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Preface

During recent years, the contact mechanics and fracture mechanics have found a considera‐
ble application in the solution of engineering problems to increase the life of the component.
Contact mechanics studies the stress and strain states of bodies in contact; it is a contact that
leads to friction interaction and wear. In recent years, computational contact mechanics has
been a topic of intense research. The aim of this research is to devise robust solution
schemes and new discretization techniques for the description of contact phenomena, which
can then be applied to a much broader range of engineering analysis areas than is currently
the case. The focus will be on a detailed treatment of the theoretical formulation of contact
problems with regard to mechanics and mathematics. Fracture is understood to be the sepa‐
ration of a body of material into two or more pieces, whereby the load carrying is reduced to
zero. The process of fracture can be considered to be made up of two components, crack
initiation and crack propagation. Fracture mechanics has developed into a useful tool in the
design of crack-tolerant structures and in fracture control; it also has a place in failure analy‐
sis. Fracture mechanics makes it possible to determine whether a crack of a given length in a
material of known fracture toughness is dangerous because it will propagate to fracture at a
given stress level. If the cause of crack extension may not be controlled, the only thing left to
designer is to calculate the critical length in advance.

The different contributions of this book will cover the various advanced topics of research. It
provides some needed background with respect to contact mechanics, fracture mechanics, and
the use of finite element methods in both. All the covered chapters of this book are of a theoreti‐
cal and applied nature, suitable for the researchers of engineering, physics, applied mathemat‐
ics and mechanics with an interest in computer simulation of contact and fracture problems.

This book contains two sections as its name; Chapters 1–7 deal with contact mechanics, and
Chapters 8–13 deal with fracture mechanics. Hermetic sealing studies are carried out in
Chapter 1. Sealing capacity depends on the contact characteristics—the relative contact area
and the gap density in the joint. In this chapter, the contact of a single asperity is considered
taking into account the influence of the remaining contacting asperities. The response of a
nanometer-scaled single asperity onto flat surfaces is experimentally accessible using atomic
force microscopy, which is studied in Chapter 2. The author describes three experimental
methods based on atomic force microscopy and corresponding methods for statistical data
analysis. Chapter 3 presents an update of theories involving the differential hardness prob‐
lem, starting from the hypothesis made by Tabor for the contact between a sphere and a
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plane. In this way, the reader interested in problems that directly affect these formulations,
such as contact area and contact fatigue, can take part in a fundamental theoretical basis to
perform investigations in this field. In Chapter 4, a new approach is presented by the au‐
thors, whose main purpose is to improve the efficiency of the semianalytical methods that
are used to solve frictionless elastic contact problems. To do so, an adaptive refinement of
the pressure element mesh is implemented. This strategy allows for a reduction of the com‐
putational cost of the method, while its accuracy remains unaffected. In Chapter 5, the con‐
tact load-bearing response and surface damage resistance of multilayered hierarchical
structured (MHSed) Ti were evaluated by experimental indentation on the overall loading
response in conjunction with detailed computational simulations of local stresses and strain
distribution. The purpose of Chapter 6 is to illustrate the experimental/numerical tools and
methods developed to fill this gap on a common family of friction dampers, called “under‐
platform dampers” with a curved-flat cross section. Both cylinder-on-flat and flat-on-flat in‐
terfaces are addressed. The study contained in Chapter 7 presents a comprehensive report
on the dynamic response and shock resistance of singly curved sandwich panels, compris‐
ing two aluminium alloy face sheets and an aluminium foam core, subjected to air-blast
loading, in terms of the experimental investigation and numerical simulation. The results
are significant to guide the engineering applications of sandwich structures with metallic
foam cores subjected to air-blast loading.

Fracture toughness determination with the use of miniaturized specimens is discussed in
Chapter 8. This chapter provides  an overview of the reported values of the results obtained
with the use of miniaturized specimens with hints of how can small-size-based results be re‐
lated to the standard-sized specimen results. In Chapter 9, extended finite element method
(XFEM) has been used to simulate the fatigue crack growth problems in functionally graded
material (FGM) in the presence of hole, inclusion and minor crack under elastic and plastic
conditions. Chapter 10 has introduced the state of the art of the currently available modeling
and simulation methods to analyse the fretting phenomenon. Finally, a numerical architecture
of coupled wear, fatigue, and fracture methodology has been introduced, which allows to
analyse the fretting phenomena as a whole. Chapter 11 presents a new method for determin‐
ing the fracture toughness of materials according to the test data of nonstandard small-size
chevron-notched specimens. There are no empirical constants and phenomenological de‐
pendencies in the calculations. Chapter 12 reviews the most common empirical models and
numerical methods of structural fatigue lifetime prediction. FEM (extended finite element
method and fractal finite element method) is introduced as an important method to obtain the
stress intensity factor or crack growth route. Chapter 13 deals with the review of accelerated
fatigue tests, as it can be used to evaluate the component fatigue strength but is necessary to
perform the statistical analysis during the test to monitor the test development, or this analy‐
sis is used to evaluate the test results, through the slope and its standard deviation.

Our intention for this book is to make current research on contact mechanics and fracture
mechanics accessible to the researchers and scientists working in this field. It is also intend‐
ed to bring together solutions of special problems, which may be of practical importance,
and to describe theoretical and experimental methods of the solution of associated fields’
problems. The work presented in this book will be useful, effective, and beneficial to me‐
chanical engineers, automobile engineers, civil engineers, and material scientists from in‐
dustry, research, and education and will stimulate new research in these fields.
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lishing. And of course , my special thanks to our parents and family members for the sup‐
port they always gave to us.
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Contact Mechanics of Rough Surfaces in Hermetic
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Provisional chapter

Contact Mechanics of Rough Surfaces in Hermetic
Sealing Studies

Peter Ogar, Sergey Belokobylsky and

Denis Gorokhov

Additional information is available at the end of the chapter

Abstract

It is indicated that the sealing capacity depends on the contact characteristics—the
relative contact area and the gap density in the joint. To determine the contact character-
istics, a discrete roughness model is used in the form of a set of spherical segments, the
distribution of which in height is related to the bearing curve described by the regular-
ized beta function. The contact of a single asperity is considered with taking into account
the influence of the remaining contacting asperities. The equations for determining the
relative contact area and gap density in the joint depending on the dimensionless force
parameters for elastic and elastic-plastic contacts are provided.

Keywords: contact mechanics, hermetic sealing studies, rough surface, spherical
asperity, discrete model, elastic contact, elastic-plastic contact, hardening power law,
relative contact area, gaps density, sealing joint, tightness

1. Introduction

Tightness is the property of the joints to provide an acceptable leakage value, determined from
the conditions of normal operation of various systems and equipment, human safety, and
environmental protection. To quantify the tightness, the leakage rate is used, that is, the mass
or volume of the medium per unit time per unit length along the SJ’s perimeter. By ‘sealing
joint’ (SJ), we mean a set of details that form a structure to ensure tightness.

The SJ’s tightness is provided by loading with a compressive load (the contact sealing pres-
sures), which is largely determined by the stress-strain state in the contact area and depends on
the contact interaction of the rough surfaces. The main contact characteristics ensuring SJ’s
tightness are the approaching of rough surfaces, the relative contact area, the density of gaps
in the joint, and the degree of fusion of contact spots of single asperities. Depending on the

© The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons

Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,

distribution, and eproduction in any medium, provided the original work is properly cited.

DOI: 10.5772/intechopen.72196

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.
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materials’ properties andmicrogeometry parameters, there are elastic, viscoelastic, elastic-plastic,
and rigid-plastic contacts.

At present, to solve the tribology problems, we need to use the roughness models and the
rough surfaces contacting theory developed by the authors [1, 2] and their followers. However,
the use of such models to solve the problems in hermetic sealing studies leads to significant
errors, which is explained by the following:

1. the contact pressures of the sealing are approximately 1–2 orders of magnitude higher
than for friction and at that, it is necessary to be taken into account the mutual influence of
the contacting asperities;

2. in the sealing joint, all the asperities's contacting is possible, which requires the description
of the whole bearing profile curve but not only its initial part, as in [2];

3. when determining the gaps volume (or density), the displacements of the points of the
asperities surfaces have not been taken into account; and

4. the extrusion of the material into the intercontact space under elastic-plastic contact has
not been taken into account.

Therefore, to describe the SJ, a rough surface model is required that adequately describes the
real surface and corresponds to the whole bearing curve, and not just its initial part. In
addition, in order to improve the accuracy of the calculation of the contact characteristics, the
discrete model of a rough surface must be taken into account, the real distribution of dimen-
sions of microasperities and the mutual influence. The criterion of plasticity must take into
account the general stress-strain state when contacting of a rough surface and not just of a
single asperity. In most cases, the contact of metallic rough surfaces is elastic-plastic, therefore,
to determine the contact characteristics, it is necessary to take into account the parameters of
material hardening.

To estimate the SJ’s sealing property, in [3, 4], the nondimensional permeability functional is used

Cu ¼ Λ3υk

4 1� η
� �2 , (1)

where Λ is the gaps density in the joint; η is the relative contact area; υk is the probability of a
medium flowing, which depends on the single contact spots fusion.

All the parameters that appear in Eq. (1) depend on the parameters of microgeometry and
dimensionless force parameters f q or qσ, the determination of which is given in the following

sections.

The purpose of the given research is to develop methods for calculating the contact charac-
teristics that ensure the given tightness of the immobile joints with taking into account the
complex of functional parameters of the sealing surfaces and mutual influence of asperities.

Contact and Fracture Mechanics4

2. Discrete model of the rough surface

We consider that the initial data for the model representation of a rough surface are parameters
of roughness according to ISO 4287–1997, ISO 4287/1–1997: maximum roughness depth Rmax,
arithmetic mean deviation of the profile Ra, root-mean-square deviation of the profile Rq, mean
height of the profile elements Rp, mean width of the profile elements Sm, bearing profile curve
tp, and bearing profile curve on the midline tm. Thus, the standard parameters of the roughness
for the developed model must coincide with the corresponding parameters of the real surface.

To describe the entire rough surface, it is required to know one of two functions:

ηu εð Þ ¼ Au

Ac
or φn uð Þ ¼ nu

nc
, (2)

where Au is the material cross-sectional area at a relative level ε ¼ h=Rmax; Ac is the contour
area; nu is the number of asperities whose peaks are located above the level u; nc ¼ Ac=Aci is
the total number of asperities; and Aci is the area due to a single asperity.

According to ISO 4287–1997, parameters of roughness are determined from profilograms and
the functions describing the distribution for the profile tp and the surface ηu(ε), but it is not
fulfilled for the peaks and valleys asperities distribution functions of the profile φnl(ul) and the
surface φn(u), then the model is based on the bearing profile curve.

Let us assume that the function ηu εð Þ is monotonic and twice differentiable. A rough surface
(Figure 1) is a set of asperities in the form of spherical segments of radius r and height ωRmax,

and base radius ac ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
Aci=π

p
. It is necessary to find such a function φn uð Þ for which the

distribution of the material in the rough layer corresponds to the bearing surface curve.

The cross-section of the i-th asperity at the level ε is

Ari ¼ 2πrRmax ε� uð Þ, (3)

where u is the relative distance from the peaks level to the peak of the i-th asperity.

The number of peaks in the layer du and at a distance u is equal to

dnr ¼ ncφ0
n uð Þdu: (4)

Figure 1. The scheme and the bearing curve of a rough surface.
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Then, Au ¼ Ar ¼ 2πrRmaxnc
Ðε
0
φ0

n uð Þ ε� uð Þdu;

ηu εð Þ ¼ Ar εð Þ
Ac

¼ C
ðε

0

ε� uð Þφ0
n uð Þdu, C ¼ 2πrRmaxnc

Ac
: (5)

Further, we have

η εð Þ ¼ C ε
ðε

0

φ0
n uð Þdu�

ðε

0

uφ0
n uð Þdu

0
@

1
A ¼ C εφn εð Þ � uφn uð Þ

ε

0

���� þ
ðε

0

φn uð Þdu
0
@

1
A,

η εð Þ ¼ C
ðε

0

φn uð Þdu: (6)

Twice differentiating the left and right sides of ε, we have

η0 εð Þ ¼ Cφn εð Þ, η00 εð Þ ¼ Cφ0
n εð Þ; (7)

φn εð Þ ¼ η0 εð Þ
C

, φ0
n εð Þ ¼ η00 εð Þ

C
: (8)

To describe the bearing surface curve, we use the regularized beta function:

tp εð Þ ¼ η εð Þ ¼ Iε p; qð Þ ¼ Βε p; qð Þ
Β p; qð Þ , (9)

where

p ¼ Rp

Rq

� �2 Rmax � Rp

Rmax

� �
� Rp

Rmax
, q ¼ p

Rmax

Rp
� 1

� �
: (10)

Вε(α,β) и В(α,β) are the incomplete and complete beta-functions.

Double differentiating Eq. (9), from Eq. (8), for the function and the distribution density of the
asperities, we have

φn uð Þ ¼ η0
u uð Þ
C

¼ up�1 1� uð Þq�1

εsp�1 1� εsð Þq�1 ; (11)

φ0
n uð Þ ¼ η00

u uð Þ
C

¼ up�2 1� uð Þq�2 p� 1ð Þ 1� uð Þ � q� 1ð Þu½ �
εp�1
s 1� εsð Þq�1

: (12)

The relative height of the spherical asperity is ω ¼ 1� εs and the radius of spherical asperity is
r ¼ a2c= 2ωRmaxð Þ:

Contact and Fracture Mechanics6

This section describes a model of a rough surface in the form of a set of spherical asperities
with constant radii and heights. More complex models with asperities with variable radii and
heights are given in work [3, 4].

The contact of two rough surfaces zi x; yð Þ can be represented as a contact of an equivalent

rough surface z x; yð Þ ¼P2
i¼1 zi x; yð Þ and a flat surface. The parameters of the microgeometry of

an equivalent surface are given in [3, 4].

3. Description of contact of a single asperity

3.1. Contact of a spherical asperity and the low-modulus half-space

Elastic contact occurs when low-modulus materials are used, which are used widely in sealing
technology in the form of coatings or individual details [3, 5]. According to the strength criteria,
the construction materials belong to the low-modulus materials if the values of the elastic
moduli E < 103 MPa [6]. When contacting metallic rough surfaces, elastic contact is possible
for high surface cleanliness classes and large values of the yield strength of the material.

As shown by experiments [7, p. 179] with polymeric interlayers (a coating on one of the
conjugate details), loaded by [1] compressive stresses, the real touching area tends to be a
constant value, depending on the physico-mechanical properties of the interlayer material.

During elastic contact, the mutual influence of discretely loaded sections leads to the growth
retardation of the contact area [3]. It is reflected in the Bartenev-Lavrentyev’s formula [7]

η ¼ 1� exp � b
q
E

� �
, (13)

where b is the coefficient depending on the surface quality, qc is the contour contact pressure,
and E is the elastic modulus. As it follows from Eq. (13), η ! 1 for q ! ∞.

Figure 2. The distribution densities of asperities for different values of p and q.
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The question of the influence of neighboring asperities in the case of elastic contact was
considered in [8, 9], where the mutual influence is replaced by the action of equal concentrated
forces located at the nodes of the hexagonal lattice.

According to the Saint-Venant’s principle, at a point sufficiently distant from the region of
application of the load, the stresses and deformations do not depend on the nature of the load
distribution in its application area, in [10, 11]. Using the principle, the influence of the other
contacting asperities is replaced by the action of a uniformly distributed load in some circular
area. It allows considering the problem posed as an axisymmetric problem.

Let us consider the contact of a single absolutely rigid spherical asperity of radius r, whose
peak is located at a distance uRmax from the peaks line of a rough surface with an elastic half-
space in the system of cylindrical coordinates z, r, and φ with origin at the point О (Figure 3).

From an analysis of the numerous solutions of contact problems in the theory of elasticity and
plasticity, it follows that a change of the distribution of external loads near the contact area

Figure 3. Scheme of contact of a single asperity.
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under constancy of its average intensity leads to insignificant changes only near the boundary
of the contact area.

Then, taking into account, the nature of the mutual location of the individual contact spots, the
influence on the contact characteristics of an individual asperity within the circular contact
area W1 r ¼ 0, ari

� �
and the circular unloaded area W r ¼ ari, anð Þ on the remaining contact

spots will be equivalent to the effect of the uniformly distributed load qcn acting in the circular
area W2 r ¼ an, alð Þ, and the assigned problem may be regarded as an axisymmetric (Figure 3).
The size of the unloaded area an depends on the number of contacting asperities and with
increasing applied load, it decreases from al to ac.

The solution of this problem is given in Ref. [11]. Studies on the effect of the parameter
ka ¼ an=ac on the relative contact area show only 4% increase of last one; therefore, with a
margin to tightness ensure, we will give a solution for ka = 1 or an = ac below.

Let A1 and A2 be two points on the surface of the circular contact area W1. The A1 and A2

coming into contact after application of the compressive load. Since the total normal displace-
ment U0 of the point А1 is constant for any point in area W1, we have

U0 ¼ UE þ z1 ¼ UEri þUEci þ z1, (14)

where UEri is the normal contact displacement under the pressure pri acting in the region W1;
UEci is the normal displacement under the pressure qcn; and z1 is the equation of the surface of a
spherical asperity in an unloaded state.

As for the real surfaces, r > > Rmax, then

z1 ¼ �uRmax � r2

2r
: (15)

Elementary displacements dUEri and dUEci under pressures qri and qc acting on elementary
areas dw1 and dw2, respectively, are determined by [12]:

dUEri ¼
θqri r1ð Þ
πR1

dw1, dUEci ¼ θqcn
πR2

dw2; (16)

where R2
j ¼ r2 þ r2j � 2rrj cosφj, j = 1, 2; r � ri; θ ¼ 1� ν2

� �
=E, ν is Poisson’s ratio;

dw1 ¼ r1drdφ; and dw2 ¼ r2drdφ.

After integrating Eq. (16), we have

UEri ¼ θ
π

ð

W1

pri rð Þdw1

R1
, (17)

UEci ¼ 4
π
θqc alΕ

ri
al

� �
� aсΕ

ri
ac

� �� �
, (18)
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where Ε xð Þ is the complete elliptic integral of the second kind.

From Eq. (15), taking into account Eqs. (16)–(18), we have

ð

W1

pri rð Þdw1

R1
¼ f ri
� �

, (19)

f ri
� � ¼ π

θ
U0 � uRmax � ωRmaxr

2
i

a2c

� �
� 2πqc al � 2

π
Ε

ri
ac

� �� �
: (20)

The Eq. (19) is the basic equation of an axisymmetric contact problem. The common decision of
Eq. (19) is [13].

pri ri
� � ¼ � 1

2π

ðari

ri

F sð Þdsffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � r2i

q , Pi ¼ � 2
π

ðari

0

f 0 σð Þσ2dσffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2r � σ2

p , F sð Þ ¼ 2
π

f 0ð Þ þ s
ðs

0

f 0 σð Þdσffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � σ2

p
2
4

3
5: (21)

As a result from (21), we have

pri ri
� � ¼ 4ωRmax

πθa2c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2ri � r2i

q
þ qc

π
arcsin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2ri � r2i
a2c � r2i

s
, (22)

Pi ¼
8ωRmaxa3ri

3θa2c
þ 2qca

2
c arcsin

ari
ac

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2ri
a2c

1� a2ri
a2c

� �s" #
: (23)

Taking into account that ηi ¼ a2ri=a
2
ci, qci ¼ Pi= πa2ci

� �
, from Eqs. (22) and (23), we have

pri ri
� � ¼ 4η0:5

i ωRmax

πθa2c

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2i

a2ri

s
þ qc

π
arcsin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2ri � r2i
a2c � r2i

s
, (24)

qci ¼
8ωRmaxη1:5

i

3πθac
þ 2
π
qc arcsin η0:5

i �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ηi 1� ηi

� �q� �
: (25)

The mean pmi and the maximum pri(0) stresses at the contact spot are described by equations

pmi ¼
Ni

Ari
¼ qci

ηi
¼ 8η0,5

i ωRmax

3πθac
þ 2qc
πηi
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π
arcsin η0::5
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With sufficient accuracy (with an error of less than 1%), Eq. (24) can be written as.

pr ηi; ri
� � ¼ pr0 ηi; 0

� �
1� r2i =a

2
r

� �β
, β ¼ pr0 ηi; 0

� �
=pm ηi; 0

� �� 1: (28)
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3.2. The contact of a spherical asperity and the hardenable elastic-plastic half-space

Problems of a spherical asperity elastic-plastic indentation are not studied sufficiently and some
suggested solutions are needed for clarification and improvement. One of the important prob-
lems is material hardening. The authors’ approach to solve this problem is given in Ref. [14].

In several works [15, 16], the empirical Meyer law linking the spherical indentation load and
an indenter diameter was used to allow for material hardening in solving the tribomechanic
problems. Let us consider this approach at length.

In describing elastic-plastic characteristics of the hardenable material, the Hollomon’s power
law is widely used. According to it, the relation between the true stress S and the true strain ε
under uniaxial tension or compression is described by equations

S ¼ εE, ε ≤ εy;
Kεn, ε ≥ εy;

�
(29)

where E is the elastic modulus and n is the strain-hardening exponent.

The constant K is determined from the equality condition for σ at εy. Then the second equation
in Eq. (29) can be written as.

S
σy

¼ Eε
σy

� �n

¼ ε
εy

� �n

, ε ≥ εy: (30)

where σy ≈Sy, σy is the yield strength, and εy ¼ σy=E.

Taking into accord that the limiting uniform strain εu ¼ n, the exponential deformation hard-
ening can be determined according to Ref. [17] from the following equation:

nlnn� n 1þ ln εy
� �� ln

σu
σy

¼ 0, (31)

where σu is the tensile strength.

Meyer was the first who described a material behavior in the elastic-plastic domain. He related
the load P to the indentation diameter d as

P ¼ Adm: (32)

The empirical Meyer law is often written as:

4P
πd2

¼ HM ¼ A∗ d
D

� �m�2

: (33)

where m, A, and A* are constants. A* has a dimension of strength.

The equation on the left side is a mean contact area pressure referred to as the Meyer hardness

4P
πd2

¼ P
πa2

¼ pm ¼ HM, (34)
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where Ε xð Þ is the complete elliptic integral of the second kind.
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The Eq. (19) is the basic equation of an axisymmetric contact problem. The common decision of
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where a is the radius of the contact area.

Using [16], we have

P
E∗R2 ¼

2
kσ � kn

n
e

� �n

ε1�n
y

a
R

� �2þ1:041n
: (35)

where E∗ is reduced elastic modulus, kσ ¼ 0:333 for carbon and pearlitic steel, for other
materials, the values of kσ are given in Ref. [18].

kn ¼ 2þ 1:041nð Þ1þ0:5205n

1þ 1:041nð Þ1þ1:041n 1:041nð Þ0:5205n: (36)

The limits of using of Eq. (35) are given in Ref. [16].

As it was indicated in Ref. [16], the obtained results are in good agreement with the experi-
mental data given in Ref. [19], and with the data of FE analysis [20].

Thus, the proposed approach suggests an alternative to a more complex method for describing
elastic-plastic penetration of a sphere on the basis of the kinetic indentation diagram [14],
which was used in solving problems of elastic-plastic contacting of rough surfaces.

4. Contacting rough surfaces

4.1. Elastic contact of rough surfaces

4.1.1. Relative contact area

Consider the contact of a rough surface with an elastic-plastic half-space using a roughness
model for which the function and the density of the distribution of the asperities are described
by Eqs. (15) and (16). The displacement of a rough surface in the general case is determined
from Eq. (21) under the condition F arið Þ ¼ 0:

U0 ¼ uRmax þ 2Θqc al � acð Þ þ 2ωRmax
a2ri
a2c

þþ2θqcac 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2ri

a2c

s !
: (37)

For an asperity contacting at a point, that is, for ari = 0, we have

U0 ¼ εRmax þ 2θqc al � acð Þ: (38)

Since the value of U0 is constant for all points of the contact regions, it follows from Eqs. (56)
and (38) that

ηi þ
θqcac
ωRmax

1�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ηi

q� �
� ε� u

2ω
¼ 0: (39)

This equation has a solution
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ηi ¼
ε� u
2ω

� f q 1þ
f q
2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

f q
2

 !2

� ε� u
2ω

vuut
0
B@

1
CA, (40)

where f q ¼ θqcac
ωRmax

:

Contour pressure in the joint of a rough surface with a half-space and the relative area are
described by equations.

qc ¼
N
Ac

¼ 1
Ac

Xnr
i¼1

qciAci; η ¼ Ar

Ac
¼ 1

Ac

Xnr
i¼1

Aciηi: (41)

Considering that for this roughness model Aci ¼ const, Ac ¼ Acinc, and dnr ¼ ncφ0
n uð Þdu, we

represent Eq. (41) in the form.

qc εð Þ ¼
ðmin ε;εsð Þ

0

qciφ
0
n uð Þdu, η εð Þ ¼

ðmin ε;εsð Þ

0

ηiφ
0
n uð Þdu: (42)

Taking into account Eq. (25), we have.

f q εð Þ ¼ θqc εð Þac
ωRmax

¼
8
3π

Ðmin ε;εsð Þ

0
η1,5
i φ0

n uð Þdu

1� Ðmin ε;εsð Þ

0
Ψη ηi

� �
φ0
n uð Þdu

, Ψη ηi

� � ¼ 2
π

arcsinη0:5
i �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ηi 1� ηi

� �q� �
: (43)

Figure 4 shows the dependences of the relative contact area on the force elastic-geometric
parameter fq.

Figure 4. The relative contact area with/without taking into account the mutual influence of asperities (a) and for
different values of p and q (b).
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4.1.2. Gaps density of the joint

To determine the volume of the intercontact space, it is necessary to determine the volumes of
gaps attributable to single contacting and noncontacting asperities [10],

Vi ¼

Vri ¼ 2π
ðac

ari

z20 rð Þ � z10 rð Þ½ �rdr;

V0i ¼ 2π
ðaci

0

z2r rð Þ � z1r rð Þ½ �rdr,

8>>>>>>>><
>>>>>>>>:

(44)

where z10, z20 and z1r, z2r are the equations describing the surfaces of noncontacting and
contacting asperities and half-spaces, respectively.

Then, the total volume of the intercontact space at the joint is described by the equation

Vc ¼
Xnr
i¼1

Vri þ
Xnc�nr

i¼1

V0i, (45)

And the corresponding gap density is equal to

Λ εð Þ ¼ Vc

AcRmax
¼ 1

AciRmax

ðmin ε;εSð Þ

0

Vriφ
0
n uð Þduþ

ðεS

min ε;εSð Þ

V0iφ
0
n uð Þdu

2
64

3
75: (46)

Taking into account that Λri ¼ Vri= AciRmaxð Þ и Λ0i ¼ V0i= AciRmaxð Þ, it can be represented in the
form

Λ εð Þ ¼
ðmin ε;εSð Þ

0

Λriφ
0
n uð Þduþ

ðεS

min ε;εSð Þ

Λ0iφ
0
n uð Þdu: (47)

We provide the equations of surfaces of the asperities and the half-space that enter into
Eq. (44):

z10 ¼ ωRmax
ε� u
ω

� x2 þ 2f q k� 1ð Þ
h i

, (48)

where x ¼ r
ac
; k ¼ al

ac
,

z20 ¼ 2ωRmaxf q k�2F1 � 1
2
;
1
2
; 1;

x2

k2

� �
�2F1 � 1

2
;
1
2
; 1; x2

� �� �
, (49)

where 2F1 is the Gaussian hypergeometric function,
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for contacting asperity z1r ¼ z10;

z2r ¼
z1r, 0 ≤ x < η0,5

i

UEri þUEci, η0,5
i ≤ x ≤ 1;

8><
>:

(50)

UEci ¼ z20, UEri ¼ ωRmax
f qi
x 2F1

1
2
;
1
2
;βþ 2;

ηi

x2

� �
, f qi ¼

8η1,5
i

3π
þΨ ηi

� � � f q, (51)

where β ¼ pri 0ð Þ=pm � 1:

Figure 5 shows the different positions of the single asperity in the process of contacting with
the rough surface: case a corresponds to original position; case b corresponds to the touching at
a point; and cases c and d correspond to the contact under the different loads.

Taking into account that x2 ¼ t, we have

V0i ¼ πa2c

ð1

0

Δz0 tð Þdt, Vri ¼ πa2c

ð1

ηi

Δzr tð Þdt: (52)

Figure 5. The scheme for contacting a single asperity located at level u = 0.5.
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where Δz0 ¼ z20 � z10 and Δzr ¼ z2r � z1r:

Since Λi ¼ Vi
πacRmax

, after integrating (52), we have

Λoi ¼ ω
1
2
� ε� u

ω
� 2f q k� 1ð Þ � k�2F1 � 1

2
;
1
2
; 2;

1
k2

� �
þ 2F1 � 1

2
;
1
2
; 2; 1

� �� �� �
: (53)

Λri ¼ω 1� ηi

� � 1þ ηi

2

��
� ε� u

ω
� 2f q k� 1ð Þ

i
þ 2f qk 2F1 � 1

2
;
1
2
; 2;

1
k2

� ��
�

� ηi 2F1 � 1
2
;
1
2
; 2;

ηi

k2

� ��
� 2f q 2F1 � 1

2
;
1
2
; 2; 1

� �
� ηi 2F1 � 1

2
;
1
2
; 2;ηi

� ��
þ

�

þ 2f qi 2F1 � 1
2
;
1
2
;βþ 2;ηi

� �
� η0,5

i 2F1 � 1
2
;
1
2
;βþ 2; 1

� ����
:

(54)

Substituting the equations obtained in Eq. (47), we determine the joint density Λ εð Þ. To deter-

mine the dependence Λ f q
� �

, it is necessary to exclude the parameter ε from the dependences

f q εð Þ and Λ εð Þ.

Figure 6 shows the dependence of the gap density on the complex parameter f q when two

rough surfaces come into contact. Figure 2 shows that the contact density does not depend on
the parameters p and q, since the dependences for the different values of p and q.

4.1.3. The criteria for the appearance of plastic deformations

To determine the limits of using the above equations for metal surfaces, it is necessary to have a
reliable criterion of plasticity. The closest coincidence with the experimental data on the
indentation into elastic-plastic media was shown by the energy Mises’ theory of shear strain
and the theory of the maximum tangential stresses of Tresca. The difference between the two

Figure 6. The gap density with/without taking into account the mutual influence of asperities (a) and for different values
of p and q (b).
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criteria is small; therefore, it is advisable to use the Tresca criterion because of its algebraic
simplicity. The problem of determining the plasticity criterion for the considered loading
scheme for a single asperity (Figure 3) was considered in [21]. In this case, the data of the effect
of an axisymmetric load of the form Eq. (28) on the stress-strain state were taken into account.
An important conclusion of [21] is the statement of stability of the values of the relative contact
area ηip for distributed at different heights asperities, at which plastic deformation begins.

Thus, the value of ηip for any asperity loaded according to Figure 3 can be determined for the

highest asperity at u ¼ 0, qc ¼ 0, and β ¼ 0, 5.

By the Tresca criterion of the maximum tangential stresses, the plastic deformation on the z
axis corresponds to the equivalent stress [22].

σeq ¼ 2τ1max ¼ 0, 62p0 ¼ σy: (55)

The maximum contact pressure is defined as p0 ¼ Kyσy, where Ky ¼ 1, 613. The mean contact

pressure is pm ¼ Kyσy= 1þ β
� �

:

Using Hertz’s expressions for the radius of the contact area.

ari ¼ 3Pir
4E∗

� �1
3

, (56)

and taking into account that.

Pi ¼ πa2ripm, r ¼
a2c

2ωRmax
,
a2ri
a2c

¼ ηi,
σy
E∗ ¼ εy, (57)

We obtain the value of the criterion for the appearance of plastic strains in the near-surface
layer

η∗
p ¼

3πKy

8 βþ 1
� � f y

 !2

, (58)

where f y ¼ σyac
E∗ωRmax

:

For the highest asperity η∗
p ¼ 1, 605f 2y. Thus, the proposed criterion of plasticity does not

depend on loading conditions and this is its advantage.

Similarly, we define the criterion of occurrence of plastic deformation at the contact area.
According to [23], the equivalent stresses at the center of the area are

σeq 0ð Þ
pm

¼ 0, 2 1þ β
� �

: (59)

The highest value of the equivalent stress σeq 1ð Þ is on the contour of the contact area, where it
slightly exceeds σeq 0ð Þ in the center of the loading area. It is convenient to represent
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where Δz0 ¼ z20 � z10 and Δzr ¼ z2r � z1r:
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1
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� �
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2
;
1
2
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� �� �� �
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��
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� ��
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�

þ 2f qi 2F1 � 1
2
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2
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� �
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i 2F1 � 1
2
;
1
2
;βþ 2; 1

� ����
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(54)

Substituting the equations obtained in Eq. (47), we determine the joint density Λ εð Þ. To deter-

mine the dependence Λ f q
� �

, it is necessary to exclude the parameter ε from the dependences

f q εð Þ and Λ εð Þ.

Figure 6 shows the dependence of the gap density on the complex parameter f q when two
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Figure 6. The gap density with/without taking into account the mutual influence of asperities (a) and for different values
of p and q (b).
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depend on loading conditions and this is its advantage.

Similarly, we define the criterion of occurrence of plastic deformation at the contact area.
According to [23], the equivalent stresses at the center of the area are
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¼ 0, 2 1þ β
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The highest value of the equivalent stress σeq 1ð Þ is on the contour of the contact area, where it
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σeq 1ð Þ ¼ Kσ � σeq 0ð Þ, where for β ¼ 0, 5 according to the energy theory of shear strains
Kσ ¼ 1, 16, according to the theory of maximal tangential stresses Kσ ¼ 1, 33.

At the moment of appearance of plastic deformation along the contour of the contact area
σeq 1ð Þ ¼ σy, and the average contact pressure.

pm ¼ 5σy
Kσ 1þ β
� � : (60)

Then, similarly to the above reasoning, the criterion of the appearance of plastic deformations
in the contact area is

η∗∗
p ¼ 15π

8Kσ βþ 1
� � f y

 !2

: (61)

For the highest asperity η∗∗
p ¼ 15, 42K�2

σ f 2y. According to the theory of maximum tangential

stresses η∗∗
p ¼ 5, 405η∗

p, according to the energy theory of shear deformations η∗∗
p ¼ 7, 105η∗

p:

4.2. Elastic-plastic contact of rough surfaces

Contact characteristics for elastic-plastic contact will be considered taking into account the
mutual influence of the contacting asperities. By analogy with the elastic contact, we assume
that the mutual influence of the asperities is equivalent to the action of the additional load qc
(Figure 3). We use a discrete roughness model, described by Eqs. (15) and (16).

4.2.1. Relative contact area

According to Eq. (33), the load applied to a single asperity

Pi

E∗R2 ¼
2

kσ � kn
n
e

� �n

ε1�n
y

ari
R

� �2þ1:041n
: (62)

Considering that for the roughness model used R ¼ a2c= 2ωRmaxð Þ and ηi ¼ a2ri=a
2
c , from Eq. (62)

we have

qci
E∗ ¼

Pi

E∗ � πa2c
¼ 2

kσ � kn �
2ωRmax

ac

� �1:041n n
e

� �n

ε1�n
y η1þ0:52n

i : (63)

For elastic-plastic contact, it is convenient to use the parameter qσ ¼ qc=σy, then from Eq. (63)
we have

qσi ¼
qci
σy

¼ Ca � η1þ0:52n
i , (64)

where
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Ca ¼ Ca εy; n
� � ¼ 2

kσ � kn �
2ωRmax

ac

� �1:041n n
e � εy

� �n

: (65)

By analogy with Eq. (25), taking into account Eq. (64), for an elastic-plastic contact, we have

qσi ¼ Ca � η1þ0:52n
i þ qσ �Ψη ηi

� �
: (66)

In order to preserve the acceptability of the equations for elastic and elastic-plastic contacts, we
use the relations.

f q ¼
qcac

E∗ωRmax
¼ qc

σy
� σy
E∗ �

ac
ωRmax

¼ qσ � f y; f y ¼
εyac

ωRmax
; f qi ¼ qσi � f y: (67)

Then Eq. (66) can be represented in the form

f qi ¼ Ca � η1þ0:52n
i þ f q �Ψη ηi

� �
, (68)

where Cf ¼ Ca � f y, ηi is determined by Eq. (40).

Summing up f qi over all asperities, we have

f q εð Þ ¼
Cf

Ðmin ε;εsð Þ

0
η1þ0:52n
i φ0

n uð Þdu

1� Ðmin ε;εsð Þ

0
Ψη ηi

� �
φ0
n uð Þdu

: (69)

For a given value ε, we solve the system of transcendental Eqs. (40), (69) and obtain the
dependence f q εð Þ.

Similarly, using Eq. (40) and f q εð Þ, we have

η εð Þ ¼
ðmin ε;εsð Þ

0

ηi ε; f q
� �

φ0
n uð Þdu: (70)

Excluding the parameter ε from Eqs. (69) and (70), we obtain the dependence η f q
� �

or η qσ
� �

.

Figures 7 and 8 present the dependencies of the relative contact area on the relative force
parameter qσ.

4.2.2. Gaps density of the joint

The scheme of the action of the loads pr and qc is similar to the scheme for elastic contact
(Figure 3).
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For a given value ε, we solve the system of transcendental Eqs. (40), (69) and obtain the
dependence f q εð Þ.

Similarly, using Eq. (40) and f q εð Þ, we have

η εð Þ ¼
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0
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Excluding the parameter ε from Eqs. (69) and (70), we obtain the dependence η f q
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or η qσ
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.

Figures 7 and 8 present the dependencies of the relative contact area on the relative force
parameter qσ.

4.2.2. Gaps density of the joint

The scheme of the action of the loads pr and qc is similar to the scheme for elastic contact
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For an elastic-plastic contact

Pi ¼ Pi

E∗R2 ∝
hi
R

� �0,5205nþ1

, (71)

therefore, the pressure distribution in the contact area described by [4]

p rð Þ ¼ p0 1� r2

a2

� �β

, (72)

where p0 ¼ pm 1þ β
� �

is pressure at r ¼ 0, pm is the mean pressure on contact area and
β ¼ 0, 5205n:

Figure 7. The relative contact area with/without taking into account the mutual influence of asperities (a) and for
different values of p and q (b).

Figure 8. The relative contact area for different values of εy and n.
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Total density of gaps with elastic-plastic contact

Λ ¼ Λe �Λp ¼ Λe0 þΛer � Λp, (73)

where Λe is the density of gaps due to the elastic punching of the half-space, which accounted
for single contacting and noncontacting asperities; Λp is reduction of the gap density due to the
plastic displacement of the material into the interfacial space.

The value of Λe is determined, similarly to the elastic contact, by Eq. (47). In this case, f qi is

determined by Eq. (68) and the parameter β is used in Eq. (72).

Let us determine the volume of the displaced material for a single contacting asperity (Figure 9).

Let us assume that the unloaded crater has a constant radius Rfi and the unloaded depth from
the level of the initial surface hfi. The volume of plastically displaced material falling on a single
crater is equal to the volume of a spherical segment of height hf and radius Rfi:

Vpi ¼ πh2fi Rfi �
hfi
3

� �
: (74)

The total volume of the displaced material

Vp ¼ nc

ðmin ε;εsð Þ

0

Vpiφ
=
n uð Þdu: (75)

Since Λp ¼ Vp= AcRmaxð Þ, we have

Λp ¼ ω
ðmin ε;εsð Þ

0

ηi

c2
� η�0,5

i f qiKβ0

� �2
0; 5 1� η�1,5

i f qi Kβ0 � Kβc
� �h i�1

� ωRmaxð Þ2
3a2c

(
�

� ηi

c2
� η�0,5

i f qiKβ0

� ��
φ=
n uð Þdu:

(76)

Figure 9. Scheme of the unloaded crater.
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Substituting Eq. (76) into Eq. (73), we find the total gap density for elastic-plastic contact.

Figure 10 presents the dependencies of the gap density on the relative force parameter qσ.

5. Ensuring specified tightness

Ensuring specified tightness or leakage rate is related to the determination of the force param-
eters f q or qσ. The sealing capacity of the SJ is evaluated by the permeability functional by

Eq. (1). The contact characteristics—the relative contact area η and the gap density Λ, included
in Eq. (1), are defined in the previous section. Included in Eq. (1), the probability vk of the
medium flowing through the SJ is determined by the fusion of contact spots and is given in
Ref. [3]. Two adjacent asperities will merge if ηi > 0:5for each asperity.

Figure 11 shows the dependences for the elastic and elastic-plastic contacts.

The required permeability functional is determined by [3]

C∗
u ¼ 2lμG�

l

R3
maxrΔp

, (77)

where G�
l is the specified tightness; r is the density of the sealed medium; p1 and p2 are the inlet

and outlet pressures; μ is the dynamic viscosity; Δp ¼ p1 � p2; and l is the compacting band
width.

The force parameters f q or qσ, that providing a given level C∗
u are determined from the Cu f q

� �

or Cu qσ
� �

(Figure 11).

Figure 10. The gap density with/without taking into account the mutual influence of asperities (a) and for different values
of p and q (b).
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6. Conclusion

Using the proposed model of roughness as a result of the studies, methods for determining the
contact characteristics and the conditions for ensuring a specified tightness of the joints were
developed and established:

1. Contact characteristics and the permeability functional are determined depending on the
introduced dimensionless power parameters fq for the elastic and qσ for elastic-plastic contacts.

2. The relative contact area and the gap density for elastic contact do not depend on the
values of the parameters of the bearing curve p and q. To a large extent, the mutual
influence of asperities affects, and at fq > 0.47, the determining factor affecting the perme-
ability functional is the probability vk of the medium flowing (Figure 11).

3. To describe the elastic-plastic contact, Mayer’s law and the relation between the hardening
exponent n and the Mayer index m were used.

4. In the case of elastic-plastic contact, the exponent of hardening n has a greater effect on the
contact characteristics and to a lesser extent, the parameter εy and the mutual influence of
the asperities. For the considered range of the parameter qσ, the fusion of the contact spots
is insignificant.
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Figure 11. The dependences of the permeability functional for the elastic (a) and elastic-plastic (b) contacts.
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Abstract

The contact between two surfaces initiates at surface asperities whose properties determine
the mechanical behavior of the contact. The response of a nanometer-scaled single asperity
onto flat surfaces is experimentally accessible using atomic force microscopy (AFM). The
high spatial and force resolution of atomic force microscopy and spectroscopy enables to
determine the mechanisms governing plastic deformation, friction, and wear down to the
atomic scale. In this chapter, we describe three experimental methods based on atomic
force microscopy and corresponding methods for statistical data analysis to determine: the
hardness and the deformation mechanisms of metallic surfaces during indentation with an
AFM tip and the mechanisms governing wear and friction of metallic surfaces.

Keywords: friction, wear, nanotribology, hardness, metals, atomic force microscopy

1. Introduction

Contact mechanical testing methods are the oldest techniques to characterize the mechanical
response of materials [1]. The hardness of a material describes its resistance to the penetration
of a harder indenter and correlates to its strength. Similarly, scratch hardness testing has long
been used to describe the response of a material to the relative motion of a harder indenter
sliding at the velocity v and under the action of a load Fn, thus enabling the study of friction
and wear. According to Bowden and Tabor, friction and wear of metals are mediated either by
the formation and shearing of junctions between surface asperities leading to their de-bonding
or the plowing of a surface by a harder asperity leading to debris formation (see, e.g., Ref. [2]).

With the development of atomic force microscopy (AFM), the investigation of friction and
wear between a smooth surface and a single asperity has become possible. This has allowed
bridging the gap between macroscale experiments and the underlying tribological mecha-
nisms that typically take place at the nm scale. At low load, single-asperity sliding friction of
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metals has been observed to be governed by the dragging of nanoscale metallic junction giving
rise to atomic stick-slip [3, 4]. The effects of surface-assembled monolayer (SAM) and oxidation
on the nanotribology of Au(111) have been investigated and compared to the sliding friction
behavior of an Au(111) surface [5]. It was shown that the formation of an Au neck at the Au
(111)/tip interface determines the nanotribology of gold. Further, the authors have shown how
the formation of such a neck can be suppressed by SAM and how the friction response of a
gold surface can be switched by applying an electrochemical potential. In Refs. [6, 7], friction

between Au islands and graphite was studied. AF2=3n dependence of the friction force on gold
islands measured in ambient conditions was observed, where Fn is the normal force [6]. These
contrasts with results in Refs. [3, 4], where almost no frictional energy dissipation was mea-
sured. In this load regime also, the authors recently showed how the shear strength of such
junctions can be tuned by changing the metallurgical affinity between the contact materials [7].
Also, nanoscale wear experiments by AFM demonstrated the determinant role of plastic
deformation mechanisms [8, 9]. AFM indentation has proven to be a capable experimental
method to resolve the atomistic mechanisms of plastic deformation [10–14]. For example, this
method has been applied to study single dislocation activation in KBr(100) single crystals [10],
Cu(100) [11], and Au(111) [12–14]. There, atomistic plasticity events were observed in the
shape of pop-ins, with lengths in the range of 1 Å. More recently, AFM indentation has been
combined with noncontact AFM to quantitatively determine the hardness and the fundamen-
tal mechanisms of plastic deformation of Au(111) [14], and Pt(111), and Pt-based metallic glass
surfaces [15].

In this chapter, we describe three experimental methods based on atomic force microscopy and
correspondingmethods for statistical data analysis to determine the hardness and themechanisms
governing wear and friction of metallic surfaces.

2. Experimental setups and materials

The contact mechanical methods described in this chapter all rely on atomic force microscopy.
The results presented below were obtained with two different instruments operated in differ-
ent environments, i.e., ambient air and ultrahigh vacuum. Measurements in ambient air were
performed using an XE-100 AFMmanufactured by Park Systems, Republic of Korea. Measure-
ments in ultrahigh vacuum were performed with a VT-AFMmanufactured by Omicron Nano-
Technology GmbH, Germany. Figure 1 shows the respective schematics for each experimental
setup. In both cases, a microfabricated cantilever with a sharp tip at its end is used to probe
interaction forces with a sample surface. Depending on the physical properties of the tip and of
the sample surface, various interaction forces can be probed: van der Waals, electrostatic,
magnetic, and short-range forces [16]. In both experimental setups, such forces are measured
using an optical beam deflection system. Thereby, a laser beam is reflected at the end of the
cantilever onto a photodiode that yields an output voltage in proportion to the cantilever
deflection. Typically, a four-segment photodiode is used. This enables to measure both normal
and lateral forces according to.
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Fn ¼ CnSVAB and Fl ¼ 3
2
Cl

h
L
SVCD (1)

where S is the sensitivity of the photodiode, which we assume to be isotropic; VAB and VCD are
the sum voltages for the photodiode segments indicated in the subscripts; Cn and Cl are,
respectively, the bending and torsion stiffnesses of the cantilever; h is the tip height; and L is
the cantilever length.

The setups illustrated in Figure 1 mostly differ in the arrangement of their piezoelectric
scanners. For the measurements in UHV, a sample tube xyz-scanner was used to both scan
the sample surface and control the height of the cantilever or the interaction force between
tip and sample. In the setup used for measurements in ambient conditions, a linear xy
nanopositioning stage was used to scan the sample surface, while a separate linear z-scanner
was used to control the height of the cantilever or the interaction forces between tip and
sample.

In this work, the cantilever stiffnesses were determined either according to the geometrical
beam theory [17] or following the thermal noise analysis [18]. According to the geometrical

beam theory, Cn ¼ Ewt3
4L3

and Cl ¼ Gwt3

3h2L
, where E is Young’s modulus, G is the shear modulus, w is

the width of the cantilever, and t its thickness. The length and the width of the cantilever can be
measured by means of optical or electron microscopy. The thickness is usually determined

from the first bending resonance frequency of the cantilever f0, with t ¼ 2
ffiffiffiffi
12

p
π

1:8752

ffiffiffi
r
E

q
f 0L2, where r

is the mass density. Alternatively, the normal stiffness can be determined from the mean square

Figure 1. Experimental setups: instrumental setup used in (a) UHV and (b) ambient conditions; (c) TEM images of a
typical diamond-coated Si single-crystalline AFM cantilever and its tip.
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average of the thermal noise amplitude z2
D E

according to Cn ¼ kBT
z2h i, where kB is the Boltzmann

constant and T the absolute temperature. The thermal noise vibrations of a cantilever beams can
be recorded with the same optical beam deflection system as illustrated in Figure 1. The recorded
signal consists in the superposition of all vibrational bending modes. It is important to note that
the modes are not phase coherent. The identification of each mode is usually determined by fast
Fourier transformation (FFT) of the time signal into a frequency spectrum (see Figure 2). In the
case of the results shown in Figure 2, the power spectral density (PSD) function of the thermal
noise amplitude was calculated by using the pburg function of the MATLAB software. The area
below the spectra then corresponds to the mean square of the thermal noise.

Experimental records of the thermal noise are, however, limited by the bandwidth of the
photoelectric detector. In our experimental setups, the bandwidth of the detector is 2 MHz.
The detection of the thermal noise is, however, further limited by the electrical noise level of
the photoelectric detector. This becomes critical for higher frequent modes and stiffer structure
in which case the vibration amplitude may be below the noise level of the detector. In this
project, the electrical noise background of the photodetector was measured independently by
reflecting the laser beam onto the photoelectric detector from a smooth surface of a bulk
sample of the same material as used to manufacture the measured microstructures. As shown
in Figure 2(c), only the first two vibration modes of the cantilever can be identified. To account
for the difficulty of analysis of higher vibration modes, the thermal noise analysis is usually
restricted to the first mode. In this case, Eq. (1) can be multiplied by a weight factor:

3
16

α2
1

sinαi þ sinhαi

sinαisinhαi

� �2

Cn z∗21
D E

¼ kBT (2)

where α1 = 1.875 is the dimensionless wavenumber of the first bending vibration mode (see
Ref. [18] for more details).

To determine the stiffness of the cantilever, it is thus of utmost importance to accurately calculate
the mean square amplitude of the thermal noise vibrations. The fast Fourier transformation (FFT)
methods, such as implemented in the pburg function, are usually applied to estimate the PSD
function. Integrating the PSD function and using Eq. (2) to determine the cantilever stiffness from

Figure 2. (a and b) Recorded time-dependent amplitude signals, (c) power spectral density (PSD) function of the signal
shown in (a and b) and after background electrical noise removal.
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the signals shown in Figure 2 yield z∗21
D E

= 4.32 � 10�21 m2 at T = 293.15 K and Cn = 0.764 N/m.

Similarly, the first peak of the PSD function can be fitted with the response function for a simple
harmonic oscillator (SHO):

R fð Þ ¼ A1f 41

f 2 � f 21
� �2 þ f f 1

Q1

� �2 (3)

where f1 and Q1 are the resonance frequency and the quality factor of the first peak and A1

gives the zero-frequency amplitude of the SHO response [19]. Integration of the SHO response
function over all frequencies provides an estimate of the cantilever stiffness if one only con-
siders the lowest resonance mode:

ð∞
0
R fð Þdf ¼ πA1f 1Q1

2
¼ z∗21
D E

¼ 16kBT
3α2

1Cn

sinαisinhαi

sinαi þ sinhαi

� �2

(4)

Figure 3 shows the first peak of the PSD function and corresponds to fitting curve using Eq. (4)
for the same measurement data plotted in Figure 2; we obtain Cn = 0.814 N/m.

Atomic force microscopy imaging can either be performed in intermittent contact (tapping) or
noncontact modes [20]. A detailed description of AFM operation in intermittent and noncontact
modes is given elsewhere (see, e.g., Ref. [20]). In noncontact AFM an AFM cantilever is excited to
its resonance frequency. The distance between tip and surface is kept in the range of a few

Figure 3. First peak of the PSD function shown in Figure 2 and fitted with the response function for a simple harmonic
oscillator.
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nanometers. During scanning over a surface, changes in tip-sample distance due to sample
topography result in changes in the amplitude and in a frequency shift of the cantilever reso-
nance. To measure topography amplitude and/or frequency shift can be tracked by a feedback
loop to keep the cantilever oscillation in resonance. Contact mode imaging relies on short-range
interaction forces between the tip of a cantilever and the sample surface, the nature of which can
be adhesive (attractive forces) or elastic (repulsive forces). During scanning, local changes in
topography yield changes in the contact force between sample and surface. In this case, topog-
raphy can be measured by tracking the normal contact force with a feedback loop to keep the
contact force constant.

In this chapter, we present results obtained on single-crystalline metal and on metallic glass
surfaces. An Au(111) polycrystalline thin film deposited on mica by physical vapor deposition
was purchased by Phasis GmbH, Switzerland, and measured in ambient conditions (see
Chapters III–V). Also, a Pt(111) surface and the surface of a Pt57.5Cu14.7Ni5.3P22.5 metallic glass
were prepared for measurements in ultrahigh vacuum. The (111) surface of a platinum single
crystal, purchased by MaTeck, Germany, was prepared by several cycles of Ar sputtering and
annealing at 1000�C. This resulted in the formation of 50–100 nm wide atomically flat terraces.
A Pt57.5Cu14.7Ni5.3P22.5 metallic glass master alloy was prepared according to [21] and subse-
quently melt-spun. The amorphousness of the as-prepared metallic glass ribbons was con-
firmed by X-ray diffraction (XRD) with Cu Kα radiation and differential scanning calorimetry
(DSC). To remove its native oxide layer, the surface of an as-prepared metallic glass ribbon was
prepared by gentle Ar sputtering for 5 min with an energy of 1 keV.

All three sample surfaces were imaged by noncontact (nc) AFM to determine their respective
RMS roughnessRq (see Figure 4). For atomically flat Au(111) and Pt(111), we foundRq = 0.407 nm
and 0.372 nm, respectively, caused by atomic steps between terraces and adsorbates in the case of
Au(111). For the Ar-sputtered Pt57.5Cu14.7Ni5.3P22.5 metallic glass, we found Rq = 0.375 nm.

3. AFM indentation for quantitative hardness measurements

The nanometer-scaled plastic deformation of Au(111), Pt(111), and Pt57.5Cu14.7Ni5.3P22.5 metallic
glass was investigated by AFM indentation and subsequent nc AFM imaging. For indentation and

Figure 4. Topography images recorded by nc AFM on (a) Au(111), (b) Pt(111), and (c) Pt57.5Cu14.7Ni5.3P22.5 metallic glass
surfaces.
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imaging, diamond-coated silicon single-crystalline cantilevers were used (type CDT-NCLR,
manufactured by NanoSensors, Switzerland). For the cantilever used on Au(111), the bending
stiffness was found to be Cn = 55 N/m. For AFM indentation of Pt(111) and Pt57.5Cu14.7Ni5.3P22.5
metallic glass, a single cantilever of the same type as on Au(111) was used, whose normal stiffness
was found to be Cn = 46 N/m.

Prior to the measurements on Au(111), the sensitivity S of the photodiode was calibrated by
recording a force-distance curve on nanocrystalline diamond, consisting in an initial retraction
of the z-scanner by 50 nm away from the sample surface and a subsequent series of approach
and retraction by the same distance at a velocity of 0.3 μm/s. These parameters were set to
avoid tip damages during contact between the diamond-coated tip and the nanocrystalline
diamond sample. The sensitivity of the photodiode was then determined by fitting the repul-
sive part of the force-distance curve with a linear function. In contrast, before AFM indentation
on Pt(111) and Pt57.5Cu14.7Ni5.3P22.5 metallic glass, the sensitivity of the photodiode is cali-
brated in the noncontact mode of AFM, according to Ref. [22]. Thereby, we considered a
conversion factor for the vibration energy of the cantilever determined from the optically
measured deflection [17].

AFM indentation measurements consisted in recording the cantilever deflection upon extension
of the z-scanner of the AFM. Owing to the tilt angle of the cantilever about the sample surface, a
tilt correction was applied by moving the lateral scanner by Z � tan w during a vertical scanner
extension Z, where w = 13� is the tilt angle [23]. In this work the extension length Z of the z-
scanner was varied from 10 to 160 nm in the case of Pt(111) and Pt57.5Cu14.7Ni5.3P22.5 metallic
glass and was set to Z = 150 nm for Au(111).

The plastic deformation of the three samples was analyzed based on nc AFM topographical
images of the remaining indents and on the force-penetration curves. Typical topographical
images of indented surfaces are shown for Au(111), Pt(111), and Pt57.5Cu14.7Ni5.3P22.5 metallic
glass in Figure 5. For each indent, the projected area was determined by masking the area with
threshold height values. This analysis was performed with the indentation analysis function of
the software package Gwyddion [24]. It is, however, important to note that due to convolution
effects with the shape of the tip, the size of indents imaged by nc AFM is underestimated (this
effect is more pronounced for smaller indents). Also, in the case of Pt57.5Cu14.7Ni5.3P22.5 metal-
lic glass, the prominence of the pileups makes an accurate determination of the projected area
more difficult and less accurate.

The force-penetration (Fn – δ) curves were calculated from the recorded force-distance (Fn – Z)
curves (see Figure 6). The principle of AFM indentation relies on the fact that the surface to be
indented is softer than the AFM tip. In this case, an extension of the z-scanner leads, besides a
deflection D of the cantilever, to a penetration of the AFM tip into the sample surface by the
penetration depth δ = Z � D.

Figure 6 shows a series of nc AFM images of Au(111), Pt(111), and Pt57.5Cu14.7Ni5.3P22.5

metallic glass surfaces after AFM indentation. In the case of Au(111), all indentations were
performed with the same maximal load Fn = 7 μN and a same loading rate dFn/dt = 16 μN/s.
For Pt(111) and Pt57.5Cu14.7Ni5.3P22.5 metallic glass surfaces, indentation is shown that was
performed with varying maximum normal force values between Fn = 0.8 μN and Fn = 6 μN.
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nanometers. During scanning over a surface, changes in tip-sample distance due to sample
topography result in changes in the amplitude and in a frequency shift of the cantilever reso-
nance. To measure topography amplitude and/or frequency shift can be tracked by a feedback
loop to keep the cantilever oscillation in resonance. Contact mode imaging relies on short-range
interaction forces between the tip of a cantilever and the sample surface, the nature of which can
be adhesive (attractive forces) or elastic (repulsive forces). During scanning, local changes in
topography yield changes in the contact force between sample and surface. In this case, topog-
raphy can be measured by tracking the normal contact force with a feedback loop to keep the
contact force constant.

