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Preface

Splines are piecewise polynomials that are joined smoothly, and they provide a significant
tool for the design of computationally economical curves and surfaces. This, in return, plays
a critical role in the construction of various objects like automobiles, ship hulls, airplane fu‐
selages and wings, propeller blades, shoe insoles, bottles, etc. It also contributes in the de‐
scription of geological, physical, statistical, and even medical phenomena. Moreover, spline
methods have also proven to be indispensable in a variety of modern industries, including
computer vision, robotics, signal and image processing, visualization, textile, graphic designs, art de‐
signs, painting, animations in the film industry, font designs in publishing, and even media.

The major goals of this book are to stimulate views and provide a source where researchers
and practitioners can find the latest developments in the field of splines. Due to speedy sci‐
entific developments, there is a great deal of thirst among the scientific community world‐
wide to be equipped with state-of-the-art theory and practice to get their problems solved in
diverse areas of various disciplines. Although a good amount of work has been done by
researchers, a tremendous interest is increasing every day due to complicated problems be‐
ing faced in the academia and industry, especially in areas where data are essential for re‐
search.

This book aims to provide a valuable source on splines and their applications. It focuses on
some interdisciplinary methods using splines. It targets to provide the user community with
a variety of spline techniques and their applications necessary for various real-life problems.
It also aims to collect and disseminate information in various disciplines including computer-
aided geometric design, computer graphics, data visualization, data fitting, digital signal processing,
power systems, clinical and epidemiologic studies, disease detection, regression curves, social media,
and biological studies.

This book has seven chapters consisting of several new advances in the area. These contribu‐
tions provide a modern, up-to-date literature review, theory, techniques, methodology, soft‐
ware developments, and applications. The book is useful for researchers, scientists,
practitioners, and many others who seek state-of-the-art techniques and applications using
splines. It is also useful for undergraduate senior students as well as graduate students in
the areas of computer science, engineering, health science, statistics, and mathematics. An
important feature of the book is that each chapter also provides useful information on the
software developments and their extensions.

The book begins with an exposition of splines from a numerical analysis point of view. The
first chapter entitled “Scalar and Parametric Spline Curves and Surfaces” was prepared by
Horacio Florez and Belsay Borges. In the absence of noise, their work tackles passing a
curve/surface through a given set of data points. They first focus on the case in which the
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curve to be constructed can be described as a scalar spline for the manipulation of dataset as
scalar data. They describe herein cubic and tension splines, which are powerful interpolants
suitable to tackle large datasets. They then introduce a parametric case for a vector-valued
curve, and, hence, it is able to represent arbitrary topologies. They explain how to construct
piecewise continuous cubic Bèzier curves called “B-splines.” They address both interpola‐
tion and approximation problems, the latter denoted as “inverse design.” They extend the
treatment further to tensor product surfaces that are referred to as piecewise bicubic B-
splines. Applications encompass translational and interpolation surfaces. They briefly intro‐
duce nonuniform rational B-spline (NURBS) curves and surfaces. They present applications
such as approximating conic sections. They, finally, introduce Duchon splines that are radial
basis functions to interpolate scattered datasets in two or three dimensions.

Splines play an important role in modern signal processing. In addition to providing new
insights into the sampling theory, they are also perfect candidates for constructing basis
functions such as wavelets for multiresolution processing. A good illustration is given in
Chapter 2, “An Algorithm Based on the Continuous Wavelet Transform with Splines for the
Automatic Measurement of QT Dispersion: Validation and Application in Chronic Kidney
Disease” by María de Lourdes Corzo-Cuesta and Carlos Alvarado-Serrano. Chronic kidney
disease (CKD) is considered a risk factor for development of cardiovascular disease. QT in‐
terval is an electrocardiographic parameter that quantifies the duration of ventricular repo‐
larization. An increase of its spatial variability measured from selected leads of a standard
electrocardiogram (ECG), named QT dispersion (QTd), is considered a risk factor for malign
ventricular arrhythmias and sudden death in the CKD. An algorithm is presented for auto‐
matic measurement of QTd in the ECG leads DI, aVF, and V2 using the continuous wavelet
transform with splines. Validation of QRS complex detection has been done on records from
MIT-BIH database, and the accuracy has been of 99.5%. Validation of detection of QRS wave
onset and T wave end has been done on records from CSE and QT databases, and the meas‐
urements are within the tolerance limits for deviations with respect to the manual measure‐
ments defined by the experts. In this chapter, the algorithm has been applied for two
studies. In the first one, QTd is evaluated in normal subjects and patients with CKD. In the
second study, QTd is analyzed in patients with CKD before, during, and after the hemodial‐
ysis treatment. In both studies, the algorithm has a good performance for the QTd analysis.
This is an example of biomedical signal analysis where data are taken over time.

The next few chapters discuss how to address noise issues when data are obtained as a ran‐
dom sample from certain populations. Chapter 3 discusses multivariate adaptive regression
splines (MARS), which is a nonparametric regression method based on a least squares for‐
mulation. It is an adaptive procedure that does not require any prespecified functional
forms of the components in the regression model. The model can be additive with only the
main effects or interactive involving a set of selected variables. With that said, the model
structure of MARS is constructed dynamically and adaptively according to the information
derived from the data. Because of its ability to capture essential nonlinearities and interac‐
tions, MARS is considered as a great fit for high-dimensional problems by low-dimensional
components such as the main or interactive effects.

The chapter entitled “Multivariate Adaptive Regression Splines in Standard Cell Characteri‐
zation for Nanometer Technology in Semiconductor” by Taizhi Liu illustrates an application
of MARS in semiconductor field, more specifically, in standard cell characterization. The ob‐
jective of standard cell characterization is to create a set of high-quality models of a standard
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cell library that accurately and efficiently captures cell behaviors. In this chapter, the MARS
method is employed to characterize the gate delay as a function of many parameters including
process-voltage-temperature parameters. Due to its ability of capturing essential nonlineari‐
ties and interactions, MARS method helps to achieve significant accuracy improvement.

Complex and massive datasets can be easily accessed using the newly developed data ac‐
quisition technology. In spite of the fact that the smoothing spline ANOVA models have
proven to be useful in a variety of fields, these datasets impose the challenges on the appli‐
cations of the models. To address the need for statistical inference in addition to exploring
the regression model structures, this is effectively done by casting the spline fitting proce‐
dure in the reproducing kernel Hilbert space (RKHS). Jingyi Zhang et al., in Chapter 4
“Smoothing Spline ANOVA Models and Their Applications in Complex and Massive Data‐
sets,” present a selected review of the smoothing spline ANOVA models and highlight some
challenges and opportunities in massive datasets. They review a heuristic method for the
inference and two approaches to significantly reduce the computational costs of fitting the
model. The real case studies in social media and biological studies are used to illustrate the
performance of the reviewed methods.

In the next chapter, NA Li describes a “Model Testing Based on Regression Spline” by offer‐
ing an alternative approach to statistical tests of hypotheses based on regression spline. Spe‐
cifically, the methods are developed for testing functional relationships in nonparametric,
partial linear, and varying-coefficient models, respectively. These models are more flexible
than the linear regression models. They are also more efficient than the other nonparametric
kernel-based methods especially in high-dimensional problems. However, one important
problem is that if it is useful to use regression spline and fiducial method in order to obtain
p-values for testing the linearity and constancy of the nonparametric functions. In the appli‐
cation of spline-based method, the determination of knots is difficult but plays an important
role in inferring regression curve. In order to infer the nonparametric regression at different
smoothing levels (scales) and locations, multi-scale smoothing methods based on regression
spline are developed to test the structures of the regression curve and compare multiple re‐
gression curves. It could sidestep the determination of knots, meanwhile giving a more reli‐
able result in using the spline-based method.

Statistics offers several methods for handling noise in addition to the least squares type of
approaches. One of these is to formulate the likelihood structure of the data. Motivated by
the use of penalized spline, Chapter 6, “Penalized Spline Joint Models for Longitudinal and
Time-to-Event Data” by Huong Thi Thu Pham and Hoa Pham, addresses the issue of joint
models for longitudinal and time-to-event data. The joint models for longitudinal data and
time-to-event data have recently received numerous attention in clinical and epidemiologic
studies. This chapter attracts readers’ interest in modeling the relationship between time-to-
event outcomes and internal time-dependent covariates. In practice, the longitudinal re‐
sponses often show nonlinear and fluctuated curves. Therefore, the main aim of this chapter
is to use penalized splines with a truncated polynomial basis to parameterize the nonlinear
longitudinal process. The linear mixed-effects model is applied to subject-specific curves to
control the smoothing. The association between the dropout process and longitudinal out‐
comes is modeled through a proportional hazards model. Two types of baseline risk func‐
tions are considered, namely, a Gompertz distribution and a piecewise constant model. The
resulting models are referred to as penalized spline joint models, an extension of the stand‐
ard linear joint models.
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The last chapter is “Application of Cubic Spline Interpolation Technique in Power Systems:
A Review” by Akhil Prasad et al. In this chapter, a comprehensive review is made on the
application of cubic spline interpolation techniques in the field of power systems. Domains
like available transfer capability (ATC), electric arc furnace modeling, static VAR compensa‐
tion, voltage stability margin, and market power determination in deregulated electricity
market are taken as samples to illustrate the significance of cubic spline interpolation.

The editors are grateful to the contributors for their valuable efforts toward the completion
of this book. A lot of credit is also due to the experts who reviewed the chapters and provid‐
ed helpful feedback. The editors are happy to acknowledge the support of Ms. Martina Usl‐
jebrka, Author Service Manager, IntechOpen, toward the compilation of this book.

Prof. Young Kinh-Nhue Truong
The University of North Carolina at Chapel Hill, USA

Prof. Muhammad Sarfraz
Kuwait University, Kuwait
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Provisional chapter

Scalar and Parametric Spline Curves and Surfaces

Horacio Florez and Belsay Borges

Additional information is available at the end of the chapter

Abstract

A common engineering task consists of interpolating a set of discrete points that arise
from measurements and experiments. Another traditional requirement implies creating a
curve that mimics a given array of points, namely, a polyline. Any of these problems
require building an analytical representation of the given discrete set of points. If the
geometrical shape represented by the input polyline is complicated, then we may expect
that a global interpolant or polynomial will be of a high degree, to honor all imposed
constraints, which makes its use prohibited. Indeed, a global interpolant often experiences
inflection points and sudden changes in curvature. To avoid these drawbacks, we often
seek solving the interpolation/approximation problem using piecewise polynomial func-
tions called “splines.”

Keywords: cubic splines, tension splines, Bèzier curves, B-splines, NURBS

1. Introduction

In this chapter, we tackle passing a curve/surface through a given set of data points. We first
focus in the case in which the curve to be constructed can be described as S xð Þ ¼ x; f xð Þð Þ. We
refer this data set as scalar data. We describe herein cubic and tension splines, which are
powerful interpolants suitable to tackle large data sets. We then introduce a parametric case

for a vector-valued curve S ξð Þ ¼ x ξð Þ; y ξð Þð ÞT and hence, it is able to represent arbitrary
topologies. We explain how to construct piecewise continuous cubic Bèzier curves called
“B-splines.”We cover the interpolation and approximation problems with B-splines, this latter
denoted as well as “inverse” design. We extend our treatment to tensor product surfaces that
are referred as piecewise bicubic B-splines. Applications encompass translational and interpola-
tion surfaces. We briefly introduce nonuniform rational B-spline curves and surfaces (NURBS).
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The last chapter is “Application of Cubic Spline Interpolation Technique in Power Systems:
A Review” by Akhil Prasad et al. In this chapter, a comprehensive review is made on the
application of cubic spline interpolation techniques in the field of power systems. Domains
like available transfer capability (ATC), electric arc furnace modeling, static VAR compensa‐
tion, voltage stability margin, and market power determination in deregulated electricity
market are taken as samples to illustrate the significance of cubic spline interpolation.
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Abstract

A common engineering task consists of interpolating a set of discrete points that arise
from measurements and experiments. Another traditional requirement implies creating a
curve that mimics a given array of points, namely, a polyline. Any of these problems
require building an analytical representation of the given discrete set of points. If the
geometrical shape represented by the input polyline is complicated, then we may expect
that a global interpolant or polynomial will be of a high degree, to honor all imposed
constraints, which makes its use prohibited. Indeed, a global interpolant often experiences
inflection points and sudden changes in curvature. To avoid these drawbacks, we often
seek solving the interpolation/approximation problem using piecewise polynomial func-
tions called “splines.”

Keywords: cubic splines, tension splines, Bèzier curves, B-splines, NURBS

1. Introduction

In this chapter, we tackle passing a curve/surface through a given set of data points. We first
focus in the case in which the curve to be constructed can be described as S xð Þ ¼ x; f xð Þð Þ. We
refer this data set as scalar data. We describe herein cubic and tension splines, which are
powerful interpolants suitable to tackle large data sets. We then introduce a parametric case

for a vector-valued curve S ξð Þ ¼ x ξð Þ; y ξð Þð ÞT and hence, it is able to represent arbitrary
topologies. We explain how to construct piecewise continuous cubic Bèzier curves called
“B-splines.”We cover the interpolation and approximation problems with B-splines, this latter
denoted as well as “inverse” design. We extend our treatment to tensor product surfaces that
are referred as piecewise bicubic B-splines. Applications encompass translational and interpola-
tion surfaces. We briefly introduce nonuniform rational B-spline curves and surfaces (NURBS).
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We present applications such as approximating conic sections. We finalize the chapter introduc-
ing Duchon splines that are radial basis functions to interpolate scattered data sets in two or three
dimensions.

2. Scalar splines

We cover herein the scalar case in which a spline function S xð Þ ¼ x; f xð Þð Þ fits a given set of
sorted point pairs. We introduce cubic splines and their specialized version that offers a
“tension” parameter that allows attracting the interpolant toward the polyline that connects
the input points, i.e., linear spline. We refer to this latter as tension splines. The last section
presents a couple of numerical examples.

2.1. Cubic splines

A spline is a piecewise continuous function consisting of several polynomials, each specified in
a subinterval, bound themselves by certain continuity conditions. Let x0,…, xn be nþ 1ð Þ
sorted points such that x0 < x1 < x2 < … < xn whose corresponding values are denoted by
y0,…, yn. A spline of k degree with knots x0,…, xn is a function S : R ! R such that:

1. Si is a polynomial of degree ≤ k that is continuous up to kth derivative over xi; xiþ1½ �.
2. Two adjacent splines need to have C0 continuity at the junction points:

S xð Þ ¼

S0 xð Þ; x∈ x0; xi½ Þ
Si xð Þ; x∈ xi; xiþ1½ Þ
⋮

Sn�1 xð Þ; x∈ xn�1; xn½ Þ

8>>>>><
>>>>>:

(1)

We thus enforce Cm,m ¼ 0,…, k� 1ð Þ continuity conditions at the n� 1ð Þ junction points
which yields to 4n� 2ð Þ equations to determine 4n unknown spline coefficients. We omit
details herein but refer the reader to [1, 2]. We end up with a tridiagonal system for the
unknown curvature values κi, at the junction points:

hi�1 � κi�1 þ 2 � hi þ hi�1ð Þ � κi þ hi � κiþ1 ¼ 6
hi

yiþ1 � yi
� �� 6

hi�1
yi � yi�1

� �
, (2)

where i ¼ 1, ::, n� 1 and hi ¼ xiþ1 � xi. The last equation provides a system of n� 1ð Þ condi-
tions for κ0,…,κn. Since both κ0 and κn are arbitrary, a logical choice is choosing κ0 ¼ κn � 0,
which we refer as “natural spline.” For the latter, we can write in matrix form:
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u1 h1

h1 u2 h2

h2 u3 h3

: : :

: : :

: : :

hn�3 un�2 hn�2

hn�2 un�1

2
666666666666666664

3
777777777777777775

�

κ1

κ2

κ3

:

:

:

κn�2

κn�1

2
666666666666666664

3
777777777777777775

¼

v1

v2

v3

:

:

:

vn�2

vn�1

2
666666666666666664

3
777777777777777775

, (3)

where

ui ¼ 2 � hi þ hi�1ð Þ ; bi ¼ 6
hi
� yiþ1 � yi
� �

; vi ¼ bi � bi�1: (4)

Once we determine the curvature values κi, by solving Eq. (3), we define the spline function as

Si xð Þ ¼ yi þ Ai � x� xið Þ3 þ Bi � x� xið Þ2 þ Ci � x� xið Þ; i ¼ 0,…, n� 1, (5)

where the coefficients are given by

Ai ¼ 1
6 � hi � κiþ1 � κið Þ ; Bi ¼ κi

2
; Ci ¼ � hi

6
� κiþ1 � hi

3
� κi þ 1

hi
� yiþ1 � yi
� �

: (6)

2.2. Tension splines

In some problems of adjusting discrete data, it is useful to have a parameter called “tension, τ.”
When τ has a small value, the resulting curve approaches a cubic spline. When τ tends to þ∞,
the resulting curve approaches a linear spline. For the same sequence of sorted point pairs
mentioned above, the tension spline satisfies.

1. T ∈C2 x0; xn½ � and T xið Þ ¼ yi ; i ¼ 0,…, n.

2. On every interval xi; xiþ1½ � : T IVð Þ � τ2 � T IIð Þ ¼ 0.

That is, T : R ! R has continuity C4 globally, interpolates to the data, and satisfies certain
ordinary differential equation in each subinterval. It is clear that the prescription τ ¼ 0 leads to
cubic polynomials when solving the equation. To determine T, we proceed similarly to the case
of cubic splines, i.e., κi � T00 xið Þ:

T IVð Þ � τ � T IIð Þ ¼ 0 ; T xið Þ ¼ yi ; T xiþ1ð Þ ¼ yiþ1: (7)

The solution is given by [2]:
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T xð Þ ¼ κi � sinh τ � bxð Þ þ κiþ1 � sinh τ � ~xð Þ½ �
τ2 � sinh τ � hið Þ þ yi �

κi

τ2

� �
� bx
hi
þ yiþ1 �

κiþ1

τ2

� �
� ~x
hi
, (8)

where bx ¼ xiþ1 � xð Þ and ~x ¼ x� xið Þ, and we compute the curvatures by solving the system:

αi�1κi�1 þ βi�1 þ βi
� � � κi þ αiκiþ1 ¼ γi � γi�1

� �
, (9)

and 1 ≤ i ≤ n� 1ð Þ, and the arguments are (κo ¼ κn ¼ 0):

αi ¼ 1
hi
� τ
sinh τ � hið Þ ; βi ¼

τ � cosh τ � hið Þ
sinh τ � hið Þ � 1

hi
; γi ¼

τ2 yiþ1 � yi
� �

hi
: (10)

2.3. Numerical examples

2.3.1. Example 1

Fit the following collection of point pairs using a natural cubic spline.

x 0 1 2 3 4

y �8 �7 0 19 56

We assume κ0 ¼ κ4 � 0; thus ho ¼ x1 � x0 ¼ 1 ¼ h1 ¼ h2 ¼ h3, and u1 ¼ 2 � h1 � h0ð Þ ¼ 4 ¼
u2 ¼ u3. The tridiagonal system (3) yields

4 1 0
1 4 1
0 1 4

2
64

3
75

κ1
κ2

κ3

2
64

3
75 ¼

36
72
108

2
64

3
75)

κ1
κ2

κ3

2
64

3
75 ffi

6:4285
10:2857
24:4285

2
64

3
75: (11)

As an illustration, S2 xð Þ is given by

S2 xð Þ ¼ 2:3571 � x� 2ð Þ3 þ 5:1428 � x� 2ð Þ2 þ 11:5 � x� 2ð Þ, (12)

for instance, S2 3ð Þ ffi 18:9999 and S2 2:5ð Þ ffi 7:3303.

2.3.2. Example 2

Figure 1 depicts radial velocity profiles that represent the laminar fluid flow within a pipeline.

These velocity profiles were obtained by solving the Navier-Stokes equations under simplify-
ing assumptions. The symbols represent the discrete point pairs, the abscissas correspond to
the normalized radial coordinate from the center, and the y-coordinates are the normalized
radial velocities. We fit all data sets by using natural splines. To solve the system (3), we
recommend the Thomas method, i.e., a direct frontal solver for tridiagonal matrixes [1–3]. We
also recommend employing a quick-search algorithm to evaluate the piecewise function.
Indeed, for an arbitrary x, we need to determine what is the interval where this abscissa lies,
i.e., x∈ xi; xiþ1½ �.

Topics in Splines and Applications4

2.3.3. Example 3

We finalize the examples by comparing cubic and tension splines. Figure 2 depicts a car-like
profile polygon that we would like to interpolate. We try both splines mentioned above. We
highlight in red color the cubic spline (top) interpolant, while the tension spline is black (bottom
curve). We observe that the cubic spline experiences inflection points because the car-shaped

Figure 1. Discrete velocity profiles that were fitted by splines.

Figure 2. It depicts a car-like profile that we fit by cubic and tension splines.
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polygon is challenging. This latter is the kind of application for tension splines where we seek to
attract the spline toward the input polyline. We notice that we achieve that goal herein.

3. Bèzier, B-spline, and NURBS curves

The appropriate representation and meshing of the computational domain for the physical
problem under study are necessary premises for a satisfactory computer simulation. In fact,
one of the most demanding computational tasks in a simulation is defining the geometry
because it will impact many aspects of the study such as the grid generation process [4].
Therefore, special methods must be applied to fit discrete data without sudden changes in
curvature. The approach should be free of inflection points, and at minimum, it must enforce
continuity C2 of the fitted curve. In this chapter, this goal is achieved by using Bèzier, B-spline,
and NURBS curves and surfaces [5, 6].

A Bèzier curve (BC), B, shown in Figure 3, is obtained by specifying the coordinates of a series
of points in space, such that only the first and last ones fall on the originally given curve. All
these points are known as control points, and the polyline resulting from connecting themwith
straight lines is called control polygon, which mimics the original curve, allowing an easy
control of its shape. Although inflection points may be present in Bèzier curves, they are less
common than in polynomials or other analytical functions [5, 6].

Global Bèzier curves, i.e., only one curve represents the given polyline, provide a powerful tool
in geometry definition; however, complex shapes require a large number of constraints,

Figure 3. Fourth-order Bèzier curve with highlighted control points.
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making their use prohibitive. It is therefore beneficial to represent them by using piecewise
continuous Bèzier curves called B-spline curves [5]. In fact B-spline curves are a widely utilized
representation for geometrical entities in computer-aided geometric design (CAGD) systems.
Their convex hull, local support, shape-preserving forms, affine invariance, and variation-
diminishing properties are extremely attractive in engineering design applications [4].

A particular Bèzier curve is set up by its parametric representation; let B : R ! R2 be defined
by

B tð Þ ¼
Xm

i¼0

bi � B mð Þ
i tð Þ, t∈ I ¼ 0; 1½ �, (13)

here, m denotes the order or degree of the curve, B mð Þ
i tð Þ are the Bernstein polynomials, defined

as

B mð Þ
i tð Þ ¼ m!

i! m� ið Þ! t
i � 1� tð Þm�i ;

Xm

i¼0

Bm
i tð Þ ¼ 1, (14)

and bi are the control points. Notice in Eq. (14) that Bernstein polynomials satisfy the
barycentric property, meaning that they add up to 1, which explains why a given curve cannot
be outside its control polygon that is the convex-hull property. The control points of a given BC
can be calculated in several ways since the Bèzier curve evaluated in t ¼ tk must provide the
corresponding base point p

k
; a linear system of equations can be formed for the unknown

control points as

Xm

i¼0

bi � B mð Þ
i tkð Þ ¼ p

k
, k ¼ 0, ::, m, (15)

where the number of base points equals mþ 1ð Þ; we compute the value of the parameter tk by
[6, 7]

tk ¼ sk
sm

; s0 ¼ 0; sk ¼ sk�1 þ p
k
� p

k�1

���
���, k ¼ 1,…, m, (16)

which is the well-known chord-length parametrization.

The last approach is a powerful tool in curve design, but it has a limitation: if the geometry that
we model has a complex shape (i.e., a significant number of base points), then its Bèzier curve
representation may be of a prohibitively high degree. Since the Bèzier curve is forced to satisfy
several constraints according to Eq. (15), the resulting curve may experience inflection points
and sudden changes in curvature (see Figure 4, where p

k
points in Eq. (15) are represented by

circles). For practical purposes, degrees exceeding 10 are prohibitive [5, 6].

Such complex geometries can be modeled using piecewise polynomial curves named B-spline
curves [5, 6] (see Figure 5). B-spline curves are a set of Bèzier curves of mth degree that must
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can be calculated in several ways since the Bèzier curve evaluated in t ¼ tk must provide the
corresponding base point p

k
; a linear system of equations can be formed for the unknown

control points as

Xm

i¼0

bi � B mð Þ
i tkð Þ ¼ p

k
, k ¼ 0, ::, m, (15)

where the number of base points equals mþ 1ð Þ; we compute the value of the parameter tk by
[6, 7]

tk ¼ sk
sm

; s0 ¼ 0; sk ¼ sk�1 þ p
k
� p

k�1

���
���, k ¼ 1,…, m, (16)

which is the well-known chord-length parametrization.

The last approach is a powerful tool in curve design, but it has a limitation: if the geometry that
we model has a complex shape (i.e., a significant number of base points), then its Bèzier curve
representation may be of a prohibitively high degree. Since the Bèzier curve is forced to satisfy
several constraints according to Eq. (15), the resulting curve may experience inflection points
and sudden changes in curvature (see Figure 4, where p

k
points in Eq. (15) are represented by

circles). For practical purposes, degrees exceeding 10 are prohibitive [5, 6].

Such complex geometries can be modeled using piecewise polynomial curves named B-spline
curves [5, 6] (see Figure 5). B-spline curves are a set of Bèzier curves of mth degree that must
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satisfy at least the C m�1ð Þ continuity. A spline curve C is the continuous mapping of a collection
of global parameter values ξ0, ξ1,…, ξL�1, ξL into R2, where each interval ξi; ξiþ1½ � is mapped
onto a polynomial curve segment as shown in Figure 5. We define Ω ¼ ξ0; ξL½ � as the compu-
tational space. A local coordinate t for the interval ξi; ξiþ1½ � can be defined by setting [5]:

t ¼ ξ� ξi
ξiþ1 � ξi

¼ ξ� ξi
Δi

, ξ∈ ξi; ξiþ1½ �: (17)

3.1. C2 cubic curves

Let d�1, d0,…, dL, dLþ1 be a set of Lþ 3ð Þ points defining the de Boor’s polygon that generates L
individual cubic curves as shown in Figure 6. The required 3Lþ 1ð Þ Bèzier control points are
calculated with the aid of C1 and C2 continuity criteria. C1 conditions lead to

b3i ¼
Δi

Δi�1 þ Δi
b3i�1 þ

Δi�1

Δi�1 þ Δi
b3iþ1, i ¼ 1,…, L� 1, (18)

Figure 4. We interpolated with a Bèzier (black) and a cubic B-spline (red) curves.

Figure 5. A B-spline curve, C ξð Þ, is the union of piecewise continuous curves.
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while C2 conditions require that

b3i�2 ¼ Δi�1 þ Δi

Δ
di�1 þ

Δi�2

Δ
di,

b3i�1 ¼ Δi

Δ
di�1 þ

Δi�2 þ Δi�1

Δ
di:

(19)

where i ¼ 2,…, L� 1, and Δ ¼ Δi�2 þ Δi�1 þ Δi. The end points are

b0 ¼ d�1 ; b1 ¼ d0 ; b2 ¼
Δ1

Δ0 þ Δ1
d0 þ

Δ0

Δ0 þ Δ1
d1,

b3L�2 ¼
ΔL�1

ΔL�2 þ ΔL�1
dL�1 þ

ΔL�2

ΔL�2 þ ΔL�1
dL ; b3L�1 ¼ dL ; b3L ¼ dLþ1:

(20)

This construction is due to W. Boehm [5].

For cubic curves more parametrizations are available [5, 6], for instance:

1. Uniform parametrization

ξi ¼ i ; i ¼ 0,…, L: (21)

2. Chord-length parametrization [5]

ξ0 ¼ 0:0; ξ1 ¼ d1 � d�1k k,
ξi ¼ ξi�1 þ di � di�1

�� ��; i ¼ 2,…, L� 1,

ξL ¼ ξL�1 þ dLþ1 � dL�1

�� ��:
(22)

3. A parametrization proposed by the author [6]

ξ0 ¼ 0:0,

ξiþ1 ¼ ξi þ di � di�1

�� ��þ diþ1 � di
�� ��þ diþ2 � diþ1

�� ��,
i ¼ 0,…, L� 1:

(23)

Figure 6. A C2 cubic curve with highlighted de Boor’s and junction points.
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Figure 6. A C2 cubic curve with highlighted de Boor’s and junction points.
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This latest parametrization has the advantage that it yields to a symmetric curve if the control
polygon is symmetric as well, which may be interesting for certain applications.

3.2. Inverse design and interpolation problems

A two-dimensional geometric description based on B-spline curves requires the definition of a
control polygon (the de Boor’s polygon) that mimics the curve. Therefore two approaches are
possible. The first method consists of providing the set of the de Boor’s points (i.e., define the
de Boor’s polygon interactively from user’s input) that defines the composite curve, which is
known as “inverse design,” and it has its application in “TrueType” font technology as shown
in Figure 7. The second approach consists of defining the set of base points and then solves a
linear system of equations for the de Boor’s points such that the resulting curve passes through
them. This latter is known as the “interpolation” problem.

Figure 7 shows the difference between the above approaches; from left to right, it has the de
Boor’s control polygon, inverse design, and interpolation problems both taking into account
the same polygon as an argument with cubic curves.

3.3. Interpolation with cubic curves

In order to interpolate with cubic B-spline curves, we find unknown junction points such that
they pass through a given set of data points x0,…, xL and corresponding parameter values
ξ0, ξ1,…,ξL�1, ξL. A composite cubic curve C, determined by its de Boor’s polygon [4, 5]
d�1,…, dLþ1 such that C ξið Þ ¼ xi, is required. The solution to this problem is obtained by
finding the relationship between the data points xi and the control vertices di. This leads to
the following linear system of equations for the unknown de Boor’s points [5]:

αi � di�1 þ βi � di þ γi � diþ1 ¼ Δi�1 þ Δið Þ � xi; i ¼ 1…L� 1, (24)

where (with Δ�1 ¼ ΔL ¼ 0)

αi ¼ Δið Þ2
Δi�2 þ Δi�1 þ Δi

,

βi ¼
Δi Δi�2 þ Δi�1ð Þ
Δi�2 þ Δi�1 þ Δi

þ Δi�1 Δi þ Δiþ1ð Þ
Δi�1 þ Δi þ Δiþ1

,

γi ¼
Δi�1ð Þ2

Δi�1 þ Δi þ Δiþ1
:

(25)

Figure 7. The inverse design and interpolation problems.
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If the two Bèzier points b1 and b3L�1 are arbitrarily chosen, the following linear system of
equations is obtained [5, 6]:

1
α1 β1 γ1

⋱
αL�1 βL�1 γL�1

1

2
6666664

3
7777775
�

d0
d1
⋮
dL�1

dL

2
6666664

3
7777775
¼

r0
r1
⋮
rL�1

rL

2
6666664

3
7777775
, (26)

where

r0 ¼ x0,

ri ¼ Δi�1 þ Δið Þ � xi ; i ¼ 1…L� 1,

rL ¼ xL:

(27)

The first and last vertices of the polygon are given by

d�1 ¼ x0, dLþ1 ¼ xL: (28)

The points b1 and b3L�1 can be calculated from a given end condition. There are two possibil-
ities for the choice of B-spline ending conditions. A natural spline requires that

d2

dt2
s0 0ð Þ ¼ 6 � b2 � 2b1 þ b0ð Þ ¼ 0,

d2

dt2
sL�1 1ð Þ ¼ 6 � b3L � 2b3L�1 þ b3L�2ð Þ ¼ 0:

(29)

Using the relations in Eq. (29), we obtain that

2� Δ1

Δ0 þ Δ1

� �
� d0 �

Δ0

Δ0 þ Δ1
d1 ¼ x0,

2� ΔL�2

ΔL�2 þ ΔL�1

� �
� dL �

ΔL�1

ΔL�2 þ ΔL�1
dL�1 ¼ xL:

(30)

These two equations replace the first and last rows of the linear system of equations given in
Eq. (26). Notice that in either case, natural ending conditions or prescribed tangent vectors, the
linear system in Eq. (24) is a tridiagonal matrix. Since the coefficient matrix is real and scalar,
and the left- and right-hand-side vectors are in fact hypervectors (i.e., an array of vectors), it is
recommendable to use a type of Gaussian elimination method against multiple right-hand
sides to achieve performance [6, 7]. If we recompute the interpolant in Figure 4 but this time
with a B-spline cubic curve, we then obtain a smoother and steadier interpolant free of
unwelcome inflection points.

3.4. NURBS curves

NURBS curves are useful when we require an exact geometrical representation of some
entities, such as circles, parabolas, ellipses, spheres, cylinders, etc. This is precisely the case in
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various applications in aerospace and mechanical engineering where NURBS are quite popu-
lar [4, 5, 8–10]. For instance, a NURBS curve is defined by its rational representation in Eq. (31):

R tð Þ ¼

Pm
i¼0

wi � Bm
i tð Þ � bi

Pm
i¼0

wi � Bm
i tð Þ

, (31)

where the weights wi are positive real scalars. The usual B-spline definition is recovered if all
those weights equal 1. Generally speaking, the weights play the role of attracting the curve
toward its control polygon when we increase their values [5, 8]. It turns out that specific
weights lead to exact representation of circles, for instance, as shown in Figure 8, where the
real numbers depicted are the given weights. A circle can be exactly represented by three- or
four-quadratic arcs (left and right side, respectively, in Figure 8); this latter alternative is more
attractive, for instance, to generate a surface of revolution [4, 5, 8]. NURBS also provide exact
representation for 3D surfaces such as spheres and cylinders as well as volumes [4, 10]. The
reader may refer to [4, 5, 8–11] for further details for this well-established area of computa-
tional geometry. We depict an example of practical interest, in the context of geomechanics, in
Figure 9. Herein we precisely represent a near-borehole section. To describe the borehole
geometry, we employ four line segments and a quadratic arc as shown.

Figure 9. We represent a near borehole “exactly” by NURBS as shown.

Figure 8. Two exact equivalent representations for a circle (the remaining weights equal 1).
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In order to interpolate a set of points with a NURBS curve in two or three dimensions, one may
follow the same procedure described with B-spline curves except that a mapping to R4 must be
carried out first. The new input points ~xi are given by

~xi ¼ wi � xi yi zi 1
� �T; ~xi ∈R4, (32)

then the linear system in Eq. (24) with the right boundary conditions can be solved with xi
replaced by ~xi, as defined by the Eq. (32). After solving this system, the solution control
polygon is still in R4, which implies that a mapping back to R3 is required:

di ¼
1
wi

1 0 0 0
0 1 0 0
0 0 1 0

0
B@

1
CA � ~di ; di ∈R3: (33)

The latter is a straightforward procedure to reuse the subroutines already developed for
B-spline curves.

3.5. Numerical examples

We implemented the proposed approaches in a computer code named “LogProc” which is a
graphical user interface application developed with the C++ programming language. LogProc
is proprietary software, but a free community version will be available for download from
www.logproc.com. All examples were obtained applying the proposed knot sequence (23) to
construct cubic composite curves. The empty circles represent de Boor’s points (sample inverse
designs) or base points (interpolation problems). We utilized the natural end condition in
examples in Figures 10 and 11 and the prescribed tangent in the remaining cases. We depict a
typical font design application in Figure 10where we represent some alphabet’s letters. Notice
that an approach like this is appropriate to construct font outlines because they can be scaled

Figure 10. A typical font design application.
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and rotated. This feature is of significant interest in the “TrueType” font technology where
outlines that are insensible to the resolution of the physical device in which they will be shown,
such as monitors or printers, must be obtained [6]. We added a bonus section on the numerical
implementation for computing splines that is available online, https://www.logproc.com/book-
chapter-splines. We also include most sample datasets for downloading. We also recommend
there suitable open-source libraries that are convenient to use. All vector and raster plots were
prepared by logproc which can create high-quality PDF files in Windows 7 and 10, for instance.

Figure 11 shows a zenith view of a pair of petroleum reservoir outlines. Few base points
permit to approximate their complex shape. These shapes could be used as arguments to
generate an unstructured mesh appropriate to simulate the flow in a porous media [7].

We interpolate a discrete blade geometry approximation in both Figures 12 and 13. A3K7
profiles are constructed in the same way as NACA 65, but they present rounded trailing edges
[6]. A3K7’s shape is represented by 46 base points and circle arcs both in leading and trailing
edges. Therefore the curves that interpolate the data points are tangents to circle arcs to ensure
C1 continuity between these entities. The profiles in the left of Figure 12 were obtained
applying Eq. (15) to construct C1 single Bèzier curves (two curves, each of them approximating
to suction and pressure sides, respectively). However, note that the resulting curves have
unexpected inflection points on the suction side. The enforcement of continuity conditions

Figure 11. A pair of petroleum reservoir outlines.

Figure 12. A3K7 interpolated by Bèzier curves.
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implies a large number of constraints after Eq. (15), which explains this behavior. If we replace
the former Bèzier curves by two B-spline curves, computed from Eqs. (24) and (29), we obtain a
smooth A3K7 geometry description (see profiles in the right-hand side of Figure 12). Figure 14
zooms in to show that the resulting geometrical description is smooth and free of unwelcome
features such as inflection points.

4. Interpolation surfaces

Let SInt : R2 ! R3 be a two-parameter mapping which represents a given surface. If structured
data, i.e., tensor product data, needs to be interpolated, one may expect to come up with tensor
product surfaces as well, where two parameters ξ; ηð Þ allow covering two different directions
associated with the surface. In the computational space, i.e., in the plane ξ; ηð Þ, the domain,

Ω ¼ ξ0; ξLu
� �� η0; ηLv

h i
, is a rectangle, and its image is the surface in 3D as shown in Figure 15,

where Lξ and Lη are the number of curves in their respective directions.

B-spline tensor product surfaces allow interpolating structured data, and they are defined as
the tensor product of two families of curves Ck

i ξð Þ and Dl
j ηð Þ, which is

Figure 13. A3K7 interpolated by B-spline curves.

Figure 14. Details highlighted in Figures 12 and 13.
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permit to approximate their complex shape. These shapes could be used as arguments to
generate an unstructured mesh appropriate to simulate the flow in a porous media [7].

We interpolate a discrete blade geometry approximation in both Figures 12 and 13. A3K7
profiles are constructed in the same way as NACA 65, but they present rounded trailing edges
[6]. A3K7’s shape is represented by 46 base points and circle arcs both in leading and trailing
edges. Therefore the curves that interpolate the data points are tangents to circle arcs to ensure
C1 continuity between these entities. The profiles in the left of Figure 12 were obtained
applying Eq. (15) to construct C1 single Bèzier curves (two curves, each of them approximating
to suction and pressure sides, respectively). However, note that the resulting curves have
unexpected inflection points on the suction side. The enforcement of continuity conditions

Figure 11. A pair of petroleum reservoir outlines.

Figure 12. A3K7 interpolated by Bèzier curves.
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implies a large number of constraints after Eq. (15), which explains this behavior. If we replace
the former Bèzier curves by two B-spline curves, computed from Eqs. (24) and (29), we obtain a
smooth A3K7 geometry description (see profiles in the right-hand side of Figure 12). Figure 14
zooms in to show that the resulting geometrical description is smooth and free of unwelcome
features such as inflection points.

4. Interpolation surfaces

Let SInt : R2 ! R3 be a two-parameter mapping which represents a given surface. If structured
data, i.e., tensor product data, needs to be interpolated, one may expect to come up with tensor
product surfaces as well, where two parameters ξ; ηð Þ allow covering two different directions
associated with the surface. In the computational space, i.e., in the plane ξ; ηð Þ, the domain,

Ω ¼ ξ0; ξLu
� �� η0; ηLv

h i
, is a rectangle, and its image is the surface in 3D as shown in Figure 15,

where Lξ and Lη are the number of curves in their respective directions.

B-spline tensor product surfaces allow interpolating structured data, and they are defined as
the tensor product of two families of curves Ck

i ξð Þ and Dl
j ηð Þ, which is

Figure 13. A3K7 interpolated by B-spline curves.

Figure 14. Details highlighted in Figures 12 and 13.
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LInt ξi; ηj
� �

¼ xij; SInt
klij ξ; ηð Þ ¼ Ck

i ξð Þ⊗Dl
j ηð Þ; ξ; ηð Þ∈Ω (34)

In applications of practical interest, usually cubic piecewise continuous curves are preferred
because they provide a global C2 representation that is smooth enough, called a bicubic surface
[5, 8, 9].

4.1. Creating a surface of interpolation

The following steps describe creating a surface of interpolation:

1. An input control polygon, whose points are in R3, is provided. They correspond to data that
is structured and ordered, which is usually a matrix-type array of points (see left side of
Figure 16). For simplicity, points in the i-direction are associated with the ξ parameter while
j0s are associated with η.

Figure 15. We depict the mapping between physical and computational spaces.

Figure 16. The first two steps to interpolate structured data are depicted: input control polygon (left) and ξ-interpolants
(right) are shown.
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2. Create interpolation curves with constant values of η, so-called ξ-interpolants (see right side
of Figure 16).

3. Proceed accordingly with previous step, interpolation curves with constant values of ξ; so-
called η-interpolants are created this time (see left side of Figure 17).

4. Compute the tensor product between ξ- and η-interpolants in order to get bicubic patches
(see right side of Figure 17).

The right-hand side in Figure 17 shows typical bicubic patches as a chessboard surface empha-
sizing that we deal with a piecewise continuous entity. The computational cost associated with
the above algorithm is reasonable because the most expensive part is computing the interpolants
(see Section 3).

5. Translational surfaces

These surfaces are again a two-parameter mapping, σT : R2 ! R3, but their construction pro-
cedure is simpler than interpolation surfaces; see, for instance, [5, 8, 9]. The idea here is just
literally translating a curve α along another curve β, which yields

σT ξ; ηð Þ ¼ α ξð Þ þ β ηð Þ: (35)

This idea became very popular in CAGD systems long time ago. Those systems usually
support a command which allows extruding a geometrical entity, for instance, a cylinder can
be easily created by extruding a circle along a straight line. Figure 18 shows the above
procedure applied to an aircraft wing where an NURBS airfoil profile was translated or
extruded along a straight line accordingly. We interpolated an NACA 65 polyline with a
NURBS curve as we mentioned in Section 3.4.

Figure 17. The last two steps to interpolate structured data are depicted: η-interpolants (left) and resulting bicubic
patches are shown. The de Boor’s control polygon is highlighted in red lines.
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This procedure becomes very useful in the geometrical reconstruction of oil reservoirs (RS).
Indeed, we reconstructed the geometry of RS in [12] by using B-spline surfaces. The technique
exploits input mesh’s simplicity to build a robust piecewise continuous geometrical represen-
tation using Bèzier bicubic patches. We manage the reservoir’s topology with interpolation

Figure 18. An aircraft wing by translating an NACA profile accordingly.

Figure 19. A translational surface.

Figure 20. An interpolation surface.
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surfaces, while translational surfaces allow extrapolating it toward its side burdens. After that,
transfinite interpolation can be applied to generate decent hexahedral meshes. Figure 19
shows a sample translational surface that we obtain by extruding a curve that interpolates the
reservoir’s edge as shown. We render the surfaces in blue color with a white wireframe, while
the RS is the color-contoured surface that represents the porosity, a scalar property. We tackle
the RS itself after interpolating the control polygon that Figure 20 highlights in red color. The
polygon is a 17� 9 array of points representing the RS topology. The procedure works well for
a variety of so-called open-to-the-public RS data sets that we reconstructed in [12]. It is also
possible to utilize these NURBS curves and surfaces as interfaces for gluing nonmatching
interfaces for the finite element method as we showed in [13].

