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The world is governed by motions. The term kinetics partially originated from the 
Greek word “kinisis,” which means motion. How important is motion in our life is 
easily understood. But, how the kinetic theories have been developed during years? 
Which are the new kinetic theories and updates in recent years? This question and 

many others can be answered with this book. Some important areas discussed 
in this book are the kinetic theory of gases, kinetic theory of liquids and vapors, 

thermodynamic aspects, transportation phenomena, adsorption-kinetic theories, 
linear and nonlinear kinetic equations, quantum kinetic theory, kinetic theory of 

nucleation, plasma kinetic theory, and relativistic kinetic theory.
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Preface

This book “Kinetic Theory” describes many theories in kinetics. The world is governed by
motions. The term kinetics partially originated from the Greek word “kinisis,” which means
motion. How important is motion in our life is easily understood. The kinetic theory de‐
scribes a gas as a large number of submicroscopic particles (atoms or molecules), all of
which are in constant rapid motion that has randomness arising from their many collisions
with each other and with the walls of the container. Kinetic theory explains the macroscopic
properties of gases, such as pressure, temperature, viscosity, thermal conductivity, and vol‐
ume, by considering their molecular composition and motion. The theory posits that gas
pressure is due to the impacts, on the walls of a container, of molecules or atoms moving at
different velocities. Kinetic theory defines the temperature in its own way, in contrast to the
thermodynamic definition. All the above clearly indicate that the “world” of kinetics has
various sections. Therefore, the target of this book is wide. Its aim was the detailed analysis
of kinetic theories in many scientific areas of recent research. Kinetic theory is not a unique
term for gases, liquids, and so on. It is a complicated field gathering numerous topics as, for
example, kinetic theory of gases, kinetic theory of liquids and vapors, thermodynamic as‐
pects, transportation phenomena, adsorption-kinetic theories, linear and nonlinear kinetic
equations, quantum kinetic theory, kinetic theory of nucleation, plasma kinetic theory, and
relativistic kinetic theory. Specialists, researchers, and professors from more than 20 coun‐
tries have published in this book their research into the kinetic theories/properties of various
materials suitable for use in the optoelectronic devices, the development of new structures,
and the results of their practical application. We are grateful to all the authors who have
contributed their tremendous expertise to the present book, and we wish to acknowledge
the outstanding support from Mr. Teo Kos, Publishing Process Manger, InTech Open Sci‐
ence Croatia, who collaborated tirelessly in crafting this book.

The future of kinetic theories is indeed bright!

Dr. George Z. Kyzas (MSc, PhD) and Prof. Athanasios C. Mitropoulos (MSc, PhD)
Hephaestus Advanced Laboratory

Eastern Macedonia and Thrace Institute of Technology
Kavala, Greece
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1. Introduction

The world is governed by motions. The term kinetics is partially originated from the Greek
word “kinisis,”which means motion. How important is motion in our life is easily understood.
But how the kinetic theories have been developed during years? This question can be replied if
some historic points are presented. So, to understand the development of kinetic theories, it is
necessary to briefly give some history points during the analysis of kinetics.

2. The passage of kinetics during the decades

2.1. 19th Century

In 1850, Wilhelmy from Germany considered the rate of reversal of sucrose (hydrolysis into
D-(+)- glucose and D-(�)- fructose within the sight of a corrosive) and observed it to be
corresponding to the centralizations of both the sugar and the corrosive. Fourteen years later
in 1864, two scientists from Norway (Guldberg and Waage) figured their “law of mass activ-
ity” as per which the response “powers” are corresponding to the result of the centralizations
of the reactants: K = [R]r�[S]s/([A]a [B]b). In this equation, a, b, r, and s are some stoichiometric
coefficients in the substance condition A + B = R + S. So the rate of the forward response is
corresponding to [A]a [B]b and that of the turnaround response is relative to [R]r [S]s.

In 1865, Harcourt and Esson (UK) examined the responses amongst H2O2 and Howdy and
amongst KMnO4 and (COOH)2. They composed the relating differential conditions, coordi-
nated them, and decided the fixation versus time connections. They additionally proposed a
condition for the temperature reliance of the response rate, k = A�TC.

In 1884, van’t Hoff (Netherlands) distributed his “Investigations of compound progression”
(Études de dynamique chimique), in which he summed up and additionally built up crafted

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons

Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,

distribution, and eproduction in any medium, provided the original work is properly cited.
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by Wilhelmy, Harcourt, and Esson. Specifically, he presented the differential technique for
examination. He additionally dissected the temperature reliance of the balance steady (now
called the “van’t Hoff condition”) and of forward and turnaround response rates.

In 1887, Ostwald (Germany; Latvia) presents the expressions “response request” and “half-life”
in his “Lehrbuch der allgemeinen Chemie.” Two years later, Arrhenius (Sweden) additionally
broke down the temperature reliance of response rate, k = A�e�B/T, and gave it a “vitality
obstruction” elucidation; this is presently called the “Arrhenius condition.”

2.2. 20th Century

In the twentieth century, there have been huge advancements in the hypothesis of compound
energy (assurance of rate constants and response orders from “first standards”). It is not yet
conceivable, be that as it may, to foresee the motor parameters for true substance forms, and in
reactor outline we should depend on precisely arranged and executed examinations. These
hypothetical (and test) improvements are past the extent of a starting CRE course, with the
exception of:

• 1913: Chapman (UK) presented and Bodenstein (Germany) built up the unfaltering state
guess in chain responses, as indicated by which the rate of progress of halfway items is
unimportant.

• 1917: Trautz (Germany) and Lewis (UK) autonomously suggested that the rate of
response is controlled by the recurrence of atomic impacts. This is currently known as
the “impact hypothesis” of substance response energy.

• 1920s: Langmuir (USA) contemplated the energy of surface responses and presented what
is currently known as the “Langmuir isotherm” which was additionally created by Hin-
shelwood (UK) into the “Langmuir-Hinshelwood system” of heterogeneous responses.

• 1934: Rice and Herzfeld (USA) demonstrate that chain responses including free radicals
(whose fixations are resolved utilizing the consistent state estimate) are in charge of the
regularly watched varieties in the request (n = 0.5, n = 1, n = 1.5, and so forth) of warm
disintegration of natural mixes, for example, ethane and acetaldehyde.

• 1935: Eyring (USA) built up a measurable treatment called the “hypothesis of supreme
response rates” or “change state hypothesis,” as per which the response happens in two
stages: (an) equilibrated transformation of the reactant(s) into an “initiated complex”; (b)
decay of the mind boggling (which happens at an unmistakable rate).

3. Conclusions

All above clearly indicate that the “world” of kinetics has various sections. Therefore, the
target of this Book should be wide. Its aim was the detailed analysis of kinetic theories in many
scientific areas of recent research. Kinetic theory is not a unique term for gases, liquids etc. It is

Kinetic Theory2

a complicated field gathering numerous topics as for example: kinetic theory of gases; kinetic
theory of liquids, vapors; thermodynamic aspects; transportation phenomena; adsorption-
kinetic theories; linear and nonlinear kinetic equations; quantum kinetic theory; kinetic theory
of nucleation; plasma kinetic theory; and relativistic kinetic theory.
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Abstract

Mathematically, the typical difference of discrete Boltzmann model (DBM) from the
traditional hydrodynamic one is that the Navier-Stokes (NS) equations are replaced by
a discrete Boltzmann equation. But physically, this replacement has a significant gain: a
DBM is roughly equivalent to a hydrodynamic model supplemented by a coarse-
grained model of the thermodynamic non-equilibrium (TNE) effects, where the hydro-
dynamic model can be and can also be beyond the NS. Via the DBM, it is convenient to
perform simulations on systems with flexible Knudsen number. The observations on
TNE are being obtaining more applications with time.

Keywords: Boltzmann equation, discrete Boltzmann modeling, Navier-Stokes,
compressible flows, non-equilibrium effects

1. Introduction

Generally, compressible flow is frequently referred also to as gas dynamics which is the branch
of fluid mechanics that deals with flows having significant changes in fluid density. That is
because gases, mostly, display such behavior. In fact, all materials are compressible. Besides
liquids, gases and plasmas, to some extent, the plastic solids under strong shock can also be
modeled as compressible flows. Because, in the last case, that the strength of material is
negligibly smaller than that of the shock. Flows with a Mach number less than 0.3 are usually
treated as being incompressible for that the variation of density due to velocity is less than 5%
in that case. The study on compressible flow is relevant to various fields, such as high-speed
aircraft, rocket motors, jet engines, high-speed entry into a planetary atmosphere, gas pipe-
lines, etc. where shock wave and/or detonation play a significant role. In this chapter, the
following several kinds of flows including high Mach number flows with combustion,
multiphase flows with phase separation and complex flows with hydrodynamic instability1

1It is clear that there exist significant overlaps among those classifications.
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are taken as examples, and all flows are treated uniformly as being compressible. It is hopeful
that the methods and ideas developed in this chapter may be adapted, more or less, to other
kinds of complex flows.

Some common and typical features of these flows are as below: each of them possesses multi-
scale structures and/or kinetic modes. There exist plenty of interfaces inside the system. The
interfaces include material interfaces and mechanical interfaces. Each of them experiences
complicated competitions between behaviors in various spatial-temporal scales. The forcing
and responsive processes inside the system are very complicated. Such a system generally
shows pronounced non-equilibrium behaviors.

1.1. Traditional models

The traditional macroscopic models of compressible flows are generally based on Navier-
Stokes (NS) equations, even Euler equations. The model of Euler equations assumes that the
system is always at its local thermodynamic equilibrium (LTE). The NS model considers the
thermodynamic non-equilibrium (TNE) via the viscous stress and heat flux. The viscous stress
and heat flux compose a set of convenient and effective description of the TNE. But the
description is also quite dense and coarse-grained. Many specific TNE behaviors are invisible
under NS description, even though they are helpful for understanding the specific TNE status.
Besides, since it includes only the first-order term of Knudsen number in the Chapman-Enskog
expansion [1], it is reasonable only when the Knudsen number is very small. It cannot be used
to access deeper TNE behaviors. To access the complicated non-equilibrium behaviors, one
possible solution is to use the molecular dynamics (MD) [2] or direct simulation Monte Carlo
(DSMC) [3]. The MD simulation can help to understand some fundamental mechanisms from
the atomic level. But the spatial and temporal scales it can access are too small to be compara-
ble with experiments. The DSMC simulation has a similar constraint of computational cost.

The NS model is not enough to capture so complex non-equilibrium behaviors while the MD and
DSMC cannot access spatial-temporal scales that are large enough. Under such conditions, a
kinetic approach based on the non-equilibrium statistical mechanics (NESM) [1, 4, 5] is preferable.

1.2. Non-equilibrium statistical mechanics

Statistical mechanics is a branch of theoretical physics. It was developed to study the average
behavior of a mechanical system with uncertain state by using probability theory. Microscopic
mechanical laws do not contain concepts such as temperature, heat, or entropy; however,
statistical mechanics shows how these concepts arise from the natural uncertainty about the
state of a system when that system is prepared in practice. Statistical mechanics provides exact
methods to connect thermodynamic quantities to microscopic behavior.

The NESM is based on mechanics and some necessary assumptions. The concept of macro-
scopic observation and assumption of coarse-grained density are cornerstones. The Liouville
equation [4, 5] is the most fundamental governing equation when without quantum fluctua-
tions. It describes the N-particle system using a partial-differential equation for the probability
density function, f = f(ξ1, ξ2, ⋯ , ξN, t), in a 6N-dimensional space,
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where m is the particle mass, ζi = (qi, pi), qi and pi are the coordinate and momentum of the ith
particle, ΦN(q1, … , qN) is the interaction potential of all the N particles. By integration over
part of the variables, the Liouville equation can be transformed into a chain of equations,
which is referred to as the Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY) hierarchy [4],
where the first equation connects the evolution of one-particle probability density function
with the two-particle probability density function, the second equation connects the two-
particle probability density function with the three-particle probability density function, and
generally the Sth equation connects the S-particle probability density function, fs,with the
(S + 1)-particle probability density function, fs + 1. Specifically,
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When S =N, the above equation recovers to the Liouville equation. For a macroscopic system,
the particle number, N, is in the order of Avogadro constant, 1023. Generally, there is no way to
solve Eq. (1) or Eq. (2).

We need to simplify the model via considering some simpler cases. If considering only the case
where correlations among three and more particles are negligible, the two-particle interaction
is relevant to their distance, and the two-particle distribution function can be written as the
product of two single particle distribution functions, specifically,
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, (5)
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we obtain the Boltzmann equation [1, 4],
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with

Q f ; fð Þ ¼
ðþ∞
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ð4π

0

f ∗f ∗1 � f f 1
� �

g σ dΩ dv1: (8)

Here is the single particle distribution function. Compared with the MD and Liouville equa-
tion, the Boltzmann equation is a much coarse-grained model. The purposes of establishing
Boltzmann equation are to define and calculate the entropy in non-equilibrium state, to derive,
prove, even modify the fundamental hydrodynamic differential equation [5].

1.3. Non-equilibrium statistical mechanics and macroscopic description

All hydrodynamic quantities are some kinds of kinetic moments of the distribution function
and can be expressed as:

W ¼
ð
f

1
v

v � v=2

2
64

3
75 dv, (9)

where the particle mass has been assumed to be 1, W is the vector of macroscopic quantity
composed of density, momentum and energy, W = [ρ,ρu,ρE]T. Besides, the total stress σ,
viscous stress Π and heat flux q are related to f via

σ ¼
ð
f v� uð Þ v� uð Þdv ¼ Π þ pI, (10)

Π ¼
ð

f � f eqð Þ v� uð Þ v� uð Þdv, (11)

and

q ¼ 1
2

ð
f � f eqð Þ v� uð Þ v� uð Þ � v� uð Þdv, (12)

respectively. Compared with Boltzmann equation, in Navier-Stokes equations,

∂ρ
∂t

þ ∇ � ρu
� � ¼ 0, (13)

∂ ρu
� �
∂t

þ ∇ � pI þ ρuu
� � ¼ �∇ �Π, (14)

∂
∂t

ρE
� �þ ∇ � ρEþ p

� �
u

� �� ¼ �∇ � qþΠ � u½ �, (15)

where Π = 2/3μ(∇ � u)I�μ(∇u)T�μ∇u, q = �κ∇T, T is the temperature, μ and κ are the coeffi-
cients of viscosity and heat conductivity, respectively. More details of molecular motions are
neglected and the distribution function f disappears as well. What remained are the conserved
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kinetic moments, density ρ, momentum (density) ρu and energy(density) ρE, and a few non-
conserved quantities, momentum fluxes ρuu and Π, energy fluxes ρEu and q. The relation
between internal energy ρT and pressure p is given by the equation of state. In Euler equations,
the viscous stress Π and heat flux q are further neglected.

From molecular dynamics to Boltzmann equation, to Navier-Stokes, and further to Euler
equations, in each step, the description becomes coarse-grained, and the contained physical
information becomes less [6]. The switching of model in each step corresponds to the state of
system under consideration gets closer to its thermodynamic equilibrium, the behavior is
simpler, consequently the system can be described by fewer physical variables. For a given
non-equilibrium system, the switching of model in each step corresponds to the spatial-
temporal scale that we use to observe the system becomes larger, consequently more smaller
structures and quicker kinetic modes are invisible. What obtained are the remaining larger
structures and slower kinetic modes. Based on Boltzmann equation, the most relevant TNE
effects accompanying the hydrodynamic behaviors can be studied, in addition to the general
hydrodynamic behaviors described by the hydrodynamic model.

2. Discrete Boltzmann theory

2.1. Discrete Boltzmann modeling

From Boltzmann equation to DBM, two steps of coarse-grained physical modelings are
needed. The principle for coarse-grained modeling is that the physical quantities used to
measure the system must keep the same values after simplification.

Step 1: Linearization of the collision term

Even though, compared with MD or Liouville equation, Boltzmann equation is a much coarse-
grained model, its collision term is still too complicated to be solved in most practical cases.
The simplest way to simplify is to introduce a local equilibrium velocity distribution function,
feq, and write the collision term into the following linear form,

∂f
∂t

þ v � ∂f
∂r

þ a � ∂f
∂v

¼ � 1
τ

f � f eqð Þ: (16)

The physical meaning of the linearized collision model is thus: collisions of molecules result in
that f approaches to thermodynamic equilibrium feq and the relaxation time is controlled by the
parameter τ. If we do not aim to measure the system using the specific values of f, but using
only some of its kinetic moments, then only if these kinetic moments keep invariable after the
simplification, that will be OK. The linearization of the collision term requires

ð
� 1
τ

f � f eqð ÞΨdv ¼
ð
Q f ; fð ÞΨdv, (17)

where Ψ = [1, v, vv, vvv,⋯]T contributes the kinetic moments used to measure the system. The
specific form of feq depends on the terms that Ψ takes. According to the specific form of Ψ or
feq, the linearized collision model may be referred to as the Bhatnagar-Gross-Krook (BGK)
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model [7–10], ellipsoidal statistical BGK model [11], Shakhov model (for monatomic gas) [12],
Rykov model (for diatomic gas) [13], Liu model [14], etc. When only the mass, momentum and
energy conservation laws are kept, feq takes the simplest form, the Maxwellian. This is the so-
called BGK model. Due to its simplicity, the BGK model is most extensively used.

It should be note that the Single-Relaxation-Time model works when all the kinetic modes
approaching to thermodynamic equilibrium share more or less the same relaxation time. For
more complicated cases where the relaxation times of different kinetic modes approaching to
thermodynamic equilibrium are significantly different, the multiple-relaxation-time (MRT)
collision model is needed [15].

Step 2. Discretization of the particle velocity space

We first consider the case without the force term. The discrete Boltzmann equation reads,

∂f i
∂t

þ viα
∂f i
∂rα

¼ � 1
τ

f i � f eqi
� �

, (18)

where i is the index of discrete velocity. Since the common schemes for discretizing the space
and time do not work for discretizing the particle velocity space. To find an effective means to
discretize the particle velocity space, we go back to consider what we really need. Here, we do
not aim to describe the system using specific values of the discrete distribution function fi, but
its kinetic moments. So, only if these kinetic moments, originally in integral form, can be
equally calculated in summation form, that will be acceptable. Specifically,

ð
f Ψ

0
vð Þdv ¼

X
i

f i Ψ
0
við Þ, (19)

where the left hand side gives the kinetic moments of f needed to describe the system and vi at
the right hand side is the discrete particle velocity. According to the Chapman-Enskog analy-
sis, a kinetic moment of f can be finally calculated via an appropriate kinetic moment of feq.
Therefore the requirement of Eq. (18) can be further written as

ð
f eq Ψ

00
vð Þdv ¼

X
i

f eqi Ψ
00
við Þ, (20)

where the left hand side gives the kinetic moments of feq being involved in the process of
constructing DBM. The requirement of Eq. (20) can be rewritten as a matrix equation,

bf eq ¼ M � f eq, (21)

where bf eq � bf k
eqh i

, feq� [fi
eq],M� [mki], bf

eq

k is the kth kinetic moment of feq. The elements, mki, are

determined by the discrete velocities. That is to say, the discrete velocities should be chosen in
such a way that the requirement of Eq. (20) is satisfied. Under such a constraint, the
discretization of particle velocity space is flexible. In fact,M can also be non-squared rectangular
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matrix. The choice of discretization scheme depends on the compromise between the numerical
cost, stability and physical gain (such as physical symmetry).

Via the same idea, it is straight forward to formulate MRT-DBM. To ensure the relaxation times
have clear physical meanings, in the MRT-DBM, the collision term is first calculated in the
kinetic moment space, and then transformed back to the discrete velocity space. To ensure
DBM describe reasonable flow behaviors, a correction term is needed [15].

According to the Chapman-Enskog analysis, to access system which is deeper into thermody-
namic non-equilibrium, higher order terms in Knudsen number should be considered. As a
result, the requirement of f in Eq. (19) will lead to more kinetic moment relations of feq in
Eq. (20). Consequently, more discrete velocities are needed. For the case with inter-particle
force, one should generally first finish the derivative calculation of fwith respect to v, and then
perform the discretization of particle velocity space.

2.2. Non-equilibrium: definition and measuring

Once the concept of equilibrium is defined, the concept of non-equilibrium is clear. In classical
mechanics, a particle is in mechanical equilibrium if the net force on that particle is zero. By
extension, a physical system made up of many parts is in mechanical equilibrium if the net
force on each of its individual parts is zero. In addition to defining mechanical equilibrium in
terms of force, there are many alternative definitions for mechanical equilibrium which are all
mathematically equivalent. In terms of momentum, a system is in equilibrium if the momen-
tum of its parts is all constant. In terms of velocity, the system is in equilibrium if velocity is
constant. In a rotational mechanical equilibrium, the angular momentum of the object is
conserved and the net torque is zero. More generally in conservative systems, equilibrium is
established at a point in configuration space where the gradient of the potential energy with
respect to the generalized coordinates is zero. Similarly, a fluid system is in fluid mechanical
equilibrium or hydrodynamic equilibrium if the net force on each of its ‘fluid particles’ (small
fluid elements) is zero and without temperature gradient around the ‘fluid particle’.

For ideal gas system, in thermodynamic equilibrium there are no net macroscopic flows of
matter or energy either within a system or between systems. In non-equilibrium systems, by
contrast, there are net flows of matter or energy. Global thermodynamic equilibrium means
that the relevant intensive parameters are homogeneous throughout the whole system, while
local thermodynamic equilibrium means that those intensive parameters are varying in space
and time, but are varying so slowly that, for any point, one can assume thermodynamic
equilibrium in some neighborhood about that point. Rarefied gases at ordinary temperatures
behave very nearly like ideal gas and the Maxwell speed distribution is an excellent approxi-
mation for such gases. Thus, it forms the basis of the kinetic theory of gases.

It is evident that Euler equations are used to investigate fluid flows which are at local thermo-
dynamic equilibrium but mechanical non-equilibrium, while NS, Burnett and Super-Burnett
equations are used to investigate fluid flows which are at mechanical and thermodynamic
non-equilibrium. Only when all kinds of kinetic moments of (f� feq) are zero, the system is at
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non-equilibrium. Only when all kinds of kinetic moments of (f� feq) are zero, the system is at
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thermodynamic equilibrium. hydrodynamic non-equilibrium (HNE) drives the evolution of f
and results in viscous stress and heat flux.

In many practical cases, it is neither necessary to know all the details of f nor necessary to know
all the kinetic moments of (f� feq).Therefore, one can (i) care only the main feature of f,
specifically, neglect the high order terms of Knudsen number, (ii) care only the kinetic
moments of (f� feq) which are most relevant to the macroscopic behaviors under consideration,
specifically, those involved in constructing the discrete Boltzmann model.

A centrally important motivation of DBM is to check, measure and analyze the non-
equilibrium state and effects [6, 16–18]. The DBM presents two sets of measures for the TNE.
One set is dynamically from the difference of the kinetic moments of f and feq,

Δm ¼ Μm fð Þ �Mm f eqð Þ, (22)

where Mm(f) is the mth rank moment of velocity tensor of f, Δ∗
m can be obtained when Mm(f) is

themth rank central moment. The other set includes the viscous stress and heat flux. The former
describes the specific TNE status, while the latter describes the influence of those TNE to the
macroscopic control equations. The former is local, while the latter is non-local. The former is
finer, while the latter is coarser. At each step of DBM simulation, both the f and feq are calcu-
lated. Therefore, the TNE effects are naturally included in each step. The captured TNE effects
are just those being most relevant to the macroscopic flow behaviors under consideration.

Entropy production is a highly concerned quantity in both physics and engineering studies.
From the physics side, it is helpful for understanding the complex non-equilibrium behaviors.
From the engineering side, a process with lower entropy production may have higher energy
transformation efficiency. Following the way of defining entropy equilibrium equation in the
non-equilibrium thermodynamics, a new entropy equilibrium equation can be obtained as
follows [19],

∂s
∂t

¼ �∇ � Js þ σ, (23)

where s is the entropy density,

Js ¼ suþ 1
T
Δ∗
3,1 (24)

and

σ ¼ Δ∗
3,1 � ∇

1
T
� 1
T
Δ∗
2 : ∇uþ ρ

Q
T
F λð Þ (25)

are the entropy flux and entropy production rate, respectively. F λð Þ ¼ _λ is a rate function
describing the process of chemical reaction occurring in the system, where λ is defined as the
ratio of the product density to the overall density. From Eq. (24) one can find that the entropy
production results from three kinds of resources, the non-organized energy flux (NOEF),
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non-organized momentum flux (NOMF), and chemical reaction. From the relation, one can
study the various mechanisms resulting in increase of entropy and their relative importance [19].

The TNE behaviors are very complex and difficult to quantitatively investigate. Finding a
convenient and efficient method to characterize the TNE status and effects is the corner stone,
DBM presents such a potential approach [16–25].

2.3. DBM versus CFD

The traditional CFD needs to first know the exact form of the hydrodynamic equations, then
design numerical algorithm according to the properties of those equations. The DBM is a
coarse-grained model derived from the Boltzmann equation. In principle, it can be formulated
and applied to simulate flows without knowing the exact form of the hydrodynamic equa-
tions, only if necessary kinetic moments of feq are followed. From the perspective of physical
application, a DBM is roughly equivalent to a hydrodynamic model supplemented by a
coarse-grained model of TNE. Via the DBM, it is easy to perform multi-scale simulations in a
wide range of Knudsen number.

3. Applications

3.1. Combustion system

Combustion has long been playing a dominant role in the transportation and power genera-
tion. To improve combustion efficiency and decrease pollution, in recent years, some new
combustion concepts have been proposed. For example, pulsed detonation engine, spinning
detonation engine, microscale combustion, nanopropellent, partially premixed and stratified
combustion, plasma-assistant combustion, cool flames, etc. All these new combustion concepts
involve complicated non-equilibrium chemical and transport processes [26].

The chemical reaction process is very complex and may include varieties of reaction mecha-
nism. So far, most of the chemical reaction kinetic models are phenomenological. As the first
step, we consider only the simplified form of Lee-Tarver chemical reaction rate law [21].
Considering the thermal initiation, the reaction kinetic is described by

dλ
dt

¼ a 1� λð Þ þ b 1� λð Þλ, T ≥Tth and 0 ≤λ ≤ 1
0, else,

�
(26)

where a and b are constants, λ is the concentration of the product and works as the reaction
process parameter, Tth is the temperature threshold for chemical reaction. Consider the case
where the chemical reaction is slow enough compared with the kinetic process of approaching
thermodynamic equilibrium, so we can treat f as f∗eq during the reaction process. The evolution
equation of single-relaxation-time DBM for combustion reads

∂f i
∂t

þ viα
∂f i
∂rα

¼ � 1
τ

f i � f ∗eqi

� �
, (27)
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where f ∗eqi ¼ f eqi ρ; u;T þ γ� 1ð ÞτQF λð Þ� �
is the local equilibrium distribution function taking

into account chemical reaction effect. Q is the amount of heat released by the chemical reactant
per unit mass. If the relaxation times of different kinetic modes approaching to thermody-
namic equilibrium are significantly different, one needs the MRT model [22]. Some observa-
tions brought by DBM are as below.

Non-equilibrium quantities defined in Eq. (22) are used to study a simple case of detonation
[21]. For the case of CJ detonation shown in Figure 1(a), the corresponding non-equilibrium
quantities, Δ∗

2 and Δ∗
3, are shown in Figure 1(b) and (c), respectively. Interestingly, at the

position of von Neumann pressure peak, the system is not far from but is nearly in its
thermodynamic equilibrium. The internal energies in two degrees of freedom deviate from
their mean value in opposite direction with the same amplitude. The internal energy in each
degree of freedom deviates from the mean value in opposite direction before and after the von
Neumann pressure peak. The amplitude in front of the von Neumann pressure peak is larger.
The physical reasons are as follows. The mechanical non-equilibrium is the driving force for
TNE. When a strong shock comes, the density, temperature and flow velocity increases
abruptly so that the system does not have enough time to relax to its thermodynamic equilib-
rium. With decrease of the gradients of density, temperature and flow velocity, the system gets
relatively more time for thermodynamic relaxation. At the position of von Neumann pressure
peak, the system has been close to its thermodynamic equilibrium. After the von Neumann
pressure peak, the density and flow velocity decrease quickly so that the system does not have
enough time for thermodynamic relaxation again. The total deriving force for TNE in front of
the von Neumann pressure peak is larger than behind.

Figure 1. Profiles of physical quantities for CJ detonation. (a) The density ρ, pressure P, temperature T, x-component of
velocity u, and the reaction process λ. (b) and (c) The non-equilibrium quantities Δ∗

2 and Δ∗
3, respectively (see Ref. [21] for

more details).
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Figure 2 gives the pressure P and corresponding non-equilibrium quantity Δ2 , xx at a certain
time [22]. From Figure 2(a)–(c), the relaxation time, 1/Ri, decreases by 10 times in each case so
that the detonation wave changes from unsteady to steady. In Figure 2(d)–(f), the shaded area,
enclosed by the curve Δ2 , xx and the x-axis, presents a rough description on the global TNE
effect around the detonation wave. It is clear that the viscosity (and/or heat conductivity)
decreases the local TNE while increases the global TNE around the detonation wave.

Figure 3 shows some numerical results aiming to investigate the main mechanisms resulting in
entropy increase and their relative importance in the combustion system [19]. It is clear that, in
the checked cases, the most pronounced contribution to entropy increase is from the chemical
reaction, ΔsCHEM, the lest contribution is from the non-organized energy flux, ΔsNOEF, the
contribution of non-organized momentum flux, ΔsNOMF, is in between. With the increasing of
Mach number, the entropy production caused by non-organized momentum flux becomes
more remarkable.

3.2. Multiphase flow with phase separation

Phase separation is an important branch in the field of multiphase flows. It is also a kind of
non-equilibrium phase transition. The key step for modeling phase separation is to incorporate
the non-ideal gas effects into the discrete Boltzmann equation. Enskog equation can be
regarded as an extension of Boltzmann equation under the hard-ball molecule model [1].
Although the specific treatments may be different, the aims are the same. Those are all to
replace the equation of state of ideal gas with a more practical one.

Figure 2. Profiles of physical quantities for different relaxation times. (a)–(c) The pressure P. (d)–(f) The corresponding
non-equilibrium quantities Δ2 , xx (from Ref. [22] with permission).
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In 2007 Gonnella, Lamura, and Sofonea (GLS) [27] introduced an appropriate inter-particle
interaction to the Watari’s model [28] to describe van der Waals fluids. The evolution equation
of GLS model reads:

∂f ki
∂t

þ vkiα
∂f ki
∂rα

¼ � 1
τ

f ki � f eqki
� �þ Iki, (28)

where the external force term Iki takes the following form:

Iki ¼ � Aþ Bα vkiα � uαð Þ þ Cþ Cq
� �

vkiα � uαð Þ2
h i

f eqki (29)

In a recent work [20], the GLS model was further developed to be a kinetic model which can be
used to access both the hydrodynamic non-equilibrium and the thermodynamic non-
equilibrium. To roughly and averagely estimate the derivation amplitude from the thermody-
namic equilibrium, a TNE strength can be defined as

D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ∗2
2 þ Δ∗2

3 þ Δ∗2
3,1 þ Δ∗2

4,2

q
(30)

Figure 4 shows that the maximum value point can work as a physical criterion to discriminate
the two stages, spinodal decomposition and domain growth, of phase separation. The TNE
strength increases with time in the first stage while decreases with time in the second stage.
More details are referred to the original publication [20].

3.3. Rayleigh-Taylor interfacial instability

Rayleigh-Taylor instability (RTI) occurs at the interface between two fluids with different
densities. The compressible RTI system can be described by [23, 24]

Figure 3. Mechanisms for global entropy production in four cases (from Ref. [19] with permission).
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∂f i
∂t

þ viα
∂f i
∂rα

� aα viα � uαð Þ
RT

f eqi ¼ � 1
τ

f i � f eqi
� �

(31)

where aα is the acceleration due to external force.

Generally, the depth of the mixing layer is an important parameter to measure the evolution of
RTI. For incompressible RTI, the measurement is readily performed by tracing the constant
density. However, for the compressible case, how to measure the mixing layer remains a
thorny problem. Here we present two independent interface-tracking methods. One is by
tracking the mean temperature of the upper and bottom fluids while the other is by tracking
the maximum values of TNE characteristic quantities, such as Δ∗

3:1, y. The latter method is based

on the fact that Δ∗
3:1, y takes its maximum value at the position of the interface along the y

direction of the spike and bubble. The perturbation amplitudes developing with time obtained
by the two methods are shown in Figure 5. The good agreement shows that the two
approaches validate each other and the local TNE, Δ∗

3:1, y, can be used to track interfaces in

numerical experiments.

3.4. Compressible flows under shock

Figure 6 shows the profiles of physical quantities in the process where the shock wave passes
outwards from the heavy medium to the light one. Figure 6(a) and (b) are for the case without
and with initial perturbations at the interface, respectively. From left to right, one can find three
kind of interfaces, the rarefaction wave, material interface and shock wave, which are indi-
cated by dashed lines [25].

Figure 4. Evolutions of the boundary length L and the TNE strength D for the phase separation process (see Ref. [20] for
more details).
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According to the TNE information, the main feature of actual particle velocity distribution
function can be qualitatively recovered. Figure 7 shows an example, where the interface is not
perturbed initially. The details are referred to Ref. [25]. DBM simulations [25] show that the
shear stress exists only for the oblique shocking. As a consistent correspondence, MD results
[29] show that fluctuating shear stresses exist if observed in a scale with a few angstroms,

Figure 5. The perturbation amplitudes developing with time obtained by two different tracking approaches (see Ref. [23]
for more details).

Figure 6. Profiles of physical quantities in the process of shock wave passing outwards from the heavy medium to the
light one. (a) Without initial perturbations at the interface. (b) With initial sinusoidal perturbation at the interface (from
Ref. [25] with permission).
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while their mean value becomes negligibly small when being averaged over a scale with
several hundred angstroms.

A comparison of the DBM results and those of the MD is shown in Figure 8. Figure 8(a) and (b)
shows the DBM results for the cases where the interface is not and is perturbed initially,
respectively. Figure 8(c) shows the shear stresses from MD simulation. Since the MD uses
particle description, the existence of locally fluctuating shear stress corresponds to the obser-
vation in the case with perturbed interface; the observation that mean value of shear stresses
becomes negligibly small in a much larger scale roughly correspond to the case with non-
perturbed interface for the DBM simulations.

3.5. Shock wave in plasma

Figure 9 shows an example for that the TNE effects can be used to physically discriminate shock
wave in plasma from those in common fluid. From the first two rows, the two TNE quantities, Δ∗

2

and Δ∗
4,2, show quite similar behaviors around shock wave and/or detonation wave in common

fluid, even though they two have different physical meanings. However, the two quantities show
qualitative difference around shock wave in plasma [30].

Figure 7. Sketches of the actual distribution functions in velocity space (vr, vθ). Panels (a)–(c) show the recovered
distribution functions at the rarefaction wave, the material interface, and the shock wave, respectively (from Ref. [25]
with permission).

Figure 8. Shear stress within shock wave. (a) DBM results for the case without initial interface perturbation. (b) DBM
results for the case with initial interface perturbation. (c) MD results (figures (a) and (b) are from Ref. [25] with permission,
figure (c) is from Ref. [29] with permission).
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According to the TNE information, the main feature of actual particle velocity distribution
function can be qualitatively recovered. Figure 7 shows an example, where the interface is not
perturbed initially. The details are referred to Ref. [25]. DBM simulations [25] show that the
shear stress exists only for the oblique shocking. As a consistent correspondence, MD results
[29] show that fluctuating shear stresses exist if observed in a scale with a few angstroms,

Figure 5. The perturbation amplitudes developing with time obtained by two different tracking approaches (see Ref. [23]
for more details).

Figure 6. Profiles of physical quantities in the process of shock wave passing outwards from the heavy medium to the
light one. (a) Without initial perturbations at the interface. (b) With initial sinusoidal perturbation at the interface (from
Ref. [25] with permission).

Kinetic Theory18

while their mean value becomes negligibly small when being averaged over a scale with
several hundred angstroms.

A comparison of the DBM results and those of the MD is shown in Figure 8. Figure 8(a) and (b)
shows the DBM results for the cases where the interface is not and is perturbed initially,
respectively. Figure 8(c) shows the shear stresses from MD simulation. Since the MD uses
particle description, the existence of locally fluctuating shear stress corresponds to the obser-
vation in the case with perturbed interface; the observation that mean value of shear stresses
becomes negligibly small in a much larger scale roughly correspond to the case with non-
perturbed interface for the DBM simulations.

3.5. Shock wave in plasma

Figure 9 shows an example for that the TNE effects can be used to physically discriminate shock
wave in plasma from those in common fluid. From the first two rows, the two TNE quantities, Δ∗

2

and Δ∗
4,2, show quite similar behaviors around shock wave and/or detonation wave in common

fluid, even though they two have different physical meanings. However, the two quantities show
qualitative difference around shock wave in plasma [30].

Figure 7. Sketches of the actual distribution functions in velocity space (vr, vθ). Panels (a)–(c) show the recovered
distribution functions at the rarefaction wave, the material interface, and the shock wave, respectively (from Ref. [25]
with permission).

Figure 8. Shear stress within shock wave. (a) DBM results for the case without initial interface perturbation. (b) DBM
results for the case with initial interface perturbation. (c) MD results (figures (a) and (b) are from Ref. [25] with permission,
figure (c) is from Ref. [29] with permission).