In this chapter, we present results obtained on single-crystalline metal and on metallic glass
surfaces. An Au(111) polycrystalline thin film deposited on mica by physical vapor deposition
was purchased by Phasis GmbH, Switzerland, and measured in ambient conditions (see
Chapters III–V). Also, a Pt(111) surface and the surface of a Pt57.5Cu14.7Ni5.3P22.5 metallic glass
were prepared for measurements in ultrahigh vacuum. The (111) surface of a platinum single
crystal, purchased by MaTeck, Germany, was prepared by several cycles of Ar sputtering and
annealing at 1000�C. This resulted in the formation of 50–100 nm wide atomically flat terraces.
A Pt57.5Cu14.7Ni5.3P22.5 metallic glass master alloy was prepared according to [21] and subse-
quently melt-spun. The amorphousness of the as-prepared metallic glass ribbons was con-
firmed by X-ray diffraction (XRD) with Cu Kα radiation and differential scanning calorimetry
(DSC). To remove its native oxide layer, the surface of an as-prepared metallic glass ribbon was
prepared by gentle Ar sputtering for 5 min with an energy of 1 keV.

All three sample surfaces were imaged by noncontact (nc) AFM to determine their respective
RMS roughnessRq (see Figure 4). For atomically flat Au(111) and Pt(111), we foundRq = 0.407 nm
and 0.372 nm, respectively, caused by atomic steps between terraces and adsorbates in the case of
Au(111). For the Ar-sputtered Pt57.5Cu14.7Ni5.3P22.5 metallic glass, we found Rq = 0.375 nm.

3. AFM indentation for quantitative hardness measurements

The nanometer-scaled plastic deformation of Au(111), Pt(111), and Pt57.5Cu14.7Ni5.3P22.5 metallic
glass was investigated by AFM indentation and subsequent nc AFM imaging. For indentation and

Figure 4. Topography images recorded by nc AFM on (a) Au(111), (b) Pt(111), and (c) Pt57.5Cu14.7Ni5.3P22.5 metallic glass
surfaces.
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imaging, diamond-coated silicon single-crystalline cantilevers were used (type CDT-NCLR,
manufactured by NanoSensors, Switzerland). For the cantilever used on Au(111), the bending
stiffness was found to be Cn = 55 N/m. For AFM indentation of Pt(111) and Pt57.5Cu14.7Ni5.3P22.5
metallic glass, a single cantilever of the same type as on Au(111) was used, whose normal stiffness
was found to be Cn = 46 N/m.

Prior to the measurements on Au(111), the sensitivity S of the photodiode was calibrated by
recording a force-distance curve on nanocrystalline diamond, consisting in an initial retraction
of the z-scanner by 50 nm away from the sample surface and a subsequent series of approach
and retraction by the same distance at a velocity of 0.3 μm/s. These parameters were set to
avoid tip damages during contact between the diamond-coated tip and the nanocrystalline
diamond sample. The sensitivity of the photodiode was then determined by fitting the repul-
sive part of the force-distance curve with a linear function. In contrast, before AFM indentation
on Pt(111) and Pt57.5Cu14.7Ni5.3P22.5 metallic glass, the sensitivity of the photodiode is cali-
brated in the noncontact mode of AFM, according to Ref. [22]. Thereby, we considered a
conversion factor for the vibration energy of the cantilever determined from the optically
measured deflection [17].

AFM indentation measurements consisted in recording the cantilever deflection upon extension
of the z-scanner of the AFM. Owing to the tilt angle of the cantilever about the sample surface, a
tilt correction was applied by moving the lateral scanner by Z � tan w during a vertical scanner
extension Z, where w = 13� is the tilt angle [23]. In this work the extension length Z of the z-
scanner was varied from 10 to 160 nm in the case of Pt(111) and Pt57.5Cu14.7Ni5.3P22.5 metallic
glass and was set to Z = 150 nm for Au(111).

The plastic deformation of the three samples was analyzed based on nc AFM topographical
images of the remaining indents and on the force-penetration curves. Typical topographical
images of indented surfaces are shown for Au(111), Pt(111), and Pt57.5Cu14.7Ni5.3P22.5 metallic
glass in Figure 5. For each indent, the projected area was determined by masking the area with
threshold height values. This analysis was performed with the indentation analysis function of
the software package Gwyddion [24]. It is, however, important to note that due to convolution
effects with the shape of the tip, the size of indents imaged by nc AFM is underestimated (this
effect is more pronounced for smaller indents). Also, in the case of Pt57.5Cu14.7Ni5.3P22.5 metal-
lic glass, the prominence of the pileups makes an accurate determination of the projected area
more difficult and less accurate.

The force-penetration (Fn – δ) curves were calculated from the recorded force-distance (Fn – Z)
curves (see Figure 6). The principle of AFM indentation relies on the fact that the surface to be
indented is softer than the AFM tip. In this case, an extension of the z-scanner leads, besides a
deflection D of the cantilever, to a penetration of the AFM tip into the sample surface by the
penetration depth δ = Z � D.

Figure 6 shows a series of nc AFM images of Au(111), Pt(111), and Pt57.5Cu14.7Ni5.3P22.5

metallic glass surfaces after AFM indentation. In the case of Au(111), all indentations were
performed with the same maximal load Fn = 7 μN and a same loading rate dFn/dt = 16 μN/s.
For Pt(111) and Pt57.5Cu14.7Ni5.3P22.5 metallic glass surfaces, indentation is shown that was
performed with varying maximum normal force values between Fn = 0.8 μN and Fn = 6 μN.
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For Au(111) two series of indentation measurements with the same maximum load values
Fn = 7.2 μN but with different tips are shown. Within both series, the shape and size of the
remaining indents are very similar. For Pt(111) and Pt57.5Cu14.7Ni5.3P22.5 metallic glass,
remaining indents were only observed for maximum load values Fn > 0.8 μN. For these two
materials, the projected area of the indents is observed to increase with the maximal load.

In the case of Au(111), almost no pileup can be observed. In this case, clear dislocation can be
identified around indents. In the case of Pt(111), small pileups can be observed. More impor-
tantly, above an indentation load Fn = 3 μN, the indent exhibits a chevron-like shape that was
never observed on the two other samples and which attribute to anisotropic elastic relaxation
of Pt(111). The pileups around indents on Pt57.5Cu14.7Ni5.3P22.5 metallic glass are much more
prominent than on Au(111) or Pt(111). This indicates that the plastic deformation of Au(111)
and Pt(111) was accommodated over much longer distances than in the case of the metallic
glass. This view is also supported by the observation of dislocation lines on Au(111) that
extends hundreds of nanometers away from the indents. In the case of the Pt57.5Cu14.7Ni5.3P22.5
metallic glass, plastic flow appears to be closely confined around the indenting tip.

Figure 7 shows indentation curves recorded on Au(111), Pt(111), and Pt57.5Cu14.7Ni5.3P22.5

metallic glass. In the case of Au(111) and Pt(111), the force-penetration curves overlap with
each other, demonstrating the good reproducibility of the method. For those two materials,
also the indentation curves show clear pop-ins that are attributed to the activation of disloca-
tions. For Pt57.5Cu14.7Ni5.3P22.5 metallic glass, the force-penetration curves do not show any of
pop-in. In this case, the deformation appears to be continuous.

Figure 5. Nc AFM topography images of (a and d) Au(111), (b and e) Pt(111), and (c and f) Pt57.5Cu14.7Ni5.3P22.5 metallic
glass surfaces after AFM indentation; in (d–f) the projected area was masked and calculated to determine the hardness
values of each material.
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Figure 8 shows the load dependence of the projected area Ap for Pt(111) and Pt57.5Cu14.7

Ni5.3P22.5 metallic glass. The projected area Ap of indents is found to be much smaller for
Pt57.5Cu14.7Ni5.3P22.5 metallic glass than for Pt(111). Further, we used the load dependence of
Ap to calculate the hardness of Pt(111) and Pt57.5Cu14.7Ni5.3P22.5 metallic glass, according to
dAp/dFn = 1/H. For Pt(111), we obtained H = 1.14 � 0.09 GPa. For Pt57.5Cu14.7Ni5.3P22.5 metallic
glass, we obtained H = 7.3 � 2.4 GPa. These values are larger than the measured ones by
nanoindentation with a Berkovich diamond tip (see Ref. [15] for more details). This can be
explained by tip convolution during nc AFM imaging that results in an underestimation of the
projected area.

In the case of the indentation on Au(111), shown in Figure 5, we found Ap = 4703.52 nm2,
corresponding to Fn = 7.2 μN. Using the classical expression for the determination of hardness,
we obtained H ¼ Fn

Ap
¼ 1:53 GPa. Alternatively, the shape of the AFM tip used to indent Au(111)

was estimated from the noncontact AFM images shown in Figure 6 with the free SPM data
analysis software Gwyddion (Figure 9). The half-opening angle of the as-reconstructed indenter
was determined to be α = 67.21�. The hardness was then calculated according to
H ¼ Fn

3
ffiffi
3

p
tan2α δmax�δelð Þ2 ¼ 1:46 GPa [25], where δmax is the maximal penetration depth in Figure 7(a),

and δel was taken as the penetration depth at the first pop-in event in Figure 7(c). Both hardness
calculations deliver virtually the same value: HAu(111) = 1.5 GPa.

Figure 6. Nc AFM topography images after AFM indentation measurements with the indicated normal force on Au(111),
Pt(111), and Pt57.5Cu14.7Ni5.3P22.5 metallic glass.
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tions. For Pt57.5Cu14.7Ni5.3P22.5 metallic glass, the force-penetration curves do not show any of
pop-in. In this case, the deformation appears to be continuous.
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Figure 8 shows the load dependence of the projected area Ap for Pt(111) and Pt57.5Cu14.7

Ni5.3P22.5 metallic glass. The projected area Ap of indents is found to be much smaller for
Pt57.5Cu14.7Ni5.3P22.5 metallic glass than for Pt(111). Further, we used the load dependence of
Ap to calculate the hardness of Pt(111) and Pt57.5Cu14.7Ni5.3P22.5 metallic glass, according to
dAp/dFn = 1/H. For Pt(111), we obtained H = 1.14 � 0.09 GPa. For Pt57.5Cu14.7Ni5.3P22.5 metallic
glass, we obtained H = 7.3 � 2.4 GPa. These values are larger than the measured ones by
nanoindentation with a Berkovich diamond tip (see Ref. [15] for more details). This can be
explained by tip convolution during nc AFM imaging that results in an underestimation of the
projected area.

In the case of the indentation on Au(111), shown in Figure 5, we found Ap = 4703.52 nm2,
corresponding to Fn = 7.2 μN. Using the classical expression for the determination of hardness,
we obtained H ¼ Fn
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¼ 1:53 GPa. Alternatively, the shape of the AFM tip used to indent Au(111)

was estimated from the noncontact AFM images shown in Figure 6 with the free SPM data
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Figure 8. Indentation load dependence of the projected area Ap for (left) Pt(111) and (right) Pt57.5Cu14.7Ni5.3P22.5 metallic
glass.

Figure 7. (a–c) Indentation curves and (d–e) magnification in the low load regime recorded on (a and d) Au(111), (b and e)
Pt(111), and (c and f) Pt57.5Cu14.7Ni5.3P22.5 metallic glass.

Contact and Fracture Mechanics36

4. AFM scratch test for friction and wear measurements

Wear and friction experiments were performed on Au(111) at room temperature and in ambi-
ent conditions (T = 293 K, RH = 40%) by friction force microscopy (FFM) [26] with diamond-
coated silicon cantilever (CDT-NCLR, manufactured by NanoSensors, Switzerland). The nor-
mal and lateral stiffnesses of the cantilevers, Cn and Cl, were determined from the geometrical
beam theory; for the cantilever used on Au(111), we found Cn = 50 N/m and Cl = 6954 N/m. The
sensitivity of the photodiode S was obtained by recording a force-distance curve on a non-
compliant surface and fitting its repulsive part with a linear function. The normal and lateral
forces were calculated from the vertical and lateral voltages of the photodiode, Vn and Vl,
according to Fn ¼ CnSVn and Fl ¼ 3

2Cl
h
L SVl.

Wear and frictionmeasurements consisted in reciprocal sliding over the same areaAs = 2.5� 2.5
μm2 successively scanned over a load range Fn = 20–4600 nN. The topography and the lateral
force were recorded during the forward and backward cantilever motion along the fast-scan
direction (v = 10 μm/s). Amplitude-modulated noncontact AFM topography images of the area
subjected to tribological testing were recorded before and after measurements and compared
to extract the wear volume by integration. Topographical changes during tribological testing
were analyzed by correlating successively recorded topography images with the initial topog-
raphy image recorded at the lowest load (Fn = 20 nN). Thereby, we used the corrcoeff function of
the MATLAB software package to extract a correlation factor R. The slopes of the R(Fn)-plot
were further used to identify the transitions between wear mechanisms. Friction force images
were calculated from the lateral force signals recorded in the forward and backward direction

Figure 9. Estimated tip shape of the indenter used on Au(111).
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according to Ff ¼ Fl, fwd�Fl,bwd
2 . In the case of Au(111), the probability distributions were calcu-

lated fitted with a Gaussian curve to provide the mean value and the standard deviation (see
Figure 10). For the same ranges of normal force values as identified from the R(Fn)-plots,

coefficients of friction (COF) were determined from the linear slopes COF ¼ dFf
dFn

.

Figure 11 shows topography and friction force images simultaneously recorded on Au(111).
Plastic deformation was observed to start at a load value Fn = 129 nN as indicated by the
occurrence of dislocation lines in the corresponding topography image. Increasing the load to
Fn = 259 nN resulted in an increased number of dislocation. In this load range, surface

Figure 10. Probability distributions of friction force values measured at different normal force values. Each probability
density distribution was fitted with a Gaussian function (red lines) to extract the mean friction force values and the
corresponding standard deviation values.

Figure 11. (a) Topography and (b) friction force images successively recorded on the same area of an Au(111) surface at
the indicated loads.
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topography features such as atomic steps remained clearly visible. This indicates in this load
range that the sliding contact was rather governed by shearing and not plowing. In the load
range Fn = 517–1295 nN, atomic steps were no longer observable, and a ripple structure was
developed. In this load range, the mechanisms governing the sliding contact are considered to
have a transition from shearing to plowing. In the range of the highest load values, Fn = 1942–
4531 nN, pileups at the left and right side of the topography images became clearly observable.
In this case, the governing mechanism was plowing. The three load ranges indicated above are
illustrated in the R(Fn)-plot, each of them being characterized by a different slope of decrease
with increasing normal load Ρ ¼ dR

dFn
(see Figure 12(a)).

Figure 11 also shows the friction force images corresponding to the topography measurements
shown in the same figure. These images were further analyzed to determine the average friction
force and its standard deviation (see above). Figure 12(b) shows the friction force Ff plotted
against the normal force Fn. In the same figure, the error bars correspond to the standard
deviation of the measurements. In agreement with the different load regimes determined in
Figure 12(a), the Ff(Fn)-plot can be divided into different load ranges which corresponds a

coefficient of friction COF ¼ dFf
dFn

. Figure 12(c) shows a noncontact AFM topography image of

the area tested by contact AFM shown in Figure 11. The scratched surface exhibits pileups at
the edges of the area scanned in contact. The corresponding wear volume was determined by
integration of the height signal using the MATLAB software package. We calculated a wear
volume Vw = 0.0811 μm3 corresponding to an average wear depth of δw = 13 nm.

5. Atomic-scale sliding friction measurements

Sliding friction experiments on Au(111) were performed in ambient conditions (T = 293 K,
RH = 40%) by FFM with a soft gold-coated AFM cantilevers of the type CONTSC-Au
(manufactured by NanoSensors, Switzerland).

Prior to friction experiments, the sensitivity of the AFM photodiode S was determined follow-
ing the same methods as above. The bending and torsion stiffnesses Cn and Cl of the cantilever
were determined by thermal noise analysis. The cantilever stiffnesses are listed in Table 1.

Figure 12. (a) Cross correlation factor R between the initial topography image in Figure 11(a) and the successive
topography images recorded at the indicated load, (b) load dependence of friction, and (c) topography images of the area
subjected to tribological tests (see Figure 2(a)).
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according to Ff ¼ Fl, fwd�Fl,bwd
2 . In the case of Au(111), the probability distributions were calcu-

lated fitted with a Gaussian curve to provide the mean value and the standard deviation (see
Figure 10). For the same ranges of normal force values as identified from the R(Fn)-plots,

coefficients of friction (COF) were determined from the linear slopes COF ¼ dFf
dFn

.

Figure 11 shows topography and friction force images simultaneously recorded on Au(111).
Plastic deformation was observed to start at a load value Fn = 129 nN as indicated by the
occurrence of dislocation lines in the corresponding topography image. Increasing the load to
Fn = 259 nN resulted in an increased number of dislocation. In this load range, surface

Figure 10. Probability distributions of friction force values measured at different normal force values. Each probability
density distribution was fitted with a Gaussian function (red lines) to extract the mean friction force values and the
corresponding standard deviation values.

Figure 11. (a) Topography and (b) friction force images successively recorded on the same area of an Au(111) surface at
the indicated loads.
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topography features such as atomic steps remained clearly visible. This indicates in this load
range that the sliding contact was rather governed by shearing and not plowing. In the load
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illustrated in the R(Fn)-plot, each of them being characterized by a different slope of decrease
with increasing normal load Ρ ¼ dR

dFn
(see Figure 12(a)).
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coefficient of friction COF ¼ dFf
dFn

. Figure 12(c) shows a noncontact AFM topography image of

the area tested by contact AFM shown in Figure 11. The scratched surface exhibits pileups at
the edges of the area scanned in contact. The corresponding wear volume was determined by
integration of the height signal using the MATLAB software package. We calculated a wear
volume Vw = 0.0811 μm3 corresponding to an average wear depth of δw = 13 nm.
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RH = 40%) by FFM with a soft gold-coated AFM cantilevers of the type CONTSC-Au
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The friction experiments consisted in recording the lateral deflection signal of the AFM canti-
lever in both forward and backward directions of the x-scanner. The experiments consisted in
scanning an area of 10 � 10 nm2 with a normal load in the range Fn = 0–10 nN (Figure 13).

For each measurement, the friction force was calculated according to Ff ¼ Fl, fwd�Fl,bwd
2 , where

Fl,fwd and Fl,bwd are the forward and backward images of the lateral force, respectively.
Subsequently, the calculated friction force image was averaged line by line, and a
corresponding error was calculated as the standard deviation from the mean value using
the MATLAB software package. Moreover, the shear strength τ and the adhesion force Fad
were calculated by fitting the Ff Fnð Þ-plot with the function Ff ¼ τAc Fnð Þ, where we consider τ
to be constant and Ac(Fn) is the normal force-dependent real area of contact between surface
and tip (see Ref. [27]). Based on the Johnson-Kendall-Roberts (JKR) theory, the real area of an
adhesive contact between a spherical elastic body and the flat surface of an elastic body can

be expressed as Ac ¼ π R
E∗

� �2=3
Fn � Fadð Þ þ 2Fad þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Fad Fn � Fadð Þ þ 2Fadð Þ2

q� �2=3
, where Fad is

the adhesion force between the two elastic bodies [28], R is the radius of the spherical body,

E∗ ¼ 1�ν21
E1

þ 1�ν22
E2

h i�1
is the reduced modulus of elasticity, and Ei and νi are Young’s moduli

and Poisson’s ratios of the two elastic bodies involved in the contact [29]. The resulting F2=3n

dependence of the friction force has been experimentally verified in Refs. [6, 27]. The follow-
ing values were used for Young’s modulus and Poisson’s ratio: EAu = 75 GPa and νAu = 0.44.

Cantilever type Cn [N/m] Cl [N/m] L* [mm] R** [nm]

CONTSC-Au 0.685 136.24 225 25

*Manufacturer’s data.
**Estimated data from SEM measurements.

Table 1. Cantilever properties.

Figure 13. SEM image of the gold-coated AFM tip used friction measurements on Au(111).
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In this work, the radius of curvature R of the AFM tip was determined by scanning electron
microscopy (SEM) after the friction experiments (see Figure 2 and Table 1) using a Helios
600i DualBeam FIB-SEM manufactured by FEI, Netherlands. A value R ≈ 25 nm was found
and used to fit the experimental Ff(Fn)-plots. In Figure 2, a circle with a radius of 25 nm is
overlaid to demonstrate the validity of this value.

Atomic-scale stick-slip was observed and statistically analyzed. The analysis consisted in line-
by-line calculation of the power spectral density (PSD) function of each recorded Fl,fwd images
using the pburg function of the MATLAB software package. The calculated PSD functions
corresponding to each line were averaged to provide a single PSD function out of one Fl,fwd
image. This statistical analysis transforms a signal in real space into a one-dimensional
reciprocal space (k-space) signal, from which characteristic wavelengths λ ¼ 2π=k can be
identified.

Figure 14 shows the load dependence of friction on Au(111) with an Au-coated tip. For this
tribological couple, a shear strength value τ = 24.21 MPa and an adhesion force value Fad = 25.8
nN were calculated. Also, Figure 3 shows a typical FFM image and corresponding forward
and backward traces that exhibit periodic atomic scale stick-slip. In the following, the averaged
power spectrum density (PSD) functions of the friction signals recorded at different loads were
evaluated (see Figure 15). The PSD function corresponding to a typical friction measurement
on Au(111) with an Au-coated tip shows a peak at a wavenumber k = 21.36 rad/nm. Neither the
position nor the amplitude of this peak was found to change upon increasing load, except for
Fn = 10 nN, in which case two slightly less prominent peaks were observed at k = 20.11 rad/nm
and k = 22.62 rad/nm (see Figure 15).

Correspondingly, a characteristic wavelength λ2 = 0.294 nm was calculated that well matches
with the interatomic distance of Au in the [110] direction (a[110] = 288 pm). The small discrep-
ancy arises from the numerical approximation of the PSD function. The peak in the PSD
functions was also found to split into two equidistant peaks at Fn = 10 nN, with corresponding
wavelength values λ3 = 0.277 nm and λ1 = 0.312 nm, respectively. These peaks may correspond
to the herringbone reconstruction of the Au(111) surface and the resulting different tilt angles
of the fcc and hcp domains with respect to the unreconstructed surface [30].

Figure 14. (a) Load dependence of friction and corresponding fit with a function of the type Ff = τAc(Fn), where τ is
the shear strength and the real contact area Ac is expressed according to the JKR model [29]; (b) typical FFM image and
(c) corresponding forward and backward traces exhibiting atomic scale stick-slip.
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The friction experiments consisted in recording the lateral deflection signal of the AFM canti-
lever in both forward and backward directions of the x-scanner. The experiments consisted in
scanning an area of 10 � 10 nm2 with a normal load in the range Fn = 0–10 nN (Figure 13).

For each measurement, the friction force was calculated according to Ff ¼ Fl, fwd�Fl,bwd
2 , where

Fl,fwd and Fl,bwd are the forward and backward images of the lateral force, respectively.
Subsequently, the calculated friction force image was averaged line by line, and a
corresponding error was calculated as the standard deviation from the mean value using
the MATLAB software package. Moreover, the shear strength τ and the adhesion force Fad
were calculated by fitting the Ff Fnð Þ-plot with the function Ff ¼ τAc Fnð Þ, where we consider τ
to be constant and Ac(Fn) is the normal force-dependent real area of contact between surface
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and Poisson’s ratios of the two elastic bodies involved in the contact [29]. The resulting F2=3n

dependence of the friction force has been experimentally verified in Refs. [6, 27]. The follow-
ing values were used for Young’s modulus and Poisson’s ratio: EAu = 75 GPa and νAu = 0.44.

Cantilever type Cn [N/m] Cl [N/m] L* [mm] R** [nm]

CONTSC-Au 0.685 136.24 225 25

*Manufacturer’s data.
**Estimated data from SEM measurements.

Table 1. Cantilever properties.

Figure 13. SEM image of the gold-coated AFM tip used friction measurements on Au(111).
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In this work, the radius of curvature R of the AFM tip was determined by scanning electron
microscopy (SEM) after the friction experiments (see Figure 2 and Table 1) using a Helios
600i DualBeam FIB-SEM manufactured by FEI, Netherlands. A value R ≈ 25 nm was found
and used to fit the experimental Ff(Fn)-plots. In Figure 2, a circle with a radius of 25 nm is
overlaid to demonstrate the validity of this value.

Atomic-scale stick-slip was observed and statistically analyzed. The analysis consisted in line-
by-line calculation of the power spectral density (PSD) function of each recorded Fl,fwd images
using the pburg function of the MATLAB software package. The calculated PSD functions
corresponding to each line were averaged to provide a single PSD function out of one Fl,fwd
image. This statistical analysis transforms a signal in real space into a one-dimensional
reciprocal space (k-space) signal, from which characteristic wavelengths λ ¼ 2π=k can be
identified.

Figure 14 shows the load dependence of friction on Au(111) with an Au-coated tip. For this
tribological couple, a shear strength value τ = 24.21 MPa and an adhesion force value Fad = 25.8
nN were calculated. Also, Figure 3 shows a typical FFM image and corresponding forward
and backward traces that exhibit periodic atomic scale stick-slip. In the following, the averaged
power spectrum density (PSD) functions of the friction signals recorded at different loads were
evaluated (see Figure 15). The PSD function corresponding to a typical friction measurement
on Au(111) with an Au-coated tip shows a peak at a wavenumber k = 21.36 rad/nm. Neither the
position nor the amplitude of this peak was found to change upon increasing load, except for
Fn = 10 nN, in which case two slightly less prominent peaks were observed at k = 20.11 rad/nm
and k = 22.62 rad/nm (see Figure 15).

Correspondingly, a characteristic wavelength λ2 = 0.294 nm was calculated that well matches
with the interatomic distance of Au in the [110] direction (a[110] = 288 pm). The small discrep-
ancy arises from the numerical approximation of the PSD function. The peak in the PSD
functions was also found to split into two equidistant peaks at Fn = 10 nN, with corresponding
wavelength values λ3 = 0.277 nm and λ1 = 0.312 nm, respectively. These peaks may correspond
to the herringbone reconstruction of the Au(111) surface and the resulting different tilt angles
of the fcc and hcp domains with respect to the unreconstructed surface [30].

Figure 14. (a) Load dependence of friction and corresponding fit with a function of the type Ff = τAc(Fn), where τ is
the shear strength and the real contact area Ac is expressed according to the JKR model [29]; (b) typical FFM image and
(c) corresponding forward and backward traces exhibiting atomic scale stick-slip.
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6. Conclusions

Experimental procedures based on atomic force microscopy to measure hardness, friction and
wear, and the shear strength ofmetallic surfaces at the nanometer scale have been presented. AFM
indentationwas used to quantitatively and reproducibly determine the hardness and deformation
mechanisms of Au(111), Pt(111), and a Pt57.5Cu14.7Ni5.3P22.5 metallic glass with unprecedented
resolution in imaging and force curves. At the nanometer scale, the plastic deformation of single-
crystallinemetal surfaces is accommodated over large distances andmediated by dislocations. For
Pt57.5Cu14.7Ni5.3P22.5 metallic glass, the nanometer-scaled plastic deformation is continuous and
localized around the indenter; this contrasts with the observation of serrated flow at the μm scale.

AFM scratch testing was used to demonstrate the transitions between different wear regimes
on Au(111) during single-asperity sliding contact. The coefficient of friction is found to
increase with the severity of wear (from adhesive to abrasive). In the low load regime, wear is
governed by adhesive effects, although in this regime the first dislocation lines could be
observed. In the transitional regime, the formation of surface ripples was observed with the
spacing between ripples increasing with the load. This regime corresponds to a transition from
adhesive to abrasive wear, in which case materials start to be displaced ahead of the AFM tip.
At larger loads, plowing is the governing mechanism. In this regime, the topography images
are featureless, with exception of pileups at the side of the scanned area.

Atomic stick-slip images recorded on an Au(111) surface with a gold-coated tip were used to
determine the shear strengthof ametallic junction. By statistical analysis,wedetermined theperiod-
icity of atomic stick-slip. Expectedly, it is found to correspond to the interatomic distance of gold.
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Figure 15. (Left) Typical power spectral density function calculated from FFM measurements on Au(111) with an
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Deformation Regimes for Sphere-Plane Contact:
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Abstract

This chapter presents an update of theories involving the differential hardness problem,
starting from the hypothesis made by Tabor for the contact between a sphere and a plane.
In this way, the reader interested in problems affected directly by these formulations, such
as contact area and contact fatigue, can take part of a fundamental theoretical basis to
perform investigations in this field.

Keywords: differential hardness, sphere-plane contact, deformation regimes

1. Introduction

The contact mechanics, a branch of structural mechanics developed by the German physicist
Heinrich Rudolf Hertz, describes the stresses and strains associated with a surface. His 1882
work, “Ueber die Berührung elastischer fester Körper” (“On the Contact Elastic Solid”) is
considered the starting point of this branch of science [1].

The solutions presented by Hertz do not involve friction; therefore, the bodies do not experi-
ence adhesion, and they are associated with purely elastic deformation field. The advancing in
contact mechanics for modeling different deformation regimes depended on the development
of computational simulation tools, especially the finite element method (FEM). In this sense,
Mackerle [2] presented a summary on the use of FEM for indentation problems, a specificity of
contact mechanics. In a period of 4 years, this author reported 187 references using FEM for a
better understanding of indentation phenomena.
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Abstract

This chapter presents an update of theories involving the differential hardness problem,
starting from the hypothesis made by Tabor for the contact between a sphere and a plane.
In this way, the reader interested in problems affected directly by these formulations, such
as contact area and contact fatigue, can take part of a fundamental theoretical basis to
perform investigations in this field.
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1. Introduction

The contact mechanics, a branch of structural mechanics developed by the German physicist
Heinrich Rudolf Hertz, describes the stresses and strains associated with a surface. His 1882
work, “Ueber die Berührung elastischer fester Körper” (“On the Contact Elastic Solid”) is
considered the starting point of this branch of science [1].

The solutions presented by Hertz do not involve friction; therefore, the bodies do not experi-
ence adhesion, and they are associated with purely elastic deformation field. The advancing in
contact mechanics for modeling different deformation regimes depended on the development
of computational simulation tools, especially the finite element method (FEM). In this sense,
Mackerle [2] presented a summary on the use of FEM for indentation problems, a specificity of
contact mechanics. In a period of 4 years, this author reported 187 references using FEM for a
better understanding of indentation phenomena.
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An immediate finding of this list of articles is that the contact stress distribution depends on
the geometry of the bodies and the contact between a sphere and a plane is always the first
approach for that, given the amount of engineering systems that can be associated with this
kind of system. One of them is the hardness testing, wherein different scales are composed of
this geometry, such as Brinell [3] and Rockwell B [4].

A very important aspect of the reliability of the hardness testing is to ensure that the plastic
deformation occurs in the tested body, while only small deformations are allowed on the
sphere. This warranty is given by the difference in hardness between the sphere and the tested
body, which can be called differential hardness. Tabor [5] described an analytical estimate of
what would be necessary for differential hardness. For that purpose, Tabor made use of some
nontrivial simplifications, deserving to be detailed.

In this context, this book chapter intends to present an update of the theories involving the problem
of differential hardness from the presentation of the assumptions made by Tabor to the initial
problem, involving concepts of elasticity and plasticity. Thus, the tribology student interested in
issues directly affected by these formulations, such as contact area calculation and contact fatigue,
can find a fundamental theoretical basis for conducting investigations in this field of knowledge.

2. Differential hardness: Tabor’s model

As the force applied during a hardness test is increased, the tested material passes to experi-
ence different regimes of deformation. Initially, Tabor [5] identified three regimes: elastic,
elastic-plastic, and fully plastic. Figure 1 shows these regimes schematically.

By measuring the hardness of a material, one should ensure that it is subject to full plasticity.
Therefore, load values should be sufficient for the ratio between the mean contact pressure
(which may be equivalent to the hardness (H)) and the material yield stress (Y) which exceeds
a typical value. The relationship between the mean pressure and the yield stress is defined as
the constraint factor (C (= H/Y)).

Figure 1. Deformation regimes under sphere-plane contact (Adapted from [5]).
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On the other hand, if the sphere cannot experience plasticity, the deformation seen by the ratio
of the mean contact pressure and yield stress must be restricted to a certain value. Thus, using
the values for C shown in Figure 1, Tabor [5] calculated the differential hardness required for a
sphere as follows:

pm ≈ 2:8YM ≥ 1:1YB∴YM ≥ 0:4YB (1)

where YM is the yield stress of metal and YB is the yield stress of sphere.

If the material hardness has equivalency to the yield stress, the sphere must be 2.5 times harder
than the tested body. As an example, Tabor describes a sphere of quenched and tempered steel,
with typically 900 HV; for this case, it could be used to test materials with a 400 HV maximum.

The next items will be devoted for detailing the values used by Tabor for each regime—
beginning of elastic-plastic regime and full plasticity—and further advances in the literature,
provided by the numerical simulation techniques.

3. Yielding inception

The imminence of plastic yielding shall be described with the use of a suitable criterion. The
criteria commonly used for metals are Tresca and von Mises, which are equivalent only in few
specific conditions. Regardless of these conditions, the result of applying both criteria indicates
that a metal yields by the action of shear forces, which makes the maximum shear stress
significant to know. In a sphere-plane contact, the resulting shear stress can be described
considering a normalized distance (z/a), where “z” is the depth below the surface and “a” is
the contact radius established by Hertzian analytical solution.

The analytical equations necessary for calculating the maximum shear stress in the sphere-
plane contact will not be presented here, but it is known that these are dependent upon
Poisson’s ratio of the material (ν) [6]. To describe a single curve as shown in Figure 2, it is
necessary to set a value for this property, in which Tabor used 0.3 as a convenient value for
most metals.

The curve in Figure 2 with ν = 0.3 has the maximum value for the ratio τmax/pm of 0.468, which
is normalized to a defined depth. In applying Tresca’s criterion, one obtains [7]

pm ¼ τmax

τmax=pm
� � ¼ Y

2: 0:468ð Þ ¼ 1:07Y (2)

Therefore, a relationship between the mean pressure and the yield stress of 1.07 is obtained,
and this value was rounded to 1.1, as presented by Tabor for the formulation of the differen-
tial hardness, according to Eq. (1). For a material not yielding in a sphere-plane contact, the
value of the applied load must correspond to a mean pressure not exceeding this value (see
Figure 1).
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Changes in Poisson’s ratio are sufficient to change both the magnitude of ratio τmax/pm and the
location of this maximum value, as shown in Figure 2.

It is logical to expect that the relationship of Eq. (2) presents variations with ν. A series of
equations have been proposed in the literature for that, having been summarized by Pintaude
[9]. The author showed that five equations of the literature did not show great differences and
that they can be divided into just two groups, in which some difference begins to be considered
significant. This difference is associated with the given equivalence between the yield stress
and the hardness, i.e., the constraint factor previously defined, which will be treated with
utmost importance in the next section.

4. Full plasticity

The full plasticity regime associated with the contact between a sphere and a plane as defined
by Tabor [5] presents no variations in the mean contact pressure; once this regime has been
reached, this pressure has a defined value in relation to the yield stress of material. Tabor
empirically found that the relationship between the hardness and the yield stress during a
Brinell hardness test is 2.8; the value used by him to calculate the differential hardness ensures
the plasticity of the material tested.

The use of a constant value to the constraint factor independent of system properties is a
simplification in many ways, since a set of mechanical properties of materials dictates the
behavior during the mechanical loading. Therefore, it is necessary to understand in a section,
which occurs during this loading process, until the full plasticity is established for relatively
large deformations/depths.

Figure 3 shows the definition of a plastic zone developed along an indentation process.

The contour of the plastic zone (c/a), shown in Figure 3, was modeled by Bishop et al. [11],
which defines the limits of elastic-plastic deformation, being the same proportional to the ratio

Figure 2. Distribution of normalized shear stress along normalized depth (z/a) under sphere-plane contact considering
different values of Poisson’s ratio (Adapted from [8]).
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between the elastic modulus and the yield stress (E/Y). Thus, the same authors indicated that,
by similarity, the constraint factor is also proportional to this ratio.

Since then, many models have been proposed to express the dependence of the factor C to
the E/Y, and two currents are shown in Figure 4 for a perfectly plastic material. One of them
is due to Song and Komvopoulos (SK model) [12], in which Poisson’s ratio is implicit into the
value of E (one can consider ν as fixed), while Megalingam and Mayuram (model MM) [13]
made this coefficient in its equation explicit. Figure 4 compares the models for a fixed
Poisson’s ratio of 0.3.

It is found that SK and MM models differ more significantly for materials with relatively low
values of E/Y and them approaching to 2.8 (used by Tabor) as E/Y increases.

Figure 3. Plastic zone definition during an indentation process. Contours indicate the limits for deformation regimes
(Adapted from [10]). Caption: a = contact radius and c = radius of plastically affected zone.

Figure 4. Variation of constraint factor with ratio E/Y following models SK [12] and MM [13], for a material with
Poisson’s ratio of 0.3.
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The work-hardening effects could be added to the results of Figure 4, but before checking it is
important to discuss the failure of Figure 1 for describing the behavior of a material at high
loads, which produce consequently large contact radii.

A pioneer investigation for comprehension of the full plasticity is due to Mesarovic and
Fleck [14]. These authors defined two regimes for the full plasticity, finite deformation,
and plastic similarity. The transition among them depends on the ratio E/Y, as previously
demonstrated in Figure 4. A more detailed description can be seen in the work done by
Alcalá and Esqué-de los Ojos [15]. For the current purpose, only a general description will
be presented (Figure 5), for a perfectly plastic material (n ! 0) with specific properties.

In Figure 5 it is possible to clearly observe the existence of three regions. Firstly, the C factor
increases as the contact radius increases. This will happen up to a characteristic value,
which depends on the ratio E/Y. The second region is one in which there is a drop in the
C values, typical to simulate perfectly plastic materials, in which one would expect in fact
a constant value. In [15] one can see that the plasticity theory applied to the simulation
(deformation theory vs. flow plasticity theory) affects the description of this region (topic
beyond the scope of this chapter). Finally, there is a third regime, in which the constraint
factor backs to increase with increasing loading. This regime will be explained in detail
further.

An effect that helps explain the fall in C factor with the a/D was demonstrated by Mesarovic
and Fleck [14], verifying that there is lack of uniformity of the vertical speed at which the
material experiences as the contact radius increases. In other words, this means that the friction
between the sphere and the plane should be considered to provide a more realistic simulation.

Figure 5. Variation of constraint factor with ratio a/D (Adapted from [15]).
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Alcalá and Esqué-de los Ojos [15] consider a friction coefficient value of 0.07 as ideal for
property extraction from a spherical indentation test. The effect of friction described in [14]
can be seen in Figure 6.

Moreover, Alcalá and Esqué-de los Ojos [15] commented on the difficulty of any experimental
support existence to prove the decay in C. According to these authors, the reasons for this are
related to the strain hardening, being:

i. Metals with low work-hardening exponent generally have sufficiently high yield stress,
such that the increase occurring in C takes place within a broad range, which limits the
occurrence of hardness drop with high values of a/R

ii. The frictional effects are significant enough to lower work-hardening exponent values,
such that an increase in hardness occurs, while the decay is not observed.

While this experimental evidence is not presented, the simulation results generated a series of
equations for region 2 of Figure 5 (the decay). Figure 7 shows a comparison among some of
these equations, for the variation of C with a/R.

The last regime inserted into the full plasticity of a perfectly plastic material can be defined as a
physical limit for the mechanical contact existence. This phenomenon can be treated as a
“decoupling” of the contact. Figure 8 helps to explain better the phenomenon.

Figure 8A shows the geometry of the sphere-plane contact, indicating a depth δ that varies in
conjunction with the contact radius for a same radius R or diameter D. It is possible to relate
the variation of the a/D ratio with δ/A by means of simple geometry, and this variation is
shown in Figure 8B for a ball diameter with D = 3 mm. One can see that δ/a ≈ a/D for a certain

Figure 6. Variation of constraint factor with ratio a/R for a material with E/Y = 10,000 and Poisson’s ratio of 0.3, with and
without friction (Adapted from [14]).
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value, there is a small deviation thereafter. Thus, increments above a certain value mean a
geometric inconsistency, in which the ball cannot make a suitable contact with the plane in
the axial direction of loading, representing a “decoupling” of the contact, which would entail
artificially greater contact pressures (proportionally smaller radius values) as shown in
Figure 5.

Figure 8. (A) Detailed geometry of sphere-plane contact and (B) variation of normalized depth with the normalized
contact radius (Adapted from [12]).

Figure 7. Equations to describe the finite deformation regime for a perfectly plastic material: Jackson-Green [16], Alcalá
et al. [17], and Jackson et al. [18] (Adapted from [19]).
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5. Hardening effects

The hardening of metals was incorporated into Tabor’s concept, through work-hardening
exponent (n). To the full plasticity regime, empirical equations can be derived to compute the
effect of this property in the constraint factor. This type of relationship was shown, for exam-
ple, by Matthews [20] and subsequently reviewed by Sundararajan and Tirupataiah [21], who
demonstrated it for a wider range of experimental points.

Although these formulations may be useful from a practical point of view, here it is relevant to
present in what deformation regime during the mechanical contact the work-hardening can
alter the behavior. The example presented by Komvopoulos and Song [12] for a material with
E/Y = 11 (Figure 9) makes it interesting for that.

It is noticed that the work-hardening exponent changes with great intensity of the C values in
the full plasticity regime. Thus, the differential hardness value will be affected by the work
hardening, as will be discussed in the next section.

6. Experimental evaluation of differential hardness and trends in
numerical simulation

An experiment to certify the existence of the differential hardness as predicted by Tabor is not a
simple task. Jamari and Schipper [22] made an important attempt for that. These researchers
used SiC as rigid plane, in which copper or aluminum balls were pressed against it.

Figure 9. Variation of constraint factor with normalized depth for a material with E/Y = 11, for different work-hardening
exponents (Adapted from [12]).
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used SiC as rigid plane, in which copper or aluminum balls were pressed against it.

Figure 9. Variation of constraint factor with normalized depth for a material with E/Y = 11, for different work-hardening
exponents (Adapted from [12]).
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Whereas deformation profiles plotted after the test, it was shown that the hardness difference
for the case of Cu would be 1.33 and 1.39 for the case of Al, much lower than that established
by Tabor (2.5).

Perhaps, for this reason, the results were the scenes of further discussion. Jackson and Green
[23] criticized especially the method of measuring the deformation by profilometry after
removal of the load and the effect of hardening. Jamari and Schipper [24] argued explaining
the measuring method for the profile of spheres before the test and the approximation of the
profile thereof after deformation. About hardening, they provided values showing the increas-
ing of sphere hardness, which was relatively insignificant.

The experimental demonstrations for differential hardness remain scarce, especially for the
boundary conditions given by Alcalá and Esqué-de los Ojos [15] in the abovementioned. These
can be considered as inherent challenges to the contact mechanics in its present state of the art.

In this line, the work presented by Ghaednia et al. [19] sheds light to the theories discussed
here, with a new numerical limit for the occurrence of differential hardness in the sphere-plane
contact.

The first important question raised by these authors, also discussed by Jamari and Schipper [22], is
the effect to consider if the load is being applied either on the plan or on the sphere. For that,
Ghaednia et al. [19] make it clear what equation to adopt for each case, being adopted the Jackson-
Green expression [16] for plane hardness and the Jackson et al. one [18] for the ball hardness.

From this, each equation is then used to calculate a stress ratio (Y*), equivalent to the differen-
tial hardness:

Y∗ ¼ YB=YM
(3)

By selecting different combinations of properties for sphere and plane, these authors got
simulated for what value the constraint factor presents with no further changes, within the full
plasticity regime for the plane. The found value for the differential hardness is equivalent to
1.7, 32% lower than that predicted by Tabor.

7. Conclusions and final remarks

The main contributions in the field of contact mechanics were demonstrated along this chapter
applied for an important specific system, sphere-plane contact, in which several hardness tests
are performed.

Clearly, there is a lack in the experimental demonstration of theories presented. This is an
interesting challenge, as the numerical simulation increases at much higher speed than the
experimental results.

An updated value obtained through numerical simulation for the differential hardness is 1.7,
different from that predicted by Tabor (2.5). Certainly, an experimental demonstration could be
elucidating this difference.
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In addition, the hardening and friction effects on the sphere-plane system can be more
explored through both numerical simulations and experimental arrangements.
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Abstract

Semi-analytical methods are commonly used to solve contact problems. These methods
require the discretization of the domain into a mesh of pressure elements. In general, it
can be said that their accuracy increases as the pressure element mesh is refined. How-
ever, the refinement of the pressure element mesh also implies an increase in their
computational cost. So, in the great majority of the cases, a commitment between accu-
racy and computational cost must be achieved. In this work, a new approach is
presented, whose main purpose is to improve the efficiency of the semi-analytical
methods that are used to solve contact problems. To do so, an adaptive refinement of
the pressure element mesh is implemented. This strategy allows for a reduction of the
computational cost of the method, while its accuracy remains unaffected.

Keywords: contact analysis, semi-analytical methods, adaptive refinement

1. Introduction

The contact stress analysis plays an important role during the design process of several
mechanical elements like bearings, gears, etc. In order to accomplish a contact analysis, the
so-called contact problem must be solved to obtain the following relevant information:

i. The contact area, which involves the determination of the size, shape, and location of the
true contact area in each one of the contacting bodies.

ii. The contact stresses, which involve the determination of the contact pressure distribution
on the surface of the bodies and the stress distribution underneath the surfaces.

iii. The deformation of the bodies produced by the contact pressure.
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Different approaches have been used to solve contact problems, which can be classified into
three groups: numerical, analytical, and semi-analytical methods. Compared to the numerical
methods, it can be said that the analytical methods are more efficient in terms of computational
cost, but they have severe applicability limitations imposed by the hypotheses of the underly-
ing theory. On the other hand, the numerical methods can overcome these limitations, but at a
much higher computational cost.

The semi-analytical methods (SAMs) can be considered as an intermediate approach: they are
potentially faster than the numerical methods, while they allow overcoming some of the
limitations of the analytical methods. SAMs are usually based on the discretization of the
potential contact area into a mesh of n pressure elements, with a uniform pressure distribution
assumed to be acting over each one of them. Influence coefficients are used to relate the
pressure applied over each pressure element with the displacements that this pressure pro-
duces at the centroid of the other elements of the mesh. Using these influence coefficients, the
solution to the contact problem can be numerically found in terms of the contact pressure
distribution that satisfies the contact conditions.

As usual, in numerical methods based on the discretization of the domain, the election of the
number of pressure elements in which the domain is divided involves a commitment between
accuracy and computational cost. Kalker [1] stated that the computational cost of these semi-
analytical methods can be defined by the number of influence coefficients that need to be
calculated to solve the contact problem (that, in general, is proportional to n2). He also argued
that the accuracy of the solution to the contact problem, in terms of contact area and contact
pressure distribution, depends on the refinement of the pressure element mesh, especially in
those regions close to the border of the contact area. Consequently, an improvement of the
accuracy of the results necessarily implies an increment of the computational cost.

When both shape and location of the true contact area are known in advance, the efficiency
of the method can be maximized by discretizing an area similar to the true contact area. But
when the true contact area is unknown, it is difficult to optimize the efficiency of the method,
since the whole potential contact area must be discretized to consider any possible shape and
location of the true contact area. In those cases, it is common to use a uniform pressure element
mesh for the whole domain, being more or less dense depending on the desired accuracy and
on the capabilities of the computer used to solve the contact problem. In consequence, there
could be many pressure elements in the discretization out of the true contact area, what causes
a loss in the efficiency of the method.

These difficulties could be partially overcome using adaptive mesh refinement strategies.
These techniques have been previously used to improve the efficiency of numerical methods
based in the discretization of the domain, especially in FEM procedures [2]. However, no
previous use of adaptive refinement has been found in the literature for the solution of contact
problems using semi-analytical methods.

In this work, an approach to solve frictionless elastic contact problems is presented, whose main
purpose is to improve the efficiency of the semi-analytical methods that are used to solve contact
problems. To do so, an adaptive refinement of the pressure element mesh is implemented, which
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is based on the discrete rate of change of any magnitude that is related with the solution of the
contact problem. This strategy allows for a reduction of the computational cost of the method,
while its accuracy remains unaffected. The theoretical background and the computational
implementation of the method are described, and its performance is illustrated with numerical
examples.

2. Theoretical background

This section describes the theoretical background under which the proposed approach to solve
frictionless elastic contact problems is developed. The concept of pressure element is described,
as well as those considerations required to solve contact problems between bodies of finite
dimensions. Finally, the quadtree decomposition of the domain is introduced, which is a useful
strategy to perform adaptive mesh refinement.

2.1. Pressure elements and surface normal deflection in an elastic half-space

Consider a body that, because of its main features, can be approached to an elastic half-space,
as the one shown in Figure 1a. A Cartesian coordinate system is defined over the surface of
this body, which X and Y axes define a plane that is coincident with its surface, and the Z axis
points inward him. A normal pressure distribution pð Þ is applied over the surface of the body,
acting over an area that is denoted by S.

Now consider a generic point C within the area S, whose position is defined by the vector
r0 x; y; zð Þ, being z ¼ 0. Consider another point H in the surface of the body, whose position is
defined by the vector r x; y; zð Þ, being z ¼ 0. The normal elastic deflection produced at a point H
due to a normal pressure distribution applied over the area S can be determined by the
superposition of the Boussinesq relation [3]:

ω rð Þ ¼ 1� ν
2πG

ð

S

p r0ð Þ
r � r0j j dS (1)

where ν is the Poisson coefficient and G is the shear modulus of the material of the considered body.

Figure 1. Pressure distributions applied over an elastic half-space.
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Obtaining a generic closed-form solution for Eq. (1) is not possible, since it depends on the
shape of the area S and on the considered pressure distribution. However, several closed-form
solutions can be found in the literature for certain pressure distributions applied over areas
with a specific shape (such as triangles, rectangles, hexagons, etc.).

Let’s focus on the closed-form solution for Eq. (1) that Love [4] obtained for uniform pressure
distributions acting over areas with rectangular shape, as the one shown in Figure 1b. From
now on, this combination of shape and pressure distribution will be called pressure element,
and will be denoted by Δj. The area of the pressure element shown in Figure 1b is Aj ¼ 2a� 2b,
and the uniform pressure distribution that acts over this area is p r0ð Þ ¼ pj. Under these condi-

tions, the closed-form solution for Eq. (1) is

ω rð Þ ¼ f j rð Þ∙pj (2)

where f j rð Þ is the influence coefficient of pressure element Δj over the point H, which can be

analytically determined as

f j rð Þ ¼ 1� ν
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where coefficients A, B, C, and D are calculated as

A ¼ dy þ b C ¼ dx þ a
B ¼ dy � b D ¼ dx � a

These pressure elements can be useful to determine the normal displacement produced at the
surface of a body due to a non-uniform pressure distribution applied over a complex area. To
illustrate this methodology, consider a complex area S, as the one shown in Figure 2a, over
which an arbitrary pressure distribution is acting. To determine the displacement field produced
by this pressure distribution, the area S is discretized into a mesh of n rectangular pressure
elements Δj, as shown in Figure 2b. Then, the arbitrary pressure distribution is approached by
assigning a uniform pressure value pj to each pressure element, as shown in Figure 1c.

Figure 2. Normal deflection produced by a complex pressure distribution.
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Finally, the displacement at any point of the surface of the body can be determined by
superposition of the displacements produced at this point by uniform pressures acting over
each pressure element of the mesh as

ω rð Þ ¼
Xn

j¼1

pj∙f j rð Þ
h i

(4)

This methodology can be applied with different types of pressure elements, having different
shapes and pressure distributions acting over them. However, using rectangular pressure
elements has some advantages, which are discussed in [5].

2.2. Semi-analytical method to solve frictionless elastic contact problems

The solutions exposed in the previous section can be used to obtain the pressure distribution
that is produced when two bodies are pressed together in the absence of friction. For such a
purpose, it is necessary that the two bodies can be approached to elastic half-spaces in the
vicinity of the area in which the contact between them is produced.

Consider two bodies 1 and 2 in its undeformed contact position, contacting at the initial point
of contact OL (Figure 3a). At this point, a common tangent plane Π is defined, which is
assumed to be so close to the surface of the bodies in the vicinity of the contact area that the
deformation of the surfaces of both bodies can be referred to it in the linear small strain theory
of elasticity.

A Cartesian coordinate system is defined with origin at point OL, being the local axis ZL

normal to the plane Π and pointing inward the body 2. Consider a generic point Q in the plane
Π, whose position is defined by the vector r xL; yL; zL

� �
, being zL ¼ 0. The gap between the two

bodies, measured along ZL axis, is denoted by the function B rð Þ, which in the first instance is
assumed to be smooth and continuous.

The two bodies are pressed together in the absence of friction by the effect of the force FT
(Figure 3b), causing a normal approach between them that is denoted by δ. Since penetration is
physically inadmissible, a contact pressure distribution p rð Þ is generated in the true contact
area S that deforms the contacting bodies. In this way, elastic normal deflections are produced

Figure 3. Contact between two bodies: (a) undeformed position and (b) deformed position.
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Obtaining a generic closed-form solution for Eq. (1) is not possible, since it depends on the
shape of the area S and on the considered pressure distribution. However, several closed-form
solutions can be found in the literature for certain pressure distributions applied over areas
with a specific shape (such as triangles, rectangles, hexagons, etc.).

Let’s focus on the closed-form solution for Eq. (1) that Love [4] obtained for uniform pressure
distributions acting over areas with rectangular shape, as the one shown in Figure 1b. From
now on, this combination of shape and pressure distribution will be called pressure element,
and will be denoted by Δj. The area of the pressure element shown in Figure 1b is Aj ¼ 2a� 2b,
and the uniform pressure distribution that acts over this area is p r0ð Þ ¼ pj. Under these condi-

tions, the closed-form solution for Eq. (1) is
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where coefficients A, B, C, and D are calculated as

A ¼ dy þ b C ¼ dx þ a
B ¼ dy � b D ¼ dx � a

These pressure elements can be useful to determine the normal displacement produced at the
surface of a body due to a non-uniform pressure distribution applied over a complex area. To
illustrate this methodology, consider a complex area S, as the one shown in Figure 2a, over
which an arbitrary pressure distribution is acting. To determine the displacement field produced
by this pressure distribution, the area S is discretized into a mesh of n rectangular pressure
elements Δj, as shown in Figure 2b. Then, the arbitrary pressure distribution is approached by
assigning a uniform pressure value pj to each pressure element, as shown in Figure 1c.

Figure 2. Normal deflection produced by a complex pressure distribution.
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Finally, the displacement at any point of the surface of the body can be determined by
superposition of the displacements produced at this point by uniform pressures acting over
each pressure element of the mesh as

ω rð Þ ¼
Xn

j¼1

pj∙f j rð Þ
h i

(4)

This methodology can be applied with different types of pressure elements, having different
shapes and pressure distributions acting over them. However, using rectangular pressure
elements has some advantages, which are discussed in [5].

2.2. Semi-analytical method to solve frictionless elastic contact problems

The solutions exposed in the previous section can be used to obtain the pressure distribution
that is produced when two bodies are pressed together in the absence of friction. For such a
purpose, it is necessary that the two bodies can be approached to elastic half-spaces in the
vicinity of the area in which the contact between them is produced.

Consider two bodies 1 and 2 in its undeformed contact position, contacting at the initial point
of contact OL (Figure 3a). At this point, a common tangent plane Π is defined, which is
assumed to be so close to the surface of the bodies in the vicinity of the contact area that the
deformation of the surfaces of both bodies can be referred to it in the linear small strain theory
of elasticity.

A Cartesian coordinate system is defined with origin at point OL, being the local axis ZL

normal to the plane Π and pointing inward the body 2. Consider a generic point Q in the plane
Π, whose position is defined by the vector r xL; yL; zL
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, being zL ¼ 0. The gap between the two

bodies, measured along ZL axis, is denoted by the function B rð Þ, which in the first instance is
assumed to be smooth and continuous.

The two bodies are pressed together in the absence of friction by the effect of the force FT
(Figure 3b), causing a normal approach between them that is denoted by δ. Since penetration is
physically inadmissible, a contact pressure distribution p rð Þ is generated in the true contact
area S that deforms the contacting bodies. In this way, elastic normal deflections are produced

Figure 3. Contact between two bodies: (a) undeformed position and (b) deformed position.
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in the surfaces of the bodies 1 and 2, which are denoted by ω 1ð Þ rð Þ and ω 2ð Þ rð Þ, respectively. The
total normal deflection is denoted by ω rð Þ and can be calculated as

ω rð Þ ¼ ω 1ð Þ rð Þ þ ω 2ð Þ rð Þ (5)

The essence of the resulting contact problem is to determine the pressure distribution that
fulfills the contact conditions, both inside and outside the contact area, whose geometry and
size are unknown

p rð Þ > 0 and B rð Þ þ ω rð Þ � δ ¼ 0 inside S
p rð Þ ¼ 0 and B rð Þ þ ω rð Þ � δ > 0 outside S

(6)

Kalker [5] demonstrated that the solution to this contact problem can be found minimizing the
total complementary energy V∗ð Þ under the condition that the contact pressure is equal or
greater than zero in all the domain of the problem. The total complementary energy is defined
as the sum of the internal complementary energy of the stressed bodies and the external
complementary energy as

V∗ ¼ 1
2

ð

S
p rð Þ∙ω rð Þ∙dSþ

ð

S
p rð Þ∙ B rð Þ � δ½ �∙dS (7)

To enable the numerical solution, the potential contact area is discretized into a set of n
pressure elements Δj (described in Section 2.1), with a uniform pressure distribution assumed
to be acting over each one of them, as shown in Figure 4. The position of the centroid of each
pressure element Δj is denoted by vector rj.

