Its basic idea is to directly 
employ the inverse model 1/G(s) of the plant’s identified transfer function G(s) in Eq. (26) to 
be the feedforward part. Obviously, this control scheme is also suitable for real-time imple-
mentations; even its computation cost is less than that of the CMAC scheme.

Figure 12(a) shows overall performances of the tracking control with the inverse model 
scheme. It can be seen that the output force basically tracks the input command and the con-
troller implemented on the embedded system can perform the control task in real time within 
the control step size; however, the tracking control is not performed very well. As shown in 
Figure 12(b), tracking errors are mostly between −5 and −2 lbs, which are larger than those of 
the CMAC scheme. Table 2 also shows that the maximum absolute tracking error and vari-
ance of tracking errors of the inverse model scheme are both larger than those of the CMAC 
scheme, so that performances of the CMAC scheme are superior to those of the inverse model 
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scheme. Although the CMAC scheme and inverse model scheme both utilize inverse model 
idea, the difference is that the latter directly employs the unchanged inverse model of the 
identified transfer function and the modeling error always exists, but the inverse model 
approximated by the CMAC is dynamical and adaptive.

5.3. Results analysis

Compared with the traditional PID control method, the learning behavior and adaptive fea-
ture of the proposed CMAC control algorithm are embodied in the freedom of tuning control 
parameters and the robustness to the disturbances in the real world.

The PID control method has been widely used because of its simpleness, but the tuning prob-
lem of PID parameters (proportional, integral and differential) is difficult. At present, PID 
parameter-tuning optimization depends on the experiences of technical staffs and needs a 

Figure 11. Block diagram of the inverse model feedforward control.
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lot of manpower and time, which means that the optimal PID parameters are difficult to be 
obtained by people’s tuning, and the inappropriate parameters cannot guarantee the control 
performances to meet the control requirements. In addition, the PID control law is a kind 
of the linear control law which owns few robustness to the disturbances. It means that even 
though the PID parameters are tuned optimally and perfectly in the simulations, the tuned 
parameters may perform poor in the real world due to disturbances and uncertainties.

Thus, combining the adaptive CMAC and the traditional PID to construct an intelligent neu-
ral network PID controller, can automatically identify the controlled plant and adaptively 
adapt the control parameters of the CMAC, which can solve the difficult problem of tuning 
parameters of the traditional PID controller. As shown in Sections 4 and 5, the PID parameters 
of the proposed CMAC algorithm in the experiments are same as those in the simulations, 
which verifies control performances of the proposed CMAC algorithm are independent of 
tuning PID parameters. Experimental results in the real world in Section 5 also demonstrate 
the robustness of the proposed algorithm owing to the CMAC neural network, while the tra-
ditional PID controller does not have this capacity.

6. Conclusions

In this chapter, a three-step systematic design approach is proposed to design an adaptive 
control system for practical use. We firstly study the system model identification problem 
of the embedded control material-strength testing system, including mathematical modeling 
of all the open-loop physical components and parameters identification of the mathemati-
cal model. Both theoretical analyses and experimental comparisons validate the identified 
transfer function of the system model is applicable for controller design and simulation. Next, 
benefited from limited computation cost and compensation ability to the modeling error, a 
simple and effective CMAC plus PD controller is simulated based on the identified system 
model, and then applied to the embedded control system for real-time force tracking. Both 
numerical simulations and actual experiments illustrate the proposed algorithm satisfactorily 
performs the tracking control task under real-time constraints of the embedded system.

On the other hand, different strength features of different types of the material plates will 
affect the control performances. Since the yield strength generated by the solar panel glass has 
an almost linear relationship with the deformation of the glass sheet, KF in Eq. (7) is a constant. 
If the tested material plate is not a solar panel glass and the yield strength generated does not 
have a linear relationship with the deformation of the material plate, KF in Eq. (7) will not be a 

Method Maximum absolute error Variance

CMAC 3.79 1.69

Inverse model 6.13 3.85

Table 2. Comparisons between the CMAC and the inverse model.
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constant. In this case, the problems how to identify the parameters of the system model accu-
rately for simulation-based controller design and how to adjust the CMAC plus PD controller 
to compensate the varying KF, will be under consideration in our future work.

Acknowledgements

This work is supported by National Key R&D Program of China under Grant Nos. 
2016YFD0200700 and 2017YFD0701000, and Chinese Universities Scientific Fund under Grant 
Nos. 2017QC139 and 2017GX001.

Author details

Jian Chen1,2*, Peng Li3, Gangbing Song3, Shubo Wang1,2, Zichao Zhang1,2, Guangqi Wang1,2, 
Yu Tan1,2 and Yongjun Zheng1,2

*Address all correspondence to: jchen@cau.edu.cn

1 College of Engineering, China Agricultural University, Beijing, China

2 Key Laboratory of Soil-Machine-Plant System Technology, Ministry of Agriculture,  
Beijing, China

3 Department of Mechanical Engineering, University of Houston, TX, USA

References

[1] Prasad D, Snow M. Designing with Solar Power: A Source Book for Building Integrated 
Photovoltaics (BiPV). New York: Routledge; 2014

[2] Dhere NG, Raravikar NR. Adhesional shear strength and surface analysis of a PV module 
deployed in harsh coastal climate. Solar Energy Materials & Solar Cells. 2001;67(1):363-367

[3] Burrows K, Fthenakis V. Glass needs for a growing photovoltaics industry. Solar Energy 
Materials & Solar Cells. 2015;132:455-459

[4] Hughes ZM, Pont MJ. Reducing the impact of task overruns in resource-constrained embed-
ded systems in which a time-triggered software architecture is employed. Transactions of 
the Institute of Measurement and Control. 2008;30(5):427-450

[5] Huang SJ, Yu CK, Lin JY. Intelligent robotic impedance control using embedded system 
structure. Transactions of the Institute of Measurement and Control. 2012;35(5):561-573

[6] Moallem P, Zargari A, Kiyoumarsi A. Improving IEC flickermeter for implementa-
tion by an ARM microcontroller-based digital system. Transactions of the Institute of 
Measurement and Control. 2013;35(3):342-352

A CMAC-Based Systematic Design Approach of an Adaptive Embedded Control Force Loading…
http://dx.doi.org/10.5772/intechopen.71420

271



lot of manpower and time, which means that the optimal PID parameters are difficult to be 
obtained by people’s tuning, and the inappropriate parameters cannot guarantee the control 
performances to meet the control requirements. In addition, the PID control law is a kind 
of the linear control law which owns few robustness to the disturbances. It means that even 
though the PID parameters are tuned optimally and perfectly in the simulations, the tuned 
parameters may perform poor in the real world due to disturbances and uncertainties.

Thus, combining the adaptive CMAC and the traditional PID to construct an intelligent neu-
ral network PID controller, can automatically identify the controlled plant and adaptively 
adapt the control parameters of the CMAC, which can solve the difficult problem of tuning 
parameters of the traditional PID controller. As shown in Sections 4 and 5, the PID parameters 
of the proposed CMAC algorithm in the experiments are same as those in the simulations, 
which verifies control performances of the proposed CMAC algorithm are independent of 
tuning PID parameters. Experimental results in the real world in Section 5 also demonstrate 
the robustness of the proposed algorithm owing to the CMAC neural network, while the tra-
ditional PID controller does not have this capacity.

6. Conclusions

In this chapter, a three-step systematic design approach is proposed to design an adaptive 
control system for practical use. We firstly study the system model identification problem 
of the embedded control material-strength testing system, including mathematical modeling 
of all the open-loop physical components and parameters identification of the mathemati-
cal model. Both theoretical analyses and experimental comparisons validate the identified 
transfer function of the system model is applicable for controller design and simulation. Next, 
benefited from limited computation cost and compensation ability to the modeling error, a 
simple and effective CMAC plus PD controller is simulated based on the identified system 
model, and then applied to the embedded control system for real-time force tracking. Both 
numerical simulations and actual experiments illustrate the proposed algorithm satisfactorily 
performs the tracking control task under real-time constraints of the embedded system.

On the other hand, different strength features of different types of the material plates will 
affect the control performances. Since the yield strength generated by the solar panel glass has 
an almost linear relationship with the deformation of the glass sheet, KF in Eq. (7) is a constant. 
If the tested material plate is not a solar panel glass and the yield strength generated does not 
have a linear relationship with the deformation of the material plate, KF in Eq. (7) will not be a 

Method Maximum absolute error Variance

CMAC 3.79 1.69

Inverse model 6.13 3.85

Table 2. Comparisons between the CMAC and the inverse model.

Adaptive Robust Control Systems270

constant. In this case, the problems how to identify the parameters of the system model accu-
rately for simulation-based controller design and how to adjust the CMAC plus PD controller 
to compensate the varying KF, will be under consideration in our future work.

Acknowledgements

This work is supported by National Key R&D Program of China under Grant Nos. 
2016YFD0200700 and 2017YFD0701000, and Chinese Universities Scientific Fund under Grant 
Nos. 2017QC139 and 2017GX001.

Author details

Jian Chen1,2*, Peng Li3, Gangbing Song3, Shubo Wang1,2, Zichao Zhang1,2, Guangqi Wang1,2, 
Yu Tan1,2 and Yongjun Zheng1,2

*Address all correspondence to: jchen@cau.edu.cn

1 College of Engineering, China Agricultural University, Beijing, China

2 Key Laboratory of Soil-Machine-Plant System Technology, Ministry of Agriculture,  
Beijing, China

3 Department of Mechanical Engineering, University of Houston, TX, USA

References

[1] Prasad D, Snow M. Designing with Solar Power: A Source Book for Building Integrated 
Photovoltaics (BiPV). New York: Routledge; 2014

[2] Dhere NG, Raravikar NR. Adhesional shear strength and surface analysis of a PV module 
deployed in harsh coastal climate. Solar Energy Materials & Solar Cells. 2001;67(1):363-367

[3] Burrows K, Fthenakis V. Glass needs for a growing photovoltaics industry. Solar Energy 
Materials & Solar Cells. 2015;132:455-459

[4] Hughes ZM, Pont MJ. Reducing the impact of task overruns in resource-constrained embed-
ded systems in which a time-triggered software architecture is employed. Transactions of 
the Institute of Measurement and Control. 2008;30(5):427-450

[5] Huang SJ, Yu CK, Lin JY. Intelligent robotic impedance control using embedded system 
structure. Transactions of the Institute of Measurement and Control. 2012;35(5):561-573

[6] Moallem P, Zargari A, Kiyoumarsi A. Improving IEC flickermeter for implementa-
tion by an ARM microcontroller-based digital system. Transactions of the Institute of 
Measurement and Control. 2013;35(3):342-352

A CMAC-Based Systematic Design Approach of an Adaptive Embedded Control Force Loading…
http://dx.doi.org/10.5772/intechopen.71420

271



[7] Albus JS. A new approach to manipulator control: The cerebellar model articulation control-
ler (CMAC). Journal of Dynamic Systems, Measurement, and Control. 1975;97(3):220-227

[8] Chiang CT, Lin CS. CMAC with general basis functions. Neural Networks. 1996;9(7): 
1199-1211

[9] Lewis FL, Jagannathan S, Yesildirak A. Neural Network Control of Robot Manipulators 
and Non-linear Systems. Boca Raton: CRC Press; 1998

[10] Yang B, Bao R, Han H. Robust hybrid control based on PD and novel CMAC with 
improved architecture and learning scheme for electric load simulator. IEEE Transactions 
on Industrial Electronics. 2014;61(10):5271-5279

[11] Yang B, Han H. A CMAC-PD compound torque controller with fast learning capacity 
and improved output smoothness for electric load simulator. International Journal of 
Control, Automation and Systems. 2014;12(4):805-812

[12] Commuri S, Lewis FL. CMAC neural networks for control of nonlinear dynamical sys-
tems: Structure, stability and passivity. Automatica. 1997;33(4):635-641

[13] Jagannathan S, Commuri S, Lewis FL. Feedback linearization using CMAC neural net-
works. Automatica. 1998;34(5):547-557

[14] Jagannathan S, Lewis FL. Robust backstepping control of robotic systems using neural 
networks. Journal of Intelligent and Robotic Systems. 1998;23(2-4):105-128

[15] Kim YH, Lewis FL. Intelligent optimal design of CMAC neural network for robot manipu-
lators. In: Soft Computing for Intelligent Robotic Systems. New York: Physica-Verlag HD; 
1998

[16] Kim YH, Lewis FL. Optimal design of CMAC neural-network controller for robot manip-
ulators. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and 
Reviews. 2000;30(1):22-31

[17] Nie J, Linkens DA. FCMAC: A fuzzified cerebellar model articulation controller with 
self-organizing capacity. Automatica. 1994;30(4):655-664

[18] Wen CM, Cheng MY. Development of a recurrent fuzzy CMAC with adjustable input space 
quantization and self-tuning learning rate for control of a dual-axis piezoelectric actuated 
micromotion stage. IEEE Transactions on Industrial Electronics. 2013;60(11):5105-5115

[19] Lee CH, Chang FY, Lin CM. An efficient interval type-2 fuzzy CMAC for chaos time-series 
prediction and synchronization. IEEE Transactions on Cybernetics. 2014;44(3):329-341

[20] Lin CM, Li HY. Intelligent control using the wavelet fuzzy CMAC backstepping control 
system for two-axis linear piezoelectric ceramic motor drive systems. IEEE Transactions 
on Fuzzy Systems. 2014;22(4):791-802

[21] Lin CM, Li HY. Adaptive dynamic sliding-mode fuzzy CMAC for voice coil motor using 
asymmetric gaussian membership function. IEEE Transactions on Industrial Electronics. 
2014;61(10):5662-5671

Adaptive Robust Control Systems272

[22] Lin FJ, Yang KJ, Sun IF, Chang JK. Intelligent position control of permanent magnet syn-
chronous motor using recurrent fuzzy neural cerebellar model articulation network. IET 
Electric Power Applications. 2015;9(3):248-264

[23] Lin CM, Peng YF, Hsu CF. Robust cerebellar model articulation controller design for 
unknown nonlinear systems. IEEE Transactions on Circuits and Systems II: Express Briefs. 
2004;51(7):354-358

[24] Lin CM, Peng YF. Adaptive CMAC-based supervisory control for uncertain nonlinear sys-
tems. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics. 2004;34(2): 
1248-1260

[25] Lin CM, Peng YF. Missile guidance law design using adaptive cerebellar model articula-
tion controller. IEEE Transactions on Neural Networks. 2005;16(3):636-644

[26] Lin CM, Chen TY. Self-organizing CMAC control for a class of MIMO uncertain nonlin-
ear systems. IEEE Transactions on Neural Networks. 2009;20(9):1377-1384

[27] Hu Y, Zeng L, Ma D. Theory and Design of Servo Systems. Beijing: Beijing Institute of 
Technology Press; 1993

[28] Robet P, Gautier M, Bergmann C. A frequency approach for current loop modeling with 
a PWM converter. IEEE Transactions on Industry Applications. 1998;34(5):1003-1014

[29] Levy EC. Complex-curve fitting. IEEE Transactions on Automatic Control. 1959;4(1):37-43

A CMAC-Based Systematic Design Approach of an Adaptive Embedded Control Force Loading…
http://dx.doi.org/10.5772/intechopen.71420

273



[7] Albus JS. A new approach to manipulator control: The cerebellar model articulation control-
ler (CMAC). Journal of Dynamic Systems, Measurement, and Control. 1975;97(3):220-227

[8] Chiang CT, Lin CS. CMAC with general basis functions. Neural Networks. 1996;9(7): 
1199-1211

[9] Lewis FL, Jagannathan S, Yesildirak A. Neural Network Control of Robot Manipulators 
and Non-linear Systems. Boca Raton: CRC Press; 1998

[10] Yang B, Bao R, Han H. Robust hybrid control based on PD and novel CMAC with 
improved architecture and learning scheme for electric load simulator. IEEE Transactions 
on Industrial Electronics. 2014;61(10):5271-5279

[11] Yang B, Han H. A CMAC-PD compound torque controller with fast learning capacity 
and improved output smoothness for electric load simulator. International Journal of 
Control, Automation and Systems. 2014;12(4):805-812

[12] Commuri S, Lewis FL. CMAC neural networks for control of nonlinear dynamical sys-
tems: Structure, stability and passivity. Automatica. 1997;33(4):635-641

[13] Jagannathan S, Commuri S, Lewis FL. Feedback linearization using CMAC neural net-
works. Automatica. 1998;34(5):547-557

[14] Jagannathan S, Lewis FL. Robust backstepping control of robotic systems using neural 
networks. Journal of Intelligent and Robotic Systems. 1998;23(2-4):105-128

[15] Kim YH, Lewis FL. Intelligent optimal design of CMAC neural network for robot manipu-
lators. In: Soft Computing for Intelligent Robotic Systems. New York: Physica-Verlag HD; 
1998

[16] Kim YH, Lewis FL. Optimal design of CMAC neural-network controller for robot manip-
ulators. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and 
Reviews. 2000;30(1):22-31

[17] Nie J, Linkens DA. FCMAC: A fuzzified cerebellar model articulation controller with 
self-organizing capacity. Automatica. 1994;30(4):655-664

[18] Wen CM, Cheng MY. Development of a recurrent fuzzy CMAC with adjustable input space 
quantization and self-tuning learning rate for control of a dual-axis piezoelectric actuated 
micromotion stage. IEEE Transactions on Industrial Electronics. 2013;60(11):5105-5115

[19] Lee CH, Chang FY, Lin CM. An efficient interval type-2 fuzzy CMAC for chaos time-series 
prediction and synchronization. IEEE Transactions on Cybernetics. 2014;44(3):329-341

[20] Lin CM, Li HY. Intelligent control using the wavelet fuzzy CMAC backstepping control 
system for two-axis linear piezoelectric ceramic motor drive systems. IEEE Transactions 
on Fuzzy Systems. 2014;22(4):791-802

[21] Lin CM, Li HY. Adaptive dynamic sliding-mode fuzzy CMAC for voice coil motor using 
asymmetric gaussian membership function. IEEE Transactions on Industrial Electronics. 
2014;61(10):5662-5671

Adaptive Robust Control Systems272

[22] Lin FJ, Yang KJ, Sun IF, Chang JK. Intelligent position control of permanent magnet syn-
chronous motor using recurrent fuzzy neural cerebellar model articulation network. IET 
Electric Power Applications. 2015;9(3):248-264

[23] Lin CM, Peng YF, Hsu CF. Robust cerebellar model articulation controller design for 
unknown nonlinear systems. IEEE Transactions on Circuits and Systems II: Express Briefs. 
2004;51(7):354-358

[24] Lin CM, Peng YF. Adaptive CMAC-based supervisory control for uncertain nonlinear sys-
tems. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics. 2004;34(2): 
1248-1260

[25] Lin CM, Peng YF. Missile guidance law design using adaptive cerebellar model articula-
tion controller. IEEE Transactions on Neural Networks. 2005;16(3):636-644

[26] Lin CM, Chen TY. Self-organizing CMAC control for a class of MIMO uncertain nonlin-
ear systems. IEEE Transactions on Neural Networks. 2009;20(9):1377-1384

[27] Hu Y, Zeng L, Ma D. Theory and Design of Servo Systems. Beijing: Beijing Institute of 
Technology Press; 1993

[28] Robet P, Gautier M, Bergmann C. A frequency approach for current loop modeling with 
a PWM converter. IEEE Transactions on Industry Applications. 1998;34(5):1003-1014

[29] Levy EC. Complex-curve fitting. IEEE Transactions on Automatic Control. 1959;4(1):37-43

A CMAC-Based Systematic Design Approach of an Adaptive Embedded Control Force Loading…
http://dx.doi.org/10.5772/intechopen.71420

273



Chapter 14

Multi-Loop Integral Control-Based Heart Rate
Regulation for Fast Tracking and Faulty-Tolerant
Control Performance in Treadmill Exercises

Yi Zhang, Kairui Guo, Qin Yang, Pang Winnie,
Kai Cao, Qi Wang, Andrey Savkin, Branko Celler,
Hung Nguyen, Peng Xu, Limei Xu,
Dezhong Yao and Steven Su

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.71855

Provisional chapter

Multi-Loop Integral Control-Based Heart Rate
Regulation for Fast Tracking and Faulty-Tolerant
Control Performance in Treadmill Exercises

Yi Zhang, Kairui Guo, Qin Yang, Pang Winnie,

Kai Cao, Qi Wang, Andrey Savkin,

Branko Celler, Hung Nguyen, Peng Xu,

Limei Xu, Dezhong Yao and Steven Su

Additional information is available at the end of the chapter

Abstract

In order to offer a reliable, fast, and offset-free tracking performance for the regulation of
heart rate (HR) during treadmill exercise, a two-input single-output (2ISO) control
system by simultaneously manipulating both treadmill speed and gradient is proposed.
The decentralized integral controllability (DIC) analysis is extended to nonlinear and
non-square processes especially for a 2ISO process, namely multi-loop integral control-
lability (MIC). The proposed multi-loop integral control-based HR regulation by manip-
ulating treadmill speed and gradient is then validated through a comparative treadmill
experiment that compares the system performance of the proposed 2ISO MIC control
loop with that of single-input single-output (SISO) loops, speed/gradient-to-HR. The
experimental validation presents that by simultaneously using two control inputs, the
automated system can achieve the fastest HR tracking performance and stay close to the
reference HR during steady state, while comparing with two SISO structures, and offer
the fault-tolerant ability if the gains of the two multi-loop integral controllers are well
tuned. It has a vital implication for the applications of exercise rehabilitation and fitness
in relation to the automated control system.

Keywords: heart rate, treadmill exercise, decentralized integral controllability,
multi-loop integral controllability, proportion-integral (PI)

1. Introduction

Obesity, which leads to diabetes and cardiovascular disease (CVD), is one of the major threats
to human health. It is well recognized that regular exercise is the most efficient way to reduce
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the possibility of both type 2 Diabetes and CVD [1]. The development of automated exercise
assisted equipment can greatly enhance the efficiency of exercises and reduce the requirement
of supervision. An easy-to-measure indication of exercise strength is heart rate (HR). One of
the most efficient ways for the manipulation of exercise intensity for either the training of
athletes or rehabilitation patients is to simulate the HR in order to follow a pre-designed HR
profile. As a result, an automated control system can offer numerous benefits for different
groups of users. For instance, it will provide assistance for patients with cardiac diseases who
might be prescribed treadmill exercise rehabilitation. It also can be used for training the
athletes and safely regulating the exercise intensity within a suitable profile in order to achieve
the predefined HR ranges. It has been well documented that by determining one’s maximum
and minimum values of HR responses the exercise profile can be individually designed [2].
Specifically, rehabilitation patients will be guided to perform the exercise in terms of 50–60% of
the maximum HR, 60–70% of the maximum HR zone then suitable for subjects who target
weight control, and the range between 70 and 90% is preferred for the cardio-endurance
exercise. In the study, a two-input single-output (2ISO) control system is proposed, which can
specially further improve the efficiency of treadmill exercises for different subject groups as
well as diversify more reliable and safe treadmill exercise protocols.

Recently, most studies [3–6] only consider using one manipulate variable (treadmill speed or
gradient) to regulate HR responses. In [7, 8], for exercise testing and rehabilitation of subjects
with impaired exercise tolerance, ramp type protocols were proposed by simultaneously manip-
ulating both speed and gradient (without feedback), which could produce a low initial metabolic
rate that then increases the work rate linearly to reach the subject’s limit of tolerance in approx-
imately 10 min. In [9], a multi-loop proportion-integral (PI) controller based HR tracking system
has been presented, which independently tuned both treadmill speed and gradient in closed
loop, and achieved good performance. However, in paper [9], it is assumed that the HR response
to treadmill exercise is in linear range, and only linear modeling and control approaches have
been presented. The experimental evidences of the advantages of using both speed and gradient
to regulate HR are therefore only valid in a certain linear response range.

This study introduces the 2ISO HR process which employs two actuators, treadmill speed and
gradient, to regulate theHR response. Such process control has the followingmerits. First of all, it
can increase the non-saturation range. For example, practical systems always have physical limi-
tations and therefore have limited non-saturation range. If simultaneously executing multiple
actuators, the output range can be extended.On the other hand, it can increase themaximumgain
of the actuator so that the fast tracking or regulation of manipulated variable can be achieved [9].
Also, redundancy of actuators can facilitate fault accommodation for the implementation of fault-
tolerant control strategies. As the stability of the closed loop system can be practically achieved by
adding suitable constraints in control inputs and their derivatives, the achievable performance
(especially in steady state) ismore important formost industrial control processes.

For the regulation of HR, multi-loop PI controllers were developed [9] in order to achieve zero
steady-state tracking error. For multi-loop PI control of square process, Skogestad and Morari
[10] introduced the concept of decentralized integral controllability (DIC). DIC analysis [11–13]
determines the stability, integral control ability, and faulty-tolerant control of the multi-loop
system. This study extends the DIC analysis for nonlinear and non-square processes especially
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for a 2ISO process, namely multi-loop integral controllability (MIC). The proposed multi-loop
integral control-based HR regulation by manipulating treadmill speed and gradient is then
validated through a comparative treadmill experiment that compares the system performance
of the proposed 2ISO MIC control loop with that of single-input single-output (SISO) loops,
speed/gradient-to-HR. The real treadmill experiment is used to experimentally validate if MIC
in the HR range is valid. Results show that, compared with two SISO loops, the 2ISO MIC
control loop can achieve the fastest HR tracking performance, reach up to the reference HR
during the steady state, as well as offer the fault-tolerant ability in the case of one of the gains
of multi-loop integral controllers being out of service. It has a vital implication for the applica-
tions of exercise rehabilitation and fitness in relation to the automated control system.

2. Experiments

2.1. Experimental settings

In this study, the HR data during experiments were collected by a portable sensor, Alive Heart
Monitor (HM131) manufactured by Alive Technologies. It consists of one HR sensor and one
triaxial accelerometer. The HR data acquired from the internal HR sensor are used in the study.
The sampling rate for HR data collections is 300 samples/s. A Bluetooth SPP connection is used
to transmit the instantaneous HR data to the laptop-based control program that is designed
and implemented based on LabVIEW (National Instrument). The treadmill Powerjog J series is
set up for experiments, the speed and gradient of which is controlled and able to be accessed
via the RS232 protocol. Figure 1 shows the schematic diagram for the experimental equipment
setup.

2.2. Subjects

Eight healthy non-smoking males were invited to join the experiments. They were free from
any known cardiac or metabolic disorders, hypertension, and were not under any medication.

Figure 1. The schematic diagram for the experimental equipment setup.
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The Human Research Ethics Committee by University of Technology Sydney (UTS HREC
2009000227) approved the study, and an informed consent was obtained from all participants
before each experiment. The physical characteristics of the participants are presented in
Table 1. The subjects were required to take a light meal prior to the experiment activity and
not to participate in any intense exercises one day before the experiment [14–16]. The environ-
mental temperature during the experiments was set at 25�C, and the humidity was at about
50% [17]. The HR monitor (HM131) was fitted to the middle of the chest of every subject by
using electrode pads.