Discrete Boltzmann Modeling of Compressible Flows
http://dx.doi.org/10.5772/intechopen.70748

19



4. Summary

Understanding compressible flows need more time. DBM presents a convenient way to model
and simulate systems with trans-scale Knudsen number. Mathematically, the only difference of
discrete Boltzmann from the traditional hydrodynamic modeling is that the NS equations are
replaced by a discrete Boltzmann equation. But physically, this replacement has a significant
gain: a DBM is roughly equivalent to a hydrodynamic model supplemented by a coarse-
grained model of the TNE, where the hydrodynamic model can be and can also beyond the

Figure 9. TNE characteristics of three types of shock waves. The three rows, from top to bottom, correspond to pure
shock wave (see Ref. [25] for more details), shock wave with chemical reaction (detonation) (see Ref. [21] for more details),
and shock wave in plasma (see Ref. [30] for more details). The profiles on the left column show the values of Δ∗

2 around the
wave fronts while the profiles on the right column show the values of Δ∗

4,2.
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NS. The TNE provided by DBM has been used to investigate non-equilibrium effect during
detonation process, to discriminate different stages of phase separation, to recover actual
particle velocity distribution function qualitatively, to track the interfaces of different fluid,
and to discriminate shock wave in plasma from those in common fluid. More use of those TNE
quantities are further being discovered with the deeper investigation of the compressible and
complex flows.
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Abstract

Plasmas exhibit a vast variety of waves and oscillations in which moving charged
particle produce fields which ultimately give rise to particle motion. These wave-particle
effects are used in the acceleration heating methods of plasma particles, and in wave
generation as well. Plasmas are often manipulated with EM waves, e.g., Alfvén waves
are long-wavelength modes (drift-waves) where fluid theory is most reliable, while for
short wavelength modes (e.g., Kinetic Alfvén waves), collisionless effects becomes
important. In this chapter, the properties of kinetic Alfvén waves are aimed to study by
employing two potential theory by taking particle streaming and Weibel instability with
temperature anisotropy in a Lorentzian plasma.

Keywords: KAWs, Lorentzian distribution, streaming and temperature anisotropy,
dusty plasma

1. Introduction

This chapter addresses one of the intriguing topics of Astrophysics—the existence of kinetic
Alfvén wave (KAW) and the important consequences for astrophysical and space science to
explore and investigate the new avenues. Due to the fact that KAWs have non-zero electric
field E∥ which is parallel to background magnetic field and possess anisotropic polarized and
spatial structures which contribute to particle energization. It is an interesting mechanism that
KAWs can accelerate the field-aligned charged particles and has been applied in the dissipa-
tion of solar wind turbulence, the acceleration, and heating of charged particles in both the
filed-aligned and perpendicular directions and is anticipated to play a vital role in the particle
energization in laboratory, space and astrophysical plasma. The progress reported here would
have immense impact and hence a small step in particular direction.

The solar wind plasma is hot and weakly collisional, existing in a state far from thermal
equilibrium [1] as observed in situ in the solar wind through its nonthermal characteristics of
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velocity distribution function (VDF). The electron VDFs measured at 1 AU have been used as
boundary condition to determine the VDFs at different altitudes. It has been confirmed that for
several solar radii, the suprathermal population of particles is present in the corona [2]. For low
collision rates in such plasmas, the particles can develop temperature anisotropy and the VDFs
become slanted and build up high energy tails and heat fluxes along the magnetic field
direction especially in fast winds and energetic interplanetary shocks. Various processes in a
collisionless solar wind plasma lead to the development of particle temperature anisotropy to
generate plasma instabilities which are often kinetic in nature. The free energy sources associ-
ated with the deviation from the thermodynamical equilibrium distribution function could
also excite plasma waves [3–11].

In general, the study of plasma waves and micro-instabilities in the solar wind shows that
proton VDFs are prone to anisotropic instability and originate to be stable or marginally stable.
Marsch [12] has discussed four significant electrostatic and electromagnetic wave modes and
free energy sources to make them unstable. For example, the electrostatic ion acoustic wave
may be destabilized by the ion beams and electrons and electron heat flux, [13] the electro-
magnetic ion Alfvén-cyclotron wave needs proton beam and temperature anisotropy,
magnetosonic wave requires proton beam and ion differential streaming and whistler-mode
and lower-hybrid wave [14] unstable solutions. Among several electromagnetic instabilities,
the kinetic Alfvén wave instability is the most important one.

The satellite missions in space and astrophysical plasmas have confirmed the presence of non-
Maxwellian high energy and velocity tails in the particle distribution function and found in the
magnetosphere of Saturn, Mercury, Uranus and Earth [2, 15–17]. The non-Maxwellian distribu-
tion of charged particles has been observed to give a better fit to the thermal and superthermal
part by employing kappa distribution, since it fits both thermal and suprathermal parts in the
energy velocity spectra.

The subject area of this chapter involves the basic research of space plasma physics and in
particular, focuses the investigations of electrostatic and electromagnetic waves in a multi-
component dusty (complex) Maxwellian and non-Maxwellian plasmas. In the last few years,
various power-law distribution functions (in velocity space), i.e., kappa and r; qð Þ have been
used to investigate collective phenomena and associated instabilities, such as dust-acoustic
waves, kinetic Alfvén waves, Weibel instabilities, dust charging processes (in linear and
nonlinear regimes) in space and astrophysical situations for better fitting the observational
data in comparison to Maxwell distribution. These distributions have relevance to space
plasmas containing solar wind, interstellar medium, ionosphere, magnetosphere, auroral
zones, mesosphere, lower thermosphere, etc.

When the intense radiations interact with plasmas, it ends up with many applications like
instabilities, inertial confinement fusion [18], and pulsar emissions [19]. These instabilities
further generate turbulent electromagnetic fields in plasma regimes. We can characterize
instabilities as electrostatic as well as electromagnetic according to the conditions provided by
nature [20]. In this chapter, we shall also discuss electromagnetic instability called Weibel
instability in a Lorentzian plasma. The free energy source available for Weibel instability is
temperature anisotropy and can be developed in magnetically confined and magnetic free
plasma environment as well. First time Weibel [21] came up with the calculations of impulsive
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growing transverse waves with anisotropic velocity distribution function in 1958. This instability
developed when the electrons in the fluctuating magnetic field generates momentum flux, this
flux sequentially effects velocity < v > (and ultimately current density < J >) as to increase the
fluctuating field [22]. The property of Weibel instability is that it is different from normal
resonant wave-particle instabilities because it depends on effects in bulk plasma without any
resonant particle contributions [23]. The particle distribution functions in kinetic model ade-
quately describe a physical phenomenon in terms of time and phase space configurations
providing more information to investigate plasma waves, instabilities, plasma equilibrium,
Landau damping phenomena, etc. In this chapter, we shall review the kinetic/Inertial Alfvén
waves and instabilities, the effects of dust grain charging as well as field aligned/cross field
currents, streaming velocity and the non-Maxwellian power-law distribution and its effect on
various electromagnetic modes. We intend to show that the presence of dust grains introduces a
new cutoff frequency Ωdlh which is associated with the motion of mobile charged particles.
Moreover, an interesting feature is to show that the employed model inhibits the temperature
anisotropy and supports the velocity anisotropy. Further, we shall calculate the linear dispersion
relation for Weibel instability in Lorentzian plasma B0 ¼ 0;B0 6¼ 0ð Þ by using linearized, nonrel-
ativistic Vlasov equation. We shall solve Z∗

κ αð Þ by assuming α < 1 or α > 1 for κ ¼ 3, 5, 7.

2. Model and methodology

In long-wavelength modes the fluid theory is most reliable, while for short wavelength modes
(like KAWs), collisionless effects are important, for example, Landau damping due to finite ion
Larmor radius explains observed damping rate and in dusty plasmas and charge fluctuations.
Kinetic Alfvén waves (KAWs) are small scale dispersive Alfvén waves (AWs) which plays a
significant role in particle acceleration and plasma heating. A coupling mechanism between
small-scale KAWs and large-scale AWs in the presence of superthermal particles has been
discussed which in turns giving rise to the excitation of KAWS in a solar/stellar wind plasma
have been studied in the past. In this chapter, we intend to show the relationship between the
growth rates of excited anisotropic KAWs and perpendicular wavelength by taking charge
fluctuation and Landau damping variations into account. Moreover, when the perpendicular
component of the wavelength, when comparable to the ion gyroradius, a magnetic field aligned
electric field plays a significant role in the plasma acceleration/heating. Utilizing a two potential
theory along with kinetic description, the properties of kinetic Alfvén waves are aimed to inves-
tigate different modes in low beta plasmas by incorporating the streaming effects. We present
overview of electromagnetic KAW streaming instability in a collisionless dusty magnetoplasma,
whose constituents are the electrons, ions and negatively charged dust particles. The interaction
between monochromatic electron/ion beam with plasma is also discussed under various condi-
tions. Further, to calculate the linear dispersion relation for Weibel instability in unmagnetized
Lorentzian plasma, we shall employ linearized, nonrelativistic Vlasov equation.

2.1. Two potential theory

In a low beta plasma, β < 1, the electric field can be described by two potential theory or fields
expressing the electromagnetic perturbations with shear perturbations only in the magnetic
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velocity distribution function (VDF). The electron VDFs measured at 1 AU have been used as
boundary condition to determine the VDFs at different altitudes. It has been confirmed that for
several solar radii, the suprathermal population of particles is present in the corona [2]. For low
collision rates in such plasmas, the particles can develop temperature anisotropy and the VDFs
become slanted and build up high energy tails and heat fluxes along the magnetic field
direction especially in fast winds and energetic interplanetary shocks. Various processes in a
collisionless solar wind plasma lead to the development of particle temperature anisotropy to
generate plasma instabilities which are often kinetic in nature. The free energy sources associ-
ated with the deviation from the thermodynamical equilibrium distribution function could
also excite plasma waves [3–11].

In general, the study of plasma waves and micro-instabilities in the solar wind shows that
proton VDFs are prone to anisotropic instability and originate to be stable or marginally stable.
Marsch [12] has discussed four significant electrostatic and electromagnetic wave modes and
free energy sources to make them unstable. For example, the electrostatic ion acoustic wave
may be destabilized by the ion beams and electrons and electron heat flux, [13] the electro-
magnetic ion Alfvén-cyclotron wave needs proton beam and temperature anisotropy,
magnetosonic wave requires proton beam and ion differential streaming and whistler-mode
and lower-hybrid wave [14] unstable solutions. Among several electromagnetic instabilities,
the kinetic Alfvén wave instability is the most important one.

The satellite missions in space and astrophysical plasmas have confirmed the presence of non-
Maxwellian high energy and velocity tails in the particle distribution function and found in the
magnetosphere of Saturn, Mercury, Uranus and Earth [2, 15–17]. The non-Maxwellian distribu-
tion of charged particles has been observed to give a better fit to the thermal and superthermal
part by employing kappa distribution, since it fits both thermal and suprathermal parts in the
energy velocity spectra.

The subject area of this chapter involves the basic research of space plasma physics and in
particular, focuses the investigations of electrostatic and electromagnetic waves in a multi-
component dusty (complex) Maxwellian and non-Maxwellian plasmas. In the last few years,
various power-law distribution functions (in velocity space), i.e., kappa and r; qð Þ have been
used to investigate collective phenomena and associated instabilities, such as dust-acoustic
waves, kinetic Alfvén waves, Weibel instabilities, dust charging processes (in linear and
nonlinear regimes) in space and astrophysical situations for better fitting the observational
data in comparison to Maxwell distribution. These distributions have relevance to space
plasmas containing solar wind, interstellar medium, ionosphere, magnetosphere, auroral
zones, mesosphere, lower thermosphere, etc.

When the intense radiations interact with plasmas, it ends up with many applications like
instabilities, inertial confinement fusion [18], and pulsar emissions [19]. These instabilities
further generate turbulent electromagnetic fields in plasma regimes. We can characterize
instabilities as electrostatic as well as electromagnetic according to the conditions provided by
nature [20]. In this chapter, we shall also discuss electromagnetic instability called Weibel
instability in a Lorentzian plasma. The free energy source available for Weibel instability is
temperature anisotropy and can be developed in magnetically confined and magnetic free
plasma environment as well. First time Weibel [21] came up with the calculations of impulsive
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growing transverse waves with anisotropic velocity distribution function in 1958. This instability
developed when the electrons in the fluctuating magnetic field generates momentum flux, this
flux sequentially effects velocity < v > (and ultimately current density < J >) as to increase the
fluctuating field [22]. The property of Weibel instability is that it is different from normal
resonant wave-particle instabilities because it depends on effects in bulk plasma without any
resonant particle contributions [23]. The particle distribution functions in kinetic model ade-
quately describe a physical phenomenon in terms of time and phase space configurations
providing more information to investigate plasma waves, instabilities, plasma equilibrium,
Landau damping phenomena, etc. In this chapter, we shall review the kinetic/Inertial Alfvén
waves and instabilities, the effects of dust grain charging as well as field aligned/cross field
currents, streaming velocity and the non-Maxwellian power-law distribution and its effect on
various electromagnetic modes. We intend to show that the presence of dust grains introduces a
new cutoff frequency Ωdlh which is associated with the motion of mobile charged particles.
Moreover, an interesting feature is to show that the employed model inhibits the temperature
anisotropy and supports the velocity anisotropy. Further, we shall calculate the linear dispersion
relation for Weibel instability in Lorentzian plasma B0 ¼ 0;B0 6¼ 0ð Þ by using linearized, nonrel-
ativistic Vlasov equation. We shall solve Z∗

κ αð Þ by assuming α < 1 or α > 1 for κ ¼ 3, 5, 7.

2. Model and methodology

In long-wavelength modes the fluid theory is most reliable, while for short wavelength modes
(like KAWs), collisionless effects are important, for example, Landau damping due to finite ion
Larmor radius explains observed damping rate and in dusty plasmas and charge fluctuations.
Kinetic Alfvén waves (KAWs) are small scale dispersive Alfvén waves (AWs) which plays a
significant role in particle acceleration and plasma heating. A coupling mechanism between
small-scale KAWs and large-scale AWs in the presence of superthermal particles has been
discussed which in turns giving rise to the excitation of KAWS in a solar/stellar wind plasma
have been studied in the past. In this chapter, we intend to show the relationship between the
growth rates of excited anisotropic KAWs and perpendicular wavelength by taking charge
fluctuation and Landau damping variations into account. Moreover, when the perpendicular
component of the wavelength, when comparable to the ion gyroradius, a magnetic field aligned
electric field plays a significant role in the plasma acceleration/heating. Utilizing a two potential
theory along with kinetic description, the properties of kinetic Alfvén waves are aimed to inves-
tigate different modes in low beta plasmas by incorporating the streaming effects. We present
overview of electromagnetic KAW streaming instability in a collisionless dusty magnetoplasma,
whose constituents are the electrons, ions and negatively charged dust particles. The interaction
between monochromatic electron/ion beam with plasma is also discussed under various condi-
tions. Further, to calculate the linear dispersion relation for Weibel instability in unmagnetized
Lorentzian plasma, we shall employ linearized, nonrelativistic Vlasov equation.

2.1. Two potential theory

In a low beta plasma, β < 1, the electric field can be described by two potential theory or fields
expressing the electromagnetic perturbations with shear perturbations only in the magnetic
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field. We may neglect the electromagnetic wave compression along the direction of magnetic
field (B1z ¼ 0), which leads to the coupling of Alfvén-acoustic mode. Thus, we adopt a two
potential theory which represents both the transverse and parallel components of the electric
field as E⊥ ¼ �∇⊥φ and E∥ ¼ �∂ψ=∂z, with φ 6¼ ψ [23]. We shall also consider the charge on
the dust grain which may fluctuate according to the plasma conditions. At equilibrium, the
charge neutrality imposes the condition ne0 � ni0 þ Zd0nd0 ¼ 0, where ne0 ni0ð Þ is the electron
(ion) number density and Zd0 is the equilibrium dust charging state.

The linearized Poisson and Maxwell equations in terms of parallel and perpendicular opera-
tors can be expressed as

∇2
⊥φþ ∂2zψ ¼ 1

E0
ne1 þ Zd0nd1 þ nd0Zd1 � ni1ð Þ, (1)

and

∂z∇2
⊥ φ� ψð Þ ¼ μ0∂t Je1z þ Ji1z þ Jd1zð Þ, (2)

where E0 μ0

� �
is the permittivity (permeability) of the free space and Jj1z represents the field

aligned current density for jth species j ¼ eð for electrons, i for ions and d for dust grainsÞ. In
obtaining Eq. (2), we have ignored the factor ∇⊥∇zEz � ∇2E⊥: The main idea is to decouple the
compressional Alfvén mode under the assumption ∇� Eð Þz ¼ � ∂B=∂tð Þz ¼ 0, i.e., to highlight
bending of line of force and minimize any change in field strength due to wave compression.
Moreover, ∇� Eð Þz engross only E⊥ and the least restrictive assumption for ∇� Eð Þz to vanish
is E⊥ ¼ �∇⊥φ in which the perpendicular electric field E⊥ is electrostatic, leaving an incom-
pressible mode. When φ ¼ ψ, the twist of the magnetic field lines vanishes, therefore, the
incompressible shear modes have ∇:u⊥ ¼ 0 ¼ B1z, and E⊥ ¼ �∇⊥φ:

∂t þ v � ∇ð Þf j1 þ
qj
mj

Eþ v� Bð Þ:∇v f j0 ¼ 0, (3)

f j1 ¼
qjkzψ

mj ω� kzvzð Þ
∂f j0
∂vz

, (4)

where f j0 is the equilibrium distribution function. The dynamics of cold and magnetized dust

is governed by set of fluid equations, i.e.,

∂tvd ¼ Zde
md

EþVd �ωcd (5)

and

∂tnd þ div ndVdð Þ ¼ 0 (6)

2.2. Number density and current density perturbations

Here, we may define the number density and current density as
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nj1 ¼ n0

ð
f j1dv, j ¼ e, i, d

Jj1 ¼ qjn0

ð
vf j1dv,

(7)

3. Dispersion and damping of kinetic Alfvén waves (KAW)

Kinetic Alfvén waves (KAWs) are small scale dispersive Alfvén waves (AWs) which plays a
significant role in particle acceleration, turbulence, wave particle interaction and plasma heating.
Kinetic processes prevail in the regimes where plasma is dilute, multi-component, and non-
uniform. A coupling mechanism between small-scale KAWs and large-scale AWs with
superthermal plasma species which in turns gives rise to the excitation of KAWS in a solar/stellar
wind plasma has proved dispersive Alfvén waves responsible for the solar wind turbulence
especially when the turbulence cascade of these electromagnetic waves transfer from larger to
smaller scale as compared to proton gyro radius. Moreover, from spacecraft observations in
ionospheric plasma, it is evident that Alfvénic Poynting flux is responsible to transfer the energy
for particle acceleration. All the energized auroral particles accelerate in ionosphere, initiate Joule
heating phenomenon and stream out into the magnetosphere [25–28].

There are number of studies to show the relationship between the growth rates of excited
anisotropic KAWs and perpendicular wavelength by taking charge fluctuation and Landau
damping variations into account. Moreover, the perpendicular component of wavelength,
when comparable to ion gyroradius, a magnetic field aligned electric field plays a significant
role in plasma acceleration/heating.

One of the important features in astrophysical plasma is the transportation of electromagnetic
energy through the wave interaction with thermal plasma ions [29–31]. The KAW plays a vital
role to transfer the wave energy through Landau damping (when thermal electrons travel
along the magnetic field lines), which is regarded as collisionless damping of low-frequency
waves and during this process the particles gain kinetic energy from the wave. This process
can only happen when the distribution function has a negative slope which results in the
heating of plasmas or acceleration of electrons along the magnetic field direction [24]. Recent
studies also suggest the impact of non-Maxwellian distribution functions on the dynamics of
solar wind and auroral plasma [32]. This study shows that the plateau formation in the parallel
electron distribution functions minimize the Landau damping rate significantly.

In this chapter, the properties of kinetic Alfvén waves would be discussed by employing two
potential theory, Maxwell equations and Vlasov model to study different plasma modes and
by taking streaming of charged particles along and across the field direction in a Maxwellian
and Lorentzian plasma.

3.1. Kinetic Alfvén waves in Maxwellian plasma

The propagation of kinetic Alfvén waves in a dusty plasma with finite Larmor radius effects
will be discussed using a fluid-kinetic formulation by taking charge variations of dust
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field. We may neglect the electromagnetic wave compression along the direction of magnetic
field (B1z ¼ 0), which leads to the coupling of Alfvén-acoustic mode. Thus, we adopt a two
potential theory which represents both the transverse and parallel components of the electric
field as E⊥ ¼ �∇⊥φ and E∥ ¼ �∂ψ=∂z, with φ 6¼ ψ [23]. We shall also consider the charge on
the dust grain which may fluctuate according to the plasma conditions. At equilibrium, the
charge neutrality imposes the condition ne0 � ni0 þ Zd0nd0 ¼ 0, where ne0 ni0ð Þ is the electron
(ion) number density and Zd0 is the equilibrium dust charging state.

The linearized Poisson and Maxwell equations in terms of parallel and perpendicular opera-
tors can be expressed as

∇2
⊥φþ ∂2zψ ¼ 1

E0
ne1 þ Zd0nd1 þ nd0Zd1 � ni1ð Þ, (1)

and

∂z∇2
⊥ φ� ψð Þ ¼ μ0∂t Je1z þ Ji1z þ Jd1zð Þ, (2)

where E0 μ0

� �
is the permittivity (permeability) of the free space and Jj1z represents the field

aligned current density for jth species j ¼ eð for electrons, i for ions and d for dust grainsÞ. In
obtaining Eq. (2), we have ignored the factor ∇⊥∇zEz � ∇2E⊥: The main idea is to decouple the
compressional Alfvén mode under the assumption ∇� Eð Þz ¼ � ∂B=∂tð Þz ¼ 0, i.e., to highlight
bending of line of force and minimize any change in field strength due to wave compression.
Moreover, ∇� Eð Þz engross only E⊥ and the least restrictive assumption for ∇� Eð Þz to vanish
is E⊥ ¼ �∇⊥φ in which the perpendicular electric field E⊥ is electrostatic, leaving an incom-
pressible mode. When φ ¼ ψ, the twist of the magnetic field lines vanishes, therefore, the
incompressible shear modes have ∇:u⊥ ¼ 0 ¼ B1z, and E⊥ ¼ �∇⊥φ:

∂t þ v � ∇ð Þf j1 þ
qj
mj

Eþ v� Bð Þ:∇v f j0 ¼ 0, (3)

f j1 ¼
qjkzψ

mj ω� kzvzð Þ
∂f j0
∂vz

, (4)

where f j0 is the equilibrium distribution function. The dynamics of cold and magnetized dust

is governed by set of fluid equations, i.e.,

∂tvd ¼ Zde
md

EþVd �ωcd (5)

and

∂tnd þ div ndVdð Þ ¼ 0 (6)

2.2. Number density and current density perturbations

Here, we may define the number density and current density as
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nj1 ¼ n0

ð
f j1dv, j ¼ e, i, d

Jj1 ¼ qjn0

ð
vf j1dv,

(7)

3. Dispersion and damping of kinetic Alfvén waves (KAW)

Kinetic Alfvén waves (KAWs) are small scale dispersive Alfvén waves (AWs) which plays a
significant role in particle acceleration, turbulence, wave particle interaction and plasma heating.
Kinetic processes prevail in the regimes where plasma is dilute, multi-component, and non-
uniform. A coupling mechanism between small-scale KAWs and large-scale AWs with
superthermal plasma species which in turns gives rise to the excitation of KAWS in a solar/stellar
wind plasma has proved dispersive Alfvén waves responsible for the solar wind turbulence
especially when the turbulence cascade of these electromagnetic waves transfer from larger to
smaller scale as compared to proton gyro radius. Moreover, from spacecraft observations in
ionospheric plasma, it is evident that Alfvénic Poynting flux is responsible to transfer the energy
for particle acceleration. All the energized auroral particles accelerate in ionosphere, initiate Joule
heating phenomenon and stream out into the magnetosphere [25–28].

There are number of studies to show the relationship between the growth rates of excited
anisotropic KAWs and perpendicular wavelength by taking charge fluctuation and Landau
damping variations into account. Moreover, the perpendicular component of wavelength,
when comparable to ion gyroradius, a magnetic field aligned electric field plays a significant
role in plasma acceleration/heating.

One of the important features in astrophysical plasma is the transportation of electromagnetic
energy through the wave interaction with thermal plasma ions [29–31]. The KAW plays a vital
role to transfer the wave energy through Landau damping (when thermal electrons travel
along the magnetic field lines), which is regarded as collisionless damping of low-frequency
waves and during this process the particles gain kinetic energy from the wave. This process
can only happen when the distribution function has a negative slope which results in the
heating of plasmas or acceleration of electrons along the magnetic field direction [24]. Recent
studies also suggest the impact of non-Maxwellian distribution functions on the dynamics of
solar wind and auroral plasma [32]. This study shows that the plateau formation in the parallel
electron distribution functions minimize the Landau damping rate significantly.

In this chapter, the properties of kinetic Alfvén waves would be discussed by employing two
potential theory, Maxwell equations and Vlasov model to study different plasma modes and
by taking streaming of charged particles along and across the field direction in a Maxwellian
and Lorentzian plasma.

3.1. Kinetic Alfvén waves in Maxwellian plasma

The propagation of kinetic Alfvén waves in a dusty plasma with finite Larmor radius effects
will be discussed using a fluid-kinetic formulation by taking charge variations of dust
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particles. The coupling of Alfvén-acoustic mode results in the formations of kinetic Alfvén
wave which would be discussed in forth coming subsections. In a magnetized plasma, we shall
consider the electrons are thermal and strongly magnetized obeying an equilibrium Maxwel-
lian distribution, while ions are hot and magnetized so that finite Larmor radius can be taken
into account. For ions, we may employ Vlasov equation by utilizing guiding center approach
to obtain the perturbed distribution function for an electromagnetic wave when the electric
field and the wave vector k lie in the xz plane and, B0 ¼ 0; 0;B0ð Þ, k ¼ k⊥; 0; kzð Þ,

f i1 ¼ � ni0e
Ti

� �X
l

X
n

kzvzψþ nΩciφ
ω� nΩci � kzvz

exp i n� lð Þθð ÞJn
k⊥v⊥
Ωci

� �
Jl

k⊥v⊥
Ωci

� �
f i0, (8)

where Jn is the Bessel function of first kind, having order n and f i0 is the equilibrium distribu-
tion function. On using Eq. (7), we obtain the modified number and current densities for hot
and magnetized ions and thermal electrons, i.e.,

ni1 ¼ � eni0
kzmiv2ti

X
n

kzvtiψ 1þ ξinZ ξinð Þð Þ þ nΩciφZ ξinð Þ½ �In ϑið Þe�ϑi , (9)

Ji1z ¼ � ni0e2

Tikz

X
n

1þ ξinZ ξinð Þð Þ kzvtiξinψþ nΩciφð Þ½ �In ϑið Þe�ϑi , (10)

and

ne1 ¼ ene0
Te

ψ 1þ ξeZ ξeð Þ,ð (11)

Je1 ¼
e2ne0ψ
mevte

ξeZ
0
ξeð Þ, (12)

where In is the modified Bessel function with argument ϑi, e ¼ k⊥v2ti, e=2Ωci, e and Z ξinð Þ is the

usual dispersion function for a Maxwellian plasma with ξin ¼ ω� nΩcið Þ=kzvti and Z
0
is the

derivative of Z with respect to its argument.

The dust component is considered to be cold and unmagnetized such that ω << ωcj,

kzvte >> ω and kzvti << ω, therefore, we use hydrodynamical model with momentum balance
equation and continuity equation For cold and unmagnetized dust and thus we obtain

nd1 ¼ � nd0Zd0e
mdω2 k2⊥φþ k2zψ

� �
, (13)

and

Jd1z ¼
nd0Q2

d0

mdω
kzψ: (14)

To find the relation between φ and ψ, the expressions of ne1, ni1 and nd1 are used into Eq. (1)
and Ji1z, Je1z, and Jd1z into Eq. (2) to obtain the following coupled equations:
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Aφþ Bψ ¼ 0,

CφþDψ ¼ 0,
(15)

The coefficients in Eq. (15) are given by

A ¼ k⊥Ϝ i

ω2 ω0 1� 3
4
ϑi

� �
,

B ¼ λ�2
De � k2zω

2
pd

� �
=ω2,

C ¼ c2k2zk
2
⊥,

D ¼ 1
kz

2ω2

λ2
De

� kzε⊥,

(16)

where Ϝ i ¼ ω2
pi=ω

2
ci, ω0 ¼ ω2 �Ω2

dlhð Þi, ε⊥ ¼ ω2
pd þ c2k2⊥ and Ω2

dlhð Þi ¼ ω2
pd=Ϝ i. The solution of

homogeneous Eq. (15) in the form of a biquadratic equation, i.e.,

pω4 þQω2 þ R ¼ 0 (17)

where,

p ¼ 2ω2
pe

kzv2te
,

Q ¼ �
2ω2

pd

kzv2te
Ω2

dlhð Þi � kzE⊥ � kzv2Ai
λ2
De

1þ 3
4
ϑi

� �
,

R ¼ Ω2
dlhð ÞikzE⊥ þ k3zv

2
Aiω

2
pd 1þ 3

4
ϑi

� �
(18)

where VAi ¼ cωci=ωpi is the Alfvén velocity of ions. The solution of biquadratic equation in the
form of kinetic Alfvén wave is as follows,

ω2 ¼ Ω2
dlhð Þi þ k2zV

2
Ai 1þ 3

4
þ T0Λi

E⊥
c2k2⊥

( )
ϑi;

" #
(19)

where, T0 ¼ Te
Ti
: and Λi ¼ ni0=ne0 This shows the dispersion relation of kinetic Alfvén waves in

the presence of mobile dust that are the extension of shear Alfvén waves in the range of small
perpendicular wavelength. The first term on the R. H. S appears due to dust dynamics, i.e., a
new cut off frequency due to the hybrid dynamics of cold dust and magnetized ions which
provides a limit to the propagation of electromagnetic wave. In a dustless plasma, i.e., ωpd ¼ 0,
we obtain usual dispersion relation in electron-ion plasma. Expressing ω in terms of real and
imaginary part, ω ¼ ωr þ iγ, with ωr >> γ, we either obtain growth or damping of KAW
satisfying the condition, ω=kz ¼ vA ≤ vz through wave particle interactions [33, 34]. In a dusty
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particles. The coupling of Alfvén-acoustic mode results in the formations of kinetic Alfvén
wave which would be discussed in forth coming subsections. In a magnetized plasma, we shall
consider the electrons are thermal and strongly magnetized obeying an equilibrium Maxwel-
lian distribution, while ions are hot and magnetized so that finite Larmor radius can be taken
into account. For ions, we may employ Vlasov equation by utilizing guiding center approach
to obtain the perturbed distribution function for an electromagnetic wave when the electric
field and the wave vector k lie in the xz plane and, B0 ¼ 0; 0;B0ð Þ, k ¼ k⊥; 0; kzð Þ,

f i1 ¼ � ni0e
Ti

� �X
l

X
n

kzvzψþ nΩciφ
ω� nΩci � kzvz

exp i n� lð Þθð ÞJn
k⊥v⊥
Ωci

� �
Jl

k⊥v⊥
Ωci

� �
f i0, (8)

where Jn is the Bessel function of first kind, having order n and f i0 is the equilibrium distribu-
tion function. On using Eq. (7), we obtain the modified number and current densities for hot
and magnetized ions and thermal electrons, i.e.,

ni1 ¼ � eni0
kzmiv2ti

X
n

kzvtiψ 1þ ξinZ ξinð Þð Þ þ nΩciφZ ξinð Þ½ �In ϑið Þe�ϑi , (9)

Ji1z ¼ � ni0e2
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1þ ξinZ ξinð Þð Þ kzvtiξinψþ nΩciφð Þ½ �In ϑið Þe�ϑi , (10)

and

ne1 ¼ ene0
Te

ψ 1þ ξeZ ξeð Þ,ð (11)

Je1 ¼
e2ne0ψ
mevte

ξeZ
0
ξeð Þ, (12)

where In is the modified Bessel function with argument ϑi, e ¼ k⊥v2ti, e=2Ωci, e and Z ξinð Þ is the

usual dispersion function for a Maxwellian plasma with ξin ¼ ω� nΩcið Þ=kzvti and Z
0
is the

derivative of Z with respect to its argument.

The dust component is considered to be cold and unmagnetized such that ω << ωcj,

kzvte >> ω and kzvti << ω, therefore, we use hydrodynamical model with momentum balance
equation and continuity equation For cold and unmagnetized dust and thus we obtain

nd1 ¼ � nd0Zd0e
mdω2 k2⊥φþ k2zψ

� �
, (13)

and

Jd1z ¼
nd0Q2

d0

mdω
kzψ: (14)

To find the relation between φ and ψ, the expressions of ne1, ni1 and nd1 are used into Eq. (1)
and Ji1z, Je1z, and Jd1z into Eq. (2) to obtain the following coupled equations:
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Aφþ Bψ ¼ 0,

CφþDψ ¼ 0,
(15)

The coefficients in Eq. (15) are given by

A ¼ k⊥Ϝ i

ω2 ω0 1� 3
4
ϑi

� �
,

B ¼ λ�2
De � k2zω

2
pd
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=ω2,
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2
⊥,

D ¼ 1
kz

2ω2

λ2
De

� kzε⊥,

(16)

where Ϝ i ¼ ω2
pi=ω

2
ci, ω0 ¼ ω2 �Ω2

dlhð Þi, ε⊥ ¼ ω2
pd þ c2k2⊥ and Ω2

dlhð Þi ¼ ω2
pd=Ϝ i. The solution of

homogeneous Eq. (15) in the form of a biquadratic equation, i.e.,

pω4 þQω2 þ R ¼ 0 (17)

where,

p ¼ 2ω2
pe

kzv2te
,

Q ¼ �
2ω2

pd

kzv2te
Ω2

dlhð Þi � kzE⊥ � kzv2Ai
λ2
De
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(18)

where VAi ¼ cωci=ωpi is the Alfvén velocity of ions. The solution of biquadratic equation in the
form of kinetic Alfvén wave is as follows,

ω2 ¼ Ω2
dlhð Þi þ k2zV

2
Ai 1þ 3

4
þ T0Λi

E⊥
c2k2⊥

( )
ϑi;

" #
(19)

where, T0 ¼ Te
Ti
: and Λi ¼ ni0=ne0 This shows the dispersion relation of kinetic Alfvén waves in

the presence of mobile dust that are the extension of shear Alfvén waves in the range of small
perpendicular wavelength. The first term on the R. H. S appears due to dust dynamics, i.e., a
new cut off frequency due to the hybrid dynamics of cold dust and magnetized ions which
provides a limit to the propagation of electromagnetic wave. In a dustless plasma, i.e., ωpd ¼ 0,
we obtain usual dispersion relation in electron-ion plasma. Expressing ω in terms of real and
imaginary part, ω ¼ ωr þ iγ, with ωr >> γ, we either obtain growth or damping of KAW
satisfying the condition, ω=kz ¼ vA ≤ vz through wave particle interactions [33, 34]. In a dusty
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plasma with dust charge fluctuation effect, the main mechanism of wave damping is associ-
ated with dust charge fluctuation effects as compared to Landau damping [34]. It is a well-
known fact that if the particle thermal velocity exceeds the Alfvén velocity, then the particles
interact with Alfvén wave as the result of wave particle interaction/resonance, the linear
Landau damping prevails. In a dusty plasma, the massive dust grains move slowly as com-
pared to Alfvén velocity, therefore they may interact with Alfvén wave through linear Landau
damping (which is negligible in case of dust species) or charge fluctuation effects.

3.2. Lorentzian distribution function

A number of processes in a space based plasma lead to the development of particle anisotropy
through streaming or temperature and are responsible for plasma instabilities in collision-free
plasma which are frequently kinetic in nature and their persistent features have been confirmed
by many spacecraft measurements, e.g., the electron energy spectra and the near-earth environ-
ment observations have witnessed the presence of superthermal populations. It is a well-known
fact that the equilibrium Maxwell-Boltzmann distributions are associated with the Boltzmann
collision term, but on the large scale Fokker-Plankmodel is not appropriate due to strong interac-
tion and correlation in a collisionless plasma. The kinetic foundations of generalized Lorentzian
statistical mechanics has been remarkably established by [35] with the generalization of
Boltzmann collision term that is not based on binary collisions. The long range correlation
between particles vindicates that power law distributions posses a particular thermodynamical
equilibrium state. Themathematical form on isotropic Lorentzian distribution function is given by

f κj0 ¼ Aκ 1þ 1
κv2tjκ

v2z þ v⊥2� �" #�κ�1

;κ > 3=2, (20)

where Aκ ¼ ni0 1
πκv2tjκ

� �3
2

Γ κþ1ð Þ
Γ κ�1=2ð Þ

Due to the stated fact, the deviation from the Maxwellian equilibrium distribution function
could also excite plasma waves by using free energy sources. Such distributions are frequently
observed in solar and terrestrial environments and can be represented by anisotropy in tem-
perature and velocity, i.e., [36]

f jκ vz, v⊥ð Þ ¼ Aκ 1þ 1
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where v2tjκ ¼ 2κ�3
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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is the thermal speed of jth plasma component, the

number densities are represented by n and anisotropic temperatures components are
represented as moment of second order
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f κv

2
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nckB

ð
f κv

2
⊥d

3v, (22)

In the limit κ ! ∞, the bi-Lorentzian function is reduced to bi-Maxwellian, f κ vð Þ ! f M vð Þ:
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3.3. Lorentzian current and number density perturbations

Many space and astrophysical plasmas have been found to have generalized Lorentzian particle
distribution functions. It is of some interest to observe the impact of the high energy tail on the
current and number densities of plasma species. By using Eqs. (4), (7) and (20), we get the
modified expressions of number and current densities based on kappa distribution function, i.e.,

nj1 ¼ � 2eψnj0
mjv2tjκ

κ0 þ ξj0Zκ ξj0
� �� �

, (23)

and

Jj1z ¼ � 2e2ψnj0
mjvtjκ

κ0ξj0 þ ξ2j0Z ξj0
� �h i

, (24)

where Zκ ξj0
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π1=2
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Ðþ∞
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xdx
x�ξj0ð Þ 1þx2=κð Þκþ1 , is the plasma dispersion function and κ0 ¼

2κ� 1ð Þ=2κ:.