Under a discretized domain, the total complementary energy may be expressed as

V∗ ¼ 1
2

Xn

i¼1

pi

ð

Ai

ω rð Þ∙dAi

� �
þ
Xn

i¼1

pi

ð

Ai

B rð Þ � δ½ �∙dAi

� �
(8)

Taking into account Eq. (4), Eq. (5) may be rewritten as

Figure 4. Discretization of the potential contact area into a pressure element mesh.
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(9)

where tj rð Þ is defined as the cumulated influence coefficient of pressure element Δj over point Q

tj rð Þ ¼ f 1ð Þ
j rð Þ þ f 2ð Þ

j rð Þ (10)

Considering Eq. (9), Eq. (8) can be rewritten as:

V∗ ¼ 1
2

Xn
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2
4
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� �
(11)

To reduce the computational cost of the calculations, two assumptions are made:

i. The distance between the surfaces of the bodies B rð Þ is assumed to be constant in all the
pressure element Δi, and equal to the distance between the surface of the two bodies at its
centroid, in such a way that B rð Þ ¼ B rið Þ ¼ Bi.

ii. The cumulated influence coefficient tj rð Þ is assumed to be constant over all the pressure
element Δi, and equal to the value in its centroid, in such a way that tj rð Þ ¼ tj rið Þ ¼ tj, i.
The coefficient tj, i can be defined as the cumulated influence coefficient of element Δj

over the centroid of element Δi, and it may be expressed as:

tj, i ¼ f 1ð Þ
j, i þ f 2ð Þ

j, i

where f 1ð Þ
j, i and f 2ð Þ

j, i are the influence coefficients of element Δj over the centroid of element Δi,

which can be determined for each contacting body using Eq. (3).

Under these assumptions, the total complementary energy can be expressed as

V∗ ¼ 1
2

Xn

i¼1

Xn

j¼1

pi∙pj∙tj, i∙Ai þ
Xn

i¼1

pi∙ Bi � δ½ �∙Ai (12)

The solution to the contact problem, in terms of contact pressure distribution, can be found by
minimizing Eq. (12) under the following restrictions:

∂V∗

∂pi
¼
Xn

j¼1

pj∙tj, i∙Ai þ Bi � δ½ �∙Ai ¼ 0 if pi > 0

∂V∗

∂pi
¼
Xn

j¼1

pj∙tj, i∙Ai þ Bi � δ½ �∙Ai ≥ 0 if pi ¼ 0

(13)

The true contact area is then defined, within the precision of the mesh size, by the boundary
between the elements with zero and non-zero pressures. The total contact load FTð Þ can be
calculated as
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To reduce the computational cost of the calculations, two assumptions are made:

i. The distance between the surfaces of the bodies B rð Þ is assumed to be constant in all the
pressure element Δi, and equal to the distance between the surface of the two bodies at its
centroid, in such a way that B rð Þ ¼ B rið Þ ¼ Bi.
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The true contact area is then defined, within the precision of the mesh size, by the boundary
between the elements with zero and non-zero pressures. The total contact load FTð Þ can be
calculated as
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FT ¼
Xn

i¼1

pi∙Ai (14)

2.3. Contact between bodies of finite dimensions

The method described in the previous section is based on the utilization of influence coeffi-
cients that relate the contact pressures with the surface displacements. These influence coeffi-
cients can be determined in several ways, but in the great majority of the cases, they are
calculated using the superposition of the Boussinesq relation (described in Section 2.1).

Because of the hypotheses under which this relation is established, influence coefficients
determined using the Boussinesq relation should only be used to solve contact problems
between contact bodies that can be approached to half-spaces. Otherwise, the application of
the described method can lead to erroneous solutions of the contact problem.

However, the influence coefficients determined using the Boussinesq relation can be corrected, so
they can be used to solve contact problems between bodies that a priori cannot be approached to
elastic half-spaces. Among the correction methods that can be found in the literature, a correction
method to consider contact bodies of finite dimensions is described in this section.

In this correction method, the finiteness of the contacting bodies is characterized by stress-free
surfaces that are perpendicular to the length direction of the bodies, as illustrated in Figure 5.
To leave those areas of the half-space that coincide with these surfaces free of normal and
shear stresses, the correction method proposed by de Mul [6] is used, which consist in modi-
fying the calculation of the influence coefficients f j, i for each body with finite dimensions in

the following way:

f j, i ¼ f jo, i þ 1:29� 1
1� ν

∙ 0:08� 0:5∙νð Þ
� �zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{Ψ

∙
Xn
m¼1

f jm, i (15)

where f j0, i is the influence coefficient of the original pressure element Δjo, Ψ is a correction

factor proposed by Guilbault [7], and f jm, i are the influence coefficients of the pressure ele-

ments Δjm, that are mirrored instances of the element Δjo respect to the planes that coincide
with the n free-stress surfaces of the body.

This method involves the calculation of additional influence coefficients of the mirrored pres-
sure elements, and hence the computational cost of the method is multiplied by nþ 1ð Þ, being n
the number of finite dimensions taken into account in the problem.

2.4. Quadtree decomposition of the domain

According to Samet [8], the basic concept of the quadtree is to enclose the domain of the
problem Γð Þ into a containing cell, usually a square, which is denoted as the root of the
quadtree, as shown in Figure 6a. This cell is then subdivided into four sons of the same size
(Figure 6b), one in each direction: North-West (NW), Nord-East (NE), South-West (SW), and
South-East (SE).
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Each one of these cells is subdivided recursively until a stopping criterion is reached, which may
be based upon the local geometry of the domain or in user-defined parameters (Figure 6c and d).

The information related to the quadtree decomposition of the domain is stored in a hierarchical
tree structure, as shown in Figure 6e. For every cell, references to its ancestor and sons are
stored. This kind of structure eases the performance of several operations, such as the neighbor
finding in a defined direction, which will play an important role in the proposed method.

Each corner of a cell is called vertex. The level of a cell j in the structure is denoted by Lj, and
represents the number of divisions performed from the root of the quadtree. According to this
definition, Lj is also related to the relative size of the cell inside the quadtree structure and the
degree of mesh refinement that this size represents. Given the size of the root cell of the quadtree,
the size of any cell can be determined if its degree of refinement Lj is known. The root cell of the
quadtree is usually denoted by level 0. Any cell that is not subdivided anymore is a leaf cell
(displayed in gray in Figure 6e), while subdivided cells are referred to as non-leaf cells.

Figure 5. Contact between bodies of finite dimensions.

Figure 6. Example of a quadtree decomposition of the domain.
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Each one of these cells is subdivided recursively until a stopping criterion is reached, which may
be based upon the local geometry of the domain or in user-defined parameters (Figure 6c and d).
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3. Computational approach to solve frictionless elastic contact problems
using adaptive mesh refinement

In this section, the major topics of the computational implementation of the semi-analytical
method to solve frictionless elastic contact problems described in Section 2.2 are discussed. As
it has been said before, this method is based on the discretization of the potential contact area
Γð Þ into a mesh of pressure elements. The potential contact area is defined as the Boolean
intersection of the projection of the bodies on the plane Π, as shown in Figure 7.

In the classical approach, the potential contact area is discretized using a uniform mesh of
pressure elements. In contrast, to improve the efficiency of the method, adaptive mesh refine-
ment is implemented in this approach. To do so, a quadtree decomposition (described in
Section 2.4) of the potential contact area is performed, where all the leaf cells of the quadtree
are considered pressure elements. The use of a quadtree offers two interesting features to this
implementation. In first place, the recursive division of the cells provides a robust local mesh
refinement strategy. In second place, transverse operations such as neighbor finding algo-
rithms are computationally efficient and easy to implement.

The main algorithm of the approach to solve contact problems using adaptive mesh refinement
is shown in Figure 8. The following inputs are required by the algorithm:

i. The geometry and position of the contact surfaces in undeformed contact position.

ii. The initial point of contact OLð Þ and a vector defining the contact normal.

iii. The magnitude of the contact force FTð Þ.
iv. The initial level of uniform mesh density Lunið Þ, which is a parameter that describes the

size of the elements of the initial uniform pressure element mesh.

The algorithm starts determining the common tangent plane Π, where a local Cartesian
coordinate system is defined, being the ZL axis normal to the plane Π (step A1). The

Figure 7. Definition of the potential contact area Γ:
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boundaries of the contacting bodies are normally projected onto the plane Π to determine the
potential contact area Γ (step A2).

The potential contact area is enclosed by the root cell of a quadtree, which is recursively
subdivided until the desired initial level of uniform mesh density Luni is reached for all the
cells of the quadtree (stepA3). All leaf cells of the quadtree are considered pressure elements Δi

for the initial iteration of the algorithm, which is performed using a uniform pressure element
mesh. All the elements are marked with the flag Λi ¼ TRUE, indicating that their properties
(associated area Ai, normal gap Bi, contact pressure pi, and cumulated influence coefficients tj, i)
are not computed yet.

To maximize the efficiency of the proposed approach, it is important to minimize the number
of pressure elements located outside of the potential contact area. This can be achieved by

Figure 8. Main algorithm of the proposed approach and algorithm to determine elements to split.
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boundaries of the contacting bodies are normally projected onto the plane Π to determine the
potential contact area Γ (step A2).
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subdivided until the desired initial level of uniform mesh density Luni is reached for all the
cells of the quadtree (stepA3). All leaf cells of the quadtree are considered pressure elements Δi

for the initial iteration of the algorithm, which is performed using a uniform pressure element
mesh. All the elements are marked with the flag Λi ¼ TRUE, indicating that their properties
(associated area Ai, normal gap Bi, contact pressure pi, and cumulated influence coefficients tj, i)
are not computed yet.

To maximize the efficiency of the proposed approach, it is important to minimize the number
of pressure elements located outside of the potential contact area. This can be achieved by
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ensuring that the potential contact area is enclosed by a root cell of the quadtree coincident
with the minimum bounding rectangle (MBR), defined as the minimum rectangle that contains
every point in the region [9].

Then, an iterative process starts whose first step is the determination of the normal gap Bi for
all the pressure elements (step A4) where Λi ¼ TRUE. The cumulated influence coefficients tj, i
of those elements are also determined (step A5), using Eq. (3). Finally, the contact problem is
solved using Eq. (13) (step A6), in the way indicated in [5], obtaining a contact pressure value
pi for each element Δi of the discretization.

The flagΛi is defined as FALSE for all the elements present in the discretization, indicating that
the properties of these elements have already been computed.

At this point, the adaptive mesh refinement is performed. For such a purpose, the algorithm
that determines the elements that must be split (that is described in section 3.1) is called (step
A7), which returns an array with the indexes of these elements. Then, the selected elements are
split (step A8) and the quadtree data structure is updated with the information of the new
elements, which are marked with the flag Λi ¼ TRUE, indicating that their properties are not
computed yet. If no new elements are created, the iterative process finishes and the contact
results are displayed (step A9). In contrast, if new elements are created, the iterative process
starts again (step A4), and it is repeated until no new elements are created.

The main advantage of this implementation is that only the normal gap and the influence
coefficients related to the new elements are computed for each iteration, decreasing the global
computational cost of the method. The number of influence coefficients calculated in the
proposed approach Nf

� �
can be determined afterwards using the following equation:

Nf ¼
Xt

i¼1

2∙n ið Þ∙nnew ið Þ � n2new ið Þ
h i

(16)

where t is the number of iterations performed by the algorithm, n ið Þ is the number of elements
in iteration i, and nnew ið Þ is the number of new elements in iteration i.

3.1. Algorithm to determine elements to split

An adaptive mesh refinement may be based upon several criteria. In this work, the rate of
change of a given physical magnitude (denoted by λ) related with the solution of the contact
problem is used to perform adaptive refinement of the pressure element mesh. Since the
proposed approach works under a discretized domain, each pressure element Δi will have an
associated value λi of the observed physical magnitude, and in consequence, a discrete rate of
change wj, i of λ can be established between an element Δi and any of its neighbors Δj as

wj, i ¼
λj � λi
�� ��

max λj
�� ��; λij j� � (17)

If the discrete rate of change wj, i between a pressure element Δi and any of its neighbors Δj is
higher than an arbitrarily defined value wmax (representing the maximum allowed rate of
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change of the observed physical magnitude), then the pressure element Δi is marked as a
candidate to be split.

However, in some situations, the rate of change of λ is so high that the condition wj, i < wmax

cannot be reached, and the refinement strategy based on the rate of change of λ would refine
the pressure element mesh endlessly. In order to limit the number of iterations performed by
the algorithm, an additional stopping criterion based on the minimum size allowed for a
pressure element needs to be included. As mentioned before, the level Lj that a pressure
element occupies in the quadtree structure is related to its size, so limiting the former will also
limit the latter. This limit is defined by an user-defined parameter Lmax, referred to as the
maximum degree of mesh refinement.

It is important to point out that wmax is a target value and may not be always reached. If the
maximum degree of mesh refinement Lmax is reached for all pressure elements before the target
value for wmax is achieved, the mesh refinement will finish.

The main routine of the algorithm to determine elements to split is shown in Figure 8b. The
following input information is required by the algorithm:

i. The properties associated with the pressure elements (area Ai, normal gap Bi, contact
pressure pi, and cumulated influence coefficients tj, i).

ii. The quadtree data structure.

iii. The maximum degree of mesh refinement Lmaxð Þ.
iv. The maximum allowed rate of change of the observed physical magnitude wmaxð Þ.
The algorithm starts defining the flag Ki as FALSE for all the elements present in the current
discretization. The flag Ki indicates when a pressure element must be split, so in principle, it is
assumed that none of the elements will be divided.

Then, the iterative process starts searching the k neighbors of every pressure element Δi in the
domain (step B1). For this purpose, the algorithm proposed by Samet [8] is used, which is
based in the quadtree data structure. As a result, this algorithm provides an array that contains
the indexes of the k neighbors of a given pressure element.

For each pair of neighboring pressure elements Δi and Δj, the algorithm determines the
associated physical magnitudes λi and λj (step B2). These magnitudes can be already given
by the main algorithm (as in the case of the contact pressures), or they can be specifically
determined from these values by performing additional calculations.

Then, the discrete rate of change wj, i of the observed magnitude between pressure element Δi and
his neighbor Δj is obtained using Eq. (17) (step B3). If wj, i is lower than the user-defined value wmax,
the next neighbor pressure elementΔjþ1 is evaluated. In contrast, if the discrete rate of change of the
observed magnitude between both elements is greater than wmax, then element Δi is considered as a
candidate to be split. Two additional conditions must be fulfilled so Δi can be marked to be split:

i. On one hand, Li must be lower than Lmax, to avoid that the algorithm refines the mesh
indefinitely in those cases where wmax cannot be reached.
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The main advantage of this implementation is that only the normal gap and the influence
coefficients related to the new elements are computed for each iteration, decreasing the global
computational cost of the method. The number of influence coefficients calculated in the
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where t is the number of iterations performed by the algorithm, n ið Þ is the number of elements
in iteration i, and nnew ið Þ is the number of new elements in iteration i.

3.1. Algorithm to determine elements to split

An adaptive mesh refinement may be based upon several criteria. In this work, the rate of
change of a given physical magnitude (denoted by λ) related with the solution of the contact
problem is used to perform adaptive refinement of the pressure element mesh. Since the
proposed approach works under a discretized domain, each pressure element Δi will have an
associated value λi of the observed physical magnitude, and in consequence, a discrete rate of
change wj, i of λ can be established between an element Δi and any of its neighbors Δj as

wj, i ¼
λj � λi
�� ��

max λj
�� ��; λij j� � (17)

If the discrete rate of change wj, i between a pressure element Δi and any of its neighbors Δj is
higher than an arbitrarily defined value wmax (representing the maximum allowed rate of

Contact and Fracture Mechanics70

change of the observed physical magnitude), then the pressure element Δi is marked as a
candidate to be split.

However, in some situations, the rate of change of λ is so high that the condition wj, i < wmax

cannot be reached, and the refinement strategy based on the rate of change of λ would refine
the pressure element mesh endlessly. In order to limit the number of iterations performed by
the algorithm, an additional stopping criterion based on the minimum size allowed for a
pressure element needs to be included. As mentioned before, the level Lj that a pressure
element occupies in the quadtree structure is related to its size, so limiting the former will also
limit the latter. This limit is defined by an user-defined parameter Lmax, referred to as the
maximum degree of mesh refinement.

It is important to point out that wmax is a target value and may not be always reached. If the
maximum degree of mesh refinement Lmax is reached for all pressure elements before the target
value for wmax is achieved, the mesh refinement will finish.

The main routine of the algorithm to determine elements to split is shown in Figure 8b. The
following input information is required by the algorithm:

i. The properties associated with the pressure elements (area Ai, normal gap Bi, contact
pressure pi, and cumulated influence coefficients tj, i).

ii. The quadtree data structure.

iii. The maximum degree of mesh refinement Lmaxð Þ.
iv. The maximum allowed rate of change of the observed physical magnitude wmaxð Þ.
The algorithm starts defining the flag Ki as FALSE for all the elements present in the current
discretization. The flag Ki indicates when a pressure element must be split, so in principle, it is
assumed that none of the elements will be divided.

Then, the iterative process starts searching the k neighbors of every pressure element Δi in the
domain (step B1). For this purpose, the algorithm proposed by Samet [8] is used, which is
based in the quadtree data structure. As a result, this algorithm provides an array that contains
the indexes of the k neighbors of a given pressure element.

For each pair of neighboring pressure elements Δi and Δj, the algorithm determines the
associated physical magnitudes λi and λj (step B2). These magnitudes can be already given
by the main algorithm (as in the case of the contact pressures), or they can be specifically
determined from these values by performing additional calculations.

Then, the discrete rate of change wj, i of the observed magnitude between pressure element Δi and
his neighbor Δj is obtained using Eq. (17) (step B3). If wj, i is lower than the user-defined value wmax,
the next neighbor pressure elementΔjþ1 is evaluated. In contrast, if the discrete rate of change of the
observed magnitude between both elements is greater than wmax, then element Δi is considered as a
candidate to be split. Two additional conditions must be fulfilled so Δi can be marked to be split:

i. On one hand, Li must be lower than Lmax, to avoid that the algorithm refines the mesh
indefinitely in those cases where wmax cannot be reached.
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ii. On the other hand, Li must be less than or equal to Lj, to ensure that the level difference
between two adjacent elements does not differ more than one level in the quadtree
structure, avoiding unbalanced meshes.

If these conditions are met, the pressure element Δi is marked to be split by defining
Ki ¼ TRUE. The algorithm finishes when all the pressure elements have been evaluated,
returning an array that contains the indices of those elements where Ki ¼ TRUE.

3.2. Final remarks

In contact problems, there are different physical magnitudes that can be observed to perform
the adaptive mesh refinement, having each one its advantages and disadvantages. In this
work, the observed magnitude to perform the adaptive mesh refinement is the contact pres-
sure (λi ¼ pi), and the mesh refinement is performed based on the discrete gradient of the
contact pressures. The main advantages of choosing the gradient of the contact pressure as
refinement criterion instead of any other derived magnitude are:

i. On one hand, in this approach, the solution of the contact problem is found in terms of
the contact pressure distribution. From the calculated contact pressure distribution,
derived results are obtained. Since the accuracy of the derived results is dependent from
the accuracy in which contact pressure distribution is calculated, it is important to obtain
an accurate description of the contact pressure distribution.

ii. On the other hand, using the contact pressure distribution, instead of the derived results,
as refinement criteria helps reducing the computational cost of the proposed approach,
because obtaining derived results implies additional calculations.

However, it must be taken into account that the contact pressure distribution function is not
differentiable in the border of the contact area. In consequence, according to Eq. (17), the
discrete rate of change of the contact pressure between an element Δi that is within the contact
area (pi > 0) and of an adjacent element Δj that is outside of the contact area (pj ¼ 0) is always

wj, i ¼ 1. Therefore, if a value lower than 1 is specified for wmax, the refinement strategy will
refine the mesh at the boundary of the contact area until the maximum degree of mesh
refinement will be reached at the border of the true contact area.

The topology of the resulting pressure element mesh, inside and outside the true contact area,
depends on the configuration of the proposed approach, which is defined by a unique combi-
nation of the three input parameters:

i. The initial level of uniform mesh density, Luni.

ii. The maximum degree of mesh refinement, Lmax.

iii. The maximum allowed rate of change of the physical magnitude, wmax.

The possible configurations of the approach, and their effect on the resulting pressure element
mesh, are categorized intro three different settings:
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i. Setting 1 (Luni ≥Lmax, wmax not relevant): using this setting, the contact problem is solved
using a uniform mesh, whose mesh density is defined by Luni.

ii. Setting 2 (Luni < Lmax,wmax ¼ 0): using this setting, the contact problem is solved using
adaptive mesh refinement outside the true contact area. Inside the true contact area, a
uniform mesh is used, whose mesh density is defined by Lmax.

iii. Setting 3 (Luni < Lmax,wmax > 0): using this setting, the contact problem is solved using
adaptive mesh refinement both inside and outside the true contact area.

From the nine steps of the main algorithm, step A5 is the most time consuming. For this
reason, the computational cost of the approach can be defined by the number of influence
coefficients that are calculated to solve the contact problem, which can be determined using
Eq. (16).

4. Numerical examples

The performance of the proposed approach is illustrated in this section, considering its accu-
racy and computational cost. For such a purpose, two cases of study are considered:

• Case of study I (CoSI) corresponds to a punctual contact between a plane and a spherical
indenter, whose dimensions are shown in Figure 9a. Punctual contacts are common in
mechanical components such as ball bearings, gears and rail-wheel systems.

• Case of study II (CoSII) corresponds to a line contact between a plane and a cylindrical
indenter, whose dimensions are shown in Figure 9b. Line contacts are common in
mechanical , such as roller bearings or standard spur and helical gears.

The material of both indenters (CoSI and CoSII) and the plane is assumed to have a Young
modulus of 70 GPa and a Poisson coefficient of 0:35. A total contact load FT ¼ 60 kN is
considered.

In both cases, the root cell of the quadtree results in a 20� 20 mm square. The spherical
indenter has been considered as an elastic half-space. In contrast, two finite dimensions have
been considered for the longitudinal direction of the cylindrical indenter, using the correction
method described in Section 2.3.

Figure 9. Definition of the indenters for (a) case of study I and (b) case of study II.
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between two adjacent elements does not differ more than one level in the quadtree
structure, avoiding unbalanced meshes.

If these conditions are met, the pressure element Δi is marked to be split by defining
Ki ¼ TRUE. The algorithm finishes when all the pressure elements have been evaluated,
returning an array that contains the indices of those elements where Ki ¼ TRUE.

3.2. Final remarks

In contact problems, there are different physical magnitudes that can be observed to perform
the adaptive mesh refinement, having each one its advantages and disadvantages. In this
work, the observed magnitude to perform the adaptive mesh refinement is the contact pres-
sure (λi ¼ pi), and the mesh refinement is performed based on the discrete gradient of the
contact pressures. The main advantages of choosing the gradient of the contact pressure as
refinement criterion instead of any other derived magnitude are:

i. On one hand, in this approach, the solution of the contact problem is found in terms of
the contact pressure distribution. From the calculated contact pressure distribution,
derived results are obtained. Since the accuracy of the derived results is dependent from
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However, it must be taken into account that the contact pressure distribution function is not
differentiable in the border of the contact area. In consequence, according to Eq. (17), the
discrete rate of change of the contact pressure between an element Δi that is within the contact
area (pi > 0) and of an adjacent element Δj that is outside of the contact area (pj ¼ 0) is always

wj, i ¼ 1. Therefore, if a value lower than 1 is specified for wmax, the refinement strategy will
refine the mesh at the boundary of the contact area until the maximum degree of mesh
refinement will be reached at the border of the true contact area.

The topology of the resulting pressure element mesh, inside and outside the true contact area,
depends on the configuration of the proposed approach, which is defined by a unique combi-
nation of the three input parameters:

i. The initial level of uniform mesh density, Luni.

ii. The maximum degree of mesh refinement, Lmax.

iii. The maximum allowed rate of change of the physical magnitude, wmax.

The possible configurations of the approach, and their effect on the resulting pressure element
mesh, are categorized intro three different settings:
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The cases of study I and II are solved under several configurations of the proposed approach,
selected from the three settings described in Section 3.2, and the performance of each configu-
ration is discussed in Sections 4.1 (for configurations within setting 1), 4.2 (for configurations
within setting 2), and 4.3 (for configurations within setting 3).

For each configuration, the computational cost of the approach to solve the contact problem is
evaluated using Eq. (16). The accuracy of the approach is evaluated by comparing the obtained
contact pressure distributions with reference solutions. For case of study I, the reference
solution is determined using the analytical solution provided by the Hertz contact theory
[10]. In contrast, since Hertz theory is no longer applicable for case of study II, reference results
are obtained for this case using a validated finite element model.

4.1. Performance of the approach when a uniform mesh is used for the whole
domain of the contact problem

The performance of the approach when a uniform pressure element mesh is used for the whole
potential contact area is illustrated in this section. To do so, the contact problems defined by
cases of study I and II are solved under several configurations of the approach, in which Luni
has been varied, keeping Luni ¼ Lmax and wmax ¼ 0 (setting 1 in Section 3.1). Figure 10a–c show
examples of the resulting contact area and pressure element mesh that have been obtained for

Figure 10. Axisymmetric representation of the resulting contact area and pressure element mesh obtained for CoSI under
several configurations of the approach.
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case of study I under this setting of the approach. The computational cost of the proposed
approach to solve the case of study I is also shown for each configuration.

The contact pressure distributions along the principal axes of the contact area of the solutions
shown in Figure 10a–c are shown in Figure 11a. As expected, it can be observed that as the
pressure element mesh is refined (by increasing the value selected for Luni), the results obtained
by the proposed approach converge toward the reference solution.

Using this configuration of the approach, a mesh containing 4Luni pressure elements is used,
regardless of the nature of the contact problem to be solved. Under these circumstances, the
computational cost is proportional to 42∙Luni , and the factor of proportionality is the number of
finite dimensions taken into account in the contact problem (as explained in Section 2.3). In
consequence, for any value of Luni, the computational cost of the algorithm to solve case of
study II will always be greater than the computational cost to solve case of study I.

4.2. Performance of the approach when adaptive mesh refinement is performed
outside the true contact area

In this section, the performance of the proposed approach when adaptive refinement is
performed outside the true contact area is illustrated. To do so, the contact problems defined
by cases of study I and II are solved under several configurations of the approach, in which Luni
and Lmax have been varied, keeping Luni < Lmax and wmax ¼ 0 (setting 2 in Section 3.1).
Figures 10d and 12a show examples of the resulting contact area and pressure element mesh
that have been obtained for cases of study I and II under this setting of the approach.

The results obtained in these cases show that the accuracy in which the contact problem is
solved is independent of the value selected for Luni. For any given value of Lmax, the same
contact pressure distributions as the ones obtained with a uniform pressure element mesh for
the whole domain have been obtained (shown in Figure 11a), regardless of the value selected
for Luni. This implies that the variation of the pressure element mesh outside the true contact
area does not have any impact on the solution of the contact problem.

On the other hand, comparing the computational cost of the solutions shown in Figure 10c
(uniform mesh) and 10d (adaptive refinement outside the true contact area), it can be observed

Figure 11. Contact pressure distribution for CoSI under several configurations of the approach.
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The cases of study I and II are solved under several configurations of the proposed approach,
selected from the three settings described in Section 3.2, and the performance of each configu-
ration is discussed in Sections 4.1 (for configurations within setting 1), 4.2 (for configurations
within setting 2), and 4.3 (for configurations within setting 3).

For each configuration, the computational cost of the approach to solve the contact problem is
evaluated using Eq. (16). The accuracy of the approach is evaluated by comparing the obtained
contact pressure distributions with reference solutions. For case of study I, the reference
solution is determined using the analytical solution provided by the Hertz contact theory
[10]. In contrast, since Hertz theory is no longer applicable for case of study II, reference results
are obtained for this case using a validated finite element model.

4.1. Performance of the approach when a uniform mesh is used for the whole
domain of the contact problem

The performance of the approach when a uniform pressure element mesh is used for the whole
potential contact area is illustrated in this section. To do so, the contact problems defined by
cases of study I and II are solved under several configurations of the approach, in which Luni
has been varied, keeping Luni ¼ Lmax and wmax ¼ 0 (setting 1 in Section 3.1). Figure 10a–c show
examples of the resulting contact area and pressure element mesh that have been obtained for

Figure 10. Axisymmetric representation of the resulting contact area and pressure element mesh obtained for CoSI under
several configurations of the approach.
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case of study I under this setting of the approach. The computational cost of the proposed
approach to solve the case of study I is also shown for each configuration.

The contact pressure distributions along the principal axes of the contact area of the solutions
shown in Figure 10a–c are shown in Figure 11a. As expected, it can be observed that as the
pressure element mesh is refined (by increasing the value selected for Luni), the results obtained
by the proposed approach converge toward the reference solution.

Using this configuration of the approach, a mesh containing 4Luni pressure elements is used,
regardless of the nature of the contact problem to be solved. Under these circumstances, the
computational cost is proportional to 42∙Luni , and the factor of proportionality is the number of
finite dimensions taken into account in the contact problem (as explained in Section 2.3). In
consequence, for any value of Luni, the computational cost of the algorithm to solve case of
study II will always be greater than the computational cost to solve case of study I.

4.2. Performance of the approach when adaptive mesh refinement is performed
outside the true contact area

In this section, the performance of the proposed approach when adaptive refinement is
performed outside the true contact area is illustrated. To do so, the contact problems defined
by cases of study I and II are solved under several configurations of the approach, in which Luni
and Lmax have been varied, keeping Luni < Lmax and wmax ¼ 0 (setting 2 in Section 3.1).
Figures 10d and 12a show examples of the resulting contact area and pressure element mesh
that have been obtained for cases of study I and II under this setting of the approach.

The results obtained in these cases show that the accuracy in which the contact problem is
solved is independent of the value selected for Luni. For any given value of Lmax, the same
contact pressure distributions as the ones obtained with a uniform pressure element mesh for
the whole domain have been obtained (shown in Figure 11a), regardless of the value selected
for Luni. This implies that the variation of the pressure element mesh outside the true contact
area does not have any impact on the solution of the contact problem.

On the other hand, comparing the computational cost of the solutions shown in Figure 10c
(uniform mesh) and 10d (adaptive refinement outside the true contact area), it can be observed

Figure 11. Contact pressure distribution for CoSI under several configurations of the approach.
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that an important reduction of the computational cost is achieved by increasing the difference
between Lmax and Luni. Similar tendencies are observed for case of study II, where the reduc-
tions of computational cost are even more remarkable due to the presence of finite dimensions.

4.3. Performance of the approach when adaptive mesh refinement is performed
both inside and outside the true contact area

In this section, the performance of the proposed approach when adaptive refinement is also
performed inside the true contact area is illustrated. To do so, the contact problems defined by
cases of study I and II are solved under several configurations of the approach, in which wmax

has been varied, keeping Luni < Lmax (setting 3 in Section 3.1). Figures 10e, f and 12b show
examples of the resulting contact area and pressure element mesh that have been obtained for
cases of study I and II under this setting of the approach.

The contact pressure distributions along the principal axes of the contact area of the solutions
shown in Figure 10d-f are shown in Figure 11b. The contact pressure distributions along the
principal axes of the contact area of the solutions shown in Figure 12a, b are shown in
Figure 13. It both cases, it can be observed that increasing the value selected for wmax implies
that a coarser mesh is used in those regions of the true contact area where the contact pressure

Figure 12. Axisymmetric representation of the resulting contact area and pressure element mesh obtained for CoSII
under two different configurations of the approach.

Figure 13. Contact pressure distribution for CoSII under several configurations of the approach.
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gradient is small, without a significant loss of accuracy when describing the contact pressure
distribution.

The obtained results show that the accuracy of the approach to predict the size of the true
contact area does not depend on the value selected for wmax, since the same values are obtained
regardless of the value selected for this parameter. This is because when wmax < 1, the accuracy
in which the border of the contact area is computed depends only on the value selected for
Lmax, as stated in Section 3.2.

Finally, comparing the computational cost of the solutions shown in Figure 10d and e (and
Figure 12a and b), it can be observed that a further reduction of the computational cost can be
achieved by specifying values of wmax > 0. Although this reduction is not as important as the
one achieved by maximizing Lmax � Luni (discussed in Section 4.2), it still can help to reduce the
computational cost of the approach.

5. Conclusions

A new semi-analytical approach has been developed to solve frictionless elastic contact prob-
lems using adaptive mesh refinement. Starting from a coarse initial uniform mesh (whose
density is defined by the parameter Luni), a mesh refinement is performed based on two
different criteria: (i) the maximum allowed rate of change of a physical magnitude (the contact
pressure), defined by the parameter wmax and (ii) the maximum degree of mesh refinement,
defined by the parameter Lmax.

The configuration of the approach is defined by a unique combination of values for Luni, Lmax,
and wmax. The performance of the proposed approach has been illustrated with several cases of
study solved under different configurations of the approach, and the obtained results enable
us to draw the following conclusions:

i. When Luni ¼ Lmax, a uniform mesh is used to solve the contact problem, regardless of the
value selected for wmax. Under this configuration, it can be observed that the obtained
results converge toward the reference solution as Luni is increased. However, an exponen-
tial growth of the computational cost is produced as the pressure element mesh is refined.

ii. When Luni < Lmax and wmax ¼ 0, adaptive mesh refinement is performed outside the true
contact area. Under these circumstances, it can be observed that the computational cost
of the approach is reduced by maximizing Lmax � Lini, while the accuracy of the solution
remains unaffected.

iii. In last place, when Luni < Lmax and wmax > 0, adaptive mesh refinement is performed both
inside and outside the true contact area. Under these circumstances, it can be observed
that a further reduction of the computational cost can be achieved. However, a loss of
accuracy can be expected in the prediction of the contact pressure distribution as wmax is
increased.

A further discussion on this topic can be found in Ref. [11].
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Abstract

Structural multilayering and grading has been designed to improve the contact load-
bearing resistance of ultrafine-grained materials. The contact load-bearing response and 
surface damage resistance of multilayered hierarchical structured (MHSed) Ti were eval-
uated by experimental indentation on the overall loading response in conjunction with 
detailed computational simulations of local stresses and strain distribution. The combina-
tion of a hard outer layer, a gradual transition layer and a compliant core results in reduced 
indentation depth, but a deeper and more diffuse sub-surface plastic deformation zone, 
compared to the monolithic nanostructured Ti. The macroscopic indentation resistance 
of MHSed Ti is controlled by the underlying micromechanics of the multilayered hierar-
chical structure. The finite element analysis (FEA) revealed the multilayered hierarchical 
structure offers the effective macroscopic mechanical contact loading resistance, where the 
indenter increasingly “senses” the more compliant core to bear the deformation as the load 
increases. The structural multilayering modifies the stress and strain redistribution and 
effectively reduces the maximum stress concentration within the material. The structural 
grading provide a transitional junction for stress and plastic deformation redistribution 
and achieve more gradual stress distributions between component layers which mitigates 
the interface failure, increases the interfacial toughness, thus providing strong resistance 
to loading damage.
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1. Introduction

Materials with high contact damage resistance are extensively required in aerospace and aircraft, 
vehicle industry, microelectro-mechanical systems and devices, cutting tools and bulletproof 
vests [1, 2]. An approach for improved resistance to surface contact damage is to design sur-
face gradations in composition, microstructure and elastic and/or plastic properties [2–4]. Such 
design provide effective means to enhance materials contact damage resistance through redis-
tribution of thermal and/or mechanical stresses, elimination of interface-induced stress concen-
trations and reduction in the local crack driving force [5–8]. Nature is a master in the design of 
sophisticated hierarchical structured materials which provide excellent damage resistance [9]. A 
typical example is the material structural design principle found in a fish armor [10]. In response 
to predatory threats, fish are protected by armor scales consisting of four distinct reinforcing 
layers of organic/inorganic nanocomposites with hardness and modulus decreasing gradually 
from the outer to the inner layers. The juxtaposition of multiple reinforcing composite layers and 
the gradations, both in microstructure and mechanical properties within and between material 
layers, provides a more compliant protective mechanism than the monolithic counterpart [10].

Inspired from the material structural design principle discovered in natural/biological sys-
tems, materials scientists have generated enormous interest in replicating natural/biological 
structures with excellent damage resistance than their conventional counterparts. Over the 
past 2 decades, significant progress has been made in synthesis and fabrication of materi-
als with graded properties over multiple length scales. Elastically graded materials (EGMs), 
where the materials have gradient in elastic modulus as a function of depth beneath the sur-
face, were synthesized by controlled infiltration of aluminosilicate or oxynitride glass into 
polycrystalline ceramic matrix, which offered superior resistance to contact damage than 
either constituent ceramic matrix or glass [11–13]. Plastically graded materials (PGMs) were 
produced by increasing or decreasing the grain size within the nanocrystalline or microcrys-
talline range to create a linear gradation of yield strength as a function of depth below the 
material surface according to classical Hall–Petch effect [3]. The benefit of the gradient effect 
on the stress–strain and deformation response under normal indentation have been demon-
strated by analytical [14], computational [15–17] and experimental studies [18, 19].

In our recent work [20], we extended the EGM/PGM concept to design a multilayered hier-
archical structure (MHS) on Ti. By the application of Surface Mechanical Attrition Treatment 
(SMAT) [21] to cryorolled Ti, a three-layered structure formed consisting of an outer amor-
phous/nanocrystallite (A/NC) layer, an inner nanograined (NG) layer and ultrafine-grained 
(UFG) core [20]. Nanoindentation through the cross-section of the multilayered hierarchical 
structured (MHSed) Ti revealed a gradual decrease in hardness and modulus within and 
between each successive structural layer [20]. These properties correlate with the microstruc-
ture characteristics and the design principle found in natural systems, such as fish armor 
[10]. The work hardening of the MHSed Ti was improved largely by such structural design 
[20]. Moreover, the gradations in structure and properties, pore and crack-free nature and the 
inherently damage tolerant top A/NC layer of MHSed Ti are expected to benefit the contact 
deformation and damage resistance of MHSed Ti.
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Studies of the effects of microstructural, compositional, and property gradients on the overall 
elastic–plastic response under contact loading are an area of great interest, and much progress 
has been achieved in the fundamental understanding of graded surface damage resistance [2]. 
However, systematic investigations of the multilayered hierarchical structure on indentation 
response, contact damage resistance and contact surface failure of graded ultrafine-grained 
(UFG) metal, in particular with regards to the structural multilayering and grading, have not 
been investigated by multiscale experimental and computational approaches and the mecha-
nism of the contact load-bearing response in these situations is also largely unknown.

In this Chapter, we focus on the contact load-bearing response and surface damage resistance 
of MHSed Ti relative to monolithic nanostructured Ti. Through experimental investigations 
and computational simulations of local stress and strain distributions, the mechanism of the 
contact load-bearing response of MHSed Ti is explored. These results provide clear evidence 
of improved contact load-bearing capacities through structural multilayering and grading. 
Such information is of practical value for the design of UFG materials with excellent contact 
load-bearing capacities for engineering applications.

2. Experimental procedures

The MHSed Ti was produced by the following experimental procedures. A commercial Ti 
plate (Grade 2) with 36 mm in thickness was cryogenically rolled to 5 mm with per reduction 
of ∼2 mm. The detailed microstructure characterizations of the cryorolled Ti have been given 
elsewhere [22]. The cryorolled workpiece then was cut parallel to the rolling direction (RD) to 
a rectangular bar with dimensions of 5 × 5 × 90 mm3. Subsequently, one lateral surface of the 
rectangular bar was subjected to SMAT. The SMAT process was performed in a low vacuum 
condition using hardened stainless steel balls (8 mm in diameter) at a vibration frequency of 
50 Hz for 60 min. The detailed MHS process can be found in [20]. The production of mono-
lithic NG Ti has been given in [22].

Figure 1a shows a schematic illustration of the nanoindentation and contact load-bearing test-
ing. Nanoindentation experiments were carried out at ambient temperature using an UMIS 
indentation system with a Berkovich diamond tip at a strain rate of 5 × 10−2 s−1 and a maximum 
load of 20 mN. Before testing, the cross-sectional surface was polished to 0.5 μm diamond sus-
pension finish. The values of the nanoindentation hardness and modulus quoted here were 
the average of 10 measurements on the cross-sectional surface. Before Vickers microhard-
ness and load-bearing testing, artifacts on the surface caused by MHS process were care-
fully removed by polishing to 0.5 μm diamond suspension finish (removal thickness < 2 μm). 
Vickers microhardness testing was conducted using a microhardness tester (FM 700) under a 
load of 0.5, 1, 3, 5, 10 N on the MHSed surface at more than 10 points and the average values 
were reported here. Load-bearing testing was conducted with a spherical tungsten carbide 
(WC) indenter with diameter of 1.5 mm in ambient conditions. The WC indenter had an elas-
tic modulus of 640 GPa and a Poisson’s ratio of 0.26. The indenter came into contact with the 
specimen surface and was loaded to a maximum load of 1000 N at a loading rate of 1000 N/s. 
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plate (Grade 2) with 36 mm in thickness was cryogenically rolled to 5 mm with per reduction 
of ∼2 mm. The detailed microstructure characterizations of the cryorolled Ti have been given 
elsewhere [22]. The cryorolled workpiece then was cut parallel to the rolling direction (RD) to 
a rectangular bar with dimensions of 5 × 5 × 90 mm3. Subsequently, one lateral surface of the 
rectangular bar was subjected to SMAT. The SMAT process was performed in a low vacuum 
condition using hardened stainless steel balls (8 mm in diameter) at a vibration frequency of 
50 Hz for 60 min. The detailed MHS process can be found in [20]. The production of mono-
lithic NG Ti has been given in [22].

Figure 1a shows a schematic illustration of the nanoindentation and contact load-bearing test-
ing. Nanoindentation experiments were carried out at ambient temperature using an UMIS 
indentation system with a Berkovich diamond tip at a strain rate of 5 × 10−2 s−1 and a maximum 
load of 20 mN. Before testing, the cross-sectional surface was polished to 0.5 μm diamond sus-
pension finish. The values of the nanoindentation hardness and modulus quoted here were 
the average of 10 measurements on the cross-sectional surface. Before Vickers microhard-
ness and load-bearing testing, artifacts on the surface caused by MHS process were care-
fully removed by polishing to 0.5 μm diamond suspension finish (removal thickness < 2 μm). 
Vickers microhardness testing was conducted using a microhardness tester (FM 700) under a 
load of 0.5, 1, 3, 5, 10 N on the MHSed surface at more than 10 points and the average values 
were reported here. Load-bearing testing was conducted with a spherical tungsten carbide 
(WC) indenter with diameter of 1.5 mm in ambient conditions. The WC indenter had an elas-
tic modulus of 640 GPa and a Poisson’s ratio of 0.26. The indenter came into contact with the 
specimen surface and was loaded to a maximum load of 1000 N at a loading rate of 1000 N/s. 
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Microstructural and damage observations were conducted using a field-emission gun scan-
ning electron microscope (SEM) Zeiss Supra 55VP operated at 10 kV and a transmission elec-
tron microscope (TEM) Jeol JEM 2100 operated at 200 kV.

A two-dimensional axisymmetric model was developed to simulate the ball indentation using 
Abaqus v6.10. The specimens were modeled as isotropic, elastic–perfectly plastic following 
the large-deformation theory. The finite element mesh contained 42,163 four-node bilinear 
axisymmetric quadrilateral elements (CAX4R), with a refined mesh in the indentation region 
(Figure 1b). Mesh convergence was verified by comparing load–depth curves and stress con-
tours using models with element number ranging from 11,183 to 42,163. A user subroutine 
UMAT was developed to take into account the gradation of material properties, in which the 
discrete and gradient model parameters were assigned to elements based on their distance 
from the surface (see later for further details). The ball indenter was modeled as a rigid body, 
and the contact between the indenter and specimen was assumed frictionless. A maximum load 
of 1000 N was applied to indent the samples at a loading rate of 1000 N/s. The finite element 
analysis (FEA) of the microindentation adopted a similar methodology to the axisymmetric 
nanoindentation simulations. The Vickers indenter was modeled to be a conical rigid indenter 
with an apex angle of 70.3° and tip radius of 3.4 μm, which approximates a Vickers indenter tip.

3. Results

3.1. Microstructure

A SEM cross-sectional view of the MHSed Ti surface shows three-layered structure without sharp 
interfaces between the successive layers (Figure 2a). TEM analysis revealed that the ∼30 μm thick 
top layer was composed of a bright phase matrix and a discrete darker nanostructure (Figure 2b). 

Figure 1. (a) Schematic illustration of the surface load-bearing and cross-sectional nanoindentation testing. The black 
ball represents the load-bearing testing indenter and the black triangle represents the indent of nanoindentation testing. 
(b) Finite element mesh of the ball indentation model.
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The upper right inset taken from the bright matrix region exhibited a broad diffuse halo in a 
selected-area diffraction pattern (SAD), which is typical of a fully amorphous phase. The SAD 
pattern in the lower left inset taken from the interface between the bright and dark phases clearly 
demonstrates the presence of a nanocrystalline phase together with the amorphous phase. The 
NG layer (∼60 μm thick), situated beneath the A/NC layer, consisted of nanograins (Figure 2c). 
The corresponding SAD pattern shows a ring pattern, demonstrating the nanostructure has ran-
dom crystallographic orientations. The size of the nanograins was in the range from 5 to 80 nm 
with an average size of ∼40 nm (Figure 2e). The UFG core is composed of ultrafine equiaxed 
grains with a grain size distribution of 50–250 nm (Figure 2d and f).

3.2. Mechanical gradations

Nanoindentation was used to measure the elastic and plastic mechanical properties spatially 
through the cross-section of the MHSed Ti. The elastic mismatch and delamination, commonly 
existed in other multilayered systems produced by deposition or coating, are two critical fac-
tors controlling crack confinement [23]. In contrast, due to the gradients in both the strain and 
strain rate induced by the cryorolling and SMAT process from the top surface to the inner 
core, the reported MHSed Ti is free from elastic mismatch and delamination between layers. 
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Figure 2. Microstructural characteristic of the MHSed Ti: (a) SEM cross-sectional image. (b) TEM bright-field (BF) image 
of the microstructure situated 20 μm below the top surface. The upper right and lower left insets are the selected-area 
diffraction (SAD) patterns of the bright region the dark region, respectively; (c) TEM BF image of the microstructure 
located 60 μm below the top surface. The inset shows the corresponding SAD pattern; (d) TEM BF image of the innermost 
core. The inset shows the corresponding SAD pattern; (e and f) histogram of the grain size distribution in the NG layer 
(e) and UFG core (f). The grain size D was defined by  D =  √ 

_______
  d  T   ×  d  L     , dT is the transverse length of the grain and dL is the 

longitudinal length. 300 grains were statistical measured from several TEM dark-field (DF) images.
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The upper right inset taken from the bright matrix region exhibited a broad diffuse halo in a 
selected-area diffraction pattern (SAD), which is typical of a fully amorphous phase. The SAD 
pattern in the lower left inset taken from the interface between the bright and dark phases clearly 
demonstrates the presence of a nanocrystalline phase together with the amorphous phase. The 
NG layer (∼60 μm thick), situated beneath the A/NC layer, consisted of nanograins (Figure 2c). 
The corresponding SAD pattern shows a ring pattern, demonstrating the nanostructure has ran-
dom crystallographic orientations. The size of the nanograins was in the range from 5 to 80 nm 
with an average size of ∼40 nm (Figure 2e). The UFG core is composed of ultrafine equiaxed 
grains with a grain size distribution of 50–250 nm (Figure 2d and f).

3.2. Mechanical gradations

Nanoindentation was used to measure the elastic and plastic mechanical properties spatially 
through the cross-section of the MHSed Ti. The elastic mismatch and delamination, commonly 
existed in other multilayered systems produced by deposition or coating, are two critical fac-
tors controlling crack confinement [23]. In contrast, due to the gradients in both the strain and 
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Moreover the MHSed Ti possesses mechanical gradations within and between each succes-
sive layer. The Oliver–Pharr [24] indentation hardness HO–P (ranging from ∼5.3 to ∼3.2 GPa) 
and modulus EO–P (ranging from ∼137 to ∼113 GPa) gradually decreased with the distance 
from the top surface to the core (Figure 3a and b). The highest average indentation hardness 
(∼5.2 GPa) of the top A/NC layer is consistent with its microstructure which is composed of 
amorphous and nanocrystalline phases. The NG layer has nanograins compared with the A/
NC layer, but reduced grain size relative to the UFG core, consistent with the mechanical 
trend observed in Figure 3a and b. The UFG core, consists of ultrafine equiaxed grains with 
average grain size of ∼180 nm, thus has the lowest average indentation hardness (∼3.2 GPa). 
Figure 3c shows the SEM image of the residual indents after indentation unloading. The 
absence of radial or circumferential cracks confirms the plastic nature of the material layers. 
The mechanical gradations were calculated as the slope of datasets presented in Figure 3a. 
With the distance from the outer surface to inner core, approximately negative linear grada-
tions in both EO–P and HO–P were obtained within the top A/NC and the NG layers beneath. 
The UFG core, however, show no detectable gradation. Table 1 summarizes the gradations of 
EO–P and HO–P in each layer.

3.3. Contact load-bearing response

The experimental contact load-bearing response of the MHSed Ti and the monolithic NG Ti is 
shown in Figure 4. For the same contact load (1000 N), a relatively small contact impression 
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Figure 3. Mechanical gradations of the MHSed Ti. (a) Hardness and modulus through the cross-section of MHSed Ti 
using a 20 mN maximum load; (b) average indentation hardness and modulus for each of the layers; and (c) SEM images 
of the residual indents on the cross-section of each layer. From left to right: A/NC, NG, and UFG.
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for the MHSed Ti is expected due to the high hardness and strength of the top A/NC layer. 
The residual impression radius for the MHSed Ti and the monolithic NG were measured 
to be 424 and 488 μm (Figure 4a and b), respectively. A complete suppression of cracks in 
the MHSed material was clearly substantiated by SEM observations (Figure 4c). In contrast, 
cracks (marked by white arrows) appeared to initiate at the contact edge of the indentation 
and propagate through the region in the monolithic NG Ti, most likely due to local stress 
concentrations (Figure 4d).

Most of the plastic deformations of the tested materials occur within a semi-circular area as 
revealed by optical microscopy observation on the cross sections (Figure 4e–h). The semi-cir-
cle represents an elastic–plastic deformation border and the semi-circular area can be consid-
ered as the plastic strain zone. The overall through-thickness impact impression of the MHSed 
Ti is comparatively much lower (Figure 4c) than the monolithic NG Ti (Figure 4d), how-
ever, the MHSed Ti yields a significant compliance and the elastic–plastic deformation border 
occurs at a greater depth compared with the monolithic NG material (Figure 4e and f). The 
radius of the plastic strain zone for the MHSed Ti and monolithic NG Ti was established to be 
∼530 μm and ∼460 μm, respectively. High magnification observations on the elastic–plastic 
strain boundary revealed that the MHSed Ti achieves more gradual strain redistribution than 
the monolithic NG Ti in which intense shear localization were found (Figure 4g and h). The 
smooth transitional region for elastic–plastic deformation in the MHSed materials is the direct 
result of the multilayered structure accommodating the imposed load. These results suggest 
that the multilayered structure and the associated mechanical gradations in the material offer 
an advantageous mechanism for contact damage resistance.

3.4. Computational simulations

To better understand how the structural multilayering and grading influences the contact load-
bearing behavior of the MHSed materials, an elastic–perfectly plastic finite element analysis 
(FEA) computational model was developed. Here the three-dimensional indenter geometry 
represented as two dimensional, axisymmetric and rigid has been simulated to fit the experi-
mental nanoindentation loading-depth data for each layer. The extensive study showed that 
incorporating the post yield strain hardening (linear isotropic, linear kinematic and Ramberg–
Osgood isotropic hardening) into the models had a minimal effect on improving the prediction 
of the simulated data and the estimated yield strength [10]. Consequently, we assume zero 
hardening for plastic behavior and that the material deformation is elastic–perfectly plastic. 
This is a simple and effective approach to describe the mechanical behavior of the material.

Components (layer) Gradation EO–P (GPaμm−1) Gradation HO–P (GPaμm−1)

A/NC −0.57 −0.013

NG −0.25 −0.014

UFG 0 0

Table 1. Mechanical gradations in each component layer.
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for the MHSed Ti is expected due to the high hardness and strength of the top A/NC layer. 
The residual impression radius for the MHSed Ti and the monolithic NG were measured 
to be 424 and 488 μm (Figure 4a and b), respectively. A complete suppression of cracks in 
the MHSed material was clearly substantiated by SEM observations (Figure 4c). In contrast, 
cracks (marked by white arrows) appeared to initiate at the contact edge of the indentation 
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Figure 4. SEM and OM images of indentation testing results of the MHSed Ti and monolithic NG Ti. (a and b) Top 
surface SEM views of the MHSed Ti and monolithic NG Ti, respectively. (c and d) Cross-sectional view of the MHSed Ti 
and monolithic NG Ti, respectively. (e and f) OM cross-sectional views of the plastic deformed area in the MHSed Ti and 
monolithic NG Ti, respectively. (g and h) HR OM images of the boundary of elastic–plastic strain zone for the MHSed 
Ti and monolithic NG Ti, respectively.
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In these simulations, the FEA-predicted unloading slope was selected to match the experimen-
tally calculated average EO–P for each layer (Figure 3b). Various material yield strengths (σY) 
were chosen to determine the optimal value at which the FEA-predicted load and unload–depth 
curve best fits the experimental load and unload–depth curve. The averaged experimental 
load–depth curves (solid line in Figure 5) were selected from the experimental nanoinden-
tation load–depth curve dataset, whose unloading slope represents the average indentation 
modulus for each layer presented in Figure 3b. In the initial simulations, the yield strength 
of each layer was based on results from our earlier work using micro-compression testing 
[20]. Using such yield strength, the simulated load–depth curve (dash line in Figure 5) was 
obtained and compared to the averaged experimental curve. By adjusting the yield strength 
value and iteratively repeating the simulations until the simulated and experimental curves 
correlated (Figure 5), the yield strength for each layer was determined. Figure 5 shows the FEA 
simulations best fit the averaged experimental load–depth curve for each component layer. All 
the component layers exhibit mechanical hysteresis and energy dissipation (calculated as the 
area of the average experimental load–depth curves), which increased with the distance from 
the outer layer. The good agreement between the experimental data and the computational 
simulations gives the material yield strength σY values of 1.76, 1.38 and 1.15 GPa for the A/NC 
layer, the NG layer and the UFG core, respectively.

In our FEA simulations, the effects of the structural multilayering and grading on the large-
length-scale mechanical indentation of the MHSed Ti were explored by constructing two axi-
symmetric two-dimensional FEA models. The first “discrete” model consisted of a MHS of three 

Figure 5. Experimental and FEA simulated average nanoindentation load–depth curves for the A/NC, NG layers and the 
UFG core.
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Figure 6. (a) FEA simulated models of discrete (left) and gradient (right) multilayered structure, the corresponding elastic 
modulus and yield strength distributions are presented in the center. (b) FEA simulated microindentation load–depth 
curves for different component layer and two models (discrete and gradient), (c) simulated effective microhardness and 
experimentally measured values, (d) simulated effective indentation modulus, and (e) simulated effective energy dissipation.
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layers with thicknesses matching their experimentally measured values (Figure 6a, left). In the 
discrete model, each layer was assumed to possess isotropic, elastic–perfectly plastic constitutive 
behavior with E and σY taken as those calculated from FEA simulations of the averaged loading-
depth data in Figure 5. The second “gradient” model is also composed of the three component 
layers with thickness corresponding to their experimental values and assumed isotropic elastic–
perfectly plastic material property, but incorporates linear gradations (Table 1) in E (scaled by 
the measured EO–P gradation) and σY (scaled by the measured HO–P gradation) within the mate-
rial layers (Figure 6a, right). Figure 6b shows the FEA simulation results of these two models 
compared with three simulations of the single homogeneous component layer of the A/NC, NG 
layers and the UFG core. The predications of these two multilayered models show similar load–
depth behavior and both fell in between the simulation of the A/NC and the NG layers.

Based on the FEA simulations, the mechanical behavior of the MHS material was explored by 
deducing each load–depth performance to an effective O–P modulus, effective microhardness 
and energy dissipation. The effective modulus and hardness predicted for the two models 

a
a

All NG

Gradient

1

2

3

500µm

Discrete

b

c

Figure 7. The simulated strain and stress contours for 1000 N maximum load indentation. (a) Monolithic NG, (b) discrete 
model, and (c) gradient model. Sii (i = 1–3) represents the normal stress along i axis, and S12 is the shear stress that is in 
the plane perpendicular to the 1 axis and acts along the 2 axis.
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model, and (c) gradient model. Sii (i = 1–3) represents the normal stress along i axis, and S12 is the shear stress that is in 
the plane perpendicular to the 1 axis and acts along the 2 axis.
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(discrete and gradient systems) showed a loading-dependency, which is not the case for the 
single homogeneous systems (Figure 6c and d). The effective modulus and hardness for dis-
crete and gradient systems decreased nonlinearly between that of the A/NC layer at small 
loads and the values corresponding to UFG core at maximum load of 10 N. Good agreement in 
the magnitude and the load dependency was achieved between the effective hardness and the 
experimentally measured microhardness (Figure 6d). The effective energy dissipation of these 
two models was found to increase with increasing load and all fell in between the A/NC layer 
and the UFG core (Figure 6e).