6. Duchon splines

In the context of applications in statistical analysis involving very high dimensional data sets,
response surfaces are growing popularity. By running the simulations at a set of points (e.g.,
experimental design) and fitting response surfaces, i.e., splines, for instance, to the resulting
input-output data that is characterized by sparsity, we can obtain fast surrogates for the
objective function for optimization purposes [14, 15]. The appeal of the latter approach goes
beyond reducing runtime. Since the method begins with experimental design, statistical ana-
lyses can be done to identify which input variables are the most important, and thus we can
create “main effect plots” to visualize input-output relationships [14]. We must recognize
interpolation methods in which the basis functions are fixed and those in which they have
parameters that are tuned (e.g., kriging, which has a statistical interpretation that allows one to
construct an estimate of the potential error in the interpolator). We refer the reader to [14, 15]
for further reading.

There are different ways to approximate a function of several variables: multivariate piecewise
polynomials, splines, and tensor product methods, among others. All these approaches have
advantages and drawbacks, but if the rank of the linear system to solve may become large, a
natural choice is radial basis functions, which are also useful in lower dimensional problems
[14, 16, 17]. This may be particularly true if the input data is scattered, which excludes tensor
product methods at first glance. Duchon splines are a class of positive definite and compactly
supported radial functions, which consist of univariate polynomial within their support. It can
be proven that they are of minimal degree and unique up to a constant factor, for given
smoothness and space dimension [18]. They are particularly suitable to compute interpolants
for very large scatter datasets [17].

Duchon splines, denoted herein as s, are defined by [17, 18]

s xð Þ ¼
X
j

λj � φ rj

� �
þ pn xð Þ ; n ¼ 2, 3

rj ¼ x� xj
�� ��

φ rð Þ ¼ r2ln r,

(36)
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where pn xð Þ is a linear polynomial in two or three dimensions:

p2 xð Þ ¼ axþ byþ c

p3 xð Þ ¼ dxþ eyþ fzþ g ; λj, a,…, g∈R:
(37)

Notice that λj and the polynomial coefficients are all scalar quantities. In order to guarantee
existence and uniqueness for these splines, an orthogonality condition with respect to linear
polynomials is enforced, for instance, in two dimensions this yields to

X
j

λj ¼
X
j

λjxj ¼
X
j

λjyj ¼ 0: (38)

By considering this result, the interpolation problem becomes

s xi
� � ¼

X
j

λj � φ rij

� �
þ pn xi

� � ¼ Fi, (39)

which implies m points plus nþ 1 orthogonality conditions; here, Fi are the nodal values to be
interpolated. The resultant linear system to solve for is of mþ nþ 1ð Þ rank.
Duchon splines are certainly suitable to interpolate scattered data sets that we cannot tackle with
the tensor product surfaces that we discussed before. Indeed, Figure 21 depicts such an applica-
tion, in optimization, where an objective function that we wish to minimize was sampled
randomly by Monte-Carlo (MC) realizations. To compute a minimum, we interpolate the black
dots, and then we minimize the resulting spline with standard Newton stochastic techniques
[15]. It is true that Duchon splines are a valid choice for “surrogate”models for such applications.

Figure 21. Discrete MC data with Duchon splines.
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7. Concluding remarks

We presented a concise introduction to scalar and parametric spline interpolants. We intro-
duced cubic and tension splines for scalar functions, and then we generalized them for the
parametric case via Bèzier, B-spline, and NURBS curves. These latter entities are of the partic-
ular interest for applications in CAGD. We thus elaborated on topics such as inverse design
and interpolation. We extended the treatment also to cover interpolation and translational
surfaces with examples in mechanical and petroleum engineering. We wrapped up with the
topic of interpolating sparse very high dimensional data sets via Duchon splines which are a
kind of response surfaces suitable for applications in statistical analysis and optimization.
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Chronic kidney disease (CKD) is considered a risk factor for the development of car-
diovascular disease. QT interval is an electrocardiographic parameter that quantifies the 
duration of ventricular repolarization. An increase of its spatial variability measured 
from the selected leads of a standard electrocardiogram (ECG), named QT dispersion 
(QTd), is considered a risk factor for malign ventricular arrhythmias and sudden death in 
the CKD. An algorithm for automatic measurement of QTd in the ECG leads DI, aVF and 
V2 using the continuous wavelet transform with splines is presented. Validation of QRS 
complex detection has been done on records from MIT-BIH database, and the accuracy 
is 99.5%. Validation of detection of QRS wave onset and T wave end has been done on 
records from CSE and QT databases, and the measurements were within the tolerance 
limits for deviations with respect to the manual measurements defined by the experts. 
The algorithm was applied in two studies. In the first study, QTd was evaluated in nor-
mal subjects and patients with CKD. In the second study, QTd was analyzed in patients 
with CKD before, during and after the hemodialysis treatment. In both studies, the algo-
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1. Introduction

According to the World Health Organization (WHO), cardiovascular diseases (CVDs) are the 
number one cause of death globally, and an estimated 17.7 million people died from CVDs in 
2015, representing 31% of all global deaths, of these deaths, an estimated 7.4 million were due 
to coronary heart disease (CHD) [1]. CHD is a narrowing or blockage of the blood vessels that 
supply blood and oxygen to the heart, then, the cells in the region served by the vessel will 
behave abnormally due to hypoxia (myocardial ischemia) or may die (myocardial infarction) 
[2]. In Mexico, data of the National Institute of Statistics and Geography (INEGI) showed that 
in 2015, the heart diseases are the main cause of death, and the most frequent is the ischemic 
heart disease (IHD) [3].

The kidneys are a pair of bean-shaped organs that lie on either side of the spine in the lower 
middle of the back. Its main function is to remove soluble waste products and excess water 
and electrolytes from the bloodstream. Chronic kidney disease (CKD) is defined as abnor-
malities of kidney structure or function, present for 3 months or more, with implications for 
health [4]. Abnormalities in kidney structure (damage) usually precede abnormalities in func-
tion. CKD is divided into five stages of increasing severity. Stage 5 referred to as kidney fail-
ure or end-stage renal disease (ESRD) is traditionally considered as the most serious outcome 
of CKD because there is total or near-total loss of kidney function and patients require treat-
ment with dialysis or transplantation.

CKD is considered a risk factor for the development of cardiovascular disease (CVD) because 
patients with CKD are more likely to die of CVD than to develop kidney failure [4, 5]. Primary 
types of CVDs with a high prevalence in CKD are arterial vascular disease in its two subtypes: 
atherosclerosis and arteriosclerosis, and cardiomyopathy. Clinical presentations of athero-
sclerosis include IHD, manifested as angina, myocardial infarction and sudden cardiac death, 
which is common in CKD, cerebrovascular disease, peripheral vascular disease and heart fail-
ure [5]. Patients with ESRD requiring maintenance hemodialysis (HD) have a high mortality 
rate, which is primarily attributable to CVD, including ventricular arrhythmias and sudden 
death, and the incidence of arrhythmias increases during and immediately after HD [6, 7].

Therefore, the use and development of noninvasive techniques such as electrocardiography, 
which records the electrical activity generated by the muscles of the heart in the surface of the 
body, open a useful perspective for diagnosis and treatment in patients with heart diseases 
such as ischemia and infarction. The electrocardiogram (ECG) is the waveform produced by 
this electrical activity of the heart and its generation depends on four electrophysiological 
processes such as the formation of electrical impulse in the main heart pacemaker (sinoatrial 
node), the transmission of this impulse through specialized fibers in the conduction, the acti-
vation (depolarization) and the recovery (repolarization) of the myocardium [8].

The electrical activity generated by the heart can be modeled as a vector whose magnitude 
and direction change throughout the cardiac cycle. To record the different projections of 
this vector, several electrodes are attached to the body in different locations known as leads. 
Because each lead measures the ECG between two points from different directions, ampli-
tudes, polarities, times and durations of the ECG components vary between leads, so these 
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have been standardized. The lead system most accepted in clinical practice is the standard 
12-lead system, that is, the combination of the bipolar limb leads I, II and III, the augmented 
unipolar limb leads aVR, aVL and aVF and the six unipolar precordial leads V1–V6. Limb 
leads (I, II, III) derive signals from the left arm (LA), the right arm (RA) and the left leg (LL). 
The right leg (RL) electrode is the common reference in the amplifier [8].

In Figure 1, waves and intervals of interest of the ECG are shown. The P, QRS and T waves 
reflect the rhythmic electrical depolarization and repolarization of the myocardium associ-
ated with the contractions of the atria and ventricles. The P wave represents depolarization of 
the atrial musculature. The QRS complex is the combined result of the repolarization of the 
atria and the depolarization of the ventricles, which occur almost simultaneously. The T wave 
represents repolarization of the ventricles.

Time intervals like RR and QT are important in electrocardiographic diagnosis because they 
reflect electrophysiological processes of heart and autonomic nervous system (ANS) and 
carry clinical implications when they lie outside the range of the normal variation. The RR 
interval measured from the R wave peak to the peak of the next consecutive R wave is the 
interval between consecutive heart beats, and it determines the heart rate (HR). The QT inter-
val measured from the Q wave onset to the T wave end reflects the total period of ventricular 
depolarization and repolarization, and it is used in clinical electrocardiology to quantify the 
duration of ventricular repolarization [9].

Prolongation of the QT interval is recognized as an indicator of an increased risk of malignant 
ventricular arrhythmias and/or sudden cardiac death in various clinical conditions such as 
myocardial infarction or ischemia, electrolyte or metabolic imbalance or the action of various 
drugs [9, 10]. Also, QT interval has an interlead space variability, which led to the hypothesis 
that the differences between electrocardiographic leads might reflect regional differences in 
repolarization. Based on experimental and clinical electrophysiological studies which sup-
ported the evidence that increased heterogeneity of repolarization may be responsible for 

Figure 1. Waves and intervals of interest of the ECG.
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generation of malignant ventricular arrhythmias, the interlead variation of QT interval dura-
tion was proposed as an index of arrhythmia susceptibility [10]. This measure was termed QT 
dispersion (QTd), and it was defined as the difference between the maximum and minimum 
QT interval on the standard 12-lead ECG [11].

Increased QTd has been associated with an increased risk for ventricular arrhythmias and 
sudden death in the general population and in various clinical conditions, among them, CKD 
is common. Several studies have reported that QTd increased in patients with ESRD, particu-
larly after the end of HD [6, 12], so that it may be useful to identify patients at high risk for 
overall and cardiovascular mortality [13]. However, this index is affected by: an inaccurate 
measurement of the QT interval because of different definitions for the T wave end (with and 
without fusion with U or P waves), influence of HR, no simultaneous ECG leads recordings 
and number of ECG leads and of the ECG lead system used [14].

As beat-by-beat manual measurement of QTd on three orthogonal ECG leads is imprac-
tical in routine clinical practice, the development of accurate and robust methods for 
automatic detection of characteristic points of QRS and T waves is important in electro-
cardiographic diagnosis, in particular for the analysis of long recordings [15]. Wavelet 
transform is a suitable tool that has been used to determine peaks and limits of ECG 
waves because of its ability to detect transients and of its robustness in front of noise and 
artifacts [16–18]. This chapter presents the development of an algorithm based on the 
continuous wavelet transform (CWT) with splines for the automatic measurement of QTd 
in the quasi-orthogonal leads DI, aVF and V2, and its application for the analysis of QTd 
in patients with CKD.

2. Wavelet transform

Wavelet transforms at different scales describe the time characteristics of a signal in differ-
ent frequency bands, but the analysis is restricted to scales that are powers of two [19]. The 
use of B-splines as base functions permits the evaluation of the CWT in any integer scale 
[20], which enables to use a wider range of scales and to reduce noise and artifacts more 
efficiently. This feature can allow the direct application of the algorithm over the raw ECG 
signal without any preprocessing stage because frequency filtering is performed when the 
CWT is computed.

The CWT of a time-continuous signal  x (t)   is defined as:

  CWT {x (t) ; a, b}  =   1 __  √ 
__

 a       ∫ 
−∞

  
∞
   x (t)   ψ   ∗  (  t − b ___ a  ) dt  (1)

where   ψ   ∗  (t)   is the complex conjugate of the analyzing wavelet function  ψ (t)  , and  a  and  b  are the 
scale and translation parameters, respectively. The function  ψ (t)   compresses or dilates depend-
ing on  a , which enables the CWT to extract the low- and high-frequency components of  x (t)  .  
To implement the CWT,  a  and  b  are usually discretized. If  a  is discretized over a sequence 
  2   j  (j = 1, 2, …) ,  the analysis is restricted to scales that are powers of two, and the result is the 
dyadic wavelet transform that can be computed with Mallat’s algorithm [19].
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In this chapter, B-splines have been used which allow the evaluation of the CWT in any inte-
ger scale [20]. In this formulation, the input signal  x (t)   and the analyzing wavelet  ψ (t)   are both 
polynomial splines of degree   n  

1
    and   n  

2
   , respectively. The splines considered are constructed 

from polynomial segments of degree  n  of unit length that are smoothly connected together at 
joining points called knots in such a way that guarantees the continuity of the function and its 
derivatives up to order (n−1) [21]

Assuming that the input signal  x (t)   is characterized in terms of its B-spline expansion of degree   
n  

1
    and the sequence of B-spline coefficients  c (k)  

  x (t)  =  ∑ k∈Z     c (k)   β    n  1    (t − k)   (2)

Likewise, the wavelet  ψ (t)   is a spline of degree   n  
2
    with its B-spline expansion

  ψ (t)  =  ∑ k∈Z     p (k)   β    n  2    (t − k)   (3)

B-splines satisfy a two-scale equation for any integer  m , where  m  is not restricted to a power of 
two; thus, the wavelet expanded by a factor  m  can be expressed as:

  ψ ( t ⁄ m )  =  ∑ k∈Z     (  [p]    ↑  m   ∗  u  m   n  2   )  (k)   β    n  2    (t − k)   (4)

where the sequence   u  
m
   n  
2
    (k)  , when   n  

2
    and  m  are not both even, is given by z transform,

   u  m   n  2    (z)  =    z    k  0    ___  m    n  2        (  ∑ 
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m−1
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 n  2  +1

   (5)

with

   k  0   =  ( n  2   + 1)  (m − 1)  / 2  (6)

Therefore, the resulting CWT at scale  m  evaluated at integer time samples is a polynomial 
spline function given by:

  CWT {x (t) , m, k}  =  ( [p]    ↑    m   ∗  u  m   n  2    ∗  b    n  1  + n  2  +1  ∗ c)  (k)   (7)

where the notation   ( [p]    ↑    
m
   ∗  u  

m
   n  
2
   )   represents the upsampling of the sequence  p  by a factor of  m , 

the filter   u  
m
   n  
2
     is equivalent to a cascade of   ( n  

2
   + 1)   filters of moving average of order   (m − 1)   with an 

offset   k  
0
    that ensures its symmetry,   b    n  

1
  + n  

2
  +1   is the B-spline representation of a spline of order   n  

1
   +  

n  
2
   + 1  and  c   (k)    ′  s  are the B-spline coefficients.

The program  w = spwav  (x, m, p,  n  
2
  ,  n  

1
  )   developed by Arregui (written in MATLAB®, The MathWorks  

Inc.) [22] calculates the CWT of the discrete signal  x (t)   at the integer scale  m  of the cubic spline 
wavelet (   n  

2
   = 3 )     with expansion coefficients spline  p , where  x (t)   is considered a spline of order   

n  
1
   = 1 . Implementation of the program  spwav  is based on the fast algorithm proposed by Unser 

et al. [20], which is done in the following three steps:
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1. Initialization: calculus of the B-spline coefficients  c (k)   that interpolate the signal  x (t)   and the 
convolution with the B-spline of order   n  

2
   .

2. Iterated moving sum: calculus of the scalar products of the signal  x (t)   with the B-splines of 
order   n  

2
    dilated by a factor  m  and divided by the root of  m .

3. Zero-padded filter: filtering with the expansion coefficients, spline of the basis wavelet  p  
upsampling (with zeros) by a factor of  m  to obtain wavelet coefficients.

The selected wavelet function  ψ (t)   is the first derivative of a fourth-order cubic B-spline 
expanded by two, which leads to the sequence  p =  (− 1, − 4, − 5, 0, 5, 4, 1)   given in Table 1 of [20]. 
This wavelet is similar to the first derivative of a Gaussian function so that it yields good time 
and frequency resolution (Figure 2).

The Fourier transform of the wavelet at five scales (e = 1, 2, 3, 8 and 10) at a sampling fre-
quency of 500 Hz is shown in Figure 3, and their −3 db bandwidths are listed in Table 1.

In Table 2, the −3 dB bandwidths of the Fourier transform of the wavelet at four scales for 
the sampling rates of 250–1000 Hz are listed, which correspond to three ECG databases used 
in this study. MIT-BIH Arrhythmia database (MITDB) [23], QT database (QTDB) [24] and 
CSE multilead measurement database (CSEDB) [25] used for the validation of the algorithm 
have sampling rates of 360, 250 and 500 Hz, respectively. The PTB Diagnostic ECG Database 
(PTBDB) [26, 27] and the E-HOL-12-0051-016 database of the Telemetric and Holter ECG 
Warehouse of the University of Rochester (THEWDB) [28] used for the application have a 
sampling rate of 1000 Hz.

Figure 4 shows the relation between the characteristic points of ECG and its CWT at four 
scales. Because of the form of the wavelet function selected, each distinct wave of the ECG cor-
responds to a pair of local maxima of the modulus (Pmm) of the CTW at each different scale 
with a zero crossing between them that corresponds to its peak. The rising slope of each wave 

Figure 2. First derivate of a fourth-order B-spline expanded by a factor of two.
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yields a minimum and the falling slope yields a maximum [16]. According to the spectrum of 
the ECG waves [29], most of the energy of the ECG signal lies within the scales 2–10 (Figure 3). 
P and T waves have their major component at scales 8 and 10, but higher scales can be affected 

Figure 3. Amplitude-frequency responses of equivalent filters at five scales for 500 Hz sampling rate.

Scale (e) – 3 dB bandwidth (Hz)

1 56–186

2 30–97

3 19–64

8 7–24

10 6–19

Table 1. Frequency response of equivalent filters at five scales for 500 Hz sampling rate.

Name Sampling frequency

250 Hz 1000 Hz

Scale −3 dB bandwidth (Hz) Scale −3 dB bandwidth (Hz)

w1 1 29–95 2 59–194

w2 2 16–49 5 25–79

w3 5 7–20 8 16–49

w4 10 4–11 20 7–20

Table 2. Frequency response of equivalent filters at four scales for sampling rates of 250 and 1000 Hz.
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This wavelet is similar to the first derivative of a Gaussian function so that it yields good time 
and frequency resolution (Figure 2).

The Fourier transform of the wavelet at five scales (e = 1, 2, 3, 8 and 10) at a sampling fre-
quency of 500 Hz is shown in Figure 3, and their −3 db bandwidths are listed in Table 1.

In Table 2, the −3 dB bandwidths of the Fourier transform of the wavelet at four scales for 
the sampling rates of 250–1000 Hz are listed, which correspond to three ECG databases used 
in this study. MIT-BIH Arrhythmia database (MITDB) [23], QT database (QTDB) [24] and 
CSE multilead measurement database (CSEDB) [25] used for the validation of the algorithm 
have sampling rates of 360, 250 and 500 Hz, respectively. The PTB Diagnostic ECG Database 
(PTBDB) [26, 27] and the E-HOL-12-0051-016 database of the Telemetric and Holter ECG 
Warehouse of the University of Rochester (THEWDB) [28] used for the application have a 
sampling rate of 1000 Hz.

Figure 4 shows the relation between the characteristic points of ECG and its CWT at four 
scales. Because of the form of the wavelet function selected, each distinct wave of the ECG cor-
responds to a pair of local maxima of the modulus (Pmm) of the CTW at each different scale 
with a zero crossing between them that corresponds to its peak. The rising slope of each wave 

Figure 2. First derivate of a fourth-order B-spline expanded by a factor of two.
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yields a minimum and the falling slope yields a maximum [16]. According to the spectrum of 
the ECG waves [29], most of the energy of the ECG signal lies within the scales 2–10 (Figure 3). 
P and T waves have their major component at scales 8 and 10, but higher scales can be affected 

Figure 3. Amplitude-frequency responses of equivalent filters at five scales for 500 Hz sampling rate.

Scale (e) – 3 dB bandwidth (Hz)

1 56–186

2 30–97

3 19–64

8 7–24

10 6–19

Table 1. Frequency response of equivalent filters at five scales for 500 Hz sampling rate.

Name Sampling frequency

250 Hz 1000 Hz

Scale −3 dB bandwidth (Hz) Scale −3 dB bandwidth (Hz)

w1 1 29–95 2 59–194

w2 2 16–49 5 25–79

w3 5 7–20 8 16–49

w4 10 4–11 20 7–20

Table 2. Frequency response of equivalent filters at four scales for sampling rates of 250 and 1000 Hz.
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by baseline wandering. If the ECG is contaminated with high-frequency noise, scales 2 and 3 
are the most affected.

3. Description of the algorithm

The algorithm for automatic measurement of QTd in the quasi-orthogonal leads DI, aVF and 
V2 is based on the multilead generalization of a previous algorithm for single-lead detection 
of characteristic points of the QRS complex and T wave using the CWT with splines [18]. This 
new algorithm for multilead detection includes the identification of more types of morpholo-
gies of QRS complex and T waves [30], which are integrated with the previous algorithm 
for single-lead detection. Figure 5 shows the algorithm proposed which is organized in four 
modules. In the first module, different kinds of QRS complexes and T-waves are detected and 
identified. In the second module, the algorithm detects the Q wave onset, R wave peak and 
T wave end, which is based on an algorithm for single-lead detection previously mentioned 
[18]. Next, the algorithm measures the QT and RR intervals from detections of significant 
points in each quasi-orthogonal lead. Finally, the algorithm calculates QTd as the difference in 
duration between the longest and shortest QT intervals measured on the three quasi-orthog-
onal leads and HR.

3.1. Detection of different kinds of QRS complex and T wave

As a first step in this stage, polarity of QRS complex and T wave is identified. QRS complex 
corresponds to a Pmm of the CTW and the scale used is w2, where it has its major component. 
Then, the highest positive peak (Wpq) and its nearest negative peak backwards (Wnq) are 
searched within the first 2 s of the record in order to define the position of these peaks. If Wnq 
position is before the Wpq position, then the type complex is qRs, which is defined as positive 

Figure 4. ECG and its CWT at scales 2, 3, 8 and 10.
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QRS. If Wnq position is after the Wpq position, then the type complex is rS, which is defined 
as negative QRS (Figure 6). Flowchart of polarity detection of the QRS complex is shown in 
Figure 2 of [30].

To determine the type of QRS complex once its polarity is defined, two algorithms are applied 
depending if QRS complex is positive or negative. The algorithm to determine the type of QRS 
complex with positive polarity when R is higher, it defines if Q or S wave is present as follows. 
From the onset of the Pmm corresponding to the R wave at scale w2, Q wave is present if the 
nearest positive peak backwards is larger than a defined positive threshold. From the end 
of this Pmm, S wave is present if the nearest negative peak forward is lower than a defined 
negative threshold. These peaks are detected by looking inside a search window defined by 
the maximal duration of both waves. This algorithm detects and identifies the morphologies 
qR, qRs, R and Rs (Figure 7). Flowchart of the QRS complex type detection when R is higher 
is shown in Figure 5 of [30].

Figure 5. Flowchart of the algorithm for automatic measurement of QTd in the leads DI, aVF and V2.
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QRS. If Wnq position is after the Wpq position, then the type complex is rS, which is defined 
as negative QRS (Figure 6). Flowchart of polarity detection of the QRS complex is shown in 
Figure 2 of [30].

To determine the type of QRS complex once its polarity is defined, two algorithms are applied 
depending if QRS complex is positive or negative. The algorithm to determine the type of QRS 
complex with positive polarity when R is higher, it defines if Q or S wave is present as follows. 
From the onset of the Pmm corresponding to the R wave at scale w2, Q wave is present if the 
nearest positive peak backwards is larger than a defined positive threshold. From the end 
of this Pmm, S wave is present if the nearest negative peak forward is lower than a defined 
negative threshold. These peaks are detected by looking inside a search window defined by 
the maximal duration of both waves. This algorithm detects and identifies the morphologies 
qR, qRs, R and Rs (Figure 7). Flowchart of the QRS complex type detection when R is higher 
is shown in Figure 5 of [30].
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The algorithm to determine the QRS complex with negative polarity when S is higher, it defines 
if Q or R wave is present as follows. From the onset of the Pmm corresponding to the S wave 
at scale w2, R wave is present if the nearest negative peak backwards is lower than a defined 
negative threshold. From this point, Q wave is present if the nearest positive peak backwards 
is larger than a defined positive threshold. These peaks are detected by looking inside a search 
window defined by the maximal duration of both waves. This algorithm detects and identifies 
the morphologies qrS, rS and QS. Figure 8 shows rS complex type and its CWT at scale w2. 
Flowchart of the QRS complex type detection when S is higher is shown in Figure 6 of [30].

Identification of polarity and type of T wave is performed with two algorithms. The first one 
classifies T wave into only two types: positive and negative (although it is biphasic, ascend-
ing or descending) as follows. As T wave corresponds to a Pmm of the CWT and only in this 
procedure, the scale used is w4 to enhance its characteristics. The highest positive peak (Wpt) 
and its nearest negative peak backwards (Wnt) larger than a defined threshold are searched 
from the end of the Pmm corresponding to R or S wave in a window whose limits depend 
on HR [31]. If Wnt position is before the Wpt position, then the T wave is positive or normal 
(Figure 9a). If Wnt position is after the Wpt position, then the T wave is inverted or negative. 
Flowchart of polarity detection of the T wave is shown in Figure 3 of [30].

The second algorithm to determine the type of T wave is applied after, once the R or 
S wave position is defined by the algorithm for single detection of characteristic points 

Figure 6. Polarity of QRS complexes and their CWT at scale w2. (a) Positive and (b) negative.
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described later [18], and before the T wave detection. To identify T waves, the same pro-
cedure used for detecting of Wpt and Wnt of Pmm of T wave described earlier is used. 
According to the comparison of the absolute values of these peaks with defined thresholds 
and its position, the algorithm classifies five types of T waves: positive, negative, ascend-
ing, descending and biphasic (Figure 9b). Flowchart of the T wave type detection is shown 
in Figure 4 of [30].

Figure 7. Complex types and their CWT at scale w2. (a). qRs and (b) R.

Figure 8. rS complex type and its CWT at scale w2.
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described later [18], and before the T wave detection. To identify T waves, the same pro-
cedure used for detecting of Wpt and Wnt of Pmm of T wave described earlier is used. 
According to the comparison of the absolute values of these peaks with defined thresholds 
and its position, the algorithm classifies five types of T waves: positive, negative, ascend-
ing, descending and biphasic (Figure 9b). Flowchart of the T wave type detection is shown 
in Figure 4 of [30].
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Figure 9. T wave types and their CWT at scale w4. (a). Positive and (b) biphasic.

Figure 10. Onset, peak and end of the QRS complex and its CWT at scale w2.
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3.2. Detection of characteristic points of QRS complex and T wave

3.2.1. QRS detection

QRS complex is the most characteristic waveform in the ECG due to its shape with high 
amplitude, which makes its detection easier than other ECG waves. Its accurate detection 
in the presence of noise and interferences is the most important task in the ECG automatic 
analysis because it is used as a reference in the cardiac cycle to perform a more detailed 
analysis of other ECG waves, segments and intervals, as automated measurement of HR and 
QT interval.

Figure 11. Flowchart of the Rp detection algorithm.
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Figure 12. Flowchart of the Qi (Ri) detection algorithm.

Figure 13. Peak and end of T waves and their CWT at scale w3. (a) Positive and (b) biphasic.
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According to the wavelet function selected, QRS complex corresponds to a Pmm of the CWT 
at selected scale, where the R wave peak (Rp) corresponds to the zero crossing observed 
between the Pmm (Figure 6). The developed algorithm [18] detects the QRS by using the 
scale w2 and the Pmm corresponding to the R wave by defined threshold comparing inside 
a search window defined by the average RR interval and the last RR interval calculated [31]. 
From that Pmm, the start of the Q wave defined as Qi (or the start of R wave (Ri) in the 
absence of Q wave) corresponds to the zero crossing preceding the Pmm; the end of the S 
wave defined as Se (or the end of the R wave in the absence of the S wave) corresponds to the 
zero crossing after the Pmm (Figure 10). Those zero crossings are detected by looking inside a 
search window defined by the maximal duration of both waves. Flowcharts of the Rp and Qi 
(Ri) detection algorithms are shown in Figures 11 and 12, respectively.

3.2.2. T wave detection

Because of the low-frequency components of T wave [29], scale w3 of the CWT was used for 
its detection. The process for detection of positive and negative T waves is as follows: from 
the end of the Pmm of the Rp, we define a search window whose length decreases when 
RR diminishes [31]; inside that window, we look for the Pmm corresponding to the T wave 
that exceeds a defined threshold. The end of this Pmm and the zero crossing between them, 
corresponds to, respectively, the end (Te) and the peak (Tp) of the T wave. Detection and 
identification of ascending, descending and biphasic types depend on the number, polarity 

Figure 14. Flowchart of the Tp and Te detection algorithm of T wave monophasic or biphasic.
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and absolute values of the found local maxima (Wpt) or minimum (Wnt). Figure 13 shows 
peak and end of the positive and biphasic T wave and their characteristic points of CWT at 
scale w3. Flowchart of the Tp and Te detection algorithm of T wave monophasic or biphasic 
is shown in Figure 14.

3.3. Measurement of QT and RR intervals and calculus of QTd and HR

Once Qi and Te have been detected, the algorithm measures the QT and RR interval points in 
each quasi-orthogonal lead. Finally, the algorithm calculates QTd as the difference in duration 
between the longest and the shortest QT intervals measured in the three quasi-orthogonal 
leads, in which each QT interval is the average of three consecutive QT intervals. HR is calcu-
lated from the average of RR intervals measured in the same leads, in which each RR interval 
is the average of two consecutive RR intervals.

4. Validation and results

4.1. QRS detection

The developed algorithm for QRS detection [18] has been first tested on eight 30 min 
recordings resampled to 500 Hz from the MITDB [23], in which only channel 1 of the 
two-channel ECG recordings was used. The selected recordings included serious noise 
bursts, baseline drifts and movement artifacts. Table 3 shows that QRS detector had 81 
false QRS detections of 17,095 beats (0.47%); 51 of them were false positives and 30 were 
false negatives.

ECG

record

number

Beats FP FN False detections

Beats %

100 2272 0 1 1 0.04

101 1864 0 1 1 0.05

102 2187 0 0 0 0

103 2084 0 0 0 0

104 2229 17 4 21 0.9

105 2571 31 13 44 1.71

107 2135 0 1 1 0.04

108 1753 3 10 13 0.7

Total 17,095 51 30 81 0.47

FP, false positives; FN, false negatives.

Table 3. Validation results for the QRS detection algorithm applied to eight records from the MITDB.
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4.2. Delineation of characteristic points of the QRS complex and T wave

The developed algorithm for delineation of Qi and Se of the QRS complex and Te of the T wave 
has been tested on 25 recordings from the CSE database [25], which includes 15 ECG leads 
and manual annotations on them. Table 4 shows the average (m) and  standard  deviation (sd) 

25 Recordings CSE

Mo1_001:121 (5:5)

Qi Se Te

WT – CSE WT – CSE WT – CSE

m ± sd – 4.5 ± 1.5 7.6 ± 1.8 8.2 ± 3.6

Tolerance limits for deviations according to experts [31]

sd (CSE) 6.5 11.6 30.6

Values are in ms; m, mean; sd, standard deviation.

Table 4. Validation results for delineation algorithm of characteristic points Qi, Se and Te on 25 annotated recordings of 
the CSEDB.

QT

database

Qi Te

WT – C1 WT – C1

sel100 15.4 −2.4

sel102 −5.3 22.8

sel103 11.9 20.5

sel104 4.1 −5.6

sel114 14.7 29.3

sel116 2.2 17.6

sel117 1.6 −13.8

sel123 2.9 −20.8

sel213 20.4 16.8

sel221 11.2 −16.3

sel223 −11.2 14.6

sel230 9.3 3.7

sel231 13.1 4.5

sel232 3.2 20.8

sel233 −5.8 13.2

m ± sd 5.8(8) 7(15)

Tolerance limits for deviations according to experts [31]

sd (CSE) 6.5 30.6

Values are in ms; m, mean; sd, standard deviation.

Table 5. Validation results of the delineation algorithm of characteristic points Qi and Te for 15 recordings from the 
QTDB in ms.
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and absolute values of the found local maxima (Wpt) or minimum (Wnt). Figure 13 shows 
peak and end of the positive and biphasic T wave and their characteristic points of CWT at 
scale w3. Flowchart of the Tp and Te detection algorithm of T wave monophasic or biphasic 
is shown in Figure 14.
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leads, in which each QT interval is the average of three consecutive QT intervals. HR is calcu-
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Table 3. Validation results for the QRS detection algorithm applied to eight records from the MITDB.
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of the difference between the (WT-based) automatic and the (CSE) manual (annotated) loca-
tion of those characteristic points. The results for that difference are within the tolerance limits 
accepted by the CSE experts, as shown in the last row of Table 4 [32].

Also, the algorithm has been tested on 15 recordings from MITDB included in the QTDB [24]. 
Within each record of two channels, between 30 and 100 representative beats were manually 
annotated by cardiologists, who identified among other characteristic points of ECG waves, 
Qi of the QRS-complex and Te of the T-wave. Channel 1 was used in most recordings, in 
case of ECG distorted, channel 2 was used. Table 5 shows the mean (m) and standard devia-
tion (sd) of the differences between the manual measurements (C1) and automatic measure-
ments (WT) of Qi and Te for each record. The results for the differences between WT and C1 
are within the tolerances for deviations with respect to the measurements made by the CSE 
experts, as shown in the last row of Table 5 [32].

Figure 15 shows some ECG excerpts of records with different T wave morphologies from 
QTDB with the manual annotations (square symbol) and the automatic detections (star sym-
bol). It can be seen that Qi and Te are well determined by the algorithm, and its accuracy is 
comparable to a manual measurement of human experts.

Figure 15. Automatic detections (star) and manual annotations (square) of Qi and Te with different types of morphologies 
of QRS complex and T wave in patterns of two beats of four records from QTDB. (a) rS positive T wave, (b) qRs biphasic 
T wave, (c) Rs biphasic T wave and (d) qR negative T wave.
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5. Application in chronic kidney disease

The QTd algorithm was applied in two studies. In the first study, QTd was evaluated in nor-
mal subjects and patients with CKD. In the second study, QTd was analyzed in patients with 
CKD before, during and after the HD treatment.

5.1. QTd analysis in normal subjects and patients with CKD

In this study, 14 ECG recordings belonging to the PTBDB were used [26, 27], where the three 
quasi-orthogonal leads DI, aVF and V2 have been analyzed to obtain QTd. This database 
includes records of healthy people and patients with different pathologies. The study group 
was of seven normal subjects (two women and five men, age 66 ± 3.6 years) and seven renal 
insufficiency patients (three women and four men, age 70 ± 4.5 years). QTd corresponding to 
both groups was compared by the Wilcoxon rank sum test, where p < 0.05 was considered 
statistically significant.

Table 6 shows QTd and HR in both groups. Difference in HR in both groups is not significant 
and therefore HR influence is similar in both groups [(67.7 ± 9) beats/min vs. (70.8 ± 12) beats/
min, p = 0.53]. QTd was significantly larger in patients with CKD than in normal subjects 
[(67.7 ± 28) ms vs. (21.4 ± 12), p = 0.0041]. The results obtained showed that the algorithm is 
effective to differentiate both groups.

5.2. QTd analysis in patients with CKD before, during and after hemodialysis

In this study, four ECG records of patients with CKD in the stage referred to as kidney failure 
or ESRD of the THEWDB [28], before (pre-HD), during and after (post-HD) HD session were 
used. For each patient, the three quasi-orthogonal leads DI, aVF and V2 have been analyzed 
to obtain QTd in a period of 10 h, in which pre-HD, HD and post-HD periods correspond to 
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patient248 17.6 63.9 patient079 74.6 62.37
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p 0.0041 0.53
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of the difference between the (WT-based) automatic and the (CSE) manual (annotated) loca-
tion of those characteristic points. The results for that difference are within the tolerance limits 
accepted by the CSE experts, as shown in the last row of Table 4 [32].
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comparable to a manual measurement of human experts.

Figure 15. Automatic detections (star) and manual annotations (square) of Qi and Te with different types of morphologies 
of QRS complex and T wave in patterns of two beats of four records from QTDB. (a) rS positive T wave, (b) qRs biphasic 
T wave, (c) Rs biphasic T wave and (d) qR negative T wave.
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the hours 1, 2–6 and 7–10, respectively. Figure 16 shows the dynamics of QTd averaged every 
15 min in a period of 10 h of the four CKD patients. It is observed that all the patients have an 
increase of QTd during HD and post-HD, which has been associated with malign ventricular 
arrhythmias and sudden death [6, 12].

6. Conclusion

This chapter presents and validates an algorithm based on the CWT with splines for the auto-
matic measurement of QTd in the ECG quasi-orthogonal leads DI, aVF and V2. This algorithm 
permits the evaluation of the CWT in any integer scale which enables to use a wider range 
of scales and therefore to reduce noise and artifacts. In addition, the filters implemented in 
the algorithm based on B-splines are iterated discrete convolutions of moving sums, so that 
it can be computed without any multiplication, which results in a very efficient algorithm. 
Some functions of wavelet toolbox of MATLAB® related with this algorithm are as follows: 
the spline for cubic spline data interpolation, cwt that implements the CWT and gauswavf that 
returns the first order derivate of the Gaussian wavelet.

Figure 16. Dynamics of QTd of four CKD patients averaged every 15 min in pre-HD, HD and post-HD periods. (a) 
Patient 1013, (b) Patient 1030, (c) Patient 1050 and (d) Patient 1059.
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This new algorithm is based on the multilead generalization of a previous algorithm for sin-
gle-lead detection of characteristic points of the QRS complex and T wave. It includes the 
identification of more types of morphologies of these waves, which are common in the analy-
sis of several ECG leads and heart diseases. To evaluate its performance, ECG recordings of 
standard annotated databases MIT-BIH, QTDB and CSEDB were used. The results showed 
that the developed algorithm provides a reliable and accurate QRS detection and delineation 
of Qi and Te, with standard deviation of the errors within the tolerance limits for variations 
with respect to the measurements made by different experts.

The QTd algorithm was applied in two studies. In the first one, QTd was evaluated as a discrimi-
nator of patients with CKD from normal subjects. The results showed that QTd was significantly 
larger in CKD patients than in normal subjects, which agrees with similar studies. In the second 
study, QTd was analyzed in four patients with CKD before, during and after the HD treatment. 
The results showed that all the patients have an increase of QTd during HD and post-HD, which 
has been associated with malign ventricular arrhythmias and sudden death in previous studies.

Future applications of this algorithm will focus on to evaluate dispersion in other ECG ven-
tricular activity intervals like JT (from S wave end to T wave end) and Tpe (from T wave 
peak to T wave end), in order to determine whether they improve the identification of CKD 
patients with risk of malign ventricular arrhythmias compared with QT dispersion.
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characterize the gate delay as a function of many parameters including process-voltage-
temperature parameters. Due to its ability of capturing essential nonlinearities and inter-
actions, MARSP method helps to achieve significant accuracy improvement.

Keywords: multivariate adaptive regression splines (MARSP), semiconductor 
microelectronics, standard cell characterization, very large scale integration (VLSI), 
variation-aware gate-delay modeling, statistical timing analysis

1. Introduction

Multivariate adaptive regression splines (MARSP) was first proposed by Friedman [1] for solv-
ing regression-type problems. MARSP is widely used to predict the values of an outcome 
variable from a set of predictor variables. There are many methods for model fitting, and 
MARSP is one of them. Other modeling techniques include linear regression (e.g., general 

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



[30] Corzo-Cuesta ML, Alvarado-Serrano C. An algorithm for QT dispersion analysis: 
Validation and application in chronic kidney disease. In: 13th International Conference 
on Electrical Engineering, Computing Science and Automatic Control (CCE); 26-30  
September 2016; Mexico City. Mexico: IEEE; 2016. pp. 1-6. DOI: 10.1109/ICEEE.2016. 
7751237

[31] Laguna P, Thakor NV, Caminal P, Jané R, Yoon HR, Bayés de Luna A, et al. New algo-
rithm for QT interval analysis in 24-hour Holter ECG: Performance and applications. 
Medical & Biological Engineering & Computing. 1990;28:67-73

[32] The CSE Working Party. Recommendations for measurement standards in quantitative 
electrocardiography. European Heart Journal. 1985;6:815-825

Topics in Splines and Applications46

Chapter 3

Multivariate Adaptive Regression Splines in Standard
Cell Characterization for Nanometer Technology in
Semiconductor

Taizhi Liu

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.74854

Provisional chapter

DOI: 10.5772/intechopen.74854

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons  
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,  
distribution, and reproduction in any medium, provided the original work is properly cited. 

Multivariate Adaptive Regression Splines in Standard 
Cell Characterization for Nanometer Technology in 
Semiconductor

Taizhi Liu

Additional information is available at the end of the chapter

Abstract

Multivariate adaptive regression splines (MARSP) is a nonparametric regression method. 
It is an adaptive procedure which does not have any predetermined regression model. 
With that said, the model structure of MARSP is constructed dynamically and adaptively 
according to the information derived from the data. Because of its ability to capture essen-
tial nonlinearities and interactions, MARSP is considered as a great fit for high-dimension 
problems. This chapter gives an application of MARSP in semiconductor field, more spe-
cifically, in standard cell characterization. The objective of standard cell characterization 
is to create a set of high-quality models of a standard cell library that accurately and 
efficiently capture cell behaviors. In this chapter, the MARSP method is employed to 
characterize the gate delay as a function of many parameters including process-voltage-
temperature parameters. Due to its ability of capturing essential nonlinearities and inter-
actions, MARSP method helps to achieve significant accuracy improvement.

Keywords: multivariate adaptive regression splines (MARSP), semiconductor 
microelectronics, standard cell characterization, very large scale integration (VLSI), 
variation-aware gate-delay modeling, statistical timing analysis

1. Introduction

Multivariate adaptive regression splines (MARSP) was first proposed by Friedman [1] for solv-
ing regression-type problems. MARSP is widely used to predict the values of an outcome 
variable from a set of predictor variables. There are many methods for model fitting, and 
MARSP is one of them. Other modeling techniques include linear regression (e.g., general 

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



 linear model), nonlinear regression (e.g., generalized linear/nonlinear models), and regression 
trees (e.g., classification and regression trees), and so on. It is also worth noting that a neural 
network, which is very popular nowadays in an era of artificial intelligence and machine learn-
ing, is also a modeling technique.

MARSP is a nonparametric regression procedure that makes no assumptions about the 
underlying functional relationships between dependent and independent variables. The form 
of MARSP and its coefficients are entirely derived from the regression data. The modeling 
strategy is called “divide and conquer,” by which the input space is partitioned into a num-
ber of regions, with each region having its own regression equation. This makes MARSP 
particularly efficient for high-dimension problems, where other techniques most likely have 
accuracy issues.

As the name suggests, MARSP uses splines as its main component. Splines are piecewise 
curves from polynomial functions. When different splines are smoothly connected, it can 
result in a flexible model which can handle both linear and nonlinear situations. The connec-
tion points between different pieces are called knots, which connect the end of one region of 
data and the beginning of another.

The MARSP technique has been particularly popular in data mining because it does not require 
or assume any particular type or any class of relationship (e.g., logistic, linear, etc.) between the 
outcome variable of interest and the predictor variables. Instead, MARSP derives useful models 
(i.e., models that yield accurate predictions) even in situations where the relationship between 
the predictor variable and the predictor variables is difficult to approximate with parametric 
models. If you are interested in more information about MARSP and how it compares to other 
methods for nonlinear regression (or regression trees), please refer to Chapter 9 of [2].