2.3. Experimental protocols

All subjects were asked to exercise on a motor-controlled treadmill, and they all selected
7 km/h as the speed for which both walking and running is possible. Then, subject was asked
to walk for 5 min at 7 km/h for a certain gradient followed by a 7 min rest. This procedure was
repeated for running as well as for different gradients. During experiments, HR response was
recorded by the portable ECG monitor. The averaged steady-state HR of all subjects for both
walking and running under different gradients is summarized in Table 2.

From Table 2, it can be seen that for a certain gradient, the HR for running is more than 15%
higher than that for walking. During exercise, the subjects may switch between walking and
running when the treadmill speed is around 7 km/h. As a result, it can be seen that, for
example, when gradient is around 15�, the transition zone for HR is between 121 and
144 bpm. When the reference HR is located in the transition zone, the regulation of HR only
by adjusting speed would be problematic even under small perturbations in the measurement.
This is because the subject will frequently switch his/her motion actions between walking and

Subjects Age (year) Height (cm) Weight (cm)

1 27 175 55

2 32 170 87

3
4
5
6
7
8
Mean
STD

29
29
42
29
31
26
30.6
4.7

176
178
175
164
169
180
173.4
5.0

90
77
80
64
67
77
74.6
11.1

Table 1. Physical characteristics.

Gradient
(Degree)

HR (bpm)
Walking at 7 km/h

HR (bpm)
Running at 7 km/h

0 102 125

15
25

121
137

144
171

Table 2. HR response at steady state.
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running in order to stabilize his/her desired HR level. As a result, simultaneous manipulating
of speed and gradient would be firmly beneficial.

2.4. Pan-Tompkins HR detection

The Pan-Tompkins algorithm was applied to identify the P-peak of QRS complex during
experiments, which is then used for calculations of HR values. This algorithm is inclusive of
several filtering such as a band-pass filter, a differentiator, a squaring operation and a moving
window integrator [9]. The band-pass filter is used to reduce noises in the raw ECG signals.
After band-pass filtering, the high frequency components of ECG signals were extracted by
using a five-point derivative function. The squaring operation was adopted to suppress P and
T waves and further enhance the higher frequency QRS complexes. Finally, the moving win-
dow integrator provided a single peak output, P-peak, for each QRS complex. After
implementing these steps and by implementing an adaptive threshold algorithm with false
peak detection capabilities, the HR signals can be detected accurately [18].

3. Methodology

3.1. Multi-loop integral controllability analysis for HR responses to treadmill exercise

In [8], the multi-loop PI controller has been designed for the regulation of HR for treadmill exercise.
Now, we consider the case when one of the actuators is in faulty condition. First, we introduce a
definition of MIC, which is a direct extension of DIC for a non-square 2ISO process [19].

As shown in Figure 1, assume the HR response can be described by the following equations
with an input vector u∈R2 and an output vector y∈R1:

P
_x ¼ f x; uð Þ x∈X⊂Rn, u∈U⊂R2

y ¼ g x; uð Þ y∈Y⊂R1

(
(1)

where the state x tð Þ is determined by its initial value x 0ð Þ and the input function u tð Þ. Consid-
ering the system (1) has equilibrium at origin, that is, f 0; 0ð Þ ¼ 0 and g 0; 0ð Þ ¼ 0, if the equilib-
rium xe is not at origin, a translation is then needed by redefining the state x as x� xe [19, 20].

3.1.1. Definition 1

(Multi-loop integral controllability for nonlinear 2ISO processes) Consider the closed loop system
depicted in Figure 2.

i. For the nonlinear process P described by Eq. (1), if a multi-loop integral controller C
exists, such that the unforced closed loop system (r ¼ 0) is globally asymptotically stable
(GAS) for the equilibrium x ¼ 0 and such that the globally asymptotically stability is
satisfied if each individual loop can be detuned independently by a factor ki (0 ≤ ki ≤ 1,
i ¼ 1, 2), then the nonlinear process P is said to be multi-loop integral controllable (MIC)
for the equilibrium x ¼ 0.
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Now, we consider the case when one of the actuators is in faulty condition. First, we introduce a
definition of MIC, which is a direct extension of DIC for a non-square 2ISO process [19].

As shown in Figure 1, assume the HR response can be described by the following equations
with an input vector u∈R2 and an output vector y∈R1:

P
_x ¼ f x; uð Þ x∈X⊂Rn, u∈U⊂R2

y ¼ g x; uð Þ y∈Y⊂R1

(
(1)

where the state x tð Þ is determined by its initial value x 0ð Þ and the input function u tð Þ. Consid-
ering the system (1) has equilibrium at origin, that is, f 0; 0ð Þ ¼ 0 and g 0; 0ð Þ ¼ 0, if the equilib-
rium xe is not at origin, a translation is then needed by redefining the state x as x� xe [19, 20].

3.1.1. Definition 1

(Multi-loop integral controllability for nonlinear 2ISO processes) Consider the closed loop system
depicted in Figure 2.

i. For the nonlinear process P described by Eq. (1), if a multi-loop integral controller C
exists, such that the unforced closed loop system (r ¼ 0) is globally asymptotically stable
(GAS) for the equilibrium x ¼ 0 and such that the globally asymptotically stability is
satisfied if each individual loop can be detuned independently by a factor ki (0 ≤ ki ≤ 1,
i ¼ 1, 2), then the nonlinear process P is said to be multi-loop integral controllable (MIC)
for the equilibrium x ¼ 0.
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ii. If the closed loop system is asymptotically stable (AS) near the region of the equilibrium
x ¼ 0, then the nonlinear process P is said to be locally multi-loop integral controllable
around the equilibrium x ¼ 0 [19, 20].

In Figure 2, we assume the state equation of the general process ~P (which includes original
process P and the two scalar non-integral controllers c1 andc2) is modeled as follows (with the
same assumptions for Eq. (1) of process P):

~P :
_x ¼ f x; ~uð Þ
y ¼ g x; ~uÞð

�
(2)

The state equation for the linear integral controller is expressed as:

Cl :
_ξ ¼

_ξ1

_ξ2

" #
¼ η

k1

k2

" #
e ¼ �η

k1

k2

" #
y

~u ¼ ξ

8><
>:

(3)

The following theorem presented a sufficient condition for MIC:

3.1.2. Theorem 1

(Steady-state MIC conditions for nonlinear 2ISO processes).

Consider the closed loop system in Figure 1, and assume that the general process ~P and the
linear part of the controller Cl are described by Eqs. (2) and (3), respectively. If the following
assumptions are satisfied:

i. The equation 0 ¼ f x; ~uÞð obtained by setting _x ¼ 0 in Eq. (2) implicitly defines a unique

C2 function x ¼ h ~uÞð for ~u ∈ ~U ⊂R2.

ii. For any fixed ~u ∈ ~U ⊂R2, the equilibrium x ¼ h ~uÞð of the system _x ¼ f x; ~uÞð is globally
asymptotically stable (GAS) and locally exponentially stable (LES).

iii. If two C2 functions can be found f1 �ð Þ and f2 �ð Þ such that that the steady-state input
output function g h ~uÞ; ~uð Þð of the general process ~P satisfies the following requirements:

Figure 2. Multi-loop integral controllability for 2ISO system.
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(for some scalar r > 0) for in a neighborhood of

w1 ~u1ð Þ þ w2 ~u2ð Þ ¼ 0.

Then there exists η > 0, such that the equilibrium is GAS. That is, if the two scalar controllers c1
and c2 can be found such that the generalized process ~P can satisfy Conditions (i), (ii) and (iii),
then the nonlinear 2ISO process is MIC for the equilibrium.

Remark: If the generalized process ~Pcan be guaranteed to satisfy Conditions (i), (ii) and (iii),
based on Theorem 1 it is said that the nonlinear 2ISO process can be MIC. Once the control
system is assumed as nonlinear 2ISO MIC, the stability of system can be easily guaranteed by
independently tuning the factor ki. In practice, the factor ki usually can be manually configured
to be 0 ≤ ki ≤ 1, i ¼ 1, 2.

The Proof of the above theorem (similar as that of Theorem 1 in [11]) is based on singular
perturbation theory [18] and can be found in [19].

Based on Definition 1, we can easily check that a necessary MIC condition for a 2ISO process in
each single loop is DIC respectively. For HR regulation system, the necessary condition for the
speed-HR and gradient-HR subsystems is DIC respectively.

A sufficient DIC condition for SISO system is the passivity in steady state, that is, the sector
condition for passivity. We can easily prove that this condition is also sufficient for 2ISO
processes based on Theorem 1.

For the HR responses during walking or running exercises, it is not hard to see that the incre-
mental increasing of speed or gradient respectively will lead to the incremental increasing in HR
for the same exerciser, that is, each single loop is DIC in either walking zone or running zone.
However, the HR variation during walking and running transition is not clear. The following
parts simulated the transition of walking/running as well as performed several experiments to
investigate the HR response during transition between walking and running [21].

We also explore the offset free tracking when one of the actuators is in faulty conditions. We
consider the case when one of the motors (speed motor and gradient motor) is broken, whether
HR tracking is still possible or not. We also investigate whether offset free tracking is achiev-
able or not under faulty conditions [22, 23].

4. Results

4.1. MATLAB®/Simulink® simulation verification

In order to identify the coefficients of PI controllers and verify the proposed MIC conditions for
2ISO HR regulation, the SISO and 2ISO control loops are designed and implemented through
MATLAB®/Simulink® simulations. The schematic diagram for simulations is illustrated in
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based on Theorem 1 it is said that the nonlinear 2ISO process can be MIC. Once the control
system is assumed as nonlinear 2ISO MIC, the stability of system can be easily guaranteed by
independently tuning the factor ki. In practice, the factor ki usually can be manually configured
to be 0 ≤ ki ≤ 1, i ¼ 1, 2.

The Proof of the above theorem (similar as that of Theorem 1 in [11]) is based on singular
perturbation theory [18] and can be found in [19].

Based on Definition 1, we can easily check that a necessary MIC condition for a 2ISO process in
each single loop is DIC respectively. For HR regulation system, the necessary condition for the
speed-HR and gradient-HR subsystems is DIC respectively.

A sufficient DIC condition for SISO system is the passivity in steady state, that is, the sector
condition for passivity. We can easily prove that this condition is also sufficient for 2ISO
processes based on Theorem 1.

For the HR responses during walking or running exercises, it is not hard to see that the incre-
mental increasing of speed or gradient respectively will lead to the incremental increasing in HR
for the same exerciser, that is, each single loop is DIC in either walking zone or running zone.
However, the HR variation during walking and running transition is not clear. The following
parts simulated the transition of walking/running as well as performed several experiments to
investigate the HR response during transition between walking and running [21].

We also explore the offset free tracking when one of the actuators is in faulty conditions. We
consider the case when one of the motors (speed motor and gradient motor) is broken, whether
HR tracking is still possible or not. We also investigate whether offset free tracking is achiev-
able or not under faulty conditions [22, 23].

4. Results

4.1. MATLAB®/Simulink® simulation verification

In order to identify the coefficients of PI controllers and verify the proposed MIC conditions for
2ISO HR regulation, the SISO and 2ISO control loops are designed and implemented through
MATLAB®/Simulink® simulations. The schematic diagram for simulations is illustrated in
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Figure 3, where the constructed HR model is regulated by either treadmill speed/gradient (the
SISO loops) or both of those actuators (the 2ISO loop).

A two-input single-output Hammerstein model is used for modeling of HR-based open-loop
characteristics. The linear dynamic part of the model is noted as G sð Þ ¼ K

Tsþ1, where K and T are
the steady state gain and the time constant, respectively [24, 25]. The static nonlinear part is
modeled by a cubic polynomial function. The input–output relationship between treadmill
speed and heart rate is shown in Figure 4 when the gradient is zero.

Based on the previous experimental survey in [9], the multi-loop integral controllers for the
single loops of speed-HR and gradient-HR are developed respectively. The experimental
results confirm the static nonlinearity of HR responses to treadmill walking/running exer-
cises which has been shown in Figure 8. As a result, the passive sector condition can be
found in the zones of 0–6.8 km/h (indicating the walking condition), and 7.2–7.8 km/h
(indicating the running condition). This means when treadmill speed is within the walking
zone, for instance, the subject merely needs to undergo a walking motion to follow the
treadmill protocol. Moreover, if the treadmill speed reaches the running zone, the running
motion has to be taken by all of subjects. However, it also could be observed from Figure 4
that the passivity sector condition in the transition zone from 6.8 to 7.2 km/h is not valid.
This means that if the reference HR variation is selected as 49.5374 (HR is 124.5374 bpm)
which is located in the transition zone, the regulation of HR by only adjusting speed would
be problematic even under small perturbations in the measurement. This is because the
subject will frequently switch his/her motion actions between walking and running in order
to stabilize his/her desired HR level.

Figure 3. The schematic diagram of 2ISO PI control structure for MATLAB®/Simulink®-based HR tracking simulation. a.
HR tracking of 2ISO control loop and b. SISO control loop of speed-HR or gradient-HR.
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Figure 5 shows the simulation result for which only speed has been manipulated. This indicates
another advantage for the using of two control inputs and fault tolerance. It can be proved based
on Theorem 1 and also by simulation that if the open loop gain for healthy actuator is significantly

Figure 4. Steady-state HR response to speed (gradient is zero).

Figure 5. HR regulation results when only speed is manipulated.
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bigger than that for faulty actuator, then the offset free tracking is still possible. Although the
regulated HR is quite close to reference HR, treadmill speed swings between 6.5 and 7.5 km/h.

Due to the discomfort evoked by the speed swinging, we can simultaneously manipulate both
treadmill speed and gradient and adjust the gradient regulation loop to avoid the swinging.
Simulation results in Figure 6 prove the effectiveness of the simultaneous manipulation strategy.

The simulation results from PI control loops of SISO (speed-HR and gradient-HR) and 2ISO
indicate that those three structures can well achieve the HR tracking performance merely by
tuning the PI parameters of multiple integral controllers with quite small values; the simulta-
neous manipulation strategy for the regulation of HR responses to treadmill exercises is
effective if MIC conditions are satisfied; the 2ISO closed loop can provide the ability of fault
tolerance which means that especially in the case of one of the actuators (either speed or
gradient) being out of service, the offset free tracking is still achievable.

4.2. Experimental validation

In order to evaluate real-time HR tracking performance obtained from the proposed 2ISO
control loop, the experimental verification is also used in this study, and a comparative study
is made by comparing the tracking performance of the 2ISO loop with that of both SISO loops
of speed-HR and gradient-HR.

Figure 6. HR regulation results when both speed and gradient are manipulated.
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In order to identify the comfort HR zones of each individual for treadmill experiments,
moderate exercise intensity was adopted which offers safe treadmill intensity (speed ranged
from 3 to 7 km/h, and gradient from 2 and 15%). This guarantees the HR operating zone for the
subject to be located between 90 and 170 bpm. In addition, the HR level at 135 bpm was
selected to be a reference input for the setpoint value of both SISO and 2ISO tests.

Considering the time-delay situation between control inputs (such as treadmill speed and
gradient) and system output (instantaneous HR) during the practical experiment validation, a
stack buffer with a 5-s timer was used to obtain the instantaneous HR values. The latest HR
value was stored from the top of the stack buffer. The control input commands will be sent to
the treadmill every 5 s based on the up-to-date stack buffer stores. For de-noising the raw
instantaneous HR values measured by the Alive Technologies HR sensor, an improved expo-
nential, weighted, moving, average filter together with a simple outlier detection algorithm
was adopted for the estimation of the HR stored in the stack buffer [4].

In the first SISO open loop test, the speed of the treadmill is employed to be the system input,
and HR is considered as the system output. Moreover, the gradient of treadmill is fixed at 2%
and the input is set to be adjustable between 2 and 5 km/h. The PI parameters of speed-HR
loop with a stable operation range 0.01–1.05 for kp, 0.001–0.075 for ki were determined. Based
on the open loop experimental results, for the SISO controller with speed as the input, PI
controllers, kpand ki, are set to 0.7 and 0.05, respectively, in order to achieve acceptable control
characteristics. The HR response is shown in Figure 7, in which the HR model parameters
K and T values were determined to be equal to 15.91 and 37.44, respectively. The results show
the HR increasing quickly and a small reaction delay.

In addition, based on the gradient-HR test, a fixed speed of 4 km/h is maintained while the
gradient is changed from 2 to 12%. The stable operation range (kp:0.01–0.4665, ki:0.001) for
gradient-HR loop is observed from the experimental results. As a result, for the SISO controller
with gradient as the input, kp and ki values are adjusted to 0.311 and 0.001 respectively. The
coefficients for the speed-input controller slightly varied from the theoretical values, while in
the case of the gradient-input controller, the theoretical values were acceptable. The response

Figure 7. Experimental data for HR step responses to either treadmill speed or gradient (open-loop test with speed and HR).
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with gradient as the input, kp and ki values are adjusted to 0.311 and 0.001 respectively. The
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Figure 8. Experimental data for HR step responses to either treadmill speed or gradient (open-loop test with gradient and
HR).

Figure 9. HR tracking performance comparison of SISO (speed) test with 2ISO.

Figure 10. HR tracking performance comparison of SISO (gradient) test with 2ISO.
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graph is shown in Figure 8, where K and T values obtained are 2 and 26, respectively. A
reaction delay can be observed due to the mechanical time that the treadmill needs to reach
the desired gradient.

Using experimental verification results with the determined PI coefficients, two closed loop
SISO controllers and one 2ISO controller were implemented. Figures 9 and 10 provide a clear
view of both SISO control with speed-input and gradient-input compared with 2ISO. For the
SISO speed-input controller, it demonstrates that the system outputs have a slight overshoot
followed by a fast rise to track the setpoint. However, for the SISO gradient-input controller, it
shows a more stable performance compared to that of the SISO speed-input controller. The
comparative results shown in Figure 10 demonstrate that 2ISO control loop can achieve the
fastest HR tracking performance and stay close to the reference HR during steady state, while
comparing with two SISO structures.

The main advantage of using 2ISO control in treadmill exercises is to improve the HR tracking
performance. It can be concluded that the 2ISO controller outperforms both SISO controllers
and can provide shorter rise time, best steady-state stability, as well as the lowest steady-state
error. In addition, the 2ISO automatic treadmill exercise system also offers more comfortable
and safer exercise conditions for users.

5. Conclusion

This study investigates the benefits of using two controller inputs, the speed and gradient, for
the regulation of HR during treadmill exercises. The main goal of HR control in treadmill
exercises is to ensure a reliable, fast, and offset-free tracking, as well as to offer the faulty
tolerance ability in the case of one of actuators (either treadmill speed or gradient) being out
of service. For this purpose, we extended the concept of nonlinear decentralized integral
controllability (DIC) to nonlinear 2ISO processes and presented a sufficient condition which
only needs checking the steady state input-output relationship of controlled processes. Based
on the proposed condition, we investigate the new defined multi-loop integral controllability
(MIC) for walking, running, and walking-running zones. The experimental validation presents
that by simultaneously using two control inputs, the automated system can achieve the fastest
HR-tracking performance and stay close to the reference HR during steady state, while com-
paring with two SISO structures and offer the fault-tolerant ability if the gains of the twomulti-
loop integral controllers are well tuned. It has a vital implication for the applications of exercise
rehabilitation and fitness in relation to the automated control system.
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Figure 8. Experimental data for HR step responses to either treadmill speed or gradient (open-loop test with gradient and
HR).

Figure 9. HR tracking performance comparison of SISO (speed) test with 2ISO.

Figure 10. HR tracking performance comparison of SISO (gradient) test with 2ISO.
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on the proposed condition, we investigate the new defined multi-loop integral controllability
(MIC) for walking, running, and walking-running zones. The experimental validation presents
that by simultaneously using two control inputs, the automated system can achieve the fastest
HR-tracking performance and stay close to the reference HR during steady state, while com-
paring with two SISO structures and offer the fault-tolerant ability if the gains of the twomulti-
loop integral controllers are well tuned. It has a vital implication for the applications of exercise
rehabilitation and fitness in relation to the automated control system.
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Abstract

In the presence of persistent perturbations in both unactuated and actuated dynamics of 
crane systems, an observer-based robust control method is proposed, which achieves the 
objective of trolley positioning and cargo swing suppression. By dealing with the unac-
tuated and unknown perturbation as an augmented state variable, the system dynamics 
are transformed into a quasi-chain-of-integrators form based on which a reduced-order 
augmented-state observer is established to recover the perturbations appearing in the 
unactuated dynamics. A novel sliding manifold is constructed to improve the robust per-
formance of the control system, and a linear control law is presented to make the state 
variables stay on the manifold in the presence of perturbations in unactuated dynam-
ics. A Lyapunov function candidate is constructed, and the entire closed-loop system is 
proved rigorously to be exponentially stable at the equilibrium point. The effectiveness 
and robustness of the proposed observer-based robust controller are verified by numeri-
cal simulation results.

Keywords: underactuated systems, overhead cranes, observer-based control, 
Lyapunov methods, motion control

1. Introduction

Underactuated systems [1–9] are now widely applied in modern industry. A crane system is 
a typical class of underactuated systems with strong state coupling. Due to inertia, when the 
trolley moves, the unactuated cargo swings back and forth, which affects the transporting 
efficiency and safety. Therefore, on the one hand, effective controllers are needed to transport 
the actuated trolley to desired positions. On the other hand, it is also necessary to eliminate 
residual vibrations of the unactuated cargo. Nevertheless, control problems of crane systems 
are still non-trivial and challenging since the system is underactuated without enough avail-
able control inputs.

© 2018 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.
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In order to tackle control problems of crane systems, various control methods are proposed 
[10–38]. Specifically, Sun et al. [10, 11] present antiswing controllers to regulate the cargo posi-
tion to the desired location asymptotically in the presence of ship roll and heave movements 
for offshore crane systems applied in modern ocean transportation and logistics. Moreover, 
existing methods also include input shaping [12–15], feedback control [16–28], intelligent con-
trol [29–32], and trajectory planning method [33–36]. Specifically, several input shapers are 
designed to reduce payload swing of bridge crane systems [12–15]. In Ref. [16], an energy-
based output feedback control scheme is proposed, which achieves both precise trolley posi-
tioning and efficient payload swing elimination under control input constraints. In Ref. [17], 
a payload motion-based control approach is presented in the presence of system parameter 
uncertainties. In [18–20], non-linear controllers are designed on the basis of partial feedback 
linearization. In Ref. [21], visual feedback technology is used to achieve the control objective 
by using two handy cameras. Additionally, sliding mode control strategies are also widely 
applied to tackle crane system control problems [22–25]. For example, Almutairi and Zribi 
[22] achieved the asymptotic stability of the closed-loop overhead crane system by propos-
ing a sliding mode control scheme. Xi and Hesketh [23] addressed an integral sliding mode 
control method for discrete time crane systems with both matched and unmatched uncer-
tainties to ensure the existence of sliding mode in the presence of uncertainties. Based on 
second-order sliding modes, Bartolin et al. [24] guaranteed a fast and precise payload trans-
ferring and swing suppression. Ngo and Hong [25] developed an adaptation law with a 
varying control gain that transits the system into the designed sliding mode. Moreover, in 
practical applications, cranes always suffer from unknown or uncertain system parameters 
(e.g., payload weight changes, varying rope lengths, etc.). Then adaptive control schemes are 
applied to address these problems [26–28]. Sun et al. [26] addressed the crane antiswing and 
positioning problem in the presence of payload hoisting/lowering and uncertain parameters 
with simultaneous payload weight identification. Park et al. [27] proposed an adaptive sliding-
mode antisway control law with system uncertainties and high-speed hoisting motion. Sun 
et al. [28] designed an adaptive control scheme to deal with the control problem of tower 
crane systems with parametric uncertainties without approximating the non-linear dynamics. 
There are also some intelligent control methods applied in crane systems such as fuzzy control  
[29, 30], genetic algorithm [31], and neural network [32]. According to the operating experience 
of real cranes, it is also essential to design suitable trajectories for the system states (positions, 
velocities, and accelerations). Then, tracking controllers can be used to track the trajectories. 
In addition to closed-loop control design, many studies also focus on the trajectory planning 
part and achieve meaningful results [33–36]. Uchiyama et al. [33] generated an S-curve trajec-
tory numerically, which can suppress the residual vibration without measuring it. Sun et al. 
[34] obtained an analytical three-segment acceleration trajectory. For given transferring task, 
the proposed trajectory planning method provides a mechanism to determine the parameters 
to ensure that all the transportation indexes are met. More recently, in Ref. [35], an optimal 
trajectory is generated with optimal energy consumption by using the proposed optimal plan-
ner. There are also antiswing control strategies proposed for double pendulum cranes [37, 38].

However, most of the existing methods for underactuated crane systems tackle the control 
problem without considering the perturbations in the unactuated dynamics. In practical 
applications, perturbations widely exist in both actuated and unactuated dynamics, which 
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may be difficult to tackle by using existing methods. Note that in Ref. [23], integral sliding 
mode control method is proposed by considering perturbations in unactuated dynamics, but 
it is only designed for discrete-time systems by estimating the present disturbance signal with 
its past value. Therefore, in order to derive an effective method to achieve crane control in the 
presence of unknown persistent (even non-vanishing) perturbations in both unactuated and 
actuated dynamics, this chapter proposes an observer-based robust control method.

The main contribution of this chapter is as follows:

1. According to whether the perturbation in the unactuated dynamics is vanishing or not, the 
control problem is stated in two cases. The observer-based robust controller designed in 
this chapter can achieve the control objectives for both cases.

2. By dealing with the unactuated and unknown perturbation as an augmented state vari-
able, an augmented error system is established based on which we design a reduced-order 
augmented state observer for the crane system to recover the perturbations appearing in 
the unactuated dynamics.

3. Together with the observer, by constructing a new sliding manifold, a new observer-based 
sliding mode controller is developed.

The proposed controller is applicable to crane systems with unknown persistent perturba-
tions in the unactuated dynamics and achieves robust control effectively.

The rest of this chapter is organized as follows. Section 2 describes the crane dynamics with 
persistent (even non-vanishing) perturbations and transforms the dynamics into a quasi-
chain-of-integrators form for the convenience of controller design and stability analysis. Also, 
the control objective is stated in Section 2. Based on the model in Section 2, a reduced-order 
augmented-state observer and an observer-based control law are developed in Section 3. 
Then in Section 4, numerical simulation results are included to verify the effectiveness of the 
proposed controller. Section 5 summarizes the entire work of this chapter.