3.5. Strain and stress simulation

The contact load-bearing behavior of the MHSed Ti was further assessed using FEA to simu-
late the stress and strain distributions within the materials. Figure 7 shows the stresses and 
corresponding equivalent plastic strain contours after unloading (maximum load of 1000 N) 
for the simulated multilayered systems (discrete and gradient) as compared with that of the 
monolithic NG material. As presented by the color contours, both the stresses and the equiva-
lent strains exhibit graded distributions within the gradient model, as opposed to the abrupt 
changes observed in the discrete model. The maximum magnitude of equivalent plastic strain 
in the monolithic NG material (0.17) is greater than those in both the discrete and gradi-
ent multilayers (0.14 and 0.13, respectively). However, the multilayered models (discrete and 
gradient) achieve deeper and a broader plastic deformation field than that of the monolithic 
NG material. These simulations further suggest that the structural multilayering and grading 
modified the stress and strain distribution and reduce the overall plastic strain level through-
out the material under indentation conditions.

4. Discussion

4.1. Structural multilayering

The present experimental studies show the plastic deformed area for the MHSed material 
was markedly greater than that for monolithic NG (Figure 4) and this is consistent with the 
results obtained from FEA microindentation simulations, where the indenter increasingly 
induces the more compliant UFG core as the load increases (Figure 6c and d). Further FEA 
simulations showed that the degree of energy dissipation (occurring by the inelastic deforma-
tion) of multilayered cases (discrete and gradient) increased with increasing load (Figure 6e). 
These results indicate that the macroscopic indentation behavior was directly governed by 
the underlying micromechanics of the multilayered structure. The load–depth FEA simula-
tions (Figure 6) revealed that there was negligible difference in the load–depth response for 
the discrete and gradient models, suggesting that it is the overall structural multilayering that 
provides the effective macroscopic mechanical loading resistance rather than the grading.

Recent experimental nanoindentation studies, supported by cross-sectional electron microscopy 
observations, revealed that the multilayered structures provide a higher resistance to deforma-
tion than monolithic counterparts [25–27]. FEA simulations indicated that the structural layering 
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modified the stress distribution and reduced the overall strain values, suppressing crack forma-
tion [28]. In our present study, the multilayered models (discrete and gradient) showed a consid-
erable redistribution of the overall equivalent plastic strain field and a significant reduction in the 
maximum strain levels (Figure 7). The plastic equivalent strain contours revealed an increased 
depth and strain area of plastic deformation for the multilayered systems compared with the 
monolithic NG material. This is a direct result of transferring the plastic strain to the underly-
ing UFG core with a lower σY than the NG layer, thereby diffusing the total plastic deformation 
energy. The FEA results coincide with the experimental results presented in Figure 4 where the 
MHSed Ti diffuses plastic deformation over a greater region relative to the monolithic NG Ti.

4.2. Mechanical grading

The discrete and gradient models were shown to achieve similar macroscopic effective inden-
tation modulus and microhardness (Figure 6). However, FEA simulations revealed differ-
ences in the stress and plastic equivalent strain distributions between gradient and discrete 
models after unloading (Figure 7). The magnitude of the equivalent plastic deformation in 
the top A/NC and NG layers in the gradient system is lower than that experienced in the 
discrete system. Further, the magnitude and area of plastic deformation in the UFG core are 
greater in the gradient system compared with the discrete system. This result reveals that the 
reduction in the stresses and plastic deformation in the top layers is a direct consequence of 
the increased deformation and energy dissipation accommodated by the softer inner UFG 
core. Moreover, the mechanical gradations in the successive layers and junctions are observed 
to give rise to more gradual stress redistribution between component layers, as opposed to 
the abrupt stress changes observed in the discrete model (Figure 8). Such graded stress dis-
tribution is believed to lessen the interface failure and increase the interfacial toughness, thus 
providing strong resistance to loading-damage [10, 29].

The different transition patterns between elastic and plastic deformation shown in Figure 6 are 
consistent with the FEA simulation results. The smooth transitional region in the MHSed Ti is 
attributed to its graded stress distribution achieved by microstructural grading. The absence 
of any interfacial failure, such as delamination or fracture, observed between the layers in the 

Figure 8. Distribution of Von Mises stress under the indentation regions in (a) discrete and (b) gradient models, while (c) 
shows the Von Mises stresses across the interfaces along the white dotted lines.
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(discrete and gradient systems) showed a loading-dependency, which is not the case for the 
single homogeneous systems (Figure 6c and d). The effective modulus and hardness for dis-
crete and gradient systems decreased nonlinearly between that of the A/NC layer at small 
loads and the values corresponding to UFG core at maximum load of 10 N. Good agreement in 
the magnitude and the load dependency was achieved between the effective hardness and the 
experimentally measured microhardness (Figure 6d). The effective energy dissipation of these 
two models was found to increase with increasing load and all fell in between the A/NC layer 
and the UFG core (Figure 6e).

3.5. Strain and stress simulation

The contact load-bearing behavior of the MHSed Ti was further assessed using FEA to simu-
late the stress and strain distributions within the materials. Figure 7 shows the stresses and 
corresponding equivalent plastic strain contours after unloading (maximum load of 1000 N) 
for the simulated multilayered systems (discrete and gradient) as compared with that of the 
monolithic NG material. As presented by the color contours, both the stresses and the equiva-
lent strains exhibit graded distributions within the gradient model, as opposed to the abrupt 
changes observed in the discrete model. The maximum magnitude of equivalent plastic strain 
in the monolithic NG material (0.17) is greater than those in both the discrete and gradi-
ent multilayers (0.14 and 0.13, respectively). However, the multilayered models (discrete and 
gradient) achieve deeper and a broader plastic deformation field than that of the monolithic 
NG material. These simulations further suggest that the structural multilayering and grading 
modified the stress and strain distribution and reduce the overall plastic strain level through-
out the material under indentation conditions.

4. Discussion

4.1. Structural multilayering

The present experimental studies show the plastic deformed area for the MHSed material 
was markedly greater than that for monolithic NG (Figure 4) and this is consistent with the 
results obtained from FEA microindentation simulations, where the indenter increasingly 
induces the more compliant UFG core as the load increases (Figure 6c and d). Further FEA 
simulations showed that the degree of energy dissipation (occurring by the inelastic deforma-
tion) of multilayered cases (discrete and gradient) increased with increasing load (Figure 6e). 
These results indicate that the macroscopic indentation behavior was directly governed by 
the underlying micromechanics of the multilayered structure. The load–depth FEA simula-
tions (Figure 6) revealed that there was negligible difference in the load–depth response for 
the discrete and gradient models, suggesting that it is the overall structural multilayering that 
provides the effective macroscopic mechanical loading resistance rather than the grading.

Recent experimental nanoindentation studies, supported by cross-sectional electron microscopy 
observations, revealed that the multilayered structures provide a higher resistance to deforma-
tion than monolithic counterparts [25–27]. FEA simulations indicated that the structural layering 
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modified the stress distribution and reduced the overall strain values, suppressing crack forma-
tion [28]. In our present study, the multilayered models (discrete and gradient) showed a consid-
erable redistribution of the overall equivalent plastic strain field and a significant reduction in the 
maximum strain levels (Figure 7). The plastic equivalent strain contours revealed an increased 
depth and strain area of plastic deformation for the multilayered systems compared with the 
monolithic NG material. This is a direct result of transferring the plastic strain to the underly-
ing UFG core with a lower σY than the NG layer, thereby diffusing the total plastic deformation 
energy. The FEA results coincide with the experimental results presented in Figure 4 where the 
MHSed Ti diffuses plastic deformation over a greater region relative to the monolithic NG Ti.

4.2. Mechanical grading

The discrete and gradient models were shown to achieve similar macroscopic effective inden-
tation modulus and microhardness (Figure 6). However, FEA simulations revealed differ-
ences in the stress and plastic equivalent strain distributions between gradient and discrete 
models after unloading (Figure 7). The magnitude of the equivalent plastic deformation in 
the top A/NC and NG layers in the gradient system is lower than that experienced in the 
discrete system. Further, the magnitude and area of plastic deformation in the UFG core are 
greater in the gradient system compared with the discrete system. This result reveals that the 
reduction in the stresses and plastic deformation in the top layers is a direct consequence of 
the increased deformation and energy dissipation accommodated by the softer inner UFG 
core. Moreover, the mechanical gradations in the successive layers and junctions are observed 
to give rise to more gradual stress redistribution between component layers, as opposed to 
the abrupt stress changes observed in the discrete model (Figure 8). Such graded stress dis-
tribution is believed to lessen the interface failure and increase the interfacial toughness, thus 
providing strong resistance to loading-damage [10, 29].

The different transition patterns between elastic and plastic deformation shown in Figure 6 are 
consistent with the FEA simulation results. The smooth transitional region in the MHSed Ti is 
attributed to its graded stress distribution achieved by microstructural grading. The absence 
of any interfacial failure, such as delamination or fracture, observed between the layers in the 

Figure 8. Distribution of Von Mises stress under the indentation regions in (a) discrete and (b) gradient models, while (c) 
shows the Von Mises stresses across the interfaces along the white dotted lines.
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MHSed Ti under indentation further confirms that mechanical gradations provide resistance 
to interfacial failures. The smaller magnitude of the stresses and plastic deformation within 
the “stiffer” top layers and the greater plastic deformation in “softer” inner UFG core for the 
gradient system diffuse the total plastic deformation energy and offer a suppression to strain 
localization which occurred in the monolithic NG Ti (Figure 4h).

4.3. Cracks and stress concentrations

Identifying the linkage between stress and strain concentration and the initiation of cracks 
experimentally observed is one of the most important issues in FEA analysis. There are three 
types of cracks in hard materials under indentation conditions: edge, radial and lateral shear 
cracks (also known as delamination) [26, 28]. Edge cracks begin at the contact edge of the 
indentation and extend into the material, and are associated with the local tensile and shear 
stresses [28]. Lateral shear cracks are the result of shear strain localization arising from the 
high shear stress during indentation testing [30]. Radial cracks generally initiate directly under 
the indentation and propagates in a direction parallel to the indentation at excessive radial 
stresses [28]. The cracks observed in the present study (Figure 4d and f) agree well with the 
stress concentrations predicted by FEA simulations (Figure 7). The location of the edge cracks 
observed experimentally in monolithic NG Ti are consistent with the tensile stress (S11) and 
shear stress (S12) locations where the maximum tensile stress and shear stress appear imme-
diately below the indenter (Figure 7). However, within the MHSed Ti, the stress (S11 and 
S12) variation is more gradual, with the shear stress reduced by 38% (0.21–0.13 GPa) at the 
maximum stress location. Such stress distribution and stress magnitude reduction explains 
the experimental observation that edge cracks were absent from the MHSed Ti but clearly 
occurred in monolithic NG Ti. The shear stresses in monolithic NG Ti are distributed over 
the plastic deformation region and coincide with the sites where shear bands were experi-
mentally observed. With regards to the MHSed Ti, the multilayering and grading reduce the 
magnitude of maximum shear stress (Figure 7), therefore, the shear localized deformation 
was absent in the MHSed Ti (Figure 4g). These analyses reveal that multilayering and grading 
can significantly modify the stress field and effectively reduced the maximum stress concen-
tration within the materials, thereby reduce the probability of cracks and shear localization 
which was commonly experienced in monolithic materials under indentation condition.

4.4. Other aspects contribute to the contact load-bearing

Our previous study [31] using micropillar compression testing has shown the deformation-
induced precipitation of nanocrystals in the outer A/NC layer. The interaction of microcracks and 
shear bands with these nanocrystals allowed high ductility in this layer. This plasticity was evident 
in the present study by the indentation-induced deformation in the A/NC layer (Figure 4a and e). 
Previous studies demonstrated that the inelastic deformation occurring in the graded ceramics 
can contribute toward the cone-crack suppression [11, 12]. The susceptibleness of the A/NC layer 
to deform plastically reduces the propensity for cracking under indentation condition.

Contact and Fracture Mechanics92

Residual stress may also be contributing to crack suppression in the deformed MHSed Ti struc-
ture. Residual surface compressive stress can be induced by various techniques to improve 
the contact damage resistance and strength of many brittle materials [32]. Further, multilayer-
ing and mechanical grading of a surface is known produce complex residual stresses [33, 34]. 
The residual stress–depth profile analysis [20] revealed that the MHSed Ti has residual com-
pressive stresses through the layers and a tensile stress at the NG layer/UFG core interface. 
The residual compressive stress in A/NC and NG layers act to arrest crack development and 
increase damage resistance, however the residual tensile stress at NG/UFG junction theoreti-
cally increases the propensity for crack initiation under contact loading. Given the absence of 
cracking at the NG/UFG interface, it appears the reduction of maximum stress and the atten-
dant of redistribution of the stresses arising from multilayering and mechanical grading more 
than compensate for the residual tensile stress.

5. Summary and conclusions

In summary, we report on both the contact load-bearing response and underlying deforma-
tion mechanism for MHSed Ti using indentation testing in combination with detailed compu-
tational simulations of local stresses and plastic deformation strain distributions. The results 
provide evidence for enhanced contact load-bearing resistance and energy dissipation by intro-
ducing multilayers and mechanical gradations into the surface region of the UFG material. This 
material design strategy is expected to applicable to a broad class of metallic materials. The 
following conclusions can be drawn from this study:

(1) The MHSed Ti exhibited enhanced resistance to contact loading damage compared to 
the monolithic NG Ti. The multilayering and grading of UFG materials suppressed the 
formation of cracks and increased the loading damage resistance.

(2) The macroscopic indentation resistance of the MHSed Ti arises from the underlying 
micromechanics of the multilayered structure. The overall multilayered structure offers 
the effective macroscopic mechanical loading resistance, where the loading increasingly 
induces the more compliant structure to bear the deformation as the load increases.

(3) The mechanical gradation provides a transitional junction for stress redistribution and 
achieves a more gradual stress distribution between component layers. Such a graded 
stress distribution mitigates the interface failure and increases the interfacial toughness, 
thus providing strong resistance to loading damage.

(4) The microstructural multilayering and grading of UFG metal can significantly modify 
the stress field and effectively reduce the maximum stress concentration within the mate-
rial, thereby reduce the probability of cracks and shear localization which are commonly 
experienced in monolithic materials under indentation conditions.
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MHSed Ti under indentation further confirms that mechanical gradations provide resistance 
to interfacial failures. The smaller magnitude of the stresses and plastic deformation within 
the “stiffer” top layers and the greater plastic deformation in “softer” inner UFG core for the 
gradient system diffuse the total plastic deformation energy and offer a suppression to strain 
localization which occurred in the monolithic NG Ti (Figure 4h).

4.3. Cracks and stress concentrations

Identifying the linkage between stress and strain concentration and the initiation of cracks 
experimentally observed is one of the most important issues in FEA analysis. There are three 
types of cracks in hard materials under indentation conditions: edge, radial and lateral shear 
cracks (also known as delamination) [26, 28]. Edge cracks begin at the contact edge of the 
indentation and extend into the material, and are associated with the local tensile and shear 
stresses [28]. Lateral shear cracks are the result of shear strain localization arising from the 
high shear stress during indentation testing [30]. Radial cracks generally initiate directly under 
the indentation and propagates in a direction parallel to the indentation at excessive radial 
stresses [28]. The cracks observed in the present study (Figure 4d and f) agree well with the 
stress concentrations predicted by FEA simulations (Figure 7). The location of the edge cracks 
observed experimentally in monolithic NG Ti are consistent with the tensile stress (S11) and 
shear stress (S12) locations where the maximum tensile stress and shear stress appear imme-
diately below the indenter (Figure 7). However, within the MHSed Ti, the stress (S11 and 
S12) variation is more gradual, with the shear stress reduced by 38% (0.21–0.13 GPa) at the 
maximum stress location. Such stress distribution and stress magnitude reduction explains 
the experimental observation that edge cracks were absent from the MHSed Ti but clearly 
occurred in monolithic NG Ti. The shear stresses in monolithic NG Ti are distributed over 
the plastic deformation region and coincide with the sites where shear bands were experi-
mentally observed. With regards to the MHSed Ti, the multilayering and grading reduce the 
magnitude of maximum shear stress (Figure 7), therefore, the shear localized deformation 
was absent in the MHSed Ti (Figure 4g). These analyses reveal that multilayering and grading 
can significantly modify the stress field and effectively reduced the maximum stress concen-
tration within the materials, thereby reduce the probability of cracks and shear localization 
which was commonly experienced in monolithic materials under indentation condition.

4.4. Other aspects contribute to the contact load-bearing

Our previous study [31] using micropillar compression testing has shown the deformation-
induced precipitation of nanocrystals in the outer A/NC layer. The interaction of microcracks and 
shear bands with these nanocrystals allowed high ductility in this layer. This plasticity was evident 
in the present study by the indentation-induced deformation in the A/NC layer (Figure 4a and e). 
Previous studies demonstrated that the inelastic deformation occurring in the graded ceramics 
can contribute toward the cone-crack suppression [11, 12]. The susceptibleness of the A/NC layer 
to deform plastically reduces the propensity for cracking under indentation condition.
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Residual stress may also be contributing to crack suppression in the deformed MHSed Ti struc-
ture. Residual surface compressive stress can be induced by various techniques to improve 
the contact damage resistance and strength of many brittle materials [32]. Further, multilayer-
ing and mechanical grading of a surface is known produce complex residual stresses [33, 34]. 
The residual stress–depth profile analysis [20] revealed that the MHSed Ti has residual com-
pressive stresses through the layers and a tensile stress at the NG layer/UFG core interface. 
The residual compressive stress in A/NC and NG layers act to arrest crack development and 
increase damage resistance, however the residual tensile stress at NG/UFG junction theoreti-
cally increases the propensity for crack initiation under contact loading. Given the absence of 
cracking at the NG/UFG interface, it appears the reduction of maximum stress and the atten-
dant of redistribution of the stresses arising from multilayering and mechanical grading more 
than compensate for the residual tensile stress.

5. Summary and conclusions

In summary, we report on both the contact load-bearing response and underlying deforma-
tion mechanism for MHSed Ti using indentation testing in combination with detailed compu-
tational simulations of local stresses and plastic deformation strain distributions. The results 
provide evidence for enhanced contact load-bearing resistance and energy dissipation by intro-
ducing multilayers and mechanical gradations into the surface region of the UFG material. This 
material design strategy is expected to applicable to a broad class of metallic materials. The 
following conclusions can be drawn from this study:

(1) The MHSed Ti exhibited enhanced resistance to contact loading damage compared to 
the monolithic NG Ti. The multilayering and grading of UFG materials suppressed the 
formation of cracks and increased the loading damage resistance.

(2) The macroscopic indentation resistance of the MHSed Ti arises from the underlying 
micromechanics of the multilayered structure. The overall multilayered structure offers 
the effective macroscopic mechanical loading resistance, where the loading increasingly 
induces the more compliant structure to bear the deformation as the load increases.

(3) The mechanical gradation provides a transitional junction for stress redistribution and 
achieves a more gradual stress distribution between component layers. Such a graded 
stress distribution mitigates the interface failure and increases the interfacial toughness, 
thus providing strong resistance to loading damage.

(4) The microstructural multilayering and grading of UFG metal can significantly modify 
the stress field and effectively reduce the maximum stress concentration within the mate-
rial, thereby reduce the probability of cracks and shear localization which are commonly 
experienced in monolithic materials under indentation conditions.
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Abstract

Friction dampers are commonly included into turbine designs to limit the turbine blades 
resonant vibrations and thus avoid high cycle fatigue failures. In order to effectively 
predict the effect of friction dampers on the turbine dynamics, friction is included into 
the simulation through specific mesoscale contact models. These models require knowl-
edge of contact parameters to offer meaningful predictions. Standard single-contact test 
arrangements may fail to capture the true contact conditions and kinematics of friction 
dampers, especially for complex multi-interface contacts interested by variable normal 
loads. Several methodologies have been proposed in the literature: the lack of a “shared” 
approach in the field pinpoints a true “gap” in the research. Overcoming this difficulty 
is of primary importance, as it is the one feature that separates a state-of-the-art numeri-
cal code from a true design tool. Purpose of this chapter is to illustrate the experimental/
numerical tools and methods developed to fill this gap for a common family of friction 
dampers, called “underplatform dampers” with a curved-flat cross section. Both cylin-
der-on-flat and flat-on-flat interfaces are addressed. The adequacy of the state-of-the-
art contact model is discussed on the basis of a large data set obtained performing an 
extended experimental campaign on multiple damper samples.
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1. Introduction

High cycle fatigue failure is a primary concern among operators and suppliers of turbo 
engines because of their suddenness [1].
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They are caused by the large response levels at resonance. Since turbine blades do not benefit 
significantly from material hysteresis and aerodynamic damping, the only option is to add 
external sources of damping, for example, in the form of dry friction devices [2, 3] such as 
the underplatform damper. Underplatform dampers, available in several shapes (cylindri-
cal, curved-flat and wedge-like), are small metallic objects placed on the underside of two 
adjacent blades. As shown in Figure 1a, the centrifugal force (CF) provides the necessary pre-
compression and the resonant-induced blade vibration triggers the damper-platform relative 
motion and therefore friction dissipation. Dampers are extensively used in turbine designs 
because they are easy to manufacture, install and substitute, while relatively inexpensive.

Whenever a damper is added to the bladed system, its dynamic response is modified into two 
fundamental ways:

• the blades’ resonant frequencies increase since the damper acts as an additional constraint 
(with a given stiffness) between the platforms and

• the blades’ response diminishes for the combined effect of the stiffness introduced by the 
damper (which acts as a constraint) and of friction damping.

An additional complication is posed by the nonlinearity introduced by friction: it is well 
known that the non-linear dynamic response of bladed systems (both in frequency and 
maximum amplitude) is tightly coupled to the motion of the damper and its contact states 
(stick-slip-separation).

Accounting for the presence of friction is not an easy task. The presence of friction-induced 
nonlinearities makes solving the equilibrium equations a challenging task, therefore standard 
FE codes are not suited to the purpose: a complex hierarchy of techniques has been devel-
oped, a thorough review can be found in [4]. Furthermore, modeling friction entails:

1. finding a reliable model for the force-displacement relation at the contact interface and

2. a proper way to estimate its parameters.

Figure 1. (a) Sketch representing curved-flat underplatform dampers mounted on a turbine disk. (b) Example of standard 
macroslip contact element used to represent conforming and nonconforming contacts.
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1.1. A quick critical review of contact modeling in the turbomachinery field

In the technical literature, the problem of modeling periodical contact forces at friction contacts 
is still ongoing [5] and has been addressed by several authors, leading to different contact mod-
els and techniques. Some authors adopt a Dynamic Lagrangian method to solve on the contact 
patch [6, 7], that is, the contact constraints are taken into account in their non-regularized form 
without additional compliance. Other authors, for example, [4, 8] apply a contact element to 
each meshed node belonging to the contact area, introducing normal and tangential stiffnesses 
and a Coulomb friction law. This last method is preferred here, as its calibration parameters 
(kn, kt and μ), however difficult to determine, represent a physical measurable property.1

The contact elements typically used in turbomachinery belong to the “spring-slider” family, 
a class of displacement-dependent contact models which neglect features like viscous forces 
along the normal direction and friction’s velocity-dependence. These features, while relevant 
in other fields, are not typically considered in turbomachinery applications. These models 
belong to the larger family of heuristic models, as opposed to microscale “realistic” models 
where asperities and surface roughness are modeled using stochastic distributions [9].

These interactions can be geometrically divided in the normal and the tangential directions. 
A unilateral contact law is often considered in the normal direction (with or without normal 
contact stiffness) and frictional law for the tangential contact. The spring-slider elements have 
undergone an evolution, starting from 1D tangential motion without normal compliance [2] 
up to a fully coupled 3D motion [10], passing through a 1D element with normal compliance 
(2D motion) [11]. This last element has been adopted by many authors because of its simplic-
ity and versatility. In fact, it can be applied to represent 1D in-plane relative motion (a quite 
common occurrence if the first bending modes of the blades are considered), or, with a simple 
upgrade [12], to give a simplified representation of 2D in-plane motion.2

Modeling conforming (i.e. flat-on-flat) or nonconforming (e.g. cylinder-on-flat) surfaces 
requires a different strategy. Nevertheless, the same standard macroslip contact element pre-
sented in [11] can be applied (as it is done in this Chapter, see also Figure 1b).

Conforming contact surfaces are typically discretized into contact points (or nodes in FE 
terms) and each one is assigned a standard macroslip element, either with uncoupled 2D in-
plane motion [8, 13, 14] or with a coupled one [15]. This choice allows to account for the pres-
ence of “microslip”, first theorized by Cattaneo in 1938 [16], and later explored by Mindlin 
[17]. Modeling microslip is particularly relevant in those cases where high normal loads 
prevent actual slipping of the complete interface: in that case the gradual loss of stiffness 
that forecomes gross slip and the consequent dissipation does have an impact on the system 
response, while it becomes negligible if the gross slip regime is reached [18].

Nonconforming contacts are, in most cases, represented using one of the standard macroslip 
contact elements described above. Recently, a novel contact element, fit to take into account 
microslip as well as the nonlinearity in the normal direction typical of nonconforming con-
tacts, has been proposed [18].

1Furthermore, Herzog et al. [7] have shown that Dynamic Lagrangians may incur in convergence problems for penalty 
parameters lower than 107 N/m, thus highlighting a possible limitation of their use in case of “softer” contact interfaces.
2Where the 2D tangential motion is albeit considered as the combination of two uncoupled 1D motions.
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Other ad-hoc elements built to take into account microslip exist [19–24], however they are typi-
cally applied to conforming surfaces, which is somewhat limiting, as the kinematics of the con-
tact, which play a significant role in the non-linear dynamic behavior, are not well represented.

1.2. A quick critical review of contact parameter estimation

All contact models require knowledge or information of contact-friction parameters to pro-
vide meaningful predictions.

Realistic models, based on the integration over the whole contact surface of mechanical 
principles applied at the asperity level, for example [9], are the only kind which allow for 
a predictive contact parameter estimation. In other words, these models can be calibrated 
using information concerning the geometry, roughness distribution, material properties, etc. 
Unfortunately, at least in many applications such as the turbomachinery field, this level of 
refinement has not yet been achieved and heuristic models are preferred.

Heuristic models are instead based on phenomenological friction laws (e.g. Coulomb’s fric-
tion law), and their calibration is based on fitting to empirical observations.

Taking a state-of-the-art macroslip contact model with normal compliance described in 
Section 1.1, the parameters to be determined are normal and tangential contact stiffness kn 
and kt and friction coefficient μ.

The first, and perhaps, most obvious choice, is the use of single-contact test arrangements capa-
ble of providing the hysteresis cycle at a given (constant) normal load. Friction coefficients can 
be easily determined taking the ratio of the limit value of the tangential friction force during slip 
and the corresponding normal load [5, 25]. Tangential contact stiffness kt [2, 25–27] can be esti-
mated by taking the slope of the hysteresis curve in stick condition. This methodology is effec-
tive, as it can explore different temperatures, mean normal loads and frequencies. However, as 
will be shown in the following sections, it may fail to capture the true contact conditions and 
kinematics, especially for complex multi-interface contacts such as underplatform dampers.

Other methods are available, especially for the determination of contact stiffness values.

1. A complete analytical solution (kn and kt) is available only for circular or elliptical contact 
areas (i.e. Hertz theory), thus of limited interest in turbomachinery applications, while the 
normal compliance (kn) is available for cylinder-on-flat contacts [28].

2. Another possibility is to mimic the single-contact tests using non-linear FE analysis [29]: 
two contacting bodies are modeled using a very fine FE mesh and each node is assigned a 
Coulomb-like slip criterion. Stiffness values are evaluated from computed force-deforma-
tion curves. Results were found to be 6–11% higher with respect to measured counterparts, 
possibly because of “the neglected surface roughness as well as adhesive contact and viscous-
elastic solid behavior” [30].

3. In 2002, the “residual stiffness” method was proposed [31]. It is based on the observation 
that typical reduction techniques (e.g. CB-CMS [4]), used to reduce the size of FE models, 
may neglect the small local deformations. A “correction factor” is introduced to take into 
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account this effect. Unfortunately, a study performed in [32] suggests that this method 
gives a poor estimation of the contact stiffnesses.

4. In 2009, Allara [33] proposed a model to determine kn and kt of a 3D flat indenter with 
rounded edges pressed against an infinite half-plane. However, its results were found to 
be overestimating observed compliances [34].

5. The last (and perhaps the most popular) method is based on tuning against experimental 
[35] or numerically obtained [36] Frequency Response Functions (FRFs). Contact stiffness 
values are tuned until the experimental (or full FE model) evidence and that obtained 
from the reduced model with contact elements match. This operation is performed using 
evidence in full stick condition, so that all contact stiffness are “active” and accounted for.

One common point to approaches 2, 3 and 5 is that they use, as a benchmark, the solution 
offered by the full model in the FE software environment. This implies relying predictions 
performed with the Penalty or the Augmented Lagrangian Method to enforce the impenetra-
bility condition and neglecting the possible influence of surface roughness.

Using, as a benchmark, numerical evidence is certainly quite convenient, as it does not require 
experiments and it is generally quite “complete” (the user can interrogate the software and 
retrieve displacements, stresses at any point of the mesh). However, it is based on the strong 
assumption that sees the full FE model as representative of the true contact conditions.

Approach 5 is usually regarded as the fastest and most effective, as it guarantees that the sim-
ulated target evidence matches the reference one. However, this local adjustment of param-
eters does not truly add knowledge to the field. In fact, it has a strong ad-hoc character, and 
must be repeated for every new system the designer comes across.

Another possible “drawback” of approach 5 is the possible under-determinacy of the contact 
parameter problem. As shown in [37], there exist multiple combinations of contact parameters 
capable of satisfying a given FRF. Therefore, if the number of contact parameters to be deter-
mined is larger than the (observed or computed) target features to be matched during tuning 
(or the influence of contact parameters is weak on the available target features), multiple 
solutions are possible. Two sets of contact parameters which produce equivalent responses 
at a given excitation level, may give rise to radically different solutions if the excitation level 
changes (see Figure 1, for example, with a curved-flat damper between a set of blades). This 
may not be a critical issue if a large number of target evidence can be produced (e.g. if the 
reference evidence is obtained numerically) and/or if the contact parameters to be determined 
are limited. However, it becomes a strong limitation if curved-flat underplatform dampers, 
characterized by a complex kinematics and multiple contact interfaces, are considered.

For all these reasons, it is here believed that the contact parameter estimation problem should 
be tackled using dedicated experimental evidence which focuses on the damper-blade inter-
face. An increased attention to the damper kinematics has been demonstrated by other nota-
ble researchers in the field: in detail in [8] laser measurements have been employed to record 
damper rotation, while in [38] Digital Image Correlation has been used to investigate contact 
displacements.
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1.3. Goals of the chapter

The main purpose of this chapter is to present the latest advances made by the AERMEC lab 
to improve the fidelity of damper modeling and to rigorously assess processes needed for 
reliable predictions/estimation of contact parameters (see Figure 2).

In detail, Section 2 briefly describes the Piezo Damper Rig (see Figure 3a), first presented in 
[39], and recounts its latest improvements.

Section 3 with reference to Section 1.1, defines a numerical damper model (also represented in 
Figure 3b) and justifies all modeling choices.

Section 3.2 uses the experimental evidence gathered on the above-mentioned rig to estimate 
all contact parameters necessary to represent a curved-flat damper between a set of platforms 
(conforming and nonconforming surfaces both).

In Section 4, the adequacy of the chosen contact model is discussed on the basis of an experi-
mental campaign on numerous damper samples. Furthermore, the role of rotation of non-
conforming contacts, a topic which has never been addressed in this context to the author’s 
knowledge, will be explored.

The chapter conclusion (Section 5) includes a series of warning and recommendation for the 
damper designer/tester.

2. Experimental evidence

The majority of the rigs developed to test underplatform dampers see a bladed system 
(equipped with dampers) excited at resonance [8, 35]. Often, the FRF of the system is used as 

Figure 2. (a) Example of tuning of contact parameters in the full stick regime: two sets of contact parameters (one from 
Section 3 and one with a simplified assumption) leading to the “same” FRF. (b) Resulting FRFs (excitation level out of 
the tuning range) produced by the two sets of contact parameters from Figure 1a. CF: centrifugal force on the damper, 
FE: external excitation on blades.
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the sole indicator of the damper performance. The FRF is certainly an important design indica-
tor, however by itself, it is not capable of offering enough information on the damper working 
conditions. Furthermore, if FRFs are the only experimental evidence available it is likely that, 
as pointed out in Section 1.2, the contact parameter problem will remain underdetermined.

2.1. The Piezo Damper Rig

For all these reasons, in 2009, the AERMEC lab proposed a novel kind of test rig (see Figure 3a) 
which focuses directly on the underplatform damper. No blades are present (i.e. it is not a 
resonant rig). On the other hand, two dummy platforms are used to connect the system to the 
input motion generation and to the force measuring mechanism.

• The left platform is connected to two piezoelectric actuators inserted into a purposely 
 designed mechanical structure. This system allows imposing any user-defined in-plane 
displacements simulating the so-called In-Phase (IP, vertical) and Out-of-Phase (OOP, hor-
izontal) relative motion between the blades platforms or combinations of the two.

• The right platform is connected to two uniaxial force sensors by means of a tripod structure 
to the purpose of measuring the forces transmitted between the two platforms through the 
damper.

The damper is pulled by a deadweight simulating the centrifugal force, CF. The main purpose 
of the rig is to relate contact forces to the displacements that produce them (see also Figure 3c). 
For this reason, a differential laser head is employed to measure the platforms relative dis-
placement (a necessary precaution owing to the lack of closed loop control of the piezoelec-
tric actuators), the damper radial displacement and rotation angle and the damper-platform 
relative displacement at the contact. A scheme representing the laser positioning to obtain 
the tangential relative motion at the contacts and the damper rotation is shown in Figure 3d.

2.2. The test rig evolution

The key features of the test rig described above remain unchanged since its first version [39], 
however several subsequent improvements have been performed (see Figure 4 for a graphi-
cal representation). In detail, the tripod and the structure hosting the force sensors have been 
redesigned to increase the overall stiffness of the rig [18]. This had a positive impact over 
the frequency operating range which increased from [≈5–80] Hz to [≈5–160 Hz]. In [40] each 
platform has been redesigned into two parts: a “fixed” part connected to the rest of the test rig 
(the left platform to the actuators, the right one to the force sensors) and a second part, termed 
here “insert” in contact with the damper. This configuration has several advantages: (i) the 
“insert” can be substituted to test different platform angles, (ii) the contact is localized along 
the damper axis by means of 4 mm wide protrusions present on both platform inserts which 
ensure high contact pressures even with moderate deadweights on the damper.

Lastly, the new platform inserts and dampers have been machined with cube-like protrusions 
oriented with one of the faces perpendicular to the contact line. Each contact line (left and 
right) is equipped with two cubes (one on the damper and one on the corresponding  platform). 

Modeling Friction for Turbomachinery Applications: Tuning Techniques and Adequacy…
http://dx.doi.org/10.5772/intechopen.72676

103



1.3. Goals of the chapter

The main purpose of this chapter is to present the latest advances made by the AERMEC lab 
to improve the fidelity of damper modeling and to rigorously assess processes needed for 
reliable predictions/estimation of contact parameters (see Figure 2).

In detail, Section 2 briefly describes the Piezo Damper Rig (see Figure 3a), first presented in 
[39], and recounts its latest improvements.

Section 3 with reference to Section 1.1, defines a numerical damper model (also represented in 
Figure 3b) and justifies all modeling choices.

Section 3.2 uses the experimental evidence gathered on the above-mentioned rig to estimate 
all contact parameters necessary to represent a curved-flat damper between a set of platforms 
(conforming and nonconforming surfaces both).

In Section 4, the adequacy of the chosen contact model is discussed on the basis of an experi-
mental campaign on numerous damper samples. Furthermore, the role of rotation of non-
conforming contacts, a topic which has never been addressed in this context to the author’s 
knowledge, will be explored.

The chapter conclusion (Section 5) includes a series of warning and recommendation for the 
damper designer/tester.

2. Experimental evidence

The majority of the rigs developed to test underplatform dampers see a bladed system 
(equipped with dampers) excited at resonance [8, 35]. Often, the FRF of the system is used as 

Figure 2. (a) Example of tuning of contact parameters in the full stick regime: two sets of contact parameters (one from 
Section 3 and one with a simplified assumption) leading to the “same” FRF. (b) Resulting FRFs (excitation level out of 
the tuning range) produced by the two sets of contact parameters from Figure 1a. CF: centrifugal force on the damper, 
FE: external excitation on blades.

Contact and Fracture Mechanics102
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which focuses directly on the underplatform damper. No blades are present (i.e. it is not a 
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 designed mechanical structure. This system allows imposing any user-defined in-plane 
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• The right platform is connected to two uniaxial force sensors by means of a tripod structure 
to the purpose of measuring the forces transmitted between the two platforms through the 
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The damper is pulled by a deadweight simulating the centrifugal force, CF. The main purpose 
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Diagram Goal Quantities Measurement 
technique

Uncertainty

T/N force ratios 
(Figure 5a)

Estimate friction coefficient

Identify contact states

TR/NR Derived 3–5%

TL/NL Derived 6–10%

Hysteresis at 
nonconforming contact

Estimate tangential contact 
stiffness

tRD-tRP Laser vibrometer 0.08 μm (~0.2%)

TR Load cells 2%

Hysteresis at conforming 
contact (Figure 5b)

Estimate tangential contact 
stiffness

tLD-tLP Laser vibrometer 0.08 μm (~0.2%)

TL Derived 2.5%

Moment vs. Rotation 
diagram (Figure 5c)

Estimate normal contact 
stiffness (conf. contact)

βD Derived1 5%

M = NL * x Derived 5–7%

Platform-to-platform 
hysteresis cycle 
(Figure 5d)2

Validation wLP-wRP Laser vibrometer 0.08 μm (~0.2%)

VR Load cells 2%

Contact forces diagram

(Figure 6a)

Validation, check position of 
left contact force

TR, NR 2%

TL, NL, 
application 
point

2.5%, <1 mm

1Damper rotation is here obtained as described in, that is, with reference to Figure 3d,   β  D   =  ( w  D   A  0    −  w  D   A  R   )  /   ̄   A  0    A  R    .
2This example is carried out in case of IP motion, a similar diagram can be obtained in case of OOP motion by plotting the 
horizontal force component HR against the corresponding horizontal platform relative displacement uLP − uRP.

Table 1. Essentials in damper diagrams.

Figure 3. (a) Piezo Damper Rig scheme and relevant quantities. (b) Piezo Damper Rig numerical model. (c) Measured 
and derived contact forces. (d) Laser positioning to obtain relevant kinematical quantities.
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This allows for the direct measurement of the tangential relative motion at the contact (as 
shown in Figure 3d): this constitutes a true improvement in the test rig capabilities since it 
allows, as described in Section 3, for the estimation of the tangential contact stiffness values.

2.3. Measurement protocol

Each experimental nominal condition is defined by: damper configuration (i.e. shape, plat-
form angles, etc.), centrifugal load on the damper, excitation frequency, amplitude and direc-
tion of motion.

The analysis of the damper performance under each nominal experimental condition is oper-
ated through the cross-comparison of a series of quantities (whose graphical representation 
can be found in Figure 3b–d) organized into diagrams (summarized in Table 1, shown in 
Figures 5 and 6 and further commented in Section 3.2). Both contact forces and damper/
platform kinematics are taken into account for the purpose of uncovering the cross-relations 
existing between them and to estimate contact parameters. It should be noted that some of 
these quantities are directly measured (e.g. tangential and normal forces at the nonconform-
ing contact TR and NR and all damper displacements), while other quantities are derived (e.g. 
tangential and normal forces at the conforming contact TL and NL are obtained through the 
damper equilibrium by neglecting inertia forces at frequencies where this is correct, as shown 

Figure 4. Piezo Damper Rig evolution.
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in Figure 3c). Each quantity is equipped with a proper level of uncertainty. Measurement 
uncertainty, minimized through a purposely developed protocol, ensures significant trust-
worthy results (error up to 7%).

3. Numerical model and contact parameters estimation

The diagrams summarized in Table 1 and shown in Figures 5 and 6a are represented together 
with the corresponding simulated counterpart, obtained using the numerical model shown in 
Figure 3b.3 The numerical model represents the damper inside the test rig, however the same 
numerical routine can be incorporated into a code which substitutes the test rig presence with 
that of a FE bladed system [35].

3The springs representing the tripod and the mechanical structure hosting the piezo actuators have been experimentally 
measured as described in [39].

Figure 5. Measured vs. simulated. (a) T/N force ratio diagram. (b) Platform-to-damper hysteresis cycle at the flat-on-flat 
contact. (c) Moment vs. rotation diagram. (d) Platform-to-platform hysteresis cycle. Measured: dotted line, simulated: 
solid line. IP case, with CF = 4.65 kg.
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Only in-plane motion is addressed here (typical of blades bending modes, where dampers are 
most effective), however a more general 3D version of the same model is available for more 
complex cases. The general equilibrium equation to be solved at this stage is:

   [M]  { U ¨  }  +  [K]  {U}  =  { F  e  }  +  [T]  { F  C  }   (1)
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  }   and   [T]   is a transformation matrix. In detail, 

vector   { F  
C
  }   is the output of the contact elements which are fed by the correct relative displace-

ments at the contact.

In this chapter, Direct Time Integration [40] is used to avoid approximations, however should 
a larger system be considered, multi-Harmonic Balance Method can be applied [35].

The reader will notice that the damper is modeled as a rigid body, a quite reasonable assump-
tion given the bulkiness of the damper.

The contact elements here applied are state-of-the-art in the gross slip regime [11], which is 
the focus of this chapter’s investigation. The nonconforming contact (cylinder-on-flat) is mod-
eled using one element, while the conforming contact requires at least two contact elements 
(four in Figure 3b). Increasing the number of contact elements will smoothen the hysteresis 
shape but not change significantly the damper behavior. The position of the contact points is 
typically set at equal intervals along the flat interface using the two edges as limits (i.e. start-
ing and ending points).

3.1. Definition of the unknowns

In principle, friction is a material property, therefore all interfaces, both conforming and non-
conforming, should share the same contact parameter values. Friction is indeed a material 
property at microscopical level, therefore if a reliable and validated “realistic” model was 
available one could start from material properties and surface characteristics, and integration 
over the contact area would do the rest. However, since the selected contact elements are of 
the “heuristic” kind, other factors influence kn, kt and μ values.

In detail previous experience has shown that the geometry of the contact surface (line vs. area 
contact), contact surface kinematics and normal load play a significant role [37]. The influence 
of normal load will be addressed in Section 4, while, in order to take into account the influence 
of the contact areas different geometries and kinematics, it holds:

   
 k  nR   ≠  k  nL  

   k  tR   ≠  k  tL    
 μ  R   ≠  μ  L  

    (2)

for a total of six unknowns (also represented in Figure 3b).
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in Figure 3c). Each quantity is equipped with a proper level of uncertainty. Measurement 
uncertainty, minimized through a purposely developed protocol, ensures significant trust-
worthy results (error up to 7%).

3. Numerical model and contact parameters estimation

The diagrams summarized in Table 1 and shown in Figures 5 and 6a are represented together 
with the corresponding simulated counterpart, obtained using the numerical model shown in 
Figure 3b.3 The numerical model represents the damper inside the test rig, however the same 
numerical routine can be incorporated into a code which substitutes the test rig presence with 
that of a FE bladed system [35].

3The springs representing the tripod and the mechanical structure hosting the piezo actuators have been experimentally 
measured as described in [39].

Figure 5. Measured vs. simulated. (a) T/N force ratio diagram. (b) Platform-to-damper hysteresis cycle at the flat-on-flat 
contact. (c) Moment vs. rotation diagram. (d) Platform-to-platform hysteresis cycle. Measured: dotted line, simulated: 
solid line. IP case, with CF = 4.65 kg.
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Only in-plane motion is addressed here (typical of blades bending modes, where dampers are 
most effective), however a more general 3D version of the same model is available for more 
complex cases. The general equilibrium equation to be solved at this stage is:
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eled using one element, while the conforming contact requires at least two contact elements 
(four in Figure 3b). Increasing the number of contact elements will smoothen the hysteresis 
shape but not change significantly the damper behavior. The position of the contact points is 
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ing and ending points).
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available one could start from material properties and surface characteristics, and integration 
over the contact area would do the rest. However, since the selected contact elements are of 
the “heuristic” kind, other factors influence kn, kt and μ values.

In detail previous experience has shown that the geometry of the contact surface (line vs. area 
contact), contact surface kinematics and normal load play a significant role [37]. The influence 
of normal load will be addressed in Section 4, while, in order to take into account the influence 
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Contact parameters of the flat-on-flat interface are typically distributed uniformly among 
the contact points, for example, considering the normal contact spring:

   k  nLi   =   
 k  nL  

 ___  n  C      (3)

The validity of this assumption will be further assessed in Section 4.

3.2. Step-by-step contact parameter estimation procedure

Contact parameters are estimated starting from the experimental evidence, organized into 
diagrams as summarized in Table 1. In detail, for a given experimental nominal condition:

Step 1. Reference points on the diagrams in Figure 5 have been marked by a symbol and a 
number: they are useful to guide the analysis of the cycle through cross-comparison.

Step 2. The cross-comparison of the T/N diagram (Figure 5a) and of the observed relative 
displacement at the contact interfaces can be used to make a hypothesis on the contact 
states experienced by the damper during one period of vibration. Namely, if, during a 
given portion of the cycle, the T/N force ratio is constant and the relative displacement 
at the contact is non-negligible, then that interface is assumed to be in slip condition. 
On the other hand, if the T/N force ratio is varying and the corresponding displace-
ment at the contact is negligible, the damper is likely to be stuck to the platform. This 
allows the user to assign each stage of a cycle a given contact state (see Table 2).

Step 3. Based on the results of Table 2, friction coefficients at the right (cylinder-on-flat) and 
left (flat-on-flat) interface, μR and μL, are estimated using the time history of the cor-
respondent T/N force ratio during slip (see Figure 5a).

Step 4. Based on the results of Table 2, the slopes of the platform-to-damper hysteresis cycles 
(referring to the stages identified as being in stick condition) can be used to estimate 
tangential contact stiffness values (ktR and ktL).

Step 5. The normal contact stiffness at the cylinder-on-flat interface knR is estimated using 
Brandlein’s formula [28]. To this purpose only material properties and length of con-
tact are needed. The new inserts equipped with contact “tracks” described in Section 
2.2 ensure a controlled length of contact.

Right interface Left interface

Stage T/N slope ΔtR
1 (μm) Contact state T/N slope ΔtL (μm) Contact state

1U–2 High ~1 Stick High 1.8 Stick

2–3 High <0.2 Stick Medium 7.8 Partial slip

3–4D Low 21.3 Slip Low 13.1 Slip

4D–5 High −0.6 Stick High −1.7 Stick

5–1U Low −21.7 Slip Low −21.03 Slip

1ΔtR of stage, for example 2–3, is defined as   ( t  
RD
   ( τ  3  )  −  t  

RP
   ( τ  3  ) )  −  ( t  

RD   ( τ  2  )  −  t  
RP
   ( τ  2  ) )  , where τ is the time variable.

Table 2. Experimental contact states identification strategy.
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The distribution of the normal contact stiffness at the flat-on-flat interface per unit length 
dknL/dx is obtained by linking the damper inclination (i.e. rotation angle βD at a given instant 
in time) to the position of the left contact force resultant NL. In other words, it is postulated 
that forces (i.e. moments) and displacements (i.e. rotation) are linearly linked. The technique 
also relies on two assumptions: (1) the normal contact stiffness is uniformly distributed along 
the flat interface (see Eq. 3 and Figure 6b); (2) the force per unit length q(x) related to the 
normal component of the left contact force resultant NL has a linear distribution. In detail, 
with reference to Figure 6b, let us define a reference system x, parallel to the contact with its 
origin in O, the mid-point of the flat interface. As shown in Figure 6a, the normal component 
of the left contact force resultant NL travels along the flat surface during the cycle. If, however 
NL enters the inner third portion of the flat interface (see Figure 6c) the complete surface is in 
contact. Under this condition, the following holds:

  M =  N  L   ∙ x =   
d  k  nL  

 ____ dx      L   3  __ 12    β  D    (4)

This relation is graphically represented in Figure 5c, where the shaded are corresponds to the 
portion of the cycle during which NL enters the inner third portion of the flat interface.

3.3. Remark on experimental evidence and validation

All experimental evidence shown and commented in this chapter has been represented 
together with its simulated counterpart for validation purposes. Some of the features of the 
diagrams (i.e. T/N levels during slip stages and slopes of the hysteresis cycles during stick 
stages) are meant to be similar because they are used as a calibration key in the contact param-
eter estimation process. Other features such as force trajectories and left contact force resultant 
application point (Figure 6a); the platform-to-platform hysteresis cycle (e.g. Figure 5d); the 
transition between contact states and the time instant at which they take place (e.g. Figure 5a); 
are not part of the calibration process. Therefore, the goodness of fit of these observed and 
simulated signals is a further proof of the soundness of the model and of the correctness of the 
contact parameters used to calibrate it.

4. Contact parameters variability and contact model adequacy

The purpose of this section is to detail the level of uncertainty of each of the contact param-
eters estimated in Section 3.2 and to investigate their variability. Results are summarized in 
Table 3 and will be further commented on in the following subsections.

Contact parameter μR ktR (N/μm) μL ktL (N/μm) dknL/dx (N/m2)

Uniform flat contact uncertainty bands [0.6–0.75] [25–35] 0.45–0.5 [20–30] [0.8–1.2] × 1010

Irregular flat contact uncertainty bands [0.6–0.75] [25–35] 0.45–0.6 [20–100] [0.4–1.2] × 1010

Normal load dependence No No Yes Yes Yes

Table 3. Uncertainty bands and normal load dependence of contact parameters obtained at CF = 4.65 kg.
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Contact parameters of the flat-on-flat interface are typically distributed uniformly among 
the contact points, for example, considering the normal contact spring:
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 ___  n  C      (3)

The validity of this assumption will be further assessed in Section 4.
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states experienced by the damper during one period of vibration. Namely, if, during a 
given portion of the cycle, the T/N force ratio is constant and the relative displacement 
at the contact is non-negligible, then that interface is assumed to be in slip condition. 
On the other hand, if the T/N force ratio is varying and the corresponding displace-
ment at the contact is negligible, the damper is likely to be stuck to the platform. This 
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Step 4. Based on the results of Table 2, the slopes of the platform-to-damper hysteresis cycles 
(referring to the stages identified as being in stick condition) can be used to estimate 
tangential contact stiffness values (ktR and ktL).

Step 5. The normal contact stiffness at the cylinder-on-flat interface knR is estimated using 
Brandlein’s formula [28]. To this purpose only material properties and length of con-
tact are needed. The new inserts equipped with contact “tracks” described in Section 
2.2 ensure a controlled length of contact.
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The distribution of the normal contact stiffness at the flat-on-flat interface per unit length 
dknL/dx is obtained by linking the damper inclination (i.e. rotation angle βD at a given instant 
in time) to the position of the left contact force resultant NL. In other words, it is postulated 
that forces (i.e. moments) and displacements (i.e. rotation) are linearly linked. The technique 
also relies on two assumptions: (1) the normal contact stiffness is uniformly distributed along 
the flat interface (see Eq. 3 and Figure 6b); (2) the force per unit length q(x) related to the 
normal component of the left contact force resultant NL has a linear distribution. In detail, 
with reference to Figure 6b, let us define a reference system x, parallel to the contact with its 
origin in O, the mid-point of the flat interface. As shown in Figure 6a, the normal component 
of the left contact force resultant NL travels along the flat surface during the cycle. If, however 
NL enters the inner third portion of the flat interface (see Figure 6c) the complete surface is in 
contact. Under this condition, the following holds:
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This relation is graphically represented in Figure 5c, where the shaded are corresponds to the 
portion of the cycle during which NL enters the inner third portion of the flat interface.

3.3. Remark on experimental evidence and validation

All experimental evidence shown and commented in this chapter has been represented 
together with its simulated counterpart for validation purposes. Some of the features of the 
diagrams (i.e. T/N levels during slip stages and slopes of the hysteresis cycles during stick 
stages) are meant to be similar because they are used as a calibration key in the contact param-
eter estimation process. Other features such as force trajectories and left contact force resultant 
application point (Figure 6a); the platform-to-platform hysteresis cycle (e.g. Figure 5d); the 
transition between contact states and the time instant at which they take place (e.g. Figure 5a); 
are not part of the calibration process. Therefore, the goodness of fit of these observed and 
simulated signals is a further proof of the soundness of the model and of the correctness of the 
contact parameters used to calibrate it.

4. Contact parameters variability and contact model adequacy

The purpose of this section is to detail the level of uncertainty of each of the contact param-
eters estimated in Section 3.2 and to investigate their variability. Results are summarized in 
Table 3 and will be further commented on in the following subsections.
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Table 3. Uncertainty bands and normal load dependence of contact parameters obtained at CF = 4.65 kg.
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The level of uncertainty is estimated taking into account two contributions: measurement 
uncertainty and the uncertainty introduced by data processing techniques (e.g. reading error). 
Variability will be investigated at different levels in order to answer the following questions:

1. If the same damper is tested more than once under the same nominal conditions, do the 
estimated contact parameters change? 2. Are contact parameters dependent on the damper 
working conditions (e.g. normal contact pressure)?4 3. How different are contact parameters 
of different damper samples working under very similar working conditions?

The answer to point 3 is investigated using three pre-optimized damper configurations [40], 
that is, curved-flat dampers not affected by lift-off/rolling, jamming or partial detachment.

4The user-controlled working conditions investigated during this chapter are limited to a variation of centrifugal load 
on the damper (i.e. normal load at the contact). Other factors such as temperature, length/area of contact may affect 
the contacts. These dependences can and should be mapped in order to build a “database” and avoid testing each new 
component. This chapter should be intended as a first attempt in this direction.

Figure 7. (a) TR/NR during slip as a function of NR. (b) ktR values as a function of the mean value of NR during the 
corresponding stick stage. Three different damper samples are represented.

Figure 6. (a) Measured (dotted) vs. simulated (solid) contact forces diagram. (b) Representative scheme of the distribution 
of normal contact springs. (c) Derived position of NL and resulting q(x) at stage 2.
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4.1. Nonconforming (non-rolling) contacts

The uncertainty on μR is the combination of the uncertainty on TR/NR (3–5% from Table 1) and 
the reading error (typical values ≈ ±0.05 as shown in Figure 5a). The repeatability and sample-
to-sample variability can be investigated by looking at Figure 7a.

Figure 7a shows the TR/NR force ratio during slip under increasing values of normal load NR, 
achieved by increasing the centrifugal load (4.6–8.6 kg). Different dampers are represented with 
different colors and positive and negative slipping stages (see Figure 7a for sign convention) are 
represented using different symbols. “Clusters” of points of the same color and symbol belong to 
the same stage of the same experiment of the damper samples, represented with different colors.

Despite some inevitable variabilities (e.g. T/N ratios display minor variations during a single 
slip stage), μR can be set at a “unique value” for all investigated dampers. Furthermore, these 
variabilities are in the same range as the uncertainty introduced by the measuring and post-
processing techniques. Choosing μR = 0.65, a value mediated over all those encountered in 
Figure 7a is a perfectly adequate choice, which guarantees a controlled error on the equivalent 
stiffness and damping.

Similarly, ktR (which is plotted as function of NR in Figure 7b) is not influenced by the normal 
load5 at the contact in the investigated range, is remarkably repeatable and no sample-to-
sample variability is detected. In Figure 7b, the error bars are obtained by performing the 
least square fitting of the hysteresis slope.

It can therefore be concluded that contact parameters of the nonconforming contact are both 
repeatable and with a minor sample-to-sample variability.

4.2. Remark on rolling nonconforming contacts

The case of rolling contact is of scarce interest for curved-flat dampers, as it was demonstrated 
that large rotations (damper in lift-off) lead to a sharp decrease in dissipation capabilities [40]. 
However, purely cylindrical dampers are widely used and thus require a separate investigation.

The procedure to evaluate ktR described in Section 3.2 cannot be operated if the damper is 
rotation is large (~10 times higher than that observed in Figure 5c). In fact, in that case, the 
reading “tRD-tRP” would give a false indication. As shown in Figure 8a, the laser, which is 
initially tracking point A ends up tracking point A*. However, the physical point initially 
corresponding to A is now A′, not A*. This apparently minor difference, at micrometer level, 
impairs the effectiveness of this technique.

Fortunately, an alternative procedure based on the equivalent slopes of the platform-to-plat-
form hysteresis cycle can be successfully carried out, both for cylindrical dampers and for 
curved-flat dampers [37, 39]. It is interesting to notice that the resulting ktR values are 3.5–4 
times lower than those obtained for non-rolling cylinder-on-flat contacts, all other parameters 

5This is to be expected, as the cylinder-on-flat surface has a line contact, and an increase in normal load will lead to a 
number of asperities coming into contact which is proportionately much smaller than that obtained for a rectangular 
contact area (flat-on-flat contact).
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sample variability is detected. In Figure 7b, the error bars are obtained by performing the 
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that large rotations (damper in lift-off) lead to a sharp decrease in dissipation capabilities [40]. 
However, purely cylindrical dampers are widely used and thus require a separate investigation.

The procedure to evaluate ktR described in Section 3.2 cannot be operated if the damper is 
rotation is large (~10 times higher than that observed in Figure 5c). In fact, in that case, the 
reading “tRD-tRP” would give a false indication. As shown in Figure 8a, the laser, which is 
initially tracking point A ends up tracking point A*. However, the physical point initially 
corresponding to A is now A′, not A*. This apparently minor difference, at micrometer level, 
impairs the effectiveness of this technique.