2. Standard cell characterization in very large scale integration 
(VLSI) design

In semiconductor design, standard cell methodology is a method that is widely used for very 
large scale integration (VLSI) design, especially for digital logic circuits. It is a design abstrac-
tion, where the low-level circuit layout can be encapsulated into many abstract logic represen-
tations (e.g., NOR2, NAND2 cells). As a cell-based methodology, it can enable one designer 
to focus on the high-level aspect (logical function) of a design, while another designer can 
work on the implementation aspect (physical layout). As semiconductor fabrication technol-
ogy progressed to sub-10 nm regime, standard cell methodology was the enabler to allow 
designers to scale application-specific integrated circuits (ASICs) from simple chips of several 
thousand cells, to complex chips with hundreds of millions of cells.

A standard cell provides a Boolean logic function (e.g., AND, OR) or a storage function (latch or 
flip-flop). A standard cell can be as simple as an inverter which consists of only two transistors. 
It can also be as complex as adders or multiplexers which have tens of transistors. As a standard 
cell is a logic gate, “cell” and “gate” are often interchangeable. Standard cell library is a collection 
of predefined cells which are usually fully customized to a specific technology and optimized 
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for best delay, power, area, and so on. The standard cell library provides a way for designers to 
place cells in rows, and it enables the automated layout generations for digital ASICs.

The objective of standard cell characterization is to create a set of high-quality models of a 
standard cell library that could accurately and efficiently model cell behavior. Cell behavior 
may come from a variety of parameters in different aspects like capacitance, power, timing, 
current, waveform, and so on. Among them, one of the most important models in standard 
cell characterization is timing delay models. In this chapter, for simplicity, we focus on the 
characterization of the pin-to-pin propagation delay of standard cells. Propagation delay is 
the time required for the input to be propagated to the output. In other words, it is defined as 
the time it takes for the effect change in input to be visible at the output. Propagation delay is 
important because it has a direct effect on the speed at which a digital device, such as a com-
puter, can operate. This is true of memory chips as well as microprocessors. As mentioned 
earlier that a gate and a cell are often interchangeable in this chapter, cell delay and gate delay 
are interchangeable as well.

Cell propagation delays change with many factors, including the following:

1. The transition time of the input causing transition at the output.

2. The output load being felt by the logic cell/gate.

3. The process parameters (threshold voltages, channel lengths) of the transistors that the cell 
is consisted of.

4. The power supply voltage (VDD).

5. The temperature (Although temperature is not a factor with significant impact, it is still an 
impacting factor).

Among the different factors above, the process parameters are included because of the emerg-
ingly pronounced effect called process variations, which is introduced in details in Section 
2.1.1. In the later sections, we use process-voltage-temperature (PVT) parameters to denote 
process parameters, VDD, and temperature.

2.1. Introduction (problem formation)

As mentioned above, one of the most important tasks in standard cell characterization is to 
find a model which can accurately capture the relationship between the cell propagation delay 
and the parameters that have impact on cell delay (as shown in the paragraph above). Here, 
the cell propagation delay is the response variable, and the impacting parameters (input tran-
sition time, output loads, VDD, and the process parameters) are the explanatory parameters.

We have not talked about the number of explanatory parameters yet. But as mentioned in 
Section 1, MARSP is suitable for the high-dimension problem while capturing essential non-
linearities and interactions. In the following subsections, we introduce the high-dimension 
parameter space when characterizing the delay models of standard cells, especially when the 
process variations and aging effect are included [3–7].
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2.2. Parameter space

2.2.1. Process variations

When integrated circuits are fabricated, the parameters of individual transistors vary. The 
observed random distribution of identically drawn devices is caused by the fabrication pro-
cess like impurity concentration densities, oxide thicknesses, and diffusion depths, and so 
on. These physical variations cause changes in the electrical characteristics of the transistors 
which eventually lead to the variability in the circuit performance. This is called process 
variation. Process variation is the naturally occurring variation in the attributes of transistors 
(length, widths, oxide thickness) during the chip fabrication. The scaling down of the VLSI 
process technologies has increased the process variations, especially in sub-45 nm era.

Process variations can be generally categorized into two classes: inter-die and intra-die varia-
tions. Inter-die variations occur from one die (chip) to another, meaning that the same transis-
tor in the design can get different features (channel lengths, threshold voltages, etc.) among 
different dies (chips). Intra-die variations are variations in transistor features within a chip, 
meaning that transistors at different locations on the same die can get different features. 
Spatial correlations are often seen for intra-die variations, meaning adjacent transistors have 
a higher probability of having similar features than transistors that are far apart. In this work, 
we consider not only inter-die and intra-die variations, but also the intra-gate variations. 
Intra-gate variations are part of intra-die variations, in some sense. It is the variations within 
a gate (cell), meaning that the transistors within the same gate can have different features. 
While most of the literature works ignored the intra-gate variations, our work has included 
it. As VLSI technology continues to scale down to sub-10 nm process, intra-die variations 
(including intra-gate variations) are becoming more and more dominant.

The overall objective of standard cell characterization is to characterize a cell-delay model 
which is general and able to include inter-die, intra-die, and intra-gate variations with any 
kind of distribution and any correlation profile between different parameters. In this work, 
only process variations of standard cells are considered, meaning the variations in intercon-
nect geometries are not considered.

2.2.2. Loading effect modeling (pi-model)

As technology scales down, the impact of interconnect on circuit timing cannot be neglected. 
In this work, we model interconnect as a resistive-capacitive (RC) network where all the 
capacitances are grounded.

A small patch of a gate-level circuit is illustrated in Figure 1(a), where a driving Buffer gate 
has two loading gates, a NOR2 gate and an inverter gate. Figure 1(b) replaces the two loading 
gates with corresponding input capacitances. The input capacitances of loading cells, together 
with the interconnect network, form the load of the previous driving cell. With loading gates 
modeled as corresponding input capacitances, circuit timing can be analyzed in the way that 
each stage contains a standard cell and its connecting load as Figure 1(b) shows. If the readers 
are interested in the input-capacitance modeling of the standard cells, they can refer to [8, 9] 
for more details.
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Reduced-order models are routinely used to replace the original large-order models. The 
Pi-model is the most popular reduced-order model to estimate the input admittance of RC 
interconnects. Figure 2 gives the structure of the Pi-model, where Y(s) denotes the input 
admittance of the original network and Y′(s) denotes the input admittance of the Pi-model. 
The values of   C  

1
   ,  R , and   C  

2
    are obtained by equating the first, second, and third moments of the 

Pi-model to corresponding moments of the original network.

In Pi-model, we use three parameters to represent the loading effect of the whole RC intercon-
nect. These three parameters C1, R, and C2, as well as the PVT parameters and input transition 
time, construct the parameter space for standard cell characterization which is introduced 
later in Section 3.

The shift in channel length (from the nominal value) is denoted as  ∆ L , and threshold voltage 
shift (from the nominal value) is denoted as  ∆ Vth . The supply voltage and temperature of a 
gate are denoted as  ∆ VDD  and  ∆ T , respectively, assuming that all the transistors within the 
same gate share the same voltage and temperature. The Pi-model which represents the load of 
a gate includes three parameters, namely   R  

pi
  ,  C  

pi1
  ,  C  

pi2
   . The input slew time (Slope) is also included 

for each timing arc. Note that in this work the effect of Multiple Input Switching (MIS) was 
not considered.

Figure 1. Input capacitances of the loading standard cells and the interconnect network formed the load of the previous 
driving gate. (a) A driving buffer and two loading cells (NOR2 and Inverter); (b) The driving buffer, with the input 
capacitances of the two loading cells incorporated into its load.

Figure 2. Y′(s) in Pi-model as an approximation of original input admittance function Y(s). (a) original interconnect 
(b) Pi-model.

Multivariate Adaptive Regression Splines in Standard Cell Characterization for Nanometer…
http://dx.doi.org/10.5772/intechopen.74854

51



2.2. Parameter space

2.2.1. Process variations

When integrated circuits are fabricated, the parameters of individual transistors vary. The 
observed random distribution of identically drawn devices is caused by the fabrication pro-
cess like impurity concentration densities, oxide thicknesses, and diffusion depths, and so 
on. These physical variations cause changes in the electrical characteristics of the transistors 
which eventually lead to the variability in the circuit performance. This is called process 
variation. Process variation is the naturally occurring variation in the attributes of transistors 
(length, widths, oxide thickness) during the chip fabrication. The scaling down of the VLSI 
process technologies has increased the process variations, especially in sub-45 nm era.

Process variations can be generally categorized into two classes: inter-die and intra-die varia-
tions. Inter-die variations occur from one die (chip) to another, meaning that the same transis-
tor in the design can get different features (channel lengths, threshold voltages, etc.) among 
different dies (chips). Intra-die variations are variations in transistor features within a chip, 
meaning that transistors at different locations on the same die can get different features. 
Spatial correlations are often seen for intra-die variations, meaning adjacent transistors have 
a higher probability of having similar features than transistors that are far apart. In this work, 
we consider not only inter-die and intra-die variations, but also the intra-gate variations. 
Intra-gate variations are part of intra-die variations, in some sense. It is the variations within 
a gate (cell), meaning that the transistors within the same gate can have different features. 
While most of the literature works ignored the intra-gate variations, our work has included 
it. As VLSI technology continues to scale down to sub-10 nm process, intra-die variations 
(including intra-gate variations) are becoming more and more dominant.

The overall objective of standard cell characterization is to characterize a cell-delay model 
which is general and able to include inter-die, intra-die, and intra-gate variations with any 
kind of distribution and any correlation profile between different parameters. In this work, 
only process variations of standard cells are considered, meaning the variations in intercon-
nect geometries are not considered.

2.2.2. Loading effect modeling (pi-model)

As technology scales down, the impact of interconnect on circuit timing cannot be neglected. 
In this work, we model interconnect as a resistive-capacitive (RC) network where all the 
capacitances are grounded.

A small patch of a gate-level circuit is illustrated in Figure 1(a), where a driving Buffer gate 
has two loading gates, a NOR2 gate and an inverter gate. Figure 1(b) replaces the two loading 
gates with corresponding input capacitances. The input capacitances of loading cells, together 
with the interconnect network, form the load of the previous driving cell. With loading gates 
modeled as corresponding input capacitances, circuit timing can be analyzed in the way that 
each stage contains a standard cell and its connecting load as Figure 1(b) shows. If the readers 
are interested in the input-capacitance modeling of the standard cells, they can refer to [8, 9] 
for more details.

Topics in Splines and Applications50

Reduced-order models are routinely used to replace the original large-order models. The 
Pi-model is the most popular reduced-order model to estimate the input admittance of RC 
interconnects. Figure 2 gives the structure of the Pi-model, where Y(s) denotes the input 
admittance of the original network and Y′(s) denotes the input admittance of the Pi-model. 
The values of   C  

1
   ,  R , and   C  

2
    are obtained by equating the first, second, and third moments of the 

Pi-model to corresponding moments of the original network.

In Pi-model, we use three parameters to represent the loading effect of the whole RC intercon-
nect. These three parameters C1, R, and C2, as well as the PVT parameters and input transition 
time, construct the parameter space for standard cell characterization which is introduced 
later in Section 3.

The shift in channel length (from the nominal value) is denoted as  ∆ L , and threshold voltage 
shift (from the nominal value) is denoted as  ∆ Vth . The supply voltage and temperature of a 
gate are denoted as  ∆ VDD  and  ∆ T , respectively, assuming that all the transistors within the 
same gate share the same voltage and temperature. The Pi-model which represents the load of 
a gate includes three parameters, namely   R  

pi
  ,  C  

pi1
  ,  C  

pi2
   . The input slew time (Slope) is also included 

for each timing arc. Note that in this work the effect of Multiple Input Switching (MIS) was 
not considered.

Figure 1. Input capacitances of the loading standard cells and the interconnect network formed the load of the previous 
driving gate. (a) A driving buffer and two loading cells (NOR2 and Inverter); (b) The driving buffer, with the input 
capacitances of the two loading cells incorporated into its load.

Figure 2. Y′(s) in Pi-model as an approximation of original input admittance function Y(s). (a) original interconnect 
(b) Pi-model.

Multivariate Adaptive Regression Splines in Standard Cell Characterization for Nanometer…
http://dx.doi.org/10.5772/intechopen.74854

51



For a cell which has N transistors, there are 2*N device parameters (i.e.,  ∆ L, ∆ Vth  for each tran-
sistor within the cell), and six global parameters ( ∆ VDD ,  ∆ T ,   R  

pi
  ,  C  

pi1
  ,  C  

pi2
  , Slope ). This results in a 

total of (2*N + 6) parameters for a cell with N transistors. In our experiments with a commer-
cial standard cell library, the highest value of N is 32, making the highest (2*N + 6) as 70, which 
results in a quite high-dimension parameter space for cell characterization.

At this point, we have not introduced the aging effect into the parameter space. If the char-
acterized delay models need to be aging-aware, the aging parameters should be included in 
the parameter space. With aging parameters included, the dimension of the parameter space 
would be even higher. We discuss it in the following subsection.

2.2.3. High-dimensional parameter space in aging-aware standard cell characterization

For timing analysis, transistor aging is another source of variability besides PVT variations 
[10, 11]. Our work has considered the following wear-out mechanisms: bias temperature insta-
bility (BTI), hot carrier injection (HCI), and time-dependent dielectric breakdown (TDDB). 
The impact of BTI and HCI is similar as they both cause the threshold voltage of aged transis-
tors to increase, which further decreases the driving strength and ultimately increases gate 
delay over time. TDDB degrades the drain current of the stressed devices which also results in 
increased gate delay. Overall, BTI, HCI, and TDDB ultimately cause the cell delay to increase 
over time. When the increased circuit delay exceeds the clock period, the degraded circuit 
will fail to work. Therefore, the aging effect needs to be taken into account in circuit timing 
simulations, especially for those high-reliability applications like aviation, space, automotive 
[12], medical [13–17], data center [18], and so on.

The variation of channel length and the variation of threshold voltage are denoted as  ∆ L  and  
∆ Vth , respectively. For channel length, the variation ( ∆ L ) comes from only process variation, 
while for transistor threshold voltage, the variation ( ∆ Vth ) comes from both process variation 
and aging effect (BTI and HCI).

  ∆ Vth = ∆  Vth  process   + ∆  Vth  BTI   + ∆  Vth  HCI    (1)

For the effect of TDDB, we need to include two additional parameters for each transistor within 
a gate, namely,   R  

G2S
    (gate-to-source resistance), and   R  

G2D
    (gate-to-drain resistance), because the 

gate-oxide breakdown paths can happen from gate-to-drain or from gate-to-source [19–22]. In 
summary, each transistor contributes four parameters ( ∆ Vth, ∆ L,  R  

G2D
  ,  R  

G2S
   ) as input parameters. 

Thus, for a cell with N transistors, there are 4*N parameters for  ∆ L, ∆ Vth,  R  
G2S

    and   R  
G2D

   , plus six 
global parameters ( ∆ VDD ,  ∆ T ,   R  

pi
  ,  C  

pi1
  ,  C  

pi2
  , Slope ), resulting in a total of (4*N + 6) parameters for 

each cell.

As the value of N is as high as 32 in our experiments with a commercial library, the value of 
(4*N + 6) can be as high as 134. Compared to 70, which is the value of (2*N + 6) for cell char-
acterization without aging effect, the dimension of parameter space in the aging-aware cell 
characterization has nearly doubled.
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2.2.4. Training data

We have obtained our training data from simulation program with integrated circuit emphasis 
(SPICE) simulations. A mixture of central composite design and random samples are used for the 
design of experiments. Table 1 shows the corners which are used for central composite design.

2.3. Why is multivariate adaptive regression splines (MARSP) better

Why is MARSP better than other methods in our application of standard cell characterization? 
Traditional methods like response surface methodology (RSM) use the same model to cover 
the entire parameter space. In our application where intra-gate variability is considered, the 
dimension of the parameter space is particularly high. When the number of input parameters 
is high, the parameter space is very high dimension. Using one single regression model to 
estimate gate delay (or slew time) over the whole parameter space is not sufficiently accurate, 
especially for a complex cell containing over 40 transistors. References [23, 24] proposed a 
clustering method which categorized transistors into switching/non-switching devices and 
on-transition/off-transition/non-transition devices. This method requires manual interven-
tion to ‘filter out’ the negligible devices for each of the switching scenarios, which is quite 
cumbersome. Using MARSP, it can reduce the manual work and automatically capture the 
essential parameters in its intelligent process.

3. MARSP for standard cell characterization

This chapter employs MARSP to characterize a fitted function between response variables 
(gate delay or slew time) and the explanatory parameters (process-voltage-temperature 
parameters, aging parameters, and RC loads). MARSP uses piecewise polynomial segments 
to capture essential nonlinearities and interactions, and it is particularly suitable for high-
dimension problems. This piecewise nature allows MARSP models to split the whole param-
eter space into multiple subspaces, and each subspace can have a unique regression model. 
By using hinge functions, MARSP then inherently integrates the regression models of all the 
subspaces into a single general form.

Var. Corners Var. Corners

ΔLp [−30%, 30%] ΔLn [−30%, 30%]

ΔVthp [−30%, 30%] ΔVthn [−30%, 30%]

ΔVdd [−10%, 10%] ΔT (°C) [−50,50]

Slope [10 ps, 3 ns]   C  pi2    (pF) [1100]

  R  pi    (Ohm) [1, 1000]   C  pi1    (pF) [0.1,10]

Table 1. Variations and corners of considered parameters.
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parameters, aging parameters, and RC loads). MARSP uses piecewise polynomial segments 
to capture essential nonlinearities and interactions, and it is particularly suitable for high-
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A hinge function has the form of    +
   (x − t)    or    +

   (t − x)    which are shown in Figure 3. They are defined 
as:

     
(x − t)   +   =  { 

x − t, ifx > t,
  

0, otherwise,
      

 
    (2)

     
(t − x)   +   =  { 

t − x, ifx < t,
  

0, otherwise,
      

 
    (3)

where t is a constant called the knot. MARSP forms a collection of hinge-function pairs for 
each explanatory parameter Xj with knots at   x  

j1
  ,  x  

j2
  , … ,  x  

jM
  ,  where M is the number of experiments.

MARSP models have the following form:

  f ( X 
→
  )  =  β  0   +  ∑ t=1  T     β  t    h  t   ( X 

→
  )   (4)

where   h  
t
   ( X 

→
  )   is a basis function. There are two phases in the process of constructing a MARSP 

model: the forward stepwise addition and the backward stepwise deletion.

The first phase is the forward stepwise addition, where MARSP starts with a model consist-
ing of an intercept term. It then repeatedly adds basis functions in pairs to the model step by 
step. At each step, MARSP finds the pair of basis functions which maximized the reduction in 
the residue sum-of-squares error. The two basis functions in the pair are identical except that 
the hinge functions used for each basis function are mirrored. The newly added basis func-
tion is constructed by a term that is already in the model (a constant 1 is also considered as 
an existing term) multiplied by a new hinge function. The process of forward addition phase 
continues until the residual error difference in two adjacent steps is smaller than a predefined 
threshold or until the number of terms in the model reaches the maximum.

The model from the forward addition phase usually overfits the data. If a model overfits, it 
means the model fits well to the training data that are used to build the model, but usually 
it does not fit to new test data. The second phase of MARSP, namely the backward stepwise 
deletion, is to build models that can generalize better to new data. Backward deletion phase 

Figure 3. The solid line denotes the form of the hinge function (x − t) + while the dashed line denotes the hinge function 
(t − x) + .
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prunes the model obtained from the previous forward addition phase. In this phase, the tech-
nique called generalized cross validation (GCV) is used to trade off goodness-of-fit against 
model complexity. The stepwise backward deletion phase repeatedly deletes the least impor-
tant term (according GCV) at each step until the model again has only the intercept term left. 
At the end of the backward deletion phase, from among the “best” models of each size at each 
step, the model with the lowest GCV value is selected, and it is outputted as the final model.

MARSP is a nonparametric regression method, so there are no predetermined forms of the 
model. Instead, the model is constructed adaptively according to the information extracted 
from the training data. It intelligently removes those negligible parameters that have limited 
impact on the to-be-modeled gate delays or output slew without manual intervention. Using 
MARSP for cell characterization can eliminate the need of clustering transistors into the cat-
egories of switching/non-switching devices and on-transition/off-transition/non-transition 
devices, as proposed in [23, 24].

The MARSP model is piecewise in nature, so MARSP can split the whole parameter space 
(which is high-dimension in our application) into multiple subspaces, with each subspace 
getting its own model. Then the regression models of all the subspaces are integrated into 
one general expression using piecewise hinge functions. In this way, MARSP can characterize 
standard cells only once over the whole PVT space, without the need of splitting parameter 
space and characterizing every subspace.

Figure 4 shows an example where the values of  h ( X  
1
  ,  X  

2
  )   change only when   X  

1
    is large and   X  

2
    is 

low. The nonlinear relationship can be easily handled by the following MARSP model:

  h ( X  1  ,  X  2  )  = 15 + 0.015 ∗   (20 − x)   +   ∗   (y − 20)   +    (5)

Figure 5 shows the quadratic regression model which has poor accuracy in this example.

Figure 4. A nonlinear function  h ( X  1  ,  X  2  )   which changes only when X1 is high and X2 is low. The MARSP model in (4) 
perfectly matches the original relationship.
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prunes the model obtained from the previous forward addition phase. In this phase, the tech-
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model complexity. The stepwise backward deletion phase repeatedly deletes the least impor-
tant term (according GCV) at each step until the model again has only the intercept term left. 
At the end of the backward deletion phase, from among the “best” models of each size at each 
step, the model with the lowest GCV value is selected, and it is outputted as the final model.

MARSP is a nonparametric regression method, so there are no predetermined forms of the 
model. Instead, the model is constructed adaptively according to the information extracted 
from the training data. It intelligently removes those negligible parameters that have limited 
impact on the to-be-modeled gate delays or output slew without manual intervention. Using 
MARSP for cell characterization can eliminate the need of clustering transistors into the cat-
egories of switching/non-switching devices and on-transition/off-transition/non-transition 
devices, as proposed in [23, 24].

The MARSP model is piecewise in nature, so MARSP can split the whole parameter space 
(which is high-dimension in our application) into multiple subspaces, with each subspace 
getting its own model. Then the regression models of all the subspaces are integrated into 
one general expression using piecewise hinge functions. In this way, MARSP can characterize 
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4. Experimental results

The characterization variables are delay and transition time. Cell delay is the delay from the 
50%-point at the cell input to the 50%-point at the cell output. Cell transition time is also 
called the output slew time, and it is the time between the 20%-point and the 80%-point at cell 
output (20–80% for rising transition and 80–20% for falling transition). The goal is to find a 
model that best fits the relationship between the gate delay (output slew) and the explanatory 
parameters.

In our work, MARSP is implemented using a Matlab toolbox called ARESLab [25]. Some key 
settings for ARESLab are as follows: the maximum degree of interactions between explana-
tory parameters is 3; the maximum number of basis functions is 30; the threshold for the stop-
ping criteria is set to 10−4. Please note that all the training data have been normalized.

A commercial library consisting of 247 standard cells was used, and every timing arc for every 
cell was characterized. The characterization results for some representative cells are shown 
in Table 2. The “4*N + 6” column in the table means the number of parameters in the MARSP 
model, and the “Time(s)” column means characterization time. The “Error” column (“Mean” 
and “S.D.”) means the average value and standard deviation of the errors between MARSP 
and golden reference (SPICE), respectively.

The interconnect characterization is similar to the gate although there are only five considered 
parameters in our work. The details of reduced-order model of interconnect transfer func-
tion is not covered in this chapter (Please refer to [8, 9] for more details). The interconnect 
results are also shown in the last row of Table 2. Interconnect variability (spacing, width) is 
not included in our experiments. It is also worth noting that our methodology can support a 
higher-order H′(s)-model which matches more moments of the original H(s) at the expense of 
adding more parameters to the MARSP models.

Figure 5. A quadratic model is regressed from  h ( X  1  ,  X  2  )   and it has poor accuracy compared to MARSP model.
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4.1. Validation using test paths

Our framework was implemented with C++ and Perl, and the experiments were run on a 
Linux platform with a 2.27 GHz CPU and 1GB memory without using multi-threading.

Our experiments are based on ISCAS85 benchmark circuits where temperature and supply 
voltage are considered as global parameters, meaning that all the transistors across the circuit 
have the same values of temperature and voltage. However, it is worth noting that our meth-
odology can support a temperature profile from a thermal simulator and a voltage profile 
from an IR-drop simulator. For process variation, as mentioned earlier, we have considered 
inter-die, intra-die, and intra-gate variations. For channel lengths, we have considered inter-
die and intra-die variation, and for threshold voltage, intra-gate variation is considered. This 
is because channel length is mostly impacted by lithography and etching which exhibit strong 
spatial correlations, while threshold voltage is strongly affected by random dopant fluctua-
tions. Again, please note that our methodology can work with any inter- and intra-die varia-
tion model and with any distributions and any correlation profiles.

We have shown our MARSP models are perfectly accurate individually. Here we construct 
a framework to integrate our models and then verify its accuracy using test paths. We refer 
to our framework as GTSSTA hereafter. Two thousand Monte Carlo samples were run for 10 
randomly selected test paths from ISCAS85 benchmark. As shown in the framework above, 
path delay is calculated for each sample. This obtained delay value is compared to the delay 
value from hSpice [26], using Eq. (6).

   Error   each  _sample  
   =   

 DELAY  GTSSTA   −  DELAY  SPICE  
  ____________________   DELAY  SPICE     × 100%  (6)

A quadratic delay model was also implemented and tested to give a comparison. The qua-
dratic first generates a quadratic regression model as follows:

  D =  d  0   + ∑  a  i    X  i   + ∑  b  i    X  i  2  +  ∑  i≠k    b  i,k    X  i    X  k  .  (7)

D denotes gate delay, Xi denotes the explanatory parameters, d0 denotes the constant term, 
and ai and bi denote coefficients of first-order and second-order terms, respectively.

Cell (4*N + 6) Time(s) Error

Mean (%) S.D. (%)

INVX1 14 861 0.41 2.54

NOR2X1 22 1281 0.23 2.67

CLKBUF3 134 6577 0.17 2.86

XOR2X1 54 3112 0.20 2.32

Interconnect 5 22 0.01 0.12

Table 2. MARSP characterization results on representative standard cells.
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Table 3 presents the results for our framework in comparison to hSpice using these 10 test paths. 
Figure 6 gives the histogram comparison of one of the paths between hSpice and GTSSTA. Results 
in Table 3 also show that quadratic model has limited accuracy for the 10 test paths.

4.2. Runtime analysis

Experimental results show our framework consumes only ~2% more runtime than quadratic 
delay model but achieves much better accuracy.

The quadratic delay model in Eq. (7) has a fixed number of operations, that is, 120 multiplica-
tions and 66 additions for a one-input gate and 224 multiplications and 120 additions for a 
two-input gate. The number of operations using MARSP models is not fixed, and it depends 
on which subspace the data sample falls into. Basically, calculating a MARSP model will have 
comparisons first and based on the comparison results, different equations (linear, quadratic 
etc.) are used for calculations. In average, the number of operations for the MARSP model is 
close to that of the quadratic delay model.

Path Circuit 
name

Primary 
input to 
primary 
output

Num. 
of 
stages

Num. of 
samples

Running Time (s) Path-delay 
error per 
sample 
(OurSSTA)

Path-delay error per 
sample (quadratic)

SPICE Our Quad. Mean 
(%)

SD 
(%)

Mean (%) SD (%)

1 c432 N102 to 
N421

60 2000 4211 198 192 3.21 1.21 −10.99 24.9

2 c499 N85 to 
N724

43 2000 2417 140 138 0.25 0.54 −13.95 26.6

3 c880 N1 to N878 57 2000 4148 189 185 −0.31 0.53 −14.10 25.4

4 c1355 G11 to 
G1352

42 2000 2412 143 144 3.54 1.49 −10.68 26.7

5 c1908 N19 to 
N2890

72 2000 5878 258 250 4.12 1.92 −10.76 26.9

6 c2670 N227 to 
N3851

54 2000 4001 184 180 2.90 1.16 −15.81 25.1

7 c3540 N33 to 
N5360

77 2000 6719 276 270 2.75 1.10 −5.94 27.5

8 c5315 N335 to 
N8128

71 2000 6454 255 251 2.53 1.55 −11.72 26.3

9 c6288 N290 to 
N6287

221 2000 19,898 704 698 4.29 1.50 −14.43 23.1

10 c7552 N18 to 
N11334

116 2000 9948 380 378 3.87 1.48 −10.23 25.8

avg. — — 81 2000 6608 273 268 2.72 1.25 −11.86 25.8

Table 3. Experimental results on 10 test paths for MARSP models and quadratic models (errors compared to golden 
SPICE results).
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5. Conclusion

This chapter talks about the technique called multivariate adaptive regression splines 
(MARSP). MARSP is a nonparametric regression without taking any pre-assumed form. 
Instead, it adaptively constructs the model according to the provided data. MARSP has been 
widely used in high-dimension problems and particularly popular in data mining.

This chapter also gives an application of MARSP in semiconductor field, more specifically, 
in standard cell characterization. The objective of standard cell characterization is to create a 
set of high-quality models of a standard cell library that accurately and efficiently model cell 
behavior. In this work, the MARSP method is employed to characterize the gate delay as a 
function of many parameters including process-voltage-temperature parameters. Due to its 
ability of capturing essential nonlinearities and interactions, MARSP method helps to achieve 
significant accuracy improvement.

Some future work that is worth investigating includes extending the aging-aware MARSP-
based timing analyzer to 3D integrated circuits (IC) to study the reliability of 3D ICs which 
tend to have reliability challenges due to the stronger heat issues. 3D ICs requires more 
sophisticated thermal models [27–29] and more complicated power-grid analysis [30]. As 
mentioned earlier, the methodology in this chapter is general to support other thermal and 
IR-drop models
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Abstract

Complex and massive datasets can be easily accessed using the newly developed data
acquisition technology. In spite of the fact that the smoothing spline ANOVAmodels have
proven to be useful in a variety of fields, these datasets impose the challenges on the
applications of the models. In this chapter, we present a selected review of the smoothing
spline ANOVA models and highlight some challenges and opportunities in massive
datasets. We review two approaches to significantly reduce the computational costs of
fitting the model. One real case study is used to illustrate the performance of the reviewed
methods.

Keywords: smoothing spline, smoothing spline ANOVA models, reproducing kernel
Hilbert space, penalized likelihood, basis sampling

1. Introduction

Among the nonparametric models, smoothing splines have been widely used in many real
applications. There has been a rich body of literature in smoothing splines such as the additive
smoothing spline [1–6], the interaction smoothing spline [7–10], and smoothing spline ANOVA
(SSANOVA) models [11–14].

In this chapter, we focus on studying the SSANOVAmodels. Suppose that the data yi; xi
� �

and
i ¼ 1, 2,…, n are independent and identically distributed (i.i.d.) copies of Y;Xð Þ, where
Y∈Y ⊂R is the response variable and X∈X ⊂Rd is the covariate variable. We consider the
regression model:
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yi ¼ η xið Þ þ ei, i ¼ 1, 2,…, n, (1)

where yi is the response, η is the nonparametric function varying in an infinite-dimensional

space, xi ¼ xi 1h i;…; xi dh i
� �T is on the domain X ⊂Rd, and ei �i:i:d:N 0; σ2

� �
. More general cases, in

which the conditional distribution of Y given x, denoted as Y∣x, which follows different
distributions instead of the Gaussian distribution, will be discussed later. The nonparametric
function η in (1) can be decomposed into

η xð Þ ¼ ηc þ
Xd

j¼1

ηj x jh i
� �þ

X
k<j

ηkj x kh i; x jh i
� �þ…

through the functional ANOVA, where ηc is a constant function, ηj is the main effect function

of x jh i, ηkj is the interaction effect of x kh i and x jh i, and so on.

In themodel (1), η can be estimated byminimizing the following penalized likelihood functional:

L ηð Þ þ λJ ηð Þ, (2)

where L ηð Þ is a log likelihood measuring the goodness of fit of η, J ηð Þ is a quadratic functional
on η to quantify its smoothness, and λ is the smoothing parameter balancing trade-offs
between the goodness of fit and the smoothness of η [11–13]. The computational complexity
of estimating η by minimizing (2) is of the order O n3

� �
for the sample of size n. Therefore, the

high computational costs render SSANOVA models impractical for massive datasets. In this
chapter, we review two methods to lower the computational costs. One approach is through
the adaptive basis selection algorithm [14]. By carefully sampling a smaller set of basic func-
tions conditional on the response variables, the adaptive sampling reduces the computational
costs to O nn∗2

� �
, where n∗ ≪ n is the number of the sampled basis functions. The computa-

tional costs can also be reduced by the rounding algorithm [15]. This algorithm can signifi-
cantly decrease the sample size to μ by rounding the data with a given precision, where μ≪ n.
After rounding, the computational costs can be dramatically reduced to O μ3

� �
.

The rest of the chapter is organized as follows. Section 2 provides a detailed introduction to
SSANOVA models and the model estimation. The details of adaptive basis selection algorithm
and rounding algorithm are reviewed in Section 3. In Appendix, we demonstrate the numer-
ical implementations using the R software.

2. Smoothing spline ANOVA models

In this section, we first review smoothing spline models and the reproducing kernel Hilbert
space. Second, we present how to decompose a nonparametric function on tensor product
domains, which lays the theoretical foundation for SSANOVAmodels. In the end, we show the
estimation of SSANOVA models and illustrate the model with a real data example.
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2.1. Introduction of smoothing spline models

In the model (1), η is located in an infinite-dimensional space. One way to estimate it is to add
some constraints and estimate η in a finite-dimensional space. With the smoothness constraint,
we estimate η by minimizing the penalized likelihood functional (2), and the minimizer of (2) is
called a smoothing spline.

Example 1. Cubic smoothing splines

Suppose that Y∣x follows a normal distribution, that is, Y∣xi � N η xið Þ; σ2� �
. Then, the penalized

likelihood functional (2) can be reduced as the penalized least squares:

1
n

Xn

i¼1

yi � η xið Þ� �2 þ λ
ð

X
€η xð Þð Þ2 dx, (3)

where €η ¼ d2η=dx2. The minimizer of (3) is called a cubic smoothing spline [16–18]. In (3), the first
term quantifies the fidelity to the data, and the second term controls the roughness of the function.

Example 2. Exponential family smoothing splines

Suppose that Y∣x follows an exponential family distribution:

Y∣xi � exp yη xið Þ � b η xið Þð Þð Þ=a ϕ
� �þ c y;ϕ

� �� �
,

where a > 0, b, and c are known functions and ϕ is either known or a nuisance parameter. Then, η can
be estimated by minimizing the following penalized likelihood functional [19, 20]:

� 1
n

Xn

i¼1

yiη xið Þ � b η xið Þð Þ� �þ λJ ηð Þ: (4)

Note that the cubic smoothing spline in Example 1 is a special case of exponential family smoothing
splines when Y∣x follows the Gaussian distribution.

The smoothing parameter λ is sensitive to the estimation of η (see Figure 1). Therefore, it is
crucial to implement some proper smoothing parameter selection methods to estimate λ. One
of the most popular methods is the generalized cross validation (GCV) [21, 22]. More details
will be discussed in Section 2.6.2.

2.2. Reproducing kernel Hilbert space

We assume that readers are familiar with Hilbert space, which is a complete vector space with
an inner product well defined that allows length and angle to be measured [23]. In a general
Hilbert space, the continuity of a functional, which is required in minimizing (2) on
H ¼ J ηð Þ < ∞f g, is not always satisfied. To circumvent the problem, we optimize (2) in a
special Hilbert space named reproducing kernel Hilbert space [24].
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yi ¼ η xið Þ þ ei, i ¼ 1, 2,…, n, (1)
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� �
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Xd

j¼1

ηj x jh i
� �þ

X
k<j

ηkj x kh i; x jh i
� �þ…
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of x jh i, ηkj is the interaction effect of x kh i and x jh i, and so on.
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� �
for the sample of size n. Therefore, the
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� �
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� �
.
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2. Smoothing spline ANOVA models

In this section, we first review smoothing spline models and the reproducing kernel Hilbert
space. Second, we present how to decompose a nonparametric function on tensor product
domains, which lays the theoretical foundation for SSANOVAmodels. In the end, we show the
estimation of SSANOVA models and illustrate the model with a real data example.

Topics in Splines and Applications64

2.1. Introduction of smoothing spline models

In the model (1), η is located in an infinite-dimensional space. One way to estimate it is to add
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we estimate η by minimizing the penalized likelihood functional (2), and the minimizer of (2) is
called a smoothing spline.
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. Then, the penalized

likelihood functional (2) can be reduced as the penalized least squares:

1
n

Xn

i¼1

yi � η xið Þ� �2 þ λ
ð

X
€η xð Þð Þ2 dx, (3)
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� �� �
,

where a > 0, b, and c are known functions and ϕ is either known or a nuisance parameter. Then, η can
be estimated by minimizing the following penalized likelihood functional [19, 20]:

� 1
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Xn

i¼1

yiη xið Þ � b η xið Þð Þ� �þ λJ ηð Þ: (4)

Note that the cubic smoothing spline in Example 1 is a special case of exponential family smoothing
splines when Y∣x follows the Gaussian distribution.

The smoothing parameter λ is sensitive to the estimation of η (see Figure 1). Therefore, it is
crucial to implement some proper smoothing parameter selection methods to estimate λ. One
of the most popular methods is the generalized cross validation (GCV) [21, 22]. More details
will be discussed in Section 2.6.2.

2.2. Reproducing kernel Hilbert space

We assume that readers are familiar with Hilbert space, which is a complete vector space with
an inner product well defined that allows length and angle to be measured [23]. In a general
Hilbert space, the continuity of a functional, which is required in minimizing (2) on
H ¼ J ηð Þ < ∞f g, is not always satisfied. To circumvent the problem, we optimize (2) in a
special Hilbert space named reproducing kernel Hilbert space [24].
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For each g∈H, there exists a corresponding continuous linear functional Lg such that
Lg fð Þ ¼ g; fh i, where f ∈H and �; �h i defines the inner product in H. Conversely, an element

gL ∈H can also be found such that gL; f
� � ¼ L fð Þ for any continuous linear functional L of H

[23]. This is known as the Riesz representation theorem.

Theorem 2.1. Riesz representation

Let H be a Hilbert space. For any functional L of H, there uniquely exists an element gL ∈H such that

L �ð Þ ¼ gL; �
� �

,

where gL is called the representer of L. The uniqueness is in the sense that g1 and g2 are considered as the
same representer for any g1 and g2 satisfying kg1 � g2k ¼ 0, where ∥ � ∥ ¼ �; �h i defines the norm inH.

For a better construction of estimator minimizing (2), one needs the continuity of evaluation
functional x½ �f ¼ f xð Þ. Roughly speaking, this means that if two functions f and g are close in

Figure 1. The data are generated by the model e. y ¼ 5þ e3x1 þ 106x112 1� x2ð Þ6 þ 104x22 1� x2ð Þ10 þ 5 cos 2π x1 � x2ð Þð Þ þe,
where e � N 0; 1ð Þ. Panels (a) and (b) show the data and the true function, respectively. The estimated functions depending
on different smoothing parameters are shown in panels (c), (d), and (e). We set λ ! 0 in panel (c) and λ ! ∞ in panel (e).
The proper λ selected by generalized cross validation (GCV) is used in panel (d).
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norm, that is, kf � gk is small, then f and g are also pointwise close, that is, ∣f xð Þ � g xð Þ∣ is small
for all x.

Definition 1. Reproducing kernel Hilbert space

Consider a Hilbert space H consisting of functions on domain X . For every element x∈X , define an
evaluation functional x½ � such that x½ �f ¼ f xð Þ. If all the evaluation functional x½ �s are continuous,
∀x∈X , then H is called a reproducing kernel Hilbert space.

By Theorem 2.1, for every evaluation functional x½ �, there exists a corresponding function
Rx ∈H on X as the representer of x½ �, such that Rx; fh i ¼ x½ �f ¼ f xð Þ and ∀f ∈H. By the defini-
tion of evaluation functional, it follows

Rx yð Þ ¼ Rx;Ry
� � ¼ Ry xð Þ: (5)

The bivariate function R x; yð Þ ¼ Rx;Ry
� �

is called the reproducing kernel ofH, which is unique
if it exists. The essential meaning of the name “reproducing kernel” comes from its
reproducing property

R x; �ð Þ; fh i ¼ Rx �ð Þ; fh i ¼ f xð Þ

for any f ∈H. In general, a reproducing kernel Hilbert space defines a reproducing kernel
function that is both symmetric and positive definite. In addition, Moore-Aronszajn theorem
states that every symmetric, positive definite kernel defines a unique reproducing kernel
Hilbert space [25], and hence one can construct a reproducing kernel Hilbert space simply by
specifying its reproducing kernel.

We now introduce the concept of tensor sum decomposition. Suppose thatH is a Hilbert space
and G is a linear subspace ofH. The linear subspace Gc ¼ f ∈H; f ; gh i ¼ 0; ∀g∈Gf g is called the
orthogonal complement of G. It is easy to verify that for any f ∈H, there exists a unique
decomposition f ¼ f G þ f Gc , where f G ∈G and f Gc ∈Gc. This decomposition is called a tensor
sum decomposition, denoted by H ¼ G⊕Gc. Suppose that H1 and H2 are two Hilbert spaces
with inner products �; �h i1 and �; �h i2. If the only common element of these two spaces is 0, one
can also define a tensor sum Hilbert space H ¼ H1 ⊕H2. For any f , g∈H, one has unique
decompositions f ¼ f 1 þ f 2 and g ¼ g1 þ g2, where f 1, g1 ∈H1 and f 2, g2 ∈H2. Moreover, the
inner product defined on H would be f ; gh i ¼ f 1; g1

� �
1 þ f 2; g2

� �
2. The following theorem pro-

vides the rules in the tensor sum decomposition of a reproducing kernel Hilbert space.

Theorem 2.2 Suppose that R1 and R2 are the reproducing kernel Hilbert spaces H1 and H2, respec-
tively. If H1 ∩H2 ¼ 0f g, then H ¼ H1 ⊕H2 has a reproducing kernel R ¼ R1 þ R2.

Conversely, if the reproducing kernel R of H can be decomposed into R ¼ R1 þ R2, where both R1 and
R2 are positive definite, and they are orthogonal to each other, that is, R1 x1; �ð Þ;R2 x2; �ð Þh i ¼ 0 for
∀x1, x2 ∈X , then the spaces H1 and H2 corresponding to the kernels R1 and R2 form a tensor sum
decomposition H ¼ H1 ⊕H2.
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For each g∈H, there exists a corresponding continuous linear functional Lg such that
Lg fð Þ ¼ g; fh i, where f ∈H and �; �h i defines the inner product in H. Conversely, an element

gL ∈H can also be found such that gL; f
� � ¼ L fð Þ for any continuous linear functional L of H

[23]. This is known as the Riesz representation theorem.

Theorem 2.1. Riesz representation

Let H be a Hilbert space. For any functional L of H, there uniquely exists an element gL ∈H such that

L �ð Þ ¼ gL; �
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,

where gL is called the representer of L. The uniqueness is in the sense that g1 and g2 are considered as the
same representer for any g1 and g2 satisfying kg1 � g2k ¼ 0, where ∥ � ∥ ¼ �; �h i defines the norm inH.

For a better construction of estimator minimizing (2), one needs the continuity of evaluation
functional x½ �f ¼ f xð Þ. Roughly speaking, this means that if two functions f and g are close in

Figure 1. The data are generated by the model e. y ¼ 5þ e3x1 þ 106x112 1� x2ð Þ6 þ 104x22 1� x2ð Þ10 þ 5 cos 2π x1 � x2ð Þð Þ þe,
where e � N 0; 1ð Þ. Panels (a) and (b) show the data and the true function, respectively. The estimated functions depending
on different smoothing parameters are shown in panels (c), (d), and (e). We set λ ! 0 in panel (c) and λ ! ∞ in panel (e).
The proper λ selected by generalized cross validation (GCV) is used in panel (d).
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norm, that is, kf � gk is small, then f and g are also pointwise close, that is, ∣f xð Þ � g xð Þ∣ is small
for all x.