2. Problem formulation

The purpose of this chapter is to propose an effective method to achieve crane control in 
the presence of persistent (even non-vanishing) perturbations in both unactuated and actu-
ated dynamics. The crane dynamics can be represented by the following equations (shown 
in Figure 1):

   (M + m)  x ¨   + mL θ ¨   cos θ − mL   θ   ̇     2  sin θ = u −  f  r   +  d  x  ,  (1)

   mL   2  θ ¨   + mL cos θ x ¨   + mgL sin θ =  d  θ  .  (2)

The system parameters are defined in Table 1, and fr denotes the rail friction force expressed 
as follows:
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2. Problem formulation
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the presence of persistent (even non-vanishing) perturbations in both unactuated and actu-
ated dynamics. The crane dynamics can be represented by the following equations (shown 
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   (M + m)  x ¨   + mL θ ¨   cos θ − mL   θ   ̇     2  sin θ = u −  f  r   +  d  x  ,  (1)

   mL   2  θ ¨   + mL cos θ x ¨   + mgL sin θ =  d  θ  .  (2)

The system parameters are defined in Table 1, and fr denotes the rail friction force expressed 
as follows:
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   f  r   =  f  r0   tanh  ( x   ̇   / ϵ)  −  k  r   ∣  x   ̇   ∣  x   ̇  ,  (3)

where fr0, ϵ, kr ∈ R are friction parameters, which can be identified by offline experimental tests 
and data fitting. dx(t) and dθ(t) denote the lumped term comprising external perturbations, 
unmodeled dynamics, the mismatch between the real girder friction and the friction compen-
sation model shown in Eq. (3), and so forth.
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Figure 1. The schematic diagram of an overhead crane system.

System parameter Physical significant Unit

M Trolley mass kg

m Cargo mass kg

L Cargo rotation radius m

g Gravity constant m/s2

x Trolley translational displacement m

θ Cargo rotational angle rad

u Control input N

Table 1. The system parameters of crane systems.
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Considering the practical physical constraints, though the exact expressions for the lumped 
perturbation terms dx(t) and dθ(t) are unknown, the following assumptions are reasonably 
made.

Assumption 1: The perturbation term dx(t) present in the actuated dynamics is bounded as  ∣  d  
x
   

(t)  ∣ ≤    d ¯¯    
x
   , where     d ¯¯    

x
    is a priori known. The unactuated perturbation term dθ(t) is differentiable 

up to the n-th order;  ∣  d  
θ
   ∣ ≤    d ¯¯    

θ
   ,  ∣  d  

θ
   (i)   (t)  ∣ ≤    d ¯¯    

𝜃𝜃i
  , i = 1, 2, ⋯ , n − 1 , where     d ¯¯    

θ
    and     d ¯¯    

𝜃𝜃i
    are priori known 

constants. It is also assumed that   d  
θ
   (3)   (t)  ≈ 0 .

2.1. Crane model transformation

Before proceeding to describe the control objective, we perform several steps of transformations 
for the original crane dynamics shown in Eqs. (1) and (2) for the convenience of carrying out con-
troller development and stability analysis in the subsequent section. Considering the fact of mL > 0, 
we divide both sides of Eq. (2) and make some arrangements to obtain the following equation:

   x ¨   = − g tan θ −   L θ ¨   _____ cos θ   +   
 d  θ   _______ mL cos θ  .  (4)

Then one can substitute Eq. (4) into Eq. (1) and make some arrangements to obtain

  −    (M + m  sin   2  θ) L  ___________ cos θ   ( θ ¨   −  δ  x   −  δ  𝜃𝜃a  )  − mL   θ   ̇     2  sin θ −  (M + m) g tan θ = u −  f  r  ,  (5)

where δx(t) and δθa(t) are defined as follows:

   δ  x   = −   
 d  x   cos θ
 ___________    (  M + m  sin   2  θ )   L  ,  δ  θa   = −   

 d  θ    (  M + m )   
 _____________    (  M + m si n   2  θ )   m L   2   .  (6)

Based on Assumption 1, the upper bounds for δx(t) and δθa(t) are provided as:

  ∣  δ  x   ∣ ≤    δ ¯¯    x   =   
   d ¯¯    x   ___ Ml  , ∣  δ  𝜃𝜃a   ∣ ≤    δ ¯¯    𝜃𝜃a   =   

   d ¯¯    θ   (M + m) 
 ________  MmL   2   .  (7)

In the view of the explicit expression of Eq. (5), a feedback linearization controller can be 
proposed as follows:

  u = −    (M + m  sin   2  θ) L  ___________ cos θ   v − mL   θ   ̇     2  sin θ −  (M + m) g tan θ +  f  r  ,  (8)

in which v(t) is a to-be-elaborated auxiliary control input. That is, once we derive the expres-
sion ofv(t), the ultimate controller u(t) can be conveniently obtained according to Eq. (8). By 
substituting Eq. (8) into Eq. (5), together with Eq. (4), the dynamic Eqs. (1) and (2) can be  
re-expressed in the following fashion:

   
{

 
 x ¨   = − g tan θ −   L θ ¨   _____ cos θ   +   

 d  θ   _______ mL cos θ  ,
    

 θ ¨   = v +  δ  x   +  δ  𝜃𝜃a  .
     (9)
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Further, we define the following coordinate transformations:

   

 φ  1   = x + L ln   (  sec θ + tan θ )   

    
 φ  2   = x + L θ ˙  sec θ

    φ  3   = − g tan θ   

 φ  4   = − g θ ˙    sec   2  θ

      (10)

Then, it is straightforward to obtain the following dynamic equations:

   

  φ   ̇    1    =  φ  2  ,

    φ   ̇    2   =  φ  3   − h ( φ  3  )   φ  4  2  +   
 d  θ   _______ mL cos θ  ,    

  φ   ̇    3   =  ϕ  4  ,
  

  φ   ̇    4   = − g (v +  δ  x   +  δ  𝜃𝜃a  )   sec   2  θ − 2g   θ   ̇     2   sec   2  θ tan θ.

   (11)

In Eq. (11), the function h(φ3) is with the definition as  h ( φ  
3
  )  =   

l  φ  
3
  
 _______   ( g   2  +  φ  
3
  2 )    1.5    ⇒ ∣ h ( φ  

3
  )  ∣ ≤ 0.004L , where 

the value of the gravity constant is taken as g = 9.8 m/s2.

For practical applications, the cargo swing is always within 10 degrees, that is, ∣θ(t) ∣  ≤ π/18 
rad. In this case, the approximations of sinθ ≈ tan θ ≈ θ and secθ = cos−1θ ≈ 1 are valid. In this 
sense, φ1(t) in Eq. (10) can be approximated as follows:

   φ  1   (t)  ≈ x + L ln  (1 + θ)  ≈ x + L𝜃𝜃,  (12)

which is right at the horizontal position of the cargo. Also, the cargo swing angular velocity 
satisfies  ∣  θ   ̇   (t)  ∣ < < 1  rad/s; considering that the wire length L‘s order of magnitude is usually 
10 m,  h ( φ  

3
  )   φ  

4
  2  = 0.004  Lg   2    θ   ̇     2   sec   4  θ ≈ 0.384L   θ   ̇     2   sec   4  θ ≈ 0  holds; hence,  h ( φ  

3
  )   φ  

4
  2   is negligible and can be 

incorporated as part of the unactuated lumped perturbation δθu(t) that will be introduced 
later. For simplicity of denotation, we define

   φ  1   = x + L𝜃𝜃,  φ  2   =   φ   ̇    1  .  (13)

Therefore, the crane dynamics can be described by

   

⎧

 
⎪

 ⎨ 
⎪

 

⎩

 

  φ   ̇    1   =  φ  2  ,

  
  φ   ̇    2   =  ϕ  3   +  δ  𝜃𝜃u  ,

     φ   ̇    3   =  ϕ  4  ,
  

  φ   ̇    4   = − g (v +  δ  x   +  δ  𝜃𝜃a  )   sec   2  θ − 2g   θ   ̇     2   sec   2  θ tan θ,

    (14)

wherein δθu(t) represents the unactuated lumped perturbation term mainly consisting of 
dθ/mL cos θ.
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2.2. Control objective

For crane control during the transportation process (between the hoisting and lowering 
stages), the kernel objective is to transfer the cargo from its initial position to the desired 
position (destination) and then keep it stationary right above the destination so that further 
actions (e.g., lowering) can be taken.

Hence, the preliminary task is to make the cargo reach the destination by appropriately con-
trolling the trolley motion, which can be mathematically depicted as follows:

   φ  1   = x + L𝜃𝜃 →  p  dx  .  (15)

To make this process smooth enough, instead of set-point control (i.e., directly using pdx as the 
reference), we want the cargo to follow a smooth time-varying trajectory rx(t), which satisfies 
the following conditions:

   lim  
t→ t  f1  

     r  x   (t)  =  p  dx  , ∣  r  x   
(i)   ∣ ≤ π, i = 1, 2, 3, 4,  (16)

where tf1 denotes the consumed time for rx(t) to reachpdx, and πi(i = 1, 2, 3, 4) stands for the cor-
responding upper bound for the i-th order derivative forrx(t), respectively.

When there are no external perturbations appearing in the unactuated dynamics (that is, 
δθu ≡ 0 in Eq. (14)), we need also to damp out the cargo swing θ(t) at the same time, namely,

  θ → 0 ⇒ x →  p  dx  .  (17)

However, in the case of persistent, non-vanishing perturbations in the unactuated component 
(i.e., δθu(t) ≠ 0), there does not exist any control action that can completely damp out θ(t) while 
keeping the cargo stationary right above the destination. Suppose that there exists such a 
controller u′(t) that could eliminate the cargo swing, namely,

  θ (t)  = 0,  θ   ̇   (t)  = 0 ⇒  ϕ  3   (t)  = − g tan θ (t)  = 0,  (18)

and make the cargo stay stationary at the destination in the sense that

   φ  1   (t)  =  p  dx  ,   φ   ̇    1   (t)  = 0,  φ  2   (t)  = 0,   φ   ̇    2   (t)  = 0, ∀ t ≥  t  f2  ,  (19)

with tf2 being the settling time, then it would follow, by inserting Eq. (18) and Eq. (19) into the 
second equation of Eq. (14), that

   δ  𝜃𝜃u   =   φ   ̇    2   −  ϕ  3   = 0,  (20)

which obviously contradicts with the fact that δθu ≠ 0; thus the existence of such a control-
ler u′(t) is impossible. This fact illustrates the great challenge that will be faced with when 
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controlling the crane system in the presence of persistent perturbations in the unactuated 
dynamics. On the other hand, since δθu(t) is usually unknown, the control problem becomes 
even more challenging.

Based on the analysis claimed above, in accordance with the fact whether δθu in the unactu-
ated dynamics is vanishing or not, the control objective of this chapter is stated as follows:

• Case 1. Non-vanishing perturbations in the unactuated dynamics. Drive the unactuated cargo to 
the desired destination and keep it stationary over the destination thereafter, that is,

   lim  
t→∞

     φ  1   (t)  =  p  dx  ,  lim  
t→∞

      φ   ̇    1   (t)  = 0.  (21)

• Case 2. Vanishing or no/negligible perturbations in the unactuated dynamics. Drive both the trol-
ley and the unactuated cargo to the desired destination, in the sense that

   lim  
t→∞

     φ  1   (t)  =  p  dx  ,  lim  
t→∞

    x (t)  =  p  dx  ,  lim  
t→∞

      φ   ̇    1   (t)  = 0,  lim  
t→∞

     x   ̇   = 0 ⇒  lim  
t→∞

    θ (t)  = 0,  lim  
t→∞

     θ   ̇   (t)  = 0.  (22)

To achieve the control objective, together with Eq. (16), let the following error signals be 
defined:

   e  1   =  φ  1   −  r  x  ,  e  2   =  φ  2   −   r   ̇    x  ,  e  3   =  ϕ  3  ,  e  4   =  ϕ  4  .  (23)

Thus, we are led to the following open-loop error system:

   

⎧

 
⎪

 ⎨ 
⎪

 

⎩

 

  e   ̇    1   =  e  2  ,

  
  e   ̇    2   =  e  3   +  δ  𝜃𝜃u   −   r ̈    x  ,     e   ̇    3   =  e  4  ,

  

  e   ̇    4   = − g (v +  δ  x   +  δ  𝜃𝜃a  )   sec   2  θ − 2g   θ   ̇     2   sec   2  θ tan θ,

    (24)

which is the basis for the observer-controller design and analysis in the section that follows.

3. Main results

In order to achieve the control objective claimed in the previous section, we will propose a 
perturbation observer-based robust control scheme. More precisely, to deal with the unac-
tuated unknown persistent perturbations, an augmented-state observer will be constructed. 
Then, we will present a novel robust control law, which can achieve superior control perfor-
mance and provide the corresponding theoretical stability analysis.

3.1. Observer design

The fact that the perturbation term δθu(t) is unactuated and unknown brings much difficulty 
for the controller design and analysis and it makes traditional robust control methods not 
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applicable. As a means to achieve the aforementioned control objective, it is required to figure 
out a suitable strategy that can deal with δθu(t). Toward this end, before controller develop-
ment, we will first construct an augmented observer which can recover the lumped perturba-
tion term δθu(t) appearing in the unactuated dynamics. Then, we treat δθu(t) as an augmented 
state variable. The benefit of doing so is that the perturbation observer design procedure 
would become more concise and clear. By following this line, the augmented error system for 
Eq. (24) is established as follows:

   

⎧

 

⎪
 ⎨ 

⎪
 

⎩

 

  e   ̇    1   =  e  2  ,

  

  e   ̇    2   =  e  3   +  e  5   −   r ̈    x  ,

   

  e   ̇    3   =  e  4  ,

  
  e   ̇    4   = − g (v +  δ  x   +  δ  𝜃𝜃a  )   sec   2  θ − 2g   θ   ̇     2   sec   2  θ tan θ,

       e   ̇    5   =  e  6  ,  
  e   ̇    6   =  e  7  ,

  

⋮

  

  e   ̇    n+1   = 0,

  

y =  e  1  

     (25)

where we have considered δθu(t) as an augmented state variable e5(t) and its derivatives as 
e6(t), e7(t), ⋯, en + 1(t), and y(t) is the corresponding system output signal. In this chapter, the 
signals e1(t), e3(t) and e4(t) are measurable, and we merely need to fabricate an observer with 
the aim of recovering the lumped perturbatione5(t). In order to reduce the computational com-
plexity, noting also that θx(t) and θθa(t) are unavailable for feedback, we intend to construct 
a reduced-order perturbation observer. For this purpose, consider the following subsystem:

   

⎧

 
⎪

 ⎨ 

⎪
 

⎩

 

  e   ̇    2   =  e  3   +  e  5   −   r ̈    x  ,

   

  e   ̇    5   =  e  6  ,

  
  e   ̇    6   =  e  7  ,  ⋮  

  e   ̇    n+1   = 0,

  

 y   '  =  e  2  ,

     (26)

which is part of the augmented error system shown in Eq. (25), where y′(t) is regarded as the 
new output. It is not difficult to check that the reduced-order augmented-state system shown 
in Eq. (26) is observable, and the detailed analysis can be found in Appendix A. Based on the 
structure of Eq. (26), we design the following reduced-order augmented-state observer:

   

⎧

 
⎪

 ⎨ 

⎪
 

⎩

 

   e ̂     ̇    2   =  e  3   +   e ̂    5   −   r ̈    x   −  λ  2   (  e ̂    2   −  y   ′ ) ,

    
   e ̂     ̇    5   =   e ̂    6   −  λ  5   (  e ̂    2   −  y   ′ ) ,

      e ̂     ̇    6   =   e ̂    7   −  λ  6   (  e ̂    2   −  y   ′ ) ,   
⋮

  

   e ̂     ̇    n+1   = −  λ  n+1   (  e ̂    2   −  y   ′ ) ,

     (27)
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controlling the crane system in the presence of persistent perturbations in the unactuated 
dynamics. On the other hand, since δθu(t) is usually unknown, the control problem becomes 
even more challenging.

Based on the analysis claimed above, in accordance with the fact whether δθu in the unactu-
ated dynamics is vanishing or not, the control objective of this chapter is stated as follows:

• Case 1. Non-vanishing perturbations in the unactuated dynamics. Drive the unactuated cargo to 
the desired destination and keep it stationary over the destination thereafter, that is,

   lim  
t→∞

     φ  1   (t)  =  p  dx  ,  lim  
t→∞

      φ   ̇    1   (t)  = 0.  (21)

• Case 2. Vanishing or no/negligible perturbations in the unactuated dynamics. Drive both the trol-
ley and the unactuated cargo to the desired destination, in the sense that

   lim  
t→∞

     φ  1   (t)  =  p  dx  ,  lim  
t→∞

    x (t)  =  p  dx  ,  lim  
t→∞

      φ   ̇    1   (t)  = 0,  lim  
t→∞

     x   ̇   = 0 ⇒  lim  
t→∞

    θ (t)  = 0,  lim  
t→∞

     θ   ̇   (t)  = 0.  (22)

To achieve the control objective, together with Eq. (16), let the following error signals be 
defined:

   e  1   =  φ  1   −  r  x  ,  e  2   =  φ  2   −   r   ̇    x  ,  e  3   =  ϕ  3  ,  e  4   =  ϕ  4  .  (23)

Thus, we are led to the following open-loop error system:

   

⎧

 
⎪

 ⎨ 
⎪

 

⎩

 

  e   ̇    1   =  e  2  ,

  
  e   ̇    2   =  e  3   +  δ  𝜃𝜃u   −   r ̈    x  ,     e   ̇    3   =  e  4  ,

  

  e   ̇    4   = − g (v +  δ  x   +  δ  𝜃𝜃a  )   sec   2  θ − 2g   θ   ̇     2   sec   2  θ tan θ,

    (24)

which is the basis for the observer-controller design and analysis in the section that follows.

3. Main results

In order to achieve the control objective claimed in the previous section, we will propose a 
perturbation observer-based robust control scheme. More precisely, to deal with the unac-
tuated unknown persistent perturbations, an augmented-state observer will be constructed. 
Then, we will present a novel robust control law, which can achieve superior control perfor-
mance and provide the corresponding theoretical stability analysis.

3.1. Observer design

The fact that the perturbation term δθu(t) is unactuated and unknown brings much difficulty 
for the controller design and analysis and it makes traditional robust control methods not 
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applicable. As a means to achieve the aforementioned control objective, it is required to figure 
out a suitable strategy that can deal with δθu(t). Toward this end, before controller develop-
ment, we will first construct an augmented observer which can recover the lumped perturba-
tion term δθu(t) appearing in the unactuated dynamics. Then, we treat δθu(t) as an augmented 
state variable. The benefit of doing so is that the perturbation observer design procedure 
would become more concise and clear. By following this line, the augmented error system for 
Eq. (24) is established as follows:

   

⎧

 

⎪
 ⎨ 

⎪
 

⎩

 

  e   ̇    1   =  e  2  ,

  

  e   ̇    2   =  e  3   +  e  5   −   r ̈    x  ,

   

  e   ̇    3   =  e  4  ,

  
  e   ̇    4   = − g (v +  δ  x   +  δ  𝜃𝜃a  )   sec   2  θ − 2g   θ   ̇     2   sec   2  θ tan θ,

       e   ̇    5   =  e  6  ,  
  e   ̇    6   =  e  7  ,

  

⋮

  

  e   ̇    n+1   = 0,

  

y =  e  1  

     (25)

where we have considered δθu(t) as an augmented state variable e5(t) and its derivatives as 
e6(t), e7(t), ⋯, en + 1(t), and y(t) is the corresponding system output signal. In this chapter, the 
signals e1(t), e3(t) and e4(t) are measurable, and we merely need to fabricate an observer with 
the aim of recovering the lumped perturbatione5(t). In order to reduce the computational com-
plexity, noting also that θx(t) and θθa(t) are unavailable for feedback, we intend to construct 
a reduced-order perturbation observer. For this purpose, consider the following subsystem:

   

⎧

 
⎪

 ⎨ 

⎪
 

⎩

 

  e   ̇    2   =  e  3   +  e  5   −   r ̈    x  ,

   

  e   ̇    5   =  e  6  ,

  
  e   ̇    6   =  e  7  ,  ⋮  

  e   ̇    n+1   = 0,

  

 y   '  =  e  2  ,

     (26)

which is part of the augmented error system shown in Eq. (25), where y′(t) is regarded as the 
new output. It is not difficult to check that the reduced-order augmented-state system shown 
in Eq. (26) is observable, and the detailed analysis can be found in Appendix A. Based on the 
structure of Eq. (26), we design the following reduced-order augmented-state observer:

   

⎧

 
⎪

 ⎨ 

⎪
 

⎩

 

   e ̂     ̇    2   =  e  3   +   e ̂    5   −   r ̈    x   −  λ  2   (  e ̂    2   −  y   ′ ) ,

    
   e ̂     ̇    5   =   e ̂    6   −  λ  5   (  e ̂    2   −  y   ′ ) ,

      e ̂     ̇    6   =   e ̂    7   −  λ  6   (  e ̂    2   −  y   ′ ) ,   
⋮

  

   e ̂     ̇    n+1   = −  λ  n+1   (  e ̂    2   −  y   ′ ) ,

     (27)
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where λ2, λ5, λ6, ⋯, λn + 1 denote the observer gains. Define the following error signals:

   ξ  i   =   e ̂    i   −  e  i  , i = 2, 5, 6, ⋯, n + 1,  (28)

and denote the corresponding error vector by

  ξ   (t)  =   [ ξ  2   (t)   ξ  5   (t)   ξ  6   (t)  ⋯  ξ  n+1   (t) ]    ⊤ .  (29)

Then, one can subtract Eq. (26) from Eq. (27) to derive the following observer error system:

    ξ   ̇   = Ω ξ,  (30)

where Ω ∈ R(n − 2) × (n − 2) is defined as:

  Ω =  

⎛

 ⎜ 

⎝

 

−  λ  2  

  

1

  

0

  

⋯

  

0

  

0

   

−  λ  5  

  

0

  

1

  

⋯

  

0

  

0

   
−  λ  6    

0
  

0
  

⋱
  

0
  

0
   

⋮
  

⋮
  

⋮
  

⋮
  

⋱
  

⋮
   

−  λ  n  

  

0

  

0

  

⋯

  

0

  

1

   

−  λ  n+1  

  

0

  

0

  

⋯

  

0

  

0

  

⎞

 ⎟ 

⎠

 .  (31)

As stated previously, the system shown in Eq. (26) is observable. Hence, without difficulty, 
we are admitted to choose a proper set of λ2, λ5, λ6, ⋯, λn + 1 conveniently via pole placement, 
such that Ω is a Hurwitz matrix with the eigenvalues’ real parts being different from each other. In 
this sense,

   ξ  i   =   e ̂    i   −  e  i   → 0, i = 2, 5, 6, ⋯, n + 1,  (32)

exponentially fast, which indicates that the designed perturbation observer shown in Eq. (27) 
can online recover the perturbations.

In addition, it can be obtained from Eq. (30) that the trajectories of the observer error signals 
are represented by

  ξ = exp  (Ωt) 𝝃𝝃 (0) .  (33)

Since we have rendered, by proper pole placement, that the poles (i.e., the eigenvalues of Ω) 
of the closed-loop system shown in Eq. (30) have different negative real parts, there exists an 
invertible matrix Γ ∈ R(n − 2) × (n − 2) that can transform Ω into a diagonal matrix, that is,

   Γ   −1  Ω𝛤𝛤 = Λ,  (34)

where Λ = diag {λ1, λ2, ⋯, λn - 2} with λi, i = 1, 2, ⋯, n − 2 being the (n − 2) eigenvalues of Γ. There-
fore, we can rewrite the exponential matrix exp(Ωt) and  ξ (t) as [39]
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  exp   (  Ωt )    = Γ exp   (  Λt )    Γ   −1  ⇒ ξ = Γ exp   (  Λt )    Γ   −1  ξ  (  0 )   .  (35)

Taking the Euclidean norm for both sides of Eq. (35), we are led to the following results:

   
  ‖𝝃𝝃‖   2   =   ‖Γ exp  (𝛬𝛬t)   Γ   −1  𝝃𝝃 (0) ‖   2   ≤   ‖Γ exp  (𝛬𝛬t)   Γ   −1 ‖    m  ∞     ⋅   ‖𝝃𝝃 (0) ‖   2  

      
       ≤   ‖Γ‖    m  ∞     ⋅   ‖ Γ   −1 ‖    m  ∞     ⋅   ‖exp  (𝛬𝛬t) ‖    m  ∞       ‖𝝃𝝃 (0) ‖   2   ≤  (n − 2)  exp  ( λ  max   t)  ⋅   ‖Γ‖    m  ∞     ⋅   ‖ Γ   −1 ‖    m  ∞     ⋅   ‖𝝃𝝃 (0) ‖   2  ,   

  (36)

where λmax = maxi = 1, 2, ⋯, n - 2{λi}, ‖⋅‖2 denotes the Euclidean norm, ‖⋅‖m∞ represents the m∞-
norm for matrices1, which are compatible norms2. It is further implied from Eq. (36) that

  ∣  ξ  i   (t)  ∣ ≤   ‖ ξ‖   2   ≤   ξ ¯¯   ≜  (n − 2)  exp  ( λ  max   t)  ⋅   ‖Γ‖    m  ∞     ⋅   ‖ Γ   −1 ‖    m  ∞     ⋅   ‖ξ (0) ‖   2  .  (37)

Using the pole assignment technique, one can derive the values for λ2, λ5, λ6, ⋯, λn + 1 and the 
expression for Ω. Further, with the aid of such software as MATLAB, it is easy to calculate 
‖Γ‖m∞ ⋅ ‖Γ−1‖m∞; hence, the bound for ∣ξi(t)∣, as shown in Eq. (37), can be computed without 
difficulty.

3.2. Controller development and stability analysis

To achieve robust control in the presence of uncertainties or external perturbations, we will 
develop a new observer-based sliding mode controller. The fundamental idea of the sliding 
mode control method is to construct a sliding manifold (surface) on which the system state is 
convergent and then develop a suitable control law that renders the state reaches the manifold 
within finite time. Traditionally, the key step is constructing an appropriate sliding surface, 
and the corresponding controller can usually be obtained straightforwardly.