3.4. KAWand instability in Lorentzian plasma

In a low β plasma, the kinetic Alfvén wave instability driven by field aligned currents has
dependence on plasma β and streaming velocity of current carrying species which can be
responsible for particle energization. In this subsection, we extend the above scenario of
electromagnetic kinetic Alfvén wave by introducing the streaming of Lorentzian ions along
an external magnetic field B0ẑð Þ with constant ion drift velocity V0∥B0ð Þ, strongly magnetized
and hot electrons to be Maxwellian and cold unmagnetized dust. The plasma beta βe is
assumed to be very small. The electric field and the wave vector k lie in the xz plane, i.e.,
B0 ¼ 0; 0;B0ẑð Þ, V0 ¼ 0; 0;V0ẑð Þ, k ¼ k⊥x̂; 0; kzẑð Þ: We again solve the Vlasov equation For hot
and magnetized electrons [33] to get the number and current density of electrons as obtained
in the previous section. Making use of Eqs. (4), (7) and (21), we get the perturbed number
density of Lorentzian type streaming ions,

ni1 ¼ � 2eni0ψ
miv2tiκ

κ0 þ ηZκ ηð Þ½ �, (25)

The longitudinal components of current density perturbation [7, 19, 37] is given by

Ji1z ¼ � 2e2ni0ψ
mivtiκ

κ0ηþ η2Zκ ηð Þ� �
, (26)

where η ¼ ω� kzV0ð Þ=kzvtiκ:
By incorporating the values of ni1 and Ji1 in Eqs. (1), (2) and using (15), the dispersion relation
of KAW streaming instability in a Lorentzian dusty plasma is obtained as
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plasma with dust charge fluctuation effect, the main mechanism of wave damping is associ-
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Due to the stated fact, the deviation from the Maxwellian equilibrium distribution function
could also excite plasma waves by using free energy sources. Such distributions are frequently
observed in solar and terrestrial environments and can be represented by anisotropy in tem-
perature and velocity, i.e., [36]
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3.3. Lorentzian current and number density perturbations

Many space and astrophysical plasmas have been found to have generalized Lorentzian particle
distribution functions. It is of some interest to observe the impact of the high energy tail on the
current and number densities of plasma species. By using Eqs. (4), (7) and (20), we get the
modified expressions of number and current densities based on kappa distribution function, i.e.,
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x�ξj0ð Þ 1þx2=κð Þκþ1 , is the plasma dispersion function and κ0 ¼

2κ� 1ð Þ=2κ:.

3.4. KAWand instability in Lorentzian plasma

In a low β plasma, the kinetic Alfvén wave instability driven by field aligned currents has
dependence on plasma β and streaming velocity of current carrying species which can be
responsible for particle energization. In this subsection, we extend the above scenario of
electromagnetic kinetic Alfvén wave by introducing the streaming of Lorentzian ions along
an external magnetic field B0ẑð Þ with constant ion drift velocity V0∥B0ð Þ, strongly magnetized
and hot electrons to be Maxwellian and cold unmagnetized dust. The plasma beta βe is
assumed to be very small. The electric field and the wave vector k lie in the xz plane, i.e.,
B0 ¼ 0; 0;B0ẑð Þ, V0 ¼ 0; 0;V0ẑð Þ, k ¼ k⊥x̂; 0; kzẑð Þ: We again solve the Vlasov equation For hot
and magnetized electrons [33] to get the number and current density of electrons as obtained
in the previous section. Making use of Eqs. (4), (7) and (21), we get the perturbed number
density of Lorentzian type streaming ions,

ni1 ¼ � 2eni0ψ
miv2tiκ

κ0 þ ηZκ ηð Þ½ �, (25)

The longitudinal components of current density perturbation [7, 19, 37] is given by

Ji1z ¼ � 2e2ni0ψ
mivtiκ

κ0ηþ η2Zκ ηð Þ� �
, (26)

where η ¼ ω� kzV0ð Þ=kzvtiκ:
By incorporating the values of ni1 and Ji1 in Eqs. (1), (2) and using (15), the dispersion relation
of KAW streaming instability in a Lorentzian dusty plasma is obtained as
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A visible modification can be noticed by the effect of superthermality via the kappa-modified
plasma dispersion function and the appearance of dust lower hybrid frequency due to dust
effects on the dispersion characteristics. Numerous standard wave modes can originate from
the above dispersion equation by applying particular limits, i.e.,

(i) k∥B0;V0ð Þ : For n ¼ 0, ϑe ≪ 1, a dispersion relation two stream instability (TSI) in
unmagnetized plasma is obtained [37], i.e.,

1þ 2ω2
pe
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2
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2
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ω2

pd

ω2 ¼ 0: (29)

In the limit κ ! ∞, our results approach to its classical Maxwellian counterpart in a dustless
plasma environment [38].

(ii) k∥B0ð Þ, V0 ¼ 0, Ωci ≪ω≪Ωceð Þ : In a dustless plasma, we get whistler-like mode whose
frequency is below the electron cyclotron frequency, i.e.,

ω ¼ kzvph,

where vph ¼ c2kzΩce=ω2
pe is the phase velocity of whistler waves which is obviously not suscep-

tible to the Lorentzian index κ. Again, in the limiting case ω≪Ωce,ϑe ≪ 1, and expanding
plasma dispersion function Eq. (15) depicts the coupling of electromagnetic and electrostatic
mode, i.e., shear Alfvén-acoustic mode due to thermal kinetic effects due to which shear
Alfvén wave builds a longitudinal component, e.g.,

ω2 �Ω2
dlhð Þe
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ω2
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ω2 � ωkzV0
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Diκ
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2
pdλ

2
Diκ

h i
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where Ω2
dlhð Þe ¼ ω2

pd=Ϝ e, Ϝ e ¼ ω2
pe=Ω

2
ce, λDiκ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ti

4πni0e2
1
cκ

q
and cκ ¼ 2κ� 1ð Þ= 2κ� 3ð Þ: In the

limit ω2=k2zV
2
A ! 0, V0 ¼ 0, k2⊥r

2
e ≪ 1 we get the dispersion relation of Lorentzian dust-acoustic

waves, ω2 ¼ k2zC
2
D

� �
=cκ, where C2

D ¼ Zd0Ti=md and VAe ¼ B0= 4πne0með Þ1=2 is the electron
Alfvén speed with electron mass density. For a low beta plasma, the coupling between dust-
acoustic and shear Alfvén wave becomes weak and two modes would decouple. In the limit
κ ! ∞, we approach to a Maxwellian DAW [40]. It is worthy to mention here that due to the
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contribution of Lorentzian particles, the KAW instability suppresses. As a matter of fact, the
coupling mechanism enhances the unstable regions as the wave exchanges the energy, and we
can deduce that in case of generalized Lorentzian plasma, the coupling between two modes
becomes weak to some extent. Moreover for non-zero streaming velocity of ions, the unstable
regions tend to grow.After simplifying Eq. (30), we get themixed shear Alfvén-acousticmode, i.e.,

ω2 ¼ Ω2
dlhð Þe þ k2zV

2
Ae 1þ E⊥Λ�1

i r2e
c2cκ

� �
, (31)

where r2e ¼ Ti=meΩ
2
ce, and VAe ¼ cΩce=ωpe: In the limit βi ≪ 1 and for k2⊥r

2
e ≪ 1, the two modes

decouple and we get,

ω2 ¼ Ez
Ω2

dlhð Þe
ω2

pd
, (32)

where Ez ¼ ω2
pd þ k2zc

2 andΩ2
dlhð Þe ¼ ω2

pd=Ϝ e is the dust lower hybrid frequency which arises due

to the hybrid motion of magnetized electrons and unmagnetized dust grains and is referred as
a cutoff frequency which gives rise to a limit for the propagation of electromagnetic waves in
the presence of dust grains. For graphical representation, we have chosen parameters typical to
space dusty environment, for example, we consider ni0 ¼ 10� 104cm�3, nd0 ¼ 10� 10�2cm�3,
Zd0 ¼ 10� 104, md ¼ 105 � 108mi. For computational convenience, we introduce dimensionless

parameters which are as follows: ω ¼ Ωc ~ω, kz ¼ Ωc
~kz=VA, V0 ¼ VA ~V 0: It has been observed

that the growth rates of KAW instability are significantly affected by the presence of
superthermal population, i.e., instability suppresses due to energetic particles possessed by
kappa distribution when compared to its Maxwellian counterpart as shown in Figure 1.
Similarly, the effect of streaming velocity, dust number density and charge on the growth rates
is depicted in Figures 2–4 respectively. The free energy is associated with the drift motion of
ions along the field direction which is responsible for the excitation of KAW. In a streaming
plasma the velocity of ions is directly coupled to dust-acoustic waves and through this cou-
pling the maximum growth rate is obtained when the wave exchanges energy through the
streaming of ions. Moreover, the presence of dust particles has a noticeable effect on the wave
dynamics through dust charge Zd and number density nd, i.e., it modifies the wave propaga-
tion and excitation. We can observe that Zd and nd enhances the growth rates of KAW due to
the reason that when dust concentration in plasma is introduced they attach the plasma
electrons toward them and the electron loss rate increases which in particular enhances the
drift velocity to facilitate the unstable wave structure.

3.5. Dust kinetic Alfvén waves (DKAWs)

DKAWs arise when the dispersion relation of ordinary Alfvén waves is modified by the finite
Larmor radius effect of dust. This process is dominated by the collective dynamics of magnetized
dust particles. We have investigated shear Alfvén waves and their coupling with dust-acoustic
wave by considering magnetized dust and Lorentzian electrons and ions.

The perturbed current and number densities of cold and magnetized dust are obtained by
using Eqs. (5) and (6)
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A visible modification can be noticed by the effect of superthermality via the kappa-modified
plasma dispersion function and the appearance of dust lower hybrid frequency due to dust
effects on the dispersion characteristics. Numerous standard wave modes can originate from
the above dispersion equation by applying particular limits, i.e.,

(i) k∥B0;V0ð Þ : For n ¼ 0, ϑe ≪ 1, a dispersion relation two stream instability (TSI) in
unmagnetized plasma is obtained [37], i.e.,
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In the limit κ ! ∞, our results approach to its classical Maxwellian counterpart in a dustless
plasma environment [38].

(ii) k∥B0ð Þ, V0 ¼ 0, Ωci ≪ω≪Ωceð Þ : In a dustless plasma, we get whistler-like mode whose
frequency is below the electron cyclotron frequency, i.e.,

ω ¼ kzvph,

where vph ¼ c2kzΩce=ω2
pe is the phase velocity of whistler waves which is obviously not suscep-

tible to the Lorentzian index κ. Again, in the limiting case ω≪Ωce,ϑe ≪ 1, and expanding
plasma dispersion function Eq. (15) depicts the coupling of electromagnetic and electrostatic
mode, i.e., shear Alfvén-acoustic mode due to thermal kinetic effects due to which shear
Alfvén wave builds a longitudinal component, e.g.,
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acoustic and shear Alfvén wave becomes weak and two modes would decouple. In the limit
κ ! ∞, we approach to a Maxwellian DAW [40]. It is worthy to mention here that due to the
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contribution of Lorentzian particles, the KAW instability suppresses. As a matter of fact, the
coupling mechanism enhances the unstable regions as the wave exchanges the energy, and we
can deduce that in case of generalized Lorentzian plasma, the coupling between two modes
becomes weak to some extent. Moreover for non-zero streaming velocity of ions, the unstable
regions tend to grow.After simplifying Eq. (30), we get themixed shear Alfvén-acousticmode, i.e.,
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to the hybrid motion of magnetized electrons and unmagnetized dust grains and is referred as
a cutoff frequency which gives rise to a limit for the propagation of electromagnetic waves in
the presence of dust grains. For graphical representation, we have chosen parameters typical to
space dusty environment, for example, we consider ni0 ¼ 10� 104cm�3, nd0 ¼ 10� 10�2cm�3,
Zd0 ¼ 10� 104, md ¼ 105 � 108mi. For computational convenience, we introduce dimensionless

parameters which are as follows: ω ¼ Ωc ~ω, kz ¼ Ωc
~kz=VA, V0 ¼ VA ~V 0: It has been observed

that the growth rates of KAW instability are significantly affected by the presence of
superthermal population, i.e., instability suppresses due to energetic particles possessed by
kappa distribution when compared to its Maxwellian counterpart as shown in Figure 1.
Similarly, the effect of streaming velocity, dust number density and charge on the growth rates
is depicted in Figures 2–4 respectively. The free energy is associated with the drift motion of
ions along the field direction which is responsible for the excitation of KAW. In a streaming
plasma the velocity of ions is directly coupled to dust-acoustic waves and through this cou-
pling the maximum growth rate is obtained when the wave exchanges energy through the
streaming of ions. Moreover, the presence of dust particles has a noticeable effect on the wave
dynamics through dust charge Zd and number density nd, i.e., it modifies the wave propaga-
tion and excitation. We can observe that Zd and nd enhances the growth rates of KAW due to
the reason that when dust concentration in plasma is introduced they attach the plasma
electrons toward them and the electron loss rate increases which in particular enhances the
drift velocity to facilitate the unstable wave structure.

3.5. Dust kinetic Alfvén waves (DKAWs)

DKAWs arise when the dispersion relation of ordinary Alfvén waves is modified by the finite
Larmor radius effect of dust. This process is dominated by the collective dynamics of magnetized
dust particles. We have investigated shear Alfvén waves and their coupling with dust-acoustic
wave by considering magnetized dust and Lorentzian electrons and ions.

The perturbed current and number densities of cold and magnetized dust are obtained by
using Eqs. (5) and (6)
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1
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(33)

The parallel component of perturbed dust current density turns out to be from Eq. (14)

Jd1z ¼ ω2
pd=ω

� �
E0k2zψ and the dispersion relation of kinetic Alfvén wave in the presence of

magnetized dust is given by

Figure 1. Effect of κ on the imaginary part ~γ ¼ γ=ΩceÞð of the dispersion relation.

Figure 2. Effect of V0 on the imaginary part of dispersion relation.
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ω2 ¼ k2zV
2
DA 1þ E⊥r2d

c2cκ

� �
(34)

In the limit κ ! ∞, we obtain classical results in a Maxwellian plasma.

3.5.1. Lorentzian-type charging currents

The charging equation containing Lorentzian electron and ion currents is

Figure 3. Role of dust number density nd0 on the growth rates.

Figure 4. Role of dust charge Zd0 on the growth rates.
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In the limit κ ! ∞, we obtain classical results in a Maxwellian plasma.

3.5.1. Lorentzian-type charging currents

The charging equation containing Lorentzian electron and ion currents is

Figure 3. Role of dust number density nd0 on the growth rates.

Figure 4. Role of dust charge Zd0 on the growth rates.
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where the electron and ion currents are calculated using a surface integral through the dust
grain surface of radius rd having potential φd are given as
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, (36)

and
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2
is the

Debye wavelength in superthermal plasma which is much smaller than found for a Maxwel-
lian plasma and has been shown by [39, 41] and ad is the radius of dust grain.

The Lorentzian charging currents are derived by using Vlasov-kinetic model whose fluid
version by Rubab and Murtaza [41] and in the limit κ ! ∞, our results matched with Das
et al., [32]. Now, by putting the value of perturbed dust grain charge, Qd1 ¼ � i

ωΩψ, in Eq. (1),
the dispersion equation of DKAW becomes,

ω2 ¼ k2zV
2
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c2cκ
� iπnd0

a2d
k∥

� �
, (38)

which clearly shows that charge fluctuation effects are insensitive to the form of the distribu-
tion function.

3.5.2. Modified dust-acoustic wave

In the limit ω2=k2zV
2
A ! 0, the Eq. (16) after simplification turns out to be

ω2 ¼ c�1
κ k2zC

2
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r2d
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where r2d ¼ C2
D=ω

2
cd, CD ¼ Teff =md

� �1
2 and Teff ¼ nd0Z2

d Teni0 þ Tine0ð Þ=ni0neo: Eq. (39) is the dis-
persion relation of dust-acoustic wave in a magnetized plasma whose Maxwellian version
without dust charge fluctuation effects is given by Mahmood and Saleem [42]. It could be seen
that the component of dust velocity in the direction of magnetic field Vdzð Þ, which finally turns
out to be dust gyroradius, is responsible for the coupling of Lorentzian type DKAW with
DAW. When the dust-acoustic wave frequency is very large compared to the dust gyroradius,
then the dust is considered to be unmagnetized. In an unmagnetized plasma B0 ¼ 0ð Þ with
Td ¼ 0, we get the dispersion relation of Lorentzian dust-acoustic wave (without dust charge
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fluctuation effects) which is exactly equal as discussed by [40]. The effect of Lorentzian index
when growth rates are plotted as function of parallel and perpendicular wave number are
depicted through graphical representation in Figure 5 and Figure 6 and shows that Maxwel-
lian distribution functions are supportive to enhance the wave frequency.
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∂Qd1
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X

Iκe1 þ Iκi1 (35)
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3.5.3. DKAW: Perpendicular streaming

We consider an electromagnetic dust kinetic Alfvén wave streaming instability in a
collisionless electron-ion dusty magnetoplasma. The motion of DKAW is followed by consid-
ering thermal and magnetized Lorentzian electrons to be Maxwellian and Lorentzian ions
drifting across the external magnetic field B0∥ẑð Þ with a constant drift velocity V0x̂, i.e.,
V0⊥B0ð Þ: The dust is considered to be cold and magnetized ω≪ωcdð Þ and the charge on the
dust grain surface is taken to be constant. The wave vector associated with the electromagnetic
wave lies within xz plane

B0 ¼ 0; 0;B0ð Þ, V0 ¼ V0; 0; 0ð Þ, k ¼ k sinθ; 0; k cosθð Þ

where

kz ¼ k cosθ, k⊥ ¼ k sinθ

The distribution function of Lorentzian ions where ions are streaming perpendicular to the
field direction is given as,

f κi0 ¼ Aκ 1þ 1
κv2tiκ

v2z þ v⊥ � V0ð Þ2
� �" #�κ�1

;κ > 3=2, (40)

ni1 ¼ � 2eψni0
miv2tiκ

κ0 þ η0Z η0ð Þ½ �: (41)

where η0 ¼ ω� k⊥V0ð Þk⊥vtiκ: As there are no ions along the field direction due to perpendicu-
lar streaming, therefore we may neglect the ions current density Ji1z ¼ 0: In the limit κ ! ∞,
our results reduce to Maxwellian distribution.

The dispersion relation with the aid of Eq. (15) is obtained by using Eqs. (23), (24), (33) and (41)
in Eqs. (1) and (2), i.e.,

1þ
2ω2

pi

k2zv
2
tiκ

κ
0 þ η

0
Zκ η

0
� �� �

χ
h i

þ 2ω2
pe

k2zv
2
teκ

κ0 þ ξe0Zκ ξe0ð Þð Þ þ ωvteκ
c2k3∥

ξ κ0 þ ξe0Zκ ξe0ð Þð Þ
" #

þ k2⊥
k2z

χ 1þ ϜDð Þ �
ω2

pd

ω2 ¼ 0,

(42)

which is the general dispersion relation of kinetic Alfvén waves in the presence of perpendic-
ular streaming ions and cold and magnetized dust. In the above equation, ϜD ¼ ω2

pd=ω
2
cd is

responsible for the magnetized dust part.

For parallel propagation and in the limit ω2
pd=c

2k2⊥ ≪ 1, ϜD ≪ 1, we get dispersion relation of

two stream instability (TSI) in an unmagnetized dusty plasma. In a dust free plasma

ω2
pd ¼ 0

� �
, we get the classical well know relation of TSI, while in the absence of streaming

ions, i.e., V0 ¼ 0, we obtain the dispersion relation of dust kinetic Alfvén waves
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ω2 ¼ Ω2
dlhð Þd þ k2zV

2
AD 1þ E⊥r2d

c2cκ
Λd

� �
: (43)

where Ω2
dlhð Þd ¼ ωpi=ϜD, Λd ¼ nd0zd0=ne0 and rd ¼ CD=ωcd: In the limit k2⊥r

2
d ≪ 1, we obtain

modified shear Alfvén wave associated with the hybrid dynamics of the ions and magnetized
dust through Ω2

dlhð Þd which provides a cut-off for the EM wave propagation, i.e.,

ω2 ¼ Ω2
dlhð Þd 1þ λ2

i k
2
z

� �
(44)

where λi ¼ c=ωpi:

The dispersion relation for the DKAW instability is found to be dependent on the spectral index
κ which means Lorentzian plasma is able to support a number of unstable branches. Lorentzian
index is found to be more effective in large wave length limit as compared to small wavelength
where the tail of unstable region remains independent of κ. When a large number of dust grains
are introduced, it will enhance the loss rate of electrons by attachment on a dust grain surface
which reduces the wave activity. At the same time the electron loss rate increases the drift
velocity which in turns helps to excite the DKAWs and a further increase will help to stabilize
the system. Due to particular choice of equations which involves parallel current density, the ions
electromagnetic response cant not take part which limits the existence of ions Weibel instability.

By using the same parameters as above, we have plotted the growth rates as the function of
propagation vector for different values of kappa. We have seen that the cross-field streaming of
superthermal ions inhibit the growth rate of instability as shown in Figure 7. Similarly, βd is
found to support the unstable structure and the instability increases with the value of βd as
shown in Figure 8.

Figure 7. Growth rates ~γÞð for perpendicular streaming as a function of wave vector k for κ ¼ 3, 5, 15.
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4. Weibel instability in a Lorentzian plasma

The Weibel plasma instability has so many applications in astrophysical [43], and in laboratory
plasmas as well [44]. The generation of magnetic field can be explained in the domain of gamma
ray burst, galactic cosmic rays and supernovae [45, 48]. For the case of unmagnetized plasma, the
Weibel instability [20] has been widely discussed in relativistic and nonrelativistic regimes. In
1989, Yoon [46, 47] generalized his work by using relativistic bi-Maxwellian plasma. Later,
Schaerfer [48] have discussed this instability in relativistic regimes of plasma with arbitrary
distributions and presented comparison with his previous works which was based on bi-
Gaussian distribution functions. TheWeibel instability was investigated by Califano [49, 50] with
temperature anisotropy, produced by two counterstreaming electron populations. Davidson
probed the multi species Weibel instability for the charged beam and intense ions in plasma [51].

In our work, we have derived the analytical expressions and compared the results numerically
for the real and imaginary parts of the dielectric constant with the Maxwellian and kappa κð Þ
distributions under two conditions i.e., α ¼ ωΘ

kz ≫ 1 and ≪ 1.

By using kinetic model, the linear dispersion relation for Weibel instability in unmagnetized
plasma has been derived after solving the linearized, nonrelativistic Vlasov equation as below [52],

ω2 � c2k2 � ω2
pe þ πω2

pe
k
m

� � ð∞

�∞

m3dvz
ω� kvzð Þ

ð∞

0

v3⊥dv⊥ � ∂f 0κ
∂vz

� �
¼ 0, (45)

where f 0 is the distribution function and here we will discuss the different velocity distribu-
tions, i.e., Maxwellian distribution and κ� distribution functions.

Figure 8. Growth rates ~γÞð for perpendicular streaming as a function of wave vector k for βd ¼ 0:001, 0:003, and 0:005.
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To calculate Weibel instability in a Lorentzian plasma, we use Eq. (21), for zero streaming

velocity of particle, i.e., V0 ¼ 0 and using ∂f 0
∂vz

� �
in Eq. (45), and performing perpendicular

integration, we are left with parallel integral which is called modified plasma dispersion
function for kappa distribution.

ω2 � c2k2 � ω2
pe 1� T⊥

Tz

� �
þ ω2

peffiffiffiffi
π

p T⊥

Tz

� �
Γ κð Þ

κ
1
2Γ κ� 1

2

� �
 !

αð Þ
ð∞

�∞

1þ x2
κ

� ��κ

x� αð Þ dx ¼ 0, (46)

where x ¼ Θ�1
z vz, α ¼ ωΘz

kz and Θz,⊥ ¼ 2κ�3ð ÞTz,⊥
κm :

Applying same procedure as above and again using Plemelj’s formula,

ð∞

�∞

1þ x2
κ

� ��κ

x� αð Þ dx ¼ P
ð∞

�∞

1þ x2
κ

� ��κ

x� αð Þ dxþ iπ 1þ x2

κ

� ��κ

, (47)

the integration of principal part yields

P
ð∞

�∞

1þ x2
κ

� ��κ

x� αð Þ dx ¼
ffiffiffiffi
π

p
κ1=2Γ κ� 1

2

� �
Γ κð Þ 1þ κΓ κ� 3

2

� �

Γ κ� 1
2

� �
 !

: (48)

The dispersion relation will be solved under two following conditions

For α > 1ð Þ:

ω4 � c2k2 þ ω2
pe

� �
ω2 � ω2

pe
T⊥

Tz

� �
v2tzk

2
z

� � ¼ 0, (49)

which shows the real part of Weibel instability is insensitive to the value of Lorentzian index

and the imaginary part iπ 1þ α2

κ

� ��κ
! 0:

For α < 1ð Þ :
The dispersion relation takes the form

ω2 � c2k2 � ω2
pe 1� T⊥

Tz

� �
þ ω2

peffiffiffiffi
π
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x� αð Þ dx ¼ 0: (50)

Now, we define a new plasma dispersion function, i.e.,

Z∗
κ αð Þ ¼ 1ffiffiffiffi

π
p Γ κð Þ

κ
1
2Γ κ� 1

2

� �
 ! ð∞

�∞

1þ x2
κ

� ��κ

x� αð Þ dx, (51)
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the corresponding dispersion relation can be expressed as

ω2 � c2k2 � ω2
pe 1� T⊥

Tz

� �
þ ω2

pe
T⊥

Tz

� �
αð ÞZ∗

κ αð Þ ¼ 0: (52)

We can Solve Z∗
κ αð Þ by taking κ an integer and assuming α < 1: So for κ ¼ 3, 5, 7 we get the

following three Z� functions respectively.

Z∗
3 αð Þ ¼ α �1:66� 0:370α2 � :……

� �þ ι 1:539� 1:539α2 þ ::………
� �

Z∗
5 αð Þ ¼ α �1:8� 0:48α2 � :……

� �þ ι 1:635� 1:635α2 þ………
� �

Z∗
7 αð Þ ¼ α �1:98� 0:59α2 � ::……

� �þ ι 1:732� 1:736α2 þ…………
� �

(53)

So the three dispersion relations for the above three corresponding Z-functions are.

For κ ¼ 3, we get
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Tz
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pe
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T∥

� �
1:539α ¼ 0

γ ¼ Imω ¼ � 0:649ð Þ kzvTz
ω2

pe

Tz
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c2k2 þ ω2

pe 1� T⊥

Tz

� �� � (54)

Similarly, for κ ¼ 5 and 7 we obtain the followings

γ ¼ Imω ¼ � 0:7324ð Þ kzvTz
ω2

pe

Tz

T⊥

� �
c2k2 þ ω2

pe 1� T⊥

Tz

� �� �
(55)

and

γ ¼ Imω ¼ � 0:8152ð Þ kzvTz
ω2

pe

Tz

T⊥

� �
c2k2 þ ω2

pe 1� T⊥

Tz

� �� �
(56)

Using the Vlasov model, we have derived new dispersion relations based on κ� distribution
function in an unmagnetized plasma. The analytical expressions for the dielectric constant
have been obtained under two conditions i.e., α≫ 1ð Þ and α≪ 1ð Þ, which finally give real and
imaginary parts respectively. The real part if found to be insensitive to the value of Lorentzian
index while imaginary part shows strong dependence on κ: A graphical representation has
also been added for the comparison of non-Maxwellian distributions with that of the Maxwel-
lian. The imaginary parts of the dispersion relation obtained above have been plotted for
different values of κ� showing the variation of the normalized frequencies, i.e., Imω

ωpe
against

ck
ωpe

: Figure exhibits the comparison of the result of kappa distribution with that of the Maxwel-

lian. For small κ, the growth rate also reduces but on other hand on increasing the κ value,
the growth rate enhances and finally approaches the Maxwellian results which is shown in
Figure 9.
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5. Collisional Weibel instability with non-zero magnetic field

The dispersion relation of Weibel instability for transverse waves propagating parallel to
magnetic field is obtained as
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We notice that the final expression becomes independent of the spectral index κ:

However, for α small, the dispersion function Z∗
κ αð Þ is obtained by choosing specific values of κ:

For κ ¼ 5, 7 we get
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and

Figure 9. Growth rates of Weibel instability for κ ¼ 3, 5, 7 and the comparison of results with Maxwellian.

Collective Mode Interactions in Lorentzian Space Plasma
http://dx.doi.org/10.5772/intechopen.71847

45



the corresponding dispersion relation can be expressed as

ω2 � c2k2 � ω2
pe 1� T⊥

Tz

� �
þ ω2

pe
T⊥

Tz

� �
αð ÞZ∗

κ αð Þ ¼ 0: (52)
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So the three dispersion relations for the above three corresponding Z-functions are.
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Similarly, for κ ¼ 5 and 7 we obtain the followings
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Using the Vlasov model, we have derived new dispersion relations based on κ� distribution
function in an unmagnetized plasma. The analytical expressions for the dielectric constant
have been obtained under two conditions i.e., α≫ 1ð Þ and α≪ 1ð Þ, which finally give real and
imaginary parts respectively. The real part if found to be insensitive to the value of Lorentzian
index while imaginary part shows strong dependence on κ: A graphical representation has
also been added for the comparison of non-Maxwellian distributions with that of the Maxwel-
lian. The imaginary parts of the dispersion relation obtained above have been plotted for
different values of κ� showing the variation of the normalized frequencies, i.e., Imω

ωpe
against

ck
ωpe

: Figure exhibits the comparison of the result of kappa distribution with that of the Maxwel-

lian. For small κ, the growth rate also reduces but on other hand on increasing the κ value,
the growth rate enhances and finally approaches the Maxwellian results which is shown in
Figure 9.
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for κ ¼ 5 and 7 respectively.

Considering
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It is obvious from the above relation that collision frequency for particles obeying kappa
distribution differs from that of Maxwellian distribution and is dependent on the value of
specie of choice j ¼ e, i. It is seen that collision frequency increases with j ¼ e, i and is less for
kappa distributed particles than that of the Maxwellian particles. It is therefore justified to use
appropriate collision frequency for such Kappa distributed particles.

6. Conclusion

In this chapter, we have described the electromagnetic waves and instabilities in a generalized
Lorentzian plasma including particle streaming and finite and anisotropic thermal spread. It
allows to grasp the practical understanding of a complex collisionless system in terms of
spectra, bulk relative motion and instabilities. In particular, we have focused on kinetic Alfvén
waves and instabilities in a dusty and Lorentzian plasma and several types of modes have
been identified under various conditions. We have reviewed the kinetic waves and Weibel
instabilities in a non-Maxwellian space and astrophysical plasmas by incorporating some basic
concepts of dusty environments. We have found that dispersion characteristics involving
kinetic Alfvén waves become significantly modified by superthermality effects and dust
plasma parameters. The coupling of magnetized dust to the waves due to cyclotron resonance
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is shown to play a vital role on the wave dynamics. Moreover, the dust grain charging yield
some additional plasma currents, which depends on the streaming velocity, Lorentzian index
and plasma beta. The Lorentzian index is found to either enhance or quench the electromag-
netic instabilities. The dust component is found to play an essential role in wave dynamics, i.e.,
introducing dust lower hybrid frequency when mobile dust particles are included in the
plasma. We have seen that the temperature anisotropy in the distribution function has no
effect on the wave characteristics, i.e., the employed model inhibits the temperature anisot-
ropy, but supports the velocity anisotropy. Moreover, a brief analysis on Weibel instabilities in
a non-Maxwellian plasma in is also presented.

Kinetic Alfvén turbulence are always present in the streaming solar wind near 1 AU and in situ
measurements have confirmed the presence of non-Maxwellian proton distribution function.
The present investigations show that the Lorentzian charged particle distributions in space
lead to a essentially new physical situation as compared to the plasma with equilibrium
distribution functions. Our results of the present analysis opens a new window of investiga-
tion to study various streaming and anisotropic modes in different plasma scenarios when
Lorentzian distribution function is employed.
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Abstract

This chapter deals with the simulation of the creep process and the effect of long-term
strength of metals, notably, in both uniaxial and complex stress states. A description of a
creep experiment and the simplest creep models are presented, that is, the theory of
steady creep, the theory of ageing, the theory of flow and the theory of hardening. In
creep process simulation, a kinetic theory based on the introduction of structural param-
eters characterising the state of the metal at a given time is widely used. Among such
parameters, metal damage in the creep process, work of stresses on creep deformations
(energy version) and concentration of an aggressive medium in the metal were studied.
The coupled problem of creep and long tensile strength is also considered taking into
account the mutual influence of damage accumulation and one-dimensional diffusion of
the aggressive medium. The times to fracture are determined both in the presence of an
aggressive medium and in the absence of one. A significant contribution of Soviet
(Russian), European, American and Japanese scientists to the development of contin-
uum damage mechanics is highlighted.

Keywords: kinetic theory, continuum damage mechanics, creep, long-term strength,
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1. Introduction

In the late 1950s of the twentieth century, two outstanding Soviet scientists Kachanov and
Rabotnov concluded that the terms of the deformed solid mechanics (stress and strain tensors
and displacement vector) used at that time were insufficient to describe the process of creep
and delayed fracture of materials and structural elements under creep conditions. They pro-
posed a new approach to study the long-term strength called kinetic. It is based on the use of
Kachanov [1] and Rabotnov’s [2] damage parameter and the subsequently developed kinetic
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theory of creep and long-term strength by Rabotnov [3, 4]. The core of this approach is the
introduction of a scalar parameter of damage ω(t) characterising the structural state of the
material at an arbitrary time t. The initial state of the material (at t = 0) corresponds to ω = 0; when
the destruction occurs, the damage ω(t∗) takes the value of 1. Later, important results in this area
were obtained by A.A. Ilyushin, S.A. Shesterikov, O.V. Sosnin and other Russian scientists.

Following the studies by Kachanov and Rabotnov, the mechanics of continuum fracture
started to develop in different countries, mainly for the creep processes of metals. In the last
50 years, the continuum damage mechanics (CDM) has been extensively developing. Repre-
sentatives of the English schools of mechanics F.A. Leckier and D.R. Hayhurst provi-
ded a significant contribution to the development of the theory of damage accumulation.
Certain success was also achieved in the studies of Polish scientists M. Chrzanowski and
W. Tramczynskii. In France, the CDM fundamentals were formulated using thermodynamic
considerations (J. Lemaitre). In the beginning of the 1980s of the twentieth century, this section
of mechanics was rapidly developing in the USA as a result of the work of many scientists.
Since then, this area has been the centre of attention worldwide both with respect to the
development of the fundamentals (some theoretical problems have still remained unsolved)
and applications.

2. Creep under uniaxial tension

In the mechanics of solids, it is common to differentiate the materials under investigation by
their reaction to load. When under an arbitrary loading process, the material immediately
returns to its original state after the load is removed; this means that the material exhibits elastic
properties. If after unloading there appear residual deformations that depend only on the load
values and the order of their application, but do not depend on the loading rates and durations,
such medium is called elastoplastic. When these deformations essentially depend on the dura-
tion of loading, such media have creep properties or, more generally, rheological properties.

Below, the simplest form of high-temperature mechanical testing—the uniaxial tensile test—is
considered. It is assumed that the entire process of loading or deformation occurs under
isothermal conditions.

The tensile loading of a cylindrical specimen made of a homogeneous material with force P
will be examined. Supposedly, the specimen L and its cross-sectional area d satisfy the condi-
tion L≫ d. In this case, it can be further assumed that at a certain distance from the ends the
section of the specimen with length l is subjected to uniform tensile loading. It is also assumed
that the strains are low, the variation of the cross-sectional area is insignificant and the speci-
men is deformed uniformly, without the formation of local constrictions. The ratio of force P to
the cross-sectional area of the specimen is referred to as stress σ, and the relative variation of
length l is referred to as strain ε =Δl/l, where Δl is the increment of length l.

This chapter considers a case in which a stress σ(t) programme is given in the experiment and
the dependency ε(t) is registered. It should be noted that at this stage, only those programmes
that do not lead to the appearance of strain heterogeneities (as a result of the shear lines, neck
formation, etc.) are examined.
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The chapter contains various terms that are quite familiar to the reader. Therefore, it appears
excessive to define such characteristics as deformation, strain tensor, deformation rate, stress
and stress tensor.