Definition 1. Reproducing kernel Hilbert space

Consider a Hilbert space H consisting of functions on domain X . For every element x∈X , define an
evaluation functional x½ � such that x½ �f ¼ f xð Þ. If all the evaluation functional x½ �s are continuous,
∀x∈X , then H is called a reproducing kernel Hilbert space.

By Theorem 2.1, for every evaluation functional x½ �, there exists a corresponding function
Rx ∈H on X as the representer of x½ �, such that Rx; fh i ¼ x½ �f ¼ f xð Þ and ∀f ∈H. By the defini-
tion of evaluation functional, it follows

Rx yð Þ ¼ Rx;Ry
� � ¼ Ry xð Þ: (5)

The bivariate function R x; yð Þ ¼ Rx;Ry
� �

is called the reproducing kernel ofH, which is unique
if it exists. The essential meaning of the name “reproducing kernel” comes from its
reproducing property

R x; �ð Þ; fh i ¼ Rx �ð Þ; fh i ¼ f xð Þ

for any f ∈H. In general, a reproducing kernel Hilbert space defines a reproducing kernel
function that is both symmetric and positive definite. In addition, Moore-Aronszajn theorem
states that every symmetric, positive definite kernel defines a unique reproducing kernel
Hilbert space [25], and hence one can construct a reproducing kernel Hilbert space simply by
specifying its reproducing kernel.

We now introduce the concept of tensor sum decomposition. Suppose thatH is a Hilbert space
and G is a linear subspace ofH. The linear subspace Gc ¼ f ∈H; f ; gh i ¼ 0; ∀g∈Gf g is called the
orthogonal complement of G. It is easy to verify that for any f ∈H, there exists a unique
decomposition f ¼ f G þ f Gc , where f G ∈G and f Gc ∈Gc. This decomposition is called a tensor
sum decomposition, denoted by H ¼ G⊕Gc. Suppose that H1 and H2 are two Hilbert spaces
with inner products �; �h i1 and �; �h i2. If the only common element of these two spaces is 0, one
can also define a tensor sum Hilbert space H ¼ H1 ⊕H2. For any f , g∈H, one has unique
decompositions f ¼ f 1 þ f 2 and g ¼ g1 þ g2, where f 1, g1 ∈H1 and f 2, g2 ∈H2. Moreover, the
inner product defined on H would be f ; gh i ¼ f 1; g1

� �
1 þ f 2; g2

� �
2. The following theorem pro-

vides the rules in the tensor sum decomposition of a reproducing kernel Hilbert space.

Theorem 2.2 Suppose that R1 and R2 are the reproducing kernel Hilbert spaces H1 and H2, respec-
tively. If H1 ∩H2 ¼ 0f g, then H ¼ H1 ⊕H2 has a reproducing kernel R ¼ R1 þ R2.

Conversely, if the reproducing kernel R of H can be decomposed into R ¼ R1 þ R2, where both R1 and
R2 are positive definite, and they are orthogonal to each other, that is, R1 x1; �ð Þ;R2 x2; �ð Þh i ¼ 0 for
∀x1, x2 ∈X , then the spaces H1 and H2 corresponding to the kernels R1 and R2 form a tensor sum
decomposition H ¼ H1 ⊕H2.
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2.3. Representer theorem

In (2), the smoothness penalty term J ηð Þ ¼ J η; ηð Þ is nonnegative definite, that is, J η; ηð Þ ≥ 0, and
hence it is a squared semi-norm on the reproducing kernel Hilbert space H ¼ η : J ηð Þ < ∞f g.
Denote N J ¼ η∈H : J ηð Þ ¼ 0f g as the null space of J ηð Þ and HJ as its orthogonal complement.
By the tensor sum decomposition H ¼ N J ⊕HJ , one may decompose the η into two parts: one
in the null space N J that has no contribution on the smoothness penalty and the other in HJ

“reproduced” by the reproducing kernel R �; �ð Þ [12].

Theorem 2.3. There exist coefficient vectors d ¼ d1;…; dMð ÞT ∈RM and c ¼ c1;…; cnð ÞT ∈Rn such
that

η xð Þ ¼
XM

k¼1

dkξk xð Þ þ
Xn

i¼1

ciR xi; xð Þ, (6)

where ξk; k ¼ 1; ::;Mf g is the basis of null space N J and R �; �ð Þ is the reproducing kernel of HJ .

This theorem indicates that although the minimization problem is in an infinite-dimensional
space, the minimizer of (2) lies in a data-adaptive finite-dimensional space.

2.4. Function decomposition

The decomposition of a multivariate function is similar to the classical ANOVA. In this section,
we present the functional ANOVA which lays the foundation for SSANOVA models.

2.4.1. One-way ANOVA decomposition

We consider a classical one-way ANOVAmodel yij ¼ μi þ eij, where yij is the observed data, μi

is the treatment mean for i ¼ 1,…, K and j ¼ 1,…, J, and eijs are the random errors. The
treatment mean μi can be further decomposed as μi ¼ μþ αi, where μ is the overall mean and

αi is the treatment effect with the constraint
PK

i¼1 αi ¼ 0.

Similar to the classical ANOVA decomposition, a univariate function f xð Þ can be decomposed as

f ¼ Af þ I � Að Þf ¼ f c þ f x, (7)

where A is an averaging operator that averages the effect of x and I is an identity operator. The
operator A averages a function f to a constant function f c satisfying A I � Að Þ ¼ 0. For example,

one can take Af ¼ Ð 10 f xð Þdx in L1 0; 1½ � ¼ f :
Ð 1
0 jf xð Þjdx < ∞

n o
. In (7), f c ¼ Af is the mean

function, and f x ¼ I � Að Þf is the treatment effect.

2.4.2. Multiway ANOVA decomposition

On a d-dimensional product domain X ¼Qd
j¼1 X j ∈Rd, a multivariate function f x 1h i;…; x dh i

� �

can be decomposed similarly to the one-way ANOVA decomposition. Let Aj, j ¼ 1,…, d, be the
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average operator on X j, and then Ajf is a constant function on X j. One can define the ANOVA
decomposition on X as

f ¼
Yd

j¼1

I � Aj þ Aj
� �

8<
:

9=
;f

¼
X
S

Y
j∈S

I � Aj
� �Y

j∉S
Aj

8<
:

9=
;f ¼

X
S

f S ,

(8)

where S⊆ 1;…; df g. The term f c ¼
Qd

j¼1 Ajf is the constant function, f j ¼ I � Aj
� �Q

α 6¼jAαf is the

main effect term of x jh i, the term f μν ¼ I � Aμ
� �

I � Aνð ÞQα 6¼μ,νAαf is the interaction of x μh i and
x νh i, and so on.

2.5. Some examples of model conduction

Smoothing splines on C mð Þ 0; 1½ �. If we define

J ηð Þ ¼
ð1
0

η mð Þ
� �2

dx

in the space C mð Þ 0; 1½ � ¼ f : f mð Þ ∈L2 0; 1½ �
n o

, where f mð Þ denotes the mth differentiation of f ,

L2 ¼ f :
Ð 1
0 f xð Þð Þ2 dx < ∞

n o
, then the minimizer of (2) is called a polynomial smoothing spline.

Here, we use an inner product

f ; gh i ¼
Xm�1

ν¼0

ð1
0
f νð Þ xð Þdx

� � ð1
0
g νð Þ xð Þdx

� �
þ
ð1
0
f mð Þ xð Þg mð Þ xð Þdx: (9)

One can easily check that (9) is a well-defined inner product in C mð Þ 0; 1½ � with

H0 ¼ f : f mð Þ ¼ 0
n o

equipped with the inner product
Pm�1

ν¼0

Ð 1
0 f νð Þ xð Þdx

� � Ð 1
0 g νð Þ xð Þdx

� �
[21].

To construct the reproducing kernel, define

kν xð Þ ¼ �
X�1

μ¼�∞

þ
X∞
μ¼1

0
@

1
A exp 2πiμx

� �

2πiμ
� �ν , (10)

where i ¼ ffiffiffiffiffiffiffi�1
p

. One can verify that
Ð 1
0 k

μð Þ
ν xð Þdx ¼ δνμ and ν,μ ¼ 0, 1,…, m� 1, where δνμ is

the Kronecker delta [26]. Indeed, k0;…; km�1f g forms an orthonormal basis of H0. Then, the
reproducing kernel in H0 is

R0 x; yð Þ ¼
Xm�1

ν¼0

kν xð Þkν yð Þ:
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2.3. Representer theorem
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hence it is a squared semi-norm on the reproducing kernel Hilbert space H ¼ η : J ηð Þ < ∞f g.
Denote N J ¼ η∈H : J ηð Þ ¼ 0f g as the null space of J ηð Þ and HJ as its orthogonal complement.
By the tensor sum decomposition H ¼ N J ⊕HJ , one may decompose the η into two parts: one
in the null space N J that has no contribution on the smoothness penalty and the other in HJ

“reproduced” by the reproducing kernel R �; �ð Þ [12].

Theorem 2.3. There exist coefficient vectors d ¼ d1;…; dMð ÞT ∈RM and c ¼ c1;…; cnð ÞT ∈Rn such
that

η xð Þ ¼
XM

k¼1

dkξk xð Þ þ
Xn

i¼1

ciR xi; xð Þ, (6)

where ξk; k ¼ 1; ::;Mf g is the basis of null space N J and R �; �ð Þ is the reproducing kernel of HJ .

This theorem indicates that although the minimization problem is in an infinite-dimensional
space, the minimizer of (2) lies in a data-adaptive finite-dimensional space.

2.4. Function decomposition

The decomposition of a multivariate function is similar to the classical ANOVA. In this section,
we present the functional ANOVA which lays the foundation for SSANOVA models.

2.4.1. One-way ANOVA decomposition

We consider a classical one-way ANOVAmodel yij ¼ μi þ eij, where yij is the observed data, μi

is the treatment mean for i ¼ 1,…, K and j ¼ 1,…, J, and eijs are the random errors. The
treatment mean μi can be further decomposed as μi ¼ μþ αi, where μ is the overall mean and

αi is the treatment effect with the constraint
PK

i¼1 αi ¼ 0.

Similar to the classical ANOVA decomposition, a univariate function f xð Þ can be decomposed as

f ¼ Af þ I � Að Þf ¼ f c þ f x, (7)

where A is an averaging operator that averages the effect of x and I is an identity operator. The
operator A averages a function f to a constant function f c satisfying A I � Að Þ ¼ 0. For example,

one can take Af ¼ Ð 10 f xð Þdx in L1 0; 1½ � ¼ f :
Ð 1
0 jf xð Þjdx < ∞

n o
. In (7), f c ¼ Af is the mean

function, and f x ¼ I � Að Þf is the treatment effect.

2.4.2. Multiway ANOVA decomposition

On a d-dimensional product domain X ¼Qd
j¼1 X j ∈Rd, a multivariate function f x 1h i;…; x dh i

� �

can be decomposed similarly to the one-way ANOVA decomposition. Let Aj, j ¼ 1,…, d, be the
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average operator on X j, and then Ajf is a constant function on X j. One can define the ANOVA
decomposition on X as

f ¼
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j¼1

I � Aj þ Aj
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(8)

where S⊆ 1;…; df g. The term f c ¼
Qd

j¼1 Ajf is the constant function, f j ¼ I � Aj
� �Q

α 6¼jAαf is the

main effect term of x jh i, the term f μν ¼ I � Aμ
� �

I � Aνð ÞQα 6¼μ,νAαf is the interaction of x μh i and
x νh i, and so on.

2.5. Some examples of model conduction
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J ηð Þ ¼
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dx

in the space C mð Þ 0; 1½ � ¼ f : f mð Þ ∈L2 0; 1½ �
n o

, where f mð Þ denotes the mth differentiation of f ,

L2 ¼ f :
Ð 1
0 f xð Þð Þ2 dx < ∞
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, then the minimizer of (2) is called a polynomial smoothing spline.

Here, we use an inner product
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0
f νð Þ xð Þdx
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0
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0
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One can easily check that (9) is a well-defined inner product in C mð Þ 0; 1½ � with
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equipped with the inner product
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ν¼0
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� �
[21].

To construct the reproducing kernel, define
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where i ¼ ffiffiffiffiffiffiffi�1
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. One can verify that
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ν xð Þdx ¼ δνμ and ν,μ ¼ 0, 1,…, m� 1, where δνμ is

the Kronecker delta [26]. Indeed, k0;…; km�1f g forms an orthonormal basis of H0. Then, the
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For space

H1 ¼ f :
ð1
0
f νð Þ xð Þdx ¼ 0; ν ¼ 0; 1;…;m� 1; f mð Þ ∈L2 0; 1½ �

� �
,

one can check that the reproducing kernel in H1 is

R1 x; yð Þ ¼ km xð Þkm yð Þ þ �1ð Þm�1k2m x� yð Þ,

(See details in [11]; Section~2.3).

SSANOVA models on product domains: A natural way to construct reproducing kernel

Hilbert space on product domain
Qd

j¼1 X j is taking the tensor product of spaces constructed

on the marginal domains X js. According to the Moore-Aronszajn theorem, every nonnegative
definite function R corresponds to a reproducing kernel Hilbert space with R as its
reproducing kernel. Therefore, the construction of the tensor product reproducing kernel
Hilbert space is induced by constructing its reproducing kernel.

Theorem 2.4. Suppose that if R 1h i x 1h i; y 1h i
� �

is nonnegative definite on X 1 and R 2h i x 2h i; y 2h i
� �

is

nonnegative definite on X 2, then R x; yð Þ ¼ R 1h i x 1h i; y 1h i
� �

R 2h i x 2h i; y 2h i
� �

is nonnegative definite on

X ¼ X 1 � X 2.

Theorem 2.4 implies that a reproducing kernel R on tensor product reproducing kernel Hilbert
space can be derived from the reproducing kernels on marginal domains. Indeed, let H jh i be
the space on X j with reproducing kernel R jh i, where j ¼ 1, 2. Then, R ¼ R 1h iR 2h i is nonnegative
definite on X 1 � X 2. The space H corresponding to R �; �ð Þ is called the tensor product space of
H 1h i and H 2h i, denoted by H ¼ H 1h i ⊗H 2h i.

One can decompose each marginal space H jh i into H jh i ¼ H jh i0 ⊕H jh i1, where H jh i0 denotes the
averaging space and H jh i1 denotes the orthogonal complement. Then, by the discussion in
Section 2.4, the one-way ANOVA decomposition on each marginal space can be generalized
to a multidimensional space H ¼ ⊗ d

j¼1H jh i as

H ¼ ⊗ d
j¼1 H jh i0 ⊕H jh i1
� �

¼ ⊕ S ⊗ j∈SH jh i1
� �

⊗ ⊗ j∉SH jh i0
� �� �

¼ ⊕ SHS ,

(11)

where S denotes all the subsets of 1;…; df g. The component f S in (8) is in the space HS . Based
on the decomposition, the minimizer of (2) is called a tensor product smoothing spline. One
can construct a tensor product smoothing spline following Theorem 2.3, in which the
reproducing kernel term may be calculated in the same way as the tensor product (11).

In the following, we will give some examples of tensor product smoothing splines on product
domains.
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2.5.1. Smoothing splines on 1;…;Kf g � 0; 1½ �
We construct the reproducing kernel Hilbert space by using

R 1h i0 ¼ 1=KandR 1h i1 ¼ I x 1h i¼y 1h i½ �

on 1;…;Kf g. On 0; 1½ �, assume that if m ¼ 2, then we have

R 2h i0 ¼ 1þ k1 x 2h i
� �

k1 y 2h i
� �

and

R 2h i1 ¼ k2 x 2h i
� �

k2 y 2h i
� �

� k4 x 2h i � y 2h i
� �

:

In this case, the space H can be further decomposed as

H ¼ H 1h i0 ⊕H 1h i1
� �

⊗ H 2h i00 ⊕H 2h i01 ⊕H 2h i1
� �

: (12)

The reproducing kernels of tensor product cubic spline on 1;…;Kf g � 0; 1½ � are listed in
Table 1.

On other product domains, for example, 0; 1½ �2, the tensor product reproducing kernel Hilbert
space can be decomposed in a similar way. More examples are available in ([11], Section~2.4).

2.5.1.1. General form

In general, a tensor product reproducing kernel Hilbert space can be specified as H ¼ ⊕ jHj,
where j∈B is a genetic index. Suppose thatHj is equipped with a reproducing kernel Rj and an
inner product f ; gh ij. Denote f j as the projection of f onto Hj. Then, an inner product in H can

be defined as

Subspace Reproducing kernel

H 1h i0 ⊗H 2h i00 1=K

H 1h i0 ⊗H 2h i01 k1 x 2h i
� �

k1 y 2h i
� �

=K

H 1h i0 ⊗H 2h i1 k2 x 2h i
� �

k2 y 2h i
� �

� k4 x 2h i � y 2h i
� �h i

=K

H 1h i1 ⊗H 2h i00 I x 1h i¼y 1h i½ � � 1=K

H 1h i1 ⊗H 2h i01 I x 1h i¼y 1h i½ � � 1=K
h i

k1 x 2h i
� �

k1 y 2h i
� �

H 1h i1 ⊗H 2h i1 I x 1h i¼y 1h i½ � � 1=K
h i

k2 x 2h i
� �

k2 y 2h i
� �

� k4 x 2h i � y 2h i
� �h i

Table 1. Reproducing kernels of (12) on 1;…;Kf g � 0; 1½ � when m ¼ 2.
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In the following, we will give some examples of tensor product smoothing splines on product
domains.

Topics in Splines and Applications70

2.5.1. Smoothing splines on 1;…;Kf g � 0; 1½ �
We construct the reproducing kernel Hilbert space by using

R 1h i0 ¼ 1=KandR 1h i1 ¼ I x 1h i¼y 1h i½ �

on 1;…;Kf g. On 0; 1½ �, assume that if m ¼ 2, then we have

R 2h i0 ¼ 1þ k1 x 2h i
� �

k1 y 2h i
� �

and

R 2h i1 ¼ k2 x 2h i
� �

k2 y 2h i
� �

� k4 x 2h i � y 2h i
� �

:

In this case, the space H can be further decomposed as

H ¼ H 1h i0 ⊕H 1h i1
� �

⊗ H 2h i00 ⊕H 2h i01 ⊕H 2h i1
� �

: (12)

The reproducing kernels of tensor product cubic spline on 1;…;Kf g � 0; 1½ � are listed in
Table 1.

On other product domains, for example, 0; 1½ �2, the tensor product reproducing kernel Hilbert
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be defined as

Subspace Reproducing kernel

H 1h i0 ⊗H 2h i00 1=K

H 1h i0 ⊗H 2h i01 k1 x 2h i
� �

k1 y 2h i
� �

=K

H 1h i0 ⊗H 2h i1 k2 x 2h i
� �

k2 y 2h i
� �

� k4 x 2h i � y 2h i
� �h i

=K

H 1h i1 ⊗H 2h i00 I x 1h i¼y 1h i½ � � 1=K

H 1h i1 ⊗H 2h i01 I x 1h i¼y 1h i½ � � 1=K
h i

k1 x 2h i
� �

k1 y 2h i
� �

H 1h i1 ⊗H 2h i1 I x 1h i¼y 1h i½ � � 1=K
h i

k2 x 2h i
� �

k2 y 2h i
� �

� k4 x 2h i � y 2h i
� �h i

Table 1. Reproducing kernels of (12) on 1;…;Kf g � 0; 1½ � when m ¼ 2.

Smoothing Spline ANOVA Models and their Applications in Complex and Massive Datasets
http://dx.doi.org/10.5772/intechopen.75861

71



J f ; gð Þ ¼
X
j

θ�1
j f j; gj
D E

j
, (13)

where θj ≥ 0 are the tuning parameters. If a penalty J in (2) has the form (13), the SSANOVA
models can be defined on the space H ¼ ⊕ jHj with the reproducing kernel:

R ¼
X
j

θjRj: (14)

2.6. Estimation

In this section, we show the procedure of estimating the minimizer bη of (2) under the Gaussian
assumption and selecting the smoothing parameters.

2.6.1. Penalized least squares

We consider the same model shown in (1), and then the η can be estimated by minimizing the
penalized least squares:

1
n

Xn

i¼1

yi � η xið Þ� �2 þ λJ ηð Þ: (15)

Let S denote the n�M matrix with the i; jð Þth entry ξj xið Þ as in (6) and R denote the n� n

matrix with the i; jð Þth entry R xi; xj
� �

with the form (14). Then, based on Theorem 2.3, η can be
expressed as

η ¼ Sdþ Rc,

where η ¼ η x1ð Þ;…; η xnð Þð ÞT , d ¼ d1;…; dMð ÞT , and c ¼ c1;…; cnð ÞT . The least squares term in
(15) becomes

1
n

Xn

i¼1

yi � η xið Þ� �2 ¼ 1
n

y� Sd� Rcð ÞT y� Sd� Rcð Þ,

where y ¼ y1;…; yn
� �T .

By the reproducing property (5), the roughness penalty term can be expressed as

J ηð Þ ¼
Xn

i¼1

Xn

j¼1

ciR xi; xj
� �

cj ¼ cTRc:

Therefore, the penalized least squares criterion (15) becomes

1
n

y� Sd� Rcð ÞT y� Sd� Rcð Þ þ λcTRc: (16)
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The penalized least squares (16) is a quadratic form of both d and c. By differentiating (16), one
can obtain the linear system:

STS STR
RTS RTRþ nλR

 !
d
c

� �
¼ STy

RTy

 !
: (17)

Note that (17) only works for penalized least squares (15), and hence a normal assumption is
needed in this case.

2.6.2. Selection of smoothing parameters

In SSANOVA models, properly selecting smoothing parameters is important to estimate η [9,
27, 28], as shown in Figure 1. Here, we introduce the generalized cross validation (GCV)
method for the smoothing parameter selection.

For the multivariate predictors, the penalty term in (15) has the form

λJ fð Þ ¼ λ
XS

j¼1

θ�1
j f j; f j
D E

j
,

where S is the number of smoothing parameters, which is related to the functional ANOVA
decomposition, and θj's are the extra smoothing parameters. To avoid overparameterization,

we treat λ ¼ λ=θ1;⋯;λ=θSð ÞT as the effective smoothing parameters.

A GCV score is defined as

V λð Þ ¼ n�1yT I � A λð Þð Þ2y
n�1tr I � A λð Þð Þ½ �2

,

where A λð Þ is a symmetric matrix similar to the hat matrix in linear regression. We can select a
proper λ by minimizing the GCV score [21].

2.7. Case study: Twitter data

Tweets in the contiguous United States were collected over five weekdays in January 2014. The
dataset contains information of time, GPS location, and tweet counts (see Figure 2). To illus-
trate the application of SSANOVA models, we study the time and spatial patterns in this data.

The bivariate function η x 1h i; x 2h i
� �

is a function of time and location, where x 1h i denotes the
time and x 2h i represents the longitude and latitude coordinates. We use the thin-plate spline for
the spatial variable and cubic spline for the time variable. As a rotation-free method, the thin-
plate spline is popular for modeling spatial data [29–31]. For a better interpretation, we
decompose the function η as

η x 1h i; x 2h i
� � ¼ ηc þ η1 x 1h i

� �þ η2 x 2h i
� �þ η12 x 1h i; x 2h i

� �
,
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where ηc is a constant function; η1 and η2 are the main effects of time and location, respectively;
and η12 is the spatial-time interaction effect.

The main effects of time and location are shown in Figure 3. Obviously, in panel (a), the
number of tweets has the periodic effect, where it attains the maximum value at 8:00 p.m. and
the minimum value at 5:00 a.m. The main effect of time shows the variations of Twitter usages
in the United States. In addition, we can infer how the tweet counts vary across different
locations based on panel (b) in Figure 3. There tend to be more tweets in the east than those
in the west regions and more tweets in the coastal zone than those in the inland. We use the
scaled dot product

π ¼ bη12

� �Tby=∥by∥2

to quantify the percentage decomposition of the sum of squares of by [11], where

by ¼ by1;…;byn
� �T is the predicted values of log #Tweetsð Þ, and bη12 ¼ η12 x1ð Þ;…; η12 xnð Þ� �T is

the estimated interaction effect term, where η12 xð Þ ¼ η12 x 1h i; x 2h i
� �

. In our fitted model,

Figure 2. Heatmaps of tweet counts in the contiguous United States. (a) Tweet counts at 2:00 a.m. (b) Tweet counts at
6:00 p.m.

Figure 3. (a) The main effect function of time (hours). (b) The main effect function of location.
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π ¼ 3� 10�16, which is so small that the interaction term is negligible. This indicates that there
is no significant difference for the Twitter usages across time in the contiguous United States.

3. Efficient approximation algorithm in massive datasets

In this section, we consider SSANOVA models under the big data settings. The computational
cost of solving (17) is of the order O n3

� �
and thus gives rise to a challenge on the application of

SSANOVA models when the volume of data grows. To reduce the computational load, an
obvious way is to select a subset of basis functions randomly. However, it is hard to keep the
data features by uniform sampling. In the following section, we present an adaptive basis
selection method and show its advantages over uniform sampling [14]. Instead of selecting
basis functions, another approach to reduce the computational cost is shrinking the original
sample size by rounding algorithm [15].

3.1. Adaptive basis selection

A natural way to select the basis functions is through uniform sampling. Suppose that we
randomly select a subset �x ¼ �x1;…; �x�n

� �
from x1;…; xnf g, where �n is the subsample size.

Thus, the kernel matrix would be R �xi; x
� �

, i ¼ 1,…, �n. Then, one minimizes (17) in the effective
model space:

HE ¼ N ⊕ span R �xi; x
� �

; i ¼ 1; 2;…; �n
� �

:

The computational cost will be reduced significantly to O n�n2ð Þ if �n is much smaller than n.
Furthermore, it can be proven that the minimizer of (2), �η, by uniform sampling basis selection,
has the same asymptotic convergence rate as the full basis minimizer bη.
Although the uniform basis selection reduces the computational cost and the corresponding �η
achieves the optimal asymptotic convergence rate, it may fail to retain the data features
occasionally. For example, when the data are not evenly distributed, it is hard for uniform
sampling to capture the feature where there are only a few data points. In [14], an adaptive
basis selection method is proposed. The main idea is to sample more basis functions where the
response functions change largely and fewer basis functions on those flat regions. More details
of adaptive basis selection method are shown in the following procedure:

Step 1 Divide the range of responses yi
� �n

i¼1 into K disjoint intervals, S1,…, SK. Denote ∣Sk∣ as
the number of observations in Sk.

Step 2 For each Sk, draw a random sample of size nk from this collection. Let

x∗ kð Þ ¼ x∗ kð Þ
1 ;…; x∗ kð Þ

nk

� �
be the predictor values.

Step 3 Combine x∗ 1ð Þ,…, x∗ Kð Þ together to form a set of sampled predictor values x∗1;…; x∗n∗
� �

,

where n∗ ¼PK
k¼1 nk.
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π ¼ 3� 10�16, which is so small that the interaction term is negligible. This indicates that there
is no significant difference for the Twitter usages across time in the contiguous United States.

3. Efficient approximation algorithm in massive datasets

In this section, we consider SSANOVA models under the big data settings. The computational
cost of solving (17) is of the order O n3
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and thus gives rise to a challenge on the application of

SSANOVA models when the volume of data grows. To reduce the computational load, an
obvious way is to select a subset of basis functions randomly. However, it is hard to keep the
data features by uniform sampling. In the following section, we present an adaptive basis
selection method and show its advantages over uniform sampling [14]. Instead of selecting
basis functions, another approach to reduce the computational cost is shrinking the original
sample size by rounding algorithm [15].

3.1. Adaptive basis selection

A natural way to select the basis functions is through uniform sampling. Suppose that we
randomly select a subset �x ¼ �x1;…; �x�n

� �
from x1;…; xnf g, where �n is the subsample size.
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, i ¼ 1,…, �n. Then, one minimizes (17) in the effective
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HE ¼ N ⊕ span R �xi; x
� �

; i ¼ 1; 2;…; �n
� �

:
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Furthermore, it can be proven that the minimizer of (2), �η, by uniform sampling basis selection,
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Although the uniform basis selection reduces the computational cost and the corresponding �η
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sampling to capture the feature where there are only a few data points. In [14], an adaptive
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of adaptive basis selection method are shown in the following procedure:

Step 1 Divide the range of responses yi
� �n

i¼1 into K disjoint intervals, S1,…, SK. Denote ∣Sk∣ as
the number of observations in Sk.

Step 2 For each Sk, draw a random sample of size nk from this collection. Let

x∗ kð Þ ¼ x∗ kð Þ
1 ;…; x∗ kð Þ

nk

� �
be the predictor values.

Step 3 Combine x∗ 1ð Þ,…, x∗ Kð Þ together to form a set of sampled predictor values x∗1;…; x∗n∗
� �

,

where n∗ ¼PK
k¼1 nk.
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Step 4 Define

HE ¼ H0 ⊕ span R x∗i ; �
� �

; i ¼ 1; 2;…; n∗
� �

as the effective model space.

By adaptive basis selection, the minimizer of (2) keeps the same form as that in Theorem 2.3:

ηA xð Þ ¼
XM

k¼1

dkξk xð Þ þ
Xn∗

i¼1

ciR x∗i ; x
� �

:

Let R∗ be an n� n∗ matrix, and its i; jð Þth entry is R xi; x∗j
� �

. Let R∗∗ be an n∗ � n∗ matrix, and its

i; jð Þth entry is R x∗i ; x
∗
j

� �
. Then, the estimator ηA satisfies

ηA ¼ SdA þ R∗cA,

where ηA ¼ ηA x1ð Þ;⋯; ηA xn∗ð Þ� �T , dA ¼ d1;…; dMð ÞT , and cA ¼ c1;…; cn∗ð ÞT . Similar to (17), the
linear system of equations in this case is

STS STR∗

RT
∗S RT

∗R∗ þ nλR∗∗

 !
dA

cA

� �
¼ STy

RT
∗y

 !
: (18)

The computational complexity of solving (18) is of the orderO nn∗2
� �

, so the method decreases the
computational cost significantly. It can also be shown that the adaptive sampling basis selection
smoothing spline estimator ηA has the same convergence property as the full basis method. More
details about the consistency theory can be found in [14]. Moreover, adaptive sampling basis
selection method for exponential family smoothing spline models was developed in [32].

3.2. Rounding algorithm

Other than sampling a smaller set of basis functions to save the computational resources, for
example, the adaptive basis selection method presented previously, [15] proposed a new
rounding algorithm to fit SSANOVA models in the context of big data.

Rounding algorithm: The details of rounding algorithm can be shown in the following procedure:

Step 1 Assume that all predictors are continuous.

Step 2 Convert all predictors to the interval 0; 1½ �.
Step 3 Round the raw data by using the transformation:

zi jh i ¼ RD xi jh i=r jh i
� �

r jh i, for i∈ 1;⋯; nf g, j∈ 1;⋯; df g,

where the rounding parameter r jh i ∈ 0; 1ð � and rounding function RD �ð Þ transform input data to
the nearest integer.
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Step 4 After replacing xi jh i with zi jh i, we redefine S and R in (16) and then estimate η by
minimizing the penalized least squares (16).

Remark 1 In Step 3, if r jh i is the rounding parameter for jth predictor and its value is 0.03, then
each zi jh i is formed by rounding the corresponding xi jh i to its nearest 0.03.

Remark 2 It is evident that the value of rounding parameter can influence the precision of
approximation. The smaller the rounding parameter, the better the model estimation and the
higher the computational cost.

Computational benefits: We now briefly explain why the implementation of rounding algo-
rithm can reduce the computational loads. For example, if the rounding parameter r ¼ 0:01, it
is obvious that u ≤ 101, where u denotes the number of uniquely observed values. In conclu-
sion, using user-tunable rounding algorithm can dramatically reduce the computational bur-
den of fitting SSANOVA models from the order of O n3

� �
to O u3

� �
, where u≪ n.

Case study: To illustrate the benefit of the rounding algorithm, we apply the algorithm to the
electroencephalography (EEG) dataset. Note that EEG is a monitoring method to record the
electrical activity of the brain. It can be used to diagnose sleep disorders, epilepsy, encephalop-
athies, and brain death.

The dataset [33] contains 44 controls and 76 alcoholics. Each subject was repeatedly measured
10 times by using visual stimulus at a frequency of 256 Hz. This brings about n ¼ 10 replica-
tions �120 subjects �256 time points ¼ 307; 200 observations. There are two predictors, time
and group (control vs. alcoholic). We apply the cubic spline to the time effect and the nominal
spline to the group effect.

After applying the model to the unrounded data, rounded data with rounding parameter
r ¼ 0:01 and r ¼ 0:05 for time covariate, we can obtain a summary table about GCV, AIC [34],
BIC [35], and running time in Table 2.

Based on Table 2, we can easily see that there are no significant difference among the GCV
scores and AIC/BIC. In addition using rounding algorithm reduces 92% CPU time compared
to using unrounded dataset.

4. Conclusion

Smoothing spline ANOVA (SSANOVA) models are widely used in applications [11, 20, 36, 37].
In this chapter, we introduced the general framework of the SSANOVA models in Section 2. In

GCV AIC BIC CPU time (seconds)

Unrounded data 85.9574 2,240,019 2,240,562 15.65

Rounded data with r ¼ 0:01 86.6667 2,242,544 2,242,833 1.22

Rounded data with r ¼ 0:05 86.7654 2,242,893 2,243,089 1.13

Table 2. Fit statistics and running time for SSANOVA models.
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Section 3, we discussed the models under the big data settings. When the volume of data
grows, fitting the models is computing-intensive [11]. The adaptive basis selection algorithm
[14] and rounding algorithm [15] we presented can significantly reduce the computational cost.
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Appendix

In this appendix, we use two examples to illustrate how to implement smoothing spline
ANOVA (SSANOVA) models in R. The gss package in R, which can be downloaded on the
CRAN https://cran.r-project.org/, is utilized.

We now load the gss package:

library(gss)

Example I: Apply the smoothing spline to a simulated dataset.

Suppose that the predictor x follows a uniform distribution on 0; 1½ �, and the response y is
generated based on y ¼ 5þ 2 cos 3πxð Þ þ e, where e � N 0; 1ð Þ.
x<-runif(100);y<-5+2*cos(3*pi*x)+rnorm(x)

Then, fit cubic smoothing spline model:

cubic.fit<-ssanova(y˜x)

To evaluate the predicted values, one uses:

new<-data.frame(x=seq(min(x),max(x),len=50))

est<-predict(cubic.fit,new,se=TRUE)
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The se.fit parameter indicates if one can get the pointwise standard errors for the predicted
values. The predicted values and Bayesian confidence interval, shown in Figure 4, are gener-
ated by:

plot(x,y,col=1)

lines(new$x,est$fit,col=2)

lines(new$x,est$fit+1.96*est$se,col=3)

lines(new$x,est$fit-1.96*est$se,col=3)

Example II: Apply the SSANOVA model to a real dataset.

In this example, we illustrate how to implement the SSANOVA model using the gss package.
The data is from an experiment in which a single-cylinder engine is run with ethanol to see
how the nox concentration nox in the exhaust depends on the compression ratio comp and the
equivalence ratio equi. The fitted model contains two predictors (comp and equi) and one
interaction term.

data(nox)

nox.fit <- ssanova(log10(nox)˜comp*equi,data=nox)

The predicted values are shown in Figure 5.

x=seq(min(nox$comp),max(nox$comp),len=50)

y=seq(min(nox$equi),max(nox$equi),len=50)

temp <- function(x, y){

Figure 4. The solid red line represents the fitted values. The green lines represent the 95% Bayesian confidence interval.
The raw data are shown as the circles.
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new=data.frame(comp=x,equi=y)

return(predict(nox.fit,new,se=FALSE))

}

z=outer(x, y, temp)

persp(x,y,z,theta = 30).
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Abstract

Tests based on regression spline are developed in this chapter for testing nonparametric
functions in nonparametric, partial linear and varying-coefficient models, respectively.
These models are more flexible than linear regression model. However, one important
problem is if it is really necessary to use such complex models which contain nonpara-
metric functions. For this purpose, p-values for testing the linearity and constancy of the
nonparametric functions are established based on regression spline and fiducial method.
In the application of spline-based method, the determination of knots is difficult but plays
an important role in inferring regression curve. In order to infer the nonparametric regres-
sion at different smoothing levels (scales) and locations, multi-scale smoothing methods
based on regression spline are developed to test the structures of the regression curve and
compare multiple regression curves. It could sidestep the determination of knots; mean-
while, it could give a more reliable result in using the spline-based method.
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It is well known that the model which contains nonparametric functions, such as partial linear
model and varying-coefficient model, plays an important role in applications due to its flexible
structure. However, in practice, investigators often want to know whether it is really necessary
to fit the data with such more complex models rather than a simpler model. This amounts to
testing the linearity of nonparametric functions in a regression model. In this chapter, we first
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Nonparametric regression model:

y ¼ f xð Þ þ ε: (1)

Partial linear regression model:

y ¼ Z0bþ f xð Þ þ ε: (2)

Varying-coefficient model:

y ¼ z1f 1 x1ð Þ þ…þ zpf p xp
� �þ ε: (3)

In models (1)–(3), y is the response variable, Z ¼ z1;⋯; zp
� �

is a p-dimensional regressor, x and
x1,⋯, xp are covariant taking values in a finite interval, ε is the error, b is a parameter vector,

and f(x) and f j xj
� �

, j ¼ 1, 2,…, p are unknown smooth functions. Usually we suppose that z; xð Þ
and ε are independent and ε˜F ∙=σð Þ, where F is a known cumulate distribution function (cdf)
with mean 0 and variance 1; σ is unknown. Without loss of generality, we can suppose that x
and x1,⋯, xp take values in [0, 1]. We try to test the linearity of f xð Þ in models (1) and (2) and

the constancy of f j xj
� �

in model (3) for some j∈ 1; 2;⋯; pð Þ.

The hypothesis testing in nonparametric regression model was considered in many papers.
Härdle and Mammen [1] developed the visible difference between a parametric and a non-
parametric curve estimates. Based on smoothing techniques, many tests were constructed for
testing the linearity in regression model; see Hart [2], Cox et al. [3], and Cox and Koh [4] for a
review. Recently, Fan et al. [5] studied a generalized likelihood ratio statistic, which behaves
well in large sample case. Tests based on penalized criterion were developed by Eubank and
Hart [6] and Baraud [7].

The linearity of partial linear regressionmodel (2)was studied byBianco andBoente [8], Liang et al.
[9], and Fan and Huang [10]. There are also many other papers concerning such testing problems
(see [11–16], among others). The constancy of the functional coefficient f j xj

� �
in varying-coefficient

model (3)was studied inFanandZhang [17],Cai et al. [18], Fan andHuang [19],YouandZhou [20],
and Tang and Cheng [21]. Local polynomials and smoothing spline methods to estimate the
coefficients inmodel (3) can be seen inHoover et al. [22],Wu et al. [23], and so on.

The critical values of most of the previous tests were obtained by Wilks theorem or bootstrap
method. So such tests only behave well in the case of relatively large sample size. This chapter
would give some testing procedures based on regression spline and the fiducial method [24] in
Section 2. It has a good performance even when the sample size is small.

In using the regression spline, the key problem is the determination of knots used in spline
interpolation. As we know that, for smoothing methods such as kernel-based method and
smoothing spline, the smoothness is controlled by smoothing parameters. For the well-known
kernel estimate, the bandwidth that is extremely big or small might leads to over-smoothing or
under-smoothing, respectively. In order to avoid the selection of an optimal smoothing param-
eter, multi-scale smoothing method was introduced by Chaudhuri and Marron [25, 26] based
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on kernel estimation for exploring structures in data. This multi-scale method is known as
significant zero crossings of derivatives (SiZer) methodology. The basic idea of SiZer is to infer
a nonparametric model by using a wide range of smoothing parameter (bandwidth) values
rather than only using one “optimal” value in some sense.

There have been many versions of SiZer for various applications, such as the local likelihood
version of SiZer in Li and Marron [27], the robust version of SiZer in Hannig and Lee [28], and
the quantile version of SiZer in Park et al. [29]. In addition, Marron and deUñaÁlvarez [30]
applied SiZer to estimate length biased, censored density, and hazard functions; Kim and
Marron [31] utilized SiZer for jump detection and Park and Kang [32] applied SiZer to
compare regression curves. The smoothing spline version of SiZer was proposed by Marron
and Zhang [33]. It used the tuning parameter (penalty parameter) that controls the size of
penalty as the smoothing parameter is.

Comparing with bandwidth for kernel-based method and tuning parameter for smoothing
spline, it is more difficult to determine the number of knots and their positions. For this reason
a multi-scale smoothing method based on regression spline is proposed in Section 3 to test the
structures of nonparametric regression model. The proposed multi-scale method does not
involve the determination of the “best” number of knots and can be extended easily to a more
general case.

2. Tests for nonparametric function based on regression spline

In this section, the linearity of function f xð Þ in model (1) is tested based on regression spline
and fiducial method. Then, the proposed test procedure for model (1) is extended to test the
linearity of model (2) and the constancy of function coefficient in model (3), respectively.

2.1. Test the linearity of nonparametric regression model

Without loss of generality, we suppose that x in model (1) takes values in [0, 1] and the set of
knots is T = {0 ¼ t1 < t2,⋯, < tm ¼ 1g. In order to estimate model (1), nonparametric function f
(x) is fitted by kth order splines with knots T. This means that

f xð Þ ≈
Xmþk�1

j¼1

βjgj xð Þ, (4)

where βj is coefficient and gj xð Þ, j ¼ 1, 2,⋯, mþ k� 1, is basis function for order k splines,

over the knots t1, t2,⋯, tm:

With n-independent observations Y ¼ y1; y2;⋯; yn
� �

∈ℝn, the basis matrix Gn� mþk�1ð Þ is

defined by G ¼ gj xið Þ
n o

, xi is the designed point, i ¼ 1, 2,⋯, n; j ¼ 1, 2,⋯, mþ k� 1: Hence,

model (1) can be approximated as Y ≈Gβþ ε. The least squares estimator of coefficients is
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bβ ¼ GTG
� ��1

GT Y, (5)

and the estimator of f xið Þ can be expressed as

bY ¼ bf x1ð Þ;bf x2ð Þ;⋯;bf xnð Þ
n oT

¼ G GTG
� ��1

GT Y: (6)

For testing the linearity of model (1), linear spline is used to approximate f xð Þ. It means that
basis function gj xð Þ is a linear function:

g1 xð Þ ¼ �x� t2
t2 � t1ð Þl2 tð Þ ,

gk�1 xð Þ ¼ x� tk�2

tk�1 � tk�2ð Þlk�1 tð Þ � x� tk
tk � tk�1ð Þlk tð Þ , 3 ≤ k ≤m, (7)

gm xð Þ ¼ x� tm�1

tm � tm�1ð Þlm tð Þ :

In this case, the approximated function in (4) is a linear interpolation with k =1. The true value
is βj ¼ f tj

� �
, j ¼ 1, 2,⋯, m. The linearity of function f xð Þ can be written as

H0 :
β2 � β1
t2 � t1

¼ β3 � β2
t3 � t2

¼ ⋯ ¼ βm � βm�1

tm � tm�1
:

Null hypothesis H0 can be expressed in matrix as L0β ¼ 0,

where

L0 ¼
h2 � h1 � h2 h1 0⋯ 0 0 0

⋯ ⋯ ⋯ ⋯⋯ ⋯ ⋯ ⋯

0 0 0 0 ⋯ hm�1 � hm�1 � hm�2 hm�2

2
664

3
775,

where hj ¼ tjþ1 � tj, j ¼ 1, 2,⋯, m� 2. Null hypothesis H0 is equivalent to the following one:

H∗
0 : L0β ¼ 0: (8)

The p-value for testing hypothesis H∗
0 will be derived by the fiducial method in the following

context. Assume that matrix G has full rank, and let ε˜σN 0; 1ð Þ. In model Y ¼ Gβþ ε, the

sufficient statistic of β; σ2
� �

is bβ; S2
� �

, where bβ is defined in (5) and

S2 ¼ Y0 I � PGð ÞY, PG ¼ G G0Gð Þ�1G0:

By Dawid and Stone [34], the sufficient statistic can be represented as a functional model:
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bβ ¼ βþ σ G0Gð Þ�1
2E1, S ¼ σE2, E ¼ E1, E2ð Þ � Q, (9)

where Q is the probability measure of E ¼ E1ð , E2Þ and E1 � N 0; Imð Þ and, independently,

E2
2 � χ2 n�mð Þ: From linear regression model, the fiducial model of β can be obtained:

bβ ¼ βþ S
E2

G0Gð Þ�1
2E1, E ¼ E1, E2ð Þ � Q: (10)

Given bβ; S2
� �

, the distribution of the right side in fiducial model is the fiducial distribution of

β. That is, the fiducial distribution of β is the conditional distribution of R E;bβ; S2
� �

when

bβ; S2
� �

is given, where

R E;bβ; S2
� �

¼ bβ � S
E2

G0Gð Þ�1
2E1: (11)

For testing hypothesis H∗
0, the p-value is defined as

p bβ; S2
� �

¼ Q L0 R E; bβ; S2
� �

� EQR E; bβ; S2
� �h i���

���
2

Σ
≥ L0EQR E; bβ; S2

� ����
���
2

Σ

� �
, (12)

where Q(�) and EQ express the probability for an event and the expectation of a random

variable under Q, respectively, and Σ is the conditional covariance matrix of L0EQR E;bβ; S2
� �

given bβ, S2 and vk k2Σ ¼ v0Σ�1v for a vector v:

According to the definition of generalized pivotal quantity in [35], R E;bβ; S2
� �

is a generalized

pivotal quantity and also a fiducial pivotal quantity about β. Naturally, L0R E;bβ; S2
� �

is the

fiducial pivotal quantity about L0β. With the definition of Q in Eq. (10), we have that

p bβ; S2
� �

¼ 1� Fm�2, n�m

n�mð Þbβ 0L L0 G0Gð Þ�1L
� ��1

L0bβ
m� 2ð ÞS2

0
B@

1
CA, (13)

where Fm�2, n�m is the cdf of F-distribution with degrees of freedom m� 2 and n�m.