Fortunately, an alternative procedure based on the equivalent slopes of the platform-to-plat-
form hysteresis cycle can be successfully carried out, both for cylindrical dampers and for 
curved-flat dampers [37, 39]. It is interesting to notice that the resulting ktR values are 3.5–4 
times lower than those obtained for non-rolling cylinder-on-flat contacts, all other parameters 
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(material, length of contact, radius, normal load, etc.) being equal (i.e. 8.5 N/μm vs. 30 N/μm 
for a 8 mm long contact). These predictions have been successfully validated both at damper 
[37] and at FRF level [34]. A possible explanation for this repeatable difference resides in the 
kinematics of the contact. In case of pure tangential translation (~0 rotation) the contact point 
coincides with the same physical point (same asperities) throughout the period of vibration. 
If larger rotations are at play, the “physical point” in contact keeps changing during rolling 
motion (as shown in Figure 8b contact point CR initially coincident with physical point DR, 
moves to CR′ and DR, unloaded, moves to DR′). This periodic unloading of contact regions may 
contribute to lower compenetration of the asperities, and therefore a lower ktR. As shown in 
Figure 8b, the heuristic contact model applied here does not model this effect, therefore a 
case-specific calibration of ktR is to be expected. In fact, during pure rolling motion, the contact 
model remains linked to the same nodes (physical points) PR and DR~DR′.

4.3. Conforming contacts

Friction coefficient (μL) and contact stiffness values (ktL and dknL/dx) of the flat-on-flat inter-
face display a higher variability. Results for the same damper are very repeatable, but change 
from damper to damper.

Dampers B and C have repeatedly higher μL ≈ 0.57 with respect to Damper A, μL ≈ 0.45 (for 
all investigated normal loads) and the uncertainty levels (7% uncertainty and a 0.05 reading 
error) do not justify this marked and repeatable difference. Since the loading condition and 
kinematics of the flat interfaces are similar in all investigated cases, the cause of this difference 
may reside in the contact surfaces conditions.

In fact, Damper A, which has been tested for a higher number of cycles (it is completely 
“run-in”) has a continuous wear trace (see Figure 9c). Unsurprisingly, it is easy to estimate 
ktL (see Figure 5b). The same holds for dknL/dx (see Figure 5c) values. In other words, the 
uniform distribution of contact springs postulated in Section 3, is verified. Although both ktL 
and knL values are positively correlated to normal loads (see Figure 9a). The adopted heuristic 
model does not take into account an increasing number of asperities coming into contact with 
increasing contact pressures. However, the normal load dependence can be easily mapped.

Figure 8. (a) Error committed by laser in case of large rolling motion mixed with sliding. (b) Behavior of the contact 
model in case of pure rolling motion.
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On the other hand, Dampers B and C sport wear traces limited to the edges of the flat contact 
surfaces (see Figure 9c), therefore contact pressures are maximum at the two edges and much 
lower in the inner portion of the contact patch. As a result, friction coefficients increase (prob-
ably due to localized very high contact pressures) and the uniform distribution of contact 
springs assumption does not hold anymore. In fact, platform-to-damper hysteresis cycles (see 
Figure 9b), repeatedly display a non-unique slope during the stick stage. A minor gradual 
loss of stiffness could be explained by simple microslip, but this sharp two-slopes curve is 
simply not compatible with the uniform distribution of contact springs assumption.

Hysteresis cycles similar to those obtained for Dampers B and C can indeed be obtained in 
the simulation if one accepts to distribute the contact stiffness values in a non-uniform man-
ner (see Figure 9d). The average height of Damper C’s asperities is not the same throughout 
the entire nominal contact surface, rather it has two maxima at the edges. Therefore, for a 
given normal load, the equivalent stiffness at the edges is bound to be higher than that in 
the inner portion of the nominal contact surface. Therefore, if one wishes to represent the 
surface behavior with a limited number of equivalent macroslip elements the only option is 
to assign a different value to the different elements, depending on their position, as shown in 
Figure 9d. This strategy has been adopted to produce the very satisfactory match in Figure 9b 
(see dashed line). The procedure will have to be performed again if the mean value of normal 
load varies. Once again this “local fitting” (stiffness values vary with normal load and with 

Figure 9. (a). ktL as a function of NL for Damper A. (b) Typical platform-to-damper flat-on-flat hysteresis cycle for damper 
C (similar to Damper B). (c) Contact surfaces of Damper A and C. (d) Representative scheme of Damper C’s contact 
surfaces with non-uniform ktL values.
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position now) denounces the inadequacy of the contact model. The inadequacy of the model 
forces the user to tune the contact stiffness values with increasing values of CF and, in some 
cases, with the contact point position.

5. Conclusions

A thorough review of contact models available for turbomachinery applications and the 
related calibration methods highlights the need for a method to solve the under-determinacy 
of the contact parameter estimation problem and, subsequently, to assess the adequacy of con-
tact models. This chapter presents the evolution of the Piezo Damper Rig, a test facility for the 
experimental investigation of underplatform dampers. It was shown how its unique capabil-
ity to provide kinematic and force related quantities while reproducing the real damper-plat-
form kinematics allows for a trustworthy and univocal determination of contact parameters.

The measurement protocol and data processing technique ensure adequate uncertainty levels 
(i.e. <15%). The results can thus be used to perform safe and meaningful investigations on 
trends and variability of contact parameters.

The following conclusions can be drawn:

• independent experiments performed in the same nominal conditions (same damper, exci-
tation, load etc.) are repeatable and consistent;

• contact parameter of nonconforming contacts display a remarkably low variability. No 
 dependence on the contact pressure has been detected;

• contact parameters of conforming contacts display a higher variability caused by a differ-
ence in the surface conditions. In all cases, contact stiffness values increase with increasing 
contact pressures;

• the uniform distribution of contact stiffness along the flat contact surface, postulated in 
Section 3, is found to be adequate for run-in uniform surfaces (i.e. Damper A), but not for 
surfaces whose contact is “irregular” or “discontinuous”.

Heuristic models and sensible assumptions such as the uniformity of conforming contacts 
are nowadays considered a practical and adequate choice in turbomachinery applications. 
This is generally true, however special attention is required whenever a microscale phenom-
enon (e.g. nonuniform flat-on-flat contact, large rolling motion), not taken into account by the 
model, becomes prominent.

It was shown that the state-of-the-art heuristic contact model adopted in this chapter repre-
sents faultlessly run-in uniform flat-on-flat surfaces (i.e. Damper A). The same contact model 
CAN still be adapted to achieve simulated results matching the experimental evidence on 
dampers with irregular flat-on-flat contacts, but recalibrations are needed. For instance, a 
non-uniform distribution of ktL among contact points, adjustments of the dknL/dx and μL val-
ues. Unfortunately, at design stage, when it is not possible to know “a-priori” the condition of 
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a given flat-on-flat contact surface, nor how long it will take for that surface to evolve towards 
a uniform distribution of contacts, this necessity for “adjustments” of contact parameters 
values translates into higher uncertainty levels. In other words, the state-of-the-art contact 
model used in this chapter is only partially adequate to represent all the complex phenomena 
observed. This adds its contribution to uncertainty.

On the other hand, other recalibrations (such as that needed for increasing normal loads at 
the flat-on-flat contact) or for very large rolling motions still signal that the heuristic model is 
not 100% adequate. Still, these dependences can be easily mapped and therefore do not add 
to the uncertainty.

One main outcome of this careful investigation, apart from the best fit values of the contact 
parameters (and the methodology used to obtain them), is an increased awareness of the 
limits and capabilities of heuristic contact models. The logical next step, the author is now 
working on, is the assessment of the influence that the uncertainty on contact parameters has 
at the blade response level.

Nomenclature

Variables, matrices and vectors

β Rotation
CF Centrifugal force
{F} Generic force vector
k Stiffness
M Moment produced by left contact force
[M], [K] Mass and stiffness matrices
μ Friction coefficient
nc Number of contact points used to represent the flat-on-flat contact
t, n Tangential and normal displacements at the contact
T, N Tangential and normal contact forces
[T] Transformation matrix
θ Platform angle
u, w Horizontal and vertical displacements
{U} Vector of displacements
R Damper radius

Additional subscripts

C Contact
D Damper
E External
L, R Left and right
P Platforms
t, n Aligned along the normal and tangential direction, respectively
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guide the engineering applications of sandwich structures withmetallic foam cores subjected
to air-blast loading.

Keywords: metallic foam, sandwich structure, single curvature, blast loading, shock
resistance, energy absorption, deformation mode

1. Introduction

Light-weight cellular metallic foams possess good multifunctional combinations of mechanical,
physical, and electromagnetic properties including the high specific stiffness, high specific
strength, and superior energy dissipation capacity by plastic deformation of their cellular micro-
structures [1–3]. Since they can undergo the large plastic deformation at a constant nominal
stress, resulting in a relatively long plateau stress in their stress versus strain response history
curves shown in Figure 1, metallic foams are continually used in energy absorbers for the
protective purpose [3]. More commonly, the metallic foams are extensively used as the cores of
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sandwich structures to enhance the blast/shock resistance performance. The sandwich structure
typically consists of two thinner but stiffer face-sheets and a softer crushable core, which is a
special topology form comprising a combination of different materials that are bonded to each
other so as to utilize the properties of each component for the structural advantage of the whole
assembly. The face-sheets resist nearly all of the applied in-plane loads and bending moments,
while the core sustains the transverse and shear loads mainly. The employment of flatted
sandwich structures (i.e., the beam and panel) to resist blast/shock loadings still remains aca-
demic and engineering interests, and the responses of these sandwich structures to various
loading cases have been widely investigated [4–12]. Some representative failure modes (e.g.,
face-sheet yielding and core compression or shear) have been experimentally observed [5, 7, 9–
11], while the load-carrying capability and mechanisms of plastic failure and energy absorption
have been predicted in theory and simulation [4, 6, 8, 12].

Curved sandwich panels, which better combine the advantages of shell and sandwich struc-
tures, are envisaged to possess good potential in withstanding blast or impact [13–15]. How-
ever, studies on curved metallic sandwich structures appear quite limited to date.
Consequently, a comprehensive study on blast-loaded single-curvature sandwich panels with
aluminum foam cores is conducted in experiment and simulation.

2. Air-blast experiments

2.1. Experimental procedure

2.1.1. Specimens

Single-curvature sandwich panel specimens, 310 mm long, with an arc length also of 310 mm,
were fabricated from two thin LY-12 aluminum alloy face-sheets bonded to an aluminum foam

Figure 1. Stress versus strain response curve of the aluminum foam with 11% relative density.
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core using commercially available adhesive. Figure 2 shows the picture of single-curvature
sandwich panels with two radii of curvature, that is, 250 and 500 mm. Three face-sheet
thicknesses (i.e., 0.5, 0.8, and 1.0 mm) and three core relative densities (i.e., 11, 15, and 18%)
were examined. The quasi-static mechanical properties of LY-12 aluminum alloy face-sheets
with the density r = 2780 kg/m3 are Young’s modulus E = 68 GPa, Poisson’s ratio ν = 0.33, yield
stress σfY = 310 MPa, and shear modulus G = 28 GPa.

The core material was closed-cell aluminum foam, and the typical quasi-static uniaxial compres-
sive stress-strain responses for three different relative foam densities are shown in Figure 3.
Here, an energy efficiency-based approach is proposed to calculate the plateau stress and densi-
fication strain. Energy absorption efficiency η (εa) is defined as the energy absorbed up to a given
nominal strain εa normalized by the corresponding stress value σc (ε) [16]:

η εað Þ ¼
Ð εa
εcr

σ εð Þdε
σ εð Þε¼εa

(1)

where εcr is the strain at the yield point corresponding to commencement of the plateau
regime. The densification strain εD is the strain value corresponding to the stationary point in
the efficiency-strain curve, that is, where the efficiency is a global maximum:

dη εð Þ
dε

����
ε¼εD

¼ 0 (2)

The energy absorption efficiency curves of the aluminum foams are also depicted in Figure 3,
and the plateau stress is obtained from

Figure 2. Photograph of specimens with the two radii of curvature.
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Figure 3. Stress versus strain response and energy absorption efficiency versus strain curves of aluminum foam cores.
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σpl ¼
Ð εD
εcr

σc εð Þdε
εD � εcr

(3)

By calculating, the plateau stress σpl and densification strain εD of aluminum foams with three
various relative densities are σpl = 5.30 MPa and εD = 0.62 (for 11% relative density),
σpl = 5.49 MPa and εD = 0.55 (for 15% relative density), and σpl = 7.11 MPa and εD = 0.54 (for
18% relative density), respectively.

A total of 48 specimens were fabricated, and for each blast condition, two nominally identical
specimens were tested. All specimens were uniquely labeled—the label R500-H0.5-C10-r15%-
f1 represents the specimen with a 500 mm radius of curvature, 0.5 mm face-sheet thickness,
10 mm core thickness, and 15% core relative density, which is the first specimen used for
exploring the influence of face-sheet thickness on the dynamic response. The specimens were
arranged into four groups; each group was designated for examining the effect of one or two
parameters on the structural response.

2.1.2. TNT charge

Blast loading was applied to the specimens by detonating a cylindrical TNT charge with a
density of 1.55 g/cm3; a photograph is shown in Figure 4. Seven various mass charges (i.e., 10,
15, 20, 25, 30, 35, and 40 g) with an approximate height-to-diameter ratio of 1 were fabricated
by changing the diameter and height of the charges.

2.1.3. Ballistic pendulum system

The specimen-frame assembly was attached to a four-cable ballistic pendulum system, which
was employed to measure the impulse imparted to the front face of the specimen, as shown in
Figure 5. The charges were mounted in front of the center of specimens, at various standoff

Figure 4. Picture of cylindrical TNT charge.
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distances. The movement of the pendulum was measured by a laser displacement transducer.
Each single-curvature sandwich panel was clamped peripherally by steel frames, leaving an
effective exposed curved area of 250 � 250 mm.

When the TNT charge is detonated, the impulsive load produced causes the pendulum to move,
and its motion corresponds to that of a simple pendulum, described by the following equation:

M
d2x
dt2

þ C
dx
dt

þMg
R

x ¼ 0 (4)

where M is the total mass, x the horizontal displacement, C the damping coefficient, and R is
the cable length. Suppose 2β ¼ C=M and ω2

n ¼ g=R, then Eq. (4) is simplified by

€x þ 2β _x þ ω2
nx ¼ 0 (5)

Introducing the damping ratio ξ ¼ β=ωn, the solution of Eq. (5) is given by

x ¼ Ae�βt sin ωtþ φð Þ (6)

where ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2

n � β2
q

, A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x20 þ

_x0þβx20ð Þ
ω2

q
, and tanφ ¼ x0ω

_x0þβx0
.

With the initial condition x0 ¼ 0, Eq. (5) can be written as

x ¼ _x0
ω

e�βt sinωt (7)

The period of the oscillation of the pendulum T ¼ 2π=ω; if x1 is the displacement of the
pendulum for a period of t = T/4 and x2 for a period of t = 3 T/4, then

x1 ¼ T
2π

e�
βT
4 _x0 (8)

Figure 5. Photograph of the overall experimental setup.
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x2 ¼ T
2π

e�
3βT
4 _x0 (9)

β ¼ 2ln x1=x2ð Þ
T

(10)

If the values of β, x1, and x2 are known, then the initial velocity of the pendulum is given by

_x0 ¼ 2π
T

e
βT
4 x1 (11)

The impulse imparted into the pendulum is generally given by

I ¼ M � _x0 (12)

where M is the total mass of the pendulum. By introducing (11) into Eq. (12), given by

I ¼ Mx1
2π
T

e
βT
4 (13)

In the present tests, β = 0.031, M = 151.3 kg, T = 3.12 s, and R = 2.69 m. Generally, the rotation
angle (θ) should be less than 5�; in this study, θ is approximately 2.1�, which is acceptable.

2.2. Experimental results and discussion

The blast impulse is calculated by Eq. (13), according to the ballistic pendulum movement
measured by the laser displacement transducer, as shown in Figure 6. The permanent deflec-
tion of the center of the back face-sheet was also examined by the posttest measurements.
Here, the experimental results are classified and presented in the following subsections, in
terms of typical deformation/failure modes and influences of some key parameters on the final
permanent deflection (since the resistance to blast loading is quantified by the permanent
deflection of the central point of the back face-sheet).

2.2.1. Deformation modes

The deformation and failure modes of the single-curvature sandwich panels can be classified
into that of the front face-sheet, core, and back face-sheet, respectively, although all the sand-
wich panels present the evident global deformation with the various local failures.

The front face-sheet of single-curvature sandwich panels subjected to blast loading mainly fails
in the local indentation, transverse tearing, and petal-like tearing, as shown in Figure 7.
Indentation failure shown in Figure 7(a) is the localized severe deformation without rupture,
and the indentation depth is related with the load magnitude. When deformation of the face-
sheet exceeds its ductility at larger loads, failure is dominated by tearing. The transverse
tearing may occur for a certain range of blast loads, as shown in Figure 7(b). With the increase
of blast loading, the petal-like tearing mode shown in Figure 7(c) will be caused.
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Figure 8 illustrates the typical cross-sectional profiles of blast-loaded sandwich specimens with
two radii of curvature. Each specimen can be split into three regions (i.e., core crushing region,
shear failure region, and an uncompressed region) from the mid-span to the clamped end,
according to the deformation degree of the core. Core crushing is considered as the generation
of a hole in the specimen central zone, as shown in Figure 8(a). The fracture of core in the
central zone may be observed for some specimens as shown in Figure 8(b). The core also can
be failed by core shear under the transverse shear force. Moreover, the delamination between
the crushed core and face-sheets can be found in the core shear region. In those regions far
away from the loading area, the cores are generally uncompressed.

The deformation/failure of the back face-sheet corresponds to Mode I (gross inelastic deforma-
tion), Mode II (gross inelastic deformation with tensile tearing at the edges), and tearing. The
deformation profile of the back face-sheet for the typical Mode I response is dome-shaped at
the center, and with obvious plastic hinges extending from the plate corner to the base of the

Figure 6. Typical displacement-time response of ballistic pendulum in a blast test.

Figure 7. Three deformation and failure patterns in front face-sheets: (a) indentation failure, (b) transverse tearing, and (c)
petal-like tearing.
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dome, as shown in Figure 9(a). Figure 9(b) shows significant inelastic deformation with tensile
tearing at the clamped edges of the curved sandwich panel. For the thinner specimen subjected
to a larger impulse, tearing of the back face-sheet was observed, as shown in Figure 9(c).

2.2.2. Influence of blast impulse on the shock resistance

The maximum center-point deflection of curved sandwich panels (H = 0.8 mm, C = 10 mm,
relative density = 15%) and curved monolithic plates of equivalent mass (H = 3.0 mm) are
plotted in Figure 10, as a function of impulse for different blast distances and six charge
masses (10, 15, 20, 25, 30, and 35 g). As expected, the central deflection increases with impulse
for all test configurations. By applying a linear fit to the data, the relationship between the
central deflection and the blast impulse can be written as

W ¼ kI þ b (14)

whereW and I are, respectively, the central deflection in mm and impulse in Ns; k and b are the
two constants with the values of 1.22 mm/Ns and �9.03 mm for R = 500 mm curved sandwich
panels and 1.85 mm/Ns and �10.66 mm for R = 250 mm sandwich specimens, respectively.

Figure 8. Collapse patterns of the foam core: (a) progressive compression with shear failure in central area and (b)
fracture of central core.

Figure 9. The deformation/failure of the back face-sheet: (a) Mode I (gross inelastic deformation), (b) Mode II (gross
inelastic deformation with tensile tearing), and (c) tearing failure.
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Figure 8 illustrates the typical cross-sectional profiles of blast-loaded sandwich specimens with
two radii of curvature. Each specimen can be split into three regions (i.e., core crushing region,
shear failure region, and an uncompressed region) from the mid-span to the clamped end,
according to the deformation degree of the core. Core crushing is considered as the generation
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be failed by core shear under the transverse shear force. Moreover, the delamination between
the crushed core and face-sheets can be found in the core shear region. In those regions far
away from the loading area, the cores are generally uncompressed.

The deformation/failure of the back face-sheet corresponds to Mode I (gross inelastic deforma-
tion), Mode II (gross inelastic deformation with tensile tearing at the edges), and tearing. The
deformation profile of the back face-sheet for the typical Mode I response is dome-shaped at
the center, and with obvious plastic hinges extending from the plate corner to the base of the
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A comparison of the blast resistance between curved sandwich panels and monolithic plates of
equivalent mass is also shown in Figure 10. Those R = 500 mm sandwich panel specimens
show the better resistance to blast loading compared to the solid shells with the equivalent
mass. However, the central deflection of R = 250 mm curved sandwich panels were larger than
that of solid counterparts. This may be explained that the deformation of the smaller radius of
curvature specimens is governed by the local failure, which may decrease the energy absorp-
tion capability of the foam cores; however, the deformation of the solid shell counterparts is
dominated by the global bending.

2.2.3. Influence of face-sheet thickness on the shock resistance

The dependence of the central deflection of the back face-sheet on face-sheet thickness is
shown in Figure 11, where additional data corresponding to the same conditions are included
to show the possible general trend. The central point deflection decreases with the increased
face-sheet thickness, as expected. For R = 250 mm curved sandwich panels, those specimens
with 0.8-mm- and 1.0-mm-thick face-sheets show the smaller deflections than curved panels
with the 0.5 mm face-sheets, by 28.3 and 56.3%, respectively. This is also the case for the
R = 500 mm specimens, whereby the deflections are, respectively, 48.5 and 68.8% smaller.

2.2.4. Influence of core relative density on the shock resistance

The central point deflection of specimens is plotted in Figure 12 as a function of core relative
density. For both curvatures, the specimens with the larger core relative density results in the
smaller deflections. Taking the core relative density of 11% as a reference, R = 250 mm

Figure 10. Relationship between central deflection and blast impulse.
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Figure 11. Effect of face-sheet thickness on central deflection of curved sandwich panels.

Figure 12. Effect of core relative density on central deflection of curved sandwich panels.
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sandwich panels with higher relative densities (15 and 18%) can decrease the average deflec-
tion, by 46.6 and 55.9%, respectively. However, for R = 500 mm sandwich panels, it is difficult
to quantify the effect of core relative density on the structural response of specimens, due to the
large variability in both impulse and deflection.

2.2.5. Influence of specimen curvature on the shock resistance

The influence of curvature is deduced primarily from Figure 10. Two major influences can be
identified: (i) the blast resistance of single-curvature sandwich panels with the larger radius of
curvature is better, and (ii) a comparison between the response of the curved sandwich panels
and the solid shell counterparts with the same mass is made, as stated in Section 2.2.2.
Obviously, the deformation of curved sandwich panels with the smaller radius of curvature is
governed by local penetration failure, while the deformation of the larger radius of curvature
specimens is the global deformation with bending and stretching dominants. The larger defor-
mation zone of the latter appears to contribute the greater plastic energy absorption and thus
enhances the resistance to blast loading.

3. Finite element simulations

Based on the experiments, corresponding finite element (FE) simulations have been under-
taken by employing the nonlinear, explicit finite element code LS-DYNA 970.

3.1. FE model

Since the curved sandwich panel is symmetric about x-z and y-z planes, only a quarter of the
curved panel was modeled, as shown in Figure 13. The entire model comprises 53,166 nodes
and 61,257 elements. The LY-12 face-sheets were modeled by Belytschko-Tsay shell element,

Figure 13. FE model of the 1/4 curved sandwich panel and charge.
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while the foam core was modeled by the default brick element. Similarly, one quarter of the
charge was modeled shown in Figure 13, and eight-node brick elements with arbitrary
Lagrange-Eulerian (ALE) formulation were adopted.

The mechanical behavior of face-sheets were represented by material model 3 of LS-DYNA
(*MAT_PLASTIC_KINEMATIC), while the aluminum foam corewasmodeled bymaterial model
63 of LS-DYNA (*MAT_CRUSHALBE_FOAM). A high-explosivematerial model (*MAT_HIGH_
EXPLOSIVE_BURN) incorporating the JWL equation of state (EOS_JWL)was used to describe the
material property of the TNTcharge:

p ¼ A 1� ω
R1V

� �
e�R1V þ B 1� ω

R2V

� �
e�R2V þ ωE

V
(15)

where p is the blast pressure, E is the internal energy per initial volume, V is the initial relative
volume, and ω, A, B, R1, and R2 are the material constants, respectively. The material param-
eters of the curved sandwich panel and TNT charge are kept the same as experimental ones.

The bolts used in the tests to clamp the curved panels to the fixture were represented by nodal
constraints in the numerical model. Symmetric boundary conditions about x-z and y-z planes
were imposed. The blast load imparted on the front face-sheet of curved sandwich panel was
defined with algorithm of *CONTACT_ERODING_SURFACE_TO_SURFACE. Automatic,
surface-to-surface contact options were generally used for curved sandwich panels.

3.2. Simulation results and discussion

3.2.1. Explosion and structural response process

The whole response can be divided into three stages: Stage I (expansion of the explosive), Stage
II (explosive product interacts with the curved sandwich panel), and Stage III (plastic defor-
mation of the curved sandwich panel under the inertia).

3.2.1.1. Stage I: expansion of the explosive

The expansion of the explosive starts at the point of detonation (central point of the top surface
of charge), as shown in Figure 14. The detonation of a high-performance explosive is achieved
by compressing and heating of its constituents, resulting that a chemical reaction is triggered
and then it is supersonically propagated through the explosive at the Chapman-Jouguet
velocity. Whereafter, a strong shock wave, generated by the violent expansion of the gaseous
products, propagates into the ambient medium. Since the sound speed increases with the
increased temperature in the compressible flow, shock waves are generated. The detonation
wave generated by the cylindrical charge presents an obvious directionality and a cross
distribution shape. The axial propagation speed is larger than the radial propagation speed,
so the axial pressure is also greater than that of radial direction due to the proportional
relationship between the wave speed and intensity in air medium.
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while the foam core was modeled by the default brick element. Similarly, one quarter of the
charge was modeled shown in Figure 13, and eight-node brick elements with arbitrary
Lagrange-Eulerian (ALE) formulation were adopted.

The mechanical behavior of face-sheets were represented by material model 3 of LS-DYNA
(*MAT_PLASTIC_KINEMATIC), while the aluminum foam corewasmodeled bymaterial model
63 of LS-DYNA (*MAT_CRUSHALBE_FOAM). A high-explosivematerial model (*MAT_HIGH_
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where p is the blast pressure, E is the internal energy per initial volume, V is the initial relative
volume, and ω, A, B, R1, and R2 are the material constants, respectively. The material param-
eters of the curved sandwich panel and TNT charge are kept the same as experimental ones.
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constraints in the numerical model. Symmetric boundary conditions about x-z and y-z planes
were imposed. The blast load imparted on the front face-sheet of curved sandwich panel was
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surface-to-surface contact options were generally used for curved sandwich panels.
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The expansion of the explosive starts at the point of detonation (central point of the top surface
of charge), as shown in Figure 14. The detonation of a high-performance explosive is achieved
by compressing and heating of its constituents, resulting that a chemical reaction is triggered
and then it is supersonically propagated through the explosive at the Chapman-Jouguet
velocity. Whereafter, a strong shock wave, generated by the violent expansion of the gaseous
products, propagates into the ambient medium. Since the sound speed increases with the
increased temperature in the compressible flow, shock waves are generated. The detonation
wave generated by the cylindrical charge presents an obvious directionality and a cross
distribution shape. The axial propagation speed is larger than the radial propagation speed,
so the axial pressure is also greater than that of radial direction due to the proportional
relationship between the wave speed and intensity in air medium.
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Figure 14. A typical process of the charge detonation.
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Figure 15. A typical process of explosive product-structure interaction.
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Figure 15. A typical process of explosive product-structure interaction.
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3.2.1.2. Stage II: explosive product-curved panel interaction

The expansion of the explosive begins to interact with the front face-sheet of curved sandwich
panel at this stage. It is seen from Figure 15 that the explosive product-curved panel interac-
tion lasts over a time period of approximately 32 μs, from approximately t = 28 μs to t = 60 μs,
corresponding the duration of the contact force between the explosive product and target
structure almost becomes to zero. Figure 15 shows the interaction of the explosive product
with the curved panel, accompanied with the upward distortion as a result of the reflection
from the curved target panel. Indentation deformation is first occurred in the central region of

Figure 16. A typical process of curved sandwich panel deformation.
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front face-sheet of the specimen, and then it extends both outward and downward with the
transfer of blast impulse. Back face-sheet of the specimen has little deformation at this stage.
Once the coupling interaction is completed (i.e., the contact force becomes to zero at t = 60 μs),
the high-explosive model should be manually deleted from the finite element code.

3.2.1.3. Stage III: deformation of curved sandwich panel under its own inertia

In this stage, there is no coupling effect between the explosive product and the structure, and
the curved sandwich panel remained to deform under the inertia, as shown in Figure 16. The
central indentation failure of the front face-sheet is formed by gradually compressing the foam
core, and the deformation extends outward until to the external clamped boundaries by
traveling plastic hinges. The deformation of the curved sandwich panel structure is mainly
governed by the plastic bending and stretching, accompanied with the slight oscillation. The
whole curved sandwich panel finally presents a global dishing shape, and the maximum
deflection of the back face-sheet occurs at the central point of the specimen.

3.2.2. Deflection response of the back face-sheet

Figure 17 compares the experimental and simulated permanent deflection at the central point
of the back face-sheet. It is shown that all data points are close to the line of perfect match,
which represents that the simulated data are agreed well with the experimental results. In
order to better understand the deformation mechanism of curved sandwich panel, the pro-
gressions of deflections at several key nodes (as shown in Figure 18) along the central

Figure 17. Comparison of experimental and numerical back-face deflection.
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circumferential and longitudinal directions are presented in Figure 19. Both circumferential
and longitudinal nodes for the front and back face-sheets have the similar deformation trend.
At ~300 μs, all the nodes, except the node C5, have the maximum transient deflections, and
then the deflection of these nodes decreases obviously due to the rebound of the elastic

Figure 18. Locations of the circumferential and longitudinal nodes on the face-sheets.

Figure 19. Deflection variation of key points on the face-sheets of the curved sandwich panel. (a) Circumferential (front
face-sheet), (b) circumferential (back face-sheet), (c) longitudinal (front face-sheet), and (d) longitudinal (back face-sheet).
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deformation until the whole deformation process is finished. The deformation of the back face-
sheet obviously lags behind that of the front face-sheet, and the central point deflection of back
face-sheet is also smaller than that of front face-sheet due to the foam core compression.

3.2.3. Energy absorption capability

Figure 20 shows the histories of plastic dissipation of the components of a curved sandwich
panel (R250-h0.8-C10-r15%-B3) subjected to blast loading. In the early stage of the response,
the front face-sheet compresses the aluminum foam core, resulting in core crushing and
significant energy dissipation. It can be found from Figure 20 that most of energy is dissipated
by the large deformation of front face-sheet and core compression and core constitutes a major
contribution, which is about 60% of total dissipation.

Effects of the impulse level and geometric configuration on the energy absorption of the
components of the curved sandwich panels were indicated in a stack bar diagram in Figure 21.
The partition of energy absorption of specimens is compared and analyzed in terms of the
impulse level (specimen nos. 1–3), face-sheet thickness (specimen nos. 4–6), and core relative
density (specimen nos. 7–9). The increase of impulse leads to a rise of total plastic energy
dissipation in the specimens. Most of energy dissipation is attributed to large plastic deforma-
tion of front face-sheet and core compression. The energy absorption does not present a
monotonic relationship with the face-sheet thickness. The specimen with 0.8-mm-thick face-
sheets has the best energy absorption performance, followed by that of 0.5-mm-thick face-
sheet, and the worst is that of 1.0-mm-thick face-sheet. This can be explained as follows: the

Figure 20. History of plastic dissipation of sandwich specimen during plastic deformation.
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face-sheet is also smaller than that of front face-sheet due to the foam core compression.
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Figure 20 shows the histories of plastic dissipation of the components of a curved sandwich
panel (R250-h0.8-C10-r15%-B3) subjected to blast loading. In the early stage of the response,
the front face-sheet compresses the aluminum foam core, resulting in core crushing and
significant energy dissipation. It can be found from Figure 20 that most of energy is dissipated
by the large deformation of front face-sheet and core compression and core constitutes a major
contribution, which is about 60% of total dissipation.

Effects of the impulse level and geometric configuration on the energy absorption of the
components of the curved sandwich panels were indicated in a stack bar diagram in Figure 21.
The partition of energy absorption of specimens is compared and analyzed in terms of the
impulse level (specimen nos. 1–3), face-sheet thickness (specimen nos. 4–6), and core relative
density (specimen nos. 7–9). The increase of impulse leads to a rise of total plastic energy
dissipation in the specimens. Most of energy dissipation is attributed to large plastic deforma-
tion of front face-sheet and core compression. The energy absorption does not present a
monotonic relationship with the face-sheet thickness. The specimen with 0.8-mm-thick face-
sheets has the best energy absorption performance, followed by that of 0.5-mm-thick face-
sheet, and the worst is that of 1.0-mm-thick face-sheet. This can be explained as follows: the
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curved sandwich panel with thicker face-sheets deforms smaller due to the relatively larger
structural stiffness; however, the severe damage may occur at the thinner front face-sheet
under the large blast loading. Moreover, the total energy absorption amount of the curved
sandwich panels decreases with the increased core relative density. Compared to the sandwich
panels with the 10% core relative density, those specimens with 15 and 20% core density
display relatively smaller energy absorption values, by 3.95 and 8.3%, respectively. This is
attributed that the core compression values decrease with the increased core relative density,
and the dominant deformation/failure mode of curved sandwich specimens is converted from
the local core compression to global bending deformation, resulting in a weaker energy
absorption capability.

4. Conclusions

Single-curvature sandwich panels with closed-cell aluminum foam cores, which include two
radii of curvature (i.e., 250 and 500 mm), three face-sheet thicknesses (i.e., 0.5, 0.8, and 1.0 mm),
and six different arrangements of foam core layers, were tested under air-blast loadings of
various magnitudes. A total of 48 curved sandwich panels were examined, and the typical
deformation and failure modes and the quantitative blast impulse and specimen deflection
results were obtained and discussed. Based on the experiments, the corresponding finite
element simulations were conducted using LS-DYNA software. The explosion and structural

Figure 21. Plastic energy dissipation by the components of curved sandwich panels.
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response process, back face-sheet deflection response, and energy absorption capability were
explored. Experimental results show that permanent central point deflection linearly increases
with blast impulse for all the specimen configurations and blast resistance of specimens can be
enhanced by increasing the face-sheet thickness or the core density. The weaker blast resistance
of R = 250 mm curved sandwich panels, compared to monolithic plates with the same mass,
and the R = 500 mm sandwich panels, which are attributed to the different dominant deforma-
tion mechanisms. Simulation results present that the deformation modes, deflection responses,
and energy absorption capability of curved sandwich panels are related with the loading
intensity and geometric configuration. Energy absorption capability of curved sandwich spec-
imens is monotonically increasing with the increased blast impulse and decreasing with the
increase of core relative density. However, it does not monotonically change with the face-
sheet thickness.
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structural stiffness; however, the severe damage may occur at the thinner front face-sheet
under the large blast loading. Moreover, the total energy absorption amount of the curved
sandwich panels decreases with the increased core relative density. Compared to the sandwich
panels with the 10% core relative density, those specimens with 15 and 20% core density
display relatively smaller energy absorption values, by 3.95 and 8.3%, respectively. This is
attributed that the core compression values decrease with the increased core relative density,
and the dominant deformation/failure mode of curved sandwich specimens is converted from
the local core compression to global bending deformation, resulting in a weaker energy
absorption capability.

4. Conclusions

Single-curvature sandwich panels with closed-cell aluminum foam cores, which include two
radii of curvature (i.e., 250 and 500 mm), three face-sheet thicknesses (i.e., 0.5, 0.8, and 1.0 mm),
and six different arrangements of foam core layers, were tested under air-blast loadings of
various magnitudes. A total of 48 curved sandwich panels were examined, and the typical
deformation and failure modes and the quantitative blast impulse and specimen deflection
results were obtained and discussed. Based on the experiments, the corresponding finite
element simulations were conducted using LS-DYNA software. The explosion and structural

Figure 21. Plastic energy dissipation by the components of curved sandwich panels.
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response process, back face-sheet deflection response, and energy absorption capability were
explored. Experimental results show that permanent central point deflection linearly increases
with blast impulse for all the specimen configurations and blast resistance of specimens can be
enhanced by increasing the face-sheet thickness or the core density. The weaker blast resistance
of R = 250 mm curved sandwich panels, compared to monolithic plates with the same mass,
and the R = 500 mm sandwich panels, which are attributed to the different dominant deforma-
tion mechanisms. Simulation results present that the deformation modes, deflection responses,
and energy absorption capability of curved sandwich panels are related with the loading
intensity and geometric configuration. Energy absorption capability of curved sandwich spec-
imens is monotonically increasing with the increased blast impulse and decreasing with the
increase of core relative density. However, it does not monotonically change with the face-
sheet thickness.
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Abstract

Fracture mechanics has been used for decades nowadays, and methods have been well
established in the community especially for standard-sized specimens. As it was mainly
developed for large structure assessment against the brittle failure, standardized speci-
mens are of large size at present. However, in many cases, these standard specimens are
not possible to apply due to size requirements of the available experimental material or the
size of the component considered. These can be cases of residual service life assessment of
in-service components, local properties determination (e.g., across weld), anisotropy
determination and assessment of mechanical properties of newly developed materials
under laboratory conditions (e.g., SPD processed materials, etc.). Therefore, development
of new methods using significantly smaller specimens has to be carried out, and pro-
cedures using smaller-sized specimens together with their validity limits and relation to
standardly obtained results have to be provided in order to provide solution for wide
applications.

Keywords: fracture mechanics, ductile fracture, brittle fracture, miniature specimens,
local properties, anisotropy assessment

1. Introduction

Fracture toughness properties yield very essential information on the material behavior with
the presence of the sharp crack. This information is in many cases crucial for design or decision
about the further use or discarding the component from service. However in many such
important cases, there is shortage of the experimental material, and thus assessment has to be
done based on miniaturized specimen testing. Examples of the cases when shortage of the
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experimental material is only available can be residual service life assessment of in-service
components, when the experimental material only by semi-destructive approach can be
obtained. Cases during development of new materials, generally preparation of the materials
with limited volume such as severe plastic deformation processes for bulk nanomaterials
preparation. Recently, also for the assessment of the parts produced by additive manufacturing
techniques are application for small-size specimen testing.

This chapter is going to provide overview of reporting values of the results obtained with the use
of miniaturized specimens with hints how can be small-size-based results related to the
standard-sized specimen results. These techniques enable assessment of the fracture behavior
from small material volumes allowing, for example, also local anisotropy assessment. In the first
part of the chapter, some theoretical background for small-size specimen testing is provided for
different fracture regime behaviors ranging from brittle up to full ductile behavior. Several mini
specimens’ geometries are demonstrated here that are subsequently applied on the experimental
materials. Three materials are presented here, ferritic steel used for Master Curve-based assess-
ment and then stainless steel and Ti-alloy produced by additive manufacturing technology.
The results are summarized in order to provide inside into the facture behavior assessment with
the use of miniaturized specimens providing background for practical application of these
approaches.

2. Specimen size and geometry influence on fracture toughness
parameters

The effect of the specimen size and the geometry is variable with the material fracture behav-
ior. Most of the technical materials exhibit transition behavior, and thus three basic regions can
be distinguished: the lower shelf, transition and upper shelf.

Holzmann and Vlach [1, 2] suggested schematic diagram of fracture toughness behavior with
temperature (see Figure 1), where following fracture toughness parameters are used for an
analysis of the fracture behavior:

KJ0.2—fracture toughness after 0.2 mm of blunting and crack extension.

KJm—value of KJ at the maximum load Fmax for stable fracture behavior and nonlinear test
record.

KJu—post-ductile tearing cleavage fracture toughness; only Jc-tests terminated by cleavage
prior to attaining the maximum load Fmax were taken into account.

KJC—fracture toughness for the onset of cleavage fracture after elastic-plastic deformation, but
with no prior ductile tearing.

KC—the fracture toughness at the onset of brittle fracture; test record linear or with no signif-
icant deviation from linearity, but size validity requirements of ASTM E399 are not met.

KIC—plane strain fracture toughness.
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All values of KJ could be obtained by conversion from J-values using Eq. (1):

KJ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

J:E
1� ν2ð Þ

s
(1)

The following transition temperatures are denoted in the diagrams:

tDBU—ductile-brittle upper; the cleavage fracture occurs after certain amount of ductile tearing
but prior to attaining the maximum load (the onset of the transition region).

tDBL—ductile-brittle lower; the end of the region with the above fracture mode.

tB—brittle-fracture transition temperature; the onset of the region, where cleavage fracture is
initiated ahead of the blunted crack tip but without prior ductile tearing. Due to inherent
scatter of material properties, tB could be within the (tDBL-tDBU) region.

tC—the lower shelf fracture toughness regime is below this temperature.

2.1. Brittle region (lower shelf region)

When a material behaves in a linear elastic manner prior to failure, such that the plastic zone is
small compared to the specimen dimensions, a critical value of the Mode I stress intensity factor
KIc may be an appropriate fracture parameter. In the ASTM E 399 [3] and similar test methods,
KIc is referred to as “plane strain fracture toughness.” Four specimen configurations are permit-
ted for the fracture toughness determination by the current version of E 399: the compact tension
(CT), single edge-notched bend bar (SE(B)), arc-shaped and disc-shaped specimens. However,

Figure 1. Schematic representation of fracture toughness-temperature dependence.
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the vast majority of fracture toughness tests are performed on either CT or SE(B) specimens.
Figure 2 shows basic dimensions of both types of specimens of these two specimen types,
assuming the same characteristic dimensions (B, W, a). It can be seen that the specimen design is
such that all of the key dimensions (i.e., a, B and W � a) are approximately equal and, thus,
geometry selection is only question of less material consumption from semi-product.

In order to fulfill the size requirements for size-independent fracture toughness value determi-
nation according to the ASTM E399, the minimal specimen thickness is 1.6 mm, while the
specimen ligament size (W-a) must be not less than 2.5(KIc/σYS)

2, where σYS is the 0.2% offset
yield strength. Considering recommended proportion of the thickness B which is nominally
one-half the specimen width W and crack length, a, is nominally between 0.45 and 0.55 times
the width W, the thickness must be also not less than 2.5(KIc/σYS)

2. These limits could be
expressed using Eq. (2), which is not literally listed in the standard ASTM E399 but is noted
in Anderson [4]:

B, a, W � að Þ ≥ 2, 5 � KIC

σYS

� �2

0:45 ≤ a=W ≤ 0:55 (2)

Because the size requirements of ASTM E 399 are very stringent, it is very difficult and
sometimes impossible to measure a valid KIc for most of the structural materials. As an
example, we can consider structural steel with σYS = 330 MPa and typical KIc values of
210 MPa.m0.5. According to Eq. (2), the required thickness must be higher than 1 m, and the
width (since a/W = 0.5) must be more than 2 m (see Table 1). Materials are seldom available in
such dimensions, and if yes, machining and testing would have to be done using special
machine, and all investigation would be extremely expensive. On the other hand, material
such as tool steels exhibits high yield strength and low fracture toughness, and Table 1 shows
combination of these two values for obtaining valid fracture toughness value under plain

Figure 2. Comparison of the profiles of CTand SE(B) specimens with the same in-plane characteristic dimensions (B, W, a).

Example σYS KIc B, a B, a

MPa MPa.m0.5 m mm

Steel_1 330 210 1012 1012.4

Steel_2 1600 40 0.002 1.6

Table 1. Examples of the calculated thickness B for given σYS and KIc values.
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strain condition for thickness 1.6 mm. Considering investigated material in this chapter,
Table 2 shows hypothetic KIc value under plain strain condition for different specimen geom-
etries and sizes. Note that the toughness level calculated here corresponds to the lower shelf
for these materials. Thus valid KIc tests on these materials would be possible only at low
temperatures, where the materials are too brittle for most structural applications.

In ASTM E 399 it is listed that “Variation in the value of KIc can be expected within the
allowable range of specimen proportions, a/W and W/B. KIc may also be expected to rise with
increasing ligament size. Notwithstanding these variations, however, KIc is believed to repre-
sent a lower limiting value of fracture toughness (for 2 % apparent crack extension) in the
environment and at the speed and temperature of the test.”

Therefore, valid KIc is generally accepted as size-independent value though some minor devi-
ation could not be avoided. As it can be seen from Tables 1 and 2, it is very difficult to obtain
valid fracture toughness values with the use of subsized specimens in this region, except for
very brittle materials. Therefore, subsided specimens will most yield size-dependent values of
the fracture toughness.

2.2. Ductile-brittle transition region

In this region, micro-mechanisms of cleavage fracture cause that the cleavage toughness data
tend to be highly scattered when compared to the lower shelf region, and thus a statistical
analysis must be performed as shown in Table 3. Rather than single value of toughness at a
particular temperature, the material has a toughness distribution. Research over the past three
decades on the fracture of ferritic steels in the ductile-brittle transition region has led to two
important conclusions:

Material Specimen geometry and size σYS B, a Requested KIc

MPa mm MPa.m0.5

15CH2NMFA 1 T-CT 502 25.0 50.2

M-CT 4.0 20.1

CVN 10 � 10 � 55 10.0 31.7

KLST 4 � 2 � 27 2.0 14.2

AISI 304 1 T-CT 657 25.0 65.7

M-CT 4.0 26.3

CVN 10 � 10 � 55 10.0 41.6

KLST 4 � 2 � 27 2.0 18.6

AM Ti6Al4V 1 T-CT 927 25.0 92.7

M-CT 4.0 37.1

CVN 10 � 10 � 55 10.0 58.6

KLST 4 � 2 � 27 2.0 26.2

Table 2. Calculated requested parameter KIc for valid plain strain condition considering investigated material in this chapter.
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strain condition for thickness 1.6 mm. Considering investigated material in this chapter,
Table 2 shows hypothetic KIc value under plain strain condition for different specimen geom-
etries and sizes. Note that the toughness level calculated here corresponds to the lower shelf
for these materials. Thus valid KIc tests on these materials would be possible only at low
temperatures, where the materials are too brittle for most structural applications.
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sent a lower limiting value of fracture toughness (for 2 % apparent crack extension) in the
environment and at the speed and temperature of the test.”

Therefore, valid KIc is generally accepted as size-independent value though some minor devi-
ation could not be avoided. As it can be seen from Tables 1 and 2, it is very difficult to obtain
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KLST 4 � 2 � 27 2.0 18.6

AM Ti6Al4V 1 T-CT 927 25.0 92.7

M-CT 4.0 37.1

CVN 10 � 10 � 55 10.0 58.6

KLST 4 � 2 � 27 2.0 26.2

Table 2. Calculated requested parameter KIc for valid plain strain condition considering investigated material in this chapter.
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1. Scatter in fracture toughness data in the transition region follows a characteristic statistical
distribution that is very similar for all ferritic steels.

2. The shape of the fracture toughness vs. temperature curve in the transition range is
virtually identical for all ferritic steels. The only difference between steels is the absolute
position of this curve on the temperature axis.

ASTM E1921 [5] implements this knowledge, and the standard outlines a fracture toughness
test method that is based on the Master Curve concept for ferritic steels with yield strengths
ranging from 275 to 825 MPa. Thanks to previous research, methodology for determination of
toughness distribution is greatly simplified including size effect prediction. In order to directly
compare toughness data obtained from different thickness specimens, a statistical size correc-
tion is employed to equilibrate the highly stressed material volume sampled at the crack tip by
cleavage. The following Eq. (3), derived from ASTM E1921, shall be used for conversion to an
equivalent value of KJc(1T) for a reference 1 T specimen with thickness of B1T = 25 mm:

KJc 1Tð Þ ¼ 20þ KJc Xð Þ � 20
� �

:
BX

B1T

� �1=4

(3)

where KJc(X) is measured fracture toughness of the tested specimen and Bx refers to the nominal
thickness of the tested specimen in millimeters, regardless of side grooves. Once toughness
values at a fixed temperature have been converted to 1 T equivalent values, the further evalua-
tion which leads to a reference transition temperature T0 is performed according to standard as
for 1 T specimen.

The reference temperature T0 should be relatively independent of the test temperature that has
been selected. Hence, data that are distributed over a restricted temperature range, namely,
T0 � 50�C, can be used to determine T0. This temperature range together with the specimen
size requirement (see Eq. (4)) provides a validity window for application of the Master Curve
methodology. As an example, such a validity window for Charpy-size fracture specimens
(W = B = 10 mm, a/W = 0.5) is shown in Figure 3.

KJC limitð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eb0σys

30: 1� ν2ð Þ

s
(4)

Material Tests Region of fracture toughness results

Tensile tests Facture toughness tests

Standard Mini 1 T-CT 0.16 T-CT CVN KLST 2 T-CT

15CH2NMFA X X X X X X X Transition region

AISI 304 X X X X X X Upper shelf

Ti6AL4V X X X Upper shelf

Note: CVN, standard Charpy V-notched specimen (10 � 10 � 55 mm3).

Table 3. Test matrix for the fracture toughness tests.
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where E is the Young’s modulus, σys is the material yield strength at the test temperature and
b0 is ligament W-a.

It should be also mentioned that specimens can have side grooves, but they are optional (see
Figure 4). In fact, side grooving may be indispensable as a means for controlling crack front
straightness in bend bars of square cross section. The total side-grooved depth shall not exceed
0.25B. Side grooves with an included angle of 45� and a root radius of 0.5 � 0.2 mm usually
produce the desired results.

In the ASTM E1921 is noted that at high values of fracture toughness relative to specimen
size and material flow properties, the values of KJc that meet the requirements of Eq. (3)
may not always provide a unique description of the crack front stress strain fields due to
some loss of constraint caused by excessive plastic flow. The application which played a key
role for development of small specimen test technology (SSTT) was the evaluation of prop-
erties of irradiated materials. For example, many investigations for integrity assessments of
nuclear components were done in VTT in Finland where also Master Curve method was
developed [7] and validated [8]. Wallin et al. were further developing SSTT for Master
Curve determination using mini-Charpy specimen (KLST) since 1997 [9]. Scibetta et al. [10]
investigated different reactor pressure vessel steels using standard and miniature specimens.
The reference temperatures obtained from subsize SE(B) and C(T) geometry tend to give a
lower reference temperature by about �8.5�C than larger specimens which was considered
as a consequence of the constraint loss. Kima et al. [11] investigated effects of specimen size
on fracture toughness using 1 CT, 1/2 CT and 1/4 CT. It was found that small specimen test
technique for F82H steel can be applicable to evaluate the fracture toughness properties due
to no substantial effects of specimen size.

Figure 3. Validity window of the Master Curves for the ferritic materials [6].
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where E is the Young’s modulus, σys is the material yield strength at the test temperature and
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Recently, great attention is focused on mini-CT (0.16 T-CT) specimen geometry that can
be made out of the broken halves of standard Charpy specimens. In 2014, round robin
program focused on verification of the reliability and robustness of experimental data of the
mini-CT was carried out among different laboratories. The results of the round robin con-
firmed that the mini-CT specimens offer a very attractive opportunity to derive the same
fracture toughness reference temperature values, T0, as those derived by larger fracture tough-
ness specimens [12].

Sokolov [13, 14] tested in2016 and 2017 themini-CTspecimenswithdimension of 10� 10� 4mm3

(see Figure 5) on materials HSST Plate 13B and un-irradiated Linde 80 WF-70 weld, respectively.
The T0 value derived from a relatively small number of mini-CT specimens in these studies is in
remarkable agreement with the T0 value previously reported from a much larger number of
conventional fracture toughness specimens. At the same time, these studies indicate that in the
real practice, it is highly advisable to use much larger number of specimens than the minimum
amount prescribed in ASTM E1921, when mini specimens are employed.

Also Wallin in work [15] focused his attention on mini-CT specimen. His work indicates that
miniature C(T) specimens fulfilling the ASTM E1921 size requirement behave like larger
specimens loaded to the same proportional loading. Side grooving was found to have a minor
effect on the initiator locations and was not significantly affected by the side groove geometry.

For completeness, it should be noted that three different methods to quantify constraint have
also been proposed, J small scale yielding correction, Q-parameter and the T-stress. [16]. Also
Wallin considers Q-parameter and the T-stress for Master Curve reference temperature T0

Figure 4. Side grooves in a fracture mechanics test specimen.
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correction [15, 17]. However closer description of these approaches is out of the scope of the
current chapter.

2.3. Ductile region

In the case of ductile materials, first the blunting of preexisting cracks occurs during
loading followed by formation of voids ahead of the crack tip at the critical strain. These
voids finally coalesce with the crack tip leading to the crack propagation. Hence, the ductile
crack initiation cannot be defined as a point in the J-Δa curve but rather as a process which
occurs over a range. For a J-R curve determination, it is necessary to know the crack length
at corresponding loading level. There are basically two approaches: single-specimen and
multiple specimen methods. For the multiple specimen test method, several “identical”
specimens are loaded to different levels, and the achieved crack lengths are usually mea-
sured visually at the fracture surface. In the case of the single-specimen method, in order to
obtain a full range pf crack lengths for J-R curve determination from only one specimen,
three widely used single-specimen test methods were developed with the crack lengths
being monitored during the test. One is the elastic unloading compliance method that
is the most often used out of the single-specimen methods. Another technique is the
electrical potential drop method and also the normalization method, both described in the
ASTM 1820 [18].

From a J-R curve, the characteristic values of elastic-plastic fracture mechanics are determined.
One of the significant parameters is the plane strain initiation toughness JIc that provides a
measure of the crack growth resistance near the onset of stable crack growth for mode-I cracks.
Since it is difficult to define the instance of crack initiation in ductile metals, different defini-
tions of the initiation toughness were used in different test standards. ASTM E1820 adopts an
engineering definition of JIc at the intersection of a 0.2-mm offset construction line and the J-R
curve, as shown by JQ in Figure 6.

Figure 5. Layout of mini-0.16 T-CT specimens that can be extracted out of the broken halves of Charpy specimens and its
overall dimensions.
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A valid J-R curve consists of the measured data points in a region defined by the coordinate
axis and the Jmax and Δamax limits. These two limits describe the measurement capacity of test
specimen. The maximum J-integral capacity for a specimen is given by the smaller of:

Jmax ¼ bσY=10 or Jmax ¼ BσY=10 (5)

where σY is an effective yield strength assumed as the average of the 0.2% offset yield strength
σYS and the ultimate tensile strength σtS. The maximum crack extension capacity for a speci-
men was defined as

Δamax ¼ 0:25 b0 (6)

where b0 is the initial crack ligament.

Application of fracture mechanics methods to engineering design and structural integrity
assessment requires fracture toughness values to be transferred from the laboratory test to a
structural application. Experiments have shown that the crack depth, section thickness, speci-
men size, crack geometry and loading configuration all can have a strong effect on the fracture
toughness measurements (K, G, J and d). These effects are referred to as “constraint effect.”
Joyce and Link [19] tested SE(B) specimens with various a/W ratios to investigate the constraint
effect on J-R curves. Figure 7 shows that significant differences exist between the J-R curves for
deep and shallow cracks. Similar trend can be observed when only one type of geometry with
the same ratio of a/W but with different sizes is used.

Ono et al. [20] tested JLF-1 steel using 1 CT, 1/2 CT and 1/4 CT in the upper shelf region.
Obtained J-R curve are very illustrative and showed shallow shape with decreasing size; see

Figure 6. A typical J-R curve with test data points, construction lines and limitation bounds required by ASTM E1820.
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Figure 8. Specimen size effects were interpreted here in terms of an increase in the plain stress
state region and plastic zone size at the crack tip in the specimen. From the point of specimen
thickness effect, this work summarized that the fracture toughness increased as the specimen
thickness decreased. From the point of ligament size effect, the fracture toughness decreases
when the specimens were miniaturized while keeping the same proportions.

Figure 7. The J-R curve dependency on the a/W ratio for HY80 steel obtained by Zhu and Joyce [19] using SE(B) specimens
and normalization method.

Figure 8. J-R curves of JLF-1 steel (left) and corresponded specimen size (right) [20].
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Seok et al. [21] investigated effect of specimen configurations using 0.5–2 T CT and further
specimens with constant width (101.6 mm) but different thickness plus specimens with same
thickness but different width. Therefore, the effect of plane size, specimen size and thickness
could be investigated. Moreover, the effect of the crack length and side grooves was discussed as
well. The resulting J-R curve increased with increasing plane size, though there is a difference of
increasing amount according to the material states, base or weld metal and stainless or carbon
steel. The resulting J-R curves decreased with increasing crack length and showed that the effect
of the crack length was significant. However, relatively weak influence was observed from the
change of the specimen thickness and size. It was also observed that the J-R curve decreased by
applying the side grooves and the effect of side groove was related to material properties.

Lucon et al. [22–24] investigated mini-CT specimen (10 � 10 � 4.15 mm3) applicability for
fracture toughness determination in the upper shelf region. As a general conclusion, in these
investigations it was observed that mini-CT specimens consistently and systematically under-
estimate elastic-plastic fracture toughness as measured from 1 T-CT specimens, in terms of
both ductile initiation and tearing resistance. Figure 9 shows an example of such a behavior
and also shows that, below approximately J = 200 kJ/m2, no significant deviation was observed
between data measured from mini-CT and 1 T-CT specimen; below this threshold, mini-CT
could therefore provide a reliable measurement of the material’s toughness.

3. Small size experimental specimen testing

Examples of fracture toughness test with the use of miniature test specimens are going to be
presented in this chapter. Results obtained on three experimental materials are shown here.

Figure 9. Results obtained at room temperature from mini-CT and 1 T-CT specimens of 18MND5 steel [24].
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Namely, RPV steel GOST 15Ch2NMFA with ferritic-martensitic microstructure, austenitic
stainless steel EN X5CrNi18-10 (AISI 304) and Ti-Alloy Ti6Al4V produced by Additive
Manufacturing (AM) technology are employed in this study. Ductile and brittle materials
facture behavior is investigated here with the use of miniaturized specimens applying J-R
curve and Master Curve assessment approaches.