Previously, it was mentioned that the creep of metals is manifested in the development of the
deformation process with time, usually at elevated temperatures. Thus, even in the case of the
uniaxial stress state, it is necessary to consider the four macroquantities—temperature, stress,
time and strain. Creep characteristics determined in the experiments at constant temperatures
can also often be used when evaluating the efficiency of structures at varying temperatures. To
determine the dependences describing the creep process, it is usually necessary to use the data
obtained in the standard uniaxial tension tests. Creep is mostly common with metals and
alloys at absolute temperatures T higher than (0.4–0.5)T* (T* is the melting point on the
absolute scale, i.e., in Kelvin (K)).

In the creep test, a cylindrical specimen with thermocouples attached to it is secured in the
clamps of the loading machine and placed in the furnace. The temperature of the specimen is
controlled using the thermocouples, and the results are sent to a tracking system. This system
ensures heating of the specimen to the required level, and the temperature is then maintained
constant with a specific accuracy. After complete heating of the furnace area, a tensile force is
applied to the specimen. This force changes with time under a given law (in most cases, this
force is constant or a fractional-constant time function). A strain measurement device is used to
record the variation of the length of the specimen with time during continuous recording of the
deformation diagram. The elongation of the specimen as a result of the creep of the material is
accompanied by a decrease in the cross-sectional area and, consequently, the tensile stress
increases continuously at a constant load.

In the tests of the materials characterised by high creep strains (of 4–5% order or more), there
are used systems where the load is self-compensated so that the stress in the specimen remains
constant. When testing a number of creep-resistant alloys, it appears that the creep strains
remain relatively small (approximately 1–2%) up to the moment of fracture. In these condi-
tions, the tests can be carried out at a constant load, and it can be assumed that the stresses
remain unchanged during the experiment. The creep experiments show that even for the
specimens taken from the same blank part (plate or bar) the creep strain values are greatly
scattered for the same values of time (by up to 20–30% or more). The scatter is explained by the
specific features of the individual specimens.

Figure 1 schematically shows the curves characterising the strain dependence ε(t) on time t at
the different stresses σ.

The conventional ε(t) curve corresponding to the average stress level (σ =σ2) has three distinc-
tive sections as follows: Section 1 with the constantly decreasing creep rate (unsteady creep),
Section 2 with a constant (minimum) creep rate (steady-state creep) and Section 3 with accel-
erating creep preceding fracture. At relatively low stresses (σ = σ1), the ε(t) curve can have only
the nonsteady section. The curves leading to relatively high stresses (σ =σ3 and σ = σ4) may not
have the first section, and when σ = σ4, only the third section is present. All these special
features are satisfactorily explained by the presence of at least two structural deformation
mechanisms (hardening and softening), which are determined by changes of the dislocation

Kinetic Theory of Creep and Long-Term Strength of Metals
http://dx.doi.org/10.5772/intechopen.70768

53



theory of creep and long-term strength by Rabotnov [3, 4]. The core of this approach is the
introduction of a scalar parameter of damage ω(t) characterising the structural state of the
material at an arbitrary time t. The initial state of the material (at t = 0) corresponds to ω = 0; when
the destruction occurs, the damage ω(t∗) takes the value of 1. Later, important results in this area
were obtained by A.A. Ilyushin, S.A. Shesterikov, O.V. Sosnin and other Russian scientists.

Following the studies by Kachanov and Rabotnov, the mechanics of continuum fracture
started to develop in different countries, mainly for the creep processes of metals. In the last
50 years, the continuum damage mechanics (CDM) has been extensively developing. Repre-
sentatives of the English schools of mechanics F.A. Leckier and D.R. Hayhurst provi-
ded a significant contribution to the development of the theory of damage accumulation.
Certain success was also achieved in the studies of Polish scientists M. Chrzanowski and
W. Tramczynskii. In France, the CDM fundamentals were formulated using thermodynamic
considerations (J. Lemaitre). In the beginning of the 1980s of the twentieth century, this section
of mechanics was rapidly developing in the USA as a result of the work of many scientists.
Since then, this area has been the centre of attention worldwide both with respect to the
development of the fundamentals (some theoretical problems have still remained unsolved)
and applications.

2. Creep under uniaxial tension

In the mechanics of solids, it is common to differentiate the materials under investigation by
their reaction to load. When under an arbitrary loading process, the material immediately
returns to its original state after the load is removed; this means that the material exhibits elastic
properties. If after unloading there appear residual deformations that depend only on the load
values and the order of their application, but do not depend on the loading rates and durations,
such medium is called elastoplastic. When these deformations essentially depend on the dura-
tion of loading, such media have creep properties or, more generally, rheological properties.

Below, the simplest form of high-temperature mechanical testing—the uniaxial tensile test—is
considered. It is assumed that the entire process of loading or deformation occurs under
isothermal conditions.

The tensile loading of a cylindrical specimen made of a homogeneous material with force P
will be examined. Supposedly, the specimen L and its cross-sectional area d satisfy the condi-
tion L≫ d. In this case, it can be further assumed that at a certain distance from the ends the
section of the specimen with length l is subjected to uniform tensile loading. It is also assumed
that the strains are low, the variation of the cross-sectional area is insignificant and the speci-
men is deformed uniformly, without the formation of local constrictions. The ratio of force P to
the cross-sectional area of the specimen is referred to as stress σ, and the relative variation of
length l is referred to as strain ε =Δl/l, where Δl is the increment of length l.

This chapter considers a case in which a stress σ(t) programme is given in the experiment and
the dependency ε(t) is registered. It should be noted that at this stage, only those programmes
that do not lead to the appearance of strain heterogeneities (as a result of the shear lines, neck
formation, etc.) are examined.

Kinetic Theory52

The chapter contains various terms that are quite familiar to the reader. Therefore, it appears
excessive to define such characteristics as deformation, strain tensor, deformation rate, stress
and stress tensor.

Previously, it was mentioned that the creep of metals is manifested in the development of the
deformation process with time, usually at elevated temperatures. Thus, even in the case of the
uniaxial stress state, it is necessary to consider the four macroquantities—temperature, stress,
time and strain. Creep characteristics determined in the experiments at constant temperatures
can also often be used when evaluating the efficiency of structures at varying temperatures. To
determine the dependences describing the creep process, it is usually necessary to use the data
obtained in the standard uniaxial tension tests. Creep is mostly common with metals and
alloys at absolute temperatures T higher than (0.4–0.5)T* (T* is the melting point on the
absolute scale, i.e., in Kelvin (K)).

In the creep test, a cylindrical specimen with thermocouples attached to it is secured in the
clamps of the loading machine and placed in the furnace. The temperature of the specimen is
controlled using the thermocouples, and the results are sent to a tracking system. This system
ensures heating of the specimen to the required level, and the temperature is then maintained
constant with a specific accuracy. After complete heating of the furnace area, a tensile force is
applied to the specimen. This force changes with time under a given law (in most cases, this
force is constant or a fractional-constant time function). A strain measurement device is used to
record the variation of the length of the specimen with time during continuous recording of the
deformation diagram. The elongation of the specimen as a result of the creep of the material is
accompanied by a decrease in the cross-sectional area and, consequently, the tensile stress
increases continuously at a constant load.

In the tests of the materials characterised by high creep strains (of 4–5% order or more), there
are used systems where the load is self-compensated so that the stress in the specimen remains
constant. When testing a number of creep-resistant alloys, it appears that the creep strains
remain relatively small (approximately 1–2%) up to the moment of fracture. In these condi-
tions, the tests can be carried out at a constant load, and it can be assumed that the stresses
remain unchanged during the experiment. The creep experiments show that even for the
specimens taken from the same blank part (plate or bar) the creep strain values are greatly
scattered for the same values of time (by up to 20–30% or more). The scatter is explained by the
specific features of the individual specimens.

Figure 1 schematically shows the curves characterising the strain dependence ε(t) on time t at
the different stresses σ.

The conventional ε(t) curve corresponding to the average stress level (σ =σ2) has three distinc-
tive sections as follows: Section 1 with the constantly decreasing creep rate (unsteady creep),
Section 2 with a constant (minimum) creep rate (steady-state creep) and Section 3 with accel-
erating creep preceding fracture. At relatively low stresses (σ = σ1), the ε(t) curve can have only
the nonsteady section. The curves leading to relatively high stresses (σ =σ3 and σ = σ4) may not
have the first section, and when σ = σ4, only the third section is present. All these special
features are satisfactorily explained by the presence of at least two structural deformation
mechanisms (hardening and softening), which are determined by changes of the dislocation

Kinetic Theory of Creep and Long-Term Strength of Metals
http://dx.doi.org/10.5772/intechopen.70768

53



structure, the vacancy processes, phase transitions, grain size changes in the deformation
process and other reasons. The preferential effect of one mechanism in comparison with the
others leads to a change of the stages on the creep curve.

When constructing these curves, it is assumed that the loading time of the specimen to a given
stress is very short compared to the test time. Therefore, the curves ε(t) start at the strain
corresponding to the ‘instantaneous’ loading.

The creep theory seeks to determine a relationship between stress σ, time t, creep strain p and
temperature T; this relationship, which is universal, should be capable of determining the
creep curve p(t) = ε(t)� ε0(σ) at the arbitrary laws of stress σ(t) and temperature T(t) variations
with time.

Different problems of the creep theory have been investigated in a number of monographs ([3–7],
and others).

Without loss of generality, here and further on, it is possible to consider isothermal processes
occurring at a constant temperature. The transition to other temperatures in creep and long-
term strength simulation should be carried out using known temperature-time analogies
specified, for example, in [6, 7].

Here, the case is examined where σ(t) = const and the specimen is at the steady-state creep
stage _p σ; tð Þ ¼ const most of the time. In this case, to describe the behaviour of the material, it
is natural to use the relationship of the non-linear viscous flow called the theory of the steady-
state creep:

_p ¼ f σð Þ (1)

(the dot above the symbol indicates the differentiation with respect to time t).

The steady-state creep rate _p is of special importance, because in many technical applications it
accounts for the main part of the accumulated creep strain. In most studies, the function f(σ) is
a power function of the mechanical stress σ:

_p ¼ Aσn, (2)

Figure 1. Dependence of strain on time at different stresses.
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where A and n are the constants of the material.

To describe the first nonsteady section of the creep curve alongside the second one, it is
possible to use different theories with the simplest one being the ageing theory:

p ¼ F t; σð Þ: (3)

The first analytical description of the ageing theory for metals was proposed by E.N. Andrade
in 1920:

p ¼ At1=3 þ Bt, (4)

where the coefficients A and B depend on stress σ.

An important feature of the creep theory constructed using the relationships explicitly
containing the time (this takes place when introducing the hypothesis of ageing) is that they
are valid only at constant or relatively slowly changing stresses. For a sudden stress variation,
these theories lead to a stepwise variation of the creep strains, too, which is naturally impossi-
ble. However, since the ageing hypothesis leads to smaller mathematical difficulties in com-
parison with the other theories, it is used in calculations with considerable success taking into
account the scope of its applicability.

The first attempt to overcome the shortcomings of the above-described ageing theory was
considered to be the С.С. Davenport’s (1938) hypothesis, according to which relation (3)
should be replaced by a relation of the following form:

_p ¼ f t; σð Þ, (5)

or taking the elastic properties into account:

_ε ¼ σ
E
þ f t; σð Þ: (6)

This theory is called the theory of ageing in the form of a flow or, briefly, the flow theory.

The simplest consistent assumption used to describe an unstable creep area at a constant
temperature is that the creep rate _p tð Þ for an arbitrary value of t is determined by the stress σ
and the current value of the creep strain:

_p ¼ f σ; pð Þ: (7)

From Eq. (7), which is the basis of the hardening theory, it follows that the creep rate does not
depend explicitly on time t. This fact indicates a significant advantage of the hardening theory
over other theories.

The most promising theory in the mechanics of solid media to describe the creep processes
of structural metals is the concept of the mechanical equation of state, proposed by Rabotnov [3, 4].
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From Eq. (7), which is the basis of the hardening theory, it follows that the creep rate does not
depend explicitly on time t. This fact indicates a significant advantage of the hardening theory
over other theories.

The most promising theory in the mechanics of solid media to describe the creep processes
of structural metals is the concept of the mechanical equation of state, proposed by Rabotnov [3, 4].
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According to this concept, the creep rate _p of a structurally stable material at every moment of
time t depends on the magnitude of applied stress, temperature and the structural state of the
material at this moment t. The structural state of the material is characterised by the set of
values q1 , q2 , … , qN, which are called the structural parameters. The kinetic creep theory
consists of the mechanical equation of state

_p ¼ _p σ;T; q1; q2;…; qN
� �

(8)

and a system of kinetic equations to determine the parameters qi. The structural parameters
qi (i = 1, 2, … ,N) used in Eqs. (8) and (3) vary during deformation in accordance with the
kinetic equations:

dqi ¼ aidpþ bidσþ cidtþ gidT, (9)

and the coefficients ai , bi , ci , gi are the functions of p , σ , t ,T and also of q1 , q2 , … qN. Relation-
ships (8) and (9) widen the range of theories available to describe greatly varying experimental
results. Extensive studies of the creep of metals using the mechanical equation of state in form
(8) supplemented by kinetic equations (9) were carried out in a large number of researches by
Rabotnov and his colleagues [8].

A creep process with a stepwise increase of the stress σ(t) is investigated below. For an
analytical description of the creep curve after changing the mechanical stress, the system of
equations (8) and (9) is used. Consider the energy version of the kinetic theory.

At N = 1, a1 = a1(σ), b1 = 0, c1 = 0, g1 = 0, in a partial case a1(σ) = σ and

dq ¼ σdp (10)

Here, the parameter q is the work of stresses acting at the creep strains. Application of this
version in the theory to describe the creep process based on the energy approach has been
widely used in the studies by Sosnin and his colleagues [9].

In [10], the results of experimental verification of this version of the theory for D16AT alumin-
ium alloy at the temperature of 150�C are presented. The circles in Figure 2 show the experi-
mental creep curves at σ1 = 150МРа and σ2 = 250 MPa.

When simulating these experimental data, the simplest form of the hardening theory is initially
examined assuming that it is expressed as follows:

_p ¼ p�αf σð Þ, α > 0: (11)

It is further assumed that f(σ) has the form of a power function. Therefore,

_ppα ¼ Bσn: (12)

Integration of differential equation (12) separately over the intervals 0 < t < t1 and t > t1 results in
the following expressions:
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p tð Þ ¼ B αþ 1ð Þσn1
� � 1

αþ1t
1

αþ1 if 0 ≤ t < t1, (13)

p tð Þ ¼ B αþ 1ð Þσn2 t� t1ð Þ þ p1
αþ1� � 1

αþ1 if t > t1, (14)

where p1 ¼ p t1ð Þ ¼ B αþ 1ð Þσn1
� � 1

αþ1t1
1

αþ1.

Now, the version of equations (8) and (9) is selected in such a way that at a constant stress
(σ1 =σ2) they coincide with (12):

_pqα ¼ Bσnþα: (15)

In the first creep section under the effect of the stress σ = σ1, there is obtained q(t) =σ1p(t).
Therefore, differential equations (12) and (15) coincide and, consequently, the creep curve,
corresponding to the defining Eq. (15) at 0 < t < t1 coincides with the curve (13). After additional
step loading,

q tð Þ ¼ σ2p tð Þ � p1 σ2 � σ1ð Þ: (16)

Substituting q(t) (16) into differential equation (15) and integrating this equation at t > t1 taking
into account the initial condition p(t1) = p1, it is obtained that

p tð Þ ¼ σ2 � σ1
σ2

þ B αþ 1ð Þσn2 t� t1ð Þ þ σ1p1
σ2

� �αþ1
" # 1

αþ1

: (17)

The dashed line in Figure 2 shows the creep curve calculated using Eq. (14), and the solid line
represents the curve calculated using Eq. (17). Evidently, the hardening theory set up by
Eq. (15) taking into account kinetic Eq. (10) describes the experimental data more efficiently
than the simplest hardening theory (12).

Figure 2. Creep of D16AT alloy [10].
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According to this concept, the creep rate _p of a structurally stable material at every moment of
time t depends on the magnitude of applied stress, temperature and the structural state of the
material at this moment t. The structural state of the material is characterised by the set of
values q1 , q2 , … , qN, which are called the structural parameters. The kinetic creep theory
consists of the mechanical equation of state

_p ¼ _p σ;T; q1; q2;…; qN
� �

(8)

and a system of kinetic equations to determine the parameters qi. The structural parameters
qi (i = 1, 2, … ,N) used in Eqs. (8) and (3) vary during deformation in accordance with the
kinetic equations:
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ships (8) and (9) widen the range of theories available to describe greatly varying experimental
results. Extensive studies of the creep of metals using the mechanical equation of state in form
(8) supplemented by kinetic equations (9) were carried out in a large number of researches by
Rabotnov and his colleagues [8].

A creep process with a stepwise increase of the stress σ(t) is investigated below. For an
analytical description of the creep curve after changing the mechanical stress, the system of
equations (8) and (9) is used. Consider the energy version of the kinetic theory.

At N = 1, a1 = a1(σ), b1 = 0, c1 = 0, g1 = 0, in a partial case a1(σ) = σ and

dq ¼ σdp (10)

Here, the parameter q is the work of stresses acting at the creep strains. Application of this
version in the theory to describe the creep process based on the energy approach has been
widely used in the studies by Sosnin and his colleagues [9].

In [10], the results of experimental verification of this version of the theory for D16AT alumin-
ium alloy at the temperature of 150�C are presented. The circles in Figure 2 show the experi-
mental creep curves at σ1 = 150МРа and σ2 = 250 MPa.

When simulating these experimental data, the simplest form of the hardening theory is initially
examined assuming that it is expressed as follows:

_p ¼ p�αf σð Þ, α > 0: (11)

It is further assumed that f(σ) has the form of a power function. Therefore,

_ppα ¼ Bσn: (12)

Integration of differential equation (12) separately over the intervals 0 < t < t1 and t > t1 results in
the following expressions:
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Now, the version of equations (8) and (9) is selected in such a way that at a constant stress
(σ1 =σ2) they coincide with (12):

_pqα ¼ Bσnþα: (15)

In the first creep section under the effect of the stress σ = σ1, there is obtained q(t) =σ1p(t).
Therefore, differential equations (12) and (15) coincide and, consequently, the creep curve,
corresponding to the defining Eq. (15) at 0 < t < t1 coincides with the curve (13). After additional
step loading,

q tð Þ ¼ σ2p tð Þ � p1 σ2 � σ1ð Þ: (16)

Substituting q(t) (16) into differential equation (15) and integrating this equation at t > t1 taking
into account the initial condition p(t1) = p1, it is obtained that
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þ B αþ 1ð Þσn2 t� t1ð Þ þ σ1p1
σ2
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" # 1

αþ1

: (17)

The dashed line in Figure 2 shows the creep curve calculated using Eq. (14), and the solid line
represents the curve calculated using Eq. (17). Evidently, the hardening theory set up by
Eq. (15) taking into account kinetic Eq. (10) describes the experimental data more efficiently
than the simplest hardening theory (12).
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Considering the system of Eqs. (8) and (9) with two kinetic parameters—in addition to the
generally accepted hardening measure q1 = p, we introduce the second parameter q2 deter-
mined by the following relationship [11]:

dq2 ¼
pdσ при dσ > 0,
0 при dσ ≤ 0:

�
(18)

If at the initial moment of time (t = 0 , p = 0), there is applied stress σ1 that subsequently remains
constant, and then q2 = 0 if 0 < t < t1.

At a stepwise increase of stress at the time t1, the parameter q2, according to Eq. (18), receives
the increment Δq2 = p1(σ2� σ1) > 0. The creep law in [11] is represented by the equation

_ppα ¼ k exp
σ
A
þ q2

B

� �
: (19)

Eq. (19) implies that additional introduction of the second kinetic parameter q2 according to
(18) leads to a higher creep rate increase after the instantaneous loading compared with the
standard hardening theory (12). In case of a step load, it follows from kinetic equation (18) that
the parameter q2 does not change.

Figure 3 shows the experimental points [11] obtained on samples of D16T alloy, tested at the
stress of σ1 = 80 MPa for the time t1 = 24 h and at σ2 = 160 MPa and at t > t1 (temperature of
200�C). The dashed line corresponds to standard hardening theory (12), the solid line—to the
theory with two kinetic parameters described by Eq. (19).

Figure 3. Creep of D16T alloy [11].
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These considerations show that the concept of equation of the mechanical state (8) with the
system of the kinetic equation (9) proposed by Rabotnov to determine the structural parame-
ters is highly promising for describing different special features of the material behaviours in
the creep conditions.

3. Long-term strength under uniaxial tension

In the majority of cases when the levels of temperatures and stresses in the experiments are
quite high, the deformation process over time ends with the fracture of the specimen. This
moment is characterised by certain time t∗ determined by the given values of stress σ and
temperature T. If a sufficiently large series of experiments is carried out, then for a number of
temperature values T, it is possible to construct a series of curves t∗(σ) which are referred to as
the long-term strength curves. It should be noted that the actual experimental data for the
majority of metals and alloys are greatly scattered.

Typical long-term strength curves are shown schematically in Figure 4. In the first case, the
points in the logarithmic coordinates are distributed over a single straight line. In the second
case, the diagram consists of two straight sections. In this case, section AB of the diagram
corresponds to ductile fracture, and section BC corresponds to brittle fracture. The diagram
does not always consist of two straight lines characterised by a distinctive intersection point.
Sometimes, a curvilinear transition region occurs between the straight lines AB and BC indi-
cated by the dashed line—the region of mixed fracture.

A general approach to the fracture problem implies that the value ω (the extent of cracking) is
regarded as a structural parameter. Therefore, the creep process is described by the creep equation

_p ¼ f σ;ωð Þ, p t ¼ 0ð Þ ¼ 0, (20)

and the fracture process is described by the kinetic equation of gradual fracture

_ω ¼ φ σ;ωð Þ, ω t ¼ 0ð Þ ¼ 0: (21)

If the fracture is accompanied by a small elongation only, the stress σ at a constant tensile
loading force may be regarded as constant (σ(t) =σ = const). In this case, Eq. (21) is integrated

Figure 4. Typical long-term strength curves.
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Considering the system of Eqs. (8) and (9) with two kinetic parameters—in addition to the
generally accepted hardening measure q1 = p, we introduce the second parameter q2 deter-
mined by the following relationship [11]:

dq2 ¼
pdσ при dσ > 0,
0 при dσ ≤ 0:

�
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If at the initial moment of time (t = 0 , p = 0), there is applied stress σ1 that subsequently remains
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B

� �
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(18) leads to a higher creep rate increase after the instantaneous loading compared with the
standard hardening theory (12). In case of a step load, it follows from kinetic equation (18) that
the parameter q2 does not change.

Figure 3 shows the experimental points [11] obtained on samples of D16T alloy, tested at the
stress of σ1 = 80 MPa for the time t1 = 24 h and at σ2 = 160 MPa and at t > t1 (temperature of
200�C). The dashed line corresponds to standard hardening theory (12), the solid line—to the
theory with two kinetic parameters described by Eq. (19).

Figure 3. Creep of D16T alloy [11].
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system of the kinetic equation (9) proposed by Rabotnov to determine the structural parame-
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the creep conditions.
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In the majority of cases when the levels of temperatures and stresses in the experiments are
quite high, the deformation process over time ends with the fracture of the specimen. This
moment is characterised by certain time t∗ determined by the given values of stress σ and
temperature T. If a sufficiently large series of experiments is carried out, then for a number of
temperature values T, it is possible to construct a series of curves t∗(σ) which are referred to as
the long-term strength curves. It should be noted that the actual experimental data for the
majority of metals and alloys are greatly scattered.

Typical long-term strength curves are shown schematically in Figure 4. In the first case, the
points in the logarithmic coordinates are distributed over a single straight line. In the second
case, the diagram consists of two straight sections. In this case, section AB of the diagram
corresponds to ductile fracture, and section BC corresponds to brittle fracture. The diagram
does not always consist of two straight lines characterised by a distinctive intersection point.
Sometimes, a curvilinear transition region occurs between the straight lines AB and BC indi-
cated by the dashed line—the region of mixed fracture.

A general approach to the fracture problem implies that the value ω (the extent of cracking) is
regarded as a structural parameter. Therefore, the creep process is described by the creep equation

_p ¼ f σ;ωð Þ, p t ¼ 0ð Þ ¼ 0, (20)

and the fracture process is described by the kinetic equation of gradual fracture

_ω ¼ φ σ;ωð Þ, ω t ¼ 0ð Þ ¼ 0: (21)

If the fracture is accompanied by a small elongation only, the stress σ at a constant tensile
loading force may be regarded as constant (σ(t) =σ = const). In this case, Eq. (21) is integrated
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independently of (20) and provides the equation ω =ω(σ, t). Therefore, the moment of fracture
t∗ is determined as the value t = t∗ at which ω = 1. Further, substitution of ω =ω(t) into Eq. (20)
leads to the creep curve equation p(t). The following simplest Eqs. (20) and (21) can be used

_p ¼ Aσn 1� ωð Þ�k, (22)

_ω ¼ Bσm 1� ωð Þ�s: (23)

As previously, here σ is the mean macrostress determined by the tensile force divided by the
area of the sample. The deformation process is completed at the moment of fracture t = t∗

corresponding to the value of the parameter ω(t∗) = 1. Integration of the system of Eqs. (22)
and (23) at s + 1� k > 0 provides the equation of the creep curve

p ¼ p∗ 1� 1� t
t∗

� �sþ1�k
sþ1

" #
, (24)

where the time to fracture t∗ and the respective limiting creep strain p∗ depend on the stress σ
and the material constants as follows:

t∗ ¼ B sþ 1ð Þσm½ ��1, p∗ ¼ A
B sþ 1� kð Þ σ

n�mð Þ: (25)

Some tests of metals in the creep conditions before fracture showed a non-monotonic change of
the limiting creep strain p∗ corresponding to the moment of fracture t∗ in the investigated
range of the constant tensile stress σ. In [12], it was reported that when simulating the non-
monotonic dependence p∗(σ), various functional relationships should be used to take into
account the effect of stress on the creep rate and damage accumulation rate.

To describe the creep process at a constant stress up to the moment of fracture and to deter-
mine deformation p∗, consider the exponential dependence of the creep rate on the stress:

_p ¼ C sh σ=cð Þð Þ 1� ωð Þ�n (26)

and the power-law dependence of the change rate of the kinetic parameter ω on σ:

_ω ¼ Dσk 1� ωð Þ�k, k > 1: (27)

Consider the relation _p= _ω and integrate it. As a result, in accordance with Eqs. (26) and (27),
the following dependence of the limiting strain p∗ on the level of mechanical stress σ is
obtained:

p∗ ¼ C
D
� sh σ=cð Þ

σk
: (28)

For relatively small values σ, the dependence pi
∗(σ) in (28) is decreasing; for sufficiently large

values σ, this dependence is increasing. Consequently, at some intermediate value of the stress,
the limiting strain is minimal. The condition
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dp∗=dσð Þjσ¼σi
¼ 0 (29)

with due account for Eq. (28) allows determining this value for kinetic equation (27):

th σ=cð Þ ¼ σ= kcð Þ: (30)

Figure 5 shows the creep curves for stainless steel Cr18Ni10Ti at 850оС and at stresses
σ = 40� 80 MPa [12]. The experimental curves are shown by solid lines, and the theoretical

curves are shown by dashed lines (n = 2.28, k = 3.1, C ¼ 2:02 � 10�4 h-1, D ¼ 5:1 � 10�8

MPað Þ�3:1h-1, c = 17.8 MPa).

When describing a series of creep curves before fracture with an internal minimum of the
dependence p∗(σ), the types of dependencies _p and _ω on σ should be interchanged.

4. Creep under complex stress state

In the previous paragraphs, attention was given to the main assumptions regarding the metal
creep phenomenon, and the basic models describing the creep of bars under uniaxial tensile
loading were described. In the determination of the mechanical behaviour of the structural
elements in the creep conditions, however, it is necessary, as a rule, to consider the multiaxial
complex stress state. Experimental studies of creep in these conditions are associated with
considerable technical difficulties, and, therefore, the currently available experimental data
are not extensive and do not allow a reliable justification of any creep theory in the complex
stress state conditions. To determine the characteristics of the material, tests are usually carried

Figure 5. Creep curves of Cr18Ni10Ti steel with the non-monotonic dependence p∗(σ).

Kinetic Theory of Creep and Long-Term Strength of Metals
http://dx.doi.org/10.5772/intechopen.70768

61



independently of (20) and provides the equation ω =ω(σ, t). Therefore, the moment of fracture
t∗ is determined as the value t = t∗ at which ω = 1. Further, substitution of ω =ω(t) into Eq. (20)
leads to the creep curve equation p(t). The following simplest Eqs. (20) and (21) can be used

_p ¼ Aσn 1� ωð Þ�k, (22)

_ω ¼ Bσm 1� ωð Þ�s: (23)
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area of the sample. The deformation process is completed at the moment of fracture t = t∗

corresponding to the value of the parameter ω(t∗) = 1. Integration of the system of Eqs. (22)
and (23) at s + 1� k > 0 provides the equation of the creep curve
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t∗
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sþ1

" #
, (24)
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the limiting creep strain p∗ corresponding to the moment of fracture t∗ in the investigated
range of the constant tensile stress σ. In [12], it was reported that when simulating the non-
monotonic dependence p∗(σ), various functional relationships should be used to take into
account the effect of stress on the creep rate and damage accumulation rate.

To describe the creep process at a constant stress up to the moment of fracture and to deter-
mine deformation p∗, consider the exponential dependence of the creep rate on the stress:

_p ¼ C sh σ=cð Þð Þ 1� ωð Þ�n (26)

and the power-law dependence of the change rate of the kinetic parameter ω on σ:
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Consider the relation _p= _ω and integrate it. As a result, in accordance with Eqs. (26) and (27),
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obtained:
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For relatively small values σ, the dependence pi
∗(σ) in (28) is decreasing; for sufficiently large

values σ, this dependence is increasing. Consequently, at some intermediate value of the stress,
the limiting strain is minimal. The condition
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with due account for Eq. (28) allows determining this value for kinetic equation (27):
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Figure 5 shows the creep curves for stainless steel Cr18Ni10Ti at 850оС and at stresses
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In the previous paragraphs, attention was given to the main assumptions regarding the metal
creep phenomenon, and the basic models describing the creep of bars under uniaxial tensile
loading were described. In the determination of the mechanical behaviour of the structural
elements in the creep conditions, however, it is necessary, as a rule, to consider the multiaxial
complex stress state. Experimental studies of creep in these conditions are associated with
considerable technical difficulties, and, therefore, the currently available experimental data
are not extensive and do not allow a reliable justification of any creep theory in the complex
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out on thin-walled, tubular specimens—the stress state in the specimens is usually generated
by a combination of tensile loading with torsion or tensile loading with internal pressure. To
generate the quasi-homogeneous stress state in the tubular specimens, the latter must be thin
walled. In rare instances, experimental studies of creep in the complex stress state are carried
out on a rectangular plate in biaxial loading conditions.

As noted in the beginning of the chapter, for the readers familiar with the basics of the theory of
elasticity and plasticity, the concepts of stress tensors, strains and strain rates are also known.

Creep strains in the complex stress state pij, just as in the case of uniaxial tension, mean the
differences between total deformations εij and instantaneous deformations arising under
quasi-static loading.

The first results of researching the creep of metals under multiaxial stress state conditions were
published in the 1930s of the twentieth century. The basic principles of constructing the creep
theory are considered in various monographs and textbooks.

Creep theories for the complex stress state usually consider the following three hypotheses:

1. The volume deformation is elastic (the material is always considered as incompressible).

2. The hypothesis of the proportionality of the stress deviators and creep strain rates (the
flow-type theory) or the deviators of the stresses and strains (deformation theory).

3. A functional relationship between the second invariants of the tensors of the stresses and
creep strain rates (or the stress and strain tensors) is assumed to have such a form that the
relationships of one of the well-known creep theories are fulfilled in the partial case of
uniaxial tensile loading. The presence of such a relationship implies that the dependence
of the intensity of creep strain rates _pu on stress intensity σu (or intensity of creep strains pu
on σu) is the same at different types of the stress state (i.e., the ‘single curve’ hypothesis is
satisfied). Sometimes, the dependence between the stress and strain intensities can be
replaced by a similar dependence between the maximum tangential stress and the maxi-
mum shear stress.

Different approaches to the construction of metal creep models under the conditions of the
multiaxial complex stress state have been discussed in a number of monographs and journal
articles (e.g., [3–7]).

As an example of such models, consider the steady-state creep model.

The hypothesis of proportionality of stress deviators and creep strain rates for an incompress-
ible body can be presented as follows:

_p ¼ 0, _pij ¼
3
2
� f σuð Þ

σu
sij,

sij ¼ σij � σδij,

δij ¼
(
1, i ¼ j

0, i 6¼ j

, σ ¼ 1=3ð Þ
X3

k¼1

σkk, _pu ¼ f σuð Þ: (31)

The relationship of the tensors σij and _pij in the Cartesian coordinates can have the form:
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_pxx ¼
3
2
� f σuð Þ

σu
σxx � σð Þ,…,

_pxy ¼
3
2
� f σuð Þ

σu
σxy, :…

8>>><
>>>:

(32)

The simplest version of the theory of steady-state creep under uniaxial tensile loading is the
power dependence _p1 ¼ Bσn1; in a general case, the identical relationship of the second invari-
ant of the corresponding tensors has the form

_pu ¼ f σuð Þ ¼ Bσnu: (33)

Creep equation (31) is the equation of the non-linear viscous flow. They were derived by R.
Bailey in 1935 and J. Marin in 1942.

5. Long-term strength under complex stress state

In the kinetic theory, damage accumulation is investigated as a process of gradual fracture of
the material. In many studies of Russian and foreign scientists when examining the multiaxial
complex stress state, special attention is given to the damage parameters that are not only of
the scalar but also of vector and tensor nature. Modern versions of the kinetic theory allow
describing the deformation and long-term fracture of metals in nonproportional loading taking
into account the anisotropy of metal properties, using the theory to solve technological prob-
lems, etc.

Consider the uniaxial (σ1 = σ0 > 0, σ2 =σ3 = 0) and equiaxed plane (σ1 =σ2 =σ0 > 0, σ3 = 0) stress
states for the same stress level σ0 (Figure 6). The available test results show that the time to

Figure 6. Uniaxial and equiaxed planar stress states.
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out on thin-walled, tubular specimens—the stress state in the specimens is usually generated
by a combination of tensile loading with torsion or tensile loading with internal pressure. To
generate the quasi-homogeneous stress state in the tubular specimens, the latter must be thin
walled. In rare instances, experimental studies of creep in the complex stress state are carried
out on a rectangular plate in biaxial loading conditions.

As noted in the beginning of the chapter, for the readers familiar with the basics of the theory of
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differences between total deformations εij and instantaneous deformations arising under
quasi-static loading.

The first results of researching the creep of metals under multiaxial stress state conditions were
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3. A functional relationship between the second invariants of the tensors of the stresses and
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uniaxial tensile loading. The presence of such a relationship implies that the dependence
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on σu) is the same at different types of the stress state (i.e., the ‘single curve’ hypothesis is
satisfied). Sometimes, the dependence between the stress and strain intensities can be
replaced by a similar dependence between the maximum tangential stress and the maxi-
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multiaxial complex stress state have been discussed in a number of monographs and journal
articles (e.g., [3–7]).

As an example of such models, consider the steady-state creep model.

The hypothesis of proportionality of stress deviators and creep strain rates for an incompress-
ible body can be presented as follows:

_p ¼ 0, _pij ¼
3
2
� f σuð Þ

σu
sij,

sij ¼ σij � σδij,

δij ¼
(
1, i ¼ j

0, i 6¼ j

, σ ¼ 1=3ð Þ
X3

k¼1

σkk, _pu ¼ f σuð Þ: (31)

The relationship of the tensors σij and _pij in the Cartesian coordinates can have the form:
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_pxx ¼
3
2
� f σuð Þ

σu
σxx � σð Þ,…,

_pxy ¼
3
2
� f σuð Þ

σu
σxy, :…

8>>><
>>>:

(32)

The simplest version of the theory of steady-state creep under uniaxial tensile loading is the
power dependence _p1 ¼ Bσn1; in a general case, the identical relationship of the second invari-
ant of the corresponding tensors has the form

_pu ¼ f σuð Þ ¼ Bσnu: (33)

Creep equation (31) is the equation of the non-linear viscous flow. They were derived by R.
Bailey in 1935 and J. Marin in 1942.

5. Long-term strength under complex stress state

In the kinetic theory, damage accumulation is investigated as a process of gradual fracture of
the material. In many studies of Russian and foreign scientists when examining the multiaxial
complex stress state, special attention is given to the damage parameters that are not only of
the scalar but also of vector and tensor nature. Modern versions of the kinetic theory allow
describing the deformation and long-term fracture of metals in nonproportional loading taking
into account the anisotropy of metal properties, using the theory to solve technological prob-
lems, etc.

Consider the uniaxial (σ1 = σ0 > 0, σ2 =σ3 = 0) and equiaxed plane (σ1 =σ2 =σ0 > 0, σ3 = 0) stress
states for the same stress level σ0 (Figure 6). The available test results show that the time to
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fracture t∗1 in the uniaxial tensile loading is considerably greater than the time to fracture t∗2 in
biaxial loading under these conditions (s ¼ t∗1=t

∗
2 > 1) [13, 14].