Under model (1) and the hypothesis that f xð Þ is a linear function, null hypothesis H∗
0 given in (8)

is true. Suppose that the error is normally distributed, then the p-value given in Eq. (12) distrib-
utes as uniform distribution on interval (0, 1). On the other hand, under somemild condition, the

test procedure based on p bβ; S2
� �

is consistent. Which means that p bβ; S2
� �

tends to be zero in

probability 1 if H∗
0 is false. The corresponding theoretical proof of the large sample properties

and finite sample properties of p bβ; S2
� �

is the same as the proof given in Li et al. [36].
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Under model (1) and the hypothesis that f xð Þ is a linear function, null hypothesis H∗
0 given in (8)

is true. Suppose that the error is normally distributed, then the p-value given in Eq. (12) distrib-
utes as uniform distribution on interval (0, 1). On the other hand, under somemild condition, the

test procedure based on p bβ; S2
� �

is consistent. Which means that p bβ; S2
� �

tends to be zero in

probability 1 if H∗
0 is false. The corresponding theoretical proof of the large sample properties

and finite sample properties of p bβ; S2
� �

is the same as the proof given in Li et al. [36].
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In applications, we need to check some hypotheses as follows:

H01 : f xð Þ ¼ C , β1 ¼ β2 ¼ ⋯ ¼ βm,

H02 : f xð Þ ¼ Cx , β2 � β1
t2 � t1

¼ β3 � β2
t3 � t2

¼ ⋯ ¼ βm � βm�1

tm � tm�1
, and, β1 ¼ 0:

The p-values for testing H01 and H02 can be obtained by replacing L in (12) by L01 and L02,
respectively, where L02 ¼ e1; Lð Þ, e1 ¼ 1; 0; 0;⋯; 0ð Þ0 and

L01 ¼
h2 � h1 0⋯ 0 0
⋯ ⋯ ⋯ ⋯ ⋯
0 0 0 ⋯ hm � hm�1

2
64

3
75: (14)

2.2. Test the linearity of partial linear model

To test the linearity of model (2), p-value can be established analogously. With n-independent
observations Y ¼ y1; y2;⋯; yn

� �
∈ℝn, model (2) can be represented as.

yi ¼ Z0
ibþ f xið Þ þ εi, i ¼ 1, 2,⋯, n,

where Z0
i ¼ zi1;⋯; zip

� �0, b ¼ b1;⋯; bp
� �0, xi, i ¼ 1, 2,⋯, n are fixed designed points. With the

approximation of f xð Þ given in (4), model (2) can be approximated by Y ≈Xθþ ε, where
X ¼ ℤ;Gð Þn� pþmþ1ð Þ; ℤ ¼ (zij); i ¼ 1, 2,⋯, n; j ¼ 1, 2,⋯, p; G is the same as above; and

θ ¼ b0; ; β0
� �0. Then p-value for testing the linearity of model (2) can be defined by replacing G

in (12) by X, β by θ, and L by L03, respectively, L03 ¼ 0 m�2ð Þ�p; L0
� �0.

The large sample and finite sample properties of the testing procedure for model (2) are the
same as the test procedure for model (1).

2.3. Test the constancy of functional coefficient in varying-coefficient model

For model (3), investigators often want to knowwhether the coefficients are really varying; this
means to test the constancy of the coefficient functions, that is, testing hypothesis:

H31 : f j xð Þ ¼ Cj for j ¼ 1, 2,⋯, p and some constant Cj, (15)

H32 : f j0 xð Þ ¼ Cj0 for some j ¼ j0 and some constant Cj0: (16)

With the set of knotsT = {0¼ t1 < t2,⋯, < tm ¼ 1g, coefficient f j xð Þ can also be approximated by

f j xð Þ ¼
Xm

k¼1

βjsgj xð Þ, j ¼ 1, 2,⋯, p,

where the true value of βjs ¼ f j tkð Þ. Basic functions gj, j ¼ 1, 2,⋯, mþ 1 were defined in (7). The

varying-coefficient model (3) is approximately represented as
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Y ¼ Xβþ ε, (17)

where X ¼ F1;⋯; Fp
� �

is n�mp matrix and Fj ¼ zjif k xið Þ� �
, k ¼ 1, 2,⋯, m, i ¼ 1, 2,⋯, n,

j ¼ 1, 2,⋯, p. β ¼ β01;⋯; βp
0

� �0
is mp-dimensional parametric vector, βj ¼ f j t1ð Þ;⋯; f p tmð Þ

� �0
.

It is worth noting that under null hypothesis H31 defined in (15), regression model (3) is
equivalent to model (17). However, this equivalence does not hold under null hypothesis H32

defined in (16). Null hypotheses H31 and H32 can be expressed in matrix as the following two,
respectively:

H∗
31 : L

0
1β ¼ 0, (18)

H∗
32 : L

0
2β ¼ 0, (19)

where L01 is p m� 1ð Þ �mp matrix.

L01 ¼
L01 0 ⋯ 0

⋮ ⋱ ⋮

0 ⋯ L010

0
BBB@

1
CCCA, L01 ¼

1 � 1 0⋯ 0 0

⋯ ⋯ ⋯ ⋯ ⋯

0 0 0 ⋯ 1 � 1

2
6664

3
7775,

L02 ¼ 0 m�1ð Þ� mj0�mð Þ; L0; 0 m�1ð Þ� mp�mj0ð Þ
� �

m�1ð Þ�mp
:

In the same way as the p-value in (13) is defined, p-value to test hypotheses H∗
31 and H∗

32 can be
defined as below if the error ε distributes as normal distribution:

p31 bβ; S2
� �

¼ 1� Fp m�1ð Þ,n�mp

n�mpð Þbβ 0L1 L01 X0Xð Þ�1L1
� ��1

L01bβ
p m� 1ð ÞS2

0
B@

1
CA, (20)

p32 bβ; S2
� �

¼ 1� Fm�1, n�mp

n�mpð Þbβ 0L2 L02 X0Xð Þ�1L2
� ��1

L02bβ
m� 1ð ÞS2

0
B@

1
CA: (21)

According to the above discussion, it can be seen that p31 bβ; S2
� �

is uniformly distributed over

(0, 1) under hypothesis H∗
31. However, under null hypothesis H∗

32, varying-coefficient model (2)

is not linear. Hence, there is a difference between the distribution function of p32 bβ; S2
� �

under

H∗
32 and uniform distribution. This difference has an accurate expression, which can be seen in

Li et al. [37] (Theorem 3). On the other hand, p31 bβ; S2
� �

and p32 bβ; S2
� �

both tend to be zero in

probability if null hypotheses are false when sample size tends to be infinity under some mild
conditions. The corresponding proof was provided also in Li et al. [37].
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3
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� �0. Then p-value for testing the linearity of model (2) can be defined by replacing G

in (12) by X, β by θ, and L by L03, respectively, L03 ¼ 0 m�2ð Þ�p; L0
� �0.

The large sample and finite sample properties of the testing procedure for model (2) are the
same as the test procedure for model (1).

2.3. Test the constancy of functional coefficient in varying-coefficient model

For model (3), investigators often want to knowwhether the coefficients are really varying; this
means to test the constancy of the coefficient functions, that is, testing hypothesis:

H31 : f j xð Þ ¼ Cj for j ¼ 1, 2,⋯, p and some constant Cj, (15)

H32 : f j0 xð Þ ¼ Cj0 for some j ¼ j0 and some constant Cj0: (16)

With the set of knotsT = {0¼ t1 < t2,⋯, < tm ¼ 1g, coefficient f j xð Þ can also be approximated by

f j xð Þ ¼
Xm

k¼1

βjsgj xð Þ, j ¼ 1, 2,⋯, p,

where the true value of βjs ¼ f j tkð Þ. Basic functions gj, j ¼ 1, 2,⋯, mþ 1 were defined in (7). The

varying-coefficient model (3) is approximately represented as
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is n�mp matrix and Fj ¼ zjif k xið Þ� �
, k ¼ 1, 2,⋯, m, i ¼ 1, 2,⋯, n,

j ¼ 1, 2,⋯, p. β ¼ β01;⋯; βp
0

� �0
is mp-dimensional parametric vector, βj ¼ f j t1ð Þ;⋯; f p tmð Þ

� �0
.

It is worth noting that under null hypothesis H31 defined in (15), regression model (3) is
equivalent to model (17). However, this equivalence does not hold under null hypothesis H32

defined in (16). Null hypotheses H31 and H32 can be expressed in matrix as the following two,
respectively:

H∗
31 : L

0
1β ¼ 0, (18)

H∗
32 : L

0
2β ¼ 0, (19)

where L01 is p m� 1ð Þ �mp matrix.

L01 ¼
L01 0 ⋯ 0

⋮ ⋱ ⋮
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0
BBB@

1
CCCA, L01 ¼

1 � 1 0⋯ 0 0
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0 0 0 ⋯ 1 � 1

2
6664

3
7775,

L02 ¼ 0 m�1ð Þ� mj0�mð Þ; L0; 0 m�1ð Þ� mp�mj0ð Þ
� �

m�1ð Þ�mp
:

In the same way as the p-value in (13) is defined, p-value to test hypotheses H∗
31 and H∗

32 can be
defined as below if the error ε distributes as normal distribution:

p31 bβ; S2
� �

¼ 1� Fp m�1ð Þ,n�mp

n�mpð Þbβ 0L1 L01 X0Xð Þ�1L1
� ��1

L01bβ
p m� 1ð ÞS2

0
B@

1
CA, (20)

p32 bβ; S2
� �

¼ 1� Fm�1, n�mp

n�mpð Þbβ 0L2 L02 X0Xð Þ�1L2
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L02bβ
m� 1ð ÞS2

0
B@

1
CA: (21)

According to the above discussion, it can be seen that p31 bβ; S2
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is uniformly distributed over

(0, 1) under hypothesis H∗
31. However, under null hypothesis H∗

32, varying-coefficient model (2)

is not linear. Hence, there is a difference between the distribution function of p32 bβ; S2
� �

under

H∗
32 and uniform distribution. This difference has an accurate expression, which can be seen in

Li et al. [37] (Theorem 3). On the other hand, p31 bβ; S2
� �

and p32 bβ; S2
� �

both tend to be zero in

probability if null hypotheses are false when sample size tends to be infinity under some mild
conditions. The corresponding proof was provided also in Li et al. [37].
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3. Multi-scale method based on regression spline

For regression spline, the number of knots controls the smoothness of the estimator. The
determination of knots is important and plays a large influence on the inference results.
The GCV method is usually used to choose an optimal number of knots. While, but after the
number of knots is given, the determination of the optimal positions of knots is difficult. Shi
and Li [38] chose knots by placing an additional new knot to reduce the value of GCV, until
it could not be reduced by placing any additional knots. Hence, once a knot was selected, it
cannot be removed from the knot set. Mao and Zhao [39] determined the locations of knots
conditioned on the number of knots m first and chose m later by GCV criterion. In fact, the
locations of knots can be considered as parameters which can be estimated from data. This is
the free-knot spline; see DiMatteo et al. [40] and Sonderegger and Hannig [41]. However, the
estimation of the optimal locations is computationally intractable, and replicate knots might
appear in the estimated knot vectors [42].

On the other hand, many statisticians think that the statistical inference based on one smooth-
ing level is not reliable although it is the optimal one. Therefore, multi-scale method is devel-
oped to estimate and test nonparametric regression curves. Chaudhuri and Marron [25, 26]
proposed a multi-scale method to explore the significant structures (local minima and maxima
or global trend) in data, which is known as SiZer. Significant zero crossings of derivatives
(SiZer) is a powerful visualization technique for exploratory data analysis. It applies a large
range of smoothing parameter values to do statistical inference simultaneously and use a 2D
colored map (SiZer map) to summarize all of the results inferred at different smoothing levels
(scales) and locations.

In this section, a regression spline version of SiZer is proposed for exploring structures of curve
and comparing multiple regression curves, respectively. The proposed SiZer employs the
number of knots as smoothing parameter (scales). For the sake of simplicity, linear spline is
employed first to construct SiZer, which is denoted as SiZerLS. In addition, another version of
SiZer—SiZerSS—is introduced, which is proposed in Marron and Zhang [33]. In SiZerSS,
smoothing spline is used to infer the monotonicity of f xð Þ, and the tuning parameter (penalty
parameter) that controls the size of penalty is chosen to be as the smoothing parameter. Finally,
SiZer-RS, a version of SiZer based on higher-order spline interpolation, is constructed to
compare multiple regression curves at different scales and locations simultaneously.

In order to understand SiZerLS clearly, we first present an example in which SiZerLS are
simulated. This example is modified from Hannig and Lee [28] with the same regression
function:

f xð Þ ¼ 5þ 4:2 1þ x� 0:3j j
0:03

� �
� 4þ 5:1 1þ x–0:7j j

0:01

� �
� 4:

The observations generated from model (1) with 200 equally spaced design points from (0, 1)

and σ � N 0; 0:5ð Þ are plotted in Figure 1. Estimator bf m xð Þ denotes the linear spline smoother

obtained from (6) using m equally spaced knots chosen from (0, 1). The curves of bf m xð Þ with
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different values of m are plotted in Figure 1 too. The simulated SiZerLS map and SiZerSS map
are shown in Figure 2, respectively.

In Figure 2, BYP SiZerLS is SiZerLS map based on multiple testing procedures, BYP, where
BYP denotes the multiple testing procedure proposed in Benjamini and Yekutieli [43]. SiZerSS
is the smoothing spline version of SiZer. The two SiZers are simulated under the same range of
scales and nominal level 0.05. There are four colors in SiZer maps: red indicates that the

Figure 1. 200 observations and the estimated curves based on different knot sets.

Figure 2. BYP SiZerLS and SiZerSS for detecting peaks of data.
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ing level is not reliable although it is the optimal one. Therefore, multi-scale method is devel-
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proposed a multi-scale method to explore the significant structures (local minima and maxima
or global trend) in data, which is known as SiZer. Significant zero crossings of derivatives
(SiZer) is a powerful visualization technique for exploratory data analysis. It applies a large
range of smoothing parameter values to do statistical inference simultaneously and use a 2D
colored map (SiZer map) to summarize all of the results inferred at different smoothing levels
(scales) and locations.

In this section, a regression spline version of SiZer is proposed for exploring structures of curve
and comparing multiple regression curves, respectively. The proposed SiZer employs the
number of knots as smoothing parameter (scales). For the sake of simplicity, linear spline is
employed first to construct SiZer, which is denoted as SiZerLS. In addition, another version of
SiZer—SiZerSS—is introduced, which is proposed in Marron and Zhang [33]. In SiZerSS,
smoothing spline is used to infer the monotonicity of f xð Þ, and the tuning parameter (penalty
parameter) that controls the size of penalty is chosen to be as the smoothing parameter. Finally,
SiZer-RS, a version of SiZer based on higher-order spline interpolation, is constructed to
compare multiple regression curves at different scales and locations simultaneously.

In order to understand SiZerLS clearly, we first present an example in which SiZerLS are
simulated. This example is modified from Hannig and Lee [28] with the same regression
function:

f xð Þ ¼ 5þ 4:2 1þ x� 0:3j j
0:03
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� 4þ 5:1 1þ x–0:7j j

0:01
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� 4:

The observations generated from model (1) with 200 equally spaced design points from (0, 1)

and σ � N 0; 0:5ð Þ are plotted in Figure 1. Estimator bf m xð Þ denotes the linear spline smoother

obtained from (6) using m equally spaced knots chosen from (0, 1). The curves of bf m xð Þ with
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different values of m are plotted in Figure 1 too. The simulated SiZerLS map and SiZerSS map
are shown in Figure 2, respectively.

In Figure 2, BYP SiZerLS is SiZerLS map based on multiple testing procedures, BYP, where
BYP denotes the multiple testing procedure proposed in Benjamini and Yekutieli [43]. SiZerSS
is the smoothing spline version of SiZer. The two SiZers are simulated under the same range of
scales and nominal level 0.05. There are four colors in SiZer maps: red indicates that the
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estimated regression curve is significantly decreasing; blue indicates that the estimated regres-
sion curve is significantly increasing; purple indicates that the curve is neither significantly
increasing nor decreasing; gray shows that there are no sufficient data for conducting reason-
able statistical inference. Figure 1 preliminarily shows that SiZer maps can locate peaks well.
The theoretical foundation of SiZerLS and SiZerSS will be discussed in more detail at a later
stage.

3.1. Construction of SiZerLS map for exploring features of regression curve

The proposed SiZerLS map will be constructed on the basis of the p-values with multiple
testing adjustment. The p-value for testing the monotonicity of the smoothed curve is defined
first based on linear spline approximation and fiducial method in the same way as p-values in
Section 2. Consequently, multiple testing adjustment is discussed detailedly to control the row-
wise false discovery rate (FDR) of SiZerLS.

In the view of SiZer, all of the useful information is included in the smoothed curve, which is
defined below. Suppose we have observations xi; yi

� �n
i¼1 from regression model (1). By linear

spline estimation, estimator bf m xð Þ can be obtained:

bf m xð Þ ¼ g xð Þ0 GTG
� ��1

GT Y, (22)

where g xð Þ¼ g1 xð Þ; g2 xð Þ;⋯; gm xð Þ� �0; gj xð Þ, j ¼ 1,⋯, m are the basis functions defined in (7) on

the basis of m knots; and G is the matrix defined in Section 2. The smoothed curve at smooth-
ing level m is denoted as.

f m xð Þ ¼ E bf m xð Þ
� �

¼ g xð Þ0 GTG
� ��1

GT f ,

where f¼ f x1ð Þ; f x2ð Þ;⋯; f xnð Þf g0. SiZer focuses on f m xð Þ: Its monotonicity is determined totally

by GTG
� ��1

GT f. Hence, it is enough to test the following m� 1 pairs of null hypotheses:

HIk ¼ f m tkð Þ ¼ e0k G0Gð Þ�1G0f ≤ e0kþ1 G0Gð Þ�1G0f ¼ f m tkþ1ð ÞðandÞ

HDk ¼ f m tkð Þ ¼ e0k G0Gð Þ�1G0f ≥ e0kþ1 G0Gð Þ�1G0f ¼ f m tkþ1ð Þ, k ¼ 1, 2,⋯, m� 1, (23)

where ek is anm-dimensional column vector having 1 in the kth entry and zero elsewhere. Let b

denote G0Gð Þ�1G0f . Then, HIk and HDk can be written as

H∗
Ik ¼ Lkb ≤ 0, k ¼ 1, 2,⋯, m� 1; H∗

Dk ¼ Lkb ≥ 0, k ¼ 1, 2,⋯, m� 1, (24)

where Lk ≜ e0k � e0kþ1

�
). The p-values to test hypotheses in (24) under linear model Y ¼ Gbþ ε

can be defined using pivotal quantity about b. This pivotal quantity is R E;bβ; S2
� �

, which is

defined in (11). The p-value for testing H∗
Ik is the fiducial probability that null hypothesis holds:
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P∗
Ik
bβ; S
� �

¼ P LkR E;bβ; S
� �

≤ 0
n o

¼ P Lkbβ � S
E2

G0Gð Þ�1
2E1 ≤ 0

� �

¼ P
ffiffiffiffiffiffiffiffiffiffiffiffiffi
n�m

p
Lk G0Gð Þ�1G0E1

Lk G0Gð Þ�1L0k
� �1

2
E2

≥

ffiffiffiffiffiffiffiffiffiffiffiffiffi
n�m

p bβ
S Lk G0Gð Þ�1L0k
� �1

2

8><
>:

9>=
>;
, (25)

where the subscript Ik of P∗
Ik represents the interval (tk, tkþ1) in which we test monotonicity and

m represents the number of knots used in linear interpolation. In addition, p-value P∗
Dk
bβ; S
� �

for testing H∗
Dk satisfies equation P∗

Ik
bβ; S
� �

þ P∗
Dk
bβ; S
� �

¼ 1.

It is worth noting that p-value P∗
Ik
bβ; S
� �

is uniformly distributed on (0,1) if all of the hypotheses

HIk, HDk, k ¼ 1, 2,⋯, m� 1 are true (regression function is a constant). In applications, p-value

P∗
Ik
bβ; S
� �

for testing HIk can be approximated as below when n ! ∞: This approximation is

reasonable (see Theorem 1 in [44]):

PIk,m bβ; S
� �

≜ 1� Φ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
n�m

p
Lkbβ

S Lk G0Gð Þ�1Lk
� �1=2

0
B@

1
CA: (26)

The proposed SiZerLS map will be constructed on the basis of the above p-values with
multiple testing adjustment. In fact, SiZer is a visual method for exploratory data analysis,
and it focuses on exploring features that really exist in data instead of testing whether some
assumed features are statistically significant in a strict way. FDR is the expected proportion of
the false positives among all discoveries, and FDR can be either permissive or conservative
according to the number of hypotheses. Considering that different numbers of hypotheses
need to be tested for SiZerLS with respect to various smoothing parameters, the multiple
testing adjustment to control FDR would be better if used to improve the exploratory property
of SiZer. Hence, the well-known multiple testing procedure which was proposed in Benjamini
and Yekutieli [43] (denoted as BYP) is applied to control the row-wise FDR of SiZerLS. The
BYP was proved to control FDR under α for any dependent test statistics.

3.1.1. Benjamin-Yekutieli procedure to control FDR (BYP)

Suppose that we have obtained p-values PIk,m bβ; S
� �

for testing hypotheses HIk in (23),

k ¼ 1, 2,⋯, m� 1:

1. Order p-values P∗
Ik,m and get the ordered p-values PI 1ð Þ,m, PI 2ð Þ,m,⋯, PI m�1ð Þ,m.

2. For a given p-value α, find the largest i for k ¼ 1, 2,⋯, m� 1 for which PI ið Þ,m ≤ kα
m�1ð Þ

Pm�1

j¼1
1
j

and reject all HI kð Þ,m for k ¼ 1, 2,⋯, m� 1.
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estimated regression curve is significantly decreasing; blue indicates that the estimated regres-
sion curve is significantly increasing; purple indicates that the curve is neither significantly
increasing nor decreasing; gray shows that there are no sufficient data for conducting reason-
able statistical inference. Figure 1 preliminarily shows that SiZer maps can locate peaks well.
The theoretical foundation of SiZerLS and SiZerSS will be discussed in more detail at a later
stage.

3.1. Construction of SiZerLS map for exploring features of regression curve

The proposed SiZerLS map will be constructed on the basis of the p-values with multiple
testing adjustment. The p-value for testing the monotonicity of the smoothed curve is defined
first based on linear spline approximation and fiducial method in the same way as p-values in
Section 2. Consequently, multiple testing adjustment is discussed detailedly to control the row-
wise false discovery rate (FDR) of SiZerLS.

In the view of SiZer, all of the useful information is included in the smoothed curve, which is
defined below. Suppose we have observations xi; yi

� �n
i¼1 from regression model (1). By linear

spline estimation, estimator bf m xð Þ can be obtained:

bf m xð Þ ¼ g xð Þ0 GTG
� ��1

GT Y, (22)

where g xð Þ¼ g1 xð Þ; g2 xð Þ;⋯; gm xð Þ� �0; gj xð Þ, j ¼ 1,⋯, m are the basis functions defined in (7) on

the basis of m knots; and G is the matrix defined in Section 2. The smoothed curve at smooth-
ing level m is denoted as.

f m xð Þ ¼ E bf m xð Þ
� �

¼ g xð Þ0 GTG
� ��1

GT f ,

where f¼ f x1ð Þ; f x2ð Þ;⋯; f xnð Þf g0. SiZer focuses on f m xð Þ: Its monotonicity is determined totally

by GTG
� ��1

GT f. Hence, it is enough to test the following m� 1 pairs of null hypotheses:

HIk ¼ f m tkð Þ ¼ e0k G0Gð Þ�1G0f ≤ e0kþ1 G0Gð Þ�1G0f ¼ f m tkþ1ð ÞðandÞ

HDk ¼ f m tkð Þ ¼ e0k G0Gð Þ�1G0f ≥ e0kþ1 G0Gð Þ�1G0f ¼ f m tkþ1ð Þ, k ¼ 1, 2,⋯, m� 1, (23)

where ek is anm-dimensional column vector having 1 in the kth entry and zero elsewhere. Let b

denote G0Gð Þ�1G0f . Then, HIk and HDk can be written as

H∗
Ik ¼ Lkb ≤ 0, k ¼ 1, 2,⋯, m� 1; H∗

Dk ¼ Lkb ≥ 0, k ¼ 1, 2,⋯, m� 1, (24)

where Lk ≜ e0k � e0kþ1

�
). The p-values to test hypotheses in (24) under linear model Y ¼ Gbþ ε

can be defined using pivotal quantity about b. This pivotal quantity is R E;bβ; S2
� �

, which is

defined in (11). The p-value for testing H∗
Ik is the fiducial probability that null hypothesis holds:
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P∗
Ik
bβ; S
� �

¼ P LkR E;bβ; S
� �

≤ 0
n o

¼ P Lkbβ � S
E2

G0Gð Þ�1
2E1 ≤ 0

� �

¼ P
ffiffiffiffiffiffiffiffiffiffiffiffiffi
n�m

p
Lk G0Gð Þ�1G0E1

Lk G0Gð Þ�1L0k
� �1

2
E2

≥

ffiffiffiffiffiffiffiffiffiffiffiffiffi
n�m

p bβ
S Lk G0Gð Þ�1L0k
� �1

2

8><
>:

9>=
>;
, (25)

where the subscript Ik of P∗
Ik represents the interval (tk, tkþ1) in which we test monotonicity and

m represents the number of knots used in linear interpolation. In addition, p-value P∗
Dk
bβ; S
� �

for testing H∗
Dk satisfies equation P∗

Ik
bβ; S
� �

þ P∗
Dk
bβ; S
� �

¼ 1.

It is worth noting that p-value P∗
Ik
bβ; S
� �

is uniformly distributed on (0,1) if all of the hypotheses

HIk, HDk, k ¼ 1, 2,⋯, m� 1 are true (regression function is a constant). In applications, p-value

P∗
Ik
bβ; S
� �

for testing HIk can be approximated as below when n ! ∞: This approximation is

reasonable (see Theorem 1 in [44]):

PIk,m bβ; S
� �

≜ 1� Φ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
n�m

p
Lkbβ

S Lk G0Gð Þ�1Lk
� �1=2

0
B@

1
CA: (26)

The proposed SiZerLS map will be constructed on the basis of the above p-values with
multiple testing adjustment. In fact, SiZer is a visual method for exploratory data analysis,
and it focuses on exploring features that really exist in data instead of testing whether some
assumed features are statistically significant in a strict way. FDR is the expected proportion of
the false positives among all discoveries, and FDR can be either permissive or conservative
according to the number of hypotheses. Considering that different numbers of hypotheses
need to be tested for SiZerLS with respect to various smoothing parameters, the multiple
testing adjustment to control FDR would be better if used to improve the exploratory property
of SiZer. Hence, the well-known multiple testing procedure which was proposed in Benjamini
and Yekutieli [43] (denoted as BYP) is applied to control the row-wise FDR of SiZerLS. The
BYP was proved to control FDR under α for any dependent test statistics.

3.1.1. Benjamin-Yekutieli procedure to control FDR (BYP)

Suppose that we have obtained p-values PIk,m bβ; S
� �

for testing hypotheses HIk in (23),

k ¼ 1, 2,⋯, m� 1:

1. Order p-values P∗
Ik,m and get the ordered p-values PI 1ð Þ,m, PI 2ð Þ,m,⋯, PI m�1ð Þ,m.

2. For a given p-value α, find the largest i for k ¼ 1, 2,⋯, m� 1 for which PI ið Þ,m ≤ kα
m�1ð Þ

Pm�1

j¼1
1
j

and reject all HI kð Þ,m for k ¼ 1, 2,⋯, m� 1.
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The detailed steps to construct SiZerLS with BYP adjustment are given below:

Step 1. Construct 2D grid map. Without loss of generality, we assume that designed points
xi, i ¼ 1, 2,⋯, n are chosen from [0, 1]. Then the 2D map is a rectangular area [0, 1;
log10 1=mmax;ð Þ, log10 1=mminð Þ�; see BYP SiZerLS displayed in Figure 2. The value of m is

determined by the following rule: m ¼ round 1=10l
� �

, where function round (∙) is the nearest

integer function and l takes equally spaced values from interval log10 1=mminð Þ;�
log10 1=mmaxð Þ�.

For a given m, abscissa x takes values at the corresponding knots Tm ¼ t1; t2;⋯; tmf g. On the
basis of different values of m and Tm, the 2D map is divided into many pixels.

Step 2. Calculate p-values for each pixel. Each pixel in the 2D map constructed in step 1 is
determined by two adjacent knots and a determined m. For pixel tk; tkþ1;m ¼ m0ð Þ, we calculate
p-value PIk,m0 and PDk,m0 for testing hypotheses H∗

Ik,m0
and H∗

Dk,m0
, respectively, with m0 knots.

Step 3. Multiple testing adjustment. For a given value m ¼ m0, carry out multiple testing
procedure BYP using p-values PIk,m0 (PDk,m0 ), k ¼ 1, 2,⋯, m0, obtained from step 2 to test the
fowling family of hypotheses simultaneously:

H∗
I1,m0

;H∗
I2,m0

;⋯;H∗
Im0�1,m0

n o
H∗

D1,m0
;H∗

D2,m0
;⋯;H∗

Dm0�1,m0

� �
:

Step 4. Color pixels. According to the multiple testing results at smoothing level m0 if H∗
Ik is

rejected andH∗
Dk is accepted, pixel tk; tkþ1;m ¼ m0ð Þ is colored red to indicate significant decreas-

ing. On the contrary, if H∗
Ik, ,m0

is accepted and H∗
Dk,m0

rejected, pixel tk; tkþ1;m ¼ m0ð Þ is colored
blue to show significant increasing; purple is used for no significant trend in other cases.

In SiZer map, gray indicates that no sufficient data can be used to test the monotonicity of
regression function at point x with m knots. Such sufficiency is quantified as effective sample
size (ESS). Noting that the number of nonzero elements in the kth column of G has a demon-
strable effect on the inference in interval tk; tkþ1ð Þ, and it is determined directly by how many
observations are included in tk; tkþ1ð Þ, we define ESS tk;mð Þ as.

ESS t1;mð Þ;ESS t2;mð Þ;⋯;ESS tm;mð Þð Þ0 ≜G0G 1; 1;⋯; 1ð Þ0:

In SiZerLS map, pixel tk; tkþ1;m ¼ m0ð Þ would be colored gray if.

min ESS tk;m0ð Þ;ESS tkþ1;m0ð Þð Þ < 5:

In order to avoid selecting knots, m equally spaced knots or equal x-quantiles are used in
interpolation. The smoothing level of regression spline estimate is controlled by m together
with the positions of knots. The level of smoothness should be reduced to detect some
local fine feature; however, the total number of knots should be limited to avoid excessive
under-smoothing in a wide range. In applications of SiZerLS, the range of scales is
recommended to include the coarsest smoothing level, m ¼ 2, and the finest smoothing level,
avgx∈Tmmax

ESS x;mmaxð Þ < 5.
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3.2. Construction of SiZerSS map for exploring features of regression curve

SiZerSS given in Marron and Zhang [33] employed smoothing spline to construct SiZer map
for nonparametric model (1). Given xi; yi

� �n
i¼1 and a smoothing parameter λ, the smoothing

spline estimator is the function bf λ that minimizes the regularization criterion over function f :

Xn

i¼1

ωi yi � f xið Þ� �2 þ λ
ð

f
0 0
xð Þ

h i2
dx: (27)

By simple calculation, we can get the estimator vector:

bfλ¼ bf λ x1ð Þ;bf λ x2ð Þ;⋯;bf λ xnð Þ
� �

¼ W þ λKð Þ�1WY ¼ AλY, (28)

where weight matrix W ¼ diag ω1;ω2;⋯;ωnð Þ and the hat matrix Aλ ¼ W þ λKð Þ�1W .

In order to construct SiZerSS, the derivative of f at any point x needs to be estimated along

with its variance. Let si ¼ xiþ1 � xi and n� n� 1ð Þ matrix Q ¼ qij
n o

, i ¼ 1, 2,⋯, n,

j ¼ 2,⋯, n� 1, where qj�1, j ¼ s�1
j�1, qjj ¼ �s�1

j�1 � s�1
j , qjþ1, j ¼ s�1

j , and qi, j ¼ 0 for i� jj j ≥ 2: Let
γ1;γ2;⋯;γn

� � ¼ f
0 0
x1ð Þ; f 0 0 x2ð Þ⋯; f

0 0
xnð Þ

� �
. By the definition of natural cubic spline, f } x1ð Þ ¼

f } xnð Þ ¼ 0. Let γ ¼ γ2;⋯;γn�1

� �0. According to Theorem 2.1 of Green and Silverman [45], the
vectors f and γ specify a natural cubic spline f if and only if Q0f ¼ Rγ,

where R is a (n� 2Þ � n� 2ð Þ symmetric matrix with elements rij, i ¼ 2,⋯, n� 1,

j ¼ 2,⋯, n� 1, which is given by rii ¼ 1
3 si�1 þ sið Þ, ri, iþ1 ¼ riþ1, i ¼ 1

6 si and rij ¼ 0 for i� jj j ≥ 2.
The estimator bγ can be obtained from equation Rþ λQ0Qð Þγ ¼ Q0Y. Then estimator bf xð Þ and
bf 0 xð Þ can be written as a linear combination of bf and bγ. Let hi xð Þ ¼ x� xi, i ¼ 1, 2,⋯, n: When
x < x1:

bf λ xð Þ ¼ bf λ x1ð Þ þ h1 xð Þ
bf λ x2ð Þ �bf λ x1ð Þ

s1
� s1

6
bγ
2

( )
,bf 0 xð Þ ¼

bf λ x2ð Þ �bf λ x1ð Þ
s1

� s1
6
bγ2:

When xi ≤ x ≤ xiþ1, let δi xð Þ ¼ 1þ hi xð Þ
si

� �
bγ iþ1 þ 1� hiþ1 xð Þ

hi

� �
bγ i for i ¼ 1, 2,⋯, n,

bf λ xð Þ ¼ hi xð Þbf λ xiþ1ð Þ � hiþ1 xð Þbf λ xið Þ
si

þ hi xð Þhiþ1 xð Þδi xð Þ
6

,

bf 0λ xð Þ ¼
bf λ xiþ1ð Þ �bf λ xið Þ

si
þ hi xð Þhiþ1 xð Þ bγ iþ1 � bγ ið Þ

6si
þ hi xð Þ þ hiþ1 xð Þ

6
δi xð Þ:

(When) x > xn
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The detailed steps to construct SiZerLS with BYP adjustment are given below:

Step 1. Construct 2D grid map. Without loss of generality, we assume that designed points
xi, i ¼ 1, 2,⋯, n are chosen from [0, 1]. Then the 2D map is a rectangular area [0, 1;
log10 1=mmax;ð Þ, log10 1=mminð Þ�; see BYP SiZerLS displayed in Figure 2. The value of m is

determined by the following rule: m ¼ round 1=10l
� �

, where function round (∙) is the nearest

integer function and l takes equally spaced values from interval log10 1=mminð Þ;�
log10 1=mmaxð Þ�.

For a given m, abscissa x takes values at the corresponding knots Tm ¼ t1; t2;⋯; tmf g. On the
basis of different values of m and Tm, the 2D map is divided into many pixels.

Step 2. Calculate p-values for each pixel. Each pixel in the 2D map constructed in step 1 is
determined by two adjacent knots and a determined m. For pixel tk; tkþ1;m ¼ m0ð Þ, we calculate
p-value PIk,m0 and PDk,m0 for testing hypotheses H∗

Ik,m0
and H∗

Dk,m0
, respectively, with m0 knots.

Step 3. Multiple testing adjustment. For a given value m ¼ m0, carry out multiple testing
procedure BYP using p-values PIk,m0 (PDk,m0 ), k ¼ 1, 2,⋯, m0, obtained from step 2 to test the
fowling family of hypotheses simultaneously:

H∗
I1,m0

;H∗
I2,m0

;⋯;H∗
Im0�1,m0

n o
H∗

D1,m0
;H∗

D2,m0
;⋯;H∗

Dm0�1,m0

� �
:

Step 4. Color pixels. According to the multiple testing results at smoothing level m0 if H∗
Ik is

rejected andH∗
Dk is accepted, pixel tk; tkþ1;m ¼ m0ð Þ is colored red to indicate significant decreas-

ing. On the contrary, if H∗
Ik, ,m0

is accepted and H∗
Dk,m0

rejected, pixel tk; tkþ1;m ¼ m0ð Þ is colored
blue to show significant increasing; purple is used for no significant trend in other cases.

In SiZer map, gray indicates that no sufficient data can be used to test the monotonicity of
regression function at point x with m knots. Such sufficiency is quantified as effective sample
size (ESS). Noting that the number of nonzero elements in the kth column of G has a demon-
strable effect on the inference in interval tk; tkþ1ð Þ, and it is determined directly by how many
observations are included in tk; tkþ1ð Þ, we define ESS tk;mð Þ as.

ESS t1;mð Þ;ESS t2;mð Þ;⋯;ESS tm;mð Þð Þ0 ≜G0G 1; 1;⋯; 1ð Þ0:

In SiZerLS map, pixel tk; tkþ1;m ¼ m0ð Þ would be colored gray if.

min ESS tk;m0ð Þ;ESS tkþ1;m0ð Þð Þ < 5:

In order to avoid selecting knots, m equally spaced knots or equal x-quantiles are used in
interpolation. The smoothing level of regression spline estimate is controlled by m together
with the positions of knots. The level of smoothness should be reduced to detect some
local fine feature; however, the total number of knots should be limited to avoid excessive
under-smoothing in a wide range. In applications of SiZerLS, the range of scales is
recommended to include the coarsest smoothing level, m ¼ 2, and the finest smoothing level,
avgx∈Tmmax

ESS x;mmaxð Þ < 5.
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3.2. Construction of SiZerSS map for exploring features of regression curve

SiZerSS given in Marron and Zhang [33] employed smoothing spline to construct SiZer map
for nonparametric model (1). Given xi; yi

� �n
i¼1 and a smoothing parameter λ, the smoothing

spline estimator is the function bf λ that minimizes the regularization criterion over function f :

Xn

i¼1

ωi yi � f xið Þ� �2 þ λ
ð

f
0 0
xð Þ

h i2
dx: (27)

By simple calculation, we can get the estimator vector:

bfλ¼ bf λ x1ð Þ;bf λ x2ð Þ;⋯;bf λ xnð Þ
� �

¼ W þ λKð Þ�1WY ¼ AλY, (28)

where weight matrix W ¼ diag ω1;ω2;⋯;ωnð Þ and the hat matrix Aλ ¼ W þ λKð Þ�1W .

In order to construct SiZerSS, the derivative of f at any point x needs to be estimated along

with its variance. Let si ¼ xiþ1 � xi and n� n� 1ð Þ matrix Q ¼ qij
n o

, i ¼ 1, 2,⋯, n,

j ¼ 2,⋯, n� 1, where qj�1, j ¼ s�1
j�1, qjj ¼ �s�1

j�1 � s�1
j , qjþ1, j ¼ s�1

j , and qi, j ¼ 0 for i� jj j ≥ 2: Let
γ1;γ2;⋯;γn

� � ¼ f
0 0
x1ð Þ; f 0 0 x2ð Þ⋯; f

0 0
xnð Þ

� �
. By the definition of natural cubic spline, f } x1ð Þ ¼

f } xnð Þ ¼ 0. Let γ ¼ γ2;⋯;γn�1

� �0. According to Theorem 2.1 of Green and Silverman [45], the
vectors f and γ specify a natural cubic spline f if and only if Q0f ¼ Rγ,

where R is a (n� 2Þ � n� 2ð Þ symmetric matrix with elements rij, i ¼ 2,⋯, n� 1,

j ¼ 2,⋯, n� 1, which is given by rii ¼ 1
3 si�1 þ sið Þ, ri, iþ1 ¼ riþ1, i ¼ 1

6 si and rij ¼ 0 for i� jj j ≥ 2.
The estimator bγ can be obtained from equation Rþ λQ0Qð Þγ ¼ Q0Y. Then estimator bf xð Þ and
bf 0 xð Þ can be written as a linear combination of bf and bγ. Let hi xð Þ ¼ x� xi, i ¼ 1, 2,⋯, n: When
x < x1:

bf λ xð Þ ¼ bf λ x1ð Þ þ h1 xð Þ
bf λ x2ð Þ �bf λ x1ð Þ

s1
� s1

6
bγ
2

( )
,bf 0 xð Þ ¼

bf λ x2ð Þ �bf λ x1ð Þ
s1

� s1
6
bγ2:

When xi ≤ x ≤ xiþ1, let δi xð Þ ¼ 1þ hi xð Þ
si

� �
bγ iþ1 þ 1� hiþ1 xð Þ

hi

� �
bγ i for i ¼ 1, 2,⋯, n,

bf λ xð Þ ¼ hi xð Þbf λ xiþ1ð Þ � hiþ1 xð Þbf λ xið Þ
si

þ hi xð Þhiþ1 xð Þδi xð Þ
6

,

bf 0λ xð Þ ¼
bf λ xiþ1ð Þ �bf λ xið Þ

si
þ hi xð Þhiþ1 xð Þ bγ iþ1 � bγ ið Þ

6si
þ hi xð Þ þ hiþ1 xð Þ

6
δi xð Þ:

(When) x > xn
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bf λ xð Þ ¼ bf λ xnð Þ þ hn xð Þ
6

bf λ xnð Þ �bf λ xn�1ð Þ
sn�1

þ sn�1bγn�1

( )
,

bf 0λ xð Þ ¼ 1
6

bf λ xnð Þ �bf λ xn�1ð Þ
sn�1

þ sn�1bγn�1

( )
:

The variance of bf 0λ xð Þ can be calculated easily if the estimator of σ2, the variance of the error in

model (1), is obtained. σ2can be estimated by the sum of squared residuals
P

yi �bf λ xið Þ
� �2

. If

σ2 is a function of x, σ2 xð Þ can be estimated by yi �bf λ xð Þ
� �2

. The confidence interval of f λ
0 xð Þ

are of the form:

bf 0λ xð Þ � q:cSD bf λ
0
xð Þ

� �
, (29)

where q is based on the nominal level. For details, see Section 3 of Chaudhuri and Marron [25].