However, the major drawback of most currently available sliding mode control methods is 
that they are merely capable of tackling uncertainties or perturbations in the actuated part, 
and when uncertainties or perturbations are present in the unactuated component, their per-
formance will degrade significantly and even become unstable. To illustrate this point, we 
will show some brief analysis for the conventional sliding mode control approach. More pre-
cisely, for the open-loop error system shown in Eq. (24), one will design the conventional 
sliding manifold, denoted by ζ(t) in the following fashion:

  ζ =  e  1   + α  e  2   + β  e  3   + γ  e  4  ,  (38)

where α, β, and γ are sliding slopes chosen such that the polynomial 1 + αs + βs2 + γs3 = 0 is 
Hurwitz, with s being the complex variable. It is not difficult to design a control law that 
drives the system state variables to ζ(t) such that ζ(t) = 0 after certain finite time   t   f  

3
    , i . e . , ζ (t)  = 0,  

ζ   ̇   (t)  = 0, ∀ t ≥  t   f  
3
     . By recursively using the first three equations in Eq. (24) and regrouping the 

1For a square matrix A = (aij)n × n ∈ Rn × n, ‖A‖m∞ = nmaxi, j ∣ aij∣ is defined as the m∞-norm for A.
2A matrix norm ‖⋅‖m ∈ Rn × n is said to be compatible with a vector norm ‖⋅‖v ∈ Rn if ‖Ax‖v ≤ ‖A‖m ⋅ ‖x‖v, where A ∈ R n × nand 
x ∈ R. It is not difficult to verify that the m∞-norm for matrices is compatible with the Euclidean norm for vectors.
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where λ2, λ5, λ6, ⋯, λn + 1 denote the observer gains. Define the following error signals:

   ξ  i   =   e ̂    i   −  e  i  , i = 2, 5, 6, ⋯, n + 1,  (28)

and denote the corresponding error vector by

  ξ   (t)  =   [ ξ  2   (t)   ξ  5   (t)   ξ  6   (t)  ⋯  ξ  n+1   (t) ]    ⊤ .  (29)

Then, one can subtract Eq. (26) from Eq. (27) to derive the following observer error system:

    ξ   ̇   = Ω ξ,  (30)

where Ω ∈ R(n − 2) × (n − 2) is defined as:

  Ω =  

⎛

 ⎜ 
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0
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⎞
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⎠

 .  (31)

As stated previously, the system shown in Eq. (26) is observable. Hence, without difficulty, 
we are admitted to choose a proper set of λ2, λ5, λ6, ⋯, λn + 1 conveniently via pole placement, 
such that Ω is a Hurwitz matrix with the eigenvalues’ real parts being different from each other. In 
this sense,

   ξ  i   =   e ̂    i   −  e  i   → 0, i = 2, 5, 6, ⋯, n + 1,  (32)

exponentially fast, which indicates that the designed perturbation observer shown in Eq. (27) 
can online recover the perturbations.

In addition, it can be obtained from Eq. (30) that the trajectories of the observer error signals 
are represented by

  ξ = exp  (Ωt) 𝝃𝝃 (0) .  (33)

Since we have rendered, by proper pole placement, that the poles (i.e., the eigenvalues of Ω) 
of the closed-loop system shown in Eq. (30) have different negative real parts, there exists an 
invertible matrix Γ ∈ R(n − 2) × (n − 2) that can transform Ω into a diagonal matrix, that is,

   Γ   −1  Ω𝛤𝛤 = Λ,  (34)

where Λ = diag {λ1, λ2, ⋯, λn - 2} with λi, i = 1, 2, ⋯, n − 2 being the (n − 2) eigenvalues of Γ. There-
fore, we can rewrite the exponential matrix exp(Ωt) and  ξ (t) as [39]
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  exp   (  Ωt )    = Γ exp   (  Λt )    Γ   −1  ⇒ ξ = Γ exp   (  Λt )    Γ   −1  ξ  (  0 )   .  (35)

Taking the Euclidean norm for both sides of Eq. (35), we are led to the following results:

   
  ‖𝝃𝝃‖   2   =   ‖Γ exp  (𝛬𝛬t)   Γ   −1  𝝃𝝃 (0) ‖   2   ≤   ‖Γ exp  (𝛬𝛬t)   Γ   −1 ‖    m  ∞     ⋅   ‖𝝃𝝃 (0) ‖   2  

      
       ≤   ‖Γ‖    m  ∞     ⋅   ‖ Γ   −1 ‖    m  ∞     ⋅   ‖exp  (𝛬𝛬t) ‖    m  ∞       ‖𝝃𝝃 (0) ‖   2   ≤  (n − 2)  exp  ( λ  max   t)  ⋅   ‖Γ‖    m  ∞     ⋅   ‖ Γ   −1 ‖    m  ∞     ⋅   ‖𝝃𝝃 (0) ‖   2  ,   

  (36)

where λmax = maxi = 1, 2, ⋯, n - 2{λi}, ‖⋅‖2 denotes the Euclidean norm, ‖⋅‖m∞ represents the m∞-
norm for matrices1, which are compatible norms2. It is further implied from Eq. (36) that

  ∣  ξ  i   (t)  ∣ ≤   ‖ ξ‖   2   ≤   ξ ¯¯   ≜  (n − 2)  exp  ( λ  max   t)  ⋅   ‖Γ‖    m  ∞     ⋅   ‖ Γ   −1 ‖    m  ∞     ⋅   ‖ξ (0) ‖   2  .  (37)

Using the pole assignment technique, one can derive the values for λ2, λ5, λ6, ⋯, λn + 1 and the 
expression for Ω. Further, with the aid of such software as MATLAB, it is easy to calculate 
‖Γ‖m∞ ⋅ ‖Γ−1‖m∞; hence, the bound for ∣ξi(t)∣, as shown in Eq. (37), can be computed without 
difficulty.

3.2. Controller development and stability analysis

To achieve robust control in the presence of uncertainties or external perturbations, we will 
develop a new observer-based sliding mode controller. The fundamental idea of the sliding 
mode control method is to construct a sliding manifold (surface) on which the system state is 
convergent and then develop a suitable control law that renders the state reaches the manifold 
within finite time. Traditionally, the key step is constructing an appropriate sliding surface, 
and the corresponding controller can usually be obtained straightforwardly.

However, the major drawback of most currently available sliding mode control methods is 
that they are merely capable of tackling uncertainties or perturbations in the actuated part, 
and when uncertainties or perturbations are present in the unactuated component, their per-
formance will degrade significantly and even become unstable. To illustrate this point, we 
will show some brief analysis for the conventional sliding mode control approach. More pre-
cisely, for the open-loop error system shown in Eq. (24), one will design the conventional 
sliding manifold, denoted by ζ(t) in the following fashion:

  ζ =  e  1   + α  e  2   + β  e  3   + γ  e  4  ,  (38)

where α, β, and γ are sliding slopes chosen such that the polynomial 1 + αs + βs2 + γs3 = 0 is 
Hurwitz, with s being the complex variable. It is not difficult to design a control law that 
drives the system state variables to ζ(t) such that ζ(t) = 0 after certain finite time   t   f  

3
    , i . e . , ζ (t)  = 0,  

ζ   ̇   (t)  = 0, ∀ t ≥  t   f  
3
     . By recursively using the first three equations in Eq. (24) and regrouping the 

1For a square matrix A = (aij)n × n ∈ Rn × n, ‖A‖m∞ = nmaxi, j ∣ aij∣ is defined as the m∞-norm for A.
2A matrix norm ‖⋅‖m ∈ Rn × n is said to be compatible with a vector norm ‖⋅‖v ∈ Rn if ‖Ax‖v ≤ ‖A‖m ⋅ ‖x‖v, where A ∈ R n × nand 
x ∈ R. It is not difficult to verify that the m∞-norm for matrices is compatible with the Euclidean norm for vectors.
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resulting terms, one can derive from ζ(t) = 0 and Eq. (38) that the state variable e1(t) is domi-
nated by the following dynamics on the sliding manifold:

   e  1   + α   e   ̇    1   + β   e ̈    1   + γ  e  1   
(3)   = − β (  r ̈    x   −  δ  𝜃𝜃u  )  − γ ( r  x   

(3)   −   δ   ̇    𝜃𝜃u  ) .  (39)

Clearly, if the perturbation terms   δ  
𝜃𝜃u

   (t) ,   δ   ̇    
𝜃𝜃u

   (t)   appearing in the unactuated dynamics are non-
vanishing, e1(t) will never tend to zero.

As indicated from the above-mentioned analysis, to make sliding mode control applicable to 
crane systems with unknown persistent perturbations in the unactuated component, it is needed 
to construct a new sliding manifold to improve the robust performance of the control sys-
tem. To do so, on the basis of the designed perturbation observer in the previous subsec-
tion, we design the following sliding manifold that will be used in the subsequent controller 
development:

  ε =  e  1   + α  e  2   + β  (   e  3   +   e ^
    5   −   r ̈    x   )    + γ  (   e  4   +   e ^

    6   −  r  x   
(  3 )    )   .  (40)

where α, β, γ are defined in Eq. (38) and     e ̂    
5
   (t) ,    e ̂    

6
   (t)   are the observer-recovered signals for the 

lumped perturbation term [see Eq. (27)]. Before giving the expression for the auxiliary “con-
trol input” v(t), we first construct the following non-negative scalar function V(t):

  V =   1 __ 2    ε   2  =   1 __ 2     [ e  1   + α  e  2   + β ( e  3   +   e ̂    5   −   r ̈    x  )  + γ  e  4   ( e  4   +   e ̂    6   −  r  x   
(  3 ) ]    2 .  (41)

The derivative of ε(t) with regard to time can be obtained as follows:

   
           ε   ̇   =  e  2   + α ( e  3   +  e  5   −   r ̈    x  )  + β [ e  4   +   e ̂    6   −  λ  5   (  e ̂    2   −  e  2  )  −  r  x   

(3)  ]  − 𝛾𝛾g (v +  δ  x   +  δ  𝜃𝜃a  )   sec   2  θ
       

    − γ [2g   θ   ̇     2   sec   2  θ tan θ −   e ̂    7   +  λ  6   (  e ̂    2   −  e  2  )  +  r  x   
(4)  ] ,

                            (42)

where Eq. (25) and Eq. (27) have been employed for implications. Then, in view of the struc-
ture of Eq. (42), v(t) is developed in the following fashion:

   
v =   1 _______ g𝛾𝛾  sec   2  θ   ⋅  { e  2   + α ( e  3   +   e ̂    5   −   r ̈    x  )  − γ [ r  x   

(4)   −   e ̂    7   +  λ  6   (  e ̂    2   −  e  2  ) ]  
      

   + β [ e  4   +   e ̂    6   −  λ  5   (  e ̂    2   −  e  2  )  −  r  x   
(3)   +  k  u   sign (ε) ] }  − 2   θ   ̇     2  tan θ +  k  a   sign (ε) 

   (43)

where

   k  a   ≥    δ ¯¯    x   +    δ ¯¯    θ  ,  k  u   >   α __ β    ξ ¯¯  .  (44)

are positive control gains [see Eqs. (7) and (37) for the definitions of     δ ¯¯    
x
  ,    δ ¯¯    

θ
   , and    ξ ¯¯   ], and

  sign (⋆)  =  { 
⋆ / ∣ ⋆ ∣,

  
⋆ ≠ 0,

   0,  ⋆ = 0,     (45)
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denote the standard sign function. We can further substitute Eq. (43) into Eq. (8) to obtain the 
ultimate control law as follows:

   

u = −    (M + m  sin   2  θ) L  ___________ g𝛾𝛾 sec θ   ⋅  { e  2   + α ( e  3   +   e ̂    5   −   r ̈    x  )  − γ [ r  x   
(4)   −   e ̂    7   +  λ  6   (  e ̂    2   −  e  2  ) ]  

           + β [ e  4   +   e ̂    6   −  λ  5   (  e ̂    2   −  e  2  )  −  r  x   
(3)   +  k  u   sign (ϵ) ]  +g𝛾𝛾  sec   2  θ [2   θ   ̇     2  tan θ −  k  a   sign (ϵ) ] }         

    −  mL   θ   ̇     2  sin θ −  (M + m) g tan θ +  f  r  .

    
                                                                                                                                                            (46)

The main results for the proposed control scheme are summarized by the theorem that follows.

Theorem 1. The designed control law shown in Eq. (46), together with the reduced-order aug-
mented-state observer shown in Eq. (27), can achieve the control objective claimed by Case 1 
in the case of unactuated persistent non-vanishing disturbances or Case 2 if the unactuated 
disturbances are vanishing/negligible.

Proof: Consider V(t) defined in Eq. (41) as a Lyapunov function candidate, and its time deriva-
tive is given by

   V   ̇   = ε ε   ̇  .  (47)

By inserting Eq. (43) into the expression of   ε   ̇   (t)   in Eq. (42) and regrouping the common terms, 
one can obtain the following equation:

   
 ε   ̇   = α ( e  5   −   e ̂    5  )  − β  k  u   sign (ε)  − g𝛾𝛾  sec   2  θ [ k  u   sign (ε)  +  δ  x   +  δ  𝜃𝜃a  ] 

      
  = −  𝛼𝛼𝛼𝛼  5   − β  k  u   sign (ε)  − g𝛾𝛾  sec   2  θ [ k  u   sign (ε)  +  δ  x   +  δ  𝜃𝜃a  ] ,

    (48)

upon the use of the relationship in Eq. (28). Then, the following results are straightforward 
after the substitution of Eq. (48) into Eq. (47):

   

 V   ̇   = − β  k  u   ∣ ε ∣ −  𝛼𝛼𝛼𝛼  5   ε + g𝛾𝛾  sec   2  θ [ k  u   | ε | + ( δ  x   +  δ  𝜃𝜃a  ) ε] 

          ≤ −  (β  k  u   − α |  ξ  5   |  )  ∣ ε ∣ − g𝛾𝛾  sec   2  θ ( k  a   −  (  |  δ  x   | +| δ  𝜃𝜃a   |  ) )  ∣ ε ∣       
    ≤ −  (β  k  u   − α |  ξ  5   |  )   √ 

___
 2V  ,
    

                                                                                                                                                            (49)

where the gain conditions shown in Eq. (44) have been utilized. The conclusion of Eq. (49) 
indicates that V(t), and hence ε(t), converges to zero in finite time. Further, on the sliding man-
ifold where ε(t) = 0, the system state variables satisfy the following dynamic equation array:

   { 
 e  1   + α   e   ̇    1   + β   e ̈    1   + γ  e  1   

(3)   = −  𝛽𝛽𝛼𝛼  5   −  𝛾𝛾𝛼𝛼  6  ,    
  ξ    ̇   = Ω ξ.

     (50)

As by pole assignment, the matrix Ω ∈ R(n − 2) × (n − 2) is Hurwitz, and α, β and γ also render 
1 + αs + βs2 + γs3 = 0 Hurwitz; it is clearly seen that the entire closed system Eq. (50) is exponen-
tially stable at the equilibrium point, and hence
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resulting terms, one can derive from ζ(t) = 0 and Eq. (38) that the state variable e1(t) is domi-
nated by the following dynamics on the sliding manifold:

   e  1   + α   e   ̇    1   + β   e ̈    1   + γ  e  1   
(3)   = − β (  r ̈    x   −  δ  𝜃𝜃u  )  − γ ( r  x   

(3)   −   δ   ̇    𝜃𝜃u  ) .  (39)

Clearly, if the perturbation terms   δ  
𝜃𝜃u

   (t) ,   δ   ̇    
𝜃𝜃u

   (t)   appearing in the unactuated dynamics are non-
vanishing, e1(t) will never tend to zero.

As indicated from the above-mentioned analysis, to make sliding mode control applicable to 
crane systems with unknown persistent perturbations in the unactuated component, it is needed 
to construct a new sliding manifold to improve the robust performance of the control sys-
tem. To do so, on the basis of the designed perturbation observer in the previous subsec-
tion, we design the following sliding manifold that will be used in the subsequent controller 
development:

  ε =  e  1   + α  e  2   + β  (   e  3   +   e ^
    5   −   r ̈    x   )    + γ  (   e  4   +   e ^

    6   −  r  x   
(  3 )    )   .  (40)

where α, β, γ are defined in Eq. (38) and     e ̂    
5
   (t) ,    e ̂    

6
   (t)   are the observer-recovered signals for the 

lumped perturbation term [see Eq. (27)]. Before giving the expression for the auxiliary “con-
trol input” v(t), we first construct the following non-negative scalar function V(t):

  V =   1 __ 2    ε   2  =   1 __ 2     [ e  1   + α  e  2   + β ( e  3   +   e ̂    5   −   r ̈    x  )  + γ  e  4   ( e  4   +   e ̂    6   −  r  x   
(  3 ) ]    2 .  (41)

The derivative of ε(t) with regard to time can be obtained as follows:

   
           ε   ̇   =  e  2   + α ( e  3   +  e  5   −   r ̈    x  )  + β [ e  4   +   e ̂    6   −  λ  5   (  e ̂    2   −  e  2  )  −  r  x   

(3)  ]  − 𝛾𝛾g (v +  δ  x   +  δ  𝜃𝜃a  )   sec   2  θ
       

    − γ [2g   θ   ̇     2   sec   2  θ tan θ −   e ̂    7   +  λ  6   (  e ̂    2   −  e  2  )  +  r  x   
(4)  ] ,

                            (42)

where Eq. (25) and Eq. (27) have been employed for implications. Then, in view of the struc-
ture of Eq. (42), v(t) is developed in the following fashion:

   
v =   1 _______ g𝛾𝛾  sec   2  θ   ⋅  { e  2   + α ( e  3   +   e ̂    5   −   r ̈    x  )  − γ [ r  x   

(4)   −   e ̂    7   +  λ  6   (  e ̂    2   −  e  2  ) ]  
      

   + β [ e  4   +   e ̂    6   −  λ  5   (  e ̂    2   −  e  2  )  −  r  x   
(3)   +  k  u   sign (ε) ] }  − 2   θ   ̇     2  tan θ +  k  a   sign (ε) 

   (43)

where

   k  a   ≥    δ ¯¯    x   +    δ ¯¯    θ  ,  k  u   >   α __ β    ξ ¯¯  .  (44)

are positive control gains [see Eqs. (7) and (37) for the definitions of     δ ¯¯    
x
  ,    δ ¯¯    

θ
   , and    ξ ¯¯   ], and

  sign (⋆)  =  { 
⋆ / ∣ ⋆ ∣,

  
⋆ ≠ 0,

   0,  ⋆ = 0,     (45)
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denote the standard sign function. We can further substitute Eq. (43) into Eq. (8) to obtain the 
ultimate control law as follows:

   

u = −    (M + m  sin   2  θ) L  ___________ g𝛾𝛾 sec θ   ⋅  { e  2   + α ( e  3   +   e ̂    5   −   r ̈    x  )  − γ [ r  x   
(4)   −   e ̂    7   +  λ  6   (  e ̂    2   −  e  2  ) ]  

           + β [ e  4   +   e ̂    6   −  λ  5   (  e ̂    2   −  e  2  )  −  r  x   
(3)   +  k  u   sign (ϵ) ]  +g𝛾𝛾  sec   2  θ [2   θ   ̇     2  tan θ −  k  a   sign (ϵ) ] }         

    −  mL   θ   ̇     2  sin θ −  (M + m) g tan θ +  f  r  .

    
                                                                                                                                                            (46)

The main results for the proposed control scheme are summarized by the theorem that follows.

Theorem 1. The designed control law shown in Eq. (46), together with the reduced-order aug-
mented-state observer shown in Eq. (27), can achieve the control objective claimed by Case 1 
in the case of unactuated persistent non-vanishing disturbances or Case 2 if the unactuated 
disturbances are vanishing/negligible.

Proof: Consider V(t) defined in Eq. (41) as a Lyapunov function candidate, and its time deriva-
tive is given by

   V   ̇   = ε ε   ̇  .  (47)

By inserting Eq. (43) into the expression of   ε   ̇   (t)   in Eq. (42) and regrouping the common terms, 
one can obtain the following equation:

   
 ε   ̇   = α ( e  5   −   e ̂    5  )  − β  k  u   sign (ε)  − g𝛾𝛾  sec   2  θ [ k  u   sign (ε)  +  δ  x   +  δ  𝜃𝜃a  ] 

      
  = −  𝛼𝛼𝛼𝛼  5   − β  k  u   sign (ε)  − g𝛾𝛾  sec   2  θ [ k  u   sign (ε)  +  δ  x   +  δ  𝜃𝜃a  ] ,

    (48)

upon the use of the relationship in Eq. (28). Then, the following results are straightforward 
after the substitution of Eq. (48) into Eq. (47):

   

 V   ̇   = − β  k  u   ∣ ε ∣ −  𝛼𝛼𝛼𝛼  5   ε + g𝛾𝛾  sec   2  θ [ k  u   | ε | + ( δ  x   +  δ  𝜃𝜃a  ) ε] 

          ≤ −  (β  k  u   − α |  ξ  5   |  )  ∣ ε ∣ − g𝛾𝛾  sec   2  θ ( k  a   −  (  |  δ  x   | +| δ  𝜃𝜃a   |  ) )  ∣ ε ∣       
    ≤ −  (β  k  u   − α |  ξ  5   |  )   √ 

___
 2V  ,
    

                                                                                                                                                            (49)

where the gain conditions shown in Eq. (44) have been utilized. The conclusion of Eq. (49) 
indicates that V(t), and hence ε(t), converges to zero in finite time. Further, on the sliding man-
ifold where ε(t) = 0, the system state variables satisfy the following dynamic equation array:

   { 
 e  1   + α   e   ̇    1   + β   e ̈    1   + γ  e  1   

(3)   = −  𝛽𝛽𝛼𝛼  5   −  𝛾𝛾𝛼𝛼  6  ,    
  ξ    ̇   = Ω ξ.

     (50)

As by pole assignment, the matrix Ω ∈ R(n − 2) × (n − 2) is Hurwitz, and α, β and γ also render 
1 + αs + βs2 + γs3 = 0 Hurwitz; it is clearly seen that the entire closed system Eq. (50) is exponen-
tially stable at the equilibrium point, and hence
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 e  1   (t)  =  φ  1   (t)  −  r  x   → 0,  e  2   (t)  =   e   ̇    1   (t)  =   φ   ̇    1   (t)  −   r   ̇    x   → 0

           ⇒   e   ̇    2   (t)  =   e ̈    1   (t)  → 0,   e ̈    2   (t)  =  e  1   
(3)   (t)  → 0,    (51)

exponentially fast, which indicates the cargo motion tracks the planned trajectory rx(t) in an 
exponential fashion. Since rx(t) tends to pdx within tf1 [see Eq. (16)], it is easily shown that

   lim  
t→∞

     φ  1   (t)  =  p  dx  ,  lim  
t→∞

      φ   ̇    1   (t)  = 0,  (52)

which is just the result of Eq. (21). In addition, as    r ̈    
x
   (t) ,  r  

x
   (3)   (t)  → 0  as t → 0 by definition [see 

Eq. (16)], it is implied by substituting the result of    e   ̇    
2
   (t)  → 0  into the second and third equations 

of Eq. (24) that

   e  3   →   e   ̇    2   −  δ  𝜃𝜃u   → −  δ  𝜃𝜃u  ,   e   ̇    3   →   e ̈    2   −   δ   ̇    𝜃𝜃u   → −   δ   ̇    𝜃𝜃u  ,  e  4   →   e   ̇    3   → −   δ   ̇    𝜃𝜃u  ,  (53)

wherein the conclusions in Eq. (52) have been employed. The results in Eq. (53) indicate that   
e  

3
   (t) ,   e   ̇    

3
   (t)   are convergent to their respective equilibriums drifted by the unactuated perturba-

tions. Thus, the result of Case 1 stated in the control objective is proven.

Subsequently, we proceed to prove the result of Case 2 where the perturbation term δθu(t) in 
the unactuated dynamics is vanishing [i.e.,   δ  

𝜃𝜃u
   → 0,   δ   ̇    

𝜃𝜃u
   → 0 ] or negligible [i.e.,   δ  

𝜃𝜃u
   (t)  = 0,   δ   ̇    

𝜃𝜃u
   (t)  = 0 ]. 

Therefore, in such cases, it is straightforward to indicate from Eq. (53) that

   e  3   = − g tan θ → 0,  e  4   = − g  θ   ̇    sec   2  θ → 0 ⇒ θ = 0,  θ   ̇   = 0,  (54)

where the definitions in Eq. (10) and Eq. (23) have been used. According to the definition of 
ϕ1(t) = x(t) + Lθ(t) given in Eq. (13), the results in Eq. (52) and Eq. (54) directly yield the follow-
ing conclusions:

   lim  
t→∞

    x (t)  =  p  dx  ,  lim  
t→∞

     x   ̇   (t)  = 0.  (55)

Collecting up Eqs. (52, 54, 55), the results claimed in Eq. (22) of Case 2 are hence proven. The 
entire theoretical proof for the theorem is completed.

4. Simulation verification

In this section, by using the MATLAB/Simulink software, some simulation results are included 
to verify the effectiveness of the proposed observer-based robust control method.

For the control objectives of the two cases stated in Eq. (21) and Eq. (22), the simulation is 
implemented through two groups as follows:

• Group 1. The perturbations in the unactuated dynamics are non-vanishing. The perturba-
tion dθ(t) is set as a constant value dθ(t) = 1 and a time-varying function dθ(t) = 0.5 cos(0.1t), 
respectively.
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• Group 2. The perturbations in the unactuated dynamics are vanishing or negligible. The 
perturbation dθ(t) is set as a time-varying function dθ(t) = 1.5e−t.

For all the cases, by setting the system parameters as M = 6 kg, m = 2.5 kg, L = 1.2 m, g = 9.8 m/s2, the 
controller parameters asλ2 = 10, λ5 = 30, λ6 = 55, λ7 = 25, α = 2, β = 1, γ = 0.2, ε = 0.01, ku = 60, ka = 0.1, 
and the to-be-tracked trajectory in Eq. (16) as rx(t) = 3.5, the simulation results are obtained and 
are shown in Figures 2–4.

Figures 2 and 3 show the simulation results of Group 1 where the solid lines denote the 
simulation results and the dash lines denote the desired trajectories. In Figure 2, the per-
turbation dθ(t) is set as a constant value dθ(t) = 1, and in Figure 3, the perturbation is set as a 
time-varying function dθ(t) = 0.5 cos(0.1t). It can be seen from Figures 2 and 3 that when there 
exist persistent (non-vanishing) perturbations in the unactuated dynamics, by applying the 
proposed controller, the unactuated cargo is driven to the desired destination and is kept 
stationary. Therefore, the objectives stated in Case 1 [see Eq. (21)] are achieved effectively. By 
dealing with the robust control for crane systems when the perturbations are non-vanishing, 
the results of Group 1 validate the robustness of the presented controller.

Figure 4 shows the results of Group 2. It is clear that the proposed observer-based robust 
control method can achieve the objectives stated in Case 2 [see Eq. (22)] that both the trolley 
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Figure 2. The simulation results of the proposed controller when dθ(t) = 1 (solid line – simulation results, dash line – 
desired trajectory).
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 e  1   (t)  =  φ  1   (t)  −  r  x   → 0,  e  2   (t)  =   e   ̇    1   (t)  =   φ   ̇    1   (t)  −   r   ̇    x   → 0

           ⇒   e   ̇    2   (t)  =   e ̈    1   (t)  → 0,   e ̈    2   (t)  =  e  1   
(3)   (t)  → 0,    (51)

exponentially fast, which indicates the cargo motion tracks the planned trajectory rx(t) in an 
exponential fashion. Since rx(t) tends to pdx within tf1 [see Eq. (16)], it is easily shown that

   lim  
t→∞

     φ  1   (t)  =  p  dx  ,  lim  
t→∞

      φ   ̇    1   (t)  = 0,  (52)

which is just the result of Eq. (21). In addition, as    r ̈    
x
   (t) ,  r  

x
   (3)   (t)  → 0  as t → 0 by definition [see 

Eq. (16)], it is implied by substituting the result of    e   ̇    
2
   (t)  → 0  into the second and third equations 

of Eq. (24) that

   e  3   →   e   ̇    2   −  δ  𝜃𝜃u   → −  δ  𝜃𝜃u  ,   e   ̇    3   →   e ̈    2   −   δ   ̇    𝜃𝜃u   → −   δ   ̇    𝜃𝜃u  ,  e  4   →   e   ̇    3   → −   δ   ̇    𝜃𝜃u  ,  (53)

wherein the conclusions in Eq. (52) have been employed. The results in Eq. (53) indicate that   
e  

3
   (t) ,   e   ̇    

3
   (t)   are convergent to their respective equilibriums drifted by the unactuated perturba-

tions. Thus, the result of Case 1 stated in the control objective is proven.