All the investigated experimental data indicate that the addition to the axial tensile loading stress
of a transverse tensile stress of the same magnitude decreases the time to fracture several times.

Calculations of the long-term strength of structural members loaded under the conditions of
the stationary multiaxial complex stress state are usually carried out using a criterial approach.
In this approach, the only characteristic of the stress state taken into account is the so-called
equivalent stress σe. This characteristic is represented by different combinations of the stress
tensor components with a distinctive mechanical meaning such as the maximum tensile stress,
the intensity of tangential stresses, the difference of the maximum and minimummain stresses
and other expressions. Since these equivalent stresses coincide (σe =σ0) for the investigated
uniaxial and biaxial tensile loading, it is not possible to obtain different values of t∗1 and t∗2
using the criteria relationship t∗ = t∗(σe). Further, two versions of the systems of kinetic equa-
tions with the vector damage parameter to describe different values of the time to fracture t∗1
and t∗2 are examined.

First, the dependence of the time to fracture t∗ on the type of stress state will be described
taking into account the instantaneous damage for an isotropic material. This will be carried out
using the generalisation of the vector approach taking into account the damage accumulated
during loading. One of the possible models for describing different times t∗1 and t∗2 is the system
or relationships:

dωi ¼ dφ σið Þ
dσi

� dσi þ f σið Þ � dt, i ¼ 1, 2: (34)

where function φ(σi) characterises the projection of ωi on the xi axis of the vector of damage
accumulated during loading; f(σi) is a constant rate of increase of the projection ωi with time t.
In uniaxial tensile loading, from relationships (34), it follows that

ω1 tð Þ ¼ φ σ0ð Þ þ f σ0ð Þ � t, ω2 ¼ 0, t∗1 ¼ 1� φ σ0ð Þ½ �=f σ0ð Þ, (35)

and in the case of the equal biaxial tensile loading, relationships (34) provide

ω1 tð Þ ¼ ω2 tð Þ ¼ φ σ0ð Þ þ f σ0ð Þ � t, t∗2 ¼
ffiffiffi
2

p
=2� φ σ0ð Þ

h i
=f σ0ð Þ: (36)

Relationships (35) and (36) show that the instantaneous value of damage φ(σ0) should be in the

range 0 < φ σ0ð Þ < ffiffiffi
2

p
=2, and the ratio

s ¼ t∗1=t
∗
2 ¼ 1� φ σ0ð Þð Þ=

ffiffiffi
2

p
=2� φ σ0ð Þ

� �
(37)

should exceed
ffiffiffi
2

p
at any values of σ0 in this range. As an example of using Eq. (34), the results

of tests [13] which at σ0 = 56.2 MPa lead to the following values are considered: t∗1 ¼ 900 h and
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t∗2 ¼ 280 h. At φ(σ0) = 0.57 and f(σ0) = 4.78 � 10�4 h�1, the theoretical values of t∗1 and t∗2 calcu-
lated from the relationship (36) coincide with the respective experimental values.

The results show that the ratio s depends only on the level of damage φ(σ0) accumulated under
quasi-static loading. Taking into account the instantaneous damage in the form (5.1) makes it

possible to describe the experimental data only for s ≥
ffiffiffi
2

p
. In this case, the result does not

depend on the nature of damage accumulation during creep.

Now, the dependence of time to fracture t∗ will be described taking into account the anisotropy
of the material. When determining the long-term strength of thin-walled pipes, it is taken into
account that in the process of such pipes manufacturing the material may acquire anisotropic
strength properties (difference in material properties in different directions). To facilitate a
quantitative analysis, there are introduced anisotropy coefficients α1 and α2 characterising the
anisotropy of the instantaneous and long-term strength properties, respectively,

f σzz=α1ð Þ ¼ f σθθð Þ, φ σzz=α2ð Þ ¼ φ σθθð Þ, (38)

Further on, these coefficients will be assumed to be equal to α1 =α2 =α ≥ 1.

In Eq. (38), the components of the stress tensor in a cylindrical coordinate system are used.
Anisotropy analysis of the long-term strength characteristics of metals is described in detail in
[6, 7].

Consider the kinetic equation for the components of the damage vector ωi in the following
form:

dωi ¼ ω�1
i � dφ bσið Þ þ f i bσið Þdt� �

, i ¼ z, θ (39)

bσi represents the transformed main stresses bσzz ¼ σzz=α, bσθθ ¼ σθθ α > 1ð Þ. Simple transfor-
mations of Eq. (39) provide the relations for the square of the damage vector length under
uniaxial and biaxial stretching, respectively:

ω2 ¼ 2 φ σ0=αð Þ þ f σ0=αð Þ � t½ �,
ω2 ¼ 2 φ σ0=αð Þ þ φ σ0ð Þ þ f σ0=αð Þ � tþ f σ0ð Þ � t½ �:

(40)

Eq. (40) allows deriving the following expressions for t∗1, t
∗
2 and s:

t∗1 ¼
0:5� φ σ0=αð Þ

f σ0=αð Þ , t∗2 ¼
0:5� φ σ0=αð Þ � φ σ0ð Þ

f σ0=αð Þ þ f σ0ð Þ ,

s ¼ t∗1
t∗2

¼ f σ0=αð Þ þ f σ0ð Þ½ �
f σ0=αð Þ � 0:5� φ σ0=αð Þ½ �

0:5� φ σ0=αð Þ � φ σ0ð Þ½ � :
(41)

It is obvious from expression (41) that the value s is greater than 1 for any kinds of functions
f(x) and φ(x), values α > 1 and levels of the stress state σ0.
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6. Creep and long-term strength in the presence of aggressive medium

Forecasting the life of materials and structural elements residing under conditions of pro-
longed high-temperature loading in the presence of an aggressive medium is an extremely
topical task to ensure reliability throughout the working lifespan. In this section, the influence
of an aggressive medium on the creep and the long-term strength of materials and structural
elements are considered [6, 7, 15–18]. This influence is determined by the diffusion penetration
of the medium elements into the material reducing the duration of operability.

Here, an analysis of the long-term tensile strength of a long, thin rod of a rectangular cross
section with thickness H0 and width b, with H0 < < b residing in an aggressive medium, is
presented [17]. Following the accepted geometric dimensions, a one-dimensional diffusion
process in a rod along the axis x arranged along the thickness H0 is considered. Together with
the process of the aggressive medium diffusion in the rod, the accumulation of damage in the
rod material during the creep process is taken into account. Examine the coupled problem of
determining the long-term strength of a tension rod under the condition of mass transfer on its
surface. This problem statement takes into consideration a mutual dependence of the concen-
tration level of the medium c(x, t) in the rod material and the amount of accumulated damage
ω. To this end, the dependence of the diffusion coefficient D on the level of damage ω is
considered. For simplicity, the dependence D(ω) is assumed to be linear:

D ωð Þ ¼ D0 1þ kωð Þ, D0 ¼ const, k ¼ const: (42)

The following dimensionless variables,

t ¼ 48D0

H2
0

t, x ¼ 2x=H0, c ¼ c=c0, A ¼ Aσn0H
2
0

48D0
, (43)

are introduced, where t is the time, c is the concentration, σ0 is the nominal stress and A and n
are the material constants in the power law of creep.

Consider a simplified problem statement where ω t
� �

is understood as an integral mean

damage in the rod cross section. The rod fracture criterion is considered as ω t∗∗
� � ¼ 1:

In this case, the system of equations in the adopted dimensionless variables consisting of the
parabolic diffusion equation and the kinetic equation of damage accumulation has the follow-
ing form:

∂c
∂t

¼ 1
12

1þ kωð Þ ∂
2c

∂x2
,

dω
dt

¼ A 1� ωð Þ�n � f cm t
� �� �

,

8>>><
>>>:

(44)

The linear form of the function f cm t
� �� � ¼ 1þ acm t

� �
is chosen,

where cm t
� � � Ð

1

0
c x; tð Þdx is the dimensionless integral mean concentration of the medium in

the rod material.
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The initial and boundary conditions are assumed to be as follows:

ω 0ð Þ ¼ 0, c x; 0ð Þ ¼ 0,
∂c
∂x

1; t
� � ¼ γ c 1; t

� �� 1
� �

,
∂c
∂x

0; t
� � ¼ 0, (45)

where γ is the dimensionless mass transfer coefficient.

The following values of the constants are used in calculation

n ¼ 3, γ ¼ 1, k ¼ 4, A ¼ 0:01, a ¼ 9:5: (46)

The dependence ω t
� �

for constants (46) is shown in Figure 7 by a solid line, while the time to

fracture t∗∗ ¼ 7:16: In Figure 7, the dashed line additionally shows the dependence ω(t)
corresponding to the solution of the system of Eq. (44) at k = 0 (t∗ ¼ 7:65). A comparison of the
two curves ω(t) at k = 0 and at k = 4 confirms that in the coupled problem (k > 0), the diffusion
coefficient D ¼ 1þ kωð Þ increases with the increase of the damage so that the concentration
level increases at a greater speed and the time to fracture decreases.

7. Conclusion

Analysis of various approaches to simulation of the metal creep phenomenon shows that the
most promising is the kinetic theory concept. This concept allows describing the characteristic
features of the metal deformation under creep conditions up to the moment of fracture under
various temperature-force loading programmes.

Certain above-mentioned advantages of the kinetic theory of creep and long-term strength
compared to other theories should be emphasised. As described in this chapter, various
versions of the kinetic theory can describe deformation and long-term fracture of metals under
step loading. After the introduction of the structural kinetic parameter of damage, the kinetic
theory makes it possible to take into account the non-monotonic dependence of the creep
strain limit magnitude on the stress. Also, the kinetic theory allows considering the anisotropy

Figure 7. Dependences ω t
� �

for constant and variable diffusion coefficients.
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of metal properties in simulating the long-term strength under complex stress state conditions.
Moreover, this theory enables the researchers to take into account the influence of an aggres-
sive medium on the creep and long-term strength of metals by introducing the kinetic param-
eter of aggressive medium concentration in the metal.

Apparently, it is not easy to highlight wide capabilities of the kinetic theory in one chapter.
Therefore, this chapter naturally fails to show them all. However, the following promising
research directions should be outlined:

1. Vibrocreep of metals under uniaxial and complex stress states

2. Dependence of the long-term strength under conditions of a biaxial stress state on the
short-term loading programme

3. Simulation of a long-term fracture of a plate under a nonstationary complex stress state in
the presence of an aggressive medium

4. Simulation of the blocking effect of the diffusion process.
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of metal properties in simulating the long-term strength under complex stress state conditions.
Moreover, this theory enables the researchers to take into account the influence of an aggres-
sive medium on the creep and long-term strength of metals by introducing the kinetic param-
eter of aggressive medium concentration in the metal.

Apparently, it is not easy to highlight wide capabilities of the kinetic theory in one chapter.
Therefore, this chapter naturally fails to show them all. However, the following promising
research directions should be outlined:

1. Vibrocreep of metals under uniaxial and complex stress states

2. Dependence of the long-term strength under conditions of a biaxial stress state on the
short-term loading programme

3. Simulation of a long-term fracture of a plate under a nonstationary complex stress state in
the presence of an aggressive medium

4. Simulation of the blocking effect of the diffusion process.
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Abstract

We consider a new approach to the description of the collective behavior of complex
systems of mathematical biology based on the evolution equations for observables of
such systems. This representation of the kinetic evolution seems, in fact, the direct
mathematically fully consistent formulation modeling the collective behavior of biolog-
ical systems since the traditional notion of the state in kinetic theory is more subtle and it
is an implicit characteristic of the populations of living creatures.

Keywords: kinetic equation, marginal observables, scaling limit, active soft matter

1. Introduction

The rigorous derivation of kinetic equations for soft condensed matter remains an open
problem so far. It should be noted wide applications of these evolution equations to the
description of collective processes of various nature [1–14], in particular, the collective behav-
ior of complex systems of mathematical biology [13–23]. We emphasize that the considerable
advance in solving the problem of rigorous modeling of the kinetic evolution of systems with a
large number of constituents (entities) of mathematical biology, in particular, systems of large
number of cells, is recently observed [20–26] (and see references cited therein).

In modern research, the main approach to the problem of the rigorous derivation of kinetic
equation consists in the construction of scaling limits of a solution of evolution equations
which describe the evolution of states of a many-particle system, in particular, a perturbative
solution of the corresponding BBGKY hierarchy [2–4].

In this chapter, we review a new approach to the description of the collective behavior of
complex systems of mathematical biology [17, 18] within the framework of the evolution of
observables. This representation of the kinetic evolution seems, in fact, the direct mathematically
fully consistent formulation modeling kinetic evolution of biological systems since the notion of
the state is more subtle and it is an implicit characteristic of populations of living creatures.
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One of the advantages of the developed approach is the opportunity to construct kinetic
equations in scaling limits, involving initial correlations, in particular, that can characterize
the condensed states of soft matter. We note also that such approach is also related to the
problem of a rigorous derivation of the non-Markovian kinetic-type equations from underly-
ing many-cell dynamics which make it possible to describe the memory effects of the kinetic
evolution of cells.

Using suggested approach, we establish a mean field asymptotic behavior of the hierarchy of
evolution equations for marginal observables of a large system of interacting stochastic pro-
cesses of collisional kinetic theory [24], modeling the microscopic evolution of active soft
condensed matter [14, 15]. The constructed scaling limit of a non-perturbative solution of this
hierarchy is governed by the set of recurrence evolution equations, namely, by the dual Vlasov
hierarchy for interacting stochastic processes.

Furthermore, we established that for initial states specified by means of a one-particle distri-
bution function and correlation functions the evolution of additive-type marginal observables
is equivalent to a solution of the Vlasov-type kinetic equation with initial correlations, and a
mean field asymptotic behavior of non-additive-type marginal observables is equivalent to the
sequence of explicitly defined correlation functions which describe the propagation of initial
correlations of active soft condensed matter.

2. On collisional dynamics of active soft condensed matter and the
evolution of marginal observables

The many-constituent systems of active soft condensed matter [14, 15] are dynamical systems
displaying a collective behavior which differs from the statistical behavior of usual gases [2, 4].
In the first place, their own distinctive features are connected with the fact that their constitu-
ents (entities or self-propelled particles) show the ability to retain various complexity features
[14–18]. To specify such nature of entities, we consider the dynamical system suggested in
papers [13, 24, 29] which is based on the Markov jump processes that must represent the
intrinsic properties of living creatures.

A description of many-constituent systems is formulated in terms of two sets of objects:
observables and states. The functional of the mean value of observables defines a duality
between observables and states and as a consequence there exist two approaches to the
description of the evolution of such systems, namely in terms of the evolution equations for
observables and for states. In this section, we adduce some preliminary facts about dynamics
of finitely many entities of various subpopulations described within the framework of non-
equilibrium grand canonical ensemble [2].

We consider a system of entities of variousM subpopulations introduced in paper [24] in case of
non-fixed, i.e., arbitrary, but finite average number of entities. Every i th entity is characterized by:
ui ¼ ji; ui

� �
∈ J �U, where ji ∈ J � 1;…;Mð Þ is a number of its subpopulation, and ui ∈U⊂Rd is

its microscopic state [24]. The stochastic dynamics of entities of various subpopulations is
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described by the semigroup etΛ ¼ ⊕ ∞
n¼0e

tΛn of the Markov jump process defined on the space Cγ

of sequences b = (b0, b1, … , bn,…) of measurable bounded functions bn(u1, … ,un) that are sym-
metric with respect to permutations of the arguments u1 , … ,un and equipped with the norm:

∥b∥Cγ
¼ max

n ≥ 0

γn

n!
∥bn∥Cn

¼ max
n ≥ 0

γn

n!
max
j1,…, jn

max
u1,…, un

∣bn u1;…;unð Þ∣,

where γ < 1 is a parameter. The infinitesimal generator Λn of collisional dynamics (the Liouville
operator of n entities) is defined on the subspace Cn of the space Cγ and it has the following
structure [24]:

Λnbnð Þ u1;…;unð Þ≐
XM
m¼1

εm�1
Xn

i1 6¼… 6¼im¼1

 Λ m½ � i1;…; imð Þbn
� �

u1;…;unð Þ ¼

XM
m¼1

εm�1
Xn

i1 6¼… 6¼im¼1

a m½ � ui1 ;…;uimð Þ
ð

J�U
A m½ � v;ui1 ;…;uimð Þ �

�

bn u1;…;ui1�1; v;ui1þ1;…unð Þdv� bn u1;…;unð Þ
�
,

(1)

where ε > 0 is a scaling parameter [28], the functions a[m](ui1, … ,uim) ,m ≥ 1, characterize the
interaction between entities, in particular, in case of m = 1 it is the interaction of entities with an
external environment. These functions are measurable positive bounded functions on J �Uð Þn
such that: 0 ≤ a m½ � ui1 ;…;uimð Þ ≤ a m½ �

∗ , where a m½ �
∗ is some constant. The functions A[m](v;ui1, … ,

uim) ,m ≥ 1, are measurable positive integrable functions which describe the probability of
the transition of the i1 entity in the microscopic state ui1 to the state v as a result of the
interaction with entities in the states ui2 , … , uim (in case of m = 1 it is the interaction with an
external environment). The functions A[m](v; ui1, … ,uim) ,m ≥ 1, satisfy the conditions:Ð
J�U A m½ � v;ui1 ;…;uimð Þdv ¼ 1,m≥ 1. We refer to paper [24], where examples of the functions
a[m] and A[m] are given in the context of biological systems.

In case of M = 1 generator (1) has the form
Pn

i1¼1 Λ 1½ �
n i1ð Þ and it describes the free stochastic

evolution of entities, i.e., the evolution of self-propelled particles. The case of M =m ≥ 2 corre-
sponds to a system with them -body interaction of entities in the sense accepted in kinetic theory
[30]. The m-body interaction of entities is the distinctive property of biological systems in com-
parisonwithmany-particle systems, for example, gases of atomswith a pair-interaction potential.

On the space Cn the one-parameter mapping etΛn is a bounded ∗-weak continuous semigroup
of operators.

The observables of a system of a non-fixed number of entities of various subpopulations are
the sequences O = (O0,O1(u1), … ,On(u1, … ,un),…) of functions On(u1, … ,un) defined on
J �Uð Þn and O0 is a real number. The evolution of observables is described by the sequences
O(t) = (O0,O1(t,u1), … ,On(t,u1, … ,un),…) of the functions

On tð Þ ¼ etΛnO0
n, n ≥ 1,
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that is, they are the corresponding solution of the Cauchy problem of the Liouville equations

(or the Kolmogorov forward equation) with corresponding initial data O0
n:

∂
∂t
On tð Þ ¼ ΛnOn tð Þ,

On tð Þjt¼0 ¼ O0
n, n ≥ 1,

or in case of n noninteracting entities (self-propelled particles) these equations have the form.

∂
∂t
On t;u1;…;unð Þ ¼

Xn

i¼1

a 1½ � uið Þ
ð

J�U
A 1½ � v;uið ÞOn t;u1;…;ui�1; v;uiþ1;…unð Þdv:

�

�On t;u1;…;unð Þ
�
, n ≥ 1:

The average values of observables (mean values of observables) are determined by the follow-
ing positive continuous linear functional defined on the space Cγ:

Oh i tð Þ ¼ I;D 0ð Þð Þ�1 O tð Þ;D 0ð Þð Þ≐ I;D 0ð Þð Þ�1
X∞
n¼0

 1
n!

ð

J�Uð Þn
du1…dun On tð Þ D0

n, (2)

where D 0ð Þ ¼ 1;D0
1;…;D0

n;…
� �

is a sequence of nonnegative functions D0
n defined on J � Uð Þn

that describes the states of a system of a non-fixed number of entities of various subpopulations
at initial time and I;D 0ð Þð Þ ¼P∞

n¼0  1n!
Ð
J�Uð Þn du1…dun D0

n is a normalizing factor (the grand

canonical partition function).

Let L1α ¼ ⊕ ∞
n¼0α

nL1n be the space of sequences f = (f0, f1, … , fn,…) of the integrable functions
fn(u1, … ,un) defined on J �Uð Þn, that are symmetric with respect to permutations of the
arguments u1 , … ,un, and equipped with the norm:

∥f ∥L1α ¼
X∞
n¼0

αn∥f n∥L1n ¼
X∞
n¼0

αn
X
j1 ∈J

…
X
jn ∈J


ð

Un
du1…dun∣f n u1;…;unð Þ∣,

where α > 1 is a parameter. Then for D(0)∈ L1 and O(t)∈Cγ average value functional (2) exists
and it determines a duality between observables and states.

As a consequence of the validity for functional (2) of the following equality:

I;D 0ð Þð Þ�1 O tð Þ;D 0ð Þð Þ ¼ I;D 0ð Þð Þ�1 etΛO 0ð Þ D 0ð Þ� � ¼
I; etΛ

∗
D 0ð Þ� ��1

O 0ð Þ etΛ∗
D 0ð Þ� � � I;D tð Þð Þ�1 O 0ð Þ;D tð Þð Þ,

where etΛ
∗ ¼ ⊕ ∞

n¼0e
tΛ∗

n is the adjoint semigroup of operators with respect to the semigroup
etΛ ¼ ⊕ ∞

n¼0e
tΛn , it is possible to describe the evolution within the framework of the evolution of

states. Indeed, the evolution of all possible states, i.e. the sequence D(t) = (1,D1(t,u1), … ,Dn(t,
u1, … ,un),…)∈ L1 of the distribution functions Dn(t) , n ≥ 1, is determined by the formula:
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Dn tð Þ ¼ etΛ
∗
nD0

n, n ≥ 1,

where the generator Λ∗
n is the adjoint operator to operator (1) and on L1n it is defined as follows:

Λ∗
nf n

� �
u1;…;unð Þ≐

XM
m¼1

εm�1
Xn

i1 6¼… 6¼im¼1


ð

J�U
A m½ � ui1 ; v;ui2 ;…;uimð Þa m½ �

�

v;ui2 ;…;uimð Þf n u1;…;ui1�1; v;ui1þ1;…;unð Þdv� a m½ � ui1 ;…;uimð Þf n u1;…;unð Þ
�
,

(3)

where the functions A[m] and a[m] are defined as above in (1).

The function Dn(t) is a solution of the Cauchy problem of the dual Liouville equation (or the
Kolmogorov backward equation).

On the space L1n the one-parameter mapping etΛ
∗
n is a bounded strong continuous semigroup of

operators [26].

For the description of microscopic behavior of many-entity systems we also introduce the
hierarchies of evolution equations for marginal observables and marginal distribution func-
tions known as the dual BBGKY hierarchy and the BBGKY hierarchy, respectively [26]. These
hierarchies are constructed as the evolution equations for one more method of the description
of observables and states of finitely many entities.

An equivalent approach to the description of observables and states of many-entity systems is
given in terms of marginal observables B(t) = (B0,B1(t,u1), … ,Bs(t,u1, … ,us),…) and marginal

distribution functions F 0ð Þ ¼ 1; F0,ε1 u1ð Þ;…; F0,εs u1;…;usð Þ;…� �
∈L1α.

Considering formula (2), marginal observables and marginal distribution functions are intro-
duced according to the equality:

Oh i tð Þ ¼ I;D 0ð Þð Þ�1 O tð Þ;D 0ð Þð Þ ¼ B tð Þ; F 0ð Þð Þ,
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� �
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distribution functions D 0ð Þ ¼ 1;D0
1;…;D0

n;…
� �

is determined by the formula:

F0,εs u1;…;usð Þ≐ I;D 0ð Þð Þ�1
X∞
n¼0

 1
n!

ð

J�Uð Þn
dusþ1…dusþn D0

sþn u1;…;usþnð Þ, s≥ 1,

and, respectively, the marginal observables are determined in terms of observables as follows:

Bs t;u1;…;usð Þ≐
Xs
n¼0

 �1ð Þn
n!

Xs

j1 6¼… 6¼jn¼1

Os�n t; u1;…;usð Þ uj1 ;…;ujn

� �� �
, s≥ 1: (4)
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that is, they are the corresponding solution of the Cauchy problem of the Liouville equations

(or the Kolmogorov forward equation) with corresponding initial data O0
n:

∂
∂t
On tð Þ ¼ ΛnOn tð Þ,

On tð Þjt¼0 ¼ O0
n, n ≥ 1,

or in case of n noninteracting entities (self-propelled particles) these equations have the form.

∂
∂t
On t;u1;…;unð Þ ¼

Xn

i¼1

a 1½ � uið Þ
ð

J�U
A 1½ � v;uið ÞOn t;u1;…;ui�1; v;uiþ1;…unð Þdv:

�

�On t;u1;…;unð Þ
�
, n ≥ 1:
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Oh i tð Þ ¼ I;D 0ð Þð Þ�1 O tð Þ;D 0ð Þð Þ≐ I;D 0ð Þð Þ�1
X∞
n¼0

 1
n!

ð

J�Uð Þn
du1…dun On tð Þ D0

n, (2)

where D 0ð Þ ¼ 1;D0
1;…;D0

n;…
� �

is a sequence of nonnegative functions D0
n defined on J � Uð Þn

that describes the states of a system of a non-fixed number of entities of various subpopulations
at initial time and I;D 0ð Þð Þ ¼P∞

n¼0  1n!
Ð
J�Uð Þn du1…dun D0

n is a normalizing factor (the grand

canonical partition function).

Let L1α ¼ ⊕ ∞
n¼0α

nL1n be the space of sequences f = (f0, f1, … , fn,…) of the integrable functions
fn(u1, … ,un) defined on J �Uð Þn, that are symmetric with respect to permutations of the
arguments u1 , … ,un, and equipped with the norm:

∥f ∥L1α ¼
X∞
n¼0

αn∥f n∥L1n ¼
X∞
n¼0

αn
X
j1 ∈J

…
X
jn ∈J


ð

Un
du1…dun∣f n u1;…;unð Þ∣,

where α > 1 is a parameter. Then for D(0)∈ L1 and O(t)∈Cγ average value functional (2) exists
and it determines a duality between observables and states.

As a consequence of the validity for functional (2) of the following equality:

I;D 0ð Þð Þ�1 O tð Þ;D 0ð Þð Þ ¼ I;D 0ð Þð Þ�1 etΛO 0ð Þ D 0ð Þ� � ¼
I; etΛ

∗
D 0ð Þ� ��1

O 0ð Þ etΛ∗
D 0ð Þ� � � I;D tð Þð Þ�1 O 0ð Þ;D tð Þð Þ,

where etΛ
∗ ¼ ⊕ ∞

n¼0e
tΛ∗

n is the adjoint semigroup of operators with respect to the semigroup
etΛ ¼ ⊕ ∞

n¼0e
tΛn , it is possible to describe the evolution within the framework of the evolution of

states. Indeed, the evolution of all possible states, i.e. the sequence D(t) = (1,D1(t,u1), … ,Dn(t,
u1, … ,un),…)∈ L1 of the distribution functions Dn(t) , n ≥ 1, is determined by the formula:
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Dn tð Þ ¼ etΛ
∗
nD0

n, n ≥ 1,
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n is the adjoint operator to operator (1) and on L1n it is defined as follows:

Λ∗
nf n

� �
u1;…;unð Þ≐

XM
m¼1

εm�1
Xn

i1 6¼… 6¼im¼1


ð

J�U
A m½ � ui1 ; v;ui2 ;…;uimð Þa m½ �

�

v;ui2 ;…;uimð Þf n u1;…;ui1�1; v;ui1þ1;…;unð Þdv� a m½ � ui1 ;…;uimð Þf n u1;…;unð Þ
�
,

(3)
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∗
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operators [26].
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ð
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Two equivalent approaches to the description of the evolution of many interacting entities are
the consequence of the validity of the following equality for the functional of mean values of
marginal observables:

B tð Þ; F 0ð Þð Þ ¼ B 0ð Þ; F tð Þð Þ,

where B 0ð Þ ¼ 1;B0,ε
1 ;…;B0,ε

s ;…
� �

is a sequence of marginal observables at initial moment.

We remark that the evolution of many-entity systems is usually described within the frame-
work of the evolution of states by the sequence F(t) = (1, F1(t,u1), … , Fs(t,u1, … ,us),…) of
marginal distribution functions Fs(t,u1, … ,us) governed by the BBGKY hierarchy for
interacting entities [13, 24].

The evolution of a non-fixed number of interacting entities of various subpopulations within
the framework of marginal observables (4) is described by the Cauchy problem of the dual
BBGKY hierarchy [25]:

d
dt
B tð Þ ¼ Λþ

X∞
n¼1

 1
n!

½…½Λ, aþ�,…, aþ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
n�times

�B tð Þ, (5)

B tð Þjt¼0 ¼ B 0ð Þ, (6)

where on Cγ the operator aþ (an analog of the creation operator) is defined as follows

aþbð Þs u1;…;usð Þ≐
Xs

j¼1

bs�1 u1;…;uj�1;ujþ1;…;us
� �

,

the operator Λ ¼ ⊕ ∞
n¼0Λn is defined by (1), and the symbol [�, �] denotes the commutator of

operators.

In the componentwise form, the abstract hierarchy (5) has the form:

∂
∂t
Bs t; u1;…; usð Þ ¼ ΛsBs t; u1;…; usð Þ þ

Xs
n¼1

 1
n!

Xs

k¼nþ1

 1
k� nð Þ!�

�
Xs

j1 6¼…6¼jk¼1

εk�1Λ k½ � j1;…; jk
� � X

i1 6¼…6¼in ∈ j1;…;jkð Þ
Bs�n t; u1;…; usð Þ\ ui1 ;…; uinð Þð Þ,

(7)

Bs t;u1;…;usð Þjt¼0 ¼ B0,ε
s u1;…;usð Þ, s ≥ 1, (8)

where the operators Λs and Λ[k] are defined by formulas (1) and the functions B0,ε
s , s ≥ 1, are

scaled initial data.

A solution B(t) = (B0 ,B1(t,u1) , … ,Bs(t ,u1 , … , us) , … ) of the Cauchy problem of recurrence
evolution Eqs (7), (8) is given by the following expansions [26]:
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Bs t;u1;…;usð Þ ¼
Xs
n¼0

 1
n!

Xs

j1 6¼… 6¼jn¼1

A1þn t; Y \Zf g;Zð Þ B0,ε
s�n

u1;…;uj1�1;uj1þ1;…;ujn�1;ujnþ1;…;us
� �

, s ≥ 1,

(9)

where the (1 + n)th-order cumulant of the semigroups {etΛk}t∈ℝ , k ≥ 1, is determined by the
formula [25]:

A1þn t; Y\Zf g;Zð Þ≐
X

P: Y Zf g;Zð Þ¼⋃iZi

 �1ð Þ Pj j�1 jPj � 1ð Þ!
Y
Zi⊂P

etΛ∣θ Zið Þ∣ , (10)

the sets of indexes are denoted by Y� (1, … , s), Z� (j1, … , jn)⊂Y, the set {Y\Z} consists from
one element Y\Z = (1, … , j1� 1, j1 + 1, … , jn� 1, jn + 1, … , s) and the mapping θ(�) is the
declusterization operator defined as follows: θ({Y\Z},Z) =Y.

The simplest examples of expansions for marginal observables (9) have the following form:

B1 t;u1ð Þ ¼ A1 t; 1ð ÞBε,0
1 u1ð Þ,

B2 t;u1;u2ð Þ ¼ A1 t; 1; 2f gð ÞBε,0
2 u1;u2ð Þ þ A2 t; 1; 2ð Þ Bε,0

1 u1ð Þ þ Bε,0
1 u2ð Þ� �

,

and, respectively:

A1 t; 1; 2f gð Þ ¼ etΛ2 1;2ð Þ,

A2 t; 1; 2ð Þ ¼ etΛ2 1;2ð Þ � etΛ1 1ð ÞetΛ1 2ð Þ:

For initial data B 0ð Þ ¼ B0;B
0,ε
1 ;…;B0,ε

s ;…
� �

∈Cγ the sequence B(t) of marginal observables
given by expansions (9) is a classical solution of the Cauchy problem of the dual BBGKY
hierarchy for interacting entities (7), (8).

We note that a one-component sequence of marginal observables corresponds to observables

of certain structure, namely the marginal observable B 1ð Þ 0ð Þ ¼ 0; bε1 u1ð Þ; 0;…� �
corresponds to

the additive-type observable, and a one-component sequence of marginal observables

B kð Þ 0ð Þ ¼ 0;…; 0; bεk u1;…;ukð Þ; 0;…� �
corresponds to the k-ary-type observable [25]. If in

capacity of initial data (8) we consider the additive-type marginal observables, then the struc-
ture of solution expansion (9) is simplified and attains the form

B 1ð Þ
s t;u1;…;usð Þ ¼ As t; 1;…; sð Þ

Xs

j¼1

bε1 uj
� �

, s≥ 1: (11)

In the case of k-ary-type marginal observables solution expansion (9) has the form

Kinetic Equations of Active Soft Matter
http://dx.doi.org/10.5772/intechopen.70667

77



Two equivalent approaches to the description of the evolution of many interacting entities are
the consequence of the validity of the following equality for the functional of mean values of
marginal observables:

B tð Þ; F 0ð Þð Þ ¼ B 0ð Þ; F tð Þð Þ,

where B 0ð Þ ¼ 1;B0,ε
1 ;…;B0,ε

s ;…
� �

is a sequence of marginal observables at initial moment.

We remark that the evolution of many-entity systems is usually described within the frame-
work of the evolution of states by the sequence F(t) = (1, F1(t,u1), … , Fs(t,u1, … ,us),…) of
marginal distribution functions Fs(t,u1, … ,us) governed by the BBGKY hierarchy for
interacting entities [13, 24].
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the framework of marginal observables (4) is described by the Cauchy problem of the dual
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Bs t; u1;…; usð Þ ¼ ΛsBs t; u1;…; usð Þ þ

Xs
n¼1

 1
n!
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�
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� � X
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Bs t;u1;…;usð Þjt¼0 ¼ B0,ε
s u1;…;usð Þ, s ≥ 1, (8)

where the operators Λs and Λ[k] are defined by formulas (1) and the functions B0,ε
s , s ≥ 1, are

scaled initial data.

A solution B(t) = (B0 ,B1(t,u1) , … ,Bs(t ,u1 , … , us) , … ) of the Cauchy problem of recurrence
evolution Eqs (7), (8) is given by the following expansions [26]:
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A1þn t; Y \Zf g;Zð Þ B0,ε
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� �
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the additive-type observable, and a one-component sequence of marginal observables
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corresponds to the k-ary-type observable [25]. If in

capacity of initial data (8) we consider the additive-type marginal observables, then the struc-
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B 1ð Þ
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B kð Þ
s t; u1;…; usð Þ ¼ 1

s� kð Þ!
Xs

j1 6¼… 6¼js�k¼1

A1þs�k t, 1;…; sð Þ\ j1;…; js�k

� �� �
,

�

j1;…; js�k

� �
bεk u1;…; uj1�1; uj1þ1;…; ujs�k�1; ujs�kþ1;…; us
� �

, s ≥ k,

(12)

and, if 1 ≤ s < k, we have B kð Þ
s tð Þ ¼ 0.

We remark also that expansion (9) can be also represented in the form of the perturbation
(iteration) series [25] as a result of applying of analogs of the Duhamel equation to cumulants
of semigroups of operators (10).

3. A mean field asymptotic behavior of the marginal observables and
the kinetic evolution of states

To consider mesoscopic properties of a large system of interacting entities we develop an
approach to the description of the kinetic evolution within the framework of the evolution
equations for marginal observables. For this purpose we construct the mean field asymptotics
[9] of a solution of the Cauchy problem of the dual BBGKY hierarchy for interacting entities,
modeling of many-constituent systems of active soft condensed matter [26, 27].

We restrict ourself by the case of M = 2 subpopulations to simplify the cumbersome formulas
and consider the mean field scaling limit of non-perturbative solution (9) of the Cauchy
problem of the dual BBGKY hierarchy for interacting entities (7), (8).