SiZerSS can be constructed as SiZerLS. For different values of x, if interval (29) contains zero,
pixel x;λð Þ is colored purple; if confidence interval is on the right side of zero, blue is used to
indicate increasing; otherwise, red is used to imply decreasing. Gray is used to indicate that
there is no sufficient data to do reliable inference. The sufficiency can be found in Chaudhuri
and Marron [25].

The simulated SiZerLS and SiZerSS maps are displayed in Figure 2, where the red and blue
regions locate the bumps of regression curve accurately. This simulation illustrates the good
behavior of SiZerLS and SiZerSS in exploring features in data.

3.3. Construction of SiZer-RS map for comparing multiple regression curves

The comparison of two or more populations is a common problem and is of great practical
interest in statistics. In this subsection, comparison of multiple regression curves in a general

regression setting is developed based on regression spline. Suppose we have n ¼P
k

i¼1
ni inde-

pendent observations from the following k regression models:

yij ¼ f i xij
� �þ σi xij

� �
εij, i ¼ 1, 2,⋯, k, j ¼ 1, 2,⋯, ni, (30)

where xij s are covariates, the errors εij � N 0; 1ð Þ s are independent and identically distributed

errors, f i �ð Þ is the regression function, and σ2i �ð Þ is the conditional variance function of the ith
population. We are concerned about whether the k populations in model (30) are equal; if not,
what is the difference? To this end, a multi-scale method, SiZer-RS, based on regression spline
is proposed to compare f i �ð Þ across multiple scales and locations.

As described in Park and Kang [32], the choice of smoothing parameter is also important for
comparing regression curves. They developed SiZer for the comparison of regression curves
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based on local linear smoother. SiZer map for comparing regression curves is a 2D color map,
which consists of a large number of pixels. Each pixel is indexed by a scale (smoothing
parameter) and a location; the color of a pixel indicates the result for testing the equality of
two or more multiple regression curves at the corresponding location and scale. SiZer provides
us with more information about the locations of the differences among the regression curves if
they do exist. Park et al. [46] developed an ANOVA-type test statistic and conducted it in scale
space for testing the equality of more than two regression curves.

The works mentioned above are kernel-based method. Besides it, regression spline is an
important smoothing device and is used widely in applications. For a given smoothing param-
eter m (the number of knots used in regression spline), the p-value for testing the equality of k
regression curves at point x is established. Consequently, SiZer-RS is constructed in the same
way as SiZerLS for comparing multiple retrogression curves based on higher-order spline
interpolation.

For a given smoothing parameter m (the number of knots used in regression spline), the

smoothed curve is defined as f i,m xð Þ ¼ Eðbf i,m (x)), where bf i,m xð Þ is the regression spline estima-
tor. SiZer-RS for comparing multiple regression curves is based on the testing results for
testing null hypothesis:

Hm,x : f 1,m xð Þ ¼ f 2,m xð Þ ¼ ⋯ ¼ f k,m xð Þ, (31)

at point x with smoothing parameter m. Without loss of generality, we still suppose
that the explanatory variable x takes value from [0, 1]. On the basis of a knot set
Tm ¼ 0 ¼ t1 < t2;⋯; < tm ¼ 1f g, we have the approximation:

f i xð Þ ≈
Xmþq�1

s¼1

βi, sgm, s xð Þ≜Nm xð Þ0βmi , (32)

where βmi ¼ βi,1; βi,2;⋯; βi,mþp�1

� �0
: The estimator of f i xð Þ at smoothing level m can be

obtained bf i,m xð Þ ¼ Nm xð Þ0bβmi , in which, Nm xð Þ ¼ gm,s xð Þ; s ¼ 1; 2;⋯;mþ q� 1
n o

: If q ¼ 3,

Nm xð Þ0 is defined below:

Nl
m xð Þ ¼ tl � tl�4ð Þ tl�4; tl�3; tl�2; tl�1; tl½ � t� xð Þ3þ, l ¼ 2, 3,⋯, mþ 3,

where tl ¼ tmin max l;1ð Þ;mð Þ for l ¼ �2, � 1,⋯, mþ 3:

t� xð Þ3þ ¼
t� xð Þ3, t > x

0, t ≤ x
:

8<
:

For a function g �ð Þ, tl�4; tl�3; tl�2; tl�1; tl½ �g �ð Þ denotes the fourth-order divided difference of
g �ð Þ, that is:
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bf λ xð Þ ¼ bf λ xnð Þ þ hn xð Þ
6

bf λ xnð Þ �bf λ xn�1ð Þ
sn�1

þ sn�1bγn�1

( )
,

bf 0λ xð Þ ¼ 1
6

bf λ xnð Þ �bf λ xn�1ð Þ
sn�1

þ sn�1bγn�1

( )
:

The variance of bf 0λ xð Þ can be calculated easily if the estimator of σ2, the variance of the error in

model (1), is obtained. σ2can be estimated by the sum of squared residuals
P

yi �bf λ xið Þ
� �2

. If

σ2 is a function of x, σ2 xð Þ can be estimated by yi �bf λ xð Þ
� �2

. The confidence interval of f λ
0 xð Þ

are of the form:

bf 0λ xð Þ � q:cSD bf λ
0
xð Þ

� �
, (29)

where q is based on the nominal level. For details, see Section 3 of Chaudhuri and Marron [25].

SiZerSS can be constructed as SiZerLS. For different values of x, if interval (29) contains zero,
pixel x;λð Þ is colored purple; if confidence interval is on the right side of zero, blue is used to
indicate increasing; otherwise, red is used to imply decreasing. Gray is used to indicate that
there is no sufficient data to do reliable inference. The sufficiency can be found in Chaudhuri
and Marron [25].

The simulated SiZerLS and SiZerSS maps are displayed in Figure 2, where the red and blue
regions locate the bumps of regression curve accurately. This simulation illustrates the good
behavior of SiZerLS and SiZerSS in exploring features in data.

3.3. Construction of SiZer-RS map for comparing multiple regression curves

The comparison of two or more populations is a common problem and is of great practical
interest in statistics. In this subsection, comparison of multiple regression curves in a general

regression setting is developed based on regression spline. Suppose we have n ¼P
k

i¼1
ni inde-

pendent observations from the following k regression models:

yij ¼ f i xij
� �þ σi xij

� �
εij, i ¼ 1, 2,⋯, k, j ¼ 1, 2,⋯, ni, (30)

where xij s are covariates, the errors εij � N 0; 1ð Þ s are independent and identically distributed

errors, f i �ð Þ is the regression function, and σ2i �ð Þ is the conditional variance function of the ith
population. We are concerned about whether the k populations in model (30) are equal; if not,
what is the difference? To this end, a multi-scale method, SiZer-RS, based on regression spline
is proposed to compare f i �ð Þ across multiple scales and locations.

As described in Park and Kang [32], the choice of smoothing parameter is also important for
comparing regression curves. They developed SiZer for the comparison of regression curves
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based on local linear smoother. SiZer map for comparing regression curves is a 2D color map,
which consists of a large number of pixels. Each pixel is indexed by a scale (smoothing
parameter) and a location; the color of a pixel indicates the result for testing the equality of
two or more multiple regression curves at the corresponding location and scale. SiZer provides
us with more information about the locations of the differences among the regression curves if
they do exist. Park et al. [46] developed an ANOVA-type test statistic and conducted it in scale
space for testing the equality of more than two regression curves.

The works mentioned above are kernel-based method. Besides it, regression spline is an
important smoothing device and is used widely in applications. For a given smoothing param-
eter m (the number of knots used in regression spline), the p-value for testing the equality of k
regression curves at point x is established. Consequently, SiZer-RS is constructed in the same
way as SiZerLS for comparing multiple retrogression curves based on higher-order spline
interpolation.

For a given smoothing parameter m (the number of knots used in regression spline), the

smoothed curve is defined as f i,m xð Þ ¼ Eðbf i,m (x)), where bf i,m xð Þ is the regression spline estima-
tor. SiZer-RS for comparing multiple regression curves is based on the testing results for
testing null hypothesis:

Hm,x : f 1,m xð Þ ¼ f 2,m xð Þ ¼ ⋯ ¼ f k,m xð Þ, (31)

at point x with smoothing parameter m. Without loss of generality, we still suppose
that the explanatory variable x takes value from [0, 1]. On the basis of a knot set
Tm ¼ 0 ¼ t1 < t2;⋯; < tm ¼ 1f g, we have the approximation:

f i xð Þ ≈
Xmþq�1

s¼1

βi, sgm, s xð Þ≜Nm xð Þ0βmi , (32)

where βmi ¼ βi,1; βi,2;⋯; βi,mþp�1

� �0
: The estimator of f i xð Þ at smoothing level m can be

obtained bf i,m xð Þ ¼ Nm xð Þ0bβmi , in which, Nm xð Þ ¼ gm,s xð Þ; s ¼ 1; 2;⋯;mþ q� 1
n o

: If q ¼ 3,

Nm xð Þ0 is defined below:

Nl
m xð Þ ¼ tl � tl�4ð Þ tl�4; tl�3; tl�2; tl�1; tl½ � t� xð Þ3þ, l ¼ 2, 3,⋯, mþ 3,

where tl ¼ tmin max l;1ð Þ;mð Þ for l ¼ �2, � 1,⋯, mþ 3:

t� xð Þ3þ ¼
t� xð Þ3, t > x

0, t ≤ x
:

8<
:

For a function g �ð Þ, tl�4; tl�3; tl�2; tl�1; tl½ �g �ð Þ denotes the fourth-order divided difference of
g �ð Þ, that is:
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t1; t2½ �g ¼ g0 tð Þ, if t1 ¼ t2 ¼ t

t1; t2½ �g ¼ g t2ð Þ � g t1ð Þ
t2 � t1

otherwise,

t1; t2;⋯; tk½ �g ¼ g k�1ð Þ tð Þ, if t1 ¼ ⋯ ¼ tk

t1; t2;⋯; tk½ �g ¼ t2; t3;⋯; tk½ �g� t1; t2;⋯; tk�1½ �g
tk � t1

, otherwise:

8>>>>>>>>>>><
>>>>>>>>>>>:

Then model (31) can be approximately written as the following linear regression model:

Yi ¼ Gm
i β

m
i þ ΣiEi, (33)

where

Yi ¼ yi1; yi2;⋯; yini

� �0
, Gm

i ¼ Nl
m xið Þ� �

ni� mþ2ð Þ, Σi ¼ diag σi xij
� �� �

, Ei ¼ εi1; εi2;⋯; εini
� �0

:

At first, we suppose Σi is known and then replace it by its available estimator.

From regression model (33), we can get the estimator bβm
i ¼ Gm0

i Σ�1
i Gm

i

� ��1
Gm

i 0Σ�1
i Yi: Let bmi

denote the expectation of bβm
i :

bmi ¼ E bβm
i

� �
¼ Gm

i 0Σ�1
i Gm

i

� ��1
Gm

i 0Σ�1
i fi,

where fi ¼ f i xi1ð Þ;⋯; f i xini
� �� �0. Therefore, the smoothed curve

f i,m xð Þ ¼ E bf i,m xð Þ
� �

¼ E Nm xð Þ0 Gm0
i Σ�1

i Gm
i

� ��1
Gm0

i Σ�1
i Yi

h i
¼ Nm xð Þ0bmi : (34)

Denote bm ¼ bm0
1 ; bm0

2 ;⋯; bm0
k

� �0, and correspondingly, denote its estimator as bβm ¼ βm0
1 ; βm0

2 ;⋯
�

βm0
k Þ0. Hypothesis Hm,x can be presented as

Hm,x : Lm xð Þbm ¼ 0k�1, (35)

where

Lm xð Þ ¼

Nm xð Þ Nm xð Þ Nm xð Þ Nm xð Þ
�Nm xð Þ 0 0 ⋯ 0

0 �Nm xð Þ 0 0

⋯ ⋯ ⋯ ⋯
0 0 0 ⋯ 0

0 0 0 �Nm xð Þ

2
6666666664

3
7777777775

is a k� 1ð Þ � k mþ q� 1ð Þ matrix.

Topics in Splines and Applications98

The p-value for testing hypothesis Hm,x in (35) can be defined as

pm,x bβ
m
i ;
bΣm

� �
¼ P Tm xð Þ0Lm xð Þ0 Lm xð ÞbΣmLm xð Þ0

h i�1
Lm xð ÞTm xð Þ

�

≥ bβm0
i Lm xð Þ0 Lm xð ÞbΣmLm xð Þ0

h i�1
Lm xð Þbβm

i g, (36)

where Tm xð Þ≜ Gm0
i
bΣ�1

i,mG
m
i

� ��1
Gm0

i
bΣ
�1

2

i,m
Ei

( )0
, i ¼ 1, 2,⋯, k; bΣi,m ¼ diag bσ i xij

� �
; j ¼ 1; 2;⋯; ni

� �

is an estimator of the variance matrix of the ith regression model and

bΣm ¼ diag Gm0
i
bΣ�1

i,mG
m
i

� ��1
; i ¼ 1; 2;⋯; k

� �

is an estimator of the variance matrix of Tm xð Þ given bβm
i , bσm2

i , i ¼ 1, 2,⋯, k: The estimator of

σi xij
� �

can be found in Li and Xu [36], where the smoothing parameter, mp, can be used as a

pilot smoothing parameter, which is different from m used in bf i,m xð Þ. SiZer-RS map can be
constructed based on different values of mp, which represents the different trade-offs between
the structure of regression curve and errors.

The two SiZer maps given in Figure 4 are constructed using the data plotted in Figure 3 to
compare three regression curves f 1 xð Þ ¼ f x xð Þ ¼ 0, f 3 xð Þ ¼ 0:5sin 2πxð Þ. Since the variance of
errors is a constant, it can be estimated by the sum of squares of residues. In this case, pilot
smoothing parameter is avoided [47, 48]. The two blue regions in Figure 4 clearly show their
difference across interval (0, 1). The gray color indicates that there is no sufficient data that can
be used to get credible testing results at x and nearby. The sufficiency is quantized as ESS x;mð Þ
for SiZer-RS, and pixel x;mð Þ is colored gray if ESS x;mð Þ < 5:

Figure 3. 200 observations.
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can be found in Li and Xu [36], where the smoothing parameter, mp, can be used as a

pilot smoothing parameter, which is different from m used in bf i,m xð Þ. SiZer-RS map can be
constructed based on different values of mp, which represents the different trade-offs between
the structure of regression curve and errors.

The two SiZer maps given in Figure 4 are constructed using the data plotted in Figure 3 to
compare three regression curves f 1 xð Þ ¼ f x xð Þ ¼ 0, f 3 xð Þ ¼ 0:5sin 2πxð Þ. Since the variance of
errors is a constant, it can be estimated by the sum of squares of residues. In this case, pilot
smoothing parameter is avoided [47, 48]. The two blue regions in Figure 4 clearly show their
difference across interval (0, 1). The gray color indicates that there is no sufficient data that can
be used to get credible testing results at x and nearby. The sufficiency is quantized as ESS x;mð Þ
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ESS x;mð Þ≜ min
i¼1, 2,⋯, k

Nm xð ÞGm0
i Gm

i 1; 1;⋯; 1ð Þ0� �
:

Figure 4 shows that SiZer-RS map can explore the differences between regression curves
accurately.

It is worth noting that, for SiZer-RS map, the coarsest smoothing level should be m ¼ qþ 1 to
ensure the effectiveness of the qth regression spline and the finest smoothing level is recom-
mend to be the one such that avgx∈ x1;x2 ;⋯;xg½ � ESS x;mð Þ < 5, where x1, x2,⋯, xg are points at

which hypothesis Hm,x is tested and pixels are produced by combing different values of m. In
applications, a wide range of values of mp can be used to generate a family of SiZer-RS maps.
Particularly, mp and m can both be used as smoothing parameters simultaneously to construct
a 3D SiZer-RS map [47, 48].

4. Conclusion

This chapter introduces regression spline method for testing the parametric form of nonpara-
metric regression function in nonparametric, partial linear, and varying-coefficient models,
respectively. The corresponded p-values are established based on fiducial method and spline
interpolation. The test procedures on the basis of the proposed p-value are accurate in some

Figure 4. SiZer-RS map.
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cases and are consistent under some mild conditions, which means that the p-value tends to be
zero when null hypothesis is false as sample size and the number of knots used in spline
interpolation tend to be infinity. Hence, the proposed test procedures are performed well
especially in small sample size case.

The spline-based method frequently used smoothing method, which can be used easily with
other statistical methods. When using the spline-based method, the smoothing level is con-
trolled by the number of knots and their positions. In order to sidestep the determination of
knots and obtain more reliable results, multi-scale smoothing methods are proposed based on
spline regression to infer structures of regression function. The multi-scale method is a visual
method to do inference at different locations and smoothing levels. In addition, the smoothing
spline version of multi-scale method is also introduced. The proposed multi-scale method can
also be used for comparing multiple regression curves. Some real data examples illustrate the
practicability of the proposed multi-scale method.

The MATLAB code of SiZerLL and other versions of SiZer based on kernel smoother is
available from the homepage of Professor Marron JS; the MATLAB code of SiZerLS can be
downloaded from the following website:

http://www.tandfonline.com/doi/suppl/10.1080/10618600.2014.1001069?scroll=top.
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Abstract

The joint models for longitudinal data and time-to-event data have recently received numer-
ous attention in clinical and epidemiologic studies. Our interest is in modeling the relation-
ship between event time outcomes and internal time-dependent covariates. In practice, the
longitudinal responses often show non-linear and fluctuated curves. Therefore, the main
aim of this chapter is to use penalized splines with a truncated polynomial basis to param-
eterize the non-linear longitudinal process. Then, the linear mixed effects model is applied to
subject-specific curves and to control the smoothing. The association between the dropout
process and longitudinal outcomes is modeled through a proportional hazard model. Two
types of baseline risk functions are considered, namely a Gompertz distribution and a
piecewise constant model. The resulting models are referred to as penalized spline joint
models; an extension of the standard linear joint models.

Keywords: survival data, longitudinal data, joint models, time-dependent covariates,
random effects

1. Introduction

The joint models for longitudinal data and time-to-event data are aimed to measure the
association between the longitudinal marker level and the hazard rate for an event. The
longitudinal data are collected repeatedly for several subjects. In this data, there are two types
of covariates, namely, time-independent covariates and time-dependent covariates. Further-
more, there are also two different categories of time-dependent covariates, namely, external
and internal covariates. In clinical studies, internal time-dependent longitudinal outcomes are
often applied to monitor disease progression and failure time.
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In modern survival analysis, Cox [1] has been considered as a very popular joint model to be
used for time-independent covariates. These models measured the effect of time-independent
covariates on the hazard rate for an event. Subsequently, the extended Cox model was devel-
oped for external time-dependent covariates. However, these latter models cannot handle
longitudinal biomarkers. Therefore, Rizopoulos [2] introduced joint models for internal time-
dependent covariates and the risk for an event based on linear mixed-effects models and
relative risk models.

The basic assumption for the standard joint models proposed by Rizopoulos [2] is that the
hazard rate at a given time of the dropout process is associated with the expected value of the
longitudinal responses at the same time. The whole history of response has an influence on
the survival function. Thus, it is crucial to obtain good estimates for the subject-specific
trajectories in order to have an accurate estimation of the survival function. In addition, an
important feature that we need to account for is that many observations in the sample often
show non-linear and fluctuated longitudinal trajectories in time. Each observation has its own
trajectory. Therefore, flexibility is needed for subject-specific longitudinal submodels in the
joint models to improve the predictions.

There are several previous works to flexibly model the subject-specific longitudinal profiles in
the joint models. Brown et al. [3] applied B-splines with multidimensional random effects. In
particular, Brown et al. [3] assumed that both subject and population trajectories have the same
number of basis functions. By doing this, the number of parameters in the longitudinal
submodel is reasonably large. If we have to deal with the roughness of the fit for this model,
the computational problems will increase especially when the dimension of the random effects
vector is large. Ding and Wang [4] proposed the use of B-splines with a single multiplicative
random effect to link the population mean function with the subject-specific profile. This
simple model can gain an easy estimation for parameters, however may not be appropriate
for many practical applications [5]. Rizopoulos [5] considered more flexible models using
natural cubic splines with the expansion of the random effects vector. The roughness of the fit
is still not mentioned in these models.

In this chapter, we present new approaches to model non-linear shapes of subjects-specific
evolutions for joint models by extending the standard joint models of Rizopoulos [2]. In
particular, we implement penalized splines using a truncated polynomial basis for the longi-
tudinal submodel. Following this, the linear mixed-effects approach is applied to model the
individual trajectories and impose smoothness over adjacent coefficients respectively. The
ECM algorithm is used for parameter estimation. In addition, corresponding standard errors
are calculated using the observed information matrix. However, as the matrices of random
effects covariates in our models are different from the matrices of random effects covariates in
the standard joint models, the JM package of Rizopoulos [6] cannot be used for our models.
Therefore, a set of R codes are written for the penalized spline joint models to implement the
proposed procedures on the simulated data and a case study respectively.

The chapter is organized as follows. Section 2 describes the penalized splines with truncated
polynomial basis for the joint models. In this section, the two models are specified as penalized
spline joint model with hazard rate at base line having Gompertz distribution (referred to as
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Model 1) and penalized spline joint model with a piecewise-constant baseline risk function
(referred to as Model 2). The joint likelihood, score functions and the ECM algorithm for
estimation are presented in Section 3. We then validate the proposed algorithm using extensive
simulation studies and then apply it for AIDS data in Section 4. Finally, Section 5 gives
concluding remarks.

2. The penalized spline joint models

In this section, we introduce the joint models using penalized spline with truncated polyno-
mial basis. The proposed parametrization is based on the standard joint models of Rizopoulos
[2] and the regression model of a longitudinal response using penalized spline.

Notations in this section are taken from Rizopoulos [2]. Let T∗
i be the true survival time and Ci

be the censoring time for the ith subject i ¼ 1;…; nð Þ. Ti denotes the observed failure time for
the ith subject i ¼ 1;…; nð Þ, which is defined as Ti ¼ min T∗

i ;Ci
� �

. If an ith subject is not censored,

this means that we have observed its survival time, we will have Ti ≤Ci. If an ith subject is
censored, this means that we lose its follow up, or the subject has died from other causes, we
will have Ti > Ci. Furthermore, we define the event indicator as δi ¼ I T∗

i ≤Ci
� �

. The observed
data for survival outcome are Ti; δið Þ, i ¼ 1,…, n.

For a longitudinal response, suppose that we have n subjects in the sample and the actual
observed longitudinal data for each subject-i at time point t is yi tð Þ. We measure the ith subject

at ni time points. Thus, the longitudinal data consists of the measurements yij ¼ yi tij
� �

; j ¼�

1;…; nig taken at time points tij: We denote the true and unobserved value of the longitudinal
outcome at time t as mi tð Þ. We assume the relation between yi tð Þ and mi tð Þ as

yi tð Þ ¼ mi tð Þ þ εi tð Þ, (1)

where εi tð Þ � N 0; σ2ε
� �

.

When survival function S tð Þ is assumed to have a specific parametric form associating with a
longitudinal submodel, estimations for parameters of interest are usually based on the likeli-
hood function [2]. In the maximum likelihood method, there are different treatments for
different types of covariates in the longitudinal submodel. Here, we present the two different
categories of time-dependent covariates and the estimation techniques for these covariates will

be introduced in the following sections. We let the time-dependent covariate for the ith subject
at time t be denoted by yi tð Þ. We let Y i tð Þ ¼ yi sð Þ; 0 ≤ s < t

� �
denote the covariate history of the

ith subject up to time t. According to Kalbfleisch and Prentice [7], the exogenous covariates are
the covariates satisfying the condition:

Pr s ≤Ti < sþ dsjTi ≥ s;Y i sð Þð Þ ¼ Pr s ≤Ti < sþ dsjTi ≥ s;Y i tð Þð Þ, (2)

for all s, t such that 0 < s ≤ t and ds ! 0. An equivalent definition is
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Pr Y i tð ÞjY i sð Þ;Ti ≥ sð Þ ¼ Pr Y i tð ÞjY i sð Þ;Ti ¼ sð Þ, s ≤ t: (3)

On the other hand, endogenous time-varying covariates are the ones that do not satisfy the
condition in (2.2). In particular,

Pr Y i tð ÞjY i sð Þ;Ti ≥ sð Þ 6¼ Pr Y i tð ÞjY i sð Þ;Ti ¼ sð Þ, s ≤ t:

In the penalized spline regression models [8, 9], the observed longitudinal covariate is
modeled using the truncated power functions with a general power basis of degree p. More-
over, the longitudinal response is also parameterized as a linear mixed-effects model to specify
the individual curves and impose the amount of smoothing. As a result, the coefficients of the
knots will be constrained to handle smoothing. In particular, the longitudinal submodel for the
ith subject at time point tij is

yij ¼ f tij
� �þ gi tij

� �þ ε tij
� �

, εi tij
� � � N 0; σ2ε

� �
,

f tij
� � ¼ β0 þ β1tij þ…þ βpt

p
ij þ

XK

k¼1

upk tij �Kk
� �p

þ,

gi tij
� � ¼ vi0 þ vi1tij þ vi2t2ij þ…þ vipt

p
ij þ

XK

k¼1

wipk tij �Kk
� �p

þ:

(4)

Here, the set 1; tij;…; tpij; tij �K1
� �p

þ;…; tij �KK
� �p

þ
n o

is known as the truncated power basis of

degree p. Moreover,K1,…,KK are fitted K knots, for which K is chosen following Ruppert et al.
[9], Chapter 5), Appendix D. The function f :ð Þ is the smooth function which reflects the overall
trend of the population. The function gi :ð Þ is the smooth function which reflects the individual

curves. To constrain the coefficient of knots, the vector up1;…; upK
� �T in the function f :ð Þ is

treated as random effects. Therefore, βT ¼ β0;…; βp
� �

is a pþ 1ð Þ � 1ð Þ row vector of fixed

effects and bTi ¼ up1;…; upK; vi0;…; vip;wip1;…;wipK
� �

is a pþ 2K þ 1ð Þ � 1ð Þ vector of random
effects for the ith subject. The assumptions for the random effects for the ith subject are

vi0;…; vip
� �T � N 0;

Pð Þ, upk � N 0; σ2u
� �

, wipk � N 0; σ2w
� �

and they are independent of one
another. We can now rewrite (2.4) as

yi tij
� � ¼ f tij

� �þ gi tij
� �þ εi tij

� �

¼ β0 þ β1tij þ β2t
2
ij þ…þ βpt

p
ij þ

XK

k¼1

ðupk þ wipkÞ tij �Kk
� �p

þ

þ vi0 þ vi1tij þ vi2t2ij þ…þ vipt
p
ij þ εi tij

� �
:

(5)

We let uipk ¼ upk þ wipk and note that uipk � N 0; σ2u þ σ2w
� �

. In order to allow greater flexibility,

we assume that uip1;…; uipK
� �T � N 0;Dð Þ, where D ¼ Diag D11;…;DKKð Þ. By doing this, the

dimension of the vector of random effects, bTi ¼ vi0;…; vip; uip1;…; uipK
� �

, decreases to
pþ K þ 1ð Þ � 1ð Þ. Consequently, the dimension of the multi-integrals in the log-likelihood
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function in (3.2) will also decrease. This presentation is crucial for reducing the computational
problems while coding. The model in (2.5) now becomes:

yi tij
� � ¼ f tij

� �þ gi tij
� �þ εi tij

� �

¼ β0 þ β1tij þ β2t
2
ij þ…þ βpt

p
ij þ

XK

k¼1

uipk tij �Kk
� �p

þ

þ vi0 þ vi1tij þ vi2t2ij þ…þ vipt
p
ij þ εi tij

� �
:

(6)

The model in (2.6) can be rewritten in matrix notation as:

y ¼ Xβþ Zbþ ε, (7)

where

X ¼
X1

⋮
Xn

2
64

3
75, Z ¼

X1 0 … 0

0 X2 … 0

⋮ ⋮ ⋱ ⋮

0 0 … Xn

Z1 0 … 0

0 Z2 … 0

⋮ ⋮ ⋱ ⋮

0 0 … Zn

2
6666664

3
7777775
,

X i ¼
1 ti1 t2i1 ⋯ tpi1
⋮ ⋮ ⋮ ⋮ ⋮
1 tini t2ini ⋯ tpini

2
64

3
75, Zi ¼

ti1 �K1ð Þpþ ⋯ ti1 �KKð Þpþ
⋮ ⋮ ⋮
tini �K1
� �p

þ ⋯ tini � KK
� �p

þ

2
64

3
75,

bT ¼ v10;…; v1p;…; vn0;…; vnp; u1p1;…; u1pK;…; unp1;…; unpK
� �

,

βT ¼ β0;…; βp
� �

:

Here, y is the
Pn
i¼1

ni � 1
� �

matrix of observed longitudinal data; X is the
Pn
i¼1

ni � pþ 1ð Þ
� �

matrix of fixed effect covariates; Z is the
Pn
i¼1

ni � pþ K þ 1ð Þn
� �

matrix of random effect

covariates and ε is the
Pn
i¼1

ni � 1
� �

matrix of error.

Postulating a proportion hazard model, the penalized spline joint models for longitudinal and
time-to-event data is defined by

hi tjMi tð Þ;wið Þ ¼ lim
dt!0

Pr t ≤T∗
i < tþ dtjT∗

i ≥ t;Mi tð Þ;wi
� �

=dt

¼ h0 tð Þ exp γTwi þ αmi tð Þ
� �

,
(8)

where h0 tð Þ is the hazard at baseline andwi is a vector of baseline covariates (such as treatment
indicator, gender of a patient, etc.). Furthermore, Mi tð Þ ¼ mi sð Þ; 0 ≤ s < tf g denotes the his-
tory of the true unobserved longitudinal process up to time point t.
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Pr Y i tð ÞjY i sð Þ;Ti ≥ sð Þ ¼ Pr Y i tð ÞjY i sð Þ;Ti ¼ sð Þ, s ≤ t: (3)

On the other hand, endogenous time-varying covariates are the ones that do not satisfy the
condition in (2.2). In particular,

Pr Y i tð ÞjY i sð Þ;Ti ≥ sð Þ 6¼ Pr Y i tð ÞjY i sð Þ;Ti ¼ sð Þ, s ≤ t:

In the penalized spline regression models [8, 9], the observed longitudinal covariate is
modeled using the truncated power functions with a general power basis of degree p. More-
over, the longitudinal response is also parameterized as a linear mixed-effects model to specify
the individual curves and impose the amount of smoothing. As a result, the coefficients of the
knots will be constrained to handle smoothing. In particular, the longitudinal submodel for the
ith subject at time point tij is

yij ¼ f tij
� �þ gi tij

� �þ ε tij
� �

, εi tij
� � � N 0; σ2ε

� �
,

f tij
� � ¼ β0 þ β1tij þ…þ βpt

p
ij þ

XK

k¼1

upk tij �Kk
� �p

þ,

gi tij
� � ¼ vi0 þ vi1tij þ vi2t2ij þ…þ vipt

p
ij þ

XK

k¼1

wipk tij �Kk
� �p

þ:

(4)

Here, the set 1; tij;…; tpij; tij �K1
� �p

þ;…; tij �KK
� �p

þ
n o

is known as the truncated power basis of

degree p. Moreover,K1,…,KK are fitted K knots, for which K is chosen following Ruppert et al.
[9], Chapter 5), Appendix D. The function f :ð Þ is the smooth function which reflects the overall
trend of the population. The function gi :ð Þ is the smooth function which reflects the individual

curves. To constrain the coefficient of knots, the vector up1;…; upK
� �T in the function f :ð Þ is

treated as random effects. Therefore, βT ¼ β0;…; βp
� �

is a pþ 1ð Þ � 1ð Þ row vector of fixed

effects and bTi ¼ up1;…; upK; vi0;…; vip;wip1;…;wipK
� �

is a pþ 2K þ 1ð Þ � 1ð Þ vector of random
effects for the ith subject. The assumptions for the random effects for the ith subject are

vi0;…; vip
� �T � N 0;

Pð Þ, upk � N 0; σ2u
� �

, wipk � N 0; σ2w
� �

and they are independent of one
another. We can now rewrite (2.4) as

yi tij
� � ¼ f tij

� �þ gi tij
� �þ εi tij

� �

¼ β0 þ β1tij þ β2t
2
ij þ…þ βpt

p
ij þ

XK

k¼1

ðupk þ wipkÞ tij �Kk
� �p

þ

þ vi0 þ vi1tij þ vi2t2ij þ…þ vipt
p
ij þ εi tij

� �
:

(5)

We let uipk ¼ upk þ wipk and note that uipk � N 0; σ2u þ σ2w
� �

. In order to allow greater flexibility,

we assume that uip1;…; uipK
� �T � N 0;Dð Þ, where D ¼ Diag D11;…;DKKð Þ. By doing this, the

dimension of the vector of random effects, bTi ¼ vi0;…; vip; uip1;…; uipK
� �

, decreases to
pþ K þ 1ð Þ � 1ð Þ. Consequently, the dimension of the multi-integrals in the log-likelihood
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function in (3.2) will also decrease. This presentation is crucial for reducing the computational
problems while coding. The model in (2.5) now becomes:

yi tij
� � ¼ f tij

� �þ gi tij
� �þ εi tij

� �

¼ β0 þ β1tij þ β2t
2
ij þ…þ βpt

p
ij þ

XK

k¼1

uipk tij �Kk
� �p

þ

þ vi0 þ vi1tij þ vi2t2ij þ…þ vipt
p
ij þ εi tij

� �
:

(6)

The model in (2.6) can be rewritten in matrix notation as:

y ¼ Xβþ Zbþ ε, (7)

where

X ¼
X1

⋮
Xn

2
64

3
75, Z ¼

X1 0 … 0

0 X2 … 0

⋮ ⋮ ⋱ ⋮

0 0 … Xn

Z1 0 … 0

0 Z2 … 0
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0 0 … Zn

2
6666664

3
7777775
,
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2
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3
75,

bT ¼ v10;…; v1p;…; vn0;…; vnp; u1p1;…; u1pK;…; unp1;…; unpK
� �

,

βT ¼ β0;…; βp
� �

:

Here, y is the
Pn
i¼1

ni � 1
� �

matrix of observed longitudinal data; X is the
Pn
i¼1

ni � pþ 1ð Þ
� �

matrix of fixed effect covariates; Z is the
Pn
i¼1

ni � pþ K þ 1ð Þn
� �

matrix of random effect

covariates and ε is the
Pn
i¼1

ni � 1
� �

matrix of error.

Postulating a proportion hazard model, the penalized spline joint models for longitudinal and
time-to-event data is defined by

hi tjMi tð Þ;wið Þ ¼ lim
dt!0

Pr t ≤T∗
i < tþ dtjT∗

i ≥ t;Mi tð Þ;wi
� �

=dt

¼ h0 tð Þ exp γTwi þ αmi tð Þ
� �

,
(8)

where h0 tð Þ is the hazard at baseline andwi is a vector of baseline covariates (such as treatment
indicator, gender of a patient, etc.). Furthermore, Mi tð Þ ¼ mi sð Þ; 0 ≤ s < tf g denotes the his-
tory of the true unobserved longitudinal process up to time point t.
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Using (2.7), the longitudinal submodel for the ith subject is given by

mi tð Þ ¼ mi tð Þ þ εi tð Þ, εi tð Þ � N 0; σ2ε
� �

yi tð Þ ¼ XT
i tð Þβþ XT

i tð Þvi þ ZT
i tð Þui þ εi tð Þ

vi � N 0;
X� �

, ui � N 0;Dð Þ,

8>>><
>>>:

(9)

where the covariance matrix of random effects bTi ¼ vi0;…; vip; uip1;…; uipK
� �

is given as

G ¼ Cov bið Þ ¼
P

0
0 D

� �
:

To complete the specification of the model in (2.8), we now need to define the form for the
baseline risk function h0 :ð Þ. Motivated by the fact that in real life, h0 :ð Þ is usually unknown.
Therefore, two options are adopted to determine the form of the function h0 :ð Þ in this chapter.
First, a standard option is to use a known parametric distribution for the risk function. For this
option, the Gompertz distribution is chosen. Second, the piecewise constant model is chosen
when h0 :ð Þ is considered completely unspecified.

Therefore, the proposed penalized spline joint models considered in this chapter are as fol-
lows:

Model 1: Penalized spline joint model with hazard rate at base line having Gompertz distribution

hi tjMi tð Þ;wið Þ ¼ λ1 exp λ2tð Þ exp γTwi þ αmi tð Þ
� �

mi tð Þ ¼ XT
i tð Þβþ XT

i tð Þvi þ ZT
i tð Þui:

(
(10)

Model 2: Penalized spline joint model with a piecewise-constant baseline risk function

hiðtjMi tð Þ,wiÞ ¼
XQ

q¼1

ξqI νq�1 < t ≤ νq
� �

exp γTwi þ αmi tð Þ
� �

mi tð Þ ¼ XT
i tð Þβþ XT

i tð Þvi þ ZT
i tð Þui,

8>><
>>:

(11)

where 0 ¼ ν0 < ν1 < … < νQ denotes a split of the time scale, with νQ being larger than the
largest observed time and ξq denotes the value of the baseline hazard in the interval νq�1; νq

� �
.

In both models, X i, Zi, β, vi and ui are given in (2.7).

3. Parameter estimation

After defining the two penalized spline joint models, we now present the joint likelihood and
score functions of the parameters in the models. The ECM algorithm is also presented in this
section.
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3.1. Likelihood and score functions

Following Rizopoulos [2], we assume that the vector of time-independent random effects bi
underlies both the longitudinal and survival processes. This means that

p Ti; δi; yijbi;θ
� � ¼ p Ti; δijbi;θð Þp yijbi;θ

� �

p yijbi;θ
� � ¼

Y
j

p yi tij
� �jbi;θ

� �
, (12)

where θ ¼ θT
t ;θ

T
y ;θ

T
b

� �T
denotes the full parameter vector with θt ¼ γT ;α;θT

h0

� �T
denoting

the parameter vector for the survival outcomes. Furthermore, θy ¼ βT ; σ2ε
� �T

is the parameter
vector for longitudinal outcomes and θb ¼ vech Gð Þ is the vector-half of the variance matrix of
random effects. In addition, we assume that the hazard rate at time t conditional on the
covariate path depends on the current value of longitudinal outcomes and the censoring
mechanism is independent of the true event times and future longitudinal measurements.
Under these assumptions, the log-likelihood formulation of the penalized spline joint models
can be written as

l θð Þ ¼ l θjTi; δi; yi
� �

¼
X
i

log
ð

bi

p Ti; δijbi;θt; β
� �

p yijbi;θy
� �

p bi;θbð Þdbi,
(13)

where the conditional density for survival part has the form of

p Ti; δijbi;θt; β
� � ¼ h TijMi Tið Þ;wi;θt; β

� �δi S TijMi Tið Þ;wi;θt; β
� �

¼ h0 tð Þ exp γTwi þ αmi tð Þ
� �� �δi exp �

ðTi

0

h0 sð Þ exp γTwi þ αmi sð Þds� �
2
4

3
5:

(14)

Here, S tð Þ is the survival function at time t.

Moreover, the density for the longitudinal part with the random effects is given by

p yijbi;θy
� �

p bi;θbð Þ ¼
Y
j

p yi tij
� �jbi;θy

� �
p bi;θbð Þ

¼ 1

2πσ2ε
� �ni

2

exp � ∥yi tij
� �� XT

i tij
� �

β� XT
i tij
� �

vi � ZT
i tij
� �

ui∥2

2σ2ε

( )

� 2πð Þ�
qb
2 det Gð Þ�1=2 exp �bTi G

�1bi=2
� �

,

(15)

where qb denotes the dimensionality of the random effects vector.

We consider the log likelihood of the (Ti, δi, yi, bi) over the unknown θt, β and bi
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Using (2.7), the longitudinal submodel for the ith subject is given by

mi tð Þ ¼ mi tð Þ þ εi tð Þ, εi tð Þ � N 0; σ2ε
� �

yi tð Þ ¼ XT
i tð Þβþ XT

i tð Þvi þ ZT
i tð Þui þ εi tð Þ

vi � N 0;
X� �

, ui � N 0;Dð Þ,

8>>><
>>>:

(9)

where the covariance matrix of random effects bTi ¼ vi0;…; vip; uip1;…; uipK
� �

is given as

G ¼ Cov bið Þ ¼
P

0
0 D

� �
:

To complete the specification of the model in (2.8), we now need to define the form for the
baseline risk function h0 :ð Þ. Motivated by the fact that in real life, h0 :ð Þ is usually unknown.
Therefore, two options are adopted to determine the form of the function h0 :ð Þ in this chapter.
First, a standard option is to use a known parametric distribution for the risk function. For this
option, the Gompertz distribution is chosen. Second, the piecewise constant model is chosen
when h0 :ð Þ is considered completely unspecified.

Therefore, the proposed penalized spline joint models considered in this chapter are as fol-
lows:

Model 1: Penalized spline joint model with hazard rate at base line having Gompertz distribution

hi tjMi tð Þ;wið Þ ¼ λ1 exp λ2tð Þ exp γTwi þ αmi tð Þ
� �

mi tð Þ ¼ XT
i tð Þβþ XT

i tð Þvi þ ZT
i tð Þui:

(
(10)

Model 2: Penalized spline joint model with a piecewise-constant baseline risk function

hiðtjMi tð Þ,wiÞ ¼
XQ

q¼1

ξqI νq�1 < t ≤ νq
� �

exp γTwi þ αmi tð Þ
� �

mi tð Þ ¼ XT
i tð Þβþ XT

i tð Þvi þ ZT
i tð Þui,

8>><
>>:

(11)

where 0 ¼ ν0 < ν1 < … < νQ denotes a split of the time scale, with νQ being larger than the
largest observed time and ξq denotes the value of the baseline hazard in the interval νq�1; νq

� �
.

In both models, X i, Zi, β, vi and ui are given in (2.7).

3. Parameter estimation

After defining the two penalized spline joint models, we now present the joint likelihood and
score functions of the parameters in the models. The ECM algorithm is also presented in this
section.
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3.1. Likelihood and score functions

Following Rizopoulos [2], we assume that the vector of time-independent random effects bi
underlies both the longitudinal and survival processes. This means that

p Ti; δi; yijbi;θ
� � ¼ p Ti; δijbi;θð Þp yijbi;θ

� �

p yijbi;θ
� � ¼

Y
j

p yi tij
� �jbi;θ

� �
, (12)

where θ ¼ θT
t ;θ

T
y ;θ

T
b

� �T
denotes the full parameter vector with θt ¼ γT ;α;θT

h0

� �T
denoting

the parameter vector for the survival outcomes. Furthermore, θy ¼ βT ; σ2ε
� �T

is the parameter
vector for longitudinal outcomes and θb ¼ vech Gð Þ is the vector-half of the variance matrix of
random effects. In addition, we assume that the hazard rate at time t conditional on the
covariate path depends on the current value of longitudinal outcomes and the censoring
mechanism is independent of the true event times and future longitudinal measurements.
Under these assumptions, the log-likelihood formulation of the penalized spline joint models
can be written as

l θð Þ ¼ l θjTi; δi; yi
� �

¼
X
i

log
ð

bi

p Ti; δijbi;θt; β
� �

p yijbi;θy
� �

p bi;θbð Þdbi,
(13)

where the conditional density for survival part has the form of

p Ti; δijbi;θt; β
� � ¼ h TijMi Tið Þ;wi;θt; β

� �δi S TijMi Tið Þ;wi;θt; β
� �

¼ h0 tð Þ exp γTwi þ αmi tð Þ
� �� �δi exp �

ðTi

0

h0 sð Þ exp γTwi þ αmi sð Þds� �
2
4

3
5:

(14)

Here, S tð Þ is the survival function at time t.