As the assessment of the fracture toughness parameters requires also tensile test data as input
parameters for the evaluation, determination of tensile properties with the use of miniature
tensile test (M-TT) specimens is also demonstrated here.

3.1. Experimental materials

Material GOST 15Ch2NMFA were delivered in a form of rod with diameter of 130 mm and
length 150 mm. At first, three 2 T-CT specimens were produced in R-C orientation (according
to the standard ASTM E399-09 [3]). Technical drawing of 2 T-CT specimens is depicted in
Figure 10. Broken halves of the 2 T-CT specimens were subsequently used for production of
the other specimens (tensile test specimens, Charpy specimens, etc.).

Material EN X5CrNi18-10 (AISI 304) was delivered in the form of hot rolled rod with quadratic
cross section of dimensions 60 � 30 � 400 mm3. All specimens were produced in T-L orienta-
tion according to standard [3].

Material Ti6Al4V was investigated in the form of bar with dimension of 10 � 20 � 100 mm3.
Designation of specimen orientation was done according to the standard [25]. Where the first
letter represents the direction normal to the crack plane and second latter represents the
expected direction of crack extension. Orientation and its designation of the specimens in the
prism are depicted in Figure 11.

3.2. Tensile tests

Tensile test were carried out on standard- and miniature-sized specimens at room temperature
under quasi-static loading conditions for demonstration of comparable results obtained with
the use of miniaturized specimens. Tests were following procedure according to standard (ISO
CSN EN 6892-1) in the case of the full-size specimen testing. Testing procedure based on

Figure 10. 2 T-CT specimen geometry.
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standard developed in [26, 27] was employed for mini tensile test (M-TT) specimens. Specimen
geometry used for the current investigations is displayed in Figure 13. Full size specimens
(Figure 12c) were tested with the use of electromechanical testing system Zwick Z250 with

Figure 11. Orientation and designation of the specimens for the material Ti6Al4V produced SLM AM technology
(Z = building direction).

Figure 12. Tensile test specimen geometries. (a) Comparison of the standard and miniature tensile test specimens. (b)
Dimensions of mini tensile test (M-TT) specimen. (c) Standard size specimen.
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mechanical extensometer for strain measurement. The M-TT specimens (Figure 12b) were
tested with the use of small-sized linear drive-based testing system with capacity of 5 kN.
Strain in the course of the M-TT test was measured using DIC system ARAMIS by GOM.
Prior to tests, strain calibration with certified calibration blocks was performed. An appro-
priate pattern was applied on the specimen surface for the strain measurement by DIC
system. M-TTs were done with constant crosshead velocity of 0.25 mm/min and 1 mm/min
for the “standard” geometry. Three to five specimens were tested per batch. Specimens’
dimensions were measured prior to tests and after tests in order to evaluate tensile test-
specific parameters. Summarized test records obtained for the materials investigated are
shown in Figures 13–15. Averaged test results for each material investigated are shown in
Table 4–6.

Figure 13. Tensile test results, material 15CH2NMFA, geometry: standard and miniaturized.

Figure 14. Tensile test results, material AISI304, geometry: standard and miniaturized.
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Figure 15. Tensile test results, material AM Ti6Al4V, geometry: M-TT.

Specimen E YS UTS Elu El RA

GPa MPa MPa % % %

AISI304_standard Avg. 167.6 316.2 657.1 49.1 63.7 82.5

St. dev. 16.9 27.6 6.8 1.2 2.1 1.8

AISI304_miniaturized Avg. 141.9 340.7 679.1 49.3 62.0 75.7

St. dev. 8.1 9.9 4.8 1.3 3.0 1.7

Table 4. Tensile test results, material AISI 304, geometry: standard and miniaturized.

Specimen E YS UTS Elu El RA

GPa MPa MPa % % %

15CH2NMFA_standard Avg. 195.4 502.0 647.9 8.0 20.8 70.1

St. dev. 9.5 21.4 13,1 1.1 1.4 0.4

15CH2NMFA_miniaturized Avg. 159.8 503.4 655,1 6.3 16.2 66.0

St. dev. 27.9 11.7 8,3 0.3 1.4 5.2

Table 5. Tensile test results, material 15CH2NMFA, geometry: standard and miniaturized.

Specimen E YS UTS Elu El RA

GPa MPa MPa % % %

B27_ZYS_miniaturized Avg. 114.6 927.3 1000.7 5.5 10.8 43.3

St. dev. 2.0 20.2 17.1 0.8 3,4 2.1

Table 6. Tensile test results, material AM Ti6Al4V, geometry: miniaturized.
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3.3. Fracture toughness measurements

Based on theoretical and experimental analyses of possible fracture toughness specimen
downsizing, several geometries were proposed as it was discussed before. Demonstration of
the fracture toughness property measurement with the use of miniaturize specimens is shown
here on samples of several geometries here. The geometries employed here are miniature
compact tension specimen (0.16 T-CT) (Figure 16) and miniature Charpy specimens (half
Charpy specimen typically 4 � 3 � 22, KLST); see Figure 17. These specimens’ geometries are
utilized for brittle and ductile fracture description.

As the input data for the fracture toughness tests are used, results of tensile tests for pre-
cracking parameter determination and subsequent evaluation of validity limits and J-R curves.

The effect of the temperature on fracture toughness is known for many years. It is a question of
the material if it will exhibit sharp or gentle change. As it was mentioned above, the fracture
toughness-temperature dependency can be divided in several regions, and the current tests are
covering most of them.

Figure 16. Miniature compact tension specimen (0.16 T-CT): (a) front face geometry and (b) the “top and bottom” geometry.

Figure 17. Miniature Charpy specimen (KLST): (a) geometry 4 � 3 � 22 mm3 and (b) geometry 4 � 2 � 20 mm3.
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3.4. Testing in the transition region

Master Curve concept according to the standard ASTM 1921-17a [5] was applied on material
15CH2NMFA. The aim of this investigation was to show the shift of the reference temperature
T0 with regard to the geometry of the specimen and size of the specimen. Therefore, compact
tension specimens of different sizes (2 T-CT, 1 T-CT and 0.16 T-CT) and three-point bend
specimens’ geometries (CVN, standard Charpy specimen 10 � 10 � 55 mm3, and miniaturized
Charpy specimen, KLST (3 � 4 � 22 mm3)) were produced.

Pre-crack of all specimens was done on magnetic resonance testing machine RUMUL; the
initial crack size was 0.5 W with the final stress intensity factor of 16 MPa.m0.5. After pre-
cracking, 20% side groves were introduced. The final tests were performed on servo-
hydraulic testing machine MTS 810 with load capacity of 250 kN (in a case of 2 T-CT and
1 T-CT specimens) and servo-hydraulic testing machine Instron with load capacity 80 kN (in
a case of CVN, KLST specimens), respectively. Both machines were equipped with environ-
mental chamber for cooling of the specimens. In all cases specimens were held on testing
temperature for 15 min before the tests. Deformation of the specimens was measured by
means of COD extensometer on the load-line position. Testing setup for KLST samples is
depicted in Figure 18.

The first estimation of the T0 was done according to the (7) presented in [5]. For this
purpose ten standard Charpy specimens were produced, and value TK28J = �34.7 J
was determined. The estimated reference temperature T0 was evaluated according to the
(7) as �52.7�C. This estimation provides reference temperature with standard deviation of
15�C [5]:

T0 ¼ TK28J � 18
�
C (7)

For measurement and calculation of reference temperature T0, the multi-temperature approach
was applied. All measured data were censored through crack front criterion defined in (8):

KJc limitð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eb0σYS

30 1� v2ð Þ

s
(8)

where E is Young modulus, b0 = W-a0 (a0 = initial crack size), σYS is yield strength and v is
Poisson ratio. For the final evaluation, all fracture toughness results were recalculated to KJC_1T

using Eq. (3).

Measured data which fulfill the limit stated in (8) were marked as ri = 1. If evaluated facture
toughness values exceed limit (8) value, they were marked as ri = 0, respectively.

Crack lengths were measured through area measurement method. Example of fracture area
measurement is presented in Figure 19.

Summarization of the reference temperature T0 determination is shown in Table 7. Master
Curve with all measured data is depicted in Figure 20.
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It is clear from Table 7 that evaluated reference temperature using the KLST specimens and
2 T-CT specimens does not fulfill the validity criteria ∑rini > 1, and these reference tempera-
tures can be taken as provisional reference temperature T0Q.

Figure 19. Example of crack size measurement.

Specimen Number of specimen T0/T0q ri.ni Diff.T0

�C — �C

1 T-CT 6 �41,3 1 �23,7

0.16 T-CT 9 �62,6 1,5 �2,4

CVN 14 �73,1 2,33 8,1

KLST 14 �51,8 0,56 �13,2

2 T-CT 3 �27,9 0,5 �37,1

All specimens 46 �65,0 5,9 —

Table 7. Summarization of Master Curve results, material 15CH2NMFA.

Figure 18. KLST specimens (4 � 3 � 22 mm3) from material 15CH2NMFA.
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Figure 20. Comparison of the Master Curve evaluation for various samples’ geometries.

Figure 21. Comparison of J-R curves; material AISI 304; geometry of the specimens, 1 T-CT vs. 0.16 T-CT; unloading
compliance method of measurement.

Figure 22. Comparison of J-R curves, material AISI 304, geometry of the specimens: 1 T-CT (unloading compliance
method) vs. CVN and KLST (multiple specimen method).
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3.5. Testing in the ductile region

Testing in ductile region was done according the standard ASTM 1820-17 [18] where concept
of J-R curve was applied with in order to evaluate the crack initiation and propagation of
material AISI 304 and material Ti6Al4V produced by AM technology. It compared J-R mea-
sured using unloading compliance method (for CT specimen) and multiple specimen method
(for three-point-bend specimens); simultaneous size of the specimens was taken into the
account. Compact tension specimen (1 T-CT and 0.16 T-CT) was compared with standard
Charpy specimen (CVN) and miniaturized Charpy specimens (KLST).

Specimens were pre-cracked at first up to the final initial crack size 0.5 W with the final stress
intensity factor of 16 MPa.m0.5. After the pre-cracking 20% side groves were introduced, and
magnetic resonance machine RUMUL was used for pre-cracking. Testing of 1 T-CTwas carried
out on servo-hydraulic testing machine MTS 810 with load capacity 250 kN. J-R curve tests of
CVN, KLST and 0.16 T-CT specimens were carried out on servo-hydraulic testing machine
Instron with the load capacity of 80 kN. In the scope of the multiple testing procedures,
specimens were heat tinted after the tests and consequently cooled down in liquid nitrogen.
The cooled specimens were then broken, and crack sizes were measured through area mea-
surement method; see in Figure 19. J-R curve evaluation was done with the slope of construc-
tion line according to (9):

J ¼ 2σYSΔa (9)

Results of the J-R testing are present in Figures 21–23 and summarized in Table 8. Summari-
zation of J-R curve tests on material Ti6Al4V produced by Additive Manufacturing technology
is in Table 9. Comparison of J-R curves obtained for 0.16 T–CT and KLST (4 � 2 � 20 mm3) is
depicted in Figure 23.

Figure 23. Comparison of J-R curves;material, AMTi6Al4V; geometryof the specimens, 0.16T-CTvs. KLST (4� 2� 20mm3);
unloading compliance method of measurement.
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Contact and Fracture Mechanics162

3.5. Testing in the ductile region

Testing in ductile region was done according the standard ASTM 1820-17 [18] where concept
of J-R curve was applied with in order to evaluate the crack initiation and propagation of
material AISI 304 and material Ti6Al4V produced by AM technology. It compared J-R mea-
sured using unloading compliance method (for CT specimen) and multiple specimen method
(for three-point-bend specimens); simultaneous size of the specimens was taken into the
account. Compact tension specimen (1 T-CT and 0.16 T-CT) was compared with standard
Charpy specimen (CVN) and miniaturized Charpy specimens (KLST).

Specimens were pre-cracked at first up to the final initial crack size 0.5 W with the final stress
intensity factor of 16 MPa.m0.5. After the pre-cracking 20% side groves were introduced, and
magnetic resonance machine RUMUL was used for pre-cracking. Testing of 1 T-CTwas carried
out on servo-hydraulic testing machine MTS 810 with load capacity 250 kN. J-R curve tests of
CVN, KLST and 0.16 T-CT specimens were carried out on servo-hydraulic testing machine
Instron with the load capacity of 80 kN. In the scope of the multiple testing procedures,
specimens were heat tinted after the tests and consequently cooled down in liquid nitrogen.
The cooled specimens were then broken, and crack sizes were measured through area mea-
surement method; see in Figure 19. J-R curve evaluation was done with the slope of construc-
tion line according to (9):

J ¼ 2σYSΔa (9)

Results of the J-R testing are present in Figures 21–23 and summarized in Table 8. Summari-
zation of J-R curve tests on material Ti6Al4V produced by Additive Manufacturing technology
is in Table 9. Comparison of J-R curves obtained for 0.16 T–CT and KLST (4 � 2 � 20 mm3) is
depicted in Figure 23.

Figure 23. Comparison of J-R curves;material, AMTi6Al4V; geometryof the specimens, 0.16T-CTvs. KLST (4� 2� 20mm3);
unloading compliance method of measurement.

Fracture Toughness Determination with the Use of Miniaturized Specimens
http://dx.doi.org/10.5772/intechopen.73093

163



4. Result discussion and conclusions

The chapter presented here gives basic overview on issues related to small-size specimen
testing in the field of the fracture mechanics tests. Some theoretical background and the
relation between values obtained on small- and full-sized specimens for all regimes of the
fracture behavior ranging from the lower shelf behavior up to the upper shelf region are
shown. Some possibilities on how to resolve the size issue influence of the fracture toughness
parameters and the reasons for differences obtained during the evaluation in the first chapter
part were presented. An overview of size requirements for a valid value determination of the
fracture toughness is also given. The subsequent experimental part is demonstrating results of
the fracture toughness determination for three materials covering transition and upper shelf
region behavior. As an important part of the fracture toughness tests are tensile properties
determination. The chapter is dealing with miniature specimen testing; thus mini tensile tests
are presented here for the basic property determination that is necessary for fracture toughness
test preparation, execution and assessment.

Testing in the transition region and evaluation with the use of the Master Curve approach
yielded very good result comparability between miniaturized and full-size specimens for the
material investigated. Testing program spanning over five specimens’ geometries agrees very
well with published results and confirms reliable result determination in this region even with
the use of the miniaturized specimens including 4-mm-thick mini-CT specimens and three-
point-bend specimens of cross section 2 � 4 mm2. The upper shelf behavior with the stable
crack extension was investigated for stainless steel and Ti-alloy produced by the additive
manufacturing process. In the case of the stainless steel, four specimens’ geometries were

Specimen JIC
kJ/m2

Number of specimens Specimen

1 T-CT 598,3 3,0 UC

0.16 T-CT 345,2 7,0 UC

CVN 573,1 10,0 MS

KLST 513,6 14,0 MS

(UC = Unloading Compliance; MS = Multiple specimen method)

Table 8. Summarization of average values of fracture toughness results, material AISI 304.

Specimen O.16 T-CT KLST (4 � 2 � 20 mm3)

Avg. St. dev. Avg. St. dev.

JIC kJ/m2 31,9 2,5 85,7 9,1

Table 9. Comparison of fracture toughness results; material AM Ti6Al4V; geometry, 0.16 T-CT vs. KLST
(4 � 2 � 20 mm3); unloading compliance method of measurement.
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investigated, and multiple specimens’ as well as single specimens’ approaches were applied.
Standard-sized specimen results yielded very good agreement with the results achieved for
subsized three-point bend specimens, while the mini-CT specimen yielded values of about 60%
of those ones obtained for standard-sized specimens. In the case of Ti-alloy, due to very limited
amount of the experimental material, typically, e.g., for AM parts, mini specimens were
investigated only. Both considered specimens’ geometries yielded repeatable results. However,
the CT specimens yielded significantly lower fracture toughness values of about 40% of those
obtained for three-point-bend specimens. Large difference between these specimens’ geome-
tries results is in agreement with other published studies and results presented here for the
stainless steel.

The results obtained here point out the fact that there is currently no available general solution
for size effect description in the fracture toughness determination approaches so far. Varying
agreement is found for various materials. Therefore, for a reliable “size-independent“ value
determination, the material of the interest has to be investigated and size effect quantified. It
seems that the J-integral-based assessment has rather limited reporting value and better
description has to be established for size-independent fracture toughness evaluation in the
upper shelf. Lower transition region is well described by the Master Curve approach including
size effect in the evaluation. Generally considered, there is no need in all cases to obtain size-
independent values. These can be the case such as property assessment of the components of
small wall thickness, where plain strain condition is in reality not predominant. Cases when
local property anisotropy is being evaluated, just ratio among different locations and/or orien-
tations, are considered. Typical examples of the materials produced with small wall thickness
exhibiting high ration of property anisotropy are materials and components produced by the
additive manufacturing processes. In these cases, there is generally hardly any chance to
obtain “size-independent material properties” due to the reason that if produced in different
wall thicknesses, different properties are achieved, and thus considered wall thickness has to
be directly assessed.

As it can be seen in many cases, no real size-independent values are possible to achieve for the
material, and thus small-size techniques are the only way to characterize the properties. These
values are related just to the component and the process considered; however, valuable infor-
mation are provided allowing component design and process optimization. Miniaturized
specimen-based techniques for the fracture toughness determination were demonstrated here
as a tool providing deeper insight into the material fracture behavior for better understanding
of the material behavior in cases when limited amount of the experimental is available.
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investigated, and multiple specimens’ as well as single specimens’ approaches were applied.
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tries results is in agreement with other published studies and results presented here for the
stainless steel.

The results obtained here point out the fact that there is currently no available general solution
for size effect description in the fracture toughness determination approaches so far. Varying
agreement is found for various materials. Therefore, for a reliable “size-independent“ value
determination, the material of the interest has to be investigated and size effect quantified. It
seems that the J-integral-based assessment has rather limited reporting value and better
description has to be established for size-independent fracture toughness evaluation in the
upper shelf. Lower transition region is well described by the Master Curve approach including
size effect in the evaluation. Generally considered, there is no need in all cases to obtain size-
independent values. These can be the case such as property assessment of the components of
small wall thickness, where plain strain condition is in reality not predominant. Cases when
local property anisotropy is being evaluated, just ratio among different locations and/or orien-
tations, are considered. Typical examples of the materials produced with small wall thickness
exhibiting high ration of property anisotropy are materials and components produced by the
additive manufacturing processes. In these cases, there is generally hardly any chance to
obtain “size-independent material properties” due to the reason that if produced in different
wall thicknesses, different properties are achieved, and thus considered wall thickness has to
be directly assessed.

As it can be seen in many cases, no real size-independent values are possible to achieve for the
material, and thus small-size techniques are the only way to characterize the properties. These
values are related just to the component and the process considered; however, valuable infor-
mation are provided allowing component design and process optimization. Miniaturized
specimen-based techniques for the fracture toughness determination were demonstrated here
as a tool providing deeper insight into the material fracture behavior for better understanding
of the material behavior in cases when limited amount of the experimental is available.
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Abstract

In this chapter, extended finite element method (XFEM) has been used to simulate the
fatigue crack growth problems in functionally graded material (FGM) in the presence of
hole, inclusion and minor crack under elastic and plastic conditions. The fatigue crack
growth analysis of alloy/ceramic FGMs, alloy and equivalent composite is done by
XFEM in the presence of multiple discontinuities under mode-I mechanical load. The
validity of linear elastic fracture mechanics (LEFM) theory is limited to the brittle mate-
rials. Therefore, the elastic plastic fracture mechanics (EPFM) theory needs to be utilized
to characterize the plastic behavior of the material. A generalized Ramberg-Osgood
material model has been used to model the stress-strain behavior of the material. Plas-
ticity has been checked by Von Mises Yield criteria. J-integral has been used to calculate
the SIF. Crack growth direction is determined by maximum principal stress criteria.

Keywords: FGM, composite materials XFEM, elastic-plastic loading, fatigue fracture,
crack propagation, discontinuities, inclusions, holes, minor cracks

1. Introduction

Development of novel materials improves performance and efficiency of the structures, and
also leads to development of advanced and sophisticated structures. This complex process of
materials, structures and technology has led to the development of composite materials.
Strength and stiffness plays a key role in evaluating the worth of the material. These charac-
teristics provide strength to the structure to retain its desired shape and size under loading or
any other external action.
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Cracks/flaws are inevitable in all engineering materials. Loading under severe environmental
conditions may either initiate new cracks or may cause the propagation of pre-existing cracks
in the structures. Theoretically, fracture can be defined as the breaking or rupturing of a
material resulting into its separation into two or more pieces.

Composite materials manifested in the middle of the twentieth century. Composites are naturally
occurring or engineered materials made from two or more constituents with different chemical
or physical properties distinct boundary among constituents. Lightweight composite materials
with high strength to weight and stiffness to weight ratios have been used successfully in aircraft
industry and other engineering applications. Under high temperature conditions the strength of
the metal is deteriorated whereas, ceramics have excellent resistance to heat.

FGMs can be referred as multiphase composite materials in which the composition or microstruc-
ture or both are spatially varied which lead to a certain gradation in the local material properties.
FGMs can be defined as multi-phase composites. FGMs are synthesized such that they own
continuous variations in volume fractions of their components in space to return a pre-established
composition. FGMs possess continuously varying properties in one ormore than one direction and
the form non-homogeneous macrostructure due to these variations. By gradually varying the
volume fraction of the constituents, FGMs exhibit a smooth and continuous change from one
surface to another, thus reducing interface problems, andminimizing thermal stress concentrations.
The ceramic phase of FGMs provides a good resistance to heat, while the metal phase provides a
strong mechanical performance and hence reduces the possibility of catastrophic failure.

The major advantages of FGM over conventional materials are firstly, FGM satisfies the work-
ing conditions for which it is specifically developed. Secondly, it is economical as it reduces
material costs for particular engineering applications. Thirdly, it can reduce the magnitude of
residual and thermal stresses generated under working conditions. Finally, FGMs exhibit
better fracture toughness and bond strength. This is normally achieved by using a ceramic
layer connected with a metallic layer. FGMs have wide area of engineering applications like in
the computer circuit and aerospace industries. FGMs have typical applications is in aircraft
and automotive industries as thermal barrier coatings (TBCs).

In general, all structural components are subjected to thermo-mechanical cyclic load. The
fatigue life of these components is generally predicted without considering the effect of
defects/discontinuities present in component. However, FGMs are commonly made by
sintering process, which are porous in nature. These discontinuities at the vicinity of a major
crack tip lead to increase the effective SIF at the major crack tip due to which the life of the
components get depreciated. Hence, the analysis of FGMs in the vicinity of discontinuities
becomes very important from the design point of view. To widen the spectrum of applications
of FGMs, the fatigue/fracture behavior should be properly evaluated.

Over the years, greater understanding of fracture mechanics has undoubtedly prevented a
significant number of structural failures. Fracture mechanics approach for the design of struc-
tures includes flaw size as one of the key variables. Fracture toughness replaces strength of
material as a relevant material attribute, and its evaluation is mainly done in composites using
the J-integral approach [1]. Failure of FGM has always been a trending domain of research for
scientists and engineers due to the wide spectra of their engineering applications.
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Fatigue and quasi-static fracture are two forms of crack growth phenomenon. Fatigue fracture
refers to the slow propagation of cracks under cyclic loading conditions where the stress
intensity factors are below the fracture toughness of the material. Quasi-static fracture is
observed near the end of the fatigue life when the increased crack length leads to stress
intensity factors which are above the fracture toughness [2, 3].

In many cases, multiple cracks may exist in the components. There interaction resulting in the
variation of stress intensity factor, stress distribution and propagation direction of the major
crack. In the past, the failure of structures was analyzed in the presence of multiple cracks [4].
Some efforts have been made using analytical, experimental and simulation techniques to
analyze the effect of interaction among multiple cracks [5–7].

Although, many analytical [8, 9] and experimental methods [10, 11] have been explored for the
calculation of fracture parameters even then the drawbacks associated with experimental
investigation and scarcity of analytical solution have impelled the analysts towards alternative
techniques. Numerical methods hold the promise in this regard.

Many numerical methods are available to simulate the problems of fatigue failure in materials.
These include finite element method (FEM), boundary element method, hybrid boundary node
method [12, 13], meshfree methods [14–18] and extended finite element method [19, 20]. Out of
these methods, FEM has been widely used for solving a wide variety of engineering and
industrial problems [21–26]. It has achieved a remarkable success in solving various linear
and non-linear problems [27–34]. Despite its numerous advantages and unparalleled success,
it is not well-suited for solving the problems involving crack propagation. In crack growth
problems, element edges provide natural lines along which a crack can grow. This is advanta-
geous if the crack path is known a priori, but in most of the fracture phenomenon, the crack
path is unknown. Thus, FEM requires a conformal mesh and re-meshing to ensure that the
element boundaries coincide with the moving discontinuities (crack). Moreover, crack tip
singularity cannot be accurately modeled by standard finite element approximation. There-
fore, the modeling of crack growth becomes quite tedious and time consuming due to the
modification in mesh topology at each stage of crack propagation. To overcome this difficulty,
a new method known as extended finite element method (XFEM) has been developed to
model arbitrary discontinuities without a need of conformal mesh or re-meshing. Level set
method (LSM) is used in conjunction with XFEM for defining as well as tracking the geometry
of cracks and other discontinuities like holes and inclusions. To cope up with these problems,
XFEM has been adopted as a tool for the analysis of fatigue crack propagation in FGM.

2. Calculation of SIF for FGM

A domain based interaction integral approach can be used for calculating the stress intensity
factors for homogeneous, bi-layer and functionally graded materials under thermal as well as
mechanical loading. In this chapter, interaction integral approach will be extended to calculate
the SIFs for FGM and bi-layered FGM under mechanical loads. The interaction integral
is calculated based on J-integral. The J-integral for an elastic body subjected to thermo-
mechanical load is given as,
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These include finite element method (FEM), boundary element method, hybrid boundary node
method [12, 13], meshfree methods [14–18] and extended finite element method [19, 20]. Out of
these methods, FEM has been widely used for solving a wide variety of engineering and
industrial problems [21–26]. It has achieved a remarkable success in solving various linear
and non-linear problems [27–34]. Despite its numerous advantages and unparalleled success,
it is not well-suited for solving the problems involving crack propagation. In crack growth
problems, element edges provide natural lines along which a crack can grow. This is advanta-
geous if the crack path is known a priori, but in most of the fracture phenomenon, the crack
path is unknown. Thus, FEM requires a conformal mesh and re-meshing to ensure that the
element boundaries coincide with the moving discontinuities (crack). Moreover, crack tip
singularity cannot be accurately modeled by standard finite element approximation. There-
fore, the modeling of crack growth becomes quite tedious and time consuming due to the
modification in mesh topology at each stage of crack propagation. To overcome this difficulty,
a new method known as extended finite element method (XFEM) has been developed to
model arbitrary discontinuities without a need of conformal mesh or re-meshing. Level set
method (LSM) is used in conjunction with XFEM for defining as well as tracking the geometry
of cracks and other discontinuities like holes and inclusions. To cope up with these problems,
XFEM has been adopted as a tool for the analysis of fatigue crack propagation in FGM.

2. Calculation of SIF for FGM

A domain based interaction integral approach can be used for calculating the stress intensity
factors for homogeneous, bi-layer and functionally graded materials under thermal as well as
mechanical loading. In this chapter, interaction integral approach will be extended to calculate
the SIFs for FGM and bi-layered FGM under mechanical loads. The interaction integral
is calculated based on J-integral. The J-integral for an elastic body subjected to thermo-
mechanical load is given as,
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J ¼ ∮
Γo

~W δ1j � σij
∂ui
∂x1

� �
njdΓ (1)

For the interaction integral calculation of an elastic body, consider two equilibrium states i.e.
state 1, the actual state with given boundary conditions and state 2, an auxiliary state of the
cracked body. The parameters for auxiliary state are represented with superscript a. The final
expression for the interaction integral takes the form [35]

M12 ¼
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Ao

σij
∂uai
∂x1

þ σaij
∂ui
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� σaikε
m
ik δ1j
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qdA

(2)

where, the auxiliary field for the FGM may be taken from [36] as.

σaij ¼ Ctip
ijkl

1
2

∂uak
∂xl

þ ∂ual
∂xk

� �
, εaij ¼ Sijkl xð Þσakl and εaij 6¼

1
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þ
∂uaj
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 !
(3)

The SIFs are calculated from the interaction integral as [36]:

Mode-I SIF is given as,

KI ¼
M12E∗ cosh2 πεtip

� �
2

with Ka
I ¼ 1 and Ka

II ¼ 0 (4a)

Mode-II SIF is given as,

KII ¼
M12E∗ cosh2 πεtip

� �
2

with Ka
I ¼ 0 and Ka

II ¼ 1 (4b)

where, E∗ ¼ 2E1 E2

E1þE2
with Ei ¼

Etip
i for plane stress

Etip
i = 1� νtipi

� �2� �
for plane strain

8><
>:

with i ¼ 1, 2

3. Fatigue crack growth

Here we use Paris law for stable crack propagation, the generalized Paris’s law is given as:

da
dN

¼ C ΔKIeq
� �m (5)
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Where, a is the crack length and N is the number of loading cycles. C and m are material
properties to find the rate of crack growth. At each crack tip, the local direction of crack growth
θc can be calculated by the maximum principal stress theory [37]. Crack is assumed to grow in
a direction perpendicular to the maximum principal stress. Thus, by enforcing the condition
that the local shear stress is zero for θ ¼ θc,

KIsinθc þ KII 3cosθc � 1ð Þ ¼ 0 (6)

The solution of Eq. (6) gives

θc ¼ 2tan�1
KI �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2
I þ 8K2

II

q

4KII

0
@

1
A (7)

According to this criterion, the equivalent mode-I SIF is obtained as

KIeq ¼ KI cos3
θc

2

� �
� 3KIIcos2

θc

2

� �
sin

θc

2

� �
(8)

For stable crack propagation, the generalized Paris’ law for FGM is given as

da
dN

¼ C xð Þ ΔKIeq
� �m xð Þ (9)

where, C xð Þ and m xð Þ are the functions of the location.
In the numerical example, the crack growth value Δa is assumed and the corresponding
number of cycles ΔN is computed from Eq. (9). When multiple crack tips are present, the crack
growth value Δa is assumed for the most dominant crack tip, corresponding ΔN is computed
and then at the other crack tips the crack growth is computed corresponding to ΔN. Eventu-
ally, when the maximum value of KIeq for any crack tip becomes more than the fracture
toughness KIC at corresponding location then the simulation is terminated. At this point, the
total number of cycles elapsed is the fatigue life of the FGM.

4. Modeling of the properties of FGM

In this chapter, the results have been presented for a FGM plate as shown in Figure 1. The
FGM plate is manufactured by reinforcing an alloy with ceramic. The volume fraction of
ceramic is varied in the x-direction to get a material property variation in the x-direction. It is
assumed that at x ¼ 0 the FGM have the properties of the alloy and at x ¼ L properties of
ceramic. The major crack is always taken at the center of the FGM plate in the x-direction. The
interface, when present is also in the same direction. The material properties of the aluminum
alloy and alumina used in FGM are tabulated in Table 1 [38, 39].
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Where, a is the crack length and N is the number of loading cycles. C and m are material
properties to find the rate of crack growth. At each crack tip, the local direction of crack growth
θc can be calculated by the maximum principal stress theory [37]. Crack is assumed to grow in
a direction perpendicular to the maximum principal stress. Thus, by enforcing the condition
that the local shear stress is zero for θ ¼ θc,
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where, C xð Þ and m xð Þ are the functions of the location.
In the numerical example, the crack growth value Δa is assumed and the corresponding
number of cycles ΔN is computed from Eq. (9). When multiple crack tips are present, the crack
growth value Δa is assumed for the most dominant crack tip, corresponding ΔN is computed
and then at the other crack tips the crack growth is computed corresponding to ΔN. Eventu-
ally, when the maximum value of KIeq for any crack tip becomes more than the fracture
toughness KIC at corresponding location then the simulation is terminated. At this point, the
total number of cycles elapsed is the fatigue life of the FGM.

4. Modeling of the properties of FGM

In this chapter, the results have been presented for a FGM plate as shown in Figure 1. The
FGM plate is manufactured by reinforcing an alloy with ceramic. The volume fraction of
ceramic is varied in the x-direction to get a material property variation in the x-direction. It is
assumed that at x ¼ 0 the FGM have the properties of the alloy and at x ¼ L properties of
ceramic. The major crack is always taken at the center of the FGM plate in the x-direction. The
interface, when present is also in the same direction. The material properties of the aluminum
alloy and alumina used in FGM are tabulated in Table 1 [38, 39].

Fatigue Fracture of Functionally Graded Materials Under Elastic-Plastic Loading Conditions Using Extended…
http://dx.doi.org/10.5772/intechopen.72778

173



The variation of the elastic modulus for FGM is modeled as

E xð Þ ¼ Ealloyeα x where α is given as α ¼ 1
L
ln

Eceramic

Ealloy

� �
(10)

A plot of E xð Þ for L = 100 mm is shown in Figure 2. The fatigue life of FGM has been compared
with the same of the aluminum alloy and an equivalent composite of aluminum alloy/alumina.
The equivalent composite considered in this example has the same overall volume fractions of
aluminum alloy and ceramic as the FGM. The volume fractions of ceramic and aluminum alloy
in the FGM are obtained as

VFGM
ceramic xð Þ ¼ E xð Þ � Ealloy

Eceramic � Ealloy
¼ Ealloyeα x � Ealloy

Eceramic � Ealloy
(11a)

VFGM
alloy xð Þ ¼ 1� VFGM

ceramic xð Þ (11b)

In this example, the equivalent composite is assumed to have the same amount of metal and
ceramic. The volume fraction of alumina in the equivalent composite is calculated as

Figure 1. Geometry of the FGM plate along with its dimensions.

Material properties Aluminum alloy Alumina

Elastic modulus E GPað Þ 70 300

Poisson’s ratio, ν 0.33 0.21

Coefficient of thermal expansion γ (/
�
C) 25 � 10�6 8.2 � 10�6

Fracture toughness KIC MPa
ffiffiffiffi
m

pð Þ 29 3.5

Paris law parameter C in m=cycle MPa
ffiffiffiffi
m

pð Þ�m 10�12 2.8 � 10�10

Paris law parameter, m xð Þ 3 10

Table 1. Material properties of aluminum alloy and alumina.
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Vcomposite
ceramic ¼ 1

L

ðL

0

VFGM
ceramic xð Þdx (11c)

where, L is the length of the plate. For L ¼ 100 mm, Vcomposite
ceramic ¼ 38:28% and Vcomposite

alloy ¼ 61:72%.

The variation in volume fraction of ceramic (alumina) in the FGM is shown in Figure 3. The
volume fraction for the equivalent composite has also been indicated. Now, using the rule of
mixtures for the equivalent composite

Ecomposite ¼ Ealloy V
composite
alloy þ EceramicV

composite
ceramic (12)

we get Ecomposite ¼ 158:04 GPa. The Poisson’s ratio for the equivalent composite as well as for
the FGM may be calculated as [40]

ν xð Þ ¼ νalloyVFGM
alloy xð ÞEceramic þ νceramicVFGM

ceramic xð ÞEalloy

VFGM
alloy xð ÞEceramic þ VFGM

ceramic xð ÞEalloy
(13a)

and νcomposite ¼
νalloyV

composite
alloy Eceramic þ νceramicV

composite
ceramic Ealloy

Vcomposite
alloy Eceramic þ Vcomposite

ceramic Ealloy

(13b)

The Poisson’s ratio is shown in Figure 4.

Figure 2. Variation of modulus of elasticity along the length of the plate.
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Figure 3. Variation of volume fraction of ceramic along the length of the plate.

Figure 4. Variation of Poisson’s ratio along the length of the plate.
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The coefficient of thermal expansion for the FGM by the rule of mixtures is calculated as

γ xð Þ ¼ γalloyV
FGM
alloy xð Þ þ γceramicV

FGM
ceramic xð Þ (14a)

The coefficient of thermal expansion for the equivalent composite is given by

γcomposite ¼ γalloyV
composite
alloy þ γceramicV

composite
ceramic (14b)

The value of the coefficient of thermal expansion for the equivalent composite is calculated
using Eq. (14b) and is found to be γcomposite = 18.57 � 10�6/

�
C. A variation of coefficient of

thermal expansion for the FGM is shown in Figure 5.

The fracture toughness of the FGM as well as the equivalent composite may be expressed as a
function of the volume fraction of the ceramic by the following formula given by [41]

KIC xð Þ ¼ Kalloy
IC þ Kceramic

IC

2

þKalloy
IC � Kceramic

IC

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� VFGM

ceramic xð Þ
q

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VFGM

ceramic xð Þ
q� � (15a)

Kcomposite
IC ¼ Kalloy

IC þ Kceramic
IC

2

þKalloy
IC � Kceramic

IC

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Vcomposite

ceramic

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vcomposite

ceramic

q� � (15b)

The variation of fracture toughness is shown in Figure 6.

The Paris law parameters are assumed to have exponential variation in a manner similar to the
elastic modulus. Thus, the variation in the parameters of Paris equation is taken as

C xð Þ ¼ Calloyeϑ x,where,ϑ ¼ 1
L
ln

Cceramic

Calloy

� �
(16)

m xð Þ ¼ malloyeς x,where, ς ¼ 1
L
ln

mceramic

malloy

� �
(17)

For the equivalent composite, we find the location at which the volume fraction of ceramic in
the FGM is same as that of the equivalent composite. This location x may be found by either

Figure 5 or by using the formula x ¼ 1
α ln

Ecomposite

Ealloy

� �
, where α is defined in Eq. (10). For the

present example x ¼ 56 mm. The Paris law parameters of the equivalent composite is assumed
to be same as that of the FGM at x ¼ x . Thus,

Ccomposite ¼ Calloyeϑ x (18a)

mcomposite ¼ malloyeς x (18b)
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Figure 3. Variation of volume fraction of ceramic along the length of the plate.

Figure 4. Variation of Poisson’s ratio along the length of the plate.
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The values of C and m for the equivalent composite comes out to be Ccomposite ¼ 2:34� 10�11 m=

cycle MPa
ffiffiffiffiffi
m

pð Þ�m and mcomposite ¼ 5:88. The variation of C and m are shown in Figures 7 and 8
respectively.

Plastic behaviour for FGM can be modeled using Ramberg Osgood equation [42]

ε ¼ σ
E
þ σ

H

� �1=n
(19)

Here, H is the strength coefficient and n is the strain hardening exponent. The value of
n ¼ 0:0946 is used for the present example. The values of the parameters of Paris equation are
taken as C ¼ 3� 10�11 and m ¼ 3. In actual case the path of crack growth is curved but in this
study the linear crack growth path is taken. Linear crack extension length Δa for an edge crack
is kept constant. For a center crack maximum crack extension length Δamax is kept on principal
crack tip. The principle crack tip is the crack tip where ΔKIeq maximum. Crack increment at the
other crack tip is given by:

Δa ¼ Δamax
ΔKIeq

ΔKIeq max

� �m

(20)

The crack tip extension at the principal crack tip is Δamax and at the other crack tip extension
is smaller. The crack extension takes place KIeq max < KIC . Crack becomes unstable when

Figure 5. Variation of coefficient of thermal expansion along the length of the plate.
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KIeq max > KIC. Simulation continues until this condition is met. Here, KIeq max is the equivalent
SIF for mode-I at principal crack tip and KIC is the material property called fracture toughness
or critical SIF. KIC for FGM is given by [35]

Figure 6. Variation of fracture toughness along the length of the plate.

Figure 7. Variation of C xð Þ along the length of the plate.
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KIC xð Þ ¼ Kceramic
IC

E xð Þ
1� ν2FGM

Vm xð Þ
1� ν2alloy
Ealloy

Kalloy
IC

Kceramic
IC

 !2

þ 1� Vm xð Þð Þ 1� ν2ceramic

Eceramic

8<
:

9=
;

2
4

3
5
1=2

(21)

where KIC xð Þ is the fracture toughness of the FGM at point x. Kalloy
IC and Kceramic

IC are the fracture
toughness of the alloy and ceramic, while νalloy and νceramic are Poisson’s ratios for the alloy
and ceramic respectively. Vm xð Þ denotes the volume fraction for the alloy at point x.

The constitutive relation for the elastic-plastic material is given as

σ uð Þ ¼ Dep xð Þε uð Þ (22)

where x is the vector of x and y-coordinates, Dep xð Þ is elastic-plastic constitutive matrix varying
in x-direction. The elastic constitutive matrix can be written for plane stress condition as
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Figure 8. Variation of m xð Þ along the length of the plate.
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The incremental theory of plasticity [43] has been used to model the elastic-plastic constitutive
relation for a material. An incremental stress vector dσ and incremental strain vector dε are
such that dσ ¼ Dep:dε. Where Dep is the elastic-plastic constitutive matrix, which is determined
as discussed under:

Total strain increment is the sum of elastic and plastic strains

dε ¼ dεe þ dεp (24)

Elastic incremental strain and stress is determined

dσ ¼ Dedεe (25)

F σð Þ ¼ f σð Þ (26)

where σ is the stress tensor and σ is the equivalent stress, F and f are two different failure
functions. By the flow rule the incremental strain is related to the gradient of a function known
plastic potential. If the plastic potential function and the failure function is same, then the
following relation is obtained,

dεp ¼ ∇F:d λ (27)

Plastic modulus Η is given as

Η ¼ dσ
dεp

(28)

For a given strain energy δw, and according to the definitionof dεp we must have,

δw ¼ σ:dεp (29)

According to the Von Mises criteria, F ¼ J2, where J2 is the second invariant of deviatoric stress

tensor. So, we must have F σð Þ ¼ σ2

3 , Thus Eqs. (26) and (27) result in

dσ ¼ De dε� dεp
� �

(30)

After taking the derivatives from both sides of failure criteria equation

∂F
∂σ

dσ
� �

¼ ∂f
∂σ

:
∂σ
∂εp

:
∂εp
∂w

:
∂w
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� �
(31)
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For simplicity we take ∂F
∂σ ¼ a, ∂f∂σ ¼ a

a:dσ ¼ a:Η:
1
σ

� �
σ:dεp (32)

dλ is calculated by omitting dσ between Eqs. (30) and (31) and substituting dεp from Eq. (27).
By substituting dλ in Eq. (27), the final form of material matrix is obtained as [43]

Dep ¼ De �Dp (33)

where Dp ¼ Da aTD
a
σΗσT þ aTDa

(34)

5. XFEM: Introduction and formulation for cracks and discontinuities
in FGM

XFEM or the extended finite element method is a numerical technique which allows crack
modeling irrespective of the mesh, and eliminates the cumbersome process of remeshing in
problems involving change in the crack geometry like crack growth. XFEM models a crack by
enriching the standard finite element approximation with some functions, which are obtained
from the theoretical background of the problem. Moving discontinuities are tracked by the level
set method. XFEM is a numerical method, based on the finite element method (FEM) that is
especially designed for treating discontinuities. The formulation is done as discussed in [35, 44].
The solution of FGM differs from homogeneous materials only in the spatial gradation in the
material properties. After calculating the values of stress and strain, the SIF is determined.

6. Numerical examples and discussion

The FGM plate considered in all the numerical simulations has 100% aluminum alloy on one
side and 100% alumina on the other side. The volume fraction of alumina changes from 0% on
one side to 100% on the other side so as to produce an FGM. The equivalent composite is
equivalent to the FGM in the sense that both the FGM and the composite plate contain the
same amount of aluminum alloy and alumina. The fatigue crack growth analysis of alloy/
ceramic FGMs, aluminum alloy and equivalent composite is done by XFEM in the presence of
multiple cracks, holes and inclusions under mode-I mechanical load and their fatigue life are
compared. The constituents of the FGM plate are aluminum alloy and alumina. A major crack
of large initial length is assumed to exist at the edge of the plate. The major crack is assumed to
be in the direction of material gradation. The fatigue crack growth analyses of the FGM, the
equivalent composite and the aluminum alloy plates have been carried out in the presence of
minor cracks, holes and inclusions till the final failure of the plate under mode-I mechanical
load. The effect of these small defects on the fatigue life as well as on the crack path has been
investigated in detail.
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6.1. Example 1

A rectangular FGM plate of length (L) 100 mm. and height (D) 200 mm. with 100% aluminum
alloy on left side and 100% ceramic (alumina) on right side is considered. Property variation is
taken in x-direction, where x = 0 to x = 100 mm. The plate with a major edge crack of length
a = 20 mm is analyzed under plane strain condition in the presence of multiple discontinuities.
In all simulations, the plate dimensions, initial crack length and material properties are taken
to be same. The properties of FGM, composites and aluminum alloy are already described in
Table 1. The material properties of the inclusions are taken as Ε ¼ 20 GPa and ν ¼ 0:2. The
plate domain is discretized using uniformly distributed 117 nodes in x-direction and 235 nodes
in y-direction. The fatigue crack growth analysis is performed by taking a crack increment of
Δa ¼ a

10= 2 mm. A cyclic tensile load varying from σmax ¼ 70 MPa to σmin ¼ 0 MPa is applied in
all the simulations. The geometric discontinuities like holes, inclusions and minor cracks are
added in the plate in addition to the major edge or center crack to analyze their effect on the
fatigue life of the material. The fatigue life of the FGM, equivalent composite and aluminum
alloy are obtained under mode-I loading, and are compared with each other.

6.2. Plate with a major edge crack under linear elastic condition

Figures 9 and 10 show a plate with a major edge crack of length a = 20 mm at the left and right
edge respectively. These plates have been analyzed under plane strain condition using a
uniform mesh of 117 by 235 nodes. The plots of the fatigue life for different materials are
shown in Figure 11. From these figures, it is seen that the equivalent composite withstands
7885 cycles before it fails while the FGM with crack on alloy side undergoes 15,561 cycles and

Figure 9. Plate with an edge crack on the alloy rich side under mode-I loading.
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load. The effect of these small defects on the fatigue life as well as on the crack path has been
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taken in x-direction, where x = 0 to x = 100 mm. The plate with a major edge crack of length
a = 20 mm is analyzed under plane strain condition in the presence of multiple discontinuities.
In all simulations, the plate dimensions, initial crack length and material properties are taken
to be same. The properties of FGM, composites and aluminum alloy are already described in
Table 1. The material properties of the inclusions are taken as Ε ¼ 20 GPa and ν ¼ 0:2. The
plate domain is discretized using uniformly distributed 117 nodes in x-direction and 235 nodes
in y-direction. The fatigue crack growth analysis is performed by taking a crack increment of
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10= 2 mm. A cyclic tensile load varying from σmax ¼ 70 MPa to σmin ¼ 0 MPa is applied in
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added in the plate in addition to the major edge or center crack to analyze their effect on the
fatigue life of the material. The fatigue life of the FGM, equivalent composite and aluminum
alloy are obtained under mode-I loading, and are compared with each other.

6.2. Plate with a major edge crack under linear elastic condition

Figures 9 and 10 show a plate with a major edge crack of length a = 20 mm at the left and right
edge respectively. These plates have been analyzed under plane strain condition using a
uniform mesh of 117 by 235 nodes. The plots of the fatigue life for different materials are
shown in Figure 11. From these figures, it is seen that the equivalent composite withstands
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pure aluminum alloy undergoes 19,145 cycles before failure. It is also observed that when a
major crack initiates from the ceramic (alumina) rich side then it fails much earlier (4872 cycles)
as compared to when the crack initiates from the aluminum alloy side.

These plots show that when a crack is present on the ceramic rich side, the life diminishes by a
considerable extent as compared to when a crack is present on the alloy rich side. The equiv-
alent composite shows the minimum life except in case when a crack is present on the ceramic
side. It is also observed that the crack follows nearly a straight path in all the materials.

6.3. Plate with a major edge crack, minor cracks, holes and inclusions under linear elastic
condition

In this case, a major crack of length a = 20 mm. is taken at the left and the right edge of the plate
(100� 200 mm) as shown in Figures 12 and 13 respectively. In addition to the major edge
crack, 36 minor cracks, 15 holes and 15 inclusions are randomly distributed in the plate. The
length of the minor cracks varies from 3.5 to 4.5 mm, and orientation varies from 0 to 60

�

randomly. The holes and inclusions have variations in their radii from 3 to 4.5 mm randomly. A
cyclic mode-I mechanical load is applied at the top edge of the plate. The plots for crack
extension with number of cycles are shown in Figure 14.

It is also observed that the crack deflects in all the materials. Moreover, it is seen that the
number of cycles to failure in case of aluminum alloy is about 18,111 cycles whereas in case of
FGM with crack on the alloy and ceramic rich sides is 14,622 cycles and 3111 cycles respec-
tively. The fatigue life of the composite plate is found to 6956 cycles. Thus, it can be stated that

Figure 10. Plate with an edge crack on the ceramic rich side under mode-I loading.
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Figure 12. Plate with an edge crack on the alloy rich side under mode-I loading.

Figure 11. A plot of crack extension with number of cycles.
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Figure 10. Plate with an edge crack on the ceramic rich side under mode-I loading.

Contact and Fracture Mechanics184

Figure 12. Plate with an edge crack on the alloy rich side under mode-I loading.

Figure 11. A plot of crack extension with number of cycles.
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Figure 13. Plate with an edge crack on the ceramic rich side under mode-I loading.

Figure 14. A plot of crack extension with number of cycles.
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due to the presence of minor cracks, holes and inclusions, the life of the aluminum alloy is
reduced by about 5.42%, whereas the fatigue life of the FGM with crack on the alloy and
ceramic rich sides goes down by 6.03 and 36.15% respectively. The fatigue life of the equivalent
composite is reduced by 11.78%.

6.4. Example 2

A rectangular FGM plate of length (Lt) 100 mm. and height (Ht) 200 mm. with 100% copper
nickel alloy on left side and 100% ceramic (alumina) on right side is considered. Property
variation is taken in x-direction, where x varies from x = 0 to x = 100 mm. A uniform traction
of 100 MPa is applied on the top edge of the rectangular domain along y direction. Cyclic
loading is applied at top edge of the plate with a maximum value of σmax ¼ 100 MPa and
minimum value of σmin ¼ 0 MPa. A uniform mesh of size 117 � 235 nodes is used for the
analysis in each case. The values of SIFs are computed at the tip of the major crack. The
variation of SIF with crack length is plotted in each case. The material properties are taken
from Table 2 [43].

6.5. A major crack in FGM plate under elastic: Plastic loading condition

In this case, a major crack of length a ¼ 20 mm is taken at the edge of the domain
(100 � 200 mm) as shown in Figure 15. Cyclic loading is applied at the top edge of the FGM
plate, and a crack propagates due to this loading. The plots of SIF with crack length for an
crack configuration is shown in Figure 16. The failure crack length obtained for edge crack is
0.0402 m.

Material properties Values

Elastic modulus of copper nickel alloy Ealloy GPað Þ 160

Elastic modulus of alumina (ceramic) Eceramic GPað Þ 386

Elastic modulus of soft inclusion Einclusion GPað Þ 100

Elastic modulus of Hard inclusion Einclusion GPað Þ 400

Poisson’s ratio of copper nickel alloy νalloy 0.35

Poisson’s ratio of alumina (ceramic) νceramic 0.21

Poisson’s ratio of inclusion νinclusion 0.3

Poisson’s ratio of inclusion νFGM 0.23

Fracture toughness of copper nickel alloy Kalloy
IC MPa

ffiffiffiffi
m

pð Þ 79

Fracture toughness of alumina (ceramic) Kceramic
IC MPa

ffiffiffiffi
m

pð Þ 5

Paris constant C in m=cycle MPa
ffiffiffiffi
m

pð Þ�m 3 � 10�11

Paris exponent m 3

Table 2. Material property table.
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Figure 13. Plate with an edge crack on the ceramic rich side under mode-I loading.

Figure 14. A plot of crack extension with number of cycles.
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due to the presence of minor cracks, holes and inclusions, the life of the aluminum alloy is
reduced by about 5.42%, whereas the fatigue life of the FGM with crack on the alloy and
ceramic rich sides goes down by 6.03 and 36.15% respectively. The fatigue life of the equivalent
composite is reduced by 11.78%.

6.4. Example 2
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6.6. A major edge crack in FGM plate with holes, inclusions and minor cracks under
elastic-Plastic loading condition

In this case, a major crack of length a ¼ 20 mm is taken at the edge of the domain
(100 � 200 mm) is taken as shown in Figure 17. Minor cracks, holes and inclusions are
randomly distributed in the plate. All 36 minor cracks have varying length randomly from 3.5
to 4.5 mm, with varying orientation from 0 to 60�. In addition to these 15 inclusions are also
distributed in the domain randomly. The holes and inclusions have variation in their radii from
3 to 4.5 mm. A cyclic mode-I loading is applied due to which the major crack propagates. The
plots for SIF variation with crack length of edge crack is shown in Figures 18 and 19 for soft
and hard inclusions respectively. The failure crack length for edge crack is obtained 0.0384 and
0.0392 m. for soft and hard inclusions respectively.

Figure 15. FGM plate with an edge crack.
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Figure 16. Plot for variation of SIF with crack length.

Figure 17. FGM plate with an edge crack, 15 inclusions, 15 holes and 36 minor cracks.
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Figure 16. Plot for variation of SIF with crack length.

Figure 17. FGM plate with an edge crack, 15 inclusions, 15 holes and 36 minor cracks.
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Figure 18. Plot for variation of SIF with crack length for soft inclusions.

Figure 19. Plot for variation of SIF with crack length for hard inclusions.
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7. Conclusions

In this chapter we have discussed the simulation of cracks in a FGM plate has been carried out in
the presence of multiple inhomogeneities by XFEM using both linear elastic as well as elastic-
plastic formulations. SIF has been calculated at the tip of the major crack using interaction integral
approach. The variation in the SIF at the tip of the major crack has been studied when multiple
inhomogeneities are present in the domain. From this study it is observed that minor cracks have
least effect in the FGM plate’s failure crack length, whereas soft inclusions have moderate effect
and holes have the most severe effect. It is found that the FGM plate’s life increases in each case
when soft inclusions are replaced by hard inclusions. Hence the presence of the hard inclusions in
the plate increases the failure crack length of the plate i.e. plate survives more.

Nomenclatures

~W : Strain energy

σ: Stress

ε: Strain

u: Deformation

C: Compliance matrix

E: Modulus of elasticity

γ: Coefficient of thermal expansion

KIC: Critical stress intensity factor (Fracture toughness)
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Figure 18. Plot for variation of SIF with crack length for soft inclusions.

Figure 19. Plot for variation of SIF with crack length for hard inclusions.
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7. Conclusions
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Abstract

This chapter presents a general background and the state of the art of numerical simula-
tion and modeling of fretting phenomenon in terms of wear, fatigue and fracture. First, 
an introduction of fretting and its implications is exposed. Second, different methodolo-
gies for wear modeling and simulation are described and discussed. Afterwards, fatigue 
and fracture analysis approaches are revised. To that end, multiaxial fatigue parameters 
are introduced putting an emphasis on the physical basis of the fretting phenomena and 
the suitability of each model. On the other hand, the propagation phase based on linear 
elastic fracture mechanics (LEFM) via the finite element method (FEM) and the eXtended 
finite element method (X-FEM) analysis methods is presented and compared. Finally, 
different approaches and latest developments for fretting fatigue lifetime prediction are 
presented and discussed.
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1. Introduction

Fretting phenomena arises when two bodies are in contact subjected to relative movement of 
small amplitude (0–300 μm), producing damage on the contact surface [1]. Since virtually all 
machines vibrate, fretting failure can occur in a variety of mechanical components (even the 
ones that are not intended to move), such as aircraft engine blade housings, ropes, flexible 
couplings, bearing housings and even orthopedic devices.

It has been reported that up to 50 variables might influence the magnitude and rate of the fret-
ting process [2]; however, Drobomirski [3] identified the slip amplitude, the contact pressure 
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and the coefficient of friction as the most influential ones. Different regimes can be determined 
depending on the slip amplitude, which is related to different failure types [4]:

• Stick regime: no slip occurs between the surfaces due to the accommodation of the dis-
placement by elastic deformation. The damage in the surface is very low.

• Partial-slip regime: the central zone of the contact interface is motionless or stuck while the 
outer one is sliding. In this case, there is a minimum wear, and fatigue failure occurs due to 
crack incubation and growth (fretting fatigue).

• Gross-slip regime: the contact interface is in slip regime. The failure mainly occurs due to 
wear (fretting wear).

Depending on the magnitude of stresses, fretting can cause catastrophic failure of mechanical 
components. It is noteworthy mentioning that fretting fatigue may reduce the lifetime of a 
component by half or even more, in comparison to plain fatigue [5].

Despite the considerable progress made in the understanding of fretting fatigue over the last 
decades, it is still one of the modern issues for industrial machinery [6]. Accordingly, there 
is an increasing interest in the use of the finite element method (FEM) to analyze fretting 
phenomena, since it provides data which currently cannot be obtained through experimental 
testing or analytical solutions. This chapter presents a general background and the state of the 
art of numerical simulation and modeling of fretting in terms of wear, fatigue and fracture.

2. Methodologies for wear modeling and simulation

Many wear models have been developed throughout history aimed to describe and predict 
the phenomena. Those models are extensively reviewed in the literature [7–10] and can be 
broadly classified into two main categories, namely, (1) mechanistic models, based on mate-
rial failure mechanism and (2) phenomenological models, based on contact mechanics.

The most popular and most used among them is the phenomenological Archard and Hirst 
model [11]:

  V = kPs  (1)

where  V  represents the worn volume,  k  the wear coefficient (obtained experimentally),  s  the 
sliding distance and  P  the contact force. It is noteworthy that the wear coefficient depends on 
the contact force and sliding amplitude, requiring its determination for each test condition.