Subsequently, we proceed to prove the result of Case 2 where the perturbation term δθu(t) in 
the unactuated dynamics is vanishing [i.e.,   δ  

𝜃𝜃u
   → 0,   δ   ̇    

𝜃𝜃u
   → 0 ] or negligible [i.e.,   δ  

𝜃𝜃u
   (t)  = 0,   δ   ̇    

𝜃𝜃u
   (t)  = 0 ]. 

Therefore, in such cases, it is straightforward to indicate from Eq. (53) that

   e  3   = − g tan θ → 0,  e  4   = − g  θ   ̇    sec   2  θ → 0 ⇒ θ = 0,  θ   ̇   = 0,  (54)

where the definitions in Eq. (10) and Eq. (23) have been used. According to the definition of 
ϕ1(t) = x(t) + Lθ(t) given in Eq. (13), the results in Eq. (52) and Eq. (54) directly yield the follow-
ing conclusions:

   lim  
t→∞

    x (t)  =  p  dx  ,  lim  
t→∞

     x   ̇   (t)  = 0.  (55)

Collecting up Eqs. (52, 54, 55), the results claimed in Eq. (22) of Case 2 are hence proven. The 
entire theoretical proof for the theorem is completed.

4. Simulation verification

In this section, by using the MATLAB/Simulink software, some simulation results are included 
to verify the effectiveness of the proposed observer-based robust control method.

For the control objectives of the two cases stated in Eq. (21) and Eq. (22), the simulation is 
implemented through two groups as follows:

• Group 1. The perturbations in the unactuated dynamics are non-vanishing. The perturba-
tion dθ(t) is set as a constant value dθ(t) = 1 and a time-varying function dθ(t) = 0.5 cos(0.1t), 
respectively.

Adaptive Robust Control Systems306

• Group 2. The perturbations in the unactuated dynamics are vanishing or negligible. The 
perturbation dθ(t) is set as a time-varying function dθ(t) = 1.5e−t.

For all the cases, by setting the system parameters as M = 6 kg, m = 2.5 kg, L = 1.2 m, g = 9.8 m/s2, the 
controller parameters asλ2 = 10, λ5 = 30, λ6 = 55, λ7 = 25, α = 2, β = 1, γ = 0.2, ε = 0.01, ku = 60, ka = 0.1, 
and the to-be-tracked trajectory in Eq. (16) as rx(t) = 3.5, the simulation results are obtained and 
are shown in Figures 2–4.

Figures 2 and 3 show the simulation results of Group 1 where the solid lines denote the 
simulation results and the dash lines denote the desired trajectories. In Figure 2, the per-
turbation dθ(t) is set as a constant value dθ(t) = 1, and in Figure 3, the perturbation is set as a 
time-varying function dθ(t) = 0.5 cos(0.1t). It can be seen from Figures 2 and 3 that when there 
exist persistent (non-vanishing) perturbations in the unactuated dynamics, by applying the 
proposed controller, the unactuated cargo is driven to the desired destination and is kept 
stationary. Therefore, the objectives stated in Case 1 [see Eq. (21)] are achieved effectively. By 
dealing with the robust control for crane systems when the perturbations are non-vanishing, 
the results of Group 1 validate the robustness of the presented controller.

Figure 4 shows the results of Group 2. It is clear that the proposed observer-based robust 
control method can achieve the objectives stated in Case 2 [see Eq. (22)] that both the trolley 
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Figure 2. The simulation results of the proposed controller when dθ(t) = 1 (solid line – simulation results, dash line – 
desired trajectory).
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Figure 3. The simulation results of the proposed controller when dθ(t) = 0.5 cos(0.1t) (solid line – simulation results, dash 
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Figure 4. The simulation results of the proposed controller when dθ(t) = 1.5e−t (solid line – simulation results, dash line – 
desired trajectory).
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and the unactuated cargo are driven to the desired destination, when there are no/negligible 
or vanishing perturbations dθ(t) = 1.5e−t in the unactuated dynamics.

To sum-up, the simulation results indicate that the proposed observer-based robust controller 
can achieve robust control in the presence of uncertainties or external perturbations, which is 
consistent with the theoretical analysis.

5. Concluding remarks

Considering unknown persistent perturbations in unactuated dynamics, this chapter designs 
an observer-based robust control method for underactuated crane systems. Specifically, a 
reduced-order augmented-state observer is designed to recover the lumped perturbation 
terms in unactuated dynamics. Further, based on the observer, a new sliding manifold is 
constructed to improve the robust performance of the control system. Then, the state vari-
ables are made to stay on the manifold by applying a designed robust control law in the 
presence of non-vanishing perturbations in unactuated dynamics. Finally, the convergence 
is proved in this chapter theoretically by using Lyapunov control theories. Moreover, the 
proposed observer-based robust controller is verified to be effective and robust by numerical 
simulation results.

Appendix

The system shown in Eq. (26) can be rewritten as follows:

   
 𝝌𝝌   ̇   = A𝝌𝝌 +   (  e  3   −   r ̈    x    0  0  ⋯  0  0 )    ⊤ ,

    
 y   ′  = C𝝌𝝌

     (56)

where the system variable vector χ(t) is defined as  𝝌𝝌 =   (  e   ̇    
2
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    (57)

Then, considering the observability criteria, we can first derive the observable matrix Ψ as 
follows:
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and the unactuated cargo are driven to the desired destination, when there are no/negligible 
or vanishing perturbations dθ(t) = 1.5e−t in the unactuated dynamics.

To sum-up, the simulation results indicate that the proposed observer-based robust controller 
can achieve robust control in the presence of uncertainties or external perturbations, which is 
consistent with the theoretical analysis.

5. Concluding remarks

Considering unknown persistent perturbations in unactuated dynamics, this chapter designs 
an observer-based robust control method for underactuated crane systems. Specifically, a 
reduced-order augmented-state observer is designed to recover the lumped perturbation 
terms in unactuated dynamics. Further, based on the observer, a new sliding manifold is 
constructed to improve the robust performance of the control system. Then, the state vari-
ables are made to stay on the manifold by applying a designed robust control law in the 
presence of non-vanishing perturbations in unactuated dynamics. Finally, the convergence 
is proved in this chapter theoretically by using Lyapunov control theories. Moreover, the 
proposed observer-based robust controller is verified to be effective and robust by numerical 
simulation results.

Appendix

The system shown in Eq. (26) can be rewritten as follows:

   
 𝝌𝝌   ̇   = A𝝌𝝌 +   (  e  3   −   r ̈    x    0  0  ⋯  0  0 )    ⊤ ,

    
 y   ′  = C𝝌𝝌

     (56)

where the system variable vector χ(t) is defined as  𝝌𝝌 =   (  e   ̇    
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  ,   e   ̇    
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Then, considering the observability criteria, we can first derive the observable matrix Ψ as 
follows:
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It is clear that Ψ ∈ R(n − 2) × (n − 2), whose rank is rank(Ψ) = A = n − 2. Thus, the system shown in 
Eq. (26) is observable.
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It is clear that Ψ ∈ R(n − 2) × (n − 2), whose rank is rank(Ψ) = A = n − 2. Thus, the system shown in 
Eq. (26) is observable.

Author details

Yiming Wu1,2*, He Chen1,2 and Tong Yang1,2

*Address all correspondence to: wuyiming_1@126.com

1 Institute of Robotics and Automatic Information Systems, College of Computer and 
Control Engineering, Nankai University, Tianjin, China

2 Tianjin Key Laboratory of Intelligent Robotics, Nankai University, Tianjin, China

References

[1] Sun N, Wu Y, Fang Y, Chen H. Nonlinear stabilization control of multiple-RTAC systems 
subject to amplitude-restricted actuating torques using only angular position feedback. 
IEEE Transactions on Industrial Electronics. 2017;64(7):3084-3094

[2] Sun N, Wu Y, Fang Y, Chen H, Lu B. Nonlinear continuous global stabilization control 
for underactuated RTAC systems: Design, analysis, and experimentation. IEEE/ASME 
Transactions on Mechatronics. 2017;22(2):1104-1115

[3] Xin X, Liu Y. Reduced-order stable controllers for two-link underactuated planar robots. 
Automatica. 2013;49(7):2176-2183

[4] Xia D, Wang L, Chai T. Neural-network friction compensation based energy swing-up 
control of Pendubot. IEEE Transactions on Industrial Electron. 2014;61(3):1411-1423

[5] Cui R, Guo J, Mao Z. Adaptive backstepping control of wheeled inverted pendulums 
models. Nonlinear Dynamics. 2015;79(1):501-511

[6] Yang C, Li Z, Li J. Trajectory planning and optimized adaptive control for a class 
of wheeled inverted pendulum vehicle models. IEEE Transactions on Cybernetics. 
2013;43(1):24-36

Adaptive Robust Control Systems310

[7] Kato K, Wada M. Kinematic analysis and simulation of active-caster robotic drive with 
ball transmission (ACROBAT-S). Advanced Robotics. 2017;31(7):355-367

[8] Oka H, Maruki Y, Suemitsu H, Matsuo T. Nonlinear control for rotational movement 
of cart-pendulum system using homoclinic orbit. International Journal of Control, 
Automation and Systems. 2016;14(5):1270-1279

[9] Inoue Y, Hirama T, Wada M. Design of omnidirectional mobile robots with ACROBAT 
wheeled mechanisms. In: IEEE/RSJ International Conference on Intelligent Robots and 
Systems (IROS), 3-7 Nov, Tokyo, Japan. 2013. p. 4852-4859

[10] Sun N, Fang Y, Chen H, Fu Y, Lu B. Nonlinear stabilizing control for ship-mounted 
cranes with disturbances induced by ship roll and heave movements: Design, analysis, 
and experiments. IEEE Transactions on Systems, Man, and Cybernetics: Systems. DOI: 
10.1109/TSMC.2017.2700393

[11] Sun N, Fang Y, Wu Y, Lu B. Nonlinear antiswing control of offshore cranes with unknown 
parameters and persistent ship-induced perturbations: Theoretical design and hardware 
experiments. IEEE Transactions on Industrial Electronics.

[12] Singhose W, Kim D, Kenison M. Input shaping control of double-pendulum bridge crane 
oscillations. Journal of Dynamic Systems, Measurement, and Control. 2008;130(3):1-7

[13] Grrido S, Abderrahim M, Gimnez A, Diez R, Balaguer C. Anti-swinging input shaping 
control of an automatic construction crane. IEEE Transactions on Automation Science 
and Engineering. 2008;5(3):549-557

[14] Maghsoudi MJ, Mohamed Z, Tokhi MO, Husain AR, Abitdin MSZ. Control of a gantry 
crane using input-shaping schemes with distributed delay. Transactions of the Institute 
of Measurement and Control. 2017;39(3):361-370

[15] Maghsoudi MJ, Mohamed Z, Sudin S, Buyamin S, Jaafar HI, Ahmad SM. An improved 
input shaping design for an efficient sway control of a nonlinear 3D overhead crane with 
friction. Mechanical Systems and Signal Processing. 2017;92:364-378

[16] Sun N, Fang Y, Zhang X. Energy coupling output feedback control of 4-DOF underactu-
ated cranes with saturated inputs. Automatica. 2013;49(5):1318-1325

[17] Sun N, Fang Y. New energy analytical results for the regulation of underactuated over-
head cranes: An end-effector motion-based approach. IEEE Transactions on Industrial 
Electronics. 2012;59(12):4723-4734

[18] Tuan LA, Lee SG, Dang VH, Moon SC, Kim BS. Partial feedback linearization control of 
a three-dimensional overhead crane. International Journal of Control, Automation and 
Systems. 2013;11(4):718-727

[19] Tuan LA, Kim GH, Kim MY, Lee SG. Partial feedback linearization control of overhead 
cranes with varying cable lengths. International Journal of Precision Engineering and 
Manufacturing. 2012;13(4):507-507

Robust Control of Crane with Perturbations
http://dx.doi.org/10.5772/intechopen.71383

311



[20] Tuan LA, Moon SC, Lee WG, Lee SG. Adaptive sliding mode control of the over-
head crane with varying cable length. Journal of Mechanical Science and Technology. 
2013;27(3):885-893

[21] Lee LH, Huang CH, Ku SC, Yang ZH, Chang CY. Efficient visual feedback method to 
control a three-dimensional overhead crane. IEEE Transactions on Industrial Electronics. 
2014;61(8):4073-4083

[22] Almutairi NB, Zribi M. Sliding mode control of a three-dimensional overhead crane. 
Journal of Vibration and Control. 2009;15(11):1679-1730

[23] Xi Z, Hesketh T. Discrete time integral sliding mode control for overhead crane with 
uncertainties. IET Control Theory and Applications. 2010;4(10):2071-2081

[24] Bartolin G, Pisano A, Usai E. Second-order sliding-mode control of container cranes. 
Automatica. 2002;38:1783-1790

[25] Ngo QH, Hong KS. Adaptive sliding mode control of container cranes. IET Control 
Theory and Applications. 2012;6(5):662-668

[26] Sun N, Fang Y, Chen H, He B. Adaptive nonlinear crane control with load hoisting/low-
ering and unknown parameters: Design and experiments. IEEE/ASME Transactions on 
Mechatronics. 2015;20(5):2107-2119

[27] Park MS, Chwa D, Eom M. Adaptive sliding-mode antisway control of uncertain over-
head cranes with high-speed hoisting motion. IEEE Transactions on Fuzzy Systems. 
2014;22(5):1262-1271

[28] Sun N, Fang, Lu B, Fu Y. Slew/translation positioning and swing suppression for 4-DOF 
tower cranes with parametric uncertainties: Design and hardware experimentation. 
IEEE Transactions on Industrial Electronics. 2016;63(10):6407-6418

[29] Zhao Y, Gao H. Fuzzy-model-based control of an overhead crane with input delay and 
actuator saturation. IEEE Transactions on Fuzzy Systems. 2012;20(1):181-186

[30] Liu D, Yi J, Zhao D, Wang W. Adaptive sliding mode fuzzy control for a two-dimen-
sional overhead crane. Mechatronics. 2005;15(5):505-522

[31] Nakazono K, Ohnishi K, Kinjo H, Yamamoto T. Load swing suppression for rotary crane 
system using direct descent controller optimized by genetic algorithm. Transactions of 
the Institute of Systems, Control and Information Engineers. 2011;22(8):303-310

[32] Lee LH, Huang PH, Shih YC, Chiang TC, Chang CY. Parallel neural network combined 
with sliding mode control in overhead crane control system. Journal of Vibration and 
Control. 2012;20(5):749-760

[33] Uchiyama N, Ouyang H, Sano S. Simple rotary crane dynamics modelling and open-
loop control for residual load sway suppression by only horizontal boom motion. 
Mechatronics. 2013;23(8):1223-1236

Adaptive Robust Control Systems312

[34] Sun N, Fang Y, Zhang X, Yuan Y. Transportation task-oriented trajectory planning for under-
actuated overhead cranes using geometric analysis. IET Control Theory and Applications. 
2012;6(10):1410-1423

[35] Wu X, Xia X. Optimal motion planning for overhead cranes. IET Control Theory and 
Applications. 2014;8(17):1833-1842

[36] Sun N, Fang Y, Zhang Y, Ma B. A novel kinematic coupling-based trajectory planning 
method for overhead cranes. IEEE/ASME Transactions on Mechatronics. 2012;17(1):166-173

[37] Sun N, Wu Y, Fang Y, Chen H. Nonlinear antiswing control for crane systems with 
double-pendulum swing effects and uncertain parameters: Design and experiments. 
IEEE Transactions on Automation Science and Engineering. In press. DOI: 10.1109/
TASE.2017.2723539

[38] Sun N, Fang Y, Chen H, Lu B. Amplitude-saturated nonlinear output feedback antiswing 
control for underactuated cranes with double-pendulum cargo dynamics. IEEE Transactions 
on Industrial Electronics. 2017;64(3):2135-2146

[39] Khalil HK. Nonlinear Systems. 3rd ed. Prentice Hall: Englewood Cliffs, NJ; 2002

Robust Control of Crane with Perturbations
http://dx.doi.org/10.5772/intechopen.71383

313



[20] Tuan LA, Moon SC, Lee WG, Lee SG. Adaptive sliding mode control of the over-
head crane with varying cable length. Journal of Mechanical Science and Technology. 
2013;27(3):885-893

[21] Lee LH, Huang CH, Ku SC, Yang ZH, Chang CY. Efficient visual feedback method to 
control a three-dimensional overhead crane. IEEE Transactions on Industrial Electronics. 
2014;61(8):4073-4083

[22] Almutairi NB, Zribi M. Sliding mode control of a three-dimensional overhead crane. 
Journal of Vibration and Control. 2009;15(11):1679-1730

[23] Xi Z, Hesketh T. Discrete time integral sliding mode control for overhead crane with 
uncertainties. IET Control Theory and Applications. 2010;4(10):2071-2081

[24] Bartolin G, Pisano A, Usai E. Second-order sliding-mode control of container cranes. 
Automatica. 2002;38:1783-1790

[25] Ngo QH, Hong KS. Adaptive sliding mode control of container cranes. IET Control 
Theory and Applications. 2012;6(5):662-668

[26] Sun N, Fang Y, Chen H, He B. Adaptive nonlinear crane control with load hoisting/low-
ering and unknown parameters: Design and experiments. IEEE/ASME Transactions on 
Mechatronics. 2015;20(5):2107-2119

[27] Park MS, Chwa D, Eom M. Adaptive sliding-mode antisway control of uncertain over-
head cranes with high-speed hoisting motion. IEEE Transactions on Fuzzy Systems. 
2014;22(5):1262-1271

[28] Sun N, Fang, Lu B, Fu Y. Slew/translation positioning and swing suppression for 4-DOF 
tower cranes with parametric uncertainties: Design and hardware experimentation. 
IEEE Transactions on Industrial Electronics. 2016;63(10):6407-6418

[29] Zhao Y, Gao H. Fuzzy-model-based control of an overhead crane with input delay and 
actuator saturation. IEEE Transactions on Fuzzy Systems. 2012;20(1):181-186

[30] Liu D, Yi J, Zhao D, Wang W. Adaptive sliding mode fuzzy control for a two-dimen-
sional overhead crane. Mechatronics. 2005;15(5):505-522

[31] Nakazono K, Ohnishi K, Kinjo H, Yamamoto T. Load swing suppression for rotary crane 
system using direct descent controller optimized by genetic algorithm. Transactions of 
the Institute of Systems, Control and Information Engineers. 2011;22(8):303-310

[32] Lee LH, Huang PH, Shih YC, Chiang TC, Chang CY. Parallel neural network combined 
with sliding mode control in overhead crane control system. Journal of Vibration and 
Control. 2012;20(5):749-760

[33] Uchiyama N, Ouyang H, Sano S. Simple rotary crane dynamics modelling and open-
loop control for residual load sway suppression by only horizontal boom motion. 
Mechatronics. 2013;23(8):1223-1236

Adaptive Robust Control Systems312

[34] Sun N, Fang Y, Zhang X, Yuan Y. Transportation task-oriented trajectory planning for under-
actuated overhead cranes using geometric analysis. IET Control Theory and Applications. 
2012;6(10):1410-1423

[35] Wu X, Xia X. Optimal motion planning for overhead cranes. IET Control Theory and 
Applications. 2014;8(17):1833-1842

[36] Sun N, Fang Y, Zhang Y, Ma B. A novel kinematic coupling-based trajectory planning 
method for overhead cranes. IEEE/ASME Transactions on Mechatronics. 2012;17(1):166-173

[37] Sun N, Wu Y, Fang Y, Chen H. Nonlinear antiswing control for crane systems with 
double-pendulum swing effects and uncertain parameters: Design and experiments. 
IEEE Transactions on Automation Science and Engineering. In press. DOI: 10.1109/
TASE.2017.2723539

[38] Sun N, Fang Y, Chen H, Lu B. Amplitude-saturated nonlinear output feedback antiswing 
control for underactuated cranes with double-pendulum cargo dynamics. IEEE Transactions 
on Industrial Electronics. 2017;64(3):2135-2146

[39] Khalil HK. Nonlinear Systems. 3rd ed. Prentice Hall: Englewood Cliffs, NJ; 2002

Robust Control of Crane with Perturbations
http://dx.doi.org/10.5772/intechopen.71383

313



Chapter 16

Nonlinear Control of Flexible Two-Dimensional
Overhead Cranes

Tung Lam Nguyen and Minh Duc Duong

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.71657

Provisional chapter

Nonlinear Control of Flexible Two-Dimensional
Overhead Cranes

Tung Lam Nguyen and Minh Duc Duong

Additional information is available at the end of the chapter

Abstract

Considering gantry cable as an elastic string having a distributed mass, we constitute a
dynamic model for coupled flexural overhead cranes by using the extended Hamilton
principle. Two kinds of nonlinear controllers are proposed based on the Lyapunov
stability and its improved version entitled barrier Lyapunov candidate to maintain
payload motion in a certain defined range. With such a continuously distributed model,
the finite difference method is utilized to numerically simulate the control system. The
results show that the controllers work well and the crane system is stabilized.

Keywords: overhead cranes, finite difference method, Lyapunov stability, distributed
modeling

1. Introduction

Nowadays, cargo transportation plays an important role in many industrial fields. For carry-
ing the cargo in short distance or small area, such as in automotive factories and shipyards, the
overhead cranes are naturally applied. To increase productivity, the overhead cranes today are
required in high-speed operation. However, the fast motion of overhead cranes usually leads
to the large swings of cargo and non-precise movements of trolley and bridge. The faster the
cargo transport is, the larger the cargo swings. This makes dangerous and unsafe situation
during the operating process. The crane itself and the concerning equipment in the factory can
be damaged without proper control strategies.

In recent decades, the control problems of overhead cranes in both theory and practice have
attracted many researchers. Various kinds of crane control techniques have been applied from
classical methods such as linear control [1], nonlinear control [2, 5, 6], optimal approach [7],
adaptive algorithms [8, 9] to modern techniques such as fuzzy logic [3, 4, 10], neural network
[11], command shaping [12], and so on.

© The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons

Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,

distribution, and eproduction in any medium, provided the original work is properly cited.

DOI: 10.5772/intechopen.71657

© 2018 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



Chapter 16

Nonlinear Control of Flexible Two-Dimensional
Overhead Cranes

Tung Lam Nguyen and Minh Duc Duong

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.71657

Provisional chapter

Nonlinear Control of Flexible Two-Dimensional
Overhead Cranes

Tung Lam Nguyen and Minh Duc Duong

Additional information is available at the end of the chapter

Abstract

Considering gantry cable as an elastic string having a distributed mass, we constitute a
dynamic model for coupled flexural overhead cranes by using the extended Hamilton
principle. Two kinds of nonlinear controllers are proposed based on the Lyapunov
stability and its improved version entitled barrier Lyapunov candidate to maintain
payload motion in a certain defined range. With such a continuously distributed model,
the finite difference method is utilized to numerically simulate the control system. The
results show that the controllers work well and the crane system is stabilized.

Keywords: overhead cranes, finite difference method, Lyapunov stability, distributed
modeling

1. Introduction

Nowadays, cargo transportation plays an important role in many industrial fields. For carry-
ing the cargo in short distance or small area, such as in automotive factories and shipyards, the
overhead cranes are naturally applied. To increase productivity, the overhead cranes today are
required in high-speed operation. However, the fast motion of overhead cranes usually leads
to the large swings of cargo and non-precise movements of trolley and bridge. The faster the
cargo transport is, the larger the cargo swings. This makes dangerous and unsafe situation
during the operating process. The crane itself and the concerning equipment in the factory can
be damaged without proper control strategies.

In recent decades, the control problems of overhead cranes in both theory and practice have
attracted many researchers. Various kinds of crane control techniques have been applied from
classical methods such as linear control [1], nonlinear control [2, 5, 6], optimal approach [7],
adaptive algorithms [8, 9] to modern techniques such as fuzzy logic [3, 4, 10], neural network
[11], command shaping [12], and so on.

© The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons

Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,

distribution, and eproduction in any medium, provided the original work is properly cited.

DOI: 10.5772/intechopen.71657

© 2018 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



The abovementioned researches deal with crane motion modeled as pendulum or multi-
section pendulum systems. As a result, their dynamics are described as an ordinary differential
equation or a system of ordinary differential equations. In practice, the crane rope exhibits a
certain degree of flexibility; hence, the equation of motions of the gantry crane with flexible
rope is represented by a set of partial differential and ordinary differential equations. In [13–
15], the authors successfully design a controller that can stabilize the system with the rope
flexibility. Flexible rope also is considered in [16, 17] where coupled longitudinal-transverse
motion and 3D model are investigated.

This chapter accesses themodeling and control of overhead cranes according to the other research
direction.We construct a distributedmodel of overhead cranes inwhich themass and the flexibil-
ity of payload suspending cable are fully taken into account. We utilize the analytical mechanics
including Hamilton principle for constructing such the mathematical model. With the received
model, we analyze and design two nonlinear control algorithms based on two versions of
Lyapunov stability: one is the so-called traditional Lyapunov function and the other is the so-
called barrier Lyapunov. Dissimilar to the preceding study [18, 19] whereas the problem of actu-
ated payload positioning system is considered, the proposed controllers track the trolley to
destination precisely while keeping the payload swing small during the transport process and
absolutely suppressed at the payload destination with control forces exerted at the trolley end of
the system. The qualityof control system is investigated bynumerical simulation. Since the system
dynamics is characterized by a distributed mass model, the finite difference method is applied to
simulate the system responses inMATLAB® environment.

The chapter content is structured as follows. Section 2 constructs a distributed mass model of
overhead cranes. Section 3 analyzes and designs two nonlinear controllers based on Lyapunov
direct theory. The analysis of system stability is included. Section 4 numerically simulates the
system responses and analyzes the received results. Finally, the remarks and conclusions are
shown in Section 5.

2. Distributed mass modeling of overhead cranes

Let us constitute a mathematical model for overhead cranes fully considering the flexibility
and mass of cable. In other words, payload handling cable with length L is considered as a
distributed mass string with density r (kg/m). An overhead crane with its physical features is
depicted in Figure 1. The trolley with mass M (kg) handling the payload m (kg) moves along
Ox which can induce the payload swing. The force Fx (N) of motor is created to push the
trolley but guaranteeing the payload oscillation as small as possible. The other parameters can
be seen in Figures 1 and 2.

Before carrying system modeling, we assume that:

1. Moving masses at the trolley end are symmetrical in X and Y directions.

2. The gantry moving in XY plane and the rope length are unchanged.
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3. Friction and external distributed forces are neglected.