Moreover, the density for the longitudinal part with the random effects is given by

p yijbi;θy
� �

p bi;θbð Þ ¼
Y
j

p yi tij
� �jbi;θy

� �
p bi;θbð Þ

¼ 1

2πσ2ε
� �ni

2

exp � ∥yi tij
� �� XT

i tij
� �

β� XT
i tij
� �

vi � ZT
i tij
� �

ui∥2

2σ2ε

( )

� 2πð Þ�
qb
2 det Gð Þ�1=2 exp �bTi G

�1bi=2
� �

,

(15)

where qb denotes the dimensionality of the random effects vector.

We consider the log likelihood of the (Ti, δi, yi, bi) over the unknown θt, β and bi

Penalized Spline Joint Models for Longitudinal and Time-To-Event Data
http://dx.doi.org/10.5772/intechopen.75975

111



1 log l θjTi; δi; yi;bi
� � ¼ log p Ti; δijbi;θt; β

� �þ log p yijbi; β
� �þ log p bi;Gð Þ:

The function for maximizing the log likelihood involves the density function of survival time
and least squares with a penalty term, which is

log p Ti; δijbi;θt; β
� �� yi � X iβ� X ivi � Ziui

� �T yi � X iβ� X ivi � Ziui
� �

σ2ε
� bTi G

�1bi: (16)

According to Ruppert et al. [9], the term σ2εb
T
i G

�1bi is called a roughness penalty and the

variance components matrix defined as F ¼ σ2εG
�1. Using a Lagrange multiplier argument, the

variance components matrix is the condition to constrain the coefficients of the knots ui. These
will restrict the influence of the variables t� Kkð Þpþ and will lead to smoother spline functions.

Using (3.2), the score vector for the penalized spline joint models can be expressed as:

S θð Þ ¼
X
i

∂

∂θT log
ð
p Ti; δijbi;θt; β
� �

p yijbi;θy
� �

p bi;θbð Þdbi

¼
X
i

ð
∂

∂θT log p Ti; δijbi;θt; β
� �

pðyijbi;θyÞpðbi;θbÞ
� �

:p bijTi; δi; yi;θ
� �

dbi:

(17)

The requirement for numerical integration with respect to the random effects is one of the main
difficulties in the joint models [2]. The maximum likelihood estimation (MLE) is typically
obtained using standard maximization algorithms such as expectation maximization algo-
rithm or Newton-Raphson algorithm.

3.2. The ECM algorithm

The EM algorithm has been widely used in the joint models, such as for the standard joint
model of Rizopoulos [2] and for the generalized linear mixed joint model [10]. The ECM
algorithm is a natural extension of EM algorithm for which the maximization process on the
M-step is conditional on some functions of the parameters under estimation. It also can reduce
computer time. The ECM algorithm will be used to obtain the maximum likelihood estimates
of the penalized spline joint models following McLachlan and Krishnan [11] in this chapter.

In these models, the random effects bi are considered as missing data. Hence, it is difficult to
estimate directly the parameter vector θ that maximizes the observed data log likelihood l θð Þ
in (3.2). Alternatively, we can estimate the parameter vector θ that maximizes the expected

value of the complete data log-likelihood which is E log p Ti; δi; yi; bi;θ
� �jTi; δi; yi;θ

itð Þ
n o

,

where θ itð Þ is the parameter vector given at the ith iteration.

The following are the steps of this algorithm.
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Step 1: Initialization

We first initialize the parameters. We assume that there arem parameters in the models and the

starting value of the parameter vector is θ 0ð Þ ¼ θ 0ð Þ
1 ;…;θ 0ð Þ

m

� �
. Based on these initial values, we

calculate the log-likelihood using (3.2).

Step 2: The E-step for the penalized joint models

We fill in the missing data and replace the log-likelihood function of the observed data with the
expected function of the complete data log-likelihood as follows:

Q θjθ itð Þ
� �

¼
X
i

ð
log p Ti; δi; yi; bi;θ

� �� �
:p bijTi; δi; yi;θ

itð Þ
� �

dbi

¼
X
i

ð
log p Ti; δijbi;θð Þ þ log pðyijbi;θÞ þ log pðbi;θÞ
� �

:p bijTi; δi; yi;θ
itð Þ

� �
dbi:

(18)

Step 3: The conditional M-step for the penalized joint models.

This step will be implemented in four stages as follows:

3.1 Given the current value of the parameter vector at the ith iteration θ itð Þ ¼ θ itð Þ
1 ;θ itð Þ

2 ;…;θ itð Þ
m

� �
,

we calculate the log likelihood at l θ itð Þ
� �

¼Pi log
Ð
bi
p Ti; δi; yi; bi;θ

itð Þ
� �

dbi.

3.2 Propose the new value for the first parameter θ propð Þ
1 which maximizes Q θjθ itð Þ

� �
. Then, we

calculate the log likelihood at l θ propð Þ
� �

where θ propð Þ ¼ θ propð Þ
1 ;θ itð Þ

2 ;…;θ itð Þ
m

� �
.

3.3 Set θ itð Þ
1 ¼ θ propð Þ if l θ propð Þ

� �
≥ l θ itð Þ
� �

, otherwise set θ itð Þ
1 ¼ θ itð Þ.

3.4 Similarly, based on the value of the parameter vector θ itð Þ
1 , we update the new value for the

second parameter and continue updating for the last parameter, θ itð Þ
m and set θ itþ1ð Þ ¼ θ itð Þ

m .

Step 4: Iterate among steps 2–3 until the algorithm numerically converges.

To update the new values for parameters in the conditional M-step, we have the closed-form
estimates for the measurement of error variance σ2 and the covariance matrix of the random

effects respectively by maximizing the expected function Q θjθ itð Þ
� �

. Unfortunately, we cannot

obtain closed-form expressions for the remaining of the parameters. We thus employ the one-

step Newton-Raphson approach to get the updates for β itþ1ð Þ, γ itþ1ð Þ, α itþ1ð Þ and θ itþ1ð Þ
h0 respec-

tively as detailed in Appendix B.

Following Louis [12], standard errors for the parameter estimates can be calculated by using
the estimated observed information matrix
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1 log l θjTi; δi; yi;bi
� � ¼ log p Ti; δijbi;θt; β

� �þ log p yijbi; β
� �þ log p bi;Gð Þ:

The function for maximizing the log likelihood involves the density function of survival time
and least squares with a penalty term, which is

log p Ti; δijbi;θt; β
� �� yi � X iβ� X ivi � Ziui
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σ2ε
� bTi G

�1bi: (16)

According to Ruppert et al. [9], the term σ2εb
T
i G

�1bi is called a roughness penalty and the

variance components matrix defined as F ¼ σ2εG
�1. Using a Lagrange multiplier argument, the

variance components matrix is the condition to constrain the coefficients of the knots ui. These
will restrict the influence of the variables t� Kkð Þpþ and will lead to smoother spline functions.

Using (3.2), the score vector for the penalized spline joint models can be expressed as:

S θð Þ ¼
X
i

∂

∂θT log
ð
p Ti; δijbi;θt; β
� �

p yijbi;θy
� �

p bi;θbð Þdbi

¼
X
i

ð
∂

∂θT log p Ti; δijbi;θt; β
� �

pðyijbi;θyÞpðbi;θbÞ
� �

:p bijTi; δi; yi;θ
� �

dbi:

(17)

The requirement for numerical integration with respect to the random effects is one of the main
difficulties in the joint models [2]. The maximum likelihood estimation (MLE) is typically
obtained using standard maximization algorithms such as expectation maximization algo-
rithm or Newton-Raphson algorithm.

3.2. The ECM algorithm

The EM algorithm has been widely used in the joint models, such as for the standard joint
model of Rizopoulos [2] and for the generalized linear mixed joint model [10]. The ECM
algorithm is a natural extension of EM algorithm for which the maximization process on the
M-step is conditional on some functions of the parameters under estimation. It also can reduce
computer time. The ECM algorithm will be used to obtain the maximum likelihood estimates
of the penalized spline joint models following McLachlan and Krishnan [11] in this chapter.

In these models, the random effects bi are considered as missing data. Hence, it is difficult to
estimate directly the parameter vector θ that maximizes the observed data log likelihood l θð Þ
in (3.2). Alternatively, we can estimate the parameter vector θ that maximizes the expected

value of the complete data log-likelihood which is E log p Ti; δi; yi; bi;θ
� �jTi; δi; yi;θ

itð Þ
n o

,

where θ itð Þ is the parameter vector given at the ith iteration.

The following are the steps of this algorithm.
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Step 1: Initialization

We first initialize the parameters. We assume that there arem parameters in the models and the

starting value of the parameter vector is θ 0ð Þ ¼ θ 0ð Þ
1 ;…;θ 0ð Þ

m

� �
. Based on these initial values, we

calculate the log-likelihood using (3.2).

Step 2: The E-step for the penalized joint models

We fill in the missing data and replace the log-likelihood function of the observed data with the
expected function of the complete data log-likelihood as follows:

Q θjθ itð Þ
� �

¼
X
i

ð
log p Ti; δi; yi; bi;θ

� �� �
:p bijTi; δi; yi;θ

itð Þ
� �

dbi

¼
X
i

ð
log p Ti; δijbi;θð Þ þ log pðyijbi;θÞ þ log pðbi;θÞ
� �

:p bijTi; δi; yi;θ
itð Þ

� �
dbi:

(18)

Step 3: The conditional M-step for the penalized joint models.

This step will be implemented in four stages as follows:

3.1 Given the current value of the parameter vector at the ith iteration θ itð Þ ¼ θ itð Þ
1 ;θ itð Þ

2 ;…;θ itð Þ
m

� �
,

we calculate the log likelihood at l θ itð Þ
� �

¼Pi log
Ð
bi
p Ti; δi; yi; bi;θ

itð Þ
� �

dbi.

3.2 Propose the new value for the first parameter θ propð Þ
1 which maximizes Q θjθ itð Þ

� �
. Then, we

calculate the log likelihood at l θ propð Þ
� �

where θ propð Þ ¼ θ propð Þ
1 ;θ itð Þ

2 ;…;θ itð Þ
m

� �
.

3.3 Set θ itð Þ
1 ¼ θ propð Þ if l θ propð Þ

� �
≥ l θ itð Þ
� �

, otherwise set θ itð Þ
1 ¼ θ itð Þ.

3.4 Similarly, based on the value of the parameter vector θ itð Þ
1 , we update the new value for the

second parameter and continue updating for the last parameter, θ itð Þ
m and set θ itþ1ð Þ ¼ θ itð Þ

m .

Step 4: Iterate among steps 2–3 until the algorithm numerically converges.

To update the new values for parameters in the conditional M-step, we have the closed-form
estimates for the measurement of error variance σ2 and the covariance matrix of the random

effects respectively by maximizing the expected function Q θjθ itð Þ
� �

. Unfortunately, we cannot

obtain closed-form expressions for the remaining of the parameters. We thus employ the one-

step Newton-Raphson approach to get the updates for β itþ1ð Þ, γ itþ1ð Þ, α itþ1ð Þ and θ itþ1ð Þ
h0 respec-

tively as detailed in Appendix B.

Following Louis [12], standard errors for the parameter estimates can be calculated by using
the estimated observed information matrix
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bvar bθ
� �

¼ I bθ
� �n o�1

,

where

I bθ
� �

¼ �
Xn

i¼1

∂Si θð Þ
∂θ

�����
θ¼θ̂

:

4. Empirical results

This section presents two simulation studies for Model 1, whereas Model 2 will be applied for
a case study only. In Section 4.1, we simulate data fromModel 1 with three internal knots in the
longitudinal submodel and Gompertz distribution for the baseline risk function. In Section 4.2,
we simulate data from Model 1 having Gompertz distribution for the baseline risk function
and non-linear logarithm subject-specific trajectories. The ECM algorithm, written in R code, is
applied to estimate the true values of parameters in both cases.

4.1. Simulation study 1

4.1.1. Data description

Recall the penalized spline joint Model 1 of (2.10) with three internal knots in longitudinal
submodel and Gompertz distribution for the baseline risk function in the form of

hi tð Þ ¼ h0 tð Þ exp γxi þ α mi tð Þð Þð Þ ¼ λ1 exp λ2tð Þ exp γxi þ αmi tð Þf g, (19)

where h0 tð Þ is the hazard function at baseline having Gompertz distribution, xi is baseline
covariate and mi tð Þ denotes the true and unobserved value of the longitudinal at time t. The
form of mi tð Þ is given by

mi tð Þ ¼ β0 þ β1tþ ui1 t�K1ð Þþ þ ui2 t�K2ð Þþ þ ui3 t�K3ð Þþ þ vi0, (20)

where bi ¼ u11; u12; u13; vi0ð ÞT is the vector of random effects and is assumed to have a normal
distribution with mean zero and the diagonal covariance matrix D ¼ Diag D11;D22;D33;D44ð Þ.
K1,K2,K3 denote the three internal knots put into the model. The observed longitudinal value

at time point t for the ith subject is of the form

yi tð Þ ¼ mi tð Þ þ εi tð Þ, (21)

where the error variable εi tð Þ is assumed to come from a normal distribution with mean zero
and variance σ2.

From this model, the vector of all parameters θ of the models in (4.1) and (4.2) is

θ ¼ θT
t ;θ

T
y ;θ

T
b

� �T
, where θt ¼ γ;α;λ1;λ2ð ÞT denotes the parameter vector for the survival
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outcomes. Furthermore, θy ¼ β0; β1; σ
2
ε

� �T is the parameter vector for longitudinal outcomes
and θb ¼ D is the variance matrix of random effects.

To simulate the observed survival time Ti of the joint model in (4.1), we applied the methods
adapted by Bender et al. [13], Austin [14] and Crowther and Lambert [15] to generate the true
survival time. We further assumed that the censoring mechanism is exponentially distributed
with parameter λ. The observed survival time was the minimum of the censoring time and the
true survival time. We generated the survival time Ti for n ¼ 500 subjects with the parameters:
β0 ¼ 5, β1 ¼ 2, λ1 ¼ 0:1, λ2 ¼ 0:5, γ ¼ 0:5,α ¼ 0:05, δ ¼ 2 and D ¼ Diag 2; 2; 2; 4ð Þ. Then
we generated the longitudinal responses mi tð Þ using (4.2). The simulated model is therefore

hi tð Þ ¼ 0:1 exp 0:5tð Þ exp 0:5xi þ 0:05mi tð Þf g
mi tð Þ ¼ 5þ 2tþ ui1 t� 1ð Þþ þ ui2 t� 2ð Þþ þ ui3 t� 3ð Þþ þ vi0:

(
(22)

The sample of simulated data is presented in Appendix A. The curve of Kaplan-Meier estimate
for the survival function of simulated data (left panel) and the longitudinal trajectories for the
whole simulated sample (right panel) are presented in Figure 1. The dashed lines in the left
panel correspond to 95% pointwise confidence intervals. It is clear from the plot of Kaplan-
Meier estimator that the survival probability starts from 1 and decreases gradually until at the
5th month of the study. After this, it is nearly zero after 6 months or so. The right panel is the
longitudinal trajectories for the first 100 subjects reflecting the form as in (4.2).

4.1.2. Parameter estimation

The ECM algorithm, as described in Section 3.2, is now implemented to estimate all parameters
in (4.4). The initial values of the parameters were set at β0 ¼ 1, β1 ¼ 1, λ1 ¼ 0:05,λ2 ¼ 0:1,
γ ¼ 0:1, α ¼ 0:01, σ ¼ 1, D11 ¼ 3, D22 ¼ 3, D33 ¼ 3, D44 ¼ 3, respectively. However, these
initial values can also be set randomly. The traces of each of these parameters are presented in
Figures 2 and 3, respectively. The traces of estimates show the way how the algorithm updates

Figure 1. Kaplan-Meier estimate of the survival function of the simulated data of (4.4) (left panel). Longitudinal trajecto-
ries of the first 100 subjects from the simulated sample of (4.4) (right panel).
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This section presents two simulation studies for Model 1, whereas Model 2 will be applied for
a case study only. In Section 4.1, we simulate data fromModel 1 with three internal knots in the
longitudinal submodel and Gompertz distribution for the baseline risk function. In Section 4.2,
we simulate data from Model 1 having Gompertz distribution for the baseline risk function
and non-linear logarithm subject-specific trajectories. The ECM algorithm, written in R code, is
applied to estimate the true values of parameters in both cases.

4.1. Simulation study 1
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submodel and Gompertz distribution for the baseline risk function in the form of

hi tð Þ ¼ h0 tð Þ exp γxi þ α mi tð Þð Þð Þ ¼ λ1 exp λ2tð Þ exp γxi þ αmi tð Þf g, (19)

where h0 tð Þ is the hazard function at baseline having Gompertz distribution, xi is baseline
covariate and mi tð Þ denotes the true and unobserved value of the longitudinal at time t. The
form of mi tð Þ is given by
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where bi ¼ u11; u12; u13; vi0ð ÞT is the vector of random effects and is assumed to have a normal
distribution with mean zero and the diagonal covariance matrix D ¼ Diag D11;D22;D33;D44ð Þ.
K1,K2,K3 denote the three internal knots put into the model. The observed longitudinal value

at time point t for the ith subject is of the form

yi tð Þ ¼ mi tð Þ þ εi tð Þ, (21)

where the error variable εi tð Þ is assumed to come from a normal distribution with mean zero
and variance σ2.

From this model, the vector of all parameters θ of the models in (4.1) and (4.2) is

θ ¼ θT
t ;θ

T
y ;θ

T
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� �T
, where θt ¼ γ;α;λ1;λ2ð ÞT denotes the parameter vector for the survival
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outcomes. Furthermore, θy ¼ β0; β1; σ
2
ε

� �T is the parameter vector for longitudinal outcomes
and θb ¼ D is the variance matrix of random effects.

To simulate the observed survival time Ti of the joint model in (4.1), we applied the methods
adapted by Bender et al. [13], Austin [14] and Crowther and Lambert [15] to generate the true
survival time. We further assumed that the censoring mechanism is exponentially distributed
with parameter λ. The observed survival time was the minimum of the censoring time and the
true survival time. We generated the survival time Ti for n ¼ 500 subjects with the parameters:
β0 ¼ 5, β1 ¼ 2, λ1 ¼ 0:1, λ2 ¼ 0:5, γ ¼ 0:5,α ¼ 0:05, δ ¼ 2 and D ¼ Diag 2; 2; 2; 4ð Þ. Then
we generated the longitudinal responses mi tð Þ using (4.2). The simulated model is therefore

hi tð Þ ¼ 0:1 exp 0:5tð Þ exp 0:5xi þ 0:05mi tð Þf g
mi tð Þ ¼ 5þ 2tþ ui1 t� 1ð Þþ þ ui2 t� 2ð Þþ þ ui3 t� 3ð Þþ þ vi0:
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The sample of simulated data is presented in Appendix A. The curve of Kaplan-Meier estimate
for the survival function of simulated data (left panel) and the longitudinal trajectories for the
whole simulated sample (right panel) are presented in Figure 1. The dashed lines in the left
panel correspond to 95% pointwise confidence intervals. It is clear from the plot of Kaplan-
Meier estimator that the survival probability starts from 1 and decreases gradually until at the
5th month of the study. After this, it is nearly zero after 6 months or so. The right panel is the
longitudinal trajectories for the first 100 subjects reflecting the form as in (4.2).

4.1.2. Parameter estimation

The ECM algorithm, as described in Section 3.2, is now implemented to estimate all parameters
in (4.4). The initial values of the parameters were set at β0 ¼ 1, β1 ¼ 1, λ1 ¼ 0:05,λ2 ¼ 0:1,
γ ¼ 0:1, α ¼ 0:01, σ ¼ 1, D11 ¼ 3, D22 ¼ 3, D33 ¼ 3, D44 ¼ 3, respectively. However, these
initial values can also be set randomly. The traces of each of these parameters are presented in
Figures 2 and 3, respectively. The traces of estimates show the way how the algorithm updates

Figure 1. Kaplan-Meier estimate of the survival function of the simulated data of (4.4) (left panel). Longitudinal trajecto-
ries of the first 100 subjects from the simulated sample of (4.4) (right panel).
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new values of the parameters. In addition, they also demonstrate the convergence of the
algorithm after 10–20 iterations. In particular, the parameters β0, β1, λ2, α, σ, D22 and D33

converge linearly to the true values while the parameters λ1, γ, D11, and D44 oscillate before
converging to the true values.

Figure 2. The traces of parameters β0, β1, λ1, λ2, γ, α for 100 iterations.

Figure 3. The traces of parameters σ, D11, D22, D33, D44 for 100 iterations.

Topics in Splines and Applications116

We now run the simulation for 30 independent samples with different sample sizes (n ¼ 200,
300 and 500). Then, we calculate the means, standard deviations (SD) and mean square error
(MSE) of parameters as presented in Table 1. The point estimates of each parameter are reason-
ably close to the true values when the sample sizes are 300 and 500. This is also supported by the
values of SD and MSE which decrease gradually when the sample size increases. In addition to
this, we also compare the parameter estimates with different censoring rates (20% and 40%) for a
sample size of 500 in 5, Appendix E. The result shows that when the sample size is large the
censoring rate has little influence on the estimates.

4.2. Simulation study 2

4.2.1. Data description

We now perform a simulation study on proportional hazard model having Gompertz distri-
bution at baseline and non-linear subject-specific trajectory. In particular, the model is in the
form of

hi tð Þ ¼ h0 tð Þ exp γxi þ α mi tð Þð Þð Þ ¼ λ1 exp λ2tð Þ exp γxi þ αmi tð Þf g, (23)

where h0 tð Þ is the hazard function at baseline having Gompertz distribution, xi is baseline
covariate and mi tð Þ denotes the true and unobserved value of the longitudinal at time t. The
observed longitudinal value at time point t for the ith subject has the non-linear form

yi tð Þ ¼ mi tð Þ þ εi tð Þ
¼ 5 log 1þ tð Þ þ bi1tþ bi0 þ εi tð Þ,

(24)

Parameter True value n ¼ 200 n ¼ 300 n ¼ 500

Estimate SD MSE Estimate SD MSE Estimate SD MSE

β0 5 4.21 0.72 0.76 4.68 0.50 0.32 5.10 0.30 0.27

β1 2 1.69 0.75 0.57 1.86 0.75 0.28 2.10 0.57 0.18

λ1 0.1 0.12 0.13 0.00 0.12 0.12 0.00 0.11 0.10 0.00

λ2 0.5 0.50 0.15 0.02 0.57 0.14 0.01 0.48 0.14 0.02

γ 0.5 0.50 0.17 0.03 0.49 0.12 0.04 0.51 0.09 0.01

α 0.05 0.03 0.04 0.00 0.04 0.05 0.00 0.04 0.04 0.00

σ 2 2.06 0.13 0.01 2.02 0.06 0.00 2.02 0.06 0.00

D11 2 2.87 0.92 0.62 2.59 0.73 0.53 2.27 0.80 0.22

D22 2 2.03 0.42 0.16 2.21 0.46 0.23 2.10 0.43 0.05

D33 2 2.10 0.37 0.17 0.34 0.50 0.34 2.22 0.59 0.10

D44 4 5.24 1.82 0.76 4.32 0.74 0.60 4.24 0.63 0.18

Table 1. Summary statistics for parameter estimation of the simulated data of the model in (4.4) for different sample sizes.
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new values of the parameters. In addition, they also demonstrate the convergence of the
algorithm after 10–20 iterations. In particular, the parameters β0, β1, λ2, α, σ, D22 and D33

converge linearly to the true values while the parameters λ1, γ, D11, and D44 oscillate before
converging to the true values.

Figure 2. The traces of parameters β0, β1, λ1, λ2, γ, α for 100 iterations.

Figure 3. The traces of parameters σ, D11, D22, D33, D44 for 100 iterations.
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We now run the simulation for 30 independent samples with different sample sizes (n ¼ 200,
300 and 500). Then, we calculate the means, standard deviations (SD) and mean square error
(MSE) of parameters as presented in Table 1. The point estimates of each parameter are reason-
ably close to the true values when the sample sizes are 300 and 500. This is also supported by the
values of SD and MSE which decrease gradually when the sample size increases. In addition to
this, we also compare the parameter estimates with different censoring rates (20% and 40%) for a
sample size of 500 in 5, Appendix E. The result shows that when the sample size is large the
censoring rate has little influence on the estimates.

4.2. Simulation study 2

4.2.1. Data description

We now perform a simulation study on proportional hazard model having Gompertz distri-
bution at baseline and non-linear subject-specific trajectory. In particular, the model is in the
form of

hi tð Þ ¼ h0 tð Þ exp γxi þ α mi tð Þð Þð Þ ¼ λ1 exp λ2tð Þ exp γxi þ αmi tð Þf g, (23)

where h0 tð Þ is the hazard function at baseline having Gompertz distribution, xi is baseline
covariate and mi tð Þ denotes the true and unobserved value of the longitudinal at time t. The
observed longitudinal value at time point t for the ith subject has the non-linear form

yi tð Þ ¼ mi tð Þ þ εi tð Þ
¼ 5 log 1þ tð Þ þ bi1tþ bi0 þ εi tð Þ,

(24)

Parameter True value n ¼ 200 n ¼ 300 n ¼ 500
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β0 5 4.21 0.72 0.76 4.68 0.50 0.32 5.10 0.30 0.27

β1 2 1.69 0.75 0.57 1.86 0.75 0.28 2.10 0.57 0.18

λ1 0.1 0.12 0.13 0.00 0.12 0.12 0.00 0.11 0.10 0.00

λ2 0.5 0.50 0.15 0.02 0.57 0.14 0.01 0.48 0.14 0.02

γ 0.5 0.50 0.17 0.03 0.49 0.12 0.04 0.51 0.09 0.01
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σ 2 2.06 0.13 0.01 2.02 0.06 0.00 2.02 0.06 0.00

D11 2 2.87 0.92 0.62 2.59 0.73 0.53 2.27 0.80 0.22

D22 2 2.03 0.42 0.16 2.21 0.46 0.23 2.10 0.43 0.05
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Table 1. Summary statistics for parameter estimation of the simulated data of the model in (4.4) for different sample sizes.
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where εi tð Þ � N 0; σ2
� �

. In the model of (4.6), the mean longitudinal response of the population
is assumed to have a non-linear logarithm curve. Different subjects are assumed to have

different intercepts and slopes. In particular, we assume that bi ¼ bi0; bi1ð ÞT having a bivariate
normal distribution with mean μ ¼ 3; 2ð Þ and covariance matrix D ¼ Diag 1; 1ð Þ. The true
values of the other parameters we put in the model were λ1 ¼ 0:01, λ2 ¼ 0:1,γ ¼ 0:5,
α ¼ 0:2, σ ¼ 2, respectively. In addition, the censoring mechanism is assumed exponentially
distributed with a parameter of λ ¼ 0:25.

Based on the model in (4.5) and the simulation study 1, we simulated survival times Ti for
500 subjects with 35% censoring rate. In particular, the ending time for the study was
5 months and all subjects alive by the end of the study (i.e. time 5) were assumed to be
censored. This design was also reflected of many clinical studies in real life. In this
sample, there were 329 uncensored subjects and 1387 observations for 500 subjects. For
each subject, 1–5 longitudinal measurements were recorded. On average, there were three
longitudinal measurements per subject. In Figure 4, the Kaplan-Meier estimate for sur-
vival curve is presented for the simulated data of (4.5) with 95% pointwise confidence
intervals in the left panel. Moreover, the subject-specific longitudinal profiles for six
randomly selected subjects is drawn in the right panel. It can be seen that some of the
subjects in this dataset showed non-linear evolutions in their longitudinal values. Each
subject has its own trajectory.

4.2.2. Parameter estimation

Wewill be using Model 1 in (4.1) and in (4.2) to handle the non-linear longitudinal trajectory in
the simulated data in (4.5). In this model, we put three internal knots at 25, 50 and 75%,
respectively, of the follow up time. Then, the ECM algorithm, as explained in Section 3, is
implemented once again to estimate all parameters in the model.

Figure 4. Kaplan-Meier estimate of the survival function of the simulated data of (4.5) (left panel). Longitudinal trajecto-
ries for the six randomly selected subjects of (4.6) (right panel).
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The results for parameter estimation are presented in Table 2. The means, standard deviations
and 95% confidence intervals of parameter estimates are calculated for 30 independent sam-
ples. The point estimates for λ1, λ2, γ, α, σ2 are reasonably close to the true values. Simi-
larly, the 95% CIs include the true values of λ1,λ2,γ,α, σ2.

Based on the estimated values of parameters, we generate back the estimated survival time
by approximating values of random effects from linear mixed-effects function. The detail of
the generation is explained in Appendix C. Then, we use the Kaplan-Meier estimate to
compare between the survival function of the simulated dataset (the black solid line) and
the estimated survival function (the dashed line) which are presented in the left panel of
Figure 5.

Moreover, we also draw the smooth and predicted longitudinal profiles for 12 patients chosen
randomly in the right panel of Figure 5. The dot points are the true observed longitudinal
values from simulated data. The solid lines are the smooth longitudinal profiles of the true
observed longitudinal values using the loess smoother and the dashed lines are the predicted
profiles of 12 randomly selected individuals. It is clear that the Kaplan-Meier estimates from
simulated data overlaps the Kaplan-Meier estimates based on the predicted value in the left
panel of Figure 4. The penalized spline regression model in (2.10) was a good fit for subject-
specific curves in the right panel of Figure 5.

In summary, simulation studies have shown the stability of the algorithm and the goodness of
fit of the penalized spline models. From the simulation study 1, it is shown that the updating
process through the ECM algorithm converges quickly to the true values of the parameters. In
addition, the simulation study 2 shows that the model can well predict the survival function
and individual trajectories respectively.

Parameter True value Estimate SD 95% CI

β0 — 3.399 0.673 [3.158;3.640]

β1 — 4.330 0.142 [4.280;4.380]

λ1 0.01 0.013 0.021 [0.007;0.021]

λ2 0.1 0.083 0.184 [0.017;0.148]

γ 0.5 0.640 0.386 [0.486;0.778]

α 0.2 0.186 0.142 [0.136;0.237]

σ 2 1.993 0.061 [1.971;2.015]

D11 — 0.977 0.190 [0.909;1.044]

D22 — 1.365 0.183 [1.300;1.430]

D33 — 1.976 0.154 [1.921;2.031]

D44 — 1.393 0.196 [1.322;1.463]

Table 2. Summary statistics for parameter estimation of the simulated data of the model in (4.5) and (4.6).
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where εi tð Þ � N 0; σ2
� �

. In the model of (4.6), the mean longitudinal response of the population
is assumed to have a non-linear logarithm curve. Different subjects are assumed to have

different intercepts and slopes. In particular, we assume that bi ¼ bi0; bi1ð ÞT having a bivariate
normal distribution with mean μ ¼ 3; 2ð Þ and covariance matrix D ¼ Diag 1; 1ð Þ. The true
values of the other parameters we put in the model were λ1 ¼ 0:01, λ2 ¼ 0:1,γ ¼ 0:5,
α ¼ 0:2, σ ¼ 2, respectively. In addition, the censoring mechanism is assumed exponentially
distributed with a parameter of λ ¼ 0:25.
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5 months and all subjects alive by the end of the study (i.e. time 5) were assumed to be
censored. This design was also reflected of many clinical studies in real life. In this
sample, there were 329 uncensored subjects and 1387 observations for 500 subjects. For
each subject, 1–5 longitudinal measurements were recorded. On average, there were three
longitudinal measurements per subject. In Figure 4, the Kaplan-Meier estimate for sur-
vival curve is presented for the simulated data of (4.5) with 95% pointwise confidence
intervals in the left panel. Moreover, the subject-specific longitudinal profiles for six
randomly selected subjects is drawn in the right panel. It can be seen that some of the
subjects in this dataset showed non-linear evolutions in their longitudinal values. Each
subject has its own trajectory.

4.2.2. Parameter estimation

Wewill be using Model 1 in (4.1) and in (4.2) to handle the non-linear longitudinal trajectory in
the simulated data in (4.5). In this model, we put three internal knots at 25, 50 and 75%,
respectively, of the follow up time. Then, the ECM algorithm, as explained in Section 3, is
implemented once again to estimate all parameters in the model.

Figure 4. Kaplan-Meier estimate of the survival function of the simulated data of (4.5) (left panel). Longitudinal trajecto-
ries for the six randomly selected subjects of (4.6) (right panel).

Topics in Splines and Applications118

The results for parameter estimation are presented in Table 2. The means, standard deviations
and 95% confidence intervals of parameter estimates are calculated for 30 independent sam-
ples. The point estimates for λ1, λ2, γ, α, σ2 are reasonably close to the true values. Simi-
larly, the 95% CIs include the true values of λ1,λ2,γ,α, σ2.

Based on the estimated values of parameters, we generate back the estimated survival time
by approximating values of random effects from linear mixed-effects function. The detail of
the generation is explained in Appendix C. Then, we use the Kaplan-Meier estimate to
compare between the survival function of the simulated dataset (the black solid line) and
the estimated survival function (the dashed line) which are presented in the left panel of
Figure 5.

Moreover, we also draw the smooth and predicted longitudinal profiles for 12 patients chosen
randomly in the right panel of Figure 5. The dot points are the true observed longitudinal
values from simulated data. The solid lines are the smooth longitudinal profiles of the true
observed longitudinal values using the loess smoother and the dashed lines are the predicted
profiles of 12 randomly selected individuals. It is clear that the Kaplan-Meier estimates from
simulated data overlaps the Kaplan-Meier estimates based on the predicted value in the left
panel of Figure 4. The penalized spline regression model in (2.10) was a good fit for subject-
specific curves in the right panel of Figure 5.

In summary, simulation studies have shown the stability of the algorithm and the goodness of
fit of the penalized spline models. From the simulation study 1, it is shown that the updating
process through the ECM algorithm converges quickly to the true values of the parameters. In
addition, the simulation study 2 shows that the model can well predict the survival function
and individual trajectories respectively.

Parameter True value Estimate SD 95% CI

β0 — 3.399 0.673 [3.158;3.640]

β1 — 4.330 0.142 [4.280;4.380]

λ1 0.01 0.013 0.021 [0.007;0.021]

λ2 0.1 0.083 0.184 [0.017;0.148]

γ 0.5 0.640 0.386 [0.486;0.778]

α 0.2 0.186 0.142 [0.136;0.237]

σ 2 1.993 0.061 [1.971;2.015]

D11 — 0.977 0.190 [0.909;1.044]

D22 — 1.365 0.183 [1.300;1.430]

D33 — 1.976 0.154 [1.921;2.031]

D44 — 1.393 0.196 [1.322;1.463]

Table 2. Summary statistics for parameter estimation of the simulated data of the model in (4.5) and (4.6).
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4.3. The AIDS data set

In the AIDS dataset, there were 467 patients with advanced human immunodeficiency virus
infection during antiretroviral treatmentwho had failed orwere intolerant to zidovudine therapy.
Patients in the study were randomly assigned to receive either didanosine drug (ddI) or zalcitabine
drug (ddC). CD4 cells are a type ofwhite blood cells made in the spleen, lymph nodes and thymus
gland and are part of the infection-fighting system. CD4 cell counts were recorded at the time of
study entry as well as at 2, 6, 12 and 18 months thereafter. The detail regarding the design of this
study can be found in Abrams et al. [16]. By the end of the study, there were 188 patients died,
resulting in about 59.7% censoring. There were 1405 longitudinal responses recorded.

Previously, Rizopoulos [2] used his standard joint model for the AIDS data which consider the
variability between subjects mostly depend on the intercept. However, the model could not
predict observed longitudinal data accurately. When the time unit is changed from month to
year in the data, the variability between subjects depends not only on the intercept but also on
the obstime variable. In addition, the longitudinal trajectories plot also shows many non-linear
curves as depicted in the right panel of Figure 6.

Given the non-linearity, it is appropriate to apply our models, Model 1 andModel 2, for the AIDS
data. In particular, we use the two joint models in (2.10) and (2.11) with the four internal knots are
placed at 20, 40, 60, 80%, respectively of the observed failure times for hazard rate at baseline.
Then, the ECM algorithm is implemented to estimate all parameters in the two models. A sum-
mary of statistics for parameter estimation using Model 1 and Model 2 is presented in Table 3.

Following Rizopoulos [2], in Model 1 and Model 2, the univariate Wald tests are applied for

the fixed effects β ¼ β0; β1
� �T in the longitudinal submodel, the regression coefficient γ and the

association parameter α respectively. The results from Table 3 show that the point estimates of
β0, β1, γ, α are all statistically significant for both models at a significance level of 5%.

Figure 5. Kaplan-Meier estimate of the survival function from simulated failure times (the solid line) with 95% confidence
intervals (dot lines), fromModel 1 (4.5) (the dashed line) (left panel). Observed longitudinal trajectories (the solid line) and
predicted longitudinal trajectories (the dashed line) for the twelve randomly selected subjects (right panel).
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We conduct the Kaplan-Meier estimate of the survival function from the observed survival
time (the light solid line) and the dot lines correspond to 95% pointwise confidence intervals in
Figure 6 (left panel). The predicted survival function from Model 1 is the dashed line and the
predicted survival function from Model 2 is the bold solid line. The plots show that Model 2
works very well in this case as shown in Figure 7. Moreover, Model 2 is also preferred in

Figure 6. Kaplan-Meier estimate of the survival function of the AIDS data (left panel). Longitudinal trajectories for CD4
cell count of the first 100 patients for two groups (right panel).

Model 1 Model 2

Parameter Estimate Std. error z-value p-value Parameter Estimate Std. error z-value p-value

β0 7.87 0.06 127.07 <0.001 β0 7.81 0.07 114.34 <0.001

β1 �1.69 0.11 �14.77 <0.001 β1 �1.62 0.12 �12.99 <0.001

γ 0.22 0.11 2.06 0.039 γ 0.31 0.10 3.03 0.002

α �0.20 0.01 �15.84 <0.001 α �0.24 0.01 �18.15 <0.001

λ1 1.68 0.07 λ1 1.04 0.11

λ2 0.33 0.00 λ2 1.79 0.23

σ 2.36 0.36 λ3 1.38 0.38

D11 2.18 0.14 λ4 1.67 0.42

D22 1.04 0.07 λ5 2.48 0.66

D33 0.85 0.06 σ 2.62 0.45

D44 11.87 0.78 D11 1.02 0.07

D22 0.97 0.06

D33 0.99 0.07

D44 11.40 0.75

Table 3. Summary statistics for parameter estimation of the AIDS data of Model 1 and Model 2 respectively.
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practice because h0 :ð Þ usually is considered as unspecified in order to avoid the impact of
misspecifying the distribution of survival times.

Based on the model of longitudinal regression in (4.2), we also draw the smooth and predicted
longitudinal profiles for nine patients from the AIDS dataset as depicted in Figure 7 (right
panel). The dot points are the true observed longitudinal values. The solid lines are the smooth
longitudinal profiles using the loess smoother and the dashed lines are the predicted profiles of
nine randomly selected individuals. Most of the predicted profiles are quite close to the
observed ones.

5. Discussion

In this chapter, two joint models using a penalized spline with a truncated polynomial basis have
been proposed tomodel a non-linear longitudinal outcome and a time-to-event data. The use of a
truncated polynomial basis gives us an intuitive and obvious way to model non-linear longitu-
dinal outcome. By adding some penalties for the coefficients of the knots and using linear mixed-
effects models, the smoothing is controlled and the individual curves are specified.

We have conducted a sensitivity analysis on the assumption of normality for either random
effects or errors. The t-distribution with the degree of freedom 5 is applied for each of them.
The results show that the estimates of parameters are sensitive when both of terms are not
normally distributed.

The main findings we may derive from this chapter are, at least, threefold: (1) the ECM
algorithm provides a reasonable quick convergence algorithm for the proposed models; (2)
the fitted joint models are able to measure the association between the internal time-dependent

Figure 7. Kaplan-Meier estimates of the survival function from observed failure times, from model 1 and from model 2
(left panel). Observed longitudinal trajectories (the solid line) and predicted longitudinal trajectories (the dashed line) for
the 12 randomly selected patients (right panel).

Topics in Splines and Applications122

covariates and the risk for an event and (3) the two models provide a good prediction for both
the longitudinal and survival functions, as presented in empirical results.

The limitations of this study are, at least, threefold: (1) the number of internal knots is limited
to three due to computational costs; (2) the polynomial power functions can form an ill-
conditioned basis for the models and (3) the estimation results are sensitive when both random
effects and error are not normally distributed.

Based on the limitations, our future work will focus on using new methods for approximating
the integrals to reduce the computational problems or relaxing the normality assumption.
Furthermore, we will apply a different basis for joint models, that is the penalized B-spline. In
terms of parameter estimation, we are considering a different approach to estimate the param-
eters in the models using a Bayesian approach, via Markov chain Monte Carlo (MCMC)
algorithms.

A. Appendix A

One sample of simulated data of the penalized spline joint model in (4.4) is presented in Table 4
for the first three patients. The subjects are measured bimonthly and the entry time is 0 for all

Id Obstime Time x y Death Z1 Z2 Z3 Z4

1 0.0 4.97 0 1.41 1 0.0 0.0 0.0 1

1 0.5 4.97 0 6.45 1 0.0 0.0 0.0 1

1 1.0 4.97 0 4.10 1 0.0 0.0 0.0 1

1 1.5 4.97 0 1.50 1 0.5 0.0 0.0 1

1 2.0 4.97 0 4.07 1 1.0 0.0 0.0 1

1 2.5 4.97 0 6.16 1 1.5 0.5 0.0 1

1 3.0 4.97 0 3.60 1 2.0 1.0 0.0 1

1 3.5 4.97 0 8.32 1 2.5 1.5 0.5 1

1 4.0 4.97 0 6.32 1 3.0 2.0 1.0 1

2 0.0 2.79 0 6.81 1 0.0 0.0 0.0 1

2 0.5 2.79 0 7.77 1 0.0 0.0 0.0 1

2 1.0 2.79 0 9.75 1 0.0 0.0 0.0 1

2 1.5 2.79 0 11.04 1 0.5 0.0 0.0 1

2 2.0 2.79 0 7.20 1 1.0 0.0 0.0 1

3 0.0 1.90 0 �1.84 0 0.0 0.0 0.0 1

3 0.5 1.90 0 1.12 0 0.0 0.0 0.0 1

3 1.0 1.90 0 0.78 0 0.0 0.0 0.0 1

Table 4. A snapshot of simulated data for penalized spline joint model in (4.4).
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eters in the models using a Bayesian approach, via Markov chain Monte Carlo (MCMC)
algorithms.
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subjects. Obstime variable includes the time points at which these measurements are recorded.
Time variable includes the observed survival times when subject meets an event. x is a time-
constant binary random variable with parameter p ¼ 0:5. Column y contains the longitudinal
responses. Death variable is the event status indicator. This variable receives value 1 when the
true survival time is less than or equal to the censoring time and 0 otherwise. We define the four
random effects variables which are Z1 ¼ obstime�K1ð Þþ, Z2 ¼ obstime�K2ð Þþ, Z3 ¼ obstimeð
�K3Þþ and Z4 ¼ 1. For the longitudinal process, there are 1902 of observations for 500 subjects.
For each subject, 1-7 longitudinal measurements are recorded. On average, there are four longi-
tudinal measurements per subject. For the event process, there are 297 subjects who meet for an
event which is equivalent to 59.4% of the whole sample.

B. Appendix B

The integrals with respect to the random effects in (3.7) do not have closed-form solutions.
Therefore, in this chapter, we implement the Gaussian-Hermite quadrature rule as in
Rizopoulos [5] to approximate the integrals. In our simulation study and R coding, we use
the Gaussian-Hermite quadrature rule with 10 quadrature points.