On the other hand, Fouvry et al. [12] proposed a new model based on the energy dissipated 
on the contact surface:

  V = α  ∑ 
i = 1

  
N
     E  d, i    (2)

where  α  is the energy wear coefficient and   E  d, i    is the dissipated energy of the ith cycle.
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Fouvry highlighted the benefits of the energy-based wear model over the classically applied 
Archard’s approach. This new model requires a unique experimental campaign due to the 
independence of the energy wear coefficient to the contact force and sliding amplitude. Both 
models predict the same wear under gross slip condition, since the tangential force follows 
the equation:  Q = 𝜇𝜇P  where μ is the coefficient of friction. However, results differ under par-
tial sliding condition, where  Q < 𝜇𝜇P . It is, therefore, concluded that Fouvry’s model is supe-
rior due to the independency of contact force and sliding amplitude.

With the aim to solve wear modeling in more complex configurations and contact conditions, 
the FEM wear modeling has appeared as a good alternative in the last decade. Contact surface 
evolves progressively during wear phenomena, which generates an evolution in the stress 
state. This being so, the strategies for wear simulations consist of updating the geometry at 
discrete time increments, based on semi-empiric wear models.

McColl et al. [13] introduced a methodology for numerical wear simulation based on the 
local implementation of the previously mentioned Archard model (the so-called modified 
Archard’s model):

  Δh (x, t)  =  k  1   p (x, t) Δs (x, t)   (3)

where  Δh  is the incremental wear depth,   k  1    is the local Archard coefficient,  p  is the local con-
tact pressure and  Δs  is the relative slip distance increment.

As shown in Figure 1, the simulation consists of an iterative process where the local Archard’s 
model is solved through contact pressures and sliding distributions obtained by the numeri-
cal simulation at discrete time increments. The wear value obtained at each increment is then 
used to update the worn geometry at the end of the cycle and the process is repeated till a 
predefined maximum sliding distance is reached.

Figure 1. Simplified wear simulation flowchart of the McColl’s approach.
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evolves progressively during wear phenomena, which generates an evolution in the stress 
state. This being so, the strategies for wear simulations consist of updating the geometry at 
discrete time increments, based on semi-empiric wear models.

McColl et al. [13] introduced a methodology for numerical wear simulation based on the 
local implementation of the previously mentioned Archard model (the so-called modified 
Archard’s model):

  Δh (x, t)  =  k  1   p (x, t) Δs (x, t)   (3)

where  Δh  is the incremental wear depth,   k  1    is the local Archard coefficient,  p  is the local con-
tact pressure and  Δs  is the relative slip distance increment.

As shown in Figure 1, the simulation consists of an iterative process where the local Archard’s 
model is solved through contact pressures and sliding distributions obtained by the numeri-
cal simulation at discrete time increments. The wear value obtained at each increment is then 
used to update the worn geometry at the end of the cycle and the process is repeated till a 
predefined maximum sliding distance is reached.

Figure 1. Simplified wear simulation flowchart of the McColl’s approach.
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Since contact problems are nonlinear, the computational demand is considerable, especially 
in three spatial dimensions where this problem is highly magnified. Among the strategies to 
optimize wear simulations, the use of the cycle jumping technique should be highlighted. This 
approach allows to speed up the wear simulation under the assumption that wear remains 
constant for a small number of cycles. Therefore, a cycle jumping factor  N  multiplying the 
incremental wear allows using one computational wear cycle to model the material removal 
of  N  actual cycles [13].

A further improvement on the computational time was presented by Madge et al. [14] who 
programed the spatial adjustment of the contact nodes through the user defined subroutine 
UMESHMOTION (available on the commercial FE code Abaqus FEA). This subroutine works in 
an adaptive meshing constrain framework in order to adapt the mesh to the evolving geometries.

Among the several benefits of using UMESHMOUTION subroutine, it should be highlighted 
that the updating is done incrementally through the fretting cycle, providing more stable 
results comparing to the updates done at the end of the cycle. Larger cycle jumps can there-
fore be used, decreasing significantly the computation time. However, the subroutine gives 
access to the pressure data of only one of the bodies, avoiding the possibility to compute wear 
on both parts. Cruzado et al. [15–17] overcame this limitation by transferring the available 
contact pressure data to the other part by interpolation techniques.

It should be highlighted that recent publications [18, 19] proposed the use of the energy wear 
approach instead of the Archard’s local equation. Following the previously explained frame-
work proposed by Madge, the energy equation is computed locally as:

  Δh (x, t)  = 𝛼𝛼q (x, t) Δs (x, t)   (4)

As mentioned earlier, Fouvry’s model shows the independency of contact force and sliding 
amplitude being more versatile than the commonly used Archard’s equation.

3. Fatigue analysis approaches

Material fatigue refers to a progressive degradation of a material caused by loading and 
unloading cycles. The stress fluctuations suffered over time weakens or breaks the material 
even at stresses lower than the yielding value. Accordingly, a lot of effort has been directed at 
developing fatigue-life prediction models.

Fatigue is characterized with a high scatter of the lifetime. Probabilistic approaches are 
recently arising in the literature to address this problem [20, 21]. However, the majority of 
the models currently used analyze fatigue in a deterministic way, that is, a structure fails if a 
given parameter reaches a critical value.

Nowadays, a variety of different approaches for fatigue life prediction exist, such as approaches 
based on multiaxial fatigue criteria, damage mechanics or micromechanics, which are extensively 
reviewed in literature [22–33]. The present review focuses on the most widely used classical 
methodologies, that is, multiaxial fatigue criteria.
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Multiaxial fatigue criteria reduce the multiaxial stresses (usually computed by FEM analysis) 
to an equivalent uniaxial stress state. This way, the results can be compared to an experimen-
tal fitting curve obtained from uniaxial fatigue data. A crucial step when selecting a multiaxial 
criterion is to check whether the simplification from multiaxial stress state to an equivalent 
uniaxial stress state is acceptable or valid. This task is not simple and requires the detailed 
study of the evolution of stresses and strains along the loading cycle.

The book published by Socie and Marquis [22] presents a wide and detailed study about the 
principal multiaxial parameters, also known as Fatigue Indicator Parameters (FIPs). Those 
parameters can be broadly classified into three groups: strain-based, stress-based and energy-
based FIPs. Strain-based FIPs [34, 35] are generally related with Low-Cycle Fatigue (LCF) 
where plastic deformation may be predominant. Stress-based FIPs [36, 37] are associated with 
High-Cycle Fatigue (HCF), where the stresses usually remain in the elastic domain. Finally, 
energy-based models [38–40] relate the product of stresses and strains to quantify fatigue life, 
which generally are applicable to both LCF and HCF regime.

Additionally, fatigue can be categorized into proportional (fixed principal directions along a 
loading cycle) and nonproportional loading (rotation of the principal directions along a load-
ing cycle). Figure 2 shows the evolution of the stresses at the contact surface along  fretting 

Figure 2. Nonproportional stresses in fretting fatigue during a loading cycle: distribution of the principal stress 
components (  σ  11   ,   σ  12   , and   σ  22   ) along the contact interface for different loading time steps (dotted red line, dashed green 
line, solid blue line).
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fatigue cycle at three different stages of the loading cycle (maximum, mean and minimum). 
It can be observed that the normal stress   σ  11    and the shear stress   σ  12    fluctuate along the cycle 
while the stress   σ  22    remains unaltered. Consequently, principal directions rotate along the 
cycle generating nonproportional stresses under proportional remote loading. Therefore, 
the equivalent stress and strain approaches such as Von Mises criterion developed for pro-
portional loading are not applicable in fretting since the problem is highly nonlinear and 
nonproportional.

For these complex stresses or loading states, other approaches such as the critical plane 
method are more suitable [41–43]. The critical plane method has been developed from the 
experimental observation of nucleation and crack growth under multiaxial loading. The criti-
cal plane models include the dominant parameters that govern the type of crack initiation and 
propagation. An adequate model must be one that estimates correctly both fatigue life and 
the dominant failure plane. However, several failure modes exist, and there is not a unique 
parameter that suits all.

A great deal of critical plane based FIPs have been used in the literature to assess fretting 
fatigue life [44–49]. Nonetheless, the most popular parameters are the energetic criteria 
known as Fatemi-Socie (FS) [39] and Smith-Watson-Topper (SWT) [40].

The SWT parameter is applied in those materials where the crack growth occurs in mode I. 
The critical plane is defined as the one where the product of maximum normal stress (  σ  n, max   ) 
and normal strain amplitude (  ε  n, a   ) is maximum.

  SWT =   ( σ  n, max    ε  n, a  )   max
    (5)

Under shear loading condition, crack lip surfaces generate frictional forces that reduce stresses 
at the crack tip, thus increasing fatigue life. However, tensile stresses and strains will separate 
the crack surfaces, reducing the friction forces. The energetic FIP FS can be understood as the 
cyclic shear strain to include the crack closure effect multiplied by normal stress to take into 
account the opening of the crack.

  FS =  Δ  γ  max   _ 2   (1 +  k  FS    
 σ  n, max   _  σ  y    )   (6)

where  Δ  γ  max    is the maximum range of shear strain on any plane,   σ  n, max    is the maximum nor-
mal stress in that particular plane,   σ  y    is the material yield stress,   k  FS    is a material dependent 
factor.

Vázquez et al. [50] recently compared both parameters for the analysis of the initial crack path 
in cylindrical fretting contact, concluding that the SWT parameter gives much better correla-
tion than the FS parameter.

It should be mentioned that these parameters give a local life prediction and seek to find the 
hot spot to give the minimum life estimation. However, when high stress gradient events 
appear, for example, fretting case, an over-estimation of crack nucleation is predicted at the 
hot spot. Consequently, a nonlocal approach such as the Theory of Critical Distances (TCD) 
[51] used extensively in notched fatigue is recommended [52].
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4. Fracture modeling and simulation

Fracture mechanics is the field of mechanics concerned with the study of structures integrity 
in the presence of cracks. Within this field, there are several approaches, such as the linear 
elastic fracture mechanics (LEFM), the non linear fracture mechanics (NLFM) or the elasto-
plastic fracture mechanics (EPFM) [53–55]. This chapter focuses on the most widely used one, 
the LEFM approach.

From a fully elastic point of view, Williams [56] presented an eigen function expansion method 
that provides a framework for the description of the stress state near a crack-tip. For each 
cracked configuration, a sequence of coefficients depending on the geometry and load describes 
the stress state with respect to the radius of circumference  r  and angle  θ  (see Figure 3).

Irwin identified the first physically valid term in this infinite series, the  K  field [57]:

  σ (r, θ)  =  ∑ 
i
      K  i     

1 _  √ 
_

 2𝜋𝜋r     f  i   (θ)   (7)

where   K  I    is the Stress Intensity Factor (SIF) for each of the fracture mode. The use of SIFs 
assumes that the singular stresses dominate the stress field near the crack front, thus neglect-
ing higher order terms of the Williams series. It can be easily seen that the stress field shows a 
singularity when r tends toward zero.

As far as fatigue crack growth behavior is concerned, this is usually described by the relation-
ship between the crack growth length increase per cycle ( da / dN ) as a function of the SIF range 
( ΔK ). The typical log-log plot of crack growth behavior is shown schematically in Figure 4, 
which may be divided into three regimes:

• Regime I: the near threshold region—below the threshold value of SIF ( Δ  K  th   ) cracks will 
not propagate.

Figure 3. Singular stress field around the crack-tip.
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• Regime II: stable crack growth region—the curve is essentially linear (log-log scale), widely 
known as the Paris regime.

• Regime III: rapid unstable crack growth leading to catastrophic fracture.

Regarding the simulation and modeling of crack growth behavior, the computation of the 
SIFs have been a priority in fracture mechanics, which has given rise to a great diversity of 
techniques (discussed in Section 4.1). In cases where the SIF range overcomes the threshold 
value ( ΔK > Δ  K  th   ), the velocity and direction of the crack growth should be computed.

Crack propagation rate is usually described by means of a phenomenological law of the type  
da / dN = f (ΔK)  . A comprehensive analysis of crack propagation velocity models in fretting 
fatigue was carried out by Navarro et al. [58] who analyzed nine of the fatigue crack growth 
models for an aluminum alloy Al7075. This study concluded that the Paris law [59] and the 
modified SIF model [60] were the most suitable ones for the experimental campaign carried out.

Concerning crack orientation criteria, they are generally based on the analysis of the stress and 
strain fields. The suitability of each criterion mainly depends on the evolution of the stresses 
and strains along a loading cycle. It should be noted that fretting fatigue usually induces fric-
tion between crack faces prone to slip motion during the loading cycle. The problem is there-
fore nonproportional, and the classical orientation criteria for proportional loading such as the 
maximum circumferential stress [61] or the minimum of the strain energy density factor S [62] 
among others are not applicable. Giner et al. [63] analyzed the suitability of the nonpropor-
tional loading criteria available in the literature for fretting fatigue problem, concluding that 
the prediction of the crack path observed in the complete contact experiments did not present a 
good agreement with the models available. Therefore, they developed the criterion of the mini-
mum shear stress range, which is a generalization for nonproportional loading of the so-called 
criterion of local symmetry well established for proportional loading. The numerical results 
obtained by this new criterion were in good agreement with the experimental observation.

Figure 4. Schematic representation of a typical fatigue crack growth rate curve plotted in log-log scale.
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4.1. Stress intensity factor computation

Many of the initial analytical approaches initially developed for SIFs calculation [64–67] have 
been now outdated by the versatility offered by numerical methods. In this regard, one of 
the main methods is the interaction integral [68] through the equivalent domain integral [69] 
(nowadays implemented in commercial finite element codes such as Abaqus FEA). The inter-
action integral is an extension of the well-known J integral proposed by Rice [70], which is 
capable of extracting SIFs for each mode separately (  K  I   ,   K  II    and   K  III   ).

The computation of the interaction integral requires first to compute the stresses and strains 
by means of the FEM. However, the study of the singular problem through the FEM presents 
several drawbacks. On the one hand, in the classical formulation of the FEM the element 
edges need to conform to the crack boundaries, which require the use of cumbersome mesh-
ing techniques. On the other hand, the shape functions employed are generally of low-order 
polynomials, leading to the use of very refined mesh to compute reliable stresses and strains 
around the crack tip. Additionally, fatigue crack requires remeshing techniques to conform to 
the new crack boundaries.

Once Melenk and Babuška [71] showed that the finite elements could be enriched with addi-
tional functions to represent a given function, Möes et al. [72] proposed the eXtended finite 
element method (X-FEM) as a solution to overcome these issues.

In the X-FEM it is not necessary to have a mesh that conforms to the crack geometry, thus the 
finite element mesh is independent of the crack shape. To this end, the FEM model is enriched 
with additional degrees of freedom. On the one hand, the Heaviside function ( H (x)  = ± 1 ) 
is used to introduce discontinuity along the crack faces. On the other hand, the FEM model 
is additionally enriched with the asymptotic function derived by Irwin, and, therefore, can 
reproduce the singular behavior of LEFM by the following expression:

   { F   L  (x) }  ≡  √ 
_
 r   {sin  ( θ _ 2  ) , cos  ( θ _ 2  ) , sin  ( θ _ 2  )  sin  (θ) , cos  ( θ _ 2  )  sin  (θ) }   (8)

where  r ,  θ  represents the polar coordinates defined with respect to the local reference system 
at the crack tip (see Figure 3).

Therefore, the classical FEM displacement definition is enriched to obtain the X-FEM approxi-
mation to the displacement field, defined as:

   u   X‐FEM  (x)  =   ∑ 
i ∈ I

     u  i    N  i   (x)  +   ∑ 
i ∈ L

     a  i    N  i   (x) H (x)  +   ∑ 
i ∈ K

     N  i   (x)  (  ∑ 
l = 1

  
4
     b  i  l   F   l  (x) )   (9)

where  I  is the set of all nodes in the mesh,  L  and  K  are the sets of the enriched nodes,   N  i    is the 
shape function,   u  i    is the classical degree of freedom of the FEM and   a  i    and   b  i  l   are respectively 
the degrees of freedom of the enriched nodes.

Another important aspect of the X-FEM is the geometrical representation of the evolving 
cracks and the definition of the elements and nodes to be enriched. There are several methods 
to perform this task and can be divided into two groups: (1) implicit methods, such as the 
Level Set Method (LSM) [73] or the fast version called the Fast Marching Method (FMM) and 
(2) explicit methods, such as geometric predicates [74] or other approaches [72]. The suitability 
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is additionally enriched with the asymptotic function derived by Irwin, and, therefore, can 
reproduce the singular behavior of LEFM by the following expression:

   { F   L  (x) }  ≡  √ 
_
 r   {sin  ( θ _ 2  ) , cos  ( θ _ 2  ) , sin  ( θ _ 2  )  sin  (θ) , cos  ( θ _ 2  )  sin  (θ) }   (8)

where  r ,  θ  represents the polar coordinates defined with respect to the local reference system 
at the crack tip (see Figure 3).

Therefore, the classical FEM displacement definition is enriched to obtain the X-FEM approxi-
mation to the displacement field, defined as:

   u   X‐FEM  (x)  =   ∑ 
i ∈ I
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i ∈ L
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i ∈ K
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l = 1

  
4
     b  i  l   F   l  (x) )   (9)

where  I  is the set of all nodes in the mesh,  L  and  K  are the sets of the enriched nodes,   N  i    is the 
shape function,   u  i    is the classical degree of freedom of the FEM and   a  i    and   b  i  l   are respectively 
the degrees of freedom of the enriched nodes.

Another important aspect of the X-FEM is the geometrical representation of the evolving 
cracks and the definition of the elements and nodes to be enriched. There are several methods 
to perform this task and can be divided into two groups: (1) implicit methods, such as the 
Level Set Method (LSM) [73] or the fast version called the Fast Marching Method (FMM) and 
(2) explicit methods, such as geometric predicates [74] or other approaches [72]. The suitability 
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of each of the method depends on whether the problem is two or three-dimensional. Although 
the benefits of the LSM or FMM are not overwhelming in 2D, the use of implicit methods 
becomes necessary in 3D since the explicit representation can be quite difficult to discretize 
[75, 76].

5. Fretting fatigue numerical simulation

Over the years, a significant number of different methodologies for fretting fatigue life pre-
diction have been presented. First models were purely analytical, and numerical models 
appeared as computers evolved. Nowadays the preferred approaches can be classified into 
hybrid (combining analytical and numerical methods) or fully numerical methods.

Fretting fatigue life estimation has become an object of interest in the literature of the field. In 
general, the study of fretting is divided into two stages, the crack initiation (  N  i   ) and its sub-
sequent propagation (  N  p   ). Therefore, the sum of the two stages gives a total life prediction:

   N  f   =  N  i   +  N  p    (10)

In those situations in which the initiation phase dominates over propagation, some authors 
propose to estimate life considering only the initiation stage [77]. Conversely, for cases 
where crack growth stage dominates the components’ life, the initiation phase is sometimes 
neglected [78]. Nonetheless, most current approaches combine both phases in order to pro-
vide a total life prediction, and this chapter is therefore centered on those combined models.

The number of cycles to initiate a crack is typically obtained with a FIP (the reader is referred to 
Section 3 for multiaxial criterion details). Crack propagation is subsequently considered using 
different fatigue crack growth laws, which require the definition of an initial crack length.

It is noteworthy that the development of a combined initiation-propagation model involves 
two critical steps: (1) the selection of the stress-deformation analysis location and (2) the defi-
nition of the initial crack length. On the one hand, due to the high stress gradient that char-
acterizes fretting (see Figure 5(a)), the predicted crack nucleation cycles will increase as the 
location is further from the contact (see Figure 5(b). On the other hand, longer cracks grow 
faster, leading to a lower number of propagation cycles (see Figure 5(c)).

Among the different methodologies presented for fretting fatigue lifetime prediction, the 
simplest approach is to perform the multiaxial analysis at the hot spot (i.e., at the surface), 
which results in a conservative crack initiation prediction [79]. Once the condition of crack 
initiation is reached, a predefined crack length is introduced in the numerical model [44, 79]. 
Alternatively, other authors perform the multiaxial analysis at a certain distance from the 
surface instead of at the hot spot, obtaining less conservative life estimations [14, 78, 80, 81]. 
However, the selected distance is usually arbitrary and there is no consensus in the literature.

A further improvement was introduced by Navarro et al. [82] who presented a nonarbi-
trary criteria. In this methodology, both the initiation and propagation phases are computed 
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 separately for a set of points at different depths, considering the distance from the surface to 
the point under analysis as the initial crack length. Fretting fatigue life estimation is then calcu-
lated for each point (  N  i   +  N  p   ) and the minimum of those predictions is considered the estimated 
life. This methodology combines the FEM for crack initiation analysis and analytical models for 
crack propagation phase. It has been shown that the use of the X-FEM for crack propagation 
analysis following the same framework gives a better correlation in fatigue life prediction [47].

More recently, the use of nonlocal methods such as the TCD (the reader is referred to Section 3) 
was suggested by some authors in order to define the location of the multiaxial analysis and 
to set the initial crack length [49, 83].

Despite fretting wear and fretting fatigue being frequently linked, most of the approaches, 
such as the ones mentioned earlier, neglect wear phenomena. A further improvement is there-
fore to consider the wear simulation in order to study the effect of wear on fatigue life.

In this regard, one of the most prominent work was presented by Madge et al. [84] In this 
work, the 2D numerical simulation of material removal process is performed first under the 
UMESHMOTION framework (the reader is referred to the Section 2). Then, the multiaxial 
fatigue analysis coupled with a damage accumulation framework is carried out in order to 
account for the effect of wear on fatigue lifetime. Finally, the propagation phase is analyzed 
via submodeling technique, which allows to transfer the stress state of the contact surface 
from global wear model to crack submodel. It should be noted that this approach does not 
account for the explicit interaction between the fretting contact and the crack. This study 
showed that the linkage of wear modeling with fatigue analysis is a key factor to successfully 
predict the increase in life in the gross sliding regime.

A further improvement of the previous approach was recently published by the present 
authors [85] by combining wear, fatigue and fracture phenomena in a single numerical model. 
Figure 6 shows the flow chart of the coupled numerical analysis approach.

Figure 5. Dependency of fatigue analysis location and initial crack length in fretting fatigue lifetime. (a) Von Mises stress 
contour showing the high stress gradient present in fatigue phenomena. (b) and (c) Schematic representation of the 
influence of fatigue analysis location in the crack initiation cycle prediction (  N  i   ) and the influence of initial crack length 
in the propagation cycle estimation (  N  p   ), respectively.
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Figure 6. Flowchart showing computational sequence of the coupled wear, fatigue and fracture in fretting numerical 
analysis developed by [85].

The simulation algorithm is divided into two blocks corresponding to initiation and propaga-
tion stages, respectively. The first stage runs under the FEM framework, where the accumu-
lated damage is computed during wear simulation iteratively. This process is repeated until 
the accumulated damage value reaches the value of 1 ( Miner ≥ 1 ), that is, up to concluding 
the initiation phase. Afterwards, the propagation is computed through X-FEM code published 
by Giner et al. [76]. In this stage, the crack propagation is calculated during wear  simulation 
 iteratively up to reaching the failure criteria ( ΔK ≥ Δ  K  c   ). The presented model allows the 
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study of the fretting phenomena as a whole, allowing to model explicitly the interaction between 
the fretting contact and the crack. It is expected that further analysis using this framework will 
allow a better understanding of the synergies between wear, fatigue and fracture phenomena.

6. Summary and concluding remarks

The complex nature of the physical phenomenon of fretting involves the mixture of different 
fields of engineering such as fatigue, fracture and tribology. This chapter has introduced the 
state of the art of the currently available modeling and simulation methods to analyze fretting 
phenomenon. The benefits and drawbacks of each reviewed technique have been highlighted. 
Finally, a numerical architecture of coupled wear, fatigue and fracture methodology has been 
introduced, which allows to analyze the fretting phenomenon as a whole.

Among the main open challenges identified, a predominant role is taken by the need to com-
pare the increasing amount of methodologies to assess fretting lifetime, and it is likely to 
become the subject of considerable debate in the research community in the near future.
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Abstract

A new method is proposed to determine fracture toughness of structural materials
according to the test data of non-standard small-size chevron-notched specimens. Dur-
ing the tests, loading diagrams and photographic images of the specimens taken in time
intervals are obtained. The crack length is measured in the process of its initiation and
propagation. The analytical expressions are obtained being based and derived from the
constitutive equations of engineering fracture mechanics to determine the crack-driving
force (specific fracture energy) and the stress intensity factor. The method allows us to
exclude the periodic unloading of the specimen applied under standard test conditions
to determine the change in specimen compliance, which is taken into account in consti-
tutive equations at crack length increase. All necessary calculation parameters are deter-
mined according to the experimental data. The method allows us to certify fracture
toughness of the material without restrictions regarding the amount of plastic deforma-
tion and in front of the crack tip and in the specimen as a whole. The examples are given
to calculate the fracture toughness criteria for a number of structural materials charac-
terized by the ability to plastic deformation and by the Young’s modulus value.

Keywords: fracture toughness, non-standard small-size chevron-notched specimens,
analytical expressions, specific fracture energy, stress intensity factor, compliance

1. Introduction

Various methods for determining fracture toughness of materials are well-known and widely
used when testing standard specimens with induced fatigue crack [1–3], when testing the Charpy
notched specimens for fracture toughness [4], by the micro indentation method [5–7], et al.

An essential feature of these methods is that the characteristics of loading diagrams and the
existing fracture length are measured, and then fracture toughness characteristics of the mate-
rial are calculated by the semi-empirical formulas. As a rule, the critical stress intensity factor
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(SIF) of the 1st kind КIс (for cleavage crack) is taken for the main fracture toughness character-
istics of the material. The plane strain state condition of the loaded specimen is required in the
experiments. In this regard, standard tests are conducted on specimens at least 10 mm thick.

Disadvantages of used methods are as follows:

1. There is no possibility to assess the fracture toughness of the material when testing the
small thickness specimens;

2. Complexity of the mechanical processing and manufacturing of specimens;

3. Requirement for the fatigue pre-cracking on the notch;

4. Availability of special test equipment;

5. Use of significant amount of the complex-shaped specimens (cut out by layers, holes,
notches);

6. Need for the high power load device;

7. High steel intensity of test specimens.

8. Need for periodic unloading of the specimen to determine the change in specimen com-
pliance under loading.

9. Availability of phenomenological constants in constitutive equations, taking into account
the geometric shape and boundary loading conditions.

As a rule, during a fracture toughness test of small-size specimens, the chevron-notched
specimens are used [7–11]. The specimens with this configuration do not require the prelimi-
nary fatigue crack. When testing the small-size chevron-notched specimens, many of the
above-mentioned problems are absent.

This chapter proposes a new method for fracture toughness determination of structural mate-
rials using the small-size chevron-notched specimens. The method allows us to determine
fracture toughness characteristics without severe restrictions on the specimen ability to plastic
deformation. There are no phenomenological dependencies and empirical constants in the
calculations.

The fracture toughness characteristics comply with the conditions of continuous loading of
specimens, without using the “loading-unloading” operation.

The important calculation works were carried out associated with the use of chevron-notched
specimens during testing.

2. Fracture toughness calculation of straight-through notched specimens

To determine the global failure conditions, irrespective of the material state and geometrical
dimensions of the specimen, the energy approach is appropriate [12]. The key point of the
energy fracture criterion in fracture mechanics is formulated as follows: the crack growth can
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occur if the system can release energy required to initiate crack propagation to the elementary
distance dl. The energy needed for crack growth, appears only due to the elastic deformation
energy that occurs in-side the material under the applied external force.

The reliable fracture toughness characteristic is the critical value of the elastic energy release
rate (ERR) during the crack propagation Gc. In the two-dimensional version, this characteristic
is equivalent to the value of the J-integral [13, 14]. For brevity, the value of G will be called
specific fracture energy. The specific fracture energy (SFE) is defined as energy that is spent on
the formation of the crack surface with area 1 m2. The unit of measurement for SFE is J/m2.

In practice, there is a decrease in specimen stiffness or structure at initiation and propagation of
the crack. The specimen stiffness M is defined as the ratio of load P, applied to the specimen, to
the displacement of load application point λе at elastic deformation of the specimen:М = P/λе.

The reciprocal of the stiffness is defined as a specimen compliance η: η = λе/P.

The necessary condition for through-crack propagation in the flat specimen of unit thickness
obeys the equation [12–14]

G ¼ P2dη
2dl

, (1)

where dη/dl is the change in specimen ductility during crack propagation, dl is the short distance,
to which a straight-line crack front propagates. At the stage of stable crack propagation, this value
characterizes the fracture toughness Gc of the material. As follows from Eq. (1), elastic energy per
unit of new crack surface at its propagation to dl in the specimen in thickness а is equal to

G ¼ P2dη
2adl

¼ P2dη
dS

, (2)

where dS = 2adl is the elementary increment of the crack surface area.

There is a classic example for calculating the stress intensity factor KI to test a double cantilever
beam specimen with a straight-through notch [15]. The relation between G and KI for the plane
stress state obeys the equation

G ¼ K2
I 1� ν2
� �

=E: (3)

Let us consider the case of double-cantilever beam specimens with a straight-through notch in
detail, since the result will be used in the calculation of G for the chevron-notched specimens.

Figure 1 presents the double-cantilever beam specimens with a straight-through notch. Dis-
tance from the load application point P to the crack front is the initial crack length l. As follows
from the cantilever bending theory, displacement of the load application point λe (Figure 1) is

equal to λe ¼ 4P
Ea

l
b

� �3, where E is the Young’s modulus, b is the cantilever thickness. For the
double cantilever beam specimen, displacement of load application points ζ is 2λe. Therefore,

the specimen ductility η is η ¼ ζ
P ¼ 8

Ea
l
b

� �3
:
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The ductility derivative by the crack length is equal to

dη
dl

¼ 24l2

Eab3
: (4)

Substitution of Eq. (4) into Eq. (1) leads to the following expression for SFE [13, 15]

G ¼ 12P2l2

Eb3a2
: (5)

According to Ref. [14], the displacement λе of the cantilever end under elastic deformation for
the specimen in thickness of a with a crack length l is provided by the load:

P ¼ Eλea
4

b
l

� �3

: (5a)

Substituting this expression into Eq. (4), we obtain the equation for G that allows us to calculate
fracture energy by the crack length l and by the elastic opening value of the notch tips λе [16]:

G ¼ 3λ2
eb

3E
4l4

: (6)

In the given representation, the value of G does not depend on the specimen thickness а.

Eq. (5) determines SFE by the crack length l, and by the external load value Р, at which spontane-
ous crack propagation begins. Basically, SFE can be calculated according to Eq. (6) when testing
the small-size specimens. It should be noted that there are no any empirical constants in Eq. (6). All
necessary values can be taken from the experiment. To maintain the experimental integrity, one
can grow a fatigue crack at the tip of the notch. However, this method has several disadvantages.

Eq. (5) gives only a rough approximation of the SFE value. There is a certain divergence due to
the fact that the cantilevers’ ends are fixed not absolutely rigidly, as in the cantilever embedded
in the rigid base. But this is not the most important thing. The main disadvantage is that in
practice crack propagation along the notch plane is not guaranteed. Consequently, deviations in
crack propagation direction cause shear deformations. Besides, crack front straightness is not
preserved. To some extent, this problem is solved by using the chevron-notched specimens.

Figure 1. Straight-through-notched specimen.
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3. Fracture toughness calculation of the chevron-notched specimens

When testing the small-size specimens, generally, the chevron-notched specimens are used [7,
17]. For the first time, a chevron-notched specimen was proposed by L.M. Barker in 1977 to
determine fracture toughness under plane strain conditions [17].

Standard tests of the chevron-notched specimen are conducted according to the scheme
presented in Figure 2.

Figure 3 shows examples of the chevron-notched specimens. The specimens of this configura-
tion do not require the preliminary guidance of a fatigue crack to the tip of the notch. From the
moment of loading, there is a high stress concentration at the tip of the chevron notch that is
sufficient to crack initiation. It is assumed that the development of plastic deformation in the
chevron zone satisfies the plane strain state condition. The crack initiated at the tip of the
chevron, can propagate only along the notch plane. At the same time, there is a high probabil-
ity that the crack front during propagation, at the average, maintains a straight shape. The
chevron notch geometry allows us to fix and extend the stable crack propagation stage and,
thus, to calculate the beginning of the specimen catastrophic failure more accurately.

As a rule, short circular specimens are used in the experiments (Figure 3a). The disadvantage of
the standard method for measuring fracture toughness of the chevron-notched specimens is that
in order to determine the change in specimen ductility, the “loading-unloading” condition

Figure 2. Loading configuration of the chevron-notched specimen.

Figure 3. The chevron-notched specimens: short circular specimen (a) and elongated rectangular specimen (b).
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should be carried out. For this reason, the calculation formulas include adjustable coefficients
considering the non-linear behavior of the material and a complex geometric shape of the notch.

This section provides a new method for calculating the fracture toughness characteristics of
materials when testing the chevron-notched specimens. The novelty is in the fact that the
calculation of SFE is based on calculation of the energy and power parameters of the specimen
taking into account the complex geometry of a chevron notch according to the strict laws of
solid mechanics. It is convenient to make calculations and experiments for the elongated
rectangular specimen (Figure 3b). In this case, the chevron-notched specimen has a shape of a
double cantilever beam configuration.

Let us determine the relation of the external force Р with an elastic deflection λe of the single
cantilever of the specimen. The cantilever can be represented as a set of elementary cantilevers
(minicantilevers) of the infinitely small width dx. Figure 4 shows the projections of the
chevron-notched specimens. The minicantilever length at a distance х from the symmetry axis
of the specimen is l(x) = l0 + x�ctg(α/2), where l0 is the minimum distance from the load applica-
tion point to the chevron notch, α is the chevron angle (Figure 4). For each minicantilever in the
set, the well-known elasticity theory formula is valid [14]:

λe ¼ 4dP xð Þ
Edx

l xð Þ
b

� �3

, (7)

where λe is the elastic deflection of the minicantilever, dP is the elementary load, under the
action of which the cantilever in thickness of dx is deflected to the value of λe, b is the thickness
of the minicantilever. In view of this, from Eq. (6) we obtain the elementary load dependence
dP, applied to the end of the minicantilever on its width dx:

dP xð Þ ¼ λeE
4

b
l xð Þ
� �3

dx: (8)

Integration of elementary forces (7), affecting each minicantilever across the specimen width а,
will clearly determine the actual load Р, providing the minicantilever’s deflection by λe:

P ¼ λeb3E
4

ð a
2

�a
2

dx= l0 þ x � ctg α
2

� �3
, orP ¼ Eλea

4
b
l0

� �3

4þ a
l0

ctg
α
2

� ��
2þ a

l0
ctg

α
2

� �2
¼ Eλea

4
b
l0

� �3

k0 (9)

This equation differs from Eq. (5) from the straight-through notch only by the factor

k0 ¼ l0 4l0 þ a ctg α=2ð Þ½ � 2l0 þ actgα=2½ ��2: (10)

According to Eq. (9), a single cantilever elastic deflection of a double cantilever beam specimen

with a chevron notch is λe l0ð Þ ¼ 4P
Ea

l0
b

� �3
k0�1

:

During the loading, the moment of crack initiation occurs at the tip of the chevron notch.
Propagation of the initiated crack to the distance Δl increases the effective fracture length. Let
us present the crack front as a straight line (Figure 5). The length of this line is h = 2Δl�tg(α/2).
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Basically, this specimen with a crack is a set of two specimens: with a straight-through notch in
width of h and with a chevron notch in width of а � h (Figure 5). Let us determine the forces Р0

and Р00 for these specimens, respectively, causing identical deflection λe. Using Eq. (5), we find
an expression for Р0 acting on a straight-through notched specimen in width of h = 2Δl�tg(α/2):

P0 ¼ λeEΔl
4

tg
α
2

b
l

� �3

: (11)

According to Eq. (9), for the chevron-notched specimen in width of а � h, we obtain an
expression for Р00:

P0 0 ¼ λeΔl � tg α
2 E

4
b
l

� �3

1� 2Δl
a

tg
α
2

� �
l
l0

4þ a
l0

ctg
α
2
þ 2Δl

l0

� ��
2þ a

l0
ctg

α
2

� �2
: (12)

On the basis of Eqs. (11) and (12), an expression for λе is determined:

λe lð Þ ¼ 4P
Ea

l
b

� �3

k�1, (13)

Figure 4. Projections of chevron-notched specimen.

Figure 5. Presentation of the specimen with a crack in the form of straight-through and chevron-notched specimens.
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where Р = Р0 + Р00, l = l0 + Δl and k is

k ¼ 2Δl
a

tg
α
2
þ l
l0

1� 2Δl
a

tg
α
2

� �
4þ a

l0
ctg

α
2
þ 2Δl

l0

� �
2þ a

l0
ctg

α
2

� ��2

:

It is easy to verify that at Δl ! 0, the value of k ! k0.

Substituting Eq. (13) for λе into Eq. (6), we obtain the expression for SFE:

G ¼ 12P2l2

Eb3a2
k�2: (14)

This equation differs from the similar one for the straight-through notch only by k�2. In particu-
lar, if α = π, Eq. (14) goes over into Eq. (5) for the straight-through notch, since then k is 1.

As follows from Eq. (14), the characteristic of G depends on the Young’s modulus E. The
higher E is, the lower is the SFE value under all other conditions being equal. In contrast,
according to Eq. (2), characteristic of KI does not depend on E, i.e. SIF is invariant in relation to
the Young’s modulus.

4. Theoretical determination of elastic crack opening δе

The specimen presentation in the form of a double cantilever configuration allows us to deter-
mine the elastic crack opening initiated at the tip of the chevron. It is known that the elastic
displacements of the cantilever points obey equation [14]:

υe xð Þ ¼ P
Ea

2
x
b

� �3
� 6

x
b

l
b

� �2

þ 4
l
b

� �3
" #

, (15)

where the x axis is directed along the cantilever. At x = 0, Eq. (15) determines the elastic
deflection λe of the load application point P.

Eq. (15) is also valid for the double cantilever beam specimen with a straight-through notch.
Then elastic notch opening in the point x is δe(x) = 2υe(x). The cantilever displacement in the
point x = l0 is equal to

υe l0ð Þ ¼ 2Pl0Δl2

Eab3
3þ 2

Δl
l0

� �
: (16)

Substituting Eq. (5a) for P into Eq. (16), we obtain the cantilever displacement in the point x = l0
for the straight-through notched specimen:

υe ¼ λe
Δl2 3l0 þ 2Δl½ �
2 l0 þ Δlð Þ3 : (17)

Let us find the cantilever displacement in the point x = l0 for the chevron-notched specimen.
For this, we use Eq. (16), where we place the value of Р0 instead of P according to Eq. (11), and
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the width of the specimen central part h = 2Δl�tg(α/2) shown in Figure 5 instead of a. Let us find
the cantilever deflection in the load application point Р0:

λe ¼ 2P0

EΔl � tg α=2ð Þ
l0 þ Δl

b

� �3

: (18)

Alternately, as follows from Eq. (17),

λe ¼ υe2 l0 þ Δlð Þ3
3l0 þ 2Δlð ÞΔl2 : (19)

From Eqs. (18) and (19), we obtain an expression for Р0:

P0 ¼ υeEb3 tg α=2ð Þ
3l0 þ 2Δlð ÞΔl : (20)

As follows from Eq. (12), λe ¼ 4l2 � ctg α=2ð Þ P�P0ð Þ
Eb3 a�2Δl tg α=2ð Þ½ �

2l0þa ctg α=2ð Þ½ �2
4l0þactgα=2þ2Δl½ � :

Taking into account Eq. (20), we find a cantilever point displacement at a distance l0 from the
load application point P:

υe ¼ P l0 þ 2lð ÞΔl
Eb3 tg α=2ð Þ �

λeΔl l0 þ 2lð Þ a� 2Δl tg α=2ð Þ½ � 4l0 þ a ctg α=2ð Þ þ 2Δl½ �
4l2 tg α=2ð Þ 2l0 þ a ctg α=2ð Þ½ �2 : (21)

The value of δe(l0) = 2υe determines the crack opening initiated at the chevron.

During the crack propagation, the increment of the single cantilever elastic deflection occurs in
the load application point P. The increment

Δλe ¼ λе l0 þ Δlð Þ � λе l0ð Þ, (22)

corresponds to the crack length Δl.

Figure 6 presents the curves of the υе dependence on the crack length Δl and on the increment
of the single cantilever elastic deflection Δλe obtained using Eq. (21), at following values of the
parameters: Е = 110 GPa, l0 = 18.12 mm, Δl = 3.77 mm, P = 822Н, α = π/9 (20�), а = b = 4.35 mm.
The calculations show that there is a parabolic dependence between Δl and υе, which can be
written as υе = АΔl2, where А is the constant, which depends on the assignment of concrete
parametric values in Eq. (21). In this case, А is equal to 2.58. As seen from the plot, there is a
linear dependence Δλe = Вυе between Δλe and υе. The proportionality factor for the assigned
values of В is 5.969.

The equations given above are derived from the constitutive equations of engineering fracture
mechanics for the first time and can be used for the calculation of SFE for the chevron-notched
specimens.

The processes of plastic deformation affect the cantilever deflection value and opening of crack
sides in the point of its initiation. For this reason, the experimentally measured values of the
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It is easy to verify that at Δl ! 0, the value of k ! k0.
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where the x axis is directed along the cantilever. At x = 0, Eq. (15) determines the elastic
deflection λe of the load application point P.
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Substituting Eq. (5a) for P into Eq. (16), we obtain the cantilever displacement in the point x = l0
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Let us find the cantilever displacement in the point x = l0 for the chevron-notched specimen.
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During the crack propagation, the increment of the single cantilever elastic deflection occurs in
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corresponds to the crack length Δl.

Figure 6 presents the curves of the υе dependence on the crack length Δl and on the increment
of the single cantilever elastic deflection Δλe obtained using Eq. (21), at following values of the
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The calculations show that there is a parabolic dependence between Δl and υе, which can be
written as υе = АΔl2, where А is the constant, which depends on the assignment of concrete
parametric values in Eq. (21). In this case, А is equal to 2.58. As seen from the plot, there is a
linear dependence Δλe = Вυе between Δλe and υе. The proportionality factor for the assigned
values of В is 5.969.

The equations given above are derived from the constitutive equations of engineering fracture
mechanics for the first time and can be used for the calculation of SFE for the chevron-notched
specimens.

The processes of plastic deformation affect the cantilever deflection value and opening of crack
sides in the point of its initiation. For this reason, the experimentally measured values of the
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cantilever deflection λ, except for λе, contain a part of the equation λp = λ � λе that is not
related to the change in specimen ductility. The crack opening values of υ measured in the
same way contain the plastic deformation contribution υp = υ � υe. The values of λp and υp are
very important when simulating the fracture process in the chevron-notched zone.

Using Eq. (13), according to the experimentally measured value of cantilever deflection λ
(Figure 7), one can determine the relative value of (λ�λе)/λе = λp/λе as an additional fracture
toughness characteristic. It is obvious that the more ductile a material is, the higher is its
fracture toughness. The value of λp is not associated with change in specimen ductility since
it is determined only by the elastic deflection of the specimen. The stress distribution in the
plastic deformation zone is significantly different from the stress field in an elastic medium
with a crack. On the way of crack propagation, the material is always subjected to a certain
degree of plastic deformation. This means that crack is always surrounded by a layer of the
plastically deformed material. The calculations made in Ref. [21] by the method of relaxation
elements showed that stress field in the plastic deformation zone differs significantly from the
crack stress field in the elastically deformable medium. Plastic deformation leads to stress
relaxation. For this reason, there is no singularity in the crack mouth. The maximum stress
concentration is observed in the plastic deformation zone.

Figure 6. Dependence υe on Δl and Δλe.

Figure 7. Scheme of the cantilever deflection.
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The above equations are derived without any assumptions about the plastic properties of the
material. Therefore, they can be used to calculate fracture toughness of any structural materials
wherein the crack initiation at the tip of the chevron notch is observed. The product of ЕG/(1� ν2)
does not depend on the Young’s modulus since SFE G is inversely proportional to the Young’s
modulus value E (see Eq. (14)). Therefore, irrespective of plastic properties of the material, the
equation

KI ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

EG
1� ν2ð Þ

s
¼ 2Pl

ab3=2k

ffiffiffiffiffiffiffiffiffiffiffiffiffi
3

1� ν2

r
(23)

determines the stress intensity factor (SIF) for the small-size chevron-notched specimens.

The standard test on ductility change of the chevron-notched specimens is made using the
“loading-unloading” operations [7, 8, 18–20]. As a result, the fracture toughness of the material
is determined under the low-cycle loading conditions, rather than under constant loading. It is
known that the curve type “load-displacement” changes significantly depending on the previ-
ous loading history. This is due to the fact that the plastic deformation rate and strain harden-
ing of the material essentially depend on the external load and time during which the load is
acting. To define the mechanisms of failure of structural materials, first of all, the values of SFE
and SIF under continuous loading are significant. Eqs. (13) and (15) allow us to calculate these
characteristics with-out using the load-unload condition. It is enough to know the crack length
Δl initiated at the chevron.

The examples of the fracture toughness analysis of a number of structural materials, which
differ in their ability to crack formation and the Young’s modulus, are presented below.

5. Fracture toughness of structural materials

This section presents the calculation results of the fracture toughness characteristics of VT6
(Ti + 6%Al + 4%V) alloy, Fe-35.4% Ni and 12GBA tube steel.

The specimens 21 � 10 � 6 mm3 in size were cut from the work piece by the electroerosion
method. Then a notch 0.3 mm thick was made with a chevron angle α = 60� (see Figure 4). The
crack length at the pre-fracture stage was determined by the specimen images. Alloys with
different ability to plastic deformation and with different values of the Young’s modulus E
were tested. The loading of specimens made of VT6 and Fe + 34.6%Ni alloys was performed by
the intrusion of a narrow wedge into the notch at a motion rate of 5 μm/s (Figure 8). The
12GBA tube steel loadings were performed by application of opposite forces to the tips of the
notch (Figure 7).

Figure 8 shows the scheme of the specimen wedging. The constant motion rate of the wedge
provides the prolonged stage of stable crack propagation initiated at the chevron. The equation
for the calculation of P bending the cantilever is obtained from the condition of equilibrium of
forces:
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ous loading history. This is due to the fact that the plastic deformation rate and strain harden-
ing of the material essentially depend on the external load and time during which the load is
acting. To define the mechanisms of failure of structural materials, first of all, the values of SFE
and SIF under continuous loading are significant. Eqs. (13) and (15) allow us to calculate these
characteristics with-out using the load-unload condition. It is enough to know the crack length
Δl initiated at the chevron.

The examples of the fracture toughness analysis of a number of structural materials, which
differ in their ability to crack formation and the Young’s modulus, are presented below.

5. Fracture toughness of structural materials

This section presents the calculation results of the fracture toughness characteristics of VT6
(Ti + 6%Al + 4%V) alloy, Fe-35.4% Ni and 12GBA tube steel.

The specimens 21 � 10 � 6 mm3 in size were cut from the work piece by the electroerosion
method. Then a notch 0.3 mm thick was made with a chevron angle α = 60� (see Figure 4). The
crack length at the pre-fracture stage was determined by the specimen images. Alloys with
different ability to plastic deformation and with different values of the Young’s modulus E
were tested. The loading of specimens made of VT6 and Fe + 34.6%Ni alloys was performed by
the intrusion of a narrow wedge into the notch at a motion rate of 5 μm/s (Figure 8). The
12GBA tube steel loadings were performed by application of opposite forces to the tips of the
notch (Figure 7).

Figure 8 shows the scheme of the specimen wedging. The constant motion rate of the wedge
provides the prolonged stage of stable crack propagation initiated at the chevron. The equation
for the calculation of P bending the cantilever is obtained from the condition of equilibrium of
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P ¼ F � cosγ
2 sin β=2

� �þ κ � cos β=2
� �� � , (24)

where F is the load on the wedge, κ and γ are the friction factor and interplanar angle between
the wedge and cantilever, respectively, β is the angle of wedge opening.

As seen from Eq. (19), in order to determine the bending force P, it is important to calculate the
friction factor κ. Substituting Eq. (22) into Eq. (8) instead of P, we obtain the following equation
for κ:

κ ¼ ΔF
ΔL

2cosγ 2l0 þ a ctg α=2ð Þ½ �2
sin β=2
� �

4l0 þ a ctg α=2ð Þð ÞaEl0
b
l0

� �3

� tg
β
2
, (25)

where ΔF/ΔL is the decline of the initial elastic segment of the experimental loading diagram
“load P–wedge displacement L”.

The calculations showed that κ is equal to 0.08 to an accuracy of 10%.

Table 1 shows the fracture toughness characteristics of the studied materials.

Figure 8. The scheme of the chevron-notched specimen wedging.
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5.1. VT6 alloy (Ti–6Al–4V)

The structural VT6 alloy is mainly used for the manufacturing of large welded and built-up
air-craft structures, balloons working under internal pressure over a wide temperature range
from 196 to 450�C, and a number of other structural elements.

The studies were conducted using the material in the initial coarse-crystalline (CC) state (grain
size of 7–5 μm) and with ultra-fine grained (UFG) structure (grain size of 500 nm) obtained by
the severe plastic deformation [22]. The loading was carried out by a wedge with β equal 20�

(Figure 8).

Figure 9 shows a typical loading diagram of the UFG VT6 alloy. The load-peak corresponds to
the moment of crack initiation at the tip of the chevron. A sudden stress drop is caused by the
spontaneous crack propagation to a certain length along the chevron notch. After that there is
slow and stable crack propagation to the critical length, which determines the final fracture of
the material. In the calculations for the VT6 alloy, E was equal to 110 GPa [23–25].

The measured values of l0 and Δl are equal to 18.12 and 3.767 mm, respectively, а = b = 4.35 mm.
The same values were used for calculating the fracture toughness of the VT6 alloy in the
coarse-crystalline state (CC).

Alloy P, N λe, mm λ, mm λp/λe υe, μm υ, μm υp/υe G, kJ/m2 KI, MPa�m1/2

VT6
UFG

277.7 (max) 0.453 0.453 0 0 0 – 11.9 35.5

193.1 (stable) 0.407 0.374 0.09 15.1 23.8 0.53 4.58 22.5

VT6
CC

522.6 (Δl = 0) 0.827 1.275 0.54 0 0 – 43.04 68.81

584.1 (max) 1.162 2.100 0.81 39.6 162.5 3.10 43.40 69.09

Ni-Fe 936.0 (Δl = 0) 0.426 0.474 0.11 0 0 – 23.63 70.44

1175.2 (max) 0.695 1.038 0.49 30.8 89.9 1.92 30.27 75.51

12GBA 2776 (max) 0.095 0.379 2.6 0 0 – 51.7 104.2

Table 1. Fracture toughness characteristics of structural materials.

Figure 9. Loading diagram of UFG VT6 alloy.
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Table 1 shows that plastic deformation does not affect the displacement of the notch sides prior
to the crack initiation in the UFG VT6 alloy (λp/λe = 0). This means that the specimen is deformed
only elastically prior to crack initiation. At the stage of pre-fracture, the influence of plastic
deformation was observed: λp/λe = 0.09. The contribution of plastic deformation to the crack
opening at the tip of the chevron is comparable with that of elastic deformation: υp/υe = 0.53.

Spontaneous crack propagation from the moment of its initiation is accompanied by the reduc-
tion in the elastic deflection λe of a single cantilever of the specimen and reduction in the fracture
tough-ness characteristics of G and KI. This alloy shows quite different fracture regularities in the
coarse-crystalline state. A qualitative view of the loading diagrams and consistent patterns of
crack propagation in the chevron-notch zone (Figure 10) show the following. The beginning of
crack initiation and propagation occurs long before the external load reaches a maximum. This is
marked with an arrow 1 shown in Figure 10. Crack initiation is preceded by the plastic defor-
mation of the material in the chevron-notch zone. The contribution of plastic deformation λp to
the displacement of load application point P up to the moment of crack initiation is comparable
with that of elastic deformation: λp/λe = 0.54 (see Table 1).

Peaks and plateaus on the loading diagram are caused by abrupt nature of crack propagation.
The specific fracture energy of G and KI is almost unchanged until it reaches the maximum
load Pmax marked with an arrow 2 in Figure 10. Thus, a fracture toughness criterion for the CC
VT6 alloy are the values of SFE Gc = 43.2 � 0.2 kJ/m2 and SIF KIс = 68.9 � 0.2 MPa∙m1/2. The SIF
value coincides with the value of 66.4 MPa∙m1/2 to an accuracy of 3.6% in Ref. [24] for standard
test conditions.

During crack propagation, a contribution of plastic deformation to the displacement of the
notch tips increases. The equation λp/λe = 0.81 corresponds to the maximum load. The contri-
bution of plastic deformation to the crack opening at the tip of the chevron is 3 times higher
than that of elastic deformation: υp/υe = 3.1. The subsequent loading leads to a drop in the
external load and to the reduction of G and KI characteristics. In this case, the λр/λе ratio goes
up due to the λр increase and λe decrease.

Figure 10. Loading diagram of the CC VT6 alloy.
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A comparison shows that the method used to obtain the UFG structure in the VT6 alloy leads to
a strong decrease in ductility, crack initiation stress (two-fold) and stress of stable crack propa-
gation (three-fold). For this reason, the SMC VT6 alloy is characterized by the low fracture
toughness. The behavior of the SMC VT6 alloy can be explained as follows. The low ductility of
the alloy practically eliminates the stress relaxation factor in the chevron-notch zone and, as a
consequence, reduces the crack initiation stress in the chevron. Stable propagation is determined
by the stress con-centration at the tip of the crack, which is higher than that at the tip of the
chevron prior to crack initiation. In this connection, a stress decrease takes place. The calculations
have shown that the fracture toughness criteria for the SMC VT6 alloy are the values of SFE
Gc = 4.58 � 0.2 kJ/m2 and SIF KIс = 22.5 � 0.2 MPa∙m1/2 at the stage of stable crack propagation.

5.2. The Fe + 34.6%Ni-alloy

Table 1 also includes the data for the iron-nickel invar Fe + 34.6% Ni, which is widely used in
modern industry and technology as an alloy with thermal linear expansion coefficient (TLEC)
close to zero. When loading the specimen, a wedge with β = 40� was used.

The structural state of the alloy corresponds to that after the multi-axial forging. The alloy has
a polycrystalline structure with an average crystallite size d equal 8 μm. The value of Young’s
modulus E in the calculation is 210 GPa. Figure 11 shows a loading diagram of this alloy. The
moment of crack initiation at the tip of the chevron is marked with an arrow 1. The beginning
of crack initiation and propagation occurs long before the external load reaches a maximum.
According to Eq. (13), the SFE from the moment of crack propagation (at Δl = 0) is equal to
G = 23.6 � 0.20 kJ/m2. The corresponding value of KI is 70.5 � 0.1 MPa�m1/2.

The intermittent nature of the loading curve demonstrates that crack propagation occurs
abruptly. Experimentally measured displacement of the load application point up to the
moment of crack initiation is λ = 0.47 � 0.02 mm. According to Eq. (12), the portion of
displacement that takes place due to the specimen elastic deformation is λe = 0.43 � 0.02 mm.
Therefore, within the limits of the experimental error, the relative value of λp/λe does not
exceed 10%. Thus, the plastic deformation prior to the moment of crack initiation in the
chevron makes a minor contribution to the displacement of the load application point.

Figure 11. Loading diagram of the Fe-Ni alloy.
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Table 1 shows that plastic deformation does not affect the displacement of the notch sides prior
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crack propagation in the chevron-notch zone (Figure 10) show the following. The beginning of
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The specific fracture energy of G and KI is almost unchanged until it reaches the maximum
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Figure 10. Loading diagram of the CC VT6 alloy.
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A comparison shows that the method used to obtain the UFG structure in the VT6 alloy leads to
a strong decrease in ductility, crack initiation stress (two-fold) and stress of stable crack propa-
gation (three-fold). For this reason, the SMC VT6 alloy is characterized by the low fracture
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Gc = 4.58 � 0.2 kJ/m2 and SIF KIс = 22.5 � 0.2 MPa∙m1/2 at the stage of stable crack propagation.

5.2. The Fe + 34.6%Ni-alloy
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The structural state of the alloy corresponds to that after the multi-axial forging. The alloy has
a polycrystalline structure with an average crystallite size d equal 8 μm. The value of Young’s
modulus E in the calculation is 210 GPa. Figure 11 shows a loading diagram of this alloy. The
moment of crack initiation at the tip of the chevron is marked with an arrow 1. The beginning
of crack initiation and propagation occurs long before the external load reaches a maximum.
According to Eq. (13), the SFE from the moment of crack propagation (at Δl = 0) is equal to
G = 23.6 � 0.20 kJ/m2. The corresponding value of KI is 70.5 � 0.1 MPa�m1/2.

The intermittent nature of the loading curve demonstrates that crack propagation occurs
abruptly. Experimentally measured displacement of the load application point up to the
moment of crack initiation is λ = 0.47 � 0.02 mm. According to Eq. (12), the portion of
displacement that takes place due to the specimen elastic deformation is λe = 0.43 � 0.02 mm.
Therefore, within the limits of the experimental error, the relative value of λp/λe does not
exceed 10%. Thus, the plastic deformation prior to the moment of crack initiation in the
chevron makes a minor contribution to the displacement of the load application point.

Figure 11. Loading diagram of the Fe-Ni alloy.
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The observations show that the crack propagates along a complex trajectory, sharply changing
the motion direction (Figure 12). The maximum value of SFE Gс = 30.8 � 0.3 kJ/m2 corresponds
to the maximum load. The corresponding value of KIс is equal to 80.4 � 0.2 MPa�m1/2. Note that
the value obtained practically coincides with those of Kc = 81.2 MPa�m1/2, obtained for the Fe-
17%Ni alloy [26]. The critical value of crack opening δe = 2υe = 61.56 μm can also be used as a
fracture toughness characteristic. The experimental value of δ is 179.8 μm. Hence, υp/υe is equal
to 1.92. Thus, at the stage of prefracture, the crack opening in the chevron-notch zone contains a
significant contribution related to the plastic deformation, which is almost twice greater than that
of the elastic deformation of the specimen. A subsequent increase in crack length leads to a drop
in the values of Gс and KIс. In this case, the υp/υe ratio increases due to the increase of υp
contribution and decrease in υe contribution.