4. Longitudinal deformation of the crane rope is negligible.

From this point onward, the argument (z, t) is dropped whenever it is not confusing and (•)t,
(•)tt, (•)t, and (•)zz are used to denoted the first and second time and spatial derivatives of (•),
respectively. We consider the physical model of an overhead crane as shown in Figure 2. The
tension of the handing cable is of the form

Figure 1. A practical overhead crane.

Figure 2. Physical modeling of overhead crane in OXYZ.
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P ¼ g r L� zð Þ þm½ � (1)

With the differential derivation along the cable length L, the potential energy due to the elasticity
of cable and gravity is determined by
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� �� �2 is a potential component due to the axial deformation of the cable.
The kinetic energy of system includes those of the trolley, payload, and cable motion described
by
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With two force components to move trolley and bridge Fx and Fy, the total visual works of
system are in the form of

W ¼ Fxn 0ð Þ þ Fyμ 0ð Þ (4)

Using the generalized form of Hamilton principle, one has the following equation:

H ¼
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in which the small variations of kinematic and potential energies, respectively, are described
by
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and the small derivation of virtual work is written as

δW ¼ Fxδn 0; tð Þ þ Fyδμ 0; tð Þ (8)

First, one obtains
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We define Lc as a multivariable function
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and apply the following property:
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δ μ
� �

�����

�����
L
0

)
dt

due to
∂Lc
∂nz

δ ntð Þ t2
t1

���� ¼ 0. Similarly, one has the following results after a series of calculation

ðt2
t1

ðL
0

∂Lc
∂μt

δ μt

� �
dz

� �
dt ¼ �

ðt2
t1

ðL
0

∂Lc
∂μt

� �

t
δ μ
� �

dz

" #
dt

which yields
ðt2
t1

ðL
0
δLcdzdt ¼

ðt2
t1

ðL
0

� ∂Lc
∂nt

� �

t
δn� ∂Lc

∂μt

� �

t
δμ� ∂Lc

∂nz

� �

z
δn� ∂Lc

∂μz

� �

z
δμ

" #
dz

(

þ ∂Lc
∂nz

δnjL0 þ
∂Lc
∂μz

δμjL0
�
dt

(13)
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Next, let us calculate

δ
1
2
M n2t 0; tð Þ þ μ2

t 0; tð Þ� �� �
þ δ

1
2
m n2t L; tð Þ þ μ2

t L; tð Þ� �� �

with the below notations

δ
1
2
M n2t 0; tð Þ þ μ2

t 0; tð Þ� �� �
¼ Mnt 0; tð Þδ nt 0; tð Þð Þ þMμt 0; tð Þδ μt 0; tð Þ� �

(14)

and

δ
1
2
m n2t L; tð Þ þ μ2

t L; tð Þ� �� �
¼ mnt L; tð Þδ nt L; tð Þð Þ þmμt L; tð Þδ μt L; tð Þ� �

(15)

Substituting (8), (13), (14), and (15) into (5), one obtains

ðt2
t1

ðL
0

� ∂Lc
∂nt

� �

t
δ nð Þ � ∂Lc

∂μt

� �

t
δ μ
� �� ∂Lc

∂nz

� �

z
δ nð Þ � ∂Lc

∂μz

� �

z
δ μ
� �

" #
dz

(

þ ∂Lc
∂nz

δ nð Þ
L

0
þ ∂Lc
∂μz

δ μ
� �

�����

�����
L

0
þMnt 0; tð Þδ nt 0; tð Þð Þ þMμt 0; tð Þδ μt 0; tð Þ� �

þmnt L; tð Þδ nt L; tð Þð Þ þmμt L; tð Þδ μt L; tð Þ� �þ Fxδn 0; tð Þ þ Fyδμ 0; tð Þ�dt ¼ 0

(16)

which is simplified as

ðt2
t1

ðL
0

� ∂Lc
∂nt

� �

t
� ∂Lc

∂nz

� �

z

� �
δ nð Þ þ � ∂Lc

∂μt

� �

t
� ∂Lc

∂μz

� �

z

" #
δ μ
� �( )

dz

(

þ ∂Lc
∂nz

δn L; tð Þ � ∂Lc
∂nz

δn 0; tð Þ þ ∂Lc
∂μz

δμ L; tð Þ � ∂Lc
∂μz

δμ 0; tð Þ
�Mδn 0; tð Þntt 0; tð Þ �Mδμ 0; tð Þμtt 0; tð Þ �mδn L; tð Þntt L; tð Þ
�mδμ L; tð Þμtt L; tð Þ þ Fxδn 0; tð Þ þ Fyδμ 0; tð Þ�dt

0
BBBBBBBBB@

1
CCCCCCCCCA

¼ 0 (17)

Consider the following boundaries at x = 0 and x = L:

∂Lc
∂nt

� �

t
þ ∂Lc

∂nz

� �

z
¼ 0;

∂Lc
∂μt

� �

t
þ ∂Lc

∂μz

� �

z
¼ 0;

∂Lc
∂nz

�mntt L; tð Þ ¼ 0;

∂Lc
∂μz

�mμtt L; tð Þ ¼ 0;
∂Lc
∂nz

�Mntt 0; tð Þ þ Fx ¼ 0;
∂Lc
∂μz

�Mμtt 0; tð Þ þ Fy ¼ 0;
(18)

which leads to

∂Lc
∂nt

� �

t
¼ rntt (19a)

and
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∂Lc
∂nz

¼ �Pnz � 1
8
EA 4n3z þ 2:2nzμ2

z

� �
(19b)

Submitting (18) into (19a) and (19b) in the interval [0, L] of z, one has

rntt � Pnzð Þz �
1
2
EA 3n2znzz þ nzzμ2

z þ 2nzμzμzz

� � ¼ 0 (20)

and

rμtt � Pμz

� �
z þ

1
2
EA 3μ2

zμzz þ μzzn
2
z þ 2nzμznzz

� �� �
¼ 0 (21)

At boundary condition z = L, one obtains

Pnz L; tð Þ þ 1
2
EA n3z L; tð Þ þ nz L; tð Þμ2

z L; tð Þ� �þmntt L; tð Þ ¼ 0 (22)

and

Pμz L; tð Þ þ 1
2
EA μ3

z L; tð Þ þ μz L; tð Þn2z L; tð Þ� �þmμtt L; tð Þ ¼ 0 (23)

At boundary condition z = 0, one has

Pnz 0; tð Þ þ 1
2
EA n3z 0; tð Þ þ nzμ2

z 0; tð Þ� ��Mntt 0; tð Þ þ Fx ¼ 0 (24)

and

Pμz 0; tð Þ þ 1
2
EA μ3

z 0; tð Þ þ μz 0; tð Þn2z 0; tð Þ� ��Mμtt 0; tð Þ þ Fy ¼ 0 (25)

In summary, the dynamic behavior of overhead crane governed a set of six nonlinear partial
differential Eqs. (20), (21), (22), (23), (24), and (25), as follows:

rntt � Pnzð Þz �
1
2
EA 3n2znzz þ nzzμ2

z þ 2nzμzμzz

� � ¼ 0

rμtt � Pμz

� �
z �

1
2
EA 3μ2

zμzz þ μzzn
2
z þ 2nzμznzz

� � ¼ 0

�Pnz L; tð Þ � 1
2
EA n3z L; tð Þ þ nz L; tð Þμ2

z L; tð Þ� ��mntt L; tð Þ ¼ 0

�Pμz L; tð Þ � 1
2
EA μ3

z L; tð Þ � μz L; tð Þn2z L; tð Þ� ��mμtt L; tð Þ ¼ 0

Pnz 0; tð Þ þ 1
2
EA n3z 0; tð Þ � nz 0; tð Þμ2

z 0; tð Þ� ��Mntt 0; tð Þ þ Fx ¼ 0

Pμz 0; tð Þ þ 1
2
EA μ3

z 0; tð Þ þ μz 0; tð Þn2z 0; tð Þ� ��Mμtt 0; tð Þ þ Fy ¼ 0
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Next, let us calculate

δ
1
2
M n2t 0; tð Þ þ μ2

t 0; tð Þ� �� �
þ δ

1
2
m n2t L; tð Þ þ μ2

t L; tð Þ� �� �

with the below notations

δ
1
2
M n2t 0; tð Þ þ μ2

t 0; tð Þ� �� �
¼ Mnt 0; tð Þδ nt 0; tð Þð Þ þMμt 0; tð Þδ μt 0; tð Þ� �

(14)

and

δ
1
2
m n2t L; tð Þ þ μ2

t L; tð Þ� �� �
¼ mnt L; tð Þδ nt L; tð Þð Þ þmμt L; tð Þδ μt L; tð Þ� �

(15)

Substituting (8), (13), (14), and (15) into (5), one obtains

ðt2
t1

ðL
0

� ∂Lc
∂nt

� �

t
δ nð Þ � ∂Lc

∂μt

� �

t
δ μ
� �� ∂Lc

∂nz

� �

z
δ nð Þ � ∂Lc

∂μz

� �

z
δ μ
� �

" #
dz

(

þ ∂Lc
∂nz

δ nð Þ
L

0
þ ∂Lc
∂μz

δ μ
� �

�����

�����
L

0
þMnt 0; tð Þδ nt 0; tð Þð Þ þMμt 0; tð Þδ μt 0; tð Þ� �

þmnt L; tð Þδ nt L; tð Þð Þ þmμt L; tð Þδ μt L; tð Þ� �þ Fxδn 0; tð Þ þ Fyδμ 0; tð Þ�dt ¼ 0

(16)

which is simplified as

ðt2
t1

ðL
0

� ∂Lc
∂nt

� �

t
� ∂Lc

∂nz

� �

z

� �
δ nð Þ þ � ∂Lc

∂μt

� �

t
� ∂Lc

∂μz

� �

z

" #
δ μ
� �( )

dz

(

þ ∂Lc
∂nz

δn L; tð Þ � ∂Lc
∂nz

δn 0; tð Þ þ ∂Lc
∂μz

δμ L; tð Þ � ∂Lc
∂μz

δμ 0; tð Þ
�Mδn 0; tð Þntt 0; tð Þ �Mδμ 0; tð Þμtt 0; tð Þ �mδn L; tð Þntt L; tð Þ
�mδμ L; tð Þμtt L; tð Þ þ Fxδn 0; tð Þ þ Fyδμ 0; tð Þ�dt

0
BBBBBBBBB@

1
CCCCCCCCCA

¼ 0 (17)

Consider the following boundaries at x = 0 and x = L:

∂Lc
∂nt

� �

t
þ ∂Lc

∂nz

� �

z
¼ 0;

∂Lc
∂μt

� �

t
þ ∂Lc

∂μz

� �

z
¼ 0;

∂Lc
∂nz

�mntt L; tð Þ ¼ 0;

∂Lc
∂μz

�mμtt L; tð Þ ¼ 0;
∂Lc
∂nz

�Mntt 0; tð Þ þ Fx ¼ 0;
∂Lc
∂μz

�Mμtt 0; tð Þ þ Fy ¼ 0;
(18)

which leads to

∂Lc
∂nt

� �

t
¼ rntt (19a)

and
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∂Lc
∂nz

¼ �Pnz � 1
8
EA 4n3z þ 2:2nzμ2

z

� �
(19b)

Submitting (18) into (19a) and (19b) in the interval [0, L] of z, one has

rntt � Pnzð Þz �
1
2
EA 3n2znzz þ nzzμ2

z þ 2nzμzμzz

� � ¼ 0 (20)

and

rμtt � Pμz

� �
z þ

1
2
EA 3μ2

zμzz þ μzzn
2
z þ 2nzμznzz

� �� �
¼ 0 (21)

At boundary condition z = L, one obtains

Pnz L; tð Þ þ 1
2
EA n3z L; tð Þ þ nz L; tð Þμ2

z L; tð Þ� �þmntt L; tð Þ ¼ 0 (22)

and

Pμz L; tð Þ þ 1
2
EA μ3

z L; tð Þ þ μz L; tð Þn2z L; tð Þ� �þmμtt L; tð Þ ¼ 0 (23)

At boundary condition z = 0, one has

Pnz 0; tð Þ þ 1
2
EA n3z 0; tð Þ þ nzμ2

z 0; tð Þ� ��Mntt 0; tð Þ þ Fx ¼ 0 (24)

and

Pμz 0; tð Þ þ 1
2
EA μ3

z 0; tð Þ þ μz 0; tð Þn2z 0; tð Þ� ��Mμtt 0; tð Þ þ Fy ¼ 0 (25)

In summary, the dynamic behavior of overhead crane governed a set of six nonlinear partial
differential Eqs. (20), (21), (22), (23), (24), and (25), as follows:

rntt � Pnzð Þz �
1
2
EA 3n2znzz þ nzzμ2

z þ 2nzμzμzz

� � ¼ 0

rμtt � Pμz

� �
z �

1
2
EA 3μ2

zμzz þ μzzn
2
z þ 2nzμznzz

� � ¼ 0

�Pnz L; tð Þ � 1
2
EA n3z L; tð Þ þ nz L; tð Þμ2

z L; tð Þ� ��mntt L; tð Þ ¼ 0

�Pμz L; tð Þ � 1
2
EA μ3

z L; tð Þ � μz L; tð Þn2z L; tð Þ� ��mμtt L; tð Þ ¼ 0

Pnz 0; tð Þ þ 1
2
EA n3z 0; tð Þ � nz 0; tð Þμ2

z 0; tð Þ� ��Mntt 0; tð Þ þ Fx ¼ 0

Pμz 0; tð Þ þ 1
2
EA μ3

z 0; tð Þ þ μz 0; tð Þn2z 0; tð Þ� ��Mμtt 0; tð Þ þ Fy ¼ 0

8>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>:

Nonlinear Control of Flexible Two-Dimensional Overhead Cranes
http://dx.doi.org/10.5772/intechopen.71657

321



The first and the second equations of the above system of equation represent dynamics of the
gantry rope. Boundary conditions at load and trolley ends are given in the third, fourth, fifth,
and sixth equations, respectively.

3. Lyapunov-based control design

Let us construct two nonlinear controllers using a traditional Lyapunov stability and its
advanced version. In the first method, the control law is referred from the negative condition
of a Lyapunov candidate _V ≤ 0: In the second method, the Lyapunov function is determined so
that it satisfies 0 <V ≤ b with b > 0.

3.1. Conventional Lyapunov controller

The following theorem points out a nonlinear controller designed based on the second method
of Lyapunov stability. The proposed control scheme tracks the outputs of a crane system
approach to references asymptotically.

Theorem. Consider a mass distributed model of overhead crane that is described by six partial
differential equations: (20) to (25). The following control law composed of two inputs:

Fx ¼ Ka nz 0; tð Þ þ EA
2P 0ð Þ n3z 0; tð Þ þ nz 0; tð Þμ2

z 0; tð Þ� �� �

� Kp n 0; tð Þ � qdn 0; tð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 0; tð Þ þ n2 0; tð Þp

 !
� Kdnt 0; tð Þ

(26)

and

Fy ¼ Ka μz 0; tð Þ þ EA
2P 0ð Þ μ3

z 0; tð Þ þ μz 0; tð Þn2z 0; tð Þ� �� �

�Kp μ 0; tð Þ � qdμ 0; tð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 0; tð Þ þ n2 0; tð Þp

 !
� Kdμt 0; tð Þ

(27)

pushes all state outputs of dynamic model (20)–(25) to reference qd exponentially.

Proof. Define a positive Lyapunov candidate as follows:

V ¼ 1
2

ðL

0

r n2t þ μ2
t

� �þ P n2z þ μ2
z

� �þ EA
1
2

n2z þ μ2
z

� �� �2
( )

dzþ MP 0ð Þ
2 P 0ð Þ þ Kað Þ n2t 0; tð Þ þ μ2

t 0; tð Þ� �

þ 1
2
m n2t L; tð Þ þ μ2

t L; tð Þ� �þ P 0ð ÞKp

2 P 0ð Þ þ Kað Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 0; tð Þ þ μ2 0; tð Þ

q
� qd

� �2

(28)

where P(0) is the tension force of cable at boundary x = 0. Kp and Ka are positive gains.
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With the notations that ∣ wj j2 ¼
ðL

0

n2t þ μ2
t

� �þ n2z þ μ2
z

� �þ n2z þ μ2
z

� �2n o
dzþ n2t 0; tð Þ þ μ2

t 0; tð Þ� �

þ n2t L; tð Þ þ μ2
t L; tð Þ� �þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n2 0; tð Þ þ μ2 0; tð Þp � qd
� �2

, .

one has

Kmin∣ wj j2 ≤V tð Þ ≤Kmax∣ wj j2

with

Kmin ¼ 1
2
min r;P;

EA
4

;
MP 0ð Þ

P 0ð Þ þ Ka
;m;

P 0ð ÞKp

P 0ð Þ þ Ka

� �

and

Kmax ¼ 1
2
max r;P;

EA
4

;
MP 0ð Þ

P 0ð Þ þ Ka
;m;

P 0ð ÞKp

P 0ð Þ þ Ka

� �

Differentiating Lyapunov function (28) with respect to time, one obtains

_V ¼
ðL

0

r ntntt þ μtμtt

� �þ P nznzt þ μzμzt

� �� þ EA
2

n3zntz þ μ3
zμzt þ nznztμ2

z þ μzμztμ
2
z

� ��
dz

þ MP 0ð Þ
P 0ð Þ þ Ka

nt 0; tð Þntt 0; tð Þ þ μt 0; tð Þμtt 0; tð Þ

þμ 0; tð Þμt 0; tð Þ þ n 0; tð Þnt 0; tð Þ

þm nt L; tð Þntt L; tð Þ þ μt L; tð Þμtt L; tð Þ� �

� qd μ 0; tð Þμt 0; tð Þ þ n 0; tð Þnt 0; tð Þ� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 0; tð Þ þ n2 0; tð Þp

 !

8>>>>>>>>>>>><
>>>>>>>>>>>>:

9>>>>>>>>>>>>=
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(29)

Let us calculate the components of Lyapunov derivative (29). We refer from (20) and (21) that

ðL

0

r ntntt þ μtμtt

� �
dz ¼

ðL

0

nt Pnzð Þz þ
1
2
EA 3n2znzz þ nzzμ2

z þ 2nzμzμzz

� �� ��

þμt Pμz

� �
z þ

1
2
EA 3μ2

zμzz þ μzzn
2
z þ 2nzμznzz

� �� ��
dz

(30)

Using partial integration

ðL

0

nt Pnzð Þzdz ¼ ntPnz
L
0
�
ðL

0

Pnzntzdz

������
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The first and the second equations of the above system of equation represent dynamics of the
gantry rope. Boundary conditions at load and trolley ends are given in the third, fourth, fifth,
and sixth equations, respectively.

3. Lyapunov-based control design

Let us construct two nonlinear controllers using a traditional Lyapunov stability and its
advanced version. In the first method, the control law is referred from the negative condition
of a Lyapunov candidate _V ≤ 0: In the second method, the Lyapunov function is determined so
that it satisfies 0 <V ≤ b with b > 0.

3.1. Conventional Lyapunov controller

The following theorem points out a nonlinear controller designed based on the second method
of Lyapunov stability. The proposed control scheme tracks the outputs of a crane system
approach to references asymptotically.

Theorem. Consider a mass distributed model of overhead crane that is described by six partial
differential equations: (20) to (25). The following control law composed of two inputs:

Fx ¼ Ka nz 0; tð Þ þ EA
2P 0ð Þ n3z 0; tð Þ þ nz 0; tð Þμ2

z 0; tð Þ� �� �

� Kp n 0; tð Þ � qdn 0; tð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 0; tð Þ þ n2 0; tð Þp

 !
� Kdnt 0; tð Þ

(26)

and

Fy ¼ Ka μz 0; tð Þ þ EA
2P 0ð Þ μ3

z 0; tð Þ þ μz 0; tð Þn2z 0; tð Þ� �� �

�Kp μ 0; tð Þ � qdμ 0; tð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 0; tð Þ þ n2 0; tð Þp

 !
� Kdμt 0; tð Þ

(27)

pushes all state outputs of dynamic model (20)–(25) to reference qd exponentially.

Proof. Define a positive Lyapunov candidate as follows:

V ¼ 1
2

ðL

0

r n2t þ μ2
t

� �þ P n2z þ μ2
z

� �þ EA
1
2

n2z þ μ2
z

� �� �2
( )

dzþ MP 0ð Þ
2 P 0ð Þ þ Kað Þ n2t 0; tð Þ þ μ2

t 0; tð Þ� �

þ 1
2
m n2t L; tð Þ þ μ2

t L; tð Þ� �þ P 0ð ÞKp

2 P 0ð Þ þ Kað Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 0; tð Þ þ μ2 0; tð Þ

q
� qd

� �2

(28)

where P(0) is the tension force of cable at boundary x = 0. Kp and Ka are positive gains.
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With the notations that ∣ wj j2 ¼
ðL

0

n2t þ μ2
t

� �þ n2z þ μ2
z

� �þ n2z þ μ2
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� �2n o
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t 0; tð Þ� �

þ n2t L; tð Þ þ μ2
t L; tð Þ� �þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n2 0; tð Þ þ μ2 0; tð Þp � qd
� �2

, .

one has

Kmin∣ wj j2 ≤V tð Þ ≤Kmax∣ wj j2

with

Kmin ¼ 1
2
min r;P;

EA
4

;
MP 0ð Þ

P 0ð Þ þ Ka
;m;

P 0ð ÞKp

P 0ð Þ þ Ka

� �

and

Kmax ¼ 1
2
max r;P;

EA
4

;
MP 0ð Þ

P 0ð Þ þ Ka
;m;

P 0ð ÞKp

P 0ð Þ þ Ka

� �

Differentiating Lyapunov function (28) with respect to time, one obtains

_V ¼
ðL

0

r ntntt þ μtμtt

� �þ P nznzt þ μzμzt

� �� þ EA
2

n3zntz þ μ3
zμzt þ nznztμ2

z þ μzμztμ
2
z

� ��
dz

þ MP 0ð Þ
P 0ð Þ þ Ka

nt 0; tð Þntt 0; tð Þ þ μt 0; tð Þμtt 0; tð Þ

þμ 0; tð Þμt 0; tð Þ þ n 0; tð Þnt 0; tð Þ

þm nt L; tð Þntt L; tð Þ þ μt L; tð Þμtt L; tð Þ� �

� qd μ 0; tð Þμt 0; tð Þ þ n 0; tð Þnt 0; tð Þ� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 0; tð Þ þ n2 0; tð Þp

 !

8>>>>>>>>>>>><
>>>>>>>>>>>>:

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

(29)

Let us calculate the components of Lyapunov derivative (29). We refer from (20) and (21) that

ðL

0

r ntntt þ μtμtt

� �
dz ¼

ðL

0

nt Pnzð Þz þ
1
2
EA 3n2znzz þ nzzμ2

z þ 2nzμzμzz

� �� ��

þμt Pμz

� �
z þ

1
2
EA 3μ2

zμzz þ μzzn
2
z þ 2nzμznzz

� �� ��
dz

(30)

Using partial integration

ðL

0

nt Pnzð Þzdz ¼ ntPnz
L
0
�
ðL

0

Pnzntzdz

������
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and

ðL

0

μt Pμz

� �
zdz ¼ μtPμz

L
0
�
ðL

0

Pμzμtzdz,

������

one obtains the following components of (30) as follows:

ðL

0

EA
2

n3zntzdz ¼
ðL

0

EA
2

n3zd ntð Þ ¼ EA
2

n3znt
L
0
�
ðL

0

nt
EA
2

3n2znzzdz

������

and

ðL

0

EA
2

μ3
zμtzdz ¼

EA
2

μ3
zμt

L
0
�
ðL

0

μt
EA
2

3μ2
zμzzdz

������

Then,

ðL

0

EA
2

nznztμ2
z

� �
dz ¼ EA

2
nzμ2

znt
L
0
� EA

2

ðL

0

nt nzzμ2
z þ 2nzμzμzz

� �
dz

������

and

ðL

0

EA
2

μzμztn
2
z

� �
dz ¼ EA

2
μzn

2
zμt

L
0
� EA

2

ðL

0

μt μzzn
2
z þ 2nzμznzz

� �
dz

������

The Lyapunov derivative (29) now becomes

_V ¼ ntPnz

L

0
þ μtPμz

������

������

L

0
þ EA

2
n3znt

�����
L

0

þ EA
2

μ3
zμt

�����
L

0

þ EA
2

nzμ2
znt

�����
L

0

þ EA
2

μzn
2
zμt

�����
L

0

þ MP 0ð Þ
P 0ð Þ þ Ka

nt 0; tð Þntt 0; tð Þ þ μt 0; tð Þμtt 0; tð Þ� �þm nt L; tð Þntt L; tð Þ þ μt L; tð Þμtt L; tð Þ� �

þ P 0ð ÞKp

P 0ð Þ þ Ka
μ 0; tð Þμt 0; tð Þ þ n 0; tð Þnt 0; tð Þ� �� P 0ð ÞKp

P 0ð Þ þ Ka

qd μ 0; tð Þμt 0; tð Þ þ n 0; tð Þnt 0; tð Þ� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 0; tð Þ þ n2 0; tð Þp

(31)

Additionally, modification of (24) and (25) yields
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MP 0ð Þ
P 0ð Þ þ Ka

nt 0; tð Þntt 0; tð Þ þ μt 0; tð Þμtt 0; tð Þ� �

¼ P 0ð Þ
P 0ð Þ þ Ka

nt 0; tð Þ Fx þ P 0ð Þnz 0; tð Þ þ EA
2

n3z 0; tð Þ þ nz 0; tð Þμ2
z 0; tð Þ� �� �� �

þ P 0ð Þ
P 0ð Þ þ Ka

μt 0; tð Þ Fy þ P 0ð Þμz 0; tð Þ þ EA
2

μ3
z 0; tð Þ þ μz 0; tð Þn2z 0; tð Þ� �� �� �

(32)

Submitting (32) into (31) with a series of calculation, we obtain

_V ¼ P 0ð Þ
P 0ð Þ þ Ka

nt 0; tð Þ �Ka nz 0; tð Þ þ EA
2P 0ð Þ n3z 0; tð Þ þ nz 0; tð Þμ2

z 0; tð Þ� �� ��

þ Kp n 0; tð Þ � qdn 0; tð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 0; tð Þ þ n2 0; tð Þp

 !
þ Fx

)

þ P 0ð Þ
P 0ð Þ þ Ka

μt 0; tð Þ �Ka μz 0; tð Þ þ EA
2P 0ð Þ μ3

z 0; tð Þ þ μz 0; tð Þn2z 0; tð Þ� �� ��

þKp μ 0; tð Þ � qdμ 0; tð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 0; tð Þ þ n2 0; tð Þp

 !
þ Fy

)

(33)

Substituting the control law (26) and (27) into (33) leads the Lyapunov function to

_V ¼ � P 0ð ÞKd

P 0ð Þ þ Ka
n2t 0; tð Þ � P 0ð ÞKd

P 0ð Þ þ Ka
μ2
t 0; tð Þ ≤ 0 (34)

With the negative definition of expression (34), we can conclude that the system is now
exponential stability.