The updating formulas of the parameters in Step 3 have different forms for each parameter
following Rizopoulos [2]. We have the closed-form estimates for the measurement error vari-
ance σ2ε in the longitudinal model and the covariance matrix of the random effects as follows:

bG itþ1ð Þ ¼ 1
n

X
i

ð
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itð Þ
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where W ¼ yi � X iβ� X iui � Zivi.

Unfortunately, we cannot obtain closed-form expressions for the fixed effects β and the param-
eters of the survival submodel γ, α, and θh0 . We thus employ the one-step Newton-Raphson

approach to obtain the updated β itþ1ð Þ, γ itþ1ð Þ,α itþ1ð Þ and θ itþ1ð Þ
h0 . In particular, we have
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where S θð Þ is the score vector corresponding to parameter θ and the score vector has the form of
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C. Appendix C

There are four cases for simulating survival time Ti of the model (4.1) as follows.

When the survival time t < K1, we calculate the cumulative hazard function Hi tð Þ ¼
Ðt
0
hi sð Þds.

Based on the relation between the survival function Si tð Þ, cumulative hazard function Hi tð Þ
and cumulative distribution Fi tð Þ, we have

Si tð Þ ¼ exp �Hi tð Þð Þ ¼ 1� Fi tð Þ: (28)

Following (5.4), we set

u ¼ 1� Fi Tið Þ, (29)

where u is a randomvariable with u � Uni 0; 1½ �. The survival time t is the solution of the equation
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where U is a value of u � Uni 0; 1½ �. The condition K1 ≤ t < K2 is equal to
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subjects. Obstime variable includes the time points at which these measurements are recorded.
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C. Appendix C
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where U is a value of u � Uni 0; 1½ �. The condition K1 ≤ t < K2 is equal to
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D. Appendix D

In particular, Ruppert et al. [9] introduced a default choices for knot location and number of
knots. The idea is to choose sufficient knots to resolve the essential structure in the underlying
regression function. But for more complicated penalized spline models, there are computa-
tional advantages to keeping the number of knots relatively low. A reasonable default is to
choose the knots to ensure that there are a fixed number of unique observations, say 4–5,
between each knot. For large data sets, this can lead to an excessive numbers of knots;
therefore, a maximum number of allowable knots (say, 20–40 total) are recommended.
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According to Ruppert et al. [9], the choice for knot position is

Kk ¼ kþ1
Kþ2

� �
th sample quantile of the unique xi for k ¼ 1,…, K.

The simple choice of K is

K ¼ min 1
4 � number of uniquexi; 35
� �

.
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See Table 5.
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Abstract

In this chapter, a comprehensive review is made on the application of cubic spline inter-
polation techniques in the field of power systems. Domains like available transfer capabil-
ity (ATC), electric arc furnace modeling, static var. compensation, voltage stability margin,
and market power determination in deregulated electricity market are taken as samples to
illustrate the significance of cubic spline interpolation.

Keywords: power systems, available transfer capability, electric arc furnace,
thyristor-controlled reactor, voltage stability, market power

1. Introduction

With electricity becoming an inevitable part of all spheres of human life, it is imminent that the
increasing demand for electricity be met. The realization of this necessity has manifested in
extensive research in the field of power systems, which has brought to light the complexity of
power system. The power system involves the continuous variation in connected loads and
increases in power requirement which demands a corresponding increase in the generation.
This is met via several means most recently characterized by the penetration of renewable
energy sources. The unpredictability of these events entails the deployment of probabilistic-
based load flow techniques, estimation of unknown variables and load models which includes
uncertainties for their analysis.
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All the analysis and research aimed at providing solutions or mitigating the above-mentioned
problems require vast amounts of data which is discrete in nature or the analysis techniques
involve responses that are discrete in nature. Regardless of the origin of this non-continuity of
data, obtaining a continuous response is imperative because of the desired accuracy and the
continuity of real-time operation.

The challenges set the stage for interpolation techniques to play an active role in mitigating the
problems prevailing in the current power system studies like load forecasting, power system
reactive power planning, transmission network expansion, available transfer capability (ATC)
determination and market power/clearing price forecasting. Among the various interpolation
techniques available, the cubic spline method has been found to be a popular method. Cubic
spline also has the desirable characteristics of continuous derivatives at data points which
make the design of controllers around these regions possible, and its employment has been
seconded by the high accuracy obtained.

The measurements we take for analysis in everyday life are wrought with noise that may be
caused by the surrounding environment. Especially in electrical measurements, such random
noises may be caused by the magnetic field produced by the current, the presence of stray
charges, heating caused by the flow of eddy currents, and so on. One of the possible solutions
to the problems caused by noise is to take a large number of measurements. This ensures that
the random noise gets canceled out on an average, and hence the integrity of the data is
maintained. Other complicated methods of tackling the errors caused by noise are available,
but the detailed and in-depth analysis of these methods falls beyond the scope of this chapter.

2. Determination of available transfer capability

The first application of cubic splines is in finding the available transfer capability, which is an
important parameter in power system operation. Ever since the advent of the deregulated power
system, the computation of transfer capability has been a priority. Two quantities that require
special attention in these computations are the total transfer capability (TTC) and the available
transfer capability (ATC). The TTC of a power system is defined as the maximum amount of
power that can be transferred over the interconnected transmission network in a reliable manner
while meeting all of a specific set of defined pre- and post-contingency system conditions [1].
ATC is defined as the measure of the additional amount of power that may flow over and above
the base case flows without jeopardizing power system security [1]. The system operators of the
deregulated power system normally can obtain previously calculated ATC values through an
open-access same-time information system. However, the need for a quick calculation of ATC
poses a challenge. Some of the methods employed include DC power flow, AC power flow,
optimal power flow and sensitivity. Most of the methods mentioned earlier are not sufficiently
agile as far as computation speed is concerned or trades accuracy for speed. For example, DC
power flow yields quick results at the expense of accuracy, whereas AC power flow compro-
mises speed for accuracy. A solution to the abovementioned problem is found by employing
curve-fitting techniques especially the cubic spline interpolation technique.
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In order to compute ATC, the cubic spline is employed to trace the curve of the variation of
voltage magnitude and power flow with respect to the real power transfer. The ATC is then
determined by the point where the limits of voltage magnitude or power flow intersect the
curves. The computation of ATC takes place in two different forms—the point-to-point ATC
and area-to-area ATC. The area-to-area ATC refers to the additional power that can be mobi-
lized from the seller area to the buyer area, whereas the point-to-point ATC refers to bus-to-
bus transfer (usually from a generating bus to a load bus). Another factor considered of
paramount importance for the computation of ATC is the effect of contingencies like line
outages. Individual consideration of line outages for a large-scale power system is an imprac-
tical approach, and hence contingency analysis is carried out using contingency ranking which
helps select the critical lines.

The mathematical definition of ATC is shown in Eq. (1):

ATC ¼ TTC� TRM� ETC� CBM (1)

The definition of the abovementioned terms is as follows:

Transmission reliability margin (TRM): the amount of transmission capability necessary to ensure
the security of the interconnected system under a reasonable range of uncertainties in the system.

Capacity benefit margin (CBM): the amount of transmission capability reserved by load-
serving entities to ensure access to generation from interconnected systems to meet generation
reliability requirements.

Existing transmission commitments (ETC): normal transmission flows.

Traditionally, ATC computation involves the recursive application of AC power flow with
increasing power transfers, thereby tracing voltage magnitudes and MVA power flow varia-
tions with respect to real power formally called the P-V and the P-S curves as shown in
Figure 1. These curves are then employed in conjunction with the limits imposed by acceptable
voltage magnitudes and power flows to calculate the ATC. In the cubic spline-based approach,
the cubic spline interpolation technique is used to trace the P-V and P-S curves which are then

Figure 1. Variation of voltage with real power transfer.
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increasing power transfers, thereby tracing voltage magnitudes and MVA power flow varia-
tions with respect to real power formally called the P-V and the P-S curves as shown in
Figure 1. These curves are then employed in conjunction with the limits imposed by acceptable
voltage magnitudes and power flows to calculate the ATC. In the cubic spline-based approach,
the cubic spline interpolation technique is used to trace the P-V and P-S curves which are then

Figure 1. Variation of voltage with real power transfer.
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employed to calculate the ATC. This is done by first determining four known points on the
curve using AC power flow and then using cubic spline interpolation to trace the curves in
between those points. The four known points are denoted as Vi (Pn) and Sij (Pn), where Vi is for
voltage of bus ‘I’, Sij is the MVA power flow between bus ‘i’ and ‘j’, Pn is the real power transfer
and n is the index for the four points and has values of n = 1, 2, 3 and 4. The incremental steps
for tracing the P-V or the P-S curve will be of 1 MW each.

The first and foremost step in the process of curve tracing consists of the determination of the
four points on the P-V and P-S curves. This is of paramount importance because the power
system undergoes voltage collapse once the real power transfer crosses a certain limit. In the
voltage collapse process, the particular bus faces a continuous drop in bus voltage once the
critical point load is exceeded. Therefore, the points must be selected carefully making sure
that the critical point is not exceeded.

2.1. Procedure to calculate ATC

Step 1. Perform the line contingency ranking using line-loading performance index (PIMW) and
bus voltage performance (PIv). This is done to identify the critical lines. The critical lines will
have a PI value greater than PIbase case.

Step 2. Find a base case by solving the AC load flow. This will act as the first point.

Step 3. Perform the simulation for line outage for one of the critical lines found in step 1.

Step 4. Specify the point or area of transfers. For the point-to-point transfer, generally a generator
bus is taken as the selling bus and a load bus as the buying bus. On the other hand, for area-to-
area transfer, all the generator busses in a particular area called the selling are and all the load
busses in a specific buying area are considered.

Step 5.Now, the next three points are determined. The first step is to determine the fourth and
final point P4. In order to do so, the sensitivity method is employed. This method is based on
the limiting point of system constraints which is given in Eqs. (2)–(4)

PTi,VL ¼ ∂λ
∂Vi

� VL � V0
i

� �����
���� (2)

PTi,VU ¼ ∂λ
∂Vi

� VU � V0
i

� �����
���� (3)

PTij,S ¼ ∂λ
∂Sij

� Slimit
ij � S0ij

� �����
���� (4)

In Eqs. (2)–(4), PTi,VL, PTi,VU and PTij,S are the estimates of P4 which are arrived at by using the
linear estimates based on the lower voltage limit, the upper voltage limit and the thermal limit
of each line, respectively. The lower limit of voltage VL is taken as 0.9 p.u. and the upper limit
Vu is taken as 1.1 p.u. Slimit

ij is the thermal limit of each line. Vi
0 and S0ij are the base case values

computed in step (ii). The derivative terms are the reciprocal of the rate of change of voltage
and MVA power flow with real power. This can be obtained by solving the AC power flow
starting from the base case and making a small change in the transferred real power and
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noting the change in voltage and MVA transfer. The fourth known point P4 is selected as the
minimum of all three values computed above. Then, based on this, P2 and P3 are chosen using
the formulae given in Eqs. (5) and (6)

P2 ¼ P4

3
(5)

P3 ¼ P2 � 2 (6)

Step 6. Now, find the MVA and bus voltage Vi for each of the newly computed real power
values—P2, P3 and P4.

Step 7. Now, use the cubic spline to trace the curve in between these points and obtain the P-V
and the P-S curves.

Now, the area-to-area and point-to-point ATCs are calculated by obtaining the point where the
voltage limit or the MVA limit line intersects the P-V and P-S curves, respectively.

Inference: The author of [1] has employed the proposed cubic spline-based method to com-
pute the ATC of the Malaysian power system. The performance of the method is measured in
terms of its accuracy and speed (which are the main reasons for the employment of the
method). For testing the Malaysian power system, it has been simplified into a 241-bus system
and further classified into three regions namely north, east, central, south and PUB. The lower
and upper voltage limits are taken as 0.9 and 1.1 p.u., respectively. The results obtained have
been compared with the traditional recursive AC power flow results.

It is observed from the results obtained in [1] that all the ATC values obtained are due to the
MVA limitation. It is further observed that the performance of the cubic spline interpolation
method is comparable to the AC power flow method in terms of accuracy. The observation of
paramount importance is that while the proposed method obtains the high accuracy as found in
the recursive AC power flow method, the time it requires to compute the ATC is much smaller
than the AC recursive power flow method—to the extent that in some cases, the time required is
up to 30 times lesser. Therefore, it may be concluded that the cubic spline method is superior to
AC power flow in terms of speed and superior to DC power flow in terms of accuracy.

3. Electric arc furnace modeling

In this section, cubic spline is applied in modeling a very complex load—electric arc furnace
(EAF). This example presents the true power of cubic splines in tracking extremely complex
trajectories. The electric arc furnace’s (EAF) ability to efficiently smelt scrap iron raw materials
has made it the backbone of the steel-making industries. The EAF employs high temperatures
produced by low-voltage and high-current electric arcs to smelt scrap iron raw materials. The
increase in productivity requirements has led to EAFs being designed for high-power applica-
tions. The operation of EAFs introduces a significant amount of harmonics, inter-harmonics
and flickers in the supply system. Therefore, it is mandatory that the operators pay much
attention to the power-quality considerations. In order to study these problems, it is of paramount
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employed to calculate the ATC. This is done by first determining four known points on the
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between those points. The four known points are denoted as Vi (Pn) and Sij (Pn), where Vi is for
voltage of bus ‘I’, Sij is the MVA power flow between bus ‘i’ and ‘j’, Pn is the real power transfer
and n is the index for the four points and has values of n = 1, 2, 3 and 4. The incremental steps
for tracing the P-V or the P-S curve will be of 1 MW each.

The first and foremost step in the process of curve tracing consists of the determination of the
four points on the P-V and P-S curves. This is of paramount importance because the power
system undergoes voltage collapse once the real power transfer crosses a certain limit. In the
voltage collapse process, the particular bus faces a continuous drop in bus voltage once the
critical point load is exceeded. Therefore, the points must be selected carefully making sure
that the critical point is not exceeded.

2.1. Procedure to calculate ATC

Step 1. Perform the line contingency ranking using line-loading performance index (PIMW) and
bus voltage performance (PIv). This is done to identify the critical lines. The critical lines will
have a PI value greater than PIbase case.

Step 2. Find a base case by solving the AC load flow. This will act as the first point.

Step 3. Perform the simulation for line outage for one of the critical lines found in step 1.

Step 4. Specify the point or area of transfers. For the point-to-point transfer, generally a generator
bus is taken as the selling bus and a load bus as the buying bus. On the other hand, for area-to-
area transfer, all the generator busses in a particular area called the selling are and all the load
busses in a specific buying area are considered.

Step 5.Now, the next three points are determined. The first step is to determine the fourth and
final point P4. In order to do so, the sensitivity method is employed. This method is based on
the limiting point of system constraints which is given in Eqs. (2)–(4)
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In Eqs. (2)–(4), PTi,VL, PTi,VU and PTij,S are the estimates of P4 which are arrived at by using the
linear estimates based on the lower voltage limit, the upper voltage limit and the thermal limit
of each line, respectively. The lower limit of voltage VL is taken as 0.9 p.u. and the upper limit
Vu is taken as 1.1 p.u. Slimit

ij is the thermal limit of each line. Vi
0 and S0ij are the base case values

computed in step (ii). The derivative terms are the reciprocal of the rate of change of voltage
and MVA power flow with real power. This can be obtained by solving the AC power flow
starting from the base case and making a small change in the transferred real power and
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noting the change in voltage and MVA transfer. The fourth known point P4 is selected as the
minimum of all three values computed above. Then, based on this, P2 and P3 are chosen using
the formulae given in Eqs. (5) and (6)

P2 ¼ P4

3
(5)

P3 ¼ P2 � 2 (6)

Step 6. Now, find the MVA and bus voltage Vi for each of the newly computed real power
values—P2, P3 and P4.

Step 7. Now, use the cubic spline to trace the curve in between these points and obtain the P-V
and the P-S curves.

Now, the area-to-area and point-to-point ATCs are calculated by obtaining the point where the
voltage limit or the MVA limit line intersects the P-V and P-S curves, respectively.

Inference: The author of [1] has employed the proposed cubic spline-based method to com-
pute the ATC of the Malaysian power system. The performance of the method is measured in
terms of its accuracy and speed (which are the main reasons for the employment of the
method). For testing the Malaysian power system, it has been simplified into a 241-bus system
and further classified into three regions namely north, east, central, south and PUB. The lower
and upper voltage limits are taken as 0.9 and 1.1 p.u., respectively. The results obtained have
been compared with the traditional recursive AC power flow results.

It is observed from the results obtained in [1] that all the ATC values obtained are due to the
MVA limitation. It is further observed that the performance of the cubic spline interpolation
method is comparable to the AC power flow method in terms of accuracy. The observation of
paramount importance is that while the proposed method obtains the high accuracy as found in
the recursive AC power flow method, the time it requires to compute the ATC is much smaller
than the AC recursive power flow method—to the extent that in some cases, the time required is
up to 30 times lesser. Therefore, it may be concluded that the cubic spline method is superior to
AC power flow in terms of speed and superior to DC power flow in terms of accuracy.

3. Electric arc furnace modeling

In this section, cubic spline is applied in modeling a very complex load—electric arc furnace
(EAF). This example presents the true power of cubic splines in tracking extremely complex
trajectories. The electric arc furnace’s (EAF) ability to efficiently smelt scrap iron raw materials
has made it the backbone of the steel-making industries. The EAF employs high temperatures
produced by low-voltage and high-current electric arcs to smelt scrap iron raw materials. The
increase in productivity requirements has led to EAFs being designed for high-power applica-
tions. The operation of EAFs introduces a significant amount of harmonics, inter-harmonics
and flickers in the supply system. Therefore, it is mandatory that the operators pay much
attention to the power-quality considerations. In order to study these problems, it is of paramount
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importance to understand the nonlinear load characteristics that the EAF present to the power
system. Also, in order to mitigate the power-quality issues and to further study the impact of
EAFs on the power system, it is required that the EAF be modeled after obtaining its time
response.

The entire operation of the EAF involves three stages namely striking, smelting and refining.
In the striking process, the electric arc is built up by lowering the electrodes of all three phases,
the melting process involves the melting of the material and the process ends with the stable
refining. Due to the complexities involved in modeling the EAF operation in the striking and
the melting processes, most of the research has been directed towards a steady-state modeling
of the EAF in the refining stage of operation. The modeling of an EAF requires several
parameters such as arc voltage, arc length and arc current, which are determined by the
position of electrodes. Therefore, in order to accurately model the EAF, we need to know the
field measurements of the electric response which involves the variation of voltage and cur-
rent. The measured responses are then employed to develop an EAF conductance model using
the cubic spline interpolation method.

The EAF is modeled as a function of nonlinear conductance using the cubic spline interpola-
tion technique which is called the cubic spline interpolation model (CSIM). In this method, a
set of cubic polynomials are obtained which helps understand the voltage–current characteris-
tic of the EAF.

The steps involved are as follows:

First, a set of ‘n’measured data points of conductance is obtained for one fundamental cycle of
operation. The measurements lying in the interval [a, b] such that a = x0 < x1 < … < xn = b. For
the interval between two adjacent points, a cubic function is defined as shown in Eq. (7).

Gi xð Þ ¼ ai þ bi x–xið Þ þ ci x–xið Þ2 þ di x–xið Þ3 (7)

where i = 0, 1, 2,…., n-1. The coefficients ai, bi, ci and di are unknown. These coefficients need to
be determined based upon the following constraints:

Step 1. Each spline must pass through the given data points yi.

Gi(xi) = yi and Gn-1(xn) = yn

Step 2. Interior data points between each spline must be continuous.

Gi + 1(xi + 1) = Gi(xi + 1)

Step 3. The first and the second derivatives of the splines must be continuous across the interior
data points. Therefore, the spline forms a smooth function.

G’i + 1(xi + 1) = G’i (xi + 1).

G”
i + 1(xi + 1) = G”

i(xi + 1)

Step 4. In addition to the conditions mentioned in steps 1–3, another boundary condition must
be satisfied which concerns the derivative of the functions at the boundaries (at x0 = a and
xn = b). There are two types of boundary conditions that may be required to satisfy:
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Natural boundary condition: G”
0(x0) = G”

n-1(xn) = 0.

Clamped boundary condition: G’
0(x0) = D0 and G’

n-1(xn) = Dn.

where D0 and Dn are the values of the first derivatives of the unknown functions.

It is generally found that the natural boundary conditions give less accurate results than the
clamped boundary conditions. Alternately, one could possibly apply a boundary condition
called not-a-knot condition, which in addition to the natural boundary condition also incor-
porates another condition that the third derivative of the function must be continuous at
x1 and xn-1.

In order to find the coefficients—ai, bi, ci and di—we follow the following steps and equations:

Step 1. Set ai = yi for i = 0, 1, 2, …, n.

Step 2. Solve

ð8Þ

and

ð9Þ

and

ð10Þ

where hi ¼ xiþ1 � xi, for i = 1, 2, …, n-1.

Step 3. Set

ð11Þ

ð12Þ

Step 4. Set

ð13Þ

Step 5. Set

ð14Þ
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importance to understand the nonlinear load characteristics that the EAF present to the power
system. Also, in order to mitigate the power-quality issues and to further study the impact of
EAFs on the power system, it is required that the EAF be modeled after obtaining its time
response.

The entire operation of the EAF involves three stages namely striking, smelting and refining.
In the striking process, the electric arc is built up by lowering the electrodes of all three phases,
the melting process involves the melting of the material and the process ends with the stable
refining. Due to the complexities involved in modeling the EAF operation in the striking and
the melting processes, most of the research has been directed towards a steady-state modeling
of the EAF in the refining stage of operation. The modeling of an EAF requires several
parameters such as arc voltage, arc length and arc current, which are determined by the
position of electrodes. Therefore, in order to accurately model the EAF, we need to know the
field measurements of the electric response which involves the variation of voltage and cur-
rent. The measured responses are then employed to develop an EAF conductance model using
the cubic spline interpolation method.

The EAF is modeled as a function of nonlinear conductance using the cubic spline interpola-
tion technique which is called the cubic spline interpolation model (CSIM). In this method, a
set of cubic polynomials are obtained which helps understand the voltage–current characteris-
tic of the EAF.

The steps involved are as follows:

First, a set of ‘n’measured data points of conductance is obtained for one fundamental cycle of
operation. The measurements lying in the interval [a, b] such that a = x0 < x1 < … < xn = b. For
the interval between two adjacent points, a cubic function is defined as shown in Eq. (7).

Gi xð Þ ¼ ai þ bi x–xið Þ þ ci x–xið Þ2 þ di x–xið Þ3 (7)

where i = 0, 1, 2,…., n-1. The coefficients ai, bi, ci and di are unknown. These coefficients need to
be determined based upon the following constraints:

Step 1. Each spline must pass through the given data points yi.

Gi(xi) = yi and Gn-1(xn) = yn

Step 2. Interior data points between each spline must be continuous.

Gi + 1(xi + 1) = Gi(xi + 1)

Step 3. The first and the second derivatives of the splines must be continuous across the interior
data points. Therefore, the spline forms a smooth function.

G’i + 1(xi + 1) = G’i (xi + 1).

G”
i + 1(xi + 1) = G”

i(xi + 1)

Step 4. In addition to the conditions mentioned in steps 1–3, another boundary condition must
be satisfied which concerns the derivative of the functions at the boundaries (at x0 = a and
xn = b). There are two types of boundary conditions that may be required to satisfy:
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where D0 and Dn are the values of the first derivatives of the unknown functions.

It is generally found that the natural boundary conditions give less accurate results than the
clamped boundary conditions. Alternately, one could possibly apply a boundary condition
called not-a-knot condition, which in addition to the natural boundary condition also incor-
porates another condition that the third derivative of the function must be continuous at
x1 and xn-1.

In order to find the coefficients—ai, bi, ci and di—we follow the following steps and equations:

Step 1. Set ai = yi for i = 0, 1, 2, …, n.

Step 2. Solve
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The coefficients ai can be found in step 1. The coefficients ci can be calculated by solving the
linear equations developed in Eqs. (8)–(10). Then, finally coefficients bi and di may be obtained
from steps 4 and 5 (Eqs. (13) and (14), respectively).

Inference: The author in [2] has analyzed the performance of CSIM on an actual power system
model developed in MATLAB/SIMULINK whose online diagram is also presented in [2]. The
results obtained via employing the CSIM (shown in Figure 4) are then compared with the
results obtained via employing two traditional methods namely (i) harmonic current injection
model (HCIM), shown in Figure 2, and (ii) harmonic voltage source model (HVSM), shown
in Figure 3. The results described in [2] have been obtained for three different parts—early,

Figure 2. HVSM V-I characteristic [2].

Figure 3. HCIM V-I characteristic [2].
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middle and later stages—of EAF operation during the refining period. This is done primarily
because EAF does not possess a steady-state behaviour that lasts long. Since the HCIM and
HVSM are unable to model dynamic behaviour, these methods are compared with the CSIM
only during the latter part of the operation because of the dynamic behaviour of the EAF in the
early and middle parts (Figure 4).

Upon employing the CSIM for EAF modeling in the early and middle stages, it is found that the
performance of the EAF during these stages is highly nonlinear. The V-I curve presents a multi-
valued function which makes it difficult to model the EAF. The results shown in [2] suggest that
upon the comparison, the HCIMmethod yields the largest errors in terms of both the EAF voltage
and current determined. Then, HVSM, which albeit an improvement on HCIM, still contains
errors. The proposed CSIMmethod performs better than HCIM and HVSM and provides a better
fit for the voltage and current characteristics. It is also explained in the results that the error
encountered during modeling using CSIM in the early and middle stages is larger when com-
pared to that encountered when modeling the later stages of the refining period because the
number of sampling points used for the EAF model is not sufficient for modeling in the early and
middle stages of refining. As an extension, it is also proposed in [2] that the cubic spline interpo-
lation technique can also be used for modeling other nonlinear loads.

4. Var compensator with thyristor-controlled reactor

The problem of maintaining a good power factor (greater than 0.85) is a challenge faced by
most of the industries. Some of these bulk consumers are penalized for operation under a low
power factor. The application of cubic splines is presented to topic address this challenge and

Figure 4. CSIM V-I characteristic (later stage) [2].
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Figure 3. HCIM V-I characteristic [2].
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middle and later stages—of EAF operation during the refining period. This is done primarily
because EAF does not possess a steady-state behaviour that lasts long. Since the HCIM and
HVSM are unable to model dynamic behaviour, these methods are compared with the CSIM
only during the latter part of the operation because of the dynamic behaviour of the EAF in the
early and middle parts (Figure 4).

Upon employing the CSIM for EAF modeling in the early and middle stages, it is found that the
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valued function which makes it difficult to model the EAF. The results shown in [2] suggest that
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and current determined. Then, HVSM, which albeit an improvement on HCIM, still contains
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pared to that encountered when modeling the later stages of the refining period because the
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middle stages of refining. As an extension, it is also proposed in [2] that the cubic spline interpo-
lation technique can also be used for modeling other nonlinear loads.

4. Var compensator with thyristor-controlled reactor

The problem of maintaining a good power factor (greater than 0.85) is a challenge faced by
most of the industries. Some of these bulk consumers are penalized for operation under a low
power factor. The application of cubic splines is presented to topic address this challenge and

Figure 4. CSIM V-I characteristic (later stage) [2].
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provide a commendable solution. Rolling mills and electric arc furnaces constitute very large
loads in the power system. When the problem of power factor is considered, these loads
(particularly electric arc furnaces) may be termed as a necessary evil because of their extremely
low power factor. The variation in the arc length during operation results in the introduction of
severe and rapid fluctuations in the reactive power and the voltage, and when the short circuit
occurs, the power factor drops to values as low as 0.1. The large impact current and reactive
power generated result in significant waste of energy and may also cause the power system to
lose its stability. This may cause decadence in the quality of load and endanger the users. The
solution to the abovementioned problem is cited in a process called reactive power consump-
tion. Currently, the reactive power compensation is achieved dynamically by the placement of
a dynamic reactive power compensation device at access points of such interference loads.
These devices are usually represented as a fixed capacitor and thyristor-controlled reactor
(FCT). The FCT enables smooth control of the reactive power and also has the desirable feature
of maintaining its voltage unchanged. In addition, the FCT can effectively suppress voltage
fluctuation and solve the voltage distortion and flicker problem and improve the power
quality. The continuous and smooth variation in the reactive power is obtained by the variation
of the thyristor conduction angle. For the FCT to effectively carry out its task, it is imperative
that it calculates the control angle quickly and accurately in a real-time environment. However,
the existence of a nonlinear relation between the control angle and the reactor amplification
factor makes the real-time calculation a cumbersome process.

The remainder of this section reviews the calculation and the corresponding control of the
control angle via employing cubic spline interpolation technique. The calculation of the control
angle, α, is based on the reactor amplification factor for each phase. Cubic spline interpolation
is employed because it provides a low-order polynomial interpolation polynomial and also
increases the smoothness of the interpolation function.

The basic thyristor-controlled reactor (TCR) consists of a pair of anti-parallel thyristors in series
with an inductor as shown in Figure 5. The thyristor delay angle varies between 90� and 180�.
As a result, the fundamental current is completely reactive. An increase in the delay angle
leads to a decrease in the fundamental reactive current, which is equivalent to increasing the
reactance or reducing the susceptance and hence results in a decrease in the reactive power.
Hence, the TCR can be seen as being equivalent to a variable susceptance which can be
controlled using the delay angle ‘α’. This is because the AC voltage remains constant but the

Figure 5. Thyristor controlled reactor.
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value of the fundamental current changes, which in turn results in the variation in reactive
power. The equivalent fundamental susceptance of the TCR is given in Eq. (15)

BL αð Þ ¼ 2π� 2αþ sin 2α
πXL

(15)

The relationship between the delay angle, α, and the amplification factor of the equivalent
impedance is shown in Eq. (16)

k ¼ π
2 π� αð Þ þ sin 2α

(16)

As can be seen, there exists a nonlinear relation between the delay angle and the amplification
factor. The application of cubic splines makes the control of delay angle with reactive power
variation easier, quicker and smoother. It must be observed that the inductance current in the
TCR does not depend on the inductance but is rather governed by the thyristor conduction
angle. The accurate control of the thyristor angle makes the accurate control of inductor
current and hence reactive power possible.

The problem is formulated as follows. Eq. (9) suggests that in order to control the delay angle
using the amplification factor ‘k’, we need to find a solution to the nonlinear equation. Albeit
possible, it is a cumbersome task to solve nonlinear equations, not to mention the considerable
amount of time the solving takes which make real-time application and control a tedious task.
Moreover, of paramount importance is the accuracy of the controlling action since it deter-
mines the reactive power compensation. The cubic spline interpolation is employed as a means
to calculate the control angle ‘α’ having known the amplification factor ‘k’. Cubic spline is used
as the method of interpolation because of the advantages it provides in terms of simplicity of
calculation, numerical stability and smoothness of the interpolated curve.

As previously stated, the existence of a nonlinear relation between the control angle and the
amplification factor makes the real-time computation a lengthy process. In order to achieve the
aim using cubic spline interpolation, the control angle is regarded as the dependent variable and
the amplification factor ‘k’ as the independent variable. According to [3], the author generated
158 data points using Eq. (2). The aim is now to generate 157 interpolating cubic polynomials
that fit in between these points. The form of these cubic polynomials is shown in Eq. (17)

α ¼ a0 k� kið Þ3 þ a1 k� kið Þ2 þ a2 k� kið Þ þ a3 (17)

In Eq. (10), i = 1, 2, …., 157 and ki ≤ k ≤ ki + =1.

The fitting coefficients a0, a1, a2 and a3 need to be computed for each interval which gives a
unique cubic polynomial for each interval. When carrying out the control procedure first, the
amplification is determined, and then the corresponding cubic polynomial is used to arrive at
the required conduction angle value.

Inference: The results shown in [3] suggest that the conduction angle determined by using
cubic splines shows significant match with the values obtained by simulation. Also, the use of
cubic splines yields quicker results—a trait which would be beneficial for real-time applications.
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Figure 5. Thyristor controlled reactor.
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BL αð Þ ¼ 2π� 2αþ sin 2α
πXL

(15)
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k ¼ π
2 π� αð Þ þ sin 2α

(16)
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Hence, it can be said that the cubic spline interpolation method is able to solve the problem of
quick computation of the conduction angle with accuracies relevant to engineering applications.

5. Estimation of voltage stability margin

In this section, the application of cubic splines is of paramount importance since it marks the
limit of a power system—the maximum amount of power that can be supplied before the
continuous uncontrolled drop of voltage. The impact of voltage instability on the power
system has been so damaging that significant research has been conducted in this direction.
The phenomenon of voltage instability is characterized by a sudden and uncontrollable drop
in voltage as a response to a disturbance that has occurred on the power system. This distur-
bance could be anything from the variation of load to loss of a line or lightning strike, and so
on. Most of the studies have been focused on the steady-state aspect of voltage stability. In
order to determine the proximity of the system to voltage collapse, we need to estimate or find
the voltage stability margin (VSM). Many methods have been proposed in the past to estimate
the steady-state voltage stability margin. One of the popular methods is the continuous power
flow method. A major disadvantage of the continuous power flow is that it requires a consid-
erable amount of time and hence it cannot be employed in real-time applications.

An alternative approach is to use the time-synchronized voltage and current phasor measure-
ments obtained from phasor measurement units (PMUs). In the presented method, the author
proposed a combination of a coupled single-port Thevenin equivalent model and cubic spline
extrapolation in order to find the point of voltage collapse or the voltage stability margin
(VSM). The concept is based on the fact that the voltage collapse point of the load impedance
equals the Thevenin equivalent impedance.

Thevenins’ equivalent voltage and equivalent impedance as seen from load bus ‘i’ as given in
Figure 6 can be written as shown in Eq. (18)

Ethi ¼ KVG½ �i �
Xn

j¼1, j6¼i

ZijILj (18)

Zthi ¼ Zii

The definitions for the abovementioned variables can be found in [4].

The load impedance ZLi of bus ‘i’ can be arrived by using Eq. (19)

ZLi ¼ VLi

ILi
(19)

The load bus voltage VLi and the load bus current ILi are obtained through the PMU measure-
ments.
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Figure 7 shows the variation of Zli and Zth as a function of the load parameter λ. As can be
seen, the Zli equals the Zthi at the point of maximum critical loading, and this point gives
the maximum value of the load parameter—λmax. This maximum value of load parameter can
be arrived at by equating an approximate function that extrapolates the Zli versus λ curve to
the point that it meets the Zthi line.

The choice of cubic spline extrapolation is justified by the author as the superior fitting to the
impedance trajectory as evidenced by extensive simulation results. The cubic spline extrapola-
tion proceeds by developing different cubic polynomials for the interval between measure-
ments based on certain constraints.

Figure 7. Variation of Thevenin and load impedance with λ [4].

Figure 6. Coupled single port Thevenins’ equivalent.
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For ‘m’ PMU-measured data points obtained, there will be ‘m-1’ intervals present, each of
which is represented by Eq. (20)

fj xð Þ ¼ aj þ bj x� xj
� �þ cj x–xj

� �2 þ dj x–xj
� �3 (20)

The inputs for extrapolation are taken as three sets of |ZLi| and λ and the point of |Zli| where
λ is to be extrapolated and found. The λ thus found corresponds to the point where Zli equals
Zthi and hence is equal to λmaxi. Each bus in the considered system will have its own
corresponding λmaxs. The λmax = λsys for the entire system is found by taking the minimum of
all λmaxi obtained for each of the individual load busses. This value of λsys corresponds to the
value of λmaxi for the weakest load bus in the system. The proximity of the load bus to the
voltage collapse point is given in Eq. (21)

VSM ¼ λsys � λ0

λ0
� 100 (21)

After the computation of VSM, the author of [4] proceeds to find an index which helps in
determining whether the load increase results in the violation of the reactive power limits at
the generator busses. The author begins with the simple power equation and arrives at the
equation of a surface given by Eq. (22)

Q2
G � VGj j2

X
QG þ VGj j2

X
QL þ P2

L ¼ 0 (22)

where PL, load real power; QL, load reactive power; QG, generator reactive power.

The surface defined lies in the (PL, QL, QG) space. Upon cutting the surface with the constant
power factor planes, we get the PL–QG curves which are similar to PV curves or λV curves. The
existence of an approximate quadratic relation between λ and V is extended to find a quadratic
relation between λ and QG. This approximate quadratic relation is modeled and given in
Eq. (23)

λ ¼ αiQ2
Gi þ βiQGi þ γi (23)

In Eq. (16), αi, βi and γi are parameters that are different for each generator bus and need to be
determined. The parameters can be determined using three sets of PMU readings. Then, using
the computed values of the parameters, an estimate for the extreme of QGi is arrived using the
condition that at the extreme limit dλ/dQGi = 0 holds. Enforcing this condition gives us the
following value as the estimate shown in Eq. (24)

Qex
Gi ¼ � βi

2αi
(24)

The index i stands for all the generator busses of the system. At each load step, it is ensured
that the estimated value of generator reactive power—Q Gi

ex—remains within the bounds of
the reactive power limits that are specified for a generator bus.
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The algorithm for proceeding with the described method in order to compute the VSM is as
follows:

Step 1.Obtain three sets of PMUmeasurements and use them to compute three sets of |ZLi|, λ
and QGi. Also, we possess the knowledge of the admittance matrix.

Step 2. Compute the parameters αi, βi and γi for each of the generator bus of the system.

Step 3. Compute the estimate of the extreme of the reactive power for each generator Qex
Gi

Step 4. If there is no violation of the reactive power limits of any generator, then proceed to
step 6. Otherwise, proceed to step 5.

Step 5. Change the bus type from PV to PQ bus for the bus whose reactive power limit has
been violated.

Step 6. Compute the impedance matrix as shown in [4].

Step 7. Compute the Thevenin equivalent impedance.

Step 8. Estimate the value of λmaxi by using the cubic spline extrapolation technique for each
load bus of the system.

Step 9. Find the value of λsys which is the minimum of all values computed in step 8.

Step 10. Determine the VSM.

Inference: The author of [4] has performed test runs of the proposed algorithm on the follow-
ing test system—IEEE 30 bus system, IEEE 118 bus system and IEEE 300 bus system. Further,
the obtained results have been compared with two other previously available methods. The
obtained results indicate the superior performance of the proposed cubic spline technique
when compared to the other methods. Upon comparison of the percentage error, it may be
observed from [4] that the cubic spline method is almost 10 times more accurate than the other
methods.

6. Estimation of market power in deregulated electricity market

In this final section, the application of cubic spline technique has been illustrated in the field of
deregulated electricity market. In this market, market power issues predominantly spoil the
basic idea of maintaining equilibrium within the market players.

Market power is the ability of showing one’s monopolistic nature on the price of the commod-
ities in the market. This has become a challenging issue in the context of the present electricity
market and will become more challenging and play a significant role when private generation
companies start participating in buying/selling the power [5]. Due to the increase in demand
and the regulatory policies, private parties have started investing in the power sector, espe-
cially in the renewable energy sources. Thus, it is inevitable for the independent system
operator (ISO) to estimate market power for taking crucial decisions [6].
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6.1. Market power indices

6.1.1. Herfindahl-Hirschman index

The Herfindahl-Hirschman index (HHI) is used to measure the market concentration that will
reflect the number of players in the market and also the inequality in their market shares. The
HHI is defined as the sum of the squares of market shares of all the players as given in Eq. (25)

HHI ¼
XN

i¼1

S2i HHI ¼
XN
i¼1

Si2 (25)

where N is the number of players and Si is the i
th player market share in percentage [7].

6.2. Lerner index

It measures or indicates the proportional deviation of the price at the firm’s profit-maximizing
output from the firm’s marginal cost at that output. It is defined as shown in Eq. (26)

LIi ¼ ri �mcið Þ
ri

¼ 1
εdi

LIi ¼ ri �mci
ri

¼ 1
εdi

(26)

where LIi is the Lerner index for a given firm i, ri and mci are the price and marginal cost,
respectively, and εdi is the elasticity of demand felt by the firm.

6.3. Nodal must run share

This index reflects the impact of load variation on market power and geographic difference of
market due to network constraints. Must run share (MRS) represents the effect of load varia-
tion and nodal must run share (NMRS) represents the geographical difference of market
powers. The equation for NMRS is shown in Eq. (27)

NMRSk, i ¼
Pgmust

k, i

Pdi
NMRSk:i ¼

Pgmustk, i
Pdi

i ¼ 1, 2, ::N (27)

where N is the number of busses in a power system, Pdi is the load at bus i, and
Pgmust

k, i
Pdi

Pgmustk, i
is the contribution of the must run generator k to Pdi. The background calculation of NMRS is
available in Ref. [7].

Steps involved in estimation of market power using NMRS [5, 8].

Step 1. Define the number of generators and their active power limits.

Step 2. Determine Pgmust
k of generator k

Step 3. Calculate distribution matrix [M�1]

Step 4. Calculate NMRS of generator 1 on load 1.
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Step 5. Repeat step 4 for calculating NMRS for the remaining generators on each load.

Step 6. Repeat steps 4 and 5 for various cases.

Step 7. End.

Step 8. Calculate the NMRS for all the generators using the conventional method as discussed
in steps–7.

Step 9. Plot NMRS of a generator against the maximum generation of other generators.

Step 10. Connect two points at a time using cubic spline interpolation technique (piecewise
polynomial) using MATLAB built-in function, that is, for example, a = spline (b, c, de) and
ff = spline (b, c)where ‘a’ gives the interpolated values which correspond to the query points in
de [9].

The application of cubic’s spline interpolation for calculating the respective market power of
generation companies on all busses for any given load or operating condition is implemented
on a sample IEEE 14 bus test system. This system consists of four generator busses and an
additional slack generator at bus number 1 in addition to the nine load busses. The intercon-
nection of the system is accomplished with 20 transmission lines.

In Figure 8, the operating condition is such that the total load is increased by 10% from the
base case. The fast and accurate calculation of the market power at any given operating point
of the generator may serve or help the principal purposes of various bodies like the GENCOs,
DISCOs and ISOs. The knowledge of market power for any given operating condition will
enable these above bodies to take suitable actions to change their own operating points in

Figure 8. Normal case versus increase in load by 10%.
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order to fulfill their objectives. Figure 8 represents the interpolation plot for the case when load
is increased by 10%.

The interpolation is done between the five known operating points which are the maximum
generation levels of Gen3, starting from 60 MW in steps of 10 MW. For these operating points,
the NMRS values are calculated. As we increase the maximum generation level of a particular
generator, it affects the NMRS of its neighboring generators. In this case, we have monitored the
NMRS of Gen2 on bus 3 with the increase in the working range of Gen3 to demonstrate this fact.
As a result, the base case plot for Gen2 tends to drop or go down as we keep increasing the
generation level values for Gen3. As the load is increased by 10%, the NMRS plot shifts up. Thus,
it represents an important observation that as the load goes up at a certain time of day in a
particular region, then the GENCOs which lie in such a subsystemwill have an increased market
power. Due to the piecewise polynomials which are attained due to the application of cubic’s
spline interpolation between the operating points, GENCOs, DISCOs and ISOs can easily take
suitable actions to not let anyone take undue advantage of the varying market power due to
changes in operating conditions. Thus, it helps in attaining a zero market power. This work has
been extended under various system conditions and an elaborate study is made in [10].

Inference: Market power reflects the amount of influence that a company has on the system
in which it operates but in power systems Market power is the ability to maintain prices
above the competitive levels for a significant period of time. Hence, it is of utmost impor-
tance to find the market power of the system under normal and abnormal condition that a
system has to face.

7. Conclusions

In this chapter, a complete literature review is made on how cubic spline interpolation tech-
nique has been widely used in power systems application. ATC calculation, electric arc furnace
modeling, static var compensation, voltage stability margin and market power estimation are
some of the areas where cubic spline interpolation techniques are extensively used. The
independent system operator (ISO), utilities and consumers can utilize this tool to predict the
behaviour of the system/generation companies/utilities and bring back the system towards
economic/system stability.
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is increased by 10%.
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