Let for initial data B0,ε
s ∈Cs there exists the limit function b0s ∈Cs

w∗ � lim
ε!0

ε�sB0,ε
s � b0s

� � ¼ 0, s ≥ 1,

then for arbitrary finite time interval there exists a mean field limit of solution (9) of the Cauchy
problem of the dual BBGKY hierarchy for interacting entities (7), (8) in the sense of the ∗-weak
convergence of the space Cs

w∗ � lim
ε!0

ε�sBs tð Þ � bs tð Þð Þ ¼ 0, s ≥ 1,

where the limit sequence b(t) = (b0, b1(t), … , bs(t),…) of marginal observables is determined by
the following expansions:

bs t; u1;…; usð Þ ¼
Xs�1

n¼0


ðt
0
dt1…

ðtn�1

0
dtn e

t�t1ð Þ Σ
s

k1¼1
Λ 1½ � k1ð Þ Xs

i1 6¼j1¼1

Λ 2½ � i1; j1
� �

e
t1�t2ð Þ Σ

s

l1¼1, l1 6¼j1
Λ 1½ � l1ð Þ

…

e

tn�1�tnð Þ Σ
s

kn ¼ 1,

kn 6¼ j1;…; jn�1

� �Þ

Λ 1½ � knð Þ
Xs

in 6¼ jn ¼ 1,

in, jn 6¼ j1;…; jn�1

� �

Λ 2½ � in; jn
� �

e

tn Σ
s

ln ¼ 1,

ln 6¼ j1;…; jn
� �Þ

Λ 1½ � lnð Þ

b0s�n u1;…; usð Þ∖ uj1 ;…; ujn
� �� �

, s ≥ 1:

(13)
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In particular, the limit marginal observable b 1ð Þ
s tð Þ of the additive-type marginal observable (11)

is determined as a special case of expansions (13):

b 1ð Þ
s t;u1;…;usð Þ ¼

ðt
0
dt1…

ðts�2

0
dts�1 e

t�t1ð Þ Σ
s

k1¼1
Λ 1½ � k1ð Þ Xs

i1 6¼j1¼1

Λ 2½ � i1; j1
� �

e
t1�t2ð Þ Σ

s

l1¼1, l1 6¼j1
Λ 1½ � l1ð Þ

…

e

ts�2�ts�1ð Þ Σ
s

ks�1 ¼ 1,

kn 6¼ j1;…; jn�1

� �Þ

Λ 1½ � knð Þ
Xs

is�1 6¼ js�1 ¼ 1,

is�1, js�1 6¼ j1;…; js�2

� �

Λ 2½ � is�1; js�1

� �
e

ts�1 Σ
s

ls�1 ¼ 1,

ls�1 6¼ j1;…; js�1

� �Þ

Λ 1½ � ls�1ð Þ

�

b01 u1;…;usð Þ∖ uj1 ;…;ujs�1

� �� �
, s ≥ 1,

for example,

b 1ð Þ
1 t;u1ð Þ ¼ etΛ

1½ � 1ð Þ b01 u1ð Þ,

b 1ð Þ
2 t;u1;u2ð Þ ¼

ðt
0
dt1

Y2

i¼1

e t�t1ð ÞΛ 1½ � ið Þ Λ 2½ � 1; 2ð Þ
X2

j¼1

et1Λ 1½ � jð Þ b01 uj
� �

:

The proof of this statement is based on the corresponding formulas for cumulants of asymp-
totically perturbed semigroups of operators (10).

If b0∈Cγ, then the sequence b(t) = (b0, b1(t), … , bs(t),…) of limit marginal observables (13) is
generalized global in time solution of the Cauchy problem of the dual Vlasov hierarchy:

∂
∂t
bs tð Þ ¼

Xs

j¼1

Λ 1½ � jð Þ bs tð Þ þ
Xs

j1 6¼j2¼1

Λ 2½ � j1; j2
� �

bs�1 t;u1;…;uj2�1;uj2þ1;…;us
� �

, (14)

bs t;u1;…;usð Þjt¼0 ¼ b0s u1;…;usð Þ, s ≥ 1, (15)

where in recurrence evolution Eq. (14) the operators Λ[1](j) and Λ[2](j1, j2) are determined by
Formula (1).

Further we consider initial states specified by a one-particle marginal distribution function in
the presence of correlations, namely

f cð Þ � 1; f 01 u1ð Þ; g2 u1;u2ð Þ
Y2
i¼1

f 01 uið Þ;…; gs u1;…;usð Þ
Ys

i¼1

f 01 uið Þ;…
 !

, (16)

where the bounded functions gs� gs(u1, … ,us) , s ≥ 2, are specified initial correlations. Such
assumption about initial states is intrinsic for the kinetic description of complex systems in
condensed states.

If b(t)∈Cγ and f 01 ∈ L1 J � Uð Þ, then under the condition that ∥f 01∥L1 J�Uð Þ < γ, there exists a

mean field scaling limit of the mean value functional of marginal observables and it is deter-
mined by the following series expansion:
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B kð Þ
s t; u1;…; usð Þ ¼ 1

s� kð Þ!
Xs

j1 6¼… 6¼js�k¼1

A1þs�k t, 1;…; sð Þ\ j1;…; js�k

� �� �
,

�

j1;…; js�k

� �
bεk u1;…; uj1�1; uj1þ1;…; ujs�k�1; ujs�kþ1;…; us
� �

, s ≥ k,

(12)

and, if 1 ≤ s < k, we have B kð Þ
s tð Þ ¼ 0.

We remark also that expansion (9) can be also represented in the form of the perturbation
(iteration) series [25] as a result of applying of analogs of the Duhamel equation to cumulants
of semigroups of operators (10).

3. A mean field asymptotic behavior of the marginal observables and
the kinetic evolution of states

To consider mesoscopic properties of a large system of interacting entities we develop an
approach to the description of the kinetic evolution within the framework of the evolution
equations for marginal observables. For this purpose we construct the mean field asymptotics
[9] of a solution of the Cauchy problem of the dual BBGKY hierarchy for interacting entities,
modeling of many-constituent systems of active soft condensed matter [26, 27].

We restrict ourself by the case of M = 2 subpopulations to simplify the cumbersome formulas
and consider the mean field scaling limit of non-perturbative solution (9) of the Cauchy
problem of the dual BBGKY hierarchy for interacting entities (7), (8).

Let for initial data B0,ε
s ∈Cs there exists the limit function b0s ∈Cs

w∗ � lim
ε!0

ε�sB0,ε
s � b0s

� � ¼ 0, s ≥ 1,

then for arbitrary finite time interval there exists a mean field limit of solution (9) of the Cauchy
problem of the dual BBGKY hierarchy for interacting entities (7), (8) in the sense of the ∗-weak
convergence of the space Cs

w∗ � lim
ε!0

ε�sBs tð Þ � bs tð Þð Þ ¼ 0, s ≥ 1,

where the limit sequence b(t) = (b0, b1(t), … , bs(t),…) of marginal observables is determined by
the following expansions:

bs t; u1;…; usð Þ ¼
Xs�1

n¼0


ðt
0
dt1…

ðtn�1

0
dtn e

t�t1ð Þ Σ
s

k1¼1
Λ 1½ � k1ð Þ Xs

i1 6¼j1¼1

Λ 2½ � i1; j1
� �

e
t1�t2ð Þ Σ

s

l1¼1, l1 6¼j1
Λ 1½ � l1ð Þ

…

e

tn�1�tnð Þ Σ
s

kn ¼ 1,

kn 6¼ j1;…; jn�1

� �Þ

Λ 1½ � knð Þ
Xs

in 6¼ jn ¼ 1,

in, jn 6¼ j1;…; jn�1

� �

Λ 2½ � in; jn
� �

e

tn Σ
s

ln ¼ 1,

ln 6¼ j1;…; jn
� �Þ

Λ 1½ � lnð Þ

b0s�n u1;…; usð Þ∖ uj1 ;…; ujn
� �� �

, s ≥ 1:

(13)
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In particular, the limit marginal observable b 1ð Þ
s tð Þ of the additive-type marginal observable (11)

is determined as a special case of expansions (13):

b 1ð Þ
s t;u1;…;usð Þ ¼

ðt
0
dt1…

ðts�2

0
dts�1 e

t�t1ð Þ Σ
s

k1¼1
Λ 1½ � k1ð Þ Xs

i1 6¼j1¼1

Λ 2½ � i1; j1
� �

e
t1�t2ð Þ Σ

s

l1¼1, l1 6¼j1
Λ 1½ � l1ð Þ

…

e

ts�2�ts�1ð Þ Σ
s

ks�1 ¼ 1,

kn 6¼ j1;…; jn�1

� �Þ

Λ 1½ � knð Þ
Xs

is�1 6¼ js�1 ¼ 1,

is�1, js�1 6¼ j1;…; js�2

� �

Λ 2½ � is�1; js�1

� �
e

ts�1 Σ
s

ls�1 ¼ 1,

ls�1 6¼ j1;…; js�1

� �Þ

Λ 1½ � ls�1ð Þ

�

b01 u1;…;usð Þ∖ uj1 ;…;ujs�1

� �� �
, s ≥ 1,

for example,

b 1ð Þ
1 t;u1ð Þ ¼ etΛ

1½ � 1ð Þ b01 u1ð Þ,

b 1ð Þ
2 t;u1;u2ð Þ ¼

ðt
0
dt1

Y2

i¼1

e t�t1ð ÞΛ 1½ � ið Þ Λ 2½ � 1; 2ð Þ
X2

j¼1

et1Λ 1½ � jð Þ b01 uj
� �

:

The proof of this statement is based on the corresponding formulas for cumulants of asymp-
totically perturbed semigroups of operators (10).

If b0∈Cγ, then the sequence b(t) = (b0, b1(t), … , bs(t),…) of limit marginal observables (13) is
generalized global in time solution of the Cauchy problem of the dual Vlasov hierarchy:

∂
∂t
bs tð Þ ¼

Xs

j¼1

Λ 1½ � jð Þ bs tð Þ þ
Xs

j1 6¼j2¼1

Λ 2½ � j1; j2
� �

bs�1 t;u1;…;uj2�1;uj2þ1;…;us
� �

, (14)

bs t;u1;…;usð Þjt¼0 ¼ b0s u1;…;usð Þ, s ≥ 1, (15)

where in recurrence evolution Eq. (14) the operators Λ[1](j) and Λ[2](j1, j2) are determined by
Formula (1).

Further we consider initial states specified by a one-particle marginal distribution function in
the presence of correlations, namely

f cð Þ � 1; f 01 u1ð Þ; g2 u1;u2ð Þ
Y2
i¼1

f 01 uið Þ;…; gs u1;…;usð Þ
Ys

i¼1

f 01 uið Þ;…
 !

, (16)

where the bounded functions gs� gs(u1, … ,us) , s ≥ 2, are specified initial correlations. Such
assumption about initial states is intrinsic for the kinetic description of complex systems in
condensed states.

If b(t)∈Cγ and f 01 ∈ L1 J � Uð Þ, then under the condition that ∥f 01∥L1 J�Uð Þ < γ, there exists a

mean field scaling limit of the mean value functional of marginal observables and it is deter-
mined by the following series expansion:
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b tð Þ; f cð Þ
� �

¼
X∞
s¼0

 1
s!

ð

J�Uð Þs
du1…dus bs t;u1;…;usð Þgs u1;…;usð Þ

Ys

i¼1

f 01 uið Þ:

Then for the mean-value functionals of the limit initial additive-type marginal observables, i.e.

of the sequences b 1ð Þ 0ð Þ ¼ 0; b01 u1ð Þ; 0;…� �
[25], the following representation is true:

b 1ð Þ tð Þ; f cð Þ
� �

¼
X∞
s¼0

 1
s!

ð

J�Uð Þs
du1…dus b 1ð Þ

s t;u1;…;usð Þgs u1;…;usð Þ
Ys

i¼1

f 01 uið Þ

¼
ð

J�Uð Þ
du1 b01 u1ð Þf 1 t;u1ð Þ:

(17)

In equality (17) the function b 1ð Þ
s tð Þ is given by a special case of expansion (13), namely

b 1ð Þ
s t; u1;…; usð Þ ¼

ðt
0
dt1…

ðts�2

0
dts�1 e

t�t1ð Þ Σ
s

k1¼1
Λ 1½ � k1ð Þ Xs

i1 6¼j1¼1

Λ 2½ � i1; j1
� �

e
t1�t2ð Þ Σ

s

l1¼1, l1 6¼j1
Λ 1½ � l1ð Þ

…e
ts�2�ts�1ð Þ Σ

s

ks�1¼1, ks�1 6¼ j1 ;…;js�2ð Þ
Λ 1½ � ks�1ð Þ Xs

is�1 6¼ js�1 ¼ 1,

is�1, js�1 6¼ j1;…; js�2

� �

Λ 2½ � is�1; js�1

� �

�e
ts�1 Σ

s

ls�1¼1, ls�1 6¼ j1 ;…;js�1ð Þ
Λ 1½ � ls�1ð Þ

b01 u1;…; usð Þ∖ uj1 ;…; ujs�1

� �� �
, s ≥ 1,

and the limit one-particle distribution function f1(t) is represented by the series expansion:

f 1 t;u1ð Þ ¼
X∞
n¼0


ðt
0
dt1…

ðtn�1

0
dtn
ð

J�Uð Þn
du2…dunþ1 e t�t1ð ÞΛ∗ 1½ � 1ð Þ�

�Λ∗ 2½ � 1; 2ð Þ
Y2

j1¼1

e t1�t2ð ÞΛ∗ 1½ � j1ð Þ…
Yn

jn�1¼1

e tn�1�tnð ÞΛ∗ 1½ � jn�1ð Þ�

�
Xn

in¼1

Λ∗ 2½ � in; nþ 1ð Þ
Ynþ1

jn¼1

etnΛ∗ 1½ � jnð Þg1þn u1;…;unþ1ð Þ
Ynþ1

i¼1

f 01 uið Þ,

(18)

where the operators Λ∗[i], i = 1, 2, are adjoint operators (3) to the operators Λ[i], i = 1, 2 defined by
formula (1), and on the space L1n defined as follows:

Λ∗ 1½ � ið Þf n u1;…;unð Þ≐ ÐJ�U A 1½ � ui; vð Þa 1½ � vð Þ�
�f n u1;…;ui�1; v;uiþ1;…;unð Þdv� a 1½ � uið Þf n u1;…;unð Þ,

Λ∗ 2½ � i; jð Þf n u1;…;unð Þ≐ ÐJ�U A 2½ � ui; v;uj
� �

a 2½ � v;uj
� ��

�f n u1;…;ui�1; v;uiþ1;…;unð Þdv� a 2½ � ui;uj
� �

f n u1;…;unð Þ,

where the functions A[m] , a[m] ,m = 1 , 2, are defined above in formula (1).
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For initial data f 01 ∈ L1 J � Uð Þ limit marginal distribution function (18) is the Vlasov-type
kinetic equation with initial correlations:

∂
∂t

f 1 t;u1ð Þ ¼ Λ∗ 1½ � 1ð Þf 1 t;u1ð Þ

þ
ð

J�U
du2Λ

∗ 2½ � 1; 2ð Þ
Y2

i1¼1

etΛ∗ 1½ � i1ð Þg2 u1;u2ð Þ
Y2

i2¼1

e�tΛ∗ 1½ � i2ð Þf 1 t;u1ð Þf 1 t;u2ð Þ,
(19)

f 1 t;u1ð Þ��t¼0 ¼ f 01 u1ð Þ, (20)

where the function g2(u1,u2) is initial correlation function specified initial state (16).

For mean value functionals of the limit initial k-ary marginal observables, i.e. of the sequences

b kð Þ 0ð Þ ¼ 0;…; 0; b0k u1;…;ukð Þ; 0;…� �
, the following representation is true:

b kð Þ tð Þ; f cð Þ
� �

¼
X∞
s¼0

 1
s!

ð

J�Uð Þs
du1…dus b kð Þ

s t;u1;…;usð Þgs u1;…;usð Þ
Ys

i¼1

f 01 uið Þ ¼

¼ 1
k!

ð

J�Uð Þk
du1…duk b0k u1;…;ukð Þ �

Yk

i1¼1

etΛ∗ 1½ � i1ð Þgk u1;…;ukð Þ
Yk

i2¼1

e�tΛ∗ 1½ � i2ð ÞYk

i¼1

f 1 t;uið Þ, k≥ 2,

(21)

where the limit one-particle marginal distribution function f1(t, ui) is determined by series
expansion (18) and the functions gk(u1, … ,uk) , k ≥ 2, are initial correlation functions specified
initial state (16).

Hence in case of k-ary marginal observables the evolution governed by the dual Vlasov
hierarchy (14) is equivalent to a property of the propagation of initial correlations (21) for the
k-particle marginal distribution function or in other words mean field scaling dynamics does
not create correlations.

In case of initial states of statistically independent entities specified by a one-particle marginal

distribution function, namely f cð Þ � 1; f 01 u1ð Þ;…;
Q si¼1f

0
1 uið Þ;…� �

, the kinetic evolution of k-ary
marginal observables governed by the dual Vlasov hierarchy means the property of the
propagation of initial chaos for the k-particle marginal distribution function within the frame-
work of the evolution of states [4], i.e. a sequence of the limit distribution functions has the
form f tð Þ � 1; f 1 t;u1ð Þ;…;

Q si¼1f 1 t;uið Þ;…� �
, where the one-particle distribution function f1(t)

is governed by the Vlasov kinetic Eq. [26]

∂
∂t

f 1 t;u1ð Þ ¼ Λ∗ 1½ � 1ð Þf 1 t;u1ð Þ þ
ð

J�U
du2Λ

∗ 2½ � 1; 2ð Þf 1 t;u1ð Þf 1 t;u2ð Þ:

We note that, according to equality (21), in the mean field limit the marginal correlation
functions defined as cluster expansions of marginal distribution functions [30, 33, 34] namely,

f s t;u1;…;usð Þ ¼
X

P: u1;…;usð Þ¼⋃i Ui


Y

Ui⊂P
g∣Ui ∣ t;Uið Þ, s≥ 1,
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b tð Þ; f cð Þ
� �

¼
X∞
s¼0

 1
s!

ð

J�Uð Þs
du1…dus bs t;u1;…;usð Þgs u1;…;usð Þ

Ys

i¼1

f 01 uið Þ:

Then for the mean-value functionals of the limit initial additive-type marginal observables, i.e.

of the sequences b 1ð Þ 0ð Þ ¼ 0; b01 u1ð Þ; 0;…� �
[25], the following representation is true:

b 1ð Þ tð Þ; f cð Þ
� �

¼
X∞
s¼0

 1
s!

ð

J�Uð Þs
du1…dus b 1ð Þ

s t;u1;…;usð Þgs u1;…;usð Þ
Ys

i¼1

f 01 uið Þ

¼
ð

J�Uð Þ
du1 b01 u1ð Þf 1 t;u1ð Þ:

(17)

In equality (17) the function b 1ð Þ
s tð Þ is given by a special case of expansion (13), namely

b 1ð Þ
s t; u1;…; usð Þ ¼

ðt
0
dt1…

ðts�2

0
dts�1 e

t�t1ð Þ Σ
s

k1¼1
Λ 1½ � k1ð Þ Xs

i1 6¼j1¼1

Λ 2½ � i1; j1
� �

e
t1�t2ð Þ Σ

s

l1¼1, l1 6¼j1
Λ 1½ � l1ð Þ

…e
ts�2�ts�1ð Þ Σ

s

ks�1¼1, ks�1 6¼ j1 ;…;js�2ð Þ
Λ 1½ � ks�1ð Þ Xs

is�1 6¼ js�1 ¼ 1,

is�1, js�1 6¼ j1;…; js�2

� �

Λ 2½ � is�1; js�1

� �

�e
ts�1 Σ

s

ls�1¼1, ls�1 6¼ j1 ;…;js�1ð Þ
Λ 1½ � ls�1ð Þ

b01 u1;…; usð Þ∖ uj1 ;…; ujs�1

� �� �
, s ≥ 1,

and the limit one-particle distribution function f1(t) is represented by the series expansion:

f 1 t;u1ð Þ ¼
X∞
n¼0


ðt
0
dt1…

ðtn�1

0
dtn
ð

J�Uð Þn
du2…dunþ1 e t�t1ð ÞΛ∗ 1½ � 1ð Þ�

�Λ∗ 2½ � 1; 2ð Þ
Y2

j1¼1

e t1�t2ð ÞΛ∗ 1½ � j1ð Þ…
Yn

jn�1¼1

e tn�1�tnð ÞΛ∗ 1½ � jn�1ð Þ�

�
Xn

in¼1

Λ∗ 2½ � in; nþ 1ð Þ
Ynþ1

jn¼1

etnΛ∗ 1½ � jnð Þg1þn u1;…;unþ1ð Þ
Ynþ1

i¼1

f 01 uið Þ,

(18)

where the operators Λ∗[i], i = 1, 2, are adjoint operators (3) to the operators Λ[i], i = 1, 2 defined by
formula (1), and on the space L1n defined as follows:

Λ∗ 1½ � ið Þf n u1;…;unð Þ≐ ÐJ�U A 1½ � ui; vð Þa 1½ � vð Þ�
�f n u1;…;ui�1; v;uiþ1;…;unð Þdv� a 1½ � uið Þf n u1;…;unð Þ,

Λ∗ 2½ � i; jð Þf n u1;…;unð Þ≐ ÐJ�U A 2½ � ui; v;uj
� �

a 2½ � v;uj
� ��

�f n u1;…;ui�1; v;uiþ1;…;unð Þdv� a 2½ � ui;uj
� �

f n u1;…;unð Þ,

where the functions A[m] , a[m] ,m = 1 , 2, are defined above in formula (1).
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For initial data f 01 ∈ L1 J � Uð Þ limit marginal distribution function (18) is the Vlasov-type
kinetic equation with initial correlations:

∂
∂t

f 1 t;u1ð Þ ¼ Λ∗ 1½ � 1ð Þf 1 t;u1ð Þ

þ
ð

J�U
du2Λ

∗ 2½ � 1; 2ð Þ
Y2

i1¼1

etΛ∗ 1½ � i1ð Þg2 u1;u2ð Þ
Y2

i2¼1

e�tΛ∗ 1½ � i2ð Þf 1 t;u1ð Þf 1 t;u2ð Þ,
(19)

f 1 t;u1ð Þ��t¼0 ¼ f 01 u1ð Þ, (20)

where the function g2(u1,u2) is initial correlation function specified initial state (16).

For mean value functionals of the limit initial k-ary marginal observables, i.e. of the sequences

b kð Þ 0ð Þ ¼ 0;…; 0; b0k u1;…;ukð Þ; 0;…� �
, the following representation is true:

b kð Þ tð Þ; f cð Þ
� �

¼
X∞
s¼0

 1
s!

ð

J�Uð Þs
du1…dus b kð Þ

s t;u1;…;usð Þgs u1;…;usð Þ
Ys

i¼1

f 01 uið Þ ¼

¼ 1
k!

ð

J�Uð Þk
du1…duk b0k u1;…;ukð Þ �

Yk

i1¼1

etΛ∗ 1½ � i1ð Þgk u1;…;ukð Þ
Yk

i2¼1

e�tΛ∗ 1½ � i2ð ÞYk

i¼1

f 1 t;uið Þ, k≥ 2,

(21)

where the limit one-particle marginal distribution function f1(t, ui) is determined by series
expansion (18) and the functions gk(u1, … ,uk) , k ≥ 2, are initial correlation functions specified
initial state (16).

Hence in case of k-ary marginal observables the evolution governed by the dual Vlasov
hierarchy (14) is equivalent to a property of the propagation of initial correlations (21) for the
k-particle marginal distribution function or in other words mean field scaling dynamics does
not create correlations.

In case of initial states of statistically independent entities specified by a one-particle marginal

distribution function, namely f cð Þ � 1; f 01 u1ð Þ;…;
Q si¼1f

0
1 uið Þ;…� �

, the kinetic evolution of k-ary
marginal observables governed by the dual Vlasov hierarchy means the property of the
propagation of initial chaos for the k-particle marginal distribution function within the frame-
work of the evolution of states [4], i.e. a sequence of the limit distribution functions has the
form f tð Þ � 1; f 1 t;u1ð Þ;…;

Q si¼1f 1 t;uið Þ;…� �
, where the one-particle distribution function f1(t)

is governed by the Vlasov kinetic Eq. [26]

∂
∂t

f 1 t;u1ð Þ ¼ Λ∗ 1½ � 1ð Þf 1 t;u1ð Þ þ
ð

J�U
du2Λ

∗ 2½ � 1; 2ð Þf 1 t;u1ð Þf 1 t;u2ð Þ:

We note that, according to equality (21), in the mean field limit the marginal correlation
functions defined as cluster expansions of marginal distribution functions [30, 33, 34] namely,

f s t;u1;…;usð Þ ¼
X

P: u1;…;usð Þ¼⋃i Ui


Y

Ui⊂P
g∣Ui ∣ t;Uið Þ, s≥ 1,
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has the following explicit form [27]:

g1 t;u1ð Þ ¼ f 1 t;u1ð Þ, (22)

gs t;u1;…;usð Þ ¼
Ys

i1¼1

etΛ∗ 1½ � i1ð Þegs u1;…;usð Þ
Ys

i2¼1

e�tΛ∗ 1½ � i2ð ÞYs

j¼1

f 1 t;uj
� �

, s≥ 2,

where for initial correlation functions (16) it is used the following notations:

egs u1;…;usð Þ ¼
X

P : u1;…;usð Þ ¼ ⋃iUi


Y
Ui⊂P

g∣Ui ∣ Uið Þ,

the symbol ∑P means the sum over possible partitions P of the set of arguments (u1, … ,us) on
∣P∣ non-empty subsets Ui, and the one-particle marginal distribution function f1(t) is a solution
of the Cauchy problem of the Vlasov-type kinetic equation with initial correlations (19), (20).

Thus, an equivalent approach to the description of the kinetic evolution of large number of
interacting constituents in terms of the Vlasov-type kinetic equation with correlations (19) is
given by the dual Vlasov hierarchy (14) for the additive-type marginal observables.

4. The non-Markovian generalized kinetic equation with initial
correlations

Furthermore, the relationships between the evolution of observables of a large number of
interacting constituents of active soft condensed matter and the kinetic evolution of its states
described in terms of a one-particle marginal distribution function are discussed.

Since many-particle systems in condensed states are characterized by correlations we consider
initial states specified by a one-particle marginal distribution function and correlation func-
tions, namely

F cð Þ ¼ 1; F0,ε1 u1ð Þ; gε2 u1;u2ð Þ
Y2

i¼1

F0,ε1 uið Þ;…; gεs u1;…;usð Þ
Ys

i¼1

F0,ε1 uið Þ;…
 !

: (23)

If the initial state is completely specified by a one-particle distribution function and a sequence
of correlation functions (23), then, using a non-perturbative solution of the dual BBGKY
hierarchy (9), in [31, 32] it was proved that all possible states at the arbitrary moment of time
can be described within the framework of a one-particle distribution function governed by the
non-Markovian generalized kinetic equation with initial correlations, i.e. without any approx-
imations like in scaling limits as above.

Indeed, for initial states (23) for mean value functional (4) the equality holds

B tð Þ; F cð Þ
� �

¼ B 0ð Þ; F tjF1 tð Þð Þð Þ, (24)
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where F(t|F1(t)) = (1, F1(t), F2(t| F1(t)), … ,Fs(t|F1(t)),…) is a sequence of marginal functionals
of the state with respect to a one-particle marginal distribution function

F1 t;u1ð Þ ¼
X∞
n¼0

 1
n!

ð

J�Uð Þn
du2…dunþ1A

∗
1þn t; 1;…; nþ 1ð Þgεnþ1 u1;…;unþ1ð Þ

Ynþ1

i¼1

F0,ε1 uið Þ: (25)

The generating operator A∗
1þn tð Þ of series (25) is the (1 + n)-order cumulant of the semigroups of

operators etΛ
∗
n

� �
t ≥ 0, n ≥ 1.

The marginal functionals of the state is defined by the series expansions:

Fs t;u1;…;usjF1 tð Þð Þ≐
X∞
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ð

J�Uð Þn
dusþ1…dusþn V1þn t; Yf g;X\Yð Þ

Ysþn
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F1 t;uið Þ, (26)

where the following notations used: Y� (1, … , s), X\Y� (s + 1, … , s + n) and the generating
operators V1þn tð Þ, n ≥ 0, are defined by the expansions [31]:
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Xn
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Xn
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…
Xn�m1�…�mk�1

mk¼1

 n!
n�m1 �…�mkð Þ!
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Xmj
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!
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�
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�
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(27)

where kj1 � mj, k
j
n�m1�…�mjþsþ1 � 0 and the evolution operators bAn tð Þ, n ≥ 1, are cumulants of

the semigroups of scattering operators etΛ
∗
k gεk
Qk

i¼1 e�tΛ∗ 1½ � ið Þ
n o

t ≥ 0
, k ≥ 1. We adduce some exam-

ples of evolution operators (27):

V1 t; Yf gð Þ ¼ bA1 t; Yf gð Þ≐ etΛ
∗
s gεs
Ys

i¼1

e�tΛ∗ 1½ � ið Þ,

V2 t; Yf g; sþ 1ð Þ ¼ bA2 t; Yf g; sþ 1ð Þ � bA1 t; Yf gð Þ
Xs

i1¼1

bA2 t; i1; sþ 1ð Þ:

If ∥F1 tð Þ∥L1 J�Uð Þ < e� 3sþ2ð Þ, then for arbitrary t∈ℝ series expansion (26) converges in the norm

of the space L1s [30].
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has the following explicit form [27]:
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Ys
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j¼1

f 1 t;uj
� �

, s≥ 2,
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Y
Ui⊂P

g∣Ui ∣ Uið Þ,
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B tð Þ; F cð Þ
� �

¼ B 0ð Þ; F tjF1 tð Þð Þð Þ, (24)
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The proof of equality (24) is based on the application of cluster expansions to generating
operators (10) of expansions (9) which are dual to the kinetic cluster expansions introduced in
paper [35]. Then the adjoint series expansion can be expressed in terms of one-particle distri-
bution function (25) in the form of the functional from the right-hand side of equality (24).

We emphasize that marginal functionals of the state (26) characterize the processes of the
creation of correlations generated by dynamics of many-constituent systems of active soft
condensed matter and the propagation of initial correlations.

For small initial data F0,ε1 ∈ L1 J � Uð Þ [31], series expansion (25) is a global in time solution of
the Cauchy problem of the generalized kinetic equation with initial correlations:

∂
∂t
F1 t;u1ð Þ ¼ Λ∗ 1½ � 1ð ÞF1 t;u1ð Þ

þ
XM�1

k¼1

 ε
k

k!

ð

J�Uð Þk
du2…dukþ1

X
j1 6¼ … 6¼ jkþ1 ∈

∈ 1;…; kþ 1ð Þ

Λ∗ kþ1½ � j1;…; jkþ1

� �
Fkþ1 t;u1;…;ukþ1jF1 tð Þð Þ, (28)

F1 t;u1ð Þjt¼0 ¼ F0,ε1 u1ð Þ: (29)

For initial data F0,ε1 ∈L1 J � Uð Þ it is a strong (classical) solution and for an arbitrary initial data
it is a weak (generalized) solution.

In particular case M = 2 of two subpopulations kinetic Eq. (28) has the following explicit form:

∂
∂t
F1 t; u1ð Þ ¼

ð

J�U

A 1½ � u1; vð Þa 1½ � vð ÞF1 t; vð Þdv� a 1½ � u1ð ÞF1 t; u1ð Þþ

ð

J�U

du2
ð

J�U

A 2½ � u1; v; u2ð Þa 2½ � v; u2ð ÞF2 t; v; u2jF1 tð Þð Þdv� a 2½ � u1; u2ð ÞF2 t; u1; u2jF1 tð Þð Þ
0
@

1
A,

where the functions A[k] and a[k] are defined above.

We note that for initial states (23) specified by a one-particle (marginal) distribution function,
the evolution of states described within the framework of a one-particle (marginal) distribution
function governed by the generalized kinetic equation with initial correlations (28) is dual to
the dual BBGKY hierarchy for additive-type marginal observables with respect to bilinear
form (2), and it is completely equivalent to the description of states in terms of marginal
distribution functions governed by the BBGKY hierarchy of interacting entities.

Thus, the evolution of many-constituent systems of active soft condensed matter described in
terms of marginal observables in case of initial states (23) can be also described within the
framework of a one-particle (marginal) distribution function governed by the non-Markovian
generalized kinetic equation with initial correlations (28).

We remark, considering that a mean field limit of initial state (23) is described by sequence (16),
a mean field asymptotics of a solution of the non-Markovian generalized kinetic equation with
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initial correlations (28) is governed by the Vlasov-type kinetic equation with initial correlations
(19) derived above from the dual Vlasov hierarchy (14) for limit marginal observables of
interacting entities [27]. Moreover, a mean field asymptotic behavior of marginal functionals
of the state (26) describes the propagation in time of initial correlations like established prop-
erty (22).

5. Conclusion

We considered an approach to the description of kinetic evolution of large number of
interacting constituents (entities) of active soft condensed matter within the framework of the
evolution of marginal observables of these systems. Such representation of the kinetic evolu-
tion seems, in fact, the direct mathematically fully consistent formulation modeling the collec-
tive behavior of biological systems since the notion of state is more subtle and implicit
characteristic of living creatures.

A mean field scaling asymptotics of non-perturbative solution (9) of the dual BBGKY hierarchy
(7) for marginal observables was constructed. The constructed scaling limit of a non-
perturbative solution (9) is governed by the set of recurrence evolution equations (14), namely,
by the dual Vlasov hierarchy for interacting stochastic processes modeling large particle
systems of active soft condensed matter.

We established that the limit additive-type marginal observables governed by the dual Vlasov
hierarchy (14) gives an equivalent approach to the description of the kinetic evolution of many
entities in terms of a one-particle distribution function governed by the Vlasov kinetic equation
with initial correlations (19). Moreover, the kinetic evolution of non-additive-type marginal
observables governed by the dual Vlasov hierarchy means the property of the propagation of
initial correlations (22) within the framework of the evolution of states.

One of the advantages of suggested approach in comparison with the conventional approach
of the kinetic theory [2, 3, 4] is the possibility to construct kinetic equations in various scaling
limits in the presence of initial correlations which can characterize the analogs of condensed
states of many-particle systems of statistical mechanics for interacting entities of complex
biological systems.

We note that the developed approach is also related to the problem of a rigorous derivation of
the non-Markovian kinetic-type equations from underlying many-entity dynamics which
make it possible to describe the memory effects of collective dynamics of complex systems
modeling active soft condensed matter.

In case of initial states completely specified by a one-particle distribution function and correla-
tions (23), using a non-perturbative solution of the dual BBGKY hierarchy (9), it was proved that
all possible states at the arbitrary moment of time can be described within the framework of a
one-particle distribution function governed by the non-Markovian generalized kinetic equation
with initial correlations (28), i.e. without any approximations. A mean field asymptotics of a
solution of kinetic equation with initial correlations (28) is governed by the Vlasov-type kinetic
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where the functions A[k] and a[k] are defined above.
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equation with initial correlations (19) derived above from the dual Vlasov hierarchy (14) for limit
marginal observables.

Moreover, in the case under consideration the processes of the creation of correlations gener-
ated by dynamics of large particle systems of active soft condensed matter and the propaga-
tion of initial correlations are described by the constructed marginal functionals of the state
(26) governed by the non-Markovian generalized kinetic equation with initial correlations (28).
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Abstract

This review introduces a novel mathematical description of protein assembly. Protein
assembly occurs in a substantially open non-equilibrium and non-linear kinetic system.
The goal of systems biology is to make predictions about such complicated systems, but
few have conducted stability analysis for given systems. Particularly, simulated dynamic
behaviors have not been sufficiently verified by kinetic analysis in predicting macromolec-
ular protein interactions and assembly. The non-linearity of protein assembly kinetics is
complex, and it is very difficult to determine a model of multi-protein interactions based on
numerical calculation. We studied the non-linear kinetics involved in the diffusion process
of proteins consisting of two or three species of macromolecules and set a novel model in
which non-linearity is given by the diffusion coefficient that depends on the protein con-
centration. Bymaking the diffusion coefficient concentration-dependent, non-linearity leads
to a simple system model. Protein assembly is initiated by monomeric protein interactions
and regulated by cofactors such as guanidine triphosphate (GTP) or adenosine triphosphate
(ATP) binding to the monomer. This cofactor concentration promotes the dynamic behavior
of protein assembly and can be treated as an order parameter. Further, kinetic stability
analysis in the center manifold theory (CMT) is introduced for analyzing the behavior of
the system around the critical state. Although CMT has not been sufficiently applied for
stability analysis of protein assembly systems, this theory predicts the dynamic behavior of
the assembly system around the critical point using concentration as a cofactor. Protein
assembly theory will provide a novel framework for nonlinear multi-parametric analysis.

Keywords: protein assembly, center manifold theory, tubulin, non-linear kinetics,
non-equilibrium state, diffusion coefficient, oscillation

1. Background

Protein assembly is essential for cellular activities such as cell signaling, gene expression by tran-
scription factor complexes, cytoskeleton formation, endocytosis, and cell motility. This reaction
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system is one of the complicated systems and non-linear kinetics has been applied for under-
standing the dynamic behavior [1–8]. Among the protein assembly, tubulin and actin poly-
merization are well-known events that have been analyzed using numerous methods [9–13].
Microtubule and actin filaments consist of monomers that bind the cofactors guanidine tri-
phosphate (GTP) or adenosine triphosphate (ATP) to acquire assembly activity [14–16]. In
general, a protein interaction is controlled by an electric charge on the amino acid residue(s)
of the protein, such as tyrosine, serine, and threonine, by covalently binding to or reacting with
a cofactor such as ATP or GTP; subsequently, the monomer loses its interaction activity by
hydrolyzing ATP or GTP into ADP or GDP or through dephosphorylation, which is mediated
by the other protein’s phosphatase activity or its own enzymatic activity [17, 18].

In particular, dynamic instability in tubulin polymerization has been extensively investigated.
Dynamic instability signifies the intermittent transition between slow growth and rapid shrink-
age in polymeric assemblies of microtubules [9–13, 19]. Further, intra-polymeric Brownian
motion and fluctuation influence the structure and elasticity of tubules [20]. Zapperi and
Mahadevan presented an excellent model in which the ratio of longitudinal to lateral interac-
tions characterizes the assembly [21]. Hammele et al. presented a physical model and
suggested the physical properties of the microtubules [22]. Nucleation is the rate-limiting step
controlling the overall polymerization process [18]. The stable nucleus for polymerization is
oligomers, and the growth of aggregates through elongation/dissociation follows. For stable
growth, tubule lifespan is controlled by a GTP-cap that forms at their ends [19].