5.3. The 12GBA tube steel

The low-carbon low-alloy 12GBA steel is widely used in the construction of main oil and gas
pipelines. The material was subjected to plastic deformation by rolling to the finite cross-section
of bars of 8 � 8 mm2 for several passes with step-like temperature decrease from 750 to 550�С
[27]. After severe plastic deformation, the steel has a fibrous UFG structure with a lateral
fragment size of 0.5 μm. In the longitudinal direction, the length of fragments is 15–20 μm.

The 12GBA tube steel loading was performed by opening of the chevron-notch sides (Figure 6).

Figure 13 shows a loading diagram “force P – displacement of notch tips λ” for the 12GBA
tube steel. Crack initiation at the tip of the chevron notch is preceded by considerable plastic
deformation. A crack initiates at the moment when the load reaches practically reaches a
maximum (marked with an arrow). First, the crack slowly grows, and then its propagation

Figure 12. Crack in the chevron-notch zone prior to the fracture (a) and the specimen fracture after 4 s (b).

Figure 13. Loading diagram for the 12GBA steel.
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velocity increases sharply. The calculations by Eq. (5) determine the value of KIс = 104 kJ�m1/2

for 12GBA, which is much higher than for the Fe-Ni alloy (75.51 MPa�m1/2).

In contrast to the titanium-based alloys, significant processes of plastic deformation are devel-
oped in the SMC 12GBA steel in the chevron-notch zone resulting to the extremely viscous
fracture behavior. Figure 14 illustrates the consistent patterns of crack propagation in the
chevron-notch zone. From the moment of crack initiation, this process is accompanied by a
monotonous drop in the external load (Figure 13).

The λр/λе ratio can serve as a quantitative characteristic of viscosity. For these materials, it
differs quite considerably, in particular, at the load peak λр/λе is 2.6 for 12GBA and λр/λе is
0.81 for the CC VT6 alloy.

These examples show that at fracture toughness certification of the material, except for SFE, it
is important to know the characteristics of λр/λе and υp/υe, which determine the effect of
plastic deformation on the displacement of load application points and crack opening, respec-
tively. The proposed method allows us to study the fracture toughness of materials without
restrictions on the plastic zone size at the crack tip.

6. Conclusion

This chapter presents a new method for determining fracture toughness of materials according
to the test data of non-standard small-size chevron-notched specimens. The analytical expres-
sions are obtained being based and derived from the constitutive equations of engineering
fracture mechanics to determine the crack-driving force G (specific fracture energy) and the
stress intensity factor (SIF) KIc. Experimental determination of crack length Δl is of principle
importance in calculations. During testing, loading diagrams and photographic images of the
specimens taken in time intervals are obtained. The displacement of the notch sides, crack
opening at the tip of the chevron notch and crack length during its initiation and propagation
are measured. This allows us to distinguish the plastic deformation contribution to the dis-
placements that is not related to the change in specimen ductility and therefore does not affect
the fracture toughness characteristics of the material.

Due to the fact that change in specimen ductility with increase in the crack length is analytically
considered in constitutive relations, the periodic unloading of the specimen applied under
standard test conditions of the chevron-notched specimens is excluded in the experiments.

There are no empirical constants and phenomenological dependencies in the calculations. All
necessary calculation parameters are determined according to the experimental data. The

Figure 14. Crack propagation in the chevron-notched zone. The 12GBA tube steel in the UFG state.
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velocity increases sharply. The calculations by Eq. (5) determine the value of KIс = 104 kJ�m1/2

for 12GBA, which is much higher than for the Fe-Ni alloy (75.51 MPa�m1/2).

In contrast to the titanium-based alloys, significant processes of plastic deformation are devel-
oped in the SMC 12GBA steel in the chevron-notch zone resulting to the extremely viscous
fracture behavior. Figure 14 illustrates the consistent patterns of crack propagation in the
chevron-notch zone. From the moment of crack initiation, this process is accompanied by a
monotonous drop in the external load (Figure 13).

The λр/λе ratio can serve as a quantitative characteristic of viscosity. For these materials, it
differs quite considerably, in particular, at the load peak λр/λе is 2.6 for 12GBA and λр/λе is
0.81 for the CC VT6 alloy.

These examples show that at fracture toughness certification of the material, except for SFE, it
is important to know the characteristics of λр/λе and υp/υe, which determine the effect of
plastic deformation on the displacement of load application points and crack opening, respec-
tively. The proposed method allows us to study the fracture toughness of materials without
restrictions on the plastic zone size at the crack tip.

6. Conclusion

This chapter presents a new method for determining fracture toughness of materials according
to the test data of non-standard small-size chevron-notched specimens. The analytical expres-
sions are obtained being based and derived from the constitutive equations of engineering
fracture mechanics to determine the crack-driving force G (specific fracture energy) and the
stress intensity factor (SIF) KIc. Experimental determination of crack length Δl is of principle
importance in calculations. During testing, loading diagrams and photographic images of the
specimens taken in time intervals are obtained. The displacement of the notch sides, crack
opening at the tip of the chevron notch and crack length during its initiation and propagation
are measured. This allows us to distinguish the plastic deformation contribution to the dis-
placements that is not related to the change in specimen ductility and therefore does not affect
the fracture toughness characteristics of the material.

Due to the fact that change in specimen ductility with increase in the crack length is analytically
considered in constitutive relations, the periodic unloading of the specimen applied under
standard test conditions of the chevron-notched specimens is excluded in the experiments.

There are no empirical constants and phenomenological dependencies in the calculations. All
necessary calculation parameters are determined according to the experimental data. The
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method allows us to use the low-power test machines and does not require large amounts of
material for the production of specimens, as well as fatigue precracking. The method allows us to
certify fracture toughness of the material without restrictions regarding the amount of plastic
deformation and in front of the crack tip and in the specimen as a whole. The theoretical analysis
has shown that Gc compared to KIc depends on the Young’s modulus E of the material. The
higher E is, the lower is Gс under all other conditions being equal. For this reason, the relative
values of Gc and KIc characteristics can differ essentially. Thus, the value of Gc for the Fe-Ni alloy
is lower that for the CC VT6 alloy, and the value of KIc is, on the contrary, higher (Table 1).

It is proposed to consider the λр/λе ratio as an additional fracture toughness characteristic that
determines the plastic deformation contribution to the displacement of load application point
in relation to the elastic deformation.

Therefore, in order to make fracture toughness certification of the material more complete, it is
recommended to determine three fracture toughness characteristics of the material: SIF, SFE
and the λр/λе ratio. According to this method, the fracture toughness characteristics of the VT6,
Fe-35.4%Ni alloy and the 12GBA tube steel are determined, which differ in the ability to
fracture toughness and the Young’s modulus.
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values of Gc and KIc characteristics can differ essentially. Thus, the value of Gc for the Fe-Ni alloy
is lower that for the CC VT6 alloy, and the value of KIc is, on the contrary, higher (Table 1).
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Abstract

Fatigue and fracture problems, which lead to 95% of structural failure, have attracted
much attention of engineers and researchers all over the world. Compared with exper-
imental method, numerical simulation method based on empirical models shows its
remarkable advantages in structure design because of less cost and higher efficiency.
However, the application of numerical simulation method in fatigue lifetime prediction
is restricted by low accuracy and poor applicability in some circumstances. Most numer-
ical method is based on empirical models. This chapter first reviews various kinds of
empirical models of fatigue and fracture problems, including some modifying methods
of basic empirical models, which have been widely applied to fatigue lifetime prediction
and indicated their advantages and disadvantages. Then, FEM is introduced as an impor-
tant method to obtain stress intensity factor or crack growth route. At last, this chapter is
finished with existing problems and current trends in fatigue lifetime prediction via
numerical method.
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structures applied in aircrafts and huge machines become much more complex. These struc-
tures usually bear constantly changing loads in tour of duty. Although the max stress in
structure caused by these dynamic loads is much lower than yield limit and ultimate strength
of material, structure is destroyed after a long time. Internal defects in engineering structures
appear in producing, processing, and assembling process. Internal defects lead to stress con-
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empirical models of fatigue and fracture problems, including some modifying methods
of basic empirical models, which have been widely applied to fatigue lifetime prediction
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According to statistical data, loss caused by improper structural fatigue lifetime design in
America equals 4.4% of gross national product, and 95% of structure failures are related to
fatigue break caused by alternating dynamic loads [1]. There are numerous historical examples
that result in great loss of human life and economic value. For example, two Comet aircraft
crashed in 1954, and the main reason is fatigue of fuselage structure [2]. Mechanical failure
caused by fatigue, which concentrates much attention of engineers and researches, has been
studied for more than 150 years [3]. However, it is still much difficult to prevent fatigue failure
because fatigue of materials is far from being completely comprehended [4].

Metallic materials are widely applied in design of structures and parts in present days; there-
fore, fatigue of metals is a problem deserving efforts. In fact, the fatigue process is constitutive
of crack initiation and crack propagation to total failure, as shown in Figure 1, and fatigue
lifetime should conclude crack initiation life and crack propagation life.

On one hand, it is widely accepted that the crack initiation phase costs a majority of fatigue
lifetime in a high-cycle fatigue regime [5]. Furthermore, crack initiation behavior has a great
influence on crack growth prediction in a unified approach for fatigue lifetime prediction [6].
Therefore, knowledge and technology of crack initiation life prediction are significant for
evaluation of fatigue lifetime of structures and deserve our efforts to study deeply. On the
other hand, there are frequently small cracks and defects in engineering structures due to
manufacturing and environment factors; therefore, fatigue crack propagation prediction plays
an important role in estimating the structural safety under dynamic loads.

Therefore, people divide structural life prediction problem into two problems: fatigue problem
and fracture problem. People pay attention to crack initiation life in fatigue problem and make
efforts to construct the relationship between structure life and stress or strain in structure. It is
assumed in fatigue problem that there is a small crack existing in structure, and crack propa-
gation behavior is studied in order to predict the remaining life of structure. These two
problems have aroused widespread concern nowadays.

Figure 1. Schematic illustration of crack length versus time/cycles.
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Experimental method and numerical method are two significant ways to analyze fatigue
lifetime of structures. Experimental method has been widely applied since a long time ago.
However, it is much expensive to predict structural life via experimental method. Furthermore,
it is difficult to execute experiments for some complicated structures. Therefore, numerical
method based on empirical models becomes much more popular in structural life prediction,
and in some cases, those do not need high accuracy because of less cost and higher efficiency.

2. Empirical models in fatigue problem

Approaches to predict fatigue initiation life in literature can be classified into several types.
These approaches study the fatigue problem from different perspectives, involving the average
or local values of stresses and strains, the initiation of crack and defects, and macro- and
microanalysis [7]. Nevertheless, people prefer to use phenomenological models, which reflect
general material response at macroscopic scale under cyclic loads, rather than complex micro-
or mesoscopic model of material fatigue behavior in structure design [8].

2.1. Empirical models of high-cycle fatigue

Wöhler is the pioneer in this field, who established the traditional stress-based approach in the
nineteenth century [9]. He carried out a few fatigue experiments on metallic materials and
indicated the relationship between fatigue crack initiation life and cyclic stress. He proposed to
apply S�N curves in description of fatigue behavior of metals in his paper. Effectiveness of
this method in high-cycle fatigue analysis is demonstrated afterward by many researchers.
There are several kinds of expression of S�N curve, mainly including exponential function
expression and power function expression. Basquin was the first person who suggested using
exponential function to construct the expression of S�N curve in the twentieth century. The
typical exponential function expression is written as follows:

emSmaxN ¼ C (1)

wherem and C are constants, which can be determined based on experiment data,N stands for
the number of loading cycles, and Smax is the maximum value of stress at specific stress ratio.
The power function expression with two parameters is usually expressed in the following
form:

Sma N ¼ C (2)

where Sa is the stress amplitude at specific ratio. The power function expression with three
parameters is expressed as

Smax � Cð ÞmN ¼ D (3)

or
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Smax ¼ C 1þ A
Nα

� �
(4)

whereD, A, and α are constants. The parameter C in Eqs. (3) and (4) nearly equals fatigue limit.

2.2. Empirical models of low-cycle fatigue

Stress level is usually high in low-cycle fatigue, and the maximum value of stress is nearly
close to the ultimate strength of material. The number of loading cycles in low-cycle fatigue,
which is not more than 103 times, is much less than that in high-cycle fatigue. Plastic deforma-
tion plays an important role in low-cycle fatigue, in which the accumulation of plastic defor-
mation results in structural failure. Because low-cycle fatigue lifetime is much sensitive to the
change of stress level, S�N curve is unable to reflect the low-cycle fatigue performance of
material. Therefore, ε�N curve is applied to low-cycle fatigue analysis. The most widely
accepted low-cycle fatigue lifetime model based on ε�N curve is proposed by Basquin [10],
which is expressed as follows:

εe ¼ σa
E

¼
σ0f
E

2Nf
� �b (5)

where εe is the amplitude of elastic strain, E is the elasticity modulus of material, σ0f is the

fatigue strength coefficient of material, and b is the fatigue strength exponent. Because the
relationship between plastic strain and fatigue lifetime is not taken into consideration in
Basquin formula, Coffin [11] and Manson [12] proposed an empirical model when studying
the relationship between fatigue lifetime and plastic strain amplitude. The expression of
Coffin-Manson model is.

εa ¼
σ0f
E

2Nf
� �b þ ε0f 2Nð Þc (6)

in which εa stands for the amplitude of total strain and ε0f and c stand for the fatigue ductility

coefficient and fatigue ductility exponent separately. The relationships between plastic strain,
elastic strain, total strain, and fatigue lifetime are shown in Figure 2.

2.3. Improved models considering mean stress or stress ratio

There are many factors, such as residual stress, temperature, multiaxial stress, and geometrical
feature, that influence structural fatigue lifetime, in which mean stress or stress ratio concen-
trates the most attention.

2.3.1. Walker formula

Mean stress and stress ratio are of great significance for structural fatigue lifetime. Walker
formula considers sensitivity of different materials to mean stress; therefore, it shows well
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effect for all materials [13, 14]. An equivalent local strain parameter is defined in Walker
formula; its expression is

εeq ¼ 2εað Þr σmax

E

� �1�r

(7)

r is the material parameter. In order to construct the relationship between Walker formula and
fatigue lifetime, Jaske et al. [15] carried out many experiments on different kinds of materials
and proposed following expression based on experimental data:

logNf ¼ A0 þ A1tanh�1
log εuεe=ε2eq

� �

log εu=εe

� �

2
664

3
775 (8)

where A0 and A1 are regression coefficients and εu and εe are the upper and lower limits of this
reverse hyperbolic tangent function, respectively. The strain-life curve is shown in Figure 3.

Figure 2. Elastic strain-life curve and plastic strain-life curve.

Figure 3. Strain-life curve of Walker formula.
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There are too many parameters to be fitted in this method, which need plenty of experimental
data. That disadvantage constricts badly the application of Walker formula in engineering.

2.3.2. Morrow’s modifying method

Morrow’s modifying method and SWT modifying method are two commonly used methods.
Morrow mean stress modifying formula is shown as follows [16]:

εa ¼
σ0f
E

1� σm
σ0f

 !
2Nf
� �b þ ε0f 1� σm

σ0f

 !
2Nf
� �c (9)

Considering the greater influence made by mean stress in long life period, further modifying
method is given:

εa ¼
σ0f
E

1� σm
σ0f

 !
2Nf
� �b þ ε0f 2Nf

� �c (10)

where εa is strain amplitude and σm is mean stress. Morrow’s modifying method aims at elastic
strain; therefore, it is only suitable when stress amplitude is constant or mean stress is com-
pression stress.

2.3.3. SWT modifying method

Expression of Smith-Watson-Topper (SWT) parameter modifying method is [17]

σmaxεa ¼
σ0 2f
E

2Nf
� �2b þ σ0f 2Nf

� �bþc (11)

where

σmax ¼ σm þ σa (12)

Figure 4. Fatigue limit curve and Goodman simplified straight line.
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SWT mean stress modifying method is not valid for compression mean stress, and it will
obtain too conservative result when the stretching mean stress is large.

2.3.4. Goodman’s modifying method

We can acquire the fatigue limit points of material at different stress ratio r ¼ σmin=σmax under
infinite life requirement with the support of large amount of experimental data. Draw these
points in rectangular coordinate system whose X-axis is mean stress σm ¼ σmin þ σmaxð Þ=2 and
Y-axis is stress amplitude σa ¼ σmax � σminð Þ=2; thus, the fatigue limit curve is fitted based on
these points. It is unpractical to carry out many experiments on all materials and structures in
engineering, so we usually use a simplified straight line to replace the fatigue limit curve.
Goodman simplified straight line, which is one of these straight lines, is widely accepted due to
its simplicity and conservative estimation [18], as shown in Figure 4. Goodman simplified
straight line can be expressed in the following relationship:

σa
Se

þ σm
Su

¼ 1 (13)

where Se stands for the fatigue strength of material and Su stands for the ultimate tensile
strength of material. However, it has been proved that Goodman modifying method is only
appropriate for low-ductility material, such as high-strength steel and cast iron.

3. Empirical models in fracture problem

3.1. Paris law

Paris et al. [19] made great contribution in this field who was pioneer suggesting that crack
growth rate, da=dN, was a function of the maximum stress intensity factor Kmax in 1961. Then,
Liu [20] related the crack growth to the stress intensity factor range ΔK subsequently. Paris and
Erdogan [21] proposed the well-known Paris law, which can be presented as follows:

da
dN

¼ C ΔKð Þm (14)

where C and m can be obtained from experiment data, and they are usually considered as
constants for a particular metal and environment [22]. Since then researchers have made efforts to
study on Paris law and its deviation; however, we are still far from a complete comprehension [23].

It is believed that the relationship between crack propagation and ΔK can be divided into three
distinct regions, as shown in Figure 5. The crack propagation is slow in region A, and concept
of a fatigue threshold stress intensity factor range ΔKth is proposed by Mcclintock [24], beneath
which cracks are regarded not to grow. In region B, the “mid growth” range, crack propaga-
tion is stable, and Paris law is supposed to be held. Region C is associated with fast crack
propagation leading to final failure. Therefore, calculation of number of loading cycles in
region B, which could be gained from Paris law, is significant for prediction of fatigue crack
growth life.
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3.2. Improved models

3.2.1. Models considering mean stress or stress ratio

Since Paris law is proposed, much related work is done, and many modifying methods are put
forward [22, 25–27]. It is commonly accepted that crack growth rate of material is related to mean
stress or stress ratio. Several models, in which Forman formula [28] and Walker formula [29] are
most famous, take this factor into consideration. Forman formula also considers the fracture
toughness as an important factor; its expression is

da
dN

¼ C ΔKð Þm
1� Rð ÞKc � ΔK

(15)

Forman formula is valid for dealing with experimental data of many kinds of materials,
especially high-hardness alloy, but it is hard to obtain the fracture toughness Kc for high-
ductility material. According to following relationship:

R ¼ Kmin

Kmax
(16)

ΔK ¼ Kmax � Kmin (17)

Forman formula can be transformed as follows:

da
dN

¼ CKmax ΔKð Þm�1

Kc � Kmax
(18)

Forman formula explains the reason why crack growth enlarges sharply when stress intensity
factor is close to fracture toughness.

Figure 5. Schematic diagram of the relationship between crack growth and ΔK.
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Walker formula is another wide-applied crack propagation model in engineering, which
expresses the influence made by stress ratio on crack growth rate. Furthermore, it takes
maximum of stress intensity factor into consideration:

da
dN

¼ C 1� Rð ÞmKmax½ �n (19)

Three parameters C, m, and n can be acquired based on experimental data of crack propaga-
tion experiments with different stress ratios. Walker formula is valid when R > 0 and R < 0.
According to the relationship between stress ratio and amplitude of stress intensity factor,
another commonly used form of Walker formula is obtained:

da
dN

¼ CKm
max ΔKð Þn (20)

3.2.2. Model based on crack closure theory

In 1971, Elber [30] found that crack opened completely only when the stress was larger than a
certain value, and he developed a modified Paris law based on this theory. The stress when
crack is completely open is defined as crack opening stress σop, and the stress when crack
begins to close is defined as crack closing stress σcl. It has been demonstrated that crack
opening stress is nearly equal to crack closing stress. The modified formula is written as
follows:

da
dN

¼ C ΔKeff
� �m (21)

and

da
dN

¼ C UΔKð Þm ¼ UmC ΔKð Þm (22)

U is the crack closure parameter, and its expression is

U ¼ ΔKeff

ΔK
¼ Δσeff

Δσ
¼ σmax � σop
� �

Δσ
< 1 (23)

where efficient stress amplitude Δσeff is the difference between maximum stress σmax and crack
opening stress σop.

3.2.3. Model considering crack retardation caused by high load

In Weeler’s opinion [31], when structure bears cyclic load with constant amplitude; an occa-
sional overload enlarges the size of plastic zone on crack tip, which would prevent crack from
growing to some degree. On the basis of Weeler’s research, Willenberg [32] assumed that crack
retardation is due to residual compression stress σres, which is related to plastic deformation
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3.2. Improved models

3.2.1. Models considering mean stress or stress ratio
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da
dN

¼ C ΔKð Þm
1� Rð ÞKc � ΔK

(15)
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R ¼ Kmin

Kmax
(16)

ΔK ¼ Kmax � Kmin (17)

Forman formula can be transformed as follows:

da
dN

¼ CKmax ΔKð Þm�1

Kc � Kmax
(18)

Forman formula explains the reason why crack growth enlarges sharply when stress intensity
factor is close to fracture toughness.

Figure 5. Schematic diagram of the relationship between crack growth and ΔK.
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Walker formula is another wide-applied crack propagation model in engineering, which
expresses the influence made by stress ratio on crack growth rate. Furthermore, it takes
maximum of stress intensity factor into consideration:

da
dN

¼ C 1� Rð ÞmKmax½ �n (19)

Three parameters C, m, and n can be acquired based on experimental data of crack propaga-
tion experiments with different stress ratios. Walker formula is valid when R > 0 and R < 0.
According to the relationship between stress ratio and amplitude of stress intensity factor,
another commonly used form of Walker formula is obtained:

da
dN

¼ CKm
max ΔKð Þn (20)
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and
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U is the crack closure parameter, and its expression is
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where efficient stress amplitude Δσeff is the difference between maximum stress σmax and crack
opening stress σop.

3.2.3. Model considering crack retardation caused by high load

In Weeler’s opinion [31], when structure bears cyclic load with constant amplitude; an occa-
sional overload enlarges the size of plastic zone on crack tip, which would prevent crack from
growing to some degree. On the basis of Weeler’s research, Willenberg [32] assumed that crack
retardation is due to residual compression stress σres, which is related to plastic deformation
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caused by high load. Combining the expression of Forman formula, crack growth rate in
retardation period is acquired:

da
dN

¼ C ΔKeff
� �m

1� Reff
� �

Kc � ΔKeff
(24)

The effective stress intensity factor range is

ΔKeff ¼ f σmaxð Þeff � σminð Þeff
h i ffiffiffiffiffiffi

πa
p

(25)

and the effective stress ratio is

Reff ¼ σminð Þeff = σmaxð Þeff (26)

The maximum and minimum values of effective cyclic stress are

σmaxð Þeff ¼ σmax � σres (27)

σminð Þeff ¼ σmin � σres (28)

Then, crack growth rate in retardation period can be estimated as the residual stress σres is
known. However, the residual stress σres can only be obtained via experimental method.

3.2.4. Model considering crack propagation threshold

In 1972, Donahue [33] took threshold of stress intensity factor range ΔKth into consideration
and proposed a generalized Paris law. The modified expression is

da
dN

¼ C ΔK � ΔKthð Þm (29)

The following expression was proposed by McEvily and Greoeger [34] in their research about
fatigue crack propagation threshold in 1977:

da
dN

¼ C ΔK � ΔKthð Þ2 1þ ΔK
Kc � Kmax

� �
(30)

in which material constant m equals 2.

Furthermore, if considering stress ratio at the same time, Paris law can be modified into the
following expression:

da
dN

¼ C ΔKð Þm � ΔKthð Þm½ �
1� Rð ÞKc � ΔK

(31)

It can be figured out that the above equation is further modified on the basis of Forman
formula.
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In 1999, McEvily found it out that the following modification is suitable for many alloys’
fatigue crack propagation:

da
dN

¼ C ΔKeff � ΔKeffth
� �2 (32)

where ΔKeffth stands for the effective stress intensity factor range near crack propagation
threshold. This modifying method considers the influences created by crack closure and small
crack’s elastic-plastic behavior, and it is useful to predict the long crack propagation under
cyclic positive stress.

3.2.5. Model based on perturbation series expansion method

Perturbation series expansion method, which is a common method to deal with nonlinear
problems, has been widely used in fluid mechanics, structure dynamics, and damage identifi-
cation. In this method, the parameter in ideal model is regarded to have a small perturbation in
order to study the properties of system. This parameter can be expanded into series form:

a ¼
X∞

i¼0

aiεi (33)

where ε is a positive small constant.

Qiu and Zheng [35] proposed a novel numerical calculation method to investigate the fatigue
crack growth evolution in aluminum alloy sheets accounting for the measurement error. The
initial crack length is considered as a modified parameter with a small correction term due to
the measurement error; the solution to the crack growth equation is expressed in the form of a
perturbation series, and a series of modified equations for predicting the crack length history

Figure 6. Comparison of the measured and predicted crack length history in Ref. [35].
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3.2.5. Model based on perturbation series expansion method

Perturbation series expansion method, which is a common method to deal with nonlinear
problems, has been widely used in fluid mechanics, structure dynamics, and damage identifi-
cation. In this method, the parameter in ideal model is regarded to have a small perturbation in
order to study the properties of system. This parameter can be expanded into series form:

a ¼
X∞

i¼0
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where ε is a positive small constant.

Qiu and Zheng [35] proposed a novel numerical calculation method to investigate the fatigue
crack growth evolution in aluminum alloy sheets accounting for the measurement error. The
initial crack length is considered as a modified parameter with a small correction term due to
the measurement error; the solution to the crack growth equation is expressed in the form of a
perturbation series, and a series of modified equations for predicting the crack length history
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are derived. The proposed method is verified to be indeed feasible and effective for predicting
fatigue crack growth evolution by comparing numerical results with experimental data, as
shown in Figure 6.

4. Finite element method

There are many kinds of numerical method to obtain stress intensity factor or crack growth
route after continuous study of many researchers. Finite difference method (FDM), boundary
element method (BEM), mesh-less method, and finite element method (FEM) are four common
methods. Many studies have been carried out based on these numerical methods: Christen
applied FEM to two-dimensional crack problem and obtained the displacement field and
stress field; Nayroles [36] combined the moving least square method (MLSM) with mesh-less
method to solve boundary problem. FEM is the most widely used method in above four
methods at present [37, 38]. Considering singularity on crack tip, element’s density is increased
in order to obtain the precious results. Therefore, FEM’s rate of convergence is low, and precision
is unsatisfactory. People developed precious numerical solution methods based on several kinds
of theories, in which semi-analytic numerical solution and new type elements are hot issues.

4.1. Extended finite element method

Collapsed singular isoparametric elements, which can reflect the singularity on crack tip cor-
rectly, were introduced by Barsoum [39]. This method is popular because of its high precision
and executing simplicity. In this method, planar eight-node isoparametric element is degenerated
into singular isoparametric element, as shown in Figure 7. Stress intensity factor is calculated
based on the displacements of nodes A and B; the expression is.

KI ¼ E0

4

ffiffiffiffiffiffi
2π
L

r
4vA � vBð Þ (34)

In plane stress problem, E0 ¼ E; in plane strain problem, E0 ¼ E
1�μ2. E, μ, and v are, respectively,

elasticity modulus, Poisson ratio, and displacement perpendicular to crack surface. Chen and

Figure 7. Eight-node singular isoparametric element.
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Kuang [40] use interpolation method to acquire the displacements of nodes A and B on the
basis of Barsoum’s research and obtain the following expression of stress intensity factor:

KI ¼ E0

12

ffiffiffiffiffiffi
2π
L

r
8vA � vBð Þ (35)

Lin [41] proposed the 1/4 node displacement method, as shown in Figure 8; the corresponding
calculation equation of stress intensity factor is

KI ¼ E0

2

ffiffiffiffiffiffi
2π
L

r
vA (36)

Belytschko [42] applied extended finite element method (XFEM) to calculating stress intensity
factor and neglected the high-order terms of asymptotic displacement function. The calcula-
tion results were not satisfying enough. Karihaloo and Xiao [43] took high-order terms of
asymptotic displacement function and outer elements of crack tip into consideration, thus
obtaining results of high accuracy. However, calculation efficiency of this method is relatively
low. Although researchers have obtained precious results with the help of new type elements,
there are still many factors that influence calculation results that need to be studied.

4.2. Fractal finite element method

In the aspect of semi-analytic numerical method, weighted function method and boundary
collocation method develop fast. These methods are able to acquire results of high accuracy
when dealing with particular models; however, calculation accuracy cannot be guaranteed
when dealing with general models.

Fractal finite element method is also a semi-analytic method. Fractal geometry is introduced
into ordinary FEM, which not only improves calculation accuracy but also shortens calculation
time and saves storage capacity of a computer. In fractal finite element method, an artificial
boundary Γ0 is introduced to divide the structure with crack into two parts: singular field D

Figure 8. Mesh of 1/4 node element displacement method.
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Kuang [40] use interpolation method to acquire the displacements of nodes A and B on the
basis of Barsoum’s research and obtain the following expression of stress intensity factor:

KI ¼ E0

12

ffiffiffiffiffiffi
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8vA � vBð Þ (35)

Lin [41] proposed the 1/4 node displacement method, as shown in Figure 8; the corresponding
calculation equation of stress intensity factor is
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ffiffiffiffiffiffi
2π
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r
vA (36)

Belytschko [42] applied extended finite element method (XFEM) to calculating stress intensity
factor and neglected the high-order terms of asymptotic displacement function. The calcula-
tion results were not satisfying enough. Karihaloo and Xiao [43] took high-order terms of
asymptotic displacement function and outer elements of crack tip into consideration, thus
obtaining results of high accuracy. However, calculation efficiency of this method is relatively
low. Although researchers have obtained precious results with the help of new type elements,
there are still many factors that influence calculation results that need to be studied.

4.2. Fractal finite element method

In the aspect of semi-analytic numerical method, weighted function method and boundary
collocation method develop fast. These methods are able to acquire results of high accuracy
when dealing with particular models; however, calculation accuracy cannot be guaranteed
when dealing with general models.

Fractal finite element method is also a semi-analytic method. Fractal geometry is introduced
into ordinary FEM, which not only improves calculation accuracy but also shortens calculation
time and saves storage capacity of a computer. In fractal finite element method, an artificial
boundary Γ0 is introduced to divide the structure with crack into two parts: singular field D

Figure 8. Mesh of 1/4 node element displacement method.
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near crack tip and normal field Ω far away from crack tip, as shown in Figure 9. Ordinary
finite element mesh is constructed in normal field; self-similar mesh needs to be constructed
based on fractal theory in singular field.

Self-similar mesh is shown in Figure 10. In singular field, infinite curves Γ1;Γ2;Γ3;⋯f g similar to
Γ0 are generated based on the proportionally coefficient ξ 0 < ξ < 1ð Þ regarding crack tip as
centre. The density of fractal mesh is controlled by ξ. Based on appropriate global interpolation
function and fractal transforming technique, plenty of unknown degrees on slave nodes are

Figure 9. Illustration of division of structure with crack.

Figure 10. Self-similar mesh in singular field.
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transformed into a series of generalized coordinates. Stress intensity factor on crack tip can be
calculated via solving generalized coordinates, thus saving calculation time and storage capacity
obviously.

5. Conclusion

This chapter reviews the most common empirical models and numerical methods of structural
fatigue lifetime prediction. Themain advantages and disadvantages of thesemethods are discussed.

Numerical method based on empirical models, as one of significant ways to analyze structural
fatigue life, becomes popular in structural life prediction nowadays because of less cost and
higher efficiency.

S�N curve and ε�N are applied to high-cycle and low-cycle fatigue problems, respectively.
And there are many modified models considering mean stress or stress ratio. However, this
chapter further shows that part of these models are too complicated to apply to engineering,
and other models are only valid in some specific cases.

Paris law is the most significant model of crack propagation problem. But it only considers the
stress intensity factor as the factors make influences on crack propagation. Many improved
models considering stress ratio, crack closure, crack retardation, and crack propagation thresh-
old have been put forward.

FEM is the most popular numerical method to obtain stress intensity factor or crack growth
route. Extended finite element method and fractal finite element method are two mainly
developing trends of FEM. However, it is still difficult to achieve high efficiency and accuracy
of numerical method at the same time.
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Abstract

The reduced time available for product development has forced original equipment man-
ufacturers and their suppliers to develop new components and subsystems efficiently, to 
release it to the market with lightweight and innovate designs, guaranteeing non-failure 
on the service life. In order to reach these goals, accelerated tests are developed to evaluate 
its durability with different design proposals. Although durability is nowadays improved 
through virtual testing, it is mandatory to perform experimental tests before the final release 
of the product. The tests are done not only to reproduce the same loads; it has to be modi-
fied to reproduce the failures that are found on the roads under normal use conditions. The 
component can be evaluated as itself, in subassembly or in the assembly; the result among 
these possibilities have to be the same. To reach this aim, devices are designed to reproduce 
a specific stiffness, combining its mechanical behavior with the modified loads also known 
as spectrum. Accelerated test can be developed to increase its severity, reducing test time. 
The spectrum to perform the durability test was built with service loads and different pro-
files or users and different roads including weather conditions.

Keywords: accelerated tests, durability, spectrum, extrapolated tests,  
statistical analysis

1. Introduction

To release new or optimized component, it is mandatory to evaluate it under fatigue load con-
ditions to prevent any kind of unexpected failure on the product life. To reduce the time of the 
development process, accelerated tests can be performed to obtain the mechanical strength 
feedback to improve its fatigue performance, thereby reducing the excessive material or rein-
forcing critical areas as stress concentrators. Nowadays, this information directly influences 
the component with physical optimization or analyzes it in a virtual way, in order to reduce 
the number of physical prototypes. The importance of implementing accelerated tests in the 
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early stages of design is to evaluate components developed in the concept stage or to modify 
it, for changes in design during its production life act as facelift. Figure 1 shows the time 
development reduction when accelerated tests are implemented. Most improvements have to 
be made prior to mass production and in the early manufacturing process of the tooling [1].

To perform this kind of test, it is necessary to evaluate the critical failures on the component 
related with the major probability of occurrence. All the load cases are evaluated; however, 
the target of this kind of a test is to evaluate the component in an easier way, with uniaxial 
test, where it is possible.

In other cases, the test is developed depending on the part or the process that has to be evalu-
ated, for example, a new stamped part, or the weld cordon or the sequence of the welding. 
In those cases, a localized damage is developed with a correlation to its use in normal load 
conditions, but the important thing is to find the direction and load amplitude generated by 
use conditions, to get a correlation between the number of load repetitions and how many 
kilometers or time of use represent it.

The way to develop this kind of test starts with the instrumentation of a car with displacement 
transducers, accelerometers, force-moment transducers and strain gauges where it is neces-
sary. The instrumented car is measured on different roads, used by different drivers in all the 
markets and under different weather conditions to acquire loads to measure the changes on 
the responses of the wheels.

These responses are acquired as signals, which are analyzed to synthetize it in one signal 
representing all of these driving and use conditions. The new signal used for the durability 
test is known as spectrum. The reproduction of this spectrum in labs reaches the same dam-
age on the component as in the roads, but the target of this kind of test is to reduce the time of 
evaluation in a controlled manner to detect the location of failure, the moment of occurrence 
and its propagation. To accelerate the test, the spectrum is extrapolated and proving grounds 
are developed. These are faster than duration cars on the roads, but it is possible to reduce the 
evaluation time developing accelerated test on test benches through extrapolating the loads; 
to perform this, the component can be mounted as assembly, subassembly or component as 
itself. Test reduction is reached due to the loads that represent more damage by their ampli-
tude and severity, than that applied on the component in normal-use conditions.

Figure 1. Development time reduction using accelerated tests.
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Test responses and desired signals have to be evaluated through statistical analysis. The correlation 
of results in lab and on roads is essential as the main target of accelerated tests is to reproduce the 
same failures as on the road so as to take steps to prevent them. The component´s load spectrum 
is made more aggressive by including all the variables in load conditions as in the case of drivers 
on roads, and the spectrum is also modified to build test requirements to include the safety factor.

In this chapter, a review of durability test has been performed, describing the process to 
develop a fatigue test and also the development of accelerated test. A general overview is 
done on the product evolution process (PEP) to define where the evaluation of the component 
is applied and how it affects the development process, the general process of the fatigue life 
evaluation of the component, a description of the finite element analysis and its application 
on fatigue life prediction to evaluate an automotive component and develop stiffness devices 
necessary for the test that are used with the modified loads to reproduce the failures.

2. Fatigue tests

It is important to evaluate components in experimental tests because fatigue strength has its 
inherent scatter due to four main factors: the loading, design, manufacturing and material 
(Figure 2). Experimental results under variable loads differ from analytical predictions owing 
to the effect of sequence loads [2, 3], Jimenez et al. [4] proposed a modification in Linear 
Damage Rule to include the effect of sequence in fatigue life prediction.

While manufacturing generally determines the strength and scatter, the geometry can modify 
the effect of mechanical properties [5, 6] due to the material that has variations on its prop-
erties. Loads have the major variability due to the diversity of drivers and factors such as 
number of passengers, weight on the car and its distribution, weather and its effects on the 
interchange of the loads between the non-suspended mass and the pave and the loads gener-
ated by bumpy ways and maneuvers.

Fatigue strength at the endurance limit is affected by the type of load and the size, reliability 
and surface roughness of the component [7]. The surface roughness can be improved with 

Figure 2. Parameters influencing the structural durability of components.
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processes such as shot peening, which is important because fatigue cracks usually initiate at 
the surface in homogeneous materials [8, 9].

In durability tests, the aim is to minimize the likelihood of failure applied for the more aggres-
sive driver using the weakest component. Figure 3 shows a strength-load interference model 
[10], which helps to manage the likelihood of failure of a component. As described in Figure 2, 
the component has different sources of scatter and its structural strength is determined on 
a bell-shaped curve. On the other side is evaluated the scatter for the loads applied to the 
component. The safety factor is defined by the difference between the central value of applied 
loads and its difference with the central value of the component's structural strength.

Jimenez et al. [7] reported that the advantage of component testing is that the effects of the 
material, manufacturing process and geometry are inherently accounted for. Although with 
controlled process as in test laboratory, fatigue test results have scatter, the main sources of 
scatter are summarized in Table 1 [11].

Fatigue evaluation is not simple to predict by analytical methods, and to perform durability 
assessment and to predict the component´s life, it is necessary to measure the most precise 
information, and to do this, the loads in service are acquired and analyzed, to reproduce them 
as shown in Figure 4.

To build a track to perform a durability test, it is necessary to get information from the customers 
through a data acquisition with strain gauges, accelerometers and displacement transducers; then 
this information is analyzed. The output of this analysis is to get the desired signal that is known 
as spectrum. The importance of getting the spectrum is to compare the loads with the S-N curve 
in order to predict the component life through damage accumulated rule. Every step of the devel-
opment process is evaluated to improve its mechanical response, and after the design is released, 
tests are performed to monitor the quality of the product to prevent failures in its service life.

To reduce the time required for testing on public roads, accelerated tests are performed on 
proving grounds. This simulates road damage for different maneuvers, different vertical loads 
of frames and different longitudinal dynamics for accelerating and braking, lateral dynamics 
and vibrations [12], combining all the events (normal roads, rough roads, emergency braking, 
high speed, city and country roads). In addition, the tests can be performed in the laboratory 
[5]. It is possible to increase the number of repetitions at high or medium loads, avoiding 
inadmissible stresses that satisfy the test results. Although some proposals [13] have included 

Figure 3. Failure likelihood in components subjected to cyclic loads.
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the omission of low loads, they depend on the type of material and the application (Figure 5). 
The main objective is to develop an accelerated spectrum to get a test track.

Variable Fatigue in components

In laboratory In service

Production and 
materials.

Production samples and different lots Material from different lots and suppliers processed in 
different facilities.

Quality on the specimen Surface. Quality on Surface in critical areas as in notches.

Loads including 
environment

Type of load (CA, VA)* Loads in service from different users

Accuracy of test equipment Residual fatigue life

Environment Temperature, humidity in laboratory Temperature, snow, rain.

Human Skills and expertise of lab staff to 
perform and evaluate the test.

Different users and styles of use, overloads not expected, 
abuse loads. Responses changed for the environment.

*CA-Constant amplitude; VA-Variable Amplitude.

Table 1. Main sources of scatter in mechanical fatigue.

Figure 4. Parameters influencing the structural durability of components.

Figure 5. Schematic S-N curve: (a) linear-linear, (b) semi-log, and (c) log–log.
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the omission of low loads, they depend on the type of material and the application (Figure 5). 
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3. Statistical analysis

The loads acquired are compared with S-N curves. The S-N curves are often expressed on 
semi-log, normal and log–log coordinates. Figure 5 shows a schematic curve on different 
coordinates, linear, semi-log and log–log. The most common representation is log-log since it 
becomes linear (Figure 5c).

The S-N curve represents the material or component fatigue strength, and is split into regions 
depending on its cycles. Extremely low cycle fatigue (ELCF) is defined from 0 until 100 cycles, 
between this limit and until 1000 cycles is low cycle fatigue (LCF), and between 1000 cycles 
and until 1 × 106 for steel and 5 × 107 for nodular cast iron is defined as high cycle fatigue 
(HCF). Anything beyond this point is defined as very high cycle fatigue (VHCF) [7].

To compare the S-N curve with loads, the time history is analyzed. Figure 6 shows a sche-
matic waveform. The main characteristic is the stress amplitude Sa. If it has constant ampli-
tude, the stress range SR is constant and is defined by the difference of the maximum stress 
(Smax) and minimum (Smin) in a cycle (Eqs. (1)–(3)).

   S  R   =  S  max   −  S  min    (1)

   S  a   =   
 S  R  

 __ 2   =   
 S  max   −  S  min   ________ 2    (2)

The mean stress Sm is defined as

   S  m   =   
 S  max   −  S  min   ________ 2    (3)

A fully alternating stress Sm = Sa.

The stress ratio (R) is defined as the ratio of minimum to maximum stress as is shown in 
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The fatigue damage of a component is influenced in high cycle region by the mean stress 
expressed by its stress ratio. In normal R ≥ 0, open microcracks accelerate the propa-
gation of stress, while R = ∞ or >1 closes the microcrack that is beneficial for fatigue 
strength. In low cycle fatigue region, the plastic deformation eliminates the effect of 
mean stress to improve or detriment the fatigue strength. The schematic stress ratio is 
shown in Figure 7.

The amplitude ratio is the ratio of the stress amplitude to mean stress as show in Eq. (5).
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The loads are monitored with cycle counting that is used to summarize variable amplitude 
time histories, providing the repetitions of the load during the time history. There are  different 
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cycle counting methods such as the Rainflow used to extract cycles from random histories in 
the time domain [13, 14], based on the analogy of raindrops falling on a roof. Figure 8 shows 
Rainflow counting process.

The cycle counting is represented in a matrix based on Figure 5. The signal has 2 cycles from 5 
to 3, 1 cycle from 6 to 3, 1 cycle from 1 to 5, 1 cycle from 2 to 4 (Figure 5a), 2 cycles from 1 to 6  
(Figure 5b), and it has residue. In Figure 5c, these cycles are tabulated on a matrix, which 
depending on its counting can be represented by colors.

It is possible to evaluate time histories with other types of cycle counting methods, such as the 
level crossing method [15] where the amplitudes of the loads are split into a number of levels 
based on ranges, and the load is counted when it has peak at a different level, changing its 
slope from positive to negative or negative to positive; the cycle counting is shown in Figure 9.

In the range pair counting method, the magnitude of loads is split into a number of levels. The 
result of the extracted number of reversals is shown tabulated in Figure 10b. Table 2 sum-
marizes the events counted in Figure 10.

Figure 6. Signal characteristics.

Figure 7. Stress ratio.
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3. Statistical analysis
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The signals can be seen in time domain and frequency domain. A transfer function can be 
used in the frequency domain to relate the power spectral density (PSD) of the input desired 
load to the PSD of the output stress (Eq. (6)) [16]:

   σ  PSD   (w)  =   |h (w) |    2   F  PSD   (w)   (6)

here the squaring process is required to get the transfer function in the correct units of PSD 
stress [17]. In this equation, σPSD (w) is the PSD of the stress at frequency w (N2/Hz); h (W) is 
the linear transfer function at frequency w; and FPSD (w) is the PSD of the input amplitude at 
frequency w (N2/Hz). The advantage of analyzing the responses with PSD is that it helps us 
represent the energy of the time signal at each frequency.

The time histories for constant amplitude test spectrum is linear (Figure 11a), and for vari-
able amplitude, it is a curve (Figure 11b) generated by the cycle counting. Although a theo-
retical fatigue limit has been proposed, with the introduction of new test equipment for high 
 frequency, the prediction has been improved at low load levels. Although this stress couldn’t 

Figure 8. Rainflow counting process: (a) initial counting, (b) continue counting, and (c) residue.
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damage the components by itself, the accumulated damage induced by high loads can be prop-
agated by such small loads. The correction factors for the slope depend on the material [18].

Figure 10. Range pair counting process, (a) time signal and (b) events.

Figure 9. Level crossing counting process: (a) time history, (b) quantity per class, (c) histogram, and (d) absolute 
cumulative frequency.
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4. Accelerated tests

Component life testing is commonly designed to validate fatigue strength of a component 
based on a target customer usage and is based on loads acting on components. The mea-
surement period is usually not long enough to be used directly in a test. The main target 
for extrapolated signals is based on time measurement restrictions and problems such as 
synchronicity, spikes, drifts observed on measurement devices. For this reason, the most 
representative road or proving ground is determined and that is extrapolated to reach the 
kilometers of the total life.

The advantages of finite element simulation are mainly in the early stages of design where the 
prototypes are not yet available, and also to improve its design without physical  components. 
But also in this case, the loads for variable or spectrum as well as constant amplitude are 
developed to correlate with the accelerated tests. All the factors are evaluated in physical 
tests, and the results are analyzed through statistical results.

The load measures are extrapolated to the requirement. These spectrums are evaluated to 
include all the behaviors, as is shown in Figure 12. Spectrum test is developed using different 

Figure 11. Schematic spectrums versus components S-N curves: (a) constant amplitude, (b) variable amplitude.

Range (Units) Cycle counts Events

8 1.0 G-H,H-I

7 0.5 C-D

6 1.5 F-G, I-J,K-L

5 1.0 D-E,L-M

4 1.0 B-C,J-K

3 1.0 A-B,E-F

2 0

1 0

Table 2. Range pair counting.
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loads from the users and different responses are taken into account. Ca is the driver A, the most 
aggressive driver, Cb is the average driver, and Cc and Cd are the drivers that use less aggressive 
components but for more time. After having extrapolated the goal use, the spectrum is built 
considering all these measurements. Figure 13 shows a schematic spectrum development. For 
variable amplitude test, the spectrum is reproduced and monitored with statistical analysis.

The repetitions of the cycles are found using the linear damage rule of Miner (Eq. (7)), and 
damage is evaluated using the ratio of the loads (n) with the number of repetitions (N) toler-
ated at i load level.

  D = ∑   
 n  i   __  N  i  

    (7)

The damage could be reached when the summation is 1 and there is an effect of sequence 
load. Depending on sequence effect loads, the damage can be reached too with values above 
or below 1 [4]. The failure is observed when there is a physical crack.

5. Instrumentation

Figure 2 shows that the first point to acquire information is to install measurement devices 
on the component or in its vicinity, to obtain the responses of the components that induce 

Figure 12. Spectrum development target.

Figure 13. Schematic spectrum development.
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stress. To obtain the most important information we install the measurement devices at the 
main stress points. To do this, it is necessary to perform a finite element simulation in order 
to get the point and the direction of the stresses. Figure 14 shows the typical process used to 
perform this kind of simulation.

The components evaluated can be from different materials and built with different manufac-
turing process. In the next figure are shown instrumented components with a point selection 
from finite element evaluation [7]. Then to find the point and direction of the main stresses, 
components are instrumented with strain gauges. Its nominal resistance is 120 or 350 ohms. 
Higher resistance can be used for base material with low heat conductivity and higher volt-
age excitation than 10 Volts can be mainly used in environments with high electrical noise 
[18]. Figure 15 shows chassis components instrumented, Figure 15a the rear subframe for a 
rigid axle, Figure 15b a front axle steering knuckle and Figure 15c a frontal axle track control 
arm.

Figure 14. General procedure for simulation.
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6. Case study

The accelerated tests are developed to reduce the time and complexity of the test in order to 
have faster results. Figure 16 shows a test stand to evaluate a frontal axle track control arm.

The information collected from the strain gauges can be used to evaluate the component, per-
form a correlation with virtual or analytical tools and build a spectrum. In not all the cases, can 
we directly measure the microstrain to validate the virtual simulation. The acceleration can be 
used to validate the finite element model with experimental acceleration results. With this valida-
tion, the stresses are found in a virtual way and can be used to perform the real-life prediction [4].

In the next part, the process to develop an accelerated test is shown. The time history in Figure 17 
shows the raw data time history to evaluate a track control arm, its main  characteristics is a 
range of 42,354 N, maximum value of 21,473.6 N and minimum value of −20,880.8 N and the 
time length is 249.9 s.

Figure 15. Instrumented components with strain gauges, (a) rear rigid axle subframe, (b) steering knuckle, and (c) track 
control arm.
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The information acquired is then analyzed to eliminate unnecessary information such a noise. 
To do this, we apply filters, and perform statistical analyses. For a structural analysis it is 
necessary to have a low pass filter of 100 Hz [19]. To evaluate the changes after applying the 
filter, it is necessary to perform the  statistical analysis using cycle counting tools and evaluate 
the pseudodamage using the linear damage rule [4]. The results of this evaluation are shown 
in Figure 18.

After applying the filter, the time history obtained has the next characteristics: range of 
41,715.3 N, maximum value of 21,283.5 N and minimum of −20,433.6 N; the time length keeps 
its length of 249.9 s. The pseudodamage was reduced from 4.55 to 4.41, it means a reduction 
of 3.07% of damage, taking as a reference the raw signal.

There are many ways to accelerate the test. One of them is to eliminate the loads amplitude that 
do not apply a high amount of damage. To do this, in the time history, we eliminate the ampli-
tude below 5000 N. Figure 19 shows the process to show the selected areas and the final time 
history.

The cut signal and the raw data and the filtered raw data were compared using statistical 
analysis as it is shown in Figure 20.

Figure 17. Raw data time history for uniaxial test of track control arm.

Figure 16. Durability test stand for frontal track control arm.
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After eliminating the amplitudes below 5kN, the new time history has the next characteristics: 
range of 41,717 N, maximum value of 21,283.5 N and minimum value of −20,433.6 N and the 
time length is 208.4 s. The pseudodamage has not been modified, while the time has been 
compressed from 249.9 to 208.4 s (16.6%). This is our target signal to generate the test spec-
trum, in order to develop the durability test.

Figure 18. Statistical analysis of the raw data compared with the filtered signal (a) cycle counting, (b) cumulative cycle 
count, and (c)PSD.

Figure 19. Cutting load damage areas from the raw data time history filtered, (a) 0–249.9 s, (b) zoom between 221.7 and 233.6 s.

Figure 20. Statistical analysis after cutting loads below 5000 N, (a) cycle counting, (b) cumulative cycle count, and (c) PSD.
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To accelerate the test, we can increase the number of repetitions of loads with amplitude high 
and medium. Figure 21 shows the statistical analysis increasing the medium loads. The time 
history obtained has the next characteristics: range of 42,340.9 N, maximum value of 21,906.9 N 
and minimum value of −20,433.9 N; time length of 135.1 s. The damage was increased from 4.55 
to 8.52, which means that it was increased by a factor of 1.87, reducing the time by 45.93% with 
respect to the raw data.

Figure 22 shows the statistical analysis increasing the amplitude of high loads and the num-
ber of repetitions of high and medium loads. The time history obtained has the next charac-
teristics: range of 59,124.4 N, maximum amplitude of 30,670.6 N and minimum of −28,543.8 
N; time length of 167.7 s. The damage was increased from 4.55 to 39.6. This means that it was 
increased by a factor of 8.7, reducing the time by 32.89% with respect to the raw data.

Figure 23a summarizes the spectrums of the all strategies extrapolated to the time histories, 
the raw filtered data could be cut at below load levels to reduce the time; the medium and 
high loads in the signal can be increased, reducing the original time and increasing the dam-
age. Figure 23b shows the schematic techniques to accelerate the test.

An alternative option to represent the spectrum instead of time history is with Matrix Rainflow. 
Figure 24 shows the four analyzed signals: original (Figure 24a), filtered (Figure 24b), increas-
ing the medium loads (Figure 24c), and increasing the number of reversals in high loads 
inclusive of above the maximum loads of the raw data (Figure 24d). The major differences 
are shown in Figure 24c and d for medium and high loads, respectively, and the ranges for 
medium-to-high loads and its number of repetitions have been increased.

Figure 22. Statistical analysis increasing high loads: (a) cycle counting, (b) cumulative cycle count, and (c) PSD.

Figure 21. Statistical analysis increasing medium loads, (a) cycle counting, (b) cumulative cycle count, and (c) PSD.
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For variable amplitude loads, this statistical analysis is used to monitor and guarantee that 
the loads have been applied correctly. Because it is necessary to build a drive used for the 
actuators to test the applied loads, the feedback through loads are measured and compared 
with the desired spectrum, and the drive to control the test actuators is developed through 
an iteration process [20]. Another way to perform an accelerated test based on the spectrum 
is using two load levels with a constant amplitude load for each load level. Then these results 
are plotted in an S-N component curve, and the specimen results are evaluated to predict the 
fatigue strength and different load levels [21]. Figure 25 shows the experimental results of 
uniaxial constant amplitude loads of steering knuckle.

In an S-N curve, the percent replication (PR) is found by using the number of stress levels (L) 
and a sample size (ns) as is shown in Eq. (8).

Figure 24. Rainflow matrix (a) raw data, (b) cut filtered signal, (c) medium loads increased, and (d) high loads increased.

Figure 23. Spectrum of the time histories, (a) summary of time test reduction and (b) schematic accelerated test.
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In an S-N curve, the percent replication (PR) is found by using the number of stress levels (L) 
and a sample size (ns) as is shown in Eq. (8).

Figure 24. Rainflow matrix (a) raw data, (b) cut filtered signal, (c) medium loads increased, and (d) high loads increased.

Figure 23. Spectrum of the time histories, (a) summary of time test reduction and (b) schematic accelerated test.
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This value represents the portion of specimens that may be used in the variability to replicate 
the tests. The recommended values by Lee et al. [18] are as follows:

17–33 for preliminary and exploratory tests,

33–50 for research and development tests,

50–75 for design allowable data tests and

75–88 for reliability tests.

Steering knuckle results shown in Figure 25 have 7 level of loads, and 90 Specimens using Eq. (4) 
get a percent replication of 92.2. These high values obtained from these results are evaluated to 
analyze a proposal to estimate an S-N curve. For a component test, recommended samples used 
depend on the target, for research and development tests 6–12, and for reliability tests 12–24 
samples. The minimum samples for two load levels are three specimens for each load level.

The median is the central value of results at each load level, and the tendency is considered at 
50% of reliability and is necessary to evaluate it to know the scatter of the factors described in 
Figure 1 (Eq. (8)).

  μ =   1 __ n    ∑ 
i=1

  
n

     x  i    (9)

To evaluate the scatter of the components based on its fatigue results, the standard deviation 
is evaluated using Eq. (10). To take into consideration, its results have to be between 0.05 and 
0.15; for samples without notches, the range is between 0.1 and 0.2, for uniaxial tests the range 
is between 0.2 and 0.3, while in complex tests, it can reach values between 0.3 and 0.6 [22].

   s   2  =   1 ___ n − 1    ∑ 
i=1

  
n
      ( x  i   − μ)    2   (10)

Figure 25. Test results in steering knuckle analysis.
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Results of the slope found in tests are compared with the requirement, and changes on the 
slope affect the behavior at low or high load levels. Figure 26 shows the evaluation of the 
results with constant amplitude loads.

7. Conclusions

Accelerated tests are used to reduce cost and time in the development process. It can also be 
used to monitor the quality of the components during its manufacturing life. Experimental 
evaluation is mandatory prior to final release and start of production to analyze the scat-
ter of the manufacturing process and prevent failures in service life. The importance of 
performing variable amplitude loads tests is because the prediction of fatigue life under 
the complex spectrum loads is not possible by any damage hypothesis. The spectrum to 
evaluate the components in the tests is developed with the loads from different custom-
ers and markets and use conditions. Experimental results show discrepancies even within 
the same batch of production, and the statistical value to evaluate the reliability of the lot 
under test is the standard deviation that shows the influence of the factors described in 
Figure 1. Although the tests are performed under controlled conditions in a laboratory, in 
specimens with notches, the batch of production is released if the standard deviation of its 
fatigue results has a maximum value of 0.2. For samples without notches in uniaxial tests, 
the maximum scatter allowed is 0.3 and 0.6 for complex test [22]. To evaluate the fatigue 
strength as well as the scatter, it is necessary to perform durability tests, to prevent failures 
on the service life.
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Figure 26. Evaluation results (a) slope test ktest = slope requirement kreq, (b) ktest< kreq, (c) ktest> kreq.
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