3.2. Barrier Lyapunov controller

We utilize an improved version of Lyapunov stability to design a control law for overhead
cranes. The Lyapunov function is chosen so that its derivative is smaller than a positive
constant. By this way, the Lyapunov candidate is selected similar to Eq. (28) but supplementing

derivation of payload position 1
2

P 0ð Þ
P 0ð ÞþKa

ln k2b1
k2b1�z21

� �
. A modified version of Lyapunov candidate

is the so-called barrier Lyapunov V1(t) being in the form of

V1 ¼ 1
2

ðL

0

r n2t þ μ2
t

� �þ P n2z þ μ2
z

� �þ EA
1
2

n2z þ μ2
z

� �� �2
( )

dz

þ MP 0ð Þ
2 P 0ð Þ þ Kað Þ n2t 0; tð Þ þ μ2

t 0; tð Þ� �þ 1
2
m n2t L; tð Þ þ μ2

t L; tð Þ� �

þ P 0ð ÞKp

2 P 0ð Þ þ Kað Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 0; tð Þ þ μ2 0; tð Þ

q
� qd

� �2

þ 1
2

P 0ð Þ
P 0ð Þ þ Ka

ln
k2b1

k2b1 � z21

 !
(35)

Nonlinear Control of Flexible Two-Dimensional Overhead Cranes
http://dx.doi.org/10.5772/intechopen.71657

325



and

ðL

0

μt Pμz

� �
zdz ¼ μtPμz

L
0
�
ðL

0

Pμzμtzdz,

������

one obtains the following components of (30) as follows:

ðL

0

EA
2

n3zntzdz ¼
ðL

0

EA
2

n3zd ntð Þ ¼ EA
2

n3znt
L
0
�
ðL

0

nt
EA
2

3n2znzzdz

������

and

ðL

0

EA
2

μ3
zμtzdz ¼

EA
2

μ3
zμt

L
0
�
ðL

0

μt
EA
2

3μ2
zμzzdz

������

Then,

ðL

0

EA
2

nznztμ2
z

� �
dz ¼ EA

2
nzμ2

znt
L
0
� EA

2

ðL

0

nt nzzμ2
z þ 2nzμzμzz

� �
dz

������

and

ðL

0

EA
2

μzμztn
2
z

� �
dz ¼ EA

2
μzn

2
zμt

L
0
� EA

2

ðL

0

μt μzzn
2
z þ 2nzμznzz

� �
dz

������

The Lyapunov derivative (29) now becomes

_V ¼ ntPnz

L

0
þ μtPμz

������

������

L

0
þ EA

2
n3znt

�����
L

0

þ EA
2

μ3
zμt

�����
L

0

þ EA
2

nzμ2
znt

�����
L

0

þ EA
2

μzn
2
zμt

�����
L

0

þ MP 0ð Þ
P 0ð Þ þ Ka

nt 0; tð Þntt 0; tð Þ þ μt 0; tð Þμtt 0; tð Þ� �þm nt L; tð Þntt L; tð Þ þ μt L; tð Þμtt L; tð Þ� �

þ P 0ð ÞKp

P 0ð Þ þ Ka
μ 0; tð Þμt 0; tð Þ þ n 0; tð Þnt 0; tð Þ� �� P 0ð ÞKp

P 0ð Þ þ Ka

qd μ 0; tð Þμt 0; tð Þ þ n 0; tð Þnt 0; tð Þ� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 0; tð Þ þ n2 0; tð Þp

(31)

Additionally, modification of (24) and (25) yields
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MP 0ð Þ
P 0ð Þ þ Ka

nt 0; tð Þntt 0; tð Þ þ μt 0; tð Þμtt 0; tð Þ� �

¼ P 0ð Þ
P 0ð Þ þ Ka

nt 0; tð Þ Fx þ P 0ð Þnz 0; tð Þ þ EA
2

n3z 0; tð Þ þ nz 0; tð Þμ2
z 0; tð Þ� �� �� �

þ P 0ð Þ
P 0ð Þ þ Ka

μt 0; tð Þ Fy þ P 0ð Þμz 0; tð Þ þ EA
2

μ3
z 0; tð Þ þ μz 0; tð Þn2z 0; tð Þ� �� �� �

(32)

Submitting (32) into (31) with a series of calculation, we obtain

_V ¼ P 0ð Þ
P 0ð Þ þ Ka

nt 0; tð Þ �Ka nz 0; tð Þ þ EA
2P 0ð Þ n3z 0; tð Þ þ nz 0; tð Þμ2

z 0; tð Þ� �� ��

þ Kp n 0; tð Þ � qdn 0; tð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 0; tð Þ þ n2 0; tð Þp

 !
þ Fx

)

þ P 0ð Þ
P 0ð Þ þ Ka

μt 0; tð Þ �Ka μz 0; tð Þ þ EA
2P 0ð Þ μ3

z 0; tð Þ þ μz 0; tð Þn2z 0; tð Þ� �� ��

þKp μ 0; tð Þ � qdμ 0; tð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 0; tð Þ þ n2 0; tð Þp

 !
þ Fy

)

(33)

Substituting the control law (26) and (27) into (33) leads the Lyapunov function to

_V ¼ � P 0ð ÞKd

P 0ð Þ þ Ka
n2t 0; tð Þ � P 0ð ÞKd

P 0ð Þ þ Ka
μ2
t 0; tð Þ ≤ 0 (34)

With the negative definition of expression (34), we can conclude that the system is now
exponential stability.

3.2. Barrier Lyapunov controller

We utilize an improved version of Lyapunov stability to design a control law for overhead
cranes. The Lyapunov function is chosen so that its derivative is smaller than a positive
constant. By this way, the Lyapunov candidate is selected similar to Eq. (28) but supplementing

derivation of payload position 1
2

P 0ð Þ
P 0ð ÞþKa

ln k2b1
k2b1�z21

� �
. A modified version of Lyapunov candidate

is the so-called barrier Lyapunov V1(t) being in the form of

V1 ¼ 1
2

ðL

0

r n2t þ μ2
t

� �þ P n2z þ μ2
z

� �þ EA
1
2

n2z þ μ2
z

� �� �2
( )

dz

þ MP 0ð Þ
2 P 0ð Þ þ Kað Þ n2t 0; tð Þ þ μ2

t 0; tð Þ� �þ 1
2
m n2t L; tð Þ þ μ2

t L; tð Þ� �

þ P 0ð ÞKp

2 P 0ð Þ þ Kað Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 0; tð Þ þ μ2 0; tð Þ

q
� qd

� �2

þ 1
2

P 0ð Þ
P 0ð Þ þ Ka

ln
k2b1

k2b1 � z21

 !
(35)

Nonlinear Control of Flexible Two-Dimensional Overhead Cranes
http://dx.doi.org/10.5772/intechopen.71657

325



where z1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 L; tð Þ þ μ2 L; tð Þp � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n2 0; tð Þ þ μ2 0; tð Þp
is relative position of payload in compar-

ison with that of trolley. kb1 is a positive gain satisfying condition kb1 > |z1|. The modification of
(35) leads to

_V 1 ¼ P 0ð Þ
P 0ð Þ þ Ka

nt 0; tð Þ Fx � Ka nz 0; tð Þ þ EA
2:P 0ð Þ n3z 0; tð Þ þ nz 0; tð Þμ2

z 0; tð Þ� �� ��

þ Kp n 0; tð Þ � qdn 0; tð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 0; tð Þ þ n2 0; tð Þp

 !)

þ P 0ð Þ
P 0ð Þ þ Ka

μt 0; tð Þ Fy � Ka μz 0; tð Þ þ EA
2:P 0ð Þ μ3

z 0; tð Þ þ μz 0; tð Þn2z 0; tð Þ� �� ��

þ Kp μ 0; tð Þ � qdμ 0; tð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 0; tð Þ þ n2 0; tð Þp

 !)
þ P 0ð Þ
P 0ð Þ þ Ka

z1 z1ð Þt
k2b1 � z21

(36)

Applying the following inequality

z1ð Þt
�� �� ≤K

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2t 0; tð Þ þ μ2

t 0; tð Þ
q����

����

or

z1 z1ð Þt ≤ z1 z1ð Þt
�� �� ¼ z1j j z1ð Þt

�� �� ≤ kb1K
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2t 0; tð Þ þ μ2

t 0; tð Þ
q

with K being positive constant leads to

P 0ð Þ
P 0ð Þ þ Ka

z1 z1ð Þt
k2b1 � z21

≤
P 0ð Þ

P 0ð Þ þ Ka

1
k2b1 � z21

kb1K
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2t 0; tð Þ þ μ2

t 0; tð Þ
q

(37)

Inserting (37) into (36) yields

_V 1 ≤
P 0ð Þnt 0; tð Þ
P 0ð Þ þ Ka

Fx � Ka nz 0; tð Þ þ EA
2:P 0ð Þ n3z 0; tð Þ þ nz 0; tð Þμ2

z 0; tð Þ� �� ��

þ Kp n 0; tð Þ � qdn 0; tð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 0; tð Þ þ n2 0; tð Þp

 !)
þKp μ 0; tð Þ � qdμ 0; tð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

μ2 0; tð Þ þ n2 0; tð Þp
 !)

þ P 0ð Þμt 0; tð Þ
P 0ð Þ þ Ka

Fy � Ka μz 0; tð Þ þ EA
2P 0ð Þ μ3

z 0; tð Þ þ μz 0; tð Þn2z 0; tð Þ� �� ��

þ P 0ð Þkb1K
P 0ð Þ þ Kað Þ k2b1 � z21

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2t 0; tð Þ þ μ2

t 0; tð Þ
q

(38)

Inserting the following inequality
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2t 0; tð Þ þ μ2

t 0; tð Þ
q

≤ nt 0; tð Þj j þ μt 0; tð Þ�� ��

or
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2t 0; tð Þ þ μ2

t 0; tð Þ
q

≤nt 0; tð Þ sgn nt 0; tð Þð Þ þ μt 0; tð Þ sgn μt 0; tð Þ� �

into (38), one obtains

_V 1 ≤
P 0ð Þ

P 0ð Þ þ Ka
nt 0; tð Þ Fx � Ka nz 0; tð Þ þ EA

2P 0ð Þ n3z 0; tð Þ þ nz 0; tð Þμ2
z 0; tð Þ� �� ��

þ Kp n 0; tð Þ � qdn 0; tð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 0; tð Þ þ n2 0; tð Þp

 !
þ 1
k2b1 � z21

kb1K sgn nt 0; tð Þð Þ
)

þ P 0ð Þ
P 0ð Þ þ Ka

μt 0; tð Þ Fy � Ka μz 0; tð Þ þ EA
2:P 0ð Þ μ3

z 0; tð Þ þ μz 0; tð Þn2z 0; tð Þ� �� ��

þ Kp μ 0; tð Þ � qdμ 0; tð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 0; tð Þ þ n2 0; tð Þp

 !
þ 1
k2b1 � z21

kb1K sgn μt 0; tð Þ� �)

(39)

To force the Lyapunov differentiation being negative, the control law with two components is
structured as

Fx ¼ Ka nz 0; tð Þ þ EA
2:P 0ð Þ n3z 0; tð Þ þ nz 0; tð Þμ2

z 0; tð Þ� �� �
� Kdnt 0; tð Þ

� Kp n 0; tð Þ � qdn 0; tð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 0; tð Þ þ n2 0; tð Þp

 !
� 1
k2b1 � z21

kb1K sgn nt 0; tð Þð Þ
(40)

and

Fy ¼ Ka μz 0; tð Þ þ EA
2:P 0ð Þ μ3

z 0; tð Þ þ μz 0; tð Þn2z 0; tð Þ� �� �
� Kdμt 0; tð Þ

� Kp μ 0; tð Þ � qdμ 0; tð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 0; tð Þ þ n2 0; tð Þp

 !
� 1
k2b1 � z21

kb1K sgn μt 0; tð Þ� � (41)

which leads the Eq. (31) to

_V 1 ≤ � P 0ð ÞKd

P 0ð Þ þ Ka
n2t 0; tð Þ þ μ2

t 0; tð Þ� �
≤ 0 (42)

for every positive gains Kd > 0 and Ka > 0. This implies that V ≤V(0). Hence, the system is now
asymptotical stability.
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where z1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 L; tð Þ þ μ2 L; tð Þp � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n2 0; tð Þ þ μ2 0; tð Þp
is relative position of payload in compar-

ison with that of trolley. kb1 is a positive gain satisfying condition kb1 > |z1|. The modification of
(35) leads to

_V 1 ¼ P 0ð Þ
P 0ð Þ þ Ka

nt 0; tð Þ Fx � Ka nz 0; tð Þ þ EA
2:P 0ð Þ n3z 0; tð Þ þ nz 0; tð Þμ2

z 0; tð Þ� �� ��

þ Kp n 0; tð Þ � qdn 0; tð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 0; tð Þ þ n2 0; tð Þp

 !)

þ P 0ð Þ
P 0ð Þ þ Ka

μt 0; tð Þ Fy � Ka μz 0; tð Þ þ EA
2:P 0ð Þ μ3

z 0; tð Þ þ μz 0; tð Þn2z 0; tð Þ� �� ��

þ Kp μ 0; tð Þ � qdμ 0; tð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 0; tð Þ þ n2 0; tð Þp

 !)
þ P 0ð Þ
P 0ð Þ þ Ka

z1 z1ð Þt
k2b1 � z21

(36)

Applying the following inequality

z1ð Þt
�� �� ≤K

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2t 0; tð Þ þ μ2

t 0; tð Þ
q����

����

or

z1 z1ð Þt ≤ z1 z1ð Þt
�� �� ¼ z1j j z1ð Þt

�� �� ≤ kb1K
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2t 0; tð Þ þ μ2

t 0; tð Þ
q

with K being positive constant leads to

P 0ð Þ
P 0ð Þ þ Ka

z1 z1ð Þt
k2b1 � z21

≤
P 0ð Þ

P 0ð Þ þ Ka

1
k2b1 � z21

kb1K
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2t 0; tð Þ þ μ2

t 0; tð Þ
q

(37)

Inserting (37) into (36) yields

_V 1 ≤
P 0ð Þnt 0; tð Þ
P 0ð Þ þ Ka

Fx � Ka nz 0; tð Þ þ EA
2:P 0ð Þ n3z 0; tð Þ þ nz 0; tð Þμ2

z 0; tð Þ� �� ��

þ Kp n 0; tð Þ � qdn 0; tð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 0; tð Þ þ n2 0; tð Þp

 !)
þKp μ 0; tð Þ � qdμ 0; tð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

μ2 0; tð Þ þ n2 0; tð Þp
 !)

þ P 0ð Þμt 0; tð Þ
P 0ð Þ þ Ka

Fy � Ka μz 0; tð Þ þ EA
2P 0ð Þ μ3

z 0; tð Þ þ μz 0; tð Þn2z 0; tð Þ� �� ��

þ P 0ð Þkb1K
P 0ð Þ þ Kað Þ k2b1 � z21

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2t 0; tð Þ þ μ2

t 0; tð Þ
q

(38)

Inserting the following inequality
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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t 0; tð Þ
q

≤ nt 0; tð Þj j þ μt 0; tð Þ�� ��
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2t 0; tð Þ þ μ2

t 0; tð Þ
q

≤nt 0; tð Þ sgn nt 0; tð Þð Þ þ μt 0; tð Þ sgn μt 0; tð Þ� �

into (38), one obtains

_V 1 ≤
P 0ð Þ

P 0ð Þ þ Ka
nt 0; tð Þ Fx � Ka nz 0; tð Þ þ EA

2P 0ð Þ n3z 0; tð Þ þ nz 0; tð Þμ2
z 0; tð Þ� �� ��

þ Kp n 0; tð Þ � qdn 0; tð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 0; tð Þ þ n2 0; tð Þp

 !
þ 1
k2b1 � z21

kb1K sgn nt 0; tð Þð Þ
)

þ P 0ð Þ
P 0ð Þ þ Ka

μt 0; tð Þ Fy � Ka μz 0; tð Þ þ EA
2:P 0ð Þ μ3

z 0; tð Þ þ μz 0; tð Þn2z 0; tð Þ� �� ��

þ Kp μ 0; tð Þ � qdμ 0; tð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 0; tð Þ þ n2 0; tð Þp

 !
þ 1
k2b1 � z21

kb1K sgn μt 0; tð Þ� �)

(39)

To force the Lyapunov differentiation being negative, the control law with two components is
structured as

Fx ¼ Ka nz 0; tð Þ þ EA
2:P 0ð Þ n3z 0; tð Þ þ nz 0; tð Þμ2

z 0; tð Þ� �� �
� Kdnt 0; tð Þ

� Kp n 0; tð Þ � qdn 0; tð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 0; tð Þ þ n2 0; tð Þp

 !
� 1
k2b1 � z21

kb1K sgn nt 0; tð Þð Þ
(40)

and

Fy ¼ Ka μz 0; tð Þ þ EA
2:P 0ð Þ μ3

z 0; tð Þ þ μz 0; tð Þn2z 0; tð Þ� �� �
� Kdμt 0; tð Þ

� Kp μ 0; tð Þ � qdμ 0; tð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 0; tð Þ þ n2 0; tð Þp

 !
� 1
k2b1 � z21

kb1K sgn μt 0; tð Þ� � (41)

which leads the Eq. (31) to

_V 1 ≤ � P 0ð ÞKd

P 0ð Þ þ Ka
n2t 0; tð Þ þ μ2

t 0; tð Þ� �
≤ 0 (42)

for every positive gains Kd > 0 and Ka > 0. This implies that V ≤V(0). Hence, the system is now
asymptotical stability.
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4. Simulation and results

Consider the case that only the trolley motion is activated, we numerically simulate the
distributed system dynamics (20)–(25) driven by either conventional Lyapunov-based input
or barrier Lyapunov-based law. The finite difference method is applied for programing
the control system in MATLAB environment. The system parameters used in simulation are
composed of

m ¼ 5kg; M ¼ 1kg; L ¼ 3, 6, 9m; Ka ¼ 200; Kp ¼ 5; Kd ¼ 42;

Figure 3. System responses in the case of L = 3 m and m = 3 kg.
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The simulation results are depicted in Figures 3–6. Trolley and payload approach to destina-
tion qd = 2 m precisely and speedy without maximum overshoots. The payload swing stays in a
small region during the transient state and absolutely suppressed at steady state (or payload
destination). However, the longer length of cable is, the lager the payload swings. The system
responses show the robustness in the face of parametric uncertainty. Despite the large variation
of cable length, the system responses still kept consistency as shown in Figures 3–5. It can be
seen from Figure 6 that with the application of the barrier Lyapunov function, payload
fluctuation is controlled in an area defined by kb. Because the motion of the trolley in X and Y
directions is forced to travel the same distance to reach the desired location, system responses
in X and Y directions are similar.

Figure 4. System responses in the case of L = 6 m and m = 6 kg.
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5. Conclusions

The dynamic model of overhead crane with distributed mass and elasticity of handling cable is
formulated using the extended Hamilton’s principle. Based on the model, we successfully
analyzed and designed two nonlinear robust controllers using two versions of Lyapunov
candidate functions. The first can steer the payload to the desired location, while the second
can maintain payload fluctuation in a defined span. The proposed controllers well stabilize all

Figure 5. System responses in the case of L = 9 m and m = 9 kg with conventional Lyapunov function approach.
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system responses despite the large variation of cable length and payload weight. Enhancing
for 3D motion with carrying rope length will be proposed in the future studies.
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Figure 6. System responses in the case of L = 9 m and m = 9 kg with barrier Lyapunov function approach.

Nonlinear Control of Flexible Two-Dimensional Overhead Cranes
http://dx.doi.org/10.5772/intechopen.71657

331



5. Conclusions

The dynamic model of overhead crane with distributed mass and elasticity of handling cable is
formulated using the extended Hamilton’s principle. Based on the model, we successfully
analyzed and designed two nonlinear robust controllers using two versions of Lyapunov
candidate functions. The first can steer the payload to the desired location, while the second
can maintain payload fluctuation in a defined span. The proposed controllers well stabilize all

Figure 5. System responses in the case of L = 9 m and m = 9 kg with conventional Lyapunov function approach.

Adaptive Robust Control Systems330

system responses despite the large variation of cable length and payload weight. Enhancing
for 3D motion with carrying rope length will be proposed in the future studies.

Author details

Tung Lam Nguyen* and Minh Duc Duong

*Address all correspondence to: lam.nguyentung@hust.edu.vn

Department of Industrial Automation, School of Electrical Engineering, Hanoi University of
Science and Technology, Hanoi, Vietnam

Figure 6. System responses in the case of L = 9 m and m = 9 kg with barrier Lyapunov function approach.

Nonlinear Control of Flexible Two-Dimensional Overhead Cranes
http://dx.doi.org/10.5772/intechopen.71657

331



References

[1] Sakawa Y, Sano H. Nonlinear model and linear robust control of overhead travelling
cranes. Nonlinear Analysis, Theory, Methods & Applications. 1997;30(4):2197-2207

[2] Su SW, Nguyen HT, Jarman R, Zhu J, Lowe DB, McLean PB, Weng K. Model predictive
control of gantry crane with input nonlinearity compensation. In: International Confer-
ence on Control, Automation and Systems Engineering. 2009. pp. 312-316

[3] Park MS, Chwa D, Hong SK. Antisway tracking control of overhead cranes with system
uncertainty and actuator nonlinearity using an adaptive fuzzy sliding-mode control.
IEEE Transactions on Industrial Electronics. 2008;55(11):3972-3984

[4] Almutairi NB, Zribi M. Sliding mode control of a three-dimensional overhead crane.
Journal of Vibration and Control. 2009;15(11):1679-1730

[5] Chwa D. Nonlinear tracking control of 3-D overhead cranes against the initial swing
angle and the variation of payload weight. IEEE Transactions on Control Systems Tech-
nology. 2009;17(4):876-883

[6] Moustafa KAF. Reference trajectory tracking of overhead cranes. Journal of Dynamic
Systems, Measurement, and Control. 2001;123(1):139-141

[7] Sakawa Y, Shindo Y. Optimal control of container cranes. Automatica;18(3):257-266

[8] Hua YJ, Shine YK. Adaptive coupling control for overhead crane systems. Mechatronics.
2007;17(2-3):143-152

[9] Mizumoto I, Chen T, Ohdaira S, Kumon M, Iwai Z. Adaptive output feedback control of
general MIMO systems using multi-rate sampling and its application to a cart-crane
system. Automatica. 2007;43(12):2077-2085

[10] Benhidjeb A, Gissinger GL. Fuzzy control of an overhead crane performance comparison
with classic control. Control Engineering Practice. 1995;3(12):1687-1696

[11] Suh JH, Lee JW, Lee YJ, Lee KS. Anti-sway position control of an automated transfer
crane based on neural network predictive PID controller. Journal of Mechanical Science
and Technology. 2005;19(2):505-519

[12] Singhose W, Perter L, Kenison M, Krrikk E. Effects of hoisting on the input shaping
control of gantry cranes. Control Engineering Practice. 2000;8(10):1159-1165

[13] Joshi S. Position control of a flexible cable gantry crane: Theory and experiment. In:
Proceedings of the American Control Conference. Vol. June. 1995. pp. 2820-2824

[14] D’Andréa-Novel B, Coron JM. Exponential stabilization of an overhead crane with flexi-
ble cable via a back-stepping approach. Automatica. 2000;36(4):587-593

[15] Lodewijks G. Anti-sway control of container cranes as a flexible cable system. In: Proceed-
ings of the 2004 IEEE International Conference on Control Applications. 2004. pp. 1564-1569

Adaptive Robust Control Systems332

[16] Ge SS, Zhang S, He W. Vibration control of a coupled nonlinear string system in trans-
verse and longitudinal directions. Proceedings of the IEEE Conference on Decision and
Control. 2011;(ii):3742-3747

[17] Liu J-K, Qin H, He W. Modelling and vibration control for a flexible string system in
three-dimensional space. IET Control Theory & Applications. 2015;9(16):2387-2394

[18] He W, Zhang S, Ge SS. Adaptive control of a flexible crane system with the boundary
output constraint. IEEE Transactions on Industrial Electronics. 2014;61(8):4126-4133

[19] Tee KP, Ge SS, Tay EH. Barrier Lyapunov functions for the control of output constrained
nonlinear systems. Automatica. 2009;45(4):918-927

Nonlinear Control of Flexible Two-Dimensional Overhead Cranes
http://dx.doi.org/10.5772/intechopen.71657

333



References

[1] Sakawa Y, Sano H. Nonlinear model and linear robust control of overhead travelling
cranes. Nonlinear Analysis, Theory, Methods & Applications. 1997;30(4):2197-2207

[2] Su SW, Nguyen HT, Jarman R, Zhu J, Lowe DB, McLean PB, Weng K. Model predictive
control of gantry crane with input nonlinearity compensation. In: International Confer-
ence on Control, Automation and Systems Engineering. 2009. pp. 312-316

[3] Park MS, Chwa D, Hong SK. Antisway tracking control of overhead cranes with system
uncertainty and actuator nonlinearity using an adaptive fuzzy sliding-mode control.
IEEE Transactions on Industrial Electronics. 2008;55(11):3972-3984

[4] Almutairi NB, Zribi M. Sliding mode control of a three-dimensional overhead crane.
Journal of Vibration and Control. 2009;15(11):1679-1730

[5] Chwa D. Nonlinear tracking control of 3-D overhead cranes against the initial swing
angle and the variation of payload weight. IEEE Transactions on Control Systems Tech-
nology. 2009;17(4):876-883

[6] Moustafa KAF. Reference trajectory tracking of overhead cranes. Journal of Dynamic
Systems, Measurement, and Control. 2001;123(1):139-141

[7] Sakawa Y, Shindo Y. Optimal control of container cranes. Automatica;18(3):257-266

[8] Hua YJ, Shine YK. Adaptive coupling control for overhead crane systems. Mechatronics.
2007;17(2-3):143-152

[9] Mizumoto I, Chen T, Ohdaira S, Kumon M, Iwai Z. Adaptive output feedback control of
general MIMO systems using multi-rate sampling and its application to a cart-crane
system. Automatica. 2007;43(12):2077-2085

[10] Benhidjeb A, Gissinger GL. Fuzzy control of an overhead crane performance comparison
with classic control. Control Engineering Practice. 1995;3(12):1687-1696

[11] Suh JH, Lee JW, Lee YJ, Lee KS. Anti-sway position control of an automated transfer
crane based on neural network predictive PID controller. Journal of Mechanical Science
and Technology. 2005;19(2):505-519

[12] Singhose W, Perter L, Kenison M, Krrikk E. Effects of hoisting on the input shaping
control of gantry cranes. Control Engineering Practice. 2000;8(10):1159-1165

[13] Joshi S. Position control of a flexible cable gantry crane: Theory and experiment. In:
Proceedings of the American Control Conference. Vol. June. 1995. pp. 2820-2824

[14] D’Andréa-Novel B, Coron JM. Exponential stabilization of an overhead crane with flexi-
ble cable via a back-stepping approach. Automatica. 2000;36(4):587-593

[15] Lodewijks G. Anti-sway control of container cranes as a flexible cable system. In: Proceed-
ings of the 2004 IEEE International Conference on Control Applications. 2004. pp. 1564-1569

Adaptive Robust Control Systems332

[16] Ge SS, Zhang S, He W. Vibration control of a coupled nonlinear string system in trans-
verse and longitudinal directions. Proceedings of the IEEE Conference on Decision and
Control. 2011;(ii):3742-3747

[17] Liu J-K, Qin H, He W. Modelling and vibration control for a flexible string system in
three-dimensional space. IET Control Theory & Applications. 2015;9(16):2387-2394

[18] He W, Zhang S, Ge SS. Adaptive control of a flexible crane system with the boundary
output constraint. IEEE Transactions on Industrial Electronics. 2014;61(8):4126-4133

[19] Tee KP, Ge SS, Tay EH. Barrier Lyapunov functions for the control of output constrained
nonlinear systems. Automatica. 2009;45(4):918-927

Nonlinear Control of Flexible Two-Dimensional Overhead Cranes
http://dx.doi.org/10.5772/intechopen.71657

333



Chapter 17

Robust Adaptive Control of 3D Overhead Crane System

Nga Thi-Thuy Vu, Pham Tam Thanh,
Pham Xuan Duong and Nguyen Doan Phuoc

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.72768

Provisional chapter

Robust Adaptive Control of 3D Overhead Crane System

Nga Thi-Thuy Vu, Pham Tam Thanh,

Pham Xuan Duong and Nguyen Doan Phuoc

Additional information is available at the end of the chapter

Abstract

In this chapter an adaptive anti-sway controller for uncertain overhead cranes is pro-
posed. The system model including the system uncertainties and disturbances is intro-
duced firstly. Next, the adaptive controller which can guarantee tracking the desired
position of the trolley as well as the anti-sway of the load cable is established. In this
chapter, the system is proven to be input-to-state stable (ISS) which is supported by
Lyapunov technique. The proposed algorithm is verified by using Matlab/Simulink
simulation tool. The simulation results shown that the presented controller gives the
good performances (i.e., fast transient response, position tracking, and low swing angle)
when there exist system parameters variation as well as input disturbances.