As another example of protein interactions, in the mitogen-activated protein kinase (MAPK)
signaling cascade, a set of protein kinases and protein substrates construct the signaling net-
work. The cofactor ATP/GTP transfers biological information in the reaction network to alter
gene expression [6–8]. Mathematical models of this cascade have demonstrated that the system
can act as an ultra-sensitive switch based on a combination of phosphorylation of protein
substrates and implicit feedback, leading to multi-stability [23, 24, 25]. Recently, Ueno et al.
reported that a model of MAPK signaling cascade functions as a band-path filtering system.

2. Protein interaction kinetics

2.1. Protein interaction model

Steps in protein assembly of microtubular polymerization are summarized as follows: (i) the
protein achieves an interaction active state by reversibly binding to a cofactor, which provides
the protein with assembly or interaction activity; the protein interaction activity decreases
when a hydrolyzed inactive cofactor is bound compared to an active cofactor; (ii) the protein
can hydrolyze the cofactor; (iii) the protein can exchange the inactive cofactor, such as ADP,
with an active cofactor; and (iv) active cofactors are supplied continuously and externally.
Thus, the interaction activity is self-limiting, in which the protein itself limits assembly activity,
resulting in dynamic instability [10–13, 19, 23, 26–28].

Let us consider a three-monomer model in which an active cofactor-binding protein (X),
oligomeric protein (W), and inactive cofactor-binding protein (Z) coexist. The sum of
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monomeric proteins is kept constant; this kinetics is attributed to a two-parametric analysis.
First, X can reversibly associate with the oligomer:

XþW ! W kinetic rate coefficients ! k1ð Þ (1)

Subsequently, Z is released from the oligomer:

W ! Z (2)

Here, Pi signifies the released inorganic phosphate. Finally, in the presence of sufficient active
cofactor, Z releases the inactive cofactor, ADP or GDP (I), binds an active cofactor, ATP or GTP
(P), and recovers its interaction activity, returning to the protein

Zþ P ! Xþ I k3ð Þ (3)

In addition, a monomeric protein has the potential to hydrolyze the cofactor by interaction:

Xþ X ! Xþ Z k4ð Þ (4)

Xþ Z ! 2Z k5ð Þ (5)

Formula (5) represents a self-reproducing reaction, which yields non-linear kinetics in this
reaction system.

2.2. Concentration dependence of protein diffusion

Diffusion of proteins plays an important role in protein interactions. Analysis of dilute
solutions of a macromolecule requires a greater understanding of the concentration depen-
dence of the diffusion rate because of the hydrodynamics of protein solutions involving
mutual diffusion of protein molecules. One of the approaches is applicable to the study of
self-diffusion in solutions [29–32]. In fact, proteins interact or associate with other mono-
meric proteins and phosphorylate or are phosphorylated by the proteins. In dilute solution,
proteins may diffuse in a free manner with sufficiently large vacant space that accounts for
only a fraction of the volume of a protein molecule. These vacancies are sufficiently large to
be occupied by proteins that are as large as the hydrodynamic volume. The effects of
molecular shape and size, solvent, and environment such as ion intensity and pH determine
the concentration dependence of the diffusion rate. Here, the diffusion rate D0 is set as the
probability of vacancy formation and does not depend on the velocity at which a monomer
diffuses. The probability P is given by a void adjacent to the objective protein, which is
sufficiently large to permit diffusion: D = DoP.

The probability P(V) of forming a vacancy of volume V in the solution is given by

P Vð Þ ¼ D0 exp �βcρVe= 1� cVeð Þ� �
(6)

where Ve is protein exclusion volume, c is the protein solution concentration, and β is a
constant that reflects the effects of interactions with other macromolecules and shape on the
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probability of vacancy formation. Thus, D depends on the size and shape of the protein and
likely other factors

D ¼ D0

ð∞
Ve

p Vð ÞdV ¼ D0 exp �βcρVe= 1� cVeð Þ� �
(7)

At low concentrations of the macromolecule

D ¼ D0 1� βcρVe= 1� cVeð Þ� �
≃D0 1þ 1� β

� �
cVe

� �
(8)

Thus, the dependence of the diffusion coefficient can be described using the protein solution
concentration (Figure 1).

2.3. Viscosity and diffusion coefficient of protein

The compatibility of Eq. (8) with the experimental data strongly suggests that the concentra-
tion dependence of the protein diffusion constant is governed by excluded volume interac-
tions, which may be predicted by calculating equilibrium protein density fluctuations. Eq. (8)
is consistent with the equation describing the viscosity η of concentrated protein solutions

η=η0 ¼ exp ρ ηð Þ= 1� ρ ηð Þ k=vð Þ� �� �
(9)

where η0 is the solution viscosity at infinite dilution, η is the intrinsic viscosity of the solution, c
is the protein solution density, and k/v is a constant that corrects for the overlap of free volume v.

Figure 1. Self-diffusion rate constantsD for concentration of protein, c, with theoretical curve from Eq. (8) with β = 3.0. Near
the point x ~ 0, the diffusion coefficient obeys D = 1 � 2c. The vertical axis represents the diffusion coefficient D � 107 (cm2/s)
and horizontal axis represents hemoglobin concentration (g/dL). The graph is shown using new arbitrary values with ref-
erence to experimental data.
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2.4. Diffusion-limited protein association

Because protein diffusion in the viscous cytoplasm is significantly slower than other reactions
between interactions with other molecules, the protein assembly reaction is a diffusion-
controlled or diffusion-limit process. In general, the diffusion rate of monomer is given by the
concentration gradient that is the molar flux per unit area, J. This is the additional rate of
monomer X towards oligomer W multiplied by the area of the spherical surface of radius R of
the reactive end of polymer or oligomer

Rate of reaction ¼ 4πR2J (10)

In Fick’s first law, the flux towards X is proportional to the concentration gradient at radius of
macromolecule R

JX ¼ DX
d X½ �r
dr

� �

at r¼R
¼ DX

X½ �
R

(11)

By substitution of Eq. (10) into Eq. (11), the rate of reaction v is given as

v ¼ 4πRDXX
X (12)

The rate of the diffusion-controlled reaction is equal to the average flow of X molecule to all
W molecules. Accordingly, the global flow of all X to W is 4π R*DXNA XW. Similarly, the flow
of all W to X is 4π RDWNA WX. Further, using the sum of the diffusion coefficients of the two
species, the diffusion coefficient is rewritten as D = (DX + DW)/2. Then, the addition rate of X to
W is given by

Addition rate ¼ 4πR kXoDXW (13)

In reality, the diffusion rate of oligomer is negligible relative to that of monomer, and the
addition rate is given as

Addition rate ¼ 4πR kXoDXXW ¼ kXDXXW (14)

and

kX ¼ 4πR kXo (15)

Using the above formula, the kinetic rate of ci and items of interaction between monomers is as
follows [8]:

dci
dt

¼ kjDici þ f cið Þ (16)
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where f(cj) represents the sum of the reaction kinetic items of jth species, cj, except the diffusion
process. When the potential of the electric field, ϕ(r), is considered, the flux is described using
spatial coordinate r

J ¼ �Di
dcj
dr

þ 1
kBT

cj
dϕ rð Þ
dr

� �
(17)

In the solvent including two chemical species, the relative movement is related to the local
concentration gradient of cj and potential energy. When the gradient is described using
Eq. (17), monomer X moves across the sphere with radius R surrounding W and can be
described by

J ¼ � DX þDWð Þ dX
dr

þ 1
kBT

X
dϕ rð Þ
dr

� �
(18)

when X and the active site on the oligomer or polymer W interact to assemble or elongate the
polymer, which is determined by R. The total flux will be equivalent to the chemical reaction
rate using an arbitrary kinetic coefficient k

dX
dt

¼ �kXW ¼ �4πR2J (19)

At the steady state, flux across the sphere with a radius, or a shape parameter, r is constant for
any values. Accordingly, R in Eq. (19) is replaced with r using Eq. (18)

dX
dt

¼ �4πR2 DX þDWð Þ dX
dr

þ 1
kBT

X
dϕ rð Þ
dr

� �
(20)

By integration and rearrangement of Eq. (20)

kX ¼ �4π DX þDWð Þγ
ðX
X¼XR

d Xr exp ϕ rð Þ=kBT
� �� �

(21)

and here

γ�1 ¼
ð∞
R

exp ϕ rð Þ=kBT
� �

r2
dr (22)

Because r- > ∞, V(r) approaches zero

k ¼ 4π DX þDWð Þγ
X

X� XR exp ϕ rð Þ=kBT
� �� �

¼ 4π DX þDWð Þγ
1þ 4π DX þDWð Þγ=kR exp �ϕ rð Þ=kBT

� �� �

≈
4πDXγ

1þ 4πDXγ=kR exp �ϕ rð Þ=kBT
� �� �

(23)
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Here, Xr=R = (k/kR) X. In calculating the above formula, fluctuations of diffusion coefficients are
neglected when the concentration of X is sufficiently low and kept constant during the reac-
tion. The kinetic coefficient is controlled by the diffusion process and the aggregation or
assembly is completed through interactions between X and W; Xr=R is set to zero. Then, k is
given by Eq. (23):

k ¼ 4πDXR (24)

The diffusion coefficients can be altered in proportion to the fluctuation of monomeric protein
concentration [9–14]. In the derivation of Eq. (23), the diffusion coefficient is related to the
viscosity η by the Einstein-Stokes formula

D ¼ kBT
6πrη Tð Þ (25)

By using the Gibbs-Duhem expression, the diffusion coefficientD of one macromolecule can be
written as

D ¼ kBT
η

1�NAv1
M1

c1

� �
1þ 2A1M1c1 þ⋯ð Þ≜D0 1�NAv1

M1
c1

� �
1þ 2A1M1c1 þ⋯ð Þ (26)

where T is the temperature of the solution, kB is the Boltzmann constant, and η1 is the frictional
coefficient of the macromolecule in solution. A1 is the second virial coefficient, v1 is the partial
specific volume of protein with molecular weightM1, andNA is Avogadro’s number. The small
letter c1 denotes the concentration of the solute macromolecule. Then, dependency of the
diffusion coefficient on the ith component, Di, is as follows from (26):

aij � ∂Di

∂cj
¼ D0i 2AjMj �

NAvj
Mj

� �
(27)

where vj is the partial specific volume of the polymer with molecular weight Mj.

Further, the diffusion coefficient is given by extending the above formula to a mixed solution
of two macromolecules, X and Z

DX X;Zð Þ ¼ kBT
ηX

1�NAvX
MX

X�NAvZ
MZ

Z
� �

1þ 2AXMXXþ 2AZMZZþ⋯ð Þ

DZ X;Zð Þ ¼ kBT
ηZ

1�NAvX
MX

X�NAvZ
MZ

Z
� �

1þ 2AXMXXþ 2AZMZZþ⋯ð Þ
(28)

where vX and vZ are the partial specific volumes of X and Z with molecular weights MX and
MZ, respectively. AX and AZ are the second virial coefficients.

2.5. Fluctuation of diffusion coefficient

Subsequently, let us consider the fluctuation of participant proteins using lowercase letters
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X ¼ Xe þ x (29)

Z ¼ Ze þ z (30)

Here, the sum of the kinetic rate of fluctuations is constant because total amount of monomeric
protein is constant

_x þ _y þ _z ¼ 0 (31)

The dependency of the diffusion rate refers to the high interaction activities of X and low
interaction activities of Z. An increase in X contributes to a decrease in the diffusion coeffi-
cients DX and DZ in fluctuation items because of the higher interaction activity that reduces
diffusion; in contrast, an increased Z contributes to increased diffusion coefficients because the
interaction between increased Z induces lower assembly activity for the interaction with
monomeric proteins, resulting in increased mobility of monomeric proteins. This dependency
gives the non-linearity fluctuation items in the kinetic equation. Here, all preparations for
kinetics are completed.

2.6. General theory of non-linear kinetic equation of protein assembly

According to the above simple reaction cascade, (1)-(5), the kinetic equation contains the
concentrations of monomeric proteins as variables. For simplification, the equations are writ-
ten as follows:

_X ¼ �k1D1WXþ k3PZ� k4D4X2 � k5D5XZ (32)

_W ¼ k1D1WX� k2D2W ≈ 0 (33)

_Z ¼ k2D2W � k3PZþ k4D4X2 þ k5D5XZ (34)

Here,

D1 ≜
DX þDW

2
� DX

2
, D4 ≜DX,D5 ≜

DX þDZ

2
(35)

Further, for simplicity, Eqs. (34) and (36) are given by replacing the kinetic coefficients with
arbitrary coefficients

_X ¼ �k1
0
WXþ k3PZ� k4

0
X2 � k5

0
XZ (36)

_Z ¼ k2
0
W � k3PZþ k4

0
X2 þ k5

0
XZ (37)

Here, k1D1W = k1’, k4D4W = k4’, k5D5 = k5’, and p = k3 P. At the steady state, setting the right
hands of Eqs. (32)-(34) equal to zero

Xe ¼ k20

k10
, Ze ¼

k20 k404k2
0 þ k12

0
W

� �

k10 k10P� k20k50ð Þ (38)
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Here, the fluctuation of diffusion coefficients are given by

a ¼ ∂k1
0

∂x
, b ¼ ∂k1

0

∂z
, c ¼ ∂k4

0

∂x
, d ¼ ∂k4

0

∂z
, e ¼ ∂k5

0

∂x
, f ¼ ∂k5

0

∂z
(39)

By altering X, Z, k1’, k4’, and k5’ into X + x, Z + z, k1’ – ax + bz, k4’ � cx + dz, and k5’ � ex + fz in
Eqs. (36) and (37) and arranging, two dependent equations are obtained

_x ¼ f xxþ f z þ p
� �

zþ f xxx
2 þ f xzxzþ f zzz

2 (40)

_z ¼ f x
0
xþ f z

0 � f z pð Þ
� �

zþ f xx
0
x2 þ f zx

0
xzþ f zz

0
z2 (41)

Accordingly, the overall behavior of the kinetics of protein assembly is given by the mono-
meric kinetics of x and z. fxz(‘), fzx(‘), fxx(‘), and fzz(‘) represent the assembly activity between X
and Z, Z and X, X themselves, and Z themselves.

Figure 2. Scheme of monomer interaction. Individual globules represent monomers X•, and Z ○, released species. The
supply of the cofactor is kept constant and inactive cofactor is released continuously. The differential coefficients a, b, c,
and d indicate the interaction activity between X and Z. The differential coefficients are given in Eq. (39). The interaction
activity between X is higher and therefore the diffusion rate of X between X becomes slower; the interaction activity
between X and Z is lower, and therefore the diffusion rate of X/Z between Z/X becomes slightly slower; the interaction
activity between Z and Z is negligible and therefore the change in the diffusion rate of Z through Z is negligible.
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Here, the fluctuation of diffusion coefficients are given by
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In reality,

_x ¼ � W k10 � aXeð Þ þ 2k40Xe þ k5 0Zef gxþ Wa� k4 0 þ 2cXe þ eZeð Þx2
þ p� bXe � k50Xe � dXe

2 � fXeZe
� �

z� k50 þWb� eXe þ f eZe
� �

xz� fXez
2 (42)

_z ¼ 2k40Xe þ k50Ze � cXe
2 � eXeZe

� �
xþ k40 � 2cXe � eZeð Þx2

þ �pþ k50Xe þ dXe
2 þ fXeZe

� �
zþ k50 þ 2dXe � eXe þ f eZe

� �
xzþ fXez

2
(43)

Thus, we determined a general formula for protein assembly. Cytoskeletal protein and protein
complexes in the signaling cascade can be described using this formula.

2.7. Linearity of cofactor supply to the assembly system

While protein assembly is a non-linear reaction involving a complicated set of reactions or
assembly steps, the supply of cofactor is simply given by the linear kinetic rate items as shown
in Eqs. (36, 37, 40 and 41). This means that the supply rate will be essentially be an order
parameter of the assembly system and is controllable by altering the concentration of the
cofactor (Figure 2). Accordingly, parameter p is variable in the numerical simulation, as
described below.

3. Calculus simulation of concentration oscillation

3.1. Oscillation of monomer concentration fluctuation

In actual simulation of protein assembly, numerical calculation was performed over a suffi-
ciently long period to evaluate the trend in system behavior.

Simulation: A simulation was performed using Mathematica® version 8 (Wolfram Research,
Champaign, IL, USA).

Simulation was performed with the notation in Eqs. (42) and (43), in which p is (a) 0.8, (b) 0.81,
and (c) 1.00 (Figure 3).

Below is the simulation program cord using Mathematica ver. 8 when p = 0.8:

D1 = 0.27, k2 = 0.00035, a = 790, b = 650, c = 105, d = 105, e = 105, f = 105, p = 0.8, Dxx = 155,
Dxz = 155, W = 1.

X = k2/D1.

Z = (k2 (D1^2 W + Dxx k2))/(D1 (D1 p - Dxz k2)).

NDSolve[{x’[t] == � (W (D1 - a X) + 2 X Dxx + Dxz Z) x[t] + (W a - Dxx + 2 c X + e Z) x[t]^2 +
(p - Dxz X - b X - d X^2 - f X Z) z[t] - (Dxz + W b - e X + f Z) x[t] z[t] - (f X) z[t]^2,

z’[t] == (2 X Dxx + Dxz Z - c X^2 - e X Z) x[t] + (Dxx - 2 c X - e Z) x[t]^2 + (Dxz + 2 X d - e X + f Z)
x[t] z[t] + (Dxz X - p + d X^2 + f X Z) z[t], x[0] == 0.000001, z[0] == 0.000001}, {x, z}, {t, 0, 30,000},
MaxSteps - > 50,000].
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Figure 3. Numerical simulation of protein assembly. Diffusion of active cofactor binding signaling molecule (X) and
inactive cofactor binding signaling molecule (Z). The upper graph shows two parametric plots of X and Z. Red and blue
lines in the lower graph represent the concentrations of X and Z, respectively. The horizontal axis represents time (s)
(0 ≤ t ≤ 200) and vertical axis represents the concentrations of X and Z, respectively. When p exceeds 0.80, chaos-like
oscillation is observed. Mathematica version 8 was used.
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g001 = Plot[{X + x[t]} /. %, {t, 0, 200}, PlotRange - > All, PlotStyle - > {RGBColor[1, 0, 1]},
PlotRange - > ALL].

g002 = Plot[{Z + z[t]} /. %%, {t, 0, 200}, PlotRange - > All, PlotStyle - > {RGBColor[0, 1, 1]},
PlotRange - > All].

g003 = ParametricPlot[Evaluate[{X + x[t], Z + z[t]} /. %%%], {t, 0, 2000}, PlotRange - > All,
AxesLabel - > {“X”, “Z”}] Show[g001, g003, AxesLabel - > {“t”, “X, Z”}].

As a result, regular oscillation with fluctuations in the amplitude and frequency can be illus-
trated in the plot following the above calculation. Plots on the right side that the oscillation
becomes definite within a limit-cycle when p = 1.5.

3.2. Oscillation frequency

In a previous study [6], an interesting relationship was observed between the average fre-
quency of simulated oscillation of the monomeric proteins and difference p� pc. The frequency
was nearly equivalent, but with irregular fluctuations, except for during the initial phase. The
relationship between average frequency < f > and p � pc is given by:

< f > ≃ 0:0256 ln p� pc
� �þ 0:1407 (44)

These formulae imply that the amplitude of monomeric protein fluctuation provides informa-
tion regarding the outside alteration of the cofactor. Thus, outside alteration is transformed
inside into the information of assembly.

4. Center manifold theory (CMT)

4.1. Center manifold formulae

For stability analysis of the nonlinear dynamics in protein assembly, the center manifold theory
(CMT) for non-linear dynamic biological systems has been applied. Simulation is oriented to
analyze the behavior around critical values of the order parameter. CMT has been applied to
the Lotka-Volterra model of the predator-prey system to provide important simulation results
[33, 34]. However, the CMT can be applied to the protein assembly model. For stability
analysis around the critical point, Eqs. (40) and (41) were formulated. When p is equivalent to
pc, the Jacobian matrix L for (x, z) is given using the linear coefficients of (x, z) in Eqs. (40) and
(41):

L ¼
f x f z þ f pc

� �

f x
0

f z
0 � F pc

� �
 !

(45)

Particularly, the function f(p) represents the input and output of the cofactor that is the order
parameter. Using the eigenvectors of L, (l1, l2), coordinate transformation into u and v is
performed as follows:
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d
dt

x
z

� �
¼ d

dt
l1 l2½ � u

v

� �
(46)

d
dt

u
v

� �
¼ d

dt
l1 l2½ ��1 x

z

� �
(47)

The above formulae are subsequently set as

du=dt ¼ f u u; vð Þ (48)

dv=dt ¼ f v u; vð Þ (49)

The center manifold around the critical point (p = pc) is then given as follows:

u ¼ h ε; vð Þ ¼ a1v2 þ a2vεþ a3ε2 þ a4v3 þ a5v2εþ a6vε2 þ a7ε3 þO ε4
� �

(50)

The effect of changing p and ε (p = pc) is analyzed using the center manifold around the critical
point of the system. Subsequently

u ¼ dv=dtð Þ∂h u; εð Þ=∂uþ dε=dtð Þ∂h u; εð Þ=∂ε ¼ 2a1vþ a2εð Þf u u; vð Þ (51)

Using Eqs. (49) and (50)

2a1vþ a2εð Þf u u; vð Þ ¼ a1v2 þ a2vεþ a3ε2 þ a4v3 þ a5v2εþ a6vε2 þ a7ε3 þO ε4
� �

(52)

Solving Eq. (52) gives the coefficients of ai in Eq. (50): a3 = a7 = 0. Substituting u in Eq. (51) given
by ν and ε into fv(u, v) in Eq. (47), the kinetic stability equation is given for fluctuation ν using
the coefficients ni (i = 1, …, 7) as follows:

dv=dt ¼ n1v2 þ n2vεþ n3ε2 þ n4v3 þ n5v2εþ n6vε2 þ n7ε3 þO ε4
� �

(53)

Independently of the numerical values in Eq. (53)

n3, n6, n7 ¼ 0 (54)

Using this result, we have

dv=dt ¼ n1v2 þ n2vεþ n4v3 þ n5v2εþO ε4
� �

(55)

By setting the left-hand side of Eq. (55) equivalent to zero, a Hopf-bifurcation of the given
system is shown

v ¼ 0,
�n1 � n5ε�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1 þ n5εð Þ2 � 4n2n4ε

q

2n4
(56)

Further approximate solutions to Eq. (56) are given as
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g001 = Plot[{X + x[t]} /. %, {t, 0, 200}, PlotRange - > All, PlotStyle - > {RGBColor[1, 0, 1]},
PlotRange - > ALL].

g002 = Plot[{Z + z[t]} /. %%, {t, 0, 200}, PlotRange - > All, PlotStyle - > {RGBColor[0, 1, 1]},
PlotRange - > All].

g003 = ParametricPlot[Evaluate[{X + x[t], Z + z[t]} /. %%%], {t, 0, 2000}, PlotRange - > All,
AxesLabel - > {“X”, “Z”}] Show[g001, g003, AxesLabel - > {“t”, “X, Z”}].

As a result, regular oscillation with fluctuations in the amplitude and frequency can be illus-
trated in the plot following the above calculation. Plots on the right side that the oscillation
becomes definite within a limit-cycle when p = 1.5.

3.2. Oscillation frequency

In a previous study [6], an interesting relationship was observed between the average fre-
quency of simulated oscillation of the monomeric proteins and difference p� pc. The frequency
was nearly equivalent, but with irregular fluctuations, except for during the initial phase. The
relationship between average frequency < f > and p � pc is given by:

< f > ≃ 0:0256 ln p� pc
� �þ 0:1407 (44)

These formulae imply that the amplitude of monomeric protein fluctuation provides informa-
tion regarding the outside alteration of the cofactor. Thus, outside alteration is transformed
inside into the information of assembly.

4. Center manifold theory (CMT)

4.1. Center manifold formulae

For stability analysis of the nonlinear dynamics in protein assembly, the center manifold theory
(CMT) for non-linear dynamic biological systems has been applied. Simulation is oriented to
analyze the behavior around critical values of the order parameter. CMT has been applied to
the Lotka-Volterra model of the predator-prey system to provide important simulation results
[33, 34]. However, the CMT can be applied to the protein assembly model. For stability
analysis around the critical point, Eqs. (40) and (41) were formulated. When p is equivalent to
pc, the Jacobian matrix L for (x, z) is given using the linear coefficients of (x, z) in Eqs. (40) and
(41):

L ¼
f x f z þ f pc

� �

f x
0

f z
0 � F pc

� �
 !

(45)

Particularly, the function f(p) represents the input and output of the cofactor that is the order
parameter. Using the eigenvectors of L, (l1, l2), coordinate transformation into u and v is
performed as follows:
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d
dt

x
z

� �
¼ d

dt
l1 l2½ � u

v

� �
(46)

d
dt

u
v

� �
¼ d

dt
l1 l2½ ��1 x

z

� �
(47)

The above formulae are subsequently set as

du=dt ¼ f u u; vð Þ (48)

dv=dt ¼ f v u; vð Þ (49)

The center manifold around the critical point (p = pc) is then given as follows:

u ¼ h ε; vð Þ ¼ a1v2 þ a2vεþ a3ε2 þ a4v3 þ a5v2εþ a6vε2 þ a7ε3 þO ε4
� �

(50)

The effect of changing p and ε (p = pc) is analyzed using the center manifold around the critical
point of the system. Subsequently

u ¼ dv=dtð Þ∂h u; εð Þ=∂uþ dε=dtð Þ∂h u; εð Þ=∂ε ¼ 2a1vþ a2εð Þf u u; vð Þ (51)

Using Eqs. (49) and (50)

2a1vþ a2εð Þf u u; vð Þ ¼ a1v2 þ a2vεþ a3ε2 þ a4v3 þ a5v2εþ a6vε2 þ a7ε3 þO ε4
� �

(52)

Solving Eq. (52) gives the coefficients of ai in Eq. (50): a3 = a7 = 0. Substituting u in Eq. (51) given
by ν and ε into fv(u, v) in Eq. (47), the kinetic stability equation is given for fluctuation ν using
the coefficients ni (i = 1, …, 7) as follows:

dv=dt ¼ n1v2 þ n2vεþ n3ε2 þ n4v3 þ n5v2εþ n6vε2 þ n7ε3 þO ε4
� �

(53)

Independently of the numerical values in Eq. (53)

n3, n6, n7 ¼ 0 (54)

Using this result, we have

dv=dt ¼ n1v2 þ n2vεþ n4v3 þ n5v2εþO ε4
� �

(55)

By setting the left-hand side of Eq. (55) equivalent to zero, a Hopf-bifurcation of the given
system is shown

v ¼ 0,
�n1 � n5ε�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1 þ n5εð Þ2 � 4n2n4ε

q

2n4
(56)

Further approximate solutions to Eq. (56) are given as
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v ¼ 0, ≈ cε, � n1=n4 (57)

Thereafter, the solution cε increases as the concentration of ATP/GTP increases. From Eq. (51),
u is formulated using an arbitrary coefficient c

u ≈ 0, c n1=n4ð Þ2 (58)

This result implies that the fluctuation has two different values for the amplitude of an
oscillation.

5. Prospects of protein analysis assembly

Our aim in this review was to evaluate the association between the non-linearity in protein
diffusion and assembly. Here, we reviewed studies of protein assembly or interactions [1–4]
and performed mathematical analysis of the model in addition to numerical simulations.
Because the assumptions of the model are minimal, the simulation provides insight into
assembly. The results are summarized as follows: (i) the non-linear kinetic equations including
only two independent parameters may reveal dynamic behavior in the fluctuation of the
monomer concentration, (ii) the increase near the critical concentration of the cofactor induces
oscillations in amplitude and frequency; and (iii) center manifold analysis predicts the stability
of the model system near the critical concentration, showing bifurcation with respect to the
cofactor supply value. The behavior of the system shown in the simulation indicates that the
concentration change information of a cofactor outside the system is transduced into another
type of information, e.g., frequency of the concentration oscillation of the monomer. A small
increase in the outside cofactor concentration induces an oscillation change inside the mono-
meric protein, which may be crucial for responding to transformations in the outside environ-
ment. Such a trajectory in the observed oscillation resembles a limit-cycle-like in the well-
known two-parametric Lorenz model [13, 14].

Previous systems biology models did not focus on the diffusion process of a protein in the
cytoplasm. Non-linearity in the process is critical and essential to protein assembly. Before
considering a set of simultaneous kinetic equations, non-linearity in the diffusion process
should be considered, as de novo nucleation is negligible compared with the reaction of the
monomer and oligomer. The interaction between assembly-active monomer proteins attenu-
ates the diffusion rate in a non-linear fashion because they can assemble, which inevitably
yields non-linearity. As shown in this review, CMT is useful for reducing the parameters of
detailed stability analysis around the critical state.

6. Conclusion

Protein interactions play an important role in various biological activities at the cell level.
Although protein diffusion is a rate-limiting-step, cell behavior is orchestrated by protein
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interactions, and signaling transduction, the cytoskeleton, and cell motility are dynamically
altered in processes similar to “phase transitions” in inorganic chemical reactions. This review
provides a model of phase transition affected by minimal changes in cofactor concentration;
but oscillation and bifurcation are inducible by the simple model. Systems biology multi-
parametric analysis remains important; however, a simple model sufficiently can better illus-
trate oscillations in protein concentration with a limit-cycle. Outside alteration such as cofactor
concentration change is transformed inside into the information of assembly. Stability analysis
using the CMT is a simple method for understanding protein-interacting systems.
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Abstract

The description of plasma using fluid model is mostly insufficient and requires the
consideration of velocity distribution which leads to kinetic theory. Kinetic theory of
plasma describes and predicts the condition of plasma from microscopic interactions
and motions of its constituents. It provides an essential basis for an introductory course
on plasma physics as well as for advanced kinetic theory. Plasma kinetics deals with the
relationship between velocity and forces and the study of continua in velocity space.
Plasma kinetics mathematical equations provide aid to the readers in understanding
simple tools to determine the plasma dynamics and kinetics as described in this chapter.
Kinetic theory provides the basics and essential introduction to plasma physics and
subsequently advanced kinetic theory. Plasma waves, oscillations, frequencies, and
applications are the subjects of kinetic theory. In this chapter, mathematical formulations
essential for exploring plasma kinetics are compiled and described simplistically along
with a precise discussion on basic plasma parameters in simple language with illustra-
tions in some cases.

Keywords: plasma parameters, kinetic theory, particle distribution

1. Introduction

Plasma is the fourth state of matter, and it is defined as “a quasineutral gas of charged and
neutral particles which exhibits collective behavior.” As plasma contains charged particles,
these charged particles move around and generate local concentrations of positive or negative
charges (collective behavior) which give rise to electric fields. Motion of these charges also
generates currents and hence magnetic fields [1]. Therefore, the macroscopic forces acting in
plasma are totally different from ordinary gasses and hence remarkable differences in their
physical properties are observed. The salient features of the plasma can be understood by
investigating the behavior of the electrons, by far the most mobile-charged particle in plasma [2].
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Abstract

The description of plasma using fluid model is mostly insufficient and requires the
consideration of velocity distribution which leads to kinetic theory. Kinetic theory of
plasma describes and predicts the condition of plasma from microscopic interactions
and motions of its constituents. It provides an essential basis for an introductory course
on plasma physics as well as for advanced kinetic theory. Plasma kinetics deals with the
relationship between velocity and forces and the study of continua in velocity space.
Plasma kinetics mathematical equations provide aid to the readers in understanding
simple tools to determine the plasma dynamics and kinetics as described in this chapter.
Kinetic theory provides the basics and essential introduction to plasma physics and
subsequently advanced kinetic theory. Plasma waves, oscillations, frequencies, and
applications are the subjects of kinetic theory. In this chapter, mathematical formulations
essential for exploring plasma kinetics are compiled and described simplistically along
with a precise discussion on basic plasma parameters in simple language with illustra-
tions in some cases.
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Plasma physics deals with the equilibrium and non-equilibrium properties of a statistical system
of charged particles. Microscopic degrees of freedom arising from the motion of individual
particles describe the system. These statistics therefore theoretically treat the macroscopic behav-
ior of such a system [3].

The knowledge of plasma parameters helps to understand the dynamics of plasma. Electrons
being dominant mobile species play an important role in the behavior of the plasma. The most
important of these parameters include plasma temperature, electron density, Debye shielding,
and Debye length. Plasma is transient in nature. Therefore, the plasma is generally character-
ized on the basis of instantaneous observations. Charged particles, neutrals, and molecules
coexist in plasma under various circumstances. Conditions in the plasma strongly depend on
the distribution of charged particles, where electrons being lighter and highly mobile play a
dominant role. Therefore, plasma is generally represented through parameters which are
derived from the behavior of electrons in the plasma. When an external point charge is
introduced or a localized unbalanced charge is formed in the plasma, readjustment of charge
density occurs to neutralize the effect by shielding its electric field. The electrons being more
mobile than heavier ions move toward or away from the unbalanced charge faster than ions. It
gives rise to oscillations which are referred to as electron oscillations or plasma oscillations. The
frequency at which these oscillations take place is called as plasma frequency [4]. This phenom-
enon of shielding or screening a foreign charge or an unbalanced charge inside the plasma is
known as Debye shielding or sometimes referred to as Debye screening. It is specific for plasma.
Charges keep accumulating around the foreign or unbalanced charge until the static electric
field of the unbalanced charge is screened and the balance is restored. A sphere of charges that
is created around the unbalanced charge is called as Debye sphere and its radius is known as
Debye length. A detailed discussion on two of the most important plasma parameters electron
density and plasma temperature is provided in Sections 2.7 and 2.8.

Comprehensive mathematical details on certain aspects of plasma are found in published
literature. The authors aim to provide readers with an overall view of fundamental mathemat-
ical relations explaining the kinetics of plasma that are compiled simplistically in one chapter.
This can be an easy reference for the researchers interested in plasma kinetics.

2. Plasma kinetic equations

Plasma physics involves phenomena that are related to dynamical processes in statistical
mechanics. It is thus very significant to study the properties and structure of the basic kinetic
equations governing the dynamical behavior of plasma [5]. The dynamical behavior of a
system of N-interacting particles is generally investigated using the Liouville equation. A
microscopic distribution function could be used to describe the behavior of such a system. A
six-dimensional phase-space distribution function called “Klimontovich distribution func-
tion,” which obeys a continuity equation in the phase space, is defined. The system of charged
particles can then be described by Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY) hierar-
chy equations.
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2.1. Klimontovich equation

To further formalize the kinetic theory, we introduce Klimontovich’s microscopic description
and derivation of the Bogoliubov-Born-Green-Kirkwood-Yvon equations [6]. To introduce the
Klimontovich equation, we consider a classical system containing N identical particles in a box
of volume V; n�N/V denoting the average number density. Each particle in the box is charac-
terized by an electric charge q and mass m.

In the six-dimensional phase space consisting of the position r and velocity v, each of the
particle has its own trajectory; for ith particle,

XiðtÞ � ½riðtÞ; viðtÞ�: (1)

The microscopic density of the particles in the phase space may be expressed by the summa-
tion of the six-dimensional delta functions as

N X; tð Þ � 1
n

� �Xn

i¼1

δ X� Xi tð Þ½ � (2)

where X� (r, v). N(X; t) is known as the Klimontovich distribution function which satisfies the
continuity equation in the phase space,

dN
dt

¼ ∂N
∂t

þ _x:
∂N
∂X

¼ 0: (3)

In phase-space coordinates, Eq. (3) can be written as

dN
dt

þ v:
∂N
∂r

þ _v:
∂N
∂v

¼ 0 (4)

where _v is the acceleration at point (r, v).

The electromagnetic acceleration is very important in plasma physics,

_v ¼ q
m

E r; tð Þ þ v
c
⨯ B r; tð Þ

h i
: (5)

The electric and magnetic fields E(r, t) and B(r, t) consist of two separate contributions: those
applied from the external sources and those produced from the microscopic fine-grained
distribution of the charged particles.

Eðr, tÞ ¼ Eextðr, tÞ þ eðr, tÞ,Bðr, tÞ ¼ Bextðr, tÞ þ bðr, tÞ: (6)

The microscopic fine-grained fields e(r, t) and b(r, t) are determined from a solution of Maxwell
equations,

∇ ⨯ eþ 1
c
∂b
∂t

¼ 0, ∇ ⨯ b� 1
c
∂e
∂t

¼ 4π
c
qn
ð
vN X; tð Þdv, ∇:e¼ 4πqn

ð
N X; tð Þdv� 1

� �
, ∇:b¼ 0: (7)
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For a given N(X; t), the solution to these set of equations can generally be written; the solution,
when substituted in Eq. (5), would amount to taking account of both electromagnetic and
electrostatic interactions between the particles. The electromagnetic interactions are usually
negligible as compared with the electrostatic interactions for a nonrelativistic plasma; hence,
the microscopic fields become.

e r; tð Þ ¼ �qn
∂
∂r

ð
N X’; t
� �
r � r’j j dX’, b r; tð Þ ¼ 0: (8)

Substituting Eq. (8) into Eq. (6), we get an expression for the acceleration in terms of N(X; t).
Eq. (3) can be written with the aid of such an expression as

ð
∂
∂t

þ L Xð Þ �
ð
V X;X’
� �

N X’; t
� �

dX’

� �
N X; tð Þ ¼ 0 (9)

L(X), as a single particle operator is defined by

L Xð Þ � v:
∂
∂r

þ q
m

Eext r; tð Þ þ v
c
⨯ Bext r; tð Þ

h i
:
∂
∂v

(10)

And V(X, X’) is a two-particle operator arising from the Coulomb interaction defined by

V X;X’
� � � q2n

m
∂
∂r

1
r � r’j j

� �
:
∂
∂v

(11)

Eq. (9) is known as Klimontovich equation. The equation describes the space–time evolution of
the microscopic distribution function.

2.2. Liouville distribution

The fine-grained distribution function, which is precise in describing the microscopic condi-
tions of many particles, would not by itself correspond to the coarse-grained quantities in the
macroscopic view. There is a need to introduce an averaging process based on the Liouville
distribution over the 6 N–dimensional phase space to establish a connection between them.

In T-space, the microscopic state of the system is expressed by a point.

{Xi}� (X1,X2,…….,Xn), called a system point.

By following a normal procedure of the ensemble theory in statistical mechanics, it can assume
N replicas which are microscopically identical to the system under consideration. N can be
chosen to be very large so that it can approach infinity when it requires. These N replicas are
characterized by different microscopic configurations; the system points are scattered over the
T-space. Liouville distribution function [7] can then be defined as D({Xi}; t) in the T-space as

D Xif g; tð Þd Xif g � lim
n!∞

No:of system points in the infinitesimal volume d Xif gin T � space withing Xif g½ �
N

(12)

which by definition satisfies the normalization condition.
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ð
Dð{Xi}; tÞd{Xi} ¼ 1: (13)

The N system points distributed in the T-space do not interact with each other, behaving like
an ideal gas. The distribution function D({Xi}; t) therefore satisfies a Liouville-type continuity
equation

∂D
∂t

þ _Xi
� �

:
∂D

∂ Xif g ¼ 0 (14)

The distribution is conserved along a trajectory in the phase-space distribution.

We can now perform a statistical averaging of a fine-grained quantity A(X, X ’ ,……;
{Xi(t)} defined at a set of points (X, X’,…) in the six-dimensional phase space. With the aid of
Liouville distribution, we follow this way:

< A X;X’;……; t
� �

> ¼
ð
d Xif gD Xif g; tÞA X;X’;……; Xif gð Þ (15)

With respect to the conservation property, this average can be transformed equivalently into an
average over the initial distribution, such that

< A X;X’;……; t
� �

> ¼
ð
d Xi 0ð Þf gD Xi 0ð Þf g; tÞA X;X’;……; Xi 0ð Þf gð Þ (16)

where {Xi(0)}; t)} represents the coordinates of the system points in T-space at t under the
condition that it is located at {Xi(0)} when t = 0.

2.3. BBGKY hierarchy

The distribution functions can be obtained through a statistical average of products of
Klimontovich functions. A shorthand notation and numerals 1, 2, 3……, etc., in place of X, X’,
X

0 0
……., etc., can be used to simplify the presentations.

The Klimontovich Eq. (9) can therefore be written as

∂
∂t

þ L 1ð Þ
� �

N 1; tð Þ ¼
ð
V 1; 2ð ÞN 1; tð ÞN 2; tð Þd2: (17)

The Liouville average of this equation can be obtained by using the methods in Eq. (16). The
averaging process commutes with differential operators involved in Eq. (17). Now, with the
aid of a single-particle distribution function

< N X; tð Þ > ¼ f 1 X; tð Þ (18)

The average of the second term defines the two-particle distribution function:
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f 2 X;X0; tð Þ; < N X; tð ÞN X0; tð Þ >¼ 1
n
δ X� X0ð Þf 1 X; tð Þ þ f 2 X;X0; tð Þ: (19)

∂
∂t

þ L 1ð Þ
� �

f 1 1; tð Þ ¼
ð
V 1; 2ð Þ 1

n
δ 1� 2ð Þf 1 1; tð Þ þ f 2 1; 2; tð Þd2

�
(20)

For an arbitrary function y(1, 2,…; t), it can be proved from symmetry considerations that
ð
V 1; 2ð Þδ 1� 2ð Þy 1; 2; ::; tð Þd2 ¼ 0 (21)

Consequently,

∂
∂t

þ L 1ð Þ
� �

f 1 1; tð Þ ¼
ð
V 1; 2ð Þf 2 1; 2; tð Þd2 (22)

It can start from an equation as well

∂
∂t

þ L 1ð Þ þ L 2ð Þ
� �

N 1; tð ÞN 2; tð Þ ¼
ð
V 1; 3ð Þ þ V 2; 3ð Þ½ �N 1; tð ÞN 2; tð ÞN 3; tð Þd3 (23)

Eq. (23) can be derived from a combination of Klimontovich equations. After averaging this
equation with respect to the Liouville distribution and Eqs. (16) and (17), an equation involv-
ing f1, f2, and f2 can be obtained. This equation can then be simplified with the aid of Eqs. (21)
and (22), the result yields

∂
∂t

þ L 1ð Þ þ L 2ð Þ � 1
n
V 1; 2ð Þ þ V 2; 1ð Þ½ �

� �
f 2 1; 2; tð Þ ¼

ð
V 1; 3ð Þ þ V 2; 3ð Þ½ � f 3 1; 2; 3; tð Þd3: (24)

Similarly, it is considered that a Klimontovich equation for a product of an arbitrary number of
the Klimontovich functions performs a statistical average of the equation. We therefore obtain
the BBGKY hierarchy equations expressed as

Xs

i¼1

L ið Þ � 1
n

Xs

i 6¼j

V i; jð Þ
2
4

3
5f s 1;…:; s; tð Þ� ¼

Xs

i¼1

ð
V i; sþ 1ð Þf sþ1 1;…:sþ 1; tð Þ� �

d sþ 1ð Þ: (25)

The set of equations in Eq. (25) is the basis for the kinetic theory of plasmas.

2.4. Vlasov’s equation

For identical non-interacting particles, Liouville’s equation can be written in T-space. Introduc-
ing two properties of identical non-interacting particles such as the distribution function f and
the Hamiltonian function q simplifies the problem. The distribution function written as a
function of 6N variables and time factorizes to a product of N functions, each involving only
the coordinates and momenta of one particle, and time.
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The Hamiltonian function of N non-interacting particles is the sum of N terms, each involving
only the coordinates and momenta of one particle. For identical particles, the terms of the
Hamiltonian are also identical. For weakly or occasionally interacting particles, the decompo-
sition of f into a product of factors and of q into a sum of terms is identical.

For a collection of N identical interacting particles, Liouville’s theorem can be written in the μ-
space as

∂f
∂t

þ
X3
1

∂f
∂xj

� �
∂xj
∂t

� �
þ ∂f

∂pj

 !
∂pj
∂t

� �" #
¼ ∂f

∂t
¼ ∂f

∂t

� �

int
(26)

The right-hand side of Eq. (26) can be evaluated using the exact form of the interaction terms in
the 6N + 1 Hamiltonian function variable. It is assumed that the Hamiltonian expression
involves no magnetic terms. Under such conditions, p =Mv. If the coordinate system in the μ-
space is changed from x, y, z, px, py, pz to x, y, z, vx, vy, vz, then the corresponding volume
elements will be in the ratio M3. Hence, if the figurative points density in the (r, p) space is
constant according to Eq. (26),

∂f
∂t

þ
X3
1

∂f
∂xj

� �
∂xj
∂t

� �
þ ∂f

∂vj

� �
∂vj
∂t

� �� �
¼ ∂f

∂t
¼ 0 (27)

If magnetic terms are included in the Hamiltonian function, then p =Mv + qA. When the coor-
dinates are changed, the ratio of the corresponding volume elements can be calculated by
using Jacobian. The Jacobian is a determinant calculated by taking the partial derivative of
any coordinate of one system with respect to all the coordinates of the second system. For
instance, in the physical space, the Jacobian is

Jacobian ¼

∂x1
∂x2

∂x1
∂y2

∂x1
∂z2

∂y1
∂x2

∂y1
∂y2

∂y1
∂z2

∂z1
∂x2

∂z1
∂y2

∂z1
∂z2

�������������

�������������

The value of the determinant is equal to the ratio of the corresponding volume elements. The
ratio of the volume elements, M3, is constant even in the presence of magnetic forces.

∂vj
∂t ¼ aj ¼ Fj=M, where a = acceleration and F = external force. Introducing an operator ∇v,

∇v ¼ i
∂
∂vx

þ j
∂
∂vy

þ k
∂
∂vz

(28)

where i, j, and k are the unit vectors in the vx, vy, and vz directions, respectively. In a vectorial
form, Eq. (27) now becomes

Plasma Kinetic Theory
http://dx.doi.org/10.5772/intechopen.70843

113



f 2 X;X0; tð Þ; < N X; tð ÞN X0; tð Þ >¼ 1
n
δ X� X0ð Þf 1 X; tð Þ þ f 2 X;X0; tð Þ: (19)

∂
∂t

þ L 1ð Þ
� �

f 1 1; tð Þ ¼
ð
V 1; 2ð Þ 1

n
δ 1� 2ð Þf 1 1; tð Þ þ f 2 1; 2; tð Þd2

�
(20)

For an arbitrary function y(1, 2,…; t), it can be proved from symmetry considerations that
ð
V 1; 2ð Þδ 1� 2ð Þy 1; 2; ::; tð Þd2 ¼ 0 (21)

Consequently,

∂
∂t

þ L 1ð Þ
� �

f 1 1; tð Þ ¼
ð
V 1; 2ð Þf 2 1; 2; tð Þd2 (22)

It can start from an equation as well

∂
∂t

þ L 1ð Þ þ L 2ð Þ
� �

N 1; tð ÞN 2; tð Þ ¼
ð
V 1; 3ð Þ þ V 2; 3ð Þ½ �N 1; tð ÞN 2; tð ÞN 3; tð Þd3 (23)

Eq. (23) can be derived from a combination of Klimontovich equations. After averaging this
equation with respect to the Liouville distribution and Eqs. (16) and (17), an equation involv-
ing f1, f2, and f2 can be obtained. This equation can then be simplified with the aid of Eqs. (21)
and (22), the result yields

∂
∂t

þ L 1ð Þ þ L 2ð Þ � 1
n
V 1; 2ð Þ þ V 2; 1ð Þ½ �

� �
f 2 1; 2; tð Þ ¼

ð
V 1; 3ð Þ þ V 2; 3ð Þ½ � f 3 1; 2; 3; tð Þd3: (24)

Similarly, it is considered that a Klimontovich equation for a product of an arbitrary number of
the Klimontovich functions performs a statistical average of the equation. We therefore obtain
the BBGKY hierarchy equations expressed as

Xs

i¼1

L ið Þ � 1
n

Xs

i 6¼j

V i; jð Þ
2
4

3
5f s 1;…:; s; tð Þ� ¼

Xs

i¼1

ð
V i; sþ 1ð Þf sþ1 1;…:sþ 1; tð Þ� �

d sþ 1ð Þ: (25)

The set of equations in Eq. (25) is the basis for the kinetic theory of plasmas.

2.4. Vlasov’s equation

For identical non-interacting particles, Liouville’s equation can be written in T-space. Introduc-
ing two properties of identical non-interacting particles such as the distribution function f and
the Hamiltonian function q simplifies the problem. The distribution function written as a
function of 6N variables and time factorizes to a product of N functions, each involving only
the coordinates and momenta of one particle, and time.
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The Hamiltonian function of N non-interacting particles is the sum of N terms, each involving
only the coordinates and momenta of one particle. For identical particles, the terms of the
Hamiltonian are also identical. For weakly or occasionally interacting particles, the decompo-
sition of f into a product of factors and of q into a sum of terms is identical.

For a collection of N identical interacting particles, Liouville’s theorem can be written in the μ-
space as

∂f
∂t

þ
X3
1

∂f
∂xj

� �
∂xj
∂t

� �
þ ∂f

∂pj

 !
∂pj
∂t

� �" #
¼ ∂f

∂t
¼ ∂f

∂t

� �

int
(26)

The right-hand side of Eq. (26) can be evaluated using the exact form of the interaction terms in
the 6N + 1 Hamiltonian function variable. It is assumed that the Hamiltonian expression
involves no magnetic terms. Under such conditions, p =Mv. If the coordinate system in the μ-
space is changed from x, y, z, px, py, pz to x, y, z, vx, vy, vz, then the corresponding volume
elements will be in the ratio M3. Hence, if the figurative points density in the (r, p) space is
constant according to Eq. (26),

∂f
∂t

þ
X3
1

∂f
∂xj

� �
∂xj
∂t

� �
þ ∂f

∂vj

� �
∂vj
∂t

� �� �
¼ ∂f

∂t
¼ 0 (27)

If magnetic terms are included in the Hamiltonian function, then p =Mv + qA. When the coor-
dinates are changed, the ratio of the corresponding volume elements can be calculated by
using Jacobian. The Jacobian is a determinant calculated by taking the partial derivative of
any coordinate of one system with respect to all the coordinates of the second system. For
instance, in the physical space, the Jacobian is

Jacobian ¼
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∂y2

∂y1
∂z2

∂z1
∂x2

∂z1
∂y2

∂z1
∂z2

�������������

�������������

The value of the determinant is equal to the ratio of the corresponding volume elements. The
ratio of the volume elements, M3, is constant even in the presence of magnetic forces.

∂vj
∂t ¼ aj ¼ Fj=M, where a = acceleration and F = external force. Introducing an operator ∇v,

∇v ¼ i
∂
∂vx

þ j
∂
∂vy

þ k
∂
∂vz

(28)

where i, j, and k are the unit vectors in the vx, vy, and vz directions, respectively. In a vectorial
form, Eq. (27) now becomes
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∂f
∂t

þ v:∇f þ F
M

:∇vf ¼ 0 (29)

Eq. (29) is known as Vlasov’s equation. F is the sum of the electric, magnetic, and gravitational
forces resulting from external fields and the macroscopic forces resulting from the plasma
itself. If we consider the viscous-like forces, Vlasov’s equation becomes

∂f
∂t

þ v:∇f þ ∇v:
F
M

f
� �

¼ 0 (30)

2.5. Maxwell’s equations

Maxwell’s equations express the relations between electric and magnetic fields in a medium.
Consider a current I flowing in an element of length dl. The magnetic flux density dB produced
by this current at a point P, a distance r from the element, and making an angle θ with its axis
is known as Ampere’s law

dB ¼ KIdl sinθ=r2 (31)

where K is a constant of proportionality defined as

K ¼ μ=4π (32)

where μ = permeability of the medium. For vacuum, μ =μ0 = 4π ⨯ 10�7 H/m. The total magnetic
flux density B produced at point P by the current flowing in a long conductor is

B ¼ μI
4π

ð
sinθ
r2

dl (33)

For infinite and linear conductor, B ¼ μI
2πr; where r = radial distance from P to the linear

conductor as shown in Figure 1.

Figure 1. Flux density near a straight wire in which current I flows where sinθdl = rdθ and
r0 = r sinθ.

If B is integrated around the path that encloses the wire, then
ð
B:dl ¼ μI (34)

A magnetic field vector H is introduced to make the equation independent of the medium. It is
such that

B ¼ μH (35)

Introducing Eq. (35) into Eq. (34) and the current I by the surface integral of the conduction
current density J over the area described by the path of integration of H,
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ð
H:dl ¼

ðð

s

J:dS (36)

The total current density = conduction current density σE; σ = conductivity of the wire and
E = electric field. ∂D/∂t = displacement current density; D = electric flux density. Applying
Stokes’ theorem, Eq. (36) can now be written in a general form as

∇ ⨯ H ¼ J þ ∂D
∂t

(37)

According to Faraday’s law, the total e.m.f (V) induced in a closed loop as a function of the
total flux Φm/dt producing the e.m.f is given as.

V ¼� dΦm=dt (38)

If the total flux linkageΦt is nΦm, then V = �dΦt/dt. The total flux through the circuit is equal
to the integral of B over the area bounded by the circuit. Therefore,

V ¼ � d
dt

ðð

s

B:dS (39)

The change in magnetic field produces an electric field E, thus

V ¼
ð
E:dl or E ¼ �∇V (40)

Combining Eqs. (39) and (40), the induced e.m.f is

ð
E:dl ¼ �

ðð
∂B
∂t

� �
:dS (41)

Figure 1. Flux density near a straight wire in which current I flows where sinθdl = rdθ and r0 = r sinθ.
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If B is integrated around the path that encloses the wire, then
ð
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A magnetic field vector H is introduced to make the equation independent of the medium. It is
such that

B ¼ μH (35)

Introducing Eq. (35) into Eq. (34) and the current I by the surface integral of the conduction
current density J over the area described by the path of integration of H,
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E = electric field. ∂D/∂t = displacement current density; D = electric flux density. Applying
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According to Faraday’s law, the total e.m.f (V) induced in a closed loop as a function of the
total flux Φm/dt producing the e.m.f is given as.
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If the total flux linkageΦt is nΦm, then V = �dΦt/dt. The total flux through the circuit is equal
to the integral of B over the area bounded by the circuit. Therefore,
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The change in magnetic field produces an electric field E, thus
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Applying Stokes’ theorem on Eq. (41),

∇ ⨯ E ¼ � ∂B
∂t

� �
(42)

Gauss’ law states that the surface integral of the normal component of the electric flux density
D over any closed surface equals the total enclosed charge q [8].D is proportional to the electric
field with permittivity ɛ of the medium as the constant of proportionality (D ∝ ɛE). ɛ = ɛ0 in free
space.

Replacing q with the integral of the charge density ɐe over the volume enclosed by the surface
S, the vectorial form

∇:D ¼ ɐe (43)

For magnetic field, the integral of B over a closed surface is always equal to zero, thus

∇:B ¼ 0 (44)

Eqs. (37) and (42)–(44) are known as Maxwell’s equations. The equations are satisfied in all
plasma physics phenomena.

2.6. Liouville’s theorem

In relation with the Boltzmann approach, most of the problems of statistical mechanics are best
studied in multidimensional spaces called “phase spaces.” Consider a μ-space, which is a six-
dimensional and makes use of coordinates and the three components of momentum x, y, z, px,
py, pz or any set of Lagrangian coordinates for a point together with the associated generalized
momenta. In this space, each plasma particle is represented by a point. If only one degree of
freedom exists, the μ-space can be represented on a plane of Figure 2.

Figure 2. Trajectory of an oscillating point in the μ-space.

In the μ-space, the distribution function f is a function of seven variables. Thus, the probability
of finding a particle in a given volume element depends only on the coordinates and momenta
of this particle, not on those of the other particles. This is a simplified version of Liouville’s
theorem for a large number of non-interacting particles.

In the six-dimensional μ-space, the particles are conservative just as they are in the ordinary
space. Hence, the conservation theorem may be applied in the phase space,

∂B
∂t

þ ∇6: f v6
� � ¼ 0 (45)

where ∇6 = six-dimensional divergence and v6 is a six-dimensional velocity vector whose
components are exact time derivatives of the six coordinates of the μ-space. We now write ∇
temporarily x1, x2, x3 instead of x, y, z,
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∂B
∂t

þ
X3
1

∂ f _xj
� �
∂xj

þ
∂ f _pj

� �

∂pj

2
4

3
5 ¼ 0 (46)

or

∂f
∂t

þ
X3
1

∂f
∂xj

_xj þ ∂f
∂pj

_pj þ f
∂ _xj
∂xj

þ
∂ _pj

∂pj

 !" #
¼ 0 (47)

Hamilton’s canonical equations yield

∂qj
∂qj

þ
∂ _pj

∂pj
¼ ∂

∂qj

∂q
∂pj

 !
� ∂
∂pj

∂q
∂qj

 !
¼ ∂2q

∂pj∂qj
� ∂2q
∂qj∂pj

¼ 0 (48)

where q = Hamiltonian. Eq. (47) now becomes

∂f
∂t

þ
X3
1

∂f
∂xj

� �
∂xj
∂t

� �
þ ∂f

∂pj

 !
∂pj
∂t

� �" #
¼ ∂f

∂t
¼ 0 (49)

Eq. (49) is known as Liouville’s equation.

2.7. Boltzmann’s equation

The Boltzmann equation provides the statistical analysis of all the individual positions and
momenta of each particle in the fluid (macro-system) at an instant, that is, number of particles
in a particular level and their distribution among different levels [9]. It gives relative number of
atoms in different excitation states as a function of temperature and refers to certain number of
atoms or ions in a particular excitation state with respect to the ground state. Boltzmann
equation gives a mathematical description of the state of a system and how it changes. It
describes a quantity called the distribution function, f, which depends on a position, velocity,
and the time. The function f determines the average number of particles having velocities

Figure 2. Trajectory of an oscillating point in the μ-space.
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of finding a particle in a given volume element depends only on the coordinates and momenta
of this particle, not on those of the other particles. This is a simplified version of Liouville’s
theorem for a large number of non-interacting particles.

In the six-dimensional μ-space, the particles are conservative just as they are in the ordinary
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within a small range from ν to ν + Δν and coordinates within a small range from r to r + Δr in
time Δt.

In a hot dense gas, the atoms constantly experience collisions with each other, which lead to
excitation to the different possible energy levels. The collisional excitation follows radiative
de-excitation in timescales of the order of nanoseconds. For a constant temperature and
pressure, a dynamic equilibrium is established between collisional excitations and radiative
de-excitations, which lead to particular distribution of the atoms among different energy levels.
Most of the atoms are at low-lying levels. The number of atoms at higher levels decreases
exponentially with energy level. At low temperature, the faster the population drops at the
higher levels. Only at very high temperatures, high-lying energy levels are occupied by an
appreciable number of atoms. Boltzmann’s equation gives the distribution of the atoms among
the various energy levels as a function of energy and temperature.

Let us consider a system at local thermal equilibrium (LTE) with a constant volume consisting
of “N” atoms and each of atoms has “m” possible energy levels. Suppose there are “Nj” atoms
in energy level “Ej.” The total number N of atoms is given as

N ¼
Xm

i¼1

Ni (50)

The total energy “E” of the system can be written as

E ¼
Xm

i¼1

NiEi (51)

A number of ways in which “N1” atoms from total atoms “N” can occupy the first level are N
N1

� �
.

In the same manner, the total number of ways to arrange “N2” atoms from the remaining “N-1”

atoms is N�1
N2

� �
and so on. Thus, the total number of microstates “X” in the system, that is, the

number of ways to arrange “N” atoms of the system, is given as

X ¼ N
N1

� �
N � 1
N2

� �
N � 2
N3

� �
………::

N � m� 1ð Þ
Nm

� �
(52)

By solving the above binomial

X ¼ N!

N1!N2!……:Nj!……::Nm!
(53)

X ¼ N!
Qm
i¼1

Ni!

(54)

Taking log on both sides of Eq. (53),
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lnX ¼ lnN!� lnN1!� lnN2!……:� lnNj!……::� lnNm! (55)

By applying Stirling’s approximations to the factorials of all variables,

lnX ffi lnN!� N1lnN1 �N1ð Þ � N2lnN2 �N2ð Þ……: (56)

lnX ffi lnN!�
Xm

i¼1

NilnNi þN (57)

Let us maximize the lnX with respect to one microstate “Nj,” in a manner that is consistent
with constrains of Eqs. (50) and (51). Lagrangian multiplier for the most probable occupation
of the jth level is given as

∂lnX
∂Nj

þ λ
∂N
∂Nj

þ μ
∂E
∂Nj

¼ 0 (58)

where μ and λ are Lagrangian’s multipliers.

By adding values from Eqs. (50), (51), and (56) in Eq. (58),

∂ lnN!� N1lnN1 �N1ð Þ � N2lnN2 �N2ð Þ……:½ �
∂Nj

þ λ
∂ N1 þ…þNj…
� �

∂Nj

þμ
∂ E1N1 þ…þ EjNj…
� �

∂Nj
¼ 0

(59)

On operating differential,

�lnNj þ λþ μEj ¼ 0 (60)

λþ μEj ¼ lnNj (61)

Nj ¼ eλþμEj (62)

Nj ¼ eλeμEj (63)

Nj ¼ CeμEj (64)

In general form by multiplying both sides by “Nj”, Eq. (60) can be written as

�
Xm

i¼1

Ni lnNi þNλþ μE ¼ 0 (65)

From Eqs. (57) and (65),

lnX� lnN!�N þNλþ μE ¼ 0 (66)

lnX ¼ lnN!� λþ 1ð ÞN � μE (67)
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(53)

X ¼ N!
Qm
i¼1

Ni!

(54)

Taking log on both sides of Eq. (53),

Kinetic Theory118

lnX ¼ lnN!� lnN1!� lnN2!……:� lnNj!……::� lnNm! (55)

By applying Stirling’s approximations to the factorials of all variables,

lnX ffi lnN!� N1lnN1 �N1ð Þ � N2lnN2 �N2ð Þ……: (56)

lnX ffi lnN!�
Xm

i¼1

NilnNi þN (57)

Let us maximize the lnX with respect to one microstate “Nj,” in a manner that is consistent
with constrains of Eqs. (50) and (51). Lagrangian multiplier for the most probable occupation
of the jth level is given as

∂lnX
∂Nj

þ λ
∂N
∂Nj

þ μ
∂E
∂Nj

¼ 0 (58)

where μ and λ are Lagrangian’s multipliers.

By adding values from Eqs. (50), (51), and (56) in Eq. (58),

∂ lnN!� N1lnN1 �N1ð Þ � N2lnN2 �N2ð Þ……:½ �
∂Nj

þ λ
∂ N1 þ…þNj…
� �

∂Nj

þμ
∂ E1N1 þ…þ EjNj…
� �

∂Nj
¼ 0

(59)

On operating differential,

�lnNj þ λþ μEj ¼ 0 (60)

λþ μEj ¼ lnNj (61)

Nj ¼ eλþμEj (62)

Nj ¼ eλeμEj (63)

Nj ¼ CeμEj (64)

In general form by multiplying both sides by “Nj”, Eq. (60) can be written as

�
Xm

i¼1

Ni lnNi þNλþ μE ¼ 0 (65)

From Eqs. (57) and (65),

lnX� lnN!�N þNλþ μE ¼ 0 (66)

lnX ¼ lnN!� λþ 1ð ÞN � μE (67)
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The change in the internal energy of the system in terms of thermodynamics equation can be
written as

dE ¼ TdS� PdV (68)

where “T” is the temperature, “P” is the pressure, and “S” is the entropy of the system.

The change in the internal energy at a constant volume is given as

∂E
∂S

� �

V
¼ T (69)

∂S
∂E

� �

V
¼ 1

T
(70)

Boltzmann’s equation for entropy is

S ¼ k lnX (71)

S ¼ k lnX (72)

From Eqs. (67) and (72),

S ¼ k lnN!� λþ 1ð ÞN � μE
� �

(73)

Differentiate with respect to the total energy at a constant volume

∂S
∂E

� �

V
¼ k �μ
� �

(74)

By comparing Eqs. (70) and (74)

1
T
¼ k �μ
� �

(75)

μ ¼ � 1
kT

(76)

By adding value of “μ” in Eq. (64)

Nj ¼ Ce�
Ej
kT (77)

To calculate the value of “C”, let us change the subscript “j” to “i” for Eq. (77) and take
summation from “1” to “m”.

N ¼ C
Xm

i¼1

e�
Ei
kT (78)
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and

C ¼ N
Pm

i¼1 e
�Ei

kT

(79)

Thus, Eq. (64) can be written as

Nj ¼ Ne�
Ej
kT

Pm
i¼1 e

�Ei
kT

(80)

Nj

N
¼ e�

Ej
kT

Pm
i¼1 e

�Ei
kT

(81)

In a system, most of the energy levels in an atom are degenerated, that is, atoms have several
states with the same energy. To find out the population of an atom at a particular level, the
population of each constituent state is required to be added together. Thus, each term in
Eq. (81) must be multiplied by the statistical weight (degeneracy) “ϖ” of the level

Nj

N
¼ ϖje�

Ej
kT

Pm
i¼1 ϖie�

Ei
kT

(82)

The term “
Pm

i¼1 ϖie�
Ei
kT” is called the partition function. The Eq. (82) gives the relative number of

atoms in state “j” with respect to the total number of atoms in the system. The number of
atoms in level “j” can also be compared with the number of atoms at the ground level

Nj

No
¼ ϖje�

Ej
kT

ϖoe�
Eo
kT

(83)

Nj ¼
Noϖje�

Ej
kT

U
(84)

and the number of atoms in level 2 relative to level 1, where level 2 is higher than level 1

N2

N1
¼ ϖ2e�

E2
kT

ϖ1e�
E1
kT

(85)

N2

N1
¼ ϖ2

ϖ1
e�

E2�E1
kT (86)

The Einstein A coefficient gives the probability of spontaneous emission. A quantum of radia-
tion is emitted by an atom when it de-excites from an excited level to a lower level, which is
given as
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The Einstein A coefficient gives the probability of spontaneous emission. A quantum of radia-
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hν ¼ ΔE (87)

where “ν” is the frequency of emitted radiation and “ΔE = E2-E1” is the energy difference
between two atomic states (or level) “E2” higher level and “E1” lower level.

Suppose the number of downward transitions per unit time is merely proportional to the
number of atoms “N2” at a higher state, then, the number of transition per unit time is given as

� _N2 ¼ A21N2 (88)

where “A21” is proportionality constant known as Einstein coefficient for spontaneous emis-
sion for transition from level “E2” to level “E1”.

As “A21N2” is the downward transition per unit time from “E2” to “E1”, thus the rate of
emission of energy from these “N2”, that is, radiant power or flux, is given as

Φ ¼ A21N2hυ2 (89)

Here, “ν21” represents the frequency of radiation due to transition from level “E2” to level “E1”.
As the radiation is emitted isotropically, thus the intensity is

I21 ¼ A21N2hυ21
4π

(90)

From Eqs. (84) and (90)

I21 ¼ NoA21ϖ2hυ21
4πU

e�
E2
kT (91)

I21 ¼ NoA21ϖ2hc
4πλ21U

e�
E2
kT (92)

2.7.1. Boltzmann plot

Taking log and solving Eq. (92),

ln
I21λ21

A21ϖ2

� �
¼ � E2

kT
þ ln

Nohc
4πU

� �
(93)

2.7.2. Intensity ratio method

Consider two different emission lines from level i ! j and m ! n, where i and m are higher
energy levels, j and n are lower energy levels. By using Eq. (92),

Iij ¼
NoAijϖihc
4πλijU

e�
Ei
kT (94)
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Imn ¼ NoAmnϖmhc
4πλmnU

e�
Em
kT (95)

Taking ratio of Eqs. (94) and (95) and solving for temperature “T”,

ln
IijλijAmnϖm

ImnλmnAijϖi

� �
¼ �Ei � Em

kT
(96)

T ¼ � Ei � Em

kln IijλijAmnϖm

ImnλmnAijϖi

� � (97)

2.8. Saha equation

The Boltzmann equation gives only the relative number of atoms or ions in a particular
excitation state with respect to the ground state and it does not provide the total number of
atoms that have been ionized. In order to determine the total abundance of a given element, it
is necessary to know how the atoms are distributed among their several ionization stages. To
quantify the number of atoms/ions in different ionization states, Saha’s equation is used which
gives an expression for the total number of ions in an ionization state relative to lower
ionization state.

For a system at local thermal equilibrium with a constant volume, the Boltzmann equation for
the number of ions “Ni” relative to atoms/ions “Ni

1” in the ground state of ionization state “i”
can be written as (by using Eq. (85))

Ni

Ni
1

¼ ϖie�
Ei
kT

ϖi
1e

�Ei
1

kT

(98)

Taking the sum of all the excited states “j” of ionization state “i”, Eq. (98) can be written as

Ni
j

Ni
1

¼
P∞

j¼1 ϖ
i
je
�

Ei
j

kT

ϖi
1e

�Ei
1

kT

(99)

Ni
j

Ni
1

¼
P∞

j¼1 ϖ
i
je
�

Ei
j

kT

Z1
(100)

where Z1 ¼ ϖi
1e

�Ei
1

kT , which represents the number of atoms at the ground level. The same
expression for the ionization state “i + 1” will include not only the excitation states of ion
“i + 1” but also the free electrons. Let us consider the energy of the free electron “Ee” and
momentum “Pe” with “Ee = Pe

2/2me”. Then, at any state of the system of ion “i + 1” and an

electron is characterized by the total energy “Eiþ1
j � Ee” and statistical weight “ϖiþ1

j ϖe Peð Þ”. As
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j
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1

kT , which represents the number of atoms at the ground level. The same
expression for the ionization state “i + 1” will include not only the excitation states of ion
“i + 1” but also the free electrons. Let us consider the energy of the free electron “Ee” and
momentum “Pe” with “Ee = Pe

2/2me”. Then, at any state of the system of ion “i + 1” and an

electron is characterized by the total energy “Eiþ1
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the energies of free electrons are continuous, the Boltzmann expression analogous to Eq. (100)
over all possible momenta of free electron can be written as

Niþ1
j

Ni
1

¼ 1
ϖi

1

X∞

j¼1

ϖiþ1
j e�

Eiþ1
j

�Ei
1

� �
kT

ð∞
0
ϖe Peð Þe�Ee

kTdPe (101)

The ionization potential of the ion “i” can be defined as

χi ¼ Eiþ1
1 � Ei

1 (102)

Thus, we can write

Eiþ1
j � Ei

1 ¼ Eiþ1
j � Eiþ1

1 þ χi (103)

Eq. (101) will become

Niþ1
j

Ni
1

¼ 1
ϖi
1

X∞

j¼1

ϖiþ1
j e�

Eiþ1
j

�Eiþ1
1

þχi

� �
kT

ð∞
0
ϖe Peð Þe�Ee

kTdPe (104)

Niþ1
j

Ni
1

¼ 1

ϖi
1e

�Eiþ1
1
kT

X∞

j¼1

ϖiþ1
j e�

Eiþ1
j

þχi

� �
kT

ð∞
0
ϖe Peð Þe�Ee

kTdPe (105)

Niþ1
j

Ni
1

¼ 1
Z1

X∞

j¼1

ϖiþ1
j e�

Eiþ1
j

þχi

� �
kT

ð∞
0
ϖe Peð Þe�Ee

kTdPe (106)

where Z1 ¼ ϖi
1e

�Eiþ1
1
kT , which represents the number of atoms at the ground level. Although the

momenta of the free electrons have a continuous distribution, but according to Heisenberg’s
uncertainty principle the electrons within a phase-space volume ΔV are indistinguishable,
unless they have an opposite spin orientation, that is,

ΔV P3
e ¼ h3 (107)

There are two possible distinguishable electron states within phase space of ΔV P3
e ¼ h3. Thus,

the statistical weight for the free electron can be written as

ϖe Peð ÞdPe ¼ 2
ΔV P3

e

h3
(108)

If the distribution of electron momenta is isotropic, then

ΔP3
e ¼ 4πP2

e dPe (109)
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If “ne” is the number density of electron, then the differential volume per electron will be

ΔV ¼ 1
ne

(110)

Thus, Eq. (108) can be written as

ϖe Peð ÞdPe ¼ 8πP2
e

neh3
dPe (111)

We can write the integral in Eq. (106) as
ð∞
0
ϖe Peð Þe�Ee

kTdPe ¼ 8π
neh3

ð∞
0
P2
e e

�Ee
kTdPe (112)

The integral can be transformed into an integral over variable “z” such that

z ¼ Ee

kT
¼ P2

e

2meKT
(113)

Pe ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2meKTZ

p
(114)

dPe ¼ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2meKT

z

r
dz (115)

By replacing values of Pe and dPe in Eq. (112)
ð∞
0
ϖe Peð Þe�Ee

kTdPe ¼ 4π
neh3

2meKTð Þ3=2
ð∞
0

ffiffiffi
z

p
e�zdz (116)

The integral on the right-hand side of Eq. (116) is the Gamma function of the argument 3/2,
which is Γ 3=2ð Þ ¼ 1=2ð ÞΓ 1=2ð Þ ¼ ffiffiffiffi

π
p

=2. By adding this value in Eq. (116)
ð∞
0
ϖe Peð Þe�Ee

kTdPe ¼ 4π
neh3

2meKTð Þ3=2 ffiffiffiffi
π

p
=2

� �
(117)

ð∞
0
ϖe Peð Þe�Ee

kTdPe ¼ 2
neh3

2πmeKTð Þ3=2 (118)

From Eqs. (106) and (118),

Niþ1
j

Ni
1

¼ 1
Z1

X∞

j¼1

ϖiþ1
j e�

Eiþ1
j

þχi

� �
kT

2
neh3

2πmeKTð Þ3=2 (119)

By dividing Eqs. (100) and (119),
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the energies of free electrons are continuous, the Boltzmann expression analogous to Eq. (100)
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By dividing Eqs. (100) and (119),
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Niþ1
j

Ni
j
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For a particular state,
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Eq. (90) can be written as
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From Eqs. (124)–(126),
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3. Summary

Kinetic theory provides the essential material for an introductory course on plasma physics as
well as the basis for advanced kinetic theory. It offers a wide-range coverage of the field.
Plasma kinetics deals with the relationship between velocity and forces and the study of
continua in velocity space. The understanding of the most important plasma parameters, that
is, plasma oscillations, plasma frequency, Debye shielding, Debye length, plasma temperature,
and electron density, is important for studying plasmas. Kinetic theory has a wide scope.
Plasma kinetics mathematical equations that will aid the readers in understanding simple
techniques on how to investigate plasma dynamics and kinetics are discussed in this chapter.
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Kinetic theory provides the basics and essential introduction to plasma physics and subse-
quently advanced kinetic theory. Plasma understanding, waves, oscillations, frequencies, and
applications are covered in kinetic theory. In fact, we have attempted to present a precise
discussion of plasma kinetic theory which includes the basic plasma parameters mathematical
formulation for an easy understanding to the reader.
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