Keywords: adaptive anti-swing control, input-to-state stable (ISS), overhead crane
system, robust control, stability analysis, uncertainties

1. Introduction

The overhead crane system is one of the important devices in the transportation field. It
includes a trolley, a driving motor, and a cable to hang the load. In the overhead crane system,
there are two variables need to be controlled (the trolley position and the swing angle) but it
has only one control input (acting force on the motor). This characteristic makes the control
design of the overhead crane system is more difficult than full actuated system. Moreover, the
operation of the system is affected by some unexpected factors such as the change of cable
length and load mass, input disturbances, external disturbances. For this reason, the controller
design for overhead crane system is much more challenging and attracts the consideration of
many researchers.

In recent years, many controllers have been applied to the overhead crane system to move the
trolley to the destination as fast as possible with acceptable swing angle. In [1–3], the PID
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controllers are used for the crane systems to give the good performances with simple construc-
tion. However, it is well known that PID controller is sensitive to noises and disturbances. In
[4–6], the controllers based on linearized theory are introduced. Also, these controllers cannot
guarantee the good performances for the system under condition of uncertain factors. In order
to face with system uncertainties, many advanced controllers have been presented such as
sliding mode controllers [7–13], fuzzy controllers [14–21], intelligent adaptive strategies [22]
and so on.

It is well known that, robust adaptive controller is a suitable selection for the systems which
are affected by working environment. In [23] an adaptive fuzzy controller is proposed for the
overhead crane system to deal with nonlinear disturbances. In this scheme, the fuzzy logic
controller is combined with adaptive algorithm to keep stabling for the system as well as to
tune the free parameters. The given strategy is simple but robust to the variation of the system
parameters (wire length and payload weight) and external disturbances. However, the stabil-
ity of overall system is not presented. An adaptive sliding-mode anti-sway controller is shown
in [24]. The purpose of this scheme is given the good performances for the crane system in the
range of high-speed hosting motion. This algorithm includes two parts: sliding-mode control-
ler and fuzzy observer. The first one is to keep the asymptotic stability of the sway dynamic,
the other is to cope with the system uncertainties. This algorithm gives the robust anti-sway
performance to overhead cranes regardless of hosting velocity and system uncertainties. The
stability of the system is proven in analysis and simulation. In [25], a fuzzy sliding-mode
control is incorporated with a fuzzy uncertainty observer. By this cooperation, the controller
guarantees not only the anti-sway trajectory tracking of the nominal plant but also the robust-
ness to system uncertainties as well as actuator nonlinearity. This scheme guarantees asymp-
totic stability and robust performances but it is quite complicated.

In this chapter a robust adaptive controller is introduced for 3D crane system. Firstly, the
controller is designed based on the Euler-Lagrange model of the overhead crane system which
includes the system uncertainties and external disturbances. Next, by using this controller, the
error dynamic of the system is show in the form of state space model. Finally, the simulation is
done to verify the effectiveness of the given algorithm. The simulation results show that the
proposed controller guarantees the good tracking and no payload swing angle for the crane
system even under the effect of parameters variation as well as external disturbances.

2. Robust adaptive control system design

2.1. 3D overhead crane system modeling

Figure 1 shows the structure of the 3D overhead crane. The dynamic model of the overhead
crane is as follows [26]:

M qð Þ€q þ C q; _qð Þ _q þ ɡ qð Þ ¼ τ (1)

where
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M qð Þ ¼

mc þmh 0 mhl cosθ cosφ

0 mc þmh þmx mhl cosθ sinφ

mhl cosθ cosφ mhl cosθ sinφ mhl2 þ J

�mhl sinθ sinφ mhl sinθ cosφ 0

�mhl sinθ sinφ

mhl sinθ cosφ

0

mhl2 sin 2θþ J

1
CCCCCCA

0
BBBBBB@

(2)

C q; _qð Þ ¼

0 0 �mhl _θ sinθ cosφ�mhl _φ cosθ sinφ

0 0 �mhl _θ sinθ sinφþmhl _φ cosθ cosφ

0 0 0

0 0 mhl2 _φ sinθ cosθ

�mhl _θ cosθ sinφ�mhl _φ sinθ cosφ

mhl _θ cosθ cosφ�mhl _φ sinθ sinφ

�mhl2 _φ sinθ cosθ

mhl2 _θ sinθ cosθ

1
CCCCCCA

0
BBBBBB@

(3)

ɡ qð Þ ¼

0
0
mhɡl sinθ
0

0
BBB@

1
CCCA (4)

τ ¼ u1; u2; 0; 0ð ÞT, q ¼ x; y;θ;φð ÞT : (5)

In considering the system uncertainties, the model (1) is rewritten as the following:

M q; dð Þ€q þ C q; _q; dð Þ _q þ ɡ q; dð Þ ¼ D uþ n q; _q; €q; d; tð Þð Þ (6)

where

Figure 1. Structure of 3D overhead crane.
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sliding mode controllers [7–13], fuzzy controllers [14–21], intelligent adaptive strategies [22]
and so on.

It is well known that, robust adaptive controller is a suitable selection for the systems which
are affected by working environment. In [23] an adaptive fuzzy controller is proposed for the
overhead crane system to deal with nonlinear disturbances. In this scheme, the fuzzy logic
controller is combined with adaptive algorithm to keep stabling for the system as well as to
tune the free parameters. The given strategy is simple but robust to the variation of the system
parameters (wire length and payload weight) and external disturbances. However, the stabil-
ity of overall system is not presented. An adaptive sliding-mode anti-sway controller is shown
in [24]. The purpose of this scheme is given the good performances for the crane system in the
range of high-speed hosting motion. This algorithm includes two parts: sliding-mode control-
ler and fuzzy observer. The first one is to keep the asymptotic stability of the sway dynamic,
the other is to cope with the system uncertainties. This algorithm gives the robust anti-sway
performance to overhead cranes regardless of hosting velocity and system uncertainties. The
stability of the system is proven in analysis and simulation. In [25], a fuzzy sliding-mode
control is incorporated with a fuzzy uncertainty observer. By this cooperation, the controller
guarantees not only the anti-sway trajectory tracking of the nominal plant but also the robust-
ness to system uncertainties as well as actuator nonlinearity. This scheme guarantees asymp-
totic stability and robust performances but it is quite complicated.

In this chapter a robust adaptive controller is introduced for 3D crane system. Firstly, the
controller is designed based on the Euler-Lagrange model of the overhead crane system which
includes the system uncertainties and external disturbances. Next, by using this controller, the
error dynamic of the system is show in the form of state space model. Finally, the simulation is
done to verify the effectiveness of the given algorithm. The simulation results show that the
proposed controller guarantees the good tracking and no payload swing angle for the crane
system even under the effect of parameters variation as well as external disturbances.

2. Robust adaptive control system design

2.1. 3D overhead crane system modeling

Figure 1 shows the structure of the 3D overhead crane. The dynamic model of the overhead
crane is as follows [26]:

M qð Þ€q þ C q; _qð Þ _q þ ɡ qð Þ ¼ τ (1)

where
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M qð Þ ¼

mc þmh 0 mhl cosθ cosφ

0 mc þmh þmx mhl cosθ sinφ

mhl cosθ cosφ mhl cosθ sinφ mhl2 þ J

�mhl sinθ sinφ mhl sinθ cosφ 0

�mhl sinθ sinφ

mhl sinθ cosφ

0

mhl2 sin 2θþ J

1
CCCCCCA

0
BBBBBB@

(2)

C q; _qð Þ ¼

0 0 �mhl _θ sinθ cosφ�mhl _φ cosθ sinφ

0 0 �mhl _θ sinθ sinφþmhl _φ cosθ cosφ

0 0 0

0 0 mhl2 _φ sinθ cosθ

�mhl _θ cosθ sinφ�mhl _φ sinθ cosφ

mhl _θ cosθ cosφ�mhl _φ sinθ sinφ

�mhl2 _φ sinθ cosθ

mhl2 _θ sinθ cosθ

1
CCCCCCA

0
BBBBBB@

(3)

ɡ qð Þ ¼

0
0
mhɡl sinθ
0

0
BBB@

1
CCCA (4)

τ ¼ u1; u2; 0; 0ð ÞT, q ¼ x; y;θ;φð ÞT : (5)

In considering the system uncertainties, the model (1) is rewritten as the following:

M q; dð Þ€q þ C q; _q; dð Þ _q þ ɡ q; dð Þ ¼ D uþ n q; _q; €q; d; tð Þð Þ (6)

where

Figure 1. Structure of 3D overhead crane.
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D ¼ I2�2

0

� �
, u ¼ u1; u2ð ÞT (7)

The uncertain vector d ∈ R4 includes the unknown constants in the system model and
n q; _q; €q; d; tð Þ is external disturbance. In the rest of this chapter, n q; _q; €q; d; tð Þ is shorten by n(t).

Model (1) is rewritten as the following:

M11 q; dð Þ M12 q; dð Þ
M21 q; dð Þ M22 q; dð Þ

 !

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
M q;dð Þ

€q1
€q2

 !

|fflfflffl{zfflfflffl}
€q

þ
C11 q; _q; dð Þ C12 q; _q; dð Þ
C21 q; _q; dð Þ C22 q; _q; dð Þ

 !

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
C q; _q;dð Þ

_q1
_q2

 !

|fflfflffl{zfflfflffl}
_q

þ
ɡ1 q; dð Þ
ɡ2 q; dð Þ

 !

|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
ɡ q;dð Þ

¼
uþ n

0

 !

(8)

or

M11 q; dð Þ€q1 þM12 q; dð Þ€q2 þ C11 q; _q; dð Þ _q1 þ f 1 q; _q; dð Þ ¼ uþ n
M21 q; dð Þ€q1 þM22 q; dð Þ€q2 þ f 2 q; _q; dð Þ ¼ 0

�
(9)

where

q ¼ q1
q2

� �
, q1 ¼ x; yð ÞT, q2 ¼ θ;φð ÞT (10)

f 1 q; _q; dð Þ ¼ M12 q; dð Þ€q2 þ C12 q; _q; dð Þ _q2 þ ɡ1 q; dð Þ
f 2 q; _q; dð Þ ¼ C21 q; _q; dð Þ _q1 þ C22 q; _q; dð Þ _q2 þ ɡ2 q; dð Þ (11)

Because M(q, d) is positive definite matrix, M11(d, q) and M22(d, q) are invertible. From the
second equation of (9), it can be obtained:

€q2 ¼ �M22 q; dð Þ�1 M21 q; dð Þ€q1 þ f 2 q; _q; dð Þ� �
(12)

Replacing Eq. (12) into Eq. (9) to get the following:

M= q; dð Þ€q1 þ C11 q; _q; dð Þ _q1 þ f = q; _q; dð Þ ¼ uþ n
M21 q; dð Þ€q1 þM22 q; dð Þ€q2 þ f 2 q; _q; dð Þ ¼ 0

(
(13)

where

M= q; dð Þ ¼ M11 q; dð Þ �M12 q; dð ÞM22 q; dð Þ�1M21 q; dð Þ
f = q; _q; dð Þ ¼ f 1 q; _q; dð Þ �M12 q; dð ÞM22 q; dð Þ�1f 2 q; _q; dð Þ

(14)

In this paper, the following assumptions are used:

• A1: M= q; dð Þ is quadratic positive definite for all d.
• A2: n tð Þk k∞ ¼ supt n tð Þj j ¼ δ where δ is finite scalar.
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• A3: The relationship between the uncertainty d and the model is linear [27], i.e., the left
side of Eq. (13) can be expressed as:

M= q; dð Þ€q1 þ C11 q; _q; dð Þ _q1 þ f = q; _q; dð Þ ¼ F1 q; _q; €q1
� �

d
M21 q; dð Þ€q1 þM22 q; dð Þ€q2 þ f 2 q; _q; dð Þ ¼ F2 q; _q; €qð Þd

(
(15)

2.2. Controller design

In this part, the following denotations are used:

M= ¼ M= q; dð Þ, C11 ¼ C11 q; _q; dð Þ, f = ¼ f = q; _q; dð Þ
M
_

= ¼ M= q; d
_� �

, C
_

11 ¼ C11 q; _q; d
_� �

, f
_=

¼ f = q; _q; d
_� �

F1 ¼ F1 q; _q; €q1
� �

, F2 ¼ F2 q; _q; €q1
� �

(16)

The role of the proposed controller in the system is to adapt to the constant uncertain d and
robust with unknown function n(t) so the error e = qr – q1, where qr is the desired value of q1, is
bounded and converges asymptotically to 0.

The robust adaptive controller which satisfies the above requirements is obtained by the
following theorem.

Theorem: Consider the system Eq. (13), the following controller:

u ¼ M= €qr þ K1eþ K2 _e
� �þ C11 _q1 þ f = þ s tð Þ (17)

where K1 ¼ diag að Þ,K2 ¼ diag
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aþ 1ð Þap� �

, a > 0, and

_v ¼ M= q; d
_� ��1

F1

� �T

K1;K2ð Þx
s tð Þ ¼ F1v

8><
>:

(18)

in which d̂ , which satisfies max
1 ≤ i ≤n

Pn
j¼1

m=
ij q; d

_� ����
��� ≤γ, ∀q is representation of d, and x ¼ col e; _eð Þ.

will converge x to the neighborhood of the are O:

O ¼ x∈R6
�� xj j < δγ

a

� �
(19)

Proof: Replacing Eq. (18) into Eq. (17), the following is obtained:

M=€q þ C11 _q1 þ f = ¼ uþ n ¼ M
_=

€qr þ K1eþ K2 _e
� �þ C

_

11 _q1 þ f
_=

þ sþ n (20)

which can be rewritten as:
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• A3: The relationship between the uncertainty d and the model is linear [27], i.e., the left
side of Eq. (13) can be expressed as:
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2.2. Controller design

In this part, the following denotations are used:
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_
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¼ f = q; _q; d
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F1 ¼ F1 q; _q; €q1
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, F2 ¼ F2 q; _q; €q1
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(16)

The role of the proposed controller in the system is to adapt to the constant uncertain d and
robust with unknown function n(t) so the error e = qr – q1, where qr is the desired value of q1, is
bounded and converges asymptotically to 0.

The robust adaptive controller which satisfies the above requirements is obtained by the
following theorem.

Theorem: Consider the system Eq. (13), the following controller:

u ¼ M= €qr þ K1eþ K2 _e
� �þ C11 _q1 þ f = þ s tð Þ (17)

where K1 ¼ diag að Þ,K2 ¼ diag
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aþ 1ð Þap� �

, a > 0, and

_v ¼ M= q; d
_� ��1

F1

� �T

K1;K2ð Þx
s tð Þ ¼ F1v

8><
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(18)

in which d̂ , which satisfies max
1 ≤ i ≤n

Pn
j¼1

m=
ij q; d

_� ����
��� ≤γ, ∀q is representation of d, and x ¼ col e; _eð Þ.

will converge x to the neighborhood of the are O:

O ¼ x∈R6
�� xj j < δγ

a

� �
(19)

Proof: Replacing Eq. (18) into Eq. (17), the following is obtained:

M=€q þ C11 _q1 þ f = ¼ uþ n ¼ M
_=

€qr þ K1eþ K2 _e
� �þ C

_

11 _q1 þ f
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þ sþ n (20)
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M= �M
_=

� �
€q þ C11 � C

_

11

� �
_q1 þ f = � f

_=
� �

¼ M
_

= €e þ K1eþ K2 _e½ � þ sþ n (21)

By using A3, the above equation can be expressed as the following:

F1 d� d
_� �

¼ M
_=

€e þ K1eþ K2 _e½ � þ sþ n (22)

or

€e ¼ �K1e� K2 _e þ M
_=

� ��1

F1 d� d
_� �

� s� n
h i

(23)

Equation (23) can be written in the state-space form as the following:

_x ¼
0 I3�3

�K1 �K2

 !
xþ

0

M
_=

� ��1

0
B@

1
CA F1 d� d

_� �
� s� n

h i

¼ Axþ B F1 d� d
_� �

� s� n
h i

(24)

where

x ¼ e
_e

� �
,A ¼ 0 I3�3

�K1 �K2

� �
,B ¼

0

M
_=

� ��1

0
@

1
A (25)

Since K1 and K2 are symmetric positive definite matrices, matrix A is stable, it means that all
the eigenvalues of A is located in the left side of the complex plane. Consequently, the linear
reference model:

_xm ¼ Axm (26)

is stable. Then, xm(t) is bounded and asymptotically converges to zero as t ! ∞ despite the
initiative value xm(0).

Next step, it will be shown that, by using the controller Eq. (17) and auxiliary controller
Eq. (18), the error (x – xm) is bounded and converges to the neighborhood of the areaO defined
in Eq. (19).

From Eqs. (24) and (26), the following is obtained:

_x � _xm ¼ A x� xmð Þ þ B F1 d� d
_� �

� s� n
h i

¼ A x� xmð Þ þ B F1Δ� nð Þ
(27)

where Δ ¼ d� d
_ �v.
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Choosing the Lyapunov function as the following:

V ¼ 1
2

x� xmð ÞTP x� xmð Þ þ ΔTΔ
h i

(28)

The derivative of V can be expressed as:

_V ¼ 1
2

A x� xmð Þ þ B F1Δ� nð Þð ÞTP x� xmð Þ þ x� xmð ÞTP A x� xmð Þ þ B F1Δ� nð Þð Þ
h i

þ ΔT _Δ

¼ 1
2

x� xmð ÞT ATPþ PA
� �

x� xmð Þ þ ΔT BF1ð ÞTP x� xmð Þ � _v
h i

� x� xmð ÞTPBn

(29)

or

_V ¼ � x� xmð ÞTQ x� xmð Þ þ ΔT BF1ð ÞTP x� xmð Þ � _v
h i

� x� xmð ÞTPBn (30)

where

Q ¼ � 1
2

ATPþ PA
� �

¼ � 1
2

0 �K1

I3�3 �K2

 !
2K1K2 K1

K1 K2

 !
þ

2K1K2 K1

K1 K2

 !
0 I3�3

�K1 �K2

 !" #

¼
K2

1 0

0 K2
2 � K1

0
@

1
A ¼ diag a2

� �

(31)

is a symmetric positive definite matrix.

By choosing:

_v ¼ BF1ð ÞTP x� xmð Þ ¼
0

M
_=

� ��1

F1

0
B@

1
CA

2
64

3
75
T

2K1K2 K1

K1 K2

 !
x� xmð Þ

¼ M
_=

� ��1

F1

 !T

K1; M
_=

� ��1

F1

 !T

K2

0
@

1
A x� xmð Þ

¼ M
_=

� ��1

F1

 !T

K1;K2ð Þ x� xmð Þ

(32)

then

_V ¼ � x� xmð ÞTQ x� xmð Þ � x� xmð ÞTPBn (33)
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� �
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_
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� �
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� �
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h i
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h i
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0
@

1
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or

_V ¼ � x� xmð ÞTQ x� xmð Þ þ ΔT BF1ð ÞTP x� xmð Þ � _v
h i

� x� xmð ÞTPBn (30)

where

Q ¼ � 1
2

ATPþ PA
� �

¼ � 1
2

0 �K1

I3�3 �K2

 !
2K1K2 K1

K1 K2

 !
þ

2K1K2 K1

K1 K2

 !
0 I3�3

�K1 �K2

 !" #

¼
K2

1 0

0 K2
2 � K1

0
@

1
A ¼ diag a2

� �

(31)

is a symmetric positive definite matrix.

By choosing:

_v ¼ BF1ð ÞTP x� xmð Þ ¼
0

M
_=

� ��1

F1

0
B@

1
CA

2
64

3
75
T

2K1K2 K1

K1 K2

 !
x� xmð Þ

¼ M
_=

� ��1

F1

 !T

K1; M
_=

� ��1

F1

 !T

K2

0
@

1
A x� xmð Þ

¼ M
_=

� ��1

F1

 !T

K1;K2ð Þ x� xmð Þ

(32)

then

_V ¼ � x� xmð ÞTQ x� xmð Þ � x� xmð ÞTPBn (33)
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Both Eqs. (32) and (33) are always feasible with any initial values of xm. For the simplicity, the
initial value of xm is chosen at xm(0) = 0. Consequently, this leads to the following:

_v ¼ M
_=

� ��1

F1

 !T

K1;K2ð Þx (34)

and

_V ¼ �xTQx� xTPBn ¼ �a2 xj j2 � xTPBn

≤ � a2 xj j2 þ PBk kδ xj j ≤ a �a xj j þ γδ½ � xj j
(35)

This implies that as γδ
a < xj j, i.e. when x(t) is steel on the outside of the area O, _V < 0 so the

change of x tð Þj j is monotonous decrease. This completely proves that by using the proposed
controller, the trajectory x will converge to the neighborhood of the area O.

3. Simulation verification

In order to verify the effectiveness of the proposed controller, a simulation is setup based on
the MATLAB/Simulink tool. The parameters of the overhead crane system are as follow:

mc = 10 kg, mh = 10 kg, mx = 5 kg, l = 1.2 m, g = 9.8 m/s2.

The simulation is carried out under the three cases:

Case 1: The system parameters are nominal, no input disturbances.

Case 2: The system parameters are variation (150%), no input disturbances.

Case 3: The system parameters are nominal, existing input disturbances.

The destination positions for all cases are 1.5 m for x-axis and 2 m for y-axis, the controller
gains are as follow:

K1 ¼
5 0
0 5

� �
, K2 ¼

5:48 0
0 5:48

� �
(36)

The simulation results are shown in Figures 2–4. In each figure, the a part is result for the x-axis
and the b part is for y-axis. In addition, from top to bottom are the waveforms of trolley
position, payload swing angle, and control signal, respectively.

It can be seen from Figure 2 that, in the case of system is certainty (Case 1), the trolley reaches
the destination point after 3 sec in x-axis and 4 sec in y-axis, the steady state errors are
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negligible, and the payload swing quickly disappears as the trolleys finish their movements. In
the Figure 3 (Case 2), the system parameters are 150% variation but the results are nearly
unchanged, i.e. the transient time is less than 5 sec, the maximum swing angle is smaller than
0.3 deg. and it is kept almost zero at the steady state.

Figure 4 is the waveform of the system under the condition of existing the external distur-
bances. In this case, a sinusoidal with amplitude of 2 degree is added into the inputs. The
system responses are little oscillation but it is insignificant.

Figure 2. Simulation result of the robust adaptive controller for the case of certain system parameters.
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In Table 1, θmax, φmax, θss, and φss are maximum and steady state values of θ and φ, respec-
tively. From the above results is can be seen that the proposed controller gives a good perfor-
mance under various conditions of working. It has the ability to adapt with the uncertainties
of the system such as the variation of the trolley mass, load mass, and cable length. Moreover,
this controller is also robust to the external disturbance.

Figure 3. Simulation result of the robust adaptive controller for the case of 150% variation system parameters.
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Figure 4. Simulation result of the robust adaptive controller for the case of existing external disturbances.

θmax (deg) θss (deg) ϕmax (deg) ϕss (deg) x-axis settling time (sec) y-axis settling time (sec)

Case 1 0.2 0 0.3 0 3 4

Case 2 0.2 0 0.25 0 5 5

Case 3 0.2 0 0.25 0 4 5

Table 1. Summarize the results for all cases.

Robust Adaptive Control of 3D Overhead Crane System
http://dx.doi.org/10.5772/intechopen.72768

345



In Table 1, θmax, φmax, θss, and φss are maximum and steady state values of θ and φ, respec-
tively. From the above results is can be seen that the proposed controller gives a good perfor-
mance under various conditions of working. It has the ability to adapt with the uncertainties
of the system such as the variation of the trolley mass, load mass, and cable length. Moreover,
this controller is also robust to the external disturbance.

Figure 3. Simulation result of the robust adaptive controller for the case of 150% variation system parameters.

Adaptive Robust Control Systems344

Figure 4. Simulation result of the robust adaptive controller for the case of existing external disturbances.

θmax (deg) θss (deg) ϕmax (deg) ϕss (deg) x-axis settling time (sec) y-axis settling time (sec)

Case 1 0.2 0 0.3 0 3 4

Case 2 0.2 0 0.25 0 5 5

Case 3 0.2 0 0.25 0 4 5

Table 1. Summarize the results for all cases.

Robust Adaptive Control of 3D Overhead Crane System
http://dx.doi.org/10.5772/intechopen.72768

345



4. Conclusion

In this chapter an adaptive robust controller which can adapt with the system uncertainties
and robust to the external disturbances is establishes based on Euler–Lagrange model of the
overhead crane system. Using this controller, the error dynamic of the system is show in the
form of state space model. By using Lyapunov theory, it is shown that the overall system is
input-to-state stable. The proposed robust adaptive controller is verified through the Matlab/
Simulink toolbox under the three conditions, i.e., nominal system parameters, variation system
parameters, and external disturbances. The simulation results indicate that the presented
scheme gives the good performances for the overhead crane system (fast response, small swing
angle in the transient time and no swing angle in the steady state, no position error) even that
the system is uncertainties and existing the external disturbances